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ABSTRACT 

 

 

This dissertation presents work on development of multi-mode specific spacecraft 

propulsion systems. Specifically, this work attempts to realize a single propellant capable 

of both chemical monopropellant and electric electrospray rocket propulsion, develop 

methods to characterize multi-mode propulsion system performance, and realize a system 

capable of both monopropellant and electrospray propulsion for a small spacecraft. 

Selection criteria for ionic liquid propellants capable of both monopropellant and 

electrospray propulsion are developed. These are based on desired physical properties 

and performance considering use in both propulsive modes. From these insights, a 

monopropellant mixture of 1-ethyl-3-methylimidazolium ethyl sulfate and 

hydroxylammonium nitrate is selected and synthesized. Multi-mode spacecraft 

micropropulsion systems which include a high-thrust chemical mode and high-specific 

impulse electric mode are assessed. Due to the combination of a common propellant for 

both propulsive modes, low inert mass, and high electric thrust, the 

monopropellant/electrospray system has the highest mission capability in terms of delta-

V for missions lasting shorter than 150 days. The ionic liquid monopropellant mixture is 

tested for decomposition on heated platinum, rhenium, and titanium surfaces. It was 

found that the propellant decomposes at 165 
o
C on titanium, which is the decomposition 

temperature of HAN, and 85 
o
C on platinum. Arrhenius-type reaction rate parameters 

were calculated from the results and used to develop thruster models. The 

[Emim][EtSO4]-HAN propellant mixture is tested in a capillary electrospray emitter and 

exhibits stable electrospray emission at a nominal extraction voltage of 3400 V. The 

highest specific impulse attained in these experiments was 412 seconds; however, this 

could be improved with a more robust feed system design. This data, along with data 

from the monopropellant decomposition experiment is used to design a multi-mode 

micropropulsion system using a common propellant and common thruster geometry. This 

system is capable of ~20-40% greater delta-V capability at a given mission duration 

compared to a system utilizing separate, state-of-the-art monopropellant and electrospray 

thrusters. 
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NOMENCLATURE 

 

 

CA  = Concentration of reactant A, [mol/m
3
] 

CPA = Specific heat of reactant A, [J/mol-K] 

F  = Thrust, [N]  

FA0 = Initial molar flow rate of reactant A, [mol/s] 

Fi  = Molar flow rate, [mol/s] 

g0 = Acceleration of gravity, [m/s
2
] 

Hi = Enthalpy of species i, [J/mol] 

I = Current, [A] 

spI  = Specific impulse, [s] 

MWA = Molecular weight of reactant A, [g/mol] 

�̇� = Mass flow rate, [g/s] 

Q = Volumetric flow rate, [m
3
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�̇� = Heat transfer rate, [W] 

rA = Reaction rate of reactant A, [mol/s-m
3
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T = Temperature, [K] 

V = Volume, [m
3
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𝑊𝑠
̇  = Shaft work, [W] 

X = Conversion, [mol reacted/mol initial] 

ΔHRX = Heat of reaction, [J/mol] 
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1. INTRODUCTION 

 

 

This thesis presents work on development of multi-mode specific spacecraft 

propulsion systems. Specifically, this work attempts to realize a single propellant capable 

of both chemical monopropellant and electric electrospray rocket propulsion, develop 

methods to characterize multi-mode propulsion system performance, and realize a system 

capable of both monopropellant and electrospray propulsion for a small spacecraft. 

Previous attempts at realizing a dual-mode propulsion system have focused on utilizing 

available monopropellants in some electrical propulsion mode, results of which have thus 

far been mixed as the monopropellants tend to be unsuitable for use, or have very low 

performance in electric propulsion devices. The approach taken in the first part of this 

study is to quantify traits of the propellant necessary to achieve functionality and high 

performance in both chemical and electric modes. Thus, a novel multi-mode specific 

propellant can be selected, synthesized, and tested. This is not intended to develop an 

‘optimal’ propellant, since as will be described given current ionic liquid knowledge that 

task is not possible. Rather, selection criteria are developed such that known ionic liquids 

can be selected for study. 

From a propulsion system perspective, proposed multi-mode propulsion systems 

analysis has left a lot to be desired. Specifically, focus has been on simply outlining 

concepts with focus on individual thruster specific impulse and thrust and comparison of 

multi-mode systems, which by nature rely on component integration, has been lacking. 

Analysis methods for multi-mode spacecraft propulsion systems are developed in the 

second portion of this dissertation with particular focus on small satellite spacecraft 

systems, which are not well described by specific impulse alone due to their high inert 

mass fractions.  

The final three sections of this dissertation focus on chemical monopropellant and 

electrospray capability of the propellant developed in Part I and application to multi-

mode propulsion system design. Monopropellant decomposition characteristics are 

obtained through the use of a batch reactor, and electrospray performance is obtained 
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through a capillary type emitter experiment. Results from these experiments are then used 

to design a conceptual multi-mode propulsion systems using insights from Part II. 

 In this thesis, four papers intended for publication are presented which describe 

the methods and results of research on multi-mode spacecraft propulsion. Paper I 

provides a roadmap to dual-mode propellant design by describing the physical properties 

and performance that can be attained within the class of ionic liquids selected for study. 

Paper II presents multi-mode micro propulsion systems analysis methods. Paper III 

presents experimental work on the synthesis and catalytic decomposition of a novel 

propellant selected from the results of Paper I. Evidence of catalytic decomposition 

provides initial proof-of-concept for use in monopropellant systems, and represents the 

first step on the development path. Paper IV describes results of the electrospray emission 

of the same propellant. These papers are preceded by an introduction which describes the 

motivation for pursuing the research and the basic concepts of both multi-mode 

spacecraft propulsion and ionic liquids. The final section uses results from all sections to 

present a conceptual design of a multi-mode spacecraft propulsion system. That section is 

not intended as an optimal or final design, but rather an example of the overall 

methodology and design considerations developed in the previous sections. 

 

 

1.1. MULTI-MODE SPACECRAFT PROPULSION  

The main benefit of a multi-mode system is increased mission flexibility through 

the use of both a high-thrust chemical thruster and a high-specific impulse electric 

thruster. By utilizing both thrust modes, the mission design space is much larger [1]. 

Missions not normally accessible by a single type of thruster are possible since both are 

available. The result is the capability to launch a satellite with a flexible mission plan that 

allows for changes to the mission as needs arise. Since a variety of high specific impulse 

and high thrust maneuvers are available in this type of system, this may also be viewed as 

a technology enabling launch of a satellite without necessarily determining its thrust 

history beforehand. Research has shown that a dual mode system utilizing a single ionic 

liquid propellant in a chemical bipropellant or monopropellant and electrical electrospray 

mode has the potential to achieve the goal of improved spacecraft mission flexibility [2-
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4]. Furthermore, utilizing a single ionic liquid propellant for both modes would save 

system mass and volume to the point where it becomes beneficial when compared to the 

performance of a system utilizing a state-of-the-art chemical and electric thruster with 

separate propellants, despite the performance of the ionic liquid being less than that of 

each thruster separately. While a bipropellant thruster would provide higher chemical 

performance, a monopropellant thruster provides the most benefit because the utilization 

of a bipropellant thruster in this type of system could inherently lead to unused mass of 

oxidizer since some of the fuel is used for the electrical mode [3]. 

1.1.1. Monopropellant Propulsion. Monopropellant propulsion is a combustion-

based propulsive method that consists of a single propellant being ignited through some 

external stimulus in order to produce an energy release, and therefore a temperature and 

pressure increase in a combustion chamber. The pressurized gas is then expanded through 

a nozzle to produce thrust. High thrust can be attained with monopropellant devices, but 

specific impulse is limited due to energy being lost to random thermal collisions which 

reduces the exhaust velocity. A schematic of a typical monopropellant thruster is shown 

in Figure 1.1. 

 

 

 

Figure 1.1. Simplified Schematic of Monopropellant Thruster. 

 

 

A monopropellant must be thermally stable under storage conditions, but also 

readily ignitable. Typically, hydrazine has been employed as a spacecraft monopropellant 

because it is storable and easily decomposed to give good propulsion performance [5]. 
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Because it is also highly toxic, recent efforts have focused on finding an alternative 

“green” monopropellant. Binary or ternary mixtures including the energetic salts 

hydroxyl ammonium nitrate (HAN), ammonium dinitramide (ADN), or hydrazinium 

nitroformate (HNF) have been proposed as potential replacements [6-10]. These are not 

true monopropellants in the traditional sense, but rather essentially premixed 

bipropellants with separate oxidizer and fuel components in the mixture. Since all of 

these have melting points above room temperature, they are typically stored as an 

aqueous solution. A compatible fuel component such as methanol, glycerol, or 

triethanolammonium nitrate (TEAN) is typically also added to provide increased 

performance.  

 Nonspontaneously ignitable propellants, such as monopropellants, must be 

decomposed by some external means before ignition can begin. Ignition is a transient 

process in which reactants are rapidly transitioned to self-sustained combustion via some 

external stimulus. For practical applications, the amount of energy needed to provide 

ignition must be minimal, and the ignition delay time should be small [5]. The most 

reliable methods of monopropellant ignition on spacecraft include thermal and catalytic 

ignition, in which the monopropellant is sprayed onto a heated surface or catalyst. Other 

ignition methods include spark or electrolyte ignition [11, 12]. These have been 

investigated, but are less practical for spacecraft application as they require a high-

voltage power source, further increasing the weight and cost of the spacecraft. Hydrazine 

monopropellant is typically ignited via decomposition by the commercially manufactured 

iridium-based catalyst Shell 405. For optimum performance, the catalyst bed is typically 

heated up to 200
o
C, but can be ‘cold-started’ with no preheat in emergency situations [5]. 

The Swedish ADN-based monopropellant blends require a catalyst bed preheat of 200
o
C. 

They cannot be cold-started, which is a major limitation presently [10].  

1.1.2. Electrospray Propulsion. Electrospray, or colloid, propulsion utilizes and 

electrostatic-type device to extract ions or charged droplets from a liquid meniscus, 

which in turn are accelerated through an intense electric field to produce a high exhaust 

velocity. As with most electric propulsion devices, the mass flow rates that can be 

attained in this type of device are low. Electrospray devices are therefore high-specific 

impulse, low-thrust type devices. A typical electrospray thruster consists of an emitter, 
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which is essentially a needle, an extraction grid, and a power supply. The propellant may 

be either externally wetted or injected through a capillary tube. A potential is applied 

between the extraction grid and the needle, which causes the formation of a Taylor cone 

on the surface of the propellant meniscus. If the electric field on the meniscus is 

sufficiently high, ions or charged droplets are extracted and accelerated by the grid. A 

typical electrospray thruster is shown in Figure 1.2. 

 

 

 

Figure 1.2. Simplified Schematic of Electrospray Thruster. 

 

 

1.2. IONIC LIQUIDS 

An ionic liquid is essentially a molten, or liquid, salt. All salts obtain this state 

when heated to high enough temperature; however, a special class of ionic liquids is 

known as room temperature ionic liquids (RTIL’s) that remain liquid well below room 

temperature. These differ from traditional aqueous ionic solutions, such as salt water, in 

that a solute is not required to dissolve the ionic portion, but rather the ionic substance is 

liquid in and of itself. Ionic liquids have been known since the early 20
th

 century; 

research in the field, however, has only currently begun to increase, with the number of 

papers published annually increasing from around 120 to over 2000 in just the last decade 

[13]. As a result, many of the ionic liquids that have been synthesized are still being 

researched, and data on their properties is not yet available. Current research has aimed at 
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synthesizing and investigating energetic ionic liquids for propellants and explosives, and 

current work has highlighted the combustibility of certain ionic liquids as they approach 

decomposition temperature [14, 15]. This leads to the possibility of using an ionic liquid 

as a storable spacecraft propellant.    

 Ionic liquids have been investigated as electrospray propellants. Electrospray 

liquids with relatively high vapor pressure boil off the emitter and produce an 

uncontrolled, low performance emission. Ionic liquids are candidates for electrospray 

propulsion due to their negligible vapor pressure and high electrical conductivity [16]. 

Ionic liquid emissions can range from charged droplets to a purely ionic regime (PIR) 

similar to that of field emission electric propulsion with specific impulses in the range of 

200-3000 seconds for current propellants [17]. The ionic liquid 1-ethyl-3-

methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim][Im]) was selected as the 

propellant for the ST7 Disturbance Reduction System mission, and represents the only 

application of electrospray, or colloid, thrusters to date [18]. Several other imidazole-

based ionic liquids have been suggested for research in electrospray propulsion due to 

their favorable physical properties [19]. 
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ABSTRACT 

 

 

Imidazole-based ionic liquids are investigated in terms of dual-mode chemical 

monopropellant and electrospray rocket propulsion capability. A literature review of 

ionic liquid physical properties is conducted to determine an initial, representative set of 

ionic liquids that show favorable physical properties for both modes, followed by 

numerical and analytical performance simulations. Ionic liquids [Bmim][dca], 

[Bmim][NO3], and [Emim][EtSO4] meet or exceed the storability properties of hydrazine 

and their electrochemical properties indicate that they may be capable of electrospray 

emission in the purely ionic regime. These liquids are projected to have 13-23% reduced 

monopropellant propulsion performance in comparison to hydrazine due to the prediction 

of solid carbon formation in the exhaust. The use of these ionic liquids as a fuel 

component in a binary monopropellant mixture with hydroxylammonium nitrate shows 1-

4% improved specific impulse over some ‘green’ monopropellants. Also, this avoids 

volatility issues and reduces the number of electrospray emitters by 18-27% and power 

required by 9-16%, with oxidizing ionic liquid fuels providing the greatest savings. A 

fully oxygen balanced ionic liquid will exceed the state-of-the-art performance in both 

modes, but will require advances in hardware technology in both modes to achieve 

minimum functionality. 
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NOMENCLATURE 

 

 

maxE    =   Maximum electric field, [V/m]  

e   = Fundamental charge, [C] 

F   = Thrust, [N] 

0g   = Acceleration of gravity, [m/s
2
] 

dI   = Density specific impulse, [kg-s/m
3
] 

emitI  = Current flow per emitter, [A] 

iI   = Output current associated with charged particle i, [A] 

spI  = Specific impulse, [s] 

K   = Electrical conductivity, [S/m] 

MW  = Molecular weight, [g/mol] 

m   = Mass of emitted species, [kg] 

im   = Mass of particle i, [kg] 

emitm  = Mass flow rate per emitter, [kg/s] 

totm  = Total mass flow rate, [kg/s] 

emitN  = Number of emitters 

cP   = Chamber pressure, [psi] 

eP   = Nozzle exit pressure, [psi] 

sysP  = Power of electric propulsion system, [W] 

Q   = Volume flow rate, [L/s] 

q   = Particle charge, [C] 

R   = Gas constant, [J/kg-K] 

AR  = Ion fraction 

cT   = Combustion temperature, [K] 

mT   = Melting temperature, [K] 
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accV  = Electrostatic acceleration potential, [V] 

eV   = Exit velocity, [m/s]  

, 0e NV 
 = Exit velocity of pure ions, [m/s] 

, 1e NV 
 = Exit velocity of ions in N=1 solvated state, [m/s] 

ix   = Mass fraction of species i 

0

fH  = Heat of formation, [J/mol] 

  = Net accelerating potential, [V] 

av  = Average specific gravity 

   = Dielectric constant, or nozzle expansion ratio 

0   = Permittivity of free space, [F/m] 

   = Viscosity, [cP] 

sys  = Efficiency of power conditioning system 

   = Specific heat ratio, or surface tension, [dyne/cm] 

( )   = Proportionality coefficient 

   = Density, [g/cm
3
] 

i   = Density of species i, [g/cm
3
] 

n  = Density of mixture n, [g/cm
3
] 

 

 

1. INTRODUCTION 

 

 

In a true dual-mode spacecraft propulsion system, the same propellant is used for 

both high thrust, low specific impulse (chemical propulsion) and low thrust, high specific 

impulse thrusters (electric propulsion). This has many advantages, most importantly 

higher mission flexibility in terms of the ability to dictate maneuvers as mission needs 

arise on orbit rather than before launch. At the same time, utilizing a single propellant 

provides maximum flexibility and significantly reduces system mass and volume over a 
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spacecraft utilizing separate propellants for each thrust mode. Ionic liquids have potential 

to be utilized in either a chemical thruster or an electric thruster. The goal of this paper is 

to examine typical ionic liquids in terms of their capability for use as propellants in a 

dual-mode propulsion system. Since the list of available ionic liquids is enormous, and 

most liquids are not yet well characterized, this study will also attempt to identify trends 

favorable toward dual-mode propulsion in order to provide guidelines for the selection of 

ionic liquids for future use in dual-mode propellant research. This paper describes and 

examines requirements on the physical properties of various ionic liquids to assess their 

potential for use as propellants in a potential dual-mode system. Projected chemical and 

electrical propulsion performance of sample ionic liquids that have shown favorable 

properties toward feasible operation in both modes is then computed and compared to the 

current state-of-the-art in both chemical monopropellant and electrospray propulsion.  

As stated, the main benefit of a dual-mode system is increased mission flexibility 

through the use of both a high-thrust chemical thruster and a high-specific impulse 

electric thruster utilizing the same fuel. By utilizing both thrust modes, the mission 

design space is much larger [1]. Missions not normally accessible by a single type of 

thruster are possible since both are available. Furthermore, this enables mission designers 

to develop with a flexible mission plan that allows for changes to the mission as needs 

arise. Since a single propellant is utilized for both modes, this may also be viewed as a 

technology enabling launch of a satellite without necessarily even determining any thrust 

history beforehand because both types of maneuvers are available, while still resulting in 

100% propellant utilization regardless of the specific type, frequency, or order of desired 

maneuvers . Research has shown that a particular dual mode system concept utilizing a 

single ionic liquid propellant in a chemical monopropellant and electric electrospray 

mode has the potential to achieve  mission flexibility gains and mass savings over a 

system utilizing separate propellants for each mode even if the common propellant 

performs below state-of-the-art in either mode [2-4].  

An ionic liquid is essentially a molten, or liquid, salt. All salts obtain this state 

when heated to high enough temperature; however, an ionic liquid is typically defined as 

attaining liquid state below 100
o
C. There exists a special class of ionic liquids known as 

room temperature ionic liquids (RTIL’s) that remain liquid well below room temperature. 
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Ionic liquids have been known since the early 20
th

 century; research in the field, however, 

has only currently begun to increase, with the number of papers published annually 

increasing from around 120 to over 2000 in just the last decade [5]. As a result, many of 

the ionic liquids that have been synthesized are still being researched, and data on their 

properties is not yet available. Additionally, the number of ionic liquids theorized, but not 

yet synthesized has been estimated in the millions [6] and the estimated number of 

possible ionic liquids is on the order of ~10
18

 [7]. Current research has aimed at 

synthesizing and investigating energetic ionic liquids for propellants and explosives, and 

current work has highlighted the combustibility of certain ionic liquids as they approach 

decomposition temperature [8, 9]. This leads to the possibility of using an ionic liquid as 

a storable spacecraft monopropellant.    

Hydrazine has been the monopropellant of choice for spacecraft and gas 

generators because it is storable and easily decomposed to give good combustion 

properties [10]. However, hydrazine is also highly toxic and recent efforts have been 

aimed at replacing hydrazine with a high-performance, non-toxic monopropellant. The 

energetic salts hydroxylammonium nitrate (HAN), ammonium dinitramide (ADN), and 

hydrazinium nitroformate (HNF) have received attention as potential replacements [10-

14]. All of these salts have melting points above room temperature, and it is therefore 

necessary to use them in an aqueous solution to create a storable liquid propellant. 

Typically, these are also mixed with a compatible fuel component to provide improved 

performance. The main limitation to the development of these as monopropellants has 

been excessive combustion temperatures [14, 15]. Engineers in Sweden, however, have 

recently flight tested an ADN-based thruster capable of handling combustion 

temperatures exceeding 1900 K [14]. 

Electrospray is a propulsion technology in which charged liquid droplets or ions 

are extracted from an emitter via an applied electric field [16]. Electrospray liquids with 

relatively high vapor pressure boil off the propellant and produce an uncontrolled, low 

performance emission. Ionic liquids are candidates for electrospray propulsion due to 

their negligible vapor pressure and high electrical conductivity [17]. Ionic liquid 

emissions can range from charged droplets to a purely ionic regime (PIR) similar to that 

of field emission electric propulsion with specific impulses in the range of 200-3000 
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seconds for current propellants [16]. The ionic liquid 1-ethyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)imide ([Emim][Im], or [Emim][Tf2N]) was selected as the 

propellant for the ST7 Disturbance Reduction System mission, and represents the only 

planned flight application of electrospray, or colloid, thrusters to date [18]. Several other 

imidazole-based ionic liquids have been suggested for research in electrospray propulsion 

due to their favorable physical properties [19]. 

The following sections analyze the potential of ionic liquids to be used as 

spacecraft propellants in a dual-mode system and develops criterion for selection or 

design of true dual-mode propellants. Section II identifies the physical properties required 

for acceptable performance in both modes. Sample ionic liquids are then selected for 

performance analysis. Section III investigates the projected chemical performance of 

these ionic liquids as monopropellants. Section IV examines the projected electrospray 

performance of the ionic liquid propellants. The results of the preceding sections are 

discussed, and criteria for future dual-mode propellant selection and developments are 

presented in Section V. Section VI presents conclusions based on the entirety of analyses. 

 

  

2. IONIC LIQUID PHYSICAL PROPERTIES 

 

 

Fundamental physical properties required of ionic liquids to perform as both 

monopropellants and electrospray propellants in a spacecraft environment are identified. 

These properties are compared to those of the current state-of-the-art propellants to 

develop tools and criterion to assess the feasibility of using these and other ionic liquids 

for the intended application. 

 

 

2.1. THERMOCHEMICAL PROPERTIES 

The fundamental thermochemical properties required to initially analyze the 

ability of ionic liquids to perform as spacecraft propellants include the following: melting 

temperature, density, viscosity, and heat of formation [10]. High density, low melting 
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temperature, and low viscosity are desired traits common to both propulsive modes in the 

dual-mode system because they do not have a significant effect on the operation of each 

thruster, but represent the storability of propellants only. A low viscosity aids in 

transporting the propellant from the tank and its subsequent injection into either type of 

thruster. A low melting temperature is desired so that the power required to keep the 

propellant in liquid form is minimal. Monopropellant grade hydrazine has a melting 

temperature of 2
o
 C, so it is reasonable to assume that new propellants must fall near or 

below this value. Density is an additional storability consideration. A high density is 

desired to accommodate a large amount of propellant in a given volume on a spacecraft. 

The chemical propellant must also be easily ignitable and give good combustion 

properties. The heat of formation of the compound is required to estimate the equilibrium 

composition, and subsequently compute the estimated chemical performance, namely 

specific impulse. A high heat of formation results in a greater energy release upon 

combustion, therefore a higher combustion temperature, and subsequently a higher 

specific impulse for a given species and number of combustion products.  

 

 

2.2. ELECTROCHEMICAL PROPERTIES 

The electrochemical properties important for electrospray propulsion include both 

surface tension and electrical conductivity. The highest performance in terms of specific 

impulse is attained for emissions in the purely ionic regime (PIR). Emission of charged 

droplets, rather than clusters of ions, greatly reduces the specific impulse and efficiency 

of the emitter. [Emim][Im], for example, operates in the purely ionic regime with a 

specific impulse of around 3500 seconds [20], but in the droplet regime, this drops to 

lower than 200 seconds [21]. Droplet emission, however, does produce a larger amount 

of thrust due to emission of heavier species, and this may be desirable in some instances, 

but ultimately the most flexible ionic liquids for electrospray propulsion will attain 

emission in the PIR. Liquids with sufficiently high surface tension and electrical 

conductivity have been shown to be capable of operating in the PIR.  This has been 

shown both theoretically and experimentally [19, 22, 23], and is related to the maximum 

electric field on the meniscus of the liquid on the emitter [18, 19] 
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  1/2 2/3 1/6

max 0( ) ( / )E K Q                                              (1) 

 

Additionally, De La Mora [19, 23] has shown that the smallest flow rate that can form a 

stable Taylor cone scales as γ/K, hence [19] 

 

1/3

max ~ ( )E K                                                       (2) 

 

Experimental results indicate that the PIR is achieved at a meniscus electric field of 

roughly 1 V/nm [16]. It should be noted that Eqs. (1) and (2) do not accurately predict the 

meniscus electric field for PIR emissions. Instead, because experimental results indicate a 

similar trend for liquids that have attained PIR emission, Eq. (2) will be used as a 

comparison tool. This relation is a measure of the ability of an ionic liquid to form a 

Taylor cone with emission in the purely ionic regime, and does not necessarily translate 

to thruster performance. The thrust and specific impulse for an electric propulsion system 

by an individual particle are calculated as [10, 16] 

 

2 ( / )i acc iF I V m q                                                    (3) 

 

 0(1/ ) 2 ( / )sp acc iI g V q m                                                 (4) 

 

A high charge per mass is desired for high specific impulse, but is inversely proportional 

to thrust. As a result, practical specific impulse is limited by power available, since an 

excessively high specific impulse requires large amounts of power to process enough 

current to produce even small amounts of thrust. Higher molecular weight propellants are 

desirable due to the higher thrust produced by emission of heavier ions. Therefore, ionic 

liquids with electrical conductivity and surface tension close to the current state-of-the-art 

electrospray propellants that have achieved PIR operation and high molecular weight are 

of greatest benefit.  
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2.3. PHYSICAL PROPERTIES OF IONIC LIQUIDS USED IN THIS STUDY 

 The number of ionic liquids available for study is numerous; therefore, this study 

has initially been restricted to only imidazole-based ionic liquids. The main reason for 

selecting imidazole-based ionic liquids is their capability as electrospray propellants, 

particularly those based on the [Emim]
+
 cation [19]. A recent patent on this particular 

type of dual-mode system lists several potential ionic liquid propellants, most of which 

are imidazole-based [24]. These are used in the initial screening for chemicals of interest; 

however, many ionic liquids do not have enough published physical property data to 

make definite estimates of initial system feasibility. In particular, heat of formation is not 

available for many of the ionic liquids considered initially. It is therefore necessary and 

useful to consider trends in the physical properties of ionic liquids. This will be discussed 

in further detail in a later section, but in the interest of providing examples in this study 

and to discern performance trends, three ionic liquids are selected for further study based 

on availability of property data: 1-butyl-3-methylimidazolium nitrate ([Bmim][NO3]), 1-

butyl-3-methylimidazolium dicyanamide [Bmim][dca], and 1-ethyl-3-methylimidazolium 

ethyl sulfate ([Emim][EtSO4]). Representative physical property data for these ionic 

liquids are shown in Table 1. The properties of hydrazine and [Emim][Im] are shown for 

comparison of thermochemical and electrochemical properties, respectively. The density, 

viscosity, electrical conductivity, and surface tension reported in the table are at a 

temperature of 298 K for all liquids listed, except for the electrical conductivity of 

[Bmim][NO3], where the only data point given in literature is at a temperature of 379 K. 

The properties found in the literature vary slightly due to differences in experimental 

technique and purity of the ionic liquid sample, but in general the results agree within less 

than 1% [46-56]. The values shown in Table 1 are the most conservative values in 

reference to the discussions in this paper. 
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Table 1. Physical Properties of Ionic Liquids Selected for Further Study. 

Propellant Formula ρ [g/cm3] Tm [oC] ΔHf
o [kJ/mol] K [S/m] 

γ 

[dyn/cm] 
η [cP] 

[Bmim][NO3] C8H15N3O3 1.157  [25] <10  [25] -261.4   [26] 0.820   [27] 

 

165  [28] 

[Bmim][dca] C10H15N5 1.058  [29] -10  [29] 206.2   [30] 1.052  [31] 46.6   [32] 32  [33] 

[Emim][EtSO4] C8H16N2O4S1 1.236  [34] -37  [35] -579.1  [36] 0.382  [37] 45.4  [38] 100  [39] 

[Emim][Im] C8H11F6N3O4S2 1.519  [40] -18  [41] 

 

0.910  [42] 36.9   [43] 32  [40] 

Hydrazine N2H4 1.005  [10] 2  [10] 109.3 [44] 0.016  [45] 66.4 [45] 0.9  [45] 

 

 

 

 All of the ionic liquids have density greater than that of hydrazine. The melting 

temperature of [Bmim][dca] and [Emim][EtSO4] is less than that of hydrazine. 

[Bmim][NO3] has a slightly higher melting temperature, but the exact melting 

temperature is not reported. The value shown in Table 1 represents the fact that liquid 

viscosity measurements are reported for as low as 10
 o

C in literature [26, 28]. The final 

consideration is the viscosity of the ionic liquids, which is much higher than typical 

chemical propellants, such as hydrazine, and is even still an order of magnitude higher 

than ADN-based monopropellant blends [57]. This could lead to difficulties in engine 

calibration and injector performance, but likely can be mitigated through clever design. In 

terms of electrospray considerations, the viscosity of [Bmim][dca] is roughly the same as 

[Emim][Im], which has been successfully sprayed through a capillary emitter [58]. The 

viscosity of the other two ionic liquids is higher than [Emim][Im], but not unlike some 

higher molecular weight propellants that have been electrosprayed successfully, but only 

by heating the emitter [58]. Similarly, heating [Bmim][NO3] to 60
o
C [28] and 

[Emim][EtSO4] to 50
o
C [39] lowers the viscosity to levels equal to [Emim][Im]. 

  The electrochemical properties should be assessed in terms of the likelihood of 

the candidate ionic liquid to attain PIR emission since, as mentioned, operation in the 

mixed, or droplet, regime causes the efficiency of the thruster and specific impulse to 

drop drastically. Therefore, this assessment should be one of the first considerations when 

considering new candidate propellants for dual-mode systems. Since electrical 

conductivity of ionic liquids increases greatly with temperature, the emitter can be heated 
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to attain PIR emission. Using Eq. (2) as an estimate and comparison tool to assess the 

combined effects of surface tension and electric field, the estimated maximum electric 

field parameter in Eq. (2) was computed and shown as a function of temperature in Fig. 

1. The surface tension and electrical conductivity of [Emim][Im], [Bmim][dca], and 

[Emim][EtSO4] as a function of temperature were obtained from literature [31, 40, 46]. 

[Emim][Im] has been shown experimentally to achieve PIR emission at an emitter 

preheat temperature of 80
o
C [58]. From Fig. 1, the electric field on the surface of the 

meniscus for [Bmim][dca] and [Emim][EtSO4] is comparable at temperatures of 45
o
C 

and 80
o
C, respectively. This is not surprising as these liquids were selected specifically 

due to their electrospray potential. The same data for [Bmim][NO3] is not available, and 

it can therefore not be fully assessed in the same manner. As stated, the electrical 

conductivity reported for [Bmim][NO3] is at a temperature of 379 K, making it slightly 

less feasible to use as an electrospray propellant since it will have to be heated to well 

over 100
o
C to achieve an electrical conductivity nearly equal to that of [Emim][Im] at 

80
o
C.  Surface tension for [Bmim][NO3] is not reported; however, it can be reasonably 

inferred based on trends reported in literature. A longer alkyl chain in imidazole-based 

ionic liquids has been reported to result in decreased surface tension [47]. [Emim][NO3], 

the lower alkyl chain derivative of [Bmim][NO3] has a surface tension of 82.7 [dyne/cm] 

[48]. The value reported for the lower alkyl chain derivative of [Bmim][dca] is 1-ethyl-3-

methylimidazolium dicyanamide, [Emim][dca] is 64 [dyne/cm] [49]. Following these 

trends, the surface tension for [Bmim][NO3] should fall below that of [Emim][NO3], but 

above that of [Bmim][dca]; therefore, the surface tension of [Bmim][NO3] should be 

higher than that of [Emim][Im], and may allow for a slightly lower electrical 

conductivity.  
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Figure 1. Electric Field on Meniscus Parameter, Eq. (2), as a Function of Temperature. 

 

 

 It should also be noted that the numbers computed in Fig. 1 provide an estimate 

only and are predictions based on the minimal number of ionic liquids that have 

experimentally exhibited PIR emission. Of the PIR capable ionic liquids listed in Garoz 

et. al. [58], only the ionic liquid 1-butyl-3-methylimidazolium 

bis(perfluoroethylsulfonyl)imide, [Bmim][Beti], had the requisite physical property data 

available to test the validity of the use of Eq. (2) as a predictor for PIR capability [40]. In 

comparison to [Emim][Im], Eq. (2) predicts that this ionic liquid will achieve PIR near a 

180
o
C preheat temperature. This ionic liquid has been observed to emit in the PIR regime 

with a preheat of 204
o
C [58]. So, while the type of data presented in Fig. 1 should be 

used with heed, it can be used to screen out obviously poor candidates and provide a 

reasonable means of comparison to ionic liquids that have attained PIR emission. 

 

 

 

 

 



19 

 

3. CHEMICAL PERFORMANCE ANALYSIS 

 

 

The three aforementioned liquids are feasible candidates for both chemical and 

electrical propulsion purely based on their reported physical properties. Although initially 

selected mainly because of electrospray considerations, a chemical rocket performance 

analysis is conducted to determine if they have potential as chemical monopropellants 

with the understanding that they may perform below state-of-the-art, but have dual-mode 

capability. Equilibrium combustion analysis is conducted using the NASA Chemical 

Equilibrium with Applications (CEA) computer code [44]. In each case, the temperature 

of the reactants is assumed to be 298 K. Where applicable, specific impulse is calculated 

by assuming frozen flow at the throat [10] 
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Given a combustion pressure and nozzle expansion ratio, Eqs. (5) and (6) are then only 

functions of the combustion gas temperature and products, which are given in the CEA 

output. When condensed species are found to be present in the equilibrium combustion 

products, a shifting equilibrium assumption through the nozzle must be applied instead to 

account for the multi-phase flow. For each simulation hereafter a chamber pressure of 

300 psi and nozzle expansion ratio of 50 are assumed. These represent typical values for 

on-orbit engines [59]. The ambient pressure is taken as vacuum, therefore the specific 

impulse computed is the absolute maximum for the given design conditions. As an 

additional measure of chemical performance, the density specific impulse, is computed 

simply from [10] 
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d av spI I                                                             (7) 

 

 

3.1. MONOPROPELLANT PERFORMANCE 

 The CEA computer code is utilized to determine the expected performance of the 

ionic liquids as monopropellants with the assumptions and conditions described above. 

The reaction is then decomposition of the ionic liquid into gaseous products. The 

computed specific impulse and density impulse values are shown in Table 2. CEA 

predicts condensed carbon in the exhaust species for the ionic liquids; therefore, the 

specific impulse shown in the table is for shifting equilibrium. For comparison, the 

performance of ADN-based monopropellant FLP-103 (63.4% ADN, 25.4% water, 11.2% 

methanol) is also computed. The specific impulse computed in this analysis for FLP-103 

agrees precisely with the theoretical calculations performed by Wingborg, et.al.
 
[57] at 

the same design conditions and a frozen flow assumption, as CEA was also utilized in 

that study for performance prediction. The maximum specific impulse for hydrazine is 

257 sec [45] and is where the catalyst bed has been designed to allow for no ammonia to 

dissociate. Typically, however, hydrazine monopropellant thrusters operate around 243 

sec since the catalyst bed cannot handle the high combustion temperature [10]. None of 

the ionic liquids show performance comparable to that of hydrazine, with [Bmim][NO3] 

coming closest at a value of 13.2% lower specific impulse. The performance of the ionic 

liquids is slightly more promising in terms of density specific impulse. [Bmim][dca], and 

[Emim][EtSO4] fall 18%  and 5.3%, respectively, below that of hydrazine, while 

[Bmim][NO3] has a density specific impulse equal to that of hydrazine. None of the ionic 

liquids compete with the theoretical density specific impulse of advanced monopropellant 

FLP-103, which is predicted to be 35% higher than hydrazine. 
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Table 2. Chemical Performance of Ionic Liquids 

Propellant Isp [s] Id [kg-s/m
3
]
 

[Bmim][NO3] 211 244000 

[Bmim][dca] 189 200000 

[Emim][EtSO4] 186 231000 

FLP-103 254 (Equilibrum) 

251 (Frozen) 

333000 

329000 

Hydrazine 243 244000 

 

 

 

 Analysis of the equilibrium combustion products, Table 3, indicates a large 

amount of solid carbon in the theoretical exhaust gases, indicating incomplete 

combustion, and leading to the poor performance of the ionic liquids. [Bmim][dca] has 

no oxidizing components in its anion and as expected it has the highest mole fraction of 

carbon of the three ionic liquids. The other two liquids have 15% less carbon in the 

exhaust due to the oxygen present in their anions, which tends to form the oxidized 

species CO, H2O, and CO2. Decomposition of [Emim][EtSO4] shows a higher mole 

fraction of H2O and CO2 compared to that of [Bmim][NO3] due to the additional oxygen 

atom in the anion with the same carbon content. Each of the ionic liquids is predicted to 

form roughly 10% CH4, a product that could be combusted further with additional 

oxidizer. Additionally, some of the hydrogen is used to form H2S due to the presence of 

the sulfur atom in the anion, another product that with additional oxidizer will combust 

further.  
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Table 3. Equilibrium Decomposition Products of Ionic Liquids 

Product Species 

Mole Fraction 

[Bmim][NO3] [Bmim][dca] [Emim][EtSO4] 

C 0.35 0.50 0.35 

N2 0.10 0.15 0.07 

H2 0.27 0.24 0.19 

H2O 0.07 0.00 0.11 

CO 0.09 0.00 0.07 

CO2 0.02 0.00 0.05 

CH4 0.09 0.11 0.09 

H2S 0.00 0.00 0.07 

 

 

 

3.2. IONIC LIQUIDS IN BINARY MIXTURES AS MONOPROPELLANTS 

 The possibility of using ionic liquids as fuel components in a binary 

monopropellant mixture is considered. This may, in fact, be possible due to the ionic 

liquids capability as solvents, particularly [Bmim][dca] and [Bmim][NO3], as their anions 

have H-bond accepting functionality [53, 60]. Furthermore, many imidazole-based ionic 

liquids tend to have solubility properties close to those of methanol and ethanol [6]. 

HAN, also, is noted for its solubility in water and fuels such as methanol, which led to its 

initial application as a liquid gun propellant [61]. Additionally, these are the ingredients 

to FLP-103, and the solubility of ADN in both water and methanol was a key to the 

development of the monopropellant [12, 57]. [Bmim][dca] has been tested for 

hypergolicity with HAN oxidizer, and, notably, it showed no visible signs of reactivity at 

room temperature [62]. A monopropellant mixture of the ionic liquids with HAN, or 

another oxidizer salt, may be created which would be thermally stable at room 

temperature, and ignited thermally or catalytically. 

 CEA is again employed with the same conditions applied previously, and with shifting 

equilibrium assumption. Specific impulse is calculated as a function of percent HAN 
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oxidizer by weight in the binary mixture. This is shown in Fig. 2. The highest 

performance is seen at mixture ratios near the stoichiometric value, around 80%, and 

represents values nearer to bipropellant performance. However, this performance is not 

feasible when considering current monopropellant thruster technology. The main issue 

facing monopropellant development is the fabrication of catalyst material that can 

withstand the high combustion temperatures. A typical hydrazine thruster may operate at 

temperatures exceeding 1200 K [10]; however, after a painstaking trial and error process 

lasting more than a decade, engineers in Sweden have developed a monopropellant 

thruster capable of operation with ADN-based propellant at combustion temperatures 

exceeding 1900 K [14]. Considering 1900 K to be the current technology limit on 

monopropellant combustion temperature, the ionic liquids [Bmim][dca], [Bmim][NO3], 

and [Emim][EtSO4] exceed this value at roughly a 69%, 61%, and 59% binary mixture 

with HAN by weight, respectively, as shown in Fig. 3. From Fig. 2, these mixture ratios 

correspond to a specific impulse of 263, 263, and 255 seconds for [Bmim][dca], 

[Bmim][NO3], and [Emim][EtSO4], respectively. This is promising as the specific 

impulse of the binary mixtures is higher than the ADN-based FLP-103 (Table 2) at the 

same design conditions.  

 

 

 

 

Figure 2. Specific Impulse of Binary Mixture of Ionic Liquid with HAN Oxidizer 



24 

 

 

Figure 3. Combustion Temperature of Binary Mixture of Ionic Liquid with HAN 

Oxidizer. 
 

 

 Additional conclusions can be made by further consideration of the equilibrium 

combustion products associated with the ionic liquid binary mixtures in Fig. 4. For 

[Bmim][dca], as the percent by weight of HAN oxidizer is increased, the solid carbon 

species decreases as both CO and H2 increase and reach a maximum at 58% oxidizer. 

Further HAN addition leads to formation of complete combustion products CO2 and H2O 

at the highest combustion temperatures. The same trend is observed in the other ionic 

liquids, with the exception of the solid carbon disappearing at 44% oxidizer for 

[Bmim][NO3] and at 41% oxidizer for [Emim][EtSO4]. The sulfur atom in the 

[Emim][EtSO4] fuel functions to form oxidized sulfur species SO2, which peaks at 

roughly 2% near the stoichiometric mixture ratio. From Fig. 2, at the 58% oxidizer 

mixture ratio, the specific impulse with [Bmim][dca] is 213 seconds, 15% below that of 

FLP-103. For [Bmim][NO3], the specific impulse at a 44% mixture of HAN oxidizer is 

212 seconds, and for [Emim][EtSO4] at a 41% mixture of HAN the specific impulse is 

200 seconds. So, at the minimum oxidizer amount required for conversion of the 

predicted solid carbon to gaseous combustion products, the specific impulse of a mixture 

with an ionic liquid fuel is 15-20% below that of advanced monopropellant FLP-103, but 

at a much lower combustion temperature of roughly 1300 K in each case. 
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Figure 4. Major Combustion Products of Binary Mixture of [Bmim][dca] and HAN.  

   

 

 

 The greatest performance gain in the current generation of proposed ‘green’ 

monopropellants is their superior density to traditional hydrazine monopropellant. As 

mentioned, ADN-based propellant FLP-103 is predicted to have a density specific 

impulse 35% higher than that of hydrazine, as calculated by Eq. (7). The density of a 

mixture of liquids can be estimated by assuming volume is additive, 

 

1 i

n i

x

 

 
  

 
                                                       (8) 

 

Eq. (8) is a conservative estimate since it does not take into account intermolecular 

attraction between the constituent liquids. The density specific impulse can then be 

computed for a desired mixture ratio using Eq. (7). The results for each ionic liquid fuel 

as a function of percent HAN oxidizer are shown in Fig. 5. Again looking at the mixture 

ratio that produces a 1900 K combustion temperature, the density specific impulse is 

358000, 362000, and 362000 [kg-s/m
3
] for [Bmim][dca], [Bmim][dca], and 

[Emim][EtSO4], respectively. This corresponds to an improvement in density specific 
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impulse of 8-9% over FLP-103 advanced monopropellant. Considering the minimum 

oxidizer amount required to form completely gaseous products, the density specific 

impulse for [Bmim][dca], [Bmim][NO3], and [Emim][EtSO4] binary mixtures is 287000, 

284000, and 277000 [kg-s/m
3
], a 13-18% improvement over hydrazine.   

 

 

 

 

Figure 5. Density Specific Impulse of IL/HAN Binary Mixture. 

 

 

 

4. ELECTROSPRAY PERFORMANCE ANALYSIS 

 

 

The three candidate ionic liquids selected may exceed the performance of state-

of-the-art monopropellants when considered as a fuel component in a binary mixture with 

HAN oxidizer. To fully assess the dual-mode capability of each ionic liquid, the 

electrospray performance must also be considered. Electrospray performance can be 

estimated by considering emission in the desired purely ionic regime (PIR) [2-4, 16]. For 

ionic liquids, PIR emission consists of both pure ions and clusters with ions attached to N 
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number of neutral pairs. Typically, ionic liquids that achieve PIR emit mostly ions (N=0) 

and ions attached to a single neutral pair (N=1), although small amounts of the third ion 

state (N=2) are also detected [16]. The actual ratio of N=0 to N=1 states in an electrospray 

emission is determined experimentally. Furthermore, experiments have shown that this 

ratio cannot be controlled, but rather for a stable emission a single ratio is preferred and 

may be related to the thermal stability of the ion clusters [63]. Of the few ionic liquids 

that have achieved emission in the PIR regime, the ratio of pure ions (N=0) to ions in the 

first solvated state (N=1) generally lies between 0.5 and 0.7 [20]. The number of N=2 

states or greater is typically less than 5% of the total emission current. Additionally, for a 

single ionic liquid, this ratio may also vary depending on the polarity of the extractor, but 

again the ratio falls within the same bounds. 

 Electrospray performance in the PIR regime can be estimated by the following 

methods. First, since the number of N=2 states is typically small, it is ignored. The 

specific impulse for an emission consisting of the first two ion states is given by [2-4] 
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where RA is the fraction of the flow that is pure ions. For an electrostatic device, the 

following relations hold [10]. The velocity of a charged particle accelerated through a net 

potential is given by 
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The power supplied to the system is related to thrust and specific impulse by 
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Thrust is therefore inversely proportional to specific impulse for an electrostatic thruster 

regardless of the ionization method. The total mass flow rate required to produce the 

given thrust is calculated by 

 

0tot spF m I g                                                         (12) 

 

where the total mass flow rate is the sum of the mass flow from all electrospray emitters 

 

tot emit emitm N m                                                      (13) 

 

The mass flow produced by a single emitter is related to the current produced by a single 

emitter by 

 

emit
emit

I m
m

e
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4.1. ELECTROSPRAY SYSTEM PARAMETERS 

 The relations described in Eqs. (9)-(14) are used to estimate the electrospray 

propulsion performance of the three ionic liquid fuels analyzed in the previous sections. 

In terms of electrospray operation, two parameters govern the performance of the 

thruster: current per emitter and extraction voltage. For this analysis, these parameters are 

held constant in order to discern the effect of the propellant on total system performance 

and mass. Improvements in the current electrospray technology level will affect all 

propellants the same [2-4], provided it is not the physical properties of the propellant that 

drive the technology improvement; therefore, for this analysis it is prudent to use constant 

system parameters with respect to estimated current technology levels. The possibility of 

the physical properties affecting the current and extraction voltage will be discussed in a 

later section. Emitters being investigated for PIR electrospray devices can emit a current 

on the order of 1 μA per emitter [20]. Also, typical extraction voltages range from 1.5 to 

2.5 kV [16, 20]. Therefore, in this analysis, a current of 1 μA per emitter and an 
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extraction voltage of 2000 V will be used for all calculations.  The final consideration 

made is with respect to the operation mode of the thruster. An alternating polarity (AC) 

mode has been selected because both positive and negative ions are extracted. This is 

most likely the mode in which future electrospray systems will operate because all of the 

propellant is extracted, it provides a net neutral beam, and it generally avoids the problem 

of electrochemical fouling. The result of AC operation is an averaged thrust and specific 

impulse of the emitted cations and anions. Finally, although the actual ratio of ions to 

clusters of ions is not constant with respect to polarity, for simplification and because 

these ratios are not known for new ionic liquids it is assumed to be the same for either 

cation or anion emission. 

 

 

4.2. ELECTROSPRAY PERFORMANCE OF SINGLE IONIC LIQUIDS 

 The electrospray performance of the three ionic liquid fuels alone is computed 

through the aforementioned analysis techniques and conditions. Throughout the analysis, 

the ionic liquids [Emim][Im] and HAN have been shown for comparison. From Eqs. (9)-

(14), it is seen that the electrospray performance when all system parameters are held 

constant is a function of the propellant mass alone. The cation and anion masses for each 

propellant used in this study are given in Table 4. 

 

 

Table 4. Mass Data for Ionic Liquid Propellants 

Propellant 
Chemical Formula MW [g/mol] 

Cation Anion Cation Anion 

[Bmim][dca] C8H15N2 C2N3 139 66 

[Bmim][NO3] C8H15N2 NO3 139 62 

[Emim][EtSO4] C6H11N2 C2H5SO4 111 125 

[Emim][Im] C6H11N2 C2NF6S2O4 111 280 

HAN NH3OH NO3 34 62 
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The specific impulse of each propellant is calculated for a net accelerating voltage 

of 2000 V and for ion fractions of 0.5 and 0.7. The results are shown in Table 5. From the 

table, it is clear that the specific impulse increases as ion fraction increases because more 

massive clusters are emitted in the first solvated state at lower ion fraction. The thrust per 

unit power is inversely proportional to specific impulse and increases as the ionic liquid 

molecular weight increases. The variation in specific impulse and thrust calculated 

between ion fractions of 0.5 and 0.7 varies by roughly 10 percent for all propellants. The 

remainder of this analysis will be restricted to the 0.5 ion fraction case. Based on current 

knowledge of ionic liquid electrosprays in the PIR regime, all subsequent calculations 

could therefore overestimate thrust and underestimate specific impulse by roughly 10 

percent. This becomes important when considering ionic liquid propellants of similar 

molecular weight and could be a difference maker when choosing between ionic liquids 

such as [Bmim][dca] and [Bmim][NO3]. But, as seen in Table 5, with a modest 13% 

difference in molecular weight, even if [Emim][EtSO4] were to emit only at an ion 

fraction of 0.7, it would still have more thrust per unit power than the 0.5 ion fraction 

case for [Bmim][dca]. 

 

 

 

Table 5. Specific Impulse and Thrust per Unit Power.  

  Isp (s) F/P (µN/W) 

Ion Fraction 0.5 0.7 0.5 0.7 

[Bmim][dca] 5100 5700 40.0 35.8 

[Bmim][NO3] 5200 5800 39.2 35.2 

[Emim][EtSO4] 4600 5000 44.3 40.8 

[Emim][Im] 3800 4200 53.7 48.5 

HAN 7400 8200 27.6 24.9 
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 One of the major limitations on electrospray propulsion currently is the number of 

emitters required to produce thrust levels high enough to be useful in actual satellite 

operations. At a constant extraction voltage, and therefore a constant specific impulse, 

lighter ionic liquids will require a larger total current to produce thrust equal to that of 

heavier ionic liquids. Fig. 6 shows the number of emitters required to produce a given 

thrust level for each propellant. As expected, for a constant current per emitter, the 

heavier propellants require less emitters to produce a given thrust due to heavier species 

being extracted. At every thrust level, [Bmim][dca], [Bmim][NO3], and [Emim][EtSO4] 

require 40 %, 41%, and 35% more emitters, respectively, than [Emim][Im]; however, the 

number of emitters required is 33%, 32%, and 35% less than HAN, respectively. If the 

required thrust is 10 mN, the sheer number of emitters required is enormous: 140000 for 

HAN and roughly 90000 for [Bmim][dca]. Reduction in the number of emitters will 

require an increase in the current processed per emitter, or a reduction in the net 

accelerating voltage. How this may be achieved and how it relates to the overall goals of 

dual-mode propellant design will be discussed further in a later section.   

 

 

 

 

Figure 6. Number of Emitters as a Function of Thrust for IL Propellants for  RA=0.5. 
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 Perhaps the most important drawback in any electric propulsion device is the 

mass of the power processing unit. The power required to produce a given thrust can be 

calculated from Eq. (11). Since an extraction voltage has been specified, and the 

corresponding specific impulse, Eqs. (9) and (10), is therefore constant across every 

thrust level, the power required is then not a function of current per emitter. In other 

words, the emitter design does not affect the requirements for the power system provided 

the required extraction voltage is not affected greatly by emitter design or propellant 

selection. The required power as a function of thrust for each propellant is shown in Fig. 

7. Fig. 7 appears similar to that of Fig. 6. [Bmim][dca], [Bmim][NO3], and 

[Emim][EtSO4] require 36%, 38%, and 22% more power than [Emim][Im] at any given 

thrust level, respectively. In comparison to HAN, the same ILs require 31%, 30%, and 

38% less power, respectively. The effect of utilizing higher molecular weight 

electrospray propellants is therefore twofold: higher molecular weight requires less 

emitters and lower power. It should also be noted that the required power in Fig. 7 is the 

power input required and does not take into account the efficiency of the power 

processing unit. The actual efficiency is likely to be less than 50%, which is the 

efficiency of hall thruster PPUs [64], and therefore the power required of the PPU will be 

at least double that of Fig. 7. 
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Figure 7. Power as a Function of Thrust for IL Propellants for RA=0.5.  

 

 

4.3. ELECTROSPRAY PERFORMANCE OF IONIC LIQUIDS IN BINARY 

MIXTURES 

 In the preceding sections, ionic liquid binary mixtures have been suggested as a 

potential route toward development of a true dual-mode propellant. It was shown that the 

chemical performance of these propellants may theoretically exceed that of some state-

of-the-art monopropellants. The electrospray performance is more difficult to analyze 

because electrospray research on ionic liquids has focused on single ionic liquids. 

Mixtures of liquids have been studied as electrospray propellants, but most were simply 

solutions consisting of a salt and an electrically insulating solvent [16]. Garoz [58] 

studied a mixture of two ionic liquids, but did not study the composition of the droplets in 

the plume. A mixture of two ionic liquids may yield emissions more complicated than a 

single liquid since field emission of additional ion masses occurs. Extraction of pure ions 

would yield four possible emitted species: two cations and two anions. Extraction of 

higher solvated states may yield many more possible emitted species since the two salts 

essentially dissociate in solution and remain in chemical equilibrium, although the 

solution remains neutral. For example, the only N=1 solvated state of the cation of 
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[Bmim][dca] is [Bmim]
+
-[Bmim][dca]; however, extraction of the [Bmim]

+
 cation in an 

N=1 solvated state from a mixture of HAN and [Bmim][dca] could yield [Bmim]
+
-

[Bmim][dca], [Bmim]
+
-HAN, or even [Bmim]

+
-[Bmim]

+
-[NO3]

-
. Although this poses an 

interesting research question, analysis of binary mixtures as electrospray propellants for 

this study is restricted to the extraction of pure ions only. As shown in the preceding 

section, the comparisons between various propellants should still hold somewhat, but the 

calculated thrust will be much lower than what will be attained in actuality; therefore 

power and number of emitters will be higher. 

 The number of emitters required and power required to produce an electrospray 

thrust level of 5 mN is computed as a function of percent oxidizer in the binary 

monopropellant mixture. The same conditions of 1μA current per emitter and 2000 V 

extraction voltage are also applied. The results are shown in Figs. 10 and 11. The same 

trends are shown as with the single ionic liquids: higher molecular weight mixtures 

require less emitters and less power to produce a given thrust. For emission of pure ions, 

[Emim][Im] requires 51000 emitters to produce 5 mN of thrust, and HAN requires 

109000. From the chemical performance analysis, the binary mixture of fuels 

[Bmim][dca], [Bmim][NO3], and [Emim][EtSO4] with HAN oxidizer reached a 

combustion temperature, and thus performance, roughly equal to ADN-based 

monopropellant FLP-103 at 69%, 61%, and 59% oxidizer. From Fig. 8, this equates to 

18%, 21%, and 27% less emitters than required for pure HAN, but pure [Emim][Im] 

requires 43%, 40%, and 36% less emitters than the ionic liquid fuels, respectively. From 

Fig. 9, the required power is 9.5%, 12%, and 16% lower than for pure HAN, but 75%, 

70%, and 63% higher than [Emim][Im], respectively. From the chemical performance 

analysis, the minimum amount of oxidizer required for elimination of solid exhaust 

species is 58%, 44%, and 41% for each fuel respectively. At these mixture ratios, the 

required number of emitters is now 24%, 27%, and 31% less than required for pure HAN. 

The power required is 13%, 16%, and 23% lower than for pure HAN.      
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Figure 8. Number of Emitters Required to Produce 5 mN of Thrust as a Function of 

Percent HAN Oxidizer for IL Binary Mixtures. 
 

 

 

 

 

Figure 9. Required Power to Produce 5 mN of Thrust as a Function of Percent HAN 

Oxidizer for IL Binary Mixtures.  
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5. DISCUSSION 

 

 

The results of the chemical performance analysis are promising for dual-mode 

propulsion since the performance of high-molecular weight ionic liquids as fuel 

components in a binary monopropellant mixture theoretically exceeds the performance of 

some state-of-the-art advanced monopropellants. The electrospray performance of these 

ionic liquids is promising and may yield higher performance than the current state of the 

art, but also may be limited by current technology levels. The results of the preceding 

sections are discussed and overall feasibility of imidazole-based ionic liquids as dual-

mode propellants is assessed. Finally, using the results of this paper, trends are discussed 

and extrapolated into a selection guide for future dual-mode propellant development. 

 

 

5.1. IMIDAZOLE BASED IONIC LIQUIDS AS MONOPROPELLANTS 

Although these ionic liquids have favorable physical properties toward 

electrospray propulsion, considering solely a thermal decomposition of the ionic liquids 

as monopropellants shows poor performance in terms of specific impulse, but slightly 

more acceptable performance in terms of density specific impulse as all of the ionic 

liquids in the study have greater density than hydrazine. However, this must be re-

examined considering the fact that a shifting equilibrium assumption was employed due 

to the solid carbon present in the exhaust. Typically, shifting equilibrium specific impulse 

is an over-estimate of actual specific impulse. Sutton
 
[10] suggests that this is a 1-4% 

over-estimate. If this is taken as 4%, the highest performing ionic liquid, [Bmim][NO3], 

now falls 9% below hydrazine in terms of density specific impulse and 22% below 

hydrazine in terms of specific impulse. The solid carbon formation in the exhaust gases 

leads to the poor performance directly. Furthermore, solid exhaust particles are also 

objectionable in many spacecraft applications because they degrade functional surfaces 

such as lenses and solar cells [10], and could cause a cloud of orbital debris. And, for 

monopropellant thrusters, solid particles may agglomerate on the catalyst bed, rendering 

it unusable. The solid carbon formation in decomposition of the ionic liquids is a direct 
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result of the lack of oxidizer present in the anion compared to the large organic alkyl 

substituted chains in the cation for the imidazole-based ionic liquids. While these high 

molecular weight organic chains are favorable for electrospray propulsion application, 

they are detrimental to the chemical aspect of a dual mode system. The highest 

performing ionic liquid is [Bmim][NO3], which contains three oxygen atoms that form 

small amounts of water and carbon monoxide that lead to its higher performance. Despite 

having an additional oxygen atom, the large negative heat of formation of 

[Emim][EtSO4] produces a lower overall energy release, and therefore leads to its poor 

performance. [Bmim][dca] performs slightly better than [Emim][EtSO4] because it has a 

large, positive heat of formation despite containing zero oxidizing components. In order 

for a single imidazole-based ionic liquid to achieve even acceptable chemical 

performance, it must have enough oxygen to eliminate the solid carbon species in the 

exhaust. Ideally, in terms of just chemical performance, this type of ionic liquid will also 

contain a high number of nitrogen bonds, and therefore higher heat of formation [65]. 

 

 

5.2. BINARY MIXTURES OF IONIC LIQUIDS AS MONOPROPELLANTS 

Imidazole-based ionic liquids as fuel components in a binary mixture with HAN 

oxidizer may be a viable option for dual-mode monopropellants. The specific impulse 

computed via the shifting equilibrium assumption at a combustion temperature of roughly 

1900 K for the ionic liquid monopropellant blends is 1-4% higher than that of FLP-103, 

and roughly equal to that of FLP-103 with a frozen flow assumption. This is a feat 

considering the predicted combustion temperature for FLP-103 is actually 2000 K.  The 

reason for the improved performance of the ionic liquid monopropellant blends is the 

combustion products that are formed. At the conditions producing a 1900 K chamber 

temperature, the binary ionic liquid mixtures form incompletely oxidized species CO, H2, 

and N2, as shown in Fig. 4. By contrast, the ADN-based monopropellants such as FLP-

103 have been specifically designed to provide a complete combustion with major 

products CO2, H2O, and N2 [12]. Examination of Eq. (5) shows that lower molecular 

weight exhaust products yield higher specific impulses. The lower molecular weight 

combustion products of the binary ionic liquid mixtures lead to higher specific impulse 
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despite slightly lower combustion temperature compared to FLP-103. In terms of density 

specific impulse, the binary mixtures of ionic liquids have 8-9% greater than that of FLP-

103 for the frozen flow assumption, which yielded roughly equal specific impulse. The 

main consideration here is the ingredients in each mixture. The density of the fuel 

component, methanol, in FLP-103 is 0.79 [g/cc] [57]. The ionic liquid fuels have a much 

higher density, making their use as fuel components in a monopropellant mixture 

attractive. Additionally, FLP-103 contains a large amount of water, which also lowers the 

density of the mixture.    

These types of binary mixtures have been shown to be advantageous in terms of 

performance, but practically they must be chemically compatible and also be thermally 

stable and readily ignitable. As mentioned previously, mixtures of [Bmim][dca] with 

HAN have notably shown no visible reactivity, leading to the possibility that they may 

indeed be thermally stable at room temperature. However, this represents somewhat of an 

unknown presently as this has not been measured quantitatively. Literature suggests that 

mixtures of ammonium salts with dicyanamide anions may not be compatible [66-69]. 

[Bmim][NO3] or [Emim][EtSO4] may be compatible with HAN, but HAN may not be 

miscible in either liquid, requiring a third liquid solvent which may be undesirable. 

Furthermore, it is also unknown whether these mixtures will ignite either thermally or 

catalytically at reasonable temperatures (typically < 200
0
C). These ignition methods 

represent the most common and reliable means of igniting a monopropellant and 

verification of this is a major milestone in any monopropellant development effort.  

 

 

5.3. IMIDAZOLE-BASED IONIC LIQUIDS AS ELECTROSPRAY 

PROPELLANTS 

In terms of electrospray performance, the ionic liquid fuels investigated show 

potential to be higher performing than the current state-of-the-art in electrospray 

propellants; however, they may present a challenge in terms of the current technology 

levels, if high specific impulse emission is desired. The ionic liquid fuels investigated in 

this study have the potential to have higher performance, and also greater flexibility, than 

the current state-of-art electrospray propellant [Emim][Im]. This is a direct result from 

the lower molecular weight of the investigated ionic liquids compared to [Emim][Im]. 
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However, low molecular weight may be a detriment to electrospray propulsion overall, as 

evidenced by the pure number of emitters and power required as shown in Figs. 6-9. 

Considering the number of emitters required to produce thrust levels typical of electric 

propulsion missions shows this effect. To produce 10 mN of thrust with emission of half 

N=0 ions and half N=1 ion clusters, [Emim][Im] requires 67000 emitters. If the current 

technology limit is taken as 13000 emitters per cm
2 

[70], this equates to a total area of 5.2 

cm
2
 for [Emim][Im]. The 200 W SPT-35 Hall thruster has an area of 9.6 cm

2
 and 

produces a comparable thrust of 11 mN [71]. By contrast, purely ionic emission of HAN 

at an ion fraction of 0.5 requires a total area of 10.8 cm
2
 to produce 10 mN of thrust. 

While the number of emitters can be effectively reduced by a deceleration grid [72], this 

adds complexity to the system, and requires even more power. Even without a 

deceleration grid, considering a PPU of equal efficiency to a typical hall thruster (~50%) 

[Emim][Im] requires 370 W to produce 10 mN of thrust, while HAN requires 730 W. 

The trend is clear: irrespective of technological advances, higher molecular weight 

propellants are more advantageous in terms the hardware and power requirements on 

electrospray systems. 

 The large power requirements precluded by emission in the PIR may be 

detrimental overall to dual-mode if the molecular weight is lower than state-of-the-art 

propellants. This is a direct consequence of the required extraction voltage to produce a 

PIR emission, typically 1.5-2.5 kV, which without a deceleration grid produces a high 

specific impulse. However, designers have the option to operate the system in the droplet 

regime, which may ultimately be a viable option, especially on first generation dual-mode 

systems. As mentioned, operation in the droplet mode usually results in very low specific 

impulse compared to the PIR, but produces more thrust due to higher mass to charge 

ratio. Furthermore, the size of droplets, and therefore the specific impulse, can be 

controlled without the addition of a deceleration grid. For example, the ionic liquid 

[Emim][Beti] has experimentally reached a specific impulse from less than 200 seconds 

and 2.7 µN per emitter  up to 1500 seconds and 0.79 µN per emitter have been attained in 

the droplet regime [73]. It should be noted, however, that the highest specific impulse in 

the droplet regime was obtained by increasing the backing pressure at an emitter 

temperature above which PIR was attained. Additionally, the lower efficiency in droplet 
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mode lowered the thrust per emitter to levels equal to the PIR attained by further heating 

of the emitter, but at much higher specific impulse (~2300 sec). Therefore, while the 

droplet mode may be easier to achieve, the most flexible and highest performing dual-

mode propellants will be able to achieve the PIR. 

One of the assumptions made in this analysis was that all propellants could emit at 

the same current per emitter. In reality, with current state-of-the-art emitter technology 

considered, this may not be entirely the case. In perhaps the most promising advancement 

in emitter technology for dual-mode purpose, Legge and Lozano [20] use a porous metal 

emitter geometry to produce PIR electrospray emission. What was most intriguing was 

that with this geometry, the same heavier, less electrically conductive ionic liquids that 

required a preheat of over 200
o
C were able to emit in the purely ionic regime at room 

temperature. However, the current emitted was much less at the same extraction voltage 

in comparison to lighter molecular weight propellants such as [Emim][BF4]. The higher 

molecular weight propellants will therefore require either higher extraction voltage or 

heating of the emitter to produce the same current per emitter as lighter, less viscous and 

more electrically conductive propellants. Each propellant, however, still required roughly 

1.5 kV extraction voltage to begin emission. So, while the number of emitters could be 

reduced if the propellant is less viscous and also more electrically conductive, the power 

requirements should remain roughly the same even without heating the emitter. However, 

emitter technology, especially the novel porous metal emitter described here, is still very 

much in its infancy and these conclusions could eventually change. 

 

 

5.4. BINARY MIXTURES OF IONIC LIQUIDS AS ELECTROSPRAY 

PROPELLANTS 

The chemical performance of ionic liquids in binary mixtures is promising; 

however achieving high specific impulse with current technology in the electrospray 

mode may present more of a challenge than for a single ionic liquid. The reason is the 

same as discussed above: the low molecular weight of the propellants. This issue is 

compounded by adding ionic oxidizers, such as HAN or ADN, which have a much lower 

molecular weight than even the ionic liquid fuels investigated in this paper. To achieve 

chemical performance equal to ADN-based FLP-103, the number of emitters required to 
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produce 5 mN of thrust is 88000, 82000, and 79000 emitters when using [Bmim][dca], 

[Bmim][NO3], and [Emim][EtSO4] as fuels, respectively, but assuming only ions are 

emitted. Therefore, to achieve equal chemical and electrospray performance, 

[Emim][EtSO4] requires 10% less emitters than [Bmim][dca], thereby saving roughly 

10% mass in terms of the emitter hardware. Additionally, considering the minimum 

amount of oxidizer to achieve no solid carbon in the theoretical exhaust species, 

[Emim][EtSO4] will require nearly 15% less emitters than [Bmim][dca]. In terms of 

power requirements, at the condition where chemical performance is greater than FLP-

103, [Emim][EtSO4] requires 7% less power than [Bmim][dca]. At the minimum oxidizer 

amount, [Emim][EtSO4] requires 15% less power than [Bmim][dca]. It is therefore more 

ideal for dual-mode propellant blends to use fuels with high molecular weight, but that 

have a higher oxygen balance, as equal performance may be obtained in both modes, but 

with a reduction in electrospray hardware. 

 

 

5.5. CONSIDERATIONS FOR DUAL-MODE PROPELLANT DESIGN 

 Based on the results presented in this paper there are two logical methods to 

achieving a workable dual-mode propellant: a single, oxygen-balanced, task specific 

ionic liquid or a mixture of two or more ionic liquids. While this may seem to not depart 

from conventional wisdom in energetic ionic liquid monopropellant design, when viewed 

as a dual-mode propellant the requirements will have to change somewhat. Based on the 

results described in the above paragraphs, expected properties and performance 

characteristics in terms of what can be reasonably expected at current technology levels 

for each method are shown in Table 6. 
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Table 6. Estimated Attainable Physical Properties and Performance Characteristics of 

Imidazole-based Dual-Mode Propellants.
a 

Physical Properties Single Ionic Liquid Binary Mixture 

melting point < 2
o
C < 2

o
C 

density < 1.4 g/cm
3
 > 1.4 g/cm

3
 

viscosity < 100 cP < 100 cP 

surface tension < 100 dyne/cm < 100 dyne/cm 

electrical conductivity < 1 S/m ~ 1 S/m 

thermal stability
 

< TPIR
b 

> TPIR 

molecular weight > MWSOA < MWSOA 

heat of formation 
Negative Negative 

< ΔHf
o

,SOA ~ ΔHf
o

,SOA 

Performance Properties     

chemical Isp > 270 sec > 250 sec 

combustion temperature > 2500 K > 1900 K 

electrical Isp 200-1500 sec 200-5000 sec 

power required < PSOA > PSOA 

emitters required < NSOA > NSOA 

aSOA=State-of-the-Art  bCapillary emitter 

   

 

In terms of pure performance, the ultimate in dual-mode propellants may be a 

single liquid which would provide enough oxidizer in the anion to combust to gaseous 

products CO, H2, and N2, while still retaining reasonable electrospray properties. This 

would not only provide good chemical performance, but inherently this would also be a 

high-molecular weight propellant assuming [Emim]
+
 or higher molecular weight cations 

were used. This idea of an oxygen-balanced ionic liquid as a chemical monopropellant is 

not new, as attempts have been made to synthesize such a liquid for energetic use [74-

76]. The ionic liquids in [74] were based on lanthanide nitrate complex anions and either 

triazole- or tetrazole-based cations. The ionic liquids in [75] were imidazole-based. Many 

of the liquids in these efforts were not thermally stable, but a few of these ionic liquids 
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were reportedly stable at room temperature, for example 1-ethyl-3-methylimidazolium 

tetranitratoaluminate (C6H11N6AlO12). An ionic liquid of the same anion synthesized by 

Jones, et. al. [76], 1- ethyl-4,5-dimethyltetrazolium tetranitratoaluminate 

(C5H11N8AlO12), had a chemical specific impulse of 280 seconds, but at a combustion 

temperature of 2800 K, well above the sintering temperature of current catalyst bed 

technology. Furthermore, these are not ideal spacecraft monopropellants as their 

combustion forms a significant amount of solid products, such as Al2O3, which are 

objectionable in many spacecraft applications, as mentioned previously [10]. It is 

unknown to this point whether these propellants have the electrochemical properties 

required for electrospray propulsion. However, based on trends reported for many 

imidazole-based ionic liquids these can be reasonably inferred qualitatively and 

commented upon. In general, ionic liquids with large, bulky anions have both lower 

electrical conductivity and lower surface tension [5, 6]. Additionally, increasing the size 

of the cation for imidazole-based liquids always decreases the surface tension and 

electrical conductivity. This is in an almost direct contradiction to what is typically 

preferred in energetic ionic liquid design. Making use of an increased alkyl chain size in 

the cation or increased number of N-N bonds in the anion, therefore raising the heat of 

formation of the liquid combined with the requirement for oxygen balance is actually 

detrimental to the minimum performance requirements to achieve PIR for electrospray 

propulsion: high surface tension and high electrical conductivity. 

 Perhaps the most important consideration to be made in the early stages of dual-

mode propellant design is actually the thermal stability of ionic liquids. The high thermal 

stability of ionic liquids compared to more traditional energetic materials is usually 

viewed as a benefit rather than a strict requirement. For dual-mode propellants, this will 

be a requirement. The reason is that larger molecular weight propellants will inevitably 

require the emitter to be preheated due to their inherently low surface tension and 

electrical conductivity. As mentioned, in some cases this has been found to be greater 

than 200
o
C, which actually is above or near the decomposition temperature of many 

energetic ionic liquids that have been synthesized [77]. It is therefore likely that with 

current emitter technology, oxygen-balanced ionic liquids may be limited to emission in a 

droplet regime rather than PIR. Based on the discussion above, to produce an oxygen-
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balanced ionic liquid with improved performance over state-of-the-art will require a 

higher technology level than is currently available on either chemical monopropellant or 

electrospray thrusters. The inherently high combustion temperature of currently 

synthesized oxygen-balanced ionic liquids is far above that of current monopropellants, 

and the lower thermal stability compared to state-of-the-art electrospray propellants could 

pose issues in attaining high-specific impulse emissions. As mentioned, with porous 

metal emitters the latter could be avoided, but at the cost of lower current per emitter. If 

the emitter preheat temperature is limited due to the thermal stability consideration when 

spraying an energetic ionic liquid rather than a much more stable fluorinated ionic liquid, 

then either the extraction voltage or the number of emitters will have to be increased to 

compensate. Higher power requirements compared to state-of-the-art electrospray 

propellants may therefore be inevitable for a dual-mode monopropellant/electrospray 

system if specific impulse near the state-of-the art in each mode individually is desired. 

Ultimately, considering the lower-specific impulse droplet mode for these types of ionic 

liquids may be more advantageous given the reduction in thruster hardware, but will 

depend on the desired mission capabilities.  

 In this paper, the method of combining a fuel-rich ionic liquid with an ionic 

oxidizer such as HAN or ADN as means of obtaining a workable dual-mode propellant is 

presented. This may be a much simpler method than developing a task-specific ionic 

liquid because the anticipated physical properties are closer to the present state-of-the-art 

in both modes. It was shown that in order to obtain performance closer to state-of-the-art 

more power and emitters will be necessary given the low molecular weight of the 

oxidizer. However, PIR is likely easier to achieve, given that both HAN and an ionic 

liquid fuel have electrical conductivities near 1 S/m [78], therefore requiring a reduced 

emitter preheat compared to oxygen-balanced ionic liquids. The main challenge for this 

method will be the chemical compatibility and also the miscibility of the oxidizer in the 

ionic liquid fuel. To be even usable in the electrospray mode, it is absolutely paramount 

that no portion of the mixture be volatile, which departs from conventional ‘green’ 

monopropellants which make use of both water and a volatile fuel. While it may be 

possible that the addition of water to a certain ionic liquid system may show azeotropic 

behavior, this is difficult to assess and even in the best case scenario will be detrimental 
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to electrospray performance as a whole. When selecting candidate ionic liquid fuels, 

liquids that have a higher oxygen balance will be more promising when considering the 

dual-mode system as a whole. The main reason, as discussed is the fact that a smaller 

amount of the lower molecular weight oxidizer is required. However, an interesting point 

can be made when considering the minimum amount of oxidizer required. Although the 

chemical performance drops, mass can be saved on the electrospray system and therefore 

the potential for increased flexibility in the design choices exists. 

 

 

6. CONCLUSIONS 

 

 

Imidazole based ionic liquids have been examined as potential candidates for 

dual-mode chemical monopropellant and electrospray propulsion. Physical properties 

required of ionic liquids for dual-mode spacecraft propulsion are high density, low 

melting temperature, high electrical conductivity, high surface tension, and high 

molecular weight. These properties should be comparable to current state-of-the-art 

propellants hydrazine and [Emim][Im] for the chemical and electrical modes, 

respectively. Three generic, sample ionic liquids were identified that exceed or are close 

to meeting the physical property criteria: [Bmim][dca], [Bmim][NO3], and 

[Emim][EtSO4].  

Theoretical chemical performance was calculated for these ionic liquids using the 

NASA CEA computer code and performance equations. Considering these ionic liquids 

as monopropellants shows that they do not perform well compared to hydrazine and will 

be essentially unusable due to the large amounts of solid carbon predicted in the exhaust 

species. Considering the ionic liquids as fuel components in a binary monopropellant 

mixture with 60-70% HAN oxidizer shows performance exceeding that of ADN-based 

monopropellants. Ionic liquid fuel components with more oxidizing elements in the anion 

require less additional HAN oxidizer to form gaseous CO, and thus achieve an acceptable 

level of performance.  
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Examination of the electrospray performance of these ionic liquids shows that 

they may compete with current state-of-the-art propellants with improvements in 

technology. High molecular weight propellants reduce the number of required 

electrospray emitters, while also requiring higher power. The addition of a lower 

molecular weight oxidizer to an imidazole-based ionic liquid fuel increases the number of 

emitters required, but is necessary to obtain good chemical performance. Ionic liquid fuel 

components with oxidizing components in the anion require less additional oxidizer to 

achieve similar chemical performance, thereby reducing the number of required emitters 

for electrospray propulsion. By extension, in terms of pure performance oxygen-balanced 

ionic liquids may be the ultimate in dual mode propulsion as they have the required 

oxidizer to combust into complete products, while most likely retaining high molecular 

weight favorable to electrospray propulsion.   

Two methods typical of design of energetic ionic liquids for monopropellant 

applications were discussed: design of a task-specific, oxygen balanced ionic liquid or 

design of a mixture of multiple ionic liquids. In terms of performance, a task-specific 

ionic liquid will likely outperform any mixture in a dual-mode system, but will require 

advances in both monopropellant and electrospray technology to achieve high 

performance due to the anticipated high combustion temperature, as well as low thermal 

stability compared to estimated required heating of a capillary electrospray emitter to 

achieve high-specific impulse PIR emission. A workable dual-mode propellant utilizing 

binary mixture of ionic liquids will be easier to achieve given current technology. 

Utilization of ionic liquid fuels with higher oxygen balance provided by the anion is 

desired when forming binary mixtures with an oxidizer such as HAN, as comparatively 

this results in reduction of electrospray hardware, while still achieving equal performance 

in both modes compared to more fuel-rich ionic liquid fuels. The drawback is an increase 

in required power to achieve high performance electrospray emission compared to state-

of-the-art electrospray-specific propellants due to the low molecular weight of the 

additional oxidizer. 
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ABSTRACT 

 

Multi-mode spacecraft micropropulsion systems which include a high-thrust 

chemical mode and high-specific impulse electric mode are assessed with specific 

reference to cubesat-sized satellite applications. Both cold gas Freon-14 propellant and 

ionic liquid chemical monopropellant modes were investigated alongside pulsed plasma, 

electrospray, and Hall effect electric thruster modes. Systems involving chemical 

monopropellants have the highest payload mass fractions for a reference mission of a 500 

m/s delta-V and 6U sized cubesat for electric propulsion usage below 70% of total delta-

V, while for higher electric propulsion usage, cold gas thrusters delivered a higher 

payload mass fraction due to lower system inert mass. Due to the combination of a 

common propellant for both propulsive modes, low inert mass, and high electric thrust, 

the monopropellant/electrospray system has the highest mission capability in terms of 

delta-V for missions lasting shorter than 150 days. 

 

NOMENCLATURE 

 

 

Ac = combustion chamber cross sectional area, [m
2
] 

At = throat area, [m
2
] 

CF = thrust coefficient 

C = effective exhaust velocity, [m/s] 
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Dc = combustion chamber diameter, [m] 

Dt = throat diameter, [m] 

EP = electric propulsion usage fraction 

F = thrust, [N] 

Ftu = ultimate strength of material, [N/m
2
] 

finert = inert mass fraction 

fSI = system integration fraction 

g0 = acceleration of gravity, [m/s
2
] 

Isp = specific impulse, [s] 

Isp,chem = chemical mode specific impulse, [s] 

Isp,elec = electric mode specific impulse, [s] 

Isp,mm = multi-mode effective specific impulse, [s] 

Lc = combustion chamber length, [m] 

L
* 

= characteristic combustion chamber length 

m0 = initial mass of spacecraft, [kg] 

mc = combustion chamber mass, [kg] 

mchem = mass of chemical propellant, [kg] 

me = propulsion system mass, [kg] 

me,int = integrated propulsion system mass, [kg] 

melec = mass of electric propellant, [kg] 

mf = final mass of spacecraft, [kg] 

mf1 = mass of spacecraft after first burn, [kg] 

minert = inert mass, [kg] 

mpay = payload mass, [kg] 

mPPU = mass of power processing unit, [kg] 

mprop = propellant mass, [kg] 

msa = mass of solar array, [kg] 

mtank = mass of propellant tank, [kg] 

Pb = burst pressure, [Pa] 

Pc = chamber pressure, [psi] 

Pe = nozzle exit pressure, [Pa] 
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Pthr = electric thruster power, [kW] 

rc = combustion chamber radius, [m] 

rt = throat radius, [m] 

tb = thruster burn time [day] 

tw = wall thickness, [m] 

α = nozzle divergence half-cone angle, [degrees] 

ΔV = velocity increment, [m/s] 

ε = nozzle expansion ratio 

ηp = propulsive efficiency 

ηt = thrust efficiency 

ηv = mission planning efficiency 

θc = convergent section angle, [degrees] 

γ =  specific heat ratio 

λ = nozzle divergence correction factor 

φtank = empirical tank sizing parameter 

ρprop = propellant density, [kg/m
3
] 

ρw = wall material density, [kg/m
3
] 

 

 

1. INTRODUCTION 

 

 

 Multi-mode spacecraft propulsion is the use of two or more propulsive devices on 

a spacecraft, specifically making use of a high-thrust, usually chemical, mode and a high-

specific impulse, usually electric mode. This can be beneficial in two primary ways. The 

first is to increase the mission flexibility of a single spacecraft architecture in that both 

high-thrust and high-specific impulse maneuvers are available to mission designers at 

will, perhaps even allowing for drastic changes in the mission plan while on-orbit or with 

a relatively short turnaround from concept to launch. The second way a multi-mode 

propulsion system can be beneficial is by designing a mission such that the high-thrust 

and high-specific impulse maneuvers are conducted in such a way that it provides a more 
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optimum trajectory over a single chemical or single electric maneuver. This study will 

use methods developed in a previous analyses of high-power electric multi-mode 

systems,[1] extending them to multi-mode micropropulsion systems. 

  One of the main drivers for research into multi-mode spacecraft propulsion is the 

potential for flexible spacecraft.[2, 3] Since either high-thrust or high-specific impulse 

maneuvers can be performed at-will, this leads to the possibility of launching a spacecraft 

without a wholly predetermined mission profile, or simply reducing the length of time 

from development to launch. Propulsion modes can then be selected as mission needs 

arise in-situ rather than precisely choreographed prior to launch. Additionally, it has been 

shown that under certain mission scenarios it is beneficial in terms of spacecraft mass 

savings, or deliverable payload, to utilize separate high-thrust and high-specific impulse 

propulsion systems even if there is no common hardware or propellant.[4-6] For example, 

use of a chemical rocket to escape earth gravity avoids a long spiral trajectory 

characteristic of an electric burn, while a high-specific impulse electric burn in 

interplanetary space saves propellant mass over a chemical rocket.[7] However, it has 

been shown that even greater mass savings can potentially be realized through the use of 

shared propellants or shared hardware.[8, 9] The use of shared propellants is essential in 

order to realize the full potential of the multi-mode system under the flexible mission 

scenario since utilizing separate propellants for each mode fixes the possible delta-V 

from each mode, whereas there is a wider range of possible delta-V if propellants are 

shared. The only possible deviations under the separate propellants architecture 

inherently lead to underutilization of propellant.[1]   

 Recent efforts have placed a greater emphasis on smaller spacecraft, specifically 

microsatellites (10-100 kg) and nanosatellites (1-10 kg), including the subset of 

cubesats.[10] Many different types of thrusters have been proposed to meet the stringent 

mass and volume requirements placed on spacecraft of this type. A few multi-mode 

systems have been proposed as well. One includes the use of an ionic liquid propellant 

for chemical combustion or decomposition as well as for electrospray.[8, 9, 11] A 

specific propellant for this purpose is even under development.[12] This study will 

examine this type of system, as well as others, specifically to compare these systems in 

reference to their multi-mode performance in reference to both mission-defined and 
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flexible-mission scenarios. Analyses will focus on small satellites where, as will be 

discussed, the propulsion system is a large fraction of the total spacecraft mass. Section II 

will introduce the systems to be examined in this study. Section III will describe the 

analysis methods and assumptions made in reference to developing the multi-mode 

systems comparisons. Section IV will present the results of analysis. Section V will 

discuss the results and Section VI presents the relevant conclusions from all analyses. 

 

 

2. MULTI-MODE PROPULSION SYSTEMS 

 

 

Two chemical thrust modes and three electric thrust modes are selected for this 

study. The chemical thrusters include cold gas with Freon-14 or Xenon as the working 

gas [10, 13] and monopropellant with either AF315E or the [Emim][EtSO4]/HAN dual-

mode propellant.[9, 12] The three electric thrusters are the pulsed plasma thruster (PPT), 

the electrospray thruster, and the helicon thruster. Combining these yields six multi-mode 

systems, shown in Table 1. Teflon is chosen as the electric propellant for the 

monopropellant system involving PPT thrusters and the PPT thruster in the cold gas 

system will utilize common Freon-14 propellant. Although Freon-14 has not been 

investigated as a propellant in gas-fed PPTs, there is no fundamental reason it could not 

be used and for this study it will provide decent comparison for what might be possible 

by using a common propellant for both propulsive modes.  System CE will be retained 

for the mission-defined analysis, but will not be included in the flexible-mission analysis 

since cold gas and electrospray are not compatible with the same propellant.[11] Finally, 

the hall thruster is used for this study to provide a baseline comparison of the state-of-the-

art. 

Thrust and specific impulse values for Freon-14 and Xenon cold gas systems are 

based on typical values from flight heritage thrusters.[10, 14] The performance of the 

AF315E monopropellant thrusters is based on a commercially available design from 

Busek, Inc.[15] The performance of the [Emim][EtSO4]/HAN propellant is scaled from 
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the theoretical specific impulse of 251 seconds from CEA computations to match the 

same reduction in performance between the theoretical specific impulse of AF315E[16] 

and the Busek thruster. The PPT performance selected is based on a commercially 

available thruster from Clyde Space, Inc.[17] For the Freon-14 gas-fed PPT, the same 

performance values are used. Although this is speculative, again the main purpose for 

including the gas-fed PPT is to examine what may be accomplished through the use of a 

common propellant. The [Emim][Im] performance values are taken from a commercially 

available thruster from Busek, Inc.[18] The performance of the [Emim][EtSO4]\HAN 

blend in the electrospray device is scaled in a similar manner as described for the 

chemical monopropellant performance. The performance for the Hall thruster is scaled 

from larger thrusters as done in a study by Khayms.[19]  

 

 

Table 1. Performance of Multi-Mode Propulsion Systems. 

System 

Designation CP CE CH MP ME MH 

Chemical Mode 

Type Cold Gas Cold Gas Cold Gas Monopropellant Monopropellant Monopropellant 

Propellant Freon-14 Freon-14 Xenon AF315E [Emim][EtSO4]/HAN AF315E 

Isp (sec) 45 45 30 230 226 230 

Thrust (N) 0.1 0.1 0.1 0.5 0.5 0.5 

Electric Mode 

Type PPT Electrospray Hall Thruster PPT Electrospray Hall Thruster 

Propellant Freon-14 [Emim][Im] Xenon Teflon [Emim][EtSO4]/HAN Xenon 

Isp (sec) 600 800 1600 600 1280 1600 

Thrust (mN) 0.14 0.7 0.8 0.14 0.43 0.8 
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3. MULTI-MODE PROPULSION SYSTEMS ANALYSIS METHODS 

 

 

 Multi-mode propulsion systems enable two primary spacecraft mission benefits: 

more efficient planned trajectories and flexible mission scenarios.  In either scenario, the 

primary goal of the propulsion system design is to accomplish the given objective with as 

little mass dedicated to the propulsion system as possible so as to maximize payload 

capacity or reduce cost. For multi-mode systems, analysis of spacecraft performance and 

mass is complicated by utilizing an additional propulsion system, since it opens a large 

design space. And, since this enables flexible mission design scenarios with loosely 

defined mission objectives and as yet undetermined requirements, comparing multi-mode 

systems for use in such a scenario becomes difficult. Finally, multi-mode systems must 

also be assessed in terms of the effectiveness of integrating components, such as 

propellants, in terms of gains in mission capability or reduction of propulsion system 

mass. The following paragraphs describe the analysis used in this paper to assess and 

compare the systems defined previously.  

 

 

3.1. THE MULTI-MODE ROCKET EQUATION 

Spacecraft maneuvers are governed by the Tsiolkovsky rocket equation, shown in 

Eq. (10), 

 

0

0

sp

V

I gfm
e

m




                                                        (10) 

 

Multi-mode systems utilize two separate thrusters with separate specific impulses. Thus, 

in order to determine the propellant required for a certain maneuver, the chemical and 

electric modes must be considered as two separate maneuvers in Eq. (10). If one defines a 

parameter for the percentage of the total delta-V to be conducted by electric propulsion, 

EP, Eq. (11), one can write the two separate rocket equations, (12) and (13), 
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where it is assumed that the chemical burn is conducted first. Practically, for electric 

propulsion maneuvers, the actual delta-V required is higher than that of an impulsive 

burn. This effect can be accounted for by using a ‘mission planning efficiency’ 

parameter,[6, 20] Eq. (14), 
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Substituting Eq. (14) into Eq. (13) and multiplying Eqs. (12) and (13) and simplifying 

yields Eq. (15), 
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and it can then be easily seen that an effective specific impulse can be defined, which is a 

function of the chemical and electric mode specific impulse as well as the EP usage 

fraction. The multi-mode specific impulse is then Eq. (16), 
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It is also notable that this equation is exactly the same regardless of the order or number 

of chemical or electric thrust maneuvers. Finally, since the mission planning efficiency 

has been introduced, the delta-V requirement input for Eq. (15) is the delta-V that would 
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be required to complete a given mission with impulsive maneuvers. It is important then to 

analyze the mission planning efficiency for each unique continuous thrust maneuver. This 

will be discussed further in a later section. 

 For electric propulsion systems, there exists an optimum specific impulse which 

maximizes delivered spacecraft mass under power and time constraints. Oh, et. al.[6] 

have used a similar derivation to that above to derive the optimum electric specific 

impulse for a combined chemical-electric maneuver, Eq. (17), 
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         (17) 

 

Examination of this equation shows that for a given power and time constraint, the 

optimum electric specific impulse is a function of the desired final spacecraft mass, the 

mission planning efficiency, and, interestingly, the chemical specific impulse. It is 

important to note that this was derived by optimizing the payload mass delivered per 

time; thus, more payload could be delivered if longer transit times are tolerable, or the 

mission could be completed in less time at the expense of payload mass. This will be 

discussed further in the discussion section. 

 Eqs. (14) and (17) describe the final spacecraft mass after a propulsive maneuver. 

The final spacecraft mass includes both the desired payload and the mass of the 

propulsion hardware. Normally, metrics such as specific impulse are sufficient to 

describe propulsion system performance. This assumes that the inert mass fraction is 

small compared to the propellant mass fraction and is typically the case with launch 

vehicles and large spacecraft. However, for microsatellites, the inert mass fraction of the 

propulsion system may be half of the entire satellite mass or more. For multi-mode 

systems, this could be an even bigger fraction. Thus, specific impulse is not wholly 

representative of the propulsion system, but rather a description of how effectively the 

onboard propellant is being utilized. To account for the performance losses due to large 

propulsion system hardware penalty, the final spacecraft mass fraction is separated into 

payload mass fraction and engine mass fraction, Eq. (18), 
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The engine mass fraction then includes the mass of all propulsion system associated 

hardware such as tanks, valves, thrusters, power processing units, and solar arrays. One 

of the central design goals for multi-mode propulsion systems, in addition to utilizing a 

common propellant, is to make use of common hardware to reduce the mass of the 

propulsion system and increase the deliverable payload. In order to gauge this effect, and 

provide relevant information in propulsion system conceptual design and selection, a 

system integration factor is introduced, Eq. (19), 
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Eq. (19) essentially describes the mass by which a multi-mode propulsion system can be 

reduced by using common components, such as tanks and lines, between the two 

propulsive modes over a system of the same modes utilizing completely separate 

components. Inserting Eqs. (18) and (19) into Eq. (15) gives Eq. (20), 
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From this equation, the design goals for multi-mode propulsion systems are clearly 

evident. The first term on the right hand side describes the propellant usage, which may 

be allocated between two modes, and the second term describes the inert mass penalty, 

which can be recovered through designs using common hardware between the two 

modes. 

 

 



67 

 

3.2. CHEMICAL THRUSTER SIZING 

The two chemical propellants selected for study are Freon-14 for cold gas and 

either [Emim][EtSO4] or AF315E for monopropellant systems as defined in Table 1. For 

chemical propellants, relevant parameters for thruster sizing include chamber temperature 

and specific heat ratio. The [Emim][EtSO4] propellant combusts to a temperature of 1900 

K, a specific heat ratio of 1.22, and a characteristic velocity of 1330 m/s. [9] AF315E 

combusts to a chamber temperature of 2300K.[16] The exact composition of AF315E is 

not given in the literature, so a specific heat ratio of 1.2 is chosen based on typical values 

for combustion products of HAN-based ionic liquid propellants.[9, 21]  Given the 

combustion characteristics of the propellant, a chemical thruster at a desired thrust level 

can be sized by specifying three additional parameters: chamber pressure, nozzle 

expansion ratio, and divergence half-cone angle. This study will assume a 300 psi 

chamber pressure and a nozzle expansion ratio of 200, which are typical values for on-

orbit thrusters.[14] The nozzle throat area is calculated from Eq. (21), 
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where the thrust coefficient is given by Eq. (22), 
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and the pressure ratio can be solved iteratively using Eq. (23), 
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where the divergence correction factor has been added, shown in Eq. (24), 
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and for all analysis herein a 15
o
 half cone divergence angle is used with a 20% reduction 

in length to estimate the mass of a bell nozzle.  

 Given the specified parameters, and calculations from Eqs. (21)-(24), the 

remaining geometry of the divergence section, namely exit area and length are calculated 

through simple trigonometric relations. The thrust chamber geometry can be calculated 

through empirical means by Eqs. (25) and (26),[14]  
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where the characteristic length, L
*
, historically falls between 0.5 and 2.5, with 

monopropellant thrusters having characteristic lengths at the high end of this range. 

Therefore, a characteristic length of 2.5 is chosen for monopropellant thrusters, and a 

value of 0.5 is chosen for cold gas thrusters since they only require essentially a 

convergent nozzle section and tubing thick enough to withstand the chamber pressure. 

Since all of the geometric parameters of the thruster have been calculated, the mass can 

be estimated by the following equations. The wall thickness is estimated by Eq. (27), 
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and the mass of the thrust chamber is subsequently calculated using Eq. (28), 
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For the preliminary calculations, the burst pressure is assumed to be twice the chamber 

pressure and the material is assumed to be columbium (Ftu=310 MPa, ρw=8600 kg/m
3
), a 

generic thrust chamber material. Additionally, the angle of the convergence section is 

assumed to be 45
o
 in all cases, recognizing that it typically comprises only a small 

percentage of the total thruster mass.  

 

 

3.3. MULTI-MODE PROPULSION SYSTEM MASS ESTIMATION 

PARAMETERS 

3.3.1. Propellant Tankage. The majority of the propulsion system sizing 

conducted in this study is based on empirical baseline design estimates outlined in 

Humble.[14] The mass of propellant required to accelerate a spacecraft through a desired 

velocity change can be calculated by solving Eq. (20). The inert, or engine, mass is 

composed of the thruster, propellant feed lines and valves, propellant and pressurant 

tanks, power processing unit (PPU), and structural mounts for the propulsion system. The 

mass of the tanks can be estimated empirically by Eq. (29), 
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where the burst pressure is again assumed to be 1.25 times the tank pressure as is 

standard design practice for spacecraft. For [Emim][Im], [Emim][EtSO4]-HAN, and 

AF315E  propellant tanks the tank pressure is chosen to be 300 psi plus a 20% injector 
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head loss and 0.35 psi overall line losses for the propellant tanks and 1450 psi is chosen 

for the helium pressurant tanks. Xenon is typically stored in supercritical state at around 

1100 psi.[14] The density of these propellants at the chosen conditions and teflon is 

shown in Table 2. Also, the empirical tank sizing parameter is chosen to be 6350 m. This 

value corresponds to typical titanium tank material. Since the volume of the pressurant 

tank is not known beforehand, the pressurant required must be solved iteratively until the 

mass of pressurant is sufficient to occupy both pressurant and propellant tanks at the 

desired propellant tank pressure. The mass of lines and valves is estimated as 50% of the 

thruster mass, a value typical of spacecraft thrusters historically. Finally, the mass of 

structural mounts is assumed to be 10% of the total inert mass. 

 

 

Table 2. Storage Properties of Propellants. 

Propellant 

Pressure 

(psi) State 

Density 

(kg/m
3
) 

Freon-14 300 Liquid 1603 

[Emim][EtSO4]-

HAN 300 Liquid 1419 

AF315E 300 Liquid 1460 

[Emim][Im] 15 Liquid 1519 

Xenon 1100 Supercritical 1642 

Teflon - Solid 2200 

 

 

3.3.2. Power Processing Systems.  In terms of the electric mode of propulsion, 

the mass of the power processing unit (PPU), associated cables and switches, as well as 

the powertrain components of the electric thruster itself will have a substantial effect on 

the overall propulsion system mass. Mass and volume of the power processing unit and 

cables are taken from the commercially available PPUs manufactured by Clyde Space, 

Inc.[22] These are shown in Table 3. For the solar panels, a constant value of 15.5 g/W is 
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used. This is a typical value for current state of the art solar cell technology.[10] Batteries 

will be used for purposes of monopropellant catalyst bed heating, and the current state-of-

the-art for cubesat battery power density is 0.15 W-hr/g.[22] 

 

 

Table 3. Mass and Volume of Cubesat PPUs. 

Power 

(W) 

Volume 

(U) 

Mass 

(g) 

9 0.127 83 

12 0.127 85 

15 0.127 87 

27 0.153 129 

39 0.153 133 

42 0.153 137 

72 0.153 139 

 

 

 

4. RESULTS 

 

 

The results of the analysis methods and system sizing estimates are presented in 

this section. First, the equations developed or shown in Section III are examined for 

general trends.  Next, the chemical thruster and electric thruster masses for the specific 

thrusters selected for this study are computed using the equations described in Section III. 

Then, performance is computed for each multi-mode thruster, and the mass and volume 

of each multi-mode propulsion system is computed in order to draw comparisons 

between each system.  
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4.1. OPTIMUM SPECIFIC IMPULSE 

 Perhaps the most interesting portion of Eq. (17) is the observation that the 

optimum electric specific impulse for a chemical-electric combined system is dependant 

on the chemical mode specific impulse. Oh, et. al.[6] examined the optimum specific 

impulse for a single chemical specific impulse, assumed to be 310 seconds for typical 

bipropellant propulsion systems for large commercial satellites. It was found that a higher 

mission planning efficiency reduces the optimum electric specific impulse. A mission 

planning efficiency of unity corresponds to a Hohmann transfer, which is obviously 

impossible for a continuous thrust maneuver. It has been found that the mission planning 

efficiency does not vary much for earth-orbiting satellites, with values ranging from 0.45 

to 0.65, and is typically dependant on the starting and ending orbits and steering profile, 

and therefore weakly dependant on the propulsion system technology.[6, 20] A value of 

0.5 for the mission planning efficiency will be used for all calculations hereafter. 

 Since there are many chemical micropropulsion concepts, and also many electric 

micropropulsion concepts, it is useful to examine the general trends for optimum electric 

specific impulse and the interplay with chemical propulsion system selection in a multi-

mode system. Figure 1 shows the optimum electric specific impulse calculated using Eq. 

(17). Figure 1a shows the optimum electric specific impulse at varied energy, the Ptηp 

term in Eq. (17), Figure 1b at varied spacecraft mass, and Figure 1c at varied chemical 

mode specific impulse. For each figure, when two of the parameters are not varied, 

values of 5 MJ, 10 kg, and 250 seconds are chosen for the energy, spacecraft mass, and 

chemical specific impulse, respectively. From Figure 1b it is easily seen that the optimum 

electric specific impulse does not vary significantly with spacecraft mass, by less than 1% 

over the entire range chosen in this case, which is representative of small satellites. The 

optimum electric specific impulse does vary somewhat significantly as energy required is 

increased. However, for a 30 W, 50% efficiency thruster, the range in Fig 1a represents 

0-2 years of thrusting time. If propulsion systems are compared for missions at roughly 

the same, but slightly different duration then the optimum electric specific impulse can 

also be assumed constant for comparative purposes. Finally, Figure 1c shows the 

variation with chemical specific impulse. For a system consisting of a chemical mode 
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thruster of 50 seconds specific impulse, the optimum electric specific impulse is 220 

seconds, and for 250 second chemical mode Isp the optimum electric Isp is 1000 seconds.  

 

 

 

 

a) 

 

 

 

b) 
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c) 

Figure 1. Optimum Electric Specific Impulse as a Function of a) Energy, b) Spacecraft 

Mass, and c) Chemical Mode Specific Impulse. 

 

 

4.2 SYSTEM SIZING 

 Thruster mass of the chemical thrusters was computed using the equations 

described in Section III. The results are shown in Table 4. Additionally, mass of the PPU 

is also shown since it depends only on thruster power. The PPT thruster used in Systems 

CP and MP requires 2 W of power.[17] The electrospray thruster requires 9 W,[18] and 

the Hall thruster requires 20 W.[19] The mass of the PPU and solar panel mass for each 

system are sized according to these values. Solar panel mass is included as a penalty, 

although it is likely the payload would also make use of power from solar panels if the 

payload were not required to be powered on during electic thrusting. Additionally, the 

monopropellant thrusters require 20 W to preheat the catalyst bed to high enough 

temperature to initiate decomposition of the propellant.[15] However, these are typically 

not powered directly from solar panels, but from batteries since they require short times 

to achieve heating. The current state-of-the art battery power density will be used for 

mass estimates assuming a 30 minute preheat time, a typical value for advanced 

monopropellant thrusters.[23] Although volume is a consideration for cubesats, it has 
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been shown that for these particular systems, mass is the most stringent constraint except 

for large delta-V missions with high chemical mode usage and thus a large tank volume 

requirement.[24]  

 

 

Table 4. Mass of Propulsion System Components Excluding Tankage. 

System Designation CP CE CH MP ME MH 

Chemical Thruster Mass (g) 200 200 200 500 500 500 

Electric Thruster Mass (g) 190 900 700 190 900 700 

PPU Mass (g) 50 83 108 50 83 108 

Solar Array Mass (g) 31 139 310 31 139 310 

Battery Mass (g) - - - 100 100 100 

Lines and Valves (g) 195 550 450 345 700 600 

Structural Mounts (g) 67 187 177 122 242 232 

Total Mass (g) 733 2059 1945 1338 2664 2550 

 

 

 Table 4 includes the line, valve, and structural mount mass assuming separate 

chemical and electric propellant tanks. As mentioned, for multi-mode propulsion systems 

it is desirable to combine components. Utilizing a common propellant allows for valves 

and lines to be shared since they emanate from a single propellant tank. Systems CP, CH, 

and ME make use of a common propellant for both modes. Assuming the mass of lines 

and valves for these systems is that of the heaviest thruster, the mass of lines and valves 

is reduced by 95 g, 100 g  and 250 g for these systems, respectively. Additionally, the 

mass of structural mounts is reduced, resulting in a system integration factor of 0.14, 
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0.06, and 0.11 for systems CP, CH, and ME, respectively. This factor will be used for 

calculations in the next section.  

 

 

4.3. MULTI-MODE SYSTEM PERFORMANCE 

 The multi-mode specific impulse for each system as defined by Eq. (16) was 

computed and is shown in Fig. 2 as a function of EP usage fraction. Obviously, the 

bounds of the multi-mode specific impulse are the specific impulses of the chemical and 

electric thrusters chosen for the system, with recognition that the electric specific impulse 

effectiveness is modified by the mission planning efficiency, chosen to be 0.5 as 

discussed earlier. However, as seen in Fig. 2, the behavior of the function between these 

bounds is nonlinear. Furthermore, it is seen that most of the benefit of the high-specific 

impulse electric thruster is utilized at EP fractions close to unity. For example, system 

MH increases by 170 seconds in multi-mode specific impulse from EP usage fraction of 0 

to 0.6, then increases by a factor of 400 seconds from 0.6 to 1.0. All systems utilizing 

cold-gas thrusters perform lower than systems utilizing a monopropellant thruster for EP 

fractions lower than 0.92, where the performance of System CH overtakes that of system 

MP.  
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Figure 2. Multi-Mode Specific Impulse as a Function of EP Usage. 

 

 

4.4. MULTI-MODE SYSTEM CAPABILITIES 

 As mentioned in the introduction, there are two main approaches to preliminary 

design and selection for multi-mode propulsion systems. The first approach is more 

traditional in that maneuvers are planned at an early design state. The propulsion system 

is then tailored to that set of maneuvers. This is especially true for electric propulsion 

systems, since the continuous thrust maneuver could be more or less efficient depending 

on the start and stop points on the trajectory. For a multi-mode system, this is even more 

complex because conducting an impulsive maneuver via a high-thrust chemical burn 

could effectively instantaneously change the efficiency of the next planned electric 

maneuver, as previous research has shown.[6, 20] Thus, simply defining a reference 

delta-V and payload mass and sizing the propulsion system may not tell the entire story, 

as other mission needs could dictate propulsion system choice. However, by loosely 

defining a reference mission one can eliminate obviously poor candidate systems, as well 

as gain an understanding of the strengths and potential weaknesses of the multi-mode 

system prior to fully defining the mission scenario. Additionally, as will be discussed, 
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this can provide insight into the second approach to multi-mode system design, which is 

where a mission is not defined prior to spacecraft design maturation or even launch itself. 

 For a design reference mission, a delta-V of 500 m/s and a total satellite mass of 

6.9 kg is chosen. The latter corresponds to a 6U cubesat. The payload fraction for each 

system defined in Table 1 is shown in Fig. 3. Clearly, systems involving the cold gas 

thruster have a clear disadvantage compared to their corresponding monopropellant 

systems for low EP usage fractions. Only the cold gas system also utilizing a PPT is able 

to complete a 500 m/s delta-V without the required propellant pushing the satellite over 

the limit of 6.9 kg. System CH is unable to complete the defined mission unless at least 

32% of the total delta-V is dedicated to electric propulsion. For EP usage below 88%, 

System MP is able to complete the mission with the highest payload fraction of all 

systems, while System CP has the highest payload fraction for missions allowing more 

than 88% of the delta-V to be accomplished via an electric thrust maneuver. System ME 

has a roughly 4% higher payload mass fraction than system MH for all EP usage 

fractions. 

 

 

 

 

Figure 3. Payload Mass Fraction for Reference Mission as a Function of EP Usage. 
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 An additional consideration important in electric propulsion systems, and thus 

multi-mode propulsion systems also, is the required time to expel all propellant carried 

onboard the spacecraft. This can serve as a comparison for how long the mission will take 

with a given propulsion system. However, this may not describe the entire scenario as the 

length between burns is not defined. Furthermore, the selection of burn type and duration 

could play a significant role such that the time of unpowered flight is significantly larger 

than the burn duration in one case, but not in another. So, while simply comparing burn 

duration required of a propulsion system does not come close to describing the actual 

mission scenario, it does at minimum serve as a lower bound. The burn duration for the 

reference mission described previously is shown in Fig. 4. For all three electric 

propulsion systems, the burn duration is longer when using a monopropellant thruster 

compared to a cold gas thruster. Systems using a PPT in the electric mode require the 

longest burn durations, while the cold gas system involving the Hall thruster has the 

lowest overall burn times, requiring only about 20% of the total time required to perform 

the 500 m/s delta-V compared to the PPT systems. Systems ME and MH appear identical 

in the graph, however closer examination reveals system ME actually requires roughly 

1% shorter burn times than System MH. 

 

 

 

 

Figure 4. Burn Time for Reference Mission as a Function of EP Usage. 
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 As mentioned, one of the main drivers toward multi-mode propulsion usage is the 

ability to design a system to meet a large number of mission scenarios. Additionally, 

multi-mode propulsion systems utilizing a single propellant for both modes offer the 

highest flexibility since any give EP usage fraction may be chosen as mission needs arise 

rather than defined to a strict ratio as would be the case if two propellants had to be 

loaded into two separate tanks. The mission trade space for Systems CP, CH, and ME is 

shown in Fig. 5 since these systems involve utilization of a common propellant. The burn 

duration versus delta-V is shown for a 6U (6.9 kg) satellite with a 2 kg payload. This may 

be viewed as the mission trade space with the same caveats applied to the use of burn 

duration as a comparison tool as described in the previous paragraph. System CH can 

achieve the highest delta-V of the three systems, but only achieves less than half of the 

delta-V of System ME for burn times less than 150 days. System CP requires the longest 

burn time per delta-V of any system, except for System CH below about 30 days. 

 

 

 

 

Figure 5. Mission Trade Space for Systems Utilizing Common Propellant. 
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 To further illustrate the gains in mission flexibility by using a common propellant 

in a multi-mode propulsion system, System ME is compared to a system consisting of the 

same thruster modes, but with separate AF315E and [Emim][Im] propellants for the 

chemical mode and electric mode, respectively. The performance and mass estimates for 

these thrusters are the same as given in Section II and III, except here the specific 

impulse of the electric mode is scaled up to 1280 seconds. Note that this could be 

accomplished through addition of accelerator grids with additional mass penalty. For this 

analysis, however no additional mass penalty is applied. The mission trade space for 

these two systems is shown in Fig. 6 for a 180 kg satellite with a 65 kg payload. The solid 

black line represents System ME, which uses a common propellant, and the colored lines 

represent the system using separate propellants. For the system using separate propellants 

it is necessary to define the mission trade space by choosing a single allocation of 

propellant mass. Stated differently, a mission designer may only allocate propellant usage 

before the mission begins and may only select one of the colored curves. Anything except 

for the peak of the colored curves is therefore a mission that does not result in 100% 

propellant utilization. On the other hand, if a common propellant is used, the entire area 

under the black curve is available for mission applications, even after launch, and 100% 

propellant utilization is achieved for any mission chosen on the black curve. Also notable 

is that the combined system has a higher delta-V at a given burn duration for all missions 

except the 100% chemical and 100% electric missions in which the mass of the opposite 

mode thruster and associated hardware has been removed. This is due to the use of shared 

hardware in the common propellant system. 
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 Figure 6. Mission Design Trade Space for Multi-mode Ionic Liquid Propulsion Systems.  

 

 

5. DISCUSSION 

 

 

 Clearly, from the results, missions requiring a majority of the total delta-V to be 

performed through quick, impulsive chemical maneuvers, the specific impulse of the 

chemical mode is the most important consideration, since from Fig. 3 all of the 

monopropellant systems have a higher payload mass fraction for EP usage below 88% of 

the total delta-V. Of the monopropellant systems, System MP has the highest payload 

fraction, but requires a significant burn duration. Despite having a higher thruster and 

powertrain mass than System MH, System ME has a higher payload mass fraction for the 

reference mission while still requiring shorter burn times. This is due to both the fact that 

System ME has a reduced inert mass due to shared lines and vales, but also somewhat 

due to the electric mode specific impulse being closer to optimum for the chemical 

monopropellant mode specific impulse, Fig. 1c, than the hall thruster. 

 In terms of required burn duration to expend all onboard propellant, the PPT 

systems have the longest burn times. This is due directly to the fact that they have the 
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lowest electric mode thrust of any propulsion system considered in this study. The thrust 

of the electric mode effectively dictates the burn duration of the entire multi-mode 

propulsion system since any low-thrust maneuver utilizing electric propulsion takes 

significantly longer than a chemical burn even to expel 100% of the propellant. Thus, 

systems involving the higher-power thrusters could be advantageous for multi-mode 

systems where spacecraft lifetime or mission lifetime is a critical factor. 

 For spacecraft designs involving flexible mission scenarios, the system with the 

cold gas thruster combined with the hall thruster could be the most advantageous since it 

offers a relatively high delta-V capability in a short amount of time for a given payload 

mass and total spacecraft mass. However, for most earth-orbiting missions typically 

lasting shorter than 150 days, the monopropellant/electrospray system is the most 

advantageous. Furthermore, for flexible mission design, it is crucial to make use of a 

common propellant between modes as from Fig. 6 the mission design space not only 

encompasses the design space of all possible propellant budget allocations using separate 

propellants, but exceeds the performance except for missions involving 100% chemical 

or 100% electric maneuvers due to the use of shared hardware reducing the propulsion 

system inert mass.  

 As mentioned in the results section, the shape of the multi-mode specific impulse 

function is exponential, with most of the specific impulse benefit of the electric system 

being realized through high values of EP usage. In a flexible mission design scenario 

such as that defined in the results section where the only constraints are payload mass and 

total spacecraft mass, limiting propulsion system inert mass is more important than high 

specific impulse in either chemical or electric mode. Or stated differently, reducing inert 

mass of the propulsion system allows for a greater fraction of the onboard mass to be 

propellant. The fact that specific impulse grows at a rate greater than linear according to 

the multi-mode specific impulse function means that more available propellant will result 

in an exponentially growing delta-V availability as propulsion system inert mass is 

reduced. It is therefore highly advantageous to reduce propulsion system inert mass as 

much as possible through hardware integration or careful selection of components. 
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 Finally, the concept of the optimum electric mode specific impulse must be 

revisited. As discussed in the results section the optimum electric specific impulse 

depends on the chemical mode specific impulse. The optimum occurs because there is a 

trade-off between the payload mass fraction gain by increased specific impulse and 

increased time required by decreased power. [6] Under a fixed mission duration, for a 

large electric specific impulse, the electric propulsion system makes efficient use of the 

propellant, but would deliver a smaller fraction of the total delta-V. The chemical thruster 

would then provide the remaining delta-V at a defined ratio in order to meet the mission 

time requirements. Conversely, if the chemical thruster specific impulse is low, it would 

be desirable to use less of the chemical thruster. Thus, as the chemical mode specific 

impulse decreases, it is desirable to increase the electric mode thrust at the expense of 

specific impulse. 

For multi-mode propulsion system design it is desirable to select electric 

propulsion technology near this optimum. However, this only describes performance 

from a propellant usage standpoint. If an electric technology is sufficiently low in mass, 

or it can be integrated partially or fully with the chemical mode, it may result in a higher 

performance system even if the electric specific impulse is far from optimum. 

 

 

6. CONCLUSIONS 

 

 

Multi-mode spacecraft propulsion systems involving separate chemical and 

electric thrusters were compared and analyzed in terms of mission capability and overall 

system sizing. Propulsion systems involving chemical monopropellant thrusters generally 

outperformed their cold-gas counter parts in terms of both payload mass fraction and 

propulsion system volume required to perform a 500 m/s delta-V with a 6U scale 

spacecfraft (6.9 kg). The thrust of the electric mode effectively determines minimum burn 

duration directly, and as such the systems utilizing the PPT had the highest burn 

durations since they also had the lowest thrust of all electric propulsion systems 
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considered in this study. For flexible propulsion system design, a multi-mode system 

utilizing a common propellant is the most important consideration, followed by reduction 

of propulsion system inert mass through the use of common hardware. There exists an 

optimum electric specific impulse for a unique chemical specific impulse selection. It is 

ideal then, to pair electric technology near this optimum specific impulse for a given 

chemical thruster technology.  
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ABSTRACT 

 

A monopropellant consisting of 59% hydroxylammonium nitrate and 41% 1-

ethyl-3-methylimidazolium ethyl sulfate is tested for decomposition on heated platinum, 

rhenium, and titanium surfaces. It was found that the propellant decomposes at 165 
o
C on 

titanium, which is the decomposition temperature of HAN. The onset temperature for 

decomposition on platinum was 85 
o
C and on rhenium it was 125 

o
C. This suggests that 

platinum and rhenium act as catalysts for the decomposition of the monopropellant. From 

the experimental data, Arrhenius-type reaction rate parameters were calculated. The 

activation energy for platinum was 3 times less than that of titanium suggesting it could 

be a prime choice for catalyst material in further thruster development. 

 

NOMECLATURE 

 

 

A = activity coefficient, [1/sec] 

Cp,i = specific heat of species i, [J/kg-K] 

E = activation energy, [J] 

k’ = reaction rate coefficient, [1/sec] 

kB = Boltzmann constant, [m
2
-kg/sec

2
-K] 

Ni = number of moles of species i, [mol] 
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Q  = heat transfer rate, [W] 

"Q  = heat flux, [W/mm
2
] 

EQ
 = heat transfer rate due to electrical heating, [W] 

rA = reaction rate, [mol/m-sec] 

T = temperature, [K] 

blankT
 = heating rate on blank surface, [K/s] 

ET
 = electrical heating rate, [K/s] 

sT
 = self heating rate, [K/s] 

Tm = melting temperature, [K] 

t = time, [sec] 

V = volume, [m
3
] 

ΔHRx = heat of reaction, [J/mol] 

ρ = resistivity, [Ω-m] 

κ = thermal conductivity, [W/m-K] 

 

 

1. INTRODUCTION 

 

 

 Multi-mode spacecraft propulsion is the use of two or more propulsive devices on 

a spacecraft, specifically making use of a high-thrust, usually chemical, mode and a high-

specific impulse, usually electric mode. This can be beneficial in two primary ways. One 

way a multi-mode propulsion system can be beneficial is by designing a mission such 

that the high-thrust and high-specific impulse maneuvers are conducted in such a way 

that it provides a more optimum trajectory over a single chemical or single electric 

maneuver.[1-4] The second is to increase the mission flexibility of a single spacecraft 

architechture in that both high-thrust and high-specific impulse maneuvers are available 

to mission designers at will, perhaps even allowing for drastic changes in the mission 
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plan while on-orbit or with a relatively short turnaround from concept to launch.[5-9] For 

the second method, it is extremely beneficial to utilize a common propellant for both 

modes as this provides the highest flexibility in terms of mission design choices. Two 

propellants have been developed which may function and theoretically perform well in 

both a chemical monopropellant and electric electrospray mode.[10] These propellants, 

based on mixtures of ionic liquids [Emim][EtSO4] and [Bmim][NO3] with ionic liquid 

oxidizer hydroxylammonium nitrate (HAN), have been previously synthesized and 

assessed for thermal and catalytic decomposition in a microreactor.[11] This paper 

presents results of further experiments to characterize the decomposition of the 

[Emim][EtSO4]-HAN monopropellant, specifically on catalytic surfaces relevant to 

application in a microtube thruster.[12-14] The electrospray capabilities of the 

propellants have been investigated previously.[15] 

Hydrazine has been the monopropellant of choice for spacecraft and gas 

generators because it is storable and easily decomposed to give good combustion 

properties [16]. However, hydrazine is also highly toxic and recent efforts have been 

aimed at replacing hydrazine with a high-performance, non-toxic monopropellant. Many 

of these efforts have focused on energetic ionic liquids, which are essentially molten salts 

capable of rapid decomposition into gaseous products. The energetic salts 

hydroxylammonium nitrate (HAN), ammonium dinitramide (ADN), and hydrazinium 

nitroformate (HNF) have received attention for this purpose.[16-20] All of these salts 

have melting points above room temperature, and it is therefore necessary to use them in 

an aqueous solution to create a storable liquid propellant. Typically, these are also mixed 

with a compatible fuel component to provide improved performance. The main limitation 

to the development of these as monopropellants has been excessive combustion 

temperatures, but recent efforts in materials and thermal management have mitigated 

some of these issues and flight tests have been conducted or are scheduled.[20-22] These 

propellants, while performing well for chemical propulsion, fundamentally will not 

perform well in an electrospray thruster; therefore, for a proposed multi-mode 

monopropellant/electrospray system, novel system-specific propellants will be needed 

and the first generation has been synthesized.[10, 11] 
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 Recent efforts have placed a greater emphasis on smaller spacecraft, specifically 

microsatellites (10-100 kg) and nanosatellites (1-10 kg), including the subset of 

cubesats.[23] Many different types of thrusters have been proposed to meet the stringent 

mass and volume requirements placed on spacecraft of this type. Electrospray, in 

particular, may be well suited for micropropulsion, and has been selected for these types 

of applications.[24-26] Many types of thrusters have been proposed for chemical 

propulsion for small spacecraft. One type is the chemical microtube.[12-14] This type of 

thruster is simply a heated tube of diameter ~1 mm or less that may or may not consist of 

a catalytic surface material. Additionally, from a multi-mode system standpoint, there is 

no fundamental reason why this geometry could not be shared with the electrospray mode 

as capillary type emitters can be roughly the same diameter tube.[15, 27]  

 Due to the stringent mass, volume, and power requirements on micropropulsion 

systems, the required preheat temperature and overall length of the tube to achieve peak 

performance is important. However, in order to assess these requirements, and in turn 

design an experimental thruster, basic properties of the propellant decomposition and 

burning behavior must be determined. This paper presents results on the experimental 

determination and assessment of the decomposition characteristics of the 

[Emim][EtSO4]-HAN propellant on various catalytic surfaces through the use of a batch 

reactor. These measurements, taken together, can be used directly or compared to 

existing models of HAN propellant decomposition to aid the design of a catalytic 

microtube thruster. Section II will describe the setup of the experiment, Section III will 

present the results of the experiments, Section IV will discuss the results including 

relevant development or selection of decomposition model parameters, and Section V 

presents the conclusions of this study.  
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2. EXPERIMENTAL SETUP 

 

 

The batch reactor used in this study is similar in function to that used in the 

previous studies with the same propellant or other HAN-based propellants.[11, 17, 28] 

The previous study on catalytic decomposition with the [Emim][EtSO4] blend used a 

syringe to inject a droplent of the propellant onto pre-heated catalyst particles. 

Decomposition rate was determined by measuring the pressure change inside the 

reactor.[11] This was done with application to a conventional monopropellant thruster in 

mind. In a chemical microtube, the monopropellant decomposition is initiated through 

heat and catalytic activity from the chamber walls instead of from many small catalyst 

particles packed into the chamber as in a conventional thruster. The batch reactor in this 

study therefore uses heated metallic surfaces to generate decomposition of the 

monopropellant in order to best provide data for use in the design of a monopropellant 

microtube. 

The batch reactor consists of a large (~1L) chamber with feedthroughs to 

accommodate heating of the catalyst surface and measurement of the surface temperature. 

Additionally, a gas feedthrough is used to evacuate the air in the chamber via mechanical 

vacuum pump, as well as to backfill with argon gas back to atmospheric pressure. The 

experimental setup in the lab is shown in Fig. 1. The propellant itself is held in place on 

top of the catalytic surface via the sample holder geometry shown in Fig. 2. The sample 

holder is a quartz tube with an inner diameter of 5.33 mm. The catalytic surface material 

is sandwiched between two sheets of Teflon material and the top sheet has a cutout of 

same diameter to the outside diameter of the sample holder cylinder. Additionally, a 

single strip of Teflon tape is wrapped around the base of the cylinder for experiments. 

This, combined with the high viscosity of the propellant, was found to provide an 

adequate seal to keep propellant from leaking out of the containment region provided by 

the cylinder. The catalytic material is heated by applying a voltage directly across the 

metallic material. For each experimental run, 50 µL of propellant is injected into the 

sample holder. The batch reactor is then closed off, evacuated, and back filled with argon. 

Finally, power is provided to the catalyst material until propellant decomposition is 
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initiated. A thin wire type-K thermocouple measures the temperature of the catalyst 

surface throughout the duration of the experiment. 

 

 

 

 

 

Figure 1. Photograph of the Batch Reactor Experiment in the Lab Showing Atmosphere 

Control Panel (left), Sample Holder (bottom), Pressure Measurement (right), and 

Temperature Measurement (top). 

 

 

 

 

 

Thermocouple

Teflon

Sample Holder

Catalyst 
Surface

 

Figure 2. Illustration of the Sample Holder Geometry. 
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As mentioned, the propellant used in this study is a blend of hydroxylammonium 

nitrate (HAN) and 1-ethyl-3-methylimidazolium ethyl sulfate ([Emim][EtSO4]) 

consisting of 59% oxidizer and 41% fuel by mass. The synthesis procedure is described 

in detail in the previous studies.[11, 15] Three catalyst materials are selected for this 

investigation: titanium, platinum, and rhenium. Rhenium was found from the previous 

study to be a good candidate catalyst material.[11] Platinum was the material selected for 

the previous microtube thruster experiments[12-14] and is also a candidate for HAN 

propellant catalyst applications.[28] Titanium is selected for this study to provide a 

measure of thermal decomposition absent catalytic activity since it it known to be 

compatible with HAN propellants for long term storage.[29] The properties relevant to 

this study for each material are given in Table 1. For the experiment, a 25 mm x 8 mm 

strip of 0.025 mm thick material is used for platinum and rhenium. For titanium the 

dimensions are the same except for the thickness, which is 0.05 mm. 

 

 

Table 1. Thermal and Electrical Properties of Catalyst Materials Used in This Study. 

  ρ [Ω-m] x 10
-7

 κ [W/m-K] Tm [K] 

Platinum 1.04 71.6 1968 

Rhenium 1.85 71.0 3382 

Titanium 4.27 20.8 1868 

 

 

 

3. RESULTS 

 

 

Results from the batch reactor experiment described in the previous section are 

presented here. All decomposition experiments are conducted in a 15 psia argon internal 

atmosphere and with 50 µL of propellant. For comparison, an 80% HAN/water blend and 
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pure [Emim][EtSO4] are also tested for decomposition with the same conditions used for 

the HAN/[Emim][EtSO4] monopropellant blend. Results are displayed in terms of heat 

flux, which is calculated using the input current, material electrical resistivity and catalyst 

surface geometry. Due to differences in the material properties, exact heat flux could not 

be precisely replicated for all materials; however, relevant points will be addressed in the 

discussion section. 

Sample results for the decomposition of the HAN/[Emim][EtSO4] propellant on 

the catalyst surfaces are shown in Fig. 3. The figure shows the temperature indicated by 

the thermocouple as a function of time after power is applied through the catalyst surface. 

The results shown in the figure are for calculated input heat flux of 7.2, 7.9, and 13 

mW/mm
2 

for platinum, rhenium, and titanium, respectively. For all surface materials, the 

temperature increase is roughly linear initialy, followed by a transition to another roughly 

linear region of higher slope, indicating exothermic decomposition of the 

monopropellant. The temperature at which decomposition of the propellant occurs, which 

for purposes of this study is taken as the start of the transition from the initial linear 

temperature slope, is lowest for platinum surface material at 85 
o
C, followed by rhenium 

at 125 
o
C and titanium at 165 

o
C. Since the rate of temperature increase during 

decomposition is driven by the exothermic reaction of the monopropellant also of note is 

that the rate of temperature increase is highest for platinum, which shows a sharp increase 

in temperature just after decomposition onset. Both rhenium and titanium show a longer 

transition region and peak at the end of the decomposition event. 
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Figure 3. HAN/[Emim][EtSO4] Monopropellant Decomposition on Platinum, 

Rhenium, and Titanium Surfaces. 
 

 

 

 The decomposition of the HAN/[Emim][EtSO4] propellant is investigate further 

by conducting the experiment at various power input levels. Table 2 shows the results for 

each material at varied heat flux, which is again calculated from the input current and 

material properties. Results are shown in terms of temperature slope for the region before 

decomposition onset, during decomposition, and for the same input power with no 

propellant present. Additionally, for the case with no propellant present, the test is 

conducted at vacuum (~10
-3

 torr) instead of 15 psia argon. Temperature slope before 

decomposition and for the blank cases is taken as the line between points at t = 0 and t = 

2 seconds. Temperature slope during decomposition is calculated by taking the line 

between two points as determined by visual inspection of the temperature vs. time results 

similar to Fig. 3. Cases that do not have a temperature change during decomposition are 

given a dash-mark in the table. These cases did not show a decomposition event during 

the test window of 18 seconds. As expected from the results shown in Fig. 3, platinum 

has the highest rate of temperature change during decomposition at 338-372 
o
C/sec. Tests 

on rhenium show higher rate of temperature change compared to titanium during the 

decomposition event, 51 
o
C/sec vs. 41.5 

o
C/sec respectively. Additionally, at similar heat 
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flux, the platinum cases have a higher temperature slope before decomposition compared 

to both rhenium and titanium. For example, the temperature slope for heat flux of 3.2 

mW/mm
2
 is 7.5 

o
C/sec for platinum and 6.0 

o
C/sec for rhenium; and, the temperature 

slope is 10 
o
C/sec for platinum at 5 mW/mm

2
 heat flux and 6.7 

o
C/sec at 5.4 mW/mm

2
 for 

titanium. This trend is true for all cases tested. Tests on rhenium also show a slightly 

higher rate of temperature change prior to decomposition onset compared to titanium, for 

example 9.3 
o
C/sec at 4.3 mW/mm

2
 on rhenium versus 8.5 

o
C/sec at 7 mW/mm

2
 on 

titanium.  
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Table 2. Rate of Temperature Change Before and During Decomposition Events for 

Each Catalyst Surface at Various Input Power. 
 

"Q  

(mW/mm
2
) 

ET  

(
o
C/s) ST  (

o
C/s) 

blankT  (
o
C/s) 

Platinum 

3.2 7.5 - 10.0 

4.4 9.5 354 17.7 

5.0 10.0 363 27.0 

6.0 15.0 338 31.7 

7.2 21.5 372 37.5 

Rhenium 

1.4 3.3 - 6.0 

3.2 6.0 - 11.0 

4.3 9.3 - 18.5 

5.7 11.7 52 34.7 

7.9 13.5 50 44.0 

Titanium 

5.4 6.7 - 23.3 

7.0 8.5 - 35 

8.8 9.7 40 47.7 

10.9 10.0 41 52.5 

13.0 11.0 43 60.3 

 

 

 

 

More information about the propellant decomposition process may be obtained by 

observing the decomposition of the constituent fuel and oxidizer. As mentioned, an 80% 

HAN by mass HAN/water solution and pure [Emim][EtSO4] are tested for 

decomposition. Results on platinum at heat flux of 7.2 mW/mm
2
 are shown in Fig. 4. 
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From the figure, the decomposition of HAN/Water is virtually the same as that of the 

HAN/[Emim][EtSO4] monopropellant blend. The temperature rate of change is the same 

value of 21.5 
o
C/sec, the onset temperature is 85 

o
C, and the temperature slope during 

decomposition is slightly lower for HAN/Water at 283 
o
C/sec. The behavior of 

temperature data after the decomposition event for HAN/Water is noticeably erratic; this 

will be discussed in the next section. Pure [Emim][EtSO4] does show an exothermic 

decomposition peak, which has been observed qualitatively before during spot plate 

tests.[11] This occurs at roughly 140 
o
C on platinum, well above the decomposition onset 

of 85 
o
C for HAN/Water and HAN/[Emim][EtSO4] blend.  

 

 

 

Figure 4. Decomposition of HAN/[Emim][EtSO4] Monopropellant and Constituent 

Fuel and Oxidizer on Platinum. 
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4. DISCUSSION 

 

 

Results from the preceding section are discussed, with particular attention paid to 

developing insights for the development of a microtube thruster. However, there is no 

reason why the results could not also be used, at minimum qualitatively, for catalyst 

development, particularly monolith catalysts. The results and trends seen in the previous 

section will first be discussed, followed by elucidation of these results into Arrhenius 

type reaction rate data. 

 

 

4.1. DISCUSSION OF EXPERIMENTAL RESUTLS 

 The most significant result of the experiment is the fact that the lowest onset 

temperature and fastest decomposition rate of the monopropellant is obtained through the 

use of platinum material. Given that both platinum and rhenium show both lower onset 

temperature and faster decomposition rate, it is apparent that they do act as a catalyst for 

the monopropellant decomposition. The fact that the rate of temperature increase prior to 

the onset temperature is also greater for platinum and rhenium compared to titanium is 

likely indicative that the monopropellant is undergoing an adsorption process onto the 

metallic surface, which is exothermic.  

 Further quantitative assessment of catalytic capability of platinum and rhenium 

requires the assumption that titanium does not act as a catalyst material for the 

HAN/[Emim][EtSO4] monopropellant decomposition. The onset temperature for 

decomposition on titanium material was found in this study to be 165 
o
C. This agrees 

with the literature for the exothermic decomposition temperature for other HAN-based 

propellants, as well as HAN itself by thermal decomposition initiation means alone.[17, 

28, 30] Typically, for HAN-based propellants the initial step in the reaction is assumed to 

be the initial HAN decomposition step regardless of the fuel choice.[21, 31-33] This is 

mainly due to the fact that the fuel typically is not decomposed thermally, but through 

reaction with HAN decomposition intermediate species.[33] Results show that 
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[Emim][EtSO4] decomposes at much higher onset temperature than HAN for a particular 

catalyst, although it does appear to be catalyzed by platinum, as evidenced by the 

exothermic peak at 140 
o
C for pure [Emim][EtSO4] on HAN but no such peak at at least 

165 
o
C on titanium. Additionally, the HAN-water onset temperature is exactly the same 

as the HAN/[Emim][EtSO4] propellant as seen in Fig. 4. It can therefore be reasonably 

concluded that titanium does not act as a catalyst for this monopropellant and that the fuel 

does not decompose thermally prior to the first step in HAN decomposition. 

 

 

4.2. ELUCIDATION OF ARRHENIUN-TYPE REACTION RATE DATA 

 Decomposition of HAN-based propellants, even assuming the fuel does not 

participate in the decomposition initiation, is comprised of many reaction steps.[32, 33] 

Without knowledge of the intermediate species, or post-reaction species it is not possible 

to determine a multi-step reaction mechanism from the data garnered in this experiment 

alone. However, in order to aid preliminary thruster modeling predictions it is useful to 

develop Arrhenius-type reaction rate equations for the decomposition of this 

monopropellant on various catalyst surfaces. Using the temperature vs. time data from 

this study it is possible to determine the activation energy and frequency factor for use in 

Eq. (1), 

 

' B

E

k T
k Ae                                                            (1) 

 

The energy balance for the system described in the experimental setup is Eq. (2), 

 

,

( )( )RX A

i p i

Q H r VdT

dt N C

  



                                               (2)  

 

where the contribution to temperature change is heat transfer from the electrical heating 

and self heating from the exothermic decomposition of the monopropellant, Eqs. (3) and 

(4), respectively, 
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                                                         (3) 

 

,

( )( )Rx A
S

i p i

H r V
T

N C

 



                                                     (4) 

 

It is clear from the results that prior to the onset temperature the electrical heating rate is 

much greater than the self heating rate and this region is therefore described fairly 

accurately by Eq. (3) except perhaps for the cases where catalytic activity is observed. 

After the onset temperature is achieved the self heating rate described by Eq. (4) clearly 

dominates the electrical heating rate. This data can therefore be used to determine the 

targeted reaction rate parameters. Substituting the Arrhenius rate equation into Eq. (4) 

and taking the natural logarithm of both sides gives Eq. (5), 

 

,

( )
ln ln ln lnRx

s A

i p i B

H V E
T A C

N C k T

 
     

 
                               (5) 

 

Since all parameters are constant aside from the temperature and self heating rate, the 

activation energy is then the slope of the line of a plot of ln sT and 1/T. The activity 

coefficient can then be solved for by substituting the result back into Eq. (5). 

 The results of these calculations are shown in Table 3. For the calculation of 

activity coefficient, the propellant specific heat was determined from Eq. (3) from the 

titanium data only since absorption does not occur and the only heating during the initial 

phase is due to electrical heating. The value of specific heat for this monopropellant is 

95.7 ± 8.6 J/mol-K. Results show what is expected from the assumed catalytic activity 

described previously, namely that platinum has the lowest activation energy, followed by 

rhenium.  
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Table 3. Arrhenius Rate Equation Parameters Calculated from Experimental Data. 

Material E/kB (K) A (1/sec) 

Platinum 10771 ± 503 (2.14 ± 0.23) x 10
10 

Rhenium 16170 ± 107 (2.23 ± 0.26) x 10
10 

Titanium 30111 ± 797 (2.64 ± 0.26) x 10
10 

 

 

 

5. CONCLUSIONS 

 

 

A monopropellant blend of hydroxylammonium nitrate and [Emim][EtSO4] was 

tested on platinum, rhenium, and titanium surfaces in order to garner data for use in 

microtube thruster or monolith catalyst bed design. When heated on a titanium surface, 

the monopropellant decomposes at 165 
o
C, which agrees with the known decomposition 

temperature for hydroxylammonium nitrate. Furthermore, the fuel decomposes 

exothermically at a much higher temperature, which suggests that the reaction 

mechanism for this monopropellant blend is initiated by HAN decomposition and 

intermediate species react to decompose the fuel, which agrees with insights from other 

studies utilizing different fuels. 

It was found that platinum and rhenium exhibit catalytic activity for the 

HAN/[Emim][EtSO4] propellant blend, with platinum initiating decomposition at 85 
o
C 

and rhenium at 125 
o
C. Use of these materials will therefore lessen power requirements to 

start monopropellant rocket engines using this propellant. Platinum initiates the highest 

rate of reaction, but the material melts at near the flame temperature of the propellant.[10] 

The flame temperature, however, could be reduced by increasing the fuel mass fraction in 

the monopropellant bend. Since the decomposition is likely initiated by HAN 

decomposition and the fuel is then attacked by the reaction intermediates, increasing the 

fuel ratio of the monopropellant blend could allow use of platinum as a catalyst to start 

the thruster and thus reduce overall propulsion system power requirements.  
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ABSTRACT 

 

 

The multi-mode chemical-electric propulsion capable energetic ionic liquid 

propellant [Emim][EtSO4]-HAN is electrosprayed in a 100 μm capillary emitter to test 

the electric-mode performance of the propellant. The ionic liquid exhibits stable 

electrospray emission in both cation and anion extraction modes at a nominal extraction 

voltage of 3400 V.  Near field measurements of current and mass flow rate distribution 

are taken at flow rates from 0.19 nL/s to 3.06 nL/s. Total emission current, as measured 

by Faraday cup and integrated, increases from 754 nA to 3195 nA for cation emission 

and from 552 nA to 2012 nA for anion emission. The thrust and specific impulse at 0.19 

nL/s flow rate is 1.08 μN and 412 seconds, respectively, with a beam power of 2.22 mW. 

At 3.06 nL/s, the thrust is 8.71 μN and the specific impulse is 204 seconds with a beam 

power of 8.85 mW. Extrapolation of the current data shows that specific impulse in 

excess of 1000 seconds is achievable through optimized feed system and emitter design. 

 

 

NOMENCLATURE 

 

Dc   = transport capillary inner diameter [μm] 
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Dn   = emitter inner diameter [μm] 

F   = thrust [μN] 

g0   = constant to convert specific impulse to units of seconds [m/s
2
] 

I   = current [nA] 

Isp   = specific impulse [sec] 

K   = ionic liquid electrical conductivity [S/m] 

Lc   = length of transport capillary [cm] 

Ln   = length of capillary emitter [cm] 

�̇�   = mass flow rate [ng/s] 

m/q  = mass to charge ratio [amu/e] 

P0   = reservoir pressure [torr] 

Pc   = pressure in transport capillary [torr] 

Pn   = pressure at capillary emitter [torr] 

Q   = volumetric flow rate [nL/s] 

Vacc  = acceleration voltage [V] 

VE   = extractor voltage [V] 

VN  = emitter voltage [V] 

γ   = ionic liquid surface tension [N/m] 

ε   = ionic liquid dielectric constant 

ε0   = permittivity of free space [F/m] 

μl   = viscosity of propellant [cP] 

ρ   = ionic liquid density [g/cm
3
] 

 

 

1. INTRODUCTION 

 

 

Multi-mode spacecraft propulsion is the use of two or more types of propulsive 

devices on a spacecraft that share some commonality in terms of either hardware or 

propellant. An example is the Mars Global Surveyor, which made use of hydrazine as 
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both a monopropellant for attitude control and a bipropellant for primary maneuvering.[1] 

Specific to this study is a multi-mode system making use of a high-thrust, usually 

chemical, mode and a high-specific impulse, electric mode. Using these two modes can 

be beneficial in two primary ways. One way is by designing a mission such that the high-

thrust and high-specific impulse maneuvers are conducted in such a way that it provides a 

more optimum trajectory over a single chemical or single electric maneuver.[2-5] The 

second is to increase the mission flexibility of a single spacecraft architechture in that 

both high-thrust and high-specific impulse maneuvers are available to mission designers 

at will, perhaps even allowing for drastic changes in the mission plan while on-orbit or 

with a relatively short turnaround from concept to launch.[6-10] For the second method, 

it is extremely beneficial to utilize a common propellant for both modes as this provides 

the highest flexibility in terms of mission design choices.[9] Previous research has 

investigated a multi-mode system utilizing a single ionic liquid propellant for chemical 

monopropellant and electrospray modes.[6, 11] Two propellants were developed that may 

not only function, but theoretically perform well in both a modes.[11] These propellants, 

based on binary mixtures of ionic liquid fuels [Emim][EtSO4] and [Bmim][NO3] with 

ionic liquid oxidizer hydroxylammonium nitrate (HAN), have been previously 

synthesized and tested for thermal and catalytic decomposition in a microreactor.[12] 

This paper presents results of experiments measuring the performance of the electrospray 

emitter and beam composition of the [Emim][EtSO4]-HAN propellant. In a separate 

paper, the decomposition and performance of this propellant in the chemical, high-thrust 

mode thruster has been investigated.[13]  

 Recent efforts have placed a greater emphasis on smaller spacecraft, specifically 

microsatellites (10-100 kg) and nanosatellites (1-10 kg), including the subset of 

cubesats.[14] Many different types of thrusters have been proposed to meet the stringent 

mass and volume requirements placed on spacecraft of this type. Electrospray, in 

particular, may be well suited for micropropulsion, and has been selected for these types 

of applications.[15-17] Several types of thrusters have been proposed for chemical 

propulsion for small spacecraft. One type is the chemical microtube.[18-20] This type of 

thruster is simply a heated tube of diameter ~1 mm or less that may or may not consist of 

a catalytic surface material. Additionally, and ideally from a multi-mode system 
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standpoint, there is no fundamental reason why this geometry could not be shared with 

the electrospray mode as capillary type emitters can be roughly the same diameter 

tube.[21] This would reduce the overall propulsion system mass, which is desirable 

particularly in micropropulsion systems for small spacecraft. 

Electrospray is a propulsion technology in which charged liquid droplets or ions 

are extracted from an emitter via an applied electric field. This produces a high exhaust 

velocity (high specific impulse) but low flow rate and thrust.[16] Ionic liquids are 

candidates for electrospray propulsion not only due to their ionic nature, but also their 

negligible vapor pressure and high electrical conductivity.[22] Charged species emitted 

from the ionic liquid  can range from large m/q charged droplets to a purely ionic regime 

(PIR), with small m/q values, similar to that of field emission electric propulsion with 

specific impulses in the range of 200-4000 seconds for current propellants.[16] The ionic 

liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim][Im], or 

[Emim][Tf2N]) was selected as the propellant for the ST7 Disturbance Reduction System 

mission, and represents the only planned flight application of electrospray, or colloid, 

thrusters to date.[17] Several other imidazole-based ionic liquids have been suggested for 

research in electrospray propulsion due to their favorable physical properties, however, 

none of these have energetic properties sufficient for chemical propulsion.[17] 

Electrospray liquids with relatively high vapor pressure boil off the propellant and 

produce an uncontrolled, low performance emission. This virtually eliminates most of the 

advanced monopropellants from multi-mode propulsion consideration since although 

their main component is an ionic liquid oxidizer, they typically contain water and perhaps 

a volatile fuel component.[23-25] Mixing electrosprayable, fuel-rich ionic liquids with an 

ionic liquid oxidizer such as HAN shows theoretical promise in terms of achieving high 

performance in both chemical and electrospray modes.[11] However, it is difficult to 

theoretically predict electrospray performance precisely due to relative immaturity of the 

technology. Additionally, the double salt nature of the ionic liquid propellants to be 

investigated here could lead to additional difficulties in predicting the electrospray 

performance.[26] This will be discussed in further detail in a later section, but this 

illustrates the need for experimental measurements in order to best estimate electrospray 

performance. This paper describes experimental measurements of the performance and 
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beam properties of the electrospray emission of the double salt ionic liquid propellant 

[Emim][EtSO4]-HAN. Section II describes the experimental setup and propellant 

synthesis. Section III presents the results of the electrospray experiments. Section IV 

discusses the results and performance of the propellant in a capillary electrospray system. 

Section V summarizes the relevant conclusions. 

 

 

2. EXPERIMENTAL SETUP 

 

 

 The electrospray thruster experiment utilized to characterize electrospray 

performance is a well-characterized experiment that is currently in use at AFRL Kirtland 

[27, 28]. The experiment consists of a capillary emitter electrospray source, which is 

effectively the same geometry as the chemical thruster microtube, Figure 1a,[13] but with 

a voltage applied between the needle tip and an extractor grid, Figure 1b. In order to 

characterize the performance of the electrospray emission mode, knowledge of the beam 

current and mass flow rate is required. These measurements are accomplished using the 

angle-resolved method described by Chiu, et. al.[28]
 
and also conducted by Miller, 

et.al.[27] to study the capillary electrospray of the ionic liquid [Bmim][dca]. 

 

 

 

      a)      b) 

Figure 1. Multi-mode thruster operated in a) chemical microtube and b) electrospray 

emission modes. 
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2.1. APPARATUS 

 A schematic of the instrumentation to diagnose the electrospray emission in the 

near-field is shown in Figure 2. The electrospray source, as in Figure 1b, consists of a 

capillary and extractor plate. The capillary is 100 µm internal diameter, 5.0 cm long, and 

has a tapered tip. The capillary is fed from a propellant reservoir via a 100 µm internal 

diameter fused silica transport capillary 82.5 cm in length. The feed system is a pressure-

fed system similar to that used by Lozano[29]
 
and is shown in Figure 3. Notable 

differences include direct feed pressure monitoring via a pressure transducer and the fact 

the reservoir, after achieving nominal pressure, is isolated by closing both shut-off valves 

and operates in blow-down mode. Since the volume change of the propellant in the 

reservoir is negligible during normal test opertions (~nL/s flow rate from a ~10 mL 

reservoir), reservoir pressure, and thus flow rate, can safely be assumed to be constant 

during the experiment under steady flow conditions. The extractor plate consists of a 

metal plate with a 1.5 mm orifice to allow for passage of the electrospray beam.  

The electrospray source is attached to a rotation stage, which allows the beam to 

be rotated in order to capture species in the full width of the beam divergence. These 

measurements allow for computation of the thrust, specific impulse, and efficiency of the 

electrospray thruster. A Faraday cup and quartz crystal microbalance (QCM) measure the 

current and mass flow rate of the electrospray beam. Appatures of 0.8 mm are used on 

both targets located 18 mm downstream of the emission source, and the measurement 

interval is at minimum 2.5 degrees for all angle-resolved measurements described in this 

paper. 
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Figure 2. Electrospray experiment near-field diagnostics. [27, 28] 

 

 

 

 

Figure 3. Plumbing and instrumentation diagram of the electrospray apparatus.[27] 

 

 

 

 While the experiment itself is well characterized with various ionic liquids, there 

are notable differences between ionic liquids previously investigated with the setup and 

the ionic liquid propellants proposed in this study. The major difference is that previously 

only single ionic liquids have been used. The multi-mode propellants proposed here are 
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mixtures of two ionic liquids. Furthermore, the term mixture is actually a misnomer and 

these may in fact be more accurately referred to as double salt ionic liquids [26]. The 

reason is in the fundamental nature of ionic liquids, in that they are essentially dissociated 

pairs of cations and anions in solution. Therefore mixing two ionic liquids could result in 

not only pairs of the original constituents, but also pairs of the swapped ions. For 

example, a mixture of two ionic liquids [A]
+
[B]

-
 and [C]

+
[D]

-
 could consist of a mixture 

of [A]
+
[B]

-
, [C]

+
[D]

-
,
 
[A]

+
[D]

-
, [C]

+
[B]

-
 in some ratio. While trends in the literature 

predict that the physical properties for double salt ionic liquids in general follow typical 

mixing laws [26], this could fundamentally alter the species emitted in the electrospray 

beam, and thus have an effect on the electrospray thruster performance of the ionic liquid 

propellants.  

 

 

2.2. PROPELLANT SYNTHESIS 

 The propellant synthesis method for the binary mixture of [Emim][EtSO4]-HAN 

was developed in a previous study,[12] however it is repeated here making particular note 

of the considerations made to ensure successful electrospray operation. Pure 1-ethyl-3-

methylimidazolium ethyl sulfate, [Emim][EtSO4] (95% purity), and hydroxylammonium 

nitrate, HAN, (24% in water) were purchased from Sigma Aldrich. Pure crystalline HAN 

was obtained by removing water in high-vacuum (~10
-6 

torr) for ~8 h. Additionally, 

[Emim][EtSO4] was placed in high vacuum for ~8h to remove any volatile impurities. 

Crystalline HAN was then added to the [Emim][EtSO4] in a sealable container in the 

desired ratio; for this study the ratio is 59% HAN, 41% [Emim][EtSO4] by weight. This 

ratio was chosen mostly to avoid sooting and burn through in the chemical mode and is 

described more in the previous studies with this propellant.[11,12]  This mixture was 

allowed to settle overnight at which point solid HAN was no longer visible in the 

mixture. This process likely could be sped up by mechanically agitating the mixture to 

allow for faster dissolving. However, due to safety concerns involved with creating the 

potentially explosive monopropellant, this was avoided, and is not recommended. The 

propellant reservoir in the electrospray experiment described in this paper was kept under 

rough vacuum (< 100 mTorr) when not in operation to prevent water absorption.  
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3. RESULTS 

 

 

The following section presents results from the near field experiment which 

measures current and flow rate distribution as a function of angle of the electrospray 

beam in the region of ±60 degrees in reference to the center of the beam. These 

measurements will be used to calculate emitter performance in the next section. All 

measurements in this section are taken with an extraction voltage of 3400 V for both 

cation (VN =+900 V, VE =-2500 V) and anion (VN = -900 V, VE = +2500 V) emission. 

This was found to be the nominal extraction voltage through trial and error, providing a 

stable beam. 

 

 

3.1. FLOW RATE CALIBRATION-BUBBLE METHOD 

Flow rate is primarily calibrated using the bubble method, and flow rates in the 

remainder of this paper, except where noted, refer to the values determined through this 

method. For this method, a bubble is introduced to the transport capillary at its 

termination in the reservoir. Since the capillary is made of transparent material, the 

bubble movement can be tracked visually via the use of a magnifying glass. Flow rate as 

a function of reservoir pressure can then be determined by measuring the distance the 

bubble travels as a function of time, as measured by a stop watch. The total duration of 

each test was kept longer than ~15 sec to minimize error from a slow trigger finger. 

Results are shown in Figure 4. Additionally, the experimental results can be compared to 

analytical calculations given by the Hagan-Pouiseulle equation, Eq. (1), 
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where the length and diameter of the capillary and transport capillary are given in the 

previous section and the viscosity of the liquid propellant is 130 cP as found in a previous 

experiment.[13]
 
The flow rate range achieved by the feed system is similar to that 
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conducted for electrospray [Bmim][dca] in a capillary emitter.[27] However, the emitter 

diameter for the [Bmim][dca] experiments was half that of the current experiments. The 

flow rate similarity is due to the fact that the viscosity of the [Emim][EtSO4]-HAN 

propellant is roughly four times that of [Bmim][dca]. 

 

 

 

Figure 4. Flow rate as a function of reservoir pressure obtained via the bubble method. 

  

 

3.2. ANGLE-RESOLVED CURRENT MEASUREMENTS 

 Beam current measurements as a function of emitter angle to the Faraday cup are 

taken for both cation and anion emission at the aforementioned extraction conditions and 

for the range of flow rates illustrated in Figure 4. Total current is calculated by 

integrating the associated current density profile over a hemisphere, similar to the  

analysis for a Hall thruster plume conducted by Manzella and Sankovic[30] and the same 

analysis conducted by Miller, et. al.[27]  Additionally, total emission current on the 

needle and loss to the extractor is monitored by measuring the potential across a 4.93 MΩ 

resistor on the associated voltage line for comparison to and verification of the integrated 

results. 
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 Current density profiles for various flow rates are shown for the electrospray 

emission in Figure 5. Figure 5a shows the cation emission profile. The highest current 

densities are obtained near the centerline for each flow rate and decrease as flow rate is 

increased, peaking at 3.1 nA/mm
2
 for 0.19 nL/s and 2.4 nA/mm

2
 for 3.06 nL/s. The beam 

width grows as flow rate is increased, from a 70 degrees at 0.19 nL/s to nearly 90 degrees 

at 3.09 nL/s, and is roughly 5 degrees asymmetric toward the positive angles. Profiles for 

anion emission are similar, and are shown in Figure 5b.  Peak current is slightly higher 

for the anion emission compared to the cation emission, with the current density reaching 

3.3 nA/mm
2 

for 0.19 nL/s flow rate and decreasing to 2.8 nA/mm
2
 for 3.06 nL/s flow rate. 

The beam is slightly narrower compared to the cation case. The beam has a width of 60 

degrees for 0.19 nL/s flow rate and increases to 75 degrees for 3.06 nL/s flow rate. 

 

 

 

 

a) 
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b) 

Figure 5. Current density profiles for a) cation and b) anion emission of the electrospray 

of [Emim][EtSO4]-HAN propellant. 

 

 

 

 Total emission current obtained by integrating the beam current profiles, along 

with the measurements from the 4.93 MΩ resistor are shown in Figure 6. The integrated 

current is the total current obtained by integrating the current profiles in Figure 5 via the 

method described previously. The emitter current is measured on the needle and is a 

measure of the overall total current of the electrospray emission. The extractor current is 

the current lost to the extractor. Figure 6a shows the results from cation emission. At the 

lowest flow rate conducted in the experiment, 0.19 nL/s, the total current is 680 nA. Both 

the integrated and emitter current agree at low flow rates. However, due to loss to the 

extractor at higher flow rates, the current measured via integration of the Faraday cup 

measurements does not increase markedly although the emitter current does. At the 

highest flow rate at which experiments were conducted, 3.1 nL/s, the loss to the extractor 

represents nearly 2/3 of the total emission current. Current measured for anion emission 

is shown in Figure 6b. The trends in total current are similar to the cation case; however, 

the current at each flow rate is roughly 70% that of the cation case. The current integrated 

from the angle-resolved profiles added to the current measured on the extractor agrees 

well with the emitter current, within 15% for all flow rate cases. 
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a) 

 

 

 

b) 

Figure 6. Total emission current as a function of propellant flow rate for a) cation and b) 

anion emission.  
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3.3. ANGLE-RESOLVED MASS FLOW MEASUREMENTS 

 Mass flux as a function of emitter angle is measured in a similar manner to the 

current profiles with the QCM, but for flow rates from 0.19 nL/s to 1.45 nL/s. Higher 

flow rates are omitted since the nature of the QCM prevents reliable measurements at 

higher flow rates. The situation is described in more detail in the work by Miller, et. 

al.,[27] but is essentially due to violation of the thin film assumption resulting from 

accumulation of the ionic liquid on the QCM, which does not boil off due to the 

negligible vapor pressure of the ionic liquid. Raw output of the QCM is converted to 

mass flux by using the measured density of the ionic liquid propellant (1.42 g/cm
3
)[12, 

13] and includes small aperture and area ratio corrections.[31] 

 The mass flux profile for both cation and anion emission as a function of angle is 

shown in Figure 7. Cation emission is shown in Figure 7a. Peak mass flux, as with 

current density, occurs at or near the centerline. The peak mass flux for the 0.19 nL/s case 

is 1.3 ng/s-mm
2
 and for the 1.45 nL/s case is 4.5 ng/s-mm

2
. The first instance of non-zero 

mass flux is seen at -25 degrees emitter angle for all flow rates. This is somewhat notable 

as non-zero current is seen at -30 degrees, as presented in Figure 5. The same trends are 

seen for anion emission, as shown in Figure 7b, and in fact the profiles are virtually 

identical numerically by visual inspection. 
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       a) 

 

 

 

  b)  

Figure 7. Mass flux profiles for emission of a) cations and b) anions. 
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 The mass flux profiles are integrated over a hemisphere in the same manner as 

described in the total current integration. Results of the integration are shown in Table 1 

and compared to the nominal mass flow rate measured by the bubble method. As with the 

current measurements, the integrated mass flow rate agrees with the nominal mass flow 

rate at low flow rates. However, this quickly diverges as flow rate is increased. At the 

highest flow rate, 1.45 nL/s, integration of measurements taken via the QCM results in a 

roughly 50% reduced flow rate value. Also notable is that, except for the 0.22 nL/s case, 

the mass flow rate obtained via integration of the QCM data is smaller than that of the 

mass flow rate measured by the bubble method. 

 

 

Table 1. Mass flow rate integrated from QCM data compared to bubble method. 

Flow Rate 

(nL/s) 

Integrated Mass Flow 

(ng/s) 

Nominal Mass 

Flow (ng/s) 

% 

Difference 

Cation Emission 

0.19 268 269 0.51 

0.22 334 312 -7.27 

0.65 720 922 21.89 

0.91 890 1291 31.08 

1.45 1012 2057 50.82 

Anion Emission 

0.19 265 269 1.39 

0.22 394 312 26.34 

0.65 679 922 26.33 

0.91 967 1291 25.10 

1.45 1065 2057 48.24 
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4. DISCUSSION 

 

 

 The near-field measurements described in the previous section provide 

information on the current and mass distribution of the electrospray emission of the 

double-salt ionic liquid propellant. Integration of the results from these measurements can 

be used to predict the performance characteristics of the ionic liquid propellant in an 

electrospray thruster. While the experiments conducted in this study do not represent the 

entirety of the possible performance envelope of the propellant, results can be 

extrapolated to determine the likely bounds of performance for this propellant. 

 

 

4.1. CURRENT AND MASS DISTRIBUTION 

 The current and mass distributions of the electrospray of the [Emim][[EtSO4]-

HAN double-salt ionic liquid propellant follow trends seen in the literature.[27] Namely, 

the peak current falls as flow rate is increased and the profile becomes wider, resulting in 

a higher total integrated current. As noted in the previous section, the QCM data shows a 

non-zero flow rate at roughly 5 degrees closer to centerline than does the current. This 

supports the conclusion that much of the species comprising the outer portions of the 

beam are ions, whereas the center contains higher mass droplets. The mass flow of the 

ions is so small that it would not read a significant amount on the QCM. 

 Integrating the current data from the Faraday cup measurements and comparing to 

the current obtained from measuring the voltage across a resistor on the emitter and 

extractor lines shows that losses to the extractor become large as flow rate is increased. 

As mentioned, at the highest flow rates conducted in this study the loss is as much as 

66% of the total emission current. This can likely be mitigated with an extractor designed 

and optimized for this propellant specifically; however, as will be shown in the next sub-

section, these flow rates do not represent conditions in which a thruster would likely be 

operated. Adding the current obtained from the extractor resistor to the integrated current 

shows good agreement with the current obtained from the emitter resistor measurements, 

with most values falling within roughly 15% of each other. Though not shown in Figure 
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6, the measurement error for the resistor currents was also roughly 15%. This represented 

the average of the highest and lowest values observed on a digital readout, since these 

values were not instantaneously averaged via computer software but rather recorded by 

hand. Thus, the error also likely represents higher than one standard deviation. 

 As in the study of capillary electrospray emission of [Bmim][dca], [27] total mass 

flow rate calculated by integration of QCM data results agrees well with that obtained by 

the bubble method at low flow rates, but diverges as flow rate is increased. Curiously, in 

this study the mass flow calculated by QCM integration is lower than that of the bubble 

method, whereas in the [Bmim][dca] study it was higher. During the unfortunate situation 

in which a large amount of liquid was unintentionally deposited on the outer surface of 

the capillary, the propellant was actually observed to boil in the high vacuum conditions 

(~10
-6 

torr). This is likely the HAN component of the propellant. As a result, liquid 

deposited on the QCM in any significant amount would contribute a negative component 

to the mass flow rate during testing operations and would explain why the integrated 

mass flow rate is lower than the mass flow obtained by the bubble method. 

 

 

4.2. PERFORMANCE 

 The primary goal of this study is to predict thruster performance of the 

[Emim][EtSO4]-HAN propellant operating in the electrospray mode of the proposed 

multi-mode system. The current and mass flow measurments obtained experimentally are 

directly used to compute performance. Thrust is calculated by Eq. (2),  

 

𝐹 = √2𝑉𝑎𝑐𝑐𝑚𝐼̇                                                         (2) 

 

where the current used is the integrated current profile plus extractor current shown in 

Figure 6. Although the extractor current does not contribute to actual thrust in this 

experiment, it still represents thrust that could be achieved through optimized extractor 

design. The specific impulse is then, Eq. (3), 
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𝐼𝑠𝑝 =
𝐹

�̇�𝑔0
                                                            (3) 

 

Current and calculated thrust values are shown in Table 2 for both cation and anion 

emission separately. Thrust for both cases is on the order of μN for this single emitter 

case. The thrust at the lowest flow rate is ~1 μN and increases to 9.71 μN and 7.71 μN for 

the cation and anion cases, respectively, at the highest tested flow rate of 3.06 nL/s. 

Thrust is roughly 17% lower for anion emission compared to cation emission, a direct 

result of the lower current generated by the anion beam. 

 

 

Table 2. Current, thrust, and mass to charge ratio for cation and anion emission. 

Flow Rate 

(nL/s) 

Mass Flow 

(ng/s) 

Current 

(nA) 

Thrust 

(μN) 

m/q 

(amu) 

Cation Emission 

0.19 269 754 1.18 34508 

0.22 312 811 1.31 37137 

0.65 922 1101 2.63 80815 

0.91 1291 1439 3.56 86579 

1.45 2057 1807 5.03 109860 

2.35 3334 2733 7.87 117722 

3.06 4342 3194 9.71 131170 

Anion Emission 

0.19 269 551 1.01 47170 

0.22 312 547 1.08 55022 

0.65 922 640 2.00 139028 

0.91 1291 891 2.80 139769 

1.45 2057 1110 3.94 178742 

2.35 3334 1562 5.95 206000 

3.06 4342 2011 7.71 208281 
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 An actual thruster would likely not operate in solely cation or anion emission 

mode, but rather in AC mode to prevent charge build up and eventual fouling of the 

emitter. Thus, in order to gauge performance, both the cation and anion emission must be 

taken into account. Table 3 shows the average thrust of the cation and anion emission at 

the tested flow rates, along with the beam power and specific impulse. Power ranges from 

2.22 mW at the 0.19 nL/s flow rate to 8.85 mW for the 3.06 nL/s flow rate. Thrust per 

power (in μN/mW) , however, at low flow rate is roughly 0.5 and improves to roughly 

1.0 at high flow rate. Specific impulse decreases as flow rate increases, with a calculated 

value of 412.37 seconds at 0.19 nL/s flow rate and 204.47 seconds at 3.06 nL/s. These 

values are higher than the specific impulse predicted for the chemical propulsion mode 

(~180 seconds).[13]
 

 

 

Table 3. Thrust, power, and specific impulse for electrospray emission. 

Flow Rate 

(nL/s) 

Mass Flow 

(ng/s) 

Average Thrust 

(μN) 

Power 

(mW) 

Isp 

(sec) 

0.19 269 1.09 2.22 412 

0.22 312 1.20 2.31 390 

0.65 922 2.32 2.96 255 

0.91 1291 3.18 3.96 250 

1.45 2057 4.49 4.96 222 

2.35 3334 6.91 7.30 211 

3.06 4342 8.71 8.85 204 

 

 

 

 Although the highest specific impulse measured in this study is 412 seconds, this 

number could likely be improved through optimized thruster and feed system design. In 

order to gauge what might be possible, scaling laws can be used to extrapolate the data 

garnered in this study to possible specific impulse and thrust values. Current in the mixed 
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ion-droplet regime typically scales with flow rate as a power function according to Eq. 

(4), 

 

𝐼(𝑄) = 𝑓(𝜀) ∗ [
𝛾𝐾𝑄

𝜀
]
0.5

                                              (4) 

 

Applying a curve fit to the beam current, shown in Figure 6, yields an exponent of 

approximately 0.5 (0.5092 for cation emission and 0.5019 for anion emission.), with 

coefficients of 1629.7 and 939.41 for cation and anion emission, respectively. The 

average of these two values, along with Eqs. (2) and (3) is used to calculate the thrust and 

specific impulse as a function of flow rate for a range of flows from 0.001 nL/s to 1 nL/s, 

shown in Figure 8. Achieving a lower flow rate results in a large increase in specific 

impulse. For the range in the figure, a specific impulse of 1000 seconds is possible if the 

flow rate could be reduced to 0.001 nL/s. For stable electrospray emission, the flow rate 

cannot be arbitrarily small and can be predicted through knowledge of the physical 

properties of the ionic liquid, Eq. (5), 

 

𝑄𝑚𝑖𝑛 =
𝛾𝜀𝜀0

𝜌𝐾
                                                          (5) 

 

Although the surface tension, electrical conductivity, and dielectric constant of this 

propellant are not currently known, the value calculated for minimum flow of 

[Bmim][dca] was 0.09 pL/sec,[27] much lower than the 1 pL/sec shown in Figure 8. 

Thus, it is likely that performance is not limited by electrospray physics, but rather feed 

system performance in relation to the thruster geometry. Improvements in the feed 

system and optimization of emitter geometry for this propellant are likely to result in 

much improved performance in terms of specific impulse. 
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Figure 8. Thrust and specific impulse of IL propellant in a capillary emitter extrapolated 

from experimental data. 

 

 

5. CONCLUSIONS 

 

 

 The double-salt, energetic ionic liquid propellant [Emim][EtSO4]-HAN exhibits 

stable electrospray emission of both cations and anions in a capillary emitter of 100 μm 

inner diameter with a nominal extraction voltage of 3400 V. Near-field measurements of 

current and mass flow rate distribution exhibit trends similar to those of other propellants 

in the literature. The peak current, in the center of the beam, decreases with increase in 

mass flow rate, however the beam becomes wider and thus total integrated current 

increases. Current loss to the extractor increases with increasing flow rate, but could be 

mitigated with an extractor design optimized specifically for this propellant. 

 The lowest flow rate achieved in this experiment was 0.19 nL/s. This corresponds 

to the highest specific impulse achieved in this experiment, 412.37 seconds. The thrust at 

this specific impulse was calculated to be 1.09 μN, and higher thrust is possible with 

higher flow rates. At the highest flow rate tested, the thrust was 8.71 μN, which also 

corresponds to the highest thrust per unit power achieved in these experiments. 

Extrapolation of the data obtained from the electrospray emission currents shows that 



130 

 

higher performance, in terms of specific impulse is possible. For example, if 1 pL/s flow 

rate could be achieved, the specific impulse would be 1000 seconds. Examination of the 

scaling laws for minimum flow rate reveals that the electrospray physics likely do not 

prohibit this performance from being achieved. It is therefore likely that improvements to 

the feed system and optimization of the emitter hardware in reference to this propellant 

specifically can realize higher performance than achieved in these experiments. 
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SECTION 

 

2. CONCEPTUAL DESIGN OF A MULTI-MODE INTEGRATED 

MONOPROPELLANT ELECTROSPRAY PROPULSION SYSTEM 

 

 

2.1. INTRODUCTION 

 Results from Papers I-IV of this thesis are used to develop, conceptually, a design 

for a fully integrated multi-mode propulsion system. This section is not intended to be a 

fully developed, optimized, and complete design, since there are many possible options, 

particularly for the thruster architecture and feed system. The intention is then to use the 

methods and insights developed in the previous sections of this thesis to illustrate the 

multi-mode propulsion system design process and the considerations that should be made 

in approaching design of these systems. 

 The propulsive modes chosen for this study are chemical monopropellant and 

electrospray thrusters. Specifically, as described in Paper III and IV introduction sections, 

the chemical mode will be a microtube thruster, and the electric mode will be a capillary 

electrospray emitter. As described, since these typically have inner diameters on the order 

of tenths of a millimeter, there is no reason these could not be combined into a single 

thruster head. Thus, the propulsion system described herein will be a system utilizing a 

single propellant, the blend of [Emim][EtSO4] and HAN developed in Paper I and tested 

in Papers III and IV, as well as a single thruster for both modes. Thus, the system is a 

fully integrated propulsion system, utilizing all common components. 

 

 

2.2. FEED SYSTEM ARCHITECHTURE 

 The largest driver for multi-mode propulsion system concepts has been the use of 

a common propellant. As mentioned, using a common propellant provides the highest 

level of mission flexibility. However, particularly for micropropulsion systems it is also 

desirable to limit the inert mass fraction of the propulsion system as much as possible. 

This particular system will utilize common thruster geometry for both modes. The feed 
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system, then, will have to accommodate the required flow rates for each mode. Since 

these are high-thrust and low-thrust modes, this requires flow modulation over roughly 

three orders of magnitude. However, since this is not continuous, provisions are made to 

effectively switch between either mode. 

 A schematic of the multi-mode propulsion system concept is shown in Fig. 2.1. 

The propulsion system consists of a single propellant tank, which is pressurized by an 

inert gas source, nitrogen in the figure but could also be helium. In order to accommodate 

both propulsive modes, pressurant gas is fed through either flow restriction ORCHEM or 

flow restriction ORELEC, which will be sized to meet flow rate requirements for the 

chemical mode and electric mode, respectively. When switching between chemical and 

electric modes, it will be necessary to vent the propulsion tank, since the flow rate 

required for chemical propulsion is much higher. This is accomplished via a bypass line, 

activated by valve SV02. Careful maneuver design could even include this as a cold-gas 

thruster mode, thus making the system a triple-mode propulsion system. For purposes of 

this study, however, this mode is not included in analysis. Overall, due to the need for 

flow modulation between the two modes, one might say that this system is more complex 

and would therefore have a higher mass than a traditional system. However, a traditional 

monopropellant system is a hydrazine monopropellant system.[20] In these systems, it is 

necessary to have three valve seats between tank and thruster and two in the propellant 

loading lines. HAN-based systems only require two and one seat for these systems, 

respectively, due to the fact that HAN does not pose a respiratory hazard. [21] Because of 

this fact, this propulsion system actually has less valves than a traditional monopropellant 

system, but perhaps more line length depending on packaging requirements. For purposes 

of conceptual design then the mass of lines and valves is assumed to be 50% of the 

thruster mass, which is the mass for a traditional monopropellant system as described in 

Paper II.   
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Figure 2.1. Schematic of the Multi-Mode Integrated Monopropellant/Electrospray 

Propulsion System. 

 

 

2.3. THRUSTER MODELING 

 To develop propulsion feed system requirements and then determine propulsion 

system mission capabilities, it is necessary to develop and use performance models for 

each mode of the thruster, with consideration that the same geometry will be used for 

both monopropellant and electrospray modes. For the electric propulsion mode, 

performance for the [Emim][EtSO4] propellant was obtained from experimental results, 

as described in Paper IV. The thrust and specific impulse for the electric mode are given 

by Eqs. (1)-(3) 

 

𝐹 = √2𝑉𝑎𝑐𝑐𝑚𝐼̇                                                                  (1) 

 

𝐼𝑠𝑝 =
𝐹

�̇�𝑔0
                                                                      (2)     
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𝐼(𝑄) = 1284.55 ∗ [𝑄]0.5                                                       (3)  

 

Eq. (3) was obtained using a specific emitter and extractor plate geometry. Although it 

may be possible to alter the performance somewhat by modifying the emitter and 

extractor geometry, this has not been investigated in detail. However, typically, for 

droplet-ion mixed regime emission, the emission current is mainly a function of the ionic 

liquid physical properties and the volumetric flow rate. [22] It is therefore assumed that 

the performance calculated using Eq. (3) will be the same provided the geometry does not 

change significantly from that of the experiment which was a 100 µm inner diameter 

capillary. 

 The chemical mode chosen for this propulsion system is the catalytic microtube 

primarily because it is fundamentally the same geometry as a capillary electrospray 

emitter. The microtube can be modeled as a plug flow reactor [23], and the basic diagram 

is shown in Fig. 2.2. 

 

 

 

 

 

 

Applying the mass balance to the PFR model gives Eq. (4), 

 

0

A
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dV F


                                                                  (4) 

 

Figure 2.2. Model of plug flow reactor with heat effects. 
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where the reaction rate for the monopropellant decomposition as found in Section IV is 

given by Eq. (5), 

 

10 10771
2.14 10 expA Ar x C

T

 
   

 
                                             (5) 

 

Here, platinum is chosen because it allows the lowest energy input to decompose the 

monopropellant, which is desired for spacecraft applications. Applying the energy 

balance to Figure 2 assuming no work interaction, gives the following, Eq. (6), 

 

0

( )( )

( )

A Rx

A PA P

Q r HdT

dV F C C X
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


                                                    (6) 

 

where the heat of reaction is -920.1 kJ/mol and the molar flow rate is related to the mass 

flow rate by Eq. (7), 

 

0
A

A

A

m
F

MW
                                                                 (7) 

 

 The preceding paragraph describes the power and reactor volume required to 

initiate decomposition of the monopropellant. However, chemical performance is 

determined from the results of the decomposition. The specific impulse is calculated from 

the Chemical Equilibrium with Applications (CEA) computer program assuming 

equilibrium composition as was done in Section II.  Since there is no nozzle, the exhaust 

gases will be frictionally choked in the microtube and thus the specific impulse is 

calculated at the throat area and is 170 seconds. The thrust as a function of flow rate can 

then be calculated, Eq. (8) 

 

0spF mI g                                                                 (8) 
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and the thrust as a function of volumetric flow rate for the monopropellant is shown in 

Fig. 2.3. 

 

 

 

Figure 2.3. Thrust as a Function of Flow Rate for the Chemical Microtube Propulsion 

Mode. 

 

 

 For the chemical microtube, the flow rate cannot be arbitrarily selected. It is 

limited by the flashback behavior of the propellant. HAN-based propellant burning 

behavior has been investigated previously, and in general it has been found to behave 

similarly to solid propellants in that a distinct linear burning rate as a function of pressure 

can be determined. [24, 25] Since after ignition occurs, the reaction front will propagate 

at this rate back into the chamber, it is necessary to maintain sufficient flow rate to keep 

the reaction front in the microtube. Thus, the minimum flow rate necessary is governed 

by the burn rate of the monopropellant.  The linear burning rate for this monopropellant 

was not determined as part of this study, however, for other HAN-based monopropellant 

formulations is typically on the order of ~1-2 mm/s at 300 psi pressure. [25] Since this 

includes a variety of different fuels combined with HAN, a value of 2 mm/s is selected as 

sufficient for conceptual design. The minimum mass flow rate as a function of tube inner 
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diameter is shown in Fig. 2.4. The mass flow rate required grows as the square root of 

diameter since the burn rate is linear. It is desirable, then, from a system perspective to 

use lower diameter tubes since as was found in Paper II multi-mode system performance 

is not significantly dependent on chemical mode thrust and limiting inert mass of the 

chemical propulsion system is more important. For this study, then, a microtube inner 

diameter of 0.1 mm is chosen. This is the same diameter as the capillary in the 

electrospray experiment and corresponds to a chemical thrust of 0.037 mN per emitter, at 

minimum.  

 

 

 

Figure 2.4. Minimum Mass Flow Rate Required as a Function of Microtube Inner 

Diameter.                                                                    

 

 

 With the minimum mass flow rate information and the plug flow reactor model 

described previously, the required reactor length as a function of input power can be 

determined. This is shown in Fig. 2.5. The figure depicts the expected trends, namely that 

the required microtube length to initiate decomposition is reduced either by reducing 

mass flow rate or increasing input power. Only contours that would yield 100 mm, or the 

length of a 1U cubesat dimension are shown. However, there is no reason longer 
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microtubes could not be tolerated, particularly if the tubes can be bent and packaged 

more efficiently.              

 

 

 

Figure 2.5. Contours of Reactor Length (mm) Required to Initiate Decomposition of 

Monopropellant. 

 

 

 Since increased power input reduces microtube length and thus thruster mass, but 

requires more mass in terms of batteries, there exists an optimum microtube length at a 

given mass flow rate. Choosing a tube wall thickness of 0.15 mm for the platinum tube 

material gives a mass per length of 0.00125 g/mm, and from Paper II the mass of 

batteries is 0.15 W-hr/g. Assuming the batteries need to operate for roughly 15 minutes to 

operate the thruster, half that assumed in Paper II, gives a mass of 1.67 g/W. This is a 

reasonable assumption given that the microtube is heated directly rather than providing 

heat to a large catalyst bed via a thermal blanket. Additionally, a mass flow rate of 0.08 

mg/s is selected somewhat arbitrarily. Thus, this design is likely not optimum, but does 

provide a baseline for methodology development and design trade insights. The mass of 

the microtube plus battery requirements as a function of microtube length is shown in 
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Fig. 2.6. The figure shows that for these conditions the optimum mass is reached at 

around 50 mm. This length is chosen for the thruster geometry. Using the microtube plug 

flow reactor model results of Fig. 2.5 and thrust calculations of Fig. 2.3, this provides a 

thrust of 0.13 mN per emitter at 2.3 mW input power. 

 

 

 

Figure 2.6. Mass of Microtube Plus Battery Power as a Function of Length. 

 

 

 Now that the microtube geometry has been chosen, and its performance is known, 

the electrospray performance can be computed. Results from Paper II showed that it is 

desirable to choose an electric propulsion technology that is close to the optimum specific 

impulse at a given chemical mode specific impulse. For the 170 second chemical mode 

specific impulse, the optimum electric mode specific impulse is 780 seconds. Although 

this specific impulse was higher than the 412 second specific impulse attained in the 

electrospray experiments of Paper IV, it can be achieved with a slight reduction in flow 

rate; specifically a flow rate of 0.003 nL/sec can achieve this specific impulse with a 

thrust of 0.03 µN/emitter.  
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 The final consideration is the number of emitters to include in the thruster design. 

Since multi-mode propulsion system performance is highly dependent on electric thrust, 

scaling the thrust in the electric mode should be a prime consideration. Achieving 0.3 mN 

of thrust, in the same range as the systems investigated in Paper II, requires 10000 

emitters. This requires 6 W of power, assuming 50% powertrain efficiency. The chemical 

mode thrust with this number of emitters is 1.3 N and the required power input is 23 W. 

The thruster mass is 625 grams. 

 

 

2.4. PROPULSION SYSTEM CAPABILITIES 

 As mentioned, the main motivation for using the combined thruster geometry is 

reduction in propulsion system inert mass. Table 2.1 shows the propulsion system dry 

mass, excluding tankage for the combined propulsion system versus a separate system 

consisting of state-of-the-art thrusters in chemical and electric modes. These masses were 

computed using the same methodologies as developed in Paper II, but with the relevant 

design considerations from this section. It is seen that the total effect of using a combined 

system, which includes reducing thruster mass by half, results in a total system mass 

reduction of nearly half since the lines and valves and associated structural mounts mass 

penalty is also reduced due to the reduction in thruster mass. 
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Table 2.1. System Mass Comparison for Integrated System Versus Separate System. 

System Designation Separate Integrated 

Chemical Thruster Mass (g) 500 625 

Electric Thruster Mass (g) 900 0 

PPU Mass (g) 83 70 

Solar Array Mass (g) 139 112 

Battery Mass (g) 100 110 

Lines and Valves (g) 700 313 

Structural Mounts (g) 242 123 

Total Mass (g) 2664 1353 

 

 

 The mission design space for a 6U cubesat and 2 kg payload utilizing the 

integrated thruster described in this section is shown in Fig. 2.7. The integrated thruster 

designed in this section is compared to the monopropellant/electrospray system described 

in Paper II, which uses the same propellant, but does not utilize a common thruster. The 

integrated propulsion system outperforms the common propellant only system, having 

more delta-V capability at every burn duration up to its maximum of 390 days. For an all-

chemical burn, the integrated system attains 21% higher delta-V and for an all-electric 

burn, it attains 41% higher delta-V than the compared to the common propellant system 

at the same burn duration. 
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Figure 2.7. Mission Design Space for Fully Integrated System versus Common Propellant 

Only System. 
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