
Scholars' Mine Scholars' Mine 

Doctoral Dissertations Student Theses and Dissertations 

Summer 2016 

Repetitive process control of additive manufacturing with Repetitive process control of additive manufacturing with 

application to laser metal deposition application to laser metal deposition 

Patrick M. Sammons 

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations 

 Part of the Mechanical Engineering Commons 

Department: Mechanical and Aerospace Engineering Department: Mechanical and Aerospace Engineering 

Recommended Citation Recommended Citation 
Sammons, Patrick M., "Repetitive process control of additive manufacturing with application to laser 
metal deposition" (2016). Doctoral Dissertations. 2766. 
https://scholarsmine.mst.edu/doctoral_dissertations/2766 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2766&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2766&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2766?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2766&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


 

REPETITIVE PROCESS CONTROL OF ADDITIVE MANUFACTURING WITH 

APPLICATION TO LASER METAL DEPOSITION 

 

by 

 

PATRICK MICHAEL SAMMONS 

 

A DISSERTATION 

 

Presented to the Faculty of the Graduate School of the  

 

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY 

 

In Partial Fulfillment of the Requirements for the Degree 

 

DOCTOR OF PHILOSOPHY 

in 

MECHANICAL ENGINEERING 

2016 

Approved 

Douglas A. Bristow, Advisor 

Robert G. Landers, Advisor 

S.N. Balakrishnan 

Frank Liou 

Jagannathan Sarangapani 

  



ii 

 

  



iii 

 

ABSTRACT 

Additive Manufacturing (AM) is a set of manufacturing processes which has 

promise in the production of complex, functional structures that cannot be fabricated with 

conventional manufacturing and the repair of high-value parts.  However, a significant 

challenge to the adoption of additive manufacturing processes to these applications is 

proper process control.  In order to enable closed-loop process control compact models 

suitable for control design and for describing the layer-by-layer material addition process 

are needed.  This dissertation proposes a two-dimensional modeling and control 

framework, with an application to a specific metal-based AM process, whereby the 

deposition of the current layer is affected by both in-layer and layer-to-layer dynamics, 

both of which are driven by the state of the previous layer.  The proposed modeling 

framework can be used to create two-dimensional dynamic models for the analysis of 

layer-to-layer stability and as a foundation for the design of layer-to-layer controllers for 

AM processes.  In order to analyze the stability of this class of systems, linear repetitive 

process results are extended enabling the treatment of the process model as a two-

dimensional analog of a discrete time system.  For process control, the closed-loop 

repetitive process is again treated as a two-dimensional analog of a discrete time system 

for which controllers are designed.  The proposed methodologies are applied to a metal-

based AM process, Laser Metal Deposition (LMD), which is known to exhibit layer-to-

layer unstable behavior and is also of significant interest to high-value manufacturing 

industries. 
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1. INTRODUCTION 

Additive Manufacturing (AM) processes are increasingly becoming an attractive 

option for industry to build monolithic, complex parts with designed morphologies and 

material properties.  While there is significant promise for AM processes, they currently 

lack the enabling technologies that would allow them to become viable production-level 

alternatives to conventional manufacturing processes.  This section serves to introduce 

AM, its potential applications and current research problems, and a brief description of 

the class of systems to which AM processes belong; repetitive processes. 

 

1.1. ADDITIVE MANUFACTURING 

Additive Manufacturing is a growing class of manufacturing processes in which 

parts are fabricated by adding material in a layer-by-layer fashion.  While the underlying 

governing physics vary significantly from process to process [Huang 2014], most AM 

processes share a common part fabrication procedure.  Within each layer, a material-

accretion source is traced along a pre-defined toolpath, which is generated directly from a 

CAD model [Pandey 2003].  At each position along the toolpath, process inputs are 

commanded in an attempt to produce the desired layer morphology or material properties.  

At the end of the toolpath, the process is indexed to the next layer, and another layer of 

material is accreted on top of the previous layer.  This repeated addition of material 

creates layer-to-layer dynamics, as the formation of the current layer is now affected by 

both the in-layer process dynamics and the states of the previous layer, e.g. its 

morphology.  This fabrication paradigm is in contrast to what is typically termed 
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conventional or subtractive manufacturing where a part is made by removing material 

from bulk raw material.  A schematic of the AM process flow is shown in Figure 1.1. 

 

 

 

Figure 1.1.  Schematic of the additive manufacturing process flow. 

 

 

AM processes are attracting interest across several industries for production use 

for several reasons.  First, AM processes are generally capable of a wider range of 

geometries than subtractive manufacturing with less tooling, including internal structures 

and overhang geometries, as a result of the layer by layer fabrication paradigm.  Because 

of this property, the cost of geometric complexity in the design stage of parts is extremely 

low as compared to conventional manufacturing processes.  Secondly, because AM 

processes typically take material from one state, though an amorphous state, to a final 

solid state through an energy exchange process, it is possible to obtain a variety of 

material properties within a given part.  Finally, because the virtually zero tooling 

requirements and the low design costs, AM processes are well adapted to creating small 

volume or one-off parts.  This is a particularly attractive feature in high-value industries 
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such as aerospace and medical implants.  Despite these advantages however, AM 

processes have yet achieved their full potential. 

While some commercially available processes incorporate in-layer process 

sensing and feedback control [Optomec 2015], layer-to-layer fabrication is typically not 

regulated systematically and process control is largely carried out using operator 

knowledge or process maps in an ad hoc manner [Raghunath 2007, Dwivedi, 2005, Han 

2003, Vasinonta 2007, Zhou, 2012, Limaye 2007].  Fabricating parts in this uncontrolled, 

open-loop manner can lead to dimensional instability, e.g. the height rippling 

phenomenon seen in the structure in in Figure 1.2 fabricated using constant process 

parameters in a Laser Metal Deposition (LMD) process [Sammons 2013, Ruan 2010].  

The ripple, highlighted by the added white lines in Figure 1.2, increases in magnitude as 

it propagates from one layer to the next.  Although for certain processes, such as LMD 

[e.g., Fathi et al., 2008; Tang and Landers, 2010, Tang and Landers, 2011, Duomanidis, 

2000, Song 2012], Selective Laser Sintering (SLS) [Craeghs 2010], and Electron Beam 

Melting (EBM) [Mireles 2015, Gockel 2014], some work has been dedicated to closed-

loop process control, process control for metal AM in general has received relatively little 

attention, creating a major obstacle to the widespread adoption of LMD [NIST 2013, UT, 

2009].  Therefore, process models that describe, and control methods that incorporate, 

both the in-layer and layer-to-layer fabrication phenomena are needed. 
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Figure 1.2.  Structure fabricated with constant process parameters (Laser Power, 600 W; 

Scan Speed, 2.54 mm/s; Powder Flow Rate, 3.73 g/min) in a LMD process. White lines 

are drawn to highlight individual layers. 

 

 

1.2. LASER METAL DEPOSITION 

Metal AM processes, such as LMD [Mazumder 1997, Mazumder 2000, Atwood 

1993], have received considerable attention for their ability to create serviceable parts 

with properties comparable to annealed wrought or forged material [Mazumder 1997, 

Baufelt 2009, Paul 2007].  In the LMD process, also known as Direct Metal Deposition 

(DMD) or Laser Engineered Net Shaping (LENS), powdered metal is delivered by a 

carrier gas through a cladding head or nozzle into a laser beam in order to form a molten 

metal bead on a substrate.  The substrate is mounted on a motion stage which is 

controlled via a toolpath generation software to trace a pre-defined tool path.  In this way, 

functional, complex metal parts are fabricated.  The process can be used in the repair of 

high-value parts, fabricating one-off metal components, and manufacturing material-

graded structures.  A schematic of the LMD process is shown in Figure 1.3. 
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Figure 1.3.  Schematic of a Laser Metal Deposition system. 

 

 

Dynamic LMD process models largely fall into two distinct categories: single 

layer and multi-layer.  While many of these studies involve high order finite element 

models, e.g., [Peyre 2008], which are generally too complex for control synthesis or 

computationally intensive for real-time implementation, other work investigates lumped 

parameter models for single layer beads deposited on a substrate [e.g.,Duomanidis 2001, 

Pinkerton 2004, Munjuluri 2001, Fathi 2007, Boddu 2001].  Some investigators have 

attempted to capture the multi-layer nature of the LMD process.  However, extensions of 

these lumped parameter models to multiple layers is challenging because it is difficult to 

predict the melt pool thermal boundary conditions for increasing numbers of layers and 

complex geometries [Sammons 2013].  Despite their complexity, these model in general 

provide a much more detailed description of the entire operating space of LMD.   

While model accuracy over a large operating space is advantageous, typical LMD 

operation is conducted over an extremely small range of the operating space.  Because of 
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this, trying to capture the behavior of the process over the entire operating space is an 

unnecessary task.  An alternative modeling approach is to describe the important in-layer 

material accretion phenomena describing and the layer-to-layer dynamics, while 

remaining suitable for the design and implementation of process controllers, around a 

pre-defined operating point.  The proposed model has a two-dimensional Hammerstein-

Weiner structure where inputs are cascaded through a linear layer-to-layer dynamic 

operator, then through a static nonlinearity, and finally through a linear in-layer dynamic 

operator.  This model structure is typically denoted Linear-Nonlinear-Linear (LNL) for 

one-dimensional systems, although here it is extended to a class of two-dimensional 

repetitive processes.  A system identification framework for the AM repetitive process 

description, demonstrated through an application to the LMD process, is utilized to 

completely characterize the dynamic process. 

For Laser Metal Deposition, current process control methods typically only 

consider dynamics describing how the process evolves within a layer, termed in-layer 

dynamics, in the control design.  However, because LMD is a two-dimensional dynamic 

process, neglecting the dynamics which describe how the process evolves from layer-to-

layer in modeling and process control can lead to dimensional instability.  The instability 

caused by these dynamics, termed the layer-to-layer dynamics, can potentially cause 

catastrophic defects in the deposited part, c.f. Figure 1.2 and in [Tang 2010].  While 

recent work was concerned with controlling a similar process via an iterative learning 

control algorithm [Heralic 2012], the coupling between the in-layer and layer-to-layer 

dynamics was not considered.  Incorporating both the spatial and layer-to-layer dynamics 
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into the process control design and analysis requires a set of control design methods that 

have not previously been used in AM process control.   

There are generally two viable methodologies for control of repetitive processes; 

feedback control and a combination of feedforward and feedback control.  Because 

repetitive processes operate over two dimensions, pure feedback control in general 

includes feedback in both dimensions, i.e., the in-layer and the layer-to-layer domains.  

Here, however, because LMD measurement information for an entire layer is most easily 

recorded or processed a posteriori, feedback control refers to feedback purely in the 

layer-to-layer domain.  That is, the measurements on a given layer are used to inform the 

control law for the next layer.  This control strategy is termed layer-to-layer control and is 

employed in this work.  This paradigm is also applied in the feedforward case; 

information regarding references or disturbances is fed forward in the layer-to-layer 

domain.  While this paradigm essentially treats the in-layer dynamics as operating in 

open-loop, feedback controllers in this domain can be considered as part of the process 

dynamics. 

As mentioned above, the AM process flow includes a step where the tool path for 

each layer is generated before the actual part is fabricated.  Because of this property, the 

entire part reference as a function of both layer and position is generally known a priori.  

In some scenarios, the reference generated in this step is slowly changing with respect to 

the layer domain.  When this is true, a pure layer-to-layer feedback controller can be 

utilized to achieve reasonable tracking performance during the part fabrication.  

However, in many cases, the reference is generally non-periodic.  That is, reference 

features required to be fabricated on one layer are not necessarily present on any of the 
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previous or subsequent layers.  In this case, a purely layer-to-layer feedback controller 

will exhibit poor performance as the reference signal contains layer-to-layer frequency 

content beyond the controller bandwidth.  Fortunately, because the reference information 

is known, a combination of feedback and feedforward methods (the latter utilizing the 

known future reference information) can significantly improve tracking performance.   

 There are several possible techniques that enable the use of future reference 

signals in order to minimize tracking error.  One such technique, Model Predictive 

Control (MPC) [Garcia 1989], uses a model of the system to estimate the trajectory of the 

system at future time instances.  Then, a control law is calculated to minimize a cost 

function based on the predicted deviation of the system from the reference.  Typically 

however, because the class of references for which the large majority of MPC literature 

considers is constant set-points, the horizon over which the MPC law is calculated is 

infinite and there exists an analytical solution based on solving a set of matrix equations 

[Pannocchia 2005, Maeder 2009] as each process measurement is received.  Here, a the 

MPC control methodology is used to estimate the system over a finite horizon explicitly 

incorporating the non-constant references for AM processes and is extended to treat AM 

processes by transforming the two-dimensional dynamics into an equivalent Multiple 

Input, Multiple Output (MIMO) discrete time system.   

 

1.3. REPETITIVE PROCESSES 

In general, repetitive processes are those dynamic process which operate on a trial 

by trial basis and contain inherent trial-to-trial memory [Rogers 2007].  On each finite 
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duration pass or trial, an output profile is created.  The output profile of previous passes 

or trials then acts as a forcing function on the dynamics of subsequent passes or trials. 

The first research on repetitive processes began at the University of Sheffield in 

the United Kingdom in the early 1970’s.  The impetus for the investigation was the 

dynamic characteristics of the long wall coal mining, metal rolling processes, and self-

steering tractors (before the advent of GPS-steered tractors) [Edwards 1974].  In both of 

these processes, each pass is explicitly a function of the previous pass.  From the outset of 

research on these repetitive processes, it was observed that an initial pass could exhibit 

perfectly acceptable temporal dynamics, but lead to subsequent passes in which 

oscillations amplified in magnitude from pass to pass.  These experimental observations 

lead to the necessary development of stability requirements of repetitive processes.  In the 

following decades, significant contributions to the field of repetitive process control was 

made including well defined concepts of stability and process descriptions [Galkowski 

1999, Dymkov 2002, Rocha 1996].  The specifics of repetitive process representation and 

analysis are given in the preliminaries section below. 

In more recent years, Linear Matrix Inequalities (LMIs) have become the de facto 

control design methodology for pass-to-pass control laws, including pass-to-pass PI and 

H∞ controllers [Sulikowski 2006, Galkowski 2002, Paszke 2006].  While LMIs are well 

suited for designing controllers for processes which are easily represented in a state space 

form, other representations, e.g., the LNL representation described above, do not lend 

themselves to LMIs.  Therefore, there is a need to broaden the methodologies for 

designing pass-to-pass controllers.   
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1.4. OUTLINE 

This dissertation addresses modeling and control of Additive Manufacturing 

processes, with a specific application to the Laser Metal Deposition process.  In order to 

present the modeling and control sections succinctly, this section ends with a set of 

mathematical preliminaries that will prime the reader and be used throughout the 

dissertation.  Section 2 presents the two-dimensional model and the application to a 

commercial LMD process.  Section 3 presents a model identification methodology and 

model validation results, generated on the same LMD system on which the modeling is 

based.  Section 4 details the open-loop stability conditions for AM processes which can 

be modeled using the framework presented in Section 2 again with a specific application 

to the LMD process.  The stability criterion is then used to generate a series of open-loop 

stability maps for various types of LMD deposition heads.  Section 5 presents two control 

methodologies for AM processes; a feedback algorithm design using a pole-placement 

procedure and combination feedforward-feedback methodology which borrows from 

conventional Model Predictive Control (MPC).  Finally, Section 6 presents a summary of 

the work and provides conclusions and some statements regarding future directions.   

 

1.5. PRELIMINARIES 

Definition 1.1 [Adapted from Rogers 2007]: A linear repetitive process consists of a 

Banach space , a linear subspace  of , a collection of bounded linear operators 

  
1

M
k

k 

L
L

L
L  (ML < ∞), and   

1

M
k

k 

T
T

T
T  (MT < ∞)  mapping  into itself.  The dynamics of 

a linear repetitive process are described by a linear recursion relation of the form 
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                  1 0
, , 1 , , ,

M M
x j x j x j M x j x j M        L T

L T
y L y L y T u T u   (1) 

 

where  ,x j y  is the linear repetitive process output at a position x on pass j, the 

operator 
   ,
k

BLL  maps outputs from pass j – kL to outputs on the current pass j, 

 ,x j  u  represents disturbances and inputs to the linear repetitive process, and 

   ,
k

BTT  maps inputs or disturbances from pass j – kT  to outputs on the current 

pass j.   

 

Definition 1.2 [Adapted from Rogers 2007]:  The linear repetitive process (1) is said to be 

stable along the pass if there exists finite real scalars 0M   and  0,1  which, for 

each pass-to-pass constant bounded sequence    , , , 0x j x j  u u , ensure the output 

sequence   
0

,
j

x j


y  satisfies 

 

      
 ,

, , ,0 ,  0
1

j
x

x j x M x j


 



 
     

  

u
y y y   (2) 

 

where  ,x y  is an equilibrium pass profile and  ,0xy  is an initial pass profile. 

 

Remark 1.1: The definition for stability along the pass (2) requires both asymptotic 

stability in the x direction and asymptotic stability in the j direction.  While this definition 

may be unusual to readers unfamiliar with two-dimensional dynamics, physically it 
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requires that the system output on any given pass be bounded and that on each successive 

pass, the output converge asymptotically to a pass-independent profile, e.g., the origin.   

 

The one-sided w-transformation and bi-lateral Laplace transform of the signal 

y(x,j), respectively, are  

 

 

    

 
0

, ,

, j

j

x w x j

x j w










Y y

y
  (3) 

 

 

    

 

, ,

, dsx

s j x j

e x j x









 

Y y

y
.  (4) 

 

Combining both definitions, the Hybrid Laplace-W Transformation (HLWT) is then 

[Prepelita 2010], 

 

 

    

  

 
0

, ,

,

, dsx j

j

s w x j

x j

e x j w x

 
 







 
    

 


Y y

y

y

.  (5) 

 

Inverse transforms can be defined in a similar fashion.  System transforms are determined 

analogously to their one-dimensional counterparts.   
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Definition 1.3: A linear operator P is said to be spatially- and pass-invariant (shift-

invariant) if, given the input-output pair    , ,out inx j x j k y Py  for all  ,x j  

, then    , ,out x j in x jx j x j k        y Py  for any  ,x j    . 

 

When 
 kLL  for kL = 1, 2, …, ML and 

 kTT  for kT = 1, 2, …, MT are spatial- and pass-

invariant, (1) can be converted to the (s,w)-domain by applying the HLWT to give 

 

            

 

 
1

1 1

,

, , ,
M M

s w

s w s w s w s w s w


    
 

L L

G

Y I L L T U   (6) 

 

where I is an appropriately sized identity matrix,      
0

,
M k k

k
s w s w






T T T

T

T T , 
   k

sTT  

is the Laplace transform of 
 kTT , and 

   k
sLL  is the Laplace transform of 

 kLL .  

Equation (6) is termed the two-dimensional transfer function representation of the linear 

repetitive process (1).   

 

Define the interpass transfer function matrix  and the constant direct-feedthrough 

interpass matrix , respectively, as 

 

  

           2 1

0 0

0 0

k

s

s s s

 
 
 
 
 
    

L

I

I

L L L

  (7) 
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  
1

1lim i





   (8) 

 

where ω1 is the in-layer frequency.  The following theorem gives conditions for stability 

along the pass for processes of the form (6). 

 

Theorem 1.1 [Rogers 1989]: The linear repetitive process (6) is stable along the pass if, 

and only if, 

a. The in-layer processes   
1

M
k

k 

L
L

L
L  and   

1

M
k

k 

T
L

T
T  are asymptotically stable in the 

conventional 1D sense 

b. All eigenvalues of the matrix  have magnitude strictly less than one, 

alternatively the spectral radius is bounded by unity ρ() < 1, 

c. All eigenvalues of the matrix (s) evaluated at s = iω1 have magnitude strictly 

less than one. 

 

In subsequent sections, a general framework of AM processes will be used to aid 

in analysis and to generalize the techniques used here.  The two-dimensional framework 

is a Linear-Nonlinear-Linear (LNL) system where inputs are first cascaded to a linear 

dynamic block in the layer-to-layer domain, then into a static nonlinearity, and finally 

into a linear dynamic block in the layer domain.  A general Linear-Nonlinear-Linear 

structure of this form is shown schematically in Figure 1.4 and is given by, 
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   

 

 

      

1

2

,
,

,

, ,

x j
x j G w

x j

x j G s f x j

 
  

 



u
υ

y

y υ

  (9) 

 

where 
mυ   is a vector of intermediate states, 1 : n p mG     is a linear dynamic 

operator representing the process layer-to-layer dynamics, 
pu   is the set of process 

inputs, 
ny  is the set of process outputs, 2 : r nG   is a linear dynamic operator 

representing the in-layer dynamics, and : m rf   is a static nonlinearity.  While not 

explicitly denoted in (9), the output of the nonlinearity f, and the input to the linear in-

layer dynamic operator G2, is denoted in Figure 1.3 by  , rx j ξ . 

 

Remark 1.2: With respect to the input-output relationship, G1, f, and G2 do not constitute 

a unique set of operators.  That is, the input-output relationship between u and y can be 

preserved with a possibly different selection of G1, f, and G2.   

 

 

 

Figure 1.4.  Linear-Nonlinear-Linear LMD process model schematic. 

 

 

  

 2G s

 ,x ju

 ,x jξ  ,x jy
 1G w  f υ

 ,x jυ
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2. TWO-DIMENSIONAL LASER METAL DEPOSITION MODEL 

As detailed above, generally any dynamic system which operates in a trial-by-trial 

manner and possesses internal trial-to-trial memory can be classified as a repetitive 

process [Rogers 2007].  For AM processes, the repetitive accretion of material creates 

internal process layer-to-layer memory.  Therefore, a logical framework for describing 

AM processes is that of repetitive processes, where the trial analog is layer.  Below, a 

novel single layer LMD model is presented first, and the model is then extended into the 

multi-layer framework.  Finally, a discussion of how the LMD model presented here fits 

into the general modeling framework presented in Section 1.5 is given along with some 

comments on how other similar AM process could be similarly described by the 

modeling framework presented above. 

Because a major goal of the modeling efforts presented below is that the resulting 

model be suitable for control synthesis, model simplicity is valued over 

comprehensiveness.  That is, the model of the LMD process presented below is intended 

to be accurate only over small ranges of the process parameter space.  One can interpret 

the modeling approach below as being a linear approximation of the underlying highly 

nonlinear LMD process dynamics near a set of processing parameters. 

 

2.1. MELT POOL MODEL 

A typical LMD system consists of two main components; a static cladding head, 

or nozzle, containing a laser energy source, a powder material source coaxial with the 

laser, and a motion stage onto which a substrate is mounted [Mazumder 2000, Atwood 

1998] (see Figure 1.3).  At each position along the toolpath, the laser melts a fraction of 
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the powder coming from the nozzle to form a molten metal pool.  As the substrate moves 

the molten pool from underneath the nozzle, the pool solidifies, resulting in a continuous 

solidified structure.  To model this process, consider a differential volume of material 

deposited directly under the nozzle, 

 

 
d d d

d
d d d

M M t
V

x x t
     (10) 

 

where dV is the differential volume (mm
3
/mm) captured by the existing melt pool, dM is 

the differential mass released by the nozzle (kg), μ is the powder catchment efficiency 

(mass captured/mass released), ς = ρ
-1

 is the material specific volume (mm
3
/kg), dx is the 

substrate differential travel (mm), and dt is the differential time (s).  Then, the differential 

volume captured by the melt pool at a position x, measured in the direction of deposition 

(mm) is, 

 

    
 

 
   d

m x
V x x x x

v x
      (11) 

 

where ṁ is the powder flow rate (kg/s), v is the scan speed (mm/s), and λ = ṁ/v is the 

powder spatial flow rate (kg/mm) describing the instantaneous amount of powder 

released per unit travel of the substrate.   

Once material enters the melt pool it experiences flow due to complex thermal 

and fluid flow phenomena including surface tension forces, convective flow, and viscous 

forces [Qi 2006, Lei 2001, Picasso 1994].  As the cladding head and solidification front 
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advance, the faster internal melt pool dynamics [Hoadley 1992] force the melt pool pre-

solidification morphology into a shape that is typically ellipsoidal [Doumanidis 2001, 

Pinkerton 2004].  For operation near a set of defined process parameters, a locally linear 

model of the steady-state morphology may be assumed.  Thus, the cross-sectional area of 

the solidified bead can be described as,  

 

      
0

d d

x

sa x V x f      (12) 

 

where a is the solidified bead cross-sectional area (mm
2
) and fs is a morphology kernel 

describing the melt pool flow (mm
-1

).  As the morphology kernel represents the 

relocation of material inside the melt pool, it is constrained by the conservation of mass 

which requires that material cannot be created or destroyed by the melt pool flow process 

or, 

 

  d 1,sf x x





   (13) 

 

and that the melt pool area must be positive or, 

 

   0,  .sf x x    (14) 
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Additional results from the literature will be applied in Section 2.2 to further 

refine the morphology kernel model.   

In general, the relationship between the bead area and bead height is nonlinear 

and described as 

 

     hh x f a x    

 

where δh is the bead height (mm) and fh is a static mapping between bead area and bead 

height.  However, in LMD the relationship between the bead area, a, and the bead height 

is typically modeled statically [Fathi 2007, Hoadley 1992, Kaplan 2001], with the bead 

height being a principle axis of an elliptic bead area description [Doumanidis 2001, Steen 

1986].  Thus, the height of the solidified bead is modeled here as, 

 

    1h x b a x    (15) 

 

where b is the characteristic bead width (mm) and fh(a(x)) = b
-1

a(x). 

 

2.2. THE MORPHOLOGY KERNEL 

As demonstrated above, a typical method for describing the melt pool 

morphology in an LMD process model is to ascribe a shape function to the melt pool.  

Here, this methodology is used to obtain a model for the morphology kernel, fs.  Again, as 

above, several works [e.g., Doumanidis 2001, Pinkerton 2004] model the melt pool shape 

as a quarter-ellipsoid with principle radii forming the melt pool length, height, and half of 
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the melt pool width.  A schematic of a quarter-ellipsoid melt pool is shown in Figure 2.1.  

For constant process parameters, spatial flow rate, λ(x) = λ0, and powder catchment 

efficiency, µ(x) = µ0, an oblate quarter-ellipsoid melt pool results in the solidified bead 

shape illustrated in Figure 2.1, whose cross-section a is an ellipse.  By relating the 

experimentally observed solidified bead morphology to known constant processes 

parameters the corresponding analytical expression for the dynamic kernel fs can be 

determined as outlined next. 

 

 

 
Figure 2.1.  Laser metal deposition process schematic. 

 

 

An oblate ellipsoid, centered at the tuple  ,0,0cx  with principle radii length l 

(mm), half of the bead width b/2 (mm), and height δh (mm), is, 
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2

1cx x y z

l b h

     
      
    

  (16) 

 

where xc is the ellipsoid center (mm), y is the horizontal axis perpendicular to the 

direction of deposition, and z is the vertical axis perpendicular to the direction of 

deposition.  Similarly, the elliptical cross-section of the solidified bead in the direction of 

deposition is described by, 

 

 

2 2
2

1
y z

b h

   
    

   
. (17) 

 

Thus, the y-z plane cross-sectional area of an elliptical bead in Figure 2.1 is, 

 

  
2

4

1
4

0

c

c
c c

c

b h x x

x x
a x b h x x x l

l

x x l


 


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


 


   

         
    

   



  (18) 

 

where xf is the position of the laser and powder focus (mm) and δ = xf – xc is the lead of 

the melt pool ahead of the coaxial laser beam and powder stream focus (mm).  With 

constant process inputs, the differential volume dV is constant and equal to the steady-

state cross-section of the elliptical bead, or, 
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  
,

d 4

0,

f

f

b h x x
V x

x x







 
 

.  (19) 

 

Remark 2.1: Certain combinations of process parameters may cause the melt pool to 

spatially lead (i.e., δ < 0) the laser position more than others [Picasso 1994].  While some 

melt lead is expected in normal processing conditions, a large melt pool lead can be 

indicative of excessive superheat which can negatively affect final material properties 

[Srivastava 2001]. 

 

It remains to find the morphology kernel, fs that relates the steady-state input (19) 

to the observed steady-state output (18), while also adhering to the constraints in (13) and 

(14).  It can be verified that the only function that satisfies these requirements is, 

 

  
 2

2
,

0, otherwise
s

x x l
f x l

  


   
 



.  (20) 

 

Remark 2.2:  Recognizing that the laser focal point must intersect the melt pool, the 

spatial lead δ must be strictly less than the melt pool length l.  It is interesting to note that 

this constraint always results in fs support on the negative axis, and therefore, the LMD 

process is noncausal along the spatial axis, x. 
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2.3. POWDER CATCHMENT MODEL 

Powder catchment efficiency, the ratio of the amount of powder captured by the 

melt pool to the amount of powder delivered from the powder delivery system, is 

typically modeled as a function of the distance between the melt pool and the nozzle [Lin 

1999].  Thus, 

 

     Px f d x    (21) 

 

where dp is the distance from the nozzle to the part (mm), as shown in Figure 2.2, and fμ 

is a static powder distribution function.  Typical powder distribution profiles for 

commercially available systems are Gaussian in shape, resulting from the convergence of 

individual powder streams to a single focal point, c.f. [Lin 1999] and the photograph of a 

commercial LENS print head in Figure 2.3.  Therefore, the powder catchment profile is 

modeled as, 

 

   
  

2

exp
100

P maxmax
P

width

d x d
f d x





  
   
    

  (22) 

 

where αmax is the maximum powder catchment (%), dmax is the distance from the nozzle to 

the maximum powder catchment (mm), and αwidth is the powder catchment characteristic 

width (mm).   
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Figure 2.2. Schematic of nozzle-part interaction zone with substrate standoff dS, part 

standoff distance dP, bead height δh, and part height h. 

 

 

 

Figure 2.3.  Photograph of an Optomec LENS Print Engine Head. 
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2.4. LAYER-TO-LAYER MODEL 

In multi-layer part fabrications, the previous layer becomes the foundation for the 

current layer; thus, coupling the in-layer dynamics of the previous layer to those of the 

current layer and creating a two-dimensional dynamic system.  Let the part height h (mm) 

at position x and layer j be given by h(x,j) and let the height of the substrate be defined as 

h(x,0) = 0 such that the first layer added to the substrate is layer j = 1.  Let dS, the distance 

from the substrate to the nozzle (mm) as shown in Figure 2.2, be generated by a layer-to-

layer integration process 

 

      , , 1 ,S S Sd x j d x j d x j     (23) 

 

where δdS is the incremental layer-to-layer substrate standoff distance (mm). Then, the 

part standoff distance dP (mm) at layer j is, 

 

      , , , 1P Sd x j d x j h x j   .  (24) 

 

As the melt pool in the current layer moves over the previously fabricated layer, 

dilution occurs, re-melting and redistributing material from the previous layer or layers 

[Kang 1995, Wang 1998].  As the re-melting process is an extension of the melt pool into 

the previous layers, it is governed by complex flow phenomena similar to the in-layer 

dynamic process.  Therefore, the locally linear re-melt dynamics may be described with a 

convolution kernel, similar to the morphology kernel in Section 2.2.  Let kernel 

describing these dynamics, the re-melt kernel, be defined as fr.  Then, the re-melted 
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height hremelt, the previously built part height which has undergone re-melting, can be 

written as, 

 

      , 1 , 1remelt rh x j h x j f x      (25) 

 

where      represents the convolution operation of the arguments.  As with the 

morphology kernel, the re-melt kernel is constrained by the law of mass conservation, 

 

  d 1rf x x





 ,   0,  rf x x  . (26) 

 

However, unlike the morphology kernel, in which the melt pool is constrained on 

one side by the solidified bead, but free to flow in front of the solidified bead, the re-melt 

flow of the previous layer is bounded on both sides by solid material.  Thus, it is 

reasonable to further assume that the re-melt kernel is symmetric and therefore, two 

additional constraints are added to the re-melt kernel description, 

 

    r rf x f x    

 

   0,  r rf x x l     

 

where lr is the re-melt process characteristic length (mm).  A kernel which satisfies the 

above constraints is 
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   2

1

 

0 otherwise

r r

r r r

x
l x l

f x l l


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 
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.  (27) 

 

A more detailed analytical description of the linear profile re-melt kernel is 

explored in the system identification experimental results in Section 3.4.   

Noting the height of the part above the substrate on a given layer j and at a 

position x is the sum of the previous part height and the current bead height, a direct 

result of the mass conservation constraints on fs and fr,      , , , 1remelth x j h x j h x j   , 

and combining (15) and (25), the two-dimensional LMD height dynamics are, 

 

               1

Re-Melt DynamicMelt Pool Dynamic

, , , 1 , , 1S s rh x j b f d x j h x j x j f x h x j f x        .  (28) 

 

Equation (28) represents the two-dimensional, repetitive process description of LMD 

where the incremental substrate standoff distance δdS (whose layer-to-layer integration 

gives dS as in (23)) and the powder spatial flow rate λ are process inputs, and h is the 

process output. 

 

2.5. GENERAL TWO-DIMENSIONAL AM PROCESS MODEL 

Casting the two-dimensional model presented in (28) into a general modeling 

framework enables insight into the structure of the process.  Because the LMD process is 

not a particularly special example of AM processes, it is reasonable to assume that the 
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structure of the LMD model presented above is applicable to many other AM processes.  

Here, the general framework is that presented in (9).  For other freeform AM process 

such as Glass AM [Luo 2014], Freeze-form Extrusion Fabrication (FEF) [Deuser 2013] 

and Fused Deposition Modeling (FDM) [Wales 1991], the individual model blocks G1, f, 

and G2 are similar to those of LMD, i.e., a melting and solidification process occurs; 

therefore, little change to the model is needed in order to describe these processes.  

Further, the model described above may be applied to material bed processes, such as 

Selective Laser Sintering (SLS) [Deckard 1986] or Stereolithography (SLA) [Hull 1988], 

and possibly ink jet processes.   

The re-melt process described by fr in Section 2.4 can be generalized to the 

concept of re-treatment for other AM processes.  Here, re-treatment refers to an energy 

exchange between the previous material and the current layer, i.e., re-melting in the case 

of LMD, FEF, FDM, and SLS or over-curing in SLA [Melchels 2010]. It is reasonable to 

assume these dynamic processes can be captured by the filtered feedthrough of the 

previous part height for each specific AM process. 

To demonstrate how the LMD process model (28) fits the form of (9), consider 

the input and output signals, u and y, respectively, as, 

 

 
     

   

, , ,

, ,

T

Sx j d x j x j

x j h x j

    



u

y
.  (29) 

 

Now, consider the layer-to-layer dynamic block G1 containing the substrate standoff 

distance integration process (23), 
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 
1

1
, ,

1
S Sd x j d x j

w






, (30) 

 

and the layer-to-layer delay on the feedback channel w
-1

h(x,j) = h(x,j–1), as, 
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1 1

1

1 0 0

1
0

1
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G w w
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 
 
  

 
 
 

, (31) 

 

with intermediate states, 

 

        , , , , 1
T

Px j x j d x j h x j   υ . (32) 

 

Also, consider the static nonlinearity as, 

 

   
    

 

1

2 1

3

, ,
,

,

b f x j x j
f x j

x j

  



 
  
  

υ , (33) 

 

where υi for i = 1,2,3 is the i
th

 element of υ.  The outputs of the static nonlinearity are then 

     1, d , , 1
T

x j b V x j h x j   ξ .  Finally, consider the in-layer dynamic operator G2 

as, 
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      2 s rG s F s F s      (34) 

 

where Fs and Fr are the frequency domain representations of fs and fr, respectively.  Then, 

it can be verified that the Linear-Nonlinear-Linear two-dimensional structure, (9), with 

(29), (31), (33), and (34) describes the LMD process, (28). 
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3. MODEL IDENTIFICATION METHODOLOGY 

In general, identification of a two-dimensional dynamic system is not a trivial task 

due to the potential coupling between the two sets of dynamics.  Here, the coupling 

between the in-layer and layer-to-layer dynamics is eliminated through careful 

experimental design that divides the overall identification problem into several, more 

tractable, identification problems.  The two-dimensional model presented in (27) is 

composed of three sets of model parameters that need to be identified; the powder 

catchment efficiency model fμ parameters (22), the in-layer dynamic parameters which 

include area-to-height relationship b and the linear dynamic shaping process fs parameters 

(15) and (20), respectively, and the linear dynamic re-melting process fr function (27).  

From Figure 1.4 and the structure of the general AM repetitive process model (9), it can 

be seen that the elements of G2, fs and fr, can be identified by exciting υ and measuring 

the process output y.  For LMD, in-process measurement of ξ is difficult, and therefore 

the process of identifying the static nonlinearity, f, is performed with slowly-changing 

inputs υ, so as not to excite the in-layer dynamic, G2. 

 

3.1. EXPERIMENTAL SETUP 

The LMD system used for the experiments conducted in this work is a 

commercially available Optomec LENS® MR-7 with an Optomec K-Head attached.  The 

Optomec LENS® MR-7 consists of three computer controlled axes – an x-y table and a z-

axis gantry – capable of ±0.25 mm positioning accuracy mounted inside a hermetically 

sealed Class I Laser Enclosure.  The powder is delivered by an Optomec powder feeder 

and the laser source is a 500 W IPG Fiber Laser.  The bead profile is measured with a 
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Keyence LK-H052 laser displacement sensor mounted on a separate CNC machine – a 

GE/FANUC-controlled Fryer 5-Axis machine tool.  Measurements are acquired by 

scanning the laser displacement sensor over the part.  The sensor averages a measurement 

profile over a circular 50 μm diameter spot at a standoff distance of 50 mm with a 

resolution of 1 μm.  Using a sensor temporal sampling rate of 400 μs and a table velocity 

of 5.080 mm/s (12 IPM) yields a spatial sampling rate of 492 samples/mm.  Experiments 

are conducted using 316L Stainless Steel powder on stainless steel substrates. 

 

3.2. POWDER CATCHMENT EFFICIENCY MODEL 

Here, an experiment is constructed to generate internal signals of the form, 

     0,1 ,1 ,0Px d x h x   υ  where λ0 is constant spatial flow rate, in order to 

identify the powder catchment efficiency model, fμ.  The conservation of mass constraints 

on the shape and re-melt kernels, (13) and (26), respectively, ensures that G2 has low-

frequency pass-through with a DC gain of 1, or       1

0,1 ,1 ,0Py x b f d x h x   for 

signals dP(x,1) and h(x,0) whose in-layer frequency content is concentrated at low 

frequencies.  To generate the required internal signal υ, a wedge-shaped substrate, shown 

in Figure 3.1, is used with constant spatial flow rate.  The powder catchment efficiency 

function is determined by relating the known spatial flow rate and measured bead width 

to the measured bead height. 

Two separate powder flow rates, ṁ = 5.6 g/min and ṁ = 9.2 g/min, which are 

denoted Trial 1 and 2, respectively, are used for identification of fμ.  Powder flow rates 

are determined by setting the powder feeder motor speed, collecting powder for 1 min, 

and weighing the resulting powder output.  The powder feeder motor speeds were set to 3 
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RPM and 5 RPM for Trials 1 and 2, respectively.  The total deposition length was 101.6 

mm, with an initial standoff distance of dP(0,1) = 13.97 mm at the low end of the wedge 

(the right side in Figure 3.1) and minimum standoff distance of dP(101.6,1) = 2.54 mm at 

the high end of the wedge (the left side in Figure 3.1).  The inclination of the substrate, 

5.71° above horizontal, allows the standoff distance to vary continuously and linearly 

during the deposition.  The laser power was Q = 450 W and the scan speed was v = 8.47 

mm/s.  These process parameters are typical for 316L Stainless Steel deposition on the 

Optomec LENS® MR-7 system.  The other depositions shown in Figure 3.1 correspond 

to two other powder flow rates.  The data from these tests are given in Appendix B. 

 

 

 
Figure 3.1.  Experimental results for identification of powder catchment function, fμ. 

 

 

The experimental results for Trials 1 and 2 are shown in Figure 3.2.  Both powder 

flow rate tests visually produce a similar powder catchment shape in this region of the 

parameter space.   At the typical standoff distance for an Optomec LENS® MR-7 system, 
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dP = 9.53 mm, the powder catchment efficiency is approximately 12% for both powder 

feeder motor speeds.  

 

 

 
Figure 3.2.  Modeled and experimental powder catchment efficiencies. 

 

 

The Trial 2 data is used as the identification data while the Trial 1 data is used for 

validation.  Minimizing the Root Mean Squared Error (RMSE) between the model and 

the measured data yields a RMSE of 1.71% for the identification data set and 2.40% for 

the validation data set, indicating good agreement between the model and the 

experimental system.  The identified model parameters are αmax = 16.04%, dmax  = 10.57 

mm, and αwidth = 2.04 mm, and the resulting model powder catchment efficiency is 

plotted along with the measured powder catchment efficiencies in Figure 3.2.  
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3.3. IN-LAYER DYNAMIC PROCESS AND BEAD WIDTH 

In the derivation of the morphology kernel given in (20), two parameters are used 

to determine the function: a characteristic melt pool length l and a melt pool lead δ.  The 

in-layer dynamic and characteristic bead width are identified with input signals of the 

form     ,0 0,1 ,1
T

Px x d h   υ  where dP,0 and h0 are in-layer constant part standoff 

distance and part height, respectively.  Similar to the previous subsection, the mass 

conservation constraints on fr (26) ensure that fr has low-frequency pass-through with a 

DC gain of 1, or        1

,0 0,1 ,1 P sy x b x f d f x h    for low in-layer frequency 

h0.  Because constant part standoff distance dP,0 contributes a constant powder catchment 

efficiency, which is identified in the previous subsection, the powder catchment 

efficiency, fµ(dP,0), is taken as a known quantity.  Here, the velocity component of the 

spatial flow rate, λ, is the channel used to excite the in-layer dynamic process because of 

the large bandwidth of the motion stage relative to the powder feeder system.  Holding 

powder flow rate and laser power constant at the same levels given in the previous 

section, Pseudo-Random Binary Sequences (PRBSs) are commanded on the velocity 

channel and the resulting bead height is measured.  Pseudo-Random Binary Sequences 

are commonly employed in system identification and consist of a set of step inputs with 

equal magnitudes but varying durations [Godfrey 1993, Eskinat 1991].   

Alignment of the commanded velocity and the measured deposition in the spatial 

domain is critical since any error in the starting positions is directly interpreted as a 

spatial delay, corrupting the model fit.  Therefore, in order to facilitate proper alignment 

of the velocity signal and the measured deposition, a 50 μm edge radius witness mark is 

machined into the substrates and the start of deposition (i.e., start of laser emission) is 
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delayed 0.5 seconds, hard-coded into the motion commands sent to the MR-7 (given in 

Appendix A), after the velocity profile starts.  In doing so, the witness mark is clearly 

visible and undistorted when measuring the height profiles.  This is schematically shown 

in Figure 3.3.   

 

 

 

Figure 3.3.  Schematic of witness mark and delayed deposition for alignment of 

commanded velocity and measured bead height for in-layer kernel identification. 

 

 

The measured bead height and the commanded velocity are used in conjunction 

with a derivative-free nonlinear optimization algorithm implemented in Matlab to 

identify the bead width, length and shifting parameters, b, l and δ, respectively.   

The step inputs are selected to excite dynamics around the nominal velocity of v = 

8.5 mm/s.  A low value of v = 4.2 mm/s and a high value of v = 12.7 mm/s are used, 

representing the typical speed range within which the Optomec LENS® MR-7 system is 

operated for 316L Stainless Steel.  The commanded PRBS velocity profiles used for both 
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the identification and validation trials are shown in Figure 3.4.  Two separate single layer 

trials were conducted with the same velocity profile; one with a powder flow rate ṁ = 5.6 

g/min and the second with a powder flow rate ṁ = 9.2 g/min, corresponding to Trials 1 

and 2, respectively, detailed in the previous subsection.  Both trials were made using a 

commanded laser power of Q = 450 W and a standoff distance of dP(x,1) = 9.53 mm for x 

= 0 mm to x = 75 mm.   

 

 

 
Figure 3.4.  Commanded identification (top) and validation (bottom) PRBS velocity 

signals. 

 

 

For Trial 1, where ṁ = 5.6 g/min, the identified characteristic width, length, and 
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parameters were b = 0.836 mm, l = 0.610 mm, and δ = -0.010 mm, respectively.  Figures 

3.5 and 3.6 show the measured bead height as a function of position for both the 

identification and validation tests for Trials 1 and 2, respectively, in addition to the model 

using the identified parameters for the respective trials.  For both trials, the shifting 

parameters are nearly at the level of the velocity stage incremental displacement 

command and physically correspond to a melt pool that is centered well under the nozzle 

in the direction of deposition.  Further, the length of the two melt pools coincide very 

closely with the predicted laser beam spot size, between 0.36 mm and 0.64 mm as 

calculated from the Optomec laser and optics settings, indicating a good balance between 

incident energy from the laser and bead volume.  The RMSEs of the identification and 

validation data for Trial 1 and Trial 2 are given in Table 3.1.  While the RMSE levels are 

smaller for Trial 1, the validation data indicates very good agreement between the model 

and the physical process for both trials. 

 

 

Table 3.1.  Identification and validation RMSE and percent error for Trials 1 and 2. 

Trial Number Identification RMSE Validation RMSE Error (%) 

1 0.073 0.078 6.85 

2 0.143 0.147 2.80 

 

 

As stated above, at the beginning of the identification and validation sets, 

deposition is intentionally delayed in order to facilitate the alignment of the commanded 

velocity profiles and the measured height profiles.  This delay contributes to the fitting 

error seen at the beginning of the responses in Figures 3.5 and 3.6.  Additionally, the 
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overshoot observed in the measured responses at the beginning of the identification and 

validation sets and at the end of the validation sets is due to un-modeled process startup 

and end effects.  The measurement spikes seen in Figure 3.5, and in particular Figure 3.6 

at x = 42 mm in the top plot and at x = 55 mm in the bottom plot, are a result of the laser 

displacement sensor incident upon individual or small agglomerates of powder particles 

causing the laser to be reflected in a direction oblique to the feature and sensor head.  

This phenomenon causes measurement artifacts or data dropout. 

 

 

 
Figure 3.5.  Modeled and measured bead height signals for Trial 1 identification (top) and 

validation (bottom). 
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Figure 3.6.  Modeled and measured bead height signals for Trial 2 identification (top) and 

validation (bottom). 

 

 

3.4. RE-MELT DYNAMIC PROCESS  

As detailed in Section 2.5, the re-melt dynamic process is excited by the height 

profile on the single previous layer; therefore, an internal signal of the form 

   0 ,0,1 ,0
T

Px d h x   υ , with h(x,0) as the excitation source, is used here for 

identification.  The mass conservation constraint on fs, (13), ensures low-frequency pass-

through with unity DC gain and, by constraining h(x,0) to small magnitude variations, 

ensures the change in powder catchment efficiency is also small.  Then, the process 

dynamics simplify to        1

0 ,0,1 ,0P ry x b f d h x f x    for low in-layer 

frequency signals λ0 and dP,0.  Similar to the identification of fs, an excitation signal in the 
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constructed by a Wire Electric Discharge Machining (Wire-EDM) operation to precisely 

shape a stainless steel substrate containing a PRBS signal.  The error between the 

modeled and measured height is minimized with respect to the re-melt model parameters, 

detailed below, to identify the re-melt kernel. 

Two separate step heights are used; the first corresponding to the average bead 

height of Trial 1, 0.20 mm, and a second corresponding to the average bead height of 

Trial 2, 0.45 mm.  The process parameters were set to Q = 450 W, v = 8.47 mm/s, and dP 

= 9.53 mm for all x. Again ṁ = 5.6 g/min for Trial 1 and ṁ = 9.2 g/min for Trial 2.  

Single beads were deposited on the Wire-EDM PRBS substrates.  Top and side views of 

the re-melt dynamic process identification substrates, before and after deposition, are 

shown in Figures 3.7 and 3.8, respectively. 

 

 

 

Figure 3.7.  Top view of re-melt dynamic process identification substrates before and 

after deposition for Trial 1 (top) and Trial 2 (bottom). 

 

 



42 

 

 

Figure 3.8.  Side view of re-melt dynamic process identification substrates before and 

after deposition for Trial 1 (top) and Trial 2 (bottom). 

 

 

As discussed in Section 2.4, the re-melt function, fr, should be symmetric, 

positive, and have unit area (26).  A function satisfying these requirements is given in 

(27) and is validated in the following exposition.  

The characteristic length parameter for Trials 1 and 2 yields the re-melt 

characteristic lengths lr = 0.903 mm and lr = 1.21 mm, respectively.  Figures 3.9 and 3.10 

show the measured and modeled re-melt responses in addition to the measured substrate 

heights before deposition for Trials 1 and 2, respectively.  The measurement spikes seen 

in both Figures 3.9 and 3.10, e.g., at x = 26 mm in the upper plot in Figure 3.10, are the 

result of the sensor effects described in the previous subsection.   
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Figure 3.9.  Measured and modeled height due to re-melt response (top) and measured 

before-deposition substrate height (bottom) for Trial 1. 

 

 

 
Figure 3.10.  Measured and modeled height due to re-melt response (top) and measured 

before-deposition substrate height (bottom) for Trial 2. 
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An additional artifact appears around x = 14 mm in the top plot in Figure 3.10.  

While the exact cause of this is unknown, a test deposition was made immediately before 

and adjacent to the Trial 1 test on the same substrate.  It is possible that a buildup of 

powder occurred on this section of the substrate causing the taller feature.  Because this 

phenomenon is not seen at other locations within the same deposition nor in the Trial 2 

deposition, it is reasonable to assume it is a product of process noise. 

 

3.5. FREQUENCY DOMAIN CHARACTERISTICS 

As will be demonstrated below in Section 4, the frequency domain characteristics 

of the kernels fs and fr play an important role in the layer-to-layer stability and the ability 

to control the process.  Here, the general characteristics of fs and fr are presented and then 

the specific characteristics of these kernels, as applied to the LMD process, are presented.   

3.5.1. General Frequency Domain Characteristics.  The Laplace domain 

representations of fs and fr are, respectively, 
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   (35) 

 

 

   2 2

2r rl s l s

r

r

e e
F s

s l


 

 .  (36) 

 

To examine the frequency domain properties, let s = 2πiω1 in (35) and (36).  When ω1 = 

0, the magnitude of each kernel is unity.  This is a direct consequence of the conservation 

of mass constraints detailed in Section 3.3 and 3.4.  As ω1 → ∞, the magnitude decays to 
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zero.  Further examination yields the asymptotic magnitude roll of rate of (35) is -20 

dB/decade due to the presence of a single zero and the two poles located at the origin.  

The frequency at which the magnitude of the in-layer shaping kernel Fs begins to roll of 

is equal to 1

1 l  .  For the re-melt shaping kernel Fr, the asymptotic roll off rate is -40 

dB/decade, because of the absence of any zeros in the kernel and the presences of two 

poles at the origin.  The break frequency for Fr is located at approximately  
1

1 2 rl 


  

An interesting phenomenon associated with (36) is the zero magnitude associated with 

harmonics of  ω1 = kr/lr for kr = 1, 2, ….  Plugging ω1 = kr/lr for kr = 1, 2, … into (36) 

gives, 
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  (37) 

   

Although not as clear from the frequency domain representations (35) and (36), 

the phase properties can also be determined.  The clearest phase properties are associated 

with Fr.  Because fr is constrained to symmetric, it has zero phase for the entire frequency 

spectrum.  For any ω1, the argument of the lead component in Fr, i.e., rl s
e , is exactly 

cancelled by the argument of the lag component, i.e., rl s
e
 .   

Alternatively, the phase of fs is zero near ω = 0, but decreases to -180 degrees and 

continues to roll off as ω → ∞.  The frequency at which the phase begins to decrease 

from zero is a function of the two parameters l and δ.  In general, the phase roll off occurs 

approximately a decade before the frequency at which the magnitude begins to decay at a 
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rate of -20 dB/decade.  When the shifting parameter 0 < δ < l, the frequency at which the 

phase starts to rapidly decrease due to the spatial delay is higher than the magnitude roll 

off frequency.  In the case when |l| > δ < 0, the phase loss is slower as this spatial delay 

adds phase after the frequency 1

1   .  Figures 3.11 and 3.12 show the trend of the 

frequency response of Fs as the melt pool length l increases and the magnitude of the 

shifting parameter δ increases, respectively.   

 

 

 

Figure 3.11.  Bode diagram of Fs for increasing values of l with δ = -0.05 mm. 
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Figure 3.12.  Bode diagram of Fs for increasing values of |δ| with l = 0.3 mm. 

 

 

In Figure 3.11, it can be observed that the frequency at which the magnitude 

begins to roll off moves towards high frequencies as melt pool length decreases.  The 

same behavior can be observed in the phase response, which begins its roll off 

approximately a decade before the corresponding magnitude decay.  For the shifting 

parameter, it can be observed in Figure 3.12 that the magnitude response remains 

unchanged for any value of this parameter.  However, the phase response moves towards 

zero phase as the magnitude of the shifting parameter increases. 

3.5.2. Optomec Process Specific Frequency Domain Characteristics.  Using 

the specific values of l, δ, and lr for Trials 1 and 2 given above in Sections 3.3 and 3.4 in 

(35) and (36) and evaluating the frequency responses yields the Bode diagrams in Figure 
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3.13 and 3.14 for Trials 1 and 2, respectively.  In both figures, the general trends detailed 

in Section 3.5.1 are present.   

First, the unit magnitude of both kernels at DC is obvious.  For fs, the magnitude 

break frequency is positioned at the location of the melt pool length; ω1 = 0.503 

cycle/mm for Trial 1 and ω1 = 0.610 cycle/mm for Trial 2.  After this frequency, the 

magnitude for both trials follows the asymptotic -20 dB/decade attenuation.  The phase 

response of both Trials 1 and 2 break from 0 degrees approximately 1 decade before the 

magnitude begins to roll off; ω1 = 0.050 cycle/mm for Trial 1 and ω1 = 0.06 cycle/mm 

for Trial 2. 

 

 

 
Figure 3.13.  Bode diagram of the kernels fs and fr for Trial 1. 
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Figure 3.14.  Bode diagram of the kernels fs and fr for Trial 2. 

 

 

Again examining Figures 3.13 and 3.14, the zero phase response of the re-melt 

kernel is clear.  Further, the magnitude begins the -40 dB/decade asymptotic attenuation 

when ω1 = 1/2πlr.  These frequencies are ω1 = 0.176 cycle/mm for Trial 1 and ω1 = 0.132 

cycle/mm for Trial 2.  As mentioned in the previous subsection, the magnitude drops 

rapidly when the spatial frequency is a harmonic of ω1 = 1/lr. 
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3.6.  TWO-DIMENSIONAL MODEL VALIDATION 

3.6.1.  Qualitative Frequency Domain Model Validation.  While the PRBS 

tests performed in Section 3.3 successfully identify the in-layer shaping kernel 

parameters l and δ, it is not directly obvious that the LMD process performs as the 

frequency domain modeling demonstrates in Figures 3.11 and 3.12 in Section 3.5.  An 

alternative way to identify the in-layer shaping kernel is through a series of sine wave 

excitations.  Where each single track deposition is generated from a velocity profile 

which possesses a single in-layer frequency.  While these depositions can be used for 

identification, they are time consuming.  Therefore, instead of identification, these tests 

are used for qualitative validation purposes and are intended to demonstrate directly the 

frequency domain properties of the in-layer dynamic process. 

The experimental setup for these tests is different from that of those performed in 

Sections 3.1 through 3.4.  The experimental system consists of an IPG Photonics 1kW 

Ytterbium fiber laser, a Bay State Surface Technologies powder feeder, and an x-y-z 

motion stage actuated by stepper motors.  The laser and powder feeder are regulated by 

their respective controllers while the motion stage is controlled by a National Instruments 

LabVIEW system.  As with the tests conducted above, the resulting depositions are 

mounted on a Fryer machine tool and measured with a Keyence laser displacement 

sensor.  The material used for these tests was H13 Tool Steel.  Again, the substrates used 

for these tests have a 50 μm edge so that alignment of the deposition and the commanded 

velocity profile are reconcilable.  The velocity profiles used here are of the form, 

 

     
1

0 1 1,1 cos 2v x a a x


    (38) 
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where a0 is the constant offset of the cosine wave (s/mm) and a1 is the amplitude of the 

cosine wave (s/mm).  For each velocity profile, a0 = 0.25 s/mm and a1 = 0.2 s/mm.  The 

velocity profile is an inverse cosine wave so that the resulting bead profile is sinusoidal.  

Due to system differences, i.e., different powder feeders, nozzles, materials, etc., for each 

trial below, the laser power was set to Q = 500 W and the powder feeder speed was set to 

2.0 RPM.  Further, because experimental tests have shown that the powder feeder used 

for the tests performed here is only accurate to within approximately 20% of the set point, 

the magnitude response is not reliable.  Therefore, only the phase information of each 

trial is used for validation.  Table 3.2 shows the frequencies used for the validation tests.   

 

 

Table 3.2.  Trial number and commanded velocity frequencies used for Fs 

characterization. 

Trial Frequency ω1 (cycle/mm) 

1 0.05 

2 0.07 

3 0.1 

4 0.3 

5 0.5 

6 0.7 

7 1.0 

 

 

As mentioned above, the magnitude information of each trial is unreliable due to 

the large amount of uncertainty in the powder feeder motor speed.  Because of this, a 

scaled version of the reciprocal of the velocity signal, with the correct phase, is shown in 

Figure 3.13 and 3.14.  In addition to the scaled reciprocal velocity signal, the measured 
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bead height responses for each trial listed in Table 3.2 are shown in Figures 3.15 and 

3.16.   

Examining the behavior of the measured bead height responses as compared to 

the scaled reciprocal velocity signals, an obvious frequency-dependent trend emerges.  At 

the lower frequencies shown in Figure 3.15, there is little to no spatial delay between the 

input signal, i.e., the velocity signal, and the output bead height.  However, at the higher 

frequencies shown in Figure 3.16, a delay between the input and output signals appears at 

ω1 = 0.3 cycle/mm and grows with increasing frequency.   

 

 
Figure 3.15. Spatial domain plot of measured bead height and scaled inverse velocity for 

ω1 = 0.05 (top), 0.07 (middle), and 0.1 (bottom) cycles/mm. 
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Figure 3.16. Spatial domain plot of measured bead height and scaled inverse velocity for 

(from top) ω1 = 0.3 (first), 0.5 (second), 0.7 (third), and 1.0 (bottom) cycles/mm. 

 

 

Using a cross-correlation technique [Knapp 1976], the spatial delay between the 

scaled reciprocal velocity and the measured bead height is calculated as, 

 

      1

1
max d d

L

x mh x V x x
L



  


 
   

 
   (39) 

 

where Δx is the calculated spatial delay (mm) of the test frequency ω1, L is the total 

length of the measured deposit (mm), τ is a shifting parameter which ensures the best 

alignment of the two signals (mm), δhm is the measured bead height (mm), and dV is the 
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scaled reciprocal input signal.  Note, the spatial delay calculation on (39) does not depend 

on the magnitude of either signal.  The phase delay for each response is then calculated as 

 

  1 1360 x      (40) 

 

where ϕ is the calculated phase delay (deg) at frequency ω1.   

The spatial delays calculated for ω1 = 0.05, 0.1, 0.5, and 1.0 cycle/mm are used to 

identify the melt pool length and shifting parameters l and δ, respectively, for the LMD 

system described above.  The remaining calculated spatial delays are then used to 

validate the fit.  The data is fit using a similar method to that described in Sections 3.3 

and 3.4.  Figure 3.17 shows the measured phase as well as the phase response of the 

modeled in-layer shaping kernel Fs.  The melt pool length and shifting parameters for the 

system tested here were l = 1.13 mm and δ = -0.47 mm.  While these values are larger 

than those identified for the Optomec process, there are several possible reasons for the 

discrepancy including material and process parameter differences.  While the Optomec 

process parameters have been tuned specifically for the material used in those tests, the 

process parameters used for these test have not been optimized.   
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Figure 3.17. Phase plot of fitted convolution kernel fs and experimentally determined 

phase lag. 

 

 

Despite the differences explained above, examining the response in Figure 3.15, it 

can be observed that the phase of the modeled in-layer shaping kernel and the calculated 

phase delays agree well qualitatively with the phase response seen in the modeled 

processes in the previous subsection.  Additionally, by examining the spatial domain 

responses in Figures 3.15 and 3.16, it is clear that the in-layer process is governed by a 

dynamic process whose phase properties change drastically over the frequency range ω1 

= 0.1 to ω1 = 1 cycle/mm.  The spatial domain delay and the phase response serve to 

qualitatively validate the phase response seen in the modeled responses in Figures 3.13 

and 3.14. 
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3.6.2. Layer-to-Layer Qualitative Model Validation.  To validate the 

qualitative behavior of the two-dimensional LMD process model, an experimental multi-

layer deposition is compared to the corresponding simulation results.  Constant process 

parameters are used in both the simulated and actual deposition and a pocket is added to 

the substrate, 0.60 mm deep and 25.40 mm long, to emulate surface defects that might 

arise in LMD process builds.  The pocket and the substrate are shown in Figure 3.18 and 

the process parameters are given in Table 3.3.  The model parameters associated with 

Trial 2 are used for the simulation. 

 

 

 
Figure 3.18.  Photograph of pocket feature and substrate used in model validation. 

 

 

Table 3.3.  Process parameters for model validation. 

Process Parameter Value 

Laser Power, Q (W) 350 

Spatial Flow Rate, λ (kg/mm) 1.878×10
-5

 

Incremental Substrate Standoff Distance, δdS (mm) 0.381 

Part Standoff Distance, dP (mm) 11.396 

 

 

At the particular part standoff distance used in the validation build, the powder 

catchment efficiency decreases with respect to increasing part standoff distance, i.e., the 
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operating point is to the right of the maximum powder catchment efficiency in Figure 3.2.  

Because of this, the part of the deposition inside the pocket receives less powder than the 

part of the deposition that lies outside of the pocket.  This phenomenon can be seen in 

Figure 3.19 for both the simulated and experimental depositions.  The top pane in Figure 

3.19 shows the height of the simulated part at every second layer between j = 0 

(substrate) and j = 26 (top of the part) while the lower pane shows a photograph of the 

experimental deposition. 

 

 

    

 
Figure 3.19.  Simulation height signals for every second layer for j = 0 to j = 26 (top) and 

photograph of experimental deposition (bottom). 

 

0 10 20 30 40 50

0

2

4

6

8

10

Position (mm)

H
e

ig
h

t 
(m

m
)

j = 2

j = 0

j = 26

j = 24

j = 22

j = 14

j = 12

j = 10

j = 8

j = 16

j = 18

j = 20

j = 4

j = 6

25.4 mm

Substrate Pocket



58 

 

Initially, the difference between the powder catchment efficiency on top of the 

substrate and the powder catchment efficiency inside the pocket is relatively small, only a 

simulated 3.8% powder catchment efficiency difference.  However, because less powder 

is deposited inside the pocket, the difference grows in magnitude each layer resulting in 

the large U-shape seen in both the simulation and experimental results.  At the end of the 

deposit, the simulated difference between powder catchment efficiency between the 

tallest and lowest features is 11.8% and the low portions experience zero powder 

catchment efficiency.  The simulated layer-to-layer powder catchment efficiency history 

is shown in Figure 3.20 at every fourth layer starting at layer j = 1, i.e., the powder 

catchment efficiency for the first bead deposited on top of the substrate.  In normal 

operation, the substrate standoff distance dS is incremented by a constant amount δdS on 

each layer.  When an amount of powder injected into the melt pool on a given layer 

results in a bead height δh less than δdS, and the process is operating such that the powder 

catchment efficiency is decreasing with respect to increasing part standoff distance as in 

Figure 3.18, part standoff distance grows layer by layer.  This phenomenon is manifested 

in the rapid attenuation of the powder catchment efficiency at the middle of the simulated 

deposit seen in Figure 3.19.  Additionally, because no spatial flow rate is commanded at 

the very beginning and the very end of the simulated deposit, the bead height δh at those 

locations is much less than the layer-to-layer incremental substrate standoff distance, part 

standoff distance quickly grows layer by layer, and powder catchment efficiency rapidly 

attenuates. 
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Figure 3.20.  Simulated powder catchment efficiency for every fourth layer from j = 1 to j 

= 25. 

 

 

From a control theoretic standpoint, this behavior can be classified as unstable.  

Because this unstable behavior is propagated in the layer-to-layer domain, i.e., the U-

shaped defect grows in magnitude with each layer and not in the in-layer domain, and the 

LMD process model presented here describes both the layer-to-layer and in-layer 

dynamics, this unstable behavior can both be explained and predicted.  The validated 

model developed here provides a foundation for layer-to-layer feedback control and, 

ultimately, a control-based stabilization of LMD processes.  A stability analysis of AM 

processes and a methodology for closed-loop layer-to-layer control, along with an 

application to the LMD process, are presented in the following section.  
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4. OPEN-LOOP TWO-DIMENSIONAL PROCESS ANALYSIS 

In this section, the stability of the general LNL system is analyzed and the 

application of the analytical tools developed in this section to the LMD process is 

presented.  The section is organized as follows.  First, the problem setup and assumptions 

are given.  Then, conditions for the local stability of the general LNL system are given.  

Finally, the application to the LMD process is detailed. 

 

4.1. PROBLEM SETUP AND ASSUMPTIONS 

Consider the special case of the general LNL two-dimensional AM process 

description presented in Section I ((9) and shown schematically in Figure 1.3),  
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  (41) 

 

where again  ,x j    is the independent variable pair representing an in-layer 

position x and a layer j, 
ny  is the output vector, mu  is the input vector 

containing known disturbances and control inputs, and pυ  and 
rξ   are vectors of 

internal process states.  The following development assumes the following. 

 

A1) The static nonlinearity : p rf   is continuously differentiable  

A2) The matrix p nD  is constant and finite-valued 
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A3) The input partition gu is assumed to be a finite order polynomial in w
-1

, 

 

 1

0 1

M

Mg w w    T

Tu B B B   (42) 

 

 where p m

i

B  for i = 0, 1, …, MT. 

 

4.2. TWO-DIMENSIONAL STABILITY ANALYSIS 

For stability analysis and control design, it is desired to know how small 

perturbations to the input u affect the output y.  For the class of two-dimensional 

repetitive processes described by (41), the effect of perturbations is analyzed about an 

equilibrium point.   

 

Definition 4.1: An reference point,  , ,e e e u υ y , of (41) is the set of constant inputs 

signals and internal states  , ex j u u  and  , ex j υ υ  and initial conditions which 

yield constant outputs  , ex j y y  for  ,x j    . 

 

Consider the first-order Taylor series expansion about the reference point 

 , ,e e e u υ y , 

 

          , , , ,e e ef x j j f j D x j  υυ υ υ υ υ   (43) 

 

where  
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     
 ,

,
e

e
x j

D f x j



υ

υ υ
υ υ ,  (44) 

 

and    is the gradient operator.  Define the input, internal state, and output incremental 

variables, respectively, as,    , , ex j x j u u u ,    , , ex j x j υ υ υ , and 

   , , ex j x j y y y .  The linear approximation of the nonlinear repetitive process (41) 

evaluated at reference point gives the linear repetitive process S, 
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 (45) 

 

where the arguments of Dυ have been dropped for compactness.  The system S can be 

transformed to the (s,w)-domain as 

 

            1

2 2, , ,s w G s D g w s w G s D w s w υ u υY U D Y , (46) 

 

or      , , ,s w s w s wY G U , where,  

 

        
1

1

2 2,s w G s D w G s D g w


   υ υ u
G I D   (47) 

 

Theorem 4.1 (Open-Loop Stability):  The linear repetitive process (45) is stable along the 

pass if G2(s) is asymptotically stable and, 
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  2 1G s D

υD   (48) 

 

Furthermore, for the single output system, n = 1, (48) is necessary for stability. 

 

Proof:  From (7) and (8), the interpass operators for the linear repetitive process (15) are 

given by 
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L D
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  (49) 

 

Condition (a) of Theorem 1 is satisfied by asymptotic stability of G2(s).  Conditions (b) 

and (c) of Theorem 1 are satisfied by (48) because the spectral radius is bounded by 

   2 1G s D


 υD , with equality in the case of scalar systems, or n = 1.  Thus, the 

result follows by Theorem 1. ■ 

 

Remark 4.1:  The continuous differentiability of f, i.e., Dυ is bounded, and the 

boundedness of D ensures only G2 determines in-layer stability of the process. 

 

Remark 4.2:  Analogous to (7), the operator G2(s)DυD describes the how output 

information is propagated from  the single previous layers to the current layer.  In 

addition to spatial domain information, it also describes the propagation of frequency 

content from the single previous output y(x,j – 1) to the current layer y(x,j).  When 

G2(s)DυD attenuates content of y(x,j–1) at each frequency, layer domain asymptotic 

stability is achieved.   
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Remark 4.3:  From Theorem 2 and the concept regarding stability along the pass 

described in Remark 6, it can be observed that a stable along the pass linear repetitive 

process will have final value  1, 0i w Y  only in the case when    1 1,i w i U U  

where  1iU  is the in-layer frequency content of the input signal.  Additionally, signals 

of the form      
1

1

1 1, 1i w w i 


 U U  (layer domain step inputs) result in non-zero, 

but finite final value.  This scenario is analogous to a conventional one-dimensional Type 

0 system.  The same terminology is used here. 

 

4.3. APPLICATION TO LMD 

In order to analyze stability of the LMD process, it is necessary to establish the 

proper frame of reference.  The height of the part, for instance, is intended to increase 

with each deposited layer and therefore, a more relevant frame for stability analysis is 

one that moves with the nozzle.  In typical process operation, the nozzle is incremented 

each layer by the thickness of a layer (as determined by the CAM software).  The growth 

of the part height on that layer is then expected to increase by the same amount.  Thus, in 

stable operation, it is expected the distance from the nozzle to the part, 

 

      , , , 1P Sd x j d x j h x j     (50) 

 

where dS is the height of the nozzle above the substrate (mm) and h is the part height 

(mm), to be bounded.  Recall from Section 2.4 that the process dynamics are given by, 
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               1, , , 1 , , 1S s rh x j b f d x j h x j x j f x h x j f x          (51) 

 

where λ is the spatial flow rate (kg/mm), b is the melt pool characteristic width (mm), ς is 

the material specific volume (mm
3
/g), and the functions fs, fμ, and fr are given in (22), 

(20), and (27), respectively. 

In the following, the well-tuned commercial LMD process described by the model 

parameters for Trial 2, listed in Table 4.1, is used. 

 

 

Table 4.1.  Open-Loop LMD Process Parameters. 

Parameter Value 

Characteristic Melt Pool Length, l0 (mm) 0.61 

Characteristic Melt Shift, δ (mm) -0.01 

Re-Melt Characteristic Length, lr (mm) 1.21 

Maximum Powder Catchment, αmax (%) 16.04 

Location of Powder Catchment Maximum, dmax (mm) 10.57 

Powder Catchment Width, αwidth (mm) 2.04 

Material Specific Volume, ς (mm
3
/g) 1.25×10

2
 

Characteristic Bead Width, b0 (mm) 0.84 

Spatial Flow Rate Reference Point, λe (g/mm) 1.26×10
-2

 

Part Standoff Reference Point, dP,e (mm) 10.47 

Layer-to-Layer Substrate Standoff Change, δdS (mm) 0.30 

Bead Height Reference Point, δhe (mm) 0.30 

 

 

Consider the open-loop process references  , ex j  , where λe is a selected 

constant spatial flow rate and   ,0,S S Sd x j d j d  , where dS,0 is the constant initial 

nozzle offset and δdS is the constant layer to layer increment in dS.  Rewriting (50) with 

(51) gives 
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               1, , , 1 , 1 , 2P S P s rd x j d x j b f d x j x j f x h x j f x          (52) 

 

Recall that fr has a DC gain of unity (according to (27), but also ensured by the law of 

conservation of mass).  Therefore, 

 

          ,0 ,0, ,r S r S S S S Sf x d x j f x d j d d j d d x j          (53) 

 

Using (50), (53), and dS given above, (52) can be written as, 

 

              1, , 1 , 1 , 1P P s S P rd x j b f d x j x j f x d d x j f x            (54) 

 

or in the form of (41) where, 
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The reference points for the LMD process under constant spatial flow rate λe and layer to 

layer change in standoff distance δdS are, solutions of 

 

  ,
S

P e

e

b d
f d



 
 . (58) 

 

The solutions of (58) can be considered in three cases as follows. 

Case I (Large Layer Increments): When αmax < S

e

b d

 
, no reference points exist.  In this 

case, the layer to layer increment distance δdS is too large for spatial flow rate λe.  That is, 

the amount of powder captured by the melt pool is not enough to produce the necessary 

growth in part height to match the layer to layer change in substrate standoff distance. 

 

Case II (Maximum Efficiency):  When αmax = S

e

b d

 
, one reference solution exists, which 

is given by dP,e = dmax.  In this case, the layer to layer increment δdS can only be matched 

by part height growth when the part standoff distance is set at the most efficient location.   

 

Case III (Low Efficiency):  When αmax > S

e

b d

 
, two reference solutions exist, which are 

given by, , ln S
P e max width

e max

b d
d d




 

 
    

 
 and , ln S

P e max width

e max

b d
d d




 

 
    

 
.   

 

Linearizing f about a reference point, i.e., Case II or III above, yields, 



68 

 

 

    1 2

0 1
D j

  
  
 

υ
υ   (59) 

 

where, 
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 (60) 

 

Theorem 4.2:  The LMD process is locally open-loop stable along the pass if, and only if, 

 

    
1

1 2 1sup 1r sF i F i


      (61) 

 

Proof:  From Part I of this paper, fs and fr are constrained by conservation of mass such 

that, 
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and are of finite support which implies G2 is asymptotically stable.  The linear interpass 

operators are 
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Application of Theorem 2 gives the result. ■ 

 

Lemma 1:  Let S
max

e

b d


 
  and 1S

max

width

d
d




 .  A necessary condition for LMD process 

stability is, 

 

 
,0 P e maxd d  .  (64) 

 

Proof:  From (58) and (60), κ2 > 0 when (64) is true.  Further, 
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Conservation of mass implies that at DC, Fr = Fs = 1 and thus (61) only holds for 0 < κ2 < 

2. ■ 
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In typical practical applications, the upper stability bound on κ2 is not achieved.  The 

LMD process described by the model parameters in Table 1, the functions (20) and (27), 

κ2 = 4.809×10
-3

, and dP,e = 10.47 mm, is locally stable along the pass. 

 

Remark 4.3:  Physically, Theorem 4 indicates that the shape of the powder flow out of the 

cladding head is extremely important for process stability as κ2 is explicitly a function of 

and proportional to the powder catchment efficiency and its slope.  Specifically, for open-

loop stability it is necessary to have positive slope, or increasing catchment efficiency at 

increasing standoff distance.  Therefore, it is not possible to stably operate the process at 

the location of maximum catchment efficiency, where the slope is zero.  Thus, stabilizing 

process control is necessary for maximum powder catchment efficiency, or minimum 

powder loss, in LMD processes.   

 

Remark 4.4: For typical (open-loop) build applications with the commercial system on 

which the process was identified, the nominal part standoff distance is set to dP = 9.53 

mm (marked with point A in Figure 4.1), corresponding to a catchment efficiency of μ = 

0.12.  This nominal standoff distance was determined to produce satisfactory structures 

through extensive trial and error.  However, Theorem 4 provides a theoretical explanation 

of the resulting build at that operating point - it lies well within the open-loop stable 

region (κ2 = 5.184×10
-2

).  Although dP = 9.53 mm is a stable part standoff distance, the 

catchment efficiency at this standoff distance is only 75% that of the maximum 

catchment efficiency (marked with point B in Figure 4.1) indicating an efficiency 

improvement can be made. 
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Figure 4.1.  Schematic of the powder catchment efficiency function showing a stable part 

standoff distance (A) and the along the pass unstable maximum powder catchment 

efficiency (B). 

 

 

Influence of Powder Catchment Efficiency on Layer-to-Layer Stability.  For a 

physical interpretation of the stability criteria in (61), consider a structure whose top 

surface has a notch feature and a powder catchment function which follows the 

experimentally identified Gaussian shape as illustrated in Figure 3.2 and given by (22). 

In typical LMD processes, the layer-to-layer change in the substrate standoff 

distance δdS is a constant amount for each layer based on knowledge of the bead height 

δh for a given set of process parameters.  If the part standoff distance dP,0 is initially set 

such that the melt pool forms in Region A (upper pane in Figure 4.2), the linearization 

constant κ2 in (60) which is proportional to the rate of change of powder catchment 

efficiency with respect to part standoff distance, is positive.  That is, the powder 
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catchment efficiency is increasing with respect to increasing part standoff distance.  In 

this case, the depth of the notch feature will reduce because the powder catchment 

efficiency is inversely proportional to feature height.   

 

 

 

Figure 4.2.  Schematic of deposition process around a stable part standoff distance 

(Region A, top) and around an unstable part standoff distance (Region B, bottom). 

 

 

When the substrate standoff distance is incremented a constant amount, the melt 

pool again forms in Region A, further reducing the depth of the notch feature.  If the 

multi-layer deposition is continued without operator intervention when the melt pool lies 

in Region A, evidence of the notch will continue to attenuate from layer to layer until a 

constant part height is achieved, as illustrated by the layer-domain schematic on the right 

hand side of the top pane in Figure 4.2. 
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Alternatively, if the part standoff distance dP,0 is initially set such the the melt 

pool forms in Region B (lower pane in Figure 4.2), the linearization constant κ2 is 

negative.  That is, the powder catchment efficiency is decreasing with respect to 

increasing part standoff distance.  Incrementing the substrate standoff distance a constant 

amount and repeating the deposition process with the part standoff distance such that the 

melt pool lies in Region B further amplifies the notch feature.  Without operator 

intervention, the layer-to-layer growth will eventually lead to catastrophic defects in the 

deposition, as illustrated in the lower pane in Figure 4.2. 

 

4.4. PROCESS STABILITY MAPS 

While closed-loop process control is desired, in its absence, a potentially useful 

tool for operators is a map of the process space clearly denoting which regions will lead 

to layer-to-layer instability and which regions will yield a layer-to-layer stable build.  In 

this section, a process map generated from the DC-gain properties of Fs and Fr is 

presented.  In typical applications when uniform height structures are desired, the map, 

termed the DC process map, is adequate for determining processing parameters which 

will result in a stable build.  However, because the DC process map is generated by 

neglecting the in-layer dynamics, a more detailed map may be needed in the case when 

several operating points are used throughout a build. 

DC Process Map.  From the frequency domain properties of the process kernels fs 

and fr given in Section 3.5, at DC, i.e., ω1 ≈ 0, both kernels are real-valued and unit gain 

regardless of the values of the kernel parameters l, δ, and lr, 
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.  (66) 

 

Thus, the two-dimensional model (54) at DC, again regardless of the kernel parameter 

values, is written as 

 

 
        1 1 1 1P P S Pd j b f d j j d d j        

  (67) 

 

where the explicit dependence on position is dropped as the in-layer component of the 

process is static.  Denote the incremental variables (as in Section 4.2) as   and Pd .  The 

linearized representation of (67) is 

 

        2 11 1 1P Pd j d j j         (68) 

 

where κ1 and κ2 are defined as in (60).   

Of note is that (68) is a dynamic equation purely in the discrete domain j, i.e., the 

current part standoff distance is the previous part standoff distance plus an input.  Thus, 

(68) is analogous to a scalar discrete time dynamic equation.  Therefore, instead of 

applying the criterion in (61), here conventional discrete time results are used to 

determine the DC LMD process stability criterion. 

 

Theorem 4.3 (DC Stability Criterion):  The DC LMD process in (68) is locally layer-to-

layer stable if 
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21 1  .  (69) 

 

Proof:  Application of the w-transform to (68) gives 
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where PD  is the w-domain representation of Pd  and   is the w-domain representation of 

 .  Application of discrete time system stability results to (70) gives the result.  ■ 

 

Note that while (69) requires both that 0 < κ2 < 2, in practice |κ2| < 1 due in large 

part to the physically limited amount of powder that can be captured by the melt pool.  

An order of magnitude analysis indicates that spatial flow rate must exceed roughly λ = 

1×10
-3

 kg/mm in order to achieve the upper stability bound on κ2.  Process parameter 

combinations needed to achieve this spatial flow rate are not typical of LMD operations 

where spatial flow rates are on the order of λ = 1×10
-5

 kg/mm. 

A map generated from (69), while only valid near a defined operating point, 

allows operators to quickly determine valid sets of constant process parameters which 

yield stable layer-to-layer LMD fabrications without laborious trial and error.  Noting the 

inputs required to calculate κ2 in (60), i.e., dP and λ, a range of part standoff distances and 

spatial flow rates are chosen which cover a relatively broad range of the process space.  

These ranges of input values are used to calculate κ2 and subsequently |1 – κ2|.  The 
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resulting values are plotted with respect to the part standoff distances and spatial flow 

rates.  The model parameters identified for the Optomec MR-7 system using 316 

Stainless Steel, given in Table 4.1, are used in the subsequent simulation study.  Values 

of spatial flow rate from λ = 1×10
-6

 kg/mm to 1×10
-3

 kg/mm and part standoff distance 

between dP = 2 mm and 14 mm were used to calculate the stability criterion.   

The resulting process map is shown in Figure 4.3.  The shaded regions labeled 

“Unstable Region” indicate areas where the DC stability criterion is violated, |1 – κ2| ≥ 1.  

The contour lines in Figure 4.3 correspond to constant levels of |1 – κ2|.  From a 

mathematic standpoint, the value of (1 – κ2) is the common ratio of a geometric series 

which dictates the convergence rate of the series.  Additionally, from Theorem 4.3, (1 – 

κ2) is the pole location of the first order linear system in (68).  Both indicate that 

magnitudes closer to zero yield a faster convergence rate or response time to the origin 

and magnitudes closer to one yield a slower convergence rate or response time to the 

origin.  However, because the pole location itself does not convey explicit information 

about the system response, the response is quantified using the system setting time.  

Therefore, the numeric values shown on the contours in Figure 4.3 represent the layer-to-

layer time settling time, 
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  (71) 
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where n is the integer number of layers required to recover to within approximately 2% 

of the height reference, i.e., for the system in (68) to return to the origin, and     denotes 

the ceiling function. 

 

 

 

Figure 4.3.  Layer-to-layer stability process map for process parameters given in Table 

4.1. 

 

 

Clearly, there is a very sharp boundary between the right hand Unstable Region 

and the stable region.  This line indicates the part standoff distance dmax when the slope of 

the powder catchment efficiency is zero.  The right hand side of this boundary 

corresponds to a negative powder catchment efficiency slope and the left hand side 

corresponds to a positive powder catchment efficiency slope.  The second Unstable 
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Region, located at the top of the process map, corresponds to values of κ2 > 2.  As stated 

previously, this region is largely an area of infeasible combinations of process inputs.   

An interesting phenomenon arises by examining the contours around the part 

standoff distance dP = 9.5 mm.  In this region, the gradient of the contours with respect to 

part standoff distance is approximately zero.  When a specific settling time is desired, this 

area of the process parameter space is the most robust to changes in part standoff 

distance.  As part standoff distance increases or decreases, it is more difficult to maintain 

a specific settling time due to the sensitivity of the contours in these locations.  Further, it 

is observed that the settling time decreases steadily with increasing spatial flow rate until 

an inflection point in the map is reached.  After which, the settling time increases 

extremely rapidly and the map enters the unstable region around 6×10
-4 

kg/mm. 
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5. TWO-DIMENSIONAL LAYER-TO-LAYER FEEDBACK CONTROL 

In this section, details pertaining to pure feedback control and to combination 

feedback/feedforward control design are given.  In LMD, it is sufficient to control part 

height, h, with spatial flow rate, λ.  Therefore, the Single-Input Single-Output (SISO, n = 

m = 1) case is considered here.  Extensions of the details given below to Multiple-Input 

Multiple-Output systems are omitted here for compactness of presentation.  However, 

these extensions are straightforward. 

 

5.1. LAYER-TO-LAYER FEEDBACK CONTROL 

Consider the two-dimensional feedback loop shown in Figure 5.1 where C(s,w) is 

a to-be-designed layer-to-layer controller.  In LMD processes, it is desired to deposit a 

uniform bead height on each layer.  This scenario is best described by a layer-to-layer 

ramp reference signal.  From Remark 4.3, a stable SISO linear repetitive process is 

termed a Type 0 system and application of Theorem 2 reveals that the final value of this 

scenario does not exist.  Therefore, in order to track ramp references, which contain two 

pure layer-to-layer integrators, at least one layer-to-layer integrator must be placed in the 

forward loop of the closed loop.  Thus, consider the layer-to-layer controller is of the 

form  
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where 
kα

α , kβ
β , and K are the controller parameters and are rational transfer functions in 

s.  Define the incremental tracking error as 

 

      , , ,x j x j x j e r y   (73) 

 

where    , , ex j x j r r y  is the layer-to-layer incremental reference signal and  ,x jr  

is the layer-to-layer reference.  The input to the compensator C is the two-dimensional 

frequency domain representation of the incremental tracking error, 

    , ,s w x jE e  and the output is  ,s wU . 

 

 

 
Figure 5.1.  Two-dimensional (s,w)-domain block diagram of general linearized AM 

process with feedback control. 

 

 

The closed-loop equation is, 
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where the closed-loop interpass operators (6) are denoted as 
 ,CLkLL  for kL,CL = 1, …, 

ML,CL and 
 ,CLkTT  for kT,CL = 1, …, MT,CL.  This procedure provides guidelines, based on 

Theorem 1.1, for designing a stabilizing layer-to-layer SISO controller. 

 

A Pole Placement Procedure.  As stated above, the procedure presented in this 

subsection leverages Theorem 1.1 to design a stabilizing layer-to-layer feedback 

controller.  The procedure is as follows. 

 

1. Select a desired two-dimensional compensator structure C (e.g., Select a desired 

two-dimensional compensator structure C (e.g., desired number of denominator 

and numerator parameters, Mα and Mβ, respectively). 

2. Let   
,

,
, , , 1

1

CL

CL
CL

M

d d k d
k

i 


 
L

L

η η  be a set of ML,CL desired interpass matrix ((7) 

and (8)) eigenvalues, each as a function of in-layer frequency ω1, which satisfy 

the requirements for stability along the pass in Theorem 1. 

3. Compute the desired layer-to-layer operators 
 CLk

dL  corresponding the set of 

eigenvalues, 
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     L L   (75) 

 

4. Equate like coefficients of (75) and the closed-loop operators in (74) to determine 

the controller layer-to-layer parameters 
kα

α , kβ
β , and K.  
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Remark 5.1:  There are at least two possible methods for calculating an implementable 

control signal u(x,j) as the output of the compensator C.  The first is achieved by finding 

or fitting closed-form expressions for each compensator parameters 
kα

α , kβ
β , and K. and 

applying the inverse Laplace transform to obtain a differential equation with respect to x 

for u(x,j).  To employ this first method, the transfer function representations need to be 

realizable which requires they be at least proper.  This condition is not true in general, as 

the controller pole, gain, and zero are calculated using the process filters and the possibly 

frequency dependent closed-loop characteristic equation coefficients.  However, in 

certain cases, with the careful selection of the desired closed-loop equation, the 

compensator parameters can be shown to be proper.  The second method requires the 

compensator parameters and the measured signals u  and e  be converted into the 

discrete in-layer frequency domain using the forward Fourier transform.  The 

implementable control signal is then acquired using the inverse Fourier transform.  This 

second method for implementation – using the forward and inverse Fourier transforms – 

is preferred as it allows for more design freedom in that each parameter of the 

compensator is always realizable.  An explicit formula for an implementable control 

signal is given in the next subsection. 

 

5.2. APPLICATION TO THE LMD PROCESS 

Layer-to-Layer Feedback Control.  The control problem formulated here is that of 

a tracking problem where the controller input is the error between the actual incremental 

part standoff distance and the desired incremental part standoff distance  ,x je .  The 

linear, spatially-invariant repetitive process description is then 
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with 
       1

2r ss F s F s L  and        0

1, ss w s F s T T .  In order to track part 

standoff distance references with zero error, a layer-to-layer integrator is needed in the 

forward loop of the closed-loop.  Therefore, the compensator used here is of the form in 

(72) with Mα = 2, Mβ = 2, β1 = 0, and α1 and β2 are design parameters, 
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Following the development in Section III.A and the Pole Placement Procedure, the 

compensator parameters are determined by first selecting a set of stable, desired closed-

loop interpass matrix eigenvalues.  A set of eigenvalues which exhibit near deadbeat 

response in the layer domain is 

3 3 3
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clearly satisfy Theorem 3 and the desired layer-to-layer operators are 
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Equating like coefficients gives the compensator parameters, in terms of the process 

dynamics, 
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The closed-loop LMD process description can be written in the form of (1) as 
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k

x j x j k x j x j


     y L y T r T r   (80) 

 

with 
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In the following simulation result, the control law is implemented using the second 

method described in the previous section.  That is, the previous two error signals 

 , 1x j e  and  , 2x j e  are converted to the frequency domain using the forward 

Fourier transform, the frequency domain control signal is calculated via the compensator 
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and compensator parameters in (77) and (79) and the spatial domain signal is calculated 

using the inverse Fourier transform to yield  ,x j .   

Open- and Closed-Loop Simulation.  Two sets of simulations are presented in this 

section: an open- and closed-loop simulation showing a uniform height deposition and an 

open- and closed-loop simulation showing the sensitivity of the open-loop process to 

small initial features at maximum process efficiency.   

For the first simulation scenario, the goal is to build a thin-walled structure (i.e., 

one bead in width) of uniform height starting at xs = 0 mm and ending at xe = 50 mm in 

increments of δdS = 0.3 mm at a desired part standoff of dP,0 = 10.47 mm with a final part 

height of 15 mm. The build reference is 

 

      , 1r x j j x    (82) 

 

where r is the two-dimensional part height reference (mm) and ξ is the in-layer reference 

height profile (mm), 

 

       rect ,S ref s ex d f x x x     (83) 

 

and  

  
1 1 1

0 otherwise
ref

x x
f x

    
 


  (84) 
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   1 2

1 2

1
rect ,

0 otherwise

x x x
x x

 
 


.  (85) 

 

While the open-loop process solution trajectory is stable, the performance is not 

desirable for uniform structure builds.  This is demonstrated by the height signals 

resulting from the open-loop nonlinear simulation shown in Figure 5.2.   

 

 

 
Figure 5.2.  Height h and reference r signals at j = 0, 1, 2, 3, 4, 5, 10, 30, and 50 for open-

loop (λe = 1.26×10
-2

 g/mm) simulation of Scenario 1. 
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For each layer, constant spatial flow rate λe = 1.26×10
-2

 g/mm is commanded to 

start at xs = 0 and end at xe = 50 mm.  The substrate standoff distance is incremented by 

δdS each layer with an initial standoff equal to dP,0.  As the part height increases, the wall 

narrows due to both the re-melt dynamics fr and the exponential decay of the catchment 

in the vertical direction near the beginning and end of the deposition. 

The simulated height signals with control applied at layers j = 0, 1, 2, 3, 4, 5, 10, 

30, and 50, as well as the corresponding reference signals, are shown in Figure 5.3.   

 

 

 
Figure 5.3.  Height h and reference r signals at j = 0, 1, 2, 3, 4, 5, 10, 30, and 50 for 

closed-loop control simulation of Scenario 1. 
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Because the process is purely additive and negative control action indicates 

material removal, the control signals shown in Figure 5.4 are lower saturated at zero.  The 

control signals are not upper saturated.   

 

 

 
Figure 5.4.  Spatial flow rate λ signals at layers j = 0, 1, 2, 3, 4, 5, 10, 30, and 50 for 

open-loop and closed-loop control simulation of Scenario 1. 
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The controller, which is designed for the linear system and provides constant catchment 

everywhere along the track, commands a large spatial flow rate in an attempt to deposit 

material in a location that is not feasible in the physical process. 

As the layer index increases, the open-loop system has a constant error of 

approximately 0.30 mm between xs = 0 and xe = 50 mm while the tails of the deposit, 

those areas near the beginning and end of the commanded deposition, increase and reach 

a maximum of 10.90 mm at the beginning of the deposit by j = 50.  Alternatively, the 

closed-loop system error decays to an error of approximately 0.03 mm between xs = 0 and 

xe = 50 mm by layer j = 3 and e = 2.20×10
-7

 mm when j = 50 with smaller tails – a 

maximum of 7.20 mm at the beginning of the deposit when j = 50.  Error still exists at the 

tails of the closed-loop deposition for two reasons.  First, because the compensator is 

designed with only a single layer-to-layer integrator, the steady-state in-layer error is 

finite, but non-zero, when fabricating layers of constant height.  Secondly, because the 

compensator is designed based on the linearized process, negative control signals are 

sometimes generated.  Since negative control corresponds to a negative spatial flow rate, 

or alternatively a positive material removal rate, and the LMD process is purely additive, 

these control signals are not feasible.  Therefore, because the closed-loop layer-to-layer 

dynamics contain some overshoot, and the closed-loop nonlinear process contains effects 

not accounted for in the compensator design, over build at the edges remains, and 

possibly grows, as it cannot be removed with the additive process. 

As demonstrated in Section 3.6.2, the open-loop process is sensitive to substrate 

features, e.g. Figure 3.19.  In the second scenario, a tall feature is built over a pocket of 
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depth 0.60 mm, twice that of the desired bead height δdS, and 25 mm long below the 

zero-datum of the to-be-deposited feature.  The initial part standoff distance profile is 

 

       ,,0 2 rect 12.5,37.5P P e S refd x d d f x     (86) 

 

and the reference signal is 

 

      ,, S P er x j j d x d      (87) 

 

where ξ is given in (83) 

 

       rect ,S ref s ex d f x x x     (88) 

 

and  

  
1 1 1

0 otherwise
ref

x x
f x

    
 


  (89) 

 

   1 2

1 2

1
rect ,

0 otherwise

x x x
x x

 
 


.  (90) 

 

Using the relationship (50), Figure 5.5 shows the resulting open-loop simulation 

height signals at layers j = 0, 1, 2, 3, 4, 5, 10, 30, and 50.   For each layer, constant spatial 

flow rate λe = 1.26×10
-2

 g/mm is commanded to start at xs = 0 and end at xe = 50 mm.   
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Figure 5.5.  Height h and reference r signals at j = 0, 1, 2, 3, 4, 5, 10, 30, and 50 for open-

loop (λ0 = 1.26×10
-2

 g/mm) simulation of Scenario 2.  
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magnified by a factor of 14.8.  The actual open-loop process would not be allowed to 

continue as far as layer j = 50 and operator intervention would be required to choose 

different operating conditions such that the small initial height defect does not continue to 

grow. 

Alternatively, using the designed controller, the closed-loop system shows little 

sensitivity to the small height defect on the initial layer and tracks the uniform part 

standoff distance reference prescribed by (87).  By layer j = 3, the defect no longer affects 

the remaining deposition.  The closed-loop height and reference signals at layers j = 0, 1, 

2, 3, 4, 5, 10, 30, and 50 are shown in Figure 5.6.  The controlled deposition exhibits 

significant improvement over the open-loop deposition with an error of 2.03×10
-7 

mm at 

x = 25 mm.  However, some error still exists on the side of the depositions.  This 

phenomena is mainly attributable to both the locally linear nature of the model from 

which the controller was synthesized and the redistribution of material in the physical 

process.  A secondary cause of this effect lies in the fact that the forward loop of the 

process only contains a single layer-to-layer integrator while the reference is a ramp 

signal.  Therefore, non-zero steady state error is expected. 
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Figure 5.6.  Height h and reference r signals at j = 0, 1, 2, 3, 4, 5, 10, 30, and 50 for 

closed-loop control of Scenario 2. 
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Figure 5.7.  Spatial flow rate λ signals at layers j = 0, 1, 2, 3, 4, 5, 10, 30, and 50 for 

open-loop and closed-loop control simulation of Scenario 2. 
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6. TWO-DIMENSIONAL LAYER-TO-LAYER FEEDFORWARD/FEEDBACK 

CONTROL 

Consider now the two-dimensional block diagram shown in Figure 6.1.  For the 

feedforward/feedback layer-to-layer control, model predictive control (MPC) is used.  In 

MPC, a model of the plant, the “Estimator” in Figure 6.1, is used to predict future values 

of the output.  Then, an optimization problem is solved to minimize a cost function.  The 

output of the optimization is then the control action to be applied to the actual plant.  The 

resulting measurement of the plant is then used as an initial condition for the “Estimator” 

and the loop is closed. 

 

 

 

Figure 6.1.  Two-dimensional block diagram for combination feedforward/feedback 

layer-to-layer control. 
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x j x j
f x j
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  
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y u

y

υ υ
υ

υ b
  (91) 

 

where ϑ1 is a static nonlinear function and b is a constant. 

 

6.1. FEEDBACK LINEARIZATION  

The repetitive process in (41) is nonlinear in the internal states υ as they appear as 

an argument to the static nonlinearity.  In order to make the control design methodology 

more tractable, it is advantageous to have a linear repetitive process.  Instead of 

attempting to linearize the entire model, the notion of feedback linearization is used to 

transform the original nonlinear system description into a linear form.   

 

Definition 6.1:  The static nonlinearity in (91) is said to be feedback linearized if there 

exists a set of inputs of the form          1 2, , , ,x j x j x j x j u y yυ φ υ φ υ ν  such that 

the static nonlinearity f can be written as 

 

   
 

 

,
,

,

x j
f x j

x j

 
  

 y

Hν
υ

υ b
  (92) 

 

where p mH  is a constant matrix and ν is an auxiliary internal state.  Individual 

elements of H are referenced as ηik where a is element in the i
th

 row and k
th

 column of H. 
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Suppose there exists an input signal υ2 such that the static nonlinearity in (41) is feedback 

linearized.  Then, the feedback linearized two-dimensional process is given as 

 

    
 

 2

,
,

,

x j
x j G s

x j

 
  

 y

Hν
y

υ b
. (93) 

 

6.2. LIFTED REPRESENTATION AND ERROR DYNAMICS 

In operation of AM processes, and specifically the LMD process, the in-layer 

domain is finite.  On each layer, the process is commanded to begin at a starting location 

xs and finish at an ending location xe.  This property of the operation of AM process 

allows the transformation of the two-dimensional feedback linearized process (93) into an 

equivalent multiple input, multiple output (MIMO) one-dimensional system.  In order to 

consider the system in (93) as a finite dimensional MIMO system, let the in-layer domain 

be discretized as x = kΔx, where k is the sample index and Δx is the spatial sampling 

period (mm).  Suppose the spatial domain has support on the interval  ,k N N   where 

N  .  Then, after discretization and partitioning the in-layer dynamic operator 

     2 21 22G z g z g z    , the linearized process is 

 

           21 22, , , 1k j g z k j g z k j   y Hν Dy b .  (94) 

 

where the in-layer linear dynamic operator has been discretized and z is the in-layer shift 

operator    , 1,z k j k j y y .  Using a lifted representation [Bristow 2006], the spatially 
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discrete two-dimensional system (94) can be converted into a MIMO system.  Define the 

lifted vectors 

 

 
     
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2 1

2 1
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Ν ν ν ν

Y y y y

,  (95) 

 

the lifted constant static terms H , D , and b   
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  (96) 

 

where diag(•) places the arguments along the main diagonal of an appropriately sized 

matrix with zeros everywhere off of the main diagonal, and the lifted representations of 

the partitions of G2, as 
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Finally, defining 21
H

G g H  and 
22YG g D , re-writing (94) in the lifted representation 

gives, 

 

 
1j j j  H YY G N G Y b   (98) 

 

and is an equivalent MIMO discrete system of (94).  In order to ensure offset-free 

tracking and to reject layer-to-layer disturbances, integral action is desired.  Following 

[Pannocchia 2005, Maeder 2009], integral action can be incorporated by penalizing the 

incremental output.  Therefore, define the incremental lifted input and output as 

1j j j  N N N  and 1j j j  Y Y Y , respectively.  Combining the two terms in (98) 

and forming the incremental lifted dynamics gives, 

 

 1j j j    
H Y

Y G N G Y   (99) 

 

As in Section 5.1, let r be a layer-to-layer reference signal.  The lifted representation of r 

is denoted as R and is formed as in (95).  The layer-to-layer tracking error again is Ej = 

Yj – Rj.  The tracking error dynamics are then 

 

 1 1j j j j j      
H Y

E E G N G Y ΔR   (100) 

 

Compactly, (99) and (100) are 
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6.3. REPETITIVE PROCESS MODEL PREDICTIVE CONTROL 

In AM process fabrications, the total number of layers to build is typically large, 

but is always finite.  Further, the class of disturbances or references in the lifted 

framework presented above for AM processes generally does not admit a tractable 

generating autonomous exosystem, e.g., a simple ramp or sinusoidal layer-to-layer 

reference.  Therefore, it is not feasible to design an optimal controller that attempts to 

predict the entire build sequence, nor is it appropriate to use an infinite-horizon optimal 

controller with an internal model for tracking performance.  Here, a model predictive-

type optimal controller based on the repetitive process model (101) is developed to 

control AM processes.  Let the cost functional be quadratic, 
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
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ε

ε
x Qx U SU   (102) 

 

where |j NV
ε
 is the cost associated with prediction from the current layer j to the prediction 

horizon Nε, Qf, Q, and S are positive semi-definite, symmetric weighting error matrices 

on the final prediction errors, the intermediate layer errors, and the control action, 

respectively.  Input constraints are imposed in order to ensure physically realizable 

control signals are generated from the optimization of (102), 

 

 1 ,  1, ,j i i N    εMU b   (103) 
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where M is a constant matrix and b is a constant vector.  Here, as is typical with model 

predictive schemes, only the first control signal, 
*

1jU , from the computed optimal control 

sequence is applied to the system.   

 

Remark 6.1:  The closed-loop operation of the finite horizon optimal control process is as 

follows.  The optimal control signal 
*

1jU , which is the entire current layer control 

sequence, is applied to the system.  After the control signal is implemented, the process 

output Yj is measured and the tracking error εj is calculated.  The current measured 

tracking error is then used to calculate again the optimal control signal to be applied to 

the system.  The optimization procedure is carried out between layers. 

 

Remark 6.2: The computational cost of the finite horizon optimal control formulation 

presented varies significantly with the number of states in the system and the sampling 

rate chosen over the in-layer interval.  Because the optimization is carried out between 

layers, the calculation speed is not of supreme importance and it may be possible to 

reduce the computational burden by leveraging the structure of the matrices in (97).  

Here, however, no further investigation into the computational requirements or cost is 

made. 

 

6.4. APPLICATION TO THE LMD PROCESS 

Recall the general LMD process model given in (41) and the operator specific to 

the LMD process given in (55)-(57).  The nonlinearity is written as 
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where      1

1 , , 1Px j b f d x j   yυ  and 
Sdb . 

In LMD processes, it is typical to have very good knowledge of the powder 

catchment efficiency function fμ as its structure is typically known and is easily 

measureable [Sammons 2015].  Therefore, a feedback linearizing set of inputs  ,x juυ  

for the LMD process model is  
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x j x j
b f d x j
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uυ ν   (105) 

 

where μD is a tuning parameter.  The two-dimensional LMD process description is then 

written as (93) with H = μD and is 

 

           , , , 1P D s P S rd x j x j f x d x j d f x      ν . (106) 

 

As stated above in Section 5.2.2, the LMD process in-layer domain is finite.  

Thus, let the in-layer domain be discretized as x = kΔx and the spatial domain have finite 

support on the interval  ,k N N   where N  .  The discretized feedback linearized 

process is then, 
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           , , , 1P s D r P Sd k j F z k j F z d k j d      .  (107) 

 

where g21 = Fs and g22 = Fr in (94).  With the lifted vectors defined in (95) and operators 

H , b , D , g21, and g22 defined in (96) and (97) are 
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the lifted representation, with GH and GY defined in Section 6.2, is 

 

 1j j j  H YY G Ν G Y b . (109) 

 

The error dynamics are defined as in (100) and the augmented lifted system is given in 

(101). 

 

Remark 6.3: The matrices g21 and g22 in (108) are given as square matrices.  Because they 

represent convolution operations, edge effects may occur.  To help minimize those 

effects, the output vector Y can be defined over a longer interval than the control signals 

N.  In doing so, any transients are allowed to go to zero and therefore not be propagated 

between layers.  In this case, g21 and g22 would be non-square.  
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Open- and Closed-Loop Simulation.  As before, the system used is the Optomec 

MR-7 LENS system.  The model parameters are given in Table 4.1.  In each of the 

following simulation scenarios, let the reference be, 
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  (110) 

 

where Fref is a lifted convolution matrix, i.e., the same structure as the matrices in (108), 

whose kernel is given by (89) with lr = 0.5 mm, and p is a square pulse defined as 

 

   1 2

1 2

1
,

0 otherwise

k k k
k k

 
 


p   (111) 

 

The reference trajectory in (110) is shown in Figure 6.2 for every second layer 

between j = 1 and j = 25.  The trajectory generated by (110) poses a problem for the 

purely layer-to-layer feedback control methodology presented in Section 5.1 because the 

trajectory changes rapidly from one layer to the next. 

 

 



105 

 

 
Figure 6.2.  Height reference trajectory. 

 

 

For each of the simulation scenarios, the total number of layers to build is L = 25.  

Further, a constant multiplicative unmeasured disturbance is introduced on the input 

channel such that  

 

 
*ˆ 0.95j jN N   (112) 

 

where N̂  is the control applied to the system.  Because the powder flow rate in LMD 

processes is dependent on several variables including the carrier gas flow rate, the 

powder particle size, and the powder feeder motor speed, the disturbance in (112) 

emulates a mismatch in the commanded and actual powder flow rate in LMD processes.  

Beginning at layer j = 0, the optimal control is calculated and the nonlinear system is 
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simulated.  Then, the error between the simulated height and reference is calculated and 

fed back into the optimal controller.  This process is repeated at each layer until the final 

layer is reached.   

The baseline open-loop height profile is shown in Figure 6.3 along with the final 

reference signal.   

 

 

 
Figure 6.3.  Open-loop height profile. 

 

 

In the open-loop case, the process is not feedback linearized and is carried out 

with a constant substrate standoff distance as opposed to a constant part standoff 

distance, which is the mode for the feedback linearized process. As can be observed in 

Figure 2, the open-loop performance is relatively poor.  This is caused by two major 
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phenomena.  First, because there is no layer-to-layer feedback and the control signal 

applied to the system is perturbed by the constant multiplicative disturbance, the part 

standoff distance dP grows each layer, moving the process from a high powder catchment 

efficiency to a low powder catchment efficiency.  Secondly, because of the smoothing 

effects of the re-melt dynamics fr, the sharp features in the reference cannot be achieved 

without a better choice of spatial flow rate. 

In the simulation study, the effect of weighting matrices, Qf, Q, and S in (102), 

will be investigated in the purely additive process, i.e., the control signals are constrained 

such that the actual original control signal is saturated to zero, 

 

 
* 0j N   (113) 

 

where  M I  and  
r

b U  and Ur is the lifted representation of ur.  While the 

framework described in the previous section provides for a wide variety of weighting 

schemes, i.e., layer- and spatially-varying weights, here the weighting matrices are 

chosen as layer-to-layer constant but with different levels for the error state E and the 

integrator state Ω.  The weighting matrices are selected to be of the form 
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where q, qΩ, qf, qΩ,f, and s are scalar weights on the current error, the current error 

integration, the final error, the final error integration, and the control action, respectively.  

Three total weighting schemes are chosen and are listed in Table 6.1.  For each of the 
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weight selections, the prediction horizon is set to Nε = 2 in order to reduce the 

computational cost. 

 

 

Table 6.1.  Weighting matrix selections. 

 Case 1 Case 2 Case 3 

Current Error Weight, q 1 1 500 

Current Error Integration Weight, qΩ 100 100 50×10
3
 

Control Effort Weight, s 1 100 .01 

Final Error Weight, qf 500 100 5000 

Final Error Integration Weight, qΩ,f 50×10
3 

10×10
3 

500×10
3
 

 

 

Figure 6.4 shows the part height of the closed-loop simulated depositions at layers 

j = 1, 5, 10, 15, 20, and 25 as well as the reference signals.  At the beginning of each 

deposit, the tracking performance is improved over the open-loop deposit and there is not 

a discernible difference between the weighting cases.  However, as layer number 

increases, the tracking performance degrades for Cases 1 and 2 because the control effort 

weighting is significant with respect to both the current error and integral error and the 

final error and integral weightings.  Additionally, because the control signals are 

saturated to zero, edge tracking, those regions where the reference signal transitions 

rapidly, is degraded.  However, because saturation results in overbuild in these regions, a 

post-processing operation can be used to remove the excess material easier than 

attempting to add more material as in the open-loop case.   
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Figure 6.4.  Part height for simulation Case 1 at every second layer from j = 2 to j = 25 

and reference trajectory at j = 25. 

 

 

For Case 3, tracking performance remains relatively constant throughout the build 

and the tracking error is largely attributable to the saturation of the control signals.  A 

detail view of the spatial locations where the reference signal transitions rapidly is shown 

in Figure 6.5.  As mentioned above, Cases 1 and 2 experience tracking performance 

degradation at higher layer numbers while Case 3 does not appear to experience the same 

phenomenon – except in that the control signals are saturated to zero. 
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Figure 6.5.  Part height for simulation Case 2 at every second layer from j = 2 to j = 25 

and reference trajectory at j = 25. 
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7. SUMMARY AND CONCLUSIONS 

A major obstacle in the automation of AM processes is the lack of proper process 

control.  Because AM processes are repetitive in nature, the dependency of the formation 

of the current layer on the previous layer’s morphology can cause significant problems 

when attempting to control the process using only in-layer feedback control.  To enable 

the use of repetitive process controllers, where the control methods explicitly account for 

the layer-to-layer dynamics, models incorporating both the in-layer and the layer-to-layer 

dynamics are needed.  In this work a framework for modeling and identifying AM 

processes as repetitive processes was given.  The framework includes the dominant in-

layer and layer-to-layer dynamics, resulting in a two-dimensional dynamic process 

description and a methodology for identifying the model parameters.  The model 

structure, a linear layer-to-layer dynamic element cascaded into a static nonlinearity 

cascaded into a linear in-layer dynamic element, provides a compact, yet general, 

framework for modeling AM processes and aids in choosing appropriate process model 

parameter identification experiments.  The identification framework provides a method 

for choosing appropriate signals for straightforward identification of model parameters in 

the static nonlinearity and in-layer dynamic process.  Extension of the methodology could 

treat processes whose layer-to-layer dynamics are characterized by unknown parameters.  

The specific experimental application to the LMD process indicates that the proposed 

model can describe the process dynamics well, both quantitatively and qualitatively.   

Using the repetitive process model developed in Section 2 of this dissertation for 

AM processes, a criterion based on one-dimensional discrete-time stability requirements 

is developed to determine layer-to-layer stability properties.  Then, posing the two-
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dimensional dynamics inherent in AM processes as a two-dimensional analog of a 

conventional discrete-time system, a method for designing a layer-to-layer stabilizing 

compensator is given.  The stability criterion is calculated for a commercial LMD process 

near its maximum operating efficiency indicating the process operating point lies just 

within the stable region.  A stabilizing layer-to-layer controller is then designed for the 

LMD process and two simulation studies are performed; a simulation to fabricate a part 

of uniform height with zero initial conditions and a simulation to fabricate a part of 

uniform height with non-zero initial conditions.  The designed layer-to-layer compensator 

stabilizes the layer-to-layer process in both simulations, increases tracking performance 

over open-loop depositions, and is robust to initial conditions.  However, some constant 

steady state error remains due to both the mismatch between the linear models on which 

the controller is based and the actual nonlinear system and the inclusion of only a single 

layer-to-layer integrator in the process.  More sophisticated compensator designs may 

alleviate both of these issues. 

To increase tracking performance over the layer-to-layer feedback controller 

designed in Section 5, the general AM repetitive process model is used to formulate a 

Finite Horizon Optimal control problem where tracking error and the integral of tracking 

error are regulated.  Because the reference signal is assumed to be known a priori, the 

method presented here projects forward the modeled process and calculates an optimal 

control signal based on a quadratic cost function.  Application to the LMD process model 

shows closed-loop tracking performance is sensitive to the effects of control effort weight 

and error integral weight. However, the closed-loop simulation results show improved 
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tracking performance and robustness to multiplicative uncertainty as compared to the 

open-loop process.   

The general linear dynamic-static nonlinearity-linear dynamic model structure 

potentially admits a wide range of process descriptions, including those of many AM 

processes.  Therefore, leveraging the structure and utilizing the methodology for 

designing and implementing layer-to-layer repetitive process controllers given in 

Sections 5 and 6 could allow for closed-loop repetitive process control of a wide variety 

of AM processes. 
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DMC MOTION COMMAND CODE 

In this section of Appendix A, the DMC motion code used to generate the 

velocity profiles for the depositions used in Section 3 are given.   

 

Powder Catchment Slope DMC 

AC 2000000,2000000,2000000 
DC 2000000,2000000,2000000 
SP 600000,600000,60000 
VA 3000000 
VD 3000000 
VS 45000 
CAS 
CSS 
DP 0,0,0 
VM XY 
VP 240000,0 
VE 
SB 1 
WT 20 
BG S 
AM 
CB 1 
VS 100000 
VM XY 
VP -240000,30000 
VE 
BG S 
AM 
UI 3 
EN 
 

PRBS Identification DMC 

AC 2000000,2000000,2000000 
DC 2000000,2000000,2000000 
SP 10000,30000,4000 
VA 3000000 
VD 3000000 
VS 10000 
CAS 
CSS 
DP 0,0,0 
T=1 
SPEED = 0 
VM 
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VP 180000,0 
VE 
BG S 
WT  500  
SB 1 
WT 420 
VS  30000 
WT  157  
VS  10000 
WT  105  
VS  30000 
WT  157  
VS  10000 
WT  105  
VS  30000 
WT  315  
VS  10000 
WT  210  
VS  30000 
WT  472  
VS  10000 
WT  105  
VS  30000 
WT  157  
VS  10000 
WT  52  
VS  30000 
WT  157  
VS  10000 
WT  157  
VS  30000 
WT  315  
VS  10000 
WT  52  
VS  30000 
WT  630  
VS  10000 
WT  210  
VS  30000 
WT  157  
VS  10000 
WT  157  
VS  30000 
WT  157  
VS  10000 
WT  210  
VS  30000 
WT  157  
VS  10000 
WT  52  
VS  30000 
WT  787  
VS  10000 
WT  52  
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VS  30000 
WT  945  
VS  10000 
WT  52  
VS  30000 
WT  157  
VS  10000 
WT  105  
VS  30000 
WT  157  
VS  10000 
WT  262  
VS  30000 
WT  315  
VS  10000 
WT  105  
VS  30000 
WT  157  
VS  10000 
WT  157  
VS  30000 
AM 
CB 1 
VS 60000 
VM XY 
VP -180000,12000 
VE 
BG S 
AM 
UI 3 
EN 
 

PRBS Validation DMC 

AC 2000000,2000000,2000000 
DC 2000000,2000000,2000000 
SP 10000,30000,4000 
VA 3000000 
VD 3000000 
VS 10000 
CAS 
CSS 
DP 0,0,0 
T=1 
SPEED = 0 
VM 
VP 180000,0 
VE 
BG S 
WT  500  
SB 1 
WT 591 
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VS 30000 
WT 295 
VS 10000 
WT 98 
VS 30000 
WT 295 
VS 10000 
WT 98 
VS 30000 
WT 295 
VS 10000 
WT 197 
VS 30000 
WT 591 
VS 10000 
WT 197 
VS 30000 
WT 295 
VS 10000 
WT 295 
VS 30000 
WT 295 
VS 10000 
WT 197 
VS 30000 
WT 295 
VS 10000 
WT 98 
VS 30000 
WT 591 
VS 10000 
WT 98 
VS 30000 
WT 591 
VS 10000 
WT 295 
VS 30000 
WT 886 
VS 10000 
WT 98 
VS 30000 
WT 295 
VS 10000 
WT 394 
VS 30000 
WT 591 
VS 10000 
WT 98 
VS 30000 
WT 295 
VS 10000 
WT 98 
VS 30000 
WT 886 
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VS 10000 
WT 197 
VS 30000 
WT 1181 
VS 10000 
WT 98 
VS 30000 
AM 
CB 1 
VS 60000 
VM XY 
VP -18,000,012,000 
VE 
BG S 
AM 
UI 3 
EN 
 

Pole Placement Procedure Matlab Code 

clear all 
warning('off','all') 
%Model Parameters 
%Optomec Trial 1; l0 = 0.49, delta = -0.01, l1 = 0.903, b0 = 1.03, m0 = 

5.6 
%Optomec Trial 1; l0 = 0.61, delta = -0.01, l1 = 1.213, b0 = 0.84, m0 = 

9.2 
%Unstable Process; l0 = 0.95, delta = -0.01, l1 = 0.200, b0 = 0.54, m0 

= 
%9.2, mu0 = 0.07 

  
rho = 7.99e-6;                      %material density [kg/mm3] 
l0 = 0.61;                          %characteristic melt pool length 

[mm] 
delta = -0.01;                      %shifting parameter [mm] 
l1 = 1.100;                         %Re-melt char. length 1 [mm] 
l2 = l1;                            %Re-melt char. length 2 [mm] 
lref = 1; 
w0 = 0.84;                          %characteristic melt pool width 

[mm] 
m0 = 9.2/(1000*60);                 %powder flow rate [kg/s]  
v0 = 8.47;                          %frequency velocity parameter 1 
alphaL = 50;                        %track length [mm] 
a1 = 0.01*16.04;                    %catchment function parameter 1 [%] 
a2 = 10.57;                         %c.f. parameter 2, max catchment 

position [mm] 
a3 = 2.04;                          %c.f. parameter 3, function width 

param [mm] 
dx = 0.002;                         %spatial simulation step size [mm] 
dt = 0.004;                         %time step required for commanded 

velocity [s] 
M = 100;                            %total number of layers to build 
OL = 0; 
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%Solution Points 
dS0 = 0.3;                                %Incremental Nozzle Shift 

Sol. Input [mm] 
dh0 = dS0;                                %Bead Height Solution Point 

[mm] 
mu0 = 0.16;                               %Catchment Sol. Point [kg/kg] 
dP0 = a2 - a3*sqrt(-log(mu0/a1));         %Part standoff sol. point 

[mm] 
lambda0 = w0*dh0*rho/mu0;                 %Spatial Dep. Rate Sol. Point 

[kg/mm] 

  

  
%Gradients 
c11 = -2*lambda0*a1*((dP0-a2)/a3)*Fmu(a1,a2,a3,dP0)/(w0*rho); 
c2 = Fmu(a1,a2,a3,dP0)/(w0*rho); 

  
fs = fshape(l0,delta,dx);                   %Shape filter 
[xr,fr] = fremelt([l1 l2],dx);              %Re-melt filter 
[xr1,fr1] = fremelt([lref lref],dx);        %Reference kernel 

  
x = -250:dx:(300-dx);                   %position vector [mm]                  
L = max(size(x));                       %length of position vector 

  
FsFFT = fft(fs,L);                      %FFT of the in-layer kernel 
FrFFT = fft(fr,L);                      %FFT of the re-melt kernel 

  
w = linspace(1e-6,1e2,L);               %frequency vector [cycles/mm] 

  
for i = 1:(max(size(w))) 
    s = 2*pi*1i*w(i); 
    Fs(i) = 2*(1-(1+s*l0)*exp(-l0*s))/(s^2*l0^2)*exp(-delta*s);                         

%Continuous domain frequency rep of in-layer kernel 
    Fr(i) = 2/((l1+l2)*l1*s^2)*(exp(l1*s)-1) + 

2/(s^2*l2*(l1+l2))*(exp(-l2*s)-1);       %Continuous domain frequency 

rep of re-melt kernel 
    GpFFT(i) = s*FrFFT(i) - c11*FsFFT(i);                                               

%FFT of the layer-to-layer plant filter 
    GcFFT(i) = c2*lambda0/dh0*FsFFT(i);                                                 

%FFT of the layer-to-layer controller filter 
end 

  
Gcmap = GcFFT; 
Gpmap = GpFFT; 

  
for ii = 1:max(size(w)) 
    %Layer-to-layer poles 
    eig1(ii) = 1*1e-3; 
    eig2(ii) = 1*1e-3; 
    eig3(ii) = 0.5; 

     
    %Layer-to-layer desired characteristic equation 
    chard(ii,:) = conv(conv([1 eig1(ii)],[1 eig2(ii)]),[1 eig3(ii)]); 
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    %Calculation of the layer-to-layer pole, gain, and zero 
    p1freq(ii) = -chard(ii,end)/(Gpmap(ii)*1); 
    kfreq(ii) = (-chard(ii,2) - Gpmap(ii) - 1*(1+p1freq(ii)))/(-

Gcmap(ii)*1); 
    z1freq(ii) = (chard(ii,3)/1 - p1freq(ii) - 

Gpmap(ii)*(1+p1freq(ii)))/(-kfreq(ii)*Gcmap(ii)); 
end 

  
%Spatial flow rate IC 
lambda(:,1) = -1*ones(size(x,2),1); 
lact(:,1) = (lambda0*(lambda(:,1)+1)); 

  
%Spatial domain reference and height IC 
refC(:,1) = conv(fr1,[zeros(size(x(x<=0),2),1);ones(size(x(x>0 & 

x<=(50)),2),1);zeros(size(x(x>(50)),2),1)]); 
hC(:,1) = conv(fr1,[zeros(size(x(x<=0),2),1);0.0*ones(size(x(x>0 & 

x<=12.5),2),1);0.00*ones(size(x(x>12.5 & 

x<=37.5),2),1);0.0*ones(size(x(x>37.5 & 

x<=50),2),1);zeros(size(x(x>50),2),1)]); 

  
ref(:,1) = (refC((lref)/dx:end-lref/dx,1)); 
refS(:,1) = ref(:,1)*dh0; 

  
dS(:,2) = (dP0)*ones(size(x,2),1); 
hrNL(:,1) = hC((lref)/dx:end-lref/dx,1); 

  
%Frequency domain reference and height IC 
Rf(:,1) = (fft(ref(:,1),L) - fft(ones(size(x,2),1),L)); 
Rfs(:,1) = dh0*(Rf(:,1) + fft(ones(size(x,2),1),L)); 

  
Lfnl(:,1) = fft(lambda,L); 

  
Enl(:,1) = fft(ref(:,1),L); 

  
for j = 2:(M+1) 

     
    ref(:,j) = (j)*(refC((lref)/dx:end-lref/dx,1)); 
    Rf(:,j) = (fft(ref(:,j),L) - fft(j*ones(size(x,2),1),L)); 

     
    %Frequency domain representation calculation of control signals 
    if j == 2 
        Lfnl(1:L/2,j) = ((1+p1freq(1:L/2))'.*Lfnl(1:L/2,j-1) + 

kfreq(1:L/2)'.*Enl(1:L/2,j-1)); 

         
        Rfs(:,j) = dh0*(Rf(:,j) + fft(j*ones(size(x,2),1),L));% 
    else 
        Lfnl(1:L/2,j) = ((1+p1freq(1:L/2)').*(Lfnl(1:L/2,j-1)) - 

p1freq(1:L/2)'.*(Lfnl(1:L/2,j-2)) + kfreq(1:L/2)'.*(Enl(1:L/2,j-1)) - 

kfreq(1:L/2)'.*z1freq(1:L/2)'.*(Enl(1:L/2,j-2))); 

         
        Rfs(:,j) = dh0*(Rf(:,j) + fft(j*ones(size(x,2),1),L)); 

         
    end 
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    %Frequency-to-Spatial Domain Transformation 
    lNL(:,j) = ifft(Lfnl(:,j),'symmetric'); 
    lact(:,j) = (lambda0*(lNL(:,j)+1)); 
    lact(:,j) = lact(:,j) - lact(1,j); 

     
    %Part Standoff Distance and Catchment Calculation 
    dP(:,j) = dS(:,j) - (hrNL(:,j-1)); 
    mu(:,j) = Fmu(a1,a2,a3,dP(:,j)); 

     
    if OL == 1 
        %Open-Loop Simulation 
        lin(:,j) = [zeros(size(x(x<=0),2),1);lambda0.*ones(size(x(x>0 & 

x<=50),2),1);zeros(size(x(x>50),2),1)];% 
        dV(:,j) = lin(:,j); 
        dpb(:,j) = (conv((fs),(dV(:,j).*mu(:,j))/rho/w0)); 
        dhb((x>=(delta) & x<=alphaL-(-l0)),j) = dpb((x>=(delta) & 

x<=alphaL-(-l0)),j); 
    else 
        %Closed-Loop Simulation 
        dV(:,j) = max(zeros(size(x,2),1),lact(1:end,2)); 
        dpb(:,j) = flipud(conv((fs),flipud(dV(:,j).*mu(:,j))/rho/w0)); 
        dhb(:,j) = dpb((l0+delta)/dx:(end+delta/dx-1),j); 
    end 

     
    hremeltNL(:,j) = (conv(fliplr(fr),hrNL(:,j-1))); 
    if j == 2 
        hpl(:,j) = hremeltNL((l1)/dx:end-l1/dx,j)/((j-1)*dh0); 
        hrNL(:,j) =  dhb(:,j) + (hremeltNL((l1)/dx:end-l1/dx,j)); 

        
    else 
        hpl(:,j) = hremeltNL((l1)/dx:end-l1/dx,j)/((j-1)*dh0); 
        hrNL(:,j) =  dhb(:,j) + (hremeltNL((l1)/dx:end-l1/dx,j)); 

        
    end 
    hrNL(:,j) =  ([hrNL(7:end,j);zeros(6,1)]); 

    
    dS(:,j+1) = dS(:,j) + dh0; 

      
    Enl(:,j) = (1/dh0)*(Rfs(:,j) - (fft(hrNL(:,j),L))); 

     
end  

 

Open-Loop Simulation 

clear all 
%Model Parameters 
%Optomec Trial 1; l0 = 0.49, delta = -0.01, l1 = 0.903, b0 = 1.03, m0 = 

5.6 
%Optomec Trial 1; l0 = 0.61, delta = -0.01, l1 = 1.213, b0 = 0.84, m0 = 

9.2 
%Unstable Process; l0 = 0.95, delta = -0.01, l1 = 0.200, b0 = 0.54, m0 

= 
%9.2, mu0 = 0.07 
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rho = 7.99e-6;                      %material density [kg/mm3] 
l0 = 0.61;                          %characteristic melt pool length 

[mm] 
delta = -0.01;                      %shifting parameter [mm] 
l1 = 1.213;                         %Re-melt char. length 1 [mm] 
l2 = l1;                            %Re-melt char. length 2 [mm] 
lref = 1;                           %Reference Filter Characteristic 

Lenght [mm] 
w0 = 0.84;                          %characteristic melt pool width 

[mm] 
m0 = 9.2/(1000*60);                 %powder flow rate [kg/s]  
v0 = 8.47;                          %velocity [mm/s] 
alphaL = 50;                        %track length [mm] 
padx = 5;                           %length padding [mm] 
a1 = 0.01*16.04;                    %catchment function parameter 1 [%] 
a2 = 10.57;                         %c.f. parameter 2, max catchment 

position [mm] 
a3 = 2.04;                          %c.f. parameter 3, function width 

param [mm] 
dx = 0.02;                          %spatial simulation step size [mm] 
M = 10/(0.3);                       %total number of layers to build 

  
%%Solution Points 
dS0 = 0.3;                          %Incremental Nozzle Shift Sol. 

Input [mm] 
dh0 = dS0;                          %Bead Height Solution Point [mm] 
mu0 = 0.12;                         %Catchment Sol. Point [kg/kg] 
dP0 = a2 - a3*sqrt(-log(mu0/a1));   %Part standoff sol. point [mm] 
lambda0 = w0*dh0*rho/mu0;           %Spatial Dep. Rate Sol. Point 

[kg/mm] 

  
%%Linearization Coefficients 
c1 = -2*lambda0*a1*((dP0-a2)/a3)*Fmu(a1,a2,a3,dP0)/(w0*rho);    %Ds and 

H lin. constant 
c2 = Fmu(a1,a2,a3,dP0)/(w0*rho);                                %Lambda 

lin. constant 

  
[xs,fs] = fshape(l0,delta,dx);                                  %Shape 

filter 
[xr,fr] = fremelt([l1 l2],dx);                                  %Re-

melt filter 
[xr1,fr1] = fremelt([lref lref],dx);                            

%Reference Filter 

  
x = -padx:dx:(alphaL+padx-dx);                                  

%Position vector 
L = max(size(x));                                               %FFT 

size 

  
%Find "zero" index 
[z1,xgpc] = min(abs(xr)); 
[z1,xgcc] = min(abs(xs)); 

  
%Determine the needed amount of zero padding 
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padxb = round((min(xs)-min(xr))/dx); 
padxa = round((max(xr)-max(xs))/dx); 

  
%Calculate the composite filters 
gp = fr - c1*[zeros(1,padxb) fs zeros(1,padxa)]; 
gpbar = sum(gp); 
gc = c2*lambda0/dh0*fs; 
gcbar = sum(gc); 

  
%Form Toeplitz matrices 
Fr1 = toeplitz([fr(xgpc:end) zeros(1,L-

max(size(fr(xgpc:end))))],[fr(xgpc) zeros(1,L-1)]); 
Fr2 = toeplitz([0 fr(xgpc-1:-1:1) zeros(1,L-max(size(fr(xgpc-1:-1:1)))-

1)],zeros(1,L)); 
Fr = Fr1 + Fr2'; 

  
Fs1 = toeplitz([fs(xgcc+1:end) zeros(1,L-

max(size(fs(xgcc+1:end))))],[fs(xgcc+1) zeros(1,L-1)]); 
Fs2 = toeplitz([fs(xgcc:-1:1) zeros(1,L-max(size(fs(xgcc:-

1:1))))],zeros(1,L)); 
Fs = Fs1 + Fs2'; 

  
%%Initial Conditions 
hC(:,1) = conv(fr1,[zeros(size(x(x<=0),2),1);0*ones(size(x(x>0 & 

x<=12.5),2),1);-2*0.3*ones(size(x(x>12.5 & 

x<=37.5),2),1);0*ones(size(x(x>37.5 & 

x<=50),2),1);zeros(size(x(x>50),2),1)]); 
hnl(:,1) = hC((lref)/dx:end-lref/dx,1); 
dS(:,1) = (dP0 - dS0)*ones(size(x,2),1); 
lambda(:,1) = lambda0.*[zeros(size(x(x<=0),2),1);... 
            1*ones(size(x(x>0 & x<=(alphaL)),2),1);... 
            zeros(size(x(x>(alphaL)),2),1)]; 

  
%Generate Reference Signals 
for j = 1:M 
    dS(:,j+1) = dS(:,j) + dS0; 

     
    munl(:,j+1) = Fmu(a1,a2,a3,dS(:,j+1) - hnl(:,j)); 
    lambda(:,j+1) = lambda(:,j); 
    hnl(:,j+1) = Fs*(munl(:,j+1).*lambda(:,j+1)/rho/w0) + Fr*hnl(:,j); 
end 

 

Powder Catchment Efficiency 

function mu = Fmu(a1,a2,a3,dp) 

  
    mu = a1.*exp(-((dp-a2)./a3).^2); 

  
end 

 

In-Layer Shaping Kernel 
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function [x,fs] = fshape(l,T,dx) 
    x = T:dx:(l+T); 
    fs = (2/l^2*(x-T).*[zeros(size(x((x-T)<0))) ones(size(x((x-

T)>=0)))] - ... 
    2/l^2*(x-l-T).*[zeros(size(x((x-l-T)<0))) ones(size(x((x-l-

T)>=0)))] - ... 
     2/(l)*[zeros(size(x((x-l-T)<0))) ones(size(x((x-l-T)>=0)))])*dx; 
end 

 

Re-Melt Kernel 

function [x,fr] = fremelt(lengths,dx) 
    l1 = lengths(1); 
    l2 = lengths(2); 
    x = -l1:dx:(l2-dx); 

     
%     D = diag(coeff); 

     
%     fr = D*ones(size(coeff,1),1); 

     
    fr = ((2/((l1+l2)*l1))*(x).*([zeros(size(x((x+l1)<0))) 

ones(size(x((x+l1)>=0)))] - ... 
        [zeros(size(x((x)<0))) ones(size(x((x)>=0)))]) + ... 
        (2/(l1+l2))*([zeros(size(x((x+l1)<0))) 

ones(size(x((x+l1)>=0)))] - ...  
        [zeros(size(x((x-l2)<0))) ones(size(x((x-l2)>=0)))]) + ... 
        (2/(l2*(l1+l2)))*x.*([zeros(size(x((x-l2)<0))) ones(size(x((x-

l2)>=0)))] - ... 
        [zeros(size(x((x)<0))) ones(size(x((x)>=0)))]))*dx;     
end 

 

Stability Region Plot 

clear all 
warning('off','all') 
%Model Parameters 
%Optomec Trial 1; l0 = 0.49, delta = -0.01, l1 = 0.903, b0 = 1.03, m0 = 

5.6 
%Optomec Trial 2; l0 = 0.61, delta = -0.01, l1 = 1.213, b0 = 0.84, m0 = 

9.2 
%Unstable Process; l0 = 0.95, delta = -0.01, l1 = 0.200, b0 = 0.54, m0 

= 
%9.2, mu0 = 0.07 

  
rho = 7.99e-6;                      %material density [kg/mm3] 
l0 = 0.49;                          %characteristic melt pool length 

[mm] 
delta = -0.01;                      %shifting parameter [mm] 
l1 = 0.903;                         %Re-melt char. length 1 [mm] 
l2 = l1;                            %Re-melt char. length 2 [mm] 
w0 = 1.03;                          %characteristic melt pool width 

[mm] 
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m0 = 5.6/(1000*60); %powder flow rate [kg/s]  
v0 = 8.47;                           %frequency velocity parameter 1 
a1 = 0.01*16.04;                    %catchment function parameter 1 [%] 
a2 = 10.57;                         %c.f. parameter 2, max catchment 

position [mm] 
a3 = 2.04;                          %c.f. parameter 3, function width 

param [mm] 
dx = 0.001; 

  
[xr,fr] = fremelt([l1 l2],dx);           %Re-melt filter 
fs = fshape(l0,delta,dx);           %Shape filter 

  
x = -10:dx:60; 
L = max(size(x)); 
w = linspace(1e-6,1e2,L); 

  
for i = 1:max(size(w)) 
    s = 2*pi*1i*w(i); 
    Fs(i) = 2*(1-(1+s*l0)*exp(-l0*s))/(s^2*l0^2)*exp(-delta*s); 
    Fr(i) = 2/((l1+l2)*l1*s^2)*(exp(l1*s)-1) + 

2/(s^2*l2*(l1+l2))*(exp(-l2*s)-1); 
end 

  
%Solution Points 
dh0 = 0:0.01:5;                                         %Bead Height 

Solution Point [mm] 
dP0 = 2:0.01:14;                                        %Part standoff 

sol. point [mm] 
lambda0 = linspace(1e-8,1e-3,100); 

  
for k = 1:max(size(lambda0)) 

     
    for j = 1:max(size(dP0)) 
        mu0 = Fmu(a1,a2,a3,dP0(j)); 
        c(k,j) = -2*lambda0(k)*a1*((dP0(j)-a2)/a3)*mu0/(w0*rho); 
        cond = Fr - c(k,j)*Fs; 
        stable(k,j) = max(abs(cond)); 
        ustable(k,j) = stable(k,j); 
        if stable(k,j) > 1.01 
            stable(k,j) = 1.01; 
        end 
    end 
end 

  
Idh0S = find((dh0 == (0.380))); 
IdP0S = find((dP0 == (9.8))); 
IdP0U = find((dP0 == (11.4))); 

  
StabilityPlot(dP0,lambda0,stable,[0:0.4:0.8 0.9 0.999 0.99999],[IdP0S 

Idh0S IdP0U Idh0S],lambda0); 
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This Appendix presents data gathered on the Optomec MR-7 LENS, but not used 

in the exposition above.  Several other operating points were tested and models fit to the 

data.  However, in general, these results are not as clean as those presented in the main 

body of the work and possessed a small Signal to Noise Ratio (SNR).  Each operating 

point is characterized by a set of process parameters listed first, then spatial domain plots 

of the in-layer and the re-melt response are given.  Finally, Bode diagrams of the 

modeled responses and a table of the identified model parameters are presented. 

 

MODEL B1 

Table B.1 lists the process parameters used to conduct the depositions for Model 

1.  Figures B.1 and B.2 show the spatial domain in-layer and re-melt measured and 

modeled responses, respectively.  Figure B.3 shows the frequency domain responses of 

the modeled kernels.  Finally, Table B.2 lists the identified model parameters. 

 

 

Table B.1.  Process parameters for Model B1. 

Process Parameter Value 

Laser Power, Q (W) 600 

Scan Speed, v (mm/s) 23.3 

Powder Flow Rate, m (g/min) 9.2 

Substrate Standoff, dS (mm) 9.525 
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Figure B.1.  Spatial domain measured and modeled in-layer dynamic response for Model 

B1. 

 

 

 
Figure B.2.  Spatial domain measured and modeled re-melt dynamic response for Model 

B1. 
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Figure B.3.  Bode diagram of both identified dynamic processes for Model B1. 

 

 

Table B.2.  Model parameters identified for Model B1. 

Model Parameter Value 

Characteristic Melt Pool Length, l0 (mm) 2.00
 

Lead Parameter, δ (mm) -.001
 

Re-Melt Lead Parameter, l1 (mm) 1.01 

Re-Melt Lag Parameter, l2 (mm) 0.91 
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MODEL B2 

Table B.3 lists the process parameters used to conduct the depositions for Model 

2.  Figures B.4 and B.5 show the spatial domain in-layer and re-melt measured and 

modeled responses, respectively.  Figure B.6 shows the frequency domain responses of 

the modeled kernels.  Finally, Table B.4 lists the identified model parameters. 

 

 

Table B.3.  Process parameters for Model B2. 

Process Parameter Value 

Laser Power, Q (W) 600 

Scan Speed, v (mm/s) 10.6 

Powder Flow Rate, m (g/min) 7.4 

Substrate Standoff, dS (mm) 9.525 

 

 

 
Figure B.4.  Spatial domain measured and modeled in-layer dynamic responses for Model 

B2. 
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Figure B.5.  Spatial domain measured and modeled re-melt dynamic responses for Model 

B2. 

 

 

 
Figure B.6.  Bode diagram of both identified dynamic processes for Model B2. 
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Table B.4.  Model parameters identified for Model B2. 

Model Parameter Value 

Characteristic Melt Pool Length, l0 (mm) 0.927
 

Lead Parameter, δ (mm) -0.001
 

Re-Melt Lead Parameter, l1 (mm) 1.378 

Re-Melt Lag Parameter, l2 (mm) 0.795 
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MODEL B3 

Table B.5 lists the process parameters used to conduct the depositions for Model 

3.  Figures B.7 and B.8 show the spatial domain in-layer and re-melt measured and 

modeled responses, respectively.  Figure B.9 shows the frequency domain responses of 

the modeled kernels.  Finally, Table B.6 lists the identified model parameters. 

 

 

Table B.5.  Process parameters for Model B3. 

Process Parameter Value 

Laser Power, Q (W) 550 

Scan Speed, v (mm/s) 10.6 

Powder Flow Rate, m (g/min) 7.4 

Substrate Standoff, dS (mm) 9.525 

 

 

 
Figure B.7.  Spatial domain measured and modeled in-layer dynamic responses for Model 

B3. 
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Figure B.8.  Spatial domain measured and modeled re-melt dynamic responses for Model 

B3. 

 

 

 
Figure B.9.  Bode diagram of both identified dynamic processes for Model B3. 
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Table B.6.  Model parameters identified for Model B3. 

Model Parameter Value 

Characteristic Melt Pool Length, l0 (mm) 0.691
 

Lead Parameter, δ (mm) -5×10
-4 

Re-Melt Lead Parameter, l1 (mm) 1.023 

Re-Melt Lag Parameter, l2 (mm) 0.809 
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MODEL B4 

Table B.7 lists the process parameters used to conduct the depositions for Model 

B4.  Figures B.10 and B.11 show the spatial domain in-layer and re-melt measured and 

modeled responses, respectively.  Figure B.12 shows the frequency domain responses of 

the modeled kernels.  Finally, Table B.8 lists the identified model parameters. 

 

 

Table B.7.  Process parameters for Model B4. 

Process Parameter Value 

Laser Power, Q (W) 550 

Scan Speed, v (mm/s) 23.3 

Powder Flow Rate, m (g/min) 3.8 

Substrate Standoff, dS (mm) 9.525 

 

 

 
Figure B.10.  Spatial domain measured and modeled in-layer dynamic responses for 

Model B4. 
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Figure B.11.  Spatial domain measured and modeled in-layer dynamic responses for 

Model B4. 

 

 

 
Figure B.12.  Bode diagram of both identified dynamic processes for Model B4. 
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Table B.8.  Model parameters identified for Model B4. 

Model Parameter Value 

Characteristic Melt Pool Length, l0 (mm) 2.037
 

Lead Parameter, δ (mm) -.001
 

Re-Melt Lead Parameter, l1 (mm) 0.911 

Re-Melt Lag Parameter, l2 (mm) 0.683 

 

  



140 

 

MODEL B5 

Table B.9 lists the process parameters used to conduct the depositions for Model 

B5.  Figures B.13 and B.14 show the spatial domain in-layer and re-melt measured and 

modeled responses, respectively.  Figure B.15 shows the frequency domain responses of 

the modeled kernels.  Finally, Table B.10 lists the identified model parameters. 

 

 

Table B.9.  Process parameters for Model B5. 

Process Parameter Value 

Laser Power, Q (W) 600 

Scan Speed, v (mm/s) 23.3 

Powder Flow Rate, m (g/min) 3.8 

Substrate Standoff, dS (mm) 9.525 

 

 

 
Figure B.13.  Spatial domain measured and modeled in-layer dynamic responses for 

Model B5. 
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Figure B.14.  Spatial domain measured and modeled in-layer dynamic responses for 

Model B5. 

 

 

 
Figure B.15.  Bode diagram of both identified dynamic processes for Model B5. 
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Table B.10.  Model parameters identified for Model B5. 

Model Parameter Value 

Characteristic Melt Pool Length, l0 (mm) 2.162
 

Lead Parameter, δ (mm) -.001
 

Re-Melt Lead Parameter, l1 (mm) 0.957 

Re-Melt Lag Parameter, l2 (mm) 0.743 
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POWDER CATCHMENT EFFICIENCY 

 In this subsection of Appendix B, data for two other powder feeder motor speeds 

is presented.  These deposited tracks are shown in Figure 3.1, though the individual 

tracks are not highlighted.  Table B.11 givens the motor speeds and measured powder 

flow rates for the extra trials.  Note that the 10 RPM powder feeder motor speed does not 

follow the linear increase in powder flow rate observed at the other set points. 

 

 

Table B.11.  Powder feeder motor speed command and measured powder flow rates for 

powder catchment efficiency characterization. 

Powder Feeder Motor Speed (RPM) Powder Flow Rate (g/min) 

1 1.6 

10 8.5 

 

 

 Figures B.16 and B.17 show the measured powder catchment distributions for the 

1 RPM and 10 RPM powder feeder motor speeds, respectively.  The trial numbers 

correspond the tracks shown in Figure 3.1, where Trial 1 is located at the bottom of the 

photograph.  As with the powder catchment efficiency identification, the measurements 

are noisy.  In particular, the 1 RPM tests do not agree past approximately dP = 9 mm and 

Trial 3 is exhibits more noise relative to Trial 7.   
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Figure B.16.  Measured catchment efficiency as a function of standoff distance for 

powder feeder motor speed 1 RPM. 

 

 

 
Figure B.17.  Measured catchment efficiency as a function of standoff distance for 

powder feeder motor speed 10 RPM.  
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