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ABSTRACT

Microfluidics enables a diverse range of manipulations (e.g., focusing, separating,

trapping, and enriching) of micrometer-sized objects, and has played an increasingly im-

portant role for applications that involve single cell biology and the detection and diagnosis

of diseases. In microfluidic devices, methods that are commonly used to manipulate cells

or particles include the utilization of hydrodynamic effects and externally applied field gra-

dients that induce forces on cells/particles, such as electrical fields, optical fields, magnetic

fields, and acoustic fields.

However, these conventional methods often involve complex designs or strongly

depend on the properties of the flow medium or the interaction between the fluid and

fluidic channels, so this dissertation aims to propose and demonstrate novel and low-cost

techniques to fabricate microfluidic devices to separate microparticles with different sizes,

materials and shapes by the optimized acoustic and magnetic fields. The first method is to

utilize acoustic bubble-enhanced pinched flow for microparticle separation; the microfluidic

separation ofmagnetic particles with soft magneticmicrostructures is achieved in the second

part; the third technique separates and focusesmicroparticles bymultiphase ferrofluid flows;

the fourth method realizes the fabrication and integration of microscale permanent magnets

for particle separation in microfluidics; magnetic separation of microparticles by shape is

proposed in the fifth technique.

The methods demonstrated in this dissertation not only address some of the limi-

tations of conventional microdevices, but also provide simple and efficient method for the

separation of microparticles and biological cells with different sizes, materials and shapes,

and will benefit practical microfluidic platforms concerning micron sized particles/cells.
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SECTION

1. INTRODUCTION

For many lab-on-a-chip and microfluidic platforms, in particular those designed for

biology, biomedical and medicine applications, separation of micron-sized particles is a

crucial prerequisite step for the downstream processing steps [1, 2, 3, 4, 5]. The separation

step provides the necessary purification, isolation and enrichment in order to allow the

subsequent detection, quantification, characterization and diagnosis of the target objects,

e.g. specific biological cells [6, 7, 8, 9]. Since most of the biological cells/particles of

interest exist in fluid medium, separation in microfluidic environment has gathered great

interest. Recent progress in microfluidics has provided a variety of novel techniques for

micro-particle separation [10, 11, 12].

Generally, the separation strategies based on microfluidic technology can be clas-

sified into two categories: active and passive methods [13]. In the former, external force

fields, for example electric [14, 15, 16], optical [17, 18], and magnetic forces [19, 20]

are utilized to cause different movements among micron-sized objects that have different

physical properties including size, conductivity, and magnetic susceptibility. For the pas-

sive techniques, the separation relies on the proper design of hydrodynamic flows, fluidic

networks, placement of obstacles and filters. Some examples of passive techniques include

pinched flow fractionation, deterministic lateral displacement [21], hydrodynamic filtering

[22], and inertial separation [23, 24]. Passive methods based on hydrodynamic effects often

rely on the appropriate channel designs to direct the particles of different sizes into separate

flow streamlines. The dimensions of the channels have implications for the applicable

separation sizes. Therefore, this research will mainly discuss the continuous focusing and

separation of microparticles with acoustic and magnetic fields.
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On the one hand, acoustically driven microbubbles are an excellent agent to induce

microscale hydrodynamic flows. Microbubble streaming flows have demonstrated a wide

range of applications, including fluid pumping [25], mixing [26], particle focusing [27, 28],

particle sorting [29] and biological cell trapping [30]. In previous work, the sorting of

microparticles relies on a trap-and-release mechanism [29]. The superposition of bubble

streaming and Poiseuille flows forms a closed upstream vortex. Large particles are trapped

into the vortex, and released afterwards from the cluster. Due to the narrow focused particle

trajectories, particles of different sizes are separated to different outlets [29]. This trap-

and-release mechanism has also been utilized to focus microparticles [27]. In addition to

steady streaming flow, the secondary Bjerknes force may also play an important role when

the fluid and particle have different densities. The interplay between the drag force due to

streaming flow and Bjerknes force allows attraction or repulsion between the particle and

the bubble. This subtle and interesting mechanism has been exploited for versatile particle

manipulation, including selective trapping and sorting of microparticle based on particle

size and density [31].

On the other hand, magnetism and magnetic particles or beads have long been used

for bioseparation applications in biomedical sciences and clinical medicines [32, 33]. For

example, immunomagnetic separation (IMS) is a standard laboratory technique for isolating

cells, proteins, and nucleic acids. In this technique, magnetic particles conjugated with an-

tibodies bind to antigens of the targeted cells’ surface, and thus allow the cells to be isolated,

purified and collected with a mangetic force field. Over the last decade, magnetism has

been integrated with microfluidics to harness the advantages of miniaturization, automation

and integration, and the term "magnetofluidics" has been coined [19, 34, 35, 36, 37, 38].

The use of magnetofluidics for bioseparation has received growing interest due to a number

of unique advantages: low cost, insensitivity to temperature or pH, and remote actuation

without direct contact. The two general methods for utilizing magnetic fields are: positive

and negative magnetophoresis. In positive magnetophoresis, magnetic particles migrate
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towards regions of higher magnetic field gradient. Commonly, magnetic particles are de-

flected from the direction of laminar flow by a perpendicular magnetic field. The deflection

velocity depends on the magnetic susceptibility, particle size, and flow rate. Thus, magnetic

particles of different sizes can be separated from each other and from non-magnetic materi-

als [39]. This mechanism has been used to trap cells by labeling the target bioparticles with

functionalized magnetic beads [19]. In negative magnetophoresis, diamagnetic particles

that are suspended in magnetic solutions are repelled away from regions of higher magnetic

field gradients (e.g., magnet sources) due to magnetic buoyancy force [40]. Further, most

synthetic and biological particles are diamagnetic; therefore, label-free manipulation can

be attained with negative magnetophoresis for practical applications.

Till now, there have been lots ofmethods tomanipulate, focus and separatemicropar-

ticles and cells with microfluidics, but most conventional technologies without optimization

have different shortcomings to achieve high-efficiency focusing and separation of micropar-

ticles for clinical and research use. Accordingly, the objective of this doctorate research is

to develop novel methods for enhancing the separation performance of particles according

to the difference in size, material and shape by using acoustic field and magnetic field.

This project will also provide numerical models and simulations that can predict the device

performance and guide the designs for practical applications.
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2. ORGANIZATION OF DISSERTATION

Many technical developments have been made in this study on above research

objectives. In this dissertation, only the five major developments are presented due to the

page limit. Paper I focuses on the acoustic bubble enhanced pinched flow fractionation for

microparticle separation. Paper II is an application of soft magnetic microstructures for

the microfluidic separation of magnetic particles. Paper III is to use multiphase ferrofluid

flows for micro-particle focusing and separation. Paper IV presents a simple and effective

fabrication technique to integrate microscale permanent magnets for particle separation.

Paper V proposes a novel method for magnetic separation of microparticles by shape.

All of the five articles share a same research topic: continuous focusing and separa-

tion of microparticles with acoustic and magnetic fields, while each of them has a different

focus.

Paper I proposes and demonstrates a novel and simple technique to enhance the

particle separation performance of conventional PFF devices. Our device integrates a

microbubble element into the pinched segment to locally alter the flow behaviors. The

method demonstrated in this work not only addresses some of the limitations of conventional

PFF, but also benefits applications where flexible tuning of particle positions or separation

is required due to the ease of changing driving voltage.

The soft magnetic microstructures is applied to microfluidic separation of magnetic

particles with in Paper II. The method is based on a microsolidics technique. The mangetic

microstructures are made by injecting and curing a mixture of iron powder and PDMS in

a structural microchannel next to the fluidic channel. Various factors are investigated that

influence the sorting performance, including the shape of iron-PDMS microstructure, mass
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ratio of iron powder, microfluidic channel width and total flow rate. A numerical method

is also developed that can predict the particle separation and show good agreement with

experimental measurements.

To overcome the limitations associated existing techniques, a simple and novel

strategy to achieve focusing and separating of diamagnetic microparticles with laminar

fluid interfaces and micro-fabricated magnets are proposed in Paper III. In this technique, a

ferrofluid and a non-magnetic fluid co-flowing in a microfluidic channel form a stable fluid

interface. Under the magnetic fields from the neighboring microscale magnet, diamagnetic

particles that are suspended in the ferrofluid phase migrate towards and accumulate at the

fluid interface, leading to particle focusing. This mechanism can be further exploited to

separate particles of different sizes.

In Paper IV, a miniaturized and integrated microfluidic device that can pull magnetic

particles from one laminar flow path to another by applying local magnetic field gradients

are proposed, and thus selectively remove them from flowing fluids. To accomplish this,

high-gradient microscale magnet is fabricated and integrated at one side of a microfluidic

channel by a simple single-layer and single-mask microsolidics fabrication technique.

In PaperV, a simple and effectivemechanism that can achieve shape-based separation

of magnetic particles in microscale flows were demonstrated. In this method, a uniform

magnetic field is applied perpendicularly to the flow direction, and causes shape-dependent

lateral migration of the particles. Using high-speed imaging, the rotational dynamics of the

ellipsoidal particles are studied.
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ABSTRACT

Pinched flow fractionation is a simple method for separating micron-sized particles by

size, but has certain intrinsic limitations, e.g. requirement of a pinched segment similar

to particle size and limited separation distance. In this paper, we developed an acoustic

bubble enhanced pinched flow fractionation (PFF) method for microparticle separation.

The proposed technique utilized microbubble streaming flows to overcome the limitations

of conventional PFF. Our device has demonstrated separation of different sized micropar-

ticles (diameters 10 and 2 µm) with a larger pinched segment (60 µm), and at different

buffer/particle solution flow rate ratios (5 – 25). The separation distances between particles

are larger (as large as 2 times) than those achieved with conventional PFF. In addition, the

separation position and distance can be adjusted by changing the driving voltage. The robust

performance is due to the unique features of the flow field inside the pinched segment. We

investigated several factors, including flow rate ratio, total flow rate and driving voltage,

that affect the separation performance.
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1. INTRODUCTION

For many lab-on-a-chip and micro Total Analysis Systems (µTAS) platforms, in

particular those designed for biology, biomedical and medicine applications, separation of

micron-sized particles is a crucial prerequisite step for the downstream processing steps

[1, 2, 3, 4, 5]. The separation step provides the necessary purification, isolation and

enrichment in order to allow the subsequent detection, quantification, characterization and

diagnosis of the target objects, e.g. specific biological cells [6, 7, 8, 9]. Since most of

the biological cells/particles of interest exist in fluid medium, separation in microfluidic

environment has gathered great interest. Recent progress in microfluidics has provided a

variety of novel techniques for micro-particle separation [10, 11, 12].

Size is one of the important attributes of particles or bio-particles, and size based

separation has been a focus in the field of microfluidics. Generally, the separation strategies

based on microfluidic technology can be classified into two categories: active and passive

methods [13]. In the former, external force fields, for example electric [14, 15, 16], optical

[17, 18], and magnetic forces [19, 20] are utilized to cause different movements among

micron-sized objects that have different physical properties including size, conductivity,

and magnetic susceptibility. For the passive techniques, the separation relies on the proper

design of hydrodynamic flows, fluidic networks, placement of obstacles and filters. Some

examples of passive techniques include pinched flow fractionation, deterministic lateral

displacement [21], hydrodynamic filtering [22], and inertial separation [23, 24].

Devices based on passive methods are generally easier to operate [10, 22]. Among

the various passive techniques, pinched flow fractionation (PFF) is considered one of the

most convenient one owing to its simple working principle [25]. In PFF, two liquid streams

– one containing particle mixture and one being buffer fluid – are introduced from two inlets

and meet in a narrow channel, known as the pinched segment. By adjusting the flow ratio

between the two liquids, the width of the liquid stream is adjusted so that the particles are
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pushed against the channel wall in the pinched segment. Upon exiting from the pinched

segment, particles of different sizes follow different streamlines to a broadened region, and

the separation distance between the particles is amplified due to the channel expansion.

In spite of its simplicity in concept, conventional PFF device has certain limitations

including the requirement of a narrow pinched segment and limited separation distance.

A number of modifications have since been proposed by various researchers to improve

the performance of PFF devices [26, 27, 28, 29, 30]. For example, the hydrodynamic

resistance were adjusted by placing asymmetric branches after the pinched segment to

cause a preferential flow into certain outlet [26]. Vig and Kristensen integrated a snakelike

structure in the broadening segment to further amplify the separation distance between

particles [27]. In other studies, channel with extreme aspect ratios [29] or pinched segment

with tilted sidewalls [30] were utilized to increase the separation inside the pinched segment.

Combining active methods into conventional PFF can improve the performance as well. For

example, Lee et al. employed an optical scattering force from a continuous laser to enhance

the separation distance, because optical force is different for particles of different size [28].

Acoustically driven microbubbles are an excellent agent to induce microscale hydro-

dynamic flows. Microbubble streaming flows have demonstrated a wide range of applica-

tions, including fluid pumping [31], mixing [32], particle focusing [33, 34], particle sorting

[35] and biological cell trapping [36]. In previous work, the sorting of microparticles

relies on a trap-and-release mechanism [35]. The superposition of bubble streaming and

Poiseuille flows forms a closed upstream vortex. Large particles are trapped into the vortex,

and released afterwards from the cluster. Due to the narrow focused particle trajectories,

particles of different sizes are separated to different outlets [35]. This trap-and-release

mechanism has also been utilized to focus microparticles [33]. In addition to steady stream-

ing flow, the secondary Bjerknes force may also play an important role when the fluid and

particle have different densities. The interplay between the drag force due to streaming flow

and Bjerknes force allows attraction or repulsion between the particle and the bubble. This
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subtle and interesting mechanism has been exploited for versatile particle manipulation,

including selective trapping and sorting of microparticle based on particle size and density

[37].

In this paper, we propose and demonstrate a novel and simple technique to enhance

the particle separation performance of conventional PFF devices. Our device integrates a

microbubble element into the pinched segment to locally alter the flow behaviors. When

actuated remotely by the pressure field induced by a piezoelectric transducer, the microbub-

ble generates steady streaming flow, and thus modifies the flow characteristic inside the

pinched segment. Different from previous works that utilized trap-and-release mechanism

[33, 35], the current technique does not require a upstream vortex to trap particles. Instead,

the bubble streaming flow accelerates the flow near the bubble. This local velocity acceler-

ation enhances the separation among particles of different sizes. Moreover, the operation

of the microbubble and particle separation can be easily tuned by controlling the driving

amplitude. In the following sections, we first describe the experimental details, and then

explain the working principle of our proposed technique. We study the effect of flow rate

ratio, total flow rate and driving voltage on the separation performance.

2. EXPERIMENT

2.1. MicrofluidicDevices. Fig. 1 shows a schematic illustration of themicrodevice

for particle separation. A side channel was fabricated within the pinched segment region

on the side wall to form a microbubble. Microdevices were fabricated in (Polydimethyl-

siloxane) PDMS using soft lithography technique [38]. Master molds were manufactured

by lithographic patterning a dry film (MM540, DuPont) of a thickness of 35 µm. Briefly,

a layer of dry film resist was first laminated onto a copper plate using a thermal laminator.

After ultra-violet (UV) exposure through a transparency photo mask (10,000 dpi, CAD/Art

Services Inc), the exposed dry film was developed, rinsed and dried to obtain the master

mold. PDMS base and initiator were throughly mixed, degassed, and then cast on the
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Figure 1. Schematic of the microdevice for particle separation. wp is the width of pinched
flow segment; wb is the width of broadened segment; w is the width of bubble generation
segment; D is the depth of microchannel.

master. After curing, the PDMS replica was peeled off from the master, cut and punched,

and then bonded with a flat glass slide after corona surface treatment. Using this method,

microchannels with a rectangular cross sectional shape were fabricated. A piezoelectric

transducer (part number: SMD15T09S411, thickness 0.9 mm, diameter 15 mm, Steiner &

Martins, Inc) was glued to the glass slide to control the amplitude of the bubble vibration.

2.2. Materials. A binary mixture of polystyrene particles, (diameters ds = 2 µm

and dl = 10 µm, Magsphere Inc) were used as model particles. These particles were

suspended in 22% (w/w) aqueous glycerol solution whose density was almost the same with

the particle samples. The matched density of the solutions reduced the effect of particle

sedimentation. The original solutions of 2 µm and 10 µm particles (2.5% w/w) were

diluted with 22% glycerol solution to 2000 and 200 times respectively. The final particle

concentrations were 2.84 × 106 mL−1 and 2.27 × 105 mL−1 respectively. For experiments

with both conventional and bubble enhanced PFF microdevices, 22% glycerol solution was

injected to inlet 1 as buffer solution, and 22% glycerol solution with 2 µm and 10 µm

particles was injected into inlet 2 as particle solution. Surfactant Tween 20 was added to all

solutions at a concentration of 0.5% w/w to prevent particle adhesion to channel walls and

particle agglomeration.



11

2.3. Experimental Set-up. The microfluidic device was placed on an inverted

microscope stage (IX73, Olympus). Microfluidic devices were illuminated by a fiber optic

light for transmission bright-field imaging. The flow rates to the inlets were controlled

separately by two syringe pumps (NE-300, New Era and KDS 200, KDS Scientific). To

maintain good stability of the flow, small syringes (1 ml) were used to minimize the effect

of the motor’s step motion. At a flow rate of 0.2 µL/min, the velocity obtained by tracking

individual particles showed that the coefficient of variation of the velocity was about 5%

or smaller. Sinusoidal signals of different frequency and amplitude were generated by a

function generator (DG4062, Rigol) and were amplified 10 times by an amplifier (7500,

Krohn-Hite) to drive the piezoelectric transducer. The driving voltages to the transducer

were measured in terms of peak-to-peak values. In the following sections, the voltage refers

to the output voltage from the amplifier, which was directly connected to the electrodes of

the transducer. To record particle trajectories, a high-speed camera (Phantom Miro M310,

Vision Research) was used to capture videos.

2.4. Data Analysis. ImageJ was used to extract particle trajectory information

[39]. The data of the particle size and position were analyzed and post-processed with Mat-

lab. Separation resolution was calculated from the standard deviation and peak separation

distance to provide a quantitative analysis and consistent criteria for comparison among

different experiment conditions. As will be seen in the results and discussion later, the

number of smaller particle was always large enough (more than 20). The relatively fewer

number (at least 4 or 5) of large particles was due to the sedimentation. This is because

perfect density matching of the particle and solution was difficult. We have conducted

additional experiment to evaluate the effect of number of large particles on their position

distribution. The results showed that the analysis based on 4 or 5 large particles is accurate

enough to determine both the peak position and standard deviation.
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Figure 2. Pinched flow fractionation devices. (a) a conventional PFF; (b) schematic
illustration of the working principle of conventional PFF. The comparison of particle tra-
jectories in a conventional PFF (c) and a bubble enhanced PFF device. (d) The flow rates
are Q1 = 3.0 µL/min and Q2 = 0.2 µL/min. Scale bars are 100 µm.

3. WORKING PRINCIPLE

In a conventional PFFmicrodevice, as shown in Fig. 2(a)(b), the solution containing

particles need to be aligned onto the sidewall in the pinched segment for the separation

mechanism to work. Let Q1, and Q2 be the flow rates of the buffer and particle solutions

respectively, wp and wb be the widths of the pinched and broadened segment respectively,

and assume a linear uniform velocity profile within the pinched segment [25], the widths

of the buffer and particle solutions inside the pinched segment can be approximated as

w1 =
Q1

Q1 +Q2
wp, w2 =

Q2
Q1 +Q2

wp respectively. If a binary mixture of particles (with

diameter dl and ds) is considered, the first critical condition to align the larger particles is

w2 =
Q2

Q1 +Q2
wp ≤ dl , which leads to

Q1
Q2
≥

wp − dl

dl
. (1)
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Similarly, the alignment of smaller particles requires

Q1
Q2
≥

wp − ds

ds
. (2)

Meeting the second critical flow rate ratio, the separation distance within the pinched

segment between the two particles is (dl − ds)/2, which will not increase further. After

exiting into the broadened segment, the initial position difference within the pinched region

is linearly amplified to a larger separation distance,
(dl − ds)

2
wb

wp
, which is theoretically the

best separation distance that can be achieved [25].

From theworking principle of conventional PFF,we can see that the pinched segment

should have similar size as (often only two or three times of) the particles to be separated

[25, 40, 41]. Otherwise, a large flow ratio is required. This requirement however poses

several challenges: (1) microfabrication capability and (2) potential clogging issues due

to the small pinched segment. In addition, the maximal separation distance is fixed and

limited. Considering a typical broadened/pinched segment ratio
wb

wp
= 10, and a binary

particle mixture of dl = 10 µm and ds = 2 µm, the best separation distance is about 40 µm,

which is only a small fraction (less than 10%) of the broadened channel. Thus, downstream

collection of the particles can be challenging. In actual applications, the particles exhibit

dispersion due to channel surface roughness [42]. Consequently, the actual separation

distances are even smaller than the theoretical prediction.

Our acoustic bubble enhanced method can address those limitations of the conven-

tional PFF. When actuated by acoustic pressure, i.e. induced by a piezoelectric transducer,

the vibrating microbubble sets up steady streaming flows. Although steady streaming flow

velocity decays fast [43], the local strong flow can effectively improve the particle separation

distance. The comparison between a conventional PFF and a bubble enhanced PFF is shown

in Fig. 2(c)(d), under the same flow rate ratio Q1/Q2 = 15. As can be seen, 2 µm and 10

µm particles were not separated with the conventional PFF channel. This is anticipated:
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because Q1/Q2 = 15 does not meet the required flow ratio, 29, based on the separation

criterion set in equation 2. On the other hand, with the bubble enhanced PFF microdevice,

the particles were clearly separated with a distance about 80 µm in Fig. 2(d), which is 2

times of the best theoretical seperation distance (40 µm) with the conventional PFF. The

comparison confirmed the critical role of acoustic bubble streaming flows in improving the

separation performance.

It is the velocity field that improves the separation. Previous studies have shown

that the streaming flows are frequency dependent: in the low frequency regime, the flows

are predominantly “fountain" type flows, while in the high frequency regime, the flows

are “anti-fountain" type [44]. For a 60 µm diameter microbubble, 41.7 kHz is in the low

driving frequency regime [45]. The superposition of the flow field in the microchannel with

non-vibrating bubble, and acoustic streaming flow field are schematically shown in Fig.

3(a). The combination of the “fountain" type flow and the pressure driven flow resulted in a

unique flow structure to affect the particle trajectories and enhance the separation between

particles of different sizes.

We measured the velocity field with particle image velocimetry (PIV) technique to

quantitatively understand the characteristics of velocity field inside the pinched segment.

Fig. 3(b) shows the velocity vector distribution in the bubble enhanced PFF when the

bubble was excited at 41.7 kHz and 150 V; and Fig. 3(c) shows the velocity distribution

in the conventional PFF channel. Flow rates from inlet 1 and 2 were 3.0 µL/min and 0.2

µL/min respectively. The velocity distribution of the conventional PFF has a parabolic

profile and is symmetrical about the centerline. In contrast, the acoustic bubble enhanced

PFF shows a very different velocity profile: the lower half has a larger velocity. In fact,

the velocity increases even more when it is closer to the bubble. However, because of the

bubble interface oscillation, the PIVmeasurement was not able to measure the velocity near

the bubble interface with sufficient accuracy.
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Figure 3. (a) the combined flow field of pressure driven flow and acoustic microbubble
streaming flow; (b) the velocity profile inside the pinched segment of the bubble enhanced
microdevice with frequency 41.7 kHz and voltage 150 V; (c) the velocity profile inside the
pinched segment of the conventional PFF microdevice. Flow rate from inlet 1 and 2 are
3.0 µL/min and 0.2 µL/min respectively. The contour represents the velocity magnitude
normalized by the average velocity entering the pinched segment. The experimental results
in (b) and (c) were basd on micro particle image velocimetry (µPIV) measurement.

The change of velocity is due to the microbubble streaming flows. As the flow

approaches from the upstream towards the microbubble inside the pinched channel, the

“fountain" type acoustic flow caused by vibrating bubble increases the velocity magnitude.

Therefore, the average velocity near lower wall surface is larger than that of upper wall

surface. Because of the fixed volume flow rate, the width of particle solution reduces. The

large particles are aligned onto the bubble surface and pushed onto a streamline that is

further away from its original streamline because of the combined flow field. The small

difference inside the pinched segment is significantly enlarged in the broadened segment,

so that the acoustic bubble flow field improves the separation performance. Moreover, by

adjusting the driving voltage, the relative strength of the bubble streaming can be tuned

easily to control both the separation distance and positions of the particles.
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It is worth to note the importance of driving frequency and how it was selected. Prior

works [44, 45] have found that the vibration mode of the bubble depends on the dimension

of the bubble and driving frequency. The vibration mode in turn affects the steady streaming

flow orientation. In the technique reported here, a strong “fountain" type streaming flow is

necessary because it will accelerate the flow near the bubble surface to facilitate particle

separation. In practice, the frequency can be experimentally tuned by observing the flow

or estimated by theoretical analysis [44, 45]. For a 60 µm diameter bubble, 41.7 kHz lies

in the upper limit of the frequency range to establish a “fountain" flow while providing a

stronger streaming flow.

4. RESULTS AND DISCUSSION

The introduction of a vibrating bubble to the conventional PFF has a positive

influence on particle separation due to the unique feature of the combined flow field as

discussed in section 3. Several factors can affect the separation performance of the acoustic

bubble enhanced PFF. First, the ratio of flow rates of the two inlets is a key factor, since

this ratio determines the width of the particle-containing solution in the pinched segment,

and relates to the degree of alignment of particles to the sidewall. Second, the total flow

rate affects the separation performance, because it is related to the relative strength between

the streaming flow and pressure driven flow. Third, the driving voltage affects directly the

amplitude of the bubble vibration, and thus the intensity of the acoustic streaming flow. We

conducted systematic experimental work to examine the influence of these factors on the

separation performance.

4.1. Effect of Flow Rate Ratio. We first examined the influence of flow rate ratio

of inlet 1 to inlet 2, Q1/Q2, which relates to the focusing of the solution and the aligning

of particles on the sidewall. To maintain the same acoustic streaming flow strength, the
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vibrating frequency of bubble was kept at 41.7 kHz and the driving voltage was 150 V. The

flow rate ratio Q1/Q2 was set at 5, 15 and 25 respectively, while the total flow rate was kept

constant at 5.2 µL/min.

Fig. 4 shows the particle separation when the flow rate ratio of the buffer solution

to the particle solution were varied. As the flow rate ratio increased from 5 to 25, the

peak position and distribution width of 10 µm particles were almost constant while the

peak position of 2 µm moved towards the side wall and the distribution width became

smaller. The trend means that the separation performance gets better when the flow rate

ratio increases from 5 to 25. This can be explained as follows: 10 µm particles always align

along the wall in the pinched segment according to equation 1, for the range of flow ratio

from 5 to 25. Because the total flow rate is fixed, the positions and distribution width of 10

µm particles in the broadened segment remain almost the same.

Varying flow rate ratio mainly affects the position and distribution of smaller parti-

cles. As the flow rate ratio increases from 5 to 25, the width of particle solution decreases

and the smaller particles are able to get closer to the wall in the pinched segment. There-

fore, a larger fraction of 2 µm particles are aligned in the pinched segment. The increasing

alignment leads to both a narrower spatial distribution of 2 µm particles and positions closer

to the wall in the broadened segment. However, not all of the 2 µm particles were aligned

along the wall in the pinched segment even when the flow rate ratio was 25, according to

equation 2. Therefore, the slight spread of 2 µm particle in pinched segment affects their

final positions in the broadened segment. The smaller particles show a wider spatial distri-

bution than 10 µm particles. In addition, the roughness of the channel wall also contributes

to relatively large dispersion of smaller particles [42].

As noted by other researchers, the separation distance between the peak positions

alone is not sufficient to characterize the separation performance [42]. To better quantify

the separation performance, the parameter separation resolution was determined following
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Figure 4. Effect of flow rate ratio on particle separation. (a-1) to (a-3) are the superimposed
images showing the particle trajectories. (b-1) to (b-3) are the histograms showing the
particle position. The flow rate ratios are Q1/Q2 = 5 in (a-1) and (b-1), Q1/Q2 = 15 in
(a-2) and (b-2), and Q1/Q2 = 25 in (a-3) and (b-3). The other experiment conditions are the
same for all three: f = 41.7 kHz andV = 150V, total flow rateQt = Q1+Q2 = 5.2 µL/min.

previous studies [42],

Rs =
z2 − z1

2(d1 + d2)
, (3)

where z1 and z2 are the peak positions of 2 µm (smaller) and 10 µm (larger) particles

respectively, and d1 and d2 are their respective standard deviations. When the flow rate ratio

are 5, 15 and 25, the separation resolution are 1.66, 2.36 and 3.05 respectively. When the

flow rate ratio was 25, the separation resolution had the largest value of 3.05, suggesting

the best separation performance. w2/ds can be interpreted as a dimensionless number

comparing the width of the pinched particle solution to the size of small particles. When
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the flow rate ratio are 5, 15 and 25, w2/ds are 5, 1.88 and 1.15 respectively. The improved

separation resolution with decreasing w2/ds supports our earlier discussion that a narrower

particle solutions will lead to better separation.

4.2. Effect of Total Flow Rate. In this part, we studied how the total flow rate

affects the separation performance. Two sets of experiments were conducted. In the

first set, the ratio of the flow rate Q1/Q2 was kept constant at 15, and the total flow rate

Qt = Q1 + Q2 was controlled at 3.2 µL/min (Fig. 5 (a-1)) and 6.4 µL/min (Fig. 5 (a-2))

respectively. In the second set, the ratio of the flow rateQ1/Q2 was 25, and the total flow rate

were controlled at 5.2 µL/min in Fig. 5 (b-1) and 10.4 µL/min in Fig. 5(b-2) respectively.

In all these experiments, the piezoelectric transducer was actuated at frequency 41.7 kHz

and driving voltage 150 V. By comparing (a-1) with (a-2), and (b-1) with (b-2), we observed

that the particle positions in the broadened segment shifted towards the channel sidewall

as the total flow rate increased. At the same time, the increased total flow rates caused

decreased peak separation distances.

When the flow rate ratio was 15, the separation resolution for 3.2 µL/min was 2.87

and for 6.4 µL/min was 2.02, meaning that the separation performance of 3.2 µL/min is

better than 6.4 µL/min. The same trend was also observed for the experiments with flow

rate ratio Q1/Q2 = 25. In this case, the separation resolution for 5.2 µL/min is 2.62 and

for 10.4 µL/min is 1.72, which means that the separation performance of 5.2 µL/min is

better than 10.4 µL/min. Therefore, the increasing total flow rates led to worse separation

performance.

The results suggest that at a fixed flow rate ratio, the bubble enhanced PFF is more

effective when the total flow rate is smaller. The reason can be explained as follows: when

the total flow rate is smaller, the microbubble streaming flow is stronger relative to the

pressure driven flow. The combined flow field accelerates the flows more effectively. As we

have discussed earlier, the velocity profile caused by the acceleration is critical in pushing

particles to a streamline further into the buffer solution. As the total flow rate increases,
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the relative strength of the bubble streaming becomes smaller. In an extreme case, when

pressure driven flow velocity is so much larger than the streaming flow, the effect of the

bubble streaming flow will be negligible.

Q1/Q2=15

Q1+Q2=6.4mL/min

Q1/Q2=15

Q1+Q2=3.2mL/min

Q1/Q2=25

Q1+Q2=10.4mL/min

Q1/Q2=25

Q1+Q2=5.2mL/min

(a-1) (b-1)

(a-2) (b-2)

Figure 5. Effect of total flow rate on particle separation. (a-1) and (a-2) are the histograms
of particle separation with total flow rate of 3.2 µL/min and 6.4 µL/min respectively. The
flow rate ratio of (a-1) and (a-2) was kept constant at 15. (b-1) and (b-2) are the histograms
showing the particle positionwith total flow rate of 5.2 µL/min and 10.4 µL/min respectively.
The flow rate ratio of (b-1) and (b-2) was kept constant at 25.

4.3. Effect of Voltage. In the last part, the effect of the working voltage on the

separation performance was discussed. The driving voltage was set at 0 V, 100 V, 150 V

and 200 V, while the ratio of the flow rate was Q1/Q2 = 30 and the driving frequency was

41.7 kHz. The particle position distribution results are shown in Fig. 6. It was observed

that peak separation distance of 2 µm and 10 µm particles increased and particles moved

further from the wall as the working voltage increased from 0 V to 200 V. The increasing

working voltage leads to the increased acoustic streaming flow velocity because streaming

velocity us ∝ V2 [35, 43], thus imposing a relatively stronger influence on the imposed

pressure driven flow. The effect is similar to the case where the total flow rate is reduced.
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Figure 6. Effect of driving voltage on particle separation. (a-1) to (a-4) are the superimposed
images showing the particle trajectories. (b-1) to (b-4) are the histograms showing the
particle position. The driving voltage of was set at 0 V in (a-1) and (b-1), 100 V in (a-2)
and (b-2), 150 V in (a-3) and (b-3), and 200 V in (a-4) and (b-4). The ratio of the flow rate
from inlets 1 and 2 was 30, and the driving frequency was 41.7 kHz.

The separation resolution for 0 V was 0.28, the separation resolution for 100 V was

1.18, the separation resolution for 150 V was 1.62 and the separation resolution for 200 V

was 1.77. It is clear that the 200 V driving voltage has the largest separation resolution,

meaning the best separation performance. It is worth noting that by tuning the driving

voltage, both the positions of the large and small particles can be tuned. For example, the
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peak position of 10 µm particles were shifted from z = 75 µm to z = 200 µm when the

driving voltage was varied from 100 V to 200 V. The tunable positioning is an useful feature

for applications where particles need to be switched to different outlets.

4.4. Benefits andLimitations. There are a variety of particle separation techniques

available formicrofluidic applications, and each of themhas its ownmerits and shortcomings

[13]. The technique reported in this work can be considered a combination of (conventional)

PFF and external acoustic actuation. Due to the tunable feature of the bubble streaming

flows, our technique is able to operate in two modes. When the bubble is not actuated

(bubble-offmode), it works like a conventional PFF device and the general working principle

of PFF applies. When the bubble is actuated (bubble-on mode), the streaming flows

can enhance the particle separation, even inside a relatively large pinched channel. The

enhancement thus relaxes the restraint on the microfabrication process. For our technique

to work effectively, the streaming flow has be to strong enough compared to the pressure

driven flow. This is one factor that may pose a limit on the throughput. In conventional

PFF, the particle separation only depends on the flow rate ratio, therefore the throughput of

PFF can be higher, as long as the microfluidic device can withstand the imposed pressure.

However, when the bubble streaming flow is weaker, our technique will work similarly to

a conventional PFF. In this regard, the beneficial features of our technique may be absent,

but the device will retain the characteristics of a conventional PFF.

Acoustophoresis is another effectivemethod to sort particles utilizing acoustic radia-

tion forces [46]. Throughput of acoustophoretic separation can be higher when the particles

have very different sizes and densities [46, 47]. However, acoustophoretic actuation requires

pressure wavelengths comparable to the size of particles and/or the channel dimensions.

For typical microfluidic dimensions, the acoustic frequency is in the range of 1 MHz to

100 MHz, which may require external cooling to minimize the possible heating when deal-

ing with biological samples [48]. Additionally, silicon or glass microfluidic devices are

necessary to set up the standing waves inside the channels [48]. In our technique, the man-
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ufacture is simpler, as a piezoelectric transducer can be simply glued to the bottom of the

glass substrate. Because of the lower frequency (less than 100 kHz) used, heat generation

is thus small and negligible. Based on the above discussion, our proposed technique offers

several attractive features – tunability, enhanced separation, low heat generation and simple

implementation, while the low throughput can be considered a limitation.

5. CONCLUSIONS

We proposed and demonstrated a novel acoustic bubble enhanced flow fractionation

technique to overcome the limitations of conventional PFF devices. The combination of

acoustic streaming flow from the bubble and the pressure driven flow inside the pinched

segment provides beneficial features – local acceleration and non-uniform velocity profile.

The combined flow field results in improved and robust separation between microparticles.

Systematic experiments were conducted to study the effect of flow rate ratio, total flow rate

and driving voltage on the separation performance. We found: first, a large flow rate ratio

of the buffer to particle-containing solution improves the separation performance, because

of the better alignment of particles to the sidewall. Second, decreasing total flow rate

leads to better separation performance due to the stronger effect of microbubble streaming

flows. Third, as the driving voltage increases, the separation resolution between particles

increases, attributed to a larger peak separation distance caused by the increased bubble

acoustic streaming flow. The method demonstrated in this work not only addresses some of

the limitations of conventional PFF, but also benefits applications where flexible tuning of

particle positions or separation is required due to the ease of changing driving voltage.
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ABSTRACT

This paper demonstrates simple and cost-effective microfluidic devices for enhanced sepa-

ration of magnetic particles by using soft magnetic microstructures. By injecting a mixture

of iron powder and Polydimethylsiloxane (PDMS) into a prefabricated channel, an iron-

PDMS microstructure was fabricated next to a microfluidic channel. Placed between two

external permanent magnets, the magnetized iron-PDMS microstructure induces localized

and strong forces on the magnetic particles in the direction perpendicular to the fluid flow.

Due to the small distance between the microstructure and the fluid channel, the localized

large magnetic field gradients results a vertical force on the magnetic particles, leading to

enhanced separation of the particles. Numerical simulations were developed to compute the

particle trajectories, and agreed well with experimental data. Systematic experiments and

numerical simulation were conducted to study the effect of relevant factors on the transport

of superparamagnetic particles, including the shape of iron-PDMS microstructure, mass

ratio of iron-PDMS composite, width of the microfluidic channel, and total flow rate.
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1. INTRODUCTION

Magnetism and magnetic particles or beads have long been used for bioseparation

applications in biomedical sciences and clinical medicines [1, 2]. For example, immuno-

magnetic separation (IMS) is a standard laboratory technique for isolating cells, proteins,

and nucleic acids. In this technique, magnetic particles conjugated with antibodies bind

to antigens of the targeted cells’ surface, and thus allow the cells to be isolated, purified

and collected with a mangetic force field. Quadrupole magnetic flow sorter (QMS) has

been used for isolation of cancer cells from patients with head and neck cancer [3, 4] and

to separate islet cells for diabetes diagnosis research [5]. Lund-Olesen et al. studied the

hybridization of target DNA in solution with probe DNA on magnetic beads immobilized

on the channel sidewalls in a magnetic bead separator [6].

Over the last decade, magnetismhas been integratedwithmicrofluidics to harness the

advantages of miniaturization, automation and integration, and the term “magnetofluidics"

has been coined [7, 8, 9, 10, 11, 12]. Microfluidic-based magnetophoretic techniques

have been demonstrated in continuous separation of erythrocytes and leukocytes from

whole blood [13] and E. coli bacteria from living cells[14]. The use of magnetofluidics for

bioseparation has received growing interest due to a number of unique advantages: low cost,

insensitivity to temperature or pH, and remote actuation without direct contact. In some

applications, magnetofluidics are favored over other methods, such as acoustic, electric, and

optical forces, which often involve complex designs or strongly depend on the properties of

the flow medium or the interaction between the fluid and fluidic channels [9, 10, 11].

The simplest and most prominent class of microsystems for magnetic particle sepa-

ration relies on the combination of microstructures made of soft magnetic materials and an

externally applied magnetic field. This combination offers a number of benefits. First, the

magnetic strength can be easily adjusted or removed by controlling the strength of the exter-

nal magnets. Second, due to their small size, the magnetized microstructures can provide

strongmagnetic field gradients and thus large forces, leading to efficient capture of magnetic
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particles. This is similar to the traditional high gradient magnetic separators (HGMSs) [15]

used for large scale magnetic separation, which comprise a separation column filled with a

steel wool matrix in a large external magnetic field [16, 17].

Several methods have been reported in the literature on integrating microstructures

with microfluidics to increase the local magnetic gradients [18, 19, 20, 21, 22, 23, 24].

Micrometer scale metal structures, such as pillars and strips, have been fabricated or

patterned inside microfluidic channels [14, 19, 25]. Once magnetized by a magnetic

field from external permanent magnets, these microstructures of soft materials generated

strongmagnetic field gradients and efficiently trapped or deflected superparamagnetic beads

moving past them in a flowing stream of sample fluid. Lin et al. injected a continuous flow

of nickel microparticle suspensions into an auxiliary channel next to themain fluidic channel

[15]. The nickel microparticles were able to bend and concentrate the external magnetic

field gradient. This magnetic field gradient induced magnetic forces on the particles in the

main channel. Derec et al. built microfluidic channels on a copper PCB broad, and applied

electric current through etched copper circuits to induce local magnetic field [26]. Faivre

et al. studied the patterning of iron-PDMS composites inside microfluidic channels which

could locally generate high gradients of magnetic field when exposed to external magnetic

fields [27] .

In this paper, we present a simple and low-cost technique to fabricate microfluidic

devices that integrate microstructures to increase the magnetic forces. The method is based

on a microsolidics technique [28, 29]. The mangetic microstructures are made by injecting

and curing a mixture of iron powder and PDMS in a structural microchannel next to the

fluidic channel. We investigated various factors that influence the sorting performance,

including the shape of iron-PDMS microstructure, mass ratio of iron powder, microfluidic

channel width and total flow rate. We also developed a numerical method that can predict

the particle separation and show good agreement with experimental measurements.
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Figure 1. Fabrication process of the microfluidic device. (a) is the schematic illustration of
the basic fabrication steps (not to scale). The microfluidic channel has a width wc=150 µm
and a depth dc=35 µm; the gap distance between the microstructure and the microfluidic
channel is wg=60 µm. (b-1)–(b-3) are the micro-photographies of the three different shapes
for the microstructure: half circle, 60◦ isosceles triangle and 120◦ isosceles triangle.

Compared to the existing methods, our method has several advantages. First,

different iron mass ratio can be used to adjust the magnetic permeability and thus the

magnetic forces. Second, the fluidic and structural channels are fabricated from a simple

one-step soft-lithography process. It is flexible to design different shapes and sizes of

the microstructure, and place them within micrometer accuracy to the fluidic channel.

Moreover, ourmethod is particularly attractive for applications concerning biological objects

(e.g., living cells), because the microstructures are situated outside the fluidic channels, and

will not cause contamination to the cells.

2. CONCEPT AND EXPERIMENT

Fig. 1 (a) shows an overview of the microdevice that consists of a fluidic channel

and microstructures. The fluidic channel has two inlets and two outlets. External permanent

magnets magnetize the soft magnetic structures to provide local magnetic field gradients,
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which in turn result in the deflection of magnetic particles. A magnetic particle exposed to

a magnetic field experiences a magnetic force, Fm. The other important force acting on the

particles is the hydrodynamic drag force Fd due to the surrounding fluid. The two forces,

Fm and Fd , thus determine the movement of the magnetic particle.

Themajor steps of the fabrication process are summarized in Fig. 1(a). Two channels,

fluidic and structural, are first made in Polydimethylsiloxane (PDMS) with soft-lithography

technique [30]. A mixture of iron powder and PDMS in the liquid form is then injected

into the structural channel and allowed to solidify. Fig. 1(b-1), (b-2) and (b-3) show the

three different microstructure shapes: half circle, 60◦ isosceles triangle and 120◦ isosceles

triangle studied in this paper. These three structures are denoted as half circle, 60◦ triangle

and 120◦ triangle hereinafter. The microstructures all have the same base length or diameter

of 1000 µm. The nearest distance between the microstructures and the fluidic channel is

wg = 60 µm.

Shape selection In the current study, we emphasize on the flexibility of the proposed

technique. We chose three representative shapes, half circle, 60◦ isosceles triangle and

120◦ isosceles triangle, to show the influence of the shape, as shown in Fig. 1(b). From

prior works [14], it is known that soft magnetic microstructures of half circle and triangle

shapes can generate strong magnetic fields to trap magnetic particles, so we select these two

shapes. Additionally, the magnetic force acting on particles is proportional to the magnetic

field gradients mentioned in Eq. (1), so we explored if a sharper angle can generate a larger

magnetic field gradient thus a stronger magnetic force to attract particles. For these reasons,

60◦ and 120◦ triangles were chosen. Actually, there is a range of possible shapes to generate

localized magnetic forces, e.g., square, rectangle, symmetric or asymmetric triangles. To

find the ‘best’ shape for particle separation will require a systematic investigation and

optimization.



35

Gap distance selection While the gap distance is one of the factors affecting magnetic

separation, the gap distance was kept fixed at 60 microns in this study. This is because the

effect of the gap distance wg has been relatively well understood from previous study in the

literature [14], and the results suggest that a closer distance of the magnetic microstructure

from the microfluidic channel can generate larger magnetic forces. In this study, wg = 60

µm was the closest distance we could achieve with a low-cost manufacturing technique,

which we described in detail in a published work [31]. With conventional methods of

producing master molds, e.g. SU-8 or DRIE, the distance can be easily reduced to ten

microns [30].

In this study, we fabricated several microdevices to study the factors influencing the

sorting performance. Two mass ratios of iron powder to PDMS were used in this study, at

1:1 to 2:1 respectively. The microfluidic channel width was designed to be wc = 150 µm

and 250 µm to study the effect of fluidic channel width.

2.1. Microfluidic Device Fabrication. The microfluidic device was fabricated in

PDMS using a soft lithography techniques [30]. Master molds were manufactured in a

dry film photoresist (MM540, 35 µm thick, DuPont) by lithographic patterning [32]. A

layer of dry film resist was first laminated onto a copper plate using a thermal laminator.

After ultra-violet (UV) exposure through a transparency photo mask (10,000 dpi, CAD/Art

Services Inc), the exposed dry film was developed, rinsed and dried to obtain the master

mold. PDMS base and initiator were throughly mixed, degassed, and then cast on the

master. After curing, the PDMS replica was peeled off from the master, cut and punched,

and then bonded with another thin PDMS layer after corona surface treatment. Using this

method, microfluidic and microstructure channels with rectangular cross sectional shape

were fabricated.

The PDMS device was placed onto a flat glass slide which served as a supporting

substrate as displayed in step 1 of Fig. 1(a). Next, carbonyl iron powders (C3518, Sigma-

Aldrich) were thoroughly mixed with a pre-mixed liquid PDMS. The mixture of the iron
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powders and PDMSwas degassed, and subsequently injected into themicrostructure channel

with a syringe pump shown in step 2. Immediately after filling the iron-PDMS mixture,

the microdevice was heated on a hotplate at 150◦C for 10 minutes to cure the mixture,

as in step 3 of Fig. 1(a). The fast curing process is critical to prevent the agglomeration

and sedimentation of the iron powders, which have a density of 7.8 g/mL. The fast curing

ensures a homogeneous distribution of the iron powders into the composite matrix. The

microfluidic device was heated in an oven at 60 ◦C for another 12 hours to ensure complete

curing and strong bonding. In step 4, excessive parts were cut off after curing of the

iron-PDMS mixture

The device was placed in the center of two pieces of parallel permanent magnets

[14, 33], as shown in step 5 of Fig. 1(a). The separation distance of the permanent magnets

was 12 mm. The placement at the center ensured a uniform external magnetic field in the

microfluidic channel. Note that a uniform magnetic field has zero field gradients, and thus

will not cause a force on the magnetic particles. The non-zero magnetic field gradients are

due to the magnetized iron-PDMS microstructures only, allowing us to study the effects of

the soft magnetic microstructures on the sorting performance.

2.2. Materials. Micron-sized magnetic particles (MPS5UM, Magsphere) were

used as model particles. The magnetic particles have a mean diameter of 5 µm, and

are synthesized by embedding superparamagnetic iron oxide crystals into a polystyrene

matrix. The particles have a density of 2.5 g/mL. The magnetic particles were suspended in

45.6% (w/w) aqueous glycerol solution whose viscosity is about 5 mPa·s. The larger vis-

cosity reduced the particle sedimentation. The original solution of 5 µm superparamagnetic

particles (2.5% w/w) were diluted 500 times in the aqueous glycerol solution. The final

particle concentration was 3.26×105/mL. The glycerol solution with magnetic particles was

injected into inlet 1 as the particle solution, and 45.6% glycerol solution was injected to inlet

2 as the buffer solution. Surfactant Tween 20 was added to both solutions at a concentration

of 0.5% w/w to prevent particle adhesion to channel walls and particle agglomeration.
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2.3. Experimental Set-up. Themicrodevicewas placed on an invertedmicroscope

stage (IX73, Olympus). Four pieces of 1′′× 1′′× 1
8
′′thick permanent magnets (BX0X02, KJ

Magnetics, Inc.) were placed symmetrically on each side of the microdevice, in Fig 1(a).

The microfluidic devices were illuminated by a fiber optic light for transmission bright-field

imaging. The flow rates to the inlets were controlled separately by two syringe pumps

(NE-300, New Era and KDS 200, KDS Scientific). To maintain good stability of the flow,

small syringes (1 mL) were used to minimize the effect of the motor’s step motion. To

record particle trajectories, a high-speed camera (Phantom Miro M310, Vision Research)

was used to capture videos. In experimental data analysis, ImageJ [34] was used to extract

the particle trajectory, from which the translational velocity vp and the vertical position zp

can be calculated.

3. THEORY AND SIMULATION

3.1. Force Analysis of Magnetic Particles.

Magnetic force Exposed to a magnetic field, a magnetic particle experiences a magnetic

force, Fm, which is expressed as [35]

Fm = µ0

∫
V
(M · ∇)HdV, (1)

where µ0 = 4π · 10−7 H ·m−1, is the vacuum permeability; H is the magnetic field intensity;

M is the field-dependent particle magnetization; V is the volume. In a static magnetic field,

H and M are co-linear, M = M(H)HH = M(H)eH, where H and M are the magnitudes of H

and M respectively, and eH ≡ H/H is a unit vector indicating the direction of the applied

magnetic field.
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Assuming a small variation of the integrand over magnetic particles, equation (1)

can be written as [36]

Fm ' VpMpG, (2)

where Vp is the volume of the magnetic particle and G is the magnetic field gradient in the

direction of H, given by

G = µ0(eH · ∇)H. (3)

Thus, the magnetic force on a magnetic particle is the product of the particle magnetic

moment, VpMp, and G, which is referred to as the effective magnetic field gradient [36].

The external magnetic field at the center of the parallel magnets was approximately

0.23 T and its corresponding magnetization of pure Fe3O4 material is M = 1.9 × 105 A/m

according to the magnetization curve [37].

Note that the magnetic particle used in this study is composed of a Fe3O4 core and

an external polymer matrix. If the entire particle volumeVp is used to compute the force, an

equivalent Mp accounting for the non-magnetic polymer volume must be used accordingly.

The equivalent magnetization of the superparamagnetic particles is therefore Mp = M Vm

Vp
,

where Vm

Vp
stands for the volume ratio of the Fe3O4 core to the entire particle volume. Based

on the data sheet provided by the manufacturer, we calculated the value of Mp ≈ 11000

A/m. In addition, our numerical simulations also confirmed the accuracy of Mp.

Stokes drag force In low Reynolds number microfluidic systems, the dominating force

acting on particles from the fluid is the hydrodynamic drag force Fd defined by Stokes’ law

[38],

Fd = 3πηD(v f − vp) fD (4)

where η is the fluid viscosity, vp is the particle velocity, and v f is the velocity of suspending

fluid, and fD is the hydrodynamic drag force coefficient. The coefficient, fD, accounts for

the increased fluid resistance when the particle moves near the microfluidic channel surface
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[39, 40, 41]. It has a form of

fD =
[
1 − 0.6526( D

D + 2z′
) + 0.1475( D

D + 2z′
)3

−0.131( D
D + 2z′

)4 − 0.0644( D
D + 2z′

)5
]−1

,

(5)

where z′ is the distance between the bottom of the particle and the channel surface.

Velocity profile in rectangular microchannels The velocity profile of laminar steady

flows in rectangular channels can be expressed as an infinite sum of Fourier series [42].

To improve the computational speed, we used an algebraic approximation of the following

form for channel aspect ratio α = dc/wc ≤ 0.5 [43],

v(y, z) = vmax[1 − (
2y
wc
)m][1 − (2z

dc
)n]. (6)

Natarajan and Lakshmanan [43] solved the N − S momentum equation by a finite

element method, and matched the velocity profile to the empirical equation to arrive at two

flow parameters m and n as

m = 1.7 + 0.5α−1.4 (7)

n =


2 for α <= 1

3

2 + 0.3(α − 1
3 ) for α >= 1

3

(8)

The values of m and n by Natarajan and Lakshmanan yield profiles that are in good

agreement with the experimental results of Holmes and Vermeulen [43].

The channel dimensions in this study are: the depth of microchannel dc=35 µm ,

and the width of microfluidic channel wc = 150 µm or 250 µm. The aspect ratio α thus

satisfies the condition required by the approximate equations. Therefore, according to the



40

coordinate in Fig. 1(a), the velocity profile in rectangular microchannel is

v(y, z) = vave(
m + 1

m
)(n + 1

n
)[1 − (2y

wc
)m][1 − (2z

dc
)n] (9)

where vave is the average velocity in the x direction.

3.2. Numerical Simulation. We developed a method to simulate the trajectory

of the magnetic particles. First, finite element software package FEMM [44] was used

to simulate the magnetic field in the microfluidic channel. A custom-written Matlab

program was employed to determine the particle position with respect to time by Newton’s

second law. Magnetic force distribution on the particle as a function of space can also

be calculated to understand the effects of various factors on the particle trajectory and

separation performance. The initial particle positions in the simulations have the same z

coordinate as the experiment. In the experiment measurement, particles near the centerline

of microfluidic channel were selected; and all sample particles were almost on the same z

plane to ensure consistent and meaningful comparisons. Previous studies have suggested

that the gravity can have important roles in determining the particle motions when the

particles are heavier than the surrounding liquid [45, 46]. However, in our study, the effect

of gravity can be safely neglected because the particle velocity in the z direction is negligible

compared to the velocities in the x and y direction. The estimation of the velocity scales

suggests that the velocity in the z direction is at least 100 times smaller than those in the x

and y direction. It is thus reasonably accurate to assume the particle will stay in the same

z plane during the process flowing through the fluid channel. As a result, 2-D simulations

can be used as long as the particle location in z direction is known. In the comparison

between the simulations and experiments, the z location was first obtained from experiment

measurement, and subsequently used in the 2-D simulations.



41

Magnetic field The geometry of the same sizewith experimentwas constructed in FEMM.

The material of microfluidic channel was set as air. The relative magnetic permeability of

the microstructure was set according to the mass ratio of the iron-PDMS composite, and the

values were derived from the experimental data as reported in the literature [27, 47, 48]. At a

mass ratio of 2:1, µr = 1.706, and at a mass ratio of 1:1, µr = 1.45. The NdFeB permanent

magnets used the experiment have a grade of 42 MGOe, and the correct coercivity Hc

was used in FEMM accordingly. The simulation domain was set as at least five times

of the microdevice size. The boundary condition of magnets, microfluidic channel and

microstructure channel were set as a mixed one to solve the static Maxwell’s equations [44].

The magnetic field intensity Hx and Hy were exported by a script written in lua programing

language, and saved in a text file. The magnetic field data was later imported to the Matlab

program to calculate the magnetic force through Equation (2).

Particle trajectory The particle motion is calculated byNewton’s second law [22, 38, 49].

At each time instance, the forces on the particle, Fm and Fd , and the corresponding particle

acceleration are calculated,

ax =
Fdx + Fmx

mp
, (10)

ay =
Fdy + Fmy

mp
. (11)

The instantaneous position of a particle, rx and ry, are then computed over time by

rx = x0 + v0xt +
1
2

axt2, (12)

ry = y0 + v0yt +
1
2

ayt2, (13)
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where x0 and y0 are the initial location of the particle; v0x = v0y = 0 are the initial particle

velocity; t is time; Fdx and Fdy are the x and y components of the hydrodynamic drag force;

Fmx and Fmy are the x and y components of the magnetic force; and mp is the mass of the

particle.

4. RESULTS AND DISCUSSION

When the iron-PDMS microstructure is placed between two external permanent

magnets, it induces localized and strong forces on the magnetic particles in the direction

perpendicular to the pressure-driven fluid flows. The separation of particles thus depends

on the magnetic forces. According to Equation (2), the magnetic forces have a strong

dependence on the magnetic field and its gradient, which, in turn, are affected by the shape

of iron-PDMS microstructure, the mass ratio of iron-PDMS composite, and the width of

the microfluidic channel. Additionally, the flow rate in the fluid channel affects the time

experienced by the magnetic particle (residence time tr), and thus the vertical deflection in

the y-direction. In the following sections, systematic experiments and numerical simulations

were used to examine the influence of these factors on the separation performance.

4.1. Effect of Microstructure Shape. The effect of iron-PDMS microstructure

shapes on the particle transport is presented in this section. The three shape styles are

half circle, 60◦ triangle, and 120◦ triangle, as shown in Fig. 2 (a-1), (b-1) and (c-1).

All of microstructures were fabricated with the same base length of 1000 µm and were

positioned at wg = 60 µm away from the fluidic channel. Fig. 2 (a-1), (b-1) and (c-1)

compare the experimental and simulated particle trajectories due to the three soft magnetic

microstructures respectively. It is evident from the comparison that the experimental

trajectories were in good agreement with the simulation. The superparamagnetic particles

were deflected towards the lower side of microfluidic channel because of the magnetic force

induced by the iron-PDMS microstructures.
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Figure 2. Effect of the microstructure shapes. (a-1), (b-1) and (c-1) compare the experi-
mental (symbols) and simulated particle trajectories (lines) with the half circle, 60◦ triangle
and 120◦ triangle microstructures; (a-2), (b-2) and (c-2) are the corresponding Fmy from
simulations; (a-3), (b-3) and (c-3) are the corresponding magnetic field intensity in the mi-
crofluidic channel. The flow rate is Q1=Q2=1.5 µL/min, the width of microfluidic channel
is wc = 150 µm, and the mass ratio of iron-PDMS is 2:1.

Note that the initial positions (y0) of the particles in were slightly different in Fig. 2

(a-1), (b-1) and (c-1). This difference was due to the practical constraints of the experiments

where there were limited number of particles. We used numerical simulations to evaluate

the effect of y0. For initial positions 15 µm ≤ y0 ≤ 25 µm, the resulted∆y = y1−y0 changed

by only 5.11%, 5.80% and 6.61% for the half circle, 60◦ and 120◦ triangles, respectively. In

all experimental analysis, we ensured the condition 15 µm ≤ y0 ≤ 25 µm. The comparisons

for different experiment conditions are thus considered consistent and meaningful.

Among the three shapes investigated, the half circle microstructure resulted in the

largest deflection. This can be understood by the vertical magnetic force Fmy calculated

from the numerical simulations, as shown in Fig. 2 (a-2), (b-2) and (c-2). While the

maximum Fmy was about the same at 70 pN, the half circle iron-PDMS microstructure had

a wider acting range in the channel to deflect the particle towards the lower wall side faster.

To visualize the influence range, the distributions of magnetic field strength |H | are plotted

in Fig. 2 (a-3), (b-3) and (c-3). For the same variation range of |H |, the half circle structure
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had a wider influence range (L1), which is larger than those due to the 60◦ (L2) and 120◦

(L3) triangles.

Figure 3. Effect of average linear flow velocity. ∆y = y1 − y0 at different average linear
flow velocity vave under three different microstructures. y1 and y0 are the positions of
particles at outlet and inlet of the microfluidic channel respectively. For all experiments and
simulations, the initial position is y0 ≈ 20 µm, the iron mass ratio is iron:PDMS (w/w)=2,
and the width of microfluidic channel is wc =150 µm. Lines and symbols represent
simulation and experimental data, respectively.

When varying the average linear flow velocity, the deflection distance ∆y = y1 − y0

decreases with increasing flow velocity for all microstructures, as shown in Fig. 3. The

vertical deflection distance is the result of the competition of the vertical magnetic force

and the viscous drag force. With an increasing flow velocity and a larger drag force, the

residence time, tr , of the particle within the influence range of Fmy becomes shorter. Despite

the same magnetic force (the same vertical velocity), ∆y becomes smaller because of the

shorter residence time tr . For the all flow rates examined, the half circle had the best

performance on particle deflection in the y-direction, since Fmy effect range was wider,

which had been discussed before; 60◦ triangle worked better than 120◦ triangle for the same

reason.

4.2. Effect of Iron Mass Ratio of Composite. In addition to the shapes, the mass

ratio of the iron powder can effect the separation performance, because it influences the

magnetic permeability of the composite and the induced magnetic field. In this study,

the mass ratio of between the iron and PDMS were varied from 1:1 to 2:1. In Fig.
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(a)

(b)

Figure 4. Effect of the iron mass ratio of the iron-PDMS composite. (a) ∆y = y1 − y0 at
different average linear flow velocity vave with the 60◦ triangle microstructure; y1 and y0 are
the positions of particles at outlet and inlet of themicrofluidic channel respectively; lines and
symbols represent simulation and experimental data, respectively. (b) the corresponding
magnetic force Fmy from the simulations when vave= 9.52 mm/s. The width of microfluidic
channel is wc = 150 µm in all experiments and simulations.

4, the microstructure was the 60◦ triangle in order to study the effect of the mass ratio

of iron powders. Fig. 4(a) shows that microstructure of iron:PDMS (w/w)=2 deflected

the particles by a larger displacement in the y direction for all the average linear flow

velocity vave than the microstructures made of iron:PDMS (w/w)=1. This is because the

composite of iron:PDMS (w/w)=2 had a larger magnetic permeability µr = 1.706, while

the microstructures of iron:PDMS (w/w)=1 had a smaller permeability, µr = 1.45 [27].

Therefore, a larger mass ratio of iron can produce stronger magnetic field gradients and

larger magnetic forces to separate magnetic particles. Fig. 4(b) illustrates the magnetic

force in the y direction acting on the 5 µm particles when vave= 9.52 mm/s. As can be seen

in Fig. 4(b), the microstructure made of iron-PDMS (w/w)=2 had both a larger force and

a wider acting range on the magnetic particle, leading to larger deflection of the particle

towards the lower wall side.
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Despite a small change from µr = 1.45 to µr = 1.706, the resultant forces almost

doubled, as shown in Fig. 4(b). A mass ratio of 3 or larger would have a even better sorting

performance on the magnetic particles. However, the iron-PDMS mixture with mass ratio

of 3 was too viscous to be injected into the microstructure channels used in this study. If a

larger mass ratio and a large force are needed, the microstructures can be designed to have

wider cross sectional areas to allow the injection of the more viscous iron-PDMS mixture.

(a)

(b)

Figure 5. Effect of the width of the microfluidic channel. (a) ∆y = y1 − y0 at different flow
rates. y1 and y0 are the positions of particles at outlet and inlet of the microfluidic channel
respectively. Lines and symbols represent simulation and experimental data, respectively.
(b) the corresponding Fmy from the simulations. The flow rate is Q1=Q2=1.5 µL/min.
The particles all have approximately the same initial relative positions, y0

(Wc/2) =
4

15 . The
microstructure is half circle, and has a iron mass ratio iron:PDMS (w/w)=2.

4.3. Effect of Microfluidic Channel Width. The width of microfluidic channel,

wc, influences the particle separation as well. When wc changes, the distance between

the particle to the microstructure will be different, and thus the magnetic forces will be

different. For a meaningful assessment of the effect of wc, the flow rate Qt was kept the
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same. In addition, the initial positions of the particles, y0 were chosen to have the same

relative position with respect to the channel width, that is the same y0
wc

for all cases. In

accordance, ∆ywc
will be the measurement of the separation performance.

Unlike the previous two factors (shape and mass ratio of iron-PDMS) that only

affect the magnetic force, the channel width, wc affects both the drag force and the magnetic

force. When wc decreases, the pressure-driven velocity and drag force increase, and thus the

particle residence time tr will decrease. In the meantime, the particles are situated relatively

closer to the iron-PDMS microstructure, thus the magnetic force will increase. These two

effects have opposite influences on the particle deflection. To understand the combined

effect of wc, extensive simulations (wc from 50 to 750 µm) were conducted. It can be found

in Fig. 5(a) that under the condition of wc=500 µm and 750 µm the deflection was so small,

resulting in little separation considering the relatively large width of the fluidic channel.

Although the deflection of wc=50 µm was large enough, it was beyond the ability of the

current fabrication technique. Nevertheless, these cases were calculated to show the trend

of ∆ywc
vs Qt for each width. As a result, we chose wc=150 µm and 250 µm to compare the

experimental measurements with simulations, as shown in Fig. 5(a).

The experiments and simulations showed that the value of ∆ywc
became larger when

the microfluidic channel became narrower. This trend means that the effect of increasing

Fmy is more dominant over the effect of decreasing residence time. The magnetic force

Fmy showed a dramatic change when wc was varied, in Fig. 5(b). As the channel width

decreases, the rate of increase of Fmy is faster than the linear rate of decrease of the residence

time tr , which is inversely proportional to the channel width.

4.4. SeparationwithMultipleMicrostructures. In the above sections, it has been

proved that single microstructure can result in the y-direction displacement of particles. To

further enhance the separation, multiple microstructures were designed to test the practical

use of our proposed devices. The half circular structure were chosen because of its superior

performance, as shown in Fig. 6(a). The microfluidic channels had a width 150 µm,
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Figure 6. Separation of magnetic particles with multiple iron-PDMS microstructures. (a)
image of connected half circle iron-PDMS microstructure. (b-1), (c-1) and (d-1) are the
superposed images at the inlet of the microfluidic channels at different flow rates. (b-2) to
(d-2), and (b-3) to (d-3) are the corresponding images at the outlets.

and were placed next to multiple (total 11) connected half circle microstructures made of

iron:PDMS (w/w)=2. Solutions with magnetic particles entered into the top half of the

fluid channel, as shown in Fig. 6 (b-1), (c-1) and (d-1). The magnetic particles were pulled

towards the lower half, as shown in the superposed images captured at the channel outlets,

in Fig. 6 (b-2), (c-2) and (d-2).

In practical applications, the magnetic particles occupy the entire upper half of the

channel at the inlet. To achieve a complete separation, the particles near the top channel

wall must be deflected by a distance of the half channel width. As can be seen in Fig. 6,

complete separation was achieved at a total flow of 1.0 µL/min. The simulated particle

trajectories agreed well with the experimental data.

In Fig. 6 (b-2) (c-2) (d-2), it seems that a higher flow rate would be likely to collect

more particles than a slow flow rate. This seems counter-intuitive but can be explained as

follows. At lower flow rate, some of the magnetic particles can be deflected to the channel

wall before reaching to the outlet. When magnetic particles were attracted to the bottom

surface, the friction between particles and channel wall would be large and the particles
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moved slowly to the outlet. When the flow rate was small as Fig. 6 (d-2), most particles

was absorbed to the bottom surface and stopped at the wall before they arrived at the outlet

due to the weak pressure driven flow. When the flow rate was large as Fig. 6 (b-2), most

particles were attracted to the wall just before the outlet. Further, because the pressure

driven flow was strong enough to overcome the friction, more particle appeared at the

channel outlet; additionally, the superposed images in Fig. 6 (b-2) (c-2) (d-2) were obtained

with image stacks of the same time duration. That also means more particles moved through

the channel when the flow rate was larger. It is true that the aggregated particles may have

effect on the distribution of magnetic field distribution, if they are large enough compared

to the microstructures. However, in our study, the particle solution was dilute, therefore the

aggregated particles were small compared the microstructures which were several hundred

microns.

The viscosity of the solution used in this study was 5 mPa·s, about 4–5 times

more viscous than common aqueous biological solutions. Therefore, the throughput would

be a few times higher when the device is used with less viscous solutions. Moreover,

the throughput can be further improved with multiple parallel channels. Our proposed

technique will be particularly useful for high-throughput particle/cell separation with short

durations( e.g., minutes to hours), and during these operation time frames no iron particles

can permeate into main microchannel.

5. CONCLUSIONS

We proposed and demonstrated a simple and low-cost method for fabricating mi-

crofluidic devices for enhanced separation of magnetic particles. The microfluidic devices

integrated soft magnetic microstructures next to microfluidic channels, with a distance of

tens ofmicrometers. The inducedmagnetic fields and gradients resulted in strong forces that

can deflect magnetic particles perpendicular to the pressure-driven flow. By simulating the
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magnetic fields and computing the corresponding magnetic forces, a numerical simulation

method was developed to predict the particle trajectory, and showed good agreement with

the experimental data.

Systematic experiments and simulationswere conducted to study the effect of several

relevant factors on the separation of superparamagnetic particles, including the microstruc-

ture shape, the mass ratio of the iron-PDMS microstructure, and the microfluidic channel

width. Important findings include: first, half circular iron-PDMS microstructure causes

larger deflections of the particles than isosceles triangle shaped structures; second, a larger

mass ratio of the iron-PDMS composite results in larger magnetic forces; third, narrow mi-

crofluidic channels separate magnetic particles more efficiently than wider channels when

operating at the same flow rate.

Our approach presents an efficient and simple method to separate magnetic particles

in microfluidics. Compared to the existing techniques, the current method will reduce the

chance of contamination to cells because the microstructures are located outside the fluid

channel. In addition, the distance between the microfluidic channel and the microstructure

channel can be adjusted to control the magnetic forces. As such, the proposed microfluidic

devices are promising, and have potential in areas such as high throughput separation of

biological cells tagged with micro/nano-magnetic particles.
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ABSTRACT

Ferrofluids have demonstrated great potential for a variety of manipulations of diamagnetic

(or non-magnetic) micro-particles/cells in microfluidics, including sorting, focusing, and

enriching. By utilizing size dependent magnetophoresis velocity, most of the existing

techniques employ single phase ferrofluids to push particles towards channel walls. In

this work, we demonstrate a novel strategy for focusing and separating diamagnetic micro-

particles by using the laminar fluid interface of two co-flowing fluids – a ferrofluid and a

non-magnetic fluid. Next to the microfluidic channel, microscale magnets are fabricated to

generate strong localized magnetic field gradients and forces. Due to the magnetic force,

diamagnetic particles suspended in the ferrofluid phase migrate across the ferrofluid stream

at size-dependent velocities. Because of the low Reynolds number and high Péclet number

associated with the flow, the fluid interface is sharp and stable. When the micro-particles

migrate to the interface, they are accumulated near the interface, resulting in effective

focusing and separation of particles. We investigated several factors that affect the focusing

and separation efficiency, including susceptibility of the ferrofluid, distance between the
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microfludic channel and microscale magnet, and width of the microfluidic channel. This

concept can be extended to multiple fluid interfaces. As an example, complete separation of

micro-particles was demonstrated by using a three-stream multiphase flow configuration.

1. INTRODUCTION

Microfluidics enables a diverse range of manipulations (e.g., focusing, separating,

trapping, and enriching) of micrometer-sized objects, and has played an increasingly impor-

tant role for applications that involve single cell biology [1] and the detection and diagnosis

of diseases [2]. Inmicrofluidic devices, methods that are commonly used tomanipulate cells

or particles include the utilization of hydrodynamic effects [3, 4, 5, 6] and externally applied

field gradients that induce forces on cells/particles, such as electrical fields [7, 8, 9], optical

fields [10, 11, 12, 13, 14], magnetic fields [15, 16, 17, 18], and acoustic fields [5, 19, 20].

Techniques that are based on hydrodynamic effects are known as passive methods, and often

rely on appropriate channel designs to direct particles of different sizes into separate flow

streamlines. The dimensions of the channels have implications for the applicable separation

sizes. Among the various active methods that use external force fields, the magnetic field

has advantages for applications concerning living matters, such as biological cells, because

magnetic fields do not generate heat. Magnetic field is in contrast to electrical and optical

fields, which often lead to temperature rises in the system and, thus, may potentially cause

damage to cells due to the resulting high energy [21].

Trapping and separation techniques that are based on magnetic forces have become

popular during the last few years [16, 22]. The two general methods for utilizing magnetic

fields are: positive and negative magnetophoresis. In positive magnetophoresis, magnetic

particles migrate towards regions of higher magnetic field gradient. Commonly, magnetic

particles are deflected from the direction of laminar flow by a perpendicular magnetic field.

The deflection velocity depends on the magnetic susceptibility, particle size, and flow rate.

Thus, magnetic particles of different sizes can be separated from each other and from
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non-magnetic materials [23]. This mechanism has been used to trap cells by labeling the

target bioparticles with functionalized magnetic beads [16, 24, 25]. However, it is both

time consuming and expensive to label and remove the magnetic particles from the target

cells prior to further analysis. In negative magnetophoresis, diamagnetic particles that

are suspended in magnetic solutions are repelled away from regions of higher magnetic

field gradients (e.g., magnet sources) due to magnetic buoyancy force [26]. Further, most

synthetic and biological particles are diamagnetic; therefore, label-free manipulation can

be attained with negative magnetophoresis for practical applications.

Ferrofluids are stable colloidal suspensions of surfactant-coated magnetic nanopar-

ticles in aqueous or organic solutions [27]. Due to their large magnetic susceptibility,

ferrofluids have been extensively used as magnetic solutions in negative magnetophoresis-

based cell separation techniques. For example, to address the perceived limitation of

magnetic labeling of a target cell population, Kose et al. [28] developed a novel microflu-

idic platform that uses bio-compatible ferrofluids for the controlled manipulation and rapid

separation of both microparticles and living cells. This low-cost platform exploits the differ-

ences in particle sizes and shapes to achieve rapid and efficient separation. Yellen’s [29] and

Kose’s [28] groups have developed stabilizing surfactants and synthesized bio-compatible

ferrofluids [30].

Focusing particles into a tight stream is an essential step in many applications, such

as microfluidic cell cytometry, and particle sorting [31]. Magnetic focusing in ferrofluid is

non-invasive and well suited for handling bio-particles [16, 22, 32]. Liang et al. [30, 33]

proposed a method for focusing diamagnetic particles carried by a ferrofluid flow through

a T-shaped microchannel using a single permanent magnet. Wilibanks et al. [34] and

Zeng et al. [35, 36] presented methods for concentrating diamagnetic particles in ferrofluid

flows by means of two repulsive or attractive magnets that were positioned symmetrically or

asymmetrically on either side of a particle flowing channel. In these studies, millimeter or

centimeter-sized permanent magnets (PMs) helped to realize focusing. However, because
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these magnets were much larger than the microfluidic channel, it was difficult to align and

place them precisely. A slight misalignment of the permanent magnets could lead to a

relatively larger change within the fluidic channel. Further, strong and bulky magnets had

to be used to provide large magnetic fields that could generate large magnetic forces. This

requirement greatly increased the difficulty in integrating magnetic particle manipulation

in portable and standalone lab-on-a-chip platforms. Moreover, most of the previous studies

have focused the particles or cells to the wall of the microchannel [21, 37]. Due to the

increasing friction near the wall, the velocity of the particles significantly reduced and thus

hindered the throughput.

To overcome the limitations using existing techniques, we propose a simple and novel

strategy to achieve focusing and separating of diamagnetic microparticles with laminar fluid

interfaces and micro-fabricated magnets. In this technique, a ferrofluid and a non-magnetic

fluid co-flowing in a microfluidic channel form a stable fluid interface. Under the magnetic

fields from the neighboring microscale magnet, diamagnetic particles that are suspended

in the ferrofluid phase migrate towards and accumulate at the fluid interface, leading to

particle focusing. This mechanism can be further exploited to separate particles of different

sizes.

In our technique, both the fluid interface and microscale magnets can be precisely

controlled for micrometer accuracy, and thereby achieve precise focusing. Additionally,

microscale magnets provide localized high magnetic field gradients, resulting in larger

magnetic forces for high-throughput operations. Moreover, focusing particles to the inter-

face can keep particles far away from the channel wall and thus avoid the friction of the

wall. The location of the interface can be additionally controlled by adjusting the flow ratios

to achieve both precise focusing and separation of diamagnetic particles. In this work, we

investigated experimentally the effects of several factors, including ferrofluid concentra-

tion, gap distance between the microfluidic channel and the microscale magnet, and the

microfluidic channel width on the focusing performance of particles.
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2. CONCEPT AND EXPERIMENT

2.1. Overview of Device and Working Principle. Fig. 1(a) presents a brief fab-

rication process of our microdevice. A schematic of the microdevice consisting of a

microfluidic channel and a microstructure channel is displayed in step 1. The microstruc-

ture channel was fabricated parallel to the microfluidic channel with a distance of 60 – 100

microns. A mixture of neodymium (NdFeB) powders and PDMS was injected into the

microstructure channel in step 2. Immediately after filling the NdFeB-PDMS mixture, the

microdevice was heated to cure the mixture, as in step 3. Then the microstructure channel,

with the cured NdFeB-PDMS mixture, was magnetized by an impulse magnetizer to form a

permanent ‘microscale magnet’, which can generate localized highmagnetic field gradients.

Fig. 1(b) illustrates the working principle of the proposed technique. Water and

water-based ferrofluid, containing 7 µm and 2 µm (in diameter) diamagnetic particles, were

injected from inlet 1 and 2 respectively. The flow rates of inlet 1 and inlet 2 were kept

the same in all of the following experiments. Due to the non-zero magnetic susceptibility

difference between the particles and the ferrofluid, the particles experience a magnetic

repulsion force, Fm, and migrate towards the fluid interface. Upon arriving at the interface,

the particles will stay at the interface because, in the other phase – the water is also

diamagnetic, and thus negligible magnetic force will act on the particles to induce further

migration. The other important force acting on the particles is the hydrodynamic drag force,

Fd , due to the flow of fluids. These two forces, Fm and Fd , thereby determine the movement

of the diamagnetic particle, as in Fig. 1(b). Due to the size difference, the smaller particles

(2 µm) move more slowly in the y direction than the larger (7 µm) particles. At the end of

the fluid channel, the larger particles are focused at the interface, while the smaller particles

remain widespread throughout the ferrofluid stream.

2.2. Fabrication of Microfluidic Device. A microfluidic device was fabricated in

PDMS using a soft lithography technique [38]. Master molds were manufactured in a dry

film photoresist (MM540, 35 µm thick, DuPont) by lithographic patterning [39]. In this
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Figure 1. Fabrication process of microdevices, and basic principle of particle movement.
(a) illustrates the fabrication steps of the microdevice; (b) is the enlarged drawing of the
microfluidic channel and the basic principle of particle movement in a ferrofluid. The
microfluidic channel has a width of wc=100 µm and a depth of dc=35 µm; the gap distance
between the microscale magnet and the microfluidic channel is wg=60 µm; the size of the
microscale magnet is w = g = h1=h2 = 500 µm.

method, a layer of dry film resist was first laminated onto a copper plate using a thermal

laminator. After ultra-violet (UV) exposure through a transparency photo mask (10,000

dpi, CAD/Art Services Inc), the exposed dry film was developed in a sodium carbonate

solution, rinsed in water, and dried by compressed air to obtain a master mold. The PDMS

base and initiator were throughly mixed, degassed, and then poured onto the master molds.

After overnight curing at 60◦C, the PDMS replica was peeled from the master, cut and

punched, and then bonded with a flat glass slide after corona surface treatment. Using this

method, microfluidic and microstructure magnet channels were fabricated with rectangular

cross sections.

Next, neodymium (NdFeB) micro-powders (MQFP-B-20076-089, Magnequench

International Inc) were thoroughly mixed with a pre-mixed liquid PDMS. The mixture

of neodymium powders and PDMS was degassed, and subsequently injected into the mi-

croscale magnet channel with a syringe pump. Immediately after being filled with the

NdFeB-PDMS mixture, the microdevice was heated on a hotplate at 150◦C for 10 minutes
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to cure the mixture. The fast curing process was critical to avoid agglomeration and sedi-

mentation of the neodymium powders. The fast curing ensured a homogeneous distribution

of the neodymium powders into a composite matrix. The microfluidic device was heated in

an oven at 60◦C for another 12 hours to ensure complete curing and strong bonding. After

the mixture was cured, the resulting solid NdFeB-PDMS microstructure was permanently

magnetized by an impulse magnetizer (IM 10, ASC Scientific) and became a microscale

permanent magnet, as shown in Fig. 1(a).

2.3. Materials. EMG 408 ferrofluid was obtained from Ferrotec (USA) Corpora-

tion with a reported initial magnetic nanoparticle concentration of 1.2% (v/v) and saturation

magnetization (Ms) of 6.6 mT. The initial viscosity and magnetic susceptibility of EMG

408 ferrofluid were µ=2 mPa·s and χ f =0.5, respectively. In our experiments, the original

ferrofluid was diluted to 0.6 % (v/v) and 0.36 % (v/v) with distilled water. Diamagnetic

particles of 2 µm and 7 µm in diameter and a density of 1.05 g/mL were used as model

particles. The original solutions of 2 µm and 7 µm particles (2.5% w/w) were diluted with

0.6 % (v/v) or 0.36 % (v/v) ferrofluid to 5000 and 200 times, respectively. The final particle

concentrations were 1.14 × 106 mL−1 and 6.62 × 105 particles mL−1. Surfactant Tween 20

was added to both solutions at a concentration of 0.5% (w/w) to prevent particle adhesion

to channel walls and particle agglomeration. The ferrofluid solution with particles was

injected into inlet 2 as the particle solution, and distilled water was injected into inlet 1 as

the buffer solution.

2.4. Particle Visualization and Analysis. The microfluidic device was placed on

an inverted microscope stage (IX73, Olympus) and illuminated by a fiber optic light for

transmission of bright-field imaging. The flow rates to the inletswere controlled individually

by two syringe pumps (NE-300, New Era and KDS 200, KDS Scientific). To maintain good

stability of the flow, small syringes (1 mL) were used to reduce the effect of the motor’s step
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motion. To record particle trajectories, a high-speed camera (Phantom Miro M310, Vision

Research) was used to capture videos. In the experimental data analysis, ImageJ [40] was

used to extract the particle trajectories and positions.

3. THEORETIC BACKGROUND AND SIMULATION

3.1. Force and Velocity Analysis of Microparticles.

Magnetic force Diamagnetic particles experience a negative magnetophoretic force, Fm,

in a ferrofluid when subjected to a non-uniform magnetic field [21, 35, 41],

Fm = −µ0Vp(M f · ∇)H, (1)

where µ0 is the magnetic permeability of free space; Vp is the volume of the particle; the

magnetization of ferrofluid M f is collinear with a static magnetic field H produced by a

microscale magnet. In general, the magnitude of M f , M f is determined using the Langevin

function, L(α) [30],
M f

φMd
= L(α) = coth(α) − 1

α
, (2)

α =
πµ0MdHd3

6kBT
, (3)

where Md = 4.379 × 105 A/m is the saturation moment of the magnetic nanoparticles, as

calculated from the manufacturer-provided saturation magnetization of ferrofluid; H is the

magnetic field magnitude; d is the average diameter of the magnetic nanoparticles; kB is

the Boltzmann constant; and T is the temperature of the ferrofluid.

Particles are repelled away from the microscale magnet owing to the negative sign in

Eq.(1), suggesting that Fm is directed against the magnetic field gradient [33]. In our study,

the microscale magnets had larger magnetic gradients and small magnetic field strength

(H ≤ 90000 A/m); thus, the susceptibility of the ferrofluid was approximately constant.
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Based on the following basic relationships of M f = χ f H and B = µ0(1 + χ f )H, Eq. (1)

can be simplified as follows [42],

Fm =
πD3

6µ0
∆χ(B · ∇)B, (4)

where B is magnetic flux density; ∆χ = χp − χ f represents the difference in the magnetic

susceptibilities, between the particle (χp) and the surrounding fluid (χ f ); D is the diameter

of the diamagnetic particle. In our study, the magnetic susceptibilities of ferrofluid χ f

were 0.25 and 0.15 for the ferrofluid with concentrations of 0.6% (v/v) and 0.36% (v/v)

respectively. The magnetic susceptibility of polystyrene particles χp was much smaller

[30], on the order of 10−6; therefore, the diamagnetic particles were repelled away from

the regions of higher magnetic field strength because of ∆χ < 0, which agreed with the

negative sign in Eq. (1).

Stokes drag force In low Reynolds number microfluidic systems, the hydrodynamic drag

force, Fd , acting on particles in microchannels, rises due to the relative motion between the

particles and the surrounding fluid, and can be defined by Stokes’ law [21],

Fd = 3πηD(v f − vp) fD, (5)

where η is the fluid viscosity; vp is the particle velocity; v f is the velocity of suspending

fluid; fD is the hydrodynamic drag force coefficient. The coefficient, fD, accounts for the

increased fluid resistance when the particle moves near the microfluidic channel surface

[32, 43]. fD has a form of

fD =
[
1 − 9

16
( r
r + d′

) + 1
8
( r
r + d′

)3 − 45
256
( r
r + d′

)4 − 1
16
( r
r + d′

)5
]−1

, (6)
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where d′ is the distance between the bottom of the particle and the channel surface; r = D/2

is the radius of the particle.

Magnetophoresis velocity The velocity caused by magnetic force – magnetophoresis

velocity – is a critical parameter influencing the time used by particles to reach the interface

and focusing performance. In low Reynolds number microfluidic flows, the movement

of particles can be regarded as a quasi-steady motion for each instantaneous time period

because of the small mass of microparticles. Therefore, the balance between the two forces

leads to

Fm + Fd = 0. (7)

Based on Eq. (5) and (7), the magnetophoresis velocity, can be derived as, [16, 23]

vm =
Fm

3πηD fD
. (8)

Flow direction

t
T

t
I

w
c

l
c

t
DWater 

Ferrofluid

Figure 2. Illustration of the time scales related to particle movement in a two-phase flow
system: travel time, tT ; interface time, tI ; diffusion time, tD. wc and lc, are the width and
length of the microfluidic channel, respectively.

3.2. Time Scales and Focusing Criteria. To better study the focusing of particles,

the relationship between three time scales, namely interface time, travel time, and diffusion

time, are introduced in this section. The general concept of these three time scales is

illustrated in Fig. 2.
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First, interface time is defined as the time used by the particles to reach the interface

between the water and ferrofluid. Interface time tI can thus be expressed as

tI =
wc/2
|vmy |

, (9)

where wc is the width of the microfluidic channel, and is equal to 100 µm or 150µm in this

study; |vmy | is the average magnetophoresis velocity in the y direction. Based on Eq. (4)

and (8), tI can be specifically explained by the following equation,

tI =
9µ0η fDwc

D2 |∆χ | |(B · ∇)By |
, (10)

where |(B · ∇)By | is the absolute value of the magnetic field in the y direction. This will be

further discussed in Eq. (15).

Second, travel time is the time spent by the particles on moving from the inlet of the

microfluidic channel to the outlet and can be written as,

tT =
lc
|v f x |

, (11)

where lc=20000 µm is the length of the microfluidic channel; |v f x | =
Qt

dcwc
is the average

fluid velocity in the x direction, where Qt is the total flow rate, and dc is the depth of the

microfluidic channel and is equal to 35 µm, as shown in Fig. 1(a).

Third, diffusion will take place owing to different kinds of solutions that have

different concentrations of magnetic nanoparticles. Diffusion time is defined as the time

scale for nanoparticles to diffuse for distance dx ,

tD =
d2

x

2Ddi f f
, (12)
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where Ddi f f is the diffusion coefficient and has a value of 4.34×10−11 m2/s, as determined

by the Einstein relation [44]. To maintain a sharp interface, the diffusion distance, width dx ,

must be much smaller than wc/2. This criterion is equivalent to a very large Péclet number,

i.e., Pe =
wcv f x

Ddi f f
� 1.

The above analysis shows that the focusing of particles in a microfluidic channel

can be achieved when the following two criteria are met: (a) tI ≤ tT and (b) Pe � 1. In

our study, Pe = 3.29 × 104 was obtained for the smallest flow rate, 3 µL/min; thus, the

second criterion, to keep a sharp interface, was always met. Accordingly, the relationship

between tI and tT is mainly discussed in the following analysis to explain and help the reader

understand focusing performance.

3.3. Numerical Simulation of Magnetic Field. The magnetic field in the mi-

crofluidic channel was simulated with a finite element software package, FEMM [45], to

develop a deeper understanding of the magnetic forces. The geometry of the same size

was constructed with experiments. The magnetic property of the ferrofluid was determined

according to its concentration [30]. The magnetic coercivity of the microscale magnet

was determined from experimental data, with Hc being approximately 94000 A/m. The

simulation domain was set to be at least five times of the microdevice size. The boundary

condition of the simulation domain was set an asymptotic boundary condition to solve the

static Maxwell’s equations [45]. The magnetic flux densities Bx and By, were exported by

a script written in Lua programing language, and saved in a text file. The magnetic field

data were later imported to the Matlab program to calculate the magnetic field distribution,

which was used to understand the effects of various factors on the magnetic forces, and

focusing performance. According to Eq. (4), with all other material properties fixed, Fm is

proportional to (B · ∇)B, which can be expressed as follows [46, 47],

(B · ∇)B = (Bx
∂Bx

∂x
+ By

∂Bx

∂y
)i + (Bx

∂By

∂x
+ By

∂By

∂y
)j. (13)
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In the microfluidic devices used in our experiments, (B · ∇)Bx changed little because

our design is symmetric in the x direction, while (B · ∇)By in the microfluidic channel

was non-uniform due to the different distance from the microscale magnet and the varying

structures. Accordingly, the value of (B · ∇)By was critical to the magnetic force in Eq.

(8) and the magnetophoresis velocity in Eq. (4), and thus can influence the movement of

particles. In the following part, the absolute value of (B · ∇)By, i.e.,

|(B · ∇)By | =

√
(Bx

∂By

∂x
+ By

∂By

∂y
)2, (14)

will be used to explain the focusing and separation of diamagnetic microparticles.

4. RESULTS AND DISCUSSION

Based on the focusing criterion of tI ≤ tT , the focusing performance depends on the

susceptibility of the ferrofluid and themagnetic field (and its gradients) due to themicroscale

magnets. These, in turn, are affected by several factors, including the concentration of

ferrofluid, the gap distance between the microfluidic channel and the microscale magnet,

and the width of the microfluidic channel. In this study, systematic experiments were

conducted to examine the influence of these factors on focusing performance. The results

are presented in the following sections. With a thorough understanding of the characteristics

of particle focusing, a complete separation of particles of different sizes was attained with

multiple fluid interfaces.

4.1. Effect of Ferrofluid Concentration on Focusing Performance. Since the

ferrofluid property is critical for the interface time tI according to Eq. (10), the effect of

ferrofluid concentration on focusing performance was investigated experimentally. As can

be seen from Figs. 3 (a-1) and (a-2), with 0.6%(v/v) ferrofluid at Qt = 3 µL/min, almost

all 7 µm particles were pushed onto the interface between the water and ferrofluid, while

with the 0.36%(v/v) ferrofluid, the 7 µm particles spread ranged from y=-20 µm to y=0
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µm. This suggested that a high concentration of ferrofluid was beneficial for the focusing

performance of particles.

In
te

rfa
c
e

0.6%(v/v) Ferrofluid 0.36%(v/v) Ferrofluid
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Interface

Qt=3µL/min Qt=3µL/min
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(b) (c)

Figure 3. Effect of ferrofluid concentration on particle focusing. (a-1) and (a-2) are the
Gaussian distribution of the particle’s y location at the outlet when the concentration of
ferrofluid is 0.6% (v/v) and 0.36% (v/v), respectively; total flow rate Qt is 3.0 µL/min for
(a-1) and (a-2). (c) and (d) are the mean y location of y and its standard deviation σy for
particles distribution at the outlet under different Qt . For each group, the flow rates of inlet
1 and inlet 2 are the same, Q1=Q2; the width of the microfluidic channel is wc=100 µm; the
gap distance is wg=60µm.

From the expression of tI in Eq. (10), the time used by particles to reach the interface

is inversely proportional to the susceptibility difference, |∆χ |, between the particles and the

surrounding fluid. As mentioned before, the magnetic susceptibility χ f of 0.6% and 0.36%

ferrofluid is 0.25 and 0.15, respectively, so tI of 0.6% ferrofluid is smaller than that of 0.36%

ferrofluid, indicating that it would be more likely to meet the focusing criterion of tI ≤ tT

for higher concentration of ferrofluid, in which diamagnetic particles can be pushed towards
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the fluid interface more efficiently. In the meantime, almost no deflection was observed for

the 2 µm particles in either 0.6% or 0.36% ferrofluid, as shown in Figs. 3 (a-1) and (a-2).

It is noted that tI was also a function of the size of particles, which was tI ∝ 1/D2. For

smaller (2 µm) particles, the time needed to reach the interface was much longer than that

required for the 7 µm particles, which meant that it was more difficult for the 2 µm particles

to meet the focusing criterion for each concentration. To study the overall effect of ferrofluid

concentration on the focusing performance under different total flow rates Qt , the mean y

location, y and the standard deviation σy of 7 µm and 2 µm particles are shown in Figs.

3 (b) and (c). Fig. 3(b) illustrates that, for 7 µm particles, the mean y location y in 0.6%

ferrofluid was closer to the interface than that in 0.36% ferrofluid. Fig. 3(c) shows that

the corresponding standard deviation σy of 7 µm particles in 0.6% ferrofluid was smaller,

meaning that there was a more concentrated distribution. When varying the flow rate Qt ,

the mean y location y of both 0.6% and 0.36% ferrofluid became farther from the interface

and the standard deviation σy was larger, implying a worse focusing performance. The

reason was that the vertical deflection distance was the result of the competition between

the vertical magnetic force and the viscous drag force. With an increasing flow rate, the

hydrodynamic force effect became stronger, and tT decreased. At a higher flow rate, not all

of the particles were able to reach the interface before exiting the outlet. Thus, the focusing

criterion tI ≤ tT set the upper flow rate limit to achieve effective focusing. As shown in

Figs. 3 (b) and (c), the mean y location of 2 µm particles,at the outlet was about 25 µm

from the interface, and nearly the same at the inlet. The corresponding standard deviation

was large for both ferrofluid concentrations, which agrees with the results shown in Figs. 3

(a-1) and (a-2).

4.2. Effect of Gap Distance on Focusing Performance. The geometric designs of

microdevices have important implications on focusing performance, according to previous

studies [48]. It has been shown by other researchers [48] that the gap distance between the

microscale magnet and the microfluidic channel can affect the magnetic field distribution,
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so we examined the effect of the gap distance on focusing performance. In Fig. 6 (a-1),

it can be observed that particles were pushed towards the interface when the gap distance

wg = 60 µm. When wg was 100 µm, the spread range was much wider, and no obvious

focusing happened, as shown in Fig. 6 (a-2).

Interface

In
te
rfa
c
e

Qt=3µL/min

In
te
rfa
c
e

Qt=3µL/min

(a-1) (a-2)

(b) (c)

wg=60µm wg=100µm

Figure 4. Effect of the gap distance on particle focusing. (a-1) and (a-2) are the Gaussian
distribution of particles y location at the outlet when the gap distance wg is 60 µm and 100
µm, respectively; total flow rate Qt is 3.0 µL/min for (a-1) and (a-2). (b) and (c) are the
mean y location y and its standard deviation σy of particles distribution at the outlet under
different Qt . For each group, the flow rates of inlet 1 and inlet 2 are the same, Q1=Q2; the
width of microfluidic channel is wc=100 µm; ferrofluid concentration is 0.6% (v/v).

In Figs. 6(b) and (c), y and σy of 7 µm particles are presented for different total

flow rates, with two different gap distances. The smaller gap distance demonstrated better

focusing for all flow rates tested. The mean location, y was closer to the fluid interface

with smaller gap distance. The standard deviation σy of wg= 60 µm was smaller than 5

µm for each flow rate; while that of wg= 100 µm was larger than 10 µm. In Figs. 6 (b)

and (c), it is clear that, for the group of wg= 60 µm, the increase of total flow rate Qt had a

negative effect on focusing performance, including a longer distance from the interface and
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a larger standard deviation of particle distribution. This observation can be attributed to

the decreasing tl . With a gap distance of 100 µm, neither y nor σy had an obvious change

as the total flow rate varied. The results suggest that the microscale magnet was too far

away from the microfluidic channel, and the resulting magnetic force was too weak to cause

significant particle defection in the y direction.

To understand the reason for a different focusing performance for each gap distance,

the average value of |(B · ∇)By |avg across the fluid channel at different x locations was

calculated, as shown in Fig 5. Generally, |(B · ∇)By |avg of wg=60 µm was larger than that

of wg=100 µm at each x location, so the magnetic force was larger and had a shorter tI

according to Eq. (10). Accordingly, when wg was 60 µm, there was a greater possibility of

meeting the focusing criterion of tI ≤ tT whichwould result in a better focusing performance

of the particles.

Microscale magnet

Figure 5. The average value of |(B · ∇)By | at different x locations when wg=60 µm and
wg=100 µm. The width of the microfluidic channel is wc=100 µm.

4.3. Effect ofMicrofluidicChannelWidth onFocusingPerformance. Thewidth

of the microfluidic channel is another geometric factor that can affect the focusing perfor-

mance of particles in the ferrofluid flows. Figs. 5 (a-1) and (a-2) compare the focusing

of particles in two microfluidic channels with wc=100 µm and wc=150 µm channel under

the same flow rate Qt . The microfluidic channel of wc=100 µm had a better focusing

performance than the wc=150 µm channel, including both the smaller distance from the
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interface, as displayed in Fig. 5 (b), and the smaller standard derivation presented in Fig. 5

(c) for each total flow rate. Also, a similar trend of y and σy under different Qt can be seen

in Fig. 5 (b) and (c), respectively.

Interface
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Qt=3µL/min Qt=3µL/min

wc=100µm wc=150µm(a-1) (a-2)

(b) (c)

Figure 6. Effect of the microfluidic channel width on particle focusing. (a-1) and (a-2) are
the Gaussian distribution of particles y location at the outlet when the channel width wc is
100µm and 150µm, respectively; total flow rate Qt is 3.0µL/min for (a-1) and (a-2). (b) and
(c) are the mean y location y and its standard deviation σy of particles distribution at the
outlet under different Qt . For each group, the flow rates of inlet 1 and inlet 2 are the same,
Q1=Q2; the gap distance is wg=60 µm; ferrofluid concentration is 0.6% (v/v).

The ratio of
tT
tI

was analyzed to understand the reason that was responsible for the

better focusing performance of a narrower microfluidic channel. The expression of
tT
tI

can

be expressed as the following equation,

tT
tI
=

1
9

lcdc

µ0η fD

D2 |∆χ |
Qt

|(B · ∇)By |. (15)
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In the above equation,
tT
tI

is proportional to the value of |(B ·∇)By |, when the fluid properties

and total flow rate are fixed. Its values at different x locations within a structural period

were chosen for magnetic field analysis to better understand the deflection of particles in

channels with different widths. As can be seen in Fig. 7, |(B · ∇)By | value of wc=100 µm

was larger than that of wc=150 µm at each x location. Therefore, the ratio of
tT
tI

was larger

for a narrower channel, indicating that it was easier to meet the focusing criterion of tI ≤ tT .

A narrower channel was more beneficial for focusing particles to the interface between the

water and ferrofluid and increasing the throughput.

Microscale magnet

Figure 7. The average value of |(B · ∇)By | at different x locations with the different channel
width wc. The gap distance wg was kept at 60 µm, and the ferrofluid concentration was
0.6% (v/v).

4.4. Multiphase Ferrofluid Flows for Micro-particle Separation. Based on the

analysis presented above, large particles can be effectively focused onto the interface by

choosing the correct parameters to meet the two criteria. Although the focusing of smaller

particles seemed poor for all experimental conditions tested, this fact could be effectively

exploited to separate particles of different sizes by using multiple interface configurations.

Here, a three inlet device was used to demonstrate the separation of different sized particles,

as shown in Fig. 8(a). Water, 0.6% (v/v) ferroluid, and 0.6% (v/v) ferrofluid containing 2

µm and 7 µm particles, were introduced into inlets 1, 2, and 3 at flow rates Q1, Q2, and
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c
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Q2/Q3=11:3

Q2/Q3=7:3

(b-1)

(b-2)

(b-3)

Δp1

(c-1)

(c-3)

(c-2)

Δp3

Δp2

x
y

Water

0.6%Ferrofluid

Q1

Q2

(a)

Inlet 2
Particles+0.6%FerrofluidQ3 Inlet 3

Inlet 1

Figure 8. Separation ofmicroparticles of different sizes. (a) Configuration for inlet solutions
of the microfluidic channel; (b-1) to (b-3) are the stack images at the outlet of three different
flow rate ratios; (c-1) to (c-3) are the Gussian distribution of 7 µm and 2 µm particles
corresponding to (b-1) to (b-3), respectively; ∆p is the peak distance between 7 µm and 2
µm particles. For each group, the width of the microfluidic channel was wc = 100 µm; the
concentration of ferrofluid was 0.6% (v/v); Q1 was set at 3.5 µL/min, and Q2 +Q3 was kept
at 4.0 µL/min.

Q3, respectively. By the end of the fluidic channel, the larger particles were focused to

the water-ferrofluid interface, while the smaller particles remained near their original entry

positions. Therefore, complete separation could be achieved, as in Figs. 8 (b-1) to (b-3).

To study the effect of flow rate ratio on separation performance, Q1 was set at 3.5

µL/min and the total flow rate of Q2 and Q3 was kept at 4.0 µL/min. It was clear that, when

the flow rate ratio of Q2/Q3 increased, the distance between the 2 µm and 7 µm particles

became larger. The Gussian distributions of the y locations of the particles at the outlet
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Figure 9. Separation resolution corresponding to Figs. 8 (b-1), (b-2), and (b-3), respectively.

are plotted in Figs. 8 (c-1) to (c-3). The peak distance of the three flow rate ratios had

the relationship of ∆p3 > ∆p2 > ∆p1, which suggested better separation performance with

a larger flow rate ratio of Q2/Q3. As noted by other researchers, the separation distance

between the peak positions alone is not sufficient to characterize the separation performance

[49]. To better quantify the separation performance, the parameter of separation resolution,

Rs, was determined in accordance with previous studies [49],

Rs =
pl − ps

2(dl + ds)
, (16)

where pl and ps are the peak positions of 7 µm (larger) and 2 µm (smaller) particles

respectively, and dl and ds are their respective standard deviations.

Fig. 9 shows the separation resolution under the flow rate ratio of Q2/Q3, at 3:3,

7:3, and 11:3, respectively. When the flow rate ratio of Q2/Q3 was 11:3, the separation

resolution had the largest value of 2.523, suggesting the best separation performance. This

result can be explained as follows. First, a larger flow rate ratio made the initial y location of

both 7 µm and 2 µm particles small enough. Second, the large particles moved fast enough

to reach the interface with the effect of magnetic force. Third, the 2 µm particles had

almost no vertical deflection, which was identical to the previous experimental observation.
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Therefore, when both particles moved to the outlet, the 7 µm particles reached the interface,

while the 2 µm particles remained at their original y locations. Thus, this method presents

a simple way to separate particles by using multiphase ferrofluid flows.

5. CONCLUSIONS

This study demonstrates a simple and low-cost method for separating particles in

ferrofluid by combining the multiphase laminar fluid interface and microscale magnets.

The microfluidic devices integrated the NdFeB-PDMS microscale magnet next to the mi-

crofluidic channels, with a distance of tens of micrometers. The induced magnetic field

gradients resulted in strong forces that could deflect magnetic particles and focus them at

the interface between the water and ferrofluid. Systematic experiments were conducted to

study the effects of concentrations of ferrofluid, the gap distance and the width of the fluidic

channel on the focusing performance of particles. This investigation led to the following

conclusions. First, when the concentration of ferrofluid increased, larger deflections of the

particles were observed due to the increasing magnetic susceptibility and stronger magnetic

forces. Second, a smaller gap distance between the microscale magnet and the microflu-

idic channel generated higher magnetic field gradients, thereby providing a better focusing

performance. Third, a small channel width worked better for particle focusing. The pro-

posed technique is simple and offers several advantages, including a smaller footprint due

to the integrated microscale magnets, accurate positioning of the interface and thus precise

focusing, as well as faster moving speeds of the focused particles. The principle of focusing

particles to a fluid interface can be further extended to multiple fluid interfaces for complete

separation of particles of different sizes. Our novel microdevice provides a simple and

efficient method for the separation of micro-particles and biological cells, and will benefit

practical microfluidic platforms concerning diamagnetic particles/cells.
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ABSTRACT

Microfluidic magnetophoresis is an effective technique to separate magnetically

labelled bio-conjugates in lab-on-a-chip applications. However, it is challenging and ex-

pensive to fabricate and integrate microscale permanent magnets into microfluidic devices

with conventional methods that use thin-film deposition and lithography. Here, we pro-

pose and demonstrate a simple and low-cost technique to fabricate microscale permanent

magnetic microstructures and integrate them into microfluidic devices. In this method, mi-

crostructure channels were fabricated next to a microfluidic channel, and were injected with

a liquid mixture of neodymium (NdFeB) powders and Polydimethylsiloxane (PDMS). After

the mixture was cured, the resulted solid NdFeB-PDMS microstructure was permanently

magnetized to form microscale magnets. The microscale magnets generate strong mag-

netic forces capable of separating magnetic particles in microfluidic channels. Systematic

experiments and numerical simulations were conducted to study the geometric effects of

the microscale magnets. It was found that rectangular microscale magnets generate larger

(H · ∇)H which is proportional to magnetic force, and have a wider range of influence
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than the semicircle or triangle magnets. For multiple connected rectangular microscale

magnet, additional geometric parameters, including separation distance, hight and width

of the individual elements further influence the particle separation, and were character-

ized experimentally. With an optimal size combination, complete separation of yeast cells

and magnetic micro-particles of similar sizes (4 µm) was demonstrated with the multi-

rectangular magnet microfluidic device. Numerical simulations were developed to predict

particle trajectories in the fluidic channel, and agree well with the experimental data. Our

approach demonstrates an efficient and simple method to separate magnetic particles by

integrating standalone microscale permanent magnets into microfluidic devices.

1. INTRODUCTION

Manyfields of biology and chemistry, such as high-resolution and single-cell studies,

have benefited from the recent progress of lab-on-a-chip and microfluidic technology,

because single cells can be retained at defined locations and subject to well controlled

microenvironments for interrogation over extended period of time [1, 2, 3, 4]. Much

research in recent years has focused on using hydrodynamic effects or externally applied

field gradients, such as electrical, optical, acoustic and magnetic fields, to induce forces

on cells to realize trapping, separation and focusing of cells [5]. However, the methods

of utilizing hydrodynamic effects or electric, optical, acoustic fields often involve complex

designs or strongly depend on the properties of the flow medium or the interaction between

the fluid and fluidic channels [6, 7, 8, 9], so magnetofluidics has been favored over these

methods in biological applications. Magnetic forces are unique in that they allow actions

at a distance, providing the ability to control objects without contact [10]. For example,

magnetic particles suspended in diamagnetic solutions are attracted by magnetic forces

towards a magnet where the magnetic field is the highest [11]. Recently, labeling target
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bioparticles with functionalized magnetic beads has been a major focus to selectively trap

and continuously sort cells out of a heterogeneous mixture [7, 12, 13] due to the benefits of

low cost, insensitivity to temperature or pH, and remote actuation without direct contact.

During the past decades, magnetic particles have become standard tools for the

isolation of defined cell subsets in modern cell biology, immunology and clinical medicine

[14, 15]. For example, immunomagnetic separation (IMS) is a standard laboratory tech-

nique for isolating cells, proteins, and nucleic acids. This technique uses superparamagnetic

polystyrene microspheres that are coated with a specific ligand. When added to a hetero-

geneous target suspension, the microspheres bind to the desired target. Using a powerful

magnet, the microsphere-target complex is then removed from the suspension [16]. Another

design called quadrupole magnetic flow sorter (QMS), is a cell sorter with operation based

on application of a high-gradient quadrupole magnetic field [17]. The magnetic force acting

on magnetically labeled cells in this quadrupole field has a centrifugal character that allows

a continuous cell-separation process. QMS has been used for isolation of cancer cells from

patients with head and neck cancer [18, 19] and to separate islet cells for diabetes diagnosis

research [20]. And also, Lund-Olesen et al. studied the hybridization of target DNA in

solution with probe DNA on magnetic beads immobilized on the channel sidewalls in a

magnetic bead separator [21].

Magnet-activated cell sorting (MACS) [22] is one of the simplest and most effective

ways for magnetic particle separation. A fluidic device utilizes high-gradient magnetic cell

separation columns to control the trajectory of magnetically labeled cells in a magnetic field

that is generated by a strong external magnet. However, the labeling particles are usually

so small that can only generate weak magnetic forces, so a very strong magnetic field is

needed. Changing the shape and position of magnet surrounding the microfluidic channel

can generate a strong magnetic field to realize separation[23]. Although the purity of the

separated sample is high, the recovery rate is as low as 37% [24]. This is because it is

difficult to control the magnetic beads at a certain location for recovery without specific
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magnetic gradients. A major current method is to use Microelectromechanical Systems

(MEMS) technology to generate a magnetic field gradient through the use of micro-coils

and magnetic pillars [25]. Although these platforms can easily manipulate the magnetic

beads in batches, they do not provide a continuous separation, and the fabrication processes

are expensive and complex.

It is highly desirable to have microfluidic devices with simple fabrication procedures

while achieving the purposes of magnetic separation of particles/cells. In this paper, we

propose a miniaturized and integrated microfluidic device that can pull magnetic particles

from one laminar flow path to another by applying magnetic force, and thus selectively

remove them from flowing fluids. To accomplish this, high-gradient microscale magnet

was fabricated and integrated at one side of a microfluidic channel by a simple single-

layer and single-mask microsolidics fabrication technique. The microscale magnet was

fabricated by injecting and curing a mixture of neodymium (NdFeB) powder in a structural

channels, and subsequent permanent magnetization. This study further investigates the

effect of the microscale magnet shape, and geometry designs of multi-rectangular magnet

on the separation performance. A numerical method is also presented for predicting

the particle separation and shows good agreement with experimental measurements. To

demonstrate the application of the magnetofluidics system, we separated a mixture of yeast

strain Saccharomyces cerevisiae – a commonly used unicellular eukaryotic model, and

magnetic micro-particles of similar diameters.

2. CONCEPT AND THEORY

2.1. Concept of Microdevices with Microscale Magnet. Fig. 1 (a) displays the

picture of the microdevice that consists of a fluidic channel and microscale magnet. As

can be seen in Fig. 1 (b), the microfluidic channel has three fluidic inlets and the dashed

lines stand for the interfaces between the three different inlet flows. All experiments in

our study were conducted at the condition of Q1=Q2=Q3 to make sure each flow stand for
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Figure 1. Overview of the separation microdevice with microscale magnet. (a) is a
photograph of the fabricated microdevice. (b) is the 2D schematic of a part (l∼3000µm)
of the microfludic channel and the microscale magnet, and (b) presents the deflection and
forces acting on the magnetic particle. The microfluidic channel has a width of wc=100µm
and the smallest gap distance between the microscale magnet and the microfluidic channel
is wg=60µm. The typical size of the microscale magnet is w=g=h1=h2=500µm. w is the
width of the microscale magnet; g is the gap distance between two microscale magnet;
h1 and h2 are the heights of the microscale magnet and that of the connecting microbar,
respectively; the whole length of the microfluidic channel and the microscale magnet are
both L=20000µm. (c) is the 3D schematic of the microfluidic channel. The depth of
the microfluidic channel is dc=35µm; the depth of the microstructure channel (microscale
magnet) is also equal to 35µm.

the same width of the microfluidic channel at inlet, so that it is easier to investigate the

deflection of particles at the outlet. The role of the buffer flows is to focus the particles

at the center of inlet and not too far from the microscale magnet in order for them to be

pulled to the lower wall at the outlet. The closest distance from the microscale magnet

to the microfluidic channel is 60 µm, ensuring that the local magnetic field gradients are

strong enough to cause the deflection of magnetic particles. While the gap distance is one

of the factors affecting magnetic separation, the gap distance was kept fixed at 60 microns

in this study. This is because the effect of the gap distance wg has been relatively well

understood from previous studies in the literature [26], and the results suggest that a closer

distance of the magnetic microstructure from the microfluidic channel can generate larger

magnetic forces. In this study, wg = 60 µm was the closest distance we could achieve with

a low-cost manufacturing technique [27]. As shown in Fig. 1 (b), a magnetic particle
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exposed to a magnetic field experiences a magnetic force, Fm [10]. The hydrodynamic drag

force Fd due to the surrounding fluid is another important force acting on the particles. The

gravity can be neglected due to the small velocity in the z direction, and will be discussed

in section 2.2.3. Therefore, the magnetic force Fm and hydrodynamic drag force Fd , are the

main forces to determine the movement of the magnetic particle. Fig. 1 (c) presents the

3D schematic of the microfluidic channel. The depths of the microfluidic channel and the

microstructure channel (microscale magnet) are both dc = 35 µm

In this study, we mainly discuss the effect of the geometry of the microscale magnet

on the movement of magnetic particles and separation performance. First, three represen-

tative shapes, rectangular, semicircle and triangle were chosen to study how the shape of

a single microstructure influence the trajectories of magnetic particles, as shown in Fig. 3.

In prior works in the literature [26, 28], soft microscale magnetic structures of rectangular,

semicircle and triangle shapes have been used to generate magnetic fields to pull magnetic

particles to the lower wall of the microfluidic channel. However, microscale permanent

magnets might behave differently, and the effect of the shape needs further investigation.

As will be seen in section 5.1, rectangular shape leads to large field gradients, different

from the findings in earlier studies with soft magnetic structures [26, 28]. Second, mul-

tiple connected rectangular microscale magnet were designed to have different geometric

combination of width w, height h and gap distance g, to study these geometric effects on

separation performance in microfluidic channels of length L = 20000 µm. Finally, yeast

cells (D ≈ 4 µm) and 4-µm-diameter magnetic particles were completely separated by

using the microscale magnet of the most optimized geometric combination.

2.2. Force Analysis of Magnetic Particles.

2.2.1. Magnetic force. In the presence of a magnetic field gradient, the magnetic

particles experience a magnetic force, which can be modeled using a dipole moment

approach by replacing the magnetized particle by an “equivalent" point dipole [29, 30]. The
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magnetic force on the particle suspended in nonmagnetic fluids is given by,

Fm = µ0(mp · ∇)H, (1)

where µ0 = 4π×10−7 H/m is magnetic permeability of free space; mp is the dipole moment

of the particle; H is the applied magnetic field intensity at the center of the particle, where

the equivalent point dipole is located. The dipole approximation has been used for decades

to compute the force on micro magnetic particles. The validation of this approximation has

recently been confirmed via particle trajectory measurements in a microfluidic system [31].

The dipole moment of the particle is

mp =MpVp, (2)

where Mp is the field-dependent particle magnetization; Vp is the volume of the particle.

When the particle is saturated, Mp=Ms. However, both conditions of saturation and below

saturation must be accounted for by expressing magnetization as

Mp = f (H)H, (3)

where

f (H) =


3χp

χp + 3
, H <

χp + 3
3χp

Ms

Ms

H
, H ≥

χp + 3
3χp

Ms

, (4)

H = |H|; χp is the magnetic volume susceptibility χp ≈ 0.2 [32] for the magnetic particles

used in our study. The applied magnetic field intensity at the center of the particle in the

microfludic channel caused by microscale magnet is H < 1.25× 104 A/m in our study. The

magnetization of pure Fe3O4 material is Ms = 4.78 × 105 A/m [29], so f (H) =
3χp

χp + 3
according to Eq. (4). Therefore, the magnetic force on the dipole, and hence on the particle,
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is given by

Fm = µ0Vp
3χp

χp + 3
(H · ∇)H. (5)

2.2.2. Fluidic force. In addition to the magnetic force Fm, there exists a viscous

drag force Fd acting on the particle in the direction opposite to the particle motion [33].

The drag force in low Reynolds number microfluidic systems is predicted using Stokes’ law

[6],

Fd = 6πηr(u f − up) fD, (6)

where η and u f are the dynamic viscosity and velocity of the fluid, respectively; up is the

particle velocity; r is the radius of the magnetic particle; fD is the hydrodynamic drag force

coefficient. fD is the drag coefficient for reflecting the wall effect and is expressed as [8],

fD =
[
1 − 9

16
( r
r + z′

) + 1
8
( r
r + z′

)3 − 45
256
( r
r + z′

)4

− 1
16
( r
r + z′

)5
]−1

,

(7)

where z′ is the distance between the bottom of the particle and the channel surface; r is

the radius of the particle. If the particle is far from the wall, fD = 1 and Eq. (6) reduces

to the usual StokesâĂŹ drag formula, which strictly applies to a single isolated particle in

an infinite uniform flow field. However, for most applications the flow field is not uniform

but rather varies throughout the fluidic system (e.g., laminar flow through a microchannel).

Nevertheless, the particle diameter is typically much smaller than the dimensions of the

fluidic system, and thus the fluid velocity is relatively constant across the particle. Thus,

we use Eq. (6) to estimate the viscous drag force on a particle at a given time by using the

particle velocity at that time, and the fluid velocity at the position of the particle at that time.

For the velocity profile of laminar steady flows in rectangular channels, Purday [34]

proposed a simple algebraic approximation instead of an infinite sum of Fourier series [35]

for channel aspect ratio α = dc/wc ≤ 0.5 to avoid computational complexity, which is given
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by

u(y, z) = um(
m + 1

m
)(n + 1

n
)[1 − (2y

wc
)m][1 − (2z

dc
)n], (8)

where um is the mean velocity in x direction. In our study, the depth of microchannel

dc=35 µm and the width of microfluidic channel wc = 100 µm. Therefore, according to the

coordinate in Fig. 1, the aspect ratio α satisfies the condition required by the approximate

equation (Eq. 8). The value of m and n were solved by a finite element method by Natarajan

and Lakshmanan [34], and m = 1.7 + 0.5α−1.4 and 2 + 0.3(α − 1
3 ) for the channel aspect

ratio in our study.

2.2.3. Gravitational force. Previous studies have suggested that the gravity can

have important roles in determining the particle motions during the separation process

when the particles are heavier than the surrounding liquid [36, 37]. Taking into account of

buoyancy, the effective gravitational force Fg can be expressed as

Fg = Vp(ρp − ρ f )g, (9)

where ρp and ρ f are the densities of the particle and fluid respectively; g is the acceleration

due to gravity. In our study, the effect of gravity can be safely neglected because the particle

velocity in the z direction due to Fg is much smaller compared to the velocities in the x and

y direction. Specifically, upx is estimated to be the average flow velocity in channel, and

upy is the average velocity due to magnetic force. upz is calculated by balancing the viscous

drag to gravitational force.The estimation of the velocity scales suggests that the velocity

in the z direction is at least 200 times smaller than those in the x and y direction, so the

particle velocity in the z direction caused by gravity is negligible.
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3. NUMERICAL SIMULATION

We determined the trajectory of the magnetic particles using numerical simulations

to validate the above theoretical analysis. A custom-written Matlab program was employed

to compute the particle position based by Newton’s second law. The magnetic force was

computed based on the magnetic field simulated by a FEM software package COMSOL

Multiphysics.

The magnetic field in COMSOL is simulated by solving the Laplace equation of

the magnetic potential. The mesh distribution is non-uniform in the whole computational

domain, and the mesh is refined near the magnets to obtain accurate results of the gradient

and the strength of magnetic field in the microdevice. The quadratic Lagrange finite element

in cubic shape is selected, and the total number of mesh is about 900,000. The computation

of this model is time consuming and costs over 20 mins to obtain the steady state solution

even by choosing the multigrid method to pre-smooth the mesh. If the Navier-Stokes

equation is also simulated, the mesh in the microchannel should be refined properly in

order to obtain an accurate flow fields. To do this, a huge model including over 1,200,000

meshes has to be generated, which will require a larger amount of memory of the computer.

Computationally, it is too expensive to solve a fully coupled model in this geometry due

to the limited computing resources available to us. To avoid this problem, the magnetic

field was extracted and imported into Matlab to calculate particle trajectories by a custom-

written code. This method has been proved to be effective and accurate enough from the

comparisons between the experimental and simulated results.

Since the effect of gravity can be safely neglected, it is reasonably accurate to assume

the particle will stay in the same z plane during the process of flowing through the fluid

channel. As a result, 2-D simulations of particle trajectories can be used as long as the

particle’s location in the z direction is known. This means that the variable z in Eq. (8)
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can be regarded as a constant for each particle. The results of the simulated trajectories

presented in Section 5.1 shows a good agreement with the experiment data, and thus are

supportive of the theoretical analysis and 2-D simplification.

3.1. Magnetic Field. The geometry and size of the magnets were constructed

according to the actual fabricatedmicrodevices. The coercivity Hc of themicroscalemagnet

was 94000 A/m for the NdFeB-PDMS composite used in our study. The value of Hc was

experimentally determined from the measurement of large scale cylindrical composites by

fitting the measurements with analytical solutions [38]. The simulation domain was set as

at least five times of the microdevice size. The magnetic flux density Hx and Hy at various

z planes were exported and were later imported to the custom Matlab program to calculate

the magnetic force through Eq. (5).

3.2. Particle Trajectory. The initial particle positions in the simulations have

the same z coordinate as those in the experiments. In the experimental measurements,

particles near the centerline of microfluidic channel were selected, and all sample particles

were almost on the same z plane to ensure consistent and meaningful comparisons. As

mentioned above, the movement of the microparticles can be regarded as steady motion

for each instantaneous time period, so the instantaneous position of a particle, rp, are then

computed over time by numerical integration rp = r0 +
∫ t

0 vpdt′, where r0 is the initial

location of the particle, vp is the particle velocity at each time instance, and t is time.

4. MATERIALS AND METHODS

4.1. Microfluidic Device Fabrication. Fig. 2 describes the main fabrication steps

of the microfluidic device. The microfluidic device was fabricated in PDMS following

by soft lithography technique [39]. The master molds were manufactured in a dry film

photoresist (MM540, 35 µm thick, DuPont) by lithographic patterning method [40]. A

layer of dry film resist was first laminated onto a copper plate using a thermal laminator.

After ultra-violet (UV) exposure through a transparency photo mask (10,000 dpi, CAD/Art
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Figure 2. Fabrication steps of the microfluidic device. (a) The PDMS microdevice consists
of the microfluidic channel and the microstructure channel. The microfluidic channel has
three inlets and one outlet; the microstructure channel has one inlet and one outlet. (b)
Injection of NdFeB-PDMS mixture. (c) Curring of NdFeB-PDMS mixture on the hotplate
and in the oven. (d) Magnetization of the cured NdFeB-PDMS mixture to form microscale
permanent magnet.

Services Inc), the exposed dry film was developed, rinsed and dried to obtain the master

mold. PDMSbase and initiator were throughlymixed, degassed, and then cast on themaster.

After curing, the PDMS replica was peeled off from the master, cut and punched, and then

bonded with a flat glass slide after corona surface treatment. Using this method, microflu-

idic and microstructure channels with rectangular cross sectional shape were fabricated as

displayed in Fig. 2(a). Next, NdFeB powders (MQFP-B-20076, Molycorp Magnequench)

were thoroughly mixed with a pre-mixed liquid PDMS at a ratio of NdFeB/PDMS=2:1

(w/w). The mixture of the NdFeB powders and PDMS was degassed, and subsequently

injected into the microstructure channel with a syringe pump shown in Fig. 2(b). Imme-

diately after filling the NdFeB-PDMS mixture, the microdevice was heated on a hotplate

at 150◦C for 10 minutes to cure the mixture, as in Fig. 2(c). The fast curing process is

critical to prevent the agglomeration and sedimentation of the neodymium powders. The

microfluidic device was heated in an oven at 60 ◦C for another 12 hours to ensure complete

curing and strong bonding. In Fig. 2(d), after the mixture was cured, the resulted solid

NdFeB-PDMS microstructure was permanently magnetized by an impulse magnetizer (IM

10, ASC Scientific).
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4.2. Materials. The magnetic particles in this study are commercially available

magnetite-doped un-cross-linked polystyrene microspheres (Micromod GmbH, Germany).

The mean diameter of the magnetic particles is D = 7 µm (coefficient of variation < 5%) and

its density is 1.1 g/mL. These particles are coated with surface carboxylic groups (COOH).

The original solution of 7 µm magnetic particles (5% w/w) were diluted 1000 times with

distilled water, so the final particle concentration was 2.5×105/mL. Inlets 1 and 3 were

injected with distilled water to work as buffer, and inlet 2 was injected with the distilled

water containing magnetic particles to work as the particle flow. To prevent particle from

adhering to the microfluidic channel and agglomeration, surfactant Tween 20 was added to

all fluids.

4.3. Preparation of Yeast Cells. Culture flasks were pre-seeded with 0.1% (w/w)

of a commercial yeast preparation (Saccharomyces cerevisiae, Rapid Rise Yeast, Fleis-

chmann’s, Oakville, ON, Canada) to provide an initial cell concentration of approximately

1×109 cells/mL. The S. cerevisiae yeast strain was quickly activated in a high D-glucose

medium (10 g/L) at 30 ◦C for 60 minutes to initiate an exponential growth phase. The

optical density (OD) was determined by measuring the absorbance at λ = 600 nm and

normalization was conducted for each batch of the yeast cells. Centrifugation was applied

once cell numbers come to a standardized level (OD600 = 2.8 ± 0.1) and washed twice with

a 0.1 M phosphate buffer solution (PBS). Cells were finally re-suspended and aspirated in

de-ionized (DI) water to mix with magnetic particles for microfluidic chip injection.

4.4. Experimental Set-up. To record the trajectories of the magnetic particles

during the experimental process, the microfluidic devices were mounted on an inverted

microscope stage (IX73, Olympus). A high-speed camera (Phantom Miro M310, Vision

Research) was used to capture videos. The microfluidic devices were illuminated by a fiber

optic light for transmission bright-field imaging. We used three syringe pumps (NE-300,

New Era and KDS 200, KDS Scientific) to control the flow rate of each inlet, and three small

syringes (1 mL) to minimize the effect of the motor’s step motion to maintain good stability
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of the flow. ImageJ [41] was used to extract the particle position from the experimental

videos, and then the z position of magnetic particles can be determined by our custom

written code.

5. RESULTS AND DISCUSSION

The magnetized NdFeB-PDMS microstructure functions as permanent magnets,

exerts attractive forces on the magnetic particles, and induces vertical deflection of the

particles. The magnetic forces depend on the magnetic field and its gradient based on

Eq. (5). The shape of NdFeB-PDMS microscale magnet can influence the magnetic

field and its gradient, and was investigated in this study with systematic experiments and

numerical simulations. This section first presents how a single microscale magnet of three

shape styles – rectangular, semicircle and triangle, affect the trajectories of the magnetic

particles. Then, multiple connected rectangular microscale magnet with different size

combination are discussed to explore their effect on the vertical deflection of the magnetic

particles. Finally, the microfluidic device with multiple connected rectangular microscale

magnet of the most optimized size combination was chosen to achieve complete separation

of magnetic particles and yeast cells.

5.1. Effect of Microscale Magnet Shape. The effect of a single NdFeB-PDMS

microscale magnet with different shapes on the trajectories of magnetic particles is first

explored in this section. As shown in Fig. 3 (a-1), (a-2) and (a-3), three representative

shapes of rectangular, semicircle and triangle were chosen because the microscale magnet

of these three shapes can generate strong magnetic fields and gradients to trap magnetic

particles [26, 28]. Each microscale magnet was fabricated with the same base length of

w=1000µmand height of h=500µm, and positioned atwg=60µmaway from themicrofluidic

channel, as mentioned in Fig. 1 (b). The experimental and simulated particle trajectories

with these three microscale magnets were compared in Fig. 3 (b-1) – (b-3). From the

comparison, the experimental trajectories were in good agreement with the simulations.
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Figure 3. Effect of microscale magnet shape. (a-1)–(a-3) are the micro-photographs of
three different microscale magnet: rectangular, semicircle and isosceles-triangle magnets.
The width w and height h of each magnet are 1000µm and 500µm, respectively. (b-1)–
(b-3) compare the experimental (symbols) and simulated particle trajectories (lines) under
the rectangular, semicircle and isosceles triangle magnet with initial y positions y0=15µm,
y0=5µm and y0=-5µm respectively; the coordinate is based on Fig. 1 (b). (c-1)–(c-3) are
the magnetic forces Fmy acting on the particle during the transport process corresponding
to (b-1)–(b-3).

The inlet flow rate was Q1=Q2=Q3=0.3µL/min, as shown in Fig. 1 (b), so the particles were

distributed at random positions in the central part of the microfluidic channel. To make a

full investigation of the three microscale magnets, the trajectories of particles at different

initial position of y0= 15 µm (Fig. 3 (b-1)), y0= 5 µm (Fig. 3 (b-2)) and y0= -5 µm (Fig. 3

(b-3)) were chosen. Among the three shapes, the rectangular magnet resulted in the largest

vertical deflection for each initial position. This difference in deflection can be understood
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by the vertical magnetic velocity umy,

umy =
Fmy

6πηr fD
, (10)

where Fmy is the magnetic force in the y direction. In Fig. 3 (c-1) – (c-3), the vertical mag-

netic force Fmy from simulations are compared. It is evident that Fmy from the rectangular

magnet had a larger magnitude and a wider range of action on the particles. Accordingly,

the magnetic particles were deflected towards the lower side of microfluidic channel faster

with the rectangular magnet at each initial position y0.

The contours indicating the magnetic field distribution are presented in Fig. 4 to

better explain the effect of the geometrical shape. As can be seen in Fig. 4 (a-1) to (a-3)

and (b-1) to (b-3), the magnetic field and its gradients in microfluidic channel caused by

the rectangular magnet are larger and have a wider action range than those induced by

semicircle or triangle magnet, indicating the reason that the magnetic particles deflect more

in the y direction under the effect of rectangular magnet. Fig. 4 (c-1) to (c-3) show the

connected-shape microscale magnets, their corresponding (H · ∇)Hy are displayed in Fig.

4 (d-1) to (d-3). Similar to single microstructure, the connected rectangular magnet can

generate a larger and wider magnetic field and gradients. The negative (H · ∇)Hy in Fig.

4 (b-1) to (b-3) and Fig. 4 (d-1) to (d-3) illustrates the direction of Fmy according to the

coordinates in Fig. 1(b) and is consistent with the deflection of particles. To quantitatively

understand the reason of the superior performance of rectangular magnet, we define an

equivalent magnetic force intensity H̃ as

H̃ =
∫ l

0
|(H · ∇)Hy | dx, (11)

where l=2000µm is the period length of the connected magnet, as shown in Fig. 4 (c-1) to

(c-3); |(H · ∇)Hy | is the average value of |(H · ∇)Hy | from y = −50µm to y = 50µm (total

width of the microfluidic channel) of the microfluidic channel at each x position from the



101

beginning to end of a 2000 µm period according to the coordinate in Fig. 1 (b). According

to Eq. (5), Fmy ∝ |(H · ∇)Hy |, H̃ can be interpreted as a measure of the average magnetic

strength that causes vertical deflection of the particles through Eq. (11). In Fig. 4 (d-1)

to (d-3), it is obvious that the equivalent H̃ = 2.89 × 108(A2/m2) of connected rectangular

magnet is also the largest, meaning the largest effect of the magnetic field on the deflection

of the magnetic particles.
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Figure 4. Magnetic field map in microfluidic channel generated by single and connected
microscale magnet with different geometrical shapes. (a-1) to (a-3) are the magnitude
contour of magnetic field intensity |H| corresponding to different shaped single microscale
magnet in Fig.3 (a-1), (a-2) and (a-3), respectively. (b-1) to (b-3) are (H · ∇)Hy contour
corresponding to different shaped single microscale magnet in Fig.3 (a-1), (a-2) and (a-3),
respectively. (c-1) to (c-3) are connected rectangular, connected semicircle, connected
triangle microscale magnet. Each single microstructure has the same size with the cor-
responding single magnet in Fig.3 (a-1), (a-2) and (a-3), respectively. (d-1) to (d-3) are
(H · ∇)Hy contour corresponding to (c-1) to (c-3), respectively. H̃ is equivalent magnetic
intensity.

5.2. Effect of the Size Combination of Multi-rectangular Microscale Magnet.

It has been shown that rectangularmicroscalemagnet can result in the largest y-direction dis-

placement of particles. To further enhance the deflection, multiple rectangular microscale

magnets were designed to test the practical use of our proposed devices. In this case, separa-

tion performance depends on several geometric parameters, including the rectangular width

w, the gap distance g between each microscale magnet, and the height h of the microscale

magnet, as shown in Fig. 1 (b). The combination of w, g and h, influences both the strength



102

and gradients of the magnetic field. In this section, these parameters, w, g and h of the

microscale magnet were evaluated experimentally to determine an optimal combination to

separate magnetic particles. To better study each parameter, the other two were kept fixed

when one parameter was changed. The length of the multi-rectangular microscale magnet

with each size combination was designed to be the same, and L=20000µm.

5.2.1. Effect of rectangular magnet width. The buffer flow and particle flow

were injected into the microfluidic channel with the flow rate of Q1=Q2=Q3 =2.0µL/min,

as shown in Fig. 5 (a), so the magnetic particles occupy the central part of the channel

at the inlet. The pre-focusing ensured all the particles to enter the region of strong and

similar magnetic fields and gradients. To study the effect of rectangular magnet width w on

deflecting the particles, the height h and gap distance g were kept the same as h=g=500µm.

Three different microscale magnet widths of w=500µm, w=1000µm and w=250µm were

designed and the corresponding micro-photographs were displayed in Fig. 5 (b-1)–(b-3).

The corresponding distribution of the magnetic particles at the channel outlet can be seen

in Fig. 5 (c-1)–(c-3). It is clear from Fig. 5 (c-1)–(c-3) that a larger percentage of particles

were deflected towards the lower wall of w=500 µm microscale magnet than that of the

other two cases. In order to quantitatively analyze the particle distribution, the bimodal

Gaussian distribution of the experiment data were summarized in Fig. 5 (d-1)–(d-3). In

statistics, a bimodal Gaussian distribution is a continuous probability distribution with two

different modes, and best presents the two peaks observed in the experiments. The bimodal

Gaussian distribution includes a group of particles that are attracted near the lower wall

p1, and a group of particles that are far away from the lower wall p2. Comparing the

three bimodal Gaussian distributions, the first peak location p1 of w=500µm magnet is the

highest and closest to the lower wall, suggesting that more magnetic particles were attracted

to the lower wall of the microfluidic channel. On the other hand, the second peak location
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Figure 5. Effect of the width w of multi-rectangular microscale magnet on the vertical
deflection of particles. (a) Particle distribution at the inlet of the microfluidic channel. The
flow rate isQ1=Q2=Q3=2.0µL/min. The width of particle flow and buffer flow is w1 ≈ w2 ≈
w3 because of the equal flow rates. (b-1)–(b-3) are the micro-photographs of the microscale
magnet with different widths: w=500µm, w=1000µm and w=250µm. The height h and
gap distance g of each group are kept at h=g=500µm. (c-1)–(c-3) are corresponding
distribution of magnetic particles at the outlet; (d-1)–(d-3) are the corresponding best-fit
bimodal Gaussian distribution of the particles’ y position of the experiment data. (e) is the
experimental mean y position ȳ of particles at the outlet at different total flow rates Qt . (f)
is the equivalent magnetic field intensity H̃ in the microfluidic channel when varying the
width of the microscale magnet. Symbols are H̃ calculated from simulations, and the solid
line is the best fitted polynomial line of H̃.
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p2 of w=250µm magnet is the highest and located close to the central part of the channel,

indicating that most magnetic particles stayed at their initial y position and experienced

little vertical deflection from the inlet to the outlet.

As can be seen in Fig. 5 (e), for each total flow rates examined, the mean y position ȳ

at the outlet is the closest to the lower wall of the channel, with w=500µm. It can therefore

be inferred that w=500µm magnet had a superior performance on particle deflection in

y-direction. When increasing the total flow rate Qt , the mean y location at the outlet moved

farther away from the lower wall for each width, because the vertical deflection distance

is the result of the competition of the vertical magnetic and viscous drag forces. With an

increasing flow velocity and a larger drag force, the residence time, tr , of the particle within

the influence range of Fmy becomes shorter. Despite the same magnetic force (the same

vertical velocity), the vertical deflection becomes smaller because of the shorter residence

time tr .

The equivalentmagnetic field intensity H̃ induced byw=250µm,w=500µm,w=750µm

and w=1000µm magnets was calculated from the simulations, and were presented in Fig.

5 (f). Here, H̃ is derived from the total length of the microfluidic channel l=20000µm to

reflect the separation performance of different magnet more accurately and fully. From the

best fitted polynomial line of H̃, it can be concluded that as the magnet width w increased

from 250µm to 1000µm, H̃ increased initially and began to decrease after reaching its peak

at w close to 550 µm. The dependence of H̃ on w explains the best separation at w = 500 µm

in the experiment observations, and provides a practical guideline for design optimization

purpose. Therefore, H̃ will be used for understanding the effect of g and h in the following

sections, 5.2.2 and 5.2.3 .

5.2.2. Effect of rectangular magnet gap distance. Similarly, the effect of the gap

distance g between the connected magnets was studied in this section, while the width w

and the height h of the microscale magnet were kept the same as 500µm. Fig. 6 (a-1)–(a-3)

displays the micro-photographs of the three different microscale magnets with gap distances
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of g=500µm, g=1000µm and g=250µm respectively. The corresponding distributions of

magnetic particles at the outlet are shown in Fig. 6 (b-1)–(b-3). The inlet flow rate was

set as Q1=Q2=Q3=2.0µL/min. Comparing Fig. 6 (b-1)–(b-3), the gap distance of 500µm

resulted in the largest vertical deflection and best separation of the particles. This trend was

more evident in the bimodal Gaussian distribution plot, as in Fig. 6 (c-1)–(c-3). Although

the first peak p1 of the three gap distances were all close to the lower wall of the microfludic

channel, p1 of g=500µmmagnet is much higher than the other two groups, meaning a better

trapping performance on the magnetic particles.

With different total flow rate Qt , Fig. 6 (d) shows that the mean y position ȳ

of particles at the outlet. At each Qt , g=500µm magnet performed best on the vertical

deflection of magnetic particles. However, when the total flow rate increased, the outlet

ȳ became farther from the lower wall for each gap distance group because of the shorter

resident time tr of magnetic force. Fig. 6 (e) demonstrates the reason of the different y

location distribution under the effect of g=500µm, g=1000µm and g=250µm by using the

equivalent magnetic force intensity H̃ defined in Eq. (11). In Fig. 6 (e), a trend line was

plotted for the H̃ values by fitting numerical results of the g=250µm, g=500µm, g=750µm

and g=1000µm magnets. It is seen from Eq. (5) that Fmy increases first and then declines

over the range between g=250µm and g=1000µm, with the peak position near g ≈ 550 µm.

Accordingly, it can be inferred from Eq. (10) that the vertical magnetic velocity umy of the

magnetic particles caused by the microscale magnet with g∼550µm will be faster and will

lead to a better separation performance.

5.2.3. Effect of rectangular magnet height. The effect of the height h is studied

in this section. Fig. 7 (a-1)–(a-3) and (b-1)–(b-3) present the micro-photographs of the

magnet with different heights and the corresponding particles y-distribution at the outlet

of the microfluidic channel. The height varied from 1000µm, 500µm to 250µm. To keep

the same condition, the width w and the gap distance g of the microscale magnet were set

the same value of 500µm. Also, the flow rates of each inlet were the same and equal to
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Figure 6. Effect of the gap distance g of multi-rectangular microscale magnet on the vertical
deflection of particles. (a-1)–(a-3) are themicro-photographs of themicroscale magnet with
different gap distance: g=500µm, g=1000µm and g=250µm. The height h and width w

of each group are kept at h=w=500µm. (b-1)–(b-3) are the corresponding distribution
of magnetic particles at the outlet; (c-1)–(c-3) are the corresponding bimodal Gaussian
distribution of the experiment data. (d) is the experimental mean y position ȳ of particles
at the outlet for different gap distances when varying total flow rate Qt . (e) is equivalent
magnetic force intensity H̃ for different gap distances. Symbols are the simulated H̃, and
the solid line is the polynomial fitted line of the simulated results.

2.0µL/min to focus the magnetic particles at the central part of the channel at the inlet. As

can be seen in Fig. 7 (b-1)–(b-3), most particles were deflected noticeably towards the lower

wall when the height of the magnet 1000µm, while the particles vertical movement can be

hardly observed at the height of 250µm. To clarify this trend, Fig. 7 (c-1)–(c-3) illustrate



107

that p1 of h=1000µm magnet is the highest and closest to the lower wall, indicating that

more magnetic particles were deflected towards the bottom part of the microfluidic channel.
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Figure 7. Effect of the height h of multi-rectangular microscale magnet on the vertical
deflection of particles. (a-1)–(a-3) are the micro-photographies of the microscale magnet
with different hight: h=1000µm, h=500µm and h=250µm. The width w and gap distance
g of each group are kept at w=g=500µm. (b-1)–(b-3) are corresponding distribution of
magnetic particles at outlet; (c-1)–(c-3) are corresponding bimodal Gaussian distribution of
the experiment data. (d) is the experimental mean y position of particles at outlet with the
effect of different-hight magnet when varying total flow rate Qt . (e) is equivalent magnetic
field intensity H̃ in microfluidic channel when varying the hight of the microscale magnet.
Symbol is the simulated H̃ and the green line is the polynomial fitted line of the simulated
results.
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Fig. 7 (d) demonstrates that h=1000µm microscale magnet has a better separation

performance to induce vertical deflection of the particles at each total flow rate Qt . Similar

to the previous discussions of the width and gap distance of the magnet, increasing total

flow rate Qt weakens vertical deflection of the particles due to shorter resident time tr . As

illustrated in Fig. 7 (e), when the height of the magnet increased, the equivalent magnetic

force intensity H̃ kept increasing and then remained more or less constant after a critical

height. This trendwas derived from the simulated results of g=250µm, g=500µm, g=750µm

and g=1000µm magnet. It is evident that the trend in 7 (e) is consistent with the particle

distribution in Fig. 7 (b-1)–(b-3) and Fig. 7 (c-1)–(c-3). In all the experiments conducted,

the equivalent magnetic force intensity H̃ provides a reasonable prediction of the separation

performance, and can therefore serve as a criterion for the design of practical applications.

5.3. Separation of Yeast Cells and Magnetic Particles. To demonstrate the prac-

tical use of the proposed technique, a microfluidic device with multiple microstructures was

used to separate a mixture of magnetic particles and yeast cells Saccharomyces cerevisiae of

similar diameters of 4µm. This yeast strain has been frequently used in toxicity evaluations

of heavy metals, anti-cancer drugs, and herbicides[42], because it shares many cellular

structural similarities with cells in plants and animals [43]. Another convenience of using

yeast cells is their short generation time and easy activation/cultivation procedures [44].

(b)
Outlet: Qt=3.0µL/min Outlet: Qt=2.4µL/minInlet 

Magnetic particles (dark) 

Yeast cells (light)

Magnetic particles (dark) 

Yeast cells (light)

Yeast cells + mag particles 

(a) (c)
Q1

Q2

Q3

100 µm 100 µm 100 µm

Figure 8. Separation of 4 µm magnetic particles and yeast cells by multi-rectangular
microscale magnet of w=g=500µm and h=1000µm. (a) is the inlet stack image with
Q1=Q2=Q3. (b) and (c) are the outlet stack image when the inlet are Qt=3.0µL/min and
2.4µL/min, respectively.
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Themicrofluidic channelwas placed next to themulti-rectangularmicroscalemagnet

with the size combination of w=g=500 µm and h=1000 µm. This rectangular structure was

chosen because of its superior performance. Solutions with the magnetic particles and yeast

cells entered into the central part of the fluid channel, as shown in Fig. 8 (a). Fig. 8 (b)

and (c) display that the magnetic particles were pulled towards the lower half at the outlet

while the yeast cells were not because the yeast cells are nonmagnetic (or diamagnetic).

Complete separation was achieved at a total flow rate of 2.4µL/min. The separation can be

further improved by integrating multiple parallel channels onto a single chip. Therefore,

our proposed method will be useful for high-throughput particle/cell separation.

6. CONCLUSIONS

In summary, we have presented a simple and efficient method of fabricating mi-

crofluidic devices that integrates microscale magnets for magnetic particle separation appli-

cations. The fluidic and microscale magnets in our approach were fabricated with a simple

one-step soft-lithography process. The microscale magnets induce local magnetic forces on

magnetic particles to achieve continuous separation of microparticles. We have developed a

simulation model to predict the trajectory of the particles by simulating the magnetic fields

and computing the corresponding magnetic forces. The numerical simulations showed a

good agreement with the experiments. We have conducted systematic experiments to study

the effect of geometric designs of the microscale magnet on the separation of magnetic par-

ticles. Key results are summarized as follows: first, rectangular NdFeB-PDMS microscale

magnet causes larger deflections of the particles than semicircle and isosceles triangle

shaped structures; second, the geometric parameters of multi-rectangular microscale mag-

net influences the device’s separation performance, which is correlated with the equivalent

magnetic force intensity. The integration of microscale permanent magnets allows both

small footprint, and standalone operation without bulky external magnets. The method
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allows simple integration of multiple microscale magnets and microfluidic channels onto

single chips to achieve high throughput separation of magnetic bio-conjugates, such as

magnetically labeled antibody, aptamer or nano-particles.
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ABSTRACT

Accurate separation of microparticles by shape has diverse applications in biology and

biotechnology, but is a significant challenge in separation science and engineering. We

demonstrate a simple and effective mechanism that can achieve shape-based separation of

magnetic particles in microscale flows. In this method, a uniform magnetic field is applied

perpendicularly to the flow direction, and causes shape-dependent lateral migration of the

particles. Using high-speed imaging, we studied the rotational dynamics of the ellipsoidal

particles. It is found that the lateral migration is correlated with the asymmetric rotation of

the particles. Different from existing techniques that use magnetic forces, our method uses

shape-dependent magnetic torque but a zero magnetic force.

1. INTRODUCTION

In biological sciences and bioengineering, shapes are key indicators in specifically

identifyingmicron-sized bio-particles, such as bacteria, viruses, budding yeasts, andmarine

micro-organisms [1, 2, 3, 4]. The changes in the shapes of red blood cells, from their normal

biconcave shapes, to other shapes accompany many diseases, such as sickle-cell disease,

anamia, ormalaria [5, 6]. Thus, in bio-particle separation applications, the particle shape can
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be a specific marker and serve as a useful basis for particle identification and fractionation,

which have diverse applications in clinical diagnosis and biology. However, shape-based

separation is a significant challenge for traditional methods, e.g., conventional filtration and

centrifugation [7]. Recently, several techniques based onmicrofluidic technology, including

hydrodynamic filtration (HDF) [7], deterministic lateral displacement (DLD) [8, 9], and

dielectrophoresis (DEP) [10] have been utilized for shape-based separation. However, the

requirements for complex features and high resolution have been potential limits for the

practical application of HDF, DLD and DEP [7, 8, 10]. An alternative approach, using an

inertia effect, has been demonstrated to induce lateral migration of ellipsoidal particles, but

this only yields minimal effect [11], i.e., marginally different equilibrium positions. Inertial

lift requires both a large flow Reynolds number (Re > 10) and a particle Reynolds number

(Rep > 1), which could induce substantial shear stresses on living biological matters. There

also have been field-flow fractionation (FFF) technique reported by using steric-entropic

effect to separate rod-like particles [12, 13]. Viscoelastic fluids have been demonstrated as

another non-traditional means of shape-based separation of microparticles by exploiting a

subtle and sensitive balance between elastic lift and inertial forces [14, 15]. More recently,

by using shape-dependent magnetic and drag forces, negative magnetophoresis has been

demonstrated to achieve shape-based separation of diamagnetic particles in a non-uniform

mangetic field [16]. In this work, we present a simple and effective method of shape-

based separation by combining uniform magnetic fields with pressure-driven flows in a

microchannel at a low Reynolds number (Re <1). The magnetic field alters the rotational

dynamics of the elongated particles, and results in shape-dependentmigration and separation

of microparticles.
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Figure 1. (a) Photograph of the microdevice located in a uniform magnetic field. (b)
Schematic of the microfluidic channel.

2. EXPERIMENT

As shown in Fig. 1(a), a microfluidic chip was placed in the center of a uniform

magnetic field with strength H0 generated by a Halbach array [17]. The microfluidic device

was fabricated in polydimethylsiloxane (PDMS) by following soft lithography techniques

[18, 19]. The microfluidic device consisted of two inlets and one outlet. The main fluidic

channel had a width of wc = 50, and a depth of dc = 35 µm, and a total length of L =

20000 µm, as in Fig. 1(b). A Halbach array is a special arrangement of permanent magnets

that can produce uniform magnetic field [17]. Here, the Halbach array consisted of 20

cuboid permanent 0.25” × 0.25” × 0.5” magnets (K&J Magnetics, Inc) that were fixed in a

holder fabricated by 3D printing. The magnitude of the magnetic field within the central

region was H0 ≈ 35000 A/m, as measured by a Gaussmeter (see details on the design and

measurement of the uniform mangetic field in the electronic supplementary information).

The sample particles used in this work were magnetite-doped and un-cross-linked

polystyrene microspheres (micromer®-M 08-02-703, Micromod GmbH, Germany). The

original spherical magnetic particles had a mean diameter d = 7 µm (coefficient of variation
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< 5%), and a density ρp = 1.1 g/mL. The magnetic susceptibility was χp ≈ 0.26, according

to previous measurements [20]. The prolate ellipsoidal particles were prepared from the

original spherical particles following a mechanical stretching approach of Ho et al. [21].

The mean aspect ratio of the ellipsoidal particles was rp = 3.93 with a standard deviation of

σp = 0.43, asmeasured frommicro-photographs. The ellipsoidal and spherical particles had

the same volume andmagnetic properties, but had different shapes (details of the fabrication

and measurement of the particles are in the electronic supplementary information).

It is worth noting that the magnetic microparticles consisted of a polymer core,

a layer of magnetite grains, and a layer of functional polymer encapsulating the grains.

The core-shell structure has been confirmed by transmission electron microscopy (TEM)

imaging for both the original spherical and ellipsoidal particles [22]. Thus, these param-

agnetic particles resemble physically relevant bio-particle complexes that are encountered

in magnetic assisted cell sorting, e.g. binding of magnetic nanoparticles to micron-sized

biological cells [23, 24].

In our experiments, inlet 1 was injected with 40% (w/w) aqueous-glycerol solution

to work as a buffer flow, while inlet 2 was injected with 40% (w/w) aqueous-glycerol solu-

tion suspended with the sample particles. The 40% (w/w) glycerol solution has a similar

density of that of sample particles in order to prevent particle sedimentation. The buffer

and particle solutions were introduced from the two inlets at flow rates of Q1 and Q2 re-

spectively. Based on the pinched flow theory [19], the particle solution was confined to a

width w2 ≈ Q2wc/(Q1 + Q2). To record the trajectories of the magnetic particles during

the experimental process, the microfluidic device was mounted on an inverted microscope

stage (IX73, Olympus). A high-speed camera (PhantomMiro M310, Vision Research) was

used to capture videos through the microscope. In the experiments, the focal plane of the

microscope was near the middle plane in the vertical direction. The microfluidic device

was illuminated by a fiber optic light for bright-field imaging transmission. Two syringe

pumps (NE-300, New Era, and KDS 200, KDS Scientific) were used to control the flow
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rate of each inlet separately. The position and orientation of the particles were extracted

from the experimental videos by using software ImageJ [25].
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Figure 2. Stacked images at the inlet and outlet, and the corresponding probability density
function (PDF) of the particle centroid in the y direction. (a1)-(a3) spherical particles and
H0 = 0; (b1)-(b3) spherical particles and H0 ≈ 35000 A/m; (c1)-(c3) ellipsoidal particles
and H0 = 0; (d1)-(d3) ellipsoidal particles and H0 ≈ 35000 A/m. The flow rates were Q1 =
1.0 µL/min, and Q2 = 0.2 µL/min for all experiments.

Fig. 2 shows the superimposed images, and the probability distributions of particle’s

centroid in the y direction, (yc) at the inlet and outlet of themicrochannel under four different

experimental conditions. The probability density data were fitted by Gaussian functions

to provide practically useful information, including the mean position and corresponding

standard deviation (spreading). As can be seen in Fig. 2 (a1)-(a3), (b1)-(b3), for spherical

particles, the mean yc position and the distribution remained little changed between the

inlet and outlet regardless of the presence of the magnetic field. For ellipsoidal particles in

the absence of the magnetic field, they displayed 3D rotations, and stayed at a similar mean

yc position at the outlet as they did at the inlet, as shown in Fig. 2 (c1)-(c3). The small

changes of 2 ∼ 3 µm for the mean yc position between the inlet and outlet in the above three

conditions (Fig. 2 (a3)–(c3)) could be attributed to measurements from a finite number of
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particles (about 15 – 25 particles were used). The results in Fig. 2 (a1)-(c3) confirmed:

(1) the effect of inertia focusing [26, 27, 28, 29] was negligible due to the low Reynolds

numbers, i.e., Re < 1 and Rep � 1; and (2) the magnetic force acting on the ellipsoidal

particles was zero, due to the uniform magnetic field [30]. In Fig. (c2), the geometric

interactions, e.g., steric effect or “pole vaulting" [31], may contribute to the focusing of the

ellipsoidal particles. This steric effect tends to push the ellipsoidal particles away from the

wall if the initial separation distance from the particle centroid to the wall is smaller than

a semi-major axis [31]. Despite the improved focusing, the overall lateral positions of the

ellipsoidal particles remained similar. The ellipsoidal particles behaved much differently in

the presence of the magnetic field: (a) the particles aligned and rotated in the xy plane at the

inlet; (b) the ellipsoidal particles migrated towards the channel center; and (c) the particles

assumed steady orientations at the outlet, as shown in Fig. 2 (d1)-(d3). The results are

surprising, because the magnetic force acting on paramagnetic particles is zero in uniform

magnetic fields even for ellipsoidal particles from the basic electromagnetic theory [30, 32].

To understand this unusual lateral migration, we used high-speed (10000 fps) imaging to

obtain information on the particle’s position and orientation, in order to determine the

reason behind the phenomenon. It is well known that axis-symmetric ellipsoidal particles

rotate periodically around the vorticity axis in shear flows, and such motions are famously

known as Jeffery orbits [33, 34]. Assuming Stokes flows, negligible inertial and Brownian

effects, Jeffery showed that in an unbounded shear flow: (1) the particle translates with

the undisturbed fluid velocity at the particle’s centroid, (2) the particle has zero lateral

migration, and (3) the particle rotates periodically around the vorticity axis (z). The period

of rotation over a 2π period is T J
0 =

2π
Ûγ (rp +

1
rp
), where Ûγ is the shear rate, and rp is the

aspect ratio of the ellipsoidal particle. For convenience, in this study, we define a rotation

period T0 = T J
0 /2, which is half of the period in the classical Jeffery theory. The angle of
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Figure 3. (a1) and (a2) Superimposed images for H0 = 0 and H0 ≈ 35000A/m, respectively.
t1 (t′1) and t2 (t′2) are the times taken for particle rotation from φ = 0 to φ = π/2 and from
φ = π/2 to φ = π, for H0 = 0 and H0 ≈ 35000 A/m respectively. (a3) Schematic of the
orientation angle φ, and the centroid of the particle (xc, yc). (b) Angle φ(t̃) within a π
period. The symbols represent experimental measurements, and the solid line represents
the prediction using the Jeffery theory. (c) Experimental measurement of yc as a function
of t for H0 = 0 and H0 ≈ 35000 A/m respectively. The flow rates were Q1 = 1.0 µL/min,
and Q2 = 0.2 µL/min in both experiments. (d) Illustration of the particle rotation in the
combined magnetic and flow fields. Tm is the torque induced by the magnetic field, and Th
is the torque induced by the flow field. For 0 < φ < π/2, Tm and Th oppose each other,
while Tm and Th act in the same direction for π/2 < φ < π.

the ellipsoid orientation, φ can be expressed as tan φ = rp tan(πt/T0 + κ), where t is time,

and κ is the initial phase angle, φ is the angle of the ellipsoid’s major axis relative to the y

axis, as shown in Fig. 3 (a3).

While in unbounded Stokes flows, the rotation and translation of an ellipsoidal

particle are decoupled [35], the particle motions are different and more complex when

transported near a solid wall. The proximity of a wall induces a coupling between the

translation and rotation. Specifically, the rotation of an ellipsoidal particle near a wall

will generally result in a force (or lateral translation) in the transverse direction to the

wall. At vanishing Reynolds number, the lift force is an anti-symmetric function of φ with

respect φ = π/2, and causes the particle to oscillate away and towards the wall over cycles
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[36, 37, 38, 39]. Despite the oscillatory motion, the non-spherical particles have a zero net

lateral migration during one period of rotation [35, 36, 38], if there are no external force

fields and inertia effects are negligible.

The wall also induces increasing resistance on the particle rotation and results in

longer rotation periods. However, the wall effect is only minimal in modifying the overall

rotational behaviors of the particles. The approximate validity of Jeffery’s theory for

ellipsoidal particles or fibers near a wall have been confirmed by experiments [31, 34, 40]

and numerical investigations [39, 41].

We first examined the rotational dynamics of the particles from the high-speed

images, which were captured at a distance approximately 3 mm from the channel inlet.

Fig. 3 (a1) and (a2) are the stacked images of particle rotations without and with magnetic

field, respectively; and their corresponding orientation angles, φ(t̃) within a π period are

summarized in Fig. 3 (b). To compare the difference of the particle rotations without and

with magnetic field, a dimensionless time t̃ was used here by normalizing time t to the

time taken to complete a full π rotation. In the absence of magnetic field, i.e., H0 = 0,

the particle rotation agreed well with the prediction by the Jeffery theory. In obtaining the

theoretical prediction in Fig. 3(b), the value of the shear rate was Ûγ ≈ 1100 s−1. The good

agreement was consistent with earlier observations [37, 38, 39, 40, 42].

In Fig. 3(b), the time intervals t1 (t′1) and t2 (t′2) refer to the times taken by the

particle to rotate from φ = 0 to φ = π/2, and φ = π/2 to φ = π, respectively. They were

determined based on the angle-versus-time curves in Fig. 3(b). These time intervals were

then overlapped in Fig. 3(c). As indicated by the data, the particle showed symmetry of

rotational angular velocities, i.e., t1 = t2. However, in the combined magnetic and flow

fields, the particle rotation became asymmetric. The particle spent a longer time from φ = 0

to φ = π/2, and a shorter time from φ = π/2 to φ = π, i.e., t′1 > t′2.
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We next looked at the lateral dynamics of the particles by tracking the centroid

position of the particles. The experimental data of yc vs. t are shown in Fig. 3 (c).

Although the two particles started off at two different initial positions, this difference does

not affect the general characteristics of the particle motions between the two cases, i.e.,

without or with a magnetic field. In both cases, the particles moved first towards and then

away from the wall (in the y direction), displaying oscillatory motions. This oscillation

of the particle, was due to the presence of the channel wall, consistent with prior studies

in the literature [36, 37, 38, 39]. When H0 = 0, the oscillation away and toward the

wall was almost symmetric (t1 ≈ t2), similar to the rotational symmetry observed in Fig.

3 (b). The net migration over one period was close to zero. When H0 ≈ 35000 A/m,

the particle’s oscillatory motion became asymmetric. The particles moved upwards for a

relatively longer time, and then downwards for a shorter time (t′1 > t′2). Such asymmetric

movement correspondedwell to the asymmetric rotation observed in Fig. 3 (b). The particle

had a larger net migration in the y direction, in the presence of the magnetic field.

The experimental data suggested strong correlations between the rotational dynamics

of the particles and the lateral migration. As schematically shown in Fig. 3 (d), Tm is the

torque induced by the magnetic field, and Th is the torque induced by the flow field. The

torque Tm always attempts to align the major axis of the particle to the direction of the

magnetic field. When the particle orientation angle φ is between 0 and π/2, Tm is in the

counter-clock wise direction, opposing Th. When φ is between π/2 and π, Tm and Th are

in the clock wise direction. Therefore, the particle’s angular velocity is smaller in the first

half than that in the second half. This also means that a longer time is spent for the particles

to rotate from φ=0 to φ=π/2 than from π/2 to π, which is consistent with the experimental

measurements of t′1 > t′2 in Fig. 3 (a2).

The observed lateral migration of the ellipsoidal particles was due to three essential

elements: the non-spherical shape, magnetic torque, and proximity of a channel wall.

With a uniform magnetic field is applied, the magnetic torque breaks the symmetry of the
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rotational angular velocities of the particle. This asymmetry in turn breaks the symmetry

of the lateral oscillatory motions of the particles, leading to a net lateral migration towards

the channel center. As the particle migrated towards the channel center, the shear rate (or

velocity gradient) decreases in pressure driven flows, and the relative effect of magnetic field

become stronger. When the magnetically induced torque Tm is strong enough to balance the

torque due to the flow, Tm, the ellipsoidal particles assumes a steady angle at the end of the

microfluidic channel, as shown in Fig. 2 (d2). The measurements of the particle positions

show negligible lateral migration when the particles were moving at steady-state angles.

These experiments suggests the importance of the particle rotation to the lateral migration

of ellipsoids.

There is another regime that will occur with a sufficiently strong magnetic field or

a sufficiently weak flow field. In this regime, the particles enter the channel at a steady

state angle 0 < φ < π/2 without rotation. In this case, lateral migration of particle towards

the center may still be expected, similar to the case of an ellipsoidal particle that is fixed

in a uniform flow [35, 43]. A three-dimensional numerical simulation, however, would

be necessary to accurately determine the characteristics of the lift force. The transport

behavior in this regime will be further investigated in future studies.

Fig. 4 shows the effect of particle aspect ratio on the lateral migration based on

experimental data with ellipsoidal particles that have rp ≈ 4 and rp ≈ 2. Fig. 4 (a) compares

the probability density function (PDF) of yc at the outlet for the two particles under different

total flow rates Qt , while Q1/Q2 = 5 is fixed. The more elongated particles (rp ≈ 4) moved

closer to the channel center than the shorter particles for all flow rates. Fig. 4(b) summarizes

the average lateral migration ∆y, which is defined as the difference of the mean yc positions

between the outlet and inlet. These results suggest that the lateral migration increased with

an increase of the particle aspect ratio. This observation can be explained by the relative

changes of the torques: an increase rp from 2 to 4, results in more increment of Tm than

that of Th. As a result, the particle rotation becomes more asymmetric, thereby leading to
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Figure 4. (a) Probability density function (PDF) of the yc values of the ellipsoidal mi-
croparticles ( rp ≈ 4 and rp ≈ 2) at the outlet under different total flow rate Qt . (b) Effect
of particle aspect ratio, rp on the lateral migration ∆y, measured between the inlet and the
outlet of microfluidic channel. In these experiments, H0 ≈ 35000 A/m, wc = 50 µm, and
Q1/Q2 = 5.

a larger net migration. As the total flow rate Qt increased from 1.2 µL/min to 6.0 µL/min,

the mean yc positions of both particles at the outlet became closer to the channel wall, i.e.,

decreasing ∆yc. The reason is that increasing Qt causes a stronger flow field relative to

the magnetic field, so that the asymmetric rotation is weakened, and the induced lateral

migration becomes smaller.

The shape-dependent migration can be used to separate microparticles by shape.

For example, a complete separation of particles by shape is demonstrated in Fig. 5 (a1)

and (a2). In this experiment, a mixture of spherical and ellipsoidal (rp ≈ 4) particles

was injected from inlet 2 at a flow rate of Q2 = 0.2 µL/min, and the buffer flow was

injected from inlet 1 at a flow rate of Q1 = 1.0 µL/min, as shown in Fig. 1(b). By the
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end of the channel, the ellipsoidal particles were focused towards the centerline, while the

spherical particles remained at a similar initial position, achieving a complete separation.

The probability density function (PDF) of particles distribution at the inlet and outlet shows

a clear separation of the two kinds of particles (Fig. 5 (b1) and (b2)). In the experiments

reported here, the viscosity of 40% (w/w) glycerol solution is about 3.8 times of that of pure

water. An increased viscosity would weaken the relative effect of the magnetic strength,

because the shear stress and hydrodynamic torque are proportional to the viscosity. If the

device operates on particles suspended in water medium, we expect that the flow rate can

potentially be increased by 3.8 times while still achieving similar lateral migration and

separation.

(a2) Outlet

(b2) Outlet

(a1) Inlet

Ellipsoid+Sphere Ellipsoid Sphere  

(b1) Inlet

25µm 25µm 

 ( )  ( ) 

Figure 5. Separation of spherical and ellipsoidal particles in the uniformmagnetic field. (a1)
and (a2) are the superimposed images of the particles at the inlet and outlet of the channel
respectively. (b1) and (b2) are the corresponding probability density function (PDF) of the
yc values of the particles.

In actual rectangular channels, particle position in the height direction and the

channel height with respect to the particle dimensions can affect the migration behavior.

This is due to a change of relative strength between the magnetic and hydrodynamic fields

for particles at different height. The effect is more likely to influence migration speed,
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but not migration direction. Provided sufficiently long microfluidic channels, the particles

will have enough time to reach to the center of the channel. This may be an important

consideration when designing practical sorting devices to ensure complete separation.

3. CONCLUSION

In conclusion, we have demonstrated a simple and effective technique for achieving

shape-based separation of microparticles by using a uniform magnetic field. Experimental

measurements revealed that the magnetic field breaks the symmetry of the particle rotation

dynamics.

The nonspherical shape, together with the asymmetrical rotation of the particles and

particle-wall hydrodynamic interactions, resulted in a net lift force (or migration velocity)

towards the channel center.

Compared to existing methods of shape-based separation, the current method has

several advantages: (1) simplicity – magnetic fields can be implemented through permanent

magnets; (2) general applicability – the mechanism only requires a difference in magnetic

susceptibility between the particles and surrounding fluids. Although demonstrated with

magnetic particles in a nonmagnetic fluid in this work, our experiments have confirmed

similar lateral migration of nonmagnetic ellipsoidal particles suspended in a ferrofluid (in

electronic supplementary information).

In comparison to single-magnet methods that are often used [44, 45, 46], the uniform

magnetic field technique offers two benefits. First, it is easer to place themicrofluidic device,

because of the large area of the uniform magnetic field. Second, multiple microfluidic

channels can be conveniently integrated onto a single chip while being subjected to the

same magnetic field. Thus, the use of uniform magnetic field would be favorable for high-

throughput parallelization. The demonstrated technique thus provides a general mechanism
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for separation of micron-sized particles, e.g., various bio-particles, by shape, and has great

potential for biological and biomedical applications that require isolating and sorting of

shaped microparticles.
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SECTION

3. SUMMARY AND CONCLUSIONS

This dissertation has developed novel and simple ways to enhance the separation

performance of particles by using acoustic bubble enhanced pinched flow fractionation, soft

magnetic microstructures, microscale permanent magnets, multiphase ferrofluid flows and

external uniform magnetic field.

First, a novel acoustic bubble enhanced flow fractionation technique to overcome

the limitations of conventional PFF devices were proposed. The combination of acoustic

streaming flow from the bubble and the pressure driven flow inside the pinched segment

provides beneficial features – local acceleration and non-uniform velocity profile. The

combined flow field results in improved and robust separation between microparticles.

Second, a simple and efficient method of fabricating microfluidic devices that inte-

grates microscale magnets for separation applications of magnetic particles were presented.

The fluidic and microscale magnets in our approach are fabricated with a simple one-step

soft-lithography process. The microscale magnets induce local magnetic forces on mag-

netic particles to achieve continuous separation of microparticles. A simulation model was

developed to predict the trajectory and explain the movement of the particles by simulating

the magnetic fields and computing the corresponding magnetic forces, which showed a

good agreement with experiments.

Third, a simple and low-cost method for separating particles in ferrofluid by com-

bining the multiphase laminar fluid interface and microscale magnets were demonstrated.

The microfluidic devices integrated the NdFeB-PDMS microscale magnet next to the mi-

crofluidic channels, with a distance of tens of micrometers. The induced magnetic field

gradients resulted in strong forces that could deflect magnetic particles and focus them at



136

the interface between the water and ferrofluid. Systematic experiments were conducted to

study the effects of concentrations of ferrofluid, the gap distance and the width of the fluidic

channel on the focusing performance of particles.

Fourth, a simple and low-cost method for fabricating microfluidic devices for en-

hanced separation of magnetic particles were proposed. The microfluidic devices integrated

soft magnetic microstructures next to microfluidic channels, with a distance of tens of mi-

crometers. The induced magnetic fields and gradients resulted in strong forces that can

deflect magnetic particles perpendicular to the pressure-driven flow. By simulating the

magnetic fields and computing the corresponding magnetic forces, a numerical simulation

method was developed to predict the particle trajectory, and showed good agreement with

the experimental data.

Last, a simple and effective technique for achieving shape-based separation of mi-

croparticles by using a uniform magnetic field were proposed. Experimental measurements

revealed that the magnetic field breaks the symmetry of the particle rotation dynamics. The

nonspherical shape, together with the asymmetrical rotation of the particles and particle-

wall hydrodynamic interactions, resulted in a net lift force (or migration velocity) towards

the channel center.
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