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ABSTRACT 

Engineering systems are usually subjected to time-variant loads and operate under 

time-dependent uncertainty; system performances are therefore time-dependent. Accurate 

and efficient estimate of system reliability is crucial for decision makings on system 

design, lifetime cost estimate, maintenance strategy, etc. Although significant progresses 

have been made in time-independent reliability analysis for components and systems, 

time-dependent system reliability methodologies are still limited. This dissertation is 

motivated by the need of accurate and effective reliability prediction for engineering 

systems under time-dependent uncertainty. Based on the classic First and Second Order 

Reliability Method (FORM and SORM), a system reliability method is developed for 

multidisciplinary systems involving stationary stochastic processes. A dependent Kriging 

method is also developed for general components. This method accounts for dependent 

responses from surrogate models and is therefore more accurate than existing Kriging 

Monte Carlo simulation methods that neglect the dependence between responses. The 

extension of the dependent Kriging method to systems is also a contribution of this 

dissertation. To overcome the difficulty of obtaining extreme value distributions and get 

rid of global optimization with a double-loop procedure, a Kriging surrogate modeling 

method is also proposed. This method provides a new perspective of surrogate modeling 

for time-dependent systems and is applicable to general systems having random 

variables, time, and stochastic processes. The proposed methods are evaluated through a 

wide range of engineering systems, including a compound cylinders system, a liquid 

hydrogen fuel tank, function generator mechanisms, slider-crank mechanisms, and a 

Daniels system. 
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SECTION 

1. INTRODUCTION 
 

1.1 BACKGROUND 

Engineering systems are exposed to uncertainties in design, manufacturing and 

operation. Uncertainties are classified into time-independent uncertainties and time-

dependent uncertainties. Time-independent uncertainties do not change with time, such as 

manufacturing variations in dimensions and variations in material properties. These 

uncertainties are modeled as random variables. Time-dependent uncertainties vary with 

time. Examples include the stochastic wind loading and river flow loading [1]; these 

uncertainties are modeled as stochastic processes. When a system response is a function 

of time and/or stochastic processes, the system performance is time-dependent. 

Therefore, time-dependent reliability analysis methodologies are required for the 

prediction of the system reliability.  

In the past decades, many methods have been developed to improve the accuracy 

and efficiency of time-dependent component and time-independent system reliability 

methods. For example, based on the Rice’s formula [2, 3] and independent upcrossing 

assumption, various upcrossing rate methods [1, 4, 5] were proposed. Upcrossing rate 

methods are effective for some problems, but for problems with highly nonlinear 

performance functions or strongly dependent upcrossings, or both, their accuracy is poor. 

With the improvement of computer technologies, more and more engineers resort to 

sampling methods for reliability estimate. Various surrogate modeling methods [6, 7], 

importance sampling methods [8, 9], and surrogate-based importance sampling methods 

[10, 11] have been proposed. Among the surrogate models used for reliability analysis, 
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the Kriging model [12, 13] has been extensively studied since the model provides not 

only a prediction on an untried point, but also the uncertainty of the prediction.  

Compared to significant progresses made in time-dependent component and time-

independent system reliability analysis, methods for time-dependent systems are limited 

[14]. Besides upcrossing rate methods, extreme values methods are widely used. But 

obtaining an accurate extreme value distribution is difficult, especially when stochastic 

processes are involved over a long time period. This dissertation was motivated by the 

lack of effective reliability methods that could handle general time-dependent systems 

with good accuracy and efficiency. The outcomes of this work make the reliability 

estimate for general engineering systems having time-dependent performances possible 

and affordable. 

1.2 RESEARCH OBJECTIVE 

The objective of this dissertation is to develop accurate and efficient reliability 

methodologies for components and systems with time-dependent uncertainty. To achieve 

this objective, three research tasks are performed.  

Research task 1 focuses on reliability analysis for multidisciplinary systems. This 

research task is for multidisciplinary systems involving only stationary stochastic 

processes and performance functions that are implicit with respect to time [15]. Since the 

involvement of stochastic processes, the system performance varies randomly over time. 

And as the subsystems within a multidisciplinary system are coupled, the output of one 

subsystem is the input of other subsystems, and vice versa. This makes estimating the 

system reliability much more complicated than the time-independent system analysis. 

The proposed method uses the equations of linking variables as constraints in the Most 
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Probable Point (MPP) search. This not only guarantees the consistency of the 

multidisciplinary system but also ensures high efficiency. This research task results in 

Paper 1 [15]. 

Research task 2 concentrates on improving the accuracy of time-independent 

component reliability analysis, on which time-dependent system analysis are based in 

research task 3. The major approach used is the Kriging method. Current Kriging 

methods do not consider correlations between Kriging predictions, and only the sign of 

the predictions are used to estimate reliability; they are therefore called independent 

Kriging methods [16, 17]. A dependent Kriging method, together with a new learning 

function and a new way of calculating reliability, is developed [18] to improve the 

accuracy of independent Kriging methods. This is achieved by accounting for the 

correlations and making good use of information provided by Kriging predictions and 

Kriging variances. This research task produces Paper 2 [18].  

Research task 3 develops two new methods for system reliability analysis. The 

first method is the extension of research task 2 from components to systems. The 

outcome is a dependent Kriging method for system reliability  [19]. The purpose of the 

other method is to remove extreme value distributions and global optimization from 

existing double-loop procedures of time-dependent system reliability [20]. As 

distributions of the extreme values are difficult to obtain and global optimization is time-

consuming, accuracy and efficiency of time-dependent systems should be improved. This 

method aims at providing a new way of building surrogate models for general time-

dependent systems. This research task produces Papers 3 [19] and 4 [21]. 
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The outcomes of above research tasks are expected to enable engineers to 

understand how uncertainty affects the performance of engineering systems and how to 

predict system reliability efficiently with good accuracy. Potential areas that will benefit 

include reliability engineering, uncertainty based design, and maintenance.  

1.3 ORGANIZATION OF DISSERTATION 

As discussed in Section 1.2, the three research tasks in this study have produced 

four papers, which constitute this dissertation. 

The first paper is entitled “Reliability Analysis for Multidisciplinary Systems 

Involving Stationary Stochastic Processes.” A reliability analysis method based on the 

First and Second Order Reliability Methods (FORM and SORM) is developed. The 

method modifies FORM and SORM so that the Multidisciplinary Analysis (MDA) is 

incorporated. Then Monte Carlo simulation is used to estimate reliability without calling 

the original performance functions. The proposed method is successfully applied to 

estimate the reliability of a compound cylinder system over 10 years. And the results 

show that proposed method has much better accuracy than the upcrossing rate method. 

The second paper, entitled “Reliability Analysis with Monte Carlo Simulation and 

Dependent Kriging Predictions”, improves the accuracy of Kriging methods. The current 

independent Kriging methods are based on two assumptions: 1) Predictions from a 

Kriging model are independent. But since the predictions are different realizations of the 

same Gaussian process and likely dependent, the independent assumption may adversely 

affect the effectiveness of the surrogate modeling process. 2) If accurate surrogate models 

can be obtained, the reliability analysis results based on these surrogate models will also 

be accurate. Although this assumption is valid, it emphasizes the accuracy of surrogate 
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models, instead of the accuracy of reliability analysis itself. To overcome the above 

drawbacks, the proposed dependent Kriging method accounts for the dependency 

between Kriging predictions. A new learning function is developed, and the new way of 

calculating reliability uses all the information provided by a Kriging model. Five 

examples from literature, including a nonlinear oscillator, a cantilever tube, a roof truss 

structure, and a slider-crank mechanism are used to test the new method. 

The third paper “A System Reliability Method with Dependent Kriging 

Predictions” derives all the equations and procedures needed to extend dependent Kriging 

method to systems. In a system, some components have larger contributions to system 

reliability than other components. To save computational efforts on components or 

training points whose contributions to system reliability are insignificant, the composite 

criterion approach [22, 23] is employed. Three examples from literature show that the 

new method outperforms independent system Kriging method in accuracy, efficiency, 

and robustness.  

The fourth paper is entitled “A Kriging Method for Time-Dependent System 

Reliability Analysis.” The objective of this method is to overcome the drawbacks of 

using extreme values with a double-loop procedure and time-consuming global 

optimization by the current methods. It develops a new surrogate modeling method that is 

applicable to general time-dependent systems that have random variables, time, and 

stochastic processes in performance functions. By removing global optimization and 

building surrogate models for performance functions directly, the proposed method is in 

general more efficient than extreme value methods. Four examples, covering systems with 

and without stochastic processes, and systems with series and parallel configurations, are 

used to test the new method. 
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PAPER 

I. RELIABILITY ANALYSIS FOR MULTIDISCIPLINARY SYSTEMS 
INVOLVING STATIONARY STOCHASTIC PROCESSES 

 

Zhifu Zhu, Zhen Hu, Xiaoping Du 

Department of Mechanical and Aerospace Engineering 

Missouri University of Science and Technology 

 

ABSTRACT 

The response of a component in a multidisciplinary system is affected by not only 

the discipline to which it belongs, but also by other disciplines of the system. If any 

components are subject to time-dependent uncertainties, responses of all the components 

and the system are also time dependent. Thus, time-dependent multidisciplinary 

reliability analysis is required. To extend the current time-dependent reliability analysis 

for a single component, this work develops a time-dependent multidisciplinary reliability 

method for components in a multidisciplinary system under stationary stochastic 

processes. The method modifies the First and Second Order Reliability Methods (FORM 

and SORM) so that the Multidisciplinary Analysis (MDA) is incorporated while 

approximating the limit-state function of the component under consideration. Then 

Monte Carlo simulation is used to calculate the reliability without calling the original 

limit-state function. Two examples are used to demonstrate and evaluate the proposed 

method. 
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1. INTRODUCTION 

Engineering systems are more and more sophisticated, and they commonly 

involve multiple interacting disciplines, for example, systems with coupled fluid and 

structure disciplines [1] and aircraft wing design with coupled aerodynamic and structure 

disciplines [2]. Multidisciplinary systems are commonly found in aerospace [3] and 

marine applications [4, 5]; automobile engineering [6]; and renewable energy field [7, 8]. 

Due to the highly coupled disciplines or subsystems, the reliability analysis of a 

multidisciplinary system is much more difficult than that of a single disciplinary system 

[9].   

Many studies have been devoted to reliability analysis and reliability-based design 

for multidisciplinary systems [2, 9-14] where only random variables are involved. 

Padmanabhan and Batill [15, 16] develop a reliability-based design optimization method 

for multidisciplinary systems using the concurrent subspace optimization framework and 

the collaborative reliability analysis method. Du and Guo [14] propose a sequential 

optimization and reliability assessment (SORA) method for multidisciplinary systems 

design. Sues et al. [17] apply the response surface method to the reliability analysis of 

multidisciplinary systems. Koch et al. [18] propose a multi-stage parallel implementation 

strategy for the probabilistic design optimization of multidisciplinary problems.  

The aforementioned methods are only appliable for time independent reliability 

that does not change over time. The reasons are that limit-state functions are not time-

dependent and that the input variables are time-independent random variables. When 

some of the input random variables are time-dependent (stochastic processes), the 

responses of the multidisciplinary system become time variant. Time-dependent problems 
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are commonly encountered. For example, a ship is subjected to stochastic wave loading 

[19] that varies over time, and a wind turbine is subjected to wind loading in the form of 

time series (a special type of stochastic processes) [20].  

For multidisciplinary systems with stochstic processes, which vary randomly over 

time, the resposnses of the system are aslo time-dependnet stochstic processes. As a 

result, the reliability is defined in a period of time, during which the system is supposed 

to operate. This kind of reliability is called the time-dependent reliability. It usully 

decreases with time. Time-dependent reliability methods should then be employed. Many 

methods have been developed for time-dependent reliability, and they incldue the 

upcrossing rate methods [8, 21, 22], the extreme value methods [23, 24], the envelop 

method [25], the composite limit state method [26-28], and several sampling-based 

approaches [29-33]. These methods, however, are only for components or single 

disciplinary systems. They may not be applicable for multidisciplinary systems. 

Time-dependent uncertainty in the form of stochastic processes widely exists in 

multidisciplinary systems. For example, the wave loadings on offshore structures are 

stochastic processes [34]; transmission towers are under stochastic process citations [35]; 

hydrokinetic turbine blade under time-variant river flow loading [36]; and off-road 

vehicles subjecting to stochastic road excitations [37]. But it is a challenging task to 

develop time-dependent reliability methodologies for general multidisciplinary systems. 

This work deals with only a special case where the input stochastic processes are 

stationary. Loosely speaking, a stationary process is a process whose statistical properties 

does not change over time, and the process at any two different time instances, however, 

are generally dependent. For example, random excitations are usually modeled as 
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stationary stochastic processes. Although stochastic loadings are usually modeled as non-

stationary loadings, for a short term, the loadings can be assumed to be stationary. For 

this special case, we assume that time t  does not appear explicitly in all the functions of 

the responses.  

The objective of this work is to develop a reliability method for the 

aforementioned special case. Although only stationary stochastic processes are involved, 

due to the dependence between responses at any pairs of time instants, the time-

dependent reliability generally decreases over time although the distribution of the 

process remains the same at any time instant. This makes the time-dependent reliability 

analysis more complicated than its time-independent counterpart.  

The major approach is the extension of the time-invariant reliability methods, 

including the First and Second Order Reliability Methods (FORM and SORM), into 

multidisciplinary systems with stationary stochastic processes and random variables. 

After the responses are approximated by FORM and SORM, we use Monte Carlo 

simulation (MCS) to estimate the reliability. The reasons of using MCS are twofold. The 

first is that no analytical solutions exist even after the use of FORM or SORM and that it 

is convenient to use MCS; the second is that MCS will not call the original limit-state 

function, and the computational cost is therefore not a concern. 

In Section 2, we provide an overview about Multidisciplinary System Analysis 

(MDA) and time-dependent reliability analysis. We then discuss the reliability analysis 

for multidisciplinary systems with stationary stochastic processes and random variables 

in Section 3, followed by two examples in Section 4. Conclusions are made in Section 5. 
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2. BACKGROUND 

In this section, we provide the background information about multidisciplinary 

systems and time-dependent reliability. 

2.1 MULTIDISCIPLINARY SYSTEMS WITH STOCHASTIC PROCESSES 

Figure 2.1 shows a multidisciplinary system with three disciplines or subsystems. 

The input to the system includes both random variables and stochastic processes.  

 

 

Figure 2.1 Multidisciplinary system with random variables and stochastic processes 

 

The notations in Figure 2.1 are given as follows: 

sX :  shared input random variables for all disciplines, 

iX :  local input random variables of subsystem i  , 

( )s tY :  shared stochastic processes for all disciplines, 

( )i tY :  local input stochastic processes of subsystem i , 

2 ( ), ( )st tY Y   

3 ( ), ( )st tY Y   

Subsystem 1 

Subsystem 2 

Subsystem 3 

1, sX X   

12 ( )tL   21( )tL   

32 ( )tL   23( )tL
  

13( )tL   

31( )tL   

1( )tZ   

2 ( )tZ   

3 ( )tZ   

1( ), ( )st tY Y   

2 , sX X   

3, sX X   

: random variables          : stochastic process 
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( )ij tL : linking (coupling) variables from subsystem i  to subsystem j , 

( )i tZ :  output of subsystem i . 

As indicated in Figure 2.1, output variables (or responses) ( )i tZ  and coupling 

variables ( )ij tL  are all time-dependent due to the involvement of stochastic processes in 

the input variables and the coupling between subsystems. The output of one subsystem is 

often the input of other subsystems and vice versa. Since the subsystems are coupled with 

each other, for a single system analysis, we need to solve for all the linking variables 

( )ij tL and then calculate the responses. This process is called a multidisciplinary analysis 

(MDA). 

Let linking variables from the i -th subsystem be given by 

 1,2, , ;( ) { ( )} ( , , ( ), ( ), ( ))
ii ij j n j i s i s i it t t t t
•• = ≠ •= = LL L g X X Y Y L



  (1) 

in which n  is the number of subsystems, ( )i t•L  is the vector of linking variables, which 

are output variables from subsystem i , ( )i t•L  is the vector of linking variables, which are 

input variables to subsystem i  from other subsystems, and ( )
i•Lg   is a vector of the 

functions that map the input variables into ( )i t•L . In this work, we assume that time t  

does not appear explicitly in all the functions. 

The system consistency is guaranteed by the above system of simultaneous 

equations over the interfaces between coupled subsystems. Expanding Eq. (1) over the 

whole system in Figure 2.1 yields 
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s s
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t t t t

t t t t

t

•

•

•

•

•

=

=

=

=

=

=

L

L

L

L

L

L

L g X X Y Y L

L g X X Y Y L

L g X X Y Y L

L g X X Y Y L

L g X X Y Y L

L g X 3 3 3, ( ), ( ), ( ))s t t t•










 X Y Y L

  (2) 

and solving the above equations needs to call disciplinary analyses or repeat the 

evaluations of ( )
i•Lg  , if the functions are nonlinear.  

After the linking variables are obtained, responses from any disciplines can be 

easily solved. For example, for subsystem i , a general response ( )iZ t  can be computed 

by 

 ( ) ( , , ( ), ( ), ( ))i Zi s i s i iZ t g t t t•= X X Y Y L   (3) 

2.2 TIME-DEPENDENT RELIABILITY 

For the response in Eq. (3), the time-dependent reliability over the period of time 

0[ , ]st t  is defined by 

 0 0( , ) Pr{ ( ) ( , , ( ), ( ), ( )) , [ , ]}s i Zi s i s i i sR t t Z t g t t t e t t t•= = < ∀ ∈X X Y Y L   (4) 

where {}Pr ⋅  stands for the probability, and e  is the limit state. If there exists a time 

instant t such that ( )iZ t e> , a failure occurs. The time-dependent probability of failure is          

 0 0( , ) Pr{ ( ) ( , , ( ), ( ), ( )) , [ , ]}f s i Zi s i s i i sp t t Z t g t t t e t t t•= = > ∃ ∈X X Y Y L   (5) 

where ∃  means “there exists”. 

Many methods have been proposed to calculate the time-dependent reliability [8, 

21-30]. One of the dominating methods is the upcrossing rate method based on Rice’s 

formula [38]. Herein, we briefly review the upcrossing rate method. More details are 
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available in [39]. The time-dependent probability of failure is estimated using the 

upcrossing rate by          

 { }
0

0 0( , ) 1 ( )exp ( )st

f s t
p t t R t v t dt+= − −∫   (6) 

where 0( )R t  is the reliability at the initial time instant 0t , and ( )v t+  is the upcrossing rate 

at t. ( )v t+  is given by 

 { }
0

Pr ( ) ( )
( ) lim i i

t

Z t e Z t t e
v t

t
+

∆ →

< + ∆ >
=

∆
<

  (7) 

in which <  stands for intersection.  

Directly evaluating ( )v t+  is difficult as there is no close- form expression 

available for the joint probability of general problems. One way is using the Rice’s 

formula [38], which approximates the upcrossing rate as follows: 

 ( ) ( )( ) ( ) ( ) ( ) / ( )v t t t t tω φ β β ω+ = Ψ    (8) 

where ( )tω , ( )tβ , and ( )tβ  are parameters computed from the First Order Reliability 

Method (FORM), ( )φ   is the probability density function (PDF) of a standard normal 

variable, and ( ) ( ) ( )x x x xφΨ = − Φ − , where ( )Φ ⋅  is the cumulative distribution function 

(CDF) of a standard normal variable. Details can be found in [39]. 

The upcrossing rate method is accurate when the probability of failure is low or 

the limit state is high. When the threshold is low, the Poisson assumption, based on which 

Rice’s formula is derived, may not hold. The upcrossing rate method may produce large 

errors.  

In the following section, we discuss how to approximate the time-dependent 

probability of failure for multidisciplinary systems based on FORM and SORM. 
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3. MULTIDISCIPLINARY RELIABILITY ANALYSIS 

The method is based on FORM and SORM, whose details can be found in [39-

41]. The methods approximate response functions at the Most Probable Point (MPP) with 

a first order and second order, respectively. For time independent problems, only random 

variables exist, an analytical solution to the reliability is available if FORM is used, and 

an analytical solution is also available if SORM is used after some transformation. For 

the current problem with stationary stochastic processes, no analytical solution exists. 

The major reason is that the failures at all the time instants in the period of time under 

consideration are dependent. MCS is therefore used, it is noted that MCS will not call 

MDA. 

Different from FORM and SORM for component reliability analysis, the 

reliability analysis herein needs to call MDA repeatedly in the process of researching for 

the MPP. A decoupling approach is used for the MDA as shown in the next section. 

3.1 OVERVIEW 

The overall procedure of the proposed method is given in Figure 3.1. Detailed 

implementing procedures are discussed in Subsections 3.2 and 3.3. There are five steps. 

• Step 1: Initialization: transform random variables and stochastic processes into 

standard normal variables at a specific time instant. 

• Step 2: Decoupling and the MPP search: perform the MPP search by decoupling the 

multidisciplinary subsystems and considering the consistency of the system. 

• Step 3: Approximation: approximate the limit-state function using the first or second 

order Taylor series expansion at the MPP.  

• Step 4: Sampling: perform sampling using MCS. 
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• Step 5: Reliability analysis: evaluate reliability or probability of failure based on the 

samples generated in Step 4. 

 

 

Figure 3.1 Procedure of reliability analysis of multidisciplinary systems 

 

3.2 APPROXIMATION USING FORM AND SORM 

The task is to calculate the time-dependent probability of failure associated with a 

response of a specific discipline or subsystem. Let a general response from the i-th 

discipline or the i-th subsystem be ( ) ( , , ( ), ( ), ( ))i Zi s i s i iZ t g t t t•= X X Y Y L . As indicated in 

Figure 3.1, we at first build an approximate model for 

( ) ( , , ( ), ( ), ( ))i Zi s i s i iZ t g t t t•= X X Y Y L  and then perform the reliability analysis based on 

the approximate model using MCS. In this work, we approximate the limit-state function 

by the first and second order Taylor series expansions. To minimize the accuracy loss, we 

use the MPP as the expansion point. Since only stationary stochastic processes are 

involved, their distributions at all the time instants are the same, and only one MPP 

search is needed. 

3.2.1 MPP Search. During the MPP search process, MDA is called repeatedly to 

solve for linking variables. This will therefore require a double-loop process. As 

suggested in [14], the two loops can be combined by treating the system consistency 

equations in Eq. (1) as constraints in the MPP search. By extending the MPP search 
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model for problems with only random variables to the multidisciplinary problem, the 

MPP model is given by [14]  

 

( , )
min

. .
ˆ ( , ) 0

( ) ( , ),  1 ,,2,
j

i i i

j j j

Z

s t
g

t g j n






>
 = = …

u L

L

u

u L

L u L


 



  (9) 

where 1 ,,2,[ , , , ]
S i S i i n= …= X X Y Yu u u u u , [ , , , ]

S i S ii = X X Y Yu u u u u , , 1,2, , , [ ]ij i j n i j= ≠=L L


, and n  

is the number of subsystems. ˆ ( )
iZg ⋅  is the same function as ( )

iZg ⋅  given in the beginning 

of this section, but ˆ ( )
iZg ⋅  is a function of transformed variables u .  

Solving the above MPP search only needs a single optimization loop and is 

therefore more efficient than the double-loop procedure where the MDA loop is 

embedded in the MPP search. Then the response function ( ) ( )i ZiZ t g=   is approximated 

at the MPP. 

3.2.2 Approximation Of The Limit-State Function. When FORM is employed, 

the limit-state function is approximated as 

 * * *ˆ ˆ ˆ( ) ( ) ( )( )
i i i

T
Z Z i Z i i ig g g≈ +∇ −U u u U u   (10) 

which can be transformed to   

 { } { }Pr ( ) Pr ( )iZ t e H t β> = >   (11) 

where ( )iZ t  is the output of the i -th subsystem, and  

 ( ) ( ) ( )H t t t= α U   (12) 

And 

 * *( ) ( ( ), ) / ( ( ), )t t t t t= ∇ ∇α g U g U   (13) 
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 When SORM is employed, we have 

 

* * *

* 2 * *

ˆ ˆ ˆ( ) ( ) ( )( )

1 ˆ( ) ( )( )
2

i i i

i

T
Z Z i Z i i i

T
i i Z i i i

g g g

g

≈ +∇ −

+ − ∇ −

U u u U u

U u u U u
  (14) 

where * * * * *[ , , , ]
S i S ii = X X Y Yu u u u u , *ˆ ( )

iZ ig∇ u  is the first partial derivatives of ˆ ( )
iZg U  at *

iu , 

and 2 ˆ
iZg∇  is the Hessian matrix, which is a symmetric square matrix of second partial 

derivatives of ˆ ( )
iZg U . 

With the forward difference method, *ˆ ( )
iZ ig∇ u  is given by 

 
*

* *ˆ ˆ ˆ( ) ( )
i i i

i

Z Z i Z i

i

g g g
U u

∂ + ∆ −
≈

∂ ∆
u

u u u
  (15) 

where the i-th element of ∆u  is u∆ , the other elements of ∆u  are all zero, and u∆  is a 

small step size. 

The second derivative 
*

2 ˆ
i

i

Z

j k

g
U U
∂

∂ ∂
u

 is given by 

 *

2 *, *, *, *
max

1, ,

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
( )

max { ( , )} wher ,e 1,2,

i i i i i

i

i

j k
Z Z i Z i Z i Z i

i
j k j k

kk Zm j

g g g g g
z j

U u

j N

U u

g t

++ + +

=

∂ − − +
≈

∂ ∂ ∆ ∆

= …=
u

u u u u

u






  (16) 

where *, *
i i
++ ++= + ∆u u u , in which the j-th and k-th elements of ++∆u  are ju∆  and ku∆ , 

respectively, and the other elements of ++∆u  are all zero; *, *j j
i i i

+ +∆= +u u u , in which the 

j-th element of j
i
+∆u  is ju∆ , and the other elements of j

i
+∆u  are all zero; and 

*, *k k
i i i

+ +∆= +u u u , in which the k-th element of k
i
+∆u  is ku∆ ，and the other elements of 

k
i
+∆u  are all zero. 
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 *,ˆ ( )
iZ ig ++u  is computed as follows： 

 
*

*,ˆ ˆ( ) ( , ( ))
i i i i

Z i Z i ig g t
++

++
• ∆= +

=
U u u

u U L   (17) 

in which 
*

( )
i

i t
++= ∆+

•
U u u

L  is computed from the following equations 

 

*1

*( 1)

*( 1)

*

1 1

( 1) ( 1)

( 1) ( 1)

ˆ( ) ( , ( ))

ˆ( ) ( , ( ))

ˆ( ) ( , ( ))

ˆ( ) ( , ( ))

i i i

i i
i i

i i
i i

ni i i

i i

i i i i

i i i i

ni i n

t t

t t

t t

t t

++

++−

+++

++

• = +

− • −
= +

+ • +
= +

∆

∆

∆

∆• = +

 =



 =



=




=

L U u u

L U u u

L U u u

L U u u

L g U L

L g U L

L g U L

L g U L
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3.3 MCS ON APPROXIMATED LIMIT-STATE FUNCTION 
 

After the limit-state function is approximated into a linear or quadratic form, it is 

still hard to find the time-dependent probability of failure analytically or even 

numerically. Let us look at the simpler case with a linearized limit-state function. The 

linear function is now a stationary Gaussian process. It is well known that the time-

dependent probability of failure is equal to the probability that the extreme (maximum) 

value of the stationary Gaussian response is greater than the limit state. The distribution 

of the extreme value, however, can be hardly found because an analytical solution does 

not exist. We therefore resort to Monte Carlo simulation (MCS). After the approximation, 

we use MCS based on the approximated limit-state function. Note that MCS will not call 

the limit-state function or MDA any more. There are two sampling tasks – one is 

sampling of random variables and the other is sampling of stochastic processes. 

Since all the random variables follow standard normal distributions as shown in 

Eqs. (10) and (14), their samples can be easily generated. All the stochastic processes are 
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standard Gaussian processes. To generate their samples, we first divide time interval 

0[ , ]st t  into m  time points 1, 2, , 1 0 2( ) ( , , ), ,i m si m mt t ttt t t= = =…=


. The samples of standard 

Gaussian stochastic process ( )U t  are then generated by the Expansion Optimal Linear 

Estimation (EOLE) method [42]. 

 ( ) ( )
1

,
p

Ti
i U i

i i

VU t t tϕ ρ
η=

= ∑   (19) 

where  iV  ( 1, 2, ,i p m= ≤ ) are independent standard normal random variables, and iη  

and T
iϕ  are the eigenvalues and eigenvectors of the matrix ∑ , respectively. ∑  is given 

by 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1

2 1 2 2 2

1 2

, , ,
, , ,

, , ,

U U U m

U U U m

U m U m U m m m m

t t t t t t
t t t t t t

t t t t t t

ρ ρ ρ
ρ ρ ρ

ρ ρ ρ
×

 
 
 ∑ =
 
  
 





   



  (20) 

where ( )1 2,U t tρ  is the autocorrelation function of ( )U t . More details about the sampling 

generation method can be found in [42]. 

Let the N samples be ju  ( 1,2 ,,j N= … ), the samples of response iZ  are then 

available as shown below.  

 
1 11

1

( , ) ( , )

[ (1); (2); ( )
( , ) ( , )

; ]
i i

i i

Z Z

i

m

N N m

i i

Z Z

g t g t

g t g t

 
 =  
  

…

u u

z z z m
u u

 

 


  

 

 


  (21) 

Note that the original limit-state function is not called, and ( )
iZg   in the above 

equation is replaced by the approximate limit-state function at the MPP.  
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With the samples in Eq. (21), we now find the samples of the maximum response 

as follows:  

 max

1, ,
( ) max { ( , )} where 1 2 ,, ,

iZ ji kk m
z j g t Nj

=
= = …u





   (22) 

Then the time-dependent probability of failure is estimated by 

 0( , ) f
f s

N
p t t

N
=   (23) 

where 

 
1

N

f j
j

N I
=

= ∑   (24) 

in which, the indicator function is defined by 

 
max1, if ( )

0, otherwise
i

j
z j e

I
 ≥

= 


  (25) 
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4. EXAMPLES 

Two examples are used to demonstrate the proposed method. The first one is a 

mathematical problem representing a simple multidisciplinary system and is used for a 

clear demonstration. The second one is an engineering problem. The two problems are 

solved using the following four methods: 

• Proposed method based on FORM (FORM-MCS) 

• Proposed method based on SORM (SORM-MCS) 

• Upcrossing rate method (Upcrossing) 

• Direct Monte Carlo Simulation (MCS) that calls the original limit-state functions 

The reason we use the above methods is to evaluate the accuracy and efficiency of 

the proposed method. 

4.1 MATHEMATICAL EXAMPLE 

Figure 4.1 shows the structure of a multidisciplinary system. There are two 

subsystems. For subsystem 1, 

 
2

12 1 2 1 21
2 2

1 2 1 12 21

( ) ( ) 0.2 ( )

( ) ( ) ( ) ( )

L t X X Y t L t
Z t X Y t L t L t

= + + −

= + + +
  (26) 

For subsystem 2, 

 
12

21 12 1 1

( )2
2 1 1 21

( ) ( ) ( )

( ) ( ) ( ) L t

L t L t X Y t

Z t X Y t L t e−

= + +

= + + +
  (27) 

where 1X  and 2X  are random variables, and 1( )Y t  is a stationary Gaussian process.  
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The information of above random variables and Gaussian process is given in 

Table 4.1. The autocorrelation coefficient function of 1( )Y t  is given by 

 ( ) ( ){ }1

2
1 2 2 1, exp /Y t t t tρ λ= − −     (28) 

where 0.9λ = , which is a correlation length. 

 

 

Figure 4.1 Mathematical example 

 

The following time-dependent probability of failure needs to be evaluated: 

 { }0 1 1 0( , ) Pr ( ) , [ , ]f s sp t t Z t e t t t= > ∈   (29) 

where 1 22e =  is the limit state of output 1( )Z t , and 0[ , ] [0,10]st t = . 

 

Table 4.1 Inputs of mathematical example 

Variable Mean Standard deviation Distribution Autocorrelation 

1x  1 0.1 Normal N/A 

2x  1 0.1 Normal N/A 

1( )Y t  1 0.1 Gaussian Process Eq. (28) 

 

Subsystem 2 

1( )Z t   1 2,X X
  

1( )Y t   

1X
  

21( )L t
  12 ( )L t

  

Subsystem 1 

2( )Z t
  

1( )Y t   
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For MCS, the time interval [ ]0,10  was divided into 200 time instants and 610  

samples were generated at each time instant. We use the number of MDA calls to 

measure the efficiency and the following percentage error to measure the accuracy: 

 0 0

0

( , ) ( , )
100%

( , )

MCS
f s f s

MCS
f s

p t t p t t
p t t

ε
−

= ×   (30) 

where 0( , )MCS
f sp t t  and 0( , )f sp t t  are the probabilities of failure obtained from MCS and a 

non-MCS method, respectively. 

The results for time intervals [0,1],[0,2], ,[0,10]  are plotted in Figure 4.2, and 

the results for one time interval [0,10]  are given in Table 4.2. 

 

0 2 4 6 8 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Time

Pr
ob

ab
ili

ty
 o

f f
ai

lu
re

 

 
Upcrossing
FORM-MCS
SORM-MCS
MCS

 

Figure 4.2 Probabilities of failure on different time intervals 
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The results show the good accuracy and efficiency of the proposed method. The 

SORM-MCS method produced the results almost identical to those from MCS and is 

more accurate due to the use of the second order Taylor series expansion. Its efficiency, 

however, is lower than that of FORM-MCS. Both FORM-MCS and SORM-MCS are 

much more accurate than the traditional upcrossing rate method.  

 

Table 4.2 Results comparison of mathematical example 

Method fp  Error (%) MDA calls 

Upcrossing 0.041853 114.42 54 

FORM-MCS 0.018857 3.39 54 

SORM-MCS 0.019517 0.01 90 

MCS 0.019519 N/A 82 10×  
 

 

The proposed method with FORM has the same efficiency as the upcrossing 

method. Both methods require one MPP search, after which no additional MDA calls. 

4.2 COMPOUND CYLINDER PROBLEM 

An engineering example [14, 43] is used as our second example. The compound 

cylinder system is treated as a multidisciplinary system, and its inner and outer cylinders 

are considered as Subsystems 1 and 2, respectively. Its structure is shown in Figures 4.3 

and 4.4. 

In Figure 4.3, a  is the inner radius of the inner cylinder, b  is the external radius 

of the inner cylinder but also the inner radius of the outer cylinder, and c  is the external 
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radius of the outer cylinder. 0( )p t  is the internal pressure, which is a stationary Gaussian 

stochastic process, and its autocorrelation coefficient function is 

 ( ) ( ){ }0

2
1 2 2 1, exp /p t t t tρ λ= − −     (31) 

where 0.9λ =  years is the correlation length of 0( )p t .  

The inputs and outputs of subsystems are given below. 

 

 

 

 

 

 

 

 

 
Figure 4.3 The compound cylinders 

 

 

Figure 4.4 System structure of the compound cylinders 
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For Subsystem 1:  

Inputs: 1 1, ( ) , ( , , , , )T
sa t E S bρ δ= = ∅ =X Y X , 0 1 21( ) ( ), ( ) ( )s t p t t L t= =Y L



  

where 21( ) ( )L t p t= , 1 2( ) ( )t tδ δ δ= +  and 

 
2 2

2
2 2

( )( ) /E t b cp t
b c b
δ ρ

 +
= + − 

  (32) 

Outputs: 1 1,1 1,2( ) ( ), ( )
T

t Z t Z t=   Z , 1 12 1( ) ( )L t tδ= =L


 

 
2 2

1 2 2

( )( ) p t b b at
E b a

δ ρ
 +

= − − 
  (33) 

 1,1( ) ( )aZ t t Sσ= −   (34) 

 1,2 ( ) ( )in
bZ t t Sσ= −   (35) 

 
2 2 2

0
2 2 2 2

2 ( ) ( ) ( )( )a
p t b a c p tt

b a c a
σ − +

= +
− −

  (36) 

 
2 2 2 2 2

0
2 2 2 2 2

( )( ) ( ) ( )( )
( )

in
b

p t b a a b c p tt
b a c a b

σ − + +
= +

− −
  (37) 

where E  is the young’s modulus, S  is the allowable stress, δ  is the total allowable 

shrinkage of the two cylinders at the interface, ρ  is the Poisson’s ratio, and these are 

random variables. 
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 ( )p t  is the contact stress at the interface, ( )a tσ  and ( )in
b tσ  are the tangential 

stresses of the inner cylinder at the internal radius a  and the external radius b , 

respectively, and  and 2( )tδ  are the radial deformation of the inner and outer cylinder at 

radius b , respectively.  

 

Table 4.3 Inputs of compound cylinder problem 

Input µ  σ  Distribution Autocorrelation 

E ( psi) 73 10×  63 10×  Normal N/A 

S ( psi) 44 10×  34 10×  Normal N/A 

ρ ( psi) 0.3 0.03 Normal N/A 

δ (in.) 0.004 0.0004 Normal N/A 

a (in.) 7.5 0.4 Normal N/A 

b (in.) 10 0.6 Normal N/A 

c (in.) 15 0.8 Normal N/A 

0( )p t  ( psi) 320 10×  32 10×  Gaussian Process Eq. (31) 

 

 

Table 4.4 Results comparison of compound cylinder problem 

Method fp  Error (%) MDA calls 

Upcrossing 0.092251 46.99 596 

FORM-MCS 0.058273 7.15 596 

SORM-MCS 0.064065 2.08 1215 

MCS 0.06276 N/A 82 10×  
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For Subsystem 2: 

Inputs: 2 c=X , 2 ( )t = ∅Y , ( , , , , )T
s E S bρ δ=X , 0( ) ( )s t p t=Y , 2 12 1( ) ( ) ( )t L t tδ= =L



 

Outputs: 2 2,1 2,2( ) ( ), ( )
T

t Z t Z t=   Z , 2 21( ) ( )t L t=L


, 21( ) ( )L t p t=  

 
2 2

2
2 2

( )( ) /E t b cp t
b c b
δ ρ

 +
= + − 

  (38) 

 2,1( ) ( )out
bZ t t Sσ= −   (39) 

 2,2 ( ) ( )cZ t t Sσ= −   (40) 

 
2 2 2 2 2

0
2 2 2 2 2

( )( ) ( ) ( )( )
( )

out
b

p t b c a b c p tt
c b c a b

σ + +
= +

− −
  (41) 

 
2 2

0
2 2 2 2

2 ( ) 2 ( )( )c
b p t a p tt

c b c a
σ = +

− −
  (42) 

where ( )out
b tσ  and ( )c tσ  are the tangential stress of the outer cylinder at the internal 

radius b  and the external radius c , respectively. 

The following time-dependent probability of failure needs to be estimated: 

 { }0 1,1( , ) Pr ( ) ( ) 0f s ap t t Z t t Sσ= = − >   (43) 

where 1,1( )Z t  is the first response of Subsystem 1.  

The random variables and stochastic process are given in Table 4.3. 
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The results shown in Figure 4.5 and Table 4.4 indicate that the proposed method 

also has good accuracy and efficiency for this engineering example. The same 

conclusions can be drawn as those from the last example. 
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Figure 4.5 Probabilities of failure of 1,1( )Z t  over different time intervals 
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5. CONCLUSIONS 

In this work, we developed a reliability analysis method based on FORM and 

SORM for time-dependent multidisciplinary systems with stationary stochastic processes. 

To deal with the challenge of strong coupling between multiple subsystems, we use the 

equations of linking variables as constraints in the MPP search. This not only guarantees 

the consistency of the multidisciplinary system but also ensures high efficiency. Since the 

MPP has the highest probability density, approximating limit-state functions at their 

MPPs minimizes the accuracy loss. After the approximation, MCS is used to estimate the 

time-dependent probability of failure. Two examples showed the accuracy and efficiency 

of the present method. 

The proposed method is limited to multidisciplinary systems involving stationary 

stochastic processes and with response functions that are not explicit functions of time. 

Its efficiency could be improved if advanced MDA techniques can be used. This will be 

our future work. 
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ABSTRACT 

Reliability analysis is time consuming, and high efficiency could be maintained 

through the integration of the Kriging method and Monte Carlo simulation (MCS).  This 

Kriging-based MCS reduces the computational cost by building a surrogate model to 

replace the original limit-state function through MCS. The objective of this research is to 

further improve the efficiency of reliability analysis with a new strategy for building the 

surrogate model. The major approach used in this research is to refine (update) the 

surrogate model by accounting for the full information available from the Kriging 

method. The existing Kriging-based MCS uses only partial information. Higher 

efficiency is achieved by the following strategies: (1) a new formulation defined by the 

expectation of the probability of failure at all MCS sample points, (2) the use of a new 

learning function to choose training points. The learning function accounts for 

dependencies between Kriging predictions at all MCS samples, thereby resulting in more 

effective training points, and (3) the employment of a new convergence criterion. The 

new method is suitable for highly nonlinear limit-state functions for which the traditional 

First and Second Order Reliability Methods are not accurate. Its performance is 

compared with that of existing Kriging-based MCS method through five examples. 
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1. INTRODUCTION 

Reliability analysis evaluates the likelihood of failure for components or systems 

in the presence of randomness [1]. Seeking for a good balance between accuracy and 

efficiency is always the focus on the methodology development of reliability analysis. 

Monte Carlo simulation (MCS) [2, 3] is commonly used for reliability analysis. MCS can 

produce high accuracy given a sufficiently large sample size. But it is computationally 

expensive if the sample size is too large. On the other hand, approximation methods, such 

as the First and Second Order Reliability Methods (FORM and SORM) [2, 4-6] are in 

general much more efficient, but may not be accurate for highly nonlinear limit-state 

functions. To this end, Design of Experiments (DoE) based MCS methods have been 

developed for high accuracy and efficiency.  

DoE methods are used to generate initial training points, and a surrogate model is 

built for a limit-state function, then MCS is performed based on the surrogate model. The 

DoE methods for reliability analysis include response surface modeling [7-10], artificial 

neural networks (ANN) [7, 11], support vector machines [12], polynomial chaos 

expansions (PCE) [13], and Kriging [7, 14-17]. Most of these methods evaluate the limit-

state function at a number of predefined points and then create a surrogate model to 

replace the limit-state function in the subsequent MCS.  

The Kriging-based active learning reliability method is used to create the 

surrogate model in a sequential manner [18]. After the initial surrogate model is built 

with a small number of initial training points, more training points are added one by one 

until the surrogate model accurately represents the original limit-state function. A 
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learning function is employed in the model building process to select the best training 

points intelligently and refine the surrogate model in a most efficient fashion. 

A learning function is a function that defines the criteria of selecting a best 

training point so that the surrogate model can be refined with improved accuracy. 

Different Kriging-based reliability methods use different learning functions. Based on the 

Efficient Global Optimization (EGO) [19], the Efficient Global Reliability Analysis 

(EGRA) [1] uses the expected feasibility function to determine training points, while the 

active learning reliability method combining Kriging and Monte Carlo Simulation (AK-

MCS) [18] uses the probability of predicting the correct sign of the limit-state function as 

its learning function. Other leaning functions are also available [20, 21], and discussions 

on learning functions can be found in [22] and [23]. 

EGRA and AK-MCS have also been applied to system reliability [24, 25] and 

time-dependent reliability analyses [26, 27], and other improvements have been made 

[21, 22, 28-30]. The Kriging-based reliability methods can be further improved with 

respect to accuracy and efficiency because of the following reason: even though the 

responses predicted by Kriging are realizations of a Gaussian process and are therefore 

dependent on one another, the above methods do not account for the dependencies 

between the responses.  

To further improve the efficiency of Kriging-based reliability methods, this work 

proposes a new Kriging-based reliability method. Its general process is similar to that of 

AK-MCS. An initial surrogate model is created with a small number of training points. 

Then the surrogate model is refined with more training points. Once the surrogate model 

becomes accurate, MCS is used to estimate the probability of failure. The contributions 
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of this research include the following new components that help select the new training 

points more efficiently. 

(1) The method selects a new training point using the complete Gaussian process 

output of the surrogate model that is available from the Kriging method. It can 

therefore fully account for the correlations between output variables at all the 

MCS sample points. 

(2) The new method calculates both the mean and variance of the estimated 

probability of failure with new formulas that involve the mean and covariance 

functions of the above Gaussian process. This makes it more effective to select 

new training points.  

(3) Instead of focusing on the accuracy of the limit-state function, the new method 

focuses directly on the accuracy of the reliability estimate with a new 

convergence criterion. This improves the efficiency of the reliability analysis 

without jeopardizing the accuracy. 

With the above new components, the new method is in general more effective 

than the methods that use independent Kriging predictions.  

The remainder of this paper is organized as follows. Section 2 reviews the Kriging 

method and existing Kriging-based reliability methods. The new method and its 

implementation procedure are described in Section 3, followed by five examples in 

Section 4. Conclusions are made in Section 5. 
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2. BACKGROUND AND LITERATURE REVIEW 

In this section, we review the definition of reliability and Kriging-based reliability 

methods.  

2.1 RELIABILITY 

A performance function is defined by 

 ( )y g= x   (1) 

where x  is a vector of random input variables, and y  is a response. If 0y > , no failure 

occurs; if 0y < , a failure occurs. The threshold 0 is a limit state, and in this sense, 

( ) 0g =x  is called a limit-state function. Then the reliability is defined by the following 

probability  

 Pr{ ( ) 0}R g= >x   (2) 

And the probability of failure is defined by 

 Pr{ ( ) 0}fp g= <x   (3) 

As we discussed previously, R  or fp  can be estimated by MCS, surrogate MCS, 

FORM, and SORM.  

2.2 KRIGING 

Kriging is an interpolation method, which means that the prediction of an existing 

training point is the exact value of the response at the point. For a performance function 

( )y g= x , Kriging considers ( )y g= x  being a realization of a Gaussian process, defined 

by [15] 

 ( ) ( ) ( )TG Z= +x f x β x   (4) 
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( )Tf x β  is a deterministic term, providing the estimate of the mean response, 

1 2( ) [ ( ), ( ), , ( )]T
pf f f=f x x x x  is a vector of regression functions, and 

1 2[ , , , ]T
pβ β β=β   is a vector of regression coefficients. ( )Z ⋅  is a stationary Gaussian 

process with zero mean and covariance 

 2Cov[ ( ), ( )] ( , )i j i jZZ Z Rσ=x x x x   (5) 

in which 2
Zσ  is the process variance, and ( , )R ⋅ ⋅  is the correlation function. Due to the 

stochastic characteristics, Kriging provides not only the prediction of untried points, but 

also the variance of the prediction. The variance indicates the uncertainty of the 

prediction. At an untried point x , the Kriging predictor ˆ( )g x  follows a Gaussian 

distribution denoted by 

 2ˆ( ) ( ( ), ( ))G Gg N µ σx x x   (6) 

where ( )Gµ ⋅  and 2 ( )Gσ ⋅  are the Kriging prediction and Kriging variance, respectively. 

More details about Kriging method can be found in Appendix A and references [14, 15]. 

2.3 INDEPENDENT KRIGING METHODS 

The output of the surrogate model from the Kriging method follows a Gaussian 

process. As a result, two output variables predicted by the surrogate model are two 

realizations of the Gaussian process and are likely dependent. The independent Kriging 

methods (IKM) ignore such dependence. In other words, the output variables are assumed 

independent. This assumption simplifies the process of building the surrogate model, but 

may adversely affect the efficiency of the model building process.  

 The other assumption of IKM is that the surrogate model at the limit state will 

produce an accurate reliability estimate if the surrogate model is accurate. Although this 
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assumption is valid, it emphasizes the accuracy of the surrogate model, instead of 

devoting effort directly to improving the accuracy of the reliability estimate.  This may 

also affect the efficiency. 

 A sequential process is involved as the surrogate model is built iteratively with 

the help of MCS. After obtaining the accurate surrogate model, MCS is performed on it, 

and the Kriging predictions of the surrogate model are treated independently. The general 

idea of IKM is as follows.  

 

 

Figure 2.1 Flowchart of IKM 
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(1) Generate a small number of training points (TPs) for input random variables x , 

denoted by Tx . And build an initial surrogate model based on these TPs. 

(2) Generate a large number of Monte Carlo sample points for x . These points serve 

as candidates for the TPs and are called candidate points (CPs), denoted by Cx . 

(3) If the surrogate model is not accurate, a learning function is used to select the best 

TP to refine the surrogate model in a most efficient fashion.  

(4) Add the new TP to the existing TPs, and then refine the surrogate model.  

Steps (3) and (4) are repeated until convergence is attained. The flow chart of the 

process is provided in Figure 2.1. Note that the size of CPs may change during the 

process if the error of reliability analysis from MCS is large. The error can be found in 

[31]. 

The methods differ from one another by their learning functions. While the active 

learning reliability method combining Kriging and MCS (AK-MCS) [18] uses a 

probability measure in its learning function, the Efficient Global Reliability Analysis 

Method (EGRA) [1] uses the limit-state function value directly.  Since the two methods 

have the similar performance [18], we will compare the proposed method with only AK-

MCS, which is reviewed briefly next. 

AK-MCS uses the probability of predicting the correct sign of the limit-state 

function in its learning function. With the surrogate model ˆ ( )ˆy g= x , the probability of 

failure is estimated by 

 ( )
)ˆ ( 0

( ) ( ) ( ) E ( )
g

fp f d I f d I
<

= = =∫ ∫
x

x x x x x x   (7) 
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where E( )⋅  stands for expectation, 1N  is the joint probability density function (PDF) of 

x , and the indicator function ( )I ⋅  is defined by 

 
ˆˆ1,

( )
0, otherwi

( ) 0
se

gy
I

<=
= 


x
x   (8) 

Thus, the accuracy of the reliability analysis depends on the accuracy of the 

indicator function or the correct sign of ˆ )(g x . As ˆ )(g ⋅  at x  is normally distributed, the 

probability of a wrong sign is 

 
( )

( )
( )wp

µ
σ

 
= Φ − 

 

x
x

x
  (9) 

where ( )µ x  and ( )σ x  are mean and standard deviation of the Kriging prediction at x , 

respectively.  

The learning function of AK-MCS is defined by 

 
( )

( )
( )

U
µ
σ

=
x

x
x

  (10) 

The smaller is U , the higher is wp . Hence a new TP is identified with the minimum U  

among CPs. When U  is sufficiently large, the surrogate model will be accurate at the 

limit state 0g = , and the process will then converge. 2U =  is used in AK-MCS [18], 

and it is equivalent to 0.0228wp = . 

As mentioned previously, the size of CPs varies during the analysis process. The 

coefficient of variation of fp  is used to determine the size and is given by  

 
1 f

C f

p
cov

N p
−

=   (11) 

where CN  is the size of CPs. If 0.05cov > , CN  will be increased [18].   
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Upon convergence, the probability of failure is estimated by 

 
1

1 ( )
CN

f i
iC

p I
N =

= ∑ x   (12) 

The above equation shows that the estimate of fp  only uses the sign information 

of the predictions, and correlations between the predictions are not considered. The 

surrogate model built with Kriging, however, is a Gaussian process, and its output 

variables (the Kriging predictions) are dependent. This work develops a new method that 

accounts for such prediction dependency in order to improve the performance of IKM.   
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3. DEPENDENT KRIGING METHOD 

We now discuss the new method that accounts for the dependencies between 

Kriging predictions. The method is referred to as the dependent Kriging method (DKM) 

for brevity.  

3.1 OVERVIEW 

The key points of DKM are as follows.  

(1) DKM considers correlations between Kriging predictions at all CPs. 

(2) As a result, DKM uses complete statistical characteristics of the Gaussian process, 

including not only the mean and standard deviation functions of the Gaussian 

process, but also its correlation function.  

(3) DKM focuses directly on the accuracy of the estimate of reliability, instead of that 

of the limit-state function considered by IKM. DKM is therefore probability 

oriented, instead of function value oriented.  

With the above considerations, new components of the proposed method are 

developed, including a new way to estimate fp , a new learning function, a new 

convergence criterion, and a new procedure.   

3.2 FUNDAMENTALS 

We now discuss the aforementioned new components.  

3.2.1 A New Way To Calculate fp  . Let the surrogate model be 

ˆ ˆ( ) ( ) ( )y g µ ε= = +xx x . This model is the Kriging prediction given in Eq. (4), and ( )ε x  

is a Gaussian process with 2(0, ( ))N σ x  and correlation R . Thus 

 ( )
( ) ( ) 0

( ) ( ) ( ) E ( )fp f d I f d I
µ ε+ <

= = =∫ ∫
x x

x x x x x x   (13) 
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Then 

 
1 1

1 1( )
C CN N

i iC C
f i ip I I

N N= =

= =∑ ∑x   (14) 

where ( )i iI I= x . The probability of failure at ix  is 

 ( )ˆP ( )r{ 1} P 0r{ }i i i iiI g eµ σ< = Φ −= == x   (15) 

where ( )i iµ µ= x  and ( )i iσ σ= x . And  

 Pr{ 0} 1i ieI = = −   (16) 

The expectation of the indicator at ix  is then 

 E( ) 1 Pr{ 1} 0 Pr{ 0} Pr{ 1}i i ii iI I I I e= ⋅ = + ⋅ = = = =   (17) 

And its variance is 

 ( )22 2Var( ) E( ) E( ) (1 )i i i i i i iI I e e eI e= = − =− −   (18) 

The indicator function is a random variable because the integration region 

( ) ( ) 0µ ε+ <x x  in Eq. (13) is random; fp  is also a random variable as suggested in Eq. 

(14).  

The randomness comes from the uncertainty in Kriging predictions. Then we 

propose to use the expectation of fp  for the estimate of the probability of failure, which 

is given by 

 
1 1

1 1E( ) ( )E
C C

f
iC

i

N N

C
i

i
p I e

N N= =

= =∑ ∑   (19) 

The error of the estimate can be measured by the variance of fp , which is 

computed by 
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 2 2
1 1 1

1 1Var( ) Var Va ) 2 Cov(( )r ,
C CC CN N N N

f i i j k
i jiC C j k

p I I
N N

I I
== >=

+
 

= =  
 

∑∑∑ ∑   (20) 

The variance accounts for the correlation between Kriging predictions through the term 

involving the covariance ov( , )C j kI I , which is derived as follows. 

 ) E( ) E( )E( ) Pr( 1,Cov( 1) E( )E( ),j k j k j k j k j k jk j kI I I I I eI I I I eI e= − = = = − = −   (21) 

In the above equation, ˆPr( ( ) 0,ˆ ( ) 0)j j kk ge g= < <x x  is the cumulative 

distribution function (CDF) of the bivariate normal distribution defined by means 

[ ],j kµ µ , standard deviations  [ ],j kσ σ , and correlation jkr . Therefore, 

 
1

2 2
1 1

(1 ) 2 (1 1Var( ) )
C C C C

f i i jk j k i
j k j

N N N N

i iC C

e e
N

ep e e c
N= >= =

 
− + 


=


= −∑ ∑∑ ∑   (22) 

where 

 
1,

(1 ) ( )
CN

i i i ij i j
j j i

c ee ee e
= ≠

= −− + ∑   (23) 

The standard deviation of fp  is then given by 

 
1

1=
C

fp

N

C
i

i
c

N
σ

=
∑   (24) 

3.2.2 A New Learning Function. The purpose of the learning function is to 

identify new TPs so that the error or Var( )fp  can be reduced.  As indicated in Eq. (22), 

each CP contributes to Var( )fp , and the contribution is different. The sum of the terms 

involving ix  in Var( )fp  is ic  in Eq. (23). We therefore define ic  as the contribution to 

Var( )fp  and use ic  as the learning function. The learning function represents the 

contribution of the uncertainty of the Kriging prediction at ix  to the overall uncertainty 
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in the estimate of fp . Note that the contribution also accounts for the correlation of the 

response at ix  with those at all the other CPs. Then we select the point that has the 

highest contribution to Var( )fp  as a new TP, which is therefore found by  

 
1,2, ,

, arg max { }
C

new Ck ii N
k c

=
= =x x



  (25) 

In the above equation, Ckx  is the k-th point of CPs 1 2( , , , )
CC N=x x x x . After the 

training point new Ck=x x  and its response )( newg x  are added to train the surrogate model, 

the standard deviation kσ  becomes zero [14, 15, 32], and then 

 
0, if 0
1, if 0

kk
k

kk

e
µµ
µσ

>  
= Φ − =   < 

  (26) 

Thus 

 (1 ) 0k ke e− =   (27) 

 
0, if 0

Pr{ 1, 1, 1,2, , }
Pr{ 1} , if 0

k
kj k j C

j j k
e I I j N

I e
µ
µ

>
= = = = =  = = <

   (28) 

and 

 
0 0, if 0

0
, if 0kj k j

j

k

j k
e e e

e e
µ
µ


− =  −

− >
=

<
  (29) 

Therefore, 

 0kc =    (30) 

This indicates that the contribution to Var( )fp  at the newly added TP becomes 

zero. Recall that this point has the highest contribution to Var( )fp  before it is added to 

TPs. Keep adding new TPs this way will provide the highest effectiveness way to reach 

convergence. 
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The learning function of DKM uses all the information of the Gaussian process, 

including its mean, variance, and correlation functions, while the IKM uses only the 

mean and variance functions of the Gaussian process. DKM is also more direct because it 

focuses on the probability of failure itself while IDM employs two steps – create an 

accurate surrogate model first and then calculate the probability of failure. As a result, the 

former method will be in general more effective than the latter method.  

If correlations are neglected, the new learning function of DKM is equivalent to 

the learning function of IKM that has been discussed in Sec. 2.3. IKM can therefore be 

regarded as a special case of DKM. The proof is given in the Appendix B. 

3.2.3 A New Convergence Criterion. If the error is small enough, the process of 

adding new TPs terminates, and then the final surrogate model is used to estimate the 

probability of failure. Let the allowable relative error of the probability of failure be ε . 

Assume the confidence is 1 α− , and then the confidence interval of the estimate is given 

by 1E ) ( 2)(
ff pp α σ−Φ± . Thus, the relative error is computed by 

 
1 1) ( 2) ) ( 2)E( E(

E( E() )
f ff p f p

f f

p p

p p

α σ α σ− −−
=

±Φ Φ
  (31)  

Letting 1 E( )(2)
fp fp εα σ−Φ < , we obtain the following convergence criterion: 

 1) (E( 2)
fp

fp
σ

α
ε

−≤
Φ

  (32)  

The convergence criterion is therefore given by the ratio of 
fpσ  to E( )fp . This 

convergence criterion is directly linked to the error of the estimate of the probability of 

failure, and such a direct link does not exist in IKM. 
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3.3 IMPLEMENTATION 

With the use of the full information of the Gaussian process, DKM will be in 

general more effective than IKM. Directly using the strategy of the new learning 

function, however, will be computationally intensive because of calculating the bivariate 

joint probabilities ije  ( , 1,2, , ; )Ci j N i j= ⋅⋅ ⋅ ≠  for all CPs. The number of such 

calculations is ( 1) / 2C CN N + . If the size of the CPs is 105, the number of calculations 

will be 5 5 910 (10 1) / 2 5 10+ ≈ × . (But note that ije  does not require calling the original 

limit-state function.) 

To avoid using all the CPs, we select a small portion of the CPs. The points in this 

small portion are called selected candidate points (SCPs). SCPs are selected based on two 

criteria: small errors in the estimate of fp  and high potential contributions to Var( )fp .  

Let the size of SCPs be SN  and the number of failures estimated by the surrogate 

model be FN  in the domain of SCPs. Then the probability of failure using SCPs is 

approximately given by 

 F

S
f

Np
N

=   (33) 

The error of this estimate is proportional to 
1 f

S f

p
N p
− 


, as indicated in Eq. (11). 

This shows that the higher is fp , the smaller is the error. For the first criterion or a 

smaller error, we therefore prefer a larger FN . Then we add all the CPs in the failure 

region to SCPs, and this means that SCPs contain all the CPs in the failure region. In 
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addition, to have a good balance between the two criteria, we make sure that 25% to 75% 

of the SCPs are in the failure region; namely  

 25% 75%F

S

N
N

≤ ≤   (34) 

The second criterion requires high potential contributions to Var( )fp . Recall that 

the contribution of a CP is given by 
1,

(1 ) ( )
CN

i i i ij i j
j j i

c ee ee e
= ≠

= −− + ∑ . To avoid calculating 

the bivariate probabilities ije  ( 1,2, , ,  )Cj N j i= ≠ , we only consider the first term 

(1 )i ie e− , which is the variance of the indicator function at ix . As a result, the CPs that 

have the highest variances of indicator functions will be added to the set of SCPs, and the 

number of these points is FSN N− . The SCPs therefore consist of all the points in the 

failure region and other points with the highest indicator function variances in the safe 

region. 

After the set of SCPs is formed, the learning function at each point of SCPs is 

calculated, and the SCP with the highest learning function value will be chosen as a new 

TP. Recall that evaluating the learning function needs to calculate bivariate probabilities. 

With the use of SCPs, the total number of bivariate probability calculations will be 

reduced to ( 1) / 2S SN N + . If 200 SCPs are used, the total number of bivariate probability 

calculations will be 200(200 1) 202 0/ ,10+ = , which is much less than the number when 

all CPs are used.  

We now discuss how to use the learning function to identify a new TP from SCPs.  
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The learning function now becomes 

 
1,

(1 ) ( )
SN

i i i ij i j
j j i

c ee ee e
= ≠

= −− + ∑   (35) 

where 1,2, , Sj N=  . ie  is found using Eq. (17).  

Denote the SCPs by Sx . ije  is the joint probability { }ˆ ˆPr ( ) 0, ( ) 0Si Sjg g< <x x , 

which is the joint CDF of the bivariate normal distribution 2( , )ij ijN μ Σ  at (0,0), and Six  

and Sjx  are the i-th and j-th components of Sx , respectively. ijμ  is given by 

 ( ), ( )ij Si Sjµ µ =  μ x x   (36) 

and ijΣ  is given by  

 
2

2

( ) Cov( , )
Cov( , ) ( )

Si Si Sj
ij

Sj Si Sj

σ
σ

 
=  
 

x x x
Σ

x x x
  (37) 

where Cov( , ) Cov( , )Sj Si Si Sj=x x x x , and Cov( , )Si Sjx x  is given by [33] 

 

1

12 1 1

1

( , ) ( ) ( )

Cov( , ) ( ) ( )

( ) ( )

T
Si Sj Si Sj

TT T
Si Sj Si Si

T
Sj Sj

R

σ

−

−− −

−

 −
     = + −    
 

 × −   

x x r x R r x

x x f x F R r x F R F

f x F R r x

  (38) 

The symbols in the above equation are the same as those in Appendix A.  

 

 

Figure 3.1 Domains of Cx , Sx  and Fx  

 Cx   

 Sx   

Fx
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Figure 3.1 shows the domains of CPs, SCPs, and the failure region, denoted by 

Cx , Sx  and Fx , respectively. From the figure, we have 

 Pr( ) Pr( , ) Pr( | ) Pr( )f F S F F S Sp = ∈ = ∈ ∈ = ∈ ∈ ∈x x x x x x x x x x x x   (39) 

where Pr( | )F S∈ ∈x x x x  is the probability of failure in the domain of Sx . Denoting it by 

fSp  and using Eqs. (19) and (24), we have 

 
1

1( )
SN

iS
fS iE p e

N =

= ∑   (40) 

and  

 
1

1=
S

fSp

N

S
i

i
c

N
σ

=
∑   (41) 

For a given set of Sx , Pr( )S∈x x  can be estimated by /S CN N  and can be treated as a 

constant. Then 

 ( ) ( ) Pr( )f fS SE p E p= ∈x x   (42) 

 = Pr( )
f fS Sp pσ σ ∈x x   (43) 

The convergence criterion in Eq. (32) then becomes 

 1( ) E ) ( 2( )
fS fp p

fS fE p p
εσ σ

α−= ≤
Φ

  (44) 

This means that we can just use the SCPs to determine the convergence criterion. 

After the convergence criterion is satisfied, MCS is performed on the final surrogate 

model to evaluate the probability of failure.  
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The DKM procedures discussed above are summarized below. The flow chart of 

the DKM is provided in Figure 3.2. 

 

 

Figure 3.2 Flowchart of DKM 
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4. EXAMPLES 

In this section, we present one numerical example and four engineering examples. 

These problems cover a wide range of applications. While the first example demonstrates 

the implementation process of DKM, the four other engineering problems evaluate the 

applicability of DKM for various situations, including vibration in Example 2, structural 

analysis in Example 3, mechanical component design in Example 4, and mechanism 

analysis in Example 5. All the five examples involve nonlinear limit-state functions. To 

build the initial surrogate model, we use Latin Hypercube sampling [34] to generate the 

initial TPs, and the sample size is 12 as suggested in [18]. We also use the number of 

limit-state function calls ( FCN ) to measure the efficiency and the following percentage 

error to measure the accuracy:  

 100%
MCS

f f
MCS
f

p p
p

ε
−

= ×   (45) 

where MCS
fp  is from MCS with a large sample size and the original limit-state function. 

MCS
fp  is therefore regarded as an accurate solution for accuracy comparison. fp  is from a 

non-MCS method; namely, DKM, IKM, or AK-MCS. Since both DKM and IKM are 

based on random sampling, their results are also random. We therefore run DKM and 

IKM 20 times independently and then report their average results.  

To have a fair comparison between DKM and IKM, ideally, we should 

incorporate the same convergence criteria. The direct equivalency of the convergence 

criteria between the two methods, however, does not exist. Thus, we implement the 

following strategy for the comparison.  
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1) For DKM, set the confidence in Eq. (31) to be 98%, or 0.02α = , and the 

allowable error to be 0.02ε = . The number of SCPs is 200. 

2) Run DKM until convergence, and record the number of function calls FCN . 

3) Use the same value of FCN  and initial TPs to run IKM. This means that if the 

total number of TPs reaches FCN , IKM terminates. 

Repeat the above steps 20 times and report the average fp , ε , FCN , and the 

standard deviation of fp . With the above strategy, the accuracy of the two methods is 

compared with the same number of TPs or function calls.  

As discussed previously, it is not easy to estimate the error of the estimated 

probability of failure if we use the existing Kriging-based reliability methods. DKM can 

easily overcome this drawback because the process of model training terminates once the 

estimated error of the probability of failure is small enough. To show this advantage, we 

also perform AK-MCS with its original procedure [18] 20 times using the same CPs as 

those of DKM. The parameters we use for AK-MCS are those in [18], and they are 

2U =  and 5%cov = . Then the results from MCS, DKM, IKM, and AK-MCS are put 

together in a table for an easy comparison. 

The process of building the surrogate model actually takes place in the space of 

independent random variables that follow standard normal distributions. This means that 

all the random variables are transformed into standard normal variables during the 

analysis. This transformation makes programming the process more convenient, and it 

does not affect the performance, such as the accuracy and efficiency, of the reliability 

analysis. 
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4.1 EXAMPLE 1 

A highly nonlinear performance function is defined by [1]  

 
2

1 1 25 ( 4)( 1)( ) sin 2
2 20
x x xg + −

= + −x   (46) 

where 1x  and 2x  are independently and normally distributed with 2
1 (1.5, 1 )x N , 

2
2 (2.5, 1 )x N . 

The contour of the limit-state function is plotted in Figure 4.1, which shows the 

high nonlinearity of the limit-state function. This figure also shows the initial TPs, added 

TPs, CPs, and SCPs in the last iteration for one of the 20 DKM runs.  The procedure is as 

follows. 

1) Generate 12 initial TPs, indicated by pentagrams in Figure 4.1, and use them to 

build an initial surrogate model.  

2) Generate CN  sample points as CPs, denoted by solid dots in Figure 4.1. CN  is 

determined by Eq. (34), where 200SN =  remains the same for all the examples. 

Then all the new SCPs and TPs, indicated by stars and circles, respectively, in 

Figure 4.1, will be selected from the CPs. 

3) Select SCPs from CPs based on the state of each CP (either in the safe or failure 

region) and the variance of the indicator function.  

4) Select a new TP from SCPs if the point has the highest contribution. 

5) Add the new TP and its response to the existing set of TPs; update the surrogate 

model.  
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Steps 2) through 5) are repeated until convergence. The contour of the final 

surrogate model at the limit state is plotted in Figure 4.2, which shows that the surrogate 

model is accurate in the region where the random variables have high probability density 

and is less accurate in the region where the random variables have low probability 

density. This feature keeps the number of TPs minimum. Then Eq. (19) is used to 

calculate the probability of failure using the final surrogate model and the same CPs. 
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Figure 4.1 Sample points of DKM 
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After DKM is completed, the total number of limit-state function calls FCN , 

which is also the total number of TPs, is recorded. Then with the same initial TPs, IKM is 

performed, and its TPs are added iteratively until the total number of TPs reaches the 

recoded number FCN . Then Eq. (12) is used to calculate the probability of failure using 

the final surrogate model and the same CPs.  
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Figure 4.2 Final surrogate model  

 

For comparison, the initial TPs, added TPs, and CPs of IKM are also plotted in 

Figure 4.3. By comparing Figures 4.1 and 4.3, we see that patterns of the added TPs of 

IKM and DKM are similar even though the two methods generate different TPs. The TPs 
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of IKM are generated to minimize the error of the wrong sign of the limit-state function 

while the TPs of DKM are generated to minimize the error in the estimate of the 

probability of failure. As discussed previously, both the two TP updating strategies help 

increase the accuracy, and this is the reason that the two patterns are similar; the two 

strategies also have different foci, and this is the reason that the individual TPs from the 

two strategies are different. As indicated in the results, the strategy of DKM makes the 

updating process more efficient. 
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Figure 4.3 Sample points of IKM 
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After DKM and IKM are performed 20 times, the average results are calculated 

and are shown in the row of DKM and IKM, respectively, in Table 4.1. With the same 

average 26.3 function calls or the same efficiency, DKM is more accurate than IKM. The 

results also show that DKM is more robust since the standard deviation of fp  is smaller 

than that of IKM and AK-MCS. 

The original AK-MCS is also performed 20 times with the same initial TPs as that 

of DKM or IKM. The results are given in the last row of Table 4.1. Both its average 

errors and number of function calls are larger than those of DKM and IKM. AK-MCS is 

less accurate for this problem because it requires a sample size smaller than that of DKM. 

AK-MCS is also less efficient because it requires a minimum value 2U =  (or the 

minimum probability of wrong sign = 0.0228). This requirement does not have a direct 

link to the error of probability of failure, and it is satisfied with more function calls than 

that of DKM.   

 

Table 4.1 Average results of example one 

Method fp  
fpσ   (%)ε  FCN  

MCS 23.1293 10−×   N/A N/A 61 10×  

DKM 23.1393 10−×  42.4064 10−×  0.63 26.30 

IKM 23.1315 10−×  43.5857 10−×  0.82 26.30 

AK-MCS 23.1351 10−×  44.8611 10−×  1.24 39.45 
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4.2 EXAMPLE 2 

Example 2 involves a nonlinear oscillator [18, 35-37] shown in Figure 4.4. With 

six independently and normally distributed random variables, the performance function 

reads as 

 1 0 1
2
0

2( ) 3 sin
2

F w tg r
mw

 = −  
 

x   (47) 

where 1 2 1 1( , , , , , )m c c r F t=x , and 0 1 2( ) /w c c m= + . Table 4.2 provides the distributions. 

 

Table 4.2 Random variables of example two 

Variable Mean Standard 
deviation Distribution 

m   1 0.05 Normal 

1c   1 0.1 Normal 

2c   0.1 0.01 Normal 

r  0.5 0.05 Normal 

1F   1 0.2 Normal 

1t  1 0.2 Normal 

 

 

 

Figure 4.4 A nonlinear oscillator 
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The results are shown in Table 4.3, which indicate that DKM has higher accuracy 

than IKM, and both DKM and IKM outperform AK-MCS. 

 

Table 4.3 Average results of example two 

Method fp  
fpσ  (%)ε  FCN  

MCS 22.8793 10−×  N/A N/A 62 10×  

DKM 22.8641 10−×  43.1771 10−×  0.83 40.95 

IKM 22.8628 10−×  42.4503 10−×  0.96 40.95 

AK-MCS 22.8430 10−×  45.0794 10−×  1.63 105.05 
 

 

4.3 EXAMPLE 3 

A roof truss structure [38, 39] is shown in Figure 4.5. Assume the truss bars bear 

a uniformly distributed load q , which can be transformed into nodal load /4P ql= .  

 

Table 4.4 Random variables of example three 

Variable Mean Standard 
deviation Distribution 

(N/m)q   20,000 1400 Normal 

(m)l   12 0.12 Normal 

2(m )sA   49.82 10−×   55.982 10−×  Normal 

2(m )cA  0.04 0.0048 Normal 

(Pa)sE   111 10×   96 10×  Normal 

(Pa)cE  102 10×  91.2 10×  Normal 
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In Figure 4.5, cA  and sA  are the cross sectional areas of the reinforced concrete 

and steel bars, respectively, cE  and sE  are their corresponding elastic modulus, and l  is 

the length of the truss.  

 

 

 

Figure 4.5 A roof truss structure 

 

The perpendicular deflection of the truss peak node C  is calculated by 

 
2 3.81 1.13

2 c c s s

qlC
A E A E

 
∆ = + 

 
  (48) 
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A failure event occurs when the perpendicular deflection C∆  exceeds 3 cm . The 

performance function is then defined by 

 
2 3.81 1.13( ) 0.03

2 c c s s

qlg
A E A E

 
= − + 

 
x   (49) 

where ( , , , , , )s c s cq l A A E E=x . All the random variables are independent, and their 

distributions are given in Table 4.4.  

Table 4.5 shows the average results from 20 runs, which indicate that DKM is 

more accurate than IKM and is also more accurate and efficient than AK-MCS. 

 

Table 4.5 Average results of example three 

Method fp  
fpσ  (%)ε  FCN  

MCS 39.4890 10−×  N/A N/A 62 10×  

DKM 39.5482 10−×  41.3699 10−×  1.25 43.25 

IKM 39.5570 10−×  42.3177 10−×  1.90 43.25 

AK-MCS 39.3935 10−×  42.7093 10−×  2.31 92.40 
 

 

4.4 EXAMPLE 4 

The cantilever tube [40] shown in Figure 4.6 is subjected to external forces 1F , 

2F , P , and torsion T . The performance function is defined as  

 maxyg S σ= −   (50) 
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in which yS  is the yield strength, maxσ  is the maximum von Mises stress on the top 

surface of the tube at the origin and is given by 

 2 2
max 3x zxσ σ τ= +   (51) 

The normal stress xσ  is calculated by  

 1 1 2 2sin sin
2x

P F F Md
A I
θ θσ + +

= +   (52) 

where the first term is the normal stress due to the axial forces, and the second term is the 

normal stress due to the bending moment M , which is given by 

 1 1 1 2 2 2cos cosM F L F Lθ θ= +   (53) 

 

Table 4.6 Random variables of example four 

Variable Mean Standard 
deviation Distribution 

(mm )t   5 0.1 Normal 

(mm)d   42 0.5 Normal 

1 (mm)L   120 1.2 Normal 

2 (mm)L  60 0.6 Normal 

1 (kN)F  3 0.3 Normal 

2 (kN)F  3 0.3 Normal 

(kN)P  12 1.2 Normal 

(N m)T ⋅   90 4 Lognormal 

(MPa)yS  145 6 Lognormal 
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The cross sectional area of the tube is ( )22 2
4

A d d tπ  = − −  , and the moment of inertia 

of the tube is ( )44 2
64

I d d tπ  = − −  . The torsional stress zxτ  at the origin is 
2zx
Td

J
τ = , 

where 2J I= . The distributions of the independent random variables are given in Table 

4.6.  

The results from Table 4.7 also show the higher accuracy of DKM. 

 

 

Figure 4.6 A cantilever tube 

 

Table 4.7 Average results of example four 

Method fp  
fpσ  (%)ε  FCN  

MCS 36.1788 10−×  N/A N/A 65 10×  

DKM 36.1552 10−×  57.8757 10−×  0.92 68.65 

IKM 36.1222 10−×  57.1696 10−×  1.15 68.65 

AK-MCS 36.0815 10−×  41.7590 10−×  2.46 123.15 
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4.5 EXAMPLE 5 

This example involves a slider-crank mechanism [27]. The crank is a disc with a 

radius of 1x  as shown in Figure 4.7. The angular velocity is 1ω =  rad/s, and the length of 

the coupler is 2x . The motion output is the displacement of the slider, which is given by 

 2 2
1 2 1cos ( sin )S x x xθ θ= + −   (54) 

where 1x  and 2x  are independently and normally distributed with 2
1 (100,0.1 ) mmx N  

and 2
2 (150,0.1 ) mmx N . θ  is the motion input defined by tθ ω= . The required 

motion output is the nominal displacements of the slider, given by 

 2 2
1 2 1cos ( sin )RS µ θ µ µ θ= + −   (55) 

where 1µ  and 2µ  are the mean values of 1x  and 2x , respectively.  

 

 

Figure 4.7 A slider-crank mechanism 
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The motion error should not be greater than the allowable motion error 0.55 mm. 

The system is required to produce accurate motion output within a full motion cycle 

2 ][0,θ π∈ . Thus, the motion error is 

 RS S S∆ = −   (56) 
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Figure 4.8 Maximum motion error of [0,2 ] sπ  

 

Table 4.8 Average results of example five 

Method fp  
fpσ  (%)ε  FCN  

MCS 31.2780 10−×  N/A N/A 72 10×   

DKM 31.2627 10−×  51.8078 10−×  1.45 33.60 

IKM 31.2598 10−×  52.5607 10−×  1.81 33.60 

AK-MCS 31.2935 10−×  55.9168 10−×  3.77 57.20 
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Thus, the maximum motion error on [0,2 ]π  should not exceed 0.55 mm, and then 

the performance function is defined by 

( ){ }
max

2 2 2 2
1 1 2 1 2 1

(

0.55 max cos ( sin ) ( sin )

)

, [0,2 ]

g S

x x x
θ

ε

µ θ µ µ θ θ θ π

= − ∆

= − − + − − − ∈

x
 (57) 

The maximum motion error maxS∆  is shown in Figure 4.8, and the failure region 

is shown in Figure 4.9. The two figures indicate the irregularity and nonlinearity of the 

performance function and the failure region, for which traditional reliability methods, 

such as the FORM and SORM will not be accurate. The DKM works quite well for this 

problem, as indicated by the results in Table 4.8. The results show that DKM is more 

accurate than IKM. 
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Figure 4.9 The failure region 
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5. CONCLUSIONS 

The efficiency of reliability analysis is critical because it calls the associated 

limit-state function repeatedly. Kriging-based reliability methods are computationally 

efficient. As a result, they have increasingly been researched and applied, especially for 

highly nonlinear limit-state functions, for which the traditional First and Second Order 

Reliability Methods are not applicable. This study clearly demonstrates that the efficiency 

can be further improved by accounting for the dependencies between Kriging predictions.  

The new dependent Kriging method (DKM) in this work improves the efficiency 

with its three new components. The first component is the new formula of calculating the 

probability of failure. The formula uses the average probability of failure at all the Monte 

Carlo samples, as well as both means and standard deviations of the Kriging predictions. 

The second component is the new learning function for selecting training points. For a 

single sample point, the learning function considers not only the contribution of the point 

itself to the error of the probability of failure, but also those of the dependencies from all 

the other points. The third component is the new stopping criterion that guarantees a good 

balance between accuracy and efficiency. The five examples indicate that DKM is more 

accurate than the Kriging-based methods that use only independent Kriging predictions. 

 The future work includes the following directions: (1) Improve the performance 

of DKM for problems with an extremely low probability of failure. (2) Extend DKM for 

system reliability analysis with at least two limit-state functions. (3) Incorporate DKM in 

reliability-based design, and (4) develop new DKM for time-dependent reliability 

analysis.    
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APPENDIX A 

KRIGING METHOD 
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There are several models for the correlation function. In this work, we used the 

commonly used Gaussian correlation function defined by [14, 15, 32] 

 2

1

( , ) exp ( )
d

k ik jk
k

i jR x xθ
=

 = − −  
∑x x   (58) 

where ikx  and jkx  are the k-th coordinates of points ix  and jx , respectively. d  is the 

dimensionality of x , and kθ  indicates the correlation between the points in dimension k . 

The Kriging prediction and Kriging variance are computed by [14] 

 1ˆ ˆ( ) ( ) ( ) ( )T T
Gµ

−= + −x f x β r x R y Fβ   (59) 

 
1

2 2
1 1 1 1

1 ( ) ( )
ˆ( )

( ) ( ) ( ) ( ) ( )

T

TG Z T T T
σ σ

−

− − − −

 − =  
   + − −     

r x R r x
x

F R r x f x F R F F R r x f x
  (60) 

where y  is a vector of responses at the training points, F  is a m p×  matrix with rows 

( )Tf x , m  is the number of sample points, ( )⋅r  is the correlation vector containing the 

correlation between the x  and each of the m  training points 

 [ ]1 2( ) ( , ), ( , ), , ( , ) T
mR R R= ⋅⋅⋅r x x x x x x x   (61) 

R  is the correlation matrix, which is composed of correlation functions evaluated at each 

possible combination of the m  sample points. 

 ( , ) , 1 ;1i jR i m j m = ≤ ≤ ≤ ≤ R x x   (62) 

β̂  is the generalized least square estimate of β  given by [14, 15] 

 T 1 1 T 1ˆ ( )− − −=β F R F F R y   (63) 

and the Maximum Likelihood Estimation of the process variance is 

 2 11 ˆ ˆˆ ( ) ( )T
Z m

σ −= − −y Fβ R y Fβ   (64) 
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APPENDIX B 

 IKM AS A SPECIAL CASE OF DKM
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We herein show that the learning function of IKM (AK-MCS) is a special case of 

DKM. The learning function of DKM is 
1,

(1 ) ( )
N

i i i ij i j
j j i

e ec e ee
= ≠

− −+= ∑ , which is 

maximized for searching for a new TP. If no correlations are considered, the learning 

function reduces to  

 (1 )i i ic e e= −   (65) 
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Figure A.1 The curve of ic  with respect to iU  
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IKM (AK-MCS) uses the probability of wrong sign or i
i

i

U
µ
σ

=  as its leaning 

function. The leaning function is minimized for searching for a new TP. Recall that 

( )i i ie µ σΦ −= , and then 

 
( ) ( )
( ) ( )

if 0

otherw

1

e1 is
i i i

i
i i

U U
c

U U

µΦ − −Φ −  
Φ −

 ≥=
Φ  




  (66) 

Since ( ) ( )1i iU UΦ − = −Φ , ( ) ( ) ( ) ( )1 1i i i iU U U UΦ − −Φ − = −Φ Φ       , we have 

 ( ) ( )1i i ic U U−Φ Φ  =   (67) 

ic  is monotonic with respect to iU  as shown in Figure A.1. This indicates that 

maximizing ic  in DKM without considering correlations is equivalent to minimizing iU  

in IKM. The learning function of IKM is therefore a special case of that of DKM. 
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ABSTRACT 

It is difficult to accurately estimate system reliability when component limit-state 

functions are highly nonlinear. This work develops a new system reliability method that 

combines Monte Carlo simulation (MCS) and the Kriging method to achieve high 

accuracy while maintaining good efficiency. Using the MCS sample points as potential 

training points, the proposed Kriging method creates cheaper surrogate models of 

component limit-state functions in order to reduce the error (variance) of the system 

reliability prediction. New training points are gradually added until the error is 

sufficiently small. The MCS point with the highest contribution to the variance of the 

system reliability prediction is selected as a new training point. Since the dependence 

between Kriging predictions at the MCS sample points is considered, the variance of the 

system reliability prediction is accurately calculated, producing an accurate estimation of 

the contribution of each MCS sampling point to the variance and therefore an accurate 

system reliability prediction. Good accuracy and efficiency are demonstrated by three 

examples. 
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1. INTRODUCTION 

With the increasing complexity of engineering systems, the cost of system failures 

may also increase sharply. In order to maintain low lifecycle cost and avoid tragic system 

failures, it is vital to predict the system reliability accurately and efficiently in the design 

process. System reliability is the probability that a system performs its intended function 

without failures under given working conditions. With the system reliability available, 

designers can make more reliable decisions on the selection of design variables, system 

maintenance plans, and warranty policies [1, 2].  

Tremendous efforts have been dedicated to accurate and efficient system 

reliability prediction. In general, system reliability analysis methods can be classified into 

two groups: analytical methods and sampling-based methods [3]. The most popular 

analytical methods are the First and Second Order Reliability Methods (FORM and 

SORM) [4-7] due to their good balance between accuracy and efficiency [8]. But for 

highly nonlinear limit-state functions, a significant error could be introduced using 

FORM and SORM.  

Sampling-based methods include Monte Carlo simulation (MCS) [4], importance 

sampling [9], and surrogate model based methods [10]. MCS is easy to use and is 

accurate if sufficient samples are drawn regardless the nonlinearity of limit-state 

functions. Importance sampling methods [11-14] could be used to reduce the 

computational cost because it generates more samples in the failure region. Most 

importance sampling methods require the Most Probable Point (MPP) [4-7] to center the 

sample distributions. Searching for the MPP is expensive because of an optimization 

process.  
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Surrogate model based methods reduce the computational cost by creating 

surrogate models or metamodels [10] for limit-state functions. A surrogate model is much 

more computationally efficient than its original limit-state function model. The key of 

using a metamodel is to make it accurate at an affordable computational cost. The general 

process of metamodeling starts from generating a small number of initial sample 

(training) points by design of experiments (DOE) [15]. Based on these samples, an initial 

surrogate model is built. And then more training points are added to improve the 

accuracy. Learning functions are employed to select the best training points intelligently 

and refine the surrogate model in a most efficient manner.  

Popular metamodeling techniques include the polynomial response surface [16], 

neural networks [17], support vector machines [18], polynomial chaos expansion [19, 

20], and Kriging [21-23]. Kriging is an exact interpolation method, and this means that 

the prediction of an existing training point is the exact value of the response at the point. 

Besides, due to its stochastic characteristics, Kriging provides not only the prediction of 

an untried point, but also the variance of the prediction. The variance indicates the 

uncertainty of the prediction. Based on Kriging, Jones et al. developed the Efficient 

Global Optimization (EGO) method [24]. EGO uses the Expected Improvement Function 

(EIF) to achieve a balance between exploiting areas of the design space where good 

solutions have been found, and exploring the design space where the uncertainty is high. 

Based on EGO, the Efficient Global Reliability Analysis (EGRA) [25] method was 

proposed for system reliability analysis with multiple failure modes [26]. EGRA uses the 

Expected Feasibility Function (EFF) to choose new training points in the vicinity of the 

limit state and helps build an accurate surrogate model with less function evaluations. 
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EGRA needs global optimization to find the optimum training point. Recently, Echard et 

al. proposed an active learning method to avoid global optimization. The method takes 

advantage of Kriging and Monte Carlo simulation (AK-MCS) [27] by choosing new 

training points from a pre-sampled MCS population; as a result, no global optimization is 

needed. Fauriat and Gayton [28] then applied AK-MCS to the system reliability analysis. 

Since the above mentioned methods treat Kriging predictions at different points 

independently, they are referred to as Independent Kriging Methods (IKM). As a matter 

of fact, the predictions of Kriging are realizations of a Gaussian process and therefore are 

dependent on one another. Considering the dependence could further improve the 

efficiency and accuracy. Based on this strategy, Zhu and Du proposed a component 

reliability method with Monte Carlo simulation and dependent Kriging predictions, called 

the Dependent Kriging Method (DKM) [29]. Accounting for dependence between 

Kriging predictions and focusing directly on the accuracy of reliability estimation, DKM 

achieves better accuracy and efficiency than IKM.  

The existing DKM is applicable only for component reliability analysis where 

only one limit-state function is involved. The objective of the present study is to extend 

DKM to system reliability analysis. With multiple limit-state functions, the extension 

requires a significant further investigation. The significance of the new development in 

this work includes the following: (1) Create accurate surrogate models for only limit-state 

functions that contribute most to the system reliability. (2) Define a new learning function 

that identifies the best training points and the importance of limit-state functions so that 

the computational burden is lifted without jeopardizing the accuracy of reliability 
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estimation (3) Develop an efficient MCS procedure that accommodates dependent 

Kringing predictions at different MCS sample points. 

 We briefly review the Kriging method and DKM in Section 2. Then we discuss 

the proposed dependent Kriging method for systems (DKM-SYS) in Section 3 and 

present three examples in Section 4. Section 5 provides conclusions and future work. 
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2.  LITERATURE REVIEW 

In this section the three methods on which this study is based are reviewed.  

2.1 KRIGING METHOD 

In the Kriging method, a deterministic ( )y g= x  is assumed to be a realization of 

a Gaussian process given by [21] 

 ( ) ( ) ( )TG Z= +x f x β x   (1) 

stochastic component of the Gaussian is ( )Z ⋅ , which is a stationary Gaussian process 

with zero mean and the covariance defined by 

 2( ), ( ) ( , )i j i jZCov Z Z Rσ  = x x x x   (2) 

where 2
Zσ  is the variance of the Gaussian process, and ( , )R ⋅ ⋅  is the correlation function. 

In this study, we use the Gaussian correlation [21, 22] defined by 

 2

1

( , ) exp ( )
d

k ik jk
k

i jR x xθ
=

 = − −  
∑x x   (3) 

where ikx  and jkx  are the k-th components of ix  and jx , respectively. d  is the 

dimensionality of x , and kθ  is a parameter that indicates the correlation between the 

points in dimension k . Then the response predicted by Kriging follows a Gaussian 

distribution [21]  

 ( )2ˆ ˆ( ) ( ), ( )G Gy g N µ σ= x x x   (4) 

where the mean ( )Gµ ⋅  and 2 ( )Gσ ⋅  are given by [22] 

 1( ) ( ) ( )T
G h hµ −= + −x r x R y 1   (5) 

 
21

2 2 1
1

1 ( )
ˆ( ) 1 ( ) ( )

T
T

G Z Tσ σ
−

−
−

  −  = − + 
  

1 R r x
x r x R r x

1 R 1
  (6) 
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in which y  is a column vector of responses of current samples; ( )⋅r  is the vector of 

cross-correlations between the m  observations and the prediction, and 

[ ]1( ) ( , ), , ( , ) T
mR R= ⋅⋅ ⋅r x x x x x ;  R  is the correlation matrix defined by 

( , )i jR =  R x x ,1 ;1i m j m≤ ≤ ≤ ≤ ; and 2ˆZσ  is the maximum likelihood estimation of 

the process variance 

 2 11ˆ ( ) ( )T
Z h h

m
σ −= − −y 1 R y 1   (7) 

2.2 AK-SYS  

AK-MCS [27] is a Kriging-based component reliability method. Its extension to 

system reliability is called AK-SYS [28]. The method creates an initial surrogate model 

with initial training points. New training points are then added one by one for updating 

the model. A new training point is selected by using a learning function, which is defined 

by [27, 28] 

 
( )

( )
( )

G

G

U
µ
σ

=
x

x
x

  (8) 

U  is related to the likelihood of making a mistake on the sign of the prediction. The 

smaller is U , the higher is the likelihood. Consequently, the sample point with the 

smallest U  is selected as a new training point to eliminate the largest likelihood of wrong 

sign estimation. For a system with multiple components, composite learning function *U  

is used and is given by * * *( ) ( ) / ( )G GU µ σ=x x x . For series systems, * ( )Gµ x  is the 

minimum value among the predictions of all components at point x , and * ( )Gσ x  is the 

corresponding standard deviation.  
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The process of AK-SYS is as follows: 

(1) Generate Monte Carlo samples for input random variables MCSx . 

(2) Generate a small number of initial training points (TPs), denoted by kTx  and 

evaluate limit-state function ( )kT k kTg=y x , where 1,2, ,k n=  , and n  is the 

number of components. 

(3) Build surrogate models ˆ ˆ ( )k k kTy g= x . 

(4) Evaluate the composite U  function over MCSx  using the predictions and standard 

deviations from ˆ ˆ ( )k k kTy g= x . 

(5) Find the minimum value of the composite learning function *
minU . 

(6) Check the convergence. If converged, perform reliability analysis based on 

ˆ ˆ ( )k k kTy g= x ; otherwise, go to Step (7). 

(7) Identify a new TP newx  with the minimum composite learning function value 

*
minU . 

(8) Calculate the component U  value at newx  and check if 2kU < .  

(9) Evaluate the limit-state function at newx , , ( )k new k newy g= x  only if the component 

U  value at this point is smaller than 2. 

(10) Add newx  and the responses to the existing sample sets, and update the surrogate 

models. 

Steps (3) through (10) are repeated until convergence. The flowchart of the 

process is provided in Figure 2.1.   
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The size of MCSx  is determined by the estimate of probability of system failure 

Sfp  and the coefficient of variation 
SfpCOV . The relationship is given by 

 
1

Sf

Sf
p

Sf MCS

p
COV

p N
−

=   (9) 

where MCSN  is the size of MCSx . MCSN  may vary so that 5%
SfpCOV ≤ . MCSN  must be 

increased if 
SfpCOV  is greater than 5%. Note that for brevity, the step of adjusting MCSN  

is not included in the above procedure and flowchart. 

 

 

Figure 2.1 Flowchart of AK-SYS 
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composite *U    Compute 

( ) / ( )k k new k newU µ σ= x x   
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2.3 DEPENDENT KRIGING METHOD FOR COMPONENT RELIABILITY 

AK-MCS is an independent Kriging method (IKM) [29] because it does not 

consider the dependence between predictions at MCSx . The dependent Kriging method 

(DKM) [29] accounts for such dependence so that new training points can be selected 

more effectively.  

Without considering the dependence, IKM uses the mean predictions only and it 

uses the following indicator function 

 
1, ( )

( )
0, otherw

0
ise

I
µ <

= 


x
x   (10) 

Then fp  is estimated by 

 
1

1 ( )
N

f i
i

p I
N =

= ∑ x   (11) 

where N  is the number of samples.  

DKM uses all the information of the surrogate model ˆ ˆ( ) ( ) ( )y g µ ε= = +xx x , 

where ( )ε x  is a Gaussian process and ( )2( ) ~ 0, ( )Nε σx x  with correlation R . DKM 

computes fp  by 

 [ ]
( ) ( ) 0

( ) ( ) ( ) E ( )fp f d I f d I
µ ε+ <

= = =∫ ∫
x x

x x x x x x   (12) 

in which ( )I ⋅  is the indicator function defined by 

 
ˆ( )ˆ1,

( )
0, otherwi

( ) ( )
se

0
I

gy µ ε+= =
= 

<



x x
x

x
  (13) 

fp  is a random variable since the domain of integration in Eq. (12) is random. The 

expectation of fp  is used as the estimate of the probability of failure [29] 
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 [ ]
1 1

1 1N

i
i i

N

i
fE p E I e

N N= =

  = =  ∑ ∑   (14) 

where 

 ( )
( )

i
i

i

e µ
σ

 
= Φ − 

 

x
x

  (15) 

in which ( )Φ ⋅  is the cumulative distribution function (CDF) of a standard normal random 

variable. The variance of fp  is used to measure the error of the estimate of fp  and is 

given by [29] 

 
1

2
1 ,

1Var 1 ( )( )f i i ij i j
i

N

i i

N

j
p e ee e e

N = = ≠

  = −
 

− + 
 

 ∑∑   (16) 

in which { }ˆPr ( ) 0,ˆ ( ) 0i i jje g g= < <x x  is the CDF of the bivariate normal distribution 

defined by means [ ],i jµ µ , standard deviations [ ],i jσ σ , and correlation ijr . Eq. (16) 

indicates that the error or Var fp    is the sum of N  terms of the N  sample points. Each 

term can be considered as the contribution from each sample. The contribution of one 

sample is defined as the learning function 

 
1,

(1 ) ( )
N

i i i ij i j
i j i

ec ee ee
= ≠

− −+= ∑   (17) 

The learning function uses all the information of a Gaussian process, including its 

mean, variance, and correlation. As a result, it provides a more accurate and efficient way 

of selecting training points to build surrogate models. In [29], selected candidate points 

(SCPs) are also used to relieve the computational burden of the bivariate joint probability 

evaluation in Eq. (17). ije  is not calculated for all points in MCSx , and a smaller number of 

points in MCSx  are selected to form the SCPs. Then the evaluations of ije  is performed on 
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SCPs only. The SCPs are selected based on two criteria. The first criterion is a small error 

in the estimate of fp , and this criterion requires a significant number of points fall into 

the failure region. The second criterion is a high contribution to Var fp   . Therefore the 

SCPs consist of all the points in the failure region and other points with the highest 

indicator function variances in the safe region. Details of the DKM implementation is 

given in [29]. 
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3. DEPENDENT KRIGING METHOD FOR SYSTEM RELIABILITY 

The new dependent Kriging method for systems (DKM-SYS) is the extension of 

component DKM [29] to system reliability analysis. Similar to the component DKM, 

DKM-SYS consists of the same components: the estimate of probability of failure, a 

learning function, a stopping criterion, and an implementation process. 

3.1 ESTIMATE OF Sfp     

We now use a series system with three failure modes for demonstration. If one 

failure mode occurs, the system fails, and then the probability of system failure is defined 

by 

 { }1 2 3Pr ( ) 0 ( ) 0 ( ) 0Sfp g g g= < < <x x x    (18) 

where   denotes a union. The failure region Ω  is therefore 

 { }1 2 3| ( ) 0 ( ) 0 ( ) 0g g gΩ = < < <x x x x    (19) 

If a point x  falls into Ω , the system fails. Thus Sfp  is computed by 

 [ ]( ) ( ) ( ) ( )Sf S Sp f d I f d E I
Ω

= = =∫ ∫x x x x x x   (20) 

where the system indicator function is defined by 

 
1,

( )
0, otherwiseSI

∈Ω
= 


x
x   (21) 

Therefore, Sfp  becomes 

 
1 1

1 1( )
i

N N

if S
i

S S
i

p I I
N N= =

= =∑ ∑x   (22) 

where ( )Si S iI I= x . The probability of system failure at i MCS∈x x  is 

 { } { }1 2 3ˆ ˆ ˆPr 1 Pr ( ) 0 ( ) 0 ( ) 0
i i iS iI g g g= = < < <x x x    (23) 
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We assume that the predictions of the three responses at the same point are 

independent, and the above equation then becomes 

         { } { }( ) { }( ) { }( )1 2 3ˆ ˆ ˆPr 1 1 1 Pr ( ) 0 1 Pr ( ) 0 1 Pr ( ) 0
iS i i iI g g g= = − − < − < − <x x x   (24) 

Since the probability of failure of component ( 1,2,3)k k =  at ix  is 

 { } ( )ˆPr ( ) 0
( ) i

k i
k i

k i
kg eµ

σ
 

< = Φ − = 
 

xx
x

  (25) 

Thus 

 { } 1 2 3Pr 1 1 (1 )(1 )(1 )
i i i iSI e e e= = − − − −   (26) 

And  

 { } { } 1 2 3Pr 0 1 Pr 1 (1 )(1 )(1 )
i i i i iS SI I e e e= = − = = − − −   (27) 

The expectation of the system indicator at ix  is  

             { }( ) { }( ) 1 2 31 Pr 1 0 Pr 0 1 (1 )(1 )(1 )
i i i i i iS S SE I I I e e e  = ⋅ = + ⋅ = = − − − −    (28) 

And its variance is  

 

( ) ( )22

2

1 2 3 1 2 3

1 2 3 1 2 3

Var

1 (1 )(1 )(1 ) 1 (1 )(1 )(1 )

1 (1 )(1 )(1 ) (1 )(1 )(1 )

i i i

i i i i i i

i i i i i i

S S SI E I E I

e e e e e e

e e e e e e

    = −     

   = − − − − − − − − −   
 = − − − − − − − 

  (29) 

Since Sfp  is a random variable, its expectation is used for the estimate of the 

probability of system failure; namely 

 
1 1

1 2 3
1 1 1 (1 )(1 )(1 )

i i i iS

N N

i
S

i
fE p E I e e e

N N= =

     = = − − − −     ∑ ∑   (30) 
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And the variance of Sfp  is calculated by 

               ( )2 2
1 1 1

1 1Var Var Var 2 Cov ,
i i i j

N N N N

i i i j i
Sf S S S Sp I I I I

N N= = = >

 
   = = +    

 
∑ ∑ ∑∑   (31) 

The above equation accounts for the correlation between Kriging predictions through the 

covariance ( )Cov ,
i jS SI I , which is given by 

     ( ) { }Cov , Pr 1, 1
i j i j i j i j i jS S S S S S S S S SI I E I I E I E I I I E I E I        = − = = = −           (32) 

where 

              { } [ ]1 2 3

1 2 3

ˆ ˆ ˆ( ) 0 ( ) 0 ( ) 0
Pr 1, 1 Pr

ˆ ˆ ˆ( ) 0 ( ) 0 ( ) 0i jS S

i i i

j j j

g g g
I I

g g g

< < <  = = =  
 < < <   

x x x

x x x

 

<  

  (33) 

and  

            1 2 3 1 2 31 (1 )(1 )(1 ) 1 (1 )(1 )(1 )
i j i i i j j jS SE I E I e e e e e e      = − − − − − − − −         (34) 

Let { }Pr 1, 1
i jS SH I I= = = , Eq. (31) becomes 

           

1 2 3 1 2 3

1

1

2

1

2 3

1 2 3

1 (1 )(1 )(1 ) (1 )(1 )(1 )
1Var 1 (1 )(1 )(1 )

2
1 (1 )(1 )(1 )

i i i i i i

i i i

j j j

N

i

N N

i j i

Sf

e e e e e e

p H e e eN

e e e

=

= >

  − − − − × − − −  
 

  =      − − − − −   +
   × − − − −    

∑

∑∑
  (35) 

The derivation of H  is given in the Appendix. The above equation can be 

rewritten as 

             

1 2 3 1 2 3

1 2

2

1

,

32

1 1 3

1 (1 )(1 )(1 ) (1 )(1 )(1 )
1 1 (1 )(1 )(1 )Var

1 (1 )(1 )(1 )

i i i i i i

i i i

j j j

Sf

N

N

i

j j i

e e e e e e

H e e ep
N

e e e
=

= ≠

  − − − − − − −  
   − − − − −  =      +
   × − − − −    

∑
∑

  (36) 

or 
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 2
1

1Var
N

S i
i

fp c
N =

  =  ∑   (37) 

where  

 

1 2 3 1 2 3

1 2 3

2 31, 1

1 (1 )(1 )(1 ) (1 )(1 )(1 )

1 (1 )(1 )(1 )

1 (1 )(1 )(1 )

i i i i i i

i i i

j j j

i

N

j j i

c e e e e e e

H e e e

e e e= ≠

 = − − − − − − − 
  − − − − −  +
  × − − − −  

∑
  (38) 

Therefore, the standard deviation of Sfp  is 

 
1

1=
Sf

N

i
p ic

N
σ

=
∑   (39) 

3.2 LEARNING FUNCTION 

A learning function is used to select new training points to refine the surrogate 

model. As indicated in Eq. (37), each point contributes to Var Sfp   . The sum of terms 

involving ix  in Var Sfp    is ic  in Eq. (38). Thus, we use ic  as the learning function. 

Maximizing ic  identifies a new training point that has the highest contribution to the 

uncertainty of the estimate of failure probability; namely 

 
1,2, ,

, arg max { }
MCS

ne h iw N ih c
=

= =x x


  (40) 

where hx  is the h-th point of a pre-sampled MC population MCSx . In [29], it is proved 

that adding the highest contribution point as new training point is the most effective way 

to refine the surrogate model and reach convergence. 

3.3 STOPPING CRITERION 

When the variance of Sfp  is small enough, no more new training points are 

needed. Then the surrogate models are used to calculate Sfp . Let the confidence of the 
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probability of system failure be 1 α− , and the allowable relative error is ε , then the 

confidence interval of the estimate is computed by 1( )E 2
SfSf pp α σ−Φ±   . Therefore, 

the relative error is  

                       
1 1E E

E

2) ( 2)

E

(
Sf SfSf p Sf p

Sf Sf

p p

p p

α σ α σ
η

− −   Φ − Φ±   = =
      

  (41) 

When η  is smaller than the allowable error, the process terminates. Thus, the stopping 

criterion is given by 

 1( 2)E
Sfp

Sfp

σ

α
η

−≤
Φ  

  (42) 

3.4 IMPLEMENTATION 

Accounting for the dependences between Kriging predictions needs to calculate 

the bivariate joint probabilities   

               { }ˆ ˆPr ( ) 0 ( ) 0 ,( 1,2,3; , 1,2, , , )
ijk k i k je g g k i j N i j= < < = = ≠x x<    (43) 

 

 

Calculating 
ijke  will be computationally intensive. For a system with three 

components, if the size of MCSx  is 510 , the number of calculations needed for 
ijke  is  

 
5 5

10( 1) 10 (10 1)(3) 1.5 10
2 2

N N kM + +
= = ≈ ×   (44) 

To relieve the computational burden of considering correlations, we use the so-

called selected candidate points (SCPs), denoted by Sx . Sx  is a smaller number of points 

selected from MCSx . To ensure a significant number of points fall into the failure region 
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so that the error in the estimate of probability of failure is small, we adjust the size of 

SCPs SelN  to guarantee 

 ,25% 75%F Sel

Sel

N
r

N
≤ = ≤   (45) 

where ,F SelN  is the number of failure points in the SCPs.  

Therefore, SCPs consists of all points in the failure region and the other points 

with the highest indicator function variances in the safe region. Using SCPs, the 

computational effort needed is greatly reduced. In the examples in Sec. 4, we use 200 

SCPs, and the number of calculations needed for 
ijke  becomes 

 ' ( 1) 200(200 1)(3) 60300
2 2

Sel SelN N kM + +
= = =   (46) 

The stopping criterion in Eq. (42) needs to be modified accordingly. The 

probability of system failure using Sx  is calculate by 

 ,
1

1 SelN

Sf Se
il

il
Se

E p e
N =

  =  ∑   (47) 

and  

 
,

1

1=
Sel

Sf Sel

N

iSe
p i

l

c
N

σ
=
∑   (48) 

The stopping criterion becomes 

 ,

1
,E ( 2)

Sf Selp

Sf Selp

σ

α
η

−≤
Φ  

  (49) 
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Details about how to use SCPs can be found in [29]. The flowchart of the DKM-

SYS is provided in Figure 3.1. 

 

 

Figure 3.1 Flowchart of DKM-SYS 
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4. EXAMPLES 

In this section, the proposed method is applied to three problems. The first 

numerical example is used to demonstrate the procedure of DKM-SYS while the other 

two examples show possible engineering applications.  

In all examples, initial training points (TPs) are generated by the Latin Hypercube 

sampling [30], and the initial sample size is 12. The efficiency of the new method is 

measured by the number of limit-state function calls kN  for limit-state function k . And 

the accuracy is measured by the percentage error, which is calculated by 

 100%
MCS

Sf Sf
MCS
Sf

p p
p

ε
−

= ×   (50) 

where MCS
Sfp  and Sfp  are probabilities of system failure from MCS and a non-MCS 

method, respectively. Kriging-based reliability methods are stochastic methods, we 

therefore run each method 20 times independently, and the average results from the 20 

independent runs are used for comparison. The standard deviation of function calls and 

probabilities of system failure are provided also. A smaller standard deviation of the 

probability of system failure means that the results are concentrated close to the mean 

value, which indicates that the method tends to produce stable results. We therefore use 

the standard deviation as an indicator of robustness of the method. 
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4.1 EXAMPLE 1 

There are two random variables in this example, and the limit-state functions are 

given by [31, 32] 

 2
1 1 2( ) / 20 1g x x= −x   (51) 

 2 2
2 1 2 1 2( ) ( 5) / 30 ( 12) /120 1g x x x x= + − + − − −x   (52) 

 2
3 1 2( ) 80 / ( 8 5) 1g x x= + − −x   (53) 

where 2(4,0.7 ), 1,2ix N i = , and 0kg <  indicates a failure. Figures 4.1 and 4.2 show 

the TPs and surrogate models using AK-SYS and DKM-SYS from one run, respectively. 
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                   (a) Training points                             (b) Final surrogate models 

Figure 4.1 Training points and surrogate models of AK-SYS 

 

In Figures 4.1 and 4.2, the initial training points are denoted by black pentagrams. 

The red circle, cross and square denote training points generated from limit-state function 
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1, 2 and 3, respectively. AK-SYS needs more training points to converge, while the 

results in Table 4.1 show that DKM-SYS has better accuracy. In Table 4.1, we provide 

the average results from 20 independent runs, and the standard deviation of function calls 

and probability of system failure are also provided to show the robustness of the two 

methods. 

 

Table 4.1 Average results of example one 

Method 1N  
(Std. Dev.) 

2N  
(Std. Dev.) 

3N  
(Std. Dev.) 

Sfp  
(Std. Dev.) 

(%)ε  

MCS 65 10×  65 10×  65 10×  22.4553 10−×  N/A 

AK-SYS 3.80 (1.20) 1.20 (0.70) 13.75 
(14.74) 

22.4438 10−×  
4(3.95 10 )−×  

1.38 

DKM-SYS 1.30 (0.92) 0.05 (0.22) 8.50 (11.02) 
22.4506 10−×  

4(1.88 10 )−×  
0.60 
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              (a) Training points                                (b) Final surrogate models 

Figure 4.2 Training points and surrogate models of DKM-SYS 
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As shown in Table 4.1, DKM-SYS has better efficiency than AK-SYS since 

DKM-SYS has smaller average function calls and standard deviations for all three limit-

state functions. Limit-state function 3 is far away from the origin and it is hard to obtain 

an accurate surrogate model, as shown by Figures 4.1 and 4.2. This function consumes 

the majority of the computational efforts by both AK-SYS and DKM-SYS. The results 

also show that DKM-SYS has better accuracy than AK-SYS. DKM-SYS has smaller 

standard deviation of the probability of system failure, and this means that DKM-SYS is 

more robust than AK-SYS since DKM-SYS tends to produce stable reliability analysis 

results. 

4.2 EXAMPLE 2 

A liquid hydrogen fuel tank is used on a space launch vehicle [26, 33, 34]. The 

tank has a honeycomb sandwich design. The tank is subjected to stresses caused by 

ullage pressure, head pressure, axial forces due to acceleration, and bending and shear 

stresses due to the weight of the fuel.  

 

Table 4.2 Random variables of example two 

Variable Mean Standard 
deviation Distribution 

platet   0.07443 0.005 Normal 

ht   0.1 0.01 Normal 

xN   13 60 Normal 

yN  4751 48 Normal 

xyN   -684 11 Normal 
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There are three failure modes related to von Mises strength, isotropic strength, 

and honeycomb buckling. The limit-state functions for the von Mises and isotropic 

strength are given by 

 
2 2 2

84000
1

3
plate

vM

x y x y xy

t
g

N N N N N
= −

+ − +
  (54) 

 
84000

1plate
ISO

y

t
g

N
= −   (55) 

The limit-state function of honeycomb buckling is defined by a response surface 

generated from the structural sizing program HyperSizer [35], and is given by [26, 34] 

 
2

1 2 3 1
2 2
2 3 1 2 1 3 2 3

0.847 0.96 0.986 0.216 0.077

0.11 0.007 0.378 0.106 0.11
HBg x x x x

x x x x x x x x
= + + − +

+ + + − −
  (56) 

where  

 1 4( 0.075)platex t= −   (57) 

 2 20( 0.1)hx t= −   (58) 

 3
16000 0.003

xy

x
N

 
= − +  

 
  (59) 

 

Table 4.3 Average results of example two 

Method 1N  
(Std. Dev.) 

2N  
(Std. Dev.) 

3N  
(Std. Dev.) 

Sfp  
(Std. Dev.) 

(%)ε  

MCS 72 10×  72 10×  72 10×  46.9855 10−×  N/A 

AK-SYS 0 (0) 19.50 (1.28) 0.60 (0.82) 
46.9756 10−×  

5(1.29 10 )−×  
1.52 

DKM-SYS 0 (0) 6.30 (1.56) 0.25 (0.55) 
47.0 10−×  
6(5.39 10 )−×  

0.65 
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The five independent random variables are given in Table 4.2. The reliability 

analysis results are provided in Table 4.3. 

Table 4.3 shows that the average total function call of AK-MCS is 

19.5 0.6 20.1+ = , while the average number of DKM-SYS is 6.30 0.25 6.55+ = . This 

shows that DKM-SYS is more efficient than AK-SYS. With better efficiency, DKM-SYS 

still has better accuracy than AK-SYS. Since DKM-SYS has smaller standard deviation 

of probability of system failure, DKM-SYS is more robust than AK-SYS. 

4.3 EXAMPLE 3 

As shown in Figure 4.3, a cantilever beam [8] is subjected to external forces 1F  

and 2F , external moments 1M  and 2M , and external distributed loads denoted by 

1 1( , )L Rq q  and 2 2( , )L Rq q . These forces, moments, distributed loads, together with the 

yield strength S  and the maximum allowable shear stress maxτ  are normally distributed 

random variables. Their information is given in Table 4.4. 

First, the maximum normal stress of the beam should be smaller than its yield 

strength, and this is given by 

 1 2

6Mg S
wh

= −   (60) 

where the bending moment at the left end point of the beam is  

 

2 2 2

1 1 1
2

1

( )( )
2

( )( )(2 )
6

Li i i i i
i i i

i i i

Ri Li i i i i

i

q d c d cM M Fb

q q d c d c
= = =

=

− +
= + +

− − +
+

∑ ∑ ∑

∑
  (61) 
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Second, the deflection of the right end point of the beam should not greater than 

the allowable deflection 2 cmallowableδ = .  

 2 allowableg δ δ= −   (62) 

where δ  is computed by 

          

2 3 2 3 42 2 2

1 1 1
5 4 52 2 2

1 1 1

( ) ( ) ( )
2 6 2 6 241

( )( ) ( ) ( )( )
120( ) 24 120( )

i i i i Li i

i i i

Ri Li i Ri i Ri Li i

i i ii i i i

ML RL M L a F L b q L c

EI q q L c q L d q q L d
d c d c

δ = = =

= = =

 − − −
+ + − − 

 =
 − − − − −
− + + − − 

∑ ∑ ∑

∑ ∑ ∑
  (63) 

in which the Young’s modulus is 112 10 PaE = × , and the moment of inertia is 

3 /12I wh= .  

R  is the reaction force at the fixed end, which is given by 

 
2 2 2

1 1 1

( )( )( )
2

Ri Li i i
i Li i i

i i i

q q d cR F q d c
= = =

− −
= + − +∑ ∑ ∑   (64) 

 

 

Figure 4.3 A cantilever beam 
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The last limit-state function specifies that the shear stress should not be greater 

than the maximum allowable shear stress 

 3 max max
3

2
Rg
wh

τ τ τ= − = −   (65) 

The average results of this example are given in Table 4.5.  

 

Table 4.4 Random variables of example three 

Variable Mean Standard 
deviation Distribution 

1 (Nm)M   45 10×   35 10×  Normal 

2 (Nm)M   43 10×  33 10×  Normal 

1 (N)F   41.8 10×  32 10×  Normal 

2 (N)F  43 10×  33 10×  Normal 

1 (N/m)Lq   43 10×  31 10×  Normal 

1 (N/m)Rq  42 10×  31 10×  Normal 

2 (N/m)Lq   42 10×  31 10×  Normal 

2 (N/m)Rq  31 10×  10 Normal 

(Pa)S   74.5 10×  64.5 10×  Normal 

max (Pa)τ  63.5 10×  55 10×  Normal 

 

 

The results from example three show that DKM-SYS has better performance than 

AK-SYS in accuracy, efficiency and robustness. The significant advantage of DKM-SYS 

over AK-SYS in this example is the efficiency. 
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On average, AK-SYS needs about 312 function calls to converge, while DKM-

SYS just needs 67 function calls. DKM-SYS reduces the computational burden greatly. 

 

Table 4.5 Average results of example three 

Method 1N  
(Std. Dev.) 

2N  
(Std. Dev.) 

3N  
(Std. Dev.) 

Sfp  
(Std. Dev.) 

(%)ε  

MCS 71 10×  71 10×  71 10×  35.2567 10−×  N/A 

AK-SYS 228.30 
(97.40) 0 (0) 83.75 

(22.72) 

35.2509 10−×  
4(1.29 10 )−×  

1.80 

DKM-SYS 41.85 (8.13) 0 (0) 25.20 (9.45) 
35.3276 10−×  

5(7.17 10 )−×  
1.49 
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5. CONCLUSIONS 

This paper presents the extension of the component dependent Kriging method 

(DKM) to system reliability analysis. The proposed method considers the dependence 

between Kriging predictions. High efficiency and accuracy are achieved through the 

following components: 1) the estimate of the probability of system failure with both the 

mean and standard deviation of the Kriging prediction, instead of just the sign of 

prediction used by the independent Kriging method, 2) a learning function, which takes 

advantage of all the information to define a Gaussian process, including the mean, 

standard deviation and correlation, and 3) a stopping criterion, which achieves a good 

balance between accuracy and efficiency. The proposed method is applied to three 

examples from literature; the results indicate that the new method has much better 

performance than the independent Kriging method. 

Though this work is based on series systems with three components, it can be 

extended to systems with more components with different configurations. This is our 

future work. Our future work also includes the following: improve the accuracy of the 

system DKM for systems with a large number of input random variables and extremely 

high reliabilities, and extend the results to general systems with time-dependent 

uncertainty. 

 



 

 

112 

ACKNOWLEDGEMENTS 

The authors gratefully acknowledge the support from the National Science 

Foundation through grant CMMI 1234855 and the Intelligent Systems Center at the 

Missouri University of Science and Technology. 



 

 

113 

APPENDIX 

 CALCULATION OF H  

In Eq. (35), H  is defined as 

             { } [ ]1 2 3

1 2 3

ˆ ˆ ˆ( ) 0 ( ) 0 ( ) 0
Pr 1, 1 Pr

ˆ ˆ ˆ( ) 0 ( ) 0 ( ) 0i j

i i

j
S

i

j
S

j

g g g
H I I

g g g

< < <  = = = =  
 < < <   

x x x

x x x

 

<  

  (66) 

The above equation indicates the probability that the system fails at both points ix  and 

jx . This probability can be illustrated by the two subsystems in Figure A.1, where ik  and 

jk  represent component k  at points ix  and jx , respectively. 

 

 
Figure A.1 A parallel-series system 

 

 

{ } { }
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= − > > >

− > > >

> > >  +  
 > > >   

x x x

x x x

x x x

x x x



< <

< <

< <

< < <

   (67) 

There are four cases for the probability: 

Case 1, 1ik = , 1jk =  

 { }Pr 0 0
i j ijk k kg g e< < =<   (68) 

Subsystem j   

Subsystem i   
1i  2i   3i   

1 j   2 j   3 j   
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Case 2, 1ik = , 0jk =  

               { } { } { }Pr 0 0 Pr 0 Pr 0 0
i j i i j i ijk k k k k k kg g g g g e e< > = < − < < = −< <   (69) 

Case 3, 0ik = , 1jk =  

 
{ } { }
{ } { }

Pr 0 0 Pr 0 0

Pr 0 Pr 0 0

i j j i

j j i j ij

k k k k

k k k k k

g g g g

g g g e e

> < = < >

= < − < < = −

< <

<

  (70) 

Case 4, 0ik = , 0jk =     

                

{ }
{ } { } { }

Pr 0 0

1 Pr 0 0 Pr 0 0 Pr 0 0

1 ( ) ( )

1

i j

i j i j i j

ij i ij j ij

i j ij

k k

k k k k k k

k k k k k

k k k

g g

g g g g g g

e e e e e

e e e

> >

= − < < − < > − > <

= − − − − −

= − − +

<

< < <

  (71) 

Therefore, the probability of system safety is given by 

                       

{ }
1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

1 1 2 2 1 1 2 2

Pr 0 0

( 2 )(1 )(1 )

(1 )( 2 )(1 )

(1 )(1 )( 2 )

( )( ) ( )( )

i j ij i j ij i j ij

i j ij i j ij i j ij

i j ij i j ij i j ij

i ij i ij j

i j

ij j ij

S SI I

e e e e e e e e e

e e e e e e e e e

e e e e e e e e e

e e e e e e e e

= =

= + − − − + − − +

+ − − + + − − − +

+ − − + − − + + −

+ − − + − −



3 3 3

1 1 3 3 1 1 3 3 2 2 2

2 2 3 3 2 2 3 3 1 1 1

1 1 2 2 3 3 1 1 2 2 3

(1 )

( )( ) ( )( ) (1 )

( )( ) ( )( ) (1 )

( )( )( ) ( )( )(

i j ij

i ij i ij j ij j ij i j ij

i ij i ij j ij j ij i j ij

i ij i ij i ij j ij j ij j

e e e

e e e e e e e e e e e

e e e e e e e e e e e

e e e e e e e e e e e

 − − + 
 + − − + − − − − + 
 + − − + − − − − + 

+ − − − + − − − 3

1 1 1 2 2 2 3 3 3

)

(1 )(1 )(1 )
ij

i j ij i j ij i j ij

e

e e e e e e e e e+ − − + − − + − − +

  (72) 

Then 

 { }1 Pr 0 0
i jS SH I I= − = =   (73) 
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ABSTRACT 

Time-dependent system reliability is the probability a system performs its 

intended function without failures in a time period. Estimating such a probability is 

challenging when system responses are highly nonlinear and dependent. Many current 

time-dependent system reliability methods rely on extreme system responses, which 

require time-consuming global optimization. The distributions of the extreme responses 

may also be highly nonlinear and more irregular than their original functions. As a result, 

the efficiency of the time-dependent system reliability analysis is of great interest. This 

work develops a new time-dependent system reliability method that generates surrogate 

models for general time-dependent limit-state functions with respect to input variables in 

the form of random variables, stochastic processes, and time. By removing global 

optimization and combining the surrogate model building process with Monte Carlo 

simulation, the new method is efficient and accurate. As the proposed method does not 

rely on any assumptions or simplifications, it is applicable to systems with highly 

nonlinear and highly dependent system responses.  Four examples, including series and 

parallel configurations, are used to demonstrate the effectiveness of the proposed method.  
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1. INTRODUCTION 

Engineering systems are usually subjected to time-variant loads and deterioration 

of material properties, and the system reliability is therefore a function of time. Time-

dependent system reliability is evaluated by the probability that the responses of a system 

do not exceed given failure thresholds in a given period of time. Since the accurate and 

efficient estimate of system reliability is crucial in decision makings associated with 

system performance degradation [1], lifetime cost estimation, maintenance [2, 3], and so 

on, time-dependent reliability analysis has gained significant attention during the past 

decades. The difficulty of time-dependent system reliability analysis comes from time-

variant working conditions and system characteristics and also from dependent responses. 

Although many progresses have been made, time-dependent system reliability analysis is 

still very challenging. 

Upcrossing rate methods, extreme value methods, and sampling-based methods 

are the most commonly used time-dependent system reliability methods. Upcrossing rate 

methods estimate the probability that the response exceeds its failure threshold for the 

first time in a period of time. When the response reaches its threshold, an upcrossing 

event happens. The upcrossing rate is the rate of change in upcrossing probability with 

respect to time. Based on the Rice’s formula [4], many methods have been developed to 

estimate component reliability. For example, Breitung [5] proposed an asymptotic 

outcrossing rate method for stationary Gaussian process; Andrieu-Renaud et. al [6] 

proposed the PHI2 method which can take advantage of classical time-independent 

reliability tools, like the First/Second Order Reliability Method (FORM/SORM) [7], to 

estimate time-dependent reliability; Hu and Du developed an upcrossing rate method for 
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hydrokinetic turbine blades [8] and a joint upcrossing rate method [9] which relaxes the 

independent upcrossing assumption. Later, they extended the joint upcrossing rate 

method to systems with two responses [10]. Upcrossing rate methods have good 

efficiency, but the linearization of performance function may introduce large errors for 

highly nonlinear and multimodal problems; and for problems with  strong dependent 

upcrossings, the independent upcrossing assumption does not hold, which will bring large 

errors to reliability analysis results. 

Without the linearization and approximation in upcrossing rate methods, extreme 

value methods are extensively studied. Extreme value methods use the extreme responses 

from a performance function with respect to time. If the distribution of extreme values 

can be accurately estimated, extreme value methods are more accurate than upcrossing 

rate methods [11]. For example, Li et al. [12] proposed the equivalent extreme value 

event method for structural system reliability; Wang and Wang [13] developed a nested 

extreme response surface method for time-dependent reliability based design 

optimization; Hu and Du [14] proposed a sampling method to extreme value distribution 

for time-dependent reliability analysis. Extreme value methods generally require a 

double-loop procedure: the outer loop builds surrogate models of extreme values, and the 

inner loop performs global optimization to identify the extreme responses over the time 

period of interest. The double-loop procedure has two main drawbacks: (1) The 

distributions of extreme values are usually highly nonlinear and multimodal, even though 

the original performance functions are smooth and unimodal. The increased nonlinearity 

and irregularity of extreme values may introduce errors to reliability analysis, and the 

accuracy of global optimization in the inner loop will affect the accuracy of extreme 
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value surrogate modeling in the outer loop. (2) Identifying extreme values in the inner 

loop for problems with stochastic processes over a long time period is computationally 

expensive since the realizations of stochastic processes might be multimodal. 

Sampling methods generate samples where performance functions are evaluated. 

Since these methods do not rely on approximations of performance functions, they are 

accurate when sufficient samples are used. Monte Carlo Simulation [15] is the most 

widely used sampling method, but is too computationally expensive. To reduce the 

computational cost, one may build cheaper surrogate models for performance functions 

and use them in reliability analysis. Many methods have been proposed recently with 

various surrogate models. For example, Zou et al. [16] proposed an indicator response 

surface method for simulation-based reliability analysis; with the help of Kriging model 

[17, 18] and the Efficient Global Optimization (EGO) [19] method, Hu and Du [11] 

developed a mixed EGO method which draws samples of random variables and time 

simultaneously, then Zhu and Du [20] extends the mixed EGO method to system 

problems. Surrogate models, such as artificial neural networks (ANN) [21], support 

vector machine (SVM) [22], polynomial chaos expansion (PCE) [23] and their 

combinations [24-28] are studied by many researchers. Among the various surrogate 

models, Kriging model [18, 29] has been extensively studied due to its characteristics that 

the model provides not only a prediction for an untried point, but also the uncertainty of 

the prediction. This is really helpful for adaptive modeling and uncertainty control in 

reliability analysis. A good discussion of surrogate modeling can be found in [30] and 

[31]. In the effort to reduce computational cost of sampling methods, there is an 

interesting trend that some methods are developed combining surrogate modeling and 
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importance sampling [32-35], which makes reliability estimate of rare events become 

affordable.  

With the aforementioned surrogate modeling methods, Wang and Wang [36] 

developed a double-loop adaptive sampling method for dynamic systems. Later, Hu and 

Mahadevan [37] proposed a single-loop component method to overcome the drawbacks 

of double-loop procedure. Inspired by Hu and Mahadevan’s method, this work develops a 

new surrogate modeling method for time-dependent system reliability analysis. The new 

method does not need global optimization to find extreme responses. The proposed 

surrogate modeling method is investigated for systems with and without stochastic 

processes, and this makes the method applicable to general time-dependent problems 

with any system configurations and any types of input in performance functions. Thus, 

the contributions of the paper are twofold: (1) a new perspective for surrogate-based 

time-dependent system reliability analysis, and (2) a new procedure to build surrogate 

models for general time-dependent systems. 

The remainder of this paper is organized as follows: Section 2 reviews the 

background of time-dependent system reliability analysis and the system mixed EGO 

method. The proposed method and its implementation procedures are developed in 

Section 3. Section 4 demonstrates the effectiveness of proposed method with four 

examples. Conclusions are drawn in Section 5.  
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2. BACKGROUND 

2.1 TIME-DEPENDENT SYSTEM RELIABILITY ANALYSIS 

For a general time-dependent system with n  components, 1,2, ,k n=  , the 

inputs include: random variables X , stochastic processes ( )tY , and time t . The 

performance function of component k  is defined as 

 ( ) ( , ( ), )k ky t g t t= X Y   (1) 

For a period of time 0[ , ]st t , the reliability of  component k  over the time period is 

defined as 

 { }0 0( , ) Pr ( , ( ), ) 0, [ , ]k
s k sR t t g t t t t t= < ∀ ∈X Y   (2) 

in which Pr{}⋅  stands for a probability, and “∀ ” means “for all”. The probability of 

failure of this component is therefore 

 { }0 0( , ) Pr ( , ( ), ) 0, [ , ]k
f s k sp t t g t t t t t= > ∃ ∈X Y   (3) 

in which “∃ ” means “there exists”. 

Systems can be grouped into three categories: series systems, parallel systems, 

and combined systems. The time-dependent probabilities of failure for a series system 

and parallel system are defined as follows: 

 { }series
0 0( , ) Pr ( , ( ), ) 0, [ , ]f s k s

k
p t t g t t t t t= > ∃ ∈X Y   (4) 

 { }parallel
0 0( , ) Pr ( , ( ), ) 0, [ , ]f s k s

k
p t t g t t t t t= > ∃ ∈X Y<   (5) 

respectively, where   is union, and <  is intersection.  
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For extreme value methods, the above equations can be rewritten as 

 { }
0

series max
0 0[ , ]

( , ) Pr max ( , ( ), ) 0, [ , ]
i s

f s k k i i i st t tk
p t t y g t t t t t

∈
= = > ∃ ∈X Y   (6) 

 { }
0

parallel max
0 0[ , ]

( , ) Pr max ( , ( ), ) 0, [ , ]
i s

f s k k i i i st t tk
p t t y g t t t t t

∈
= = > ∃ ∈X Y<   (7) 

Mixed system EGO method (mSEGO) [20] is a typical time-dependent system 

reliability analysis method that builds surrogate models for extreme values. The method 

developed in [20] is for systems whose performance functions are explicit functions of 

random variables and time. Next, we will review the procedure of mSEGO method. The 

proposed method is compared with mSEGO method in terms of accuracy and efficiency.  

2.2 REVIEW OF MIXED SYSTEM EGO METHOD 

Mixed system EGO method [20] deals with problems have random variables and 

time as inputs in their performance functions. The probability of failure of component k  

is defined as 

 { }0 0ˆ( , ) Pr ( , ) 0, [ , ]k
f s k sp t t g t t t t= > ∃ ∈X   (8) 

The general idea of mSEGO is to construct extreme value surrogate models of 

performance functions, and use the extreme value surrogate models to replace original 

performance functions for reliability analysis. The surrogate models map input random 

variables to extreme responses, and the above equation therefore becomes 

 { }extreme extreme
0 ˆ ˆ( , ) Pr ( ) 0k

f s kp t t y g= = >X   (9) 

in which extremeˆ ( )kg X is the extreme response over 0[ , ]st t . For any given =X x , where x  

is a realization of random variables X , extremeˆ ( )kg x  is defined by 

 { } { }
00

extreme

[ , ][ , ]
ˆ ( ) max ( , ) or min ( , ) ,

ss
k k kt t tt t t

g g t g t
∈∈

= ∀ =x x x X x   (10) 
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After obtaining the above extreme value surrogate models of each component, 

time-dependent system reliability analysis is transformed to its time-independent 

counterpart. Estimating system reliability based on extreme value surrogate models is 

efficient and easy to implement.  

 

Table 2.1 Major steps of mSEGO method 

  Step Description 

1 Construct initial surrogate models ˆ ˆ ( , )k ky g t= X   

(a) Generate 0N  initial training points T
kx . 

(b) Divide time period 0[ , ]st t  into tn  time instants, 0 2[ , , , ]
t1 n st t t t t= = =t  , 

and randomly select 0N  time instants as initial training points T
kt . 

(c) Calculate ( , )T T T
k k k kg=y x t  and build initial surrogate models 

ˆ ˆ ( , )k ky g t= X . 

2 Construct initial extreme value surrogate models extreme extremeˆ ˆ ( )k ky g= X  

 (d) Let extreme extreme,T T
k k k k= =x x t t  and extreme T

k k=y y . 

(e) For each component k , 1,2, ,k n=    

(f) For each training point in extreme extreme( , )k kx t , compute kU  and kσ  using 
ˆ ˆ ( , )k ky g t= X  

      End 

(g) Calculate the values of expected feasibility function (EFF) using Eq. (11). 

(h) Find the point with the maximum EFF value as new training point 
new new( , )tx . 

(i) Calculate the U value at new new( , )tx  for all components, and calculate 

new new( , )k kg t=y x  when 2kU < . 

(j) Update surrogate models ˆ ˆ ( , )k ky g t= X  and extreme extremeˆ ˆ ( )k ky g= X . 

Continue steps (e) through (j) until the stopping criterion of EFF is satisfied. 
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Table 2.1 Major steps of mSEGO method (cont.) 

3 Refine surrogate models by adding more training points 

 (k) Generate CN  candidate Monte Carlo samples MCSx   

(l) Calculate the composite U value *U  at every point in MCSx  using 
extreme extremeˆ ˆ ( )k ky g= X . 

(m) Find a new point * *
new new( , )tx  with the minimum composite U value *

minU  .   

(n) Calculate U values at * *
new new( , )tx  for all components, and calculate 

* *
new new( , )k kg t=y x  when 2kU < . 

(o) Update surrogate models ˆ ˆ ( , )k ky g t= X  and extreme extremeˆ ˆ ( )k ky g= X . 

Continue steps (l) through (o) until *
min 2U > . 

4 Time-dependent system reliability analysis based on extreme extremeˆ ˆ ( )k ky g= X . 

(p) Calculate system
0( , )f sp t t  using extreme extremeˆ ˆ ( )k ky g= X . 

(q) Compute 
fpCOV  and increase CN  if 0.05

fpCOV > ; otherwise, stop. 

   

 

The key problem here now is how to build surrogate model extremeˆ ( )kg X . The 

extreme value surrogate modeling is a double-loop process, which is summarized as 

below.  

• Outer loop: Construct surrogate models of extremeˆ ( )kg X  using adaptive sampling 

approach and the learning function U from AK-MCS paper [38]. 

• Inner loop: Construct surrogate models of ˆ ( , )kg tX  to select new training points 

from a pre-sampled Monte Carlo sample pool and find the corresponding extreme 

responses extreme ( )kg x  using mixed EGO method [11]. 
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Next, we review the double-loop process of building extreme response surrogate 

models. The major steps of mSEGO method are summarized in Table 2.1. 

In Table 2.1, the expected feasibility function (EFF) is used as an indication of 

how well the true value of a response at a new point is expected to satisfy the equality 

constraint ( , )g t e=x  over a region defined by e ε± . EFF is defined as [39] 

 

( )ˆ( , ) ( ) 2

2

e e eEFF g t e

e e e

e e

µ µ µµ
σ σ σ

µ µ µσ φ φ φ
σ σ σ

µ µε
σ σ

− +

− +

+ −

    − − − = − Φ −Φ −Φ      
      

    − − − − − −      
      

    − −
+ Φ −Φ    

    

x

  (11) 

in which µ  and σ  are the mean and standard deviation provided by Kriging model at 

point ( , )tx , respectively. e  is the failure threshold, 2ε σ= , e+  and e−  denote e ε± . 

( )Φ ⋅  and ( )φ ⋅  are cumulative distribution function and probability density function of a 

standard normal distribution, respectively. 

The EFF function is called a learning function, which is used as a criterion of 

selecting new training points to update surrogate models so that the accuracy of surrogate 

models can be improved in a most efficient manner. The other learning function used in 

Table 2.1 is the U function defined by [38] 

 
( , )

( , )
( , )

t
U t

t
µ
σ

=
x

x
x

  (12) 

For a system with several components, the contribution of each component may 

be significantly different. For example, some components have big contributions to the 

system reliability estimate, while some components may do not contribute to system 
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reliability at all. Thus treating all components equally by adding all new training points to 

each component is a waste of computational efforts. The good practice is to add large 

number of training points to performance functions that have significant contribution to 

system reliability estimate. The composite U value *U  in Step (l) is used for this purpose. 

This is called the composite criterion approach of updating system surrogate models. The 

detailed discuss of the three system approaches can be found in [40, 41]. *U  is calculated 

using the above equation with composite mean value and its corresponding composite 

standard deviation. The selection of composite mean value is given in Table 2.2.  

 

Table 2.2 Selection of composite mean value 

System topology 0kg <  is a failure 0kg >  is a failure 

Series system 

Parallel system 

* min( )µ = μ   

* max( )µ = μ  

* max( )µ = μ  

* min( )µ = μ  

 

 

The coefficient of variation of reliability analysis result is used in Step (q) to 

account for the statistical uncertainty in Monte Carlo simulation. It is defined by 

 
system

0
system

0

1 ( , )
( , )f

f s
p

C f s

p t t
COV

N p t t
−

=   (13) 
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3. NEW METHOD 

This section discusses the development of the new method and how it overcomes 

the two drawbacks of double-loop procedure extreme value methods. 

3.1 OVERVIEW 

The basic idea of the proposed method is to build surrogate models ˆ ( , , )kg tX Y  to 

perform time-dependent system reliability analysis instead of using a double-loop 

procedure. The new method does not require the distributions of extreme responses and 

eliminates global optimization completely. For simplicity, we use a series system without 

stochastic processes as an example to demonstrate how the proposed method works. The 

method will be extended to problems with stochastic processes later. Based on the 

principle of MCS, the probability of system failure can be rewritten as 

 { }
0

series max * ( )
0 0[ , ] 1

( , ) Pr max ( , ) 0, [ , ] ( ) /
i s

N
j

f s k k i i s tt t tk j
p t t y g t t t t I N

∈
=

= = > ∃ ∈ =∑X x   (14) 

where N  is the number of MCS samples, and * ( )( )j
tI x  is the time-dependent system 

failure indicator at point ( )jx   

 
{ }( ) ( )

* ( ) 1,2, ,
1, if max ( , ) 0, 1,2, ,

( )
0,  otherwise                                                  

j i
k tj k n

t

g t i n
I =

 > ∀ == 


x
x 



  (15) 

The above equations indicate that the accuracy of time-dependent system 

reliability analysis is determined by the accuracy of surrogate models ˆ ˆ( ) ( , )k ky t g t= X . 

Now the problem becomes how to construct and refine ˆ ˆ( ) ( , )k ky t g t= X  so that they can 

be used to accurately estimate system reliability.  
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3.2 SURROGATE MODEL ˆ ˆ( ) ( , )k ky t g t= X   

The first step of proposed surrogate modeling method is to construct initial 

surrogate models for each component. 0N  initial training points of random variables X   

are generated using Latin Hypercube Sampling (LHS) method [42], and 0N  time instants 

are randomly selected from discretized time interval 0 2[ , , , ]
t1 n st t t t t= = =t  . The initial 

training point matrix for component k  is 

 

0 0 0 0

(1) (1) (1) (1)
1 2
(2) (2) (2) (2)
1 2

( ) ( ) ( ) ( )
1 2

,

m

T T m
k k

N N N N
m

x x x t
x x x t

x x x t

 
 
   =   
 
 

x t





    



  (16) 

in which ( )j
ix  is the j-th training point of the i-th random variable. 

The responses of each component at these initial points are obtained by calling 

their performance functions ( ) ( , )k ky t g t= X , and based on these training points and 

responses, initial surrogate models ˆ ˆ( ) ( , )k ky t g t= X  are built using the Kriging method 

[17, 18]. The output of a Kriging model at an untried point ( , )tx  follows a normal 

distribution 

 ( )2
ˆ ˆˆ ( ) ( , ), ( , )

k kk g gy t N t tµ σx x   (17) 

where ˆ ( , )
kg tµ x  and 2

ˆ ( , )
kg tσ x  are the Kriging prediction and Kriging variance, 

respectively. As Kriging model is well studied and widely used by engineers and 

researcher, we are not reviewing it in this paper. The details of how to build Kriging 

models and how these outputs are calculated can be found in [17, 18]. 
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When surrogate models ˆ ˆ( ) ( , )k ky t g t= X  are well trained and accurate enough for 

reliability analysis, the time-dependent probability of system failure is calculated by 

 { }( )( )series ( ) ( )
ˆ0 1,2, , 1,2, ,1

( , ) max max ( , ) /
k

t

N
i j

f s gj n k ni
p t t I t Nµ

= =
=

= ∑ x
 

  (18) 

 

Table 3.1 Procedure of refining surrogate models 

  Step Description 

1 Generate CN  candidate points Cx  and discretize 0[ , ]st t  into tn  time instants 

0 2[ , , , ]
t1 n st t t t t= = =t  . 

2 For each ( )ix  in Cx , 1,2, , Ci N=    

(a) For each component surrogate model ˆ ˆ ( , )k ky g t= X , 1,2, ,k n=    

(b) Compute Kriging predictions 
( )( ) ( ) (1) ( ) (2) ( )ˆ ˆ ˆ( , ), ( , ), , ( , )tni i i i

k k k kg t g t g t =  μ x x x  at each ( ) ( )( , )i jtx . 

      End 

(c) Find the system maximum prediction at ( )ix , ( )( ) ( )
max 1,2, ,

maxi i
kk n

µ
=

= μ


, and the 

corresponding ( )
max
iσ . 

(d) Calculate ( ) ( ) ( )
max max max/i i iU µ σ= . 

End 

3 Find the point with minimum system U value { }* ( )
min max1,2, ,

min
C

i

i N
U U

=
=



 , and identify 

a new training point new new( , )tx  corresponding to *
minU .  

4 Update surrogate models by adding new training points 

(e) Calculate U value at new new( , )tx  for all components.  

(f) If 2kU < , calculate new new( , )k kg t=y x . 

(g) Update surrogate models ˆ ˆ ( , )k ky g t= X    

Continue steps (2) through (4) until *
min 2U > . 
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When surrogate models ˆ ˆ( ) ( , )k ky t g t= X  are not accurate enough to substitute 

original performance functions for reliability analysis, more training points need to be 

added to refine the models. In order to remove global optimization, CN  sample points are 

generated based on the distributions of random variables, and these samples are served as 

candidates for new training points; they are therefore called candidate points (CP) Cx . 

For each candidate point ( )ix  in Cx , the Kriging prediction and its variance can be 

obtained by using existing surrogate models ˆ ˆ( ) ( , )k ky t g t= X , and the maximum 

prediction ( )
max
iµ  and its corresponding standard deviation ( )

max
iσ  at this point are available.  

 { }( )( ) ( ) ( )
ˆmax 1,2, , 1,2, ,

max max ( , )
k

t

i i j
gj n k n

tµ µ
= =

= x
 

  (19) 

The U value at ( )ix  is calculated with Eq. (12). The U value indicates the 

probability that surrogate models ˆ ˆ( ) ( , )k ky t g t= X  correctly predicts the sign of 

( ) ( , )k ky t g t= X . The smaller is the U value, the lower is the probability of correctness. 

Therefore, the point with the minimum U value has the greatest probability of making a 

wrong prediction, and adding this point to training points improves the accuracy of 

surrogate models to the most extent. This provides the most efficient way of refining 

surrogate models and achieving convergence. 

 ( )( ) ( )
new max max

1,2, ,
arg min /

C

i i

i N
µ σ

=
=x



  (20) 

After identifying the new training point and its corresponding time instant 

new new( , )tx , the U values of each component at this point is evaluated. If 

new new( , ) 2kU t <x , evaluate the original performance function of this component and 

obtain the true response at the new training point. Then add the new training point and its 
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response to existing training points and update the surrogate model. If new new( , ) 2kU t >x , 

this means that adding the new training point does not improve the model accuracy of 

component k  significantly. Therefore, calling of original performance function of this 

component is not needed.  

The above process is continued until the stopping criterion is satisfied. The 

detailed procedure is provided in Table 3.1. 

3.3 EXTENSION TO PROBLEMS WITH STOCHASTIC PROCESSES 

The surrogate modeling method developed above is for problems without 

stochastic processes. For a general time-dependent system, the components performance 

functions are in form of ( ) ( , ( ), )k ky t g t t= X Y , where ( )tY  are the stochastic processes. 

To employ the proposed method, ( )tY  need to be represented as a function of 

independent random variables. This transformation is achieved by Karhunen-Loeve 

expansion [43]. For a stochastic process ( )iY t , the Karhunen-Loeve expansion is given 

by 

 ( ) ( )
1

( ) ( )
e

i i

n

i Y t Y t j j j
j

Y t f tµ σ λ ξ
=

= + ∑   (21) 

where ( )iY tµ  and ( )iY tσ  are the mean and standard deviation of the stochastic process, jλ  

and ( )jf t  are eigenvalues and eigenvectors of the covariance function of the stochastic 

process, jξ  are independent standard random variables, and en  is the number of 

eigenvectors used to represent the stochastic process.  

After the Karhunen-Loeve expansion, the stochastic processes ( )tY  are 

represented by a function of independent standard random variables ξ , the performance 
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functions therefore become ( ) ( , , )k ky t g t= X ξ . To accurately represent ( )tY , a large 

number of random variables are needed, especially when the time period of interest is 

large. Because of the high dimensionality of ( ) ( , , )k ky t g t= X ξ , building their extreme 

value surrogate models extreme extremeˆ ˆ ( , )k ky g= X ξ  using the double-loop process reviewed in 

Section 2.2 is very time consuming. In the proposed method, we build surrogate models 

for ( ) ( , ( ), )k ky t g t t= X Y  directly so that the Karhunen-Loeve expansion will not increase 

the dimension of the surrogate modeling. 

 

Table 3.2 Procedure of refining surrogate models with stochastic processes 

  Step Description 

1 Generate CN  candidate points Cx  and ξ , and discretize 0[ , ]st t  into tn  time 
instants. 

2 For each ( )ix  and ( )iξ , 1,2, , Ci N=    

(a) Convert ( )iξ  to ( )(1) (2)[ ( ), ( ), , ( )]tnt t tY Y Y .  

(b) For each component surrogate model ˆ ˆ ( , , )k ky g t= X Y , 1,2, ,k n=    

(c) Compute Kriging prediction 
( )( ) ( ) (1) ( ) (2) ( )ˆ ˆ ˆ( , ), ( , ), , ( , )tni i i i

k k k kg t g t g t =  μ x x x at each 
( ) ( ) ( )( , ( ), )i j jt tx Y . 

       End 

(d) Find the system maximum prediction at ( )ix , ( )( ) ( )
max 1,2, ,

maxi i
kk n

µ
=

= μ


, and find the 

corresponding ( )
max
iσ  

(e) Calculate ( ) ( ) ( )
max max max/i i iU µ σ=  

End 
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Table 3.2 Procedure of refining surrogate models with stochastic processes (cont.) 

3 Find the point with minimum system U value { }* ( )
min max1,2, ,

min
C

i

i N
U U

=
=



 , and identify 

a new training point new new new( , Y , )tx  corresponding to *
minU .  

4 Update surrogate models by adding new training points 

(f) Calculate U value at new new new( , Y , )tx  for all components. 

(g)  If 2kU < , calculate new new new( , Y , )k kg t=y x   . 

(h) Update surrogate models ˆ ˆ( ) ( , , )k ky t g t= X Y    

Continue steps (2) through (4) until *
min 2U > . 

   

 

Similar to the surrogate modeling process of ˆ ˆ( ) ( , )k ky t g t= X , 0N  initial training 

points are generated for X , ξ , and t .  

 
0 0 0

(1) (1) (1)

( ) ( ) ( )

, ,T T T
k k k

N N N

t

t

 
   =   
  

x ξ
x ξ t

x ξ
     (22) 

And then using Eq. (21), the responses of ( )tY  are obtained. The training points 

are therefore become 

 
0 0 0

(1) (1) (1)

( ) ( ) ( )

, ,T T T
k k k

N N N

t

t

 
   =   
  

x Y
x Y t

x Y
     (23) 

Based on these initial training points, surrogate models of ˆ ˆ( ) ( , , )k ky t g t= X Y  are 

built. Then we generate CN  candidate points for X  and ξ , and 0[ , ]st t  is divided into tn  

time instants. The candidate points of ξ  are transformed to candidate points of ( )tY  



 

 

136 

using Eq. (21). The procedure of refining surrogate models for problems with stochastic 

processes is provided in Table 3.2.  

Since the dimensionality of surrogate models ˆ ˆ( ) ( , , )k ky t g t= X Y  is much lower 

than that of the extreme value surrogate models extreme extremeˆ ˆ ( , )k ky g= X ξ , the proposed 

method has better efficiency in surrogate modeling than extreme value methods. 

 



 

 

137 

4. EXAMPLES 

In this section, four examples are used to demonstrate the effectiveness of the 

proposed method. The performance functions of the first three examples have random 

variables and time as inputs, example 4 deals with random variables, time, and stochastic 

processes. The efficiency of a method is measured by number of function calls ( FCN ), 

and its accuracy is measured by the following percentage error 

 system system system
0 ,MCS 0 ,MCS 0% ( , ) ( , ) / ( , ) 100%f s f s f sp t t p t t p t tε = − ×   (24) 

where system
,MCS 0( , )f sp t t is the time-dependent probability of system failure using MCS. 

system
,MCS 0( , )f sp t t  is obtained from the brute force MCS performed on original response 

functions with a large sample size, and is therefore used as accurate solution for accuracy 

comparison. system
0( , )f sp t t  is obtained using mSEGO and the proposed method. 

For all examples in this paper, we use 0 12N =  initial training points to construct 

initial surrogate models, as suggested by [38]. Since both mSEGO method and the 

proposed method are based on random sampling, their results are also random. We 

therefore run both methods 20 times independently and use their average function calls 

and probability of failures for accuracy and efficiency comparison. 

4.1 EXAMPLE 1 

The first example is a numerical example with three components. The 

performance functions are defined by  

 2
1 1 2 1( , ) 0.2g t x x x t= −X   (25) 

 2 2
2 1 2 1 2( , ) ( ) ( ) /15g t x x x x t= + − −X   (26) 

 3 1 2( , ) 3 sing t x x t= −X   (27) 
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where 2 2
1 2(1,0.1 ), (1,0.1 )x N x N  . It is a series system, thus, the probability of 

system failure is defined as: 

 { }system
0 1 2 3( , ) Pr ( , ) 0 ( , ) 0 ( , ) 0, [0,10]f sp t t g t g t g t t= < < < ∃ ∈X X X    (28) 

The average results of system
0( , )f sp t t , ε , standard deviation of system

0( , )f sp t t , and 

FCN  from 20 independent runs are reported in Table 4.1 for comparison. 

The results show that the proposed method has much better efficiency and 

accuracy than mSEGO method. As the proposed method has smaller standard deviation 

of system
0( , )f sp t t  than that of mSEGO method, which means the new method tends to 

produce stable reliability analysis results, the new method is more robust than mSEGO 

method. 

 

Table 4.1 Average results of example 1 

Methods system
0( , )f sp t t   system

0( , )sfp t t
σ   (%)ε   FCN   

MCS 32.2996 10−×   N/A N/A 81 10×  81 10×  81 10×  

mSEGO 32.2568 10−×  55.58 10−×  2.72 720.30 35.60 24.00 

New method 32.2956 10−×  52.72 10−×  0.85 21.39 16.14 12.05 

 

 

4.2 EXAMPLE 2 

A function generator mechanism system consists of two four-bar linkage 

mechanisms is shown in Figure 4.1 [44, 45]. The two mechanisms generate a sine and a 

logarithm function, respectively.  
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The motion input and output of the sine function generator are θ  and 

( , )aκ κ θ= B , respectively, where 1 2 7[ , , , ]B B B=B   are the lengths of linkages of the 

mechanism. The required motion output is given by 

 ( )( ) 60 60 sin 0.75( 97 )dκ θ θ= + −     (29) 

For the logarithm function generator, the motion input and output are χ  and 

( , )aη η χ= B , respectively. The required motion output is given by 

 10 10( ) 60 log ( 15 ) / 60 / log (2)dη χ χ = + 
     (30) 

And the motion errors of the two mechanisms are given by 

 ( , ) ( , ) ( )a dκε θ κ θ κ θ= −B B   (31) 

 ( , ) ( , ) ( )a dηε χ η χ η χ= −B B   (32) 

As linkages 2B  and 5B  are welded together, their input angles have the following relation 

 62θ χ= +   (33) 

 

 

Figure 4.1 A function generator mechanism system 
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From the mechanism analysis of this system, the following equations can be 

obtained: 

 
2 2 2

( , ) 2arctana
E E D F

F D
κ κ κ κ

κ κ

κ θ
 − ± + −
 =
 − 

B   (34) 

in which 4 1 22 ( cos )D B B Bκ θ= − , 2 42 sinE B Bκ θ= − , and 

2 2 2 2
1 2 4 3 1 22 cosF B B B B B Bκ θ= + + − − .  

 
2 2 2

( , ) 2arctana

E E D F
F D

η η η η

η η

η χ
 − ± + −
 =

− 
 

B   (35) 

in which 7 1 52 ( cos )D B B Bη χ= − , 5 72 sinE B Bη χ= − , and 

2 2 2 2
1 5 7 6 1 52 cosF B B B B B Bη χ= + + − − .   

The distributions of random variables are given in Table 4.2. 

 

Table 4.2 Random variables of example 2 

Variable Mean Standard 
deviation Distribution 

1 (mm)B  100 0.3 Normal 

2 (mm)B  55.5 0.005 Normal 

3 (mm)B  144.1 0.005 Normal 

4 (mm)B  72.5 0.005 Normal 

5 (mm)B  79.5 0.005 Normal 

6 (mm)B  203 0.005 Normal 

7 (mm)B  150.8 0.005 Normal 
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This system is a series system since the system fails if any motion error of the two 

function generators is greater than its allowable error.  

The system is desired to perform its function over 0[ , ] [45 ,105 ]sχ χ =   . The 

probability of system failure is therefore defined as 

 { }system
0 1 2 0( , ) Pr ( , ) 0 ( , ) 0, , [ , ]f s i j i j sp κ ηχ χ ε χ ε ε χ ε χ χ χ χ= − > − > ∃ ∈B B   (36) 

where 1 1.4ε =   and 2 1.4ε =  are the allowable motion errors of the two function 

generators. 

The average results are shown in Table 4.3, which indicate that the proposed 

method and mSEGO method have similar accuracy and robustness, but the proposed 

method has better efficiency.  

 

Table 4.3 Average results of example 2 

Methods system
0( , )f sp t t  system

0( , )sfp t t
σ  (%)ε  FCN  

MCS 32.6264 10−×  N/A N/A 86 10×  86 10×  

mSEGO 32.6478 10−×  52.23 10−×  0.93 38.79 62.35 

New method 32.6115 10−×  52.40 10−×  0.89 31.80 17.69 
 

 

4.3 EXAMPLE 3 

As shown in Figure 4.2, the slider-crank mechanism system consists of three 

slider-crank mechanisms [20]. The three cranks are attached to the disc by the revolute 

joints, and the three cranks therefore have the same angular velocity and the same length, 

which is the radius of the disc cX . The angular velocity is 1ω =  rad/s. The lengths of the 
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three couplers are 1X , 2X , and 3X , respectively. All the lengths are independent random 

variables, and their distributions are given in Table 4.4. 

 

 

  

  

Slider 3 Slider 2 

  
    

  

  

  
  

  
  

  Slider 1 

 

Figure 4.2 A system of crank slider mechanisms 

 

Table 4.4 Random variables of example 3 

Variable Mean (mm) Standard deviation (mm) Distribution 

cX  100 0.1 Normal 

1X  150 0.1 Normal 

2X  250 0.1 Normal 

3X  200 0.1 Normal 

 

 

The motion outputs are the displacements of the three sliders, denoted by iS  

( 1,2,3i = ). They are given by 

 2 2cos ( sin )i c i i c iS X X Xθ θ= + −   (37) 
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where iθ  are the motion inputs as shown in Figure 4.2. The required motion outputs are 

the nominal displacements of the sliders and are given by  

 2 2cos ( sin )
iR c i i c iS µ θ µ µ θ= + −   (38) 

where cµ  and iµ  are the mean values of cX  and iX , respectively.  

The motion errors are  

 
ii R iS S S∆ = −   (39) 

The motion errors of the mechanisms should not be greater than the allowable 

motion errors iε  given by the customer, which are 1 0.4ε = mm, 2 0.4ε = mm, and 

3 0.4ε = mm, respectively. Given the motion inputs to be 1 tθ ω= , 2 / 6tθ ω π= − , and 

3 / 3tθ ω π= − , the limit-state functions are  

 2 2 2 2( ( )cos ( sin ) ( si) n, )i i c c ii c i ci iXtg X Xε µ µθ θ θµ= − − + − − −X   (40) 

Since the motions of mechanisms are periodical, we investigate the time interval 

[0, ]/2π  seconds in this paper. The time-dependent component probability of failure over 

this time interval is 

 { }Pr ( ) ( , ) 0, [0, /2]
i if i i R ip y S t S t tε π= = − − < ∃X   (41) 

where 1 2 3(X ,X ,X ,X )c=X . 

If any one of the three mechanisms produces a large motion error, the system 

failure occurs; and the system is therefore a series system. The probability of system 

failure is then defined by 

 { }system
0 1 2 3( , ) Pr ( , ) 0 ( , ) 0 ( , ) 0, [0, /2]f sp t t g t g t g t t π= < < < ∃ ∈X X X   (42) 
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The average results are shown in Table 4.5, which indicate that the proposed 

method outperforms mSEGO method in accuracy, efficiency, and robustness. 

 

Table 4.5 Average results of example 3 

Methods system
0( , )f sp t t  system

0( , )sfp t t
σ  (%)ε  FCN  

MCS 22.5518 10−×  N/A N/A 82.25 10×  82.25 10×  82.25 10×  

mSEGO 22.5372 10−×  41.67 10−×  0.70 142.95 68.79 83.90 

New 
method 

22.5339 10−×  57.91 10−×  0.69 52.89 33.79 38.25 

 

 

 

Figure 4.3 A Daniels system with two components 

 

4.4 EXAMPLE 4 

The last example is a Daniels system subjected to a stochastic process load [45]. 

As shown in Figure 4.3, the widths and heights of the components decrease over time at 

rates of 1k  and 2k , respectively. Each component resists half of the load ( )P t . The time-
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dependent probability of system failure is defined as the occurrence of both components 

yields, which reads as 

 { }system
0 1 2 0( , ) Pr ( , ( ), ) 0 ( , ( ), ) 0, and [ , ]f s sp t t g g t tχ χ τ τ χ τ= > > ∃ ∈X Y X Y<   (43) 

in which  

 ( , ( ), ) ( )/2 ( 2 )( 2 ) , where 1,2
ii i i i i bg t t P t a k t b k t iσ= − − − =X Y   (44) 

in which 0[ , ] [0,10] yearsst t = , 
1 21 1 2 2[ , , , , , ]b ba b a b σ σ=X , ( ) ( )t P t=Y , and  

4
1 5 10 in./yrk −= × , 4

2 3 10 in./yrk −= × . 
1bσ  and 

2bσ  are the yield strengths of components 

1 and 2, respectively.  

 

Table 4.6 Parameters and variables in example 4 

Variable Mean Standard 
deviation Distribution Autocorrelation 

1a  1.3 in. 0.01 in. Normal N/A 

1b  1.2 in. 0.01 in. Normal N/A 

2a  1.3 in. 0.05 in. Normal N/A 

2b  1.2 in. 0.05 in. Normal N/A 

1 2
,b bσ σ  36 kpsi 0.36 kpsi Normal N/A 

( )P t  85 kpsi 8 kpsi Gaussian 
process Eq. (45) 

 

 

The autocorrelation function of the stochastic process ( )P t  is given by 

 2 2
1 2 2 1( , ) exp ( ) /t t t tρ ζ = − −    (45) 
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in which 0.5 yrζ =  is the correlation length. The information of parameters and 

variables are provided in Table 4.6. 

The average results are reported in Table 4.7. The results show that the proposed 

method has much better performance in accuracy, efficiency and robustness than mSEGO 

method. All four examples demonstrate that the proposed method works well for time-

dependent systems with or without stochastic processes in their inputs. They also 

demonstrate that distributions of extreme values and global optimization are not 

indispensable in time-dependent system reliability analysis. 

 

Table 4.7 Average results of example 4 

Methods system
0( , )f sp t t   system

0( , )sfp t t
σ   (%)ε   FCN   

MCS 31.3134 10−×   N/A N/A 81.2 10×  81.2 10×  

mSEGO 31.3034 10−×  46.48 10−×  4.16 34.39 243.55 

New method 31.3097 10−×  56.79 10−×  0.45 28.94 31.00 
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5. CONCLUSIONS 

Time-dependent system reliability analysis is time-consuming and challenging, 

while it is critical to have accurate estimate of system reliability in decision makings on 

system performance degradation, lifetime cost estimation and maintenance, etc. The 

widely used extreme value methods employ a double-loop procedure which is used to 

obtain the distribution of extreme values. As it is difficult to get accurate distribution of 

extreme values, and computational cost is high to estimate system reliability for problems 

with stochastic processes over a long time period.  

This work develops a new surrogate modeling method that is applicable to general 

time-dependent systems that have random variables, stochastic processes and time in 

performance functions. By removing global optimization and building surrogate models 

for performance functions directly, the proposed method is more efficient than extreme 

value methods. Four examples are used to demonstrate the effectiveness of the proposed 

method. The results show that the proposed method is applicable to systems with or 

without stochastic processes, and to both series and parallel systems with good accuracy, 

efficiency, and robustness.  
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SECTION 

2. CONCLUSIONS 
 

The performance of an engineering system varies over time when time, or 

stochastic processes, or both are involved in the system performance functions. To 

estimate the reliability of time-dependent systems, time-dependent reliability methods 

need to be employed. As many decisions, like product warranty and maintenance 

strategies, are made based on the system reliability, it is essential for engineers to be able 

to accurately estimate reliability of time-dependent systems. 

Current methods for time-dependent system reliability analysis can be generally 

classified into three groups, uncrossing rate methods, extreme value methods, and 

sampling-based methods. Upcrossing rate methods are based on the Rice’s formula and 

assume that all upcrossing events arrive independently. This assumption simplifies the 

process of calculating reliability, but it also brings errors into reliability analysis, 

especially for problems with low failure thresholds or having strong correlations between 

responses. Although some methods have been developed to relax the independent 

assumption, the accuracy of upcrossing rate methods will still not be satisfactory for 

some problems as long as the independent assumption is not removed completely. 

Extreme value methods use the extreme responses to estimate system reliability, and 

accurate reliability analysis is obtained by accurate distributions of extreme responses. 

However, the distributions of extreme values are difficult to get, and the need of global 

optimization makes extreme values methods computational expensive. Sampling methods 

can get accurate reliability analysis results when large samples are draw, but the direct 

use of sampling methods for systems with high reliability over a long time period could 
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be extremely expensive. Building surrogate models for performance functions and use the 

surrogate models to substitute original performance functions in reliability analysis is a 

promising approach.  

In this dissertation, a new reliability method is proposed for multidisciplinary 

systems with stationary stochastic processes. The proposed method is based on the First 

and Second Order Reliability Methods (FORM and SORM) and the Multidisciplinary 

Analysis (MDA) is incorporated while approximating performance functions. To deal 

with the challenge of strong couplings between multiple subsystems, the proposed 

method uses linking variables as constraints in the process of searching for Most 

Probable Point (MPP). This not only guarantees the consistency of multidisciplinary 

systems, but also ensures high efficiency. The method has been successfully applied to a 

compound cylinders system, and the results show that the proposed method has much 

better accuracy than upcrossing rate method.  

Independent Kriging methods neglect the dependencies between Kriging 

predictions and focus on the accuracy of surrogate models instead of the accuracy of 

reliability estimate itself. A dependent Kriging method is developed in this dissertation 

and demonstrates that the efficiency of independent Kriging methods can be further 

improved by accounting for the dependencies. A new formula of calculating the 

probability of failure is derived which uses both means and standard deviations of 

Kriging predictions at all Monte Carlo samples. A new learning function is also derived. 

For a new training point, the learning function considers not only the contribution of the 

point to the error of reliability estimate but also those of the dependencies from all the 

other points. Then the dependent Kriging method is extended to systems, three widely 
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used benchmark examples from literature demonstrate that the proposed method 

outperforms independent Kriging methods in accuracy, efficiency, and robustness. 

A new surrogate modeling method for time-dependent systems is also developed 

in the dissertation. Current time-dependent system reliability methods require a double-

loop procedure: the inner loop searches for the extreme response at new training points, 

and the outer loop builds surrogate models for extreme responses. The new method 

building surrogate models of performance functions directly instead of building surrogate 

models for the extreme responses of performance functions. This overcomes the 

difficulty of obtaining extreme values distributions and avoids the errors that may be 

introduced. And the new method improves efficiency by removing the time-consuming 

global optimization needed in the inner loop of double-loop procedure. The new method 

is applicable to general time-dependent systems with random variables, time, and 

stochastic processes in performance functions. Four examples show the effectiveness of 

the new method. 
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