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ABSTRACT

The primary objective of this study was to develop improved methodologies

for efficient and accurate uncertainty quantification with stochastic expansions and

apply them to problems in supersonic and hypersonic flows. Methods introduced

included approaches for efficient dimension reduction, sensitivity analysis, and sparse

approximations. These methods and procedures were demonstrated on multiple

stochastic models of hypersonic, planetary entry flows, which included high-fidelity,

computational fluid dynamics models of radiative heating on the surface of hypersonic

inflatable aerodynamic decelerators during Mars and Titan entry. For these stochastic

problems, construction of an accurate surrogate model was achieved with as few as

10% of the number of model evaluations needed to construct a full dimension, total

order expansion. Another objective of this work was to introduce methodologies used

for further advancement of a quantification of margins and uncertainties framework.

First, the use of stochastic expansions was introduced to efficiently quantify the

uncertainty in system design performance metrics and performance boundaries. Then,

procedures were defined to measure margin and uncertainty metrics for systems

subject to multiple types of uncertainty in operating conditions and physical models.

To demonstrate the new quantification of margins and uncertainties methodologies,

two multi-system, multi-physics stochastic models were investigated: (1) a model

for reentry dynamics, control, and convective heating and (2) a model of ground

noise prediction of low-boom, supersonic aircraft configurations. Overall the methods

and results of this work have outlined many effective approaches to uncertainty

quantification of large-scale, high-dimension, aerospace problems containing both

epistemic and inherent uncertainty. The methods presented showed significant

improvement in the efficiency and accuracy of uncertainty analysis capability when

stochastic expansions were used for uncertainty quantification.



iv

ACKNOWLEDGMENTS

I would like to sincerely thank my advisor, Dr. Serhat Hosder, for the

opportunity and honor he has bestowed upon me by working with me over my entire

graduate school career. He has given me the utmost dedication and guidance in

developing me into not only a better student and researcher, but also a better person.

I cannot begin to express my gratitude for the time, effort, and patience Dr. Hosder

as dedicated to me as my advisor.

I would like to thank my committee members, Dr. David Riggins, Dr. Xiaoping

Du, Dr. K. M. Isaac, and Dr. Luca Maddalena for their dedication, support, and time

commitment to this research. I would like to thank Dr. Christopher Johnston from

the NASA Langley Research Center for his invaluable support of this work. I would

also like to thank my fellow graduate students Andrew Brune and Harsheel Shah for

many discussions and much collaboration on this research.

I would like to thank the Department of Mechanical and Aerospace

Engineering at the Missouri University of Science and Technology for a great

educational opportunity, as well as the provided facilities and funding. Partial

funding for this work was provided by NASA STTR grant no. NNX11CC60C and

M4 Engineering Inc. I would also like to thank the NASA-Missouri Space Grant

Consortium and the Missouri S&T Chancellor’s Fellowship program for additional

funding. I would like to thank Dr. Eric Walker for his support and for providing me

with multiple internship opportunities at the NASA Langley Research Center.

Finally, I absolutely must thank my family and fiancée for their love and

support over the course of my education. This has been a long and trying road.

Without them, I would not be where I am today, and this work would not have been

possible.



v

TABLE OF CONTENTS

Page

ABSTRACT .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

NOMENCLATURE .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

SECTION

1. INTRODUCTION .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. MOTIVATION FOR UNCERTAINTY QUANTIFICATION .. . . . . . . . . . 1

1.2. OBJECTIVES OF THE CURRENT STUDY .. . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3. CONTRIBUTIONS OF THE CURRENT STUDY .. . . . . . . . . . . . . . . . . . . . . 3

1.4. DISSERTATION OUTLINE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. LITERATURE REVIEW .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1. UNCERTAINTY QUANTIFICATION WITH STOCHASTIC
EXPANSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2. QUANTIFICATION OF MARGINS AND UNCERTAINTIES. . . . . . . . . 8

3. TYPES OF UNCERTAINTY AND UNCERTAINTY PROPAGATION .. . . 10

3.1. TYPES OF UNCERTAINTY IN HIGH-SPEED FLOWS .. . . . . . . . . . . . . 10

3.2. MIXED UNCERTAINTY PROPAGATION .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4. POLYNOMIAL CHAOS EXPANSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1. BASICS OF POLYNOMIAL CHAOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2. POINT COLLOCATION NON-INTRUSIVE POLYNOMIAL CHAOS 16

4.2.1. General Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.2. Sensitivity-Based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5. GLOBAL SENSITIVITY ANALYSIS METHODS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20



vi

5.1. GLOBAL NONLINEAR SENSITIVITIES VIA SOBOL INDICES . . . . 20

5.2. GLOBAL SENSITIVITY APPROXIMATION VIA LOCAL
SENSITIVITIES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6. MULTI-STEP UNCERTAINTY QUANTIFICATION.. . . . . . . . . . . . . . . . . . . . . . . 25

6.1. COMPONENTS AND PROCESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2. DEMONSTRATION PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.2.1. Stagnation-Point Convective Heat Transfer in Hypersonic Flow 29

6.2.2. High-Fidelity Radiative Heat Flux Prediction during Mars Entry 37

6.3. DESCRIPTION OF THE STOCHASTIC PROBLEM .. . . . . . . . . . . . . . . . . 38

7. SPARSE APPROXIMATIONS OF STOCHASTIC EXPANSIONS . . . . . . . . . 49

7.1. SPARSE APPROXIMATION METHODOLOGY .. . . . . . . . . . . . . . . . . . . . . . 49

7.2. SAMPLE SIZE, ACCURACY, AND CONVERGENCE .. . . . . . . . . . . . . . . 50

7.3. DEMONSTRATION OF THE SPARSE APPROXIMATION
APPROACH .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.3.1. Stagnation-Point, Convective Heat Transfer in Hypersonic Flow 54

7.3.2. Radiative Heat Flux Prediction during Mars Entry . . . . . . . . . . . . . . 56

7.3.3. Radiative Heat Flux Prediction during Titan Entry . . . . . . . . . . . . . 69

8. QUANTIFICATION OF MARGINS AND UNCERTAINTIES . . . . . . . . . . . . . . 88

8.1. COMPONENTS OF QMU .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.2. UNCERTAINTY CALCULATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.3. MARGIN CALCULATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.4. CERTIFICATION PREDICTION .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.5. APPLICATION PROBLEMS FOR QMU.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.5.1. Spacecraft Reentry Trajectory Uncertainty . . . . . . . . . . . . . . . . . . . . . . . 97

8.5.2. Certification Prediction of Supersonic Low-Boom Configurations107

9. CONCLUSIONS AND FUTURE WORK .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

9.1. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



vii

9.2. FUTURE WORK .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

APPENDICES

A. Radiation Uncertainty Sources for Mars Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

B. Radiation Uncertainty Sources for Titan Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

BIBLIOGRAPHY .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153



viii

LIST OF ILLUSTRATIONS

Figure Page

3.1 Schematic of Second-Order Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 P-box Representation of Mixed Uncertainty Output and Confidence
Interval Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6.1 Multi-Step UQ Framework Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.2 Sobol Indices (2nd Order PCE) and Gi (12 Initial Samples) . . . . . . . . . . . . . . . . 33

6.3 P-box plots for Mixed Uncertainty Analysis: 11 Variable Monte Carlo
vs. 6 Variable 2nd order PCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.4 P-box plots for Mixed Uncertainty Analysis: 11 Variable Monte Carlo
vs. 2 Variable 2nd order PCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.5 Computational Grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.6 Effect of Input Uncertainty on the Flow field and Wall Radiation . . . . . . . . . 41

6.7 Sensitivity Values of the Most Contributing Random Variable . . . . . . . . . . . . . 42

6.8 Gi Values for the Stagnation Point, Radiation Model . . . . . . . . . . . . . . . . . . . . . . . 43

6.9 Pure Aleatory and Epistemic Analysis Probability Box . . . . . . . . . . . . . . . . . . . . . 46

6.10 Mixed Uncertainty Analysis Probability Box (5 Variables).. . . . . . . . . . . . . . . . . 47

7.1 Convergence of the Sparse PCE for the Fay-Riddell Model . . . . . . . . . . . . . . . . . 55

7.2 Total Sobol Index Values at Selected Sample Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.3 P-Box for Mixed Uncertainty Analysis at Selected Sample Sizes . . . . . . . . . . . 57

7.4 Convergence of the Sparse PCE for Mars Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.5 Fractions of Total Output Uncertainty at Selected Sample Sizes . . . . . . . . . . . 60

7.6 Convergence of Top 5 Uncertain Parameters at the Stagnation Point. . . . . . 61

7.7 Convergence of Pure Aleatory and Epistemic Intervals for the Stagnation
Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.8 P-box of Mixed Uncertainty Analysis at Selected Sample Sizes . . . . . . . . . . . . 63

7.9 Wall Directed Radiative Heat Flux Distribution Along HIAD Surface . . . . . 65



ix

7.10 Convergence of Uncertain Parameters Accounting for 90% Uncertainty
at Wall Point 3 (x=1.8 m from the Stagnation Point) . . . . . . . . . . . . . . . . . . . . . . 67

7.11 Convergence of Uncertain Parameters Accounting for 90% Uncertainty
at Wall Point 9 (x=6.7 m from the Stagnation Point) . . . . . . . . . . . . . . . . . . . . . . 68

7.12 Shock Stand-off Distance for Mars Entry HIAD .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.13 Radiative Flux and Volumetric Radiance Along the Stagnation Line . . . . . . 70

7.14 Radiative Flux and Volumetric Radiance Normal to Wall Point 3 . . . . . . . . . 71

7.15 Radiative Flux and Volumetric Radiance Normal to Wall Point 9 . . . . . . . . . 72

7.16 Computational Grid and Grid Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.17 Titan Entry Baseline Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.18 Titan Entry Radiative Flux Spectra Along the HIAD Surface. . . . . . . . . . . . . . 77

7.19 Titan Baseline Stagnation Line Temperature and Radiative Heat Flux
Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.20 Titan Baseline Stagnation Line Temperature and Radiative Heat Flux
Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.21 Titan Entry Comparison of LBL vs. SRB Treatment for CN Violet and
Red Band Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.22 Convergence of Sparse PCEs for Titan Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.23 Epistemic and 95% Confidence Intervals of Wall Radiative Heat Flux for
Titan Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.24 Convergence of the Radiative Heating Uncertainty Intervals for Titan Entry 85

7.25 Uncertainty Contributions to Titan Radiative Heating Along the HIAD
Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.1 Schematic of Key Measures used in a QMU Analysis . . . . . . . . . . . . . . . . . . . . . . . 89

8.2 Certification Predication Margin and Uncertainty Measurements . . . . . . . . . . 96

8.3 System Design Schematic for the Spacecraft Reentry Model Problem . . . . . 98

8.4 Sample Skip Reentry Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.5 Maximum g-Load P-Box Plot from System 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.6 Bank Angle Correction P-Box Plot from System 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.7 Maximum Heat Load P-Box Plot from System 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



x

8.8 Near-Field CFD Domain with Pressure Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.9 Configurations Studied in the Present Work. SEEB-ALR (left), NASA
69◦ Delta Wing (center), LM 1020-01 (right). Models Not to Relative
Scale.[1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.10 Computational Grid for the Viscous 69◦ Delta Wing Including Extruded
Region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.11 SEEB-ALR Surface Imperfections of the as-Built Model . . . . . . . . . . . . . . . . . . . . 113

8.12 SEEB-ALR Near-Field CFD Comparison with Experimental Results . . . . . 117

8.13 SEEB-ALR Euler as-Built Near-Field Pressure Signature Dispersion . . . . . . 117

8.14 SEEB-ALR Euler as-Built Ground Signature Dispersion . . . . . . . . . . . . . . . . . . . 118

8.15 SEEB-ALR Euler as-Built PLdB and CSEL Probability Box Boundaries . 120

8.16 69◦ Delta Wing Near-Field CFD Comparison with Experimental Results . 123

8.17 69◦ Delta Wing Euler Near-Field Pressure Signature Dispersion . . . . . . . . . . . 123

8.18 69◦ Delta Wing Euler Ground Signature Dispersion. . . . . . . . . . . . . . . . . . . . . . . . . 124

8.19 69◦ Delta Wing Euler PLdB and CSEL Probability Box Boundaries . . . . . . 125

8.20 LM 1021-01 Near-Field CFD Comparison with Experimental Results . . . . . 127

8.21 LM 1021-01 Euler Near-Field Pressure Signature Dispersion . . . . . . . . . . . . . . . 128

8.22 LM 1021-01 Euler Ground Signature Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.23 LM 1021-01 Turbulent Near-Field Pressure Signature Dispersion . . . . . . . . . . 129

8.24 LM 1021-01 Turbulent Ground Signature Dispersion . . . . . . . . . . . . . . . . . . . . . . . . 129

8.25 LM 1021-01 Euler PLdB Probability Box Boundaries . . . . . . . . . . . . . . . . . . . . . . . 130



xi

LIST OF TABLES

Table Page

6.1 Uncertain Parameter Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.2 Stagnation Point, Convective Heat Transfer (W/cm2) Probability Level
Intervals for Figure 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.3 Stagnation Point, Convective Heat Transfer (W/cm2) Probability Level
Intervals for Figure 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.4 Comparison of Updated Sample Heat Flux Values with Actual Sample
Values for the Two Variable Problem (W/cm2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.5 Top 10 Most Contribution Uncertain Parameters Based on the Gi Analysis 44

6.6 Reduced Dimension Epistemic Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.7 Reduced Dimension Pure Aleatory Analysis, Selected Probability Level
Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.8 Mixed Uncertainty Analysis, Selected Probability Level Values . . . . . . . . . . . . 47

6.9 Reduced Dimension Epistemic Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.1 Output Intervals at Selected Probability Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2 Comparison of Stagnation Point Radiative Flux Intervals for Different
Analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.3 Top Uncertainty Sources Contributing to Radiative Heat Uncertainty. . . . . 87

8.1 Response Values of Different Uncertainty Representations for Upper
Uncertainty Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.2 Response Values of Different Uncertainty Representations for Lower
Uncertainty Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.3 Response Values of Different Uncertainty Representations for Margin
Calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.4 Reentry Model Uncertain Parameters for System 1 . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.5 Reentry Model Uncertain Parameters for System 2 . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.6 Maximum g-Load QMU Analysis Metrics from System 1 . . . . . . . . . . . . . . . . . . . 106

8.7 Bank Angle Correction QMU Analysis Metrics from System 1 . . . . . . . . . . . . . 107



xii

8.8 Maximum Heat Load QMU Analysis Metrics from System 2 . . . . . . . . . . . . . . . 107

8.9 CFD Grid Dimensions and Computational Time demands . . . . . . . . . . . . . . . . . 111

8.10 CFD Aleatory Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.11 sBOOM Aleatory Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.12 sBOOM Epistemic Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.13 SEEB-ALR 95% Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.14 SEEB-ALR Top Uncertain Parameter Contribution to PLdB Total
Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.15 SEEB-ALR Top Uncertain Parameter Contribution to CSEL Total
Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.16 69◦ Delta Wing 95% Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.17 69◦ Delta Wing Top Uncertain Parameter Contribution to PLdB Total
Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.18 69◦ Delta Wing Top Uncertain Parameter Contribution to CSEL Total
Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.19 LM 1021-01 95% Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.20 LM 1021-01 Top Uncertain Parameter Contribution to PLdB Total
Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.21 LM 1021-01 Top Uncertain Parameter Contribution to CSEL Total
Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



xiii

NOMENCLATURE

Ael Leading rate (Arrhenius) constant for electron-impact excitation

Af,i Leading rate (Arrhenius) constant for chemical kinetic reaction i

Ahp Leading rate (Arrhenius) constant for heavy-particle impact

excitation

CR Confidence Ratio

ci Mass Fraction of Species i

D Total statistical variance

Df,i Characteristic temperature for chemical kinetic rate constant i

Di1,...,is Partial statistical variance

Eel Characteristic temperature for electron-impact excitation

Ehp Characteristic temperature for heavy-particle impact excitation

Factual Response value from deterministic model

Fsurr. Response value from surrogate model

F Performance Metric

FL Lower Performance Limit

FU Upper Performance Limit

h Enthalpy or Altitude (km)

hD Enthalpy of Diffusion (J/kg)

h0
f Heat of Formation (J/kmol)

h0 Totoal Enthalpy (J/kg)

Kel
f,ij Forward reaction rate for the electron-impact excitation from

electronic state i to j (cm3s−1)

Khp
f,ij Forward reaction rate for the heavy-particle excitation from

electronic state i to j (cm3s−1)



xiv

kf,i Forward rate for chemical reaction i (cm3mole−1s−1)

Le Lewis Number

MUP Upper Performance Gate Margin

MLW Lower Performance Gate Margin

m mass (kg)

Ns Number of samples

Nt Number of terms in a total-order polynomial chaos expansion

NTP Number of test points

n Number of random dimensions

nel Temperature exponent for electron-impact excitation

nf,i Temperature exponent for chemical kinetic reaction i

nhp Temperature exponent for heavy-particle impact excitation

P Number of output modes or Pressure (Pa)

Pr Prandtl Number

p Order of polynomial expansion

q̇ Heat Flux (W/cm2)

qλ Monochromatic radiative heating (Wcm−2)

r Orbital Radius (km)

S Reference Area (m2)

Se Percent absolute error

Si1,...,is Partial Sobol index

ST Total Sobol index

s Down Range Distance (km)

T Temperature (K)

Ta Dissociation controlling average temperature defined as (TtrTve)
1/2

Te Test point error



xv

Tx Temperature, where x = ve or tr for vibrational or rotational

modes

UF Performance Metric Uncertainty

UFU Upper Performance Limit Uncertainty

UFL Lower Performance Limit Uncertainty

UUP Upper Performance Gate Uncertainty

ULW Lower Performance Gate Uncertainty

U Velocity (m/s)

x Independent input random variable

α Deterministic coefficient in the polynomial chaos expansion

α∗ Generic uncertain function

β Confidence Level

γ Flight Path Angle (Deg.)

δ Truncation error

ε Wall Emissivity

θ Longitude (Deg.)

λ Wavelength (nm)

µ Dynamic Viscosity (kg/m-s)

µe Mean error

ξ Standard input random variable

ρ Density (kg/m3)

σ Bank Angle or Stefan-Boltzmann Constant

(5.67x10−8 W/m2 −K4)

Ψ Random basis function or Heading Angle (Deg.)

φ Latitude (Deg.)

ω Planetary Body Rotation Rate (rad/s)



xvi

Subscripts

w Wall Condition

e Boundary Layer Edge Condition

∞ Free Stream Condition

r Radiation

c Conduction

d Diffusion



1. INTRODUCTION

1.1. MOTIVATION FOR UNCERTAINTY QUANTIFICATION

With recent advancements in computational hardware and numerical

algorithms, computational fluid dynamics (CFD) has become one of the main tools

used in the analysis and design of aerospace vehicles and systems. In complex

aerospace engineering problems, reliability and robustness is a key component of the

design process. The challenge is that many of the models have a significant amount

of nondeterministic parameters that make assessing the reliability and the robustness

a substantial obstacle due to the cost associated with quantifying the effect of the

nondeterministic parameters on design quantities. A particular area of interest are

models of supersonic and hypersonic flows. These models may be difficult due to

the complexity of the physics governing, not only the fluid dynamics, but also the

thermodynamics, heat transfer, and chemical kinetics.

Uncertainty quantification (UQ) of large-scale, highly complex models with

large amounts of uncertainty can be challenging due to the computational demand

of sophisticated deterministic models. Traditional uncertainty propagation is done

with sampling approaches, such as Monte Carlo. The challenge with this approach

is that numerous samples (∼ 105) are typically required for accurate results.

High-fidelity, numerical models tend to be extremely expensive, which may make

traditional sampling techniques impractical or infeasible for performing an accurate

UQ analysis. Therefore, there is a strong demand for UQ methods that can provide
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computationally efficient and accurate results with a minimal number of deterministic

model evaluations.

1.2. OBJECTIVES OF THE CURRENT STUDY

The primary objective of this study is to develop improved methodologies for

efficient and accurate UQ with stochastic expansions and apply them to problems in

supersonic and hypersonic flows. Methods to be introduced include approaches for

efficient dimension reduction, sensitivity analysis, and sparse approximations. These

new tools will allow for efficient and accurate analysis of stochastic models with a large

number of both aleatory (inherent) and epistemic uncertainties. When developing

these methods, the focus is to reduce the number of computationally expensive model

evaluations, while maintaining the accuracy of the uncertainty analysis.

A second objective of this work is to define procedures for an improved

quantification of margins and uncertainties (QMU) framework for the analysis of

aerospace systems subject to multiple types of uncertainty in the operating conditions

and physical models used in the calculation of the design condition and performance

boundaries. In many engineering applications, uncertainty representation in design

conditions may be different than the representation of the performance boundaries.

Representation may be a pure probabilistic representation, an interval based

representation, or a combination of the two (i.e., mixed uncertainty). There may

also be instances when no uncertainty exists in performance limits. This may be

typical when trying to meet some specific design criteria. The goal is to outline how

measures can be made between these different uncertainty representations to provide

an accurate estimation of the reliability of the system and/or performance metrics.

In addition, a secondary objective is to demonstrate the use of stochastic response

surfaces for efficient quantification of uncertainty in system performance metrics, as

well as performance boundaries.
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The methods and procedures developed in this study will be demonstrated on

multiple stochastic models of supersonic and hypersonic flows. For the supersonic

flow regime, a high-fidelity, CFD models of low-boom, supersonic, cruise vehicles is

investigated for the prediction of ground level noise. In the hypersonic flow regime,

high-fidelity, CFD simulations of shock-layer, radiative heating on the surface of a

vehicle during planetary entry are investigated. Because of the large amount of

uncertainty that exist in the models and their computational expense, they are of

particular interest in terms of, not only the challenge they pose as stochastic models,

but also their application to cutting edge research, model development, and design.

1.3. CONTRIBUTIONS OF THE CURRENT STUDY

The first contribution of this study is the development of a multi-step UQ

process for high-fidelity, hypersonic re-entry flow simulations, which may include a

large number of both aleatory and epistemic uncertainties. This process is aimed

to reduce the computational cost in terms of the required number of deterministic

model evaluations necessary for accurate UQ with a stochastic expansion. The key

components of this process include a sensitivity-based dimension reduction scheme

based on the approximation of global sensitivities with local sensitivities. Then, a

methodology is implemented to update the existing deterministic response values

in the reduced dimension stochastic problem, which allows for the reuse of existing

response values. Lastly, a modification of the existing point-collocation non-intrusive

polynomial chaos (NIPC) method is performed to incorporate the use of response

sensitivities, as well as the response values at the selected collocation locations in the

determination of the polynomial chaos expansion (PCE) coefficients.

The second contribution of this work is the investigation and application

of sparse approximations of PCEs. The goal is introduce alternative measures

of accuracy for PCE coefficients and to present approaches for determining their
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convergence while iteratively increasing sample size. The accuracy and convergence of

the PCE coefficients are measured in two ways. The first is by determining the global,

nonlinear sensitivity of each uncertain parameter based on the variance obtained from

the PCE. The second method is by measuring the accuracy of the polynomial chaos

response surface when compared to selected test points distributed throughout the

design space. These approaches have the advantage of implicitly monitoring the

change in all of the PCE coefficients while not being significantly affected by changes

in weakly contributing uncertain variables, which may yield little to no change in

the overall response. The goal is, again, to minimize the number of computationally

expensive deterministic model evaluations needed for an accurate UQ analysis.

A third contribution is the improvement of the QMU framework methodology

and efficiency. This includes demonstrating the use of stochastic response surfaces

based on NIPC for efficient quantification of uncertainty in system performance

metrics, as well as performance boundaries and the definition of procedures to

calculate the margin and uncertainty metrics of systems containing multiple types

of uncertainty in the design condition and performance limits.

The final contribution of this study is the uncertainty analysis of the various

high-speed flow model problems. Uncertainty and sensitivity analysis of low-boom,

supersonic, cruise vehicles has not previously been investigated. With the industry

moving towards commercial supersonic flight over populated areas, assessment of

the uncertainty in ground noise predictions is critical for facilitating low-boom

configuration design approaches. The shock-layer, radiation models investigated for

planetary entry, hypersonic flows are particularly interesting due to the shear amount

of uncertainty that exists in these complex models. While previous studies (which

will be discussed later) have performed uncertainty analysis on some of these models,

they have not been as rigorous or as inclusive of as many sources of uncertainty as will

be investigated in the current study. The uncertainty analysis of all of these models
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will aid the design of reliable and robust aerospace vehicles by informing resource

allocation for model improvement and the management and reduction of uncertainty

in these models.

1.4. DISSERTATION OUTLINE

The following section provides a brief literature review of UQ with stochastic

expansions and previously investigated stochastic models in supersonic and

hypersonic flows. Section 3 describes the types of uncertainty in numerical modeling

and provides a discussion of mixed uncertainty propagation. Section 4 describes

the basics of polynomial chaos expansions and details of the non-intrusive point-

collocation technique. Section 5 outlines approaches for global sensitivities analyses.

Section 6 then introduces the multi-step UQ approach, which is applied to two

stochastic models of hypersonic flows. Section 7 introduces the sparse approximation

of the polynomial chaos expansion technique, which is applied to three stochastic

model problems of hypersonic flows. Section 8 then discusses the quantification of

margins and uncertainties for aerospace systems. Two mutli-system models including

reentry trajectory modeling and sonic-boom loudness predictions are investigated.

Lastly, Section 9 discusses important conclusions from this study and outlines possible

future work areas.
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2. LITERATURE REVIEW

The following literature review considers two main topics. The first subsection

includes a review of previous studies on advancements and application of stochastic

expansions as a means of uncertainty quantification. The second subsection includes

a review of the quantification of margins and uncertainties (QMU) methodologies.

2.1. UNCERTAINTY QUANTIFICATION WITH STOCHASTIC

EXPANSIONS

The use of stochastic expansions in the analysis of nondeterministic engineering

problems has become an increasingly popular approach in the last few decades. The

original theory on polynomial chaos was introduced by Norbert Wiener in 1938 [2].

He presented the idea of modeling a stochastic process or chaos with a series of

polynomials that represent the statistical parameters of the process. Since then,

many efforts have been made to build upon and generalize the work of Wiener, many

of which are presented by Ghanem and Spanos [3]. Work by Xiu and Karniadakis [4]

outlined an approach for representing a stochastic process with on optimal basis from

the Askey set of orthogonal polynomials, which allowed for reduced dimensionality

and improved error convergence.

More recently, many uncertainty quantification (UQ) studies have been

conducted on extending the applicability and capability of using stochastic expansions

as a means of efficient UQ. Walters and Huse [5] surveyed methods in UQ, including

polynomial chaos, and their application to fluid mechanics. Work by Najm [6]

reviewed UQ and polynomial chaos techniques in computational fluid dynamics.

Hosder and Bettis [7] investigated using non-intrusive polynomial chaos (NIPC) as a

means of efficient propagation of mixed aleatory and epistemic uncertainties in reentry
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flows. Bettis et al. [8] applied NIPC to a multidisciplinary analysis of reusable launch

vehicles. Works by Hosder et al. [9, 10] investigated efficient sampling approaches

and the use of the point-collocation NIPC technique. Furthermore, Eldred [11]

summarized recent advancements in NIPC methodologies for uncertainty analysis

and design.

As with many surrogate modeling approaches, gradient-enhancement may

be used to improve accuracy and reduce computational cost. With regards to

polynomial chaos, previous studies by Lockwood et al. [12] and Roderick et al. [13]

have investigated incorporating gradient information into the point-collocation NIPC

approach and a means of enhancing the stochastic expansion and improving the UQ

analysis. These works utilized adjoint-based techniques to obtain local sensitivity

information that was used to improve surrogate models created with regression

methods at a reduced computational cost over performing additional deterministic

function evaluations.

One weakness of polynomial chaos is dependence on the number of uncertainty

sources, or random variables. While developing methods to alleviate this dependency

is one focus of the current study, work by Doostan and Owhadi [14] has shown

that the polynomial chaos expansion (PCE) coefficients can be recovered from a

sparse sample set with a compressive sampling approach. This involved casting a

sparse point-collocation NIPC formulation into an optimization problem to recover

the PCE coefficients from the underdetermined system of equations. This technique

was applied to model problems of large dimension to demonstrate the potential of

the method in using fewer number of samples than normally required to construct

the PCE directly.

In the area of supersonic and hypersonic flow uncertainty analysis with

stochastic expansions, there has been a limited number of studies beyond those

already mentioned. For supersonic flows, work by Witteveen et al. [15] used
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polynomial chaos for uncertainty quantification and error estimation in scramjet

simulations. Hosder and Maddalena [16] used NIPC to efficiently quantify

the uncertainty in supersonic pressure probe design. Suga and Yamazaki [17]

performed uncertainty quantification of the aerodynamics of a supersonic biplane

with polynomial chaos. In the hypersonic flow regime, a study by Kulakhmetov

and Alexeenko [18] used polynomial chaos to quantify the uncertainty in hypersonic

leading-edge flows.

2.2. QUANTIFICATION OF MARGINS AND UNCERTAINTIES

Quantification of Margins and Uncertainties (QMU) is a methodology developed

to facilitate analysis and communication of confidence for certification of complex

systems. This is performed with quantified uncertainty and margin metrics obtained

for various system responses and performance parameters [19]. In recent years, a

number of studies were reported on the theoretical development and the application

of the QMU concept. The description of the key elements of a QMU framework

was presented by Sharp and Wood-Schultz [19], who used the QMU methodology

for the certification of nuclear weapons. Eardley et al. [20] described QMU as a

formalism dealing with the reliability of complex technical systems, and the confidence

which can be placed in estimates of reliability. They also investigated the main

components (performance gates, margins, and uncertainties) of QMU methodology.

Pilch et al. [21] presented the main ideas underlying QMU, who also emphasized the

need to separate aleatory and epistemic uncertainty in QMU. Helton [22] presented a

comprehensive study on the QMU, which included a detailed analysis of the concept

with different representations of uncertainty. Romero [23] discussed the issues and

needs in QMU of complex coupled systems. Pepin et al. [24] presented a practical

QMU metric for the certification of complex systems, which allowed uncertainty both

on the operating region and the performance requirement and was not restrictive
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to a probabilistic definition of the uncertainty. A QMU approach was used for

the characterization of the operational limits of the supersonic combustion engine

of a hypersonic air-breathing vehicle by Iaccarino et al. [25]. A study by Lucas et

al. [26] used the QMU methodology to study the reliability of a ring structure. Swiler

et al. [27] studied various approaches to characterize epistemic uncertainty in the

calculation of margins.
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3. TYPES OF UNCERTAINTY AND UNCERTAINTY PROPAGATION

A critical step in any uncertainty analysis is the classification of the uncertain

parameters. These parameters may be mathematically represented differently based

on the nature of the uncertainty source. Incorrect classification and/or treatment of

uncertain parameters can result in widely different ranges of output uncertainty. The

objective of this section is to describe the two main categories of uncertainty that

exist in numerical modeling and outline a procedure for propagating the uncertainty

through stochastic models.

3.1. TYPES OF UNCERTAINTY IN HIGH-SPEED FLOWS

Two main types of uncertainty exist in numerical modeling: aleatory uncertainty

and epistemic uncertainty [28]. Aleatory uncertainty is the inherent variation of a

physical system. Such variation is due to the random nature of input data and

can be mathematically represented by a probability density function if substantial

experimental data is available for estimating the distribution type. By definition,

these variables are not controllable and are assumed to be as well understood as

possible in terms of their uncertain nature. This type of uncertainty is, therefore,

sometimes referred to as irreducible uncertainty. An example of this for stochastic

CFD simulations could be the fluctuation in freestream quantities such as velocity,

temperature, and density. An additional example of this uncertainty is manufacturing

tolerances.

Aleatory uncertainty is propagated through a stochastic model by sampling the

distribution of each parameter and then calculating the output from model with in the

design points. Because the inputs are probabilistic in nature, the outputs also carry an

associated probability of occurrence. By rigorously sampling within the design space,
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the probabilistic realizations can be used to create a discrete cumulative distribution

function of the output from the stochastic model problem.

Epistemic uncertainty in a stochastic problem comes from several potential

sources. These include a lack of knowledge or incomplete information of the behavior

of a particular variable. Also, ignorance or negligence with regards to accurate

treatment of model input parameters is a source of epistemic uncertainty. Contrary

to aleatory uncertainty, epistemic uncertainty is sometimes referred to as reducible

uncertainty. An increase in knowledge regarding the physics of a problem, along with

accurate modeling, can reduce the amount of this type of uncertainty. Epistemic

uncertainty is typically modeled using intervals because the use of probabilistic

distributions (even a uniform distribution) can lead to inaccurate predictions in the

amount of uncertainty in a system. Upper and lower bounds of these intervals can

be drawn from limited experimental data or from expert predictions and judgment

[7, 8].

An additional, special case of epistemic uncertainty is numerical error. This

uncertainty is common in numerical modeling and is defined as a recognizable

deficiency in any phase or activity of modeling and simulations that is not due to lack

of knowledge of the physical system. In CFD, an example of this type of uncertainty

would be the discretization error in both the temporal and spatial domains that

comes from the numerical solution of the partial differential equations that govern

the system [8]. This uncertainty can be well understood and controlled through code

verification and grid convergence studies.

Epistemic uncertainty can be propagated through a stochastic model in multiple

ways. The traditional approach is to rigorously sample the uncertainty space, much

like with the aleatory uncertainty. The difference now is that because epistemic

uncertainty, by definition, carries no probabilistic meaning, the realizations form

the uncertainty space are viewed simply as possible outcomes, but have the same
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probability of occurrence as any other output. What is of interest then is the

maximum and minimum possible occurrences. Large sample sizes can be used to

approximate these boundaries.

As an alternative, because we are only interested in the limits of the uncertain

output, optimization on the domain of the epistemic input parameters can be used

so seek out the maximum and minimum output values. Eldred and Swiler [29]

discuss that this optimization can be performed using a variety of local and global

optimization methods. While the optimization approach is generally assumed to

provide the most accurate result (assuming that no local extrema is found that is not

the interval bound), the computational cost of the optimization may be significant

with a very large number of uncertain variables.

3.2. MIXED UNCERTAINTY PROPAGATION

Many stochastic problems may contain both epistemic and aleatory uncertainty.

The desired approach is to consider the contribution of both types of uncertainty

simultaneously by propagating this mixed uncertainty through the stochastic model.

This can be done using a procedure known as second-order probability [29]. Second-

order probability is a type of double loop sampling, shown in Figure 3.1, and can

also be implemented using a Monte Carlo sampling approach of the deterministic

model. When using stochastic expansions, the NIPC response surface can be used

within second-order probability in place of the deterministic code. In the outer loop,

a vector of specific values for the epistemic variables is passed into the inner loop

where the stochastic response surface resulting from the NIPC process is sampled for

the single epistemic sample vector and every aleatory sample vector. The process is

repeated for all of the epistemic sample vectors. This means that the total number of

samples of the NIPC response surface is the number of epistemic samples times the

number of aleatory samples.
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Figure 3.1. Schematic of Second-Order Probability

Each iteration of the outer loop generates a cumulative distribution function

(CDF) based on the aleatory uncertainty analysis in the inner loop. After completion

of the process, what remains is a series of CDFs, which, when plotted, gives intervals of

the output variable from the model at different probability levels (i.e., a probability or

“P-box” representation of mixed uncertainty output). Important information can be

taken from P-boxes, including confidence intervals. For the case of mixed uncertainty,

one approach to obtaining the 95% confidence interval, for example, is to take the

upper 97.5% probability level and the lower 2.5% probability level as the interval. The

P-box and confidence interval measurement are illustrated in Figure 3.2. Note that

the boundaries of the P-box are typically hold the greatest interest during analysis

and design, as will be shown in later sections.

Note that a combination of sampling and optimization can also be implemented

to potentially reduce the computational expense for large-scale problems. In this

approach, the outer loop is first evaluated with a small number of samples to

determine robust estimates for the initial values of the epistemic variables used in

optimization. The optimization is then performed with these initial starting points

for minimizing or maximizing the response at selected probability levels.
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Figure 3.2. P-box Representation of Mixed Uncertainty Output and Confidence
Interval Measurement
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4. POLYNOMIAL CHAOS EXPANSIONS

This section provides the details of the polynomial chaos techniques used

in this study. The first part outlines the general polynomial chaos expansion

formulation. Then, the point-collocation non-intrusive approach is discussed. Among

this, difference methodologies are described including the general point-collocation

approach and gradient enhancement.

4.1. BASICS OF POLYNOMIAL CHAOS

In recent studies, [7, 8, 10, 30, 31] the polynomial chaos method has been used

as a means of UQ over traditional methods, such as Monte Carlo, for computational

efficiency. Polynomial chaos is a surrogate modeling technique based on the spectral

representation of the uncertainty. An important aspect of spectral representation of

uncertainty is that a response value or random function α∗ can be decomposed into

separable deterministic and stochastic components, as shown in Eq. (1).

α∗(x, ξ) ≈
P∑
i=0

αi(x)Ψi(ξ) (1)

Here, αi is the deterministic component and Ψi is the random variable basis functions

corresponding to the ith mode. α∗ is assumed to be a function of the vector x of

independent random variables and the n-dimensional standard random variable vector

ξ. Note that this series is, by definition, an infinite series. However, in practice, it is

truncated and a discrete sum is taken over a number of output modes [11]. To form

a complete basis or for a total order expansion, Nt terms are required, which can be

computed from Eq. (2) for a PCE of order p and a number of random dimensions or

variables, n.
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Nt = P + 1 =
(n+ p)!

n!p!
(2)

Further details on polynomial chaos theory are given by Ghanem [3] and Eldred [11].

The objective with any PCE method is to determine the expansion coefficients,

αi. To do this, polynomial chaos methods can be implemented using an intrusive

or a non-intrusive approach. While an intrusive method may appear straightforward

in theory, for complex problems this process may be time consuming, expensive,

and difficult to implement [7]. In contrast, the non-intrusive approach can be easily

implemented to construct a surrogate model that represents a complex computational

simulation, because no modification to the deterministic model is required. The non-

intrusive methods require only the response (or sensitivity) [32, 12, 13] values at

selected sample points to approximate the stochastic response surface.

Polynomial chaos can be implemented using an intrusive or a non-intrusive

approach. While an intrusive methods may appear straightforward in theory, for

complex problems this process may be time consuming, expensive, and difficult to

implement [7]. In contrast, the non-intrusive approach can be easily implemented

to model the uncertainty propagation in complex computational simulations, since

no modification to the deterministic model is required. The non-intrusive methods

require only the response (or sensitivity) [33, 12, 13] values at selected sample points

to approximate the stochastic response surface.

4.2. POINT COLLOCATION NON-INTRUSIVE POLYNOMIAL

CHAOS

4.2.1. General Approach. Several methods have been developed for

NIPC including spectral projection, sparse collocation, and sampling approaches [11].

Of these, the point-collocation NIPC method has been used extensively in many

aerospace simulations and CFD problems [8, 10, 31, 32] and is the focus of this work.
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The point-collocation method starts with replacing a stochastic response or random

function with its PCE using Eq. (1). Then, Nt vectors are chosen in random space

and the deterministic code is then evaluated at these points, which is the left hand

side of Eq. (1). Following this, a linear system of Nt equations can be formulated

and solved for the spectral modes of the random variables. This system is shown in

Eq. (3).



Ψ0(ξ0) Ψ1(ξ0) · · · ΨP (ξ0)

Ψ0(ξ1) Ψ1(ξ1) · · · ΨP (ξ1)

...
...

. . .
...

Ψ0(ξP ) Ψ1(ξP ) · · · ΨP (ξP )





α0

α1

...

αP


=



α∗(x, ξ0)

α∗(x, ξ1)

...

α∗(x, ξP )


(3)

Note that for this linear system, Nt is the minimum number of deterministic samples

required to obtain an analytical solution (i.e., the coefficient vector). If more

samples are available and that are linearly independent, the system is considered

overdetermined and can be solved using a least squares approach. The number of

samples over the required minimum is represented by the use of an oversampling

ratio (OSR), defined as the ratio of number of actual samples to the minimum number

required (i.e., Nt). In general, the number of collocation points can be determined by

multiplying Eq. (2) by an OSR. Hosder et al.[9] determined an effective OSR of two

for the stochastic model problems studied. Later in Section 7, an approach will be

discussed for recovering a solution when the system in Eq. (3) is underdetermined.

4.2.2. Sensitivity-Based Approach. The general point-collocation

approach can be expanded on to include gradients in calculating the expansion

coefficients. In surrogate modeling, this commonly refereed to as gradient

enhancement. When using the point-collocation NIPC approach, the gradient

formulation can be developed by first differentiating Eq. (1) with respect to a standard

random variable as shown in Eq. (4)
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∂α∗(x, ξ)

∂ξi
≈

P∑
i=0

αi(x)
∂Ψi(ξ)

∂ξi
(4)

Then, expanding the LHS yields Eq. (5):

∂α∗(x, ξ)

∂xi

∂xi
∂ξi
≈

P∑
i=0

αi(x)
∂Ψi(ξ)

∂ξi
(5)

Note that the first derivative on the on the LHS is the sensitivity derivative

obtained from the local SA. The second derivative is based on the distribution of

the input uncertain variable and is known. An example for a normally distributed

variable with mean µ and standard deviation σ is shown in Eq. (6):

xi = σξi + µ→ ∂xi
∂ξi

= σ (6)

The differentiated polynomial chaos expansion with respect to each uncertain

variable at each sample point (Eq. (5)) can be appended to the linear system shown

in Eq. (3). The new system of linear equations is shown in Eq. (7). Note that the

dimensions of the coefficient matrix is NS(N + 1) by Nt, the solution vector has

dimension NS(N + 1), and the unknown vector has dimensions Nt.
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

Ψ0(ξ0) Ψ1(ξ0) · · · ΨP (ξ0)

∂Ψ0(ξ0)
∂ξ1

∂Ψ1(ξ0)
∂ξ1

· · · ∂ΨP (ξ0)
∂ξ1

...
...

. . .
...

∂Ψ0(ξ0)
∂ξN

∂Ψ1(ξ0)
∂ξN

· · · ∂ΨP (ξ0)
∂ξN

Ψ0(ξ1) Ψ1(ξ1) · · · ΨP (ξ1)

∂Ψ0(ξ1)
∂ξ1

∂Ψ1(ξ1)
∂ξ1

· · · ∂ΨP (ξ1)
∂ξ1

...
...

. . .
...

∂Ψ0(ξ1)
∂ξN

∂Ψ1(ξ1)
∂ξN

· · · ∂ΨP (ξ1)
∂ξN

...
...

. . .
...

...
...

. . .
...

Ψ0(ξNs−1) Ψ1(ξNs−1) · · · ΨP (ξNs−1)

∂Ψ0(ξNs−1)

∂ξ1

∂Ψ1(ξNs−1)

∂ξ1
· · · ∂ΨP (ξNs−1)

∂ξ1

...
...

. . .
...

∂Ψ0(ξNs−1)

∂ξN

∂Ψ1(ξNs−1)

∂ξN
· · · ∂ΨP (ξNs−1)

∂ξN





α0

α1

α2

...

...

...

...

...

...

...

...

...

...

αP



=



α∗(x, ξ0)

∂α∗(x,ξ0)
∂x1

∂x1
∂ξ1

...

∂α∗(x,ξ0)
∂xN

∂xN
∂ξN

α∗(x, ξ1)

∂α∗(x,ξ1)
∂x1

∂x1
∂ξ1

...

∂α∗(x,ξ1)
∂xN

∂xN
∂ξN

...

...

α∗(x, ξNs−1)

∂α∗(x,ξNs−1)

∂x1

∂x1
∂ξ1

...

∂α∗(x,ξNs−1)

∂xN

∂xN
∂ξN



(7)

Note that the derivatives of the basis polynomials in the LHS of Eq. (7) can be

obtained either analytically or through finite differencing. The solution procedure is

no different than that used for the original point-collocation scheme. However, this

modified scheme makes use of gradients, which can be obtained through a sensitivity

analysis a priori. This approach has the advantage of reducing the number of samples

needed to construct the surrogate model. This assumes that the cost of computing

the local sensitivities is less than the cost of the actual model solution.
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5. GLOBAL SENSITIVITY ANALYSIS METHODS

An important part of uncertainty quantification is determining the sensitivity

of a model to each input uncertain variable. The purpose of this section is to outline

methods for global sensitivity analyses.

5.1. GLOBAL NONLINEAR SENSITIVITIES VIA SOBOL INDICES

One appraoch to determining the global, nonlinear sensitivity values of each

uncertain parameter can be done using an approach known as Sobol indices [34].

Sobol indices can be derived using Sobol Decomposition, which is a variance-based

global sensitivity analysis method. True advantage of this approach, in the context

of this study, is that it aligns well with information already provided in a polynomial

chaos expansion (PCE). First, the total variance, D, can be written in terms of the

PCE as shown in Eq. (8).

D =
P∑
j=1

α2
j (t, ~x)

〈
Ψ2
j(
~ξ)
〉

(8)

Then, the total variance can be decomposed as:

D =
i=n∑
i=1

Di +
i=n−1∑

1≤i<j≤n

Di,j +
i=n−2∑

1≤i<j<k≤n

Di,j,k + · · ·+D1,2,...,n (9)

where the partial variances (Di1,...,is) are given by:

Di1,...,is =
∑

β∈{i1,...,is}

α2
β

〈
Ψ2
β(~ξ)

〉
, 1 ≤ i1 < . . . < is ≤ n (10)

Then the Sobol indices (Si1···is) are defined as,

Si1···is =
Di1,...,is

D
(11)
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which satisfy the following equation:

i=n∑
i=1

Si +
i=n−1∑

1≤i<j≤n

Si,j +
i=n−2∑

1≤i<j<k≤n

Si,j,k + · · ·+ S1,2,...,n = 1.0 (12)

The Sobol indices provide a varianced-based sensitivity measure due to individual

contribution from each input uncertain variable (Si), as well as the mixed

contributions ({Si,j}, {Si,j,k}, · · · ). As shown by Sudret [34] and Ghaffari et al. [35],

the total (combined) effect (STi) of an input parameter i is defined as the summation

of the partial Sobol indices that include the particular parameter:

STi =
∑
Li

Di1,...,is

D
; Li = {(i1, . . . , is) : ∃ k, 1 ≤ k ≤ s, ik = i} (13)

For example, with n = 3, the total contribution to the overall variance from the first

uncertain variable (i = 1) can be written as:

ST1 = S1 + S1,2 + S1,3 + S1,2,3 (14)

From these formulations, it can be seen that the Sobol indices can be used to provide

a relative ranking of each input uncertainty to the overall variation in the output,

with the consideration of nonlinear correlations between the input variables and the

output quantities of interest.

5.2. GLOBAL SENSITIVITY APPROXIMATION VIA LOCAL

SENSITIVITIES

Another approach to determinig the global sensitivies is an approach based on

a local sensitivity analysis. A local sensitivity analysis is the most common form

of sensitivity analysis as it is simple and computationally cheap for simple models.

Mathematically, a local sensitivity analysis is performed by differentiating a function

(response) with respect to an uncertain variable at a sample point. This is typically
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performed with respect to each uncertain variable to rank the variables in order of

greatest sensitivity at that particular sample location.

A couple of drawbacks to this method do exist. First and foremost is the

differentiation requirement. For complex models, analytical derivatives may be

difficult to obtain. Some CFD solvers may provide accurate sensitivities through the

solution of automatic differentiation, complex step methods, or adjoint equations.

Currently, however, many hypersonic legacy CFD codes lack these capabilities.

An alternaive is to calculate the sensitivities through the use of finite difference

approximations. Eq. (15) gives a first-order forward finite difference approximation

of the derivative of the response function F with respect to the ith variable, xi, at

sample point j.

Si,j =

(
∂F

∂xi

)
=
F (xi,j + ∆xi)− F (xi,j)

∆xi
+O(∆xi) (15)

Note here that ∆xi is a small step size equal to the nominal value of variable xi

times a global step size (e.g., ∼ 10−6). This implies that the step size is different for

each variable. This ensures that the relative step size is the same for each variable

in the instance when the uncertain variables are of different orders of magnitude.

The step size used in the evaluation of the finite difference approximations was

determined based on the achievement of the first order asymptotic truncation error

convergence at multiple sample points that correspond to different locations in the

uncertainty space. Note that the selection of a first order finite difference was made

to limit the required number of deterministic code evaluations in determining the

sensitivity derivatives. Higher order differences could be used, but with an added

cost of additional deterministic model evaluations.

The local sensitivity approach provides the sensitivity information at a

particular sample point. For a proper ranking of the uncertain variables in a stochastic

problem, the sensitivity of the response (output) with respect to each uncertain
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variable should be considered over the entire domain of each uncertain variable. To

achieve this with a local sensitivity based approach, one approach is to take multiple

samples distributed throughout the uncertainty space. Note that the number of

samples influences the computational cost of this approach. For each sample, two

evaluations of the deterministic code are necessary to calculate the sensitivity per

uncertain variable. In general, this means that NS(N + 1) function evaluations are

required for N number of uncertain variables and NS number of samples. Note

again that alternative approaches to calculate the derivatives, such as those obtained

through adjoint methods, would improve the accuracy of the sensitivity derivatives

and may come at a reduced computational cost over the deterministic code samples

required for the evaluation of the above finite difference approximation.

An approximation of the global response sensitivity with respect to each

uncertain variable across the entire uncertainty space can be made by first computing

an average of the local sensitivity values for each uncertain variable, as shown in

Eq. (16).

S̄i =

∑Ns
j=1 |Si,j|
Ns

∆hi (16)

In this equation, ∆hi is the range of each uncertain variable (the maximum minus

the minimum value for each uncertain variable.) The sensitivities Si,j are the local

sensitivity values calculated using Eq. (15). A variance-based approximation to the

total output uncertainty of each variable is then given by Eq. (17) as:

Gi =
(S̄i)

2∑N
i=1(S̄i)2

(17)

Here, Gi is defined as the approximation to the global sensitivity of the response with

respect to ith uncertain variable. This metric, which will be between 0 and 1, can

be used for ranking each uncertain variable based on its contribution to the output
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variance when other methods such as Sobol Indices (global nonlinear sensitivity) are

not possible due to the computational cost (i.e., when only small sample sizes of

the model are possible.) The sensitivities calculated by Eq. (17) are global linear

sensitivity approximations constructed through the use of local sensitivities and they

are expected to be accurate indicators used for the dimension reduction process for

uncertainty quantification of nonlinear, but smooth responses.

For large scale, complex problems with highly nonlinear responses, determining

local or global sensitivities from a global response surface (surrogate model) fit to the

data may not be an accurate approach. Due to the computational cost, the sample

size may not be sufficiently large for an accurate surrogate fit to the data. Therefore,

the first step will be to reduce the dimensions of the problem so that an accurate

stochastic fit to the data can be achieved in the reduced problem. In addition, Latin

Hypercube sampling is used to improve the coverage of each uncertain parameter and

the calculation of its sensitivity over the entire uncertainty space.
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6. MULTI-STEP UNCERTAINTY QUANTIFICATION

Many models of high-speed flows may possess a significant number of uncertainty

sources. When using stochastic expansions, a large number of uncertain variables may

be problematic because a large number of deterministic model evaluations may be

required to construct an accurate surrogate model. In these cases, one approach may

be to reduce the number of random dimensions, which in turn will reduce the number

of model evaluations needed to construct a stochastic expansion. In this section, a

process is outlined that can be used for dimension reduction and efficient construction

of a stochastic surrogate.

6.1. COMPONENTS AND PROCESS

To reduce the number of random dimensions, the importance of each uncertain

variable with respect to the output quantity of interest must be determined. This can

be done through a global sensitivity analysis. The complication is that many global

sensitivity analysis approaches, such as scatter plotting, require large sample sizes. In

this study, the global sensitivity approximation (Gi approximation) approach outlined

in Section 5.2 may be used as an alternative means of global sensitivity approximation.

In addition to the potential computational cost savings, using local sensitivities

provides not only a sensitivity of each uncertain variable with respect to the output

quantity for each sample point, but also the sample value. This means that

for Ns samples of the uncertainty space, Ns model response values and Ns × N0

sensitivities are created for N0 uncertain parameters. When using the Gi approach

with local sensitivities obtained through first-order finite differencing, the number of

computational model evaluations is then Ns(N0+1). Choosing the number of samples
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necessary for the sensitivity analysis may be based on resource availability, time, or

by tracking the convergence of the global sensitivities.

After performing the sensitivity analysis and ranking all of the uncertain

variables in terms of their importance, the next step is to decide how many variables

should be retained. This selection will be depended on the type of analysis. If

the analysis is on a conceptual level, eliminating more of the uncertainty may be

acceptable to produce results more quickly. On the contrary, final design assessment

may require better estimates of the uncertainty. The dimension reduction will also

depend on the results of the sensitivity analysis. For example, if a large number

of the uncertainty parameters contributed very little to uncertainty, eliminating

those parameters that contribute less than a specified percentage to the total output

uncertainty may be acceptable. In the end, there is no prescribed metric to how many

parameters can or should be reduced. This decision is left to the engineer.

When reducing the dimensions of a stochastic problem, the desired approach

is to reuse the original samples taken for the sensitivity analysis to achieve

computational efficiency. This may reduce or eliminate the need for additional

deterministic code evaluations to construct the surrogate model. One approach is

to make the existing Ns samples independent of the input uncertain variables that

are to be eliminated. This can be done with a simple Taylor series expansion and

retaining the first-order terms as shown in Eq. (18), where the response F at the jth

sample point is made independent of the ith variable, for a total number of k variables

to be eliminated.

F̃j = Fj +
k∑
i=1

∂Fj
∂xi

(x0
i − x

j
i ) (18)

Here, x0
i is the nominal (baseline) value of the ith eliminated variable and xji is the

random variable value corresponding to the jth deterministic sample. For a uniformly
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or normally distributed value, the nominal value may be taken as the mean value of

the random variable. The derivative term in this equation is the sensitivity obtained

from the local sensitivity analysis. The update procedure given with Eq. (18) allows

for the reuse of deterministic response values F̃ j for further uncertainty analysis in

the reduced dimension, which contributes to the efficiency of overall multi-step UQ

process. Note that the accuracy of this first-order approximation is dependent on the

magnitude of the sensitivity derivative. For dimension reduction, this derivative is

small for weakly dependent variables making Eq. (18) an accurate approximation.

After reducing the dimensions of the problem to a more manageable

level, the polynomial chaos expansion can be constructed. To further improve

the computational efficiency, the gradient-enhanced polynomial chaos expansion

discussed in Section 4.2.2 can be implemented as part of the multi-step UQ process.

As local sensitivity information is already available, the linear system given in Eq. (7)

can be assembled and solved for the polynomial chaos coefficients. Note that after

performing the dimension reduction, more samples may need to be generated to met

the minimum number of samples and sensitivities requirement given by Eq. (2), which

allows for a direct solution of the linear system. After constructing the surrogate

model, the uncertainty can be efficiently propagated through the model.

The steps of the multi-step UQ process are given below. This process is also

shown in a flow chart in Figure 6.1. The purpose of step six of this process is to

add the option of further exploring a problem in the reduced dimension. The desired

approach may be to improve the accuracy of the reduced dimension response surface

by adding more sample points to the original sample set and/or increasing the order

of the polynomial expansion. The last step is merely an indicator that this process

can be repeated using the existing information in the reduced dimension.

1. Select a number of samples (NS) at which the deterministic model will be

evaluated to calculate the response and the local sensitivities.



28

2. Perform a local sensitivity analysis and obtain the Gi (approximation to global

sensitivity) values to estimate and rank the contribution of each uncertain

variable to the total output variance.

3. Select the variables to be eliminated. The number of variables to be retained

may be based on a specified number (e.g., retain the first “Nr” number of

uncertain variables in the ranking) or may be based on a specified amount of

the total variance to be covered out of the total (e.g., retain the variables which

account for 90% of total variance).

4. Perform the deterministic sample update in Eq. (18) for each of the existing

deterministic samples. Note that when normalizing the samples such that they

are independent of the selected variables, the sensitivities of the model to these

variables are lost (i.e., become zero) and therefore cannot be used as part of the

modified point-collocation scheme.

5. Solve Eq. (7) for the polynomial chaos response surface.

6. Repeat this multi-step process (steps 2 through 5) if necessary.

Figure 6.1. Multi-Step UQ Framework Flow Chart
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6.2. DEMONSTRATION PROBLEMS

To demonstrate the capability and key aspects of the multi-step UQ process,

two model problems are investigated. the first is a stochastic model used for the

prediction of stagnation point convective heat transfer of blunt bodies in hypersonic

flow. The second model is a high-fiedlity, computational fluid dynamics model used for

the prediction of radiative heat transfer on the surface of a vehicle during hypersonic

entry into Mars. For each problem, a description of the deterministic model and

the stochastic problem are given, along with a discussion of the results and the

applicability of the multi-step UQ approach.

6.2.1. Stagnation-Point Convective Heat Transfer in Hypersonic

Flow. The Fay and Riddell [36] correlation can be used to approximate the

stagnation point heat transfer for a blunt body in hypersonic flow. This model

assumes a laminar boundary layer, thermo-chemical equilibrium flow, and a fully

catalytic wall. The model is shown in Eq. (19).

q̇w = 0.76(Pr−0.6)(ρwµw)0.1(ρeµe)
0.4

√
due
dx

(h0e − hw)

(
1 + (Le0.52 − 1)

hD
h0e

)
(19)

where,

due
dx

=
1

Rn

√
2(Pe − P∞)

ρe
(20)

hD =
∑
i

ci(h
0
f )i (21)

In the above equations, Pr is the Prandtl number, Le is the Lewis number,

Rn is the radius of curvature of the body, hD is the dissociation enthalpy, ci is the

mass fraction of the atomic species within the boundary layer, and (h0
f )i is heat of
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formation of atomic species i. Note also that the subscripts w and e represent the

wall and boundary layer edge quantities, respectively. For this problem, a boundary

condition at the wall is necessary to close the problem as fluid properties at the wall

are required. A radiation, adiabatic wall condition was assumed. This implies that

the wall temperature is not fixed, but the heat flux through the wall is zero (i.e. the

heat transfer to the wall from the fluid due to conduction and diffusion must equal

the heat transfer radiated away from the surface.) Mathematically this is shown with

Eq. (22).

q̇r = q̇d + q̇c = q̇w (22)

where,

q̇r = εσT 4
w (23)

Here, q̇d is the heat transfer due to diffusion, q̇c is the heat transfer due to

conduction, ε is the wall emissivity and σ is the Stefan-Boltzmann constant. Note that

the heat transfer due to the radiation from the shock layer has been neglected, which

is valid for the maximum temperature in the shock layer for this problem (∼6000

K) resulting from the selected free stream parameters and vehicle dimensions. For

given free stream conditions, the flow properties behind the standing bow shock along

the stagnation streamline can be calculated using an equilibrium shock calculation

procedure outlined in Anderson [37]. It can be assumed that the properties directly

behind the shock are the properties on the edge of the boundary layer. The boundary

layer edge viscosity is calculated using Sutherlands law. The pressure at the wall

can be assumed to be the pressure at the boundary layer edge. Finally, the last

step is to find the remaining properties at the wall; however, these are unknown

because wall temperature is not specified. This requires then that Eqs. (19) and

(22) be solved simultaneously with the system being implicitly dependent on the
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wall enthalpy (found using high temperature equilibrium polynomial curve fits from

Tannehill et al. [38]), wall viscosity (from Sutherlands Law) and the wall density

(from the equation of state.) A simple root finding method can be implemented to

resolve the system. The solution of the system then gives the radiative, adiabatic

wall temperature at which the convective heat flux to the wall is radiated away from

the surface.

For the above model problem, 11 variables were selected as sources of

uncertainty. Both epistemic (model form) and aleatory (inherent) forms of

uncertainty were considered. The epistemic uncertain variables were as follows: Lewis

number, Prandtl number, boundary layer edge viscosity, emissivity, the heats of

formation for nitrogen and oxygen and the power over the Lewis number. These

model variables are considered as epistemic by imposing uncertainty on them due

lack of knowledge. Note that uncertainty in the two heats of formation and the

boundary layer edge viscosity were modeled through the introduction of a factor, k,

to each variable, which was used to represent a variation in the uncertain variable (e.g.

x = k(xref ).) The factor k for each variable was treated as an epistemic uncertain

variable.

The other four variables were treated as aleatory (inherent) uncertain variables:

free stream velocity, free stream density, free stream temperature and the radius

of curvature of the body. Random fluctuations in the free-stream conditions are

possible during flight and variations in the vehicle geometry are possible due to

manufacturing processes. These variables were assumed normally distributed about

some mean with a coefficient of variance (CoV) of 1%. The uncertainty bounds of the

seven epistemic uncertain variables and the input uncertainties for the four aleatory

uncertainty variables are summarized in Table 6.1.

12 samples were taken from the deterministic model using Latin Hypercube

(LHS) sampling. With only 12 samples, it is not possible to carry out the UQ analysis



32

Table 6.1. Uncertain Parameter Information

Input Distribution Lower Bound/ Mean Upper Bound/ CoV
Le Epistemic 1.358 1.442
Pr Epistemic 0.679 0.721

µe Factor Epistemic 0.97 1.03
ε Epistemic 0.776 0.824

h0
f (N) Factor Epistemic 0.97 1.03
h0
f (O) Factor Epistemic 0.97 1.03
U∞, m/s Gaussian 7315.2 1%
ρ∞, kg/m3 Gaussian 5.30E-05 1%
T∞, K Gaussian 212.01 1%
Rn, m Gaussian 0.3048 1%

directly as a problem with 11 uncertain variables requires a minimum of 78 function

evaluations for a 2nd order polynomial chaos expansion (see Eq. (2)).

After generating the samples, the next step is to perform local SA to obtain the

Gi, or the approximation to global sensitivity for each uncertain variable. Using the

12 samples, a total of 132 additional deterministic code evaluations are necessary. The

Gi values are shown in Figure 6.2. Also in this figure, a comparison is made to Sobol

Indices which give the global, nonlinear sensitivities obtained from the polynomial

chaos expansion. Because Sobol Indices require an accurate PCE, it is not provided

as part of the multi-step UQ process since obtaining an accurate expansion may not

be possible before dimension reduction. It may, however, be desirable to obtain the

Sobol Indices for the reduced problem after the final PCE is constructed to acquire

the most accurate estimate of the contribution of each variable to the total output

variance. In this test case, it was possible to obtain an accurate PCE as Eq. (2)

reveals that there are only 78 output modes, indicating that the system in Eq. (7)

can be solved with an over sampling ratio of about two for a 2nd order PCE. This

allows for the calculation of accurate Sobol indices for comparison to the Gi. As
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can be seen from Figure 6.2, Gi values compare well to the Sobol indices. The slight

difference between the Gi and Sobol Indices results from the Gi not accounting for the

interaction between uncertain parameters and the approximation of using an average

of multiple local sensitivity values in a nonlinear design space as achieved by using

Sobol indices. However, when the sample size is not large enough to determine the

Sobol indices, this approximation is shown to be a sufficient approximation to the

contribution of each variable to the total output variance.

Figure 6.2. Sobol Indices (2nd Order PCE) and Gi (12 Initial Samples)

The next step of the multi-step UQ process is to reduce the dimensions of the

original problem. This was done for two different scenarios based on the Gi results. In

the first, the problem was reduced from the full 11 variable problem to six variables. In

the next scenario, the problem was reduced, again, from the full 11 variable problem,

but down to only two variables.

Case 1: Dimension Reduction from 11 to 6 Variables

From the results shown in Figure 6.2, the first six variables (free stream velocity,

Prandtl number, boundary layer edge viscosity factor, Lewis number, body radius of

curvature, and free stream density) account for 99% of the total uncertainty. Reducing



34

the problem to six variables reduces the number of terms in the PCE from 78 to 28 for

a 2nd order PCE. Using the modification scheme in Eq. (18), the number of available

equations in the system in Eq. (7) drops from 144 to 84, as the sensitivities equations

for the neglected variables are not included. The p-box results of the second-order

probability for the reduced NIPC problem are shown in Figure 6.3, compared to

the Monte Carlo simulation of the original problem (i.e. 11 uncertain variables).

Associated probability levels are shown in Table 6.2. Notice that there is only a

slight change from the full 11 variable problem results. This is because these six

variables account for 99% of the uncertainty and the five neglected variables had

little influence on the total uncertainty. For this problem the 95% confidence interval

is then obtained as [73.73, 89.87] W/cm2 for the NIPC analysis and [73.51, 89.69]

W/cm2 for the Monte Carlo analysis.

Figure 6.3. P-box plots for Mixed Uncertainty Analysis: 11 Variable Monte Carlo vs.
6 Variable 2nd order PCE

Case 2: Dimension Reduction from 11 to 2 Variables

Using the results from Figure 6.2, it can be seen that the first two variables

(Free-Stream Velocity and the Prandtl Number) account for about 88% of the total

uncertainty. Reducing the problem to two variables reduces the number of terms
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Table 6.2. Stagnation Point, Convective Heat Transfer (W/cm2) Probability Level
Intervals for Figure 6.3

Probability Monte Carlo, 2nd Prder PCE,
Level 11 Variables 6 Variables
2.5% [73.51 , 79.23] [73.73 , 79.16]
50% [78.34 , 84.46] [78.65 , 84.45]

97.5% [83.16 , 89.69] [83.71 , 89.87]

in the PCE from 78 to 6 for a 2nd order PCE. Using the modification scheme in

Eq. (18), the number of available equations drops from 144 to 36, as the sensitivity

equations for the neglected variables are not included. The p-box results of the second

order probability analysis for the two variable NIPC problem are shown in Figure 6.4,

compared to the 11 variable Monte Carlo simulation. Associated probability levels

are shown in Table 6.3. There is a noticeable difference in the results between the

NIPC and the Monte Carlo simulation. This is expected because about 12% of

the original uncertainty is no longer being accounted for, explaining the decrease in

the width of the probability box in Figure 6.4. (Note that in this problem, it is

possible to generate a 3rd order expansion given the number of remaining samples

and sensitivities. However, depending on the size of the problem, this may not always

be an option without additional sampling of the deterministic model in the reduced

dimension. Higher order expansions may be necessary if the accuracy of the stochastic

response surface is not at a desired level.) For some design cases, accounting for this

amount of uncertainty may be acceptable as this may outweigh the time or ability to

obtain additional samples to account for more uncertainty. For this problem, the 95%

confidence interval is then obtained as [75.42, 88.09] W/cm2 for the NIPC analysis

and [73.51, 89.69] W/cm2 for the Monte Carlo analysis.
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Table 6.3. Stagnation Point, Convective Heat Transfer (W/cm2) Probability Level
Intervals for Figure 6.3

Probability Monte Carlo, 2nd Prder PCE,
Level 11 Variables 2 Variables
2.5% [73.51 , 79.23] [75.42 , 78.06]
50% [78.34 , 84.46] [80.27 , 83.07]

97.5% [83.16 , 89.69] [85.12 , 88.09]

Figure 6.4. P-box plots for Mixed Uncertainty Analysis: 11 Variable Monte Carlo vs.
2 Variable 2nd order PCE

Previous work by Witteveen and Bijl [30] have shown that it may be possible to

add back the uncertainty not accounted for after dimension reduction through the use

of sensitivity information. The presented approach was to develop a linear estimate of

the uncertainty not accounted for and add it to the problem with reduced dimensions.

Since the sensitivity information for all the variables is already determined as part of

the current multi-step UQ process, that approach, while not applied in the present

work, may also be considered to approximate the uncertainty in the output due to

the uncertain variables that not accounted for in the reduced dimension.
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Since a significant amount of the uncertainty has been ignored in this scenario,

it is necessary to measure the accuracy of the sample modification scheme described

in Eq. (18). Table 6.4 shows the 12 original sample values, the outcome after

modification, followed by the actual sample values if the code was analyzed using

only the two uncertain variables of interest at the same sample points (the other

variables at their respective nominal value.) Notice that the error is extremely small,

indicating that the modification scheme is an accurate tool for dimension reduction

problems.

Table 6.4. Comparison of Updated Sample Heat Flux Values with Actual Sample
Values for the Two Variable Problem (W/cm2)

Original Modified Actual % Error
84.3473 84.7261 84.7043 0.0258
81.8917 80.3461 80.3543 0.0102
83.9082 83.2516 83.2253 0.0315
77.1334 78.1108 78.1045 0.0081
79.4474 80.7777 80.7924 0.0182
82.7980 81.4752 81.4982 0.0281
82.9207 82.9542 82.9193 0.0420
84.8559 85.8026 85.7952 0.0085
78.5117 78.2335 78.2187 0.0189
79.8163 80.7458 80.7561 0.0127
79.0190 79.1076 79.1007 0.0088
83.9843 83.7741 83.7684 0.0068

6.2.2. High-Fidelity Radiative Heat Flux Prediction during Mars

Entry. In this model problem, taken from Johnston et al. [39], the flow field was

modeled using the LAURA finite-volume, Navier-Stokes flow solver [40]. The solver

uses a second order upwind discretization scheme with relaxation of both inviscid and

viscous terms for solution stability. The flow field, assumed to be steady state, was
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modeled using a two-temperature, thermochemical nonequilibrium model with a 17

species composition: CO2, CO, N2, O2, NO, C, N, O, CN, C2, C+, O+, CO+, O+
2 ,

NO+, CN+, and e−. The radiation was modeled using the HARA nonequilibrium

radiation code [41, 42]. The details regarding the radiation modeling approach and

parameters are given by Johnston et al. [39] as the same modeling approach was

used. Note here that the flow field solver and the radiative heat transfer calculations

are coupled.

The radiation in this problem is modeled for flow over a generic HIAD

configuration. This geometry is modeled with a 70 degree spherical cone with a

nose radius of 3.75 m, a shoulder radius of 0.375 m, and a base radius of 7.5 m. The

computational grid used for this geometry was 128x48 and is shown in Figure 6.5.

Notice in this figure the clustering of the grid in the flow field. Previous study have

shown that a significant portion of the radiation emitted from the shock layer comes

from a strong non-equilibrium region near the shock [39]. Because of this, accurately

capturing the flow field properties and quantities near the shock is important. LAURA

uses a gradient based shock capturing technique to detect and cluster the grid in the

flow direction, near the shock location.

For the boundary conditions, the free stream was comprised of 96% CO2 and 4%

N2, by mole, at 150 K with a density of 1.0e-4 kg/m3. The velocity was taken to be

7.0 km/s to simulate a high speed Mars reentry, with 0 degrees angle of attack. The

wall of the HIAD was modeled as a super-catalytic wall with a constant temperature

of 1500 K.

6.3. DESCRIPTION OF THE STOCHASTIC PROBLEM

In this model problem, a total of 93 uncertain parameters were treated as

part of the UQ analysis. The uncertainty in this problem comes from two primary

sources: uncertainty in the flow field modeling parameters and the uncertainty in the
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Figure 6.5. Computational Grid

radiation modeling parameters. Uncertainty in the flow field modeling parameters

is primarily due to the uncertainty in the chemical kinetic rates. Because of the 17

species being treated in this problem, there are many chemical reactions taking place

throughout the shock layer. Chemical rates can be difficult to accurately measure and

model, making them a potentially significant source of uncertainty. In this analysis,

20 chemical kinetic rates are treated as uncertain input parameters. A list of the

chemical reactions, their baseline rate parameters (of an Arrhenius form), and the

input uncertainty are given in Table A1 of the Appendix.

The second source of uncertainty is due to the radiation modeling parameters.

This is further broken down into two groups. The first is the uncertainty in

the spectrum modeling. In this study, 16 molecular band processes are treated

as uncertain. The molecular band information and associated uncertainty in the
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oscillator strengths of these bands are given in Table A2 in the appendix. The

second group of radiation modeling parameters with uncertainty are those parameters

associated with the non-Boltzmann modeling of the radiating atomic and molecular

states. Similar to the chemical kinetics, the treatment of the collisional processes

for non-Boltzmann modeling can be a significant source of uncertainty due to the

difficulty in obtaining accurate impact excitation rates for both heavy particle impacts

and electron excitation impacts. Tables A3 and A4, in the Appendix, give the

reactions, their baseline rate parameters (of an Arrhenius form), and the input

uncertainty for 35 electron-impact excitation rates and 22 heavy particle impact

excitation rates, respectively.

The details regarding the selection of the uncertainty parameters, their

associated uncertainty, and the specifics of the radiation modeling, in particular the

non-Boltzmann modeling can be found in Johnston et al. [39], which is the foundation

of this stochastic model problem.

The multi-step UQ was applied to this stochastic problem for two different

scenarios: (1) the reduction from 93 to 10 variables and (2) the reduction from 93 to 5

variables. An initial sample size of 20 was used for the local SA. The sampling method

used, as in the previous problem, was Latin Hypercube (LHS) sampling. (Note that

with only 20 samples, it is not possible to carry out the UQ analysis directly as a

problem with 93 uncertain variables requires a minimum of 4465 function evaluations

for a 2nd order polynomial chaos expansion, by Eq. (2). Further analysis is required.)

The effect of the input uncertainty can be seen in Figure 6.6 which shows a scatter

plot of the 20 samples and also a plot of the maximum and minimum wall-directed

radiative heat flux along the stagnation line, though the shock layer obtained from

this sample set. Of the 20 samples taken, notice that radiative heat flux at the wall

ranges from about 6 W/cm2 to nearly 22 W/cm2 indicating the significance of the

uncertain input parameters.
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Figure 6.6. Effect of Input Uncertainty on the Flow field and Wall Radiation

In the multi-step UQ process, the next step is to perform the local SA and

generate the Gi. One important aspect of this problem is that many of the uncertain

variables have very wide uncertainty ranges; as much as two orders of magnitude. To

have better approximations for the sensitivities and to create a more accurate NIPC

response surface to be used in the UQ analysis, it is more appropriate to perform

both of these analyses on a log scale when uncertainties with wide range are involved.

A similar approach was followed by Hosder and Bettis [7]. In this analysis, many

variables with an order of magnitude variation in the uncertainty were represented

on a log10 scale. For example, this approach takes a variable with a ±2 order of

magnitude uncertainty range (0.01 to 100) and transforms it to a variable with a ±2

uncertainty range (-2 to 2).

Implementing the use of variables on a log10 scale also requires some modification

to the local sensitivity analysis methodologies. In Eq. (24), notice that the derivative

with respect to the log10 of variable xi can be expanded into two terms: the original

sensitivity value and the derivative of variable xi with respect to the 10 of variable xi.
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∂F

∂ log10(xi)
=
∂F

∂xi

∂xi
∂ log10(xi)

=
∂F

∂xi
ln(10)xi (24)

This logarithmically scaled local sensitivity value can then be used in Eq. (17), by

simply replacing the standard sensitivity with the above logarithmic sensitivity and

the range of the uncertain variable with the logarithmic range.

A total number of 1880 evaluations of the CFD model was required (20 sample

points and 1860 sensitivities.) Figure 6.7 shows the variation in the sensitivity value

across the design space for the most important input parameter. Notice that the

sensitivity varies significantly in the uncertainty space (i.e., for each sample point)

indicating the nonlinear behavior of the response with respect to this variable.

Figure 6.7. Sensitivity Values of the Most Contributing Random Variable

Figure 6.8 shows the results of the Gi values. Many of the variables have

nearly zero contribution to the total output variance. This may be typical for

problems with many uncertain variables, in that a small portion of the input

parameters may dominate the amount of uncertainty. Note that here there is no
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Sobol Indices comparison to the Gi values as in the previous model problem because

the calculation of the Sobol Indices required a polynomial chaos expansion. With the

high dimensionality of this problem, it is not feasible to perform a polynomial chaos

expansion prior to dimension reduction.

Figure 6.8. Gi Values for the Stagnation Point, Radiation Model

The next step in the multi-step UQ analysis is to reduce the dimension of the

problem. From the Gi analysis results in Figure 6.8, 10 of the 93 uncertain variable

account for approximately 95% of the total output variance. Further reduction shows

that 5 of the 93 variables accounts for approximately 90% of the total output variance.

The top ten uncertain parameters are given in Table 6.5 along with their percent of

contribution to the total output variance. The top five uncertain parameters found in

this study are consistent with the five most important variables found in the analysis

performed by Johnston et al. [39]

Using the sample update scheme given in Eq. (18), the original 20 deterministic

model evaluations were modified to make them independent of both the 83 and 88

variables neglected for dimension reduction to ten and five variables, respectively.

Recall that for variables that are neglected, their sensitivities are also lost as the
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Table 6.5. Top 10 Most Contribution Uncertain Parameters Based on the Gi Analysis

Rank Reaction Uncertainty Contribution Category
1 CO(X1Σ+) + M ↔ CO(A1Π) + M 51.6% Heavy-Particle Impact Excitation Rate
2 CO + M ↔ C + O + M 27.3% Flow Field Chemical Reaction Rate
3 NO + M ↔ N + O + M 5.5% Flow Field Chemical Reaction Rate
4 CO(a3Π) + e− ↔ CO(A1Π)+ e− 3.5% Electron Impact Excitation Rate
5 CO(e3Σ−) + M ↔ CO(A1Π) + M 2.5% Heavy-Particle Impact Excitation Rate
6 N + CO ↔ NO + C 1.3% Flow Field Chemical Reaction Rate
7 CO(a’3Σ+) + M ↔ CO(d3∆) + M 1.3% Heavy-Particle Impact Excitation Rate
8 CO2 + O ↔ O2 + CO 0.9% Flow Field Chemical Reaction Rate
9 CO + O ↔ O2 + C 0.9% Flow Field Chemical Reaction Rate
10 CO(A1Π) ↔ CO(X1Σ+) hν 0.8% Molecular Band Process

model is no longer sensitive to those parameters. For the reduction of the uncertain

variables to a total number of 10 variables, 200 sensitivities remain while for the 5

variable problem only 100 sensitivities remain.

The last step in multi-step UQ analysis is to formulate the response surface using

the gradient-enhanced point-collocation scheme given in Eq. (7). For the ten variable

problem, the response surface was analyzed using both a pure epistemic analysis as

well as pure aleatory analysis. A pure epistemic analysis has no probability associated

with the output. This is basically the case that gives the absolute maximum and

minimum response values. These values are given in Table 6.6. A pure aleatory

analysis is a probabilistic analysis. This method assumes that all of the input

parameters have a probabilistic uncertainty distribution. For this analysis, it was

assumed that all of the input parameters were uniformly distributed over the intervals

given for each parameter in the appendix. The response values at different probability

levels are given in Table 6.7. The output cumulative distribution function (CDF)

curve is also shown in Figure 6.9, along with the epistemic boundaries. Note how

the epistemic values bound the aleatory analysis curve. This is expected, given that

the epistemic outputs come from the bounds of the response for the considered input

uncertainty range.
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Table 6.6. Reduced Dimension Epistemic Intervals

5 Variables [1.98 , 28.65] W/cm2

10 Variables [0.54 , 24.49] W/cm2

Table 6.7. Reduced Dimension Pure Aleatory Analysis, Selected Probability Level
Values

Probability Level 5 Variables 10 Variables
(W/cm2) (W/cm2)

2.50% 4.66 W/cm2 4.08
25.00% 8.22 W/cm2 7.81
50.00% 10.86 W/cm2 10.52
75.00% 13.98 W/cm2 13.74
97.50% 20.47 W/cm2 20.52

From Figure 6.9, the five variable problem lies inside the ten variable problem.

As seen in the previous model problem, with an increase in the amount of uncertainty

neglected during the dimension reduction process, there is a reduction in the

uncertainty range of the output response.

For a pure aleatory analysis, a 95% confidence interval can be calculated by

taking the interval between the 2.5% probability level and 97.5% probability level

value. For the ten variable problem this interval is [4.08, 20.52] W/cm2, where, for

the five variable, the 95% confidence interval is [4.66, 20.47] W/cm2. As with the

epistemic analysis, notice the slight decrease in the interval for the five variable case

due to neglecting additional uncertain variables.

A third analysis was performed on the reduced, five variable problem assuming

the contribution of both aleatory and epistemic input parameters. In this mixed

uncertainty analysis, the two remaining flow field chemical kinetic rates were assumed
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Figure 6.9. Pure Aleatory and Epistemic Analysis Probability Box

to have a uniform probability distribution and the three remaining radiation modeling

parameters were considered as epistemic uncertain variables. The resulting output

response at selected probability levels is given in Table 6.8, and the p-box plot is

given in Figure 6.10. Note that the epistemic boundaries given back in Table 6.6 for

the five variable problem still bound the results of the mixed uncertainty analysis as

this, again, gives the most conservative uncertainty in the output. As done in the

pure aleatory analysis, a 95% confidence interval can also be defined for the mixed

uncertainty output. One approach to calculate the 95% confidence interval for this

case is taking the smallest value of the 2.5% probability interval and the largest

value of 97.5% probability level. For this problem the 95% confidence interval is then

obtained as [2.24, 25.68] W/cm2.

The results of all the above analyses are summarized in Table 6.9. Compared

to the results obtained by Johnston et al. [39], the results of this study are consistent
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Table 6.8. Mixed Uncertainty Analysis, Selected Probability Level Values

Probability Level 5 Variables(W/cm2)
2.50% [2.24 , 15.08]
25.00% [2.82 , 16.33]
50.00% [3.14 , 18.29]
75.00% [4.55 , 21.11]
97.50% [7.28 , 25.68]

Figure 6.10. Mixed Uncertainty Analysis Probability Box (5 Variables).

given the differences in the uncertainty quantification techniques. Overall, the multi-

step UQ approach has been shown to be a powerful tool when quantifying the

uncertainty of complex reentry flow simulations. Accurate ranking of the uncertain

parameters was achieved with the proposed global sensitivity approximation and

a computationally efficient UQ analysis was performed for pure epistemic, pure

probabilistic, and mixed input uncertainty cases. The multi-step UQ analysis also
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provided valuable information on the ranking of important variables in terms of their

contribution to the output uncertainty, which might allow for an increased focus on

developing more accurate uncertainty representations on these significant variables.

Table 6.9. Reduced Dimension Epistemic Intervals

Analysis Difference from Baseline
10 Variable Aleatory (95% C.I.) -57% , +115%

10 Variable Epistemic -94% , +209%
5 Variable Aleatory (95% C.I.) -51% , +114%
5 Variable Epistemic (95% C.I.) -79% , +200%

5 Variable Miked (95% C.I.) -77% , +169%

As a final check of the validity of the results, the accuracy of the polynomial

chaos model can be conducted. A check was performed by generating 20 new

Latin Hypercube samples of the CFD model for the reduced, 5 variable problem

and comparing them with outputs from the reduced dimension polynomial chaos

expansion at the same sample locations. The root-mean-square error between the

CFD solution and the surrogate model was determined to be approximately 10%. This

level of error was perceived as acceptable considering the range of output uncertainties

obtained and the approximations made in the multi-step UQ process (first-order finite

difference and first-order sample correction method) as well as any uncertainties

associated with the numerical solution of the deterministic CFD simulations (e.g.,

discretization errors).



49

7. SPARSE APPROXIMATIONS OF STOCHASTIC EXPANSIONS

As discussed in previous sections, polynomial chaos techniques suffer from the

“curse of dimensionality” meaning that the number of deterministic model evaluations

required to create an accurate surrogate model grows exponentially with the number

of random dimensions. For many large-scale, complex problems, generating even

the minimum number of deterministic model samples may be infeasible or even

impossible simply due to the computational cost. The desired approach is to obtain

an accurate surrogate model with as few deterministic samples as possible to limit

the computational cost, even if the minimum number of samples required for a total

order expansion is not achievable. This section outlines an approach for a sparse

approximation of the polynomial chaos expansion, including a discussion of accuracy

and convergence. The approach is then applied to three hypersonic, planetary entry

flow problems.

7.1. SPARSE APPROXIMATION METHODOLOGY

In general, a system of linear equations that has fewer linearly independent

equations than unknowns, possesses an infinite number of solutions. In many PCEs,

only a small fraction of the coefficients may carry significant weight in the surrogate

model and/or are near zero. This would then allow for an assumption that many of

the expansion coefficients are zero, making the vector of expansion coefficients sparse.

With this assumption, the linear system can be regularized allowing for a well-posed

solution. The objective is to seek out a solution to the linear system with the fewest

number of non-zero coefficients. Using convex relaxation, a solution can be obtained

from the L1-minimization problem shown in Eq. (25).
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min

∥∥∥∥α∥∥∥∥
1

subject to

∥∥∥∥Ψα− α∗
∥∥∥∥

2

≤ δ (25)

Here, δ is the truncation error associated with the truncation of the series in Eq. (1).

For the problems in this study, δ is assumed equal to zero, as it can be shown that

the solution to Eq. (25) is unique in this instance. In the above formulation, the

dimensions of Ψ are Ns x Nt and the vector α∗ is of length Ns where Ns < Nt for the

underdetermined problem. The vector α is of length Nt. Doostan and Owhadi [14]

discuss, in great detail, the theory and formulation of the above method, as well as

discussion on stability.

The optimization problem in Eq. (25) is commonly referred to as Basis Pursuit

Denoising (BPDN) [14, 43, 44]. This type of problem can be solved using many

methods from quadratic programming, and the discussion of these methods is left

to other works [43, 44]. In the current study, the least absolute shrinkage and

selection operator (LASSO) homotopy optimization routine [44] was selected to find

the optimal solution of Eq. (25). While many methods exist for solving the above

minimization problem, the homotopy method was selected for efficiency, as this

method is not significantly affected by the dimensionality of the problem [43].

7.2. SAMPLE SIZE, ACCURACY, AND CONVERGENCE

The optimization and sparse solution recovery approach poses two fundamental

issues: (1) how to determine the necessary number of samples, Ns, required to

obtain an accurate solution and (2) how to measure the accuracy of the solution.

The latter of these assumes, of course, that no other means of obtaining the exact

solution is possible, thereby relying on the solution obtained from Eq. (25). To

reduce the computational cost, the desired approach is to limit the total number of

deterministic model evaluations. To address both the sample size and the accuracy

issues simultaneously, there must be a measure of the convergence of the expansion
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coefficients with increasing sample size. The objective of this section is to outline

a procedure for determining an acceptable sample size along with measuring the

convergence of the stochastic expansion coefficients.

The first step in this process will be to generate an initial sample set of

the random variables. The size of this initial sample set, generated using Latin

Hypercube sampling, is taken as the size, Nt, given by Eq. (2) as this would be

the minimum number of samples required to obtain a total order expansion. Note

that generating large sample sets of the uncertain parameters is not computationally

expensive compared to the cost of evaluating the deterministic model. The idea is to

start with a small subset of the initial sample structure and evaluate the deterministic

model at these points. Then, a first set of PCE coefficients can be obtained using

the minimization routine in Eq. (25). This process is then repeated by iteratively

adding more samples to the solution procedure (i.e., addition of new subsets of the

full sample structure) until the convergence of the expansion coefficients is achieved.

Note that each subset of the full sample structure added at each iteration should not

contain any repeated sample vectors from the previous iterations. This would not

provide any new information in recovering new solutions at each iteration.

After the expansion coefficients are approximated, their convergence should

be checked at each iteration. In theory, this could be done by monitoring each

individual coefficient. Unfortunately, for large scale problems, there may be thousands

of coefficients. Also, because the expansion coefficient vector is known to be sparse,

this may not be an accurate approach as the degree of sparseness of the solution vector

may decrease with increasing sample size causing radical changes in any convergence

error measurement. A logical choice for a convergence metric would be to use output

statistics based on the expansion coefficients. One metric that could be used is the

Sobol indices outlined in Section 5.1.
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Recall that the accuracy of the Sobol indices depend on the accuracy of the

expansion coefficients, making it an ideal measure of their convergence. Also, because

the number of total Sobol indices is the same as the number of uncertain parameters,

there will be less parameters to track as this number will always be less than the

number of expansion coefficients. To monitor the convergence of the total Sobol

indices with the addition of more samples at each iteration, an absolute error, Sei,j

can be defined for the jth total Sobol index at iteration i using Eq. (26).

Sei,j =

∥∥∥∥ST,i,j − ST,i−1,j

∥∥∥∥ (26)

Note that measuring the convergence based on this absolute error puts emphasis on

the variables that contribute to the output uncertainty more significantly. The errors

of each total Sobol index, at each iteration, can then be averaged giving a single value

for monitoring, which is shown in Eq. (27).

µe,i =
1

n

n∑
j=1

Sei,j (27)

Plotting this average error at each iteration would then illustrate the convergence of

the PCE coefficients. The objective will be to seek out nearly asymptotic convergence,

as zero error would likely not be achievable simply due to the randomness of the

samples added at each iteration and any numerical inaccuracies that may occur during

the analysis of complex models.

The second approach to measure the convergence of the PCE coefficients is to

compare response values from the PCE to a set of sample points obtained from the

design space, separate from the surrogate model training samples. The objective is

to measure the error between response values from the polynomial approximation

and the actual response at the test sample locations. In this study, test points are

distributed throughout the design space using a Latin Hypercube sample structure.
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This has the advantage of improving the coverage of the design space when a small

sample set is used. Note that each test point used to measure the accuracy of the

surrogate model does require an additional evaluation of the deterministic model

to obtain the exact functional value. These test points could be rolled into the

sample set used to approximate the surrogate. This could improve the accuracy of

the model as more samples are included in the solution recovery. The magnitude of

improvement will depend on the convergence (i.e., the accuracy of the model at the

current iteration) and the number of test points used. The error between the points,

Te,i, may be estimated by the empirical error defined by Eq. (28) [45].

Te,i =
1

NTP

NTP∑
j=1

(Fsurr.(xj)− Factual(xj))
2 (28)

Here, NTP is the number of test points, Fsurr. is the response value from the PCE

surrogate model, and Factual is the actual test point value from the design space. The

error between the surrogate and the deterministic model, at each test point, is an

indication of the local accuracy of the surrogate model. Maximizing the number of

test points will provide better coverage in the design space and would provide the

best indication of the accuracy of the surrogate. Again, however, this does come at

the cost of additional evaluations of the deterministic model.

7.3. DEMONSTRATION OF THE SPARSE APPROXIMATION

APPROACH

To demonstrate the applicability and capabilities of the sparse approximation

approach for the creation of a stochastic surrogate (i.e., PCE), three model problems

are investigated. The first two problems are the same as the ones used to demonstrate

the multi-step approach in Section 6.2. Comparisons between the two methods are

made in this section. The third problem is high-fidelity model for the prediction of

radiative heat transfer on the surface of a vehicle entering into Saturn’s moon Titan,
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which will be shown to have a unique radiative environment with a significant amount

of uncertainty.

7.3.1. Stagnation-Point, Convective Heat Transfer in Hypersonic

Flow. This problem was the same one used to demonstrate multi-step UQ in Section

6.2.1 for the prediction of stagnation-point, convective heating on a blunt-body in

hypersonic flow. The details of deterministic model and the stochastic problem are

given in the previous section.

To measure the convergence of the PCE coefficients using the sparse

approximation approach outlined in this section, both the Sobol index and test point

convergence approaches are employed. For the convergence of the Sobol indices, the

first step is to generate the initial sample size. Section 6.2.1 showed that a second order

expansion is sufficiently accurate for this model problem. From Eq. (2) the minimum

number of samples required for a total order expansion is 78. For this problem, two

samples were added at each iteration. The convergence of the mean Sobol index error

calculated from Eq. (27), is shown in Figure 7.1(a) normalized by the maximum error

value. Notice that there are large changes in the error at the beginning with a small

sample size. As the sample size increases beyond approximately 30, the error tends

to converge to a near zero value, asymptotically.

20 test points were generated in the uncertainty to measure the accuracy of

the surrogate model. Note that these points were generated using a Latin Hypercube

sampling of the uncertain parameters. The error between the test point values and the

response values predicted by the PCE is measure using Eq. (28). The convergence of

the test point empirical error, normalized by the maximum, is shown in Figure 7.1(a).

Similar to the Sobol error convergence, notice that the error drops to near zero after

about 20 samples. The convergence observed for both methods is indicative that the

PCE coefficients are converged.
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(a) Mean Total Sobol Error (b) Test Point Error

Figure 7.1. Convergence of the Sparse PCE for the Fay-Riddell Model

Since this problem is of smaller scale in terms of the number of uncertain

variables, a least squares solution of the over determined system in Eq. (3) can be

obtained for comparison without significant computational cost. In Figure 7.2, the

Sobol indices at 30 and 50 samples are compared to those obtained from the least

squares solution with an OSR of 2 which consists of 156 samples. Results obtained

using an OSR of 2 were verified with Monte Carlo simulation in previous work by

West et al. [33]. Notice that for even lesser sample sizes, the Sobol values are quite

close to the values obtained from the least squares solution and the variable ranking

is accurate. The accuracy of the Sobol index values is expect given the convergence

shown in Figure 7.1(a).

A comparison of the output response at various probability levels can also be

checked for convergence. Analyzing the response surface as described in Section 3 for

mixed uncertainty at selected sample sizes provides the upper and lower CDFs which

are shown in the P-box plot shown in Figure 7.3. The corresponding 95% confidence

intervals values are shown in Table 7.1, which is measured as the distance between

the lower bound of the 2.5% probability level and the upper bound of the 97.5%

probability level. Notice that the 95% confidence interval converges rapidly. However,
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Figure 7.2. Total Sobol Index Values at Selected Sample Sizes

as can be seen for the sample size of 10, there is some degree of reduction in the output

uncertainty. This is due to the lack of sufficient information required to construct the

response surface that spans the actual response surface region. Increasing the sample

size converges the expansion coefficients and forces the results to match with those

obtained from a Monte Carlo simulation of this model problem. Overall, the sparse

sampling approach is able to recover an accurate solution of the PCE coefficients

using a sample size that is less than half what is normally required for a total order

expansion given by Eq. (2).

7.3.2. Radiative Heat Flux Prediction during Mars Entry. This

problem was the same one used to demonstrate multi-step UQ in Section 6.2.2

for the prediction radiative heat transfer on the surface of a hypersonic inflatable

aerodynamics decelerator (HIAD) during entry into Mars. The details of deterministic

model and the stochastic problem are given in the previous section.

With 93 uncertain parameters in this problem, construction of a surrogate model

using polynomial chaos may not be feasible as the “curse of dimensionality” for PCEs

requires that a minimum of 4465 evaluations of the CFD code are required for a second
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Figure 7.3. P-Box for Mixed Uncertainty Analysis at Selected Sample Sizes

Table 7.1. Output Intervals at Selected Probability Levels

Sample Size 95% Confidence
Interval (W/cm2)

10 [71.68 , 88.15]
30 [71.87 , 88.79]
50 [72.05 , 89.48]
70 [72.08 , 89.63]

400,000 (Monte Carlo) [72.08 , 89.48]

order expansion. Given the complexity and time demand of the simulations, a Monte

Carlo analysis is also not feasible as even more evaluations of the CFD code would

likely be necessary to obtain accurate results. The ideal approach would be to only

evaluate the CFD model enough times to construct an accurate surrogate model.
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Here in lies the benefit of using a sparse sampling approach coupled with methods

for checking convergence as the sample size increase.

The same analysis can be formed as was done in the previous model problem.

First, to check the convergence of the Sobol indices, an initial sample set must be

generated. In this model problem, the sample size was increased by 10 samples at

each iteration. The convergence of the mean total Sobol error, normalized by the

maximum, is shown in Figure 7.4(a). As with the previous model problem, there is

a significant amount of error with small sample sizes. However, as the sample size

increases, the error in the total Sobol indices drops rapidly and is less than about 5%

with only 300 samples. This is significant given that 4465 samples are required to

construct a total order expansion.

The convergence in the expansion coefficients can be also be checked by

comparing test point values with those response values produced by the surrogate

model at the same sample locations. For this model problem, 100 test points were

generated. Using Eq. (28), the convergence of the error between the test point values

is shown in Figure 7.4(b). Notice that there is a similar trend with the convergence

of the total Sobol indices in that the error drops rapidly from the initial sample set

and, by about 300 samples, has begun to show asymptotic convergence. The error

for this convergence method is higher than that for the Sobol method. This is not

unexpected as errors in the numerical solution of the CFD model may influence the

test point comparison.

Additionally, the convergence of the total Sobol index values can also be checked.

This is shown in Figure 7.5 for selected sample sizes. Notice that for a small sample

size, the values are significantly different than those of the higher sample sizes. This

is expected given the convergence results in the above figures. As the sample size

increase, the accuracy of the total Sobol values increases. In this figure, the results

are compared to previous work by West et al. [33] where a sensitivity analysis was
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(a) Mean Total Sobol Error (b) Test Point Error

Figure 7.4. Convergence of the Sparse PCE for Mars Entry

performed for the same model problem. In the previous work, the global sensitivity

values for each parameter were approximated using a series of local sensitivity values.

Given the different between the two sensitivity methods, slight differences in the

contribution of each uncertain parameter to the total output uncertainty are observed.

Another check of the most significant parameters and their total Sobol index

values shows how quickly the correct ranking of the parameters is achieved. Figure 7.6

shows the convergence of the top five uncertain parameters, which account for over

90% of the total ouput uncertainty. Notice that the ranking is achieved with only

about 100 samples. Additional samples make the Sobol indices converge as the PCE

coefficient become more accurate.

After obtaining the expansion coefficients at each iteration, the response surface

can be utilized for uncertainty quantification. Three different analyses were performed

using the surrogate model at each iteration: a pure epistemic analysis, a pure aleatory

analysis, and a mixed uncertainty analysis. For the pure epistemic analysis, an

interval of the output can be obtained, which has no probabilistic interpretation. The

convergence of this interval is shown in Figure 7.7. Notice that convergence of the

epistemic interval takes longer to converge than what is reflected in the convergence
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Figure 7.5. Fractions of Total Output Uncertainty at Selected Sample Sizes

metrics used for the PCE coefficients. This is because the epistemic interval is the very

edges of the response surface. It is much more sensitive to the amount of information

(i.e. the number of samples) used to construct the surrogate. Also note that the edges

of the response surface may carry a small amount of uncertainty in itself simply due

to the stochastic nature of the problem and the numerical error in the computational

model. However, convergence is still observed with only about 600 samples.

A pure aleatory analysis was also performed. Here, all of the uncertain

parameters were treated with uniform probability distributions as information about
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each parameter is only known on an interval. The output of this analysis is a

single CDF which provides a probabilistic view of the output. For this analysis the

convergence of the 95% confidence interval can be tracked and is shown in Figure7.7.

Note that the 95% confidence interval is measured between the 2.5% and 97.5%

probability levels. This interval converges faster than the epistemic interval as it is

not the far ends of the response surface. Additionally, the convergence of the mean

of the PCE is also shown in this figure. The mean converges with a sample size less

than 100 samples. This is expected as the first moment of the expansion is the easiest

of the statistics to converge for a response surface.

Figure 7.6. Convergence of Top 5 Uncertain Parameters at the Stagnation Point

A third, mixed uncertainty analysis was also performed. In this analysis, the top

two chemical reaction rates were selected as uniformly distributed aleatory parameters



62

Figure 7.7. Convergence of Pure Aleatory and Epistemic Intervals for the Stagnation
Point

while the remaining 91 variables were assumed epistemic. These were the same two

parameters that were assumed aleatory in previous work by West et al. [33] Following

the procedure outlined in Section 3, probability box plots could be obtained at each

iteration. A collection of p-boxes are shown in Figure 7.8 at selected sample sizes.

Note that in this figure, the 20 sample bounds are vertical lines. This is because the

recovery procedure found a solution which did not include contribution from the two

aleatory parameters. This is not correct as these two parameters account for about

35% of the total output uncertainty, as seen from Figure 7.6, indicating that more

iterations to converge the PCE coefficients are necessary.

A comparison of the above analyses with previous work by West et al. [33]

confirms the results obtained with the sparse sampling approach of the current work.

The 95% confidence intervals of the pure aleatory and mixed uncertainty analyses
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Figure 7.8. P-box of Mixed Uncertainty Analysis at Selected Sample Sizes

as well as the pure epistemic analysis are compared in Table 7.2. Note that in

the previous work, a dimension reduction scheme was employed before creating the

surrogate mode. The 93 variables were reduced to 5 variables which accounted for

over 90% of the uncertainty. This will inherently make the intervals narrower than

those obtained in the current work as 10% of the uncertainty is not being accounted

for in the previous work. The differences between the intervals between the previous

work and the current study are small with the differences between all six interval

values being less than 3 W/cm2.

The variation in the fraction of the total sample set required for accurate results

between the two model problems can be explained by the difference in the faction

of uncertain variables that contribute significantly to the total uncertainty. For the

convective heat transfer model problem, it can be seen that 6 of the 11 uncertain
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Table 7.2. Comparison of Stagnation Point Radiative Flux Intervals for Different
Analyses

Parameter 1800 Samples West et al. [33] Difference
(W/cm2) (W/cm2) (W/cm2)

Epistemic Interval [1.22 , 31.26] [1.98 , 28.65] [0.76 , 2.61]
Aleatory 95% Confidence Interval [5.25 , 21.70] [4.66 , 20.47] [0.59 , 1.23]
Mixed 95% Confidence Interval [1.63 , 28.38] [2.24 , 25.68] [0.61 , 2.70]

variable contribute more than 1% to the total uncertainty and the recovery procedure

needed about 30 of the 78 samples (about 40%) to obtain accurate PCE coefficients.

On the other hand, for the Mars entry radiation problem, only about 8 of the 93

uncertain parameters contribute over 1% to the total uncertainty. In light of this,

less than 10% of the full 4465 sample set is needed to recover accurate expansion

coefficients, as measured by the two converge approaches. Because such a small

fraction of the uncertain parameters in the Mars entry problem actually contribute

to the total uncertainty, a significantly large portion of the expansion coefficients are

close to zero. This is the assumption of the Basis Pursuit Denoising problem used to

recover the PCE coefficients. Therefore, the Mars entry problem may be more suited

for this type of sparse sampling analysis allowing for accurate PCE coefficients to

be obtained with a small fraction of the samples normally required for an analytical

result. For many large scale problems, with many uncertain variables, it may be the

case that only a few variables contribute significantly to the total uncertainty making

the ideas presented in the current work an attractive approach to performing efficient

and accurate uncertainty quantification. However, even if this is not the case, it has

still been shown by the convective heat flux model that accurate PCE coefficients and

subsequent response surfaces can be obtained for a reduced number of evaluations of

the deterministic model over the number needed for a least squares solution of Eq. (2).
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Because of the flexibility and ease of implementation of NIPC, analyses can

be performed on multiple design quantities of interest using the same deterministic

model evaluations. In the previous section, the radiative heat flux was investigated at

the stagnation point of the HIAD. As the deterministic CFD simulations are already

available, the radiative heat flux was investigated along the entire surface of the HIAD

at 14 point selected between the stagnation point and the shoulder region. The same

three aleatory, epistemic, and mixed uncertainty analyses were performed on each

of the 14 points on the wall. Note that new surrogate models were constructed at

each point using the aforementioned sparse sampling approach. Figure 7.9 shows

the distribution of the wall directed radiative flux for all three analyses using 1800

samples.

Figure 7.9. Wall Directed Radiative Heat Flux Distribution Along HIAD Surface
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As with the analysis in the previous section, notice that the epistemic interval

bounds both the aleatory and mixed analyses as this is the extrema of the response

surface. This figure shows the importance of correct representation of the uncertainty.

A pure epistemic analysis is a ”worst case” analysis. This type of analysis may result

in a over design of a thermal protection system (TPS) if some of the parameters

are not classified correctly. Also, the edges of the response surface can carry a

significant amount of uncertainty themselves. A probabilistic analysis may be the

more appropriate method. However, this should be done with caution. Assuming that

all parameters have a probabilistic representation can lead to a potential under design.

From Figure 7.9, notice that the aleatory analysis 95% confidence interval is inside the

mixed uncertainty interval. A mixed uncertainty analysis propagates both epistemic

and aleatory parameters through a model and may be the most accurate approach

in the instance when both types of uncertainty exist. This strongly highlights the

importance of accurate uncertain variable classification.

From Figure 7.9, it can be seen that the radiative flux varies along the surface

of the HIAD. It may be of interest to investigate the sensitivity of the radiative flux

to the uncertain parameters at different points along the surface. Figures 7.10 and

7.11 show the convergence of the Sobol indices of the parameters that account for

90% of the uncertainty at wall points 3 and 9, respectively, which are about 1.8 m

and 6.7 m from the stagnation point. It should be pointed out that, in this particular

case, the Sobol indices are independent of the classification of uncertainty parameters.

Each parameter was represented by an interval. Therefore, the basis of the PCE is

comprised entirely of a Legendre basis [11].

In Figure 7.10 the variable ranking is unchanged and only small changes in the

total Sobol Values exist when compared to the stagnation point results in Figure 7.6.

However, a difference can be noticed for the wall point 9 results given in Figure 7.11.

First of all, seven parameters now represent about 90% of the total uncertainty were,
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Figure 7.10. Convergence of Uncertain Parameters Accounting for 90% Uncertainty
at Wall Point 3 (x=1.8 m from the Stagnation Point)

as before, only five variables accounted for 90% of the uncertainty. Second, notice

that the top three parameters remain the top three, but with a change in the ranking

between variables two and three. The inclusion of new parameters is the result of

changes within the shock layer. Johnston et al. [39] discusses that there is a large

region of thermochemical nonequilibrium within the shock layer and is located just

behind the shock. Moving down stream along the surface of the HIAD, the size of

the nonequilibrium region decreases and the shock stand-off distance begins to grow

linearly from the sphere-cone juncture as shown in Figure 7.12. It is known that the

CO 4th Positive band is the highest emitting band at near the stagnation region in

this analysis due to the region of nonequilibrium [39]. However, the emission of this

band decreases downstream due to the reduction in the nonequilibrium region size,

as shown in Figures 7.13, 7.14, and 7.15. The volumetric radiance from the CO 4th
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Figure 7.11. Convergence of Uncertain Parameters Accounting for 90% Uncertainty
at Wall Point 9 (x=6.7 m from the Stagnation Point)

Positive band decreases from the stagnation point. In addition to the decrease in

emission, the increase in shock stand-off distance creates a longer path for absorption

of the optically thick CO 4th Positive band emission from the nonequilibrium region.

In terms of the Sobol indices, this explains the decrease in the contribution from

parameters involving CO. In Figure 7.11, the new parameters that arise to account

for 90% of the uncertainty are related to the CN Violet band. This band is known

to be the second highest emitter in this model problem [39]. Unlike the CO 4th

Positive band, CN violet is optically thin and, therefore, is not subject to significant

self absorption. Because of this, the contribution from CN Violet to the radiative flux

increases linearly with shock stand off distance. This is evident in Figure 7.15 as the

wall directed radiative flux is increasing from the shock to the wall.
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Figure 7.12. Shock Stand-off Distance for Mars Entry HIAD

7.3.3. Radiative Heat Flux Prediction during Titan Entry. The

objective with this problem is to investigate the uncertainty in high-fidelity radiative

heat flux predictions on the surface of a HIAD scale geometry during Titan entry

by using the sparse approximation approach. This problem is similar to the Mars

problem discussed in previous sections, but for entry into Titan. The flow field was

modeled using the LAURA finite-volume, Navier-Stokes flow solver [40]. This solver

uses a second-order, upwind, discretization scheme with relaxation of both inviscid

and viscous terms for solution stability. LAURA has been used for many high energy

flow studies and has been extensively validated for various atmospheric entry flow

scenarios. The flow field was assumed to be steady state and was modeled using a

two-temperature, thermochemical nonequilibrium model [46, 47]. A constant 1500
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Figure 7.13. Radiative Flux and Volumetric Radiance Along the Stagnation Line

K, super-catalytic wall boundary condition is assumed. Note that the super-catalytic

assumption has a negligible effect on the radiative heating [39].

Johnston et al. [39] details the vibrational relaxation models used in the

present study. Bose et al. [48] showed that uncertainty in the vibrational relaxation

parameters contributes about 5% to the total uncertainty due to the increased thermal

equilibrium in the radiating portion of the shock layer. Note that this 5% is relative to

the total amount of uncertainty observed in that study, which is less than the amount

obtained in the current study. These parameters are subsequently neglected in the

current study, because they have been shown to have a relatively weak contribution.

The radiation was modeled using the High-Temperature Aerothermodynamic

Radiation (HARA) code [41, 42]. This nonequilibrium radiation code uses a tangent-

slab approximation for computing the radiative flux and its divergence. HARA is
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Figure 7.14. Radiative Flux and Volumetric Radiance Normal to Wall Point 3

based on a set of atomic levels and lines obtained from the National Institute of

Standards and Technology (NIST) database [49], Opacity Project databases [50], and

atomic bound-free (photoionization) cross-sections from the TOPbase [51]. In the

present study, the flow field solver and the radiative heat transfer calculations are

coupled. HARA calculates the radiative flux and the divergence of the radiative flux,

which are included in the flow field calculations. Previous work has shown that this

coupling can significantly affect the radiation prediction [52]. HARA uses a Collisional

Radiative (CR) or non-Boltzmann modeling of atomic and molecular electronic states.

The non-Boltzmann approach used in this study is described in detail by Johnston

et al. [39]

Molecular band systems, considered in this study, are treated using the smeared-

rotational band (SRB) approach. However, the use of an SRB approach may be a
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Figure 7.15. Radiative Flux and Volumetric Radiance Normal to Wall Point 9

significant approximation for strong band systems. When multiple simulations are

needed, such as when performing UQ, detailed Line-by-Line (LBL) treatment may not

be feasible due to a significant increase in computational expense. However, the effect

of the SRB approximation will only change the magnitude of the radiation. Output

uncertainty ranges and sensitivity information are not significantly effected by using

the SRB approach versus the LBL treatment, for the cases considered here[53]. A

comparison of the computational cost between SRB and LBL treatment is made at

the end of this section.

The HIAD geometry is modeled as a 70 degree spherical cone with a nose radius

of 3.75 m, a shoulder radius of 0.375 m, and a base radius of 7.5 m. A sample of

the computational grid and grid convergence study results are shown in Figure 7.16.

The computational grid used for this geometry was 128 × 48. The grid varies based
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on the shock location. LAURA uses a gradient-based shock capturing technique to

detect and cluster the grid in the flow direction. A sample of the grid is shown in

Figure 7.16(a). Results of a grid convergence study are shown in Figure 7.16(b). The

difference between the finest grid and the grid used in this study is less than 2% at

the peak heat value. Because of the added computational cost of the finer grid, this

error was deemed acceptable. Note that the HIAD is symmetric and is at zero angle

of attack. This makes the flow asymmetric.

(a) Computational Grid
(b) Surface Radiative Heat Flux for Different
Grid Sizes

Figure 7.16. Computational Grid and Grid Convergence

The Titan atmosphere is composed of primarily N2 (97% per mole) with a small

amount of methane (2.3% per mole) and argon (0.7% per mole). A unique feature

of the Titan atmosphere is its height. The Huygens Probe detected entry interface

at over 1,200 km above the surface [54]. While the atmosphere starts well above the

surface, it is not overly dense as the Huygens probe dropped to about 400 km above

surface before significant aerodynamic drag became present [55]. To determine the

entry conditions used in the present study for a HIAD entry, a simple six degree of
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freedom ballistic trajectory analysis was performed [56]. Coupled with a radiative

heat flux correlation [57], the peak, stagnation point radiative heating on the HIAD

occurred at a speed, density, and temperature of 6 km/s, 1.5e-4 kg/m3, and 150 K,

respectively. Note that these condition are similar to those predicted as the maximum

heating conditions during the Huygens entry [58, 59, 60, 52]. Also, the flow field has

been assumed to be laminar throughout as Johnston et al. [61] has shown that the

fully laminar assumption has a negligible effect on radiative heating.

The flow field was modeled with a 21 species composition model: CH4, CH3,

CH2, CH, N2, C2, H2, CN, NH, Ar, HCN, N, C, H, N+
2 , CN+, N+, C+, H+, Ar+,

and e−. The 35-reaction finite-rate chemistry reduced order model presented by

Gokcen [62] was used in the present study. This reduced order model was obtained

through a sensitivity analysis performed at various Titan entry conditions. The

35 reactions, shown in Table B1, consist of dissociation, exchange, and ionization

reactions. Shown also in this table are the uncertainty magnitudes, also identified

by Gokcen [62]. Following the notation used by Gokcen[62], each reaction rate is

multiplied and divided by the corresponding Fi factor to obtain the upper and lower

bounds of the uncertainty interval, respectively. Because the effect of the uncertainty

in the ionization reaction rates on radiative heating uncertainty was not investigated

in previous studies, these rates are retained in the current uncertainty analysis. Note

that Gokcen [62] suggests that the provided uncertainty ranges be considered as the

lower limit of the uncertainty.

The molecular band systems considered in this study are shown in Table B2.

The uncertainties in these band systems were taken from Johnston et al.[39]. Initially,

the N2 1st Positive, N2 2nd Positive, and the N−2 1st Negative band systems were

also considered to determine their contribution to the radiative heat flux. However,

all together these three bands were observed to contribute less the 1% to the total

radiative heating for the entry conditions used in the present work. Therefore, these
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bands were not treated throughout this study. Emission from NH molecule excited

states have also been identified as a potential source of radiation [63]. Brandis et

al. [64] showed that the primary NH transition does not contribute significantly to

the radiation and is, therefore, ignored in the present study. The effect of atomic

line emission and photoionization from C and N atoms was also investigated, but

was found to contribute less than 1% to the total radiative heat flux and are not

considered throughout this study

The non-Boltzmann excitation rates considered are the excitation of CN and

C2. These reactions and their uncertainty are given in Tables B3 and B4 for the

heavy particle and electron impact excitation rates, respectively. The uncertainty in

these reactions are given by Johnston et al.[39].

A baseline solution was obtained for the Titan entry simulation prior to

performing the UQ analysis and is depicted in Figure 7.3.3. Temperature and

pressure contours of the Titan entry flow field are given in Figures 7.17(a) and 7.17(b),

respectively. Also, a plot of the shock stand-off distance is given in Figure 7.17(c) and

the baseline radiative heat flux distribution along the surface of the HIAD is given in

Figure 7.17(d). These figures show a well defined shock layer and a smooth surface

radiative heat flux.

Work by Olejniczak et al. [59] showed that the radiation during Titan entry

can contribute three to five times more wall heat flux than the convection. This is

primarily due to emission from the optically thin CN molecule band systems [65].

The radiation spectra are shown in Figure 7.18 at three locations along the surface

of the HIAD: the stagnation point, 5.15 meters normal to the stagnation line, and

6.69 meters normal to the stagnation line. At the stagnation point, shown in Figure

7.18(a), notice the sharp contribution from the CN Violet band system between 350

and 450 nm. The remainder of the emission is coming from the CN Red band system.

Moving along the surface, this emission from CN Violet begins to decrease; however,
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(a) Temperature Contour (b) Pressure Contour

(c) Shock Stand-off Distance (d) Wall Radiative Heat Flux

Figure 7.17. Titan Entry Baseline Case

the total wall radiative heat flux continues to increase. This is due to the emission

from the CN Red system, which spans over a large range of wavelengths. The C2

Swan band is visible, but only slightly contributes to the total radiation, along the

surface of the HIAD.

Shock-layer temperature and radiation profiles are shown in Figures 7.19 and

7.20, respectively. Stagnation line temperature and radiation plots are shown in

Figures 7.19(a) and 7.20(a), respectively. The nonequilibrium region is significant
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(a) Stagnation Point (b) Z = 5.15 m

(c) Z = 6.69 m

Figure 7.18. Titan Entry Radiative Flux Spectra Along the HIAD Surface

throughout the Titan entry shock layer, as indicated by the large difference between

the equilibrium and translation/vibrational temperatures. Also, the radiation

actually increases across nearly the entire shock layer. Moving further along the

HIAD surface, the trends seen at the stagnation point remain the same. This is

shown at about the midpoint of the linear region of the fore body in Figures 7.19(b)

and 7.20(b) and near the shoulder region in Figures 7.19(c) and 7.20(c). From these

figures, even though the peak temperature within the shock layer decreases moving

towards the shoulder, the radiative flux at the wall still grows significantly. This is
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due in part to the increasing shock stand-off distance, which creates a larger path for

the optically thin CN Red band system to emit.

(a) Stagnation Line (b) Z = 5.15 m

(c) Z = 6.69 m

Figure 7.19. Titan Baseline Stagnation Line Temperature and Radiative Heat Flux
Distributions

An important note should be made with regards to two assumptions made in this

work that may significantly affect the radiative heat predictions for the Titan case.

The first is the SRB assumption used for treatment of the CN Violet and Red band
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(a) Stagnation Line (b) Z = 5.15 m

(c) Z = 6.69 m

Figure 7.20. Titan Baseline Stagnation Line Temperature and Radiative Heat Flux
Distributions

systems. Figure 7.21 shows that the SRB approximation over predicts the surface

radiation versus the LBL treatment. For optically thin gases, the SRB model will

replicate the spectrally-integrated LBL radiative flux. Therefore, the difference seen

in Figure 7.21 indicates that the CN Violet band is not optically thin. While using

an SRB approach is a known simplification, it is a necessary one for a UQ analysis

simply due to the extreme computational cost of the LBL calculations. A comparison
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of the time required to complete a single call to radiation code showed that the SRB

treatment took less than 1 minute per line of sight, while the LBL treatment took

about 50 minutes per line of sight on the same single CPU. This gives an idea of the

relative complexity of the two methods. Note that in this study, there were a total of

48 lines to sight. The amount of time to complete a case is also compounded by the

fact that the solution is iterative, so many calls to the radiation code are required.

Figure 7.21. Titan Entry Comparison of LBL vs. SRB Treatment for CN Violet and
Red Band Systems

The second assumption is the tangent-slab approximation used by LAURA to

compute the wall-directed radiative flux. While this approach is computationally

inexpensive compared to other options, Bose et al. [66] and Wright et al. [52]

showed that this assumption can lead to an over prediction of the surface radiation.
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Mazaheri et al. [67], developed a computationally efficient three-dimensional, ray-

tracing approach that may improve radiation predictions regardless of the optical

depth and may be considered in future work.

The uncertainty was propagated through the model using Monte Carlo sampling

of the stochastic response surface. While large sample sizes are typically needed for

accurate results (on the order of 105), sampling the surrogate model is extremely

inexpensive compared to sampling the actual deterministic model. Two uncertainty

analyses were performed: a pure epistemic analysis and a pure aleatory analysis.

As discussed in the previous section, all of the uncertain parameters in this study

were treated on intervals. This means that the surrogate models do not change

based on the uncertain parameter classification (i.e., each surrogate will have a pure

Legendre basis[11]). The purpose of performing these two analyses is to show the

effect of uncertain parameter classification, interpretation of output uncertainty, and

the importance of correctly representing uncertain parameters.

The epistemic UQ approach is the correct analysis because no probabilistic

assumption is made on the representation of the input uncertainty sources due to

the lack of sufficient information [68]. The outputs from an epistemic analysis have

no associated probability of occurrence, but each output can occur. As a result, the

maximum and minimum response values are the outputs of interest in this analysis.

To obtain a probabilistic representation of the output uncertainty (i.e., a pure aleatory

analysis), samples of the surrogate model are sorted and spaced at equal probability

levels, where the number of levels is dependent on the number of samples.

As discussed in above and listed in the appendix, a total of 79 uncertain input

parameters, coming from four main groups (flow field chemical kinetics, molecular

band systems, heavy particle impact excitation rates, and electron impact excitation

rates), are considered for the Titan entry model. Using Eq. (2), a second order PCE

would have 3,240 terms. A direct solution of Eq. (3) would require at least this
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many evaluations of the deterministic model. Instead, sparse approximations of the

PCEs were obtained from the optimization routine in Eq. (25), which was solved

with an iteratively increased sample set, from 10 samples to 500 samples, increased

by 10 samples at each iteration. The convergence results are shown in Figure 7.22.

Convergence of the Sobol indices at three location along the surface of the HIAD

are shown in Figure 7.22(a). In 500 samples, the error drops below 1% at all three

points and is an indication of the convergence of the PCE coefficients. This error is

deemed acceptable given the near 85% drop in computational cost (i.e., the number

of CFD evaluations). A total of 100 test points were generated in the design space to

measure the accuracy of the surrogate models. The plot of the normalized empirical

error is shown in Figure 7.22(b). With 500 samples, the test point error is about 8%.

Given the nature and complexity of the CFD model problem, both errors are deemed

acceptable especially considering the significant computational savings achieved with

the current UQ approach.

(a) Mean Sobol Index Error (b) Test Point Error

Figure 7.22. Convergence of Sparse PCEs for Titan Entry
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Thirteen surrogate models of the surface radiative heating were generated along

the surface of the HIAD. The epistemic and the 95% confidence intervals of the wall

radiative heat flux are shown in Figure 7.23. This figure highlights the importance of

correct representation of uncertain parameters, because the 95% confidence interval is

as much as a 50 W/cm2 narrower than the epistemic interval. This under prediction of

the output uncertainty is also discussed by Johnston and Kleb [69]. Many, if not all of

the uncertain parameters considered in this study are epistemic simply due to the lack

of knowledge about their behavior. While experimental data exists for some of the

uncertain parameters, currently there is not enough to claim that these parameters

exhibit obvious probabilistic uncertainty behavior. Figure 7.23 shows the substantial

variation in the predicted radiative heating along the surface. At the shoulder region,

the epistemic interval is nearly 150 W/cm2 wide. This range is as much as the peak

baseline prediction and is an indication of the significant contribution of the uncertain

parameters to the wall radiative heating predictions.

Further checks of the convergence of the PCE coefficients can be done by

checking the convergence of the intervals in Figure 7.23. The intervals are shown

in Figure 7.24. At the stagnation point, convergence of both intervals are shown in

Figure 7.24(a). Additionally, convergence of the intervals at Z = 5.15 meters and Z =

6.69 meters are shown in Figures 7.24(b) and 7.24(c), respectively. Notice the rapid

convergence of both output intervals along the surface of the HIAD, which indicates

converged PCE coefficients.

To better understand the cause of the significant variation in the radiative

heating predictions, the Sobol indices used to measure the convergence of the PCEs

are reviewed to determine the global, nonlinear sensitivity of the surface radiation

to each of the uncertain input parameters. In a high level view, the pie charts in

Figure 7.25 show the contribution from the four main groups of uncertain inputs.

Clearly, the flow field reactions contribute the most to the output uncertainty, which
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Figure 7.23. Epistemic and 95% Confidence Intervals of Wall Radiative Heat Flux for
Titan Entry

is in agreement with previous works that have also shown that flow field chemistry

contributes significantly to uncertainty in radiative heating predictions [48, 70, 35].

There is significant contribution from heavy particle impact excitation rates. Note

that a significant change in the contribution from the different parameters along the

surface of the HIAD is not observed. The flow field reactions dominate along the entire

surface, with a small change between the heavy particle impacts and the molecular

band contributions.

Looking closer at the contribution from individual parameters shows that only

six of the 79 uncertain parameters contribute more than 1% to the total uncertainty at

any point along the HIAD surface. These uncertainty sources and their contributions

to the total output variance at three points along the surface are shown in Table

7.3. The most significant parameter is the reaction rate for the dissociation of N2.



85

(a) Stagnation Point (b) Z = 5.15 m

(c) Z = 6.69 m

Figure 7.24. Convergence of the Radiative Heating Uncertainty Intervals for Titan
Entry

Molecular collisions contribute slightly more than atomic collisions. This sensitivity

result is expected given that the freestream gas is composed of primarily N2 and its

dissociation directly affects the potential for the formation of radiating species. Bose

et al. [48] notes that the H + N2 ↔ NH + N exchange reaction is highly endothermic

and acts to cool the shock layer, reducing the heating from CN.

Contributions from the CN Red molecular band system, as well as the CN

impact excitation rates are related to the most significant radiation contributer, CN.

The excitation rates result in the excitation/de-excitation between the CN Red and
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(a) Stagnation Point (b) Z = 5.15 m

(c) Z = 6.69 m

Figure 7.25. Uncertainty Contributions to Titan Radiative Heating Along the HIAD
Surface

CN Violent states, which can affect the emission from the CN molecule. From Table

7.3, the most important excitation rate is the heavy particle impact excitation rate

for the transition between CN Red and CN Violet. The uncertainty in this particular

excitation rate contributes about 10 - 15% to the total uncertainty in radiative heating

along the surface. This contribution is quite significant to the radiative heat flux

uncertainty, even though it is not the main contributor. This is a unique finding of

this study, as electronic state excitation rates have not previously been considered

uncertain for Titan entry radiation modeling.

Note that in previous work by West et al. [71], the Titan atmosphere was

assumed to have a composition of 95% N2 and 5% methane, which was made to align

with previous work [35, 48] for comparison of the baseline and uncertainty/sensitivity

analysis results. In the current study, the composition was updated to more accurately
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reflect the composition of the Titan atmosphere. However, a comparison of the

baseline and UQ results show that there is little change in the ranking of the important

uncertain parameters and the width of the uncertainty intervals. What does change is

simply the magnitude of the radiative heating. This is expected due to the reduction

in the amount of carbon available for the production of CN.

Table 7.3. Top Uncertainty Sources Contributing to Radiative Heat Uncertainty

Uncertain Parameter Stag. Point Z = 5.15 m Z = 6.69 m
N2 + (Molecules) ↔ 2N + (Molecules) 47.0% 47.9% 47.1%

N2 + (H,C,N) ↔ 2N + (H,C,N) 27.4% 28.2% 27.0%
CN(A2Π ) + M ↔ CN(B2Σ+) + M 10.6% 12.3% 14.3%
CN(A2Π) + e− ↔ CN(B2Σ+) + e− 2.9% 2.9% 2.8%

C + e− ↔ C + e− + e− 2.7% 0.7% 0.4%
H + N2 ↔ NH + N 1.4% 1.6% 1.7%
CN (A2Πi – X2Σ+) 0.6% 2.3% 3.0%

All Others <1% <1% <1%
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8. QUANTIFICATION OF MARGINS AND UNCERTAINTIES

Quantification of Margins and Uncertainties (QMU) is a methodology developed

to facilitate analysis and communication of confidence for certification of complex

systems. With the history of this approach discussed in Section 2, this section

introduces enhancements to the QMU framework for improved analysis capability

and efficiency. The QMU methodologies are demonstrated on two stochastic model

problems. The first is a multi-system, multi-physics spacecraft reentry model, which

consists of coupled reentry dynamics and heat load models to characterize design

critical measurements of a spacecraft during reentry. These include the maximum g-

load, a required bank angle correction, and the maximum heat load along the reentry

trajectory. The second is a multi-system model for the prediction of ground noise

produced by the sonic-boom from a supersonic transport vehicle.

8.1. COMPONENTS OF QMU

The key measures in the QMU are shown in Figure 8.1. In this QMU framework,

for the whole aerospace system (spacecraft or aircraft) or for each sub-system, the

first step will be to determine performance metrics (system outputs) relevant to the

systems modeling. Then, these metrics will be evaluated at a design condition (point)

determined for safe and reliable operation of the aerospace system. Each of these

metrics (F ) will typically involve some amount of uncertainty (UF ) due to the inherent

(aleatory) or real-life variation of parameters used in physical models, as well as

epistemic uncertainties. The safe and reliable operation region of the performance

metrics (performance gates) may be bounded with a lower (FL) and/or an upper

bound (FU ) for each metric, which may also include some uncertainty (UFL for FL

and UFU for FU ) due to the aforementioned uncertainty sources. A measure of the
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distance between the design value of each performance metric and the lower boundary

including the effect of uncertainties UF and UFL will give the lower margin MLW and

the distance between the upper boundary and the design value of each performance

metric including the effect of uncertainties UF and UFU will give the upper margin

MUP .

Figure 8.1. Schematic of Key Measures used in a QMU Analysis

Using the uncertainty and the margin information, a metric has to be developed

to quantify and certify the confidence in safe operation of a system with a given

performance metric. A confidence ratio (CR) can be defined as shown in Eq. (29).

The confidence ratio is obtained as the minimum of the ratio of the margin to the

uncertainty calculated for each side of a performance metric. For a system wide

confidence level, the minimum of the CRs is utilized to represent the most critical or

unreliable component of the system. Note that a performance metric may not possess

both an upper and a lower performance boundary. In fact, in many engineering

applications only a single limit may bound a performance metric. In this case, only a

single ratio of the margin to the uncertainty exists and is considered as the confidence

ratio for that particular metric (i.e. system performance or output.)
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CR = Min

[
MUP

UUP
,
MLW

ULW

]
(29)

8.2. UNCERTAINTY CALCULATIONS

In order to measure the uncertainty in the performance gate(s) of a system,

the first step is to perform the actual uncertainty quantification of the design and the

performance limits. In many problems, stochastic models may be used for determining

the uncertainty in the output based on random input variables. This can be done by

various UQ propagation methods; however, one of the goals of the current study to

use stochastic responses surfaces for their computational efficiency and accuracy. An

additional case may be that models are not directly available and the uncertainty must

be quantified by other means. One example could be the use experimental test data.

Then, it may be possible to represent the uncertainty of a design or performance limit

with an interval or possibly fit a distribution to the data depending on its behavior.

After quantifying the uncertainty in the design and the performance limits, the

next step is to quantify the uncertainty in the performance gates. For a probabilistic

representation of the uncertainty, one approach would be to use Eqs. (30) and (31).

UUP =

√(
(FUmax)P=0.5 − (FUmin)P= 1−β

2

)2

+
(

(Fmin)P=0.5 − (Fmax)P= 1+β
2

)2

(30)

ULW =

√(
(Fmax)P=0.5 − (Fmin)P= 1−β

2

)2

+
(

(FLmin)P=0.5 − (FLmax)P= 1+β
2

)2

(31)

Here, β represents the confidence level used in the analysis and P represents

the probability level at which the functional values are taken. For example, if β =
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0.95, this would correspond to a 95% confidence level analysis. In case of mixed

uncertainty in F , FU , and/or FL, min corresponds to the minimum and the max

corresponds to maximum response value (bound) of the interval at that particular

probability level, which can be obtained from the probability-box of the associated

responses. Each of the square terms represents the uncertainty in either the design

or a performance limit. Notice that the entire range of uncertainty in the design

and the performance limits are not considered in Eqs. (30) and (31). By including

only the uncertainty that will directly effect the performance gate on each side, the

amount of uncertainty is restricted to each of the performance gates to avoid the

under prediction of the reliability of the system as given by the CR in Eq. (29). For

example, the uncertainty in the upper performance gate is measured by roughly the

upper half of the uncertainty in the design and the lower half of the uncertainty in the

upper performance limit. Similarly for the lower performance gate, the uncertainty is

measured by roughly the lower half of the uncertainty in the design and the upper half

of the uncertainty in the lower performance limit. In the case of mixed uncertainty, a

conservative approach is taken to assess the amount of uncertainty in the performance

gates. From Eq. (30), for example, the uncertainty in the design is measured as the

distance between the upper output value at a selected probability level and the lower

output value at the 50% probability level. Notice that the ladder of the two values

is taken further from the performance gate in order to ensure that any uncertainty

that could affect the reliability of the system is included in the measurement of the

amount of uncertainty in the performance limit.

The desired approach is to generalize the uncertainty measurements in Eqs. (30)

and (31) to include non-probabilistic representation of the uncertainty. This is

done with Eqs. (32) and (33) where each of the terms are defined, based on the

representation of the uncertainty, in Tables 8.1 and 8.2 for the upper and lower

performance gates, respectively.
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UUP =

√
(UUP1 − UUP2)2 + (UUP3 − UUP4)2 (32)

ULW =

√
(ULW1 − ULW2)2 + (ULW3 − ULW4)2 (33)

Table 8.1. Response Values of Different Uncertainty Representations for Upper
Uncertainty Calculations

Uncertainty
Representation

UUP1(FU) UUP2(FU) UUP3(F) UUP4(F)

No Uncertainty FU FU F F
Pure Epistemic FUmax

2
FUmin

2
Fmax

2
Fmin

2

Pure Aleatory (FU)P=0.5 (FU)P= 1−β
2

(F )P= 1+β
2

(F )P=0.5

Mixed (FUmax)P=0.5 (FUmin)P= 1−β
2

(Fmax)P= 1+β
2

(Fmin)P=0.5

Table 8.2. Response Values of Different Uncertainty Representations for Lower
Uncertainty Calculations

Uncertainty
Representation

ULW1(FL) ULW2(FL) ULW3(F) ULW4(F)

No Uncertainty FL FL F F
Pure Epistemic FLmax

2
FLmin

2
Fmax

2
Fmin

2

Pure Aleatory (FL)P=0.5 (FL)P= 1+β
2

(F )P= 1−β
2

(F )P=0.5

Mixed (FLmin)P=0.5 (FLmax)P= 1+β
2

(Fmin)P= 1−β
2

(Fmax)P=0.5
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8.3. MARGIN CALCULATIONS

Calculation of the distance between the design condition and the performance

limit, or the margin, is a critical component of QMU. Improper measurement could

result in under or over prediction of the reliability of the system. While this

measurement may graphically appear obvious as seen in Figure 8.1, if both the design

and the performance limits posses uncertainty, the calculations should include the

effects of these uncertainties to obtain an accurate margin estimate. Moreover, a

general approach has been devised since the uncertainty characteristics (aleatory,

epistemic, or mixed) for the design and limits may be different. Considering these,

the calculation of the margins for a probabilistic representation of the uncertainty

can be determined using Eqs. (34) and (35) for the upper and lower performance

boundaries, respectively.

MUP =
∣∣∣(FUmin)P= 1−β

2
− (Fmax)P= 1+β

2

∣∣∣ (34)

MLW =
∣∣∣(Fmin)P= 1−β

2
− (FLmax)P= 1+β

2

∣∣∣ (35)

Here, β represents the confidence level used in the analysis and P represents the

probability level at which the functional values are taken. For example, if β = 0.95

this would correspond to a 95% confidence level analysis.

If the distribution of the performance metric and/or the design limits are

known (e.g. Gaussian) these values can be easily obtained from the statistics of

the distribution. In general, the distribution of a system or model output is almost

never known exactly, even when the inputs are on clearly defined distributions. In this

case, response values may be obtained from a cumulative distribution function (CDF)
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formulation of the output. This is the typical approach when considering problems

under a pure aleatory analysis or under mixed uncertainty where the outputs carry

some probabilistic representation. Note also that the ”min” and ”max” subscripts in

Eqs. (34) and (35) indicate the response value that should be selected when multiple

response values exist at a single probability level. For instance, this occurs when a

model or system is subject to mixed uncertainty as mentioned in Section 3, which

creates a range of values at each probability level defined by multiple CDFs (i.e., the

CDFs that form the probability-box.)

Another type of uncertainty representation of either the design or the limits

may be the non-probabilistic or pure epistemic representation. In this case, there is

no distribution of the output and the uncertainty is only defined by an interval. Here

the approach is to use the interval bounds as the measurement point for determining

the margins rather than a response value defined at a specific probability level, which

is not possible in this case. Note that this will be the most conservative approach

and may be warranted given the unknown behavior of the uncertainty of epistemic

intervals.

One of the objectives of this study is to demonstrate how a QMU analysis can

be performed when the output uncertainty of design points and operational limits are

different. The three possibilities include pure epistemic (interval), pure aleatory, and

mixed uncertainty. Eqs. (34) and (35) can be generalized to Eqs. (36) and (37), where

each term is based on the representation of the uncertainty of the specific component

of the system. The possible values of the MUP and MLW are summarized in Table 8.3.

MUP = |MUP1 −MUP2| (36)

MLW = |MLW1 −MLW2| (37)
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Table 8.3. Response Values of Different Uncertainty Representations for Margin
Calculations

Uncertainty
Representation

MUP1(FU) MUP2(F) MLW1(F) MLW2(FL)

No Uncertainty FU F F FL
Pure Epistemic FUmin Fmax Fmin FLmax
Pure Aleatory (FU)P= 1−β

2
(F )P= 1+β

2
(F )P= 1−β

2
(FL)P= 1+β

2

Mixed (FUmin)P= 1−β
2

(Fmax)P= 1+β
2

(Fmin)P= 1−β
2

(FLmax)P= 1+β
2

8.4. CERTIFICATION PREDICTION

The QMU methodology can also be used as a tool for predicting if designs can

pass specified certification criteria. In order to predict the certification plausibility of

a particular configuration a process capability analysis may be employed [72]. The

objective of this analysis is to compare the performance of a process, or in this case the

performance metrics, against performance specifications or limits (i.e., certification

values). Several factors must be considered, including a margin, measured between

a performance metric and a certification value, as well as the uncertainty in a

performance metric. For a probabilistic representation of the uncertainty in a

particular performance metric, any margin measurement will also carry a probability.

Figure 8.2 illustrates how a margin can be determined from a P-box obtained after the

propagation of mixed uncertainty (see Section 3). Notice that the margin is measured

between highest response value at a selected probability level or requirement (e.g.,

95% confidence level) and the certification value. A positive margin, shown in Figure

8.2(a), would exist when the response value (at the probability requirement level) is

less than the certification value. On the other hand, if the response value is greater
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than the certification value, as in Figure 8.2(c), the margin would be negative and

may indicate the design would not pass certification.

(a) Large Positive Margin (b) Small Positive Margin

(c) Negative Margin

Figure 8.2. Certification Predication Margin and Uncertainty Measurements

Because a probability level or requirement is used as part of the margin

measurement, there is a possibility that the margin may be positive, even if the

boundary of the P-box hangs over the “Failure Region” of the certification value,

as shown in Figure 8.2(b). While the margin is positive, the reliability of the

configuration performance may be in question. Accounting for this uncertainty is

desirable for a reliable design and accurate certification prediction. Using the QMU
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methodologies discussed in this section, the confidence ratio, CR, and shown in

Eq. (29), between the margin and the uncertainty may be used as a reliability measure

in the certification prediction.

8.5. APPLICATION PROBLEMS FOR QMU

To demonstrate the QMU methodologies using stochastic expansions with

various uncertainty representations between the design points and performance limits,

two multi-system model problem are investigated. The first is a model of a spacecraft

reentry trajectory coupled with models for heat flux prediction and bank angle

modulation. The second problem is a multi-system model used to predict sonic-boom

loudness of low-boom, supersonic vehicle configurations.

8.5.1. Spacecraft Reentry Trajectory Uncertainty. The first model

is a multi-system, physics-based model for atmospheric, lifting entry of a spacecraft.

Systems within the design include a model for six-degree of freedom reentry dynamics

used for the determination of a reentry trajectory. The second system is a prediction

model of stagnation point, convective heat flux used to determine the maximum heat

load experienced along the reentry trajectory. In this problem, a generic planetary

entry capsule similar to Crew Exploration Vehicle (CEV) was analyzed for a lunar

return mission [73, 74, 75]. The purpose of this model is demonstrate the QMU of

a coupled, multi-system design possessing mixed uncertainty, as well as performance

boundaries with different types of uncertainty representation.

The deterministic model is shown in the system diagram in Figure 8.3. This

model consists of two primary systems with three outputs or performance metrics.

The first system has two primary components or subsystems. The first of these

is the trajectory model consisting of a six degree of freedom model for atmospheric

entry of a lifting body. The kinematics are shown in Eqs. (38) though (41) and the

equations of the dynamical system are shown in Eqs. (42) through (44) [76, 77].



98

Figure 8.3. System Design Schematic for the Spacecraft Reentry Model Problem

dr

dt
= V sin γ (38)

dφ

dt
=
V cos γ cosψ

r
(39)

dθ

dt
=
V cos γ sinψ

r cosφ
(40)

ds

dt
= V cosγ (41)

dV

dt
= −D

m
− g sin γ + ω2r cosφ(sin γ cosφ− cos γ sinφ cosψ) (42)

V
dγ

dt
=
L

m
cosσ − g cos γ +

V 2

r
cos γ + 2ωV cosφ sinψ + ω2r cosφ(cos γ cosφ+

sin γ sinφ cosψ)

(43)
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V
dψ

dt
=

L sinσ

m cos γ
+
V 2

r
cos γ sinψ tanφ− 2ωV (tan γ cosφ cosψ − sinφ)+

ω2r

cos γ
sinφ cosφ sinψ

(44)

In this system, V is velocity, m is mass, D is drag, L is lift, r is the orbital

radius, γ is the flight path angle, θ is the longitude, φ is the latitude, σ is the bank

angle, ω is the planetary body rotational speed, ψ is the heading angle, and s is the

range. This is a system of 7 ordinary differential equations that can be numerically

integrated simultaneously in time. An example trajectory for a typical lunar return

skip reentry mission is shown in Figure 8.4.

The second component of this system is a guidance system, coupled to the

primary reentry trajectory model. The guidance system is used to correct the

trajectory in the instance of deviation from a nominal trajectory, such as when the

reentry is subject to perturbation or uncertainty. In order to correct the trajectory, the

guidance system uses a search algorithm to modify the bank angle of the trajectory.

This effectively changes the direction of the lift vector in order the steer the spacecraft

towards a target landing location. In this model problem, the reentry trajectory

begins with the bank angle on the nominal value for the baseline trajectory. A single

bank angle correction is performed when a sensible atmosphere is detected which

occurs approximately when the g-load reaches a value of 0.05 [78]. The necessary

bank angle correction is determined using a simple root finding method, shown in

Eq. (45) for the ith step in the search. The search is based on the distance between

the target location and the projected landing location at the current bank angle shown

in Eq. (46), which is only a function of the bank angle as no other control is being

simulated.
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σi = σi−1 −
σi−1 − σi−2

f(σi−1)− f(σi−2)
f(σi−1) (45)

where,

f(σ) = smiss = scurrent − starget (46)

Figure 8.4. Sample Skip Reentry Trajectory

Here, scurrent is the range traveled with the current bank angle obtained from

integrating the above dynamical system and starget is the range to the target from the

current location measured as a greater circle distance. Once the optimum bank angle

is determined, the baseline bank angle is corrected instantaneously and the remainder

of the trajectory is carried out.
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In the reentry dynamics system, there are a total of two outputs. The first is

the maximum g-load experienced along the trajectory. This is a critical trajectory

and vehicle design value as it directly influences the safety of the crew as well as the

structural loads that the vehicle may experience. The second output is the required

bank angle correction. This value may be critical in the design of an adequate reaction

control system including propulsive capabilities and propellant requirements [79].

The second system in this model is a model for the stagnation point, convective,

heat flux of a blunt body in hypersonic flow. The Fay and Riddell [36] correlation was

used to approximate the stagnation point heat transfer for a blunt body in hypersonic

flow. This model assumes a laminar boundary layer, thermo-chemical equilibrium

flow, and a fully catalytic wall. The model is shown in Eq. (19). Details of this model

are given in Section 6.2.1.

For system 1, performance limits exist for both outputs. The maximum g-load

is constrained by the limits the crew and the structure of the spacecraft can withstand

meaning that only an upper limit exists. In order to represent this limit, an epistemic

interval has been utilized. The performance limits of the bank angle correction would

be based on the control and propellant limitations of the spacecraft. In this study, the

upper and lower limits are firm boundaries, with no uncertainty. For system 2, there

is only an upper limit on the heat flux as any lower limit would not be a concern. In

this case, the upper limit was represented by an epistemic interval. This interval was

selected to reflect the physical limitations of current TPS materials.

In system 1 there is a total of 10 uncertain variables, both coming from epistemic

and aleatory sources. Epistemic sources include entry interface (E.I.) altitude, mass,

drag coefficient and lift coefficient. Aleatory sources include E.I. velocity, E.I. flight

path angle, the reference area, E.I. latitude, E.I. longitude, and E.I. heading angle.

The uncertainty in these parameters and their distribution are shown in Tables 8.4.
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Note that many of the selected uncertain parameters and classification are consistent

with previous uncertainty work in this area [73, 74, 76, 77].

For system 2, 10 variables were selected as sources of uncertainty. Both

epistemic (model form) and aleatory (inherent) forms of uncertainty were considered.

The epistemic uncertain variables were as follows: Lewis number, Prandtl number,

boundary layer edge viscosity, emissivity, the heats of formation for nitrogen and

oxygen and the power over the Lewis number. These model variables are considered

as epistemic by imposing uncertainty on them due to lack of knowledge. Note that

uncertainty in the two heats of formation and the boundary layer edge viscosity were

modeled through the introduction of a factor, k, to each variable, which was used

to represent a variation in the uncertain variable (e.g. x = k (xref ).) The factor

k for each variable was treated as an epistemic uncertain variable. The other three

variables were treated as aleatory (inherent) uncertain variables: free stream velocity,

free stream density, and the radius of curvature of the body. Random fluctuations

in the free-stream conditions are possible during flight and variations in the vehicle

geometry are possible due to manufacturing processes. These variables were assumed

normally distributed about some mean with a coefficient of variance (CoV) of 1%. The

input uncertainties for each of the uncertain variables are summarized in Table 8.5.

For system 1, the upper performance limit is represented by an epistemic interval

as stated in the previous section. The g-load limit was selected to be on the interval

[10 , 11] g. Also for system 1, the limitations of the bank angle correction are defined

as boundaries with no uncertainty. The boundaries were elected to be ±20 deg.

For system 2, the epistemic interval was selected to be [900 , 1200] W/cm2. The

uncertainty in this interval was extrapolated from several sources indicating different

heat load values of the stardust mission including CFD simulations as well as sensor

data collected during flight [80, 81, 82].
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Table 8.4. Reentry Model Uncertain Parameters for System 1

Variable Distribution Mean/ Std./
Min Max

E.I. h, m Epistemic 121800 122000
m, kg Epistemic 9000 9500
CD Epistemic 1.27 1.31
CL Epistemic 0.367 0.407

E.I. U∞, m/s Gaussian 10900 30.0
E.I. γ, deg. Uniform -6.1 -5.9
S, m2 Gaussian 19.9 0.2

E.I. φ, deg. Gaussian 0.0 1.0
E.I. θ, deg. Gaussian 0.0 1.0
E.I. ψ, deg. Gaussian 0.0 1.0

Table 8.5. Reentry Model Uncertain Parameters for System 2

Variable Distribution Mean/ Std./
Min Max

Le Epistemic 1.358 1.442
Pr Epistemic 0.679 0.721

µe Factor Epistemic 0.97 1.03
ε Epistemic 0.776 0.824

h0
f (N) Factor Epistemic 0.97 1.03
h0
f (O) Factor Epistemic 0.97 1.03

Power on Le Epistemic 0.5044 0.5356
U∞ Factor Gaussian 1.0 0.01
ρ∞ Factor Gaussian 1.0 0.01
Rn, m Gaussian 6.93 0.0693

Performing the UQ in the system design condition and the performance limits

is the next step in the analysis. From the previous section, there is a total of 20

uncertain parameters in this model problem. Using Eq. (2), 462 evaluations of the

deterministic model were required for an OSR=2 with second order polynomial chaos
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expansions. The upper and lower CDFs of the output P-Boxes are given in Figures 8.5

and 8.6 for the g-load and bank angle correction, respectively. Note that these were

obtained using the sampling approach for mixed uncertainty outlined in Section 3.

A similar analysis was performed on system 2 of the design. A stochastic

response surface could be formulated using a second order polynomial chaos

expansion. The upper and lower CDFs of the output P-Box are given in Figure 8.7,

which were obtained using the sampling approach for mixed uncertainty outlined in

Section 3.

In the previous model problem, a comparison of Monte Carlo and NIPC results

was made in order to confirm the accuracy of the NIPC response surfaces. This was

possible because of the low computational cost of the model. The reentry dynamics

model is significantly more computationally expensive making an accurate Monte

Carlo solution infeasible to obtain. However, checking the accuracy of the surrogate

model is still possible by comparing results obtained from the actual model to those

obtained from the surrogate model at the same sample location in the design space.

In this study, 20 sample points, distributed evenly in the design space, were used

to measure the accuracy of the surrogate models. Of the three surrogates created

in this model problem, the highest mean error in the sample points was about 0.2%

validating the selection of second order polynomial chaos expansions. Note that these

sample points differ from the sample points used to train the surrogate model.

In the performance limits, no uncertainty quantification was performed on the

performance limits for this model as both models were assigned epistemic intervals

or boundaries with no uncertainty.

After assessing the uncertainty in the components of the system, performing

the QMU analysis is now possible. A 95% confidence analysis (i.e., β = 0.95) has

been selected for this problem. Using the equations and tables given in earlier in

this section, the margin calculations can be performed. For system 1, both the
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Figure 8.5. Maximum g-Load P-Box Plot from System 1

Figure 8.6. Bank Angle Correction P-Box Plot from System 1

design metrics are represented by mixed uncertainty. The upper performance limit

of the maximum g-load was represented by an epistemic interval while the upper
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Figure 8.7. Maximum Heat Load P-Box Plot from System 2

and lower bounds of the bank angle correction were fixed values with no uncertainty.

A summary of the margin and performance gate uncertainty values as well as the

resulting confidence ratios of the system are given in Tables 8.6 and 8.7. Note that

the minimum of these two confidence ratios is deemed the confidence ratio for the

system.

Table 8.6. Maximum g-Load QMU Analysis Metrics from System 1

Performance Margin Uncertainty CR
Gate
Upper 4.13 0.67 6.17

Similarly, the QMU analysis is performed on system 2. Here, the design is

represented by mixed uncertainty while the only performance limit is represented by
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Table 8.7. Bank Angle Correction QMU Analysis Metrics from System 1

Performance Margin Uncertainty CR
Gate
Lower 12.61 9.77 1.29
Upper 13.67 9.14 1.50

an epistemic interval. A summary of the margin and performance gate uncertainty

values is shown in Table 8.8 as well as the resulting confidence ratio of the system.

Table 8.8. Maximum Heat Load QMU Analysis Metrics from System 2

Performance Margin Uncertainty CR
Gate
Upper 775.92 150.98 5.14

There are two resulting confidence ratios from the QMU analysis, one from

each system. A system wide confidence level would then be the minimum of these

three ratios shown to be 1.29. This value indicates the weakest system in the design;

however, in this case, the margins are greater than the uncertainty and the system

design may be acceptable. If not, this would indicate that a re-analysis/design of the

system, the performance limits, or both may be necessary to improve the reliability

of the system.

8.5.2. Certification Prediction of Supersonic Low-

Boom Configurations. The second problem is a high-fidelity CFD model of

sonic booms produced by low-boom configurations. The objective is to quantify the

uncertainty in ground-level noise predictions and demonstrate how QMU can be used
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to assess certification prediction of multiple configurations. Analysis of sonic booms

starts with capturing the pressure signature produced near the vehicle (the near-field)

and then propagating that signature to the ground level. Multiple uncertainties come

from various sources within the CFD and propagation models. The remainder of

this section gives the details on the deterministic model, the stochastic problem, and

discusses the application and findings of the QMU methodologies.

The near-field domain includes the vehicle and a region extending multiple

body lengths away from the aircraft. The goal is to resolve the near-field pressure

signature, parallel to the flow direction, that is generated by the body in supersonic

flow. An example of this is shown in Figure 8.8. This signature is then propagated

to ground level using a high fidelity propagation code called sBOOM [83]. This

simulates how the signal will change while passing through the atmosphere. Once a

final ground signature is predicted, output quantities of interest, such as perceived

loudness (PLdB) and C-weighted sound exposure level (CSEL), are evaluated and

may serve as design and certification metrics. The remainder of this section gives

further detail regarding the CFD simulations and the propagation model.

Figure 8.8. Near-Field CFD Domain with Pressure Signature
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This study employed the Fully Unstructured Navier-Stokes Three-Dimensional

(FUN3D)[84] flow solver for CFD analysis of low-boom configurations. FUN3D

contains many tools for design optimization and analysis and was developed and is

maintained at the NASA Langley Research Center. The code employs the finite

volume formulation and stores flow field variables at the control volume nodes.

FUN3D can handle aerodynamic simulations across a large range of Mach numbers

from the subsonic to hypersonic regimes and has been used extensively for the analysis

of sonic boom prediction [85, 86, 87].

All cases investigated in this study were assumed to be at steady state. Often,

the Euler equations are solved in place of the full Navier-Stokes equations for high

Reynolds number, aerodynamic flows by assuming the flow is inviscid. While this

is a known simplification of the actual flow physics, this assumption allows for

computational savings when investigating large-scale-complex problems or when large

numbers of simulations are needed, such as when performing UQ. However, low-boom

configurations may be designed to exploit viscous effects, which smear or dampen

shocks. This would be overlooked when using an Euler assumption. In the current

study, both inviscid and viscous, fully turbulent cases were explored. When solving

the Euler equations, the inviscid fluxes were calculated at cell edges by employing

the van Leer scheme to solve an approximate Riemann problem. For viscous cases,

the inviscid fluxes are calculated by the Roe scheme for the approximate Riemann

problem, if possible. In order to aid convergence, the viscous simulations of the

LM-1021 and 69◦ Delta wing required the use of the dissipative Low Diffusion Flux

Splitting scheme. For modeling the turbulence, the one equation Spalart-Allmaras

[88] model was employed for computational efficiency and robustness.

The configurations of interest (SEEB-ALR, 69◦ Delta Wing, and the LM 1021-

01) are shown in Figure 8.9. The SEEB-ALR model is described by Morgenstern et

al.[89] and the 69◦ Delta Wing is discussed by Hunton et al. [90]. The LM 1021-01
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low-boom configuration is detailed by Morgenstern et al. [91]. The discussion of the

physical models, their origins, and design specific details are left to these studies.

Figure 8.9. Configurations Studied in the Present Work. SEEB-ALR (left), NASA
69◦ Delta Wing (center), LM 1020-01 (right). Models Not to Relative
Scale.[1]

The inviscid SEEB-ALR and inviscid Delta Wing grids were the same grids made

available for the 2014 AIAA Sonic Boom Prediction Workshop. The SEEB-ALR and

Delta Wing models began as STEP files and a solid representation was extracted.

Then, a triangular surface mesh and tetrahedral volume mesh were generated using

GridEx [92]. The core grid was then extruded using the Inflate method [86] in a

direction aligned with the Mach angle so the relevant pressure signatures can be

captured without wasting points in regions which are not influenced by the aircraft.

Full details on the SEEB-ALR and 69◦ Delta Wing solid models, grids, and grid

generation techniques for near-field sonic boom CFD are given in Park et al. [86]. A
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cross section showing both the core grid and part of extruded region for the Delta

Wing model is included in Figure 8.10.

One point of interest is that two versions of the SEEB-ALR solid model exist:

the as-built and the as-designed. The as-designed geometry has a perfectly smooth

surface, but the as-built model used in the wind tunnel testing possessed many surface

imperfections as shown in Figure 8.11. These flaws are reflected in the near-field

signature, which are shown later in this section. One objective of this study will

be to quantify the effect of the surface imperfections on the loudness quantities of

interest in this study.

Table 8.9 summarizes the grid sizes for each model. In general, viscous grids

needed to be much more refined. Coupled with the turbulence model, viscous cases

took 5-10 times longer to converge than the Euler cases. This is especially significant

for the LM-1021. All cases were run in parallel over 192 processors.

Table 8.9. CFD Grid Dimensions and Computational Time demands

Model Cells Nodes Solution Time
SEEB-ALR Euler 7.83e+06 2.89e+06 20 min

SEEB-ALR Viscous 3.64e+07 6.20e+06 1.3 hrs
69◦ Delta Wing Euler 2.24e+07 5.36e+06 10 min

69◦ Delta Wing Viscous 7.80e+06 2.90e+06 2 hrs
LM 1021-01 Euler 3.38e+07 8.37e+06 30 min

LM 1021-01 Viscous 7.24e+07 2.45e+07 5 hrs

To lessen the computational burden of the multiple CFD evaluations required for

the UQ analysis, baseline cases with unperturbed parameter values were completed

for each vehicle. These were then restarted for each random sample vector within the

stochastic parameter space. For every configuration, this resulted in fewer iterations
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Figure 8.10. Computational Grid for the Viscous 69◦ Delta Wing Including Extruded
Region

to achieve convergence compared to a completely new solution. This was especially

significant for the LM-1021.

After obtaining the near-field pressure signature from the CFD model, it

can then be propagated to the ground using a program called sBOOM. This

model uses an augmented Burgers equation to propagate the near-field pressure

signature to the ground level. The model takes into account nonlinear effects,

thermoviscous absorption, atmospheric stratification, spreading, and many other
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Figure 8.11. SEEB-ALR Surface Imperfections of the as-Built Model

molecular relaxation phenomena. Further details regarding this model are given by

Rallabhandi [93].

One of the most critical steps in any uncertainty analysis is the identification and

classification of the input uncertainties of the models. In this study, the deterministic

model is decomposed into two parts. First, for the CFD model, two input uncertain

parameters were identified as possible sources of uncertainty: Mach number and angle

of attack. The type and amount of uncertainty are shown in Table 8.10. Note that

these parameters were determined to be aleatory parameters given their possible
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inherent nature. Small fluctuations in these parameters are typically unavoidable,

but well characterized. For the Mach number, two mean values are considered

for comparison with the experimental data. The SEEB-ALR and LM 1021-01

configurations were tested at Mach 1.6, while the Delta Wing was tested at Mach

1.7.

Table 8.10. CFD Aleatory Input Parameters

Input Distribution Mean Std. Dev.
Angle of Attack Gaussian 0.0 0.1
Mach Number Gaussian 1.6/1.7 0.0016

A second set of uncertain parameters were identified as coming from the

propagation model, sBOOM [93]. This model contained a particularly large amount

of uncertainty, both aleatory and epistemic, due to its complexity and the large

number of tunable input parameters. The aleatory parameters, listed in Table 8.11

consist of two groups. The first is uncertainty in the atmosphere that may affect the

propagation of the sonic boom signature as it travels from the vehicle near-field to

the ground. The second group of parameters are those that may affect the shape

of the signature due to changes in vehicle orientation and orientation rates. The

measurement location or azimuth is also considered uncertain. In this study, only the

on-track position, with uncertainty, is investigated.

As with the CFD uncertain parameters, the aleatory parameters are those that

have been modeled, but random fluctuations may still occur. However, epistemic

parameters, listed in Table 8.12, exist due to lack of knowledge of the correct modeling

approach. The initial step size and signature propagation points parameters are

adjustable sBOOM specific input parameters. The signature propagation points
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Table 8.11. sBOOM Aleatory Input Parameters

Input Distribution Mean Std. Dev.
Temperature Profile (%) Gaussian 1.0 0.01

Humidity Profile (%) Gaussian 1.0 0.01
Climb Angle (Deg.) Gaussian 0.0 0.1

Azimuth (Deg.) Gaussian 0.0 0.1
Turn Rate (Deg./s) Gaussian 0.0 0.05
Climb Rate (Deg./s) Gaussian 0.0 0.05

variable is related to the sampling frequency of the signal and may directly affect

the accuracy of the loudness metrics from the integrated ground level signature. The

number of points necessary for an accurate result may vary based on the signal length,

signal shape, or the signal source (i.e., the configuration). Note also that the value

of this parameter is both the number of points used within the propagation routine

and the number of points in the final ground level signature that is analyzed to find

the loudness measures. The other two parameters (reflection factor and ground level

altitude) are considered epistemic uncertain parameters as they are not being modeled

for a specific flight location. These parameters may vary significantly along a flight

path.

Table 8.12. sBOOM Epistemic Input Parameters

Input Min. Max.
Initial Step Size 0.007 0.03
Reflection Factor 1.8 2.0

Ground Elevation (ft) 0.0 5000.0
Signature Propagation Points 20000 60000
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In addition to the above uncertain input parameters, inviscid and fully turbulent

CFD solutions were performed for all of the configurations analyzed in this study.

The purpose of this is to quantify the effect of different modeling fidelities for the

various low-boom configurations studied. Note that the amount of uncertainty in

each parameter discussed above was the result of much discussion among the authors

and other experts in the field.

1. SEEB-ALR Body of Revolution

The first step in the UQ process is to validate the CFD solution. Near-field

signatures were taken at 21.2 inches from the body to coincide with experimental data.

Comparison with the experiment is shown in Figure 8.12(a) for both as-built and as-

designed geometries, and for both inviscid and fully turbulent flow assumptions. A

residual scale plot of the signatures is shown in Figure 8.12(b). In this figure, the

averaged experimental signature is treated as a reference and is subtracted off of the

uncertainty bounds and the CFD signatures. Notice that there is good agreement

between the experiments and the CFD results as the CFD signatures mostly lie within

the bounds of the uncertainty in the experimental results. There are some differences

in the peaks of the signatures, but the experimental results have rounded peaks due

to the measurement approach [94]. This agreement is deemed to be acceptable and

is assumed to validate the baseline numerical solution.

After validating the CFD model, the next step is to construct the surrogate

model(s) that represent the design quantities of interest. In this study, PLdB and

CSEL were considered. In total, there are 12 uncertain parameters, as discussed

above. Using Eq. (2), 182 evaluations of the deterministic model were necessary

to construct a second order PCE with twice oversampling. In evaluating the

deterministic model, the first step is to obtain CFD solutions for the near-field

pressure signatures. The dispersion of the deterministic samples for the Euler as-

built case are shown in Figure 8.13(a). Figure 8.13(b) shows the same dispersion of
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Figure 8.12. SEEB-ALR Near-Field CFD Comparison with Experimental Results

signals, but shifted to reference location for better visualization of changes in signature

amplitude.
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Figure 8.13. SEEB-ALR Euler as-Built Near-Field Pressure Signature Dispersion

The CFD signatures were then each propagated through sBOOM with the

additional uncertainty that was identified for this model. For the Euler as-built case,
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the resulting ground signature dispersion is shown in Figure 8.14(a) and shifted to

a reference location in Figure 8.14(b). The ground signatures were then analyzed to

produce the desired loudness quantities of interest.
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Figure 8.14. SEEB-ALR Euler as-Built Ground Signature Dispersion

Similar dispersions of the near-field and ground level signatures can be generated

for the other three cases investigated for this model (Euler as-designed, turbulent as-

built and turbulent as-designed). While not shown here, these dispersions are similar

to those shown for the Euler as-built case.

Note that for most of the CFD models, the signatures do not recover fully. This

can stem from the inclusion of the mounting system used within the wind tunnel

in the computational geometry and/or the truncation of the computational domain.

For more accurate results and to eliminate any numerical instabilities within the

propagation routine/loudness measure calculations, the ends of the signatures are

forced to zero and additional zero padding is added to the signatures for all of the

configurations in this study.
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At this point, the surrogate models for the output quantities of interest can be

created by solving the linear system of equations given in Eq. (3). Measuring the

accuracy of the surrogate models across the design space can be done by sampling a

set of test points in the design space and comparing outputs from the deterministic

model with the outputs from the surrogates at the same sample locations. Twenty

new samples were taken to measure the accuracy of the surrogates. The average

error at these twenty test points was determined to be less than 0.03% for all of

the geometry/flow type/loudness quantity combinations indicating the selection of a

second-order PCE was sufficient. Note that these test points are different from those

points used to train the surrogate models and are distributed evenly throughout the

design space with a Latin Hypercube sample structure.

With the surrogate models constructed and validated, the uncertainty can

be propagated through the surrogates using the second-order probability analysis

outlined in Section 3. This was done using the sampling approach using 2000 epistemic

samples and 1600 aleatory samples (3.2 x 106 samples total), resulting in the family

of 2000 CDFs. For the Euler as-built case, the boundaries of the P-boxes are shown

in Figure 8.15(a) and Figure 8.15(b) for PLdB and CSEL, respectively.

A significant amount of information can be taken from P-boxes, including

confidence intervals. For the case of mixed uncertainty, one approach to obtaining the

95% confidence interval, for example, is to take the upper 97.5% probability level and

the lower 2.5% probability level as the interval. A summary of the 95% confidence

intervals is shown in Table 8.13 for all of the models, subject to the uncertainty

identified in this study.

From these results, there is a difference between the ideal as-designed geometry

and the actual as-built model. The imperfections in the surface cause an increase in

the PLdB level. In the case of CSEL, the same trend is not as severe, but still present.

An additional conclusions is that the effect of an inviscid versus the fully turbulent
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Figure 8.15. SEEB-ALR Euler as-Built PLdB and CSEL Probability Box Boundaries

Table 8.13. SEEB-ALR 95% Confidence Intervals

Configuration PLdB CSEL
Euler as-Built [89.12 , 91.63] [94.64 , 96.05]

Euler as-Designed [88.06 , 90.49] [94.32 , 95.80]
Turbulent as-Built [89.44 , 91.95] [94.78 , 96.22]

Turbulent as-Designed [88.98 , 91.61] [94.75 , 96.20]

analysis is small and is less than that of the effect of the surface imperfections in the

as-built geometry. For preliminary design and analysis, this indicates the use of the

low fidelity solution may be acceptable when considering the added computational

cost of a fully turbulent solution, for this configuration.

The final step in the analysis is to predict whether or not the design, under

uncertainty, could potentially pass a certification based on the design quantity of

interest. Currently, the actual certification value for low-boom configurations is

unknown. However, the methodology described earlier in this section can be easily

implemented for certification prediction. For example, if the certification requirement
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was a PLdB of less than 100, the Euler as-built design would have a CR of 4.27 for

a 95% confidence analysis. This may indicate that the margin is sufficiently larger

than the uncertainty in the design.

A sensitivity analysis of the uncertainty parameters was performed to highlight

which of the parameters contribute most significantly to the total uncertainty. The

contribution of the top uncertain parameters to both PLdB and CSEL are given in

Tables 8.14 and 8.15, respectively. For both metrics, the reflection factor appears to

be the most dominate of the parameters considered. This is especially true for CSEL

as the reflection factor contributes about 85 to 90% to the total output variance. For

PLdB, a significant amount of uncertainty also arises due to the uncertainty in the

atmospheric humidity profile. Loubeau and Coulouvrat [95] have shown that variation

in the atmospheric humidity can significantly affect the sonic-boom rise time, which

may affect the signature loudness.

Table 8.14. SEEB-ALR Top Uncertain Parameter Contribution to PLdB Total
Uncertainty

Uncertain Parameter Euler Euler Turbulent Turbulent
as-Built as-Designed as-Built as-Designed

Angle of Attack 4.7% 9.6% 2.4% 6.7%
Initial Step Size 1.6% 1.1% 1.7% 1.8%
Reflection Factor 46.4% 44.8% 45.9% 44.2%
Humidity Profile 38.3% 35.7% 41.6% 36.1%
Ground Elevation 7.9% 7.7% 6.8% 9.7%

All Others <1% <1% <1% <1%

2. NASA 69◦ Delta Wing

For the NASA 69◦ Delta Wing, near-field signatures were taken at 24.8 inches

from the body to coincide with experimental data. Comparison with the experiment
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Table 8.15. SEEB-ALR Top Uncertain Parameter Contribution to CSEL Total
Uncertainty

Uncertain Parameter Euler Euler Turbulent Turbulent
as-Built as-Designed as-Built as-Designed

Angle of Attack 3.6% 6.2% 4.5% 4.6%
Reflection Factor 88.2% 84.1% 86.5% 86.0%

Temperature Profile 2.2% 2.4% 2.4% 2.4%
Humidity Profile 1.7% 1.5% 1.7% 1.7%
Ground Elevation 4.1% 5.5% 4.6% 5.2%

All Others <1% <1% <1% <1%

is shown in Figure 8.16(a) for both inviscid and fully turbulent flow assumptions. A

residual scale plot of the signatures is shown in Figure 8.16(b). The CFD signatures

are in fairly good agreement with the experimental results as the signatures lie

primarily within the bounds of the uncertainty in the experimental results. There is

some rounding of the experimental results similar to the results of the SEEB-ALR

model. This is due to model vibration and the instrumentation used during the wind

tunnel testing [94]. However, given these small and expected differences, the baseline

numerical solution is considered to be accurate and validated for the purposes of this

study.

As above, surrogate models are constructed for the design quantities of interest,

PLdB and CSEL. The number of uncertain parameters is the same as with the SEEB-

ALR and, therefore, the deterministic model is evaluated 182 times to construct a

second order PCE. The dispersion of the deterministic samples for the Euler case

are shown in Figure 8.17(a). Figure 8.17(b) shows the same dispersion of signals,

but shifted to reference location for better visualization of changes in signature

amplitude. The resulting ground signature dispersion, for the Euler case, is shown in

Figure 8.18(a) and shifted to a reference location in Figure 8.18(b). Similar dispersions
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Figure 8.16. 69◦ Delta Wing Near-Field CFD Comparison with Experimental Results

of the near-field and ground level signatures can be generated for the fully turbulent

case. While not shown here, this dispersions are similar to those shown above for the

Euler case.
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Figure 8.17. 69◦ Delta Wing Euler Near-Field Pressure Signature Dispersion
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Figure 8.18. 69◦ Delta Wing Euler Ground Signature Dispersion

As with the SEEB-ALR, the accuracy of the surrogate model needs to be

verified. The average error at these twenty test points was determined to be less than

0.4% for all of the flow type/loudness quantity combinations indicating the selection

of a second-order PCE was sufficient. With the surrogate models constructed and

validated, the uncertainty can be propagated through the surrogates using the second-

order probability analysis outlined in Section 3. This was done using the sampling

approach, resulting in the family of CDFs. For the Euler case, the boundaries of

the probability boxes are shown in Figure 8.19(a) and Figure 8.19(b) for PLdB and

CSEL, respectively.

A summary of the 95% confidence intervals for both Euler and Turbulent cases

is shown in Table 8.16. From these results, the effect of an inviscid versus the fully

turbulent analysis is slightly more significant compared to the SEEB-ALR model for

both loudness measures. However, there is still less than a one PLdB and CSEL

difference between the two levels of model fidelity. This may indicate that the use of

a Euler analysis may be sufficient given the reduce computational cost over the fully

turbulent analysis, for this model.
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Figure 8.19. 69◦ Delta Wing Euler PLdB and CSEL Probability Box Boundaries

Table 8.16. 69◦ Delta Wing 95% Confidence Intervals

Configuration PLdB CSEL
Euler [93.16 , 95.58] [97.18 , 98.46]

Turbulent [94.03 , 96.35] [97.63 , 98.85]

The contribution of the top uncertain parameters to both PLdB and CSEL are

given in Tables 8.17 and 8.18, respectively. The results of this sensitivity analysis are

similar to those observed for the SEEB-ALR. The reflection factor contributes even

more to the total output uncertainty for both loudness metrics, and the contribution

of the atmospheric humidity variation contributes significantly to PLdB.

3. LM 1021-01 Low-Boom Configuration

For the LM 1021-01, near-field signatures were taken at 20.7 inches from the

body to coincide with experimental data. Comparison with the experiment is shown

in Figure 8.20(a) for both inviscid and fully turbulent flow assumptions. A residual

scale plot of the signatures is shown in Figure 8.20(b). The fully turbulent solution

agrees well with the experimental results, with the exception of the rounding of the
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Table 8.17. 69◦ Delta Wing Top Uncertain Parameter Contribution to PLdB Total
Uncertainty

Uncertain Parameter Euler Turbulent
Initial Step Size 1.4% 1.0%
Reflection Factor 50.9% 52.0%

Temperature Profile 1.3% 1.8%
Humidity Profile 37.1% 38.0%
Ground Elevation 7.9% 6.3%

All Others <1% <1%

Table 8.18. 69◦ Delta Wing Top Uncertain Parameter Contribution to CSEL Total
Uncertainty

Uncertain Parameter Euler Turbulent
Reflection Factor 93.1% 94.4%

Temperature Profile 2.1% 2.5%
Humidity Profile 1.1% 1.5%
Ground Elevation 1.9% 1.4%

All Others <1% <1%

peaks in the experimental results, similar to the delta wing and SEEB-ALR models.

The inviscid solution, however, does not agree as well. Aftosmis et al.[1] identify

the source of this discrepancy, which stems from a shock originating at the front of

the under wing nacelle. In the viscous case, this shock is smeared by the boundary

layer between the wing and nacelle, but propagates in the inviscid simulation. A

more complete discussion is included in the reference. An important note should be

made regarding the length of the LM 1021-01 signature. The computational domain is

slightly truncated as the signature does not fully recover to zero. As stated above, the

ends of the signatures are forced to zero to prevent any numerical issues in propagating

the signature to the ground level. This artificial forcing of the signature, however, is
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not expected to affect the loudness results as this is not in a strong shock or expansion

region.
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Figure 8.20. LM 1021-01 Near-Field CFD Comparison with Experimental Results

The surrogate models for CSEL and PLdB are constructed in the same fashion

as for the other cases. The dispersion of the deterministic samples for the Euler case

are shown in Figure 8.21(a). Figure 8.21(b) shows the same dispersion of signals, but

shifted to reference location for better visualization of changes in signature amplitude.

For the Euler case, the resulting ground signature dispersion is shown in Figure 8.22(a)

and shifted to a reference location in Figure 8.22(b). The ground signatures were then

analyzed to produce the desired loudness quantities of interest.

Similar dispersions of the near-field and ground level signatures can be generated

for the fully turbulent case. Because of the effect of different flow physics modeling,

the signatures for the turbulent case are slightly different, both in the near-field, as

well as at the ground level. The near-field signatures are shown in Figure 8.23(a)

and shifted to a reference location in Figure 8.23(b). The ground level signatures are

shown in Figure 8.24(a) and shifted to a reference location in Figure 8.24(b).
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Figure 8.21. LM 1021-01 Euler Near-Field Pressure Signature Dispersion
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Figure 8.22. LM 1021-01 Euler Ground Signature Dispersion

The surrogates are validated using 20 test points distributed throughout the

design space, similar to the previous two models. The average error at these 20 test

points was less than 0.2% for all of the flow type/loudness quantity combinations

indicating the selection of a second-order PCE was sufficient. The uncertainty is

propagated through the surrogates and a family of CDFs were produced. For the
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Figure 8.23. LM 1021-01 Turbulent Near-Field Pressure Signature Dispersion
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Figure 8.24. LM 1021-01 Turbulent Ground Signature Dispersion

Euler case, the boundaries of the probability boxes are shown in Figure 8.25(a) and

Figure 8.25(b) for PLdB and CSEL, respectively.

A summary of the 95% confidence intervals for both Euler and Turbulent cases

is shown in Table 8.19. From these results, the effect of an inviscid versus the fully

turbulent analysis is more significant than for the SEEB-ALR and the Delta wing

models for both loudness measures. This is due to the reduced order modeling fidelity
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Figure 8.25. LM 1021-01 Euler PLdB Probability Box Boundaries

of the Euler analysis. While the loudness values are lower for the inviscid case, which is

desirable, the accuracy of the Euler model has to be in question due to this significant

difference. Along with the discrepancy in the near-field signature, this indicates an

inviscid assumption is not appropriate for this configuration under the current flow

conditions. Aftosmis et al. [1] notes the wind tunnel experiments were conducted

at a relatively low Reynolds number (which was matched for the simulations). At a

higher Reynolds number, an Euler solution may be sufficient, but this must first be

validated for the new freestream conditions.

Table 8.19. LM 1021-01 95% Confidence Intervals

Configuration PLdB CSEL
Euler [87.76 , 90.60] [94.43 , 96.85]

Turbulent [90.17 , 93.79] [96.06 , 98.76]
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The contribution of the top uncertain parameters to both PLdB and CSEL are

given in Tables 8.20 and 8.21, respectively. The results of this sensitivity analysis

is different than that observed for the SEEB-ALR and Delta Wing models as the

reflection factor is no long the top parameter. While the reflection is still significant,

angle of attack now dominates the output uncertainty for both loudness metrics.

Because of the specific design of the LM 1021-01, changes in angle attack may effect

the use of specific design features, especially those related to shock cancellation off

the body.

Table 8.20. LM 1021-01 Top Uncertain Parameter Contribution to PLdB Total
Uncertainty

Uncertain Parameter Euler Turbulent
Mach Number 1.4% 0.2%

Angle of Attack 39.0% 55.1%
Reflection Factor 33.8% 21.9%

Temperature Profile 1.6% 0.7%
Humidity Profile 22.7% 17.9%
Ground Elevation 1.6% 4.3%

All Others <1% <1%
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Table 8.21. LM 1021-01 Top Uncertain Parameter Contribution to CSEL Total
Uncertainty

Uncertain Parameter Euler Turbulent
Angle of Attack 57.2% 63.9%
Reflection Factor 38.2% 32.0%

Temperature Profile 1.1% 1.3%
Ground Elevation 2.4% 2.9%

All Others <1% <1%
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9. CONCLUSIONS AND FUTURE WORK

This section gives a brief summary of this work presented. Future work is also

discussed to give guidance for possible efforts to build on or improve upon this study.

9.1. CONCLUSIONS

The objective of this work was to introduce new advancements for uncertainty

quantification (UQ) with stochastic expansions and apply these methods to stochastic

models of supersonic and hypersonic flows. First, a multi-step UQ approach was

introduced and serves as an efficient means of dimension reduction for problems with

a large number of uncertain variables. The multi-step UQ approach included several

key components including a sensitivity-based dimension reduction process that used a

local analysis at selected sample locations to approximate global sensitivities. Other

components included a modification scheme to update existing deterministic samples

after dimension reduction and a modified point-collocation non-intrusive polynomial

chaos method that incorporates the local sensitivity information as part of the point-

collocation solution process.

A second approach was introduced that is based on a sparse approximation

of the polynomial chaos expansion. The fundamental idea was to use Basis

Pursuit Denoising to recover the polynomial chaos expansion coefficients from an

underdetermined system of linear equations. Solutions were obtained iteratively

with increasing sample size, while tracking the convergence of the polynomial chaos

expansion coefficients. This study also introduced two methods of measuring the

accuracy of the expansion coefficients and their convergence when the sample size

used to obtain the polynomial chaos expansion coefficients was iteratively increased.

These two methods included using both the sensitivities of each uncertain parameter
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via the calculation of Sobol indices and a comparison to the actual response at selected

test points in the design space. This procedure allowed for a computationally efficient

approach to measuring the convergence of the polynomial chaos expansion coefficients,

while reducing the number of samples needed to obtain an accurate solution.

The multi-step and sparse approximation approaches were applied to stochastic

models of hypersonic flows. The uncertainty in a model based on the Fay and

Riddell correlation for the prediction of convective heating at the stagnation-point of a

blunt-body was investigated. Additionally, high-fidelity computational fluid dynamics

models of radiative heating on the surface of hypersonic inflatable aerodynamic

decelerators during entry into Mars and Titan were also explored. These models

possess a significant amount of uncertainty and pose challenges for efficient UQ. The

methodologies developed in this work have shown that construction of an accurate

surrogate model could be achieved at about 10% of the computational cost needed

to construct a full dimension, total order expansion.

Another objective of this work was to introduce methodologies used for further

advancement of the quantification of margins and uncertainties (QMU) methodologies

implemented for aerospace system models. First, the use of stochastic expansions

was introduced to efficiently quantify the uncertainty in system design performance

metrics, as well as performance boundaries. Then, procedures were defined to

measure margin and uncertainty metrics for QMU analysis of systems containing

multiple types of uncertainty representation. To demonstrate the QMU methodologies

developed in this work, two model problems were selected. The first is a model of a

spacecraft reentry trajectory coupled with models for heat flux prediction and bank

angle modulation. The second problem is a multi-system model used for certification

prediction of sonic-boom loudness from low-boom, supersonic vehicle configurations.

Overall the methods and results of this work have outlined many effective

approaches for UQ of large-scale, high-dimension supersonic and hypersonic problems
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containing both epistemic and aleatory uncertainty. The methods presented showed

significant reduction in the number of required evaluations of the deterministic model

needed to achieve an accurate surrogate model with polynomial chaos expansions for

UQ.

9.2. FUTURE WORK

While significant advancements have been made in this study, there are still

several areas that warrant further work. With regards to the UQ methodologies, the

multi-step approach should be coupled to a higher order sensitivity analysis approach.

In this study, first-order finite differencing was used due to the lack of capability of the

computational fluid dynamics models. Improved efficiency and accuracy gained using

methods such as adjoint-based sensitivities would be of great interest and should be

investigated in the future.

The sparse approximation approach would also stand to be improved upon.

First and for most, adaptive sampling techniques should be investigated to improve

the efficiency when iteratively growing the sample size. The approach used in this

study is simple and easy to implement, but may not be very efficient as samples are

randomly pulled from a larger sample set. Another area of improvement for this

approach could to be determine a more accurate estimate of the truncation error

used in the L1 minimization approach. In this study, this value was set to zero as

the solution is unique in this case. However, forcing this constraint could lead to

over fitting. Obtaining an estimate of this error based on the solution of the L1

minimization problem may yield a more accurate surrogate model.

With regards to the model problems, there is much more uncertainty that could

be considered. This is particularly the case for the radiation model problems. These

high-fidelity models are extremely complex both numerically and in the physics they

represent. While significant effort was put in to assessing the uncertainty in these
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models, there are still sources of uncertainty that may impact radiative heating

predictions. Uncertainty sources not considered in the radiation problems may include

vibrational relaxation times, uncertainty in the two-temperature energy equation, and

model-form uncertainty due to numerical schemes used by the flow field solver and

radiation model. Cross validation with other models would offer some assessment

of any model-form uncertainty. Also, there is so little experimental data available

simply due to the fact that replicating these environments and performing accurate

measurements possess a significant engineering challenge. With advancements in

modeling approaches and with additional/new experimental data, these models may

be reevaluated for better estimates of the radiative heating uncertainty.



APPENDIX A

Radiation Uncertainty Sources for Mars Entry
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The following appendix gives tables of the four groups of uncertain parameters
for the radiative heat transfer model for Mars entry. Note that the parameters of
Tables A1, A3, and A4 are those of an Arrhenius form. The equations for each of
these three tables are given (Eq. (A.1), (A.2), and (A.3).) For further description of
the uncertain parameters, the justification of their uncertainty ranges, and detailed
discussion of the radiation modeling approach, see Johnston et al. [39]

Table A1. Uncertain Flow field Chemical Kinetics
# Reaction Af,i nf,i Df,i Tf,i Ref. Uncertainty
1 CO2 + M ↔ CO + O + M 2.8e+22 -1.50 6.328e+4 Ta N, C, O -1, +0 om

1.4e+22 -1.50 6.328e+4 Ta others -1, +0 om
2 CO + M ↔ C + O + M 3.0e+21 -1.00 1.29e+5 Ta All -75%, +50%
3 C2 + M ↔ 2C + M 4.5e+18 -1.00 7.15e+4 Ta All -1, +1 om
4 CN + M ↔ C + N + M 6.0e+15 -0.4 7.10e+4 Ta All -1, +1 om
5 N2 + M ↔ 2N + M 3.0e+22 -1.60 1.132e+5 Ta N, C, O -1, +1 om

6.0e+3 2.6 1.132e+5 Tve e− -1, +1 om
7.0e+21 -1.60 1.132e+5 Ta others -1, +1 om

6 NO + M ↔ N + O + M 1.1e+17 0.00 7.55e+4 Ta N, C, O, NO, CO2 -1, +1 om
5.0e+15 0.00 7.55e+4 Ta others -1, +1 om

7 O2 + M ↔ 2O + M 1.0e+22 -1.50 5.936e+04 Ta N, C, O -50%, +50%
2.0e+21 -1.50 5.936e+04 Ta others -50%, +50%

8 CO2 + O ↔ O2 + CO 2.71e+14 0.0 3.38e+4 Ttr -1, +1 om
9 CO + C ↔ C2 + O 2.4e+17 -1.00 5.80e+4 Ttr -1, +1 om
10 CO + N ↔ CN + O 1.0e+14 0.00 3.86e+4 Ttr -1, +1 om
11 CO + NO ↔ CO2 + N 3.0e+6 0.88 1.33e+4 Ttr -1, +1 om
12 CO + O ↔ O2 + C 3.9e+13 -0.18 6.92e+4 Ttr -0, +1 om
13 C2 + N2 ↔ CN + CN 1.5e+13 0.0 2.1e+4 Ttr -1, +1 om
14 CN + C ↔ C2 + N 3.0e+14 0.00 1.81e+4 Ttr -1, +1 om
15 CN + O ↔ NO + C 1.6e+12 0.10 1.46e+4 Ttr -1, +1 om
16 N + CO ↔ NO + C 1.1e+14 0.07 5.35e+4 Ttr -1, +1 om
17 N2 + C ↔ CN + N 1.1e+14 -0.11 2.32e+4 Ttr -50%, +50%
18 N2 + CO ↔ CN + NO 1.2e+16 -1.23 7.70e+4 Ttr -1, +1 om
19 N2 + O ↔ NO + N 6.0e+13 0.1 3.80e+4 Ttr -50%, +50%
20 O2 + N ↔ NO + O 2.49e+9 1.18 4.01e+3 Ttr -1, +1 om

kf,i = Af,iT
nf,i
f,i exp(−Df,i/Tf,i) (A.1)

Khp
f,ij = Ahp

(
Ta

6000

)nhp
exp(−Ehp/Ta) (A.2)

Kel
f,ij = AelTve

nelexp(−Eel/Tve) (A.3)
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Table A2. Uncertain Molecular Band Processes
Molecule Upper State – Lower State Band Name λ Range (nm) Uncertainty

CO A1Π – X1Σ+ 4th Positive 120 – 280 +/- 40%
CO b3Σ+ – a3Πr 3rd Positive 250 – 450 +/- 50%
CO d3∆i – a3Πr Triplet 320 – 2500 +/- 50%
CO a’3Σ+ – a3Πr Asundi 370 – 2500 +/- 50%
CO B1Σ+ – A1Π Angstrom 400 – 700 +/- 50%
CO X1Σ+ – X1Σ+ Infrared 1200 – 7000 +/- 50%
CN A2Πi – X2Σ+ Red 400 – 2800 +/- 30%
CN B2Σ+ – X2Σ+ Violet 300 – 550 +/- 15%
C2 d3Πg – a3Πu Swan 390 – 1000 +/- 50%

C2 b3Σ−
g – a3Πu Ballik-Ramsay 500 – 3000 +/- 50%

C2 A1Πu – X1Σ+
g Phillips 350 – 1200 +/- 50%

C2 D1Σ+
u – X1Σ+

g Mulliken 200 – 250 +/- 50%
C2 C1Πg – A1Πu Des.-D’Azam. 280 – 700 +/- 50%
C2 e3Πg – a3Πu Fox-Herzberg 200 – 500 +/- 50%

CO2 X1Σ+
g – X1Σ+

g Infrared 1700 – 25000 +/- 50%

CO2 A1B2 – X1Σ+
g UV 190 – 320 +/- 100%

Table A3. Uncertain Heavy-Particle Impact Excitation Rates (cm3/s) for non-
Boltzmann Modeling

# Reaction Ahp nhp Ehp Uncertainty
1 CN(X2Σ+) + M ↔ CN(A2Π) + M M dependent +/- 1 om
2 CN(A2Π ) + M ↔ CN(B2Σ+) + M M dependent +/- 1 om
3 CN(B2Σ+ ) + M ↔ CN(a4Σ+) + M M dependent +/- 2 om
4 CN(a4Σ+) + M ↔ CN(D2Π+) + M M dependent +/- 2 om
5 CO(X1Σ+) + M ↔ CO(a3Π) + M M dependent +/- 1 om
6 CO(X1Σ+) + M ↔ CO(a’3Σ+) + M 5.20E-10 0.500 80370 +/- 1 om
7 CO(X1Σ+) + M ↔ CO(d3∆) + M 2.61E-11 0.500 87975 +/- 1 om
8 CO(X1Σ+) + M ↔ CO(A1Π) + M 2.52E-09 0.344 93669 +/- 1 om
9 CO(a3Π) + M ↔ CO(a’3Σ+) + M M dependent +/- 2 om
10 CO(a’3Σ+) + M ↔ CO(d3∆) + M M dependent +/- 2 om
11 CO(d3∆) + M ↔ CO(e3Σ−) + M M dependent +/- 2 om
12 CO(e3Σ−) + M ↔ CO(A1Π) + M 8.78e-11 0.498 971 +/- 2 om
13 C2(X1Σ+) + M ↔ C2(b3Σ−) + M 7.23e-10 0.773 9504.7 +/- 2 om
14 C2(X1Σ+) + M ↔ C2(c3Σ+) + M 8.67e-10 0.773 15176.6 +/- 2 om
15 C2(X1Σ+) + M ↔ C2(d3Π) + M 7.49e-10 1.06 27927.7 +/- 1 om
16 C2(X1Σ+) + M ↔ C2(C1Π) + M 3.76e-09 0.773 44096.6 +/- 2 om
17 C2(b3Σ−) + M ↔ C2(c3Σ+) + M 1.21e-09 0.773 5671.9 +/- 2 om
18 C2(b3Σ−) + M ↔ C2(d3Π) + M 1.21e-9 0.773 18423.0 +/- 2 om
19 C2(b3Σ−) + M ↔ C2(C1Π) + M 5.26e-09 0.773 34591.9 +/- 2 om
20 C2(c3Σ+) + M ↔ C2(d3Π) + M 1.01e-09 0.773 12751.1 +/- 2 om
21 C2(c3Σ+) + M ↔ C2(C1Π) + M 4.38e-09 0.773 28920.0 +/- 2 om
22 C2(d3Π) + M ↔ C2(C1Π) + M 4.38e-09 0.773 16168.9 +/- 2 om
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Table A4. Uncertain Electron-Impact Excitation Rates (cm3/s) for non-Boltzmann
Modeling

# Reaction Ael nel Eel Uncertainty
1 CN(X2Σ+) + e− ↔ CN(A2Π) + e− 6.41e-09 0.20 18303 +/- 1 om
2 CN(X2Σ+) + e− ↔ CN(B2Σ+) + e− 6.83e-10 0.39 40428 +/- 1 om
3 CN(X2Σ+ ) + e− ↔ CN(a4Σ+) + e− 5.13e-11 0.35 47323 +/- 2 om
4 CN(X2Σ+) + e− ↔ CN(D2Π+) + e− 4.07e-10 0.25 79368 +/- 2 om
5 CN(A2Π) + e− ↔ CN(B2Σ+) + e− 1.36e-04 -0.74 28030 +/- 2 om
6 CN(A2Π) + e− ↔ CN(a4Σ+) + e− 4.55e-04 -0.77 37548 +/- 2 om
7 CN(A2Π) + e− ↔ CN(D2Π+) + e− 1.22e-03 -0.82 69300 +/- 2 om
8 CN(B2Σ+) + e− ↔ CN(a4Σ+) + e− 7.85e-05 -0.66 14148 +/- 2 om
9 CN(B2Σ+) + e− ↔ CN(D2Π+) + e− 6.29e-04 -0.79 45559 +/- 2 om
10 CN(a4Σ+) + e− ↔ CN(D2Π+) + e− 4.23e-04 -0.77 36015 +/- 2 om
11 CO(X1Σ+) + e− ↔ CO(a3Π)+ e− 8.42e-11 0.28 80530 +/- 1 om
12 CO(X1Σ+) + e− ↔ CO(a’3Σ+)+ e− 1.82e-14 1.17 102434 +/- 1 om
13 CO(X1Σ+) + e− ↔ CO(d3∆)+ e− 3.16e-12 0.66 114626 +/- 1 om
14 CO(X1Σ+) + e− ↔ CO(e3Σ−)+ e− 2.10e-14 1.17 113995 +/- 1 om
15 CO(X1Σ+) + e− ↔ CO(A1Π)+ e− 3.82e-09 0.12 95850 +/- 1 om
16 CO(a3Π) + e− ↔ CO(a’3Σ+)+ e− 4.43e-8 -0.73 23456 +/- 1 om
17 CO(a3Π) + e− ↔ CO(d3∆)+ e− 7.74e-15 1.17 44552 +/- 1 om
18 CO(a3Π) + e− ↔ CO(e3Σ−)+ e− 3.21e-15 1.27 44896 +/- 1 om
19 CO(a3Π) + e− ↔ CO(A1Π)+ e− 1.49e-05 -0.74 27860 +/- 2 om
20 CO(a’3Σ+) + e− ↔ CO(d3∆)+ e− 2.53e-11 0.16 10611 +/- 1 om
21 CO(a’3Σ+) + e− ↔ CO(e3Σ−)+ e− 6.04e-13 0.61 11041 +/- 1 om
22 CO(a’3Σ+) + e− ↔ CO(A1Π)+ e− 6.56e-06 -0.69 17750 +/- 2 om
23 CO(d3∆) + e− ↔ CO(e3Σ−)+ e− 1.09e-10 1.66 10686 +/- 1 om
24 CO(d3∆) + e− ↔ CO(A1Π)+ e− 2.62e-06 -0.63 10570 +/- 2 om
25 CO(e3Σ−) + e− ↔ CO(A1Π)+ e− 1.41e-06 -0.58 6971 +/- 2 om
26 C2(X1Σ+) + e− ↔ C2(b3Σ−) + e− 5.25e-04 -0.876 12822.89 +/- 2 om
27 C2(X1Σ+) + e− ↔ C2(c3Σ+) + e− 3.37e-05 -0.530 16676.24 +/- 2 om
28 C2(X1Σ+) + e− ↔ C2(d3Π) + e− 6.45e-08 -0.179 29932.77 +/- 1 om
29 C2(X1Σ+) + e− ↔ C2(C1Π) + e− 1.00e-04 -0.396 45526.85 +/- 2 om
30 C2(b3Σ−) + e− ↔ C2(c3Σ+) + e− 8.57e-03 -1.215 9893.11 +/- 2 om
31 C2(b3Σ−) + e− ↔ C2(d3Π) + e− 1.59e-05 -0.436 19375.79 +/- 2 om
32 C2(b3Σ−) + e− ↔ C2(C1Π) + e− 6.89e-05 -0.381 35594.37 +/- 2 om
33 C2(c3Σ+) + e− ↔ C2(d3Π) + e− 9.03e-05 -0.647 14918.32 +/- 2 om
34 C2(c3Σ+) + e− ↔ C2(C1Π) + e− 5.428e-05 -0.372 29691.92 +/- 2 om
35 C2(d3Π) + e− ↔ C2(C1Π) + e− 1.09e-04 -0.495 17461.08 +/- 2 om
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The following appendix gives tables of the four groups of uncertain parameters
for Titan entry. Note that the parameters of Tables B1, B3, and B4 are those of an
Arrhenius form. The equations for each of these three tables are given in Eq. (B.1),
(B.2), and (B.3).

Table B1. Titan Entry Flow Field Chemical Kinetics
# Reaction Af,i nf,i Df,i Tf,i Ref. Fi

Dissociation Reactions
1 N2 + M ↔ 2N + M 3.00e+22 -1.60 1.132e+5 Ta N, C, H 3.0

3.00e+24 -1.60 1.132e+5 Ta e− 5.0
7.00e+21 -1.60 1.132e+5 Ta others 5.0

2 CH4 + M ↔ CH3 + H + M 4.70e+47 -8.20 5.92e+4 Ta All 2.0
3 CH3 + M ↔ CH2 + H + M 1.02e+16 0.00 4.56e+4 Ta All 3.2
4 CH3 + M ↔ CH + H2 + M 5.00e+15 0.00 4.28e+4 Ta All 2.0
5 CH2 + M ↔ CH + H + M 4.00e+15 0.00 4.18e+4 Ta All 2.0
6 CH2 + M ↔ C + H2 + M 1.30e+14 0.00 2.97e+4 Ta All 2.0
7 H2 + M ↔ 2O + M 1.90e+14 0.00 3.37e+4 Ta All 2.0
8 CH + M ↔ C + H + M 1.50e+16 0.00 7.16e+4 Ta All 2.0
9 H2 + M ↔ 2H + M 2.23e+14 0.00 4.835e+4 Ta All 2.0
10 CN + M ↔ C + N + M 2.53e+14 0.00 7.1e+4 Ta All 2.0
11 NH + M ↔ N + H + M 1.80e+14 0.00 3.76e+4 Ta All 2.0
12 HCN + M ↔ CN + H + N 3.57e+26 -2.60 6.2845e+4 Ta All 2.0

Exchange Reactions
13 CH3 + N ↔ HCN + H + H 7.00e+13 0.00 0 Ta 10.0
14 CH3 + H ↔ CH2 + H2 6.03e+13 0.00 7.6e+3 Ta 10.0
15 CH2 + N2 ↔ HCN + NH 4.82e+12 0.00 1.8e+4 Ta 10.0
16 CH2 + N ↔ HCN + H 5.00e+13 0.00 0 Ta 10.0
17 CH2 + H ↔ CH + H2 6.03e+12 0.00 -9.0e+2 Ta 10.0
18 CH + N2 ↔ HCN + N 4.40e+12 0.00 1.106e4 Ta 3.2
19 CH + C ↔ C2 + H 2.00e+14 0.00 0 Ta 10.0
20 C2 + N2 ↔ CN + CN 1.50e+13 0.00 2.1e+4 Ta 2.0
21 CN + H2 ↔ HCN + H 2.95e+5 0.00 1.13e+3 Ta 5.0
22 CN + C ↔ C2 + N 5.00e+13 0.00 1.3e+4 Ta 5.0
23 N + H2 ↔ NH + H 1.60e+14 0.00 1.265e+4 Ta 2.0
24 C + N2 ↔ CN + N 5.24e+13 0.00 2.265e+4 Ta 2.0
25 C + H2 ↔ CH + H 4.00e+14 0.00 1.17e+4 Ta 2.0
26 H + N2 ↔ NH + N 3.00e+12 0.50 7.14e+4 Ta 3.2
27 H + CH4 ↔ CH3 + H2 1.32e+4 3.00 4.045e+3 Ta 2.0

Ionization Reactions

28 N + N ↔ N+
2 + e− 4.40e+7 1.50 6.75e+4 Ta 10.0

29 C + N ↔ CN+ + e− 1.00e+15 1.50 1.644e+5 Ta 10.0
30 N + e− ↔ N+ + e− + e− 2.50e+34 -3.82 1.686e+5 Ta 10.0
31 C + e− ↔ C+ + e− + e− 3.70e+31 -3.00 1.3072e+5 Ta 10.0
32 H + e− ↔ H+ + e− + e− 2.20e+30 -2.80 1.578e+5 Ta 10.0
33 Ar + e− ↔ Ar+ + e− + e− 2.50e+34 -3.82 1.817e+5 Ta 10.0
34 CN+ + M ↔ CN + N+ 2.23e+14 0.00 4.07e+4 Ta 10.0

35 C+ + N2 ↔ N+
2 + C 2.53e+14 -0.11 5.0e+4 Ta 10.0

kf,i = Af,iT
nf,i
f,i exp(−Df,i/Tf,i) (B.1)

Khp
f,ij = Ahp

(
Ta

6000

)nhp
exp(−Ehp/Ta) (B.2)
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Table B2. Molecular Band Processes
Molecule Upper State – Lower State Band Name λ Range (nm) Uncertainty

CN A2Πi – X2Σ+ Red 400 – 2800 +/- 30%
CN B2Σ+ – X2Σ+ Violet 300 – 550 +/- 15%
C2 d3Πg – a3Πu Swan 390 – 1000 +/- 50%

C2 b3Σ−
g – a3Πu Ballik-Ramsay 500 – 3000 +/- 50%

C2 A1Πu – X1Σ+
g Phillips 350 – 1200 +/- 50%

C2 D1Σ+
u – X1Σ+

g Mulliken 200 – 250 +/- 50%
C2 C1Πg – A1Πu Des.-D’Azam. 280 – 700 +/- 50%
C2 e3Πg – a3Πu Fox-Herzberg 200 – 500 +/- 50%

Table B3. Heavy-Particle Impact Excitation Rates (cm3/s) for non-Boltzmann
Modeling

# Reaction Ahp nhp Ehp Uncertainty
1 CN(X2Σ+) + M ↔ CN(A2Π) + M M dependent +/- 1 om
2 CN(A2Π ) + M ↔ CN(B2Σ+) + M M dependent +/- 1 om
3 CN(B2Σ+ ) + M ↔ CN(a4Σ+) + M M dependent +/- 2 om
4 CN(a4Σ+) + M ↔ CN(D2Π+) + M M dependent +/- 2 om
5 C2(X1Σ+) + M ↔ C2(b3Σ−) + M 7.23e-10 0.773 9504.7 +/- 2 om
6 C2(X1Σ+) + M ↔ C2(c3Σ+) + M 8.67e-10 0.773 15176.6 +/- 2 om
7 C2(X1Σ+) + M ↔ C2(d3Π) + M 7.49e-10 1.06 27927.7 +/- 1 om
8 C2(X1Σ+) + M ↔ C2(C1Π) + M 3.76e-09 0.773 44096.6 +/- 2 om
9 C2(b3Σ−) + M ↔ C2(c3Σ+) + M 1.21e-09 0.773 5671.9 +/- 2 om
10 C2(b3Σ−) + M ↔ C2(d3Π) + M 1.21e-9 0.773 18423.0 +/- 2 om
11 C2(b3Σ−) + M ↔ C2(C1Π) + M 5.26e-09 0.773 34591.9 +/- 2 om
12 C2(c3Σ+) + M ↔ C2(d3Π) + M 1.01e-09 0.773 12751.1 +/- 2 om
13 C2(c3Σ+) + M ↔ C2(C1Π) + M 4.38e-09 0.773 28920.0 +/- 2 om
14 C2(d3Π) + M ↔ C2(C1Π) + M 4.38e-09 0.773 16168.9 +/- 2 om

Kel
f,ij = AelTve

nelexp(−Eel/Tve) (B.3)
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Table B4. Electron-Impact Excitation Rates (cm3/s) for non-Boltzmann Modeling
# Reaction Ael nel Eel Uncertainty
1 CN(X2Σ+) + e− ↔ CN(A2Π) + e− 6.41e-09 0.20 18303 +/- 1 om
2 CN(X2Σ+) + e− ↔ CN(B2Σ+) + e− 6.83e-10 0.39 40428 +/- 1 om
3 CN(X2Σ+ ) + e− ↔ CN(a4Σ+) + e− 5.13e-11 0.35 47323 +/- 2 om
4 CN(X2Σ+) + e− ↔ CN(D2Π+) + e− 4.07e-10 0.25 79368 +/- 2 om
5 CN(A2Π) + e− ↔ CN(B2Σ+) + e− 1.36e-04 -0.74 28030 +/- 2 om
6 CN(A2Π) + e− ↔ CN(a4Σ+) + e− 4.55e-04 -0.77 37548 +/- 2 om
7 CN(A2Π) + e− ↔ CN(D2Π+) + e− 1.22e-03 -0.82 69300 +/- 2 om
8 CN(B2Σ+) + e− ↔ CN(a4Σ+) + e− 7.85e-05 -0.66 14148 +/- 2 om
9 CN(B2Σ+) + e− ↔ CN(D2Π+) + e− 6.29e-04 -0.79 45559 +/- 2 om
10 CN(a4Σ+) + e− ↔ CN(D2Π+) + e− 4.23e-04 -0.77 36015 +/- 2 om
11 C2(X1Σ+) + e− ↔ C2(b3Σ−) + e− 5.25e-04 -0.876 12822.89 +/- 2 om
12 C2(X1Σ+) + e− ↔ C2(c3Σ+) + e− 3.37e-05 -0.530 16676.24 +/- 2 om
13 C2(X1Σ+) + e− ↔ C2(d3Π) + e− 6.45e-08 -0.179 29932.77 +/- 1 om
14 C2(X1Σ+) + e− ↔ C2(C1Π) + e− 1.00e-04 -0.396 45526.85 +/- 2 om
15 C2(b3Σ−) + e− ↔ C2(c3Σ+) + e− 8.57e-03 -1.215 9893.11 +/- 2 om
16 C2(b3Σ−) + e− ↔ C2(d3Π) + e− 1.59e-05 -0.436 19375.79 +/- 2 om
17 C2(b3Σ−) + e− ↔ C2(C1Π) + e− 6.89e-05 -0.381 35594.37 +/- 2 om
18 C2(c3Σ+) + e− ↔ C2(d3Π) + e− 9.03e-05 -0.647 14918.32 +/- 2 om
19 C2(c3Σ+) + e− ↔ C2(C1Π) + e− 5.428e-05 -0.372 29691.92 +/- 2 om
20 C2(d3Π) + e− ↔ C2(C1Π) + e− 1.09e-04 -0.495 17461.08 +/- 2 om
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