
Scholars' Mine Scholars' Mine 

Doctoral Dissertations Student Theses and Dissertations 

2015 

Optimization based control design techniques for distributed Optimization based control design techniques for distributed 

parameter systems parameter systems 

Manoj Kumar 

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations 

 Part of the Aerospace Engineering Commons 

Department: Mechanical and Aerospace Engineering Department: Mechanical and Aerospace Engineering 

Recommended Citation Recommended Citation 
Kumar, Manoj, "Optimization based control design techniques for distributed parameter systems" (2015). 
Doctoral Dissertations. 2602. 
https://scholarsmine.mst.edu/doctoral_dissertations/2602 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2602&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2602&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2602?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2602&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


 

OPTIMIZATION BASED CONTROL DESIGN TECHNIQUES FOR 

DISTRIBUTED PARAMETER SYSTEMS 

 

by 

 

MANOJ KUMAR 

 

A DISSERTATION 

Presented to the Faculty of the Graduate School of the 

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY 

In Partial Fulfillment of the Requirements for the Degree 

 

DOCTOR OF PHILOSOPHY 

in 

AEROSPACE ENGINEERING 

 

2015 

 

Approved by 

S. N. Balakrishnan, Advisor 

Serhat Hosder 

Robert G. Landers 

Jagannathan Sarangapani 

Abhijit Gosavi 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COPYRIGHT 2015 

MANOJ KUMAR & S. N. BALAKRISHNAN 

ALL RIGHT RESERVED 



iii 

 

ABSTRACT 

 

The study presents optimization based control design techniques for the 

systems that are governed by partial differential equations. A control technique is 

developed for systems that are actuated at the boundary. The principles of dynamic 

inversion and constrained optimization theory are used to formulate a feedback 

controller. This control technique is demonstrated for heat equations and thermal 

convection loops. This technique is extended to address a practical issue of parameter 

uncertainty in a class of systems. An estimator is defined for unknown parameters in 

the system. The Lyapunov stability theory is used to derive an update law of these 

parameters.  The estimator is used to design an adaptive controller for the system. A 

second control technique is presented for a class of second order systems that are 

actuated in-domain. The technique of proper orthogonal decomposition is used first to 

develop an approximate model. This model is then used to design optimal feedback 

controller. Approximate dynamic programming based neural network architecture is 

used to synthesize a sub-optimal controller. This control technique is demonstrated to 

stabilize the heave dynamics of a flexible aircraft wings. The third technique is 

focused on the optimal control of stationary thermally convected fluid flows from the 

numerical point of view. To overcome the computational requirement, optimization is 

carried out using reduced order model. The technique of proper orthogonal 

decomposition is used to develop reduced order model. An example of chemical 

vapor deposition reactor is considered to examine this control technique. 
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1. INTRODUCTION 

 

 Consider a physical system that can be described by a finite number of state 

variables. A mathematical model of this system can be governed by a set of ordinary 

differential equations (ODEs). This model is, generally, called a lumped parameter 

model and can be written as 

  
( )

( ), ( ),
dx t

f x t u t t
dt

   (1) 

where 1( ) nx t R   is the state of the system, 1( ) mu t R   is the control input applied to 

the system,   f   is a real valued function and t  denotes the time. Here, both the state 

and the control are functions of time only. For example, the dynamics of a rigid mass 

in a pendulum can be described by lumped parameter model where ( )x t  comprises of 

displacement and velocity of the mass at any time t .  

 There are systems for which lumped parameter models does not represent the 

system’s behavior completely. Heat distribution on a plate, fluid flow in a channel, 

and convection in a reactor are few examples of that type of systems. A spatial 

variable must be taken into account in order to describe the system. These systems are 

defined by a set of partial differential equations (PDEs) and known as distributed 

parameter system (DPS) or infinite dimensional system. For example, let’s consider a 

DPS defined in a spatial domain    

 
2

2

( , ) ( , ) ( , )
( , ), , , ( , ), ,

dx y t x y t x y t
g x y t u y t y t

dt y y

  
  

  
  (2) 

with appropriate boundary conditions. Here,  ,x y t  and  ,u y t  are the state and the 

control, respectively, at a spatial location y  and time t . A one-dimensional heat 

distribution is an example of equation (2) where ( , )x y t  represents the temperature 
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along the spatial variable y  at any time t . Other examples of distributed parameter 

systems, not limited to equation (2), are fluid flow as described by Navier Stokes 

equations [1], flexible structure as described by Euler-beam equations [2], etc.  

 In general, all the physical systems are distributed in nature. A lumped 

parameter model is often considered to be satisfactory. However, such a model is not 

adequate while designing a feedback controller for underlying distributed parameter 

system. In these situations, one must consider the spatial distribution into account and 

analyze the system with PDEs. The control term in PDEs can be defined as, namely, 

in-domain control and boundary control. A system can be actuated using the both 

types of control action or either one of them. As the name suggests, the in-domain 

control acts inside the domain and the boundary control acts at the boundary. This 

dissertation presents control design methodologies for systems that are actuated in-

domain and also for the systems in which control acts at the boundary. 

 

1.1. LITERATURE SURVEY 

 The control design of distributed parameter systems has been an area of 

interest since early 1960. Many researches have presented different control design 

strategies in a gamut of research articles. Padhi and Ali offer a brief account of 

developments made in control design of distributed parameter systems in [3].  This 

paper discusses the development of control strategies from early developments (1960 

– 1989) followed by the recent developments (1990 onwards). Various open problems 

are briefly discussed along with the possible future directions. This section briefly 

lists the development of control design techniques and various applications of 

distributed parameter systems. 
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 In a broad sense, control design techniques for the distributed parameter 

systems can be categorized into one of the two approaches: ‘approximate-then-design 

(ATD)’ or ‘design-then-approximate (DTA)’.  

 The ATD scheme offers an interesting approach to solve the control design 

problem by approximating the original system to a lumped parameter model, possibly 

a reduced order model. Techniques such as the finite element method (FEM), the 

finite difference method (FDM), etc. can be used to obtain a lumped parameter model. 

The spatial domain is discretized and a solution is obtained at the discrete points in 

the case of FDM. The weighted residual approach is followed in the case of FEM to 

obtain an analogous lumped parameter model. The states of the model are defined in 

terms of coefficients of the predefined orthogonal basis functions (e.g., Legendre 

polynomials, Chebyshev polynomials, Fourier functions, etc.). This lumped model is 

then used to design the control action. However, the lumped parameter model, 

obtained from these techniques may not necessarily be a reduced order model. 

Therefore, any control synthesis may require solving a large number of equations; and 

hence become computationally expensive.  

 To circumvent this problem of resulting large number of equations and to 

obtain a reduced order model, the technique of proper orthogonal decomposition 

(POD), also known as Karhunen-Loeve expansion, has captured significant attention 

in the literature. Initially, the technique was proposed by Karhunen in [14] and by 

Loeve in [15]. Lumley [16] used this technique in the name of POD to model 

turbulent flows. In the POD technique, a finite number of ‘problem oriented’ 

orthonormal basis functions are designed. These basis functions are designed such 

that they approximately span the solution space of the original infinite dimensional 

system. These basis functions are further projected over the system’s equations to 
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obtain a low dimensional model with high accuracy. The technique gained more 

attention when the method of ‘snapshots’ was incorporated into the POD framework 

by Sirovich in [17]. The snapshot solutions are the representative solutions of the 

actual system. In order to obtain a set of snapshot solutions, the system is simulated 

for duration of time and state solutions are captured at different time intervals. An 

experimental solution can also be treated as a snapshot solution candidate. 

 The ATD philosophy is used at various places in the literature. Ravindran [18] 

describes the problem of obtaining POD basis functions as an eigen-value problem, 

and discusses the active control of fluid flow using the reduced order modeling. Singh 

et al. [19] discuss feedback linearizing control of unsteady flow past a circular 

cylinder where control action is achieved by a combination of suction, injection, and 

synthetic jets. Here, the control action is designed using POD technique based 

reduced order model. Ravindran discusses the optimal boundary feedback 

stabilization of fluid flows using model reduction in [20] where the controller is 

derived using linear quadratic regulator. Luo et al. [52] describe the application of 

POD to usual finite element formulation for two-dimensional solute transport 

problems. The objective is to reduce finite element formulation with lower 

dimensions and achieve high enough accuracy at the same time. 

 Atwell and King [21] apply POD to simulation and feedback control of the 

one-dimensional heat equation. Linear quadratic regulator problem and linear 

quadratic Gaussian problem are discussed in the paper. Camphouse [61] describes the 

POD technique to design the boundary control of 2D heat equations. Efe [62] 

discusses issues in the POD based modeling and boundary control of 2D heat flow.   

 References [22] - [27] present a novel technique to obtain a sub-optimal 

control solution for various PDE applications using proper orthogonal decomposition 
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(POD) and approximate dynamic programming (ADP). The POD technique is applied 

in order to obtain a finite dimensional model. This model is then used to obtain an 

ADP based suboptimal neuro-controller. Yadav, Padhi and Balakrishnan [22] develop 

surface temperature controller for high-speed aerospace vehicles. The design process 

is extended to develop an online robust neuro-controller to account for unmodeled 

dynamics and parametric uncertainties. In [23], Padhi and Balakrishnan describe the 

optimal control strategy of beaver population over a certain land area. Another article 

[24], from same authors, describes the synthesis of an optimal controller for a 

dispersion type tubular chemical reactor that is governed by two coupled nonlinear 

partial differential equations. This study can be used in synthesizing optimal control 

for a fairly general class of nonlinear distributed parameter systems. The paper [25] 

presents experimental implementation of a dual neural network based optimal 

controller for a heat diffusion system. Experimental results are demonstrated where 

objective is to attain a desired temperature profile over the spatial domain. 

Kumar et al. [26] develop a sub-optimal control technique to control the heave 

dynamics of a flexible aircraft wing using continuous actuation. The discrete actuation 

and controller development is described in [27] for the same problem. 

Suppose partial information (marred data) of the system is given to the user 

then how to restore the system or estimate the unknown data?  Data gathered from 

remote-sensing satellites in the presence of cloud cover as a natural obstruction is an 

example of this scenario. Everson and Sirovich [53] address the problem of using 

Karhunen-Loeve transform with partial data. The objective is to recover the modal 

coefficients for gappy snapshot solutions using a set of empirical eigenfunctions. 

Willcox [55] addresses the issue of incomplete data set with the extension of POD 

method. The “gappy” POD method is described to handle unsteady flow 
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reconstruction problems. The paper [98] describes the aerodynamic data 

reconstruction using gappy POD method and discusses the airfoil shape optimization. 

Model reduction has been studied with different perspectives in the literature. 

Moore [54] discusses the principal component analysis in linear systems to compute 

the singular value decomposition for analyzing signals. Kim [59] derives the 

Karhunen-Loeve procedure in the frequency domain as a tool for calculating 

eigenmodes of linear systems. The method is demonstrated for mechanical and fluid 

dynamic models. Willcox and Peraire [56] discuss the method of POD and concepts 

from balanced realization theory to perform a balanced reduction of a high-order 

linear system. The method is demonstrated for a linearized high order system that 

models unsteady motion of a two-dimensional airfoil. 

Adaptive model reduction has emerged as an interesting concept where basis 

functions are computed recursively as more information of the system becomes 

available. Varshney, Pitchaiah and Armaou [57] describe a feedback control design of 

dissipative PDE systems using adaptive model reduction. Initially, an ensemble of 

eigenfunctions is constructed based on a relatively small number of snapshot 

solutions. The dominant eigenspace is recomputed with the addition of each snapshot 

with possible increase or decrease in its dimensionality. Pitchaiah and Armaou [58] 

address the problem of control design in the presence of measurement constraints 

where partial data is assumed to be measured. The study discusses the use of adaptive 

POD method using a snapshot reconstruction technique, and gappy adaptive POD 

methodology that constructs locally accurate low dimensional model. 

 The control design techniques based on DTA approach use the original system 

as defined by PDEs. The control is formulated analytically in this approach. A 

comprehensive treatment of optimal control development based on DTA philosophy 
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is presented by Curtain and Zwart in [4]. The control design approach is based on the 

infinite-dimensional operator theory rooted in the functional analysis. The approach is 

mainly confined to linear systems. The control is first formulated in the infinite-

dimensional space and then approximated to a finite-dimensional space for 

implementation purpose. 

 Krstić and Smyshlyaev [5] present a text on the control design using 

backstepping transformation. This transformation is used for the linear partial 

differential equations and a boundary control is formulated as an analytic expression. 

The idea is to convert an unstable PDE to an exponential stable target system using 

the Volterra integral transformation; and control is computed as a solution of a certain 

well-posed PDE. While applying backstepping transformation in PDEs, one of the 

key issues is the choice of a target system. An appropriate target system is necessary 

to keep the nature of the transformed system.  

 Padhi and Balakrishnan [13] present two control design approaches for a class 

of first order distributed parameter systems. One approach can be applied to the 

systems when there is continuous actuation in the spatial domain. Principle of 

dynamic inversion with variational optimization theory is used to design this control 

action. The second approach combines the dynamic inversion technique with static 

optimization theory to design the control action at discrete points in the spatial 

domain. 

Adaptive control design is desired when mathematical model of the system is 

not known accurately. Generally, uncertainty in the system dynamics exists due to 

inaccurate values of system’s parameters. Smyshlyaev and Krstić [67] present three 

design methods, namely, the Lyapunov design, the passivity-based design, and the 

swapping design for adaptive control of PDE systems.  Adaptive boundary control 
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design for unstable parabolic PDEs is discussed in a series of three companion papers 

[68] - [70]. He and Ge [71] present an adaptive boundary control design for a 

vibrating string under the influence of time-varying disturbance. The dynamics of 

vibrating string is governed by a nonhomogeneous hyperbolic PDE and two ODEs. 

By using the same string dynamics, the adaptive boundary control is developed for a 

flexible marine installation system in [72].  

Boundary control problems in distributed parameter systems have been an area 

of growing interest in recent years. Researchers have presented control mythologies 

for theoretical as well as practical engineering problems. Krstić and Smyshlyaev [5] 

present a text on the boundary control of PDEs using backstepping design as 

mentioned previously. Liu and Krstić [6] discuss the problem of global exponential 

stabilization by boundary feedback for the Korteweg-de Vries-Burgers equation. 

Control law is derived with the stability proofs. In [7], Smyshlyaev and Krstić present 

the extension of backstepping method to plants with non-constant diffusivity/thermal 

conductivity and time-varying coefficients. The boundary stabilization problem is 

converted to a problem of solving a specific Klein-Gordon-type linear hyperbolic 

PDE. The paper [8] presents the first adaptive controllers for the reaction-advection-

diffusion plants with spatially varying parameters that use only boundary actuation. 

The design of adaptive controllers is based on the Lyapunov method. The paper [9] 

presents backstepping boundary control designs for fluid systems. The controller 

formulation is discussed for the problems of vortex shedding around a cylindrical 

bluff body in the flow and also for the turbulent channel flow. The paper [10] 

discusses a stabilization problem of the Euler-Bernoulli beam. The beam is controlled 

at one end and has the sliding boundary condition at the opposite end. The controller 

is designed to achieve any prescribed decay rate of the closed loop system.  
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Ravindran [20] describes the optimal boundary control design using model 

reduction for the flow stabilization. Liu [60] study the problem of boundary control 

for two-dimension (2D) heat equations. Kumar and Balakrishnan [63] discuss the 

boundary control design for 2D heat equations based on DTA philosophy. The control 

is design for different boundary conditions using the principles of dynamic inversion 

and optimization theory. Ou et al. [64] demonstrates the setting up a suitable current 

spatial profile in tokamak plasmas. In the study, tokamak is a device of torus shape 

that uses the magnetic field to confine plasma at very high temperature. Gaye et al. 

[65] describes a sliding mode feedback control approach for the robust stabilization of 

the spatial distribution of current profile in tokamak plasmas. In [66], the author 

derives a nonlinear distributed parameter system model governing the motion of a 

cable with an attached payload immersed in the water. A feed-forward controller is 

designed based on the linearized system. 

Delays are inevitable in the real systems. Sometimes even a small delay may 

be significant and make the system unstable. Delay can occur in the actuator’s input 

and/or in the sensor’s measurement as well. Krstić [41] provides a comprehensive text 

on delay compensation for nonlinear, adaptive and PDE systems. The text addresses 

various practical issues and proposes solutions using backstepping approach. Krstić 

and Bresch-Pietri [11] discuss a Lyapunov based adaptive control design that achieves 

global stability, without a requirement that the delay estimate be near the true delay 

value. Bekiaris-Liberis [42], in his PhD dissertation, presents procedures for the 

control and analysis of general nonlinear systems with delays and of nonlinear PDE 

systems. The paper [40] investigates the feedback control problem for the parabolic 

distributed parameter systems with or without time-delay. Nguyen [39] presents 

model predictive optimal control of time-delay distributed parameter systems 
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governed by first order, quasilinear hyperbolic PDEs. Zheng, Fu and Teng [43] 

discuss a linear distributed parameter bioprocess with boundary control input with 

time delay. The paper shows that the closed loop system generates a uniformly 

bounded 0C -semigroup of linear operators under a certain condition with respect to 

the feedback gain in the boundary feedback law. 

An Aeroelastic study of a flight vehicle has been a subject of great interest and 

research. Its importance lies in the achieving better performance, safety operation 

(e.g., aileron reversal, flutter analysis) and related analysis in the field of aeronautics. 

Structural dynamics of an aircraft wing characterized by aeroelastic nature is modeled 

by partial differential equations. The paper [47] presents a nonlinear aeroelastic 

formulation of a coupled bending-torsion dynamics of a flexible wing structure that is 

fully coupled with an aircraft rigid body dynamics. A finite-element method is used to 

discretize the nonlinear aeroelastic equations of the coupled bending-torsion motion. 

An elastic shaped aircraft concept with aeroelastic modeling is described in [48] by 

Nguyen and Urnes. The aircraft model is based on the rigid body generic transport 

model originally developed at NASA Langley Research Center. The model computes 

both static and dynamic responses of the wing structures. Yucelen et al. [49] illustrate 

an application of derivative-free, output feedback adaptive control on an aeroelastic 

model of longitudinal dynamics for a generic transport model. A control oriented 

model for the longitudinal dynamics of a highly flexible flying wing is developed in 

[50] by Gibson, Annaswamy and Lavretsky. The comparative study between linear 

LQG/LTR and adaptive LQG/LTR controller was presented in this paper. John et al. 

[51] present a multiple input concurrent learning model reference adaptive control 

approach applied to longitudinal dynamics of the generic transport model aircraft. In 
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this study, a reduced order model of the short period flight dynamics coupled with 

structural bending and torsion is used.  

Paranjape et al. [12] discuss PDE boundary control for flexible articulated 

wings on a robotic aircraft, where the output of interest is the net aerodynamic force 

or moment. Kumar et al. [26] describe a sub-optimal control technique based on POD 

and SNAC architecture for a class of second order systems. This technique is 

demonstrated to control the heave dynamics of a flexible aircraft wing. A beam-mass-

beam model is defined where beam represents the wing and mass represents the 

fuselage. Here the control is defined as a continuous function over the beam. For 

practical implementation, a set of discrete actuators is defined over the beam and 

control action is designed in [27] using the same techniques of POD and SNAC.  

The concepts of controllability and observability cannot be ignored while 

studying the infinite dimensional systems. It is intuitive to carry these concepts from 

the theory of finite dimensional systems to the infinite dimensional systems. The 

concept of stabilizability and detectability retain their full importance to a special 

subclass of the infinite dimensional systems. Fortunately, it is a very large subclass 

that is well represented in applications [4]. The situation with the properties of 

controllability and observability is very different. Most infinite dimensional systems 

can only achieve these properties in an approximate sense. The paper [28] reviews 

different observer design methods for first order and second order linear distributed 

parameter systems based on their infinite dimensional and finite dimensional 

descriptions. Engineers utilize the concepts of controllability and observability when 

actuators and sensors need to be placed in the spatial domain to achieve a desired 

objective. Misplaced actuators and sensors often lead to controllability and 

observability problems, and the desired system performance may not be achieved with 
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any choice of control law. The paper [29] discusses the optimal placement of control 

actuators and measurement sensors for transport-reaction processes. The optimal 

actuator and sensor location problem is formulated as the one of minimizing a 

meaningful cost functional that is solved by using standard unconstrained 

optimization techniques.  

Alonso et al. [30] present a systematic approach to reconstruct the infinite 

dimensional field in distributed parameter systems using limited number of sensors. 

The POD technique, that captures the most relevant dynamic features of the solution, 

is employed with the solution of max-min optimization problem in this paper. The 

paper [31] develops a spatial 2H  norm based computational scheme for finding the 

optimal locations of sensors and actuators in controlled flexible structures. The 

proposed genetic algorithm is used to solve nonlinear optimization problem for this 

purpose. In the paper [34], H  optimal actuator location problem is presented where 

actuators locations are chosen to minimize the effect of disturbances on the output. A 

derivative free optimization algorithm to calculate H  optimal actuator locations is 

described in this study. Nestorovic and Trajkov [35] propose actuator and sensor 

placement optimization method, which is based on balanced reduced models. The 

optimization method relies on 2H  and H  norms, as well as on controllability and 

observability Gramians. By assuming that a hierarchical structural exists between the 

actuators placement and controller design objective functions, the paper [36] solves a 

multiobjective design problem as a bi-level (leader and follower) Stackelberg game. 

The solution approach comprises of generic algorithms and sequential quadratic 

programming techniques and is applied to the design of a flexible truss structure. 

With the recent developments in actuators and sensors technologies, the 

vibration control methods are in the attention. The paper [32] demonstrates an active 
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vibration control system of flexible structures by using piezoelectric sensors and 

actuators. Ji and Wang [33] develop an adaptive neural fuzzy controller for active 

vibration suppression in flexible structures. A recurrent identification network is 

developed to adaptively identify the system dynamics in this study. The paper [37] 

presents a strategy for active damping of cable structures, using active tendons. The 

control of the parametric vibration of passive cables due to deck vibration is 

demonstrated in this study. Another paper [38] describes the robust control technique 

to stabilize the cable system under the influence of external disturbances. An H  

feedback control is constructed with the partial observation of the state using an active 

tendon. The paper [73] develops the POD based control and demonstrates the 

experimental implementation to control the vibrations of transverse beam. In this 

study, linear quadratic Gaussian compensator control of transverse vibrations was 

implemented on an aluminum cantilevered beam in a smart structure paradigm.  

Adaptive optics is one of the practical applications where the system dynamics 

is modeled by partial differential equations. Vogel and Yang [44] model a particular 

micro-electromechanical systems (MEMS) deformable mirror using a coupled system 

of nonlinear partial differential equations. A nonlinear constrained quadratic 

optimization problem is introduced in this paper for open-loop control of the MEMS 

mirrors. A model based feedforward control concept for fast set-point changes of 

large deformable mirrors is proposed in [45] by Rupple, Osten and Sawodny. In [46], 

performance enhancements for deformable membrane mirrors based on model-based 

feedforward control are presented. Due to lack of high speed internal position 

measurements of the membrane’s location, feedback control of the distributed 

actuators cannot be implemented in the mirrors. It is shown that by using feedforward 
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control, the dominant dynamics of the membrane can still be controlled allowing for 

faster settling times and reduced membrane vibrations. 

The problems of optimization related to shape, sizing, topology or control has 

been a part of attention in the field of distributed parameter systems. Shape 

optimization can be viewed as a part of structural optimization field. As the term 

indicates, optimization of the geometry is of primary interest. Jameson [95] presents 

the optimization concepts of control theory in the field of aerodynamic design. The 

paper demonstrates that control theory can be used to formulate computationally 

feasible procedures for aerodynamic designs. LeGresley and Alonso [97] present 

inviscid airfoil analysis and a design optimization method that uses reduced order 

models to reduce the cost of computation. Proper orthogonal decomposition technique 

is utilized to obtain the reduced order models in this study. Another paper [98] 

demonstrates the proper orthogonal decomposition technique with incomplete (gappy) 

data for field reconstruction and inverse airfoil design. Oyama, Nonomura and Fujii 

[99] propose a new approach to extract useful design information from the shape data 

of Pareto-optimal solution of an optimization problem in the study. The study [100] 

addresses the drag reduction goal for aircraft vehicle through three themes - 

innovative vehicle configurations via non planar wing optimization, a new concept of 

elastic wing shaping control, and a new aerodynamic control effector called a variable 

camber continuous trailing edge flap. 

 

1.2. CONTRIBUTION 

A control design technique, that is generic in its development, and 

computational efficient for implementation purpose, is always desired. First part of 

this dissertation presents a generic boundary control design methodology based on 
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design-then-approximate philosophy for nonlinear systems. This design follows the 

principles of dynamic inversion and optimization theory.  

In real engineering systems, the accurate values of the system parameters are 

rarely known. These parameters define the characteristic property of the systems. Few 

examples of the parameters are such as: coefficient of conductivity in heat transfer 

applications, coefficient of viscosity in fluid flow applications, and coefficient of 

thermal expansion in convective flow problems. Implementation of any controller, as 

designed using the inaccurate value of the parameters, may leads to the system’s 

instability.  An adaptive control development is designed in second part of the 

dissertation that addresses the issue of parameter uncertainty.  

 Third part of this dissertation discusses the development of approximate-then-

design philosophy based control design technique for a class of nonlinear systems. A 

reduced order model is developed by following the proper orthogonal decomposition 

technique with the weighted residuals. A sub-optimal controller is designed based on 

the reduced order model. Single network adaptive critic architecture is used for the 

controller synthesis.  

 In the last part, dissertation discusses an optimal control of stationary 

thermally convected fluid flow from numerical point of view. Traditionally, the 

optimization is carried out using finite difference, finite element or finite volume 

based discrete models that are usually of very high dimensions. These large 

dimension models require huge computations in solving the flow and in obtaining the 

optimal solution. A reduced order model based optimization procedure is examined to 

overcome the computational requirements where proper orthogonal decomposition 

technique is utilized to develop the reduced order model of low dimension.  
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 Some portion of the dissertation is documented by the author in the papers 

[26], [27] and [63]. For a brief account of the development made here, reader may 

refer to these references.  

 

1.3. ORGANIZATION OF THE DISSERTATION 

 This dissertation comprises of six sections. Section 1 introduces to the field of 

distributed parameter systems and their applications. Literature survey lists a gamut of 

design techniques in various problem domains.  

 Section 2 presents a boundary control design technique for nonlinear 

distributed parameter systems. A step wise procedure of controller formulation is 

described. The applicability of developed control is demonstrated for heat equations 

and thermal convection loops. 

 Section 3 introduces to a class of systems with parameter uncertainty. An 

adaptive controller development is discussed which also incorporates the idea of 

control design from Section 2. The developed controller is demonstrated for heat 

equations and thermal convection loops. 

 Section 4 describes the development of reduced order models for a class of 

systems. The POD technique for model reduction is introduced and a step wise 

procedure is discussed to obtain reduced order model by using Galerkin procedure. A 

sub-optimal control formulation based on neural network architecture is described for 

nonlinear systems. An aircraft flexible wing problem is considered to demonstrate the 

validity of developed controller. 

 Section 5 examined the reduced order modeling based optimization for 

stationary fluid flows. The flow is convection-driven. Reduced order models are 

analyzed to overcome the computation requirements while achieving the accuracy of 
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optimal solution. An example of high pressure chemical vapor deposition reactor is 

considered to discuss the optimization procedure. 

 Section 6 summarizes the developments made in this dissertation. 

  



18 

 

2. DYNAMIC INVERSION BASED BOUNDARY CONTROL OF DPS 

 

 In this section, a boundary control design methodology is developed based on 

the DTA philosophy. The methodology is inspired from the work by Padhi and 

Balakrishnan [13] where the principles of dynamic inversion and optimization theory 

were used to formulate an analytic expression of in-domain controller. Dynamic 

inversion [74], which is a special case of feedback linearization [76], has been 

successfully applied to many applications in which the system is defined by ODEs 

[77], [78]. The same principles are utilized here to design a state feedback boundary 

controller where optimization theory [75] facilitates in the formulation of a unique 

controller’s expression. The main advantage of this methodology lies in its fairly 

general development that does not demand the knowledge of complex mathematical 

tools like infinite-dimensional operator theory and yet provides the closed form 

controller’s expression. The designed controller is not computationally expensive and 

could be easily applied online.  

 Two examples are discussed to demonstrate the applicability and aspect of the 

methodology. Two-dimensional (2D) heat equations are first considered following 

with a model problem of a two dimensional cavity. Next, thermally convection loops 

are shown to be stabilized by the boundary control.  

 

2.1. BOUNDARY CONTROL SYNTHESIS 

2.1.1. System Description.  Consider a system of partial differential 

equations as 

  , ', '',..., ,tx f x x x y t   (3) 
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with appropriate boundary conditions. Here, ( , )x y t  is the state of the system defined 

in a domain  . The state is a function of spatial variable y  and time t . The 

domain   is fixed and bounded by  . The function  f   is a real valued function 

with same dimension as of the state. In the equation (3), 
tx  represents the time partial 

derivative and 'x  represents the spatial partial derivatives. The degree of spatial 

partial derivative is denotes by number of apostrophe  ' .  

 The boundary control is an implicit function in the equation (3). It can be 

defined as Dirichlet, Neumann or Robin boundary condition. In this dissertation, we 

consider the Neumann boundary condition and represent it as the control, e.g., 

 ,

ˆ

x t
u

n

 



 . Here, u  is the control at the boundary and n̂  represents the normal 

unit vector at the boundary. 

2.1.2. Controller Formulation.  The objective of the control design is to 

actuate the system such that it tracks a target signal  ,x t  . In order to achieve this 

objective, an output function  z t  is defined as: 

      
21

, ,
2

z t x t x t d



       (4) 

It is important to note that 0z  , means x x  point-wise. By following the 

principles of dynamic inversion [74], the control is designed to satisfy the following 

first order stable equation: 

 0tz kz    (5) 

In this equation, 0k   is a user-defined parameter. An equation is derived by using 

(4) and (5), and written in a compact form as 

     , ,g x s t x s t uds






    (6) 
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where the control term u  will appear after carrying the integration in equation (5). 

The term s    denotes the variable for integration. The function 

    , , 0g x s t x s t   if    , , 0x s t x s t   and     , , 0g x s t x s t   if 

   , , 0,x s t x s t s      . The term   is a function of known values 

 , , ', ',...,x x x x k   and linearly proportional to the parameter k . Notice that the 

control term is inside the integral in the expression (6). This expression alone is 

insufficient in obtaining a unique value of control. To obtain a unique value, problem 

is designed within the framework of optimization theory as a control minimization 

problem with expression (6) acting as an equality constraint. Accordingly, a cost 

function  J t  is defined as 

      
21

,
2

J t r s u s t ds


      (7) 

Here,   0,r s s      is the weighing function and chosen by the control designer. 

This weighing function provides the flexibility of putting relative importance of the 

control action at different spatial locations at the boundary. An augmented cost 

function  J t  is defined as 

         , ,J t J t g x s t x s t uds


 



 
    

 
   (8) 

where   is a Lagrange multiplier. The control and the Lagrange multiplier are the 

unknown variables in the equation (8). Values of these variables are obtained by 

applying the necessary condition of optimality, i.e., by taking the first variation of 

 J t  and equating it to zero. As a result, the following control expression is obtained:  
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  
    

    
2

, ,
,

, ,

g x s t x s t
u s t s

g x s t x s t
r ds

r












   

 
 


  (9) 

Comments:  

1. The parameter k  acts as the inverse of the time constant for the first order stable 

dynamics in (5). Hence, by increasing (decreasing) the value of k , a faster (slower) 

response can be obtained appropriately. This parameter also affects the amount of 

control action. The term   indicates that the amount of control action is proportional 

to parameter k  and, hence, inversely related to the time constant of the stable 

dynamics. 

2. In the control expression (9),     , , 0g x s t x s t   as 

   , ,x s t x s t s      and this creates a singular solution; however, the control 

value at the boundary goes to zero as    , ,x s t x s t . Let, D  denotes the 

denominator in the expression (9). A tolerance value is set for D  such that when 

D tol  the corresponding control values are set to zero to avoid numerical problems. 

 

2.2. HEAT EQUATIONS 

2.2.1. Problem Description.   The 2D heat equation on a unit square is 

defined as [79] 

    , , , ,t xx yyw w t x y w t x y       (10) 

for time 0t   and spatial domain       1, 0,1 0,1x y    , with the initial condition 

given as  0(0, , ) ,w x y w x y . Here, w  represents the temperature, and   denotes the 
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thermal diffusivity. Subscripts are used to represent partial derivatives, i.e., t

w
w

t





, 

2

2xx

w
w

x





 and 
2

2yy

w
w

y





. The boundary conditions are given as 

 

   

   

   

   

1

2

3

4

,1, ,

, ,1 ,

,0, ,

, ,0 ,

x

y

x

y

w t y u t y

w t x u t x

w t y u t y

w t x u t x









  (11) 

Here, 1( , )u t y , 2 ( , )u t x , 3( , )u t y  and 4 ( , )u t x  are the controls acting on the boundary 

walls. In the study, the 2D heat equation is referred to as the system; the temperature 

and thermal diffusivity are referred to as the state and the parameter of the system, 

respectively. The objective of the boundary controls is to derive the system to a 

desired state as given by    
1

, ,w x y x y   . 

2.2.2. Controller Development.  By following the design procedure as 

discussed in Section 2.1.2, an output function ( )z t  is defined as 

  
2

*

0 1,0 1

1

2
y x

z w w dxdy
   

    (12) 

Here, the temporal and the spatial variables are omitted in the formulation of control 

for brevity, i.e., ( , ) ( , , )w w x y w t x y  . The control is designed to satisfy the stable 

equation of z  given as  

 1 0tz k z    (13) 

In this equation, 1 0k   is a user-defined parameter. By substituting the expression 

(12) in (13) while also using the system dynamics (10), the following equation is 

obtained: 
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         

         

* *

* *

1

1, 1, ,1 ,1

0, 0, ,0 ,0

x y

y x

x y

y x

w w y w y dy w w x w x dx

w w y w y dy w w x w x dx 

   

   

 

 
  (14) 

where 

      * * * * 11
x x x y y y t

k
w w w w w w dxdy w w w dxdy z

 
      
     (15) 

Here, the single integrals  
x

dx  and  
y

dy  are defined over the domains  0,1x  

and  0,1y , respectively. Next, a cost function  1J t  is defined to find a unique 

solution of the control as 

 

     

     

2 2

1 1 1 2 2

2 2

3 3 4 4

1 1
( ) ( )

2 2

1 1
( ) ( )

2 2

y x

y x

J r y u y dy r x u x dx

r y u y dy r x u x dx

  

 

 

 

  (16) 

Here, 0ir   for all i  acts as the weighing profile for the control action iu  and can be 

chosen per design flexibility. By following the calculus of variation, an augmented 

cost function  1J t  is defined using (16) and (14) as 

 

         

         

* *

1 2

1 1 1
* *

3 4

1, ,1

0, ,0

y x

y x

w w y u y dy w w x u x dx

J J
w w y u y dy w w x u x dx




    
 

   
     
  

 

    (17) 

where 1  is a Lagrange multiplier. By taking the first variation of 1J  and equating it 

to zero, following expression is obtained for the boundary control 
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  

 

  

 

  

 

  

 

*

1

1 1

*

2

2 1

*

3

3 1

*

4

4 1

1,
( )

,1
( )

0,
( )

,0
( )

w w y
u y

r y D

w w x
u x

r x D

w w y
u y

r y D

w w x
u x

r x D
















 


 

  (18) 

where 

 

   

 

   

 

   

 

   

 

2 2
* *

1 2

1 2 2
* *

3 4

1, ,1

0, ,0

y x

y x

w w y w w x
dy dx

r y r x
D

w w y w w x
dy dx

r y r x

  
  
 
 
  
  
  

 

 

  (19) 

2.2.3. Results & Discussion.  This section discusses the numerical results 

from representative simulations by using the control design developed in Section 

2.2.2. These simulations were performed by discretizing the spatial domain, with 

equally spaced elements, with a distance of x  along the x  direction and y  along 

the y  direction. A total of x yN N  spatial elements were used along the x  and y  

directions, respectively. The forward-in-time and central-in-space (FTCS) difference 

scheme [80] was used to simulate the system. Time step t  was taken such that it 

satisfies the Von Neumann stability criterion [80]:  
 

2

4

x
t




  . Satisfaction of this 

criterion ensures the numerical stability of the system’s simulation. The simulation 

parameters are taken as:    50 50x yN N   , 
310t    sec, 0.1  , 

 1 3( ) ( ) 1 0,1r y r y y    ,  2 4( ) ( ) 1 0,1r x r x x    , 1 1k   and 
1010tol  . The 

system was initialized with a non-zero surface profile given by 
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      0, , cos cosw x y x y    (20) 

The boundary control (18) was applied to the system to achieve a desired profile 

given by    *

1, 1 ,w x y x y   . Figure 2.1(a)-(d) illustrates the state surface 

profile at time instants   0,  0.25,  0.5t  , and 2  seconds, respectively. In these 

figures, horizontal axes specify the surface’s dimension and vertical axis specifies the 

magnitude of temperature over the surface. The system was stabilized to the desired 

level within 2 seconds by selecting the design parameter 
1k  value as 1. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2.1. Temperature profile at (a) 0t  , (b) 0.25t  , (c) 0.5t  , (d) 2t   seconds 

 

 Figure 2.2 illustrates the time history of the control profiles at each boundary 

wall. The horizontal axes specify the distance along the boundary wall and the time 

evolution. The vertical axis specifies the magnitude of the control profile on that 

boundary wall. It can be seen that all the control profiles approach zero as 
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   *w s w s . This behavior of the control can be understood from the heat equation 

(10). The spatial partial derivatives, as indicated on the right side of this equation, 

represent only the diffusion of heat over the surface. It is intuitive that once the 

control applied at the boundary drives the system to the reference level, system does 

not require any more heat energy and the system stays at that level with no more 

boundary control.  

 
(b)  

 
(c)  

 

 

 
(a)  

 
(d)  

Figure 2.2. Time history of control profile at the boundary wall as specified by the co-

ordinates (a) (1, )y  (b) ( ,1)x  (c) (0, )y  (d) ( ,0)x  

 



27 

 

 To see the effect of singularity in the control expression (18),   and 1D  are 

plotted with respect to time in Figure 2.3(a) and Figure 2.3(b), respectively. A snippet, 

that shows the plot on a smaller scale, is taken and attached to the same plot. In the 

Figure 2.3(b), term 1D  approaches the tolerance value of 
1010

 near at 3.4t   second. 

It was observed that numerator, which is   w w   at any boundary point, was 

lesser in magnitude as compared to the denominator after keeping the value of 1D  

within the tolerance limit. This practical step avoids singularity in control values. If a 

tolerance limit is not set, the denominator may reach zero faster than the numerator 

and will result in a singular solution.  

 

(a) 

 

(b) 

Figure 2.3. Time history of (a)  , and (b) denominator term 1D  

 

2.3. 2D CAVITY PROBLEM 

2.3.1. Problem Description.  The control design technique, as described in 

Section 2.1.2, is applied to a 2D geometry of the kind seen in cavity noise reduction 

applications [61]. Figure 2.4(a) illustrates the geometry of the problem with spatial 

co-ordinates. In the Figure 2.4(a): 1 0x  , 2 0.18x  , 3 0.56x  , 4 0.74x   and 1 0y  ,

2 0.18y  , 3 0.36y  , 4 0.74y  . The problem domain   is defined by 1 2  , 
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where          1 2 3 1 2 1 4 3 4, , , ,x x y y x x y y    
 

and    2 2 3 2 3, ,x x y y   . The 

cavity is described by the region 2 . The system dynamics is given by (10) on the 

domain  ,x y   for 0t  . The boundary conditions are given as follows 

 
   

   
1

2

2 1

3 2

, , ,

, , ,

x c

x c

w t x y u t y at

w t x y u t x at








  (21) 

and 

 3( , , ) 0w t x y at    (22) 

where 
1c

u  and 
2cu  are the Neumann boundary control. Boundaries 1 2,   are defined 

as:  1 2 2 3, ,x y y     2 3 2 3,x y y   . The rest of the boundary region is defined by 

3 . The objective is to drive the system to a desired temperature profile 
*w  with the 

following boundary conditions 

 
 

 

*

2 1

*

3 2

, 1

, 1

w x y at

w x y at








  (23) 

and 

 *

3( , ) 0w x y at    (24) 

2.3.2. Controller Development.  The controller is designed to satisfy the 

stable dynamics of z  as given by (13). By using the boundary conditions (21) - (24), 

following equation is obtained: 

  
 

 
 

2 1

2 3 2 3

3 2

* *

, ,

c c c

y y y y y y
x x x x

w w u dy w w u dy 
 
 

       (25) 

where 

      * * * * 11
c x x x y y y t

k
w w w w w w dxdy w w w dxdy z

 
 

       
     (26) 

 



29 

 

 

   

(a) 

 

(b) 

 

(c) 

Figure 2.4. (a) geometry of a two dimensional cavity problem,  

(b) desired temperature profile, (c) desired control profile 

 

 To obtain a unique value of control from (25) and (26), a cost function, to be 

minimized, is defined as follows: 

  
 

 
 

1 1 1 2 2 2

2 3 2 3

2 3

2 2
* *

, ,

1 1

2 2
c c c c c c c

y y y y y y
x x x x

J r u u dy r u u dy
 
 

       (27) 

Here, 
1

*

cu  and 
2

*

cu  are the desired control profiles corresponding to 
*w . 

1cr  and 
2cr  are 

used defined control weighing profiles. The following control expression is obtained 

by using the procedure as described in Section 2.1.2. 
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 
 

 
 

1 1

1

2 2

2

* *

1

* *

2

c c

c c

c c

c c

c c

c c

E
u u w w at

D r

E
u u w w at

D r








  


  

  (28) 

where 

 

 

 

 

 

 
 

 
 

1 22 3 2 3

2 3

1 2

2 3 2 3

2 3

2 2
* *

, ,

* * * *

, ,

c

c cy y y y y y
x x x x

c c c

y y y y y y
x x x x

w w w w
D dy dy

r r

E w w u dy w w u dy

 
 

 
 

 
 

    

 

 

  (29) 

2.3.3. Results & Discussion.  Numerical simulations were carried out for 

this problem where the spatial domain was discretized by x  in x  direction and y  

in y  direction. Simulation parameters are given as: 0.02x y    , 310t   , 

0.1  ,  
1 2 2 3( ) ( ) 1 ,c cr y r y y y y     and 1 1/ 3k  . Figure 2.4(b) shows the 

desired surface profile 
*w  and Figure 2.4(c) shows the desired control profiles 

1

*

cu  and 

2

*

cu  , corresponding to 
*w . It is easy to interpret the behavior of control on the 

boundary walls 1  and 2  due to symmetry of the problem. To satisfy the boundary 

conditions of the desired profiles (23) and (24) at steady state, it is necessary to 

maintain a positive heat flux at the boundaries 1  and 2 . This positive heat flux was 

provided by 
1

*

cu  and 
2

*

cu  at their respective boundaries. Note that the negative values 

of 
1

*

cu  at the boundary 1  represent positive heat flux. 

 The system was initialized with the zero temperature profile   0 , 0w x y   all 

over the domain. The control action, given by (28), was applied to the specified 

boundary walls. It was observed that the controller was able to derive the system to 

the desired temperature profile within 2  seconds. Figure 2.5(a) and Figure 2.5(b) 
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illustrate the magnitude of the temperature profile at 0.25t   and 2t   seconds, 

respectively. In these figures, horizontal axes specify the distance along the 2D 

geometry as shown in Figure 2.4(a). Figure 2.5(b) shows that the temperature profile 

that has reached to the desired level as shown in Figure 2.4(b). 

 
(a)   

 
(b)   

 
(c) 

 
(d) 

Figure 2.5. (a) and (b): temperature profile at 0.25t   and 2t  , respectively; time 

history of control at (c) left boundary wall 1   (d) right boundary wall 2  

 

 In steady state, the non-zero control is necessary to maintain the system at the 

desired temperature profile. The nonlinear nature of the desired control profile, as 

shown in Figure 2.4(c), can be understood from the geometry of the problem. In order 

to satisfy the boundary conditions (23) and (24), it is required to have more heat flux 

near the end points, as compared to the central region of the boundary walls. Figure 

2.5(c) and Figure 2.5(d) illustrates the time history of control profile at the boundary 
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walls 1  and 
2 , respectively. It can be observed that both control profiles approach 

their desired value as shown in Figure 2.4(c).  

 

2.4. THERMAL CONVECTION LOOP 

 Thermal convection loop is a simplified model that represents a viable tool for 

studying the behavior of natural convection. The convection loops have been 

extensively studied (e.g., see [81] - [83]) and have been used in many applications 

such as solar heating and cooling systems, reactor cooling system, engine and 

computer cooling, etc. As the working principle of a convection loop is based on the 

natural convection, it provides a means for circulating the fluid without the use of 

pumps. A thermal convection loop is described here by a Newtonian viscous fluid 

contained in between two concentric cylinders standing in a vertical plain as shown in 

Figure 2.6. In this figure, 1R  and 2R  denote the inner and the outer radius of the 

cylinders, respectively. The process of heating the loop from below and cooling it 

from above creates a temperature gradient (opposite to gravity) that results in a 

change in the density of the fluid. The fluid with low temperature will be denser 

compared to the fluid with high temperature. This variation in density generates a 

buoyancy force that tends to move the fluid, i.e., fluid with high temperature tends to 

rise upwards and, conversely, fluid with low temperature tends to settle down. This 

motion is opposed by the force due to fluid’s viscosity and thermal diffusivity. The 

fluid motion is created when the resistive force generated by these dissipative terms is 

overcome by the force due to buoyancy. 
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Figure 2.6. Geometry of the thermal convection loop 

 

 A feedback control needs to be applied when it is required to change the 

nature of the flow inside the loop. There are a few control design papers which have 

considered linear and nonlinear models of the loop dynamics. A PDE model of the 

loop was formulated by Burns, King and Rubio in [84] using the Boussinesq 

approximation. The loop was actuated by controlling the temperature at the outer 

radius. A linear approximation of the nonlinear model was used and a linear quadratic 

Gaussian (LQG) controller was designed based on the DTA scheme to achieve local 

stability. The controller was approximated to a finite-dimensional space by solving 

the associated riccati equation using finite element techniques. A nonlinear feedback 

controller based on ATD scheme was designed by Bošković and Krstić in [85]. The 

original nonlinear PDE model was first discretized in space using a finite difference 

method to obtain a high order system of coupled nonlinear ODEs. Two uncoupled 

systems were then formulated by using a backstepping transformation with Dirichlet 

boundary conditions. The loop was actuated by the velocity and the temperature, both 

controlled at the outer radius. Simulation results were presented for different sizes of 

spatial grid. The shortcoming of this technique is that the coordinate transformation 

does not hold in the limit when the discretized grid approaches the continuous 

domain. Moreover, one of the key issues is the choice of a target system while 

applying backstepping transformation in PDEs. An appropriate target system is 
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necessary to keep the parabolic character of the original system, i.e., keep the second 

spatial derivative in the transformed coordinates. A state feedback boundary control 

law was designed in [86] with a combination of singular perturbation theory and the 

backstepping method for infinite-dimensional linear systems. The nonlinear term in 

the loop dynamics was neglected while deriving the control law; and stability the 

system was proved using Lyapunov stability theory.  

 In this study, the convection loop is stabilized by applying boundary control 

(at the outer radius) where no approximation is used in constructing the controller. 

The following mathematical model [84] is used for the controller formulation and is 

written in cylindrical coordinates as 

 

   

 

2

2

0

2

, cos
2

, ,

r
t rr

r
t rr

uu
u r t T d v u

r r

T Tu
T r t T T

r r r







 



 

 
     

 

 
     

 


  (30) 

with the boundary conditions 1 2( , ) ( , ) 0u R t u R t  ,    1 1, , sinT R t KR   and 

   2 2, , sinT R t KR  . This model represents the coupled dynamics of the fluid 

motion; and the temperature at any point in the spatial domain is described by (radial, 

angular) position      1 2, , 0,2r R R     . The state of the thermal convection 

loop is described by the fluid velocity  ,u r t  and temperature  , ,T r t  at any time 

0t  . Subscripts with the state variables denote partial derivatives,  i.e., /yx x y   

and 
2 2/yyx x y  . In the system of equations (30), g    where g  is the 

magnitude of acceleration due to gravity and   is the coefficient of thermal 

expansion. The coefficients v  and   denote kinematic viscosity and thermal 

diffusivity, respectively.  
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 In the model described above, the gap between the cylinders is assumed to be 

small, i.e., 2 1 1R R R  such that the fluid particle flows in circular streamlines at a 

fixed distance from the center of the cylinders. Therefore, the velocity depends only 

on the radial coordinate. Furthermore, fluid properties  , ,v   are assumed to be 

constant except for the density (Boussinesq approximation [84]). 

2.4.1. Problem Statement.  The no-motion steady state of the system 

described by (30) is of the form    , 0, sinu T Kr  , which is open loop unstable for 

sufficiently high values of K . A new variable sinT T T Kr      is introduced 

to shift the equilibrium to    , 0,0u   . The system of equations (30) is then 

rewritten in terms of the new state variable as 

 

   
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, cos
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, , cos

r
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r
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r t Ku
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 
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 
     

 

 
      

 


  (31) 

with the boundary conditions 1 2( , ) ( , ) 0u R t u R t  ,  1, , 0R t    and 

   2 , , ,r R t t    . Here,  , t  represents the heat flux at the outer radius of the 

loop and treated as the boundary control. From a physical point of view, total heat 

flux applied at the boundary of the convection loop will be  , sint K   . The 

objective is to stabilize the system in (31) using boundary control while satisfying rest 

of the boundary conditions. In this section, the thermal convection loop is regarded as 

the system, and fluid’s coefficients are considered as the system’s parameters. 

2.4.2. Controller Development.  This section describes the development of 

the proposed boundary control law by using the principles of dynamic inversion and 
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variational optimization. It is assumed that exact values of parameters  , ,v   are 

known. First, an output function is defined as follows: 

  
2 2

1 1

2

2 21 2

0

( ) ( , ) , ,
2 2

R R

R R

p p
z t u r t dr r t d dr



        (32) 

where 1 2, 0p p   are real numbers and act as weighing factors. A controller is 

designed to satisfy the following first order stable dynamics  

 2 0tz k z    (33) 

here 
2 0k   acts as a gain. By using the definition of z  from (32) and the dynamics 

from (33), the following equation is obtained: 
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

        (34) 

Further, by substituting the expression of tu  and t  from the loop dynamics (31) in 

(34), we get 

    
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0
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
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where the term   is given by 
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  (36) 

In order to obtain unique value of control, a cost function is defined as  

    
2

2

2

0

1
,

2
J t t d



     (37) 

By following the principles of variational optimization as discussed in Section 2.1.2, 

the following control law is obtained: 
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  (38) 

Let,  
2

2

2 2

0

,D p R d



      denotes the denominator term. It may be noticed that 

both the numerator and the denominator in the this expression approach zero as 

 2 , 0R   . To avoid singular solutions, the control profile is set to zero when the 

absolute value of the denominator is less than a specified tolerance, i.e., D tol . 

2.4.3. Results & Discussion.  The simulation parameters, taken from Burns 

et al. in [84], are 1 1.1975R  ft, 2 1.2959R  ft, 58 10   /
o
F, 61.514 10   ft

2
/sec 

and 51.22 10v   ft
2
/sec. The convection loop geometry was discretized into a grid of 

50 by 90 points in the radial and the angular directions, respectively. The design 

parameters values were: 0.03K   , 1 2 1p p   and  
3

2 10k  . All simulations were 

run with the initial state profile of the system as shown in Figure 2.7. 

 
(a) 

 
(b) 

Figure 2.7. Initial profile of the state variables (a)  , ,0r  , and (b)  ,0u r  

 

The system was first simulated without any application of boundary control. 

Evolution of  , ,r t   at the radial locations  1 2 1 / 5ir R R R i   , for  3,5i  , are 
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shown in Figure 2.8 (a) and (b). The spatiotemporal profile of  ,u r t  is shown in 

Figure 2.8 (c). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2.8. Time history of (a)  3, ,r t  , (b)  5 , ,r t   and (c) ( , )u r t  in the case of 

uncontrolled loop, (d) Temperature  , ,0T r   profile 

 

From Figure 2.8 (a) and (b), it is clear that the system is unstable when initialized with 

a non- zero profile as shown in Figure 2.7. A physical interpretation of these results is 

as follows: The system was initialized with a temperature distribution with a relatively 

high value of   near zero radian and a relatively low value at   radian. As the 

buoyancy force overcomes the dissipative force due to fluid viscosity and thermal 

diffusivity, fluid motion exhibits instability, i.e., the fluid in regions with high 

temperature starts rising upward and the fluid in the regions with low temperature 

starts settling down. This unstable motion can be observed in Figure 2.8 (c).  

Instability in the  , ,r t   state profile can be understood from the initial temperature 
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distribution  , ,0T r  . Figure 2.8 (d) shows the initial temperature distribution where

   , ,0 , ,0 sinT r r Kr     . Due to the flow in the positive direction, the fluid 

with low temperature starts to settle down at   radian and the fluid with high 

temperature flows upward at zero radian. This action lowers the temperature at   

radian and increase the temperature at zero radian.  

 Next, the system was simulated with the application of boundary control. 

Time history of the control action is shown in Figure 2.9 (a). In the control profile, 

positive values of control means that heat is applied and negative values mean that 

heat is extracted, at the boundary. Initial state profile, as shown in Figure 2.7 (a), 

provides an idea of the nature of heat flux distribution that is required for the control 

action, i.e., heat should be added to the boundary points having negative values of 

 2 , ,R t   and, conversely, heat should be extracted from the boundary points having 

positive values of  2 , ,R t  . Figure 2.9 (a) displays this nature of control profile. It 

can be observed that by applying this control action, the state profiles approach 

equilibrium as observed from Figure 2.9 (b) - (d). In investigating the control history, 

it was found that the absolute value of the numerator in the controller expression (38) 

was always lesser in magnitude as compared to the denominator D . This behavior 

was observed till 
2200 10  seconds where the denominator was still greater than the 

tolerance limit 
3010

. It is quite possible that the denominator may approach zero 

faster than the numerator for other values of design variables. To avoid any resulting 

singular solution, control values are set to zero as denominator goes below the 

specified tolerance. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2.9. Time history of (a) the heat flux ( , )t  at the outer radius, and   

(b)
 
 3, ,r t  , (c)  5 , ,r t   , (d) ( , )u r t  in the case of controlled loop 

 

 To investigate the effect of gain 
2k  on system stability, a simulation was run 

by taking half of its previous value i.e. 
3

2 0.5 10k   . This gain can be interpreted as 

the inverse of the time constant of the z  dynamics. As the value of control ( , )t  is 

directly proportional to 
2k , it takes more time to stabilize the system with a low value 

of 
2k . This stabilizing behavior of control can be observed in Figure 2.10 (a) which 

shows that the control profile reaches zero in nearly twice the time period as 

compared to the plot in Figure 2.9 (a). Figure 2.10 (b) shows the comparison in the 

magnitude of control effort at time 0t   for different values of the gain parameter. 

The magnitude of control profile is more for the higher value of 2k . 
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(a) 

 
(b) 

Figure 2.10. (a) Time history of the heat flux ( , )t  at the outer radius when 
3

2 0.5 10k   , (b) ( ,0)  profile for 
3

2 0.5 10k    and 3

2 10k    

 

 In summary, a control design technique for nonlinear systems was described in 

its generic form. By using the design procedure, controllers’ expressions were 

formulated for heat equations and thermal convection loops. The results demonstrate 

that the design technique has an excellent promise, and due to its general formulation 

it can be applied to a variety of boundary control problems.  
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3. ADAPTIVE BOUNDARY CONTROL BASED ON LYAPUNOV 

STABILITY 

 

 It is not always possible to have an accurate mathematical model of 

engineering systems. An uncertainty in the system may exist either due to unmodeled 

dynamics or due to the system’s parameters. Examples of systems’ parameters are: 

coefficient of thermal diffusivity   in the heat equation (10), coefficient of kinematic 

viscosity v  in the fluid flow equation (30), etc. To address this practical issue of 

parameter uncertainty in the system, the control design methodology, as described in 

Section 2.1, is extended to formulate an adaptive controller.  

 In the process of designing an adaptive control law, an estimator is, generally, 

defined. In the present study, estimator has the similar mathematical structure as of 

the actual system except with the inaccurate values of system’s parameters. By using 

the Lyapunov stability theory, an update law of these parameters is obtained such that 

estimator tracks the actual system. Once the tracking is established, an adaptive 

control law is formulated based on the estimator dynamics. 

 The applicability of this adaptive controller is demonstrated using the 

examples of heat equations and the thermally convected fluid flow as introduced in 

Section 2. 

 

3.1.  ADAPTIVE BOUNDARY CONTROL SYNTHESIS 

3.1.1. System Description.  Consider a system of partial differential 

equations as 

 0 1 1 2 2 ...t n nx F a F a F a F       (39) 

with appropriate boundary conditions. Here, the state  ,x y t  is a function of spatial 

variable y  and time t . In the equation (39),    , ', '',..., , , 0,1,...iF x x x y t i n  
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are real valued functions. Here, 
tx  represents time partial derivative and 'x  

represents spatial partial derivative. The degree of spatial partial derivative is denotes 

by number of apostrophe  ' .  It is assumed that the values of parameters 

 1,2,...ia i n  happen to be inside a lower and an upper bound as denoted by ia  

and ia , respectively.  

3.1.2. Controller Formulation. To design a feedback controller with 

uncertain values of parameters, an estimator is designed to track the system. It is 

important to note that the system state is available whereas the system parameters are 

unknown. The estimator serves two purposes here: (a) estimator is defined using 

inaccurate values of parameters; and it is used to derive an update law of the 

parameters, (b) estimator is used to formulate an adaptive control action. The 

estimator is assumed to be of the form 

   1 20 1 2 ...t ne nx k x x F a F a F a F         (40) 

with the same boundary conditions as of the system. Here, ( , )x y t  is the estimated 

state, 0ek   is a design matrix,    1,2,...,ia t i n  are the estimated values of 

unknown parameters ia , respectively. The following error terms are defined as 

 
i i i

e x x

a a a

 

 
  (41) 

where e  is the state estimation error and    1,2,...,ia t i n  are the parameter 

estimation errors. The state error dynamics can be written using (39), (40) and (41) as 

 1 21 2 ... nt e ne k e a F a F a F       (42) 

 This error dynamics need to be stabilized to force the estimator to track the 

states of the actual system. By using the Lyapunov stability theory [87], a parameter 
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update law is derived to stabilize the error dynamics. Consider a candidate Lyapunov 

function V : 

 

2

2

1

1 1
0 0 & 0

2 2

n
i

i

i i

a
V e d e a

f

        (43) 

Here,  0 1,2,...,if i n   are weighing factors for the parameter errors. The time 

derivative of V  is written as 

 
1

t

n
i iT

t t

i i

a a
V e e d

f

    (44) 

By using the error dynamics (42), (44) becomes 

 
1

t

n
iT T

it e i i

i i

a
V e k ed f e Fd a

f 

 
   

 
    (45) 

The following parameter update law is given as 

  

0, 0

, 0

, 1,2...

, 0

0, 0

t

T
i i i i

T T
i ii i i i

T
i iii ii

T T
i ii i i i

T
i i i i

if a a and f e F

f e F if a a and f e F

f e F if a a aa i n

f e F if a a and f e F

if a a and f e F



 



 



   


   

    

   



  




 



 



  (46) 

Consequently, (45) becomes 
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1

1

, 0

, 0

,

, 0

, 0

n
iT T T

i ie i i i i

i i

T T
i ie i i

T
i iie

t

T T
i ie i i

n
iT T T

i ie i i i i

i i

a
e k ed f e F d if a a and f e F

f

e k ed if a a and f e F

e k ed if a a aV

e k ed if a a and f e F

a
e k ed f e F d if a a and f e F

f

  

 



 

  


    




   


    

    



    


  

 



 

  



  (47) 

Since,  0 1,2,...,if i n  , the following inequality is satisfied: 

 
T

t eV e k ed


    (48) 

tV  is negative semi-definite, i.e., 0tV  . This shows that estimation error in both the 

states and the parameters are bounded. Next, by assuming the bounded control action 

and using Barbalat’s Lemma [87], it can be shown that 0e  as t  .  

 An adaptive controller is designed by following the procedure as described in 

Section 2.1.2. The difference from the previous design procedure is that here 

controller expression is derived using the estimator dynamics (40). A function ( )z t  is 

defined  

      
21

, ,
2

z t x t x t d



       (49) 

with the following first order stable equation: 

 0tz k z    (50) 

Here, k  has similar significance as k  in Section 2.1.2. An equation is derived by 

using (49) and (50), and written in a compact form as 

     , ,g x s t x s t uds






    (51) 
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In the equation (51), the function     , , 0g x s t x s t   if    , , 0x s t x s t   and 

    , , 0g x s t x s t   if    , , 0,x s t x s t s      . The term   is a function 

of known values  1, , , ', ', ',..., , ,..., nx x x x x x k a a   and linearly proportional to the 

parameter k . The controller is designed to (a) satisfy the stable dynamics given in 

(50) and (b) minimize the following cost function: 

      
21

,
2

J t r s u s t ds


      (52) 

Here,   0r s   s     acts as the weighing profile for the control action  ,u s t  and 

can be chosen per design constraints. By using the calculus of variations [75], the 

following control expression is obtained: 

  
    
    

2

, ,
,

, ,

g x s t x s t
u s t s

g x s t x s t
r ds

r











   

 
 


  (53) 

 

3.2. HEAT EQUATIONS 

 In this section, adaptive control is formulated for the heat equation as 

described by (10) in the Section 2.2. Here, the unknown parameter is the coefficient 

of diffusivity   that falls between a positive lower bound    
and an upper bound 

  .  

3.2.1. Controller Development. To design a feedback controller with 

uncertain value of parameter, an estimator is designed to track the system’s behavior. 

This estimator is assumed to be of the form 
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  t e xx yyw k w w w w         (54) 

where 0ek   is a design parameter and  t  is the estimated value of the unknown 

parameter   at time t . The boundary conditions are given as 

 

   

   

   

   

,1, ,1,

, ,1 , ,1

,0, ,0,

, ,0 , ,0

x x

y y

x x

y y

w t y w t y

w t x w t x

w t y w t y

w t x w t x









  (55) 

 The state estimation error and the parameter estimation error are defined as 

e w w   and     , respectively. By using these definitions, the state error 

dynamics is defined as  

    , , , ,t e xx yye k e w t x y w t x y        (56) 

A Lyapunov function is defined as  

 
221 1

2 2
V e dxdy

f
    (57) 

Here, 0f   is a real number. The following update law is given for the parameter 

 t   

 

0, 0

, 0

,

, 0

0, 0

t

if and f E

f E if and f E

f E if

f E if and f E

if and f E



 



 



 

 

   

 

 

   

   


   

   


  

  (58) 

 

such that the inequality 2 0t eV k e dxdy   is satisfied. Note that the double integral 

is defined over the domain       , 0,1 0,1x y    in this section.  
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 Next, an output function is defined as:  
2

*1
( )

2
z t w w dxdy  . An adaptive 

controller is formulated to satisfy the stable dynamics 1 0tz k z   and to minimize 

the following cost function: 

 

     

     

2 2
1 21 2

2 2
3 43 4

1 1
( ) ( )

2 2

1 1
( ) ( )

2 2

y x

y x

J r y u y dy r x u x dx

r y u y dy r x u x dx

  

 

 

 

  (59) 

By using the calculus of variations [75], the following control expressions are 

obtained 

 

  

 

  

 

  

 

  

 

*

1

1

*

2

2

*

3

3

*

4

4

1,
( )

,1
( )

0,
( )

,0
( )

w w y
u y

r y D

w w x
u x

r x D

w w y
u y

r y D

w w x
u x

r x D
















 


 

  (60) 

 where 

 

   

    

* *

1* * *1

x yx x y y

e
t

w w w w w w dxdy

k k
w w w w dxdy w w w dxdy z



  

    
 

     



 
  (61) 

 

and 
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   

 

   

 

   

 

   

 

2 2
* *

1 2

2 2
* *

3 4

1, ,1

0, ,0

y x

y x

w w y w w x
dy dx

r y r x
D

w w y w w x
dy dx

r y r x

 
 

 
 

 
 
 

  
  
 

 

 

  (62) 

3.2.2. Results & Discussion.  The system was simulated by applying the 

adaptive control law given by (60). The objective was to drive the system to the 

following desired surface profile:         * , 1 , 0,1 0,1w x y x y    . The 

simulation parameters were taken as:  1 3( ) ( ) 1 0,1r y r y y    ,  

 2 4( ) ( ) 1 0,1r y r y x    ,    2, 10 ,0.2   ,  1 0.2k  , 0.2ek   , 0.078f  .  

 
(a) 

 
(b)  

 
(c)  

 
(d)  

Figure 3.1. State profile at (a) 0t  , (b) 0.2t  , (c) 1t  , (d) 30t   

 

The estimator’s state was initialized with a zero surface profile (0, , ) 0w x y  ; and the 

parameter   was initialized with the lower bound. Figure 3.1 shows the surface 



50 

 

profile of actual system at the time instants   0,  0.2,  1t   and 30  second. It can be 

observed that the controller is able to drive the system to the desired surface profile in 

30  seconds. 

 The variables ek  and f  play an important role in the estimation of the 

parameter  . The variable ek  provides robustness to the estimated state error 

dynamics (56). Its significance lies in the fact that it stabilizes the error dynamics 

quickly (slowly) for a higher (lower) value and, vice-versa. Values of the variables ek  

and f  
should be tuned appropriately such that the estimation error in both the state 

and the parameter approaches zero about the same time for several cases. Interested 

readers may refer [88] to study the role of these variables on the stability of the 

estimator dynamics.  

 
(a)  

 
(b)  

 
(c)  

 
(d)  

Figure 3.2. State estimation error profile at (a) 0t  , (b) 0.2t  , (c) 1t  , (d) 30t   
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Figure 3.2 illustrates the estimation error at time instants   0,  0.2,  1t   and 30  

second. The error profile approaches zero in 30  seconds. Figure 3.3 illustrates the 

time history of parameter’s estimated value. The evolution of the parameter depends 

on the role played by the state error profile and spatial derivatives in the parameter’s 

update law. It was observed that the estimated value remains in the bounds and the 

actual value is estimated very well within 30  seconds. 

 

Figure 3.3. Time history of estimated parameter    

  

 The transient behavior of the control action can be observed in Figure 3.4 from 

time 0t   to 1 second. During this time period, control (heat flux) at the boundaries 

causes the system to achieve nearly a flat surface profile. This transition requires 

maximum amount of heat flux at the boundary as compared to the rest of the time 

period. It was observed that it takes significant amount of time to reach to the target 

profile after 1t   second. Transient performance of this process can be made faster by 

taking a higher value of 1k . Note that the term 
1k

z


, in the   expression (61), 

dominates the other terms as the system’s state reaches a nearly flat surface profile. 

The system was simulated for 1 0.5k  . To compare the results obtained with 

1 0.2k  , control action at the boundary wall co-ordinates (1, )y   is plotted in Figure 
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3.5. Figure 3.5 (a) and (b) illustrate the control profile for 1 0.2k   from 0t   to1 

second and 1t   to 30  seconds, respectively.  

 
(b) 

 
(c) 

 

 
(a) 

 
(d) 

Figure 3.4. Time history of control profile at the boundary wall as specified by the co-

ordinates (a) (1, )y  (b) ( ,1)x  (c) (0, )y  (d) ( ,0)x , from time 0t   to 1 second 

 

Figure 3.5 (c) and (d) illustrate the control profile for 1 0.5k   from 0t   to1 second 

and 1t   to 20  seconds, respectively. The time history of the control action is shown 

in these separate figures for each value of 1k  to show the relative magnitude of the 
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control effort. To compare the effect of 1k  in the control profile, relatively high value 

of control action can be observed in Figure 3.5 (c) as compared to in Figure 3.5 (a). 

Moreover, the system approaches the target profile and control approaches zero in 20  

seconds for 1 0.5k   as shown in Figure 3.5 (d). 

 
(a) from time 0t   to 1 second 

 
(b) from time 1t   to 30  second 

 
(c) from time 0t   to 1 second 

 
(d) from time 1t   to 20  second 

Figure 3.5. Time history of boundary control profile at the right boundary wall (a) and 

(b): for 1 0.2k  , (c) and (d): for 1 0.5k    

 

3.3. THERMAL CONVECTION LOOP 

 This section discusses the development of an adaptive control law for thermal 

convection loop dynamics as described by (31). Here, the values of parameters 

 , ,v   are not known accurately. We assume that the value of each parameter is 

bounded below and above. The pairs  ,  ,  ,v v  and  ,   denote the (lower, 

upper) bounds of ,v  and  , respectively.  
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3.3.1. Controller Development.  An estimator is defined by the following 

dynamics 

 

     

     
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 


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

 
       

 
       

 

 
       

 


  (63) 

with boundary conditions 1 2( , ) ( , ) 0u R t u R t  ,  1, , 0R t    and 

   2 , , ,r R t t    . In (63),  ,u r t  and  , ,r t   are the estimated states of  ,u r t  

and  , ,r t  , respectively. uk  and k  are the design parameters; and      , ,t v t t   

are the estimated values of , ,v  , respectively. The state estimation errors in u  and 

  are defined as 

 ;ue u u e      (64) 

The parameter estimation errors in ,v ,   are defined as 

 ; ;v v v          (65) 

By using the definitions (64), (65) and the dynamics in (31) and (63), the error 

dynamics are derived as 
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  (66) 

By using Lyapunov stability theory, a parameter update law is obtained such that the 

estimator stability can be proved in a global sense. Consider a candidate Lyapunov 

function V as 
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where , , 0vf f f   . Let    1 2 3, , , ,x x x v  ,   
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following update law is then given for each parameter  1,2,3i  : 
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  (68) 

For the given update law (68) of each parameter, the following inequality is satisfied 

for the time derivative of Lyapunov function 
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If 0uk   and 0k  ,  tV  is negative semi-definite, i.e., 0tV  . This shows that 

estimation errors in both the states and the parameters are bounded. Next, by applying 

Barbalat’s Lemma [87], it can be shown that 0ue   and 0e   as t  . Next, an 

output function ( )z t  is defined as 
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where 1 2, 0p p   are real numbers and act as weighing factors. The control is 

formulated to satisfy the following stable dynamics: 2 0tz k z   and to minimize the 

following cost function:    
2

2

0

1
,

2
J t t d



   . By following the principles of 

variational calculus, control expression is derived and given as 
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where 
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  (72) 

3.3.2. Results & Discussion. The unstable loop dynamics with parameter 

uncertainties was stabilized by the application of adaptive control given by (71). The 

upper bounds of parameters were set at twice their true values and lower bounds at 

one-tenth of their true values. To show the effects of uncertainties on the system, the 

system was first simulated with the boundary control given by (38). This control 

action was computed by assuming the upper bound of each system parameter as its 

actual value. Figure 3.6 (a) and Figure 3.6 (b) show the evolution of  2 , ,R t   and 

( , )u r t , respectively. Although the control attempts to stabilize the system as shown in 

Figure 3.6 (c), the system does not reach equilibrium due to insufficient amount of 

control effort. 

Next, the adaptive boundary control was applied to the same convection loop 

system. The estimated values of the parameters  , v and   were initialized with their 

respective upper bound and the estimator states were initialized with the zero profile 

given as    1 2,0 0 ,u r r R R    and        1 2, ,0 0 , , 0,2r r R R       . 

The design variables were chosen as: 0.5uk   , 0.1k   ,
35.5 10f   , 15vf  ,
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310f
 . Variables uk  and k  provide robustness to the estimator dynamics; the 

variables f , vf  and f  serve as learning rates in the parameters’ update law (68). 

Values of these variables should be tuned appropriately such that the estimation errors 

in both the states and the parameters approach zero about the same time for several 

test cases. Significance of uk  and k  lie in the fact that high values of these variables 

stabilize the state error dynamics quickly and, conversely, low values slowly. 

 
(a) 

 
(b) 

 
(c) 

Figure 3.6. Time history of (a)  2 , ,R t  , and (b) ( , )u r t  with the application of (c) 

the non-adaptive control ( , )t   the presence of parameter uncertainty 

 

 To test the effectiveness of the parameter estimation algorithm, a percentage 

relative error is first defined for each parameter as 100e



  , 100v

v
e

v
   and 

100e



  . The evolution of each parameter occurs according to its update law as 
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given by (68). Figure 3.7 (a) shows the time history of state estimation error 
ue  . This 

error approaches zero within 1000 seconds. Figure 3.7 (b) and Figure 3.7 (c) show the 

parameter estimation errors e  and ve , respectively, with time. A reason of achieving 

the accurate estimation of parameters is due to oscillations. The system is excited so 

that the parameters affecting the excited modes are estimated very well. To 

understand this mathematically, readers may refer to persistency of excitation 

condition described in reference [87] (chapter 6).  

 
(a) 

 
(b) 

 
(c) 

Figure 3.7. Time history of (a) the state estimation error ( , )ue r t , and the percentage 

relative errors (b) e  and (c) ve  

 

 Figure 3.8 (a) shows the state estimation error e  
history which approaches 

zero within 200 seconds. Figure 3.8 (b) shows the percentage relative error e . It is 

clear that the parameter   was estimated well within 200 seconds. It is observed from 
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Figure 3.8 (b) that there is no change in the estimated value   during the initial 60 

seconds. This effect is reflected in the error e  dynamics as shown in Figure 3.8 (a). 

 
(a) 

 
(b) 

 
(c) 

Figure 3.8. Time history of (a) the state estimation error ( , , )e r t  , (b) the percentage 

relative error e  , and (c) adaptive boundary control ( , )t  

 

Figure 3.8 (c) shows the time history of the adaptive boundary control. At time 0t  , 

the value of control is zero as the estimator dynamics is initialized with the zero 

profile. As the estimation errors in the states and the parameter go to zero, the 

adaptive control behaves same as the non-adaptive control with accurate information 

of parameters, as expected. 
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(a) 

 
(b) 

Figure 3.9. Time history of (a)  ,u r t  and (b)  2 , ,R t   

 

Figure 3.9 shows the evolution of the actual states  ,u r t  and  2 , ,R t   after the 

application of the adaptive control. It is clear that by the application of control, the 

convection loop system has been stabilized.  
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4. REDURED ORDER MODELING BASED OPTIMAL CONTROL DESIGN 

 

 This section describes a control design methodology based on approximate-

then-design (ATD) philosophy. The original system (distributed parameter system) is 

first approximated to a finite-dimensional reduced order model. This model is then 

used to synthesize the control action. This control methodology is described for a 

class of second order distributed parameter systems. The technique of proper 

orthogonal decomposition (POD) is used here to obtain a reduced order model. This 

model is then used to design a sub-optimal control action by using approximate 

dynamic programming (ADP) formulations [89].  

 Dynamic programming offers the most comprehensive solution approach for 

nonlinear optimal control formulation. However, the associated Hamilton-Jacobi-

Bellman equation demands excessive amount of computation to obtain the optimal 

control. ADP overcomes this computation complexity by accessing the function 

approximation capabilities of neural networks. Moreover, the solution can be 

implemented online, since the control computation requires minimal calculations. The 

solution to the ADP formulation is obtained through a dual neural network approach 

called adaptive critics (AC). Heuristic dynamic programming (HDP) and dual 

heuristic programming (DHP) are two classes of adaptive critics. In HDP, one of the 

networks, namely, action network represents the mapping between the state and 

control variables while the second network, called critic network, represents the 

mapping between state and the cost function to be minimized. In the DHP class, the 

action network has the same representation whereas the critic network maps the states 

to the co-states. A single network adaptive critic (SNAC) [90] was developed to 

eliminate the need for the second network in the adaptive critic architecture. This 
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resulted in considerable decrease in the offline training effort and simplification in the 

online implementation with less computation resources and storage. 

 In this section, the POD technique and approximate dynamic programming are 

combined to develop a generic control design approach for a class of nonlinear DPS. 

System with continuous and discrete control actuation over the domain is studied. 

This approach is applied to control the heave dynamics of an aircraft flexible wing 

model. This application comes under the field of aeroelastic studies, which deals with 

the interaction of structural, inertial and aerodynamic forces.  

 

4.1. PROBLEM DESCRIPTION 

 The PDE describing a 2
nd

 order system dynamics with appropriate boundary 

conditions is given as 

 
 

   

1 1

2 2

, ', '',...

, ', '',... , ', '',...

x f x x x

x f x x x g x x x u



 
  (73) 

where the dynamics is defined in a one-dimensional spatial domain  . The state 

     1 2, , , ,
T

x t y x t y x t y     is a continuous function of time and spatial variable 

y . In (73), ix  represents the partial derivative with respect to time and 'x  

represents the spatial partial derivative. The degree of spatial partial derivative is 

denotes by number of apostrophe  ' . Functions  1f  ,  2f   and  g   are real valued. 

It is assumed that   0 ,g t y   . In the case of continuous actuation, control 

 ,u t y  is defined as 

    , ,cu t y u t y   (74) 
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where  ,cu t y  is continuous function of time t  and spatial variable y . In the case of 

discrete actuation, control  ,u t y  is defined as 

      
1

, , .  
M

m

m

u t y t y y y 


    (75) 

here  ,t y  is a continuous function both in time  t  and space y . The function
     

is defined such that the following is satisfied 

      
0

, . ,  

fy

y

m mt y y y dy t y      (76) 

 The objective is to find the optimal control  ,u t y , that minimizes the 

following quadratic cost function 

 21
   
2

f

o o

y yt

T

t t y y

J x qx ru dy dt



 

       (77) 

where 2 2q R   is a weighting matrix on the state variables, and r R  is a weighing 

factor on the control variable. ot  is the initial time. oy  and 
fy
 
are the boundary points. 

 

4.2. REDUCED ORDER APPROXIMATION 

4.2.1. POD Technique.  This section discusses the development of a low 

order finite dimensional model for the control synthesis. The very first step is to 

generate the snap-shot solutions [17]. In practice, system is excited using several 

control input and solution is captured at different time instants. Padhi [91] discusses 

snapshot solution generation by initializing the system with state profile with 2L  

norm bound. These snapshot solutions are used to obtain a set of orthonormal basis 

functions. Ravindran describes the problem of obtaining these basis functions in [18]. 
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This problem is discussed here in brief. Let,  :1iS U i N    be a set of snap shot 

solutions defined in  2L  .   2L   is an inner product space with the following 

property  

  , Ta b a bdy


    (78) 

with a  and b  as defined on 2L . Superscript T  represents the transpose of vector and 

dy  is the element of integration in (78). A basis function  2L   is defined by 

linear combination of snap shots as 
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wU
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    (79) 

where ( 1,2,..., )iw i N  are constants. The function   is desired to maximize the 

following energy function 
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 The problem of maximizing this function is casted into finding eigenvalue of the 

following eigenvalue problem:  

 CW W   (81) 

where    
1

ij i jC U y U y dy
N



   and  1 2, ,...,
T

NW w w w  is the eigenvector 

corresponding to eigenvalue  . To obtain orthonormal basis functions, each 

eigenvector is normalized with corresponding eigenvalue as 
1TW W

N
 . Generally, 

few eigenvalues captures the maximum amount of energy as represented by the 

function in (80). Eigenvalues are arranged in descending order as 

1 2 ... 0N       



65 

 

Let, N  be such that 
1 1

N N

i i

i i

 
 

  . Usually, it turns out that N N . Let, 

1 2
, ,...,

N

T

i i i iW w w w     be the eigenvector corresponding to the eigenvalue 

 1,2,...,i i N  . These eigenvectors are normalized such that 
1T

i i

i

W W
N

 . Then, 

basis functions are constructed as 
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where 
jiw  is the thj  element of thi  eigenvector. 

4.2.2. Lumped Parameter System.  The reduction of infinite-dimensional 

problem to a finite set of ordinary differential equations and the related cost function 

are explained in this section. The states of the system can be represented using the 

basis functions obtained from the POD technique. For the system described in (73), 

the states 1x  and 2x  are represented using independent basis functions as 
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  (83) 

where  1i
x t  and  2i

x t  are auxiliary states, and  1i
y  and  2i

y  are basis 

functions for states  1 ,x t y  and  2 ,x t y . 1N  and 2N  are the number of eigenvalues 

to capture the energy corresponding to the states  1 ,x t y  and  2 ,x t y .  Orthonormal 

property of basis functions can be utilized to obtain the auxiliary states at any time as 
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 It is assumed that a state feedback controller spans a subspace of the state 

variables. Hence, the basis functions for the states are assumed to be capable of 

spanning the controller as well. The continuous control profile  ,cu t y  can be 

expressed as 

          
1 2

1 21 2

1 1

,
i i

i i
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c
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where  1i
u t  and  2i

u t  are auxiliary control variables. The control profile  ,t y  in 

the discrete actuation case can also be represented in this manner. We keep the 

representation for  ,t y  same as (85). For convenience, we define  
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  (86) 

Next, Galerkin procedure [2] is applied to obtain a reduced order model of the system 

(73). The evolution equation of  1 ,x t y  is multiplied by  1j
y  for 11,2,..., Nj   

and integrated over the system domain   as 

   1 1 1, ', '',...
j

x f x x x dy


    (87) 

Similarly, the evolution equation of  2 ,x t y  is multiplied by  2 j
y  for 

21,2,..., Nj   and integrated over the system domain   as 

     2 2 2, ', '',... , ', '',...
j

x f x x x g x x x u dy


     (88) 

The partial derivatives are relaxed while integrating by parts in (87) and (88), and a 

weak form of these equations is obtained. Boundary conditions are satisfied in the 

weak form. By using the definition (83) and orthonormal property of basis functions, 

(87) and (88) becomes: 
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where 
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The spatial dependence is cancelled and the approximate system is represented in the 

form of auxiliary state and auxiliary control variables. It is important to notice that the 

difference in the approximate systems of continuous and discrete actuation case will 

be reflected in  1 2,jg X X .  

 The cost function in (77) can be represented in terms of auxiliary state and 

auxiliary control variables. By using the definition (83), the term  
f

o

y

T

y

x qx dy  can be 

written as 
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and the term  2

f

o

y

y

ru dy  can be written as 
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and 
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ij i jab bab aQ q y y dy
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     (94) 

For continuous actuation case, 

     
ij i ja babR y y dy



     (95) 

and for discrete actuation case, 

    
1

   
ij i j

M

ab a m b m

m

R y y


     (96) 

 Thus the cost function in (77) can be written as 

 1 2 1 2 1 2 1 2

1
, , , ,  

2
o

t T T
T T T T T T T T

t t

J X X Q X X U U R U U dt





                         
   (97) 

 

4.3. OPTIMAL CONTROL FORMULATION 

 This section briefly discusses the optimal control synthesis for lumped 

parameter model in the framework of approximate dynamic programming. This study 

uses the single network adaptive critic architecture to design the optimal control. The 

problem is formulated in discrete domain to derive the optimality condition. Readers 

can refer to [90] for a detailed discussion. Consider a system given by 

  1 ,k k kkX F X U    (98) 

where 1n
kX R   and 1m

kU R   represents the state and the control, respectively, at 

time step k . The objective is to obtain a control kU  that minimizes the following cost 

function 

  
1

1

,
N

k kk

k

J X U




    (99) 
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where 
k  represents a nonlinear utility function from the time step k  to 1k  . Note 

that N  represents the number of discrete time steps here. The expression (99) 

represents the cost function for an infinite horizon problem as N  . The cost-to-go 

at the time step k  can be written as 

  
1

,
N

i ik i

i k

J X U




    (100) 

such that 
kJ  and 

1kJ 
 can be expressed in a single expression 

 1k k kJ J     (101) 

The costate vector k  at the time step k  is defined by 

 k
k

k

J

X





  (102) 

The relation between k  and 1k  , also called as costate propagation equation, can be 

derived by incorporating the definition (102) in the expression (101) as 

 
1

1

T

kk
k k

k k

X

X X
 





   
          

  (103) 

Necessary condition for optimality is given as 

 0k

k

J

U





  (104) 

The optimal control equation is obtained by using (102) and (104) in (101) as 

 
1

1 0

T

kk
k

k k

X

U U






   
         

  (105) 

 The core of the SNAC controller synthesis lies in the offline iterative training 

of the critic network. The schematic of neural network training is shown in Figure 4.1. 

At any iteration i , the critic neural network iNN  is a mapping of state kX  (at time 

step k ) as an input and costate 
1

a

k 
 (at time step 1k  ) as an output. The control kU , 
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at any iteration, is obtained using kX  and 
1

a

k 
 from the equation (105) This control is 

required to obtain the state at the next time step, i.e., 1kX  . The costate 
2

a

k 
 is then 

computed from the critic network iNN . This costate provides the target costate 
1

t

k 
 

by using the costate equation (103). This target value is used to update the critic 

network. A tolerance value   is set to check the convergence of the network at any 

iteration, i.e., if 1 1

1

t a

k k

t

k

 


 




 , then the network is said to be converged.  

 

 

 

 

 

 

 

Figure 4.1. Schematic of neural network training 

 

After the offline training of critic network, controller can be implemented online with 

few computations. Figure 4.2 shows the block diagram of control solution 

implementation. A feedback  ,x t y  is taken at any time t  and corresponding 

auxiliary state ( )X t  is obtained using the expression (84). The auxiliary control ( )U t , 

as obtained from trained SNAC network, is used to compute the distributed control 

profile  ,u t y  from (85). This control is then applied to the actual system. 
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Figure 4.2. Implementation of control solution 

 

4.4. AIRCRAFT FLEXIBLE WING PROBLEM 

 In this study, a flexible wing aircraft model is represented by using two Euler-

Bernoulli beams connected to a rigid mass, namely, beam-mass-beam (BMB) system. 

A schematic of the BMB system is shown in Figure 4.3. The BMB system primarily 

represents the heave dynamics of an aircraft model, which is initially assumed to be in 

a level flight with its wings straight and the lift force balancing the weight. Any 

perturbation in the wing’s shape causes a change in the local angle-of-attack 

distribution over the wing and this in turn leads to perturbation in lift distribution. The 

objective is to achieve a level flight condition using the control action. 

 

 

 

 

Figure 4.3. Aircraft flexible wing model (BMB system) 

 

4.4.1. Problem Description.  The dynamics of the left beam 0
2

l
y

 
  

 
 

and the right beam 
2

l
y l

 
  

 
 of the BMB system is given by the following 

equations 

PDE to 

POD 

SNAC, 

optimal 

control 

POD to 

PDE 
System 

    
    

Rigid Mass 

at center 

Flexible Wing 



72 

 

 

     

   
   

2 4

12 4

5

2 4

, , ,

, ,
  ,

2

L L L

L

L L

w t y w t y w t y
a EI

t y t

w t y L t y
I b y u t y

lt y

 



  
  

  

 
   

 

  (106) 

and 

 

     

   
   

2 4

12 4

5

2 4

, , ,

, ,
,

2

R R R

R

R R

w t y w t y w t y
a EI

t y t

w t y L t y
I b y u t y

lt y

 



  
  

  

 
   

 

  (107) 

for time   0t  . Here, l  is the total length of the beam system (assuming the beams are 

symmetrical).  L Ru u  and  L Rw w  are the control function and displacement of the 

left (right) beam from their level condition, respectively. Level condition is defined by 

the displacement and the rate of displacement being zero for all y l . Lb  and Rb  are 

the control input function for the left and the right beam, respectively. The system is 

subjected to a set of boundary conditions   
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and the initial condition 
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Here, ,  , ,L R L Rf f g g  are continuous bounded functions. E   is the Young’s modulus, I  

is the area moment of inertia of the beam,   is the density of the beam material, a  is 

the cross-sectional area of the beam,
 ZI  is the mass moment of inertial of the rigid 

mass, 1  is the coefficient of viscous damping, 2   is the coefficient of Kelvin-Voigt 

damping, m  is the mass of rigid connection between the beams.  

 A physical interpretation of the boundary conditions is given as follow. 

Constraints (108) and (109) specifies that the left end of the BMB system is free from 

any external moment and force, respectively. Similar interpretation can be made for 

the right end from (110) and (111). Constraints (112) and (113) specify the continuity 

in the beam displacement and its partial derivative, respectively at the center of the 
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BMB system. Constraints  (114) and (115) represents the translational and rotational 

motion of the mass at the center. 

 The objective is to obtain control to minimize a quadratic cost function given 

as 

 2

0 0

1
   
2

y lt

T

t y

J x qx ru dy dt



 

       (117) 

4.4.2. Lumped Parameter Model.  A lumped parameter model is first 

obtained by projecting a set of POD basis functions over the system equations (106) 

and (107) while satisfying the boundary conditions (108) - (115). A SNAC based 

controller is then developed by using the lumped parameter model. In this study, 

symmetric solutions are simulated for simplicity by assuming    L Rb y b y b  . Let,  
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where 1x  represents the beam displacement and 2x  represents the rate of the beam 

displacement. By using the definition (118), the BMB system (106) can be expressed 

in the form of (73) as 

  1 2 ,  f x t y   (119) 
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and 
 b y

g
a

 .  ,L t y  is the change in lift distribution from the level position and 

written as 

   21
,  

2
a o lL t y V cC


      (121) 
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where a  is density of air at sea level, 
oV  is the airspeed,  c  is the chord length,

lC


 is 

the lift-curve slope, and the change in the angle-of-attack   is defined as 

1 2

0

sin
V

x
   

   
 

. A third-order approximation of the sine inverse function is 

considered in this study and written as 

3

2 2

0

1

6V V

x x


 
    

 
 .  

 Let,  1j
y  for 11,2,...,j N  and  2 j

y  for 21,2,...,j N  be the POD basis 

functions for the wing displacement and the rate of wing displacement, respectively. 

The auxiliary states and the control vectors in the lumped parameter model are 

defined by the expression (86). The functions as shown in (90) for lumped parameter 

model of this problem are written as 
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While these functions remain same for the continuous as well as the discrete actuation 

case. The expression for  1 2 1 2, ,jg X X U U 
 

 is different where 
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is the expression for continuous case and for discrete case, this expression is given as 
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4.4.3. SNAC based Controller.  After obtaining the lumped parameter 

model in the form of (89), optimal control is synthesized using the SNAC 

architecture. The state vector X  and the control vector U , as shown in (98), are 

defined as 
1

2

X
X

X

 
  
  

 and 
1

2

U
U

U

 
  
  

. The cost function is defined in the form of (97). 

Note that the cost function has different R  matrix for the continuous and the discrete 

actuation cases. The expression for R  matrix is given by (95) and (96) in the 

continuous and the discrete actuation case, respectively.  

 In SNAC architecture, neural network captures the relationship between the 

state X  at time step k  and the costate   at time step 1k  . The dimension of the 

costate vector is same as that of the state vector. For this problem, the neural network 

is split internally into  1 2N N  sub-networks, assuming one network for each 

channel of the costate vector.  The input to each sub-network, however, is the entire 

state vector X . This is done to speed up the training process since cross coupling of 
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neural network weights for different components of the output vector are absent in 

such a framework. 

 First step of training procedure is state generation for neural network training. 

Note that the auxiliary states can be computed from  ,x t y  using the expression (84). 

Many state profiles  ,x t y  , from a set of snap shot solutions, can be used to 

construct the lumped parameter states, which can subsequently be used for training 

the networks. This process, however, would slow down the training significantly due 

to requirement of large number of state profiles. Therefore, an alternative method is 

followed. All the snapshots are used to get the minimum and maximum value for the 

auxiliary states. Let, Let 
minX̂  and 

maxX̂  denote the vectors of minimum and 

maximum of X̂ , respectively. In each iteration of SNAC networks training, a set of 

random states are generated within the range of min max
ˆ ˆ,X X 

 
. Training is performed 

until all sub-networks converges to a given value of tolerance  . A convex 

combination  1 11t a

k k   
     is taken as the target output for faster convergence 

of the neural networks, where 0 1   is the learning rate for the neural networks 

training. 

4.4.4. Simulation Study.  Simulation study for the flexible wing problem 

was carried out with the following parameters’ values: length of the BMB system 

10l  m, 980  kg/m
3
, 0.0735a  m

2
, 62 10E   N/m

2
, 71.734 10I   m

4
, 

1 0.025  kg/m-sec, 4

2 10  kg/m
5
-sec, 5m  kg, 310zI  kg-m

2
, 1.225a  kg/m

3
, 

0 50V  m/sec, 1.47c  m, 5.73lC

 /rad.  

 The first step was to generate POD basis functions for the BMB system. The 

system was simulated for just 2 seconds by initializing it with sinusoidal state profiles 
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and control profiles. At every one tenth of a second, a snap shot solution was 

captured. A snap shot contains the beam displacement and the rate of the beam 

displacement profile. A total of 3840 snap shot solutions were captured and stored. 

The POD technique is applied next and orthonormal basis functions were generated 

for the beam displacement and the rate of the beam displacement. Figure 4.4 

illustrates the percentage of energy, as given by the expression (80), in all the beam 

displacement snap shot solutions as captured by the number of eigenvalues. It was 

observed that 1 10N   eigenvalues are sufficient to capture 99.99% of energy. Similar 

observation was made for the rate of the beam displacement solutions where 2 10N   

eigenvalues were sufficient to capture 99% of energy. 

 

Figure 4.4. Percentage of energy I  stored in all the beam displacement snap shot 

solutions as captured by number of eigenvalues 

 

 Figure 4.5 illustrates the ten POD basis functions for the beam displacement. 

First basis function 
11
( )y  captures near 73% energy of all the beam displacement 

snap shot solution as shown in Figure 4.4. First and second basis function together 

capture near 96% of energy likewise. The POD basis functions were projected over 

the system equation (106) and a nonlinear lumped parameter model were obtained for 
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both the continuous actuation and the discrete actuation case in the form of (89). In 

both the lumped parameter models, 20 1X R   and 20 1U R  .  

 In the process of optimal control design, cost function parameters were taken 

different for continuous and discrete actuation case. The state penalizing matrix 

3

2

10 0

0 10
q

 
  
 

 was same in both the cases whereas control penalizing term 1r   for 

continuous actuation case and 0.01r   for discrete actuation case was taken. In the 

SNAC architecture, 20 sub-networks were trained where input to every network was 

state vector X  and output of thi  network was the thi  element of costate vector 

20 1R  .  A linear-in-parameter neural network structure was used for every costate 

output. The following functions were used in the linear-in-parameter neural network: 

     1 10 1 10 1 1 1 1 1

2 3 4

1 1 2 2 2 2 2 1 2

24 1

, , , , , , , , ,

T

X X X X X X X X X


 
 

  
. Initialization of neural 

network weights plays a crucial role in the convergence of networks, especially for a 

nonlinear lumped parameter model. A linear approximation of the nonlinear model 

was developed in the form: 
d X

AX BU
dt

   where 20 20A R   represents the system 

matrix and 20 20B R   represents the control matrix. In SNAC, the critic network 

maps the relation  
1

1

1

T
kk I PBR B PAX




    (see ref. [75]) from state kX  at time 

step k  to the costate 1k   at time step 1k  . All the sub-networks in the critic network 

were pre-trained using this relation. 
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Figure 4.5. Ten POD basis functions for the beam displacement 

 

The networks’ training was carried over 500 random states, in a range of 

min max
ˆ ˆ,X X 

 
, at every iteration. The learning rate of value 0.5   was used for 

smooth convergence of all the networks. The significance of learning rate is that the 

low value (near zero) of   makes the convergence slower and high value (near one) 

makes the convergence faster but may results in divergence. A tolerance value of 

1010   was set for every sub-network as a convergence criteria. The same network 

architecture and parameters were used in SNAC training for both the lumped 

parameter models of the continuous and the discrete actuation case. Figure 4.6 shows 

the results of SNAC training for lumped parameter model of the continuous actuation 

case. Figure 4.6 (a) illustrates the second norm of the relative error 1 1

1

t a

k k

t

k

 


 




 of all 
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the sub-networks with respect to the iterations. Figure 4.6 (b) illustrates the 

convergence history of all the sub-networks’ weights. 

 

 
(a) 

 
(b) 

Figure 4.6. SNAC training: (a) costate normed error, (b) networks’ weights, with 

respect to iterations  

 

4.4.4.1. Results of continuous actuation case. The BMB system was 

simulated by perturbing it from level flight condition. A sudden gust (for example) 

was assumed to cause the wing to deform from its straight position. The desired 

(equilibrium) states of the system were taken as zero. The initial state profile was 

assumed as 

 

 

 

5

1

5

2

0, 0.01sin

0, 0.1sin

y
x y

l

y
x y

l





 
  

 

 
   

 

  (126) 

Figure 4.7 illustrates the results from the SNAC controller implementation. It 

can be observed that the control action is able to bring the beam system to the desired 

equilibrium state, i.e., both the beam displacement and the rate of the beam 

displacement profiles go to zero. Analysis of the validity of POD approximation of 

the underlying PDE system is carried out by comparing the actual state profiles to 

approximated profiles (generated by using the expression (83)). 
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(a) 

 
(b) 

 
(c) 

Figure 4.7. Time history of (a) the beam displacement, (b) the rate of the beam 

displacement, (c) continuous control action 

 

Figure 4.8 shows that basis functions are able to capture the state profile quite well at 

the different time instants. Note that the SNAC controller is developed based on the 

approximate profile in the lumped parameter model. Due to a close approximation, as 

shown in Figure 4.8, control actions designed using a lumped parameter system are 

effective in controlling the actual BMB system. 

 In order to show the versatility of the control design approach, system was 

simulated using a different initial condition. These simulation results shown in Figure 

4.9 clearly indicate that the system is stabilized. Figure 4.9 (a) and (b) show the states’ 

trajectories with respect to time. Figure 4.9 (c) shows the stabilizing feedback control 

action which is able to direct the system towards desired equilibrium condition. 
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(a) 

 
(b) 

Figure 4.8. Comparison of actual profile and approximate profile for (a) the beam 

displacement, (b) the rate of the beam displacement at different time instants 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4.9. Time history of (a) the beam displacement, (b) the rate of the beam 

displacement, (c) control action, for different initial condition 

 

4.4.4.2. Results of discrete actuation case. The BMB system was actuated 

by equally spaced 24 discrete actuators on each of the beam. The system was first 
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simulated with the initial states given by (126). Figure 4.10 (a) illustrates the time 

history of the beam displacement and Figure 4.10 (b) illustrates the time history of the 

rate of the beam displacement. It can be observed that the system is regulated towards 

the level condition by the application of discrete actuators as shown in Figure 4.10 (c). 

By comparing the control action as shown in Figure 4.7 (c) and Figure 4.10 (c), it was 

observed that discrete control effort, to drive the BMB system to the level position in 

nearly 20 seconds, was more as compared in the continuous actuation case. This 

performance the BMB system was achieved by taking the control penalty in the cost 

function for discrete actuation case as 0.01r  .  

 
(a) 

 
(b) 

 
(c) 

Figure 4.10. Time history of (a) the beam displacement, (b) the rate of the beam 

displacement, (c) discrete control action 

 

Figure 4.11 illustrates the simulation results when the BMB system was 

initialized with a different initial condition. The control action is able to drive the 

system to its level position. The accuracy of the lumped parameter model was 
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validated while simulating the BMB system under this stabilizing control action. The 

actual state profiles were compared, at different time instants, to the approximate 

profile generated using the expression (83). 

 
(a)  

(b) 

 
(c) 

Figure 4.11. Time history of (a) the beam displacement, (b) the rate of the beam 

displacement, (c) discrete control action, for different initial condition 

 

 
(a) 

 
(b) 

Figure 4.12. Comparison of actual profile and approximate profile for (a) the beam 

displacement, (b) the rate of the beam displacement at different time instants 
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Figure 4.12 (a) illustrates that the basis functions are able to capture the beam 

displacement profile at different time instants. Similar behavior can be observed in the 

rate of the displacement profile in Figure 4.12 (b). Due to the closeness (accuracy) of 

the approximations, control action was effective to the actual system and was able to 

regulate the system. 

4.4.4.3. Comments.  

1. Same POD basis functions were used to generate a lumped parameter model 

for the BMB system in the continuous as well as the discrete actuation case. 

2. It is crucial to generate sufficient snap shot solutions that cover the domain 

of the solutions where optimal trajectories lie.  

3. The BMB system is analyzed with the left beam equation (106) and the 

right beam equation (107) while satisfying constraints (112) - (115) at the middle 

point. The POD basis functions were generated separately for the left beam and the 

right beam. Due to this reason, the continuity constraints (112) and (113) are not 

guaranteed to satisfy. Therefore, only symmetrical solutions were simulated in this 

study. In order to analyze the unsymmetrical solutions, it is important to consider the 

BMB system as ‘one’ system instead of ‘left and right’ beam. The continuity 

constraints (112) and (113) will be satisfied inherently in this manner. 

4. A controller, other than SNAC based, can be very well used here. 

Comparing to the controller based on state dependent riccati equation (SDRE) [92], 

feedback linearization and sliding mode [76] require online design as per the feedback 

whereas SNAC based controller is trained offline and can be implemented online with 

few computations. Further, it requires storing only the neural network weights that 

takes minimal memory space. 
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5. REDUCED ORDER MODELING BASED OPTIMIZATION 

 

 Optimization procedures in the distributed parameter systems require a huge 

computational memory and data storage. For underlying spatial domain, finite 

difference, finite element, finite volume methods are generally applied to obtain a 

finite dimensional model (e.g., see [93] and [101] - [104]). In order to obtain accurate 

model of the system, these methods lead to large number of equations. In other words, 

the finite dimensional model contains large number of unknown variables. These 

equations serve as the constraint while optimizing a defined cost function.   

 The study described here attempts to overcome the problem of computational 

requirements while achieving the accuracy of the optimal solution. A reduced order 

modeling procedure is described using the technique of proper orthogonal 

decomposition with weighted residuals. Section 4 presents the use of the POD 

technique for developing an approximate model of a dynamic system. Here, the POD 

technique is utilized to obtain an approximation of steady state partial differential 

equations. 

 The control of viscous flow is crucial for many scientific applications such as 

in chemical reaction, combustion, crystal growth process, etc. In this study, the 

optimization method is demonstrated to minimize the vorticity in viscous 

incompressible thermally convected flows by using boundary control in the form of 

heat flux. A numerical example of a high pressure chemical vapor deposition (CVD) 

reactor is discussed in which the objective is to minimize the recirculations in the 

flow.  
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5.1.  PROBLEM DESCRIPTION   

 The steady state equations of a thermally convected fluid flow are given in a 

bounded domain   as [93] 

 
2 2

02 2
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u u u u p
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x y x y x
 
       
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  (127) 
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  (129) 

 0
u v

x y

 
 

 
  (130) 

where u  and v  represent horizontal and vertical component of the fluid velocity, 

respectively. T  represents the temperature and p  represents the pressure. g  is the 

acceleration of gravity. x  and y  represent the spatial variable in horizontal and 

vertical direction, respectively. The viscosity  , heat conductivity  , thermal 

expansion coefficient  , and specific heat at constant pressure pc  are constant 

parameters. By assuming a length scale l , a velocity scale U , and a temperature scale 

1 0T T  in the flow, nondimensional parameters of the flow are defined as: Reynolds 

number 0Re /Ul  , Prandtl number Pr /pc k , and Grashof number 

 3 2 2

0 1 0 /Gr l g T T    . By taking the following transformation: /x x l , 

/y y l , /u u U , /v v U ,    0 1 0/T T T T T   ,   2

0/p p gy U  , the 

flow equations (127) - (130) are derived in nondimensional form and given as 
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u u u u p
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  (131) 
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A cost function is given as 

 

1

2

2

1

1

2 2

hv u
J d h d

dx dy



 

  
    

 
    (135) 

where 
v u

dx dy

  
 

 
 is the vorticity at any point  ,x y  in the domain  , h  is the 

control at some boundary 1  and h  is a control penalizing parameter. The objective 

is to minimize the cost function J  while satisfying the constraints (131) - (134) and 

appropriate boundary conditions. 

5.1.1. Numerical Example: CVD Reactor.  This example describes the 

control problem of transport process in a chemical vapor deposition (CVD) reactor 

[93], [94]. CVD reactors are used in applications that involve the deposition of layer 

of material onto a surface. The geometry of a typical vertical reactor, as shown in 

Figure 5.1 is a classical configuration for the growth of the semiconductor compound. 

The formation of compound takes place by a chemical reaction between reactant 

gases, introduced at Inlet i , and substrate, kept at 2 , at very high temperature. The 

relatively high temperature creates density variation and the resulting flow is affected 

by buoyancy driven convection. In order to have uniform growth rate of the 

compound, it is essential to have the fluid flow without recirculation. The objective 

here is to minimize the vorticity by controlling the heat flux at the side walls 1 . 
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 The geometry of the prototype reactor is illustrated in Figure 5.1 with an inlet 

i  and two outlets o . The width of inlet and outlet is 1/ 3 . The height of the inlet 

port s  is 1/ 3 . 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Geometry of the reactor with boundary walls 

 

Flow variables at the boundaries are given as 
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  (136) 

The boundary constraints (136) need to be satisfied in order to obtain a meaningful 

flow inside the reactor. 

5.1.2. CFD Solution.  The steady state solution of the equations (131) - (134) 

while satisfying (136) is obtained using finite difference approach. The square 

geometry of CVD reactor is discretized with equal number of nodal points in 

  

    

    

  

Inlet Outlet 

  

Outlet 
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horizontal and vertical directions. The values of flow variables are computed at these 

nodal points. Central difference scheme [80] is used to evaluate the spatial partial 

derivative at any nodal point in the domain. Conservative form of the Navier-Stokes 

equations is used in order to avoid any numerical instability. By using the continuity 

equation, the equations in conservative form are derived as 

 
2 2 2

2 2

1
0

e

u u u uv p

R x y x y x

     
     

     
  (137) 

 
2 2 2

2 2 2

1
0 r

e e

Gv v uv v p
T

R x y x y y R

     
      

     
  (138) 

 
2 2

2 2

1
0

e r

T T Tu Tv

R P x y x y

    
    

    
  (139) 

A Poisson equation is derived for pressure using equations (134), (137) and (138) as 
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This equation (140) satisfies the continuity equation and it is used in computing a 

steady state flow. The control is parameterized using ‘sufficient’ Fourier basis 

functions as 

 
1

hN
h

i i

i

h d


    (141) 

The parameterization is done to obtain the optimal solution with respect to small 

number of control variables 
1 2, ,...,

hND d d d    . Otherwise, optimal value of control 

action need to be evaluated at each nodal point of the boundary 1 .  

 A steady state solution is desired for the equations (137) - (140) while 

satisfying given constraints (136) and control h  at the boundary 1 . Finite difference 

iterative scheme is used for that purpose. The iterative method is initialized with no 
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flow in the domain. In the central finite difference discretization, the flow variable 

terms at every nodal point are extracted (from the second derivative) to the left hand 

side of the equation (137) - (139). These terms are computed as values at the next 

iteration. Poisson equation (140) is solved for pressure separately by the matrix 

method [105]. Let  *, *, *, * 0eqR u v T p   represents the system of equations (137) - 

(140) where *u , *v , *T  and *p  be the steady state solution. The residual at any 

iteration k  is defined by  , , ,eq k k k kR u v T p . The iterative procedure is stopped when 

the residual satisfies the tolerance criterion:  , , ,eq k k k kR u v T p  .  

 

5.2. OPTIMIZATION SCHEME 

The author follows the optimization scheme, adjoint method, as described by 

Jameson in [96]. The adjoint method is an iterative method where control solution is 

updated at every iteration till the solution converges to a local optimal value. The 

method can be initialized with several initial conditions in order to find the global 

optimal value.  

Let, 0eqR   represents the set of steady state system’s equations, z  denotes 

the state vector and D  denotes the control. Then, the adjoint equation is given by [96] 

 

T
eqR J

z z

  
  

  
  (142) 

where   denotes the Lagrange multiplier. This multiplier is used to update the 

control with a learning rate   as  
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  (143) 
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The advantage of using adjoint method is that it yields the gradient (change in control) 

with respect to arbitrary number of design variables with the cost of a single flow 

(steady state equations) and adoint solution (equation (142)) at every iteration. When 

the relative cost error at any iteration goes below a tolerance value, i.e., 
k

k

J

J


 , 

then iterative method is stopped. This stopping condition is taken as the convergence 

criteria for the adjoint method in this study. 

 

5.3. REDUCED ORDER MODELING 

 The POD technique is used first to obtain a set of the ‘problem oriented’ basis 

functions. These basis functions are projected over the system equations using the 

Galerkin procedure [2]. As a result, a set of algebraic equations are obtained. These 

equations represent the reduced order model of the steady state Navier-Stokes 

equations.  

 First, a series of steady state solutions of u , v , T  and p  are obtained by 

introducing several boundary control action. Using the snapshot method [18], POD 

basis are computed for the state variables. The state approximations are given as 

 
1 1 1 1

, , ,
puv uv T

NN N N
u v T p

i i i i av i i i i

i i i i

u a v a T T b p c
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              (144) 

where  ,u v

i i   for  1,2,..., uvi N , T

i  for   1,2,..., Ti N  and p

i  for 

 1,2,..., pi N  denote the basis functions to approximate the state variables  ,u v , 

T  and p , respectively. ia , ib  and ic  act as the auxiliary state variable in the reduced 

order model. Note that homogeneous boundary conditions are satisfied in the 

generation of POD basis functions. Temperature profile has inhomogeneous boundary 

condition 1T   at 2 . In order to satisfy this boundary condition, avT  is computed by 
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taking average of all the temperature snap shots and the POD technique is applied on 

the rest. 

 The basis functions are projected over the equations (137) - (140) while using 

the representations in (144), and a set of algebraic equations is obtained as 

  0 , ,F A B C   (145) 

where 
1 2, ,...,

uv

T

NA a a a     , 
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. The 

function     1uv T pN N N
F R

  
   represents a set of nonlinear algebraic equations. The 

number of equations are equal to number of unknown state variables A , B  and C . 

The quadratic nonlinearity in the function  F   arises due to nonlinear terms in the 

equations (137) - (140).  

 The cost function (135) can be represented in terms of state and control 

variables as 
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where Q  and R  are matrices such that 
,
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1
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h h

i j h i jR dy


    for  , 1,2,..., hi j N . 

5.3.1. Why Using a Reduced Order Model.  The motivation behind this 

study is to overcome the computational requirements of optimization based on the 

actual system. The philosophy of using a surrogate model is that less number of 

unknown variables in the optimization problem requires less computation as 

compared to large number of unknown variables.  

 Let’s consider that spatial domain is discretized into ( )x yN N  nodal elements 

in horizontal and vertical directions. The unknown variables to obtain the optimal 
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solution in present problem becomes (4 )x yN N   as flow variables u , v , T , and p  

are defined at each nodal point. In a reduced order model, only a few POD basis 

functions are sufficient to represent a set of snapshot solutions. Generally the number 

of POD basis function or number of unknown variables in the reduced order model 

are significantly less as compared to the number of nodal points in the spatial domain. 

This is the main advantage using a reduced order model when computing an optimal 

solution based on this model.  

5.3.2. Result & Discussion. The spatial domain of the reactor was 

discretized into  28 28  nodal points. The control was parameterized with 5  Fourier 

basis functions:        1, 2 sin 2 , 2 cos 2 , 2 sin 4 , 2 cos 4h y y y y     
 

 for 

0 1y  .  

5.3.2.1. Optimization based on actual system. The adjoint method was first 

run using the finite difference model of the actual system.  The tolerance 510   was 

selected to stop the iterations when computing the steady state solution. The tolerance 

value of 310  was selected as the convergence criteria in the adjoin method. The 

control variables were initialized with zero value, i.e.,  0,0,0,0,0
T

D  . The learning 

rate   was taken of value 0.1 . The significance of learning rate is that a lower value 

of learning rate slows down the convergence of cost whereas higher value speeds up 

the convergence but it may lead to a diverging solution also. 

  Figure 5.2 (a) and (b) show the convergence of cost and the control variables 

with respect to iterations, respectively. The relative cost error at 100
th

 iteration is 

43 10 . Figure 5.2 (c) illustrates the control profile at the 100
th

 iteration. This control 

profile is generated using the expression (141). The nature of this control profile is 

such that it minimizes the recirculations in the flow field.  
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(a) 

 
(b) 

 
(c) 

Figure 5.2. (a) Cost with respect to iterations, (b) control variables with respect to 

iterations, and (c) control profile at the final iteration 

 

Figure 5.3 shows the flow variables at the final iteration. The 3-dimensional 

plots show the magnitude of each flow variable in the domain. Note that all the flow 

variables are non-dimensional. The figure illustrates a steady state flow inside the 

domain where residual is below tolerance limit of value 510 . The nature of the flow 

can be understood as follows. The reactant gases are introduced at the inlet in the 

negative y-direction. The inlet region is shown by negative flow speed in Figure 5.3 

(b). The horizontal flow speed is zero at this region as shown in Figure 5.3 (a). 

Similar interpretation can be made at the outlet. Figure 5.3 (c) shows the temperature 

profile. The flow is driven by the pressure gradient inside the domain. Figure 5.3 (d) 

shows the pressure profile. The constant flow speed at the inlet region can be 

explained by the ramp pressure profile. 



97 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.3. (a) Horizontal flow speed, (b) vertical flow speed, (c) temperature, and (d) 

pressure, at the final iteration 

 

The optimal profile of control, as shown in Figure 5.2 (c), can be explained 

using the Figure 5.4 that shows the flow with zero control and with the optimal 

control. A high value of temperature speeds up the flow as shown in Figure 5.4 (a). 

This action creates the recirculation of high amplitude as shown in Figure 5.5 (a). The 

control is applied in the form of heat flux at the boundary. A negative value of the 

heat flux represents that the heat is subtracted from the flow. The subtraction of heat 

lowers the near temperature and that results into slow fluid flow as shown in Figure 

5.4 (b). The resulting vorticity is shown in Figure 5.5 (b).  
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(a) 

 
(b) 

Figure 5.4. (a)  Uncontrolled flow, (b) optimal controlled flow 

 

 
(a) 

 
(b) 

Figure 5.5. Vorticity plot with (a) zero control, (b) optimal control (blue/red color 

denotes the region of negative/positive vorticity) 

 

5.3.2.2. Optimization based on reduced order model. The adjoint method 

was applied on the reduced order model. The key factors, as analyzed towards 

achieving the computational efficiency and the accuracy of the optimal solution, are: 

snapshot solutions and grid structure. 

 Snapshot solutions of the flow variables are needed in order to design POD 

basis functions. The snapshots should be such that they represent the solutions over 

the whole domain or at least cover regions of interest. In present study, snapshots are 

generated by introducing sinusoidal control profiles to the equations (137) - (140). 



99 

 

The number of snapshots is accounted towards the computational efficiency of 

optimization procedure based on the reduced order modeling. 

 In the optimization based on actual system, the significant computations are 

needed in two stages at every iteration. One stage is where the flow is computed at 

every nodal point, and at the second stage, adjoint equation is solved to find the 

Lagrange Multiplier 
 4 1x yN N

R
  

 . As number of unknowns is same at both stages, 

the computational requirements are also accounted as same. In case of optimization 

based on a reduced order model, the computational time is taken by three stages: 

generating snapshot solutions, i.e., computing flow, developing reduced order model, 

and running optimization procedure on this model. It was observed that the significant 

time was taken only by the stage of generating snapshot solutions. 

 The reduced order model was tested using 5, 10, 20, 40 and 100 snapshot 

solutions. The POD basis functions were designed where 99.999% energy (expression 

(80)) was captured in each case. The optimization was first carried out using the 

model developed with 5 snapshot solutions. The optimization procedure did not 

provide a converging solution. The optimization procedure was run again using the 

model developed with 10 snapshot solutions.  

 Figure 5.6 shows the convergence history of the cost and control variables. 

Note that same parameterization of the control profile is used in both actual system 

and reduced order modeling. The adjoint method was run with an initial control 

profile  0.073,0.017,0.1349,0.0057, 0.2679D    . The criteria of comparing the 

optimal solution, as obtained using the actual system and the reduced order model, 

was taken as the relative error. Let, *u  and 'u  be the optimal solution as obtained 

using the actual system and the reduced order model, respectively. The relative error 
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for u  was defined as  * ' / *ue u u u  . Similar errors were obtained for other flow 

variables.  

 
(a) 

 
(b) 

Figure 5.6. (a) Cost, (b) control variables, with respect to iterations 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.7. Relative errors in the optimal solution of (a) u , (b) v , (c) T , and (d) p , 

when discretization (28 X 28) is used 

 

Figure 5.7 illustrates the relative error in the flow variables. Large variations 

in the optimal solution were observed in the flow speed. Similar observation were 
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made when optimal solution was obtained using reduced order model based on 20, 40 

and 100 snapshot solutions. Figure 5.8 shows the norm of relative errors with respect 

to the model as developed using different snapshots. The trend of error norms with 

decreasing value can be observed. This trend was expected as a ‘good’ approximation 

of the actual system can be obtained by using large number of snapshots that in result 

gives the near optimal solution. 

 

Figure 5.8. Relative error norm of flow variables with respect to reduced order models 

 

 Next, the study was carried out for different grid size. The spatial domain was 

uniformly discretized in x- and y- directions using more number of nodal points. 

There are two reasons to make this analysis:  

 1. A steady state solution was obtained for a discretization (e.g., see Figure 

5.3). It is not guaranteed that this solution is the actual solution. It was observed that 

near actual steady state solution can be obtained by taking a finer grid. Consider 

indexes for flow variables and vorticity as: 
2

indexu u dxdy


  , 
2

indexv v dxdy


  , 

2

indexT T dxdy


  , and 

2

index

v u
Vorticity dxdy

x y


  
  

  
 .  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.9. Flow variables index with respect to spatial discretization 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.10. Relative errors in the optimal solution of (a) u , (b) v , (c) T , and (d) p , 

when discretization (88 X 88) is used 
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Figure 5.9 shows the flow variable index with respect to grid size for a steady 

state solution. As grid is made finer, each index converges to a value. A grid size can 

be chosen such that there is not much variation in the indexes after certain refinement 

of the grid. A discretization (88 X 88) was selected for the reduced order modeling 

and optimal solution was obtained for this grid. Here reduced order model was 

developed using 10 snap shot solutions. Figure 5.10 illustrate the relative errors in the 

flow variables. These plots can be compared with the error profiles as shown in 

Figure 5.7. These results demonstrate that by taking finer grid, the reduced order 

model based optimal solution approaches the optimal solution as obtained using the 

finite difference model. 

 2. There is always an approximation error in reduced order modeling when 

Galerkin procedure is used to obtain a weak form [2]. The boundary conditions are 

satisfied in the weak form. The approximation error can be reduced by taking finer 

grid. But this action increases the computational time for solving the flow equations. 

If possible, variable grid size, such as finer grid near the boundary and coarser grid in-

domain, should be used. Only uniform grid was examined in this study here.  

 

Figure 5.11. Peak values of relative error of flow variables with respect to spatial 

discretization 

 



104 

 

Reduced order models were obtained using 10 snap shot solutions for different grids 

and optimal solution is obtained using these models.  Figure 5.11 shows the peak 

value of relative errors in the flow variables with respect to the change in grid. The 

plot shows a decreasing trend of the relative errors. 

 In summary, the steady state solutions were computed using the finite 

difference scheme from the flow equations (137) - (140). The flow computation takes 

a significant amount of time. The adjoint method requires solution of the flow 

equations and the adjoint equation at every iteration, i.e., the computational time is 

nearly twice as in solving the flow equations. A reduced order model, obtained using 

few snap shot solutions, can overcome the computational requirements. It is efficient 

to solve the optimal control problem using a low dimensional model. The accuracy of 

the solution becomes an issue while achieving the computational efficiency. Two 

ways, Grid refinement and sufficient snap shot solutions, were proposed in this study 

to achieve the accuracy as well. 

 

 

 

 

 

 

  



105 

 

6. CONCLUSION 

 

 The first portion of this dissertation presents a control design technique that is 

based on the principles of dynamic inversion and optimization theory. A controller 

was formulated for nonlinear systems that are actuated at the boundary. Its 

formulation is based on the design-then-approximate philosophy. This technique can 

be useful for a variety of applications due to its relatively general development. The 

control technique is demonstrated for heat equations and thermal convection loops.  

An extension of this technique was developed in order to address the issue of 

parameter uncertainty in a class of systems. Inaccurate values of parameters were 

used to design an adaptive controller.  This controller requires few computations and 

can be useful for online applications. The third portion of this dissertation includes a 

discussion on sub-optimal controller for a class of second order systems that are 

actuated in-domain. A reduced order model was developed to synthesize a 

computationally efficient controller. This synthesis was based on approximate 

dynamic programming that provides a comprehensive solution over the system’s 

domain. The generic development and computational efficiency of this feedback 

controller makes it attractive to use for a class of second order nonlinear systems. A 

flexible aircraft wing was used to demonstrate the applicability of the developed 

controller. The last portion of this document includes an attempt to compute optimal 

control for stationary thermally convected fluid flow while overcoming the 

computational requirements. Reduced order modeling based optimization was 

examined. The optimization procedure became computationally efficient when a low 

dimensional system model was used. Solutions based on finer grid and different snap 

shots were analyzed to achieve the accurate optimal solution. 
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