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ABSTRACT 

Hot rolling is one of the most important and complex deformation processes in steel 

manufacturing and is essential to final product quality. The objective of this study is to 

investigate viscoplasticity, dynamic recrystallization, and static softening of alloyed metal 

during hot rolling process. Gleeble hot compression tests were performed to provide 

experimental stress-strain curves at different temperatures and strain rates. An inverse 

finite element analysis was performed to calibrate the experimental curves. Viscoplastic 

models including a Johnson-Cook (JC) model, a Zerilli-Armstrong (ZA) model, and a 

combined JC and ZA model were developed. Dynamic recrystallization behavior was 

investigated and modeled based on single hot compression test. Work hardening rate curve 

and dynamic recovery curve were modeled to calibrate the kinetics of dynamic 

recrystallization. Double hit tests were designed and performed and static softening model 

was developed at varying interpass time, pre-strain, temperature, and strain rate. 

Subroutines accounting for developed viscoplasticity, dynamic recrystallization, and static 

softening were developed and implemented into a three-dimensional finite element model 

of round bar hot rolling. The combined JC and ZA model demonstrated better agreement 

with experimental data than other traditional models. Dynamic recrystallization occurred 

throughout the round bar during hot rolling and is significantly influenced by the plastic 

strain and temperature. Static softening occurred rapidly in the beginning of interpass and 

then slowed down. Compared to rolling speed, rolling temperature demonstrated more 

significant influence on dynamic recrystallization and static softening during round bar hot 

rolling.  
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SECTION 

1. INTRODUCTION 

Hot rolling is an important steel manufacturing process operating above the non-

recrystallization temperature to refine the microstructure, remove residual stress and strain, 

and improve thermo-mechanical properties of steel product. Due to high temperature above 

900 °C, varying strain rate, and evolution of microstructure, hot rolling introduces complex 

phenomena including viscoplasticity, dynamic recrystallization, and static softening. These 

phenomena interact each other and control the macro and micro properties of steel product.  

Viscoplastic deformation firstly occurs on steel products by rollers. Multiple 

parameters, such as plastic strain, strain rate, and temperature, demonstrate single and 

coupled effects on viscoplasticity of steel. Although plenty of viscoplastic models were 

proposed, it is necessary to revise current models since complex parameter effects. With 

viscoplastic deformation, recrystallization takes place to nucleate new grains and refined 

microstructure. Dynamic recrystallization occurs when the deformation exceeds the critical 

point. Dislocation density increases and new grains nucleate on the boundary of primary 

grains. Flow stress starts to exhibit softening behavior because of the refined microstructure. 

However, due to short compression time during hot rolling, the dynamic recrystallization 

usually is not completed and the newly nucleated grains are transferred to static softening. 

During static softening, new grains generated by dynamic recrystallization continues to 

grow and replace the large primary grains. Residual stress and strain are gradually removed 

by static softening since the dislocation density decreases and microstructure evolution.  At 
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full static softening, the residual stress and strain is totally removed and equiaxed 

microstructure is achieved. These mechanisms cooperate with each other during hot rolling 

and it is necessary to develop comprehensive material models to investigate hot rolling. 
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2. LITERATURE REVIEW 

Many constitutive models have been proposed to describe viscoplastic behavior of 

steel. These constitutive models are classified into three types: phenomenological models, 

physical models, and empirical models. The representative and mostly widely used 

phenomenological model is Johnson-Cook (JC) model [1] considering the effects of strain, 

strain rate, and temperature on flow stress. A lot of modified versions of Johnson-Cook 

model were proposed since the original JC model does not include the coupled effect of 

strain rate and temperature. Zhang et al. [2] proposed a modified Johnson-Cook model on 

Ni-based super alloy considering coupled effect of strain rate and temperature. Lin et al. 

[3] presented a modified Johnson-Cook model on a high-strength alloy steel considering 

combined effect of strain rate and temperature. The second type of constitutive model, 

physical model, is developed based on physical mechanism during deformation, which is 

different from phenomenological models. Zerilli–Armstrong (ZA) model [4] is widely 

used physical model based upon dislocation mechanisms. Similar to Johnson-Cook model, 

many revised versions of Zerilli–Armstrong model were proposed to represent complex 

stress-strain curves. A modified Zerilli–Armstrong model [5, 6] was developed to predict 

mass flow behavior of Ti-modified austenitic stainless steel. A combined Johnson-Cook 

model and Zerilli-Armstrong model [7] was proposed to predict stress-strain curves for a 

typical high strength steel. 

In addition to viscoplastic models, modeling of dynamic recrystallization is an 

important topic during hot rolling and hot deformation. Different from the great diversity 

of viscoplastic models, the mathematic description of kinetics of dynamic recrystallization 
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is mainly Avrami Equation. Sellars [8] is one of pioneers on the study of modeling of 

recrystallization using Avrami kinetics and Jonas et al. [9] evaluated Avrami equation of 

varying steel grades and calculated kinetics of dynamic recrystallization. Based on Avrami 

kinetics, several steel grades were investigated on dynamic recrystallization. Dynamic 

recrystallization and microstructure evolution of 304 stainless steel [10] were modeled and 

simulated. A segmented model of dynamic recrystallization [11] of Ni-based super-alloy 

was developed. The effects of Mo [12] and Ti [13] on dynamic recrystallization of micro-

alloyed steel were investigated and the results showed that Mo and Ti concentration 

impedes the progress of dynamic recrystallization. These literatures provide detailed 

information on dynamic recrystallization modeling used in the current study.  

Similar to dynamic recrystallization occurring during deformation, static softening 

occurring mainly during interpass time was studied by many researchers. Avrami Equation 

is also used in static softening to investigate its effect on mechanical properties and 

microstructure [14, 15]. During interpass time, static softening includes static 

recrystallization and strain recovery [16, 17], working together to remove residual stress 

and strain and refine grain size. Due to limitation of traditional model of static softening, a 

revised static recrystallization model [18] was developed to represent complex stress-strain 

curves. Parametric study on static softening was performed by many researchers. Zhang et 

al. [19] studied static softening behavior using multiple hot deformation of alloyed 

aluminum and the results showed static softening of 5182 alloy is more sensitive to 

temperature and time than 1050 and 7075 alloys. Najafizadeh et al. [20] investigated 

postdynamic recrystallization behavior in stainless steel through double hit tests and the 
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results showed that fraction of the static softening significantly increases as pre-strain 

increases.  

Besides mathematic material modeling, finite element method show critical effect 

in studying hot rolling. A shape rolling process [21] was modeled and investigated using 

finite element method and the non-uniform temperature distribution was simulated. Inverse 

finite element method [22] was used to simulate aluminum strip rolling. Blank size effect 

[23] on hot rolling of titanium alloy was investigated using finite element method. Mass 

flow behavior [24] of multi-pass hot rolling of micro-alloyed 38MnVS6 steel was 

developed and investigated using finite element analysis. Benasciutti et al. [25] developed 

a simplified finite element model considering both heating and cooling thermal load to 

predict thermal stresses during hot rolling. The nonlinear deformation of H-beam [26] 

during hot rolling was investigated using finite element method. Static softening simulation 

during hot rolling has also been modeled and simulated by many researchers. Static 

softening of bar hot rolling [27, 28] was simulated to predict the microstructure evolution. 

Multiple pass H-beam hot rolling [29], as well as hot strip rolling [30], was modeled to 

simulated recrystallization behavior, and a comprehensive modeling method [31] was 

proposed to study the static softening during hot rolling. 
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3. SCOPE AND OBJECTIVES 

This dissertation comprises four papers corresponding to the following problems. 

The first paper is titled “Inverse Finite Element Modeling of the Barreling Effect 

on Experimental Stress-Strain Curve for High Temperature Steel Compression Test.” In 

this paper, a methodology to correct experimental stress-strain curves for the barreling 

effect is presented. Gleeble hot compression testing was conducted to investigate material 

behavior for a low carbon structural steel over a range of temperatures (from 900°C to 

1200°C) and strain rates (from 1s-1 to 30s-1). An inverse method combined with finite 

element analysis was developed to correct the experimental stress-strain curves for the 

observed barreling effect to obtain the actual stress-strain curves for the material. A 

comprehensive parametric study based on the revised stress-strain curves was performed 

to study barreling for a range of friction coefficients, temperatures, and strain rates. 

The second paper is titled “Modeling of Mass Flow Behavior of Hot Rolled Low 

Alloy Steel based on Combined Johnson-Cook and Zerilli-Armstrong Model.” In this paper, 

Gleeble hot compression tests were carried out at high temperatures up to 1300 °C and 

varying strain rates for a medium carbon micro-alloyed steel. Based on experimental results, 

a combined JC and ZA model was introduced and calibrated through investigation of strain 

hardening, and the coupled effect of temperature and strain rate. An explicit subroutine of 

the proposed material model was coded and implemented into a finite element model 

simulating the industrial hot rolling. The simulated rolling torque was in good agreement 

with experimental data. Plastic strain and stress distributions were recorded to investigate 

nonlinear mass flow behavior of the steel bar. 
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The third paper is titled “Modeling and Simulation of Dynamic Recrystallization 

Behavior in Alloyed Steel 15V38 during Hot Rolling.” In this paper, single hot 

compression tests were performed at varying temperatures and strain rates to investigate 

dynamic recrystallization behavior of a 15V38 steel. Critical strains for initiation of 

dynamic recrystallization and peak strains were identified through the analysis of work 

hardening rate from the measured stress-strain results. Dynamic recrystallization was 

identified by the softening in the flow stress during plastic deformation and quantified as 

the difference between a calculated dynamic recovery curve and the measured stress-strain 

curve. Dynamic recrystallization was modeled using calculated critical strain, peak strain, 

Zener-Hollomon (Z) parameter, and volume fraction of dynamic recrystallization. 

Subroutines accounting for dynamic recrystallization were developed and implemented 

into a three-dimensional finite element model for hot rolling of a round bar. 

The fourth paper is titled “Modeling and Simulation of Static Softening Behavior 

of Alloyed Steel Bar during Hot Rolling Process based on Modified Kinetics.” In this paper, 

double hit tests with varying temperature, strain rate, interpass time, and pre-strains were 

performed using Gleeble machine to investigate static softening behavior. Based on 

experimental results, a modified kinetics of static softening was developed to represent 

inerpass softening behavior during hot rolling. Explicit subroutines of developed static 

softening model was developed and implemented into a three-dimensional finite element 

model of steel bar hot rolling process. The static softening progress during hot rolling was 

simulated. 
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PAPER 

I. INVERSE FINITE ELEMENT MODELING OF THE BARRELING EFFECT 

ON EXPERIMENTAL STRESS-STRAIN CURVE FOR HIGH TEMPERATURE 

STEEL COMPRESSION TEST 

X. Wang, H. Li, and K. Chandrashekhara 

Department of Mechanical and Aerospace Engineering 

S. A. Rummel, S. Lekakh, D. C. Van Aken and R. J. O’Malley 

Department of Materials Science and Engineering 

Missouri University of Science and Technology, Rolla, MO 65409 

ABSTRACT 

Thermomechanical properties used in the modeling of steel forming processes that 

are determined using high temperature cylindrical coupon compression testing are subject 

to errors due to barreling of the test specimen. Barreling caused by the friction between 

specimen and platens reduces the accuracy of the mechanical property determination. In 

this study, Gleeble hot compression testing was conducted to investigate material behavior 

for a low carbon structural steel over a range of temperatures (from 900°C to 1200°C) and 

strain rates (from 1s-1 to 30s-1). An inverse method combined with finite element analysis 

was developed to correct the experimental stress-strain curves for the observed barreling 

effect to obtain the actual stress-strain curves for the material. In deformation simulations, 

the revised stress-strain curves produced barreling shape predictions that agreed well with 
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the barrel shapes observed in experiments. A comprehensive parametric study based on the 

revised stress-strain curves was performed to study barreling for a range of friction 

coefficients, temperatures, and strain rates. Results showed that the magnitude of barreling 

increases with increasing friction coefficient. For a specific friction coefficient, the 

magnitude of the barreling decreases with increasing temperature and varies non-linearly 

with strain rate. 

1. INTRODUCTION 

Compression tests are widely used to obtain elevated temperature mechanical 

properties for metals. Metal mechanics in the hot rolling process are complicated by high 

temperatures (up to 1300°C), strain rate, recrystallization and chemical composition 

sensitivity. Any change in these factors causes variations in mass flow behavior. Building 

a successful cylindrical compression test that accounts for these factors is critical, as it is a 

requirement for accurate simulation of comprehensive hot forming processes. Among these 

factors, barreling during cylinder compression poses a significant challenge to acquire the 

accurate material models needed for subsequent finite element analysis. Traditional 

methods used in calculating material properties from Gleeble compression tests do not 

account for the effects of non-uniform deformation. Experimental stress-strain data 

obtained from a barrel shaped specimen differs from the actual stress-strain curve obtained 

under a frictionless situation without barreling. 

Initial dimensions of the compression specimen are represented by height (H), and 

diameter (D) (Fig. 1a). Barreling (Fig. 1b) occurs during uniaxial compression testing. The 
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barreling shape parameters include top and bottom surface diameter (dmin), the maximum 

diameter in barreling area (dmax), and specimen height after compression (h).  

Barreling occurs due to friction between platens and specimen, causing a triaxial 

stress state, which differs from the ideal uniaxial stress condition. The experimental stress-

strain curve calculated from a barreling specimen deviates from the actual stress-strain 

curve (Fig. 1c), which is based on ideal uniaxial stress conditions. Therefore, it is necessary 

to study the barreling effect on experimental stress-strain curves and correct these 

experiment results for the barreling condition. Unfortunately, friction between the platens 

and the specimen cannot be eliminated during hot compression testing to obtain the actual 

material properties. Finite element analysis (FEA) is necessary to correct for the barreling 

effect observed in high temperature compression testing. 

Many researchers have investigated the barreling effect in compression tests using 

cylindrical specimens. Deviation of stress-strain curves under different barreling 

conditions is a prevalent topic in this research area. Martinez et al. [1] studied the barreling 

effect during compression test of alloy 2117-T4 at room temperatures (20°C-40°C) and 

quasi-static strain rates (10-3 s-1-10-2 s-1). Load-displacement curves under different 

deformation conditions were compared and concluded that material is not sensitive to 

studied range of temperature and strain rate. However, they did not study barreling at high 

temperatures and higher strain rates. Charkas et al. [2] proposed an inverse method to 

correct the local material response during finite element analysis, effectively increasing 

simulation accuracy of highly stressed element. Rasti et al. [3] used a finite element method 

to study the relationship between barreling shape and the parameters of their material 

model based on AISI 304 stainless steel. Chen and Chen [4] proposed a mathematical 
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method to calculate effective stress and effective strain of barreled specimen during hot 

compression process. However, effects of temperature and strain rate on barreled 

specimens were not considered in these literatures. Narayanasamy and Murthy [5] 

developed a relationship between barreling radius and applied load using solid cylinder 

compression of AISI 5120. In a more recent study [6], barreling effects on stress and strain 

distributions were studied by cold upset forming of magnesium alloy ZM-21 cylinders. 

Malayappan and Esakkimuthu [7] studied barreling shape during compression testing of 

pure aluminum and proposed a mathematical expression of barreling radius in an aluminum 

compression test. However, these literatures emphasized on barreling shape, lack of study 

of barreling effect on experimental results. Hervas et al. [8] investigated complex strain 

distributions in ductile cast iron compression testing, which included the effects of 

barreling. Their results show that the aspect ratio of graphite nodules in the iron could be 

used to predict local strains. Bao and Wierzbicki [9] conducted cylinder compression tests 

using Aluminum alloy 2024-T351 specimens of different height/diameter ratios. With 

increasing height/diameter ratio, the stress-strain curves converged to a stable state, which 

is assumed to be the actual stress-strain curve. In the previous studies, few researchers 

performed barreling effect on actual experimental data at high temperature and varying 

strain rate, at which high barreling shape is involved and has significant influence on 

experimentally measured stress-strain curves.  

Friction between the specimen and platens is another widely studied topic by 

researchers. Ebrahimi and Najafizadeh [10] investigated the effect of friction on barreling 

shape during both cold and hot compression tests of Ti-IF steel, and proposed a 

mathematical relationship between barreling shape and the average friction factor. They 
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concluded that the maximum difference in flow stress under different friction conditions 

was approximately 8%. Li et al. [11] studied the barreling effect of IHS38MSV steel in an 

equivalent strain range, 0 to 1.8 using both experimental and finite element methods. 

Results showed that upper bound analysis of the friction condition during compression test 

is not accurate for large strains (>0.55). Yao et al. [12] developed an empirical model to 

predict the relationship between barreling factor and friction coefficient based on CuZn40 

brass. A convenient expression relating the effect of friction to barreling shape for room 

temperature compression was proposed. On the other hand, Li et al. [13] studied the effect 

of friction in a hot compression test (800°C -1200°C) and concluded that the top radius of 

specimen after compression was affected significantly by friction. Based on these studies, 

Ebrahimi’s equation is widely adopted and verified by researchers, providing an effective 

method to predict friction coefficient.  

In the current study, a methodology to correct experimental stress-strain curves for 

the barreling effect is presented. The effect of increased temperatures as well as varying 

strain rates is also examined. Material testing was performed using Gleeble hot 

compression test at various strain rates and temperatures. Experimental stress-strain curves 

obtained from Gleeble testing were evaluated and revised stress-strain curves were 

obtained. A comprehensive parametric study was performed to study the effects of varying 

friction coefficients, temperatures, and strain rates on the barreling observed during 

compression testing. 
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2. EXPERIMENTS 

A low carbon structural steel (C 0.075%, Mn 0.9%, Nb 0.016%, V 0.005%, Si 

0.26%, Cr 0.11%) was used in the current study. Specimens (15 mm height and 10 mm 

diameter) for compression testing were machined from as-casted steel product. To 

investigate the effects of varying temperatures and strain rates on barreling and material 

properties, hot compression tests were performed at different temperatures (900°C, 1000°C, 

1100°C and 1200°C) and strain rates (1s-1, 5s-1, 15s-1, and 30s-1). Each combination was 

replicated three times, and a total of 48 specimens were tested. Compression tests at 

elevated temperatures were performed using a Gleeble thermo-mechanical tester. The 

experimental plan for hot compression test is shown and Fig. 2. 

Specimens were first heated up to 1300°C at a rate of 260°C/min, and held for 3 

minutes for austenitizing. The temperature of specimens was then lowered to the desired 

test temperature. After a brief holding period of 2 minutes, the compression test was 

performed. Tantalum foil with nickel paste was used to minimize the friction between 

platens and specimen. After compression, the specimen is cooled by water cooling. The 

raw Gleeble test results with experimental noise are plotted in Fig. 3. Smooth process was 

performed on these raw stress-strain curves to remove noise and provide material model 

for finite element analysis. 
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3. FINITE ELEMENT MODELING AND INVERSE METHOD 

A nonlinear thermo-mechanical finite element model was built to investigate the 

effect of barreling. Triaxial stress distribution occurs due to friction between platen and 

specimen, and general three-dimensional analysis is used instead of axi-symmetric analysis. 

The governing equation for thermo-mechanical analysis can be written as: 

[𝑀𝑒]{∆̈𝑒} + [𝐾𝑒]{∆𝑒} = {𝐹𝑀
𝑒 } + {𝐹𝑇

𝑒}  (1) 

where [𝑀𝑒] is mass matrix, [𝐾𝑒] is the stiffness matrix, and {𝐹𝑀
𝑒 } and {𝐹𝑇

𝑒} are mechanical 

and thermal loadings respectively. Heat transfer during compression was also considered 

to simulate the Gleeble hot compression process. The formulation for heat transfer is 

expressed as: 

[𝐶𝑇
𝑒]{�̇�𝑒} + [𝐾𝑇

𝑒]{𝜃𝑒} = {𝑄𝑒}    (2) 

where [𝐶𝑇
𝑒] is specific heat capacity matrix, [𝐾𝑇

𝑒] is conductivity matrix, and {𝑄𝑒} is the 

external flux vector. The software package, ABAQUS 6.12, was used to build this finite 

element model. A cylindrical specimen model was built as a 3D isotropic cylinder with 

15mm height and 10mm diameter. Two compression platens were modeled as 2D rigid 

plates. Eight-node deformable hexahedron element, C3D8R, was used to mesh the cylinder 

and the discrete rigid element, R3D4 was used to mesh the platens (Fig. 4).  

Friction between each platen and the specimen was developed in the finite element 

model. Because of large deformation, both of sliding and sticking occurred between platen 

and specimen. A Coulomb’s friction law used in current finite element model is defined as: 

𝜏 = { 
𝜇 ∗ 𝑝
𝜏𝑦𝑖𝑒𝑙𝑑

  
𝑤ℎ𝑒𝑛 𝜏 < 𝜏𝑦𝑖𝑒𝑙𝑑

𝑤ℎ𝑒𝑛 𝜏 > 𝜏𝑦𝑖𝑒𝑙𝑑
   (3) 
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where 𝜏 is critical shear stress, 𝜏𝑦𝑖𝑒𝑙𝑑 is yield shear stress, 𝜇 is friction coefficient, and 𝑝 is 

contact pressure.  

During high temperature compression test, it is very difficult to measure friction 

coefficient or friction force. The empirical friction coefficient at high temperature is around 

0.3 to 0.6. To more accurately model the friction, an analytical method based on barreling 

shape is used to calculate the friction coefficient [10]: 

𝜇 = 𝑚/√3      (4) 

𝑚 =
(𝑟/ℎ)𝑏

(4 √3⁄ )−(2𝑏/3√3)
     (5) 

where m is average friction factor, r is average radius of cylinder after compression, 𝑟 =

𝑟0√
𝐻

ℎ
, 𝑟0 is initial radius of cylinder, 𝐻 is initial height of cylinder, h is height of cylinder 

after compression, 𝑏 = 4
∆𝑟

𝑟

ℎ

∆𝐻
 , ∆𝐻  is reduction in height, and ∆𝑟  is difference between 

maximum radius and minimum radius. The friction coefficients of four specimens were 

calculated as 0.374, 0.365, 0.366, and 0.386 respectively. Average friction coefficient was 

set as 0.375 for these four specimens in finite element model. 

The Gleeble hot compression test was simulated using a finite element model. For 

each specimen, both friction and frictionless conditions were simulated. Reaction force (P) 

and displacement (∆𝑙) of platen were recorded in the finite element simulation. True strain, 

𝜖, and true stress, σ, were obtained by Eq. 6 and 7: 

𝜖 = ln(1 + ∆𝑙 𝐻⁄ )     (6) 

σ = 4𝑃 𝜋𝑑2⁄ (1 + ∆𝑙 𝐻⁄ )    (7) 

where d is initial diameter, and 𝐻 is initial height of cylinder. An inverse method combined 

with finite element analysis (FEA) was applied to modify the experimental stress-strain 
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curves. An initial finite element model was built using the experimental stress-strain curves 

obtained from Gleeble tests and the hot compression process for each cylindrical specimen 

was simulated. Due to the effect of barreling, the simulated stress-strain curve differs from 

the experimental stress-strain curve. The initial error was determined from difference 

between the simulated stress-strain curve and experimental stress-strain curve. The error 

refined the input for the next run of finite element simulation. The material model is then 

modified to minimize the difference between simulated results and experimental results. 

This process was iterated until the coefficient of determination (R2) between simulated 

stress-strain curve and experimental stress-strain curve was greater than 0.99. The 

schematic of this process is shown in Fig. 5. 

4. RESULTS AND DISCUSSION 

4.1 INVERSE FINITE ELEMENT ANALYSIS 

Four tested specimens showing the typical barreled shape and one untested 

specimen are shown in Fig. 6. Since the analyzed material properties in this study are used 

for simulation of hot rolling process, the hot rolling conditions become research focus. The 

hot rolling temperature is 1000C-1200C, and strain rate is up to 50 s-1. Selected 

specimens are at temperature 1000C-1200C and relatively high strain rate 15 s-1-30 s-1 to 

avoid significant dynamic recrystallization. Due to the friction between platens and 

specimen, barreling is visible on the tested specimens. The shape of each specimen after 

hot compression testing was recorded, including top and bottom surface diameter (dmin), 

the maximum diameter in barreling area (dmax), and specimen height (h) after compression. 
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Dimensions, dmax and h, of these specimens were measured five times using a micrometer 

with a resolution of 0.001 inch (0.0254 mm). Dimension dmin was measured from specimen 

photographs using ImageJ software package. Dimensions of specimens 1-4 are shown in 

Table 1.  

Ebrahimi and Najafizadeh [10] showed similar deformed specimen with different 

friction conditions and concluded that the difference between stress-strain curves with 

different friction conditions is approximately 8% based on theoretical analysis. However, 

it is difficult to represent this complex triaxial compression using pure analytical 

calculation with assumption and simplification. Finite element method shows advantage 

and can perform the barreling effect study under different friction conditions. Simulated 

equivalent plastic strain distributions of specimen 1 are plotted in Fig. 7. The frictionless 

situation shown in Fig. 7a, specimen 1 was deformed uniformly, showing ideal uniaxial 

strain distribution. On the other hand, for the friction condition shown in Fig. 7b, barreling 

is visible and a triaxial strain state is observed. Simulated stress-strain curves were 

calculated and compared in Fig. 7(c). In the frictionless condition, the simulated stress-

strain curve was similar to the input material properties of FEA, which means that if friction 

is eliminated in practical hot compression test, the experimental stress-strain curve based 

on platen reacting force and displacement will be similar to actual stress-strain curve. For 

condition with friction, the simulated stress-strain curve deviates from the input material 

properties of FEA, proving that experimental stress-strain curve with barreling effect 

differs from actual stress-strain curve.  

Charkas et al. [2] proposed inverse finite element method to effectively recover 

local material behavior by correcting load-displacement response of nodes during single 
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simulation process. Based on this method, inverse analysis was extended to revise input 

material properties during multiple simulation processes. Inverse finite element analysis 

results for specimen 1 are shown in Fig. 8(a). A revised stress-strain curve was calculated 

by iteration of the inverse method. Using this stress-strain curve as input of finite element 

model, the simulated stress-strain curve is shown to be close to the experimental stress-

strain curve (R2>0.99). Therefore, this revised stress-strain curve of FEA input is expected 

to accurately represent the actual stress-strain curve of the material. The simulated 

barreling shape based on the revised stress-strain curve and the actual barreling shape are 

shown in Fig. 8b and 8c. The simulated dmax (14.542 mm) based on revised stress-strain 

curve is close to actual dmax (14.887 mm). 

 

4.2 REVISED STRESS-STRAIN CURVES 

Experimental stress-strain curves were revised based on inverse finite element 

analyses (Fig. 9). The solid lines and dashed lines represent experimental stress-strain 

curves and revised stress-strain curves respectively. All dashed lines are lower than 

corresponding solid lines, due to friction between platen and specimen. The stress deviation 

between solid lines and dashed lines at low temperature is larger than at high temperature, 

and strain rate has relatively small effect on stress deviation. Inverse finite element analysis 

provides an effective method to revise experimental data to determine the actual material 

properties, which describes material flow behavior more accurately. Comparing to 8% 

difference in Ebrahimi’s study [10], the differences between experimental and revised 

stress-strain curves in the current study vary from 2.5% to 7.5% at different temperature 

and strain rate.  
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4.3 PARAMETRIC STUDY RESULTS 

A comprehensive parametric study was performed using inverse finite element 

analysis to investigate barreling effect on deviation between experimental stress-strain 

curve and actual stress-strain curve. The input material properties of the finite element 

model are the revised stress-strain curves plotted in Fig. 9. The parameters include friction 

coefficient (0, 0.125, 0.25, 0.375, and 0.5), temperature (900°C, 1000°C, 1100°C, and 

1200°C), and strain rate (1s-1, 5s-1, 15s-1, and 30s-1). Eighty hot compression simulation 

cases were performed. The flow stress is recorded at strain 0.15 (Fig. 10) where the stress 

deviation is visible and distinguishable among different parametric conditions. In the 

current study, material is sensitive to strain rate range 1 s-1 to 30 s-1 and high temperature 

range 900°C to 1200°C, comparing to the statement [1] that material is insensitive to low 

strain rate range 10-3 s-1 to 10-1 s-1 and room temperature range 20°C to 40°C.  

4.3.1 Friction Effect. Friction is the main factor resulting in barreling during hot 

compression test. Flow stress at 0 friction coefficient in Fig. 10 is the actual material 

property and serves as the baseline for comparison. As friction coefficient increases, the 

flow stress increases proportionally with friction coefficient at constant temperature and 

strain rate, and reaches maximum at friction coefficient 0.5. Barreling effect can be 

represented by the differences of the flow stresses: 

Barreling Effect= σ(𝜇𝑖 , 𝑇𝑖 , 휀�̇�) − σ(𝜇0, 𝑇𝑖 , 휀�̇�)  (8) 

where σ is the flow stress, 𝜇𝑖 is friction coefficient, 𝑇𝑖 is temperature, 휀�̇� is strain rate, and 

𝜇0 is frictionless condition. σ(𝜇0, 𝑇𝑖 , 휀�̇�) stands for actual material properties. Barreling was 

then calculated based on Fig. 10, and discussed in following sections.  
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4.3.2 Temperature Effect. The effect of temperature on barreling is shown in Fig. 

11. At constant strain rate and friction coefficient, barreling effect decreases as temperature 

increases from 900°C to 1200°C. Temperature shows a uniformly negative relationship 

with barreling effect at all friction coefficients and strain rates. This can be due to the 

softening of material at elevated temperatures, which increases material flow behavior. 

Also, the effect of friction on barreling is smaller at elevated temperature. The effects of 

friction on material flow between platen and specimen is reduced by material softening. 

4.3.3 Strain Rate Effect. The influence of strain rate on barreling is shown in Fig. 

12. Unlike the temperature softening effect, the strain rate hardening effects on stress-strain 

curve is not uniform. At constant friction coefficient and temperature, barreling increases 

when strain rate is increased from 1s-1 to 5s-1 due to strain hardening. The softening of 

stress-strain curves mainly occurs from strain rate 5s-1 to 15s-1 and 15s-1 to 30s-1. The 

difference between experimental stress-strain curves and actual stress-strain curve is 

maximum at strain rates of 5s-1 and 15s-1. 

5. CONCLUSION 

In this paper, Gleeble hot compression tests were conducted to obtain experimental 

stress-strain curves under varying temperatures and strain rates. Barreling of the specimen 

during hot compression testing results in an experimental stress-strain curve that differs 

from actual stress-strain curve. An inverse method combined with finite element analysis 

was used to correct the experimental stress-strain curves for the barreling, and a 

comprehensive parametric study was performed to study the barreling effect. Revised 
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stress-strain curves were calculated based on inverse finite element analysis. It was found 

that inverse finite element analysis is an effective method to modify the experimental 

stress-strain curve to minimize errors from barreling on material properties. A parametric 

study was performed in order to investigate the effect of varying friction coefficient, 

temperature and strain rates. It was found that the friction coefficient has a significant effect 

on barreling effect. Barreling effect increases as friction coefficient increases. However, 

an increase in temperature reduces the deviation of experimental results from actual stress-

strain curve due to the temperature softening effect. Strain rate has a complex influence on 

barreling effect. The barreling effect increases when strain rate is increased from 1s-1 to 5s-

1 due to strain hardening. When strain rates are increased beyond 15s-1, barreling effect 

decreases. This study of the barreling effect on experimental stress-strain curves can be 

used to develop accurate material models for hot working simulation.  
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Fig. 1. (a) Dimension of cylinder before compression, (b) dimension of cylinder after 

compression, and (c) barreling effect on stress-strain curve 

 

 

 

Fig. 2. Test profile for Gleeble hot compression test 
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Fig. 3. Experimental stress-strain curves under varying temperatures and strain rates 

 

 

 

Fig. 4. Finite element model for Gleeble hot compression test 
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Fig. 5. Schematic of inverse method combined with FEA 

 

 

 

Fig. 6. Barreling shape after Gleeble hot compression tests of (a) initial specimen before 

compression (b) specimen 1 under 1000°C and 15s-1 (c) specimen 2 under 1100°C and 
15s-1 (d) specimen 3 under 1100°C and 30s-1 (e) specimen 4 under 1200°C and 15s-1 
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Fig. 7. (a) Simulation results of specimen 1 at frictionless condition, (b) friction 

coefficient 0.375, and (c) corresponding simulated stress-strain curves 

 

 

 

Fig. 8. (a) Inverse finite element analysis results of specimen 1, (b) simulated barreling 

shape using revised stress-strain curve, and (c) actual barreling shape 
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Fig. 9. Revised stress-strain curves using inverse finite element analysis 
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Fig. 10. Flow stress at different friction coefficients, temperatures and strain rates 

 

 

 

Fig. 11. Temperature effect on barreling effect 
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Fig. 12. Strain rate effect on barreling effect 

 

 

Table 1. Barreling shapes and compression condition of specimens 

Specimen 

number 
Height (mm) 

dmax 

(mm) 

dmin 

(mm) 
Temperature Strain rate 

1 7.826 14.887 12.527 1000°C 15s-1 

2 7.226 15.415 12.886 1100°C 15s-1 

3 8.550 14.239 12.198 1100°C 30s-1 

4 7.389 15.327 12.730 1200°C 15s-1 
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ABSTRACT 

Accuracy and reliability of numerical simulation of hot rolling processes are 

dependent on a suitable material model, which describes metal flow behavior. In the present 

study, Gleeble hot compression tests were carried out at high temperatures up to 1300 °C 

and varying strain rates for a medium carbon micro-alloyed steel. Based on experimental 

results, a Johnson-Cook model (JC) and a Zerilli-Armstrong (ZA) model were developed 

and exhibited limitation in characterizing complex viscoplastic behavior. A combined JC 

and ZA model was introduced and calibrated through investigation of strain hardening, and 

the coupled effect of temperature and strain rate. Results showed that the combined JC and 

ZA model demonstrated better agreement with experimental data. An explicit subroutine 

of the proposed material model was coded and implemented into a finite element model 

simulating the industrial hot rolling. The simulated rolling torque was in good agreement 

with experimental data. Plastic strain and stress distributions were recorded to investigate 
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nonlinear mass flow behavior of the steel bar. Results showed that the maximum equivalent 

plastic strain occurred at 45° and 135° areas of the cross section. Stress increased with 

decreasing temperature, and the corresponding rolling torque was also increased. Due to 

the extent of plastic deformation, rolling speed had limited influence on the internal stress 

of the bar, but the relative rolling torque was increased due to strain rate hardening.  

1. INTRODUCTION 

Hot rolling is one of the most important and complex deformation processes in steel 

manufacturing. Metal forming phenomena, such as viscoplastic deformation, 

recrystallization, and recovery, occur during the hot rolling to endow metal with expected 

microstructure and mechanical properties. Among these phenomena, viscoplastic 

deformation foremost takes place to provide plastic strain and energy for microstructural 

development. Viscoplastic flow stress is significantly influenced by many factors, such as 

temperature and strain rate. These factors are not independent, but sufficiently interact and 

form complex relationships. Thus, an effective constitutive material model considering 

these parameters is essential for investigation of hot rolling processes. Meanwhile, unlike 

a strip hot rolling, an as-casted steel bar has more complex stress and strain distributions 

during hot rolling, and the contact region is a cambered surface with non-uniform 

compressive force. It is hard to employ traditional analytical methods to investigate this 

highly-nonlinear process. Finite element analysis (FEA) shows advantages to simulate and 

investigate steel bar hot rolling. Based on accurate constitutive model, FEA provides an 

effective way to study mass flow, optimize rolling designs, and enhance steel quality. 
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In order to describe viscoplastic behavior, a number of constitutive models for steel 

have been proposed in the last few decades. Johnson-Cook (JC) model [1] is one of most 

widely used phenomenological constitutive models that considers independently the effects 

of strain hardening, strain rate hardening, and temperature softening on flow stress. The 

simplified expression and easy implementation contribute the extensive use of Johnson-

Cook model. However, it does not consider the coupled effect of strain rate and temperature 

on flow stress, causing limited capability of predicting material properties. A series of 

modified Johnson-Cook models were presented by researchers. Zhang et al. [2] considered 

the coupled effect of temperature and strain, and proposed a modified Johnson-Cook model 

on Ni-based super alloy. Lin et al. [3] conducted high temperature tensile tests on a high-

strength alloy steel, and presented a modified Johnson-Cook model considering combined 

effect of strain rate and temperature. However, these modified Johnson-Cook models can 

be applied only for specific steel grades. Gambirasio and Rizzi [4] proposed a modified 

Johnson-Cook model using splitting strain rate and temperature effect, and effectively 

modeled complex material flow behavior. Another widely used phenomenological 

constitutive model is based upon the Arrhenius equation [5], in which Zener-Hollomon 

parameter is employed. Large numbers of parameters and polynomial fitting process of 

Arrhenius equation provide well prediction of flow stress, but implementation is tedious 

causing the Arrhenius equation not to be used as widely as the Johnson-Cook model. 

Different from phenomenological constitutive models, physical constitutive models are 

developed based on material microstructure behavior. Zerilli–Armstrong (ZA) model [6] 

is one of the widely used physical models based upon dislocation mechanisms. The ZA 

model does consider the coupled effect of temperature and strain rate, and exhibits more 
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flexibility than the Johnson-Cook model on predicting material properties. But the coupled 

effect of temperature and strain rate in Zerilli–Armstrong model is limited and numerous 

modified versions have been proposed. Samantaray et al [7][8] proposed a modified 

Zerilli–Armstrong model to predict mass flow behavior of Ti-modified austenitic stainless 

steel. Lin et al. [9] derived a modified material model by combining Johnson-Cook model 

and Zerilli-Armstrong model to predict stress-strain curves for a typical high strength steel. 

However, these modified Zerilli–Armstrong models are limited to specific steel grades and 

were not suitable for the current study. In addition to phenomenological and physical 

constitutive models, empirical constitutive models, such as Shida’s equation [10], is also 

widely used. The inputs of Shida’s equation are just the metal composition and thus avoids 

expensive experimental testing. However, the accuracy of Shida’s equation is limited 

compared to other material models.  

Hot rolling has been investigated for many years by means of numerical simulation. 

Kim [11] proposed a finite element model to simulate a shape rolling, and non-uniform 

temperature distribution during rolling was investigated. Duan and Sheppard [12] studied 

aluminum strip rolling using finite element method and inverse analysis by comparing 

simulated torque with measured data. Yang et al. [13] investigated hot rolling of titanium 

alloy ring using finite element method and the blank size effect on strain and temperature 

distribution was investigated. Rummel et al. [14] performed high strain rate compression 

test using split hopkinson pressure bar to gain high strain rate material properties, and 

incorporated into Johnson-Cook model. Nalawade et al. [15] investigated mass flow 

behavior of micro-alloyed 38MnVS6 steel during multi-pass hot rolling. Detailed strain 

distributions on regular cross section showed that both tension and compression existed 
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during hot rolling of the 38MnVS6 steel. Benasciutti et al. [16] developed a simplified 

finite element model considering both heating and cooling thermal load to predict thermal 

stresses during hot rolling, and the simulation results showed good agreement with 

theoretical solution. Li et al. [17] studied nonlinear deformation during H-beam hot rolling 

using finite element method and the proposed finite element model was verified by 

comparing simulated temperature with experimental data. Hosseini Kordkheili et al. [18] 

derived an implicit finite element subroutine for a rate-dependent constitutive model to 

describe mass flow behavior of 5052 aluminum. Gao et al. [19] proposed a procedure of 

developing explicit subroutine of a user-defined generalized material model. However, 

literatures of finite element analysis on three-dimensional steel bar hot rolling are limited, 

which involve highly nonlinear geometry and material model.  

In the current study, Gleeble hot compression tests were conducted to generate 

experimental data for material modeling. By comparing to original Johnson-Cook and 

Zerilli-Armstrong models, a combined JC and ZA model was developed to predict flow 

stress at varying temperatures and strain rates. A three-dimensional nonlinear finite element 

model incorporating proposed material model was developed to simulate hot rolling. 

Plastic strain, stress, and rolling torque were recorded and investigated.  

2. EXPERIMENTS 

A medium carbon low alloy steel grade with a chemical composition given in 

percent mass of 0.38C-1.3Mn-0.57Si-0.13Cr-0.08V-0.018Al was investigated. Hot 

compression tests were performed using the Gleeble thermo-simulation system at varying 
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temperatures and strain rates to study the material flow behavior. Cylindrical specimens of 

15 mm height and 10 mm diameter were machined from as-cast steel bar. A layer of 

tantalum foil with nickel paste was placed between the specimen and platens to minimize 

friction during compression. The experimental procedure for the hot compression test is 

summarized in Table 1 and Fig. 1. The specimens were heated up to 1300 °C at a heating 

rate of 260 °C/min, held for 3 minutes and cooled to the desired test temperature. An 

additional hold of 2 minutes was included to minimize temperature gradients, establish a 

fully austenitic microstructure, and then the compression test was performed at the selected 

temperature and strain rate. Four temperatures (1000 °C, 1100 °C, 1200 °C and 1300 °C) 

and four strain rates (0.01 s-1, 1 s-1, 5 s-1, and 15 s-1) were selected for Gleeble hot 

compression test based on actual hot rolling conditions. Each combination was replicated 

three times, and a total of 48 specimens were tested. The Gleeble tests were conducted at 

Gerdau-Spain facility. Experimental results at varying strain rates and temperatures are 

shown in Fig. 2.  

3. CONSTITUTIVE MATERIAL MODELING 

3.1 JOHNSON-COOK MODEL  

The original Johnson-Cook model is expressed as: 

𝜎 = (𝐴 + 𝐵휀𝑛)(1 + 𝐶 ln 휀̇∗)(1 − 𝑇∗𝑚)  (1) 

where 𝜎  is equivalent stress, 휀  is equivalent plastic strain, 휀̇∗ = 휀̇/휀0̇  is dimensionless 

strain rate, 휀̇  is strain rate, 휀0̇  is reference strain rate, 𝑇
∗ = (𝑇 − 𝑇𝑟)/(𝑇𝑚 − 𝑇𝑟)  is 

homologous temperature, T is current temperature, 𝑇𝑟 is reference temperature, and 𝑇𝑚 is 
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metal melting temperature. Constants A, B, C, m and n are material parameters. Constant 

A is a yield stress at a user defined reference temperature and reference strain rate. 

Constants B and n are strain hardening parameters. Constant C is strain rate hardening 

parameter. Constant m is a temperature softening parameter. In the current study, the 

reference strain rate and temperature of Johnson-Cook model are chosen as 1 s-1, and 

1000 °C.  The melting temperature of the steel grade tested is 1520 °C.  

Two different methods are frequently used to determine the Johnson-Cook 

parameters. One is determining parameters one by one using curve fitting [20]; another is 

determining all five parameters simultaneously by an optimization method [21]. However, 

both methods have limitations: the former only considers partial experimental data when 

determining each parameter, and the latter is restricted usually into a local optimum. In the 

current study, initial parameters were determined by curve fitting, and then optimized by 

nonlinear least-square method. 

3.1.1 Determination of Parameters using Curve Fitting. At reference 

temperature 1000 °C and reference strain rate 1 s-1, ln 휀̇∗ and 𝑇∗𝑚 in Eq. 1 become zero. 

The Johnson-Cook material model reduces to: 

𝜎 = 𝐴 + 𝐵휀𝑛     (2) 

Parameter A is calculated as the yield stress at the reference condition. Yield stress 

is defined at the point dividing linear part and nonlinear part on stress-strain curve. By 

substituting values of experimental stress 𝜎 and plastic strain 휀 into Eq. 2, initial values of 

parameter B and parameter n were calculated from plot of 𝜎 vs. 휀 using power law fitting 

(Fig. 3a). At the reference temperature, but varying strain rate, the Johnson-Cook model 

can be expressed as Eq. 3. 



38 

Under a series of strain points (0.1, 0.2, 0.3, and 0.4), the relationship of 𝜎/(𝐴 +

𝐵휀𝑛)  and ln 휀̇∗  was plotted at varying stress and strain rates (Fig. 3b). A linear fitting 

process was performed in Fig. 3b, and the initial value of parameter C was obtained from 

the slope of fitting line. Similarly, at reference strain rate 1 s-1 and varying temperatures, 

the Johnson-Cook model is expressed as Eq. 4.  

𝜎/(𝐴 + 𝐵휀𝑛) = (1 + 𝐶 ln 휀̇∗)   (3) 

𝜎/(𝐴 + 𝐵휀𝑛) = (1 − 𝑇∗𝑚)     (4) 

Initial value of parameter m was calculated from power law fitting process of 

𝜎/(𝐴 + 𝐵휀𝑛) vs. 𝑇∗𝑚 (Fig. 3c).  

3.1.2 Optimization of Parameters. A least-square optimization method was used 

to optimize parameters of Johnson-Cook model. The fitness function is shown in Eq. 5 

which minimizes the sum of square error between experimental data and prediction of 

material model: 

min 𝑓(𝑥) = min∑ |𝜎𝑖
𝑒𝑥𝑝

− 𝜎𝑖
𝐽𝐶(𝑋)|

2𝑁
𝑖=1   (5) 

where N is the number of experimental data points, 𝜎𝑖
𝑒𝑥𝑝

 is the experimental stress value 

at data point i, 𝜎𝑖
𝐽𝐶(𝑋)  is the prediction of the Johnson-Cook model, and 𝑋 =

[𝐴, 𝐵, 𝑛, 𝐶,𝑚] is a vector of parameters, which is initialized by the results of the curve 

fitting process in section 3.1.1. A fitness function and the initial conditions were defined 

using MATLAB. The optimized parameters of Johnson-Cook model are shown in Table 2. 

The R2 value between experimental data and prediction of Johnson-Cook model was 

calculated as 0.9078. Variance-covariance matrix of model parameters was used to evaluate 
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parameter uncertainty and parameter correlation. Jacobian matrix X of material model can 

be expressed as: 

   𝑋 = [
𝑋11 ⋯ 𝑋1𝑛

⋮ ⋱ ⋮
𝑋𝑖1 ⋯ 𝑋𝑖𝑛

] =  

[
 
 
 
𝜕𝜎1

𝜕𝑃1
⋯

𝜕𝜎1

𝜕𝑃𝑛

⋮ ⋱ ⋮
𝜕𝜎𝑖

𝜕𝑃1
⋯

𝜕𝜎𝑖

𝜕𝑃𝑛]
 
 
 

  (6) 

where X is Jacobian matrix, 𝜎𝑖 is calculated stress using parameter set 𝑃𝑛, i is the number 

of measured experimental data, n is the number of parameters. In current study, 𝑃1  𝑃5 

represent A, B, n, C, and m. The variance-covariance matrix Cov𝐽𝐶 is calculated as: 

Cov𝐽𝐶 = (X′X)−1𝑒2 = [
𝐽𝐶11 ⋯ 𝐽𝐶15

⋮ ⋱ ⋮
𝐽𝐶51 ⋯ 𝐽𝐶55

]  (7) 

where Cov𝐽𝐶 is the variance-covariance matrix of Johnson-Cook model parameters, X is 

Jacobian matrix, and e is the error between experiment and prediction of material model. 

A confidence interval for parameter 𝑃𝑖 can be estimated using the ith diagonal element 𝐽𝐶𝑖𝑖 

of variance-covariance matrix (Table 2). 

 

3.2 ZERILLI-ARMSTRONG MODEL 

Zerilli-Armstrong (ZA) model, different from phenomenological-based Johnson-

Cook model, is built based on dislocation mechanisms, which essentially determine the 

plastic flow behavior. The original Zerilli-Armstrong model can be expressed as [6]: 

σ = 𝐶0 + 𝐶1𝑒𝑥𝑝(−𝐶3𝑇 + 𝐶4𝑇𝑙𝑛휀̇) + 𝐶5휀
𝑛 (BCC metals) (8) 

σ = 𝐶0 + 𝐶2휀
0.5𝑒𝑥𝑝(−𝐶3𝑇 + 𝐶4𝑇𝑙𝑛휀̇)  (FCC metals) (9) 

where 𝜎  is the equivalent stress, 휀  is the equivalent plastic strain, 휀̇  is strain rate, 𝑇  is 

temperature, and 𝐶0  𝐶5  are parameters of Zerilli-Armstrong model. Since high 
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temperature during hot rolling (above 1000 ℃ ), microstructures of steel change into 

austenite with FCC structure, and therefore Eq. 9 was used in the current study. In the 

original Zerilli-Armstrong model, temperature and strain rate are not normalized, causing 

a huge numerical differences among parameters (e.g. 𝐶2 is up to 10
3 while parameter 𝐶4 is 

low to 10-4). This magnitude difference complicates the determination of parameters and 

the subsequent modeling of hot working processes. Therefore, a dimensionless temperature  

𝑇∗ and a normalized strain rate 휀̇∗ were introduced to Zerilli-Armstrong model, and Eq. 9 

becomes: 

σ = 𝐶0 + 𝐶2휀
0.5𝑒𝑥𝑝(−𝐶3𝑇

∗ + 𝐶4𝑇
∗ ln 휀̇∗)  (10) 

where 𝑇∗is the homologous temperature and 휀̇∗ is dimensionless strain rate. Similar to the 

curve fitting process of Johnson-Cook model, parameters of Zerilli-Armstrong model in 

Eq. 10 were identified by curve fitting process and nonlinear least-square method. At 

reference temperature and strain rate, Eq. 10 can be expressed as: 

σ = 𝐶0 + 𝐶2휀
0.5     (11) 

In Eq. 11, 𝐶0 is the yield stress at reference temperature and strain rate. 𝐶2 was 

calculated using power law fitting process (Fig. 4a). At reference the strain rate and varying 

strains and temperature, Eq.  10 can be expressed as: 

ln[(σ − 𝐶0)/𝐶2휀
0.5] = −𝐶3𝑇

∗   (12) 

A linear fitting process of Eq. 12 was performed to determine 𝐶3 (Fig. 4b). With 

determined parameters 𝐶0, 𝐶2, and 𝐶3, Eq. 10 can be written as:  

[ln[(σ − 𝐶0)/𝐶2휀
0.5] + 𝐶3𝑇

∗]/𝑇∗ = 𝐶4 ln 휀̇∗  (13) 

Parameter 𝐶4  was obtained using linear fitting process at fixed strain and 

temperature (Fig. 4c). All four parameters were optimized by nonlinear least-square 
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method, and the optimized parameters are shown in Table 3. The R2 value between 

experimental data and prediction of Zerilli-Armstrong model was calculated as 0.8685. The 

corresponding variance-covariance matrix diagonal elements 𝑍𝐴𝑖𝑖 are shown in Table 3.  

 

3.3 COMBINED JC AND ZA MODEL  

In the original Johnson-Cook (JC) model, a relationship between flow stress and 

plastic strain is established empirically by isolated effects of strain rate and temperature 

upon the flow stress. The concise formulation of the Johnson-Cook model facilitates 

calculation of the material model parameters using a limited amount of experiments. 

However, this simplification does not consider the coupled effect of temperature and strain 

rate on flow stress, which was observed from both current Gleeble test results and literature 

data [5]. On the other hand, the original Zerilli-Armstrong model takes into account the 

coupled effect of temperature and strain rate on flow stress. However, the actual coupled 

effect of temperature and strain rate is complex. The fixed yield stress 𝐶0  at varying 

temperatures and strain rates in original Zerilli-Armstrong model is not reasonable 

according to actual situation.  

To overcome these shortcomings, a combined JC and ZA model was proposed and 

is given by  

σ = (𝐴1 + 𝐵1ε + 𝐵2휀
𝑛1)((𝐶1 + 𝐶2 ∗ ln 휀̇∗) + (𝐶3 + 𝐶4 ∗ ln 휀̇∗) ∗ (𝑇∗)𝑚1+𝑚2∗ln �̇�∗

) (14) 

Eq. 14 accounts for the modified strain hardening effect of Johnson-Cook model, 

and the coupled effect of strain rate and temperature based upon Zerilli-Armstrong model. 

The development process of this combined material model is discussed in following 

sections.   
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3.3.1 Strain Hardening Effect. A strain hardening effect (𝐴1 + 𝐵1ε + 𝐵2휀
𝑛1) was 

used in current study, which was based upon the work of Lin et al. [3] Lin et al. modified 

the strain hardening part of the Johnson-Cook model (𝐴 + 𝐵휀𝑛) into (𝐴1 + 𝐵1ε + 𝐵2휀
𝑛1). 

The introduction of 𝐵1ε enables the new model to describe actual complex stress-strain 

relationships. To evaluate this modified version, predictions of modified Johnson-Cook 

model were calculated and compared with original Johnson-Cook model (see Fig. 5 and 

Table 4). In the low strain range [0, 0.05] and high strain range [0.4, 0.45], the predictions 

of original Johnson-Cook model showed larger stress than actual test results, and at 

medium strain range [0.05, 0.4], the original Johnson-Cook model predicted lower stress 

than experimental results. The R-square (R2) values of predictions of original and modified 

strain hardening effect are 0.964 and 0.999, respectively, which illustrates that the modified 

strain hardening effect predicted stress-strain curve closer to experimental data. 

3.3.2 Coupled Effect of Temperature and Strain Rate. The coupled effect of 

temperature and strain rate was developed based on Johnson-Cook model and Zerilli-

Armstrong model. The original Johnson-Cook model predicts a temperature softening 

effect on flow stress as (1 − 𝑇𝑚), but the actual Gleeble test results demonstrated that this 

temperature softening effect varied with different strain rate conditions. Multiplication of 

temperature and strain rate in original Zerilli-Armstrong model was used to present this 

coupled effect. A modified temperature softening effect with strain rate dependent 

parameters is shown in Eq. 15: 

𝜎/(𝐴1 + 𝐵1ε + 𝐵2휀
𝑛1) = 𝐷01 + 𝐷02 ∗ (𝑇∗)𝑚0  (15) 

in which 𝐷01, 𝐷02, and 𝑚0 are strain rate dependent parameters. Dimensionless stress is 

defined as 𝜎∗ = 𝜎/(𝐴1 + 𝐵1ε + 𝐵2휀
𝑛1). Flow stress at four strains (0.1, 0.2, 0.3, and 0.4) 
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of varying strain rates and temperatures were chosen to determine these parameters (Fig. 

6). Power function fitting was performed to determine the relationships between 

temperature and flow stress at different strain rates. The fitting parameters are shown in 

Table 5. Results showed that temperature softening parameters 𝐷01 , 𝐷02 , and 𝑚0  were 

strongly dependent on strain rate. 

A detailed study of strain rate hardening effect on flow stress was also performed. 

Temperature softening parameters (𝐷01 , 𝐷02 , and 𝑚0) vs. ln 휀̇∗  were plotted in Fig. 7, 

where 휀̇∗ = 휀̇/휀0̇ is dimensionless strain rate, 휀̇ is strain rate, and 휀0̇ is reference strain rate 

set as 0.01 s-1.  

In Fig. 7(a) and (b), linear relationships were found between parameters (D01 and 

D02) and ln 휀̇∗. The relative expressions are shown in Eq. 16 and 17 with parameters 𝐷1~𝐷4. 

In Fig. 7(c), power function was used to build relationship between 𝑚0  and ln 휀̇∗  with 

parameters 𝑚1~𝑚3 (Eq. 18). These coupled effect parameters are shown on Table 6. 

𝐷01 = 𝐷1 + 𝐷2 ∗ ln 휀̇∗     (16) 

𝐷02 = 𝐷3 + 𝐷4 ∗ ln 휀̇∗     (17) 

𝑚0 = 𝑚1 + 𝑚2 ∗ (ln 휀̇∗)𝑚3     (18) 

4. FINITE ELEMENT MODELING 

A nonlinear three-dimensional finite element model was developed to study a steel 

bar hot rolling process. The complete hot rolling process was to repeatedly deform steel 

bar to reduce dimension of cross section by sequential and orthogonal rolling steps. In the 

current simulation, the first stand, Stand1, was simulated. Cross section of steel bar was 
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deformed from round to oval during Stand1. The initial length of bar was 4 m and had an 

initial diameter of 0.235 m. The round bar entered Stand1 with an initial speed of 0.14 m/s. 

The Coulomb friction was modeled between steel bar and rollers, and the coefficient of 

friction was set as 0.6 [22]. The initial temperatures for the steel bar and roller were 1100 °C 

and 150 °C, respectively. Rotation speed of the roller was 5.75 rpm with a roll gap of 33.1 

mm, a pass depth of 60.3 mm, and a working diameters of 606 mm. Geometry modeling 

was processed using ABAQUS 6.12 (Fig. 8). The friction behavior between contact pairs 

was defined by Coulomb friction law with a friction coefficient 0.5. The steel bar was built 

as a three-dimensional deformable part using 8-node brick element (C3D8RT), and rollers 

were modeled as rigid parts using 4-node rigid element (R3D4). The governing equation 

for thermo-mechanical analysis and heat transfer during hot rolling can be written as: 

[𝑀𝑒]{∆̈𝑒} + [𝐾𝑒]{∆𝑒} = {𝐹𝑀
𝑒 } + {𝐹𝑇

𝑒}  (19) 

[𝐶𝑇
𝑒]{�̇�𝑒} + [𝐾𝑇

𝑒]{𝜃𝑒} = {𝑄𝑒}    (20) 

where [𝑀𝑒] is mass matrix, [𝐾𝑒] is the stiffness matrix, and {𝐹𝑀
𝑒 } and {𝐹𝑇

𝑒} are mechanical, 

thermal loadings respectively, [𝐶𝑇
𝑒] is specific heat capacity matrix, [𝐾𝑇

𝑒] is conductivity 

matrix, and {𝑄𝑒} is the external flux vector. In the present study, combined JC and ZA 

material model was coded into subroutine VUMAT. For elastic calculation, Hooke’s law 

was used and expressed in Green-Naghdi rate form: 

Δ𝜎𝑖𝑗 = 𝜆𝛿𝑖𝑗Δ휀𝑘𝑘
𝑒 + 2𝜇Δ휀𝑖𝑗

𝑒     (21) 

Δ휀𝑖𝑗 = Δ휀𝑖𝑗
𝑒 + Δ휀𝑖𝑗

𝑝
     (22) 

where Δ𝜎𝑖𝑗 is the stress increment, 𝜆 and 𝜇 are Lame parameters, 𝛿𝑖𝑗 is Kronecker delta, 

Δ휀𝑖𝑗
𝑒  is the elastic strain increment, Δ휀𝑖𝑗

𝑝
 is the plastic strain increment, and Δ휀𝑖𝑗 is the total 
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strain increment. For plastic strain calculation, the isotropic hardening law was adopted 

and the von Mises yield criterion for isotropic plasticity was used: 

𝑓 = 𝜎𝑣 − 𝜎𝑦 = 𝜎𝑒𝑞
𝑡𝑟 − 3𝜇∆휀̅𝑝𝑙 − 𝜎𝑦 = 0  (23) 

𝜎𝑖𝑗
𝑡𝑟 = 𝜎𝑖𝑗 + 𝜆𝛿𝑖𝑗Δ휀𝑘𝑘 + 2𝜇Δ휀𝑖𝑗   (24) 

where 𝜎𝑣 is von Mises stress, and 𝜎𝑦 is yield stress provided by material model, 𝜎𝑒𝑞
𝑡𝑟 is trial 

von Mises stress calculated by Δ𝜎𝑖𝑗
𝑡𝑟, and ∆휀̅𝑝𝑙 is equivalent plastic strain increment. When 

𝜎𝑣 < 𝜎𝑦, deformation of material is considered elastic, otherwise plastic. Newton’s method 

is used to calculate ∆휀̅𝑝𝑙. Based on plastic flow law, the increment tensor of plastic strain 

can be calculated by Eq. 25 and the stress tensor is updated by Eq. 26: 

Δ휀𝑖𝑗
𝑝

=
3

2
∆휀̅𝑝𝑙 𝜎𝑖𝑗

′

𝜎𝑣
     (25) 

𝜎𝑖𝑗 = 𝜎𝑖𝑗
𝑡𝑟 − 2𝜇Δ휀𝑖𝑗

𝑝
     (26) 

where 𝜎𝑖𝑗
′  is deviatoric stress of 𝜎𝑡𝑟. The overall calculation process is shown in Fig. 9.  

5. RESULTS AND DISCUSSION 

5.1 COMPARISON OF MATERIAL MODELS 

Comparisons of Johnson-Cook model, Zerilli-Armstrong model and the combined 

JC and ZA model were performed. The operating temperature of hot rolling was from 

1100 °C to 1000 °C, and the compressing strain rate was from 1 s-1 to 5 s-1. Predictions of 

each material model at varying operating temperatures and strain rates are plotted in Fig. 

10. The combined JC and ZA model shows better agreement with experimental data than 

either the Johnson-Cook or the Zerilli-Armstrong model. At 1100 °C and strain rates of 1 
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s-1 and 5 s-1, predictions of Johnson-Cook model show significant deviation from 

experimental results, which is caused by the nonlinear coupled effect of temperature and 

strain rate. At 1000 °C and strain rates of 1 s-1 and 5 s-1, the Zerilli-Armstrong model is 

incapable of predicting actual experimental results. The fixed 𝐶0  greatly limits the 

flexibility of Zerilli-Armstrong model, producing the same yield stress at varying 

temperatures and strain rates. With the enhanced strain hardening effect and coupled effect 

of temperature and strain rate, the combined JC and ZA model demonstrated more accurate 

predictions. 

The overall comparison of material models was performed using a coefficient of 

determination R2, which indicated how well the predictions of each material model fit with 

experimental data. The best linear fit was plotted using a solid black line (Fig. 11), at which 

predicted flow stress is equal to experimental data. The red circles (Fig. 11) represented the 

actual predicted flow stresses at corresponding experimental flow stress. Greater deviation 

from the best linear fit line and a reduced R2 value indicated a less accurate material model. 

In Fig. 11a, the partial predictions of Johnson-Cook model have significant differences 

from best linear fit line, while other predictions fit experimental data well. It indicates that 

Johnson-Cook model is insufficient to predict complex material behavior with coupled 

effect of temperature and strain rate. In Fig. 11b, the predicted yield stress of Zerilli-

Armstrong model is constant. With increasing strain, the flow stress increases fast, and 

finally larger than experimental data.  It indicates that Zerilli-Armstrong model has high 

strain hardening rate, which is not suitable for current study of low strain hardening rate. 

In Fig. 11c, with modified strain hardening behavior and couple effect of temperature and 

strain rate, the combined JC and ZA model performs much better prediction than other 
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material models. Based on Fig. 11, the R2 values of Johnson-Cook model, Zerilli-

Armstrong model, and combined JC and ZA model are 0.9078, 0.8685, and 0.9798, 

respectively, indicating better performance of combined JC and ZA model. 

 

5.2 ROLLING TORQUE COMPARISON 

The finite element model was verified by comparing predicted rolling torque with 

experimental data. The simulated rolling torques of Stand1 during hot rolling process are 

plotted in Fig. 12, comparing to a measured continuous rolling torque of 537 kN·m was 

provided by the Gerdau steel plant. In the beginning of the simulated hot rolling process, a 

steel bar took around 0.5 s to make contact with mills. As the bar was further deformed, 

the predicted torque increased quickly to reach a stable level. Simulated torques based on 

combined JC and ZA model were around 500 kN·m and within 7% of the reported rolling 

torque. 

 

5.3 PLASTIC STRAIN DISTRIBUTION  

Understanding plastic strain distribution during hot rolling process is important to 

control microstructure evolution, void closure, quality of steel, and optimization of the 

rolling process. The simulated deformation process of the steel bar during hot rolling is 

shown in Fig. 13. In the current study, the cross section of steel bar was deformed from 

round to oval in Stand1.The cross section of steel bar was perfect circle prior to deformation 

(reduction was 0%). Initially the steel bar is compressed vertically. The vertical radius of 

the cross section decreased while the horizontal radius almost remained the same 
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dimension with minor increase. The final shape of steel bar cross section was shown in an 

oval shape with 100% reduction.  

Equivalent plastic strain, as well as plastic strain in specific directions, was 

recorded and investigated. Simulated equivalent plastic strain distributions after hot 

deformation are shown in Fig. 14a. The maximum equivalent plastic strain 0.65 occurred 

at top and bottom areas, and a minimum of 0.35 occurs along the center horizontal axis. 

Specific strain components of the strain tensor can be displayed for the three normal strains. 

In the x-direction (Fig. 14b), the maximum compressive plastic strain was at the bar center, 

while smallest plastic strain happened on the bar sides, which were not contacted with the 

mills. Plastic strain in the y-direction (Fig. 14c) was a mixture of tension at the bar center 

and compression on the surfaces. During this rolling process, material at the central portion 

of the bar moved towards the surface, while surface friction at the roll caused internal 

tension and compression at the surface in y-direction. In the z-direction (Fig. 14d), the steel 

bar was elongated parallel to the rolling direction, and plastic strain in z-direction varied in 

a small range (0.32-0.34).  

A detailed study of the plastic strain distributions was conducted. Top surface nodes 

(from node 1 to node 24), and internal nodes (from node 1 to node 26) were monitored and 

relative plastic strain was plotted in Fig. 15. For the surface equivalent plastic strain 

distribution (see Fig. 15a), the maximum value was located at surface nodes 6 and node 19, 

which were in 45° and 135° directions rather than the top node at 13. For the internal 

equivalent plastic strain distributions (see Fig. 15b), the minimum value occurred at node 

1 and node 26, and stable value with slight decline exhibited in center area (nodes 8 to 19). 

Surface plastic strain in x-direction and y-direction (see Fig. 15a) were in compression, 
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while plastic strain in z-direction (see Fig. 15a) was in tension. At the middle node 13, 

surface plastic strain in x-direction increased to the maximum compression strain -0.35, 

while surface plastic strain in y-direction decreased to minimum strain around 0. Similarly, 

internal plastic strain distributions in each direction were plotted in Fig. 15b. For both 

surface and internal plastic strain distribution, the plastic strain in the x-direction or rolling 

direction became the largest contributor to the equivalent plastic strain. Plastic strain in y-

direction was 50%~80% magnitude of strain in other directions. Plastic strain in the z-

direction, maintained relatively stable strain distribution for both surface and internal areas.  

 

5.4 STRESS DISTRIBUTION AND ROLLING TORQUE 

Investigation of stress distribution and rolling torque is essential to industrial 

practice, which may contribute to increased production efficiency and product quality. 

Viscoplastic material properties are dependent upon the rolling temperature and rolling 

speed, and thus can significantly influence the manufacturing process. Based on practical 

hot rolling conditions, the simulated rolling temperature was chosen as 1100 °C, 1050 °C, 

and 1000 °C, and the simulated rolling speed was chosen as 0.14 m/s, and 0.7 m/s, which 

corresponds to strain rates from 1 s-1 to 5 s-1. At varying temperatures and rolling speeds, 

the stress distributions and rolling torques were calculated and investigated.  

Stress distributions at different rolling temperatures are shown in Fig. 16. Stresses 

of nodes from 1 (center of bar) to 13 (surface of bar) were monitored. At center and surface 

(node 1 and node 13), the difference of stresses at different temperature is not significant 

and less than 10 MPa. However, at the middle of monitored nodes (from node 6 to node 

12), the flow stresses are dependent on rolling temperature. At the lowest temperature of 



50 

1000 °C, stress increases to 65 MPa (node 10), and then decreases; at a temperature of 

1050 °C, the stress increases to around 51 MPa from node 1 to node 7, and keeps nearly 

constant from node 7 to node 13; at temperature 1100 °C, the stress increases from the 

center to the surface of the bar. The stress difference is caused by temperature softening 

effect, under which stress is reduced at same deformation. The flow stress patterns indicate 

that stress is concentrated at nodes 7 through 12 of the bar, and the higher rolling 

temperature can reduce internal stress.  

Roll torque was calculated as well. As temperature decreases from 1100°C to 

1000°C, the roll torque increases from 500 kN·m to 740 kN·m (Fig. 17). Due to 

temperature softening effect, the rolling torque decreases around 120 kN·m with 50°C 

increase of temperature. 

Similarly, rolling speed effect on stress distribution can be investigated and results 

are plotted in Fig. 18. Different from the temperature effect, however, rolling speed has 

limited effect on stress distribution of the steel bar. The stresses increase from the center 

(node 1) to the surface (node 13), and the stress difference between different rolling speeds 

is within 10 MPa. At different rolling speed, flow stresses at center and surface are similar, 

and from node 4 to node 7 flow stress at rolling speed 7 m/s is larger than flow stress at 

rolling speed 1.4 m/s. The corresponding rolling torque increased from 480 kN·m to 600 

kN·m due to increase of rolling speed (Fig. 19).  
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6. CONCLUSION 

In the current study, a Johnson-Cook model, a Zerilli-Armstrong model, and a 

combined JC and ZA model were developed based on Gleeble hot compression test results. 

The combined JC and ZA model considering the combined effect of temperature and strain 

rate, and modified strain hardening effect demonstrated better prediction on flow stress 

than original material models at elevated temperatures and varying strain rates.  

A three-dimensional nonlinear finite element model incorporating combined JC 

and ZA model is developed to simulate steel bar hot rolling. Plastic strain distributions 

during hot deformation process were plotted and investigated. Maximum equivalent plastic 

strain occurs at 45° and 135° areas of cross section, instead of top and bottom areas of cross 

section. Plastic strain is in compression in the x-direction, tension in the z-direction, and 

both tension and compression in the y-direction. Flow stress and rolling toque at different 

temperatures and rolling speeds were studied. Stress distribution on cross section is 

significantly influenced by rolling temperature, while rolling speed has limited effect on 

stress distribution. As temperature increases, rolling torque decreases; as rolling speed 

increases, the rolling torque increases. 
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Fig. 1. Test profile for Gleeble hot compression test 

 

 

 

Fig. 2. Experimental results of Gleeble hot compression tests 
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Fig. 3. (a) Power law fitting process of parameters B and n, (b) linear fitting process of 

parameter C, (c) power law fitting process of parameter m 

 

 

 

 

Fig. 4. (a) Power law fitting process of parameter 𝐶0 and 𝐶2, (b) linear fitting process of 

parameter 𝐶3, (c) linear fitting process of parameter 𝐶4 
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Fig. 5. Predictions of Johnson-Cook model and modified Johnson-Cook model 

 

 

 

 

Fig. 6. Temperature effects on flow stress at different strain rates 
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Fig. 7. Relationship between strain rate and temperature softening parameters 

 

 

 

 

Fig. 8. Modeling of steel bar hot rolling process 
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Fig. 9. Flowchart of VUMAT for combined JC and ZA model 

 

 

 

Fig. 10. Comparison of predicted stress-strain curves of different material models 
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(a) 

 
(b) 

 
(c) 

Fig. 11. Comparison of experimental data and (a) prediction of Johnson-Cook model, (b) 

prediction of Zerilli-Armstrong model, and (c) prediction of combined JC and ZA model 
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Fig. 12. Rolling torque comparison between measured and simulated results 

 

 

 

Fig. 13. Schematic deformation process of steel bar during hot rolling process 
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Fig. 14. Plastic strain distribution in specific direction and equivalent plastic strain 

distribution 

 

 

 

Fig. 15. (a) surface and (b) internal plastic strain distributions in specific direction  
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Fig. 16. Stress distribution at different temperatures 

 

 

 

Fig. 17. Rolling torque at different temperatures 
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Fig. 18. Stress distribution at different rolling speed 

 

 

 

Fig. 19. Rolling torque at different rolling speed 
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Table 1. Test parameters for Gleeble hot compression test 

Temperature (°C) Time (min) Heating rate (°C/min) 

TAust 1300 
t1 5 260 

t2 8 0 

TDeform Varies 
t3 Varies -50 

t4 +2 0 

 

 

 

Table 2. Determined parameters of Johnson-Cook model 

 A B n C m R2 

Value 71.59 105.03 0.39 0.12 0.95 

0.9078 
Variance-

Covarianc

e matrix 

diagonal 

𝐽𝐶11=0.0

7 

𝐽𝐶22=0.2

2 

𝐽𝐶33=0.1

2 

𝐽𝐶44=1.7

7e-6 

𝐽𝐶55=2.4

2e-5 

 

 

 

Table 3. Determined parameters of Zerilli-Armstrong model 

 𝐶0 𝐶2 𝐶3 𝐶4 R2 

Value 56.54 193.6 5.087 1.359 

0.8685 
Variance-

Covariance 

matrix 

diagonal 

𝑍𝐴11=0.07 𝑍𝐴22=0.78 
𝑍𝐴33=5.28

e-4 

𝑍𝐴44=8.86

e-5 
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Table 4. Parameters of strain hardening effect 

 
Original Johnson-Cook 

model 
Lin’s modified Johnson-Cook model  

Parameter A B n A1 𝐵1 𝐵2 𝑛1 

Value 71.59 105.03 0.39 71.59 -392.6 446.1 0.7283 

R2 0.967 0.999 

 

 

 

Table 5. Temperature softening parameters of combined JC and ZA model 

Parameter 𝐷01 𝐷02 𝑚0 

Strain rate 1s-1 0.997 -0.707 0.446 

Strain rate 5s-1 1.172 -0.896 0.664 

Strain rate 15s-1 1.261 -0.977 0.964 

 

 

 

Table 6. Coupled effect parameters of combined JC and ZA model 

Parameter 𝐷1 𝐷2 𝐷3 𝐷4 𝑚1 𝑚2 𝑚3 

Value 0.551 0.098 -0.250 -0.101 0.360 1.3e-4 4.21 
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ABSTRACT 

Dynamic recrystallization (DRX) occurring during hot rolling significantly affects 

the microstructural evolution and final mechanical properties of steel. In this study, single 

hot compression tests were performed at temperatures between 1000°C and 1300°C with 

strain rates between 0.01 s-1 and 15 s-1 to investigate dynamic recrystallization behavior of 

a 15V38 steel. Critical strains for initiation of dynamic recrystallization and peak strains 

were identified through the analysis of work hardening rate from the measured stress-strain 

results. Dynamic recrystallization was identified by the softening in the flow stress during 

plastic deformation and quantified as the difference between a calculated dynamic recovery 

curve and the measured stress-strain curve. Dynamic recrystallization was modeled using 

calculated critical strain, peak strain, Zener-Hollomon (Z) parameter, and volume fraction 

of dynamic recrystallization. Subroutines accounting for dynamic recrystallization were 

developed and implemented into a three-dimensional finite element model for hot rolling 

of a round bar. Simulation results show that dynamic recrystallization is distributed 
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throughout the bar and exhibits a positive relationship with equivalent plastic strain. 

Temperature effects on dynamic recrystallization were also investigated using different 

rolling temperatures, and results show that the fraction of dynamic recrystallization is 

significantly increased as rolling temperature increases. 

1. INTRODUCTION 

Austenite grain size and shape are influenced by many factors during hot rolling 

including stored plastic deformation, static recovery, static recrystallization, dynamic 

recrystallization, and grain pinning by second phase carbides and nitrides. The final 

austenite grain size is an important aspect for controlling properties during steel 

manufacturing. In the absence of grain pinning agents, temperature, plastic strain, and the 

imposed strain rate control the evolution of the austenite grain structure. In a general sense, 

hot rolling plastically deforms the steel and energy is stored as point defects and 

dislocations. Recovery processes eliminate point defects and form dislocation subcells that 

act as nuclei for new grains. This process occurring during deformation is called dynamic 

recovery and recrystallization. Dynamic recrystallization (DRX) initiated during 

deformation often be completed by subsequent hot working or by static processes after 

deformation due to the short deformation time. Investigation of dynamic recrystallization 

is essential to optimize hot rolling schedules and produce steel with a homogeneous grain 

structure. 

Sellars is one of the pioneers in modeling recrystallization using Avrami kinetics 

[1]. A dynamic recovery curve and the critical strain need to be determined to construct the 
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Avrami equation for dynamic recrystallization. Poliak and Jonas calculated a critical strain 

required to initiate recrystallization by identifying the minimum differential of work 

hardening rate [2]. Jonas et al. [3] provided an effective method to derive the dynamic 

recovery curve and then determined the softening associated with dynamic recrystallization 

using stress-strain curves measured during hot deformation. These findings provide a basis 

for mathematical modeling of dynamic recrystallization. 

Dehghan-Manshadi et al. [4] characterized the microstructure evolution during 

dynamic recrystallization of 304 austenitic stainless steel. The results showed that the 

critical strain was around 60 % of peak strain and full dynamic recrystallization needs a 

high strain of around 4.5 times the critical strain. Chen et al. [5] modeled dynamic 

recrystallization behavior of 42CrMo steel using hot compression tests, and the 

experimental results indicated that initial austenitic grain size, as well as temperature and 

strain rate, affects dynamic recrystallization. Schambron et al. [6] studied the dynamic 

recrystallization of low carbon micro-alloyed steel using hot compression tests. The results 

showed that the ratio of critical strain to peak strain is 0.42. Chen et al. [7] developed a 

segmented model describing dynamic recrystallization behavior of a nickel-based alloy, 

which can accurately predict fraction of DRX below 980 °C. Competition between 

dynamic recovery and dynamic recrystallization were investigated by Souza et al. [8] and 

Ning et al. [9], and equations of dislocation energy and work hardening rate were used to 

identify the dynamic recovery curve. Wang et al. [10] performed hot compression tests of 

ultra-high strength stainless steel and found that critical strain decreases as strain rate 

increases for 1 s-1 to 10 s-1. Results showed that strain rate has a complex effect on dynamic 

recrystallization due to the interaction between dynamic recrystallization and precipitation 
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during hot deformation. These studies demonstrate that the kinetics of DRX of different 

steel grades vary considerably, and modeling of dynamic recrystallization for the current 

study is necessary. 

Numerical simulation provides an effective method to investigate dynamic 

recrystallization during hot rolling. Avrami equations representing dynamic 

recrystallization were successfully incorporated into finite element model [11], and the 

evolution of DRX during steel bar [12] and I-beam [13] hot rolling was simulated. 

Investigations of rolling parameter using finite element method were performed by Ding 

et al. [14] and it was found that rolling temperature has a more significant effect on dynamic 

recrystallization than rolling speed. Baron et al. [15] used a regression analysis method to 

determine the parameters of the dynamic recrystallization model and incorporated it into a 

finite element model to simulate the hot compression of high strength martensitic steel. 

These literatures provide valuable background for the modeling and simulation of DRX 

during steel bar hot rolling process in this study. 

In the current study, Gleeble hot compression tests were performed at various 

temperatures and strain rates. Critical strain, peak strain, and Zener-Hollomon (Z) 

parameter were calculated based on experimental data, and dynamic recovery curves were 

determined using differentiation methods. Dynamic recrystallization behavior was 

modeled and implemented into a finite element model to simulate the hot rolling process. 

Critical strain, equivalent plastic strain, fraction of DRX, and the effect of temperature on 

dynamic recrystallization were investigated. 
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2. MODELING OF DYNAMIC RECRYSTALLIZATION 

2.1 EXPERIMENTAL STRESS-STRAIN CURVES 

As-cast 15V38 steel with chemical composition in mass % as shown in Table 1 was 

used in this study. Cylindrical specimens of 15 mm height and 10 mm diameter were 

machined from the as-cast steel bar and material flow behavior was measured in 

compression using a Gleeble 3500 simulation system. Test temperatures ranged from 

1000°C to 1300°C and strain rates up to 15 sec-1 were used. A layer of tantalum foil with 

nickel paste was placed between the specimen and platens to minimize friction during 

compression.  

Test specimens were heated up to 1300 °C (TAust) in 5 minutes (t1) with a heating 

rate of 260 °C/min, held for 3 minutes for austenitizing and cooled to the desired test 

temperature (TDeform). An additional hold of 2 minutes was included to eliminate 

temperature gradient, and then the compression test was performed at the selected 

temperature and strain rate (Fig. 1). Four temperatures (1000 °C, 1100 °C, 1200 °C, and 

1300 °C) and four strain rates (0.01 s-1, 1 s-1, 5 s-1, and 15 s-1) were selected for hot 

compression testing based upon actual hot rolling conditions. Each combination of 

temperature and strain rate was repeated three times, with a total of 48 specimens being 

tested.  

Examples of the hot compression test results are illustrated in Fig. 2. At low strain 

rate 0.01 s-1, all stress-strain curves demonstrate work hardening with a maximum in the 

flow stress followed by softening. The peak flow stress and the strain at flow curves 

decreased as the test temperature increased. At other strain rates from 1 s-1 to 15 s-1, 
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softening behavior was only observed at the higher temperatures for strain rates of 1 s-1 and 

5 s-1 and was absent for a strain rate of 15 s-1.  

Dynamic recrystallization contributes to the softening in stress-strain curves. 

Before hot deformation, large primary grains dominate the microstructure with low 

dislocation density. During initial hot deformation, large amounts of dislocation are 

generated and controlled by work hardening, dynamic recovery. With continue of hot 

deformation, dynamic recrystallization occurs when the accumulated dislocation density 

exceeds critical point. The dynamic recrystallized grains then nucleate at the grain 

boundary and grow on non-growing grains [16, 17] and results in a refined microstructure. 

With full dynamic recrystallization, a near steady state flow stress is observed. At higher 

strain rates, the flow stress curve demonstrates continued hardening with a parabolic shape 

or reaches a steady state value. An approximate peak stress can be determined from the 

steady state condition. 

 

2.2 CRITICAL STRAIN 

During deformation, dynamic recrystallization is initiated by a critical strain. 

Newly formed grains grow until impingement and an equiaxed grain structure can be 

obtained. Several methods were proposed to investigate the critical strain, and among these 

methods, Poliak and Jonas [2] demonstrated an effective method using flow curve analysis 

to determine the critical strain. Work hardening rate 𝜃 = 𝜕𝜎/𝜎휀 (where 𝜎 is stress and 휀 is 

plastic strain) was calculated to identify a critical strain whereby the onset of dynamic 

recrystallization is identified. An example of the Poliak and Jonas method is shown in Fig. 

3. Experimental data from the hot compression test performed at temperature 1100 °C and 
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strain rate 0.01 s-1 is plotted in Fig. 3a. Higher order polynomial smoothing was performed 

on raw stress-strain curves and work hardening rate was calculated based on 𝜃 = 𝜕𝜎/𝜎휀 

(see Fig. 3b). At stage I, the work hardening rate decreases in a linear fashion. At stage II, 

the reduction of work hardening rate becomes faster due to the initiation of dynamic 

recrystallization. The critical point is defined at the start of Stage II. Stage III is defined 

when a maximum is reached in the flow stress and softening is observed with continued 

straining. To accurately determine the critical point, the derivative of work hardening rate 

−∂θ/ ∂σ vs. σ was calculated in Fig. 3c and the minimum value of −∂θ/ ∂σ was found 

to be the critical point. 

Work hardening curves at strain rates of 0.01 s-1 and 1 s-1 are plotted in Fig. 4. 

Critical points were located using minima of derivative of work hardening rate −∂θ/ ∂σ 

vs. σ. The critical strain was then determined as the corresponding strain associated with 

the critical point. The calculated critical points are marked in Fig. 4 using red circles. As 

temperature increases at low strain rate 0.01 s-1 (Fig. 4a), the critical stress and 

corresponding critical strains decrease, since higher temperature reduces the required 

dislocation energy for initiation of dynamic recrystallization. At a higher strain rate of 1 s-

1 (Fig. 4b), the experimental stress-strain curves do not display stress-softening behavior 

as significantly as strain rate 0.01 s-1. The critical strain increases due to less deformation 

time (reduced from 50 s at strain rate 0.01 s-1 to 0.5 s at strain rate 1 s-1) for evolution of 

dynamic recrystallization. Work hardening curves at 5 s-1 and 15 s-1 are similar to that 

shown for 1 s-1. The peak stresses and peak strains at strain rates 0.01 s-1 and 1 s-1 were 

determined directly from work hardening curve at 𝜃 = 0. 
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2.3 ZENER-HOLLOMON PARAMETER 

Critical strain, peak strain, and peak stress can be expressed in the form of a Zener-

Hollomon parameter Z, which is proportional to the strain rate 휀̇ and has an Arrhenius 

dependence upon temperature:  

𝑍 = 𝐴[sinh (𝛼𝜎)]𝑛0 = 휀̇ exp (
𝑄

𝑅𝑇
)   (1)  

where 𝜎 is stress, Q is activation energy for deformation, R is gas constant (8.31 J ∙ mol−1 ∙

K−1), T is the absolute temperature, and A, 𝛼, and 𝑛0 are constants. The activation energy 

Q indicates the natural deformation ability of steel and can be calculated as: 

𝑄 = 𝑅 ∗ 𝑛0 ∗
𝜕[𝑙𝑛𝑠𝑖𝑛ℎ(𝛼𝜎𝑝𝑘)]

𝜕(1/𝑇)
    (2) 

𝑛0 =
𝜕(𝑙𝑛�̇�)

𝜕[𝑙𝑛𝑠𝑖𝑛ℎ(𝛼𝜎𝑝𝑘)]
     (3) 

where 𝛼 is calculated as 𝛽 𝑛′⁄ . [4] Parameter 𝑛′ =
𝜕𝜎𝑝𝑘

𝜕ln (�̇�)
 was calculated as 12.505±1.85 

MPa∙s in Fig. 5a by the average slope of 𝜎𝑝𝑘  vs ln (휀̇), and parameter 𝛽 =
𝜕𝑙𝑛𝜎𝑝𝑘

𝜕ln (�̇�)
 was 

calculated as 0.156±0.013 MPa∙s in Fig. 5b by the average slope of 𝑙𝑛𝜎𝑝𝑘  vs ln (휀̇). 

Parameter 𝛼 is then calculated as 𝛽 𝑛′⁄ =0.012. The parameter 𝑛0 and 
𝜕[𝑙𝑛𝑠𝑖𝑛ℎ(𝛼𝜎𝑝𝑘)]

𝜕(1/𝑇)
 were 

then calculated as 4.71±0.20 s-1∙MPa-1 and 9.517±0.49 MPa∙°C in Fig. 5c and 5d by the 

average fitting slope, and the initial value of activation energy Q was calculated as 381.9 

kJ/mol by Eq. 2. To optimize the value of activation energy Q and parameter 𝑛0, least 

square optimization method was employed using all experimental data. Eq. 1 can be written:  

𝑙𝑛 [휀̇ 𝑒𝑥𝑝 (
𝑄

𝑅𝑇
)] = 𝑙𝑛(𝐴) + 𝑛0𝑙𝑛 (𝑠𝑖𝑛ℎ (𝛼𝜎)) (4) 

With initial value of Q=381.9 kJ/mol and 𝑛0=4.71 s-1∙MPa-1, the fitting process is 

shown in Fig. 6 with optimized parameters Q=372 kJ/mol and 𝑛0=4.65 s-1∙MPa-1. 
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With the identification of activation energy Q, the Z parameter was built 

considering temperature and strain rate effects. Peak stress 𝜎𝑝𝑘, peak strain 휀𝑝𝑘, and critical 

strain 휀𝑐 can be expressed in form of Z parameter. The peak stresses and Z parameters at 

varying temperatures and strain rates are plotted in Fig. 7a. A power law fitting was used 

to characterize the relationship between peak stress and Z parameter: 

𝜎𝑝𝑘 = 𝐴1𝑍
𝑛1     (5) 

where 𝐴1  and 𝑛1  are parameters. Similarly, the corresponding peak strains and Z 

parameters were plotted in Fig. 7b with power law fitting:  

휀𝑝𝑘 = 𝐴2𝑍
𝑛2     (6) 

where 𝐴2 and 𝑛2 are parameters. The critical strain was proved to be a fraction of the peak 

strain: 

휀𝑐 = 𝐵1휀𝑝𝑘     (7) 

where 𝐵1 is parameter. The calculated parameters are shown in Table 2. The experimental 

results showed good agreement with power law fitting, and the parameter 𝐵1  was 

calculated as 0.42, which is in the range of literature data [6].  

 

2.4 DYNAMIC RECOVERY AND DYNAMIC RECRYSTALLIZATION 

During hot compression testing, both dynamic recovery (DRV) and dynamic 

recrystallization (DRX) occurred and contributed to the softening in the flow stress curve. 

It is necessary to differentiate DRV from DRX to determine the accurate fraction of DRX. 

The dynamic recovery behavior can be characterized by the work hardening curve before 

the critical strain where dynamic recrystallization is absent. The measured flow stress 

during plastic deformation is a combination of hardening by the accumulation of 
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dislocations and softening by dynamic recovery. The differential increase in dislocation 

density is given by [3] 

𝑑𝜌 = ℎ𝑑휀 − 𝑟𝜌𝑑휀    (8) 

where 𝜌 is dislocation density, 휀 is plastic strain, h is hardening parameter, and r is rate of 

dynamic recovery. In this equation, ℎ𝑑휀  represents the strain hardening, and 𝑟𝜌𝑑휀 

represents the dynamic recovery. Based on Eq. 8, the dynamic recovery curve can be 

expressed as [3]  

𝜎 = [𝜎𝑠𝑎𝑡
2 − (𝜎𝑠𝑎𝑡

2 − 𝜎0
2) exp(−𝑟휀)]0.5  (9) 

where 𝜎𝑠𝑎𝑡 is the steady stress in dynamic recovery curve and 𝜎0 is the yield stress. The 

stress  𝜎𝑠𝑎𝑡  is calculated by extrapolation of the work hardening curve unaffected by 

dynamic recrystallization (prior to the critical point) to a value of 𝜃 = 0. Work hardening 

measured at temperature 1100 °C and strain rate 0.01 s-1 was used to display 𝜎𝑠𝑎𝑡 in Fig. 

8a. To calculate the rate of dynamic recovery, Eq. 9 can be rewritten as Eq. 10.  

𝜎
𝑑𝜎

𝑑𝜀
= 0.5𝑟𝜎𝑠𝑎𝑡

2 − 0.5𝑟𝜎2   (10) 

Replacing 
𝑑𝜎

𝑑𝜀
 with 𝜃 and differentiating both sides of Eq. 10 with respect to 𝜎2: 

𝑑(𝜎𝜃)

𝑑(𝜎2)
= −0.5𝑟     (11) 

The rate of dynamic recovery can be calculated based on the slope of curve 𝜎𝜃 vs. 

𝜎2, shown in Fig. 8b. The volume fraction of dynamic recrystallization can be expressed 

as 

𝑋𝐷𝑅𝑋 = 1 − exp (−𝑘 (
𝜀−𝜀𝑐

𝜀𝑝𝑘
)
𝑛

)   (12) 

where 𝑋𝐷𝑅𝑋 is the fraction of DRX, 휀 is the strain, 휀𝑐 is critical strain, 휀𝑝𝑘 is peak strain, 

and k and n are material dependent parameters. Points of peak stress/strain and stress equal 
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to critical stress were used to identify parameters k and n in Eq. 12. At low strain rate 0.01 

s-1, experimental stress-strain curves exhibited significant stress softening. However, at 

relatively high strain rates from 1 s-1 to 15 s-1 there was insufficient time for complete 

dynamic recrystallization. Therefore, the parameters k and n were determined from the 

lower strain rate test conducted at 0.01 s-1. Based on the literature [3], the fraction of DRX 

at peak stress is 10%, and the fraction of DRX at a stress equal to critical strain is 90%. 

Curves 𝑙𝑛 [(휀 − 휀𝑐) 휀𝑝𝑘⁄ ] vs. 𝑙𝑛 [𝑙𝑛 (1/(1 − 𝑋))] at different temperatures were calculated. 

The slope is n and the intercept is 𝑙𝑛𝑘 (Fig. 9). The average n and k values are 2.294 and 

0.448, respectively.  

3. FINITE ELEMENT MODELING 

A nonlinear three-dimensional finite element model was developed to study hot 

rolling of a round steel bar. The first stand of the full hot rolling process, Stand-1, was 

modeled and simulated. The initial dimensions of the bar were 4 m in length with a 

diameter of 0.235 m and entered Stand-1 with an initial speed of 0.14 m/s. Stand-1 can be 

described as a two roller stand with roll diameters of 606 mm, a pass depth of 60.3 mm, a 

rotation speed of 5.75 rpm, and a roll gap of 33.1 mm. Roller plastically deforms the bar 

producing both an elongation parallel to the rolling direction and changes the cross-

sectional shape from round to oval. Prior to entering the roll stand, the initial temperatures 

for steel bar and roller were 1100 °C and 150 °C, respectively. Finite element meshing of 

both the steel bar and the rollers was accomplished using ABAQUS 6.12 (Fig. 10). The 

steel bar was built as a three-dimensional deformable part using 8-node brick element 
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(C3D8RT), and rollers were modeled as rigid parts using 4-node rigid element (R3D4). 

Friction behavior between contact pairs (roller and bar) was defined by Coulomb friction 

law with a friction coefficient 0.6 [18]. In order to describe viscoplastic behavior, a number 

of constitutive models for steel have been proposed in the last few decades [19]. Johnson-

Cook (JC) model is one of most widely used phenomenological constitutive models that 

considers independently the effects of strain hardening, strain rate hardening, and 

temperature softening on flow stress. A Johnson-Cook model of steel grade 15V38 was 

built based on experimental stress-strain curves to serve as the material model for steel 

(Table 3) [18]. 

In the present study, the dynamic recrystallization model was coded in a user 

defined subroutine VUSDFLD of ABAQUS. For each increment of hot rolling simulation, 

simulated plastic strains of each node were updated and compared with calculated critical 

strain of the corresponding node. Once the plastic strain becomes larger than the critical 

strain, a dynamic recrystallization calculation is activated. The differential form of DRX is 

expressed as: 

d𝑋𝐷𝑅𝑋 = [−exp (−k (
𝜀−𝜀𝑐

𝜀𝑝𝑘
)
𝑛

) ∙ (−kn (
𝜀−𝜀𝑐

𝜀𝑝𝑘
)
𝑛−1

) ∙
1

𝜀𝑝𝑘
]dε (13) 

where critical strain 휀𝑐 and peak strain 휀𝑝𝑘 were calculated based on the Z parameter of 

each node. After activation of dynamic recrystallization, the fraction of DRX is 

accumulated during deformation. If the plastic strain is larger than critical strain and strain 

rate is larger than zero, the fraction of DRX of each node is accumulated from the last 

increment: 

𝑋𝐷𝑅𝑋
𝑖+1 = 𝑋𝐷𝑅𝑋

𝑖 + d𝑋𝐷𝑅𝑋, if 휀
𝑝 > 휀𝑐 and 휀̇ > 0  (14) 
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Otherwise, fraction of DRX will remain the same as last increment: 

𝑋𝐷𝑅𝑋
𝑖+1 = 𝑋𝐷𝑅𝑋

𝑖 , if 휀𝑝 < 휀𝑐 or 휀̇ = 0   (15) 

where strain rate 휀̇ is used to detect whether elements and nodes are under deformation. 

The flow chart of calculation process is shown in Fig. 11. 

4. RESULTS AND DISCUSSION 

4.1 VERIFICATION OF DYNAMIC RECRYSTALLIZATION MODEL 

A dynamic recovery curve was calculated (Fig. 12) based on calculation of 𝜎𝑠𝑎𝑡 

and r. The difference between the dynamic recovery curve and experimental stress-strain 

curve is stress softening purely caused by dynamic recrystallization. Based on the literature 

[3], the fraction of DRX is 10% at peak stress, and 90% at stress equal to critical stress. In 

this study, the calculated fractions of DRX at the peak stress and the stress equal to the 

critical stress are 9.5% and 89.6%, which are very close to that reported in literature. Also, 

fractions of DRX at critical strain and steady state are treated as 0% and 100%, respectively. 

Based on critical strain, peak strain, Z parameter, and parameters k and n, a strain dependent 

model of dynamic recrystallization was built at different temperatures and different strain 

rates (Fig. 13). This dynamic recrystallization model was implemented into the finite 

element model. The developed dynamic recrystallization model and finite element model 

considered the practical hot rolling condition, including rolling temperature from 1000°C 

to 1200°C, strain rate from 0.01 s-1 and 1 s-1 , strain from 0 to 0.65. For single rolling pass 

under 1100°C, the temperature variation is from 1120°C to 1060°C.   
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4.2 DEFORMATION DURING HOT ROLLING 

Hot rolling of a steel bar at 1100 °C was modeled based on industrial hot rolling 

condition. The dynamic recrystallization model developed in sections 3 and 4 was 

incorporated into a finite element model. The steel bar cross section was deformed from 

round to oval by a pair of horizontal rollers, and the calculated plastic strain and strain rate 

distributions of a cross section is plotted in Fig. 14. The cross section of steel bar was 

significantly reduced in the vertical direction with material flow into the rolling gap causing 

slight increase in the horizontal dimension. The maximum plastic strain located at the top 

and bottom areas of cross section, and the minimum plastic strain located at the sides. The 

rolling strain rate is from 0 to 1.35 s-1. 

 

4.3 DYNAMIC RECRYSTALLIZATION DURING HOT ROLLING 

During hot rolling, dynamic recrystallization is activated due to sufficient plastic 

deformation. Investigation of dynamic recrystallization is critical to study steel product 

quality, microstructure evolution, and static recrystallization during hot rolling. Critical 

strain and equivalent plastic strain during hot rolling were investigated and the results are 

presented in Fig. 15. In Fig. 15a, the critical strain at each node is calculated based on 

temperature and strain rate condition. Critical strain is zero at the non-deformation area 

since the corresponding strain rate is zero. At the beginning of deformation, the surface of 

steel is deformed with large deformation and the critical strain quickly increases in the 

simulation. As rolling proceeds, the interior area starts to deform and the corresponding 

critical strain at the interior increases, while the surface critical strain decreased as strain 

rate decreased in the simulation. In Fig. 15b, the equivalent plastic strains are accumulated 
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throughout the deformation process. At the start of deformation, equivalent plastic strain 

of steel bar is relatively small and close to corresponding critical strain and a small amount 

of dynamic recrystallization is accomplished. As further rolling, the equivalent plastic 

strain increases rapidly due to large deformation and accumulating effect, providing 

sufficient energy for dynamic recrystallization. 

Detailed comparisons between critical strain and equivalent plastic strain at surface 

and interior of steel bar are plotted in Fig. 16. At the surface, large deformation occurs and 

the equivalent plastic strain continuously increases from 0 to 0.5. Large dislocation density 

generated on the surface. The corresponding critical strain is in a low range of 0 to 0.2. 

Similarly, the internal equivalent plastic strain gradually increases from 0 to 0.5, and the 

internal critical strain increases to 0.2 before decreasing.  

Once the dynamic recrystallization is onset, the fraction of DRX will accumulate 

during the deformation process. On the top and bottom surfaces of round bar (Fig. 16), 

significant deformation and plastic strain generate large dislocation density. Dynamic 

recrystallization initiates and accumulates by dislocation energy and relatively small 

critical strain. Conversely, at the center of round bar, plastic strain gradually increases. 

From node 1 to node 5 (Fig. 16), the plastic strain is very close to critical strain and minimal 

dynamic recrystallization is accumulated. From node 6 to node 10, the different between 

plastic strain and critical strain increases and dynamic crystallization accumulates 

significantly. Depending on the strain, strain rate, and temperature conditions of each node, 

the fraction of DRX at each node will be different even on the same cross section of steel 

bar (Fig. 17). The maximum fraction is located at the top and bottom areas, where strain 

and strain rate increase rapidly during deformation. The minimum fraction is at the side 
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region with minimal deformation. The fraction value is in the range of 7% to 41%, 

indicating that complete dynamic recrystallization is not accomplished during hot rolling 

due to very short deformation time (around 1 s).  

Plastic strain exhibits significant influence on the fraction of DRX. During single 

pass simulation, the temperature and strain rate variation are small comparing with plastic 

strain. To investigate this strain effect, a comparison between fraction of DRX and 

equivalent plastic strain is plotted in Fig. 18. Due to symmetric shape, eleven nodes on a 

quarter of cross section are monitored to display strain effect on dynamic recrystallization. 

As equivalent plastic strain increases the fraction of DRX increases with a maximum in 

each at node 7. Results show that dynamic recrystallization is highly dependent on plastic 

strain, which reflects the extent of deformation.   

 

4.4 TEMPERATURE EFFECT 

Temperature is an important factor in dynamic recrystallization during hot rolling. 

However, temperature variation is relatively limited to one rolling pass due to the short 

deformation time. To study the effect of temperature on dynamic recrystallization, hot 

rolling processes with different rolling temperatures (1000 °C, 1100 °C, and 1200 °C) were 

modeled and simulated with DRX fraction plotted in Fig. 19. As rolling temperature 

increases, the fraction of DRX on whole cross section significantly increases. At 1000 °C, 

the fraction of DRX is in the range of 0 to 10%, while at 1200 °C, the fraction of DRX 

increases from 40% to 70%. Eleven nodes were monitored to display the variation of 

fraction at different rolling temperatures. At varying temperature, the maximum fraction 

always occurs at top and bottom area, and the minimum fraction occurs at side areas as 
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expected based upon the accumulated strain. At a temperature of 1000 °C, the fraction 

reaches maximum value at node 7, while at higher temperature 1200 °C, the fraction 

reaches maximum value at node 5. Results show that increasing rolling temperature 

increases the fraction of DRX of each node.   

5. CONCLUSION 

In the current study, a dynamic recrystallization model of steel grade 15V38 was 

built based on Gleeble hot compression tests. Critical strain, peak strain, and Zener-

Hollomon parameter were calculated to construct a strain dependent equation of dynamic 

recrystallization. A three-dimensional nonlinear finite element model incorporating 

dynamic recrystallization model was built to simulate the practical hot rolling. Critical 

strains of each node during deformation were calculated and compared to equivalent plastic 

strains.  

Experimental results showed that at low strain rate, significant dynamic 

crystallization occurs. The activation energy for dynamic recrystallization is calculated as 

372 kJ/mol and the ratio of critical strain and peak strain is found as 0.42. The kinetics of 

dynamic recrystallization is model as Avrami equation. Based on experimental results, 

fraction of DRX at peak stress was calculated as 9.5% and fraction of DRX at stress equal 

to critical stress was calculated as 89.6%. The developed model shows good agreement 

with experimental data and available data in literature. 

Simulation results show that for the entire deformation area except near the neutral 

point, equivalent plastic strains are larger than critical strain, indicating initiation of 
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dynamic recrystallization. The fraction of DRX after hot rolling was simulated and 

compared to the corresponding plastic strain of each node. Plastic strains exhibit significant 

positive correlation with fraction of DRX. The effect of temperature on fraction of DRX 

was investigated through modeling of hot rolling with different rolling temperatures. 

Results show that under the same deformation, high rolling temperature significantly 

increases the fraction of DRX of each node. 
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Fig. 1. Test profile for hot compression test 

 

 

 

Fig. 2. Hot compression test results at varying strain rates and temperatures 
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Fig. 3. Determination of critical strain: (a) raw stress-strain curve (1100° C and 0.01 s-1), 

(b) work hardening curve, and (c) derivative of work hardening rate curve. 

 

 

 

 

Fig. 4. Work hardening curve at low strain rates 0.01 s-1 and 1 s-1 
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Fig. 5. Calculation of activation energy for deformation 

 

 

 

Fig. 6. Optimization of the values of activation energy Q and parameter 𝑛0 
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Fig. 7. Relationship between peak stress and peak strain vs. Z parameter 

 

 

 

 

Fig. 8. Determination of rate of dynamic recovery: (a) calculation of the steady stress 

𝜎𝑠𝑎𝑡, (b) calculation of the rate of dynamic recovery r 
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Fig. 9. Determination of parameters of dynamic recrystallization 

 

 

 

 

Fig. 10. Modeling of steel bar hot rolling process 
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Fig. 11. Schematic of dynamic recrystallization calculation during hot rolling 

 

 

 

Fig. 12. Dynamic recovery curve and fraction of DRX (a) literature [3] (b) current study 

 

 

 



91 

 

 

 

Fig. 13. Predictions of developed dynamic recrystallization model 

 

 

 

 

Fig. 14. Plastic strain distribution of steel cross section after hot rolling 
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Fig. 15. Critical strain and equivalent plastic strain distribution during hot rolling 

 

 

 

Fig. 16. Surface and internal critical strain and equivalent plastic strain distributions 
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Fig. 17. Fraction of DRX after hot rolling 

 

 

 

 

Fig. 18. Comparison between fraction of DRX and equivalent plastic strain 
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Fig. 19. Fraction of DRX at different rolling temperature 

 

Table 1. Chemical composition of studied medium carbon alloyed steel 

 C Mn Si Cr V Al 

mass % 0.38 1.3 0.57 0.13 0.08 0.018 

 

 

Table 2. Determined parameters of relationships among peak stress, peak strain, critical 

strain, and Z parameter 

 𝐴1 𝑛1 𝐴2 𝑛2 𝐵1 

Value 0.783 0.145 0.00148 0.171 0.420 

 

Table 3. Determined parameters of Johnson-Cook model 

 AJC BJC CJC nJC mJC 

Value 71.59 105.03 0.12 0.39 0.95 
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ABSTRACT 

Static softening is a crucial mechanism during hot rolling to relax residual stress 

and strain, refine microstructure, and improve steel thermo-mechanical properties. In this 

study, double hit tests with varying temperature, strain rate, interpass time, and pre-strains, 

were performed using Gleeble machine to investigate static softening behavior. Based on 

experimental results, a modified kinetics of static softening was developed to represent 

inerpass softening during hot rolling. Explicit subroutines of developed static softening 

model was developed and implemented into a three-dimensional finite element model of 

steel bar hot rolling. The static softening of round bar during hot rolling was simulated. 

The simulation results show that static softening occurs quickly in the beginning of 

interpass time and then slows down. Also, temperature and rolling speed effects on static 

softening were simulated and the results show that temperature has more significant 

influence on static softening that rolling speed.  
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1. INTRODUCTION 

Static softening is a critical phenomenon during hot rolling. Due to static softening, 

the microstructure of steel grows equalized to gain both ductility and strength. Full static 

softening removes residual stress and strain generated at each pass of hot rolling. 

Investigation of static recrystallization is important for steel manufacturing to improve 

product quality. However, controlling static recrystallization is challenging during plant 

hot rolling and it is influenced by many parameters, such as rolling temperature, rolling 

speed, plastic deformation, and rolling time. Finite element method demonstrates 

advantages in investigation of static softening comparing with inefficient and costly plant 

trials. 

Various studies were performed on static softening behavior. Andrade et al. [1] 

investigated precipitation effect on static recovery and static recrystallization, and provided 

methods to calculate fraction of static softening. Hodgson et al. [2, 3] studied the static 

softening effect on mechanical properties, and modeled the kinetics of static softening and 

microstructure evolution. Zurob et al. [4, 5] developed a comprehensive model considering 

recrystallization, recovery and precipitation to describe microstructure evolution during hot 

deformation. Also, mechanism maps were developed to predict the shape of softening 

curve. Zhang et al. [6] studied both dynamic and static softening behavior during multiple 

hot deformation of alloyed aluminum and the results showed static softening of 5182 alloy 

is more sensitive to deformation parameters, such as temperature and time, than 1050 and 

7075 alloys. Najafizadeh et al. [7] performed double hit tests to investigate postdynamic 

recrystallization behavior in stainless steel, and the results showed that large pre-strain 
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significantly increase the speed the static softening. Jiang et al. [8] performed multistage 

hot deformation to investigate static softening behavior and found that static recovery is 

the main softening effect at temperature 300°C. Khoddam and Hodgson [9] proposed a 

revised method to represent static recrystallization behavior and the prediction of 

developed model showed better prediction than conventional model. These literatures on 

modeling of static softening provide technical backgrounds for the current study.  

Hot rolling simulations considering static softening were performed by many 

researchers. Jung et al. [10] modeled steel bar hot rolling including static softening to 

predict the microstructure evolution. Yue et al. [11] developed three-dimensional finite 

element model to simulate rod hot rolling and related recrystallization behavior. The 

distribution of effective strain and temperature were simulated and verified by 

experimental data. He et al. [12] simulated multiple pass H-beam hot rolling considering 

microstructure evolution and recrystallization to optimize hot rolling process. Hore et al. 

[13] simulated microstructure evolution during static recrystallization in hot strip rolling 

process and the simulation results show good agreement with literature data. Besides 

simulation of hot rolling, plenty of simulations on microstructure are reported. Lin et al. 

[14] proposed a cellular automaton model to simulated microstructure during static 

recrystallization; Guvenc et al. [15] combined crystal plasticity finite element method and 

phase field method to simulate microstructure of static recrystallization; Orend et al. [16] 

developed a comprehensive method to model recrystallization during hot rolling. Among 

these studies, the simulation of static softening during multi-pass rod hot rolling is limited 

and it is necessary to perform corresponding investigation to optimize hot rolling schedule 

and improve product quality. 



100 

In the current study, double hit tests were performed to investigate static softening 

behavior. Interpass time, pre-strain, temperature, and strain rate effects on static softening 

were analyzed and plotted. A modified kinetics of static softening was built to simulate the 

round bar hot rolling. A three-dimension finite element model was developed to present a 

multi-pass hot rolling. The progress of static softening during hot rolling was studied, and 

the temperature and strain rate effects on static softening were simulated and investigated. 

2. EXPERIMENTS – DOUBLE HIT TEST  

A medium carbon alloyed steel 15V38 with chemical composition in mass % as 

shown in Table 1 was investigated in this study. Cylindrical specimens of 15 mm height 

and 10 mm diameter were machined from the as-cast steel bar. To investigate the static 

softening behavior, double hit tests are designed and performed using a Gleeble 3500 

simulation system. Temperature (1000°C and 1100°C), pre-strain (0.1, 0.25, and 0.4), 

strain rate (1 s-1 and 5 s-1), and interpass time (varies from 0.5s to 50s) were used as testing 

parameters according to industrial rolling condition.  

The design of double hit test is shown in Fig. 1. Test specimens were heated up to 

1150℃ with a heating rate of 260℃/minute. A hold of 5 minutes is then performed to 

anstenitizing and the specimen is cooled to desired testing temperature. An extra hold of 5 

minutes is included to eliminate temperature gradient. The first hit was performed followed 

an interpass time before the second hit. Depending on the testing temperature, strain rate, 

and pre-strain, the interpass time will be different to present the kinetics of static softening. 

Under faster kinetics of static softening, the interpass time is chosen shorter to catch the 
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fraction of static softening; otherwise the interpass time is chosen longer. After the holding 

of interpass time, the second hit is performed with same temperature and strain rate of first 

hit. 

To investigate specific parameter effect on static softening, three group of 

experiments were designed to investigate effects of interpass time, pre-strain, temperature, 

and strain rate (Table 2). In group 1, temperature and strain rate effect were tested under 

varying interpass time; in group 2 and 3, temperature and pre-strain effects were tested. 

Interpass-time effect was included in each group and testing sets. 

3. MODELING OF STATIC SOFTENING 

3.1 ANALYSIS OF EXPERIMENTAL STRESS-STRAIN CURVES 

During double hit test, the first deformation produces a pre-strain on the specimen. 

Dynamic softening including dynamic recovery and dynamic recrystallization occurs 

during this deformation. After the first deformation, a holding for static softening is 

perform. The fraction of static softening depends on the testing temperature, strain rate, 

pre-strain during first deformation, and the holding time. The second deformation is then 

performed after the holding until reaching designed maximum strain 0.6. An example of 

raw experimental curve at temperature 1100°C, strain rate 1 s-1, pre-strain 0.1, and interpass 

time 3s is shown in Fig. 2a. 

In Fig. 2a, the first deformation was performed until plastic strain 0.1. The 

corresponding stress-strain curve exhibits a yield stress 𝜎𝑜 and a peak stress 𝜎𝑚 marked in 

red circle. After the first hit, a holding of 3 second was performed for static softening and 
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then second deformation was performed. The second stress-strain curve in Fig. 2a shows a 

new yield stress 𝜎𝑟. Due to static softening during 3 seconds holding, peak stress 𝜎𝑚 at first 

stress-strain curve decreases to 𝜎𝑟. The fraction of static softening is defined as 

𝑋 =
𝜎𝑚−𝜎𝑟

𝜎𝑚−𝜎𝑜
     (1) 

Under different testing conditions, X value varies from 0 to 100%. When the yield 

stress 𝜎𝑟 of second hit is equal to the peak stress 𝜎𝑚 of first hit, fraction of static softening 

is zero (X=0); when the yield stress 𝜎𝑟 is equal to the yield stress 𝜎𝑜, the fraction of static 

softening is 100% (X=100%). Determination of these two yield stress is done by shifting 

second yield stress to the first yield stress (Fig. 2b). By shifting the second stress-strain 

curve (yellow line) to the first stress-strain curve (blue line), the elastic part of two overlaps 

and the two yield stresses are identified.    

 

3.2 PARAMETER EFFECTS ON STATIC SOFTENING 

Four parameters including time, temperature, strain rate, and pre-strain were 

considered in modeling of static softening. Interpass time effect is included in each test sets 

to plot the kinetics of time versus fraction of static softening. Experimental results of 

temperature 1000°C, strain rate 1 s-1, pre-strain 0.25 and varying interpass time is shown 

in Fig. 3. The first deformation curves of these four tests are same since they were 

performed at same temperature and strain rate. During the first deformation, subgrains start 

to nucleate on the grain boundary and dislocation density increases with residual stress and 

strain. During the interpass time, these subgrain grows and dislocation density decreases 

to remove residual stress and strain. The second flow curves then show softening behavior 

depending on the length of interpass time. 
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The interpass time in Fig. 3 varies from 1s to 10s and generates four different 

second stress-strain curves (Fig. 4a). At short interpass time 1s, second stress strain curve 

is much higher than other second stress-strain curves, indicating small fraction of static 

softening and large amount of residual stress and strain is passed to second deformation. 

As interpass time increases to 3s, the second curve significantly decreases and close to first 

curve (Fig. 4a). At interpass time 5s and 10s, the second curve is almost overlap the first 

curve, showing nearly full static softening (Fig. 4a). A fraction of static softening is 

calculated at each interpass time, and then the kinetics of static softening at temperature 

1000°C, strain rate 1 s-1, pre-strain 0.25 is plotted in Fig. 4b. 

Similarly, kinetics of static softening at other pre-strain, tempeature, and strain rate 

were calcualted and plotted in Fig. 5. According to practical rolling condition, temperature 

is chosen as 1000°C and 1100°C, strain rate is chosen as 1 s-1 and 5 s-1, and pre-strain is 

chosen as from 0.1 to 0.4. In Fig. 5a, the temperature and strain rate are fixed at 1000°C 

and 1 s-1, the pre-strain vaires from 0.1 to 0.4. As pre-strain increase, the fraction of static 

softening increases. Also, the slope of kinetics increases as pre-strain increases, because 

large pre-strain introduces significant dynamic recrystallization and nuclated grain, 

accelerating the kinetics of static softening during interpass time. In Fig. 5b, fraction of 

static softening increases as temperature increases from 1000°C to 1100°C. However, the 

change of X value caused by temperature is much smaller than pre-strain. Also, strain rate 

effect on fraction of static softening is similar to temperatue and is smaller than pre-strain 

effect. During hot rolling, large deformation occurs on steel product causing large plastic 

strain range, while the variation of temperature and strain rate in one signle pass is limited. 

Pre-strain demenstrates main effect on static softening. 



104 

3.3 MODELING OF KINETICS OF STATIC SOFTENING 

Avrami equation is widely used to describe the kinetics of static softening: 

𝑋 = 1 − exp (𝑘(
𝑡

𝑡0.5
)𝑛)    (2) 

𝑡0.5 = 𝐴휀̇𝑝휀𝑞exp (
𝑄

𝑅𝑇
)    (3) 

where X is fraction of static softening, t is time, 𝑡0.5 is the time when fraction of static 

softening reaches 50%, 휀̇ is strain rate, 휀 is strain, R is the gas constant 8.314 J/(molK), T 

is temperature, and Q is activation energy. Parameters k, n, A, p, and q are constants. 𝑡0.5 

at different pre-strain, temperature, and strain rate was directly determined from 

experimental results (Fig. 5). The kinetics parameter k and n is determined using nonlinear 

curve fitting based on experimental results (Fig. 6). Values of k and n are determined as 

0.757 and 0.782, respectively. 

However, the parameters k and n in traditional Avrami equation are constants, 

while the experimental results show that pre-strain has significant influence on the slope 

of kinetics, indicating that n value is a strain dependent value. A modified kinetics is 

proposed to address this shortcoming:   

𝑋 = 1 − exp (𝑘(
𝑡

𝑡0.5
)𝑛′)    (4) 

𝑛′ = 𝑓(휀)      (5) 

where 𝑓(휀) is strain effect on parameter 𝑛′. In the current study, linear relationship is used 

for 𝑛′ = 𝑓(휀). Values of 𝑛′ are determined at strain 0.1, 0.25, and 0.4 separately, and 𝑓(휀) 

is calculated as 1.718 휀 +0.39 (Table 3). This modified kinetics of static softening model 

was implemented into finite element model. 
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4. FINITE ELEMENT MODELING 

A nonlinear three-dimensional finite element model was developed to study hot 

rolling of a round steel bar. Four passes of a steel bar hot rolling, from P1 to P4, were 

modeled as continuous rolling process. The initial dimensions of the bar were 4 m in length 

with a diameter of 0.235 m and entered P1 with an initial speed of 0.14 m/s. The rolling 

information is shown in Table 4. The rolling information includes roller rotation speeds, 

roller diameters, pass depths, and roll gaps.  

Each pass has one pair of rollers plastically deforming the steel bar from round to 

oval or from oval to round, producing an elongation parallel to the rolling direction. Prior 

to entering the rolling pass, the initial temperatures for steel bar and rollers were 1100 °C 

and 150 °C, respectively. The steel bar and the rollers were meshed using ABAQUS 6.12 

(Fig. 7). The steel bar was built as a three-dimensional deformable part using 8-node brick 

element (C3D8RT), and rollers were modeled as rigid parts using 4-node rigid element 

(R3D4). Friction behavior between roller and bar was defined by Coulomb friction law 

with a friction coefficient 0.6 [17]. A Johnson-Cook model of steel grade 15V38 was built 

[17] based on experimental stress-strain curves and implemented into finite element model 

(Table 5). 

In the present study, the static softening model was coded in a user defined 

subroutine VUSDFLD of ABAQUS. When the node just exit the rolling gap, the static 

softening calculation starts. For each calculation increment during the interpass time, the 

fraction of static softening of each node is updated by adding the increment of static 

softening: 
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d𝑋 = [−exp (−k (
𝑡

𝑡0.5
)
𝑛
) ∙ (−kn (

𝑡

𝑡0.5
)
𝑛−1

) ∙
1

𝑡0.5
]d𝑡 (6) 

𝑋𝑖 = 𝑋𝑖−1 + d𝑋      (7) 

where dX is the increment of static softening, dt is time increment of each step, 𝑋𝑖 is current 

accumulated fraction of static softening, and 𝑋𝑖−1 is fraction of static softening at last step. 

5. RESULTS AND DISCUSSION 

5.1 VERIFICATION OF MODIFIED KINETICS OF STATIC SOFTENING 

A modified Avrami equation was proposed to address the complicated strain effect 

on kinetics of static softening. The comparison between traditional model and modified 

model is shown in Fig. 8. The experimental results from double hit tests are shown by dot 

markers and the predictions of static softening models are represented by lines. In Fig. 8a, 

the traditional model predicts kinetics of static softening as fixed slope. At higher pre-strain 

0.4, the experimental data shows significant quicker kinetics than prediction of traditional 

model while at low pre-strain 0.1 the experimental static softening is slower than prediction 

of traditional model. The predictions of modified model is shown in Fig. 8b. With modified 

n parameter considering pre-strain effect, the modified model shows better predictions than 

traditional model at both large and small pre-strain.  

 

5.2 SIMULATION RESULTS OF STATIC SOFTENING 

The deformation process during P1 is shown in Fig. 9. According to industrial hot 

rolling, the rolling temperature is set as 1100 °C. The cross section of steel bar was 
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deformed from round to oval and the corresponding plastic strain distribution is shown in 

Fig. 9. With significant deformation in vertical direction, the maximum plastic strain 

located at the top and bottom areas of cross section, and the minimum plastic strain located 

at the sides. 

The corresponding static softening simulation results of P1 is shown in Fig. 10. As 

the steel was deformed by P1, the static softening started to accumulate. The interpass time 

between P1 and P2 is designed as 8s. The residual strain relaxes while the fraction of static 

softening increases. From 0s to 2s, the residual strain quickly relaxes from 0.6 to 0.1, and 

the fraction of static softening increases from 0 to above 50%. From 2s to 4s, the majority 

of fraction of static recrystallization reaches 80%, and from 4s to 8s, the progress of static 

softening slows down. The final residual strain after 8s varies from 0.017 to 0.05 and the 

final fraction of static softening varies from 86% to 98%. The pre-strain effect is also 

exhibited in Fig. 10. At large plastic strain areas, top and bottom areas, the fraction of static 

softening quickly increases to 90% in 2s, while the small pre-strain areas, the sides of bar, 

has a very slow softening speed, showing 86% softening at the end of interpass. 

The static softening results of whole simulation from P1 to P4 are shown in Fig. 11. 

From P1 to P4, the rolling temperature decreases from 1100 °C to 1045 °C. Pre-strain and 

temperature show important influence during hot rolling. From round to oval at P1 and P3, 

the deformation and pre-strain are larger than deformation from oval to round at P2 and P4, 

causing larger fraction of static softening at P1 and P3. Also, due to higher temperature at 

P1 than P3, P1 exhibits larger fraction of static softening than other passes. From 0s to 8s, 

the fraction of static softening increases fast in large pre-strain areas and slow in small pre-

strain areas. As rolling from P1 to P4, the rolling speed increases and interpass time 
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decreases. By comparing P1 at 8s and P4 at 6s, the fraction of static softening at P4 6s is 

much lower than P1 8s, causing significant residual stress. Increasing distance between 

passes and rolling temperature will help to increase the fraction of static softening. 

 

5.3 TEMPERATURE AND ROLLING SPEED EFFECTS ON STATIC 

SOFTENING 

To investigate the temperature effect on static softening during hot rolling, three 

rolling temperature including 1165 °C, 1065 °C, and 965 °C were used in simulating P2. 

The corresponding static softening and residual strain are shown in Fig. 12. As temperature 

decreases from 1165 °C to 965 °C, the fraction of static softening decreases and residual 

strain increases. From 1165 °C to 1065 °C, the change of static softening and residual strain 

is not significant: the fraction of static softening decreases to 83% and residual strain 

increases to 0.057, which is minimal for next pass. However, when temperature decreases 

to 965 °C, the fraction of static softening significantly decreases, and the minimal fraction 

of static softening is 50%. Also, the corresponding residual strain increases to 0.12, which 

will has impact on next pass.  

On the other hand, roll speed effect on static softening was simulated. According 

to industrial rolling schedule, the rolling speed was chosen as 0.1 m/s and 0.3 m/s for P2. 

As it is mentioned in Fig. 5c, the strain rate has small influence on static softening when it 

was changed from 1 s-1 to 5 s-1. The simulation results of rolling speeds 0.1 m/s and 0.3 

m/s show very similar fraction of recrystallization. Both of them have similar fraction of 

static softening to Fig. 12b, and the variation among them is less than 5%. Therefore, 

comparing to rolling speed, temperature has more significant influence on static softening.    
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6. CONCLUSION 

In the current study, double hit tests were performed to investigate the static 

softening behavior during multipass hot rolling. Parameters including interpass time, pre-

strain, temperature, and strain rate are analyzed and the results showed that these 

parameters have significant influence on static softening. A modified kinetics model 

describing the static softening behavior during hot rolling was developed and implemented 

into a three-dimensional finite element model. The modified kinetics model of static 

softening shows better prediction than traditional model. The simulation results based on 

the developed modified kinetics was performed to simulate the softening progress of P1. 

Results show that static softening occurs very fast in the beginning 2s and then slow down 

until the end of interpass time. The final fraction of static softening during P1 is around 

86%~98%, and the corresponding residual strain is as low as 0.05.Hot rolling from P1 to 

P4 was simulated and the results show that the P1 and P3 with vertical deformation causes 

higher fraction of static softening. Also, temperature exhibits more significant effect on 

static softening than rolling speed.  
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Fig. 1. The experimental design of double hit test procedure 

 

 

 

 

 

Fig. 2. Analysis of raw experimental results of double hit test 

 



111 

 

Fig. 3. Experimental results at temperature 1000°C, strain rate 1 s-1, pre-strain 0.25, and 

varying interpass time 

 

 

 

 

Fig. 4. Calculation of time effect on static softening 
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Fig. 5. Kinetics of static softening based on double hit test: (a) pre-strain effect, (b) 

temperature effect, and (c) strain rate effect 

 

 

 

 

Fig. 6. Determination of kinetics parameters k and n 
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Fig. 7. Modeling of multi-pass steel bar hot rolling 

 

 

 

 

Fig. 8. Comparison between traditional model and modified model 
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Fig. 9. Plastic strain distribution of steel cross section after hot rolling 

 

 

 

Fig. 10. Static softening progress after P1 
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Fig. 11. Simulation results of static softening from P1 to P4 

 

 

 

Fig. 12. Temperature effect on static softening during hot rolling 
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Table 1. Chemical composition of studied medium carbon alloyed steel 

 C Mn Si Cr V Al 

mass % 0.38 1.3 0.57 0.13 0.08 0.018 

 

Table 2. Experimental design of testing groups 

 Temperature Strain rate Interpass time (s) Pre-strain 

Group 1 

1100℃ 1 s-1 1, 3, 5, 10 

0.1 
1100℃ 5 s-1 0.5, 1, 2, 3 

1000℃ 1 s-1 5, 10, 30, 50 

1000℃ 5 s-1 2, 5, 10, 30 

Group 2 1100℃ 1 s-1 
0.5, 1, 2, 3 0.25 

0.5, 1, 1.5, 2 0.4 

Group 3 1000℃ 1 s-1 
1, 3, 5, 10 0.25 

0.5, 1, 2, 3 0.4 

 

Table 3. Determination of parameter 𝑛′ and 𝑓(휀) 

Pre-strain 0.1 0.25 0.4 

𝑛′ 0.5487 0.8456 1.064 

𝑓(휀) 1.718휀+0.39 

 

Table 4. Rolling parameters of four rolling passes 

 
Roller rotation 

speed (rpm) 

Roller diameter 

(mm) 

Pass depth 

(mm) 

Rolling gap 

(mm) 

P1 5.8 606 60.3 33.1 

P2 7.2 590 79.4 26.5 

P3 8.6 638 52.4 22.7 

P4 10.3 649 66.7 8.76 

 

Table 5. Determined parameters of Johnson-Cook model 

 AJC BJC CJC nJC mJC 

Value 71.59 105.03 0.12 0.39 0.95 
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SECTION 

4. CONCLUSIONS 

The first paper of this work provides an inverse finite element method to revise 

experimental stress-strain curves with barreling effect. Gleeble hot compression tests were 

performed and the specimens after compression exhibited significant barreling shape. The 

corresponding experimental stress-strain curves differs from actual material properties due 

to barreling. An inverse finite element analysis was performed and effectively modified 

experimental stress-strain curves to minimize the errors from barreling. Three parameters 

including friction coefficient, temperature, and strain rate were considered in parametric 

studies. The friction coefficient shows a significant effect on barreling and changes the 

experimental stress-strain curve. As friction decreases, the accuracy of experimental curve 

increases. On the other hand, as temperature increases the accuracy of experimental curve 

increases due to temperature softening effect. Strain rate shows complex influence on 

barreling. At lower strain rate, the barreling effect increases as strain rate increases, while 

at higher strain rate, the barreling effect decreases as strain rate increases. The presented 

studies can be used to modify experimental data and develop accurate material models for 

simulation. 

The second paper developed a revised viscoplastic model to describe complex 

interacting effects of strain hardening, temperature softening, and strain rate hardening. 

Gleeble hot compression tests were performed at high temperature and varying strain rate. 

A traditional Johnson-Cook (JC) model, a traditional Zerilli-Armstrong (ZA) model, and a 
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combined JC and ZA model were developed based on experimental data. The combined 

JC and ZA model demonstrated better prediction on flow stress than traditional material 

models. A three-dimensional finite element model including developed material model was 

built to simulate round bar hot rolling. The simulation results show that the maximum 

plastic strain occurs at 45° and 135° areas of cross section. Plastic strain in x-direction and 

z-direction show compression and tension, respectively, while plastic strain in y-direction 

show combined compression and tension. Temperature demonstrates significant influence 

on stress distribution while the rolling speed has limited effect on stress. Due to temperature 

softening, the rolling torque decreases as temperature increases. Due to strain rate 

hardening, the rolling torque increases as rolling speed increase. 

In the third paper, a dynamic recrystallization model was developed and 

implemented into finite element to simulation round bar hot rolling process. Based single 

hot compression tests, critical strain, peak strain, and Zener-Hollomon (Z) parameter were 

identified through analysis of work hardening curve. The activation energy for dynamic 

recrystallization is calculated as 372 kJ/mol and the ratio of critical strain and peak strain 

is found as 0.42. The dynamic recovery was also calibrated to determine the softening 

caused by dynamic recrystallization. The kinetics of dynamic recrystallization is model as 

Avrami equation and implemented into finite element model. The simulation results show 

that plastic stain during compression exceed critical strain for most area of steel bar, and 

the dynamic crystallization occurs during hot rolling. The maximum fraction of dynamic 

recrystallization reaches 41%, while the minimum value is 7% on the sides of bar cross 

section. Large plastic strain contributes to the large fraction of dynamic recrystallization. 

Also, the fraction of dynamic recrystallization increases as temperature increases.  
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In the fourth paper, static softening model was developed and implemented into 

finite element model. Double hit test was designed and performed at varying interpass time, 

pre-strain, temperature, and strain rate. A modified kinetics of static softening was 

developed to simulate a multi-pass hot rolling. The modified kinetics demonstrates better 

prediction than traditional kinetics comparing to experimental results. The simulation 

results showed that at the beginning of P1, static softening occurs quickly and then slows 

down in later interpass time. The final fraction of static softening during P1 is around 

86%~98%, and the corresponding residual strain is 0.05, which is negligible for next pass. 

The simulation results from P1 to P4 show that the vertical deformation pass P1 and P3 

have larger fraction of static softening than horizontal deformation pass P2 and P4. Also, 

the temperature and rolling speed effects on static softening were investigated and the 

results show that temperature has more significant effect on static softening than rolling 

speed.   
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