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ABSTRACT 

 

Pre-mixed powder is frequently-used powder supply to fabricate Functional 

Gradient Material (FGM) by Laser 3D printing, which is also called Laser Metal 

Deposition (LMD). The deposited FGM composition is expected to be similar or same as 

supplied powder mixture. However, because pre-mixed powder has different particle 

densities and particle sizes, the caused particle acceleration differences can result in the 

separation in powder mixture. Up to now, there was no study focused on pre-mixed 

powders’ flow behavior in LMD. The current research aims to investigate the flow 

behaviors of pre-mixed powder supplied for LMD through both experimental and modeling 

approaches. In this dissertation, four research achievements are introduced in detail as 

follows. First of all, an effective experimental method is utilized to investigate the powder 

fluid behaviors in powder mixture during flow in powder feeder pipe. Secondly, a 

comprehensive CFD-DEM model is built to simulate the powder mixture fluid behaviors 

and particle trajectory. This model can provide an effective method to analyze the powder 

separation phenomenon, the processing parameters’ effects on the separation, etc. Thirdly, 

the effect of argon gas flow rate on the powder separation is studied through the CFD-DEM 

model and validated by the experiment results. Finally, based on the particle acceleration 

theory, a novel particle size optimization idea is introduced in the research. This 

optimization idea can control the powder separation and keep almost uniform powder 

mixture composition. The main contribution of this research is to solve the composition 

ratio deviation of pre-mixed powder in fabricating FGM through LMD process, in order to 

enhance the quality of FGM.  
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SECTION 

 

1. INTRODUCTION 

1.1. BACKGROUND 

In order to satisfy increasing requirements from customers on material’s diversified 

functions and applications, customized materials are garnering more and more attention 

because they can be fabricated to serve specific and tailored applications. Customized 

materials can be tailored to satisfy various property or functionality requirements as the 

usage needs and working environments demand. To fabricate such customized materials, 

Laser 3D printing, also called as Laser Metal Deposition (LMD), can be an effective 

processing technique. Using which, customized compositions varying across the volume 

of the part could be achieved. During the part’s fabrication, the required custom 

composition can be attained by melting pre-mixed powders. The pre-mixed powders 

possess particular composition ratios to satisfy the usage requirement. Figure 1.1 is a 

schematic illustration depicting the process of fabricating customized material by LMD.  

Depending on the composition requirements, several sorts of alloy or metal 

elemental powders are weighed. The weight percentages (wt.%) or volume percentages 

(vol.%) should meet the required chemical composition ratio for fabricating the customized 

materials. Then, all the weighed powders are blended sufficiently employing appropriate 

mixing equipment. This blended powder is then used as the powder feedstock during LMD 

process. A beneficial merit of pre-mixed powder is flexibility. Operators can produce 

powder feedstocks with any chemical composition ratio, and adjust the composition of 
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powder efficiently. Additionally, because pre-mixed powder is from mixing some basic 

alloy or elemental powder, it is better in saving manufacturing cost. 

           
 

Figure 1.1. Customized material manufactured by Laser metal deposition. 

 

However, the pre-mixed powder is not a perfect powder supply. As shown in Figure 

1, inert gas flow (argon) is used to drive the powders along the powder feeder pipe, into 

the melt pool through the nozzle. Since the particles in the powder mixture have different 

densities and sizes, under the same argon gas flow the movement of powders will not be 

uniform in powder feeder pipe. Lighter and smaller particles could move faster while 

heavier and bigger particles could lag behind. This kind of pre-mixed powder separation 

may cause the deviation from the original composition ratio. In customized material, the 

material composition ratio in any different area is required strictly. Non-uniform powder 

mixture movements will skew the composition ratio, and reduce the material performance. 

This composition ratio deviation of pre-mixed powder is becoming a critical issue in 
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fabricating customized material using LMD. Hence, investigation on pre-mixed powder 

flow in powder feeder pipe is greatly necessary. 

1.2. RESEARCH OBJECTIVES 

The main objective of this research is to develop the key technologies for 

investigating pre-mixed powder flow in LMD process, since supplied pre-mixed powder 

directly affects the deposited composition, which is an important factor in guaranteeing 

customized material performance. Four research tasks are carefully studied to achieve this 

overall objective. 

Specifically, the research task 1 answers the following question: How to observe 

the pre-mixed powder separation with experimental method? How to design the experiment 

since the observation of a great amounts of particles is very complicated. By mixing two 

kinds of powders (Cu and 4047 Al) with same volume percentages, and then delivered by 

uniform argon gas flow, the separation of pre-mixed powder in powder feeder pipe will be 

effectively observed. The difference of volume percentages in real powder mixture and 

original powder mixture will be compared. The experimental observation result will be 

utilized to validate the modeling simulation result of pre-mixed powder flows. 

Research task 2 introduces a powerful numerical model which will be able to 

simulate the pre-mixed powder flow behaviors in powder feeder pipe. Powder feeding 

process in LMD is a standard fluid-particle system, which is composed of argon gas flow 

and metal powder. An effective modeling methodology to analyze the above fluid-particle 

system is a coupled Computational Fluid Dynamics method and Discrete Element Method 

(CFD-DEM), which has sufficient consideration of particle-particle collisions and fluid-
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particle interactions. The DEM is Lagrangian method, in which all particles in the 

computational domain are tracked by explicitly to calculate the particle trajectoties. The 

DEM method is capable of solving the contact forces that generated by the particles 

collision, which is modelled by the Spring collision law. The CFD method is employed to 

simulate the gas fluid-particle interaction, particle’s dynamic behavior in argon gas flow, 

especially deeply understand the pre-mixed powder dynamic behavior. A CFD model 

mainly includes three types of equations: continuity equation of mass; momentum 

conservation equations, and k-ε kinetic energy equations. 

With the proposed CFD-DEM model, research Task 3 studies pre-mixed powder’s 

separation phenomenon in feeding process, and the effects of argon gas flow rate on the 

separation results. The processing parameters in the modeling simulation will be same with 

the experimental set-up. Therefore, the modeling results will be validated using the 

experimental analysis results. Compared to the experiment, modeling can also provide 

much more details in powder mixture feeding process, which are helpful explanation for 

the pre-mixed powder separation. In addition, three different argon gas flow rates will be 

utilized in powder flow models to investigate the argon gas flow rate’s effect on separation 

results. 

Research Task 5 introduces a novel particle size optimization idea as the solution 

to eliminate the powder separation and reduce the composition deviation. Through 

optimizing particle size, the acceleration of particles can be uniform or close to uniform, 

so that the original mixing composition can be maintained. The modeling results will be 

validated by the experimental analysis results. It can be clearly observed that the powder 

separation will be effectively controlled in both modeling and experimental results.  
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1.3. ORGANIZATION OF DISSERTATION  

In this dissertation, there are four major developments been presented and been 

organized in the way. Paper  I focuses on experimental study of pre-mixed powder 

separation in powder feeding process, which provides reliable experimental data, and can 

also be used to furtherly validate the proposed modeling results. Paper II mimics the 

powder mixture separation in powder feeder pipe with a comprehensive CFD-DEM model. 

A lot of details of pre-mixed powder flow behaviors in feeding process are simulated. The 

simulation results are then validated by the experimental results. Paper III investigates the 

effect of argon gas flow rate on the pre-mixed powder’s separation in feeding process. 

Three different argon gas flow rates are selected and input to the CFD-DEM model. The 

different separation results are simulated then compared with experiment. Paper IV 

introduces a novel solution to eliminate the powder separation and reduce the composition 

deviation. The basic idea is to optimize the particle size to uniform the particle’s 

acceleration. With this solution, the original mixing composition can be maintained, so that 

the composition deviation in deposited material can be effectively controlled. 
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PAPER 

I. INVESTIGATION AND ELIMINATING POWDER SEPARATION IN PRE-

MIXED POWDER SUPPLY FOR LASER METAL DEPOSITION 

Wei Li, Sreekar Karnati, Yunlu Zhang, and Frank Liou 

Department of Mechanical and Aerospace Engineering 

Missouri University of Science and Technology, Rolla, Missouri 65409, U.S.A. 

ABSTRACT 

Laser Metal Deposition (LMD) is an effective process to fabricate customized 

material compositions using pre-mixed powders. The deposited material composition is 

expected to be similar or same as supplied powder mixture. The current investigation is 

aimed at optimizing and setting up powder feed capable of producing consistent 

composition ratio in the output material using LMD process. Through experimental 

investigation the authors identified an important phenomenon: separation in powder 

mixture during flow from feeder to melt pool. Such separation can cause severe 

composition deviation in deposited material. This paper introduces a novel particle size 

optimization method as the solution to eliminate the powder separation. Two types of 

experiments were done in this study. First, pure Cu and 4047 Al powders were mixed with 

equal volume percentages (50% to 50%), and were transported from the powder feeder to 

the deposition site. The flow out of the feed tube was captured and preserved in an epoxy 

resin coating. The volume percentage of each type of powder was plotted by quantifying 

the distribution of different particles in the pattern. Clear powder separation and 
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consequently composition deviation was found in the first experiment result. During the 

second experiment, powder mixtures with the same volume percentage composition was 

transported and captured. However, the particle size distributions of Al4047 and Cu were 

optimized to equalize the particle acceleration during transportation in the feed tube. By 

optimizing powder size to equalize acceleration the powder separation was observed to be 

effectively eliminated. The composition deviation was also significantly reduced. The 

results from this study are pathbreaking contributions in the research of customized 

material fabrication with pre-mixed powder in LMD process. 

1. INTRODUCTION 

Customized materials are garnering more and more attention because they can be 

fabricated to serve specific and tailored applications. Customized materials can be tailored 

to satisfy various property or functionality requirements as the usage needs and working 

environments demand. To fabricate such customized materials, Laser Metal Deposition 

(LMD) can be an effective processing technique. Using which, customized compositions 

varying across the volume of the part could be achieved. During the part’s fabrication, the 

required custom composition can be attained by melting pre-mixed powders. The pre-

mixed powders possess particular composition ratios to satisfy the usage requirement. 

Figure1 is a schematic illustration depicting the process of fabricating customized material 

by LMD. Carroll and Otis [1] fabricated a customized material with functionally graded 

composition change from SS 304L to Inconel 625 by laser deposition process with pre-

mixed powder as the feedstock. Planned variation in material properties across part’s 

volume can be attained from gradual changes in the composition to meet the design 
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requirements. Li and Liou [2] demonstrated similar feasibility by fabricating a novel 

customized structure which successfully joined stainless steel and titanium alloy by means 

of laser deposition process with elemental powder feedstocks. Schwendner and Banerjee 

[3] used laser metal deposition process to deposit Ti–10%Cr alloy and Ti–10%Nb alloys 

with pre-mixed Ti-Cr and Ti-Nb powders. Banerjee and Collins [4] employed LMD with 

pre-mixed Ti-6Al-4V and elemental boron powders to deposit one customized alloy, Ti–

6Al–4V–TiB, which combined the high strength and stiffness of the borides with the 

toughness and damage tolerance of a Ti-alloy.  

The critical factor in fabricating customized material by LMD is the multi-

composition powder feedstocks. Based on existing powder processing techniques, powder-

mixing nozzle, pre-alloyed powder and pre-mixed powder are three main techniques to 

provide multi-composition powder. The powder-mixing nozzle employs a chamber to mix 

multiple powders to achieve multi-composition additive manufacturing [5]. This kind of 

nozzle is useful in fabricating customized material, but the complexity of nozzle increased 

the manufacturing cost. The powder mixing chamber Pre-alloyed powder feedstocks can 

deliver precise chemical composition, as the composition of powder particles is 

homogenous. Unlike pre-alloyed powder, there are limitations to the usage of pre-alloyed 

powder. First of all, customized materials strictly require the chemical compositions 

distribution in the whole structure. Pre-alloyed powder has the fixed chemical composition 

and cannot change anymore. Acquiring pre-alloyed powder with compositions similar to 

user requirements can be extremely difficult and expensive. If the pre-alloy powder cannot 

meet the composition need, it will become useless and new powder has to be sought for. 

Besides, the price of pre-alloyed powder is often expensive, so it is not good choice to 
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control the manufacturing cost. Owing to the above reasons, pre-mixed powder is preferred 

choice. The preparation of pre-mixed powder is very easy. According to the composition 

requirements, several kinds of alloy or metal elemental powders are weighed. The weight 

percentages (wt.%) or volume percentages (vol.%) should match the required chemical 

composition ratio needed for fabricating the customized materials. Then, all the weighed 

powders are blended adequately using appropriate mixing equipment. This blended powder 

is then used as the powder feedstock during LMD process. One of the valuable merits of 

pre-mixed powder is flexibility. Operators can produce powder feedstocks with any 

chemical composition ratio, and adjust the composition of powder efficiently. In addition, 

because pre-mixed powder is from mixing some basic alloy or elemental powder, it is better 

in saving manufacturing cost than pre-alloyed powders.  

 

Figure 1. Schematic illustration of fabricating customized material by LMD. 

However, the pre-mixed powder is not a perfect powder supply. As shown in Figure 

1, the pre-mixed powders are fed through powder feeder during the process of LMD. Inert 
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gas flow (argon) is used to drive the powders along the powder feeder pipe, into the melt 

pool through the nozzle. Since the particles in the powder mixture have different densities 

and sizes, under the same argon gas flow the movement of powders will not be uniform in 

powder feeder pipe. Lighter and smaller particles could move faster while heavier and 

bigger particles could lag behind. This kind of particle flow dynamics may cause the 

deviation from the original composition ratio. In customized material, the material 

composition ratio in any different area is required strictly. Non-uniform powder mixture 

movements will skew the composition ratio, and reduce the material performance. This 

composition ratio deviation of pre-mixed powder is becoming a critical issue in fabricating 

customized material through LMD. 

 

Figure 2. (a). VHN of four samples in sequence; (b). fresh mixed powders; (c). remaining 

mixed powders after prior two depositions; (d). remaining mixed powders after all the four 

depositions. 
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Figure 2. shows a research work done by authors before in fabricating a customized 

material of Ti6Al4V and TiB2. This research results provided a real example in which the 

non-uniform pre-mixed powder flow caused the deviation of customized material property. 

Ti6Al4V was used as substrate. Pre-mixed Ti6Al4V and TiB2 powders were prepared with 

designed wt.% ratio (Ti6Al4V:TiB2= 30:1). The density and particle size of two types of 

powder were described in Table.1. Both kinds of powder had close densities, but TiB2 

particle size was much smaller than Ti6Al4V particle. Introducing of TiB2 can improve 

the modulus and strength of Ti6Al4V alloy [6]. This improvement can be observed through 

the Vickers Hardness Number (VHN). VHN of Ti6Al4V deposited with TiB2 should be 

greater than the VHN of regular Ti6Al4V. Four thin wall samples were fabricated in 

sequence by LMD process to investigate the VHN’s repeatability through employing same 

powder mixing design and same processing parameters. Center points of four samples were 

selected as Vickers hardness test points. VHN comparison of four samples in sequence is 

shown in Figure 2a. From sample 1 to sample 4, VHN is observed as decreasing from 453 

to 363. This result indicates the hardness of samples were not repetitive although the same 

pre-mixed powder and identical processing parameters were employed. Introducing TiB2 

can enhance the hardness of Ti6Al4V because TiB2 is one type of ceramics with super 

high hardness. Decreasing VHNs of four samples indicates that consumed TiB2 powder 

reduced in sequence from sample 1 to sample 4. This deduction was also demonstrated by 

the optical microscopy images of mixed Ti6Al4V and TiB2 powders in Figure 2b-2d. 

Figure 2b shows the fresh mixed powders. Ti6Al4V particle is in the form of spherical ball 

with the mean diameter of 127 μm. TiB2 particle is one type of ceramics with irregular 

shape. TiB2 particle mean size is 26 μm which is much less than Ti6Al4V particle. In 
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Figure 2b, a lot of both particles can be observed clearly. Figure 2c shows the mixed 

powders after depositing first two samples and before 3rd deposition. It is easy to find that 

the amount of TiB2 reduced sharply comparing with the amount in fresh mixed powders. 

Figure 2d. shows the mixed powders after all of four depositions. Almost no TiB2 particle 

was observed and only Ti6Al4V particle were left. Through comparing the optical 

microscopy images of mixed powder, the composition ratio of powders did not keep 

designed ratio in the process of LMD. This kind of inaccurate composition ratio of pre-

mixed powders is becoming a critical issue in process of fabricating functional material 

through LMD. Therefore, an effective solution for this issue is urgently needed. 

Table.1. Ti6Al4V and TiB2 particle properties 

Particle Density Mean size 

Ti6Al4V 4.43 g/cm3 127 μm 

TiB2 4.52 g/cm3 26 μm 

 

So far, there was no study focused on pre-mixed powders’ dynamic behavior in 

LMD. Some of the previous research efforts on the powder flow were limited to identical 

material instead of mixed powders. Pan and Liou [7] studied gravity-driven metal powder 

flow in coaxial nozzle for laser-aided direct metal deposition process with the H13 tool 

steel powder. Pan and Liou also [8] also investigated the metallic powder flow in a coaxial 

nozzle for laser aided deposition process through numerical simulation method. Tan et.al 

[9] developed a photographic system for the titanium powder feeding process of laser solid 

forming in which high speed camera, particle speed and powder flow concentration 

behaviors were described based on the powder flow images. Pinkerton and Li [10] studied 
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the impact of powder feeder nozzle dimensions on powder flow rate. In their study, 

stainless steel 316L powder was used to analyze the behavior of the axial powder stream 

concentration from a coaxial laser cladding nozzle. Wen et.al [11] presented a 

comprehensive modeling method to predict the whole process of coaxial powder flow 

including the Stellite-6 particle stream flow in and after the powder feeder nozzle, and 

laser-particle interaction process. More attentions were paid on analyzing the powder 

stream behavior through both numerical and experimental methods, but the powder 

particles in any of these studies were the same material. 

A study to investigate the pre-mixed powder flow in LMD process is lacking, so 

the purpose of this paper is to fill in this gap since supplied pre-mixed powder directly 

affects the deposited composition, which is an important factor in guaranteeing customized 

material performance. In this paper, experimental method was employed to present an 

important phenomenon: powder separation in blown powder mixture flow, which can 

cause severe composition deviation in deposited material. This paper also introduced a 

novel particle size optimization method as solution to eliminate the powder separation and 

reduce the composition deviation. Pre-mixed pure Cu and 4047 Al powders were used to 

do two experiments. The first experiment result disclosed powder separation. By 

optimizing the particle size in two types of powder, the powder separation was effectively 

solved in the second experiment result. 

2. PARTICLE ACCELERATION ANALYSIS IN ARGON GAS FLOW 

During the process of LMD, powder is transported through powder feeder pipe by 

argon gas, to the melt pool. Particle’s dynamic behavior in argon gas flow is a complicated 



  14 

 

problem to model. It is a two-phase problem called gas-particle flow. To deeply understand 

the pre-mixed powder flow dynamic behavior in powder feeder pipe, it is necessary to 

review the fundamental theories of particle acceleration in gas-particle flow. Figure 3 

schematically illustrates the two primary driving forces for particle acceleration in the gas-

particle flow. One is the fluid force, Fa, from the gas flow, while the other is particle gravity 

G. When the particles are moving, particle-particle collisions also occur. However, since 

the particle is a rare phase in gas-particle flow, and the powder feed rate is much less than 

the gas flow rate, the collision of particle-particle is negligible [11, 12]. 

 

Figure 3. Two primary driving forces for particle. 

The gas-particle flow problem involving the trajectory of a dispersed particle phase 

is solved by integrating the force balance on the particle in a Lagrangian reference frame. 

The dynamic governing equations for each particle are written as follows [11]. 

𝑑�⃑�

𝑑𝑡
= 𝑢𝑝                                                            (1) 

𝑑𝑢𝑝

𝑑𝑡
=

18𝜇

𝜌𝑝𝑑𝑝
2

𝐶𝐷𝑅𝑒

24
(𝑢 − 𝑢𝑝) +

𝑔(𝜌𝑝−𝜌)

𝜌𝑝
                                   (2) 
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Where 𝑢𝑝 ,  𝜌𝑝 , and 𝑑𝑝  are the velocity, density, and diameter of particle, 

respectively. Eqn. (2) indicates that the particles are basically driven by the forces of gas 

flow drag and gravity. 𝐶𝐷 is the drag coefficient which is dimensionless quantity. Re is 

Reynolds number and 𝜇 is the viscosity of argon gas flow. The particle shape in this study 

is limited to spherical particle. For spherical particles, the drag coefficient can be taken 

from: 

𝐶𝐷 = 𝑎1 +
𝑎2

𝑅𝑒
+

𝑎3

𝑅𝑒2
                                               (3) 

Where 𝑎1, 𝑎2, and 𝑎3 are constants that apply over several ranges of Re given by 

Morsi and Alexander [13]. The constants, 𝑎𝑖 are defined as follows: 

𝑎1, 𝑎2, 𝑎3 =

{
 
 
 

 
 
 

0, 24, 0;  0 < 𝑅𝑒 < 0.1
3.690, 22.73, 0.0903;  0.1 < 𝑅𝑒 < 1

1.222, 29.1667,−3.8889;  1 < 𝑅𝑒 < 10
0.6167, 46.50,−116.67;  10 < 𝑅𝑒 < 100
0.3644, 98.33,−2778;  100 < 𝑅𝑒 < 1000
0.357, 148.62,−47500;  1000 < 𝑅𝑒 < 5000
0.46, −490.546, 578700;  5000 < 𝑅𝑒 < 10000
0.5191,−1662.5, 5416700;  𝑅𝑒 > 10000

             (4) 

The Reynolds number of nozzle in laser metal powder deposition was tested 

as 7400 by Pan and Liou [7], which was used to calculate the drag coefficient 𝐶𝐷. By 

substituting the constants 𝑎𝑖 in Eqn.4 to Eqn.3, the 𝐶𝐷 was approximately estimated 

as 0.40. 

3. EXPERIMENT PROCEDURE 

To capture the result of the dynamic behavior of pre-mixed powder flow through 

powder feeder pipe and out of nozzle, pure Cu powder and 4047 Al powder were used in 

this research. The powder supplier is Atlantic Equipment Engineers. There are two reasons 
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behind choosing these two powders. Firstly, Cu particles are red or close to red, while 4047 

Al is of gray color. The color difference makes it easy to differentiate between these two 

particles in the experiments. Secondly, the density of Cu particle is 8.94 g/cm3, while 4047 

Al’s density is only 2.6 g/cm3. The density of Cu is approximately three times that of 4047 

Al density. According to Eqn. (2), particle acceleration is inversely proportional to particle 

density. Significant difference in density is expected to cause significant difference in 

particle acceleration. Therefore, the separation of pre-mixed powder is expected to be easy 

to observe.  

Figure 4. depicts the two types of powder particles through optical microscope 

images. The particle size distributions of the two types of powder obtained by sieve 

analysis are listed in Table.2 and Table.3. For pure Cu powder, most of the particles were 

observed to be spherical in shape. More than 80% of the particles had diameters in the 

range of 45-106 μm. In addition to this, 3.7% Cu particles diameters are 106-125μm. The 

remaining Cu particles diameters are in the range of 125-212 μm. Most of the 4047 Al 

particles are spherical or close to spherical shape. Close to 30% particles ranged between 

diameters of 45 to 75 μm. More than 40% particles had diameters in the range of 75 to 106 

μm. About 20% of particles had diameters in the range of 106 to 125μm. 5% particles 

diameters are 125-150μm. Some less amount of particles are bigger than 150 μm. 

Table.2. Sieve analysis of pure Cu powder 

Sieve type 
+70 

mesh 

-70/+100 

mesh 

-100/+120 

mesh 

-120/+140 

mesh 

-140/+200 

mesh 

-200/+325 

mesh 

Size (μm) >212 150-212 125-150 106-125 75-106 45-75 

Percentage (%) 0.0 1.3 2.4 3.7 47.4 45.2 
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Table.3. Sieve analysis of 4047 Al powder 

Sieve type 
+70 

mesh 

-70/+100 

mesh 

-100/+120 

mesh 

-120/+140 

mesh 

-140/+200 

mesh 

-200/+325 

mesh 

Size (μm) >212 150-212 125-150 106-125 75-106 45-75 

Percentage (%) 1.1 2.8 5.4 20.3 42.5 27.9 

 

 

(a)                                                                  (b) 

Figure 4. Optical microscopic images for: (a) Cu particles; and (b) 4047 Al particles. 

The experimental setup is schematically shown in Figure 5. A commercial powder 

feeder (Bay State Surface Technologies, Inc, Model-1200) was used to supply pre-mixed 

powder. A polyurethane tube of 1.5m length and 5mm inner diameter, was used to deliver 

the pre-mixed powder. Two linear motors (AEROTECH, Inc, Model-100SMB2) were 

employed to generate moving path. A piece of 6061 Aluminum alloy plate, paved with 

sticky epoxy resin, was fixed on the motor table. The idea behind this experiment was to 

use the sticky epoxy resin layer to capture the pre-mixed 4047 Al and Cu powders as is 

while spraying out of the nozzle. The optical microscopy was used to observe the pre-

mixed powder adhered on epoxy resin layer. The duration of this experiment was 25s. 

During this time, powder feeder nozzle was moved relative to the epoxy resin layer to 
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follow the specified path the letter “M”. After the epoxy resin was solidified, the adhered 

pre-mixed powder was contained in it.  

 

(a) 

 

(b) 

Figure 5. Experiment set-up: (a) Schematic diagram; and (b) Work site 

This research included two types experiments, whose design idea was based on the 

thinking of particle acceleration equation in Eqn.2. When particle is moving in powder 

feeder pipe driven by argon gas flow, there are two primary contributions for the particle 

acceleration. The first contribution is from argon gas dragging force, which carries particles 

along the powder feeder pipe to melt pool. The second contribution is from particle gravity, 
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which is always vertical down. For all the particles in pre-mixed powder, their acceleration 

gravity terms are equal or very close to equal, so the particle acceleration difference is 

mainly caused by various argon gas dragging force.  

The particle acceleration Eqn.2 is a classic first order differential equation with 

variable of particle velocity 𝑢𝑝 . In the process of laser metal powder deposition, each 

particle has such a differential equation for itself to describe its dynamic movement in 

powder feeder pipe. The second term on the right side can be simplified as gravitational 

acceleration 𝑔 because particle density 𝜌𝑝 is much greater than argon gas density 𝜌. The 

first term on the right side contains several coefficients including argon gas flow velocity 

𝑢, drag coefficient 𝐶𝐷, argon gas density 𝜌, and the product of particle diameter 𝑑𝑝 and 

density 𝜌𝑝. The coefficients 𝑢, 𝐶𝐷, and 𝜌 are same for all the particles, but the product of 

density and diameter square 𝜌𝑝𝑑𝑝
2 varies for different types of powders. In this study, the 

two particle densities 𝜌𝑝_𝐶𝑢 and 𝜌𝑝_𝐴𝑙, represent Cu particle density and 4047 Al particle 

density respectively. One ideal situation is, if Cu powder and 4047 Al powder have same 

density-diameter square products (in Eqn.5), then both type of particles will have uniform 

acceleration equations. The initial particle velocity is supposed as zero at powder feeder 

pipe orifice. Therefore, both types of particles will have the same or almost same velocity 

distribution and history, so that the separation of pre-mixed powder could be effectively 

eliminated.  

𝜌𝑝_𝐶𝑢𝑑𝑝_𝐶𝑢
2 = 𝜌𝑝_𝐴𝑙𝑑𝑝_𝐴𝑙

2                                            (5) 

𝑑𝑝_𝐴𝑙

𝑑𝑝_𝐶𝑢
= √

𝜌𝑝_𝐶𝑢

𝜌𝑝_𝐴𝑙
= √

8.94𝑔/𝑐𝑚3

2.6𝑔/𝑐𝑚3
= 1.854                               (6) 
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The Eqn.5 was rewritten in a new proportion format in Eqn.6, which explains an 

important criterion: if 4047 Al particle diameter is 1.854 times greater than Cu particle 

diameter, both type of particles will have same acceleration equations. Much closer the 

𝑑𝑝_𝐴𝑙/𝑑𝑝_𝐶𝑢 is to the ideal value, more effectively the powder mixture separation could be 

eliminated. Otherwise, if the 𝑑𝑝_𝐴𝑙/𝑑𝑝_𝐶𝑢 much greater or less than the ideal value, the 

powder mixture will separate when flowing in powder feeder pipe since the mixed particles 

have different acceleration equations.  

Based on above analysis, two experiments were designed. These two experiments 

were performed with same operating parameters, such as same volume percentage ratios, 

same argon gas flow rate, same moving speed of Aluminum plate, and same moving time. 

The only difference was the particle diameter. In the first experiment, 4047 Al powder with 

the particle diameter range (45-75 μm), and Cu powder with the particle diameter range 

(75-106 μm) were mixed in the volume percentage ratio of 50%:50%. Then in the second 

experiment, 4047 Al powder with the bigger particle diameter (75-106 μm), and Cu powder 

with the smaller particle diameter range (45-75 μm) were mixed in the same Vol.% ratio. 

Such experiment design came from the consideration of ideal particle diameter ratio value 

discussed above. The pre-mixed powder with smaller 4047 Al particle and bigger Cu 

particle was expected to separate easily because the particle diameter ratio 𝑑𝑝_𝐴𝑙/𝑑𝑝_𝐶𝑢 was 

less than the ideal value. On the other hand, the pre-mixed powder in the second experiment 

had bigger 4047 Al particle and smaller Cu particle, so the particle diameter ratio 

𝑑𝑝_𝐴𝑙/𝑑𝑝_𝐶𝑢  was much closer to the ideal value than the first experiment. Under this 

situation, the pre-mixed powder separation would be eliminated due to the optimized 

particle diameter. The operating parameters in the experiments were shown in Table.4.  
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Table.4. The operating parameters in the experiments 

 Experiment-1 Experiment-2(optimized) 

Schematic particles (Gray-

Al; Red-Cu)  
  

4047 Al particle diameter 45-75 μm 75-106 μm 

Cu particle diameter 75-106 μm 45-75 μm 

𝑑𝑝_𝐴𝑙/𝑑𝑝_𝐶𝑢 0.667 1.5 

Vol.% ratio 50%:50% 50%:50% 

Argon gas flow rate 6 m/s 6 m/s 

Al plate moving speed 1m/min 1m/min 

Moving time 25 s 25 s 

 

4. RESULTS AND DISCUSSION 

After the sticky epoxy resin solidified on the plastic wrap, the pre-mixed particle 

pattern was observed. Figure 6 shows the two solidified epoxy resin layers containing 

powder patterns from the two experiments. This pattern was then sliced into 87 observation 

areas for the further analysis, including optical microscope observation and powder volume 

percentage quantification. 

It was found that the first side in “M” shape was lost in the experiments. A rubber 

tube was used as powder feeder pipe, with the length of 2m. The CNC stage and powder 

feeder were activated simultaneously, so the powder had to flow through the powder feeder 

pipe at first, then sprayed out from nozzle. When the nozzle moving along the first section 

of “M”, the powder flow was right in the pipe. This is why the first side in “M” in the 

powder pattern was lost.  
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(a)                                                             (b) 

Figure 6. Two Pre-mixed powder patterns: (a) experiment-1; and (b) experiment-2. 

4.1. ANALYSIS STEPS FOR THE EXPERIMENT RESULTS 

In this study, three steps of analysis were performed to gather the experiment 

results. The first step was to observe the microscopic particle patterns along the powder 

capture path. 87 locations of size of 4mm by 3mm distributed at a uniform-interval along 

the central line of the powder path (shown in Figure 7) were observed. By observing the 

particle patterns in these zones, the pre-mixed powder flow’s composition variation and 

the separation phenomenon can be clearly exposed. The next step was to quantify the 

distribution of different particles in the pattern. Basing the color difference of pre-mixed 

powder, the image processing software Image-J was used to mark 4047 Al particles and 

Cu particles in each observed zone, then count the particle numbers of the two powders. 

As the particle sizes were known from the sieve analysis, the volume of two powders in 

each observed zone were calculated by Eqn.7 and Eqn.8. 𝑉𝑜𝑙𝑝𝑜𝑤𝑑𝑒𝑟 indicates one type of 

powder’s volume; 𝑁𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 is the number of this type of particles in the observed zone. 

The particle diameter distribution was assumed as the Gaussian distribution. 𝑟𝑚𝑒𝑎𝑛 is the 
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mean radius, or the mathematical expectation value of the particle radius. Finally, in the 

third analysis step, the volume percentage of two powder’s composition was plotted with 

all the data obtained from the 87 observed zones. 

𝑉𝑜𝑙𝑝𝑜𝑤𝑑𝑒𝑟 = 𝑁𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 ×
4

3
𝜋𝑟𝑚𝑒𝑎𝑛

3                                    (7) 

𝑉𝑜𝑙.%𝑝𝑜𝑤𝑑𝑒𝑟1 = 100 ×
𝑉𝑜𝑙𝑝𝑜𝑤𝑑𝑒𝑟1

𝑉𝑜𝑙𝑝𝑜𝑤𝑑𝑒𝑟1 + 𝑉𝑜𝑙𝑝𝑜𝑤𝑑𝑒𝑟2
                     (8) 

 

Figure 7. Observation of the experiment results 

4.2. RESULTS OF EXPERIMENT 

The pre-mixed powder particle pattern of experiment-1 was as shown in Figure 6a. 

The Hirox KH-8700 digital microscope was used to observe microscopic particle patterns 

following the path. Here six particle patterns locating in the middle points of the remaining 

six sides in “M” shape (Figure 6) were instanced, which were shown in Figure 8. Six optical 

micrographs effectively recorded powder patterns. The red color particles and gray color 

particles, respectively indicate the Cu particle and 4047 Al particles, were dispersively 

adhered to the epoxy resin layer. At the moment when particles just left the powder feeder 
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nozzle, the most particles were gray particles, which were 4047 Al. Some rare red Cu 

particles were scattering in the 4047 Al district. With the time increasing, more particles 

sprayed out from powder feeder nozzle, but the primary particles are still 4047 Al, which 

were found in Figure 8b, Figure 8c, and Figure 8d. When the particle pattern was close to 

the end of the “M” path, the red color became more and more remarkable (Figure 8e & 

Figure 8f). This phenomenon indicated that the volume percentage of Cu particle was 

increasing. From Figure 8a to Figure 8f, the six particle patterns show that the Pre-mixed 

powder did not keep the uniform composition. At the start and in the middle of the path, 

4047 Al was the primary particle. Cu particle’s volume percentage gradually increased. 

This situation continued till the end of the path, where Cu particle had high volume 

percentage in the pattern. Since both powders started to transit simultaneously in powder 

feeder pipe inlet, but 4047 Al moved faster and exited from nozzle earlier than Cu particle, 

the separation of pre-mixed powder happened. The powder design was ruined by the 

separation of pre-mixed powder in their flow movement in the powder feeder pipe. 

 

Figure 8. Six pre-mixed powder pattern zones in experiment-1. 
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The quantification of pre-mixed powder patterns was shown in Figure 9. 87 

observed zones with the size of 4mm by 3mm distributed with uniform-interval along the 

central line of the powder path. The number of 4047 Al and Cu particles were counted with 

the assistance of image processing software Image-J. Then the volume of two powders in 

each observed zone can be calculated by Eqn.7 and Eqn.8. In Figure 9, blue color recorded 

the volume percentage of 4047 Al, while red color recorded the volume percentage of Cu. 

The time in the X-axis was used to indicate the moments when the particles in the relative 

observation zone reached the epoxy resin. From the pre-mixed powder flowing history, a 

clear tendency can be found. In the beginning stage (approximately 0s ~ 4s), no particle 

sprayed out from the nozzle, so the volume percentage of two powders was zero. Starting 

from the moment of 4s, a flow of powder mixture exited from the nozzle, in which 4047 

Al was the primary particles, whose volume percentage reached to 93.25%. Some rare red 

Cu particles were found, whose volume percentage was 6.75%. With time increasing, more 

particles sprayed out from powder feeder nozzle, the primary particles are still 4047 Al, 

but whose volume percentage was decreasing gradually. In stark contrast, the volume 

percentage of Cu was gradually increasing. At the moment of 21s, Cu and 4047 Al had 

approximately same volume percentage. Then from the moment of 21s to the end, Cu 

powder volume percentage surpassed the 4047 Al powder volume percentage. Since both 

powders started to transit simultaneously from powder feeder pipe inlet, and 4047 Al 

particle had bigger acceleration than Cu particle according to the Eqn. 2, 4047 Al moved 

faster and exited from nozzle earlier than Cu particle. This is why Al powder volume 

percentage was greater than Cu powder. The powder volume percentage history in Figure 

9 implied the pre-mixed powder separation since the two powders’ volume percentage 
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were not uniform and kept changing, although they were designed as 50%:50%. The 

powder separation in their flow movement ruined the powder design and resulted in the 

severe deviation between original composition ratio and real composition ratio. 

 

Figure 9. Pre-mixed powder volume percentage history in experiment-1. 

Through selecting the particles with specific size to make the particle diameter ratio 

equal to or close to the ideal value in Eqn.6, the particle sizes were optimized in 

experiment-2. The pre-mixed powder particle pattern of experiment-2 was shown in Figure  

6b. Six particle patterns, following the same location way as in the experiment-1, were 

instanced. Six optical micrographs effectively recorded pre-mixed powder particles in the 

experiment-2. From Figure 10a to Figure 10f, Cu particle and 4047 Al particles were 

dispersively adhered to the epoxy resin layer, and there were no obvious differences of 

color distribution. Comparing with the particle patterns in experiment-1 (Figure 8), the six 
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particle patterns in experiment-2 can keep approximately uniform. This phenomenon 

indicated that the pre-mixed powder separation can be effectively controlled by optimizing 

the particle size.  

 

Figure 10. Six pre-mixed powder pattern zones in experiment-2. 

 

Figure 11. Pre-mixed powder volume percentage history in experiment-2. 
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The quantification of pre-mixed powder composition patterns in experiment-2 was 

shown in Figure 11. As same as in experiment-1, 87 observed zones with the size of 4mm 

by 3mm distributed with uniform-interval along the central line of the powder path. The 

number of 4047 Al and Cu particles were counted and them plotted. Blue color recorded 

the volume percentage of 4047 Al, while red color recorded the volume percentage of Cu. 

The time in the X-axis indicated the moments when the particles in the relative observation 

zone reached the epoxy resin. Therefore, the scatter diagram in Figure 11 can also be used 

as pre-mixed powder flow history diagram with optimized particles. By observing the 

optimized pre-mixed powder’s composition distribution patterned in the epoxy resin 

coating, the powder flow had basically constant volume percentages, which were close to 

50%:50%. Comparing with the results in experiment-1, the powder separation was 

effectively eliminated, so that the composition deviation was reduced.  

 

5. CONCLUSION 

 

This paper used an experimental method to present an important phenomenon: 

powder separation in blown pre-mixed powders flow. A novel particle size optimization 

method was introduced as solution to eliminate the powder separation to reduce the 

composition deviation. Some conclusions were summarized as follows: 

In the pre-mixed powders, which have two types of powder with different densities, 

if the particle diameter ratio is equal to or close to an ideal value, all the particles will have 

the same acceleration when moving in powder feeder pipe. The ideal value is the square 

root of powder density ratio. Therefore, there will be very less powder separation. The 
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designed composition in pre-mixed powder can be maintained. The particle size 

optimization method is based on the particle acceleration theory. This optimization method 

has a limitation: the powder shape is limited in the spherical particle. For the irregular 

powder, the effect of the optimization is unknown. 

Otherwise, if the particle diameter ratio is much greater or less than the ideal value, 

powder separation will happen in powder feeder pipe due to the different particle 

accelerations. It will cause the deviation between original composition and real 

composition. The designed composition in pre-mixed powder will be ruined.  
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POWDER FLOW SUPPLIED FOR LASER METAL DEPOSITION AND 
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ABSTRACT 

Pre-mixed powders are often used to fabricate functional graded materials or other 

customized materials with flexibly varying composition through Laser Metal Deposition 

(LMD) process. The varying composition is basically controlled by pre-mixed powders’ 

composition with customized original blending ratio. The deposited material composition 

is expected to be similar or same as supplied powder mixture. However, during argon gas 

flow feeding powder process, because of complex gas dynamic interaction of particle and 

argon gas flow, the pre-mixed powder could experience separation, which can cause severe 

composition deviation in deposited material. The current investigation is aimed at 

modeling analysis of this important phenomenon: separation in powder mixture during 

flow from feeder to melt pool. This paper presents a comprehensive CFD-DEM model, 

which simulated the powder separation of pre-mixed powder supplied for LMD. By solving 

discrete particle force balance equations coupled with continuity equations and momentum 

equations for argon gas, the dynamic behavior of pre-mixed powder flow through feeder 

pipe and out of nozzle was simulated.  
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1. INTRODUCTION 

Laser Metal Deposition (LMD) is a powerful manufacturing process to fabricate 

functional materials which can be customized to fulfill numerous property or functionality 

requirements as the utilization and working conditions needs. Within the part’s fabricating 

process, the demanded functional composition can be gained by melting pre-mixed 

powders, which have specified composition ratios to satisfy the usage requirement[1]. 

Many researchers employed LMD process to manufacture the functional materials with 

customized designs, and have done a lot of material characterization and related analysis. 

Carroll and Otis [2] fabricated a customized material with functionally graded composition 

change from SS 304L to Inconel 625 by LMD process with pre-mixed powder as the 

feedstock. Designed variation in material properties throughout part’s volume can be 

achieved from gradual changes in the composition to meet up with the design requirements. 

Schwendner and Banerjee [3] used LMD process to deposit Ti–10%Cr alloy and Ti–

10%Nb alloys with pre-mixed Ti-Cr and Ti-Nb powders. Li and Liou [4-7] demonstrated 

similar feasibility by fabricating a novel customized structure which successfully joined 

stainless steel and titanium alloy by means of LMD process with elemental powder 

feedstocks. In addition, Li and Liou [8, 9] blended Fe-Cr-Ni elemental powders and then 

fabricated a new functional gradient alloy, in which the gradient volume change of Ni 

achieved a gradient composition change from primary ferrite to primary austenite. Yan and 

Chen [10-12] applied LMD process and mixed Ti, Al, V elemental powders to fabricate 

functional Titanium alloy and Ti-Al alloy, coupled with numerical simulation to analyze 

the cooling rate’s effect on processing.  
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In the fabrication process, based on the composition requirements, several sorts of 

alloy or metal elemental powders are weighed. The weight percentages (wt.%) or volume 

percentages (vol.%) should meet the required chemical composition ratio for fabricating 

the functional materials. Then, all the weighed powders are blended sufficiently employing 

appropriate mixing equipment. This blended powder is then used as the powder feedstock 

during LMD process. A beneficial merit of pre-mixed powder is flexibility. Operators can 

produce powder feedstocks with any chemical composition ratio, and adjust the 

composition of powder efficiently. Additionally, because pre-mixed powder is from 

mixing some basic alloy or elemental powder, it is better in saving manufacturing cost. 

However, the pre-mixed powder is not a perfect powder supply. Inert gas flow (argon) is 

used to drive the powders along the powder feeder pipe, into the melt pool through the 

nozzle. Since the particles in the powder mixture have different densities and sizes, under 

the same argon gas flow the movement of powders will not be uniform in powder feeder 

pipe. Lighter and smaller particles could move faster while heavier and bigger particles 

could lag behind. This kind of pre-mixed powder separation may cause the deviation from 

the original composition ratio. In functional material, the material composition ratio in any 

different area is required strictly. Non-uniform powder mixture movements will skew the 

composition ratio, and reduce the material performance. This composition ratio deviation 

of pre-mixed powder is becoming a critical issue in fabricating functional material using 

LMD. Hence, investigation on pre-mixed powder flow in powder feeder pipe is greatly 

necessary. 

However, there was no modeling or experimental study focused on pre-mixed 

powders’ separation behavior in LMD. A few of the earlier research works on the powder 
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flow were narrowed to identical material rather than mixed powders. Pan and Liou [14] 

studied gravity-driven metal powder flow in coaxial nozzle for laser-aided direct metal 

deposition process with the H13 tool steel powder. By modeling analysis and experimental 

validation, the particle concentration is influenced significantly by nozzle geometries and 

argon gas velocity. Pan and Liou also [15] also investigated the metallic powder flow in a 

coaxial nozzle for laser aided deposition process through numerical simulation method. 

Tan et.al [16] developed a photographic system for the titanium powder feeding process of 

laser solid forming in which high speed camera, particle speed and powder flow 

concentration behaviors were described based on the powder flow images. Pinkerton and 

Li [17] studied the impact of powder feeder nozzle dimensions on powder flow rate. In 

their study, stainless steel 316L powder was used to analyze the behavior of the axial 

powder stream concentration from a coaxial laser cladding nozzle. Wen et.al [18] presented 

a comprehensive modeling method to predict the whole process of coaxial powder flow 

including the Stellite-6 particle stream flow in and after the powder feeder nozzle, and 

laser-particle interaction process. Extra efforts were dedicated on studying the powder 

stream behavior with the aid of both modeling and experimental methods, but the powder 

particles in any of these studies were the same material. 

Since the study to analyze the blended powder separation in LMD process is 

lacking, the goal of this paper is to fill in this gap because supplied pre-mixed powder 

straightly affects the deposited composition, which is a crucial factor in ensuring 

customized material functionality. This study presents a comprehensive CFD-DEM model, 

which analyzed the powder separation in pre-mixed powder supplied for LMD process. By 

solving discrete particle force balance equations coupled with continuity equations and 
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momentum equations for argon gas, the dynamic behavior of pre-mixed powder flow 

through feeder pipe and out of nozzle was simulated. The simulation results were then 

validated by the experiment done by authors.    

2. CFD-DEM MODELING METHODOLOGY 

Powder is delivered by argon gas flow throughout the powder feeder pipe during 

the LMD. A typical fluid-particle system is constituted by both powder and argon gas flow. 

In this system, particle or granular material’s motion is caused or driven by the fluid 

medium’s flow motion and fluctuation. An encouraging modeling approach to investigate 

the above fluid-particle system is a coupled Computational Fluid Dynamics method and 

Discrete Element Method (CFD-DEM), which properly considerates the interaction of 

fluid and particle [19]. 

The discrete element method (DEM) is appropriate to simulate granular matter 

(such as gravel, coal, beads of any material). The DEM is Lagrangian method, meaning 

that all particles in the computational domain are tracked by explicitly to solve the particle 

trajectoties. The force balance for a particle i in its translational motion is expressed as 

follows: 

𝑚𝑖

𝑑�⃗�

𝑑𝑡
= 𝐹𝑖𝑗

𝑐 + 𝐹𝑖
𝑓
+ 𝐹𝑖

𝑔
                                                      (1) 

𝑑𝑥

𝑑𝑡
= �⃗�                                                                       (2) 

where x denotes the translational displacement of the particle i. 𝐹𝑖𝑗
𝑐  is the contact force 

acting on particle i by particle j or walls. 𝐹𝑖
𝑓
 is the fluid-particle interaction force acting on 

particle i, which is the primarily drag force. 𝐹𝑖
𝑔

 is the gravitational force.  
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The collision of particles causes the contact force, which can be calculated and 

analyzed using DEM model. The particle contact forces are determined by the 

deformation, which is measured as the overlap between pairs of spherical particles or 

between spherical particle and boundary [20]. Spring collision law was applied to model 

the contact force acting on particles due to particle-particle or particle-wall collisions. 

Eqn.3-7 explain how to use the linear spring collision law to calculate the contact forces. 

A unit vector 𝑒12 is defined from particle 1 to particle 2, where 𝑥1 and 𝑥2 represent the 

position of particle 1 and particle 2, respectively. The overlap 𝛿 is defined in Eqn.4, which 

is less than zero during contact, where 𝑟1  and 𝑟2  represent the radii of particle 1 and 

particle 2, respectively. The force on particle 1 �⃗�1  is then calculated using a spring 

constant K that defined in Eqn.5, where D is the particle diameter, 𝜌 is the particle mass 

density, 𝑣 is the relative velocity between two colliding particles, and 휀𝐷 is the fraction of 

the diameter for allowable overlap. Then by Newton’s third law, the contact force on 

particle 2 �⃗�2 is calculated through Eqn.7. Note that �⃗�1 is directed away from particle 2, 

because 𝛿 is negative for contact.  

𝑒12 =
𝑥2 − 𝑥1
‖𝑥2 − 𝑥1‖

                                                              (3) 

𝛿 = ‖𝑥2 − 𝑥1‖ − (𝑟2 + 𝑟1)                                                   (4) 

𝐾 =
𝜋𝑣2

3휀𝐷
2 𝐷𝜌                                                                 (5) 

�⃗�1 = 𝐾𝛿𝑒12                                                                   (6) 

�⃗�2 = −�⃗�1                                                                       (7) 

Argon gas flow transports powder through powder feeder pipe in the LMD process. 

Particle’s dynamic behavior in argon gas flow is a two-phase problem called gas-particle 
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flow. To deeply understand the pre-mixed powder dynamic behavior in powder feeder 

pipe, it is necessary to review the fundamental theories of particle acceleration in argon gas 

flow. Figure 1 schematically illustrates the two primary driving forces for particle 

acceleration. One is the gas fluid force, Fa, from the gas flow, while the other is particle 

gravity G [18].  

 

Figure 1. Two primary driving forces for particle. 

The gas fluid-particle interaction problem involving the trajectory of a dispersed 

particle phase is solved by integrating the force balance on the particle in a Lagrangian 

reference frame. The dynamic governing equations for each particle are written as follows 

[18]. 

𝑑�⃑�

𝑑𝑡
= 𝑢𝑝                                                            (8) 

𝑑𝑢𝑝

𝑑𝑡
=
18𝜇

𝜌𝑝𝑑𝑝2
𝐶𝐷𝑅𝑒

24
(𝑢 − 𝑢𝑝) +

𝑔(𝜌𝑝 − 𝜌)

𝜌𝑝
                             (9) 

Where 𝑢𝑝 ,  𝜌𝑝 , and 𝑑𝑝  are the velocity, density, and diameter of particle, 

respectively. Eqn. (9) indicates that the particles are basically driven by the integration of 

gas flow drag force and gravity. 𝐶𝐷 is the drag coefficient which is dimensionless quantity. 

Re is Reynolds number and 𝜇 is the viscosity of argon gas flow.  
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For spherical particles, the drag coefficient can be taken from: 

𝐶𝐷 = 𝑎1 +
𝑎2
𝑅𝑒

+
𝑎3
𝑅𝑒2

                                                (10) 

Where 𝑎1, 𝑎2, and 𝑎3 are constants that apply over several ranges of Re given by 

Morsi and Alexander [21]. The constants, 𝑎𝑖 are defined as follows: 

𝑎1, 𝑎2, 𝑎3 =

{
 
 
 

 
 
 

0, 24, 0;  0 < 𝑅𝑒 < 0.1
3.690, 22.73, 0.0903;  0.1 < 𝑅𝑒 < 1

1.222, 29.1667,−3.8889;  1 < 𝑅𝑒 < 10
0.6167, 46.50,−116.67;  10 < 𝑅𝑒 < 100
0.3644, 98.33,−2778;  100 < 𝑅𝑒 < 1000
0.357, 148.62, −47500;  1000 < 𝑅𝑒 < 5000
0.46,−490.546, 578700;  5000 < 𝑅𝑒 < 10000
0.5191, −1662.5, 5416700;  𝑅𝑒 > 10000

              (11) 

The Reynolds number of nozzle in laser metal powder deposition was tested as 

7400 by Pan and Liou [14], which was used to calculate the drag coefficient 𝐶𝐷 . By 

substituting the constants 𝑎𝑖 in Eqn.11 to Eqn.10, the 𝐶𝐷 was approximately estimated as 

0.40. 

Because of the gas fluid-particle interaction behavior, the argon gas flow in powder 

feeder pipe is characterized by the turbulence. A turbulence model was built to solve the 

dynamic fluid behavior of argon gas phase. The turbulence model includes three types of 

equations: continuity equation of mass; momentum conservation equations, and 𝑘 − 휀 

kinetic energy equations. The governing equations are given as follows [18, 20, 22]: 

Continuity equation of argon gas mass: 

𝜕(𝜌𝑢𝑗)

𝜕𝑥𝑗
= 0                                                         (12) 

where 𝜌  is the density of argon gas, 𝑢𝑗  is the velocity vector along the jth direction. 

Because of the axisymmetric calculation domain, 𝑢𝑗  should be decomposed to axial 
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velocity vector 𝑢𝑥 and radial velocity vector 𝑢𝑟. Therefore, the argon gas mass continuity 

conservation equation is deduced as: 

𝜕(𝜌𝑢𝑥)

𝜕𝑥
+
1

𝑟

𝜕(𝑟𝜌𝑢𝑟)

𝜕𝑟
= 0                                                    (13) 

Where x and r are the axial and radial coordinate, respectively. 

The momentum conservation equation in the axial direction: 

𝜕(𝜌𝑢𝑥𝑢𝑥)

𝜕𝑥
+
1

𝑟

𝜕(𝑟𝜌𝑢𝑟𝑢𝑥)

𝜕𝑟
= −

𝜕𝑝

𝜕𝑥
+
1

𝑟

𝜕

𝜕𝑥
[𝑟𝜇 (2

𝜕𝑢𝑥
𝜕𝑥

−
2

3
(∇ ∙ �⃑⃑�))] +

1

𝑟

𝜕

𝜕𝑟
[𝑟𝜇 (

𝜕𝑢𝑥
𝜕𝑟

+
𝜕𝑢𝑟
𝜕𝑥
)] 

+𝜙𝑥                                                                                                      (14) 

The momentum conservation equation in the radial direction:  

𝜕(𝜌𝑢𝑥𝑢𝑟)

𝜕𝑥
+
1

𝑟

𝜕(𝑟𝜌𝑢𝑟𝑢𝑟)

𝜕𝑟
= −

𝜕𝑝

𝜕𝑟
+
𝜕

𝜕𝑥
[𝜇 (

𝜕𝑢𝑥
𝜕𝑟

+
𝜕𝑢𝑟
𝜕𝑥
)] +

1

𝑟

𝜕

𝜕𝑟
[𝑟𝜇 (2

𝜕𝑢𝑟
𝜕𝑟

−
2

3
(∇ ∙ �⃑⃑�))] 

−2𝜇
𝑢𝑟
𝑟2
+
2

3

𝜇

𝑟
(∇ ∙ �⃑⃑�) + 𝜙𝑟                                                         (15) 

where ∇ is the Hamilton operator, 𝜇 is the effective dynamic viscosity of the continuous 

argon gas.  

∇ ∙ �⃑⃑� =
𝜕𝑢𝑥
𝜕𝑥

+
𝜕𝑢𝑟
𝜕𝑟

+
𝑢𝑟
𝑟
                                                (16) 

In Eqns. (14) and (15), the source term 𝜙𝑖  (𝑖 = 𝑥, 𝑟)  represents the coupled 

momentum transport from the particle phase:  

𝜙𝑖 =
1

𝑉𝑐
∑

3𝜇𝐶𝐷𝑅𝑒

4𝜌𝑝𝑑𝑝2

𝑛𝑐

𝑗=1

(𝑢𝑝,𝑖 − 𝑢𝑖)�̇�𝑝
𝑗
∆𝑡𝑗                                    (17) 

where 𝑉𝑐 is the volume of one cell C; �̇�𝑝
𝑗
 is the particle mass rate for the jth trajectory 

passing through this cell; 𝑛𝑐 is the total number of particle trajectories passing through the 

cell; 𝑅𝑒 and 𝐶𝐷 are the Reynolds number and the drag coefficient of one particle; 𝜌𝑝, 𝑑𝑝, 
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and 𝑢𝑝,𝑖 are the density, diameter, and velocity in direction of one particle, respectively 

[18].  

The turbulence flow in powder feeder pipe requires appropriate modeling 

procedure to describe the turbulent fluctuation effects on particle movements. The most 

popular turbulent model is the standard 𝑘 − 휀 model which is proposed by Launder and 

Spalding [23]. The turbulence behavior is described through introducing two additional 

variables: the turbulent kinetic energy k, and the viscous dissipation rate of turbulent kinetic 

energy 휀. Serag-Eldin and Spalding [22] provided detailed description and expressions for 

these two variables. The standard 𝑘 − 휀 model is used to simulate the argon gas flow in 

powder feeder pipe. 

Considering the axisymmetric calculation domain, the conservation of kinetic 

energy of turbulence is: 

𝜕(𝜌𝑢𝑥𝑘)

𝜕𝑥
+
1

𝑟

𝜕(𝑟𝜌𝑢𝑟𝑘)

𝜕𝑟
=
𝜕

𝜕𝑥
[(𝜇𝑙 +

𝜇𝑡
𝜎𝑘
)
𝜕𝑘

𝜕𝑥
] +

1

𝑟

𝜕

𝜕𝑟
[𝑟 (𝜇𝑙 +

𝜇𝑡
𝜎𝑘
)
𝜕𝑘

𝜕𝑟
] + 𝐺𝑘 − 𝜌휀       (18) 

The conservation of the viscous dissipation rate of turbulent kinetic energy is: 

𝜕(𝜌𝑢𝑥휀)

𝜕𝑥
+
1

𝑟

𝜕(𝑟𝜌𝑢𝑟휀)

𝜕𝑟

=
𝜕

𝜕𝑥
[(𝜇𝑙 +

𝜇𝑡
𝜎𝜀
)
𝜕휀

𝜕𝑥
] +

1

𝑟

𝜕

𝜕𝑟
[𝑟 (𝜇𝑙 +

𝜇𝑡
𝜎𝜀
)
𝜕휀

𝜕𝑟
] + 𝐶1𝐺𝑘

휀

𝑘
− 𝐶2𝜌

휀2

𝑘
                    (19) 

𝜇 = 𝜇𝑙 + 𝜇𝑡 ;     𝜇𝑡 = 𝜌𝐶𝜇𝑘
2/휀                                                      (20) 

where 𝜇𝑙 and 𝜇𝑡 represent the laminar and turbulent viscosity. They are solved by the Eqn. 

(20). 𝐺𝑘 is the rate of production of kinetic energy. The model constants have five constants 

𝐶1, 𝐶2, 𝐶𝜇, 𝜎𝑘, and 𝜎𝜀, which have following default values [23]. These default values have 

been determined for fundamental turbulent flows including frequently encountered shear 
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flows like boundary layers, mixing layers and jets as well as for decaying isotropic grid 

turbulence [20]. 

𝐶1 = 1.44; 𝐶2 = 1.92; 𝐶𝜇 = 0.09; 𝜎𝑘 = 1.0; 𝜎𝜀 = 1.30                    (21) 

 

3. MODELING PREPARATION 

A 3-dimensional calculation domain used in the CFD-DEM model is illustrated in 

Figure 2(a). The powder feeder pipe shape was designed like this to make the calculation 

domain close to the real experiment condition Figure 2(b). The direction of nozzle was 

leaning at 30 degree angle with the vertical pipe. The boundary condition of inlet was set 

as velocity inlet boundary, which was indicated with blue color. The velocities of argon 

gas flow and pre-mixed powder flow were applied at this boundary condition. Powder 

feeder pipe wall, which was indicated with magenta, was set as wall boundary condition. 

In computational fluid mechanics, wall means there is not any mass, flow, pressure passing 

through the wall. A calculation domain for powder spraying behavior was defined near the 

outlet nozzle of powder feeder pipe, whose boundary was indicated with black color. 

Outflow boundary condition was used surrounding the powder spraying domain. The 

outflow boundary is used to simulate the boundary condition where unknown outlet 

velocity and pressure happen but follow the developing process of fluid flow and 

conservation requirement. 

The gas fluid–particle system discussed above is a complex two phase problem. In 

this study, the gas phase is treated as continuum, while the particle phase is simulated as a 

discrete phase that consists of two different particles dispersing in the continuous argon 
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gas phase. The fluid behavior of continuous gas phase is modeled by solving the continuity 

equations (Eqn.12, Eqn.13) and Navier–Stokes equations (Eqn.14, Eqn.15). The dispersed 

phase is solved by tracking a certain number of particles through the calculated domain. 

The trajectory of a discrete phase particle is solved by integrating the force balance on the 

particle, which is written in a Lagrangian reference frame [24]. The argon gas flow 

behavior in powder feeder pipe and near nozzle was simulated first by solving the 

turbulence model. Then the acquired argon gas flow field was used as the input for 

simulating the pre-mixed powder flow. The particle properties, including densities, size, 

shape, vol.% ratio, inlet velocity, were defined before calculation. Then powder flow field 

in the pipe and near the nozzle was simulated by coupling solving the interactions between 

the two phases and particle acceleration equations. 

  

(a)                                                                                (b) 

Figure 2. Modeling set-up: (a) calculation domain; (b) real situation in lab 

Two types of powders were used in the experiment to validate the modeling result. 

Pure Cu powder and 4047 Al powder were supplied from Atlantic Equipment Engineers. 
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There were two reasons behind choosing these two powders. Firstly, Cu particles are red 

or close to red, while 4047 Al is of gray color. The color difference makes it easy to 

differentiate between these two particles in the experiments. Secondly, the density of Cu 

particle is 8.94 g/cm3, while 4047 Al’s density is only 2.6 g/cm3. The density of Cu is 

approximately three times that of 4047 Al density. According to Eqn. (9), particle 

acceleration is inversely proportional to particle density. Significant difference in density 

is expected to cause significant difference in particle acceleration. Therefore, the separation 

of pre-mixed powder is expected to be easy to observe. Figure 3 depicts the two types of 

powder particles through optical microscope images. Both types of particles were observed 

to be spherical or close to be spherical in shape. After sieve analysis of both powder, the 

Cu powder with the particle size distribution of 75-106 μm, and the 4047 Al powder with 

the particle size distribution of 45-75 μm, were chosen for study. 

 

(a)                                                             (b) 

Figure 3. Optical microscopic images for: (a) Cu particles; and (b) 4047 Al particles 

The operating parameters in the modeling calculation were shown in Table.1, which 

were same as the experiment[1] done before. 4047 Al powder with the particle diameter 
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range (45-75 μm), and Cu powder with the particle diameter range (75-106 μm) were mixed 

in the volume percentage ratio of 50%:50%. The argon gas flow rate was set as 6 m/s..  

Table.1. The operating parameters in the modeling 

Parameter Value 

Schematic particles (Blue-

Al; Red-Cu)  
 

4047 Al particle diameter 45-75 μm 

Cu particle diameter 75-106 μm 

Vol.% ratio 50%:50% 

Argon gas flow rate 6 m/s 

 

4. SIMULATION RESULTS AND DISCUSSION 

Figure 4 depicts pre-mixed powder distribution simulated by the CFD-DEM 

modeling. Blue color and red color were used to indicate the trajectories of 4047 Al particle 

and Cu particle respectively. Pre-mixed powder was supplied at the inlet of pipe under the 

condition of 6 m/s argon gas flow rate. Due to strong turbulence at the inlet, the pre-mixed 

powder distribution there was close to homogeneous by observing the simulated powder 

fluid structure at the moment of 0.1 second (Figure 4). Argon gas flow carried pre-mixed 

powder to move following the powder feeder pipe with the interaction of argon gas flow-

particle, then exited though the outlet of the pipe. A section of powder feeder pipe was 

selected to observe the powder distribution at the moment of 2.0 second in Figure 4. It can 

be clearly found that some blue particles were ahead of red particles. Since both kinds of 

particles were supplied at the inlet simultaneously, the powder distribution in Figure 4 
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indicates that blue particles (4047 Al) moved faster than the red particles (Cu). Pre-mixed 

powder movement in powder feeder pipe shown greatly clear separation phenomenon. A 

reference zone was defined underneath the pipe outlet. The particle concentration in the 

reference zone was quantified and then compared with experiment results. 

 

Figure 4. The powder distribution in simulation result 

In order to clearly observe the pre-mixed powder separation in argon gas flow, ten 

different sections in powder feeder pipe were selected, which were depicted in Figure 5. 

The Figure 6 showed powder distributions in the ten pipe sections at the moment of 5 

second. In the first section, both two powders were mixed and carried to move forward by 

argon gas flow. There was not clear separation phenomenon of pre-mixed powder in the 

first section. From the second section to the fourth section, there was not clear separation 

in powder flow. Beyond that, it is easy to find the powder distribution had less 

concentration than the first section. The separation phenomenon in pre-mixed powder flow 

was obviously observed in the section 5. Some 4047 Al particles were ahead of Cu 

particles, which indicates the 4047 Al particles had greater velocity than Cu particles. Since 

Al particles had smaller particle size and density, Al particles had greater acceleration 

compared with Cu particles by analyzing Eqn.9, in which particle acceleration is inversely 
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proportional with the product of particle density and particle diameter square. From the 

sixth section to the tenth section, all the particles were 4047 Al and there was not any Cu 

particles observed. 4047 Al particles moved faster than Cu particle so that a lot of Al 

particles ran ahead of Cu particles. 

 

Figure 5. Ten sections in feeder pipe 

 

Figure 6. The simulated powder distribution in the ten pipe sections 

The particle distribution in the section1 and section3 at five different moments were 

depicted in Figure 7 and Figure 8. The time interval between two adjacent moments was 

0.05 second. The section1 located close to powder feeder inlet. By observing the particle 
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distributions in section1, it can be found that 4047 Al particles had tendency to surpass Cu 

particles as time went on. This tendency totally became powder separation in the section3. 

At the successive five moments, more and more 4047 Al particles surpassed and went 

ahead of Cu particles. This pre-mixed powder separation phenomenon will ruin the original 

composition ratio in powder mixture and finally resulted in composition deviation in 

deposit functional material. 

The particle concentration in the reference zone was quantified and plotted in 

Figure 9. Blue color recorded the volume percentage of 4047 Al, while red color recorded 

the volume percentage of Cu. The time in the X-axis indicated the moments when the 

exiting particles from nozzle reached the reference zone. The time started when the first 

particle was blown to move at the inlet. In the beginning stage (approximately 0s ~ 4s), no 

particle sprayed out from the nozzle, so the volume percentage of two powders was zero. 

Starting from the moment of 4s, a flow of 4047 Al powder exited from the nozzle. After 

about 6 seconds, Cu particle start to spray out but the primary powder was 4047 Al. With 

time went by, more particles sprayed out from powder feeder nozzle, the primary particles 

are still 4047 Al, but whose volume percentage was decreasing gradually. In stark contrast, 

the volume percentage of Cu was gradually increasing. At the moment of 18.6 s, Cu and 

4047 Al had approximately same volume percentage. Then from the moment of 18.6s to 

the end, Cu powder volume percentage surpassed the 4047 Al powder volume percentage, 

it was because more and more accumulated Cu particles behind Al particle sprayed out 

from the nozzle. 
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Figure 7. The powder distribution in section1 at different moments 

 

Figure 8. The powder distribution in section3 at different moments. 

 

Figure 9. Powder quantification results 
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5. EXPERIMENTAL VALIDATION 

In order to validate the simulated results, an experiment to analyze and quantify the 

pre-mixed powder distribution was operated by authors[1, 13]. The experiment set-up is 

schematically shown in Figure 10. A commercial powder feeder (Bay State Surface 

Technologies, Inc, Model-1200) was used to supply pre-mixed powder. Before experiment, 

the two metal powders were mixed for 30 mins with TURBULA Shaker-Mixer, which is a 

commercial equipment for the homogeneous mixing of powders with different specific 

weights and particle sizes. A piece of 6061 Aluminum alloy plate, paved with sticky epoxy 

resin, was fixed on two linear motors to move following the generated path. The idea of 

this experiment is to use the sticky epoxy resin layer to collect the pre-mixed 4047 Al and 

Cu powders spraying out from the nozzle. The optical microscopy was used to observe the 

powder pattern adhered on epoxy resin layer. 

The operating parameters in the experiment were same with Table.1. After the 

epoxy resin solidified, powder pattern formed in the epoxy resin layer. 87 observed zones 

with the size of 4mm by 3mm distributed with uniform-interval along the central line of 

the powder path were selected for microscopic particle patterns observation. Then the 

distribution of different particles in the pattern was quantified. Due to the color difference 

of 4047 Al and Cu particles, the image processing software Image-J was used to mark these 

two kinds of particles in each observed zone, then count the particle numbers of two 

powders. Since particle sizes were known, the volume percentage of two powders in each 

observed zone can be calculated by Eqn.22 and Eqn.23. The powder volume percent 

quantification idea in the experiment was schematically illustrated in Figure 10. 
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𝑉𝑜𝑙𝑝𝑜𝑤𝑑𝑒𝑟 = 𝑁𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 ×
4

3
𝜋𝑟𝑚𝑒𝑎𝑛

3                                            (22) 

𝑉𝑜𝑙.%𝑝𝑜𝑤𝑑𝑒𝑟1 = 100 ×
𝑉𝑜𝑙𝑝𝑜𝑤𝑑𝑒𝑟1

𝑉𝑜𝑙𝑝𝑜𝑤𝑑𝑒𝑟1 + 𝑉𝑜𝑙𝑝𝑜𝑤𝑑𝑒𝑟2
                           (23) 

 

Figure 10. Experiment set-up and powder volume percent quantification. 

The experimental validation result was shown in Figure 11. Dot plots recorded the 

simulated volume percentages of two powders, while diamond plots recorded the volume 

percentages of both powders in the experiment. Different colors indicated different kinds 

of powder. For the simulation results, the time in the X-axis indicated the moments when 

the exiting particles from nozzle reached the reference zone. Then for the experiment 

results, the time in the X-axis was used to indicate the moments when the particles in the 

corresponding observation zone reached the epoxy resin.  
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In Figure 11, the powder separation was obviously observed in both simulation and 

experiment results. In the beginning stage (approximately 0s ~ 4s), neither of Cu and 4047 

Al sprayed out from the nozzle, so the volume percentages of two powders were zero. This 

vacant period was predicted by modeling and validated by the experiment. Starting from 

the moment of 4s, a flow of pre-mixed powder exited from the nozzle, in which 4047 Al 

was the primary particles. With time increasing, more particles sprayed out from powder 

feeder nozzle, the primary particles were still 4047 Al, but whose volume percentage was 

decreasing gradually. In stark contrast, the volume percentage of Cu was gradually 

increasing. At the moment of 21s in the experiment, Cu and 4047 Al had approximately 

same volume percentage. Then from the moment of 21s to the end, Cu powder volume 

percentage surpassed the 4047 Al powder volume percentage, it was because more and 

more accumulated Cu particles behind Al particle sprayed out from the nozzle. The 

intersecting moment in modeling was close to 18.6 s, which was 2 s earlier compared to 

experiment. Since both powders started to transit simultaneously from powder feeder pipe 

inlet, and 4047 Al particle had bigger acceleration than Cu particle according to the Eqn. 

1, 4047 Al moved faster and exited from nozzle earlier than Cu particle. The powder 

volume percentage history in Figure 12 implied the pre-mixed powder separation since the 

two powders’ volume percentage were not uniform and kept changing, although they were 

designed as 50%:50%. The modeling results had same tendency in volume percentage with 

experiment results. Modeling result had greater volume percentage of 4047 Al and less Cu 

particle volume percentage before the intersecting moment, but less 4047 Al particle and 

more Cu particle after the moment. As a whole, the modeling results, such as volume 
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percentages of two powders, the powder separation phenomenon, can match the 

experimental results well. 

 

Figure 11. Experimentally validating the simulation result. 

6. CONCLUSION 

This study investigated the flow behaviors of pre-mixed powder supplied for LMD, 

and presented a comprehensive CFD-DEM model, which analyzed the powder separation 

in pre-mixed powder flow. Some conclusions were summarized as follows.  

By solving discrete particle acceleration equations coupled with continuity 

equations and momentum equations for argon gas, the dynamic behavior of pre-mixed flow 

was simulated. The modeling results show that 4047 Al particle came out first from the 

nozzle comparing with the Cu particle. This is because 4047 Al particle’s greater 

acceleration drove it to move faster than Cu particle. 4047 Al powder’s volume percentage 

was greater than Cu powder, then experienced gradual decrease coupled with increasing 
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Cu powder volume percentage. As time went on, more and more accumulated Cu particles 

behind Al particle sprayed out from the nozzle, so that Cu powder volume percentage 

became greater than Al powder gradually. An intersecting moment (t=18.6s) happened 

when Al powder and Cu powder shifted their volume percentages. The modeled powder 

volume percentages were validated by the experiment result, but the intersecting moment 

in modeling was 2 s earlier compared to intersecting moment in the experiment. The 

reported CFD-DEM model was proved to be a powerful tool to investigate the pre-mixed 

powder’s dynamic fluid behavior in LMD process. The study results, including volume 

percentages of two powders and the powder separation phenomenon, provided valuable 

reference for further analysis in fabricating functional material using LMD. 
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ABSTRACT 

    Pre-mixed powder is frequently-used powder supply to fabricate functional 

gradient material by Laser Metal Deposition (LMD). Argon gas flow blows the powder 

mixture following feeding pipe to melt pool in the LMD process. The powder mixture 

easily separates since the ingredient particles have different accelerations which are caused 

by different densities and sizes under the dynamic interaction with argon gas flow. This 

study investigated the argon gas flow rate’s effect on pre-mixed powder separation using 

modeling methodology. Three argon gas flow rates: 6 m/s, 7 m/s, and 8 m/s were selected, 

analyzed, and compared based on their effects on powder mixture separations. Pre-mixed 

Cu and 4047 Al powders with equal volume percentages (50% to 50%) were investigated 

during their transportation process under three argon gas flow rates. The volume percentage 

of each kind of powder was plotted by quantifying the distribution of different particles 

after exiting the nozzle. It can be found that the intersection point of both powder volume 

percentages appeared increasingly earlier along with the increasing argon gas flow rate. 

The results from this study are valuable contributions to the research of functional graded 

materials fabrication with pre-mixed powder through LMD process. 
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1. INTRODUCTION 

As a successful additive manufacturing process, Laser Metal Deposition (LMD) 

has gained great popularity to fabricate functional materials which can be specialized to 

satisfy various property or functionality requirements as the usage and working conditions 

demands. During the part’s fabricating process, the needed functional composition can be 

obtained by melting pre-mixed powders, which have defined composition ratios to fulfill 

the utilization requirement [1, 2]. Most researchers utilized LMD process to manufacture 

the functional materials with customized designs, and have completed lots of material 

characterization and involved studies. Li [3] used laser metal deposition process to deposit 

a new Fe-Cr-Ni alloy with gradually changing compositions. Fe, Cr, Ni elemental powders 

were pre-mixed with gradually increasing Ni content in order to acquire the phase gradient 

distribution from ferrite to austenite. Li and Liou [4] demonstrated similar feasibility by 

fabricating a novel customized structure which successfully joined stainless steel and 

titanium alloy by means of LMD process with elemental powder feedstocks. Carroll and 

Otis [5] fabricated a customized material with functionally graded composition change 

from SS 304L to Inconel 625 by LMD process with pre-mixed powder as the feedstock. 

Designed variation in material properties throughout part’s volume can be achieved from 

gradual changes in the composition to meet up with the design requirements.     

 The procedure of fabricating functional material by LMD was schematically 

depicted in Figure 1. Corresponding to the composition requirements, several kinds of alloy 

or metal elemental powders are weighed. The weight percentages (wt.%) or volume 

percentages (vol.%) should meet the demanded chemical composition ratio in the 
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functional materials. After that, all the weighed powders are mixed up adequately using 

suitable blending equipment. This blended powder is then applied as the powder supply for 

LMD process. An important advantage of pre-mixed powder is flexibility. The powder 

feedstocks can be produced with any chemical composition ratio. In addition, the 

composition of powder is able to be modified flexibly. More than that, because pre-mixed 

powder is from mixing some basic alloy or elemental powder, manufacturing cost is 

effectively saved. 

During the LMD process, metal powder is driven and carried by argon gas flow 

through the powder feeder pipe and nozzle[6, 7]. The particle’s movement is caused by the 

argon gas fluid medium’s flow motion and fluctuation[8, 9]. Since the particles in the 

powder mixture have different densities and sizes, under the same argon gas flow, the 

movement of powders will not be uniform in powder feeder pipe. Lighter and smaller 

particles could move faster while heavier and bigger particles could lag behind. This kind 

of pre-mixed powder separation may cause the deviation from the original composition 

ratio. In functional material, the material composition ratio in any different area is required 

strictly. The pre-mixed powder separation will alter the composition ratio, and default the 

material performance. The argon gas flow is the main driving force to separate the pre-

mixed powder. Therefore, it is greatly necessary to investigate the argon gas flow rate’s 

effect on pre-mixed powder separation. 

Powder feeding process in LMD is a standard fluid-particle system, which is 

composed of argon gas flow and metal powder. An effective modeling methodology to 

analyze the above fluid-particle system is a coupled Computational Fluid Dynamics 

method and Discrete Element Method (CFD-DEM)[10], which has sufficient consideration 
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of particle-particle collisions and fluid-particle interactions. The DEM is Lagrangian 

method, in which all particles in the computational domain are tracked by explicitly to 

calculate the particle trajectoties[11, 12]. The DEM method is capable of solving the 

contact forces that generated by the particles collision, which is modelled by the Spring 

collision law[13-15]. The CFD method is employed to simulate the gas fluid-particle 

interaction, particle’s dynamic behavior in argon gas flow, especially deeply understand 

the pre-mixed powder dynamic behavior[16]. A CFD model mainly includes three types 

of equations: continuity equation of mass; momentum conservation equations, and k-ε 

kinetic energy equations[17]. 

 

Figure 1. Schematic illustration of fabricating customized material by LMD 

This study employed a comprehensive CFD-DEM model to analyze the argon gas 

flow rate’s effect on powder separation in pre-mixed powder supplied for LMD process. 
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Three argon gas flow rates: 6 m/s, 7 m/s, and 8 m/s were selected and compared. Pre-mixed 

Cu and 4047 Al powders with equal volume percentages (50% to 50%) were investigated 

during their transportation process under the three argon gas flow rates. All particles’ 

dynamic flow behaviors and the powder distributions were simulated, observed, and 

quantified. To prove the correctness of the simulation results, an experiment done by author 

before was reviewed. 

2. MODELING PROCEDURE 

2.1. CALCULATION DOMAIN 

CFD-DEM model was used to simulate the powder flow in powder feeder pipe, 

which was designed with a 3-dimensional calculation domain. The powder feeder pipe 

shape was designed like this to make the calculation domain close to the real experiment 

condition [19]. The boundary condition of inlet was set as velocity inlet boundary, which 

was indicated with blue color. The velocities of argon gas flow and pre-mixed powder flow 

were applied at this boundary condition. Powder feeder pipe wall, which was indicated 

with magenta, was set as wall boundary condition. In computational fluid mechanics, wall 

means there is not any mass, flow, pressure passing through the wall. A calculation domain 

for powder spraying behavior was defined near the outlet nozzle of powder feeder pipe, 

whose boundary was indicated with black color. Outflow boundary condition was used 

surrounding the powder spraying domain. The outflow boundary is used to simulate the 

boundary condition where unknown outlet velocity and pressure happen but follow the 

developing process of fluid flow and conservation requirement. The direction of nozzle 

was leaning at 30 degree angle with the vertical pipe. 
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2.2. POWDER DESCRIPTION AND OPERATING PARAMETERS  

To validate the modeling, two types of powders were used in the experiment 

authors did before. Pure Cu powder and 4047 Al powder were supplied from Atlantic 

Equipment Engineers. There were two reasons behind choosing these two powders. Firstly, 

Cu particles are red or close to red, while 4047 Al is of gray color. The color difference 

makes it easy to differentiate between these two particles in the experiments. Secondly, the 

density of Cu particle is 8.94 g/cm3, while 4047 Al’s density is only 2.6 g/cm3. The density 

of Cu is approximately three times that of 4047 Al density. According to particle 

acceleration equation, particle acceleration is inversely proportional to particle density. 

Significant difference in density is expected to cause significant difference in particle 

acceleration. Therefore, the separation of pre-mixed powder is expected to be easy to 

observe. Figure 4 depicts the two kinds of powder particles through optical microscope 

images. Both types of particles were observed to be spherical or close to be spherical in 

shape. After sieve analysis of both powder, the Cu powder with the particle size distribution 

of 75-106 μm, and the 4047 Al powder with the particle size distribution of 45-75 μm, were 

selected. 

The operating parameters in the modeling calculation were shown in Table.1, which 

were same as the experiment [1] done before. 4047 Al powder with the particle diameter 

range (45-75 μm), and Cu powder with the particle diameter range (75-106 μm) were mixed 

in the volume percentage ratio of 50%:50%. In author’s lab, the argon gas flow rate was 

set as 6 m/s, which has been tested and verified to have satisfied deposition quality. 

Therefore, the argon gas flow rates were selected as 6 m/s, 7 m/s, and 8 m/s, to compare 

the argon gas flow rate’s effect on powder mixture separation. 
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Table.1. The operating parameters in the modeling 

Parameter Value 

Schematic particles (Blue-

Al; Red-Cu)  
 

4047 Al particle diameter 45-75 μm 

Cu particle diameter 75-106 μm 

Vol.% ratio 50%:50% 

Argon gas flow rate 6 m/s 7m/s 8m/s 

 

3. SIMULATION RESULTS AND DISCUSSION 

Pre-mixed powder distribution simulated by the CFD-DEM modeling was depicted 

in Figure 2. Blue color and red color were used to indicate the trajectories of 4047 Al 

particle and Cu particle respectively. A reference zone was defined underneath the pipe 

outlet. The particle concentration in the reference zone was quantified and then compared 

with experiment results. In order to clearly observe the pre-mixed powder distribution in 

argon gas flow, ten different sections in powder feeder pipe were selected, which were 

depicted in Figure 2. The powder distributions in the ten pipe sections shown in Figure 3 

were at the moment of 5 second under three argon gas flow rates, 6m/s, 7m/s, and 8m/s. 

Think of the simulated powder distribution with 6m/s argon gas flow rate first. In the first 

section, both two powders were mixed and moved forward carried by argon gas flow. There 

was not clear separation phenomenon of pre-mixed powder in the first section. From the 

second section to the fourth section, there was not clear separation in powder flow. Beyond 

that, it is easy to find the powder distribution had less concentration than the first section. 

The separation phenomenon in pre-mixed powder flow was obviously observed in the 
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section 5. Some 4047 Al particles were ahead of Cu particles, which indicates the 4047 Al 

particles had greater velocity than Cu particles. Since Al particles had smaller particle size 

and density, Al particles had greater acceleration compared with Cu particles by referring 

to particle acceleration equation, in which particle acceleration is inversely proportional 

with the product of particle density and particle diameter square. From the sixth section to 

the tenth section, all the particles were 4047 Al and there was not any Cu particles observed. 

4047 Al particles moved faster than Cu particle so that a lot of Al particles ran ahead of Cu 

particles. 

The powder distributions under argon gas flow rates of 7 m/s and 8 m/s were 

depicted in Figure 3b and Figure 3c. It is easy to observe that the powder separation under 

the bigger argon gas flow rate was in advance of the powder separation under the smaller 

argon gas flow rate. Compare to the case of 6 m/s, the powder separation happened in 

section 7 under 7 m/s argon gas flow rate; and the powder separation took place in section 

8 under 8 m/s argon gas flow rate. Bigger argon gas flow rate caused relatively bigger drag 

force to particles, so that powder separation can be much faster and more obvious. 

 

Figure 2. Ten sections in feeder pipe. 
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(a). Argon gas flow rate: 6m/s 

 

(b). Argon gas flow rate: 7m/s 

 

(c). Argon gas flow rate: 8m/s 

Figure 3. Simulated powder distribution in the ten pipe sections at the moment of 5s. 
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Figure 4. Powder quantification results. 

The particle concentrations in the reference zone were quantified and plotted in 

Figure 4. The time in the X-axis indicated the moments when the exiting particles from 

nozzle reached the reference zone. The time started when the first particle was blown to 

move at the inlet. From the particle concentration plots for three argon gas flow rates, it 

can be clearly observed that 4047 Al powder exited from the nozzle earlier than Cu powder. 

Because Al particle has smaller particle size and lighter density than Cu particle, the 

acceleration of Al particle was greater than Cu particle, so that Al particle moved faster 

than Cu particle. With time went by, more particles sprayed out from powder feeder nozzle, 

the primary particles were still 4047 Al, but whose volume percentage was decreasing 

gradually. On the other hand, the Cu powder’s volume percentage was gradually increasing 

over time. There was an intersection point of Al and Cu volume percentages. The reason 

was more and more accumulated Cu particles behind Al particle sprayed out from the 

nozzle. Therefore, Cu powder volume percentage surpassed the 4047 Al powder volume 

percentage. Another noteworthy result is the intersection point with higher argon gas flow 
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rate appeared earlier than the intersection point with lower argon gas flow rate. It was 

because higher argon gas flow rate caused bigger drag force to particles. As a result, 

powder separation occurred much faster than lower argon gas flow rate. This can also be 

found in the simulated powder distribution in Figure 3. 

4. EXPERIMENTAL VALIDATION 

With the purpose of validating correctness of the CFD-DEM model, an experiment 

operated by authors was reviewed. This experiment analyzed and quantified the pre-mixed 

powder distribution under the argon gas flow rate of 6 m/s [1]. A commercial powder feeder 

(Bay State Surface Technologies, Inc, Model-1200) was used to supply pre-mixed powder. 

Before experiment, the two metal powders were mixed for 30 mins with TURBULA 

Shaker-Mixer, which is a commercial equipment for the homogeneous mixing of powders 

with different specific weights and particle sizes. A piece of 6061 Aluminum alloy plate, 

paved with sticky epoxy resin, was fixed on two linear motors to move following the 

generated path. The idea of this experiment is to use the sticky epoxy resin layer to collect 

the pre-mixed 4047 Al and Cu powders spraying out from the nozzle. The optical 

microscopy was used to observe the powder pattern adhered on epoxy resin layer.   

The experimental validation result was shown in Figure 5. Different colors and 

mark shapes indicated different powder volume percentages. For the simulation results, the 

time in the X-axis indicated the moments when the exiting particles from nozzle reached 

the reference zone. Then for the experiment results, the time in the X-axis was used to 

indicate the moments when the particles in the corresponding observation zone reached the 

epoxy resin. 



  67 

 

 

Figure 5. Experimental validating the model. 

By observing the validation result under the 6 m/s argon gas flow rate, the powder 

separation was obviously found in both simulation and experiment results. In the beginning 

stage (approximately 0s ~ 4s), neither of Cu and 4047 Al sprayed out from the nozzle, so 

the volume percentages of two powders were zero. This vacant period was predicted by 

modeling and validated by the experiment. Starting from the moment of 4s, a flow of pre-

mixed powder exited from the nozzle, in which 4047 Al was the primary particles. With 

time increasing, more particles sprayed out from powder feeder nozzle, the primary 

particles were still 4047 Al, but whose volume percentage was decreasing gradually. On 

the other hand, the volume percentage of Cu was gradually increasing. At the moment of 

21s (intersection point) in the experiment, Cu and 4047 Al had approximately same volume 

percentage. Then from the moment of 21s to the end, Cu powder volume percentage 

surpassed the 4047 Al powder volume percentage, it was because more and more 

accumulated Cu particles behind Al particle sprayed out from the nozzle. The intersecting 
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moment in modeling was close to 18.6 s, which was 2 seconds earlier compared to 

experiment. Since both powders started to transit simultaneously from powder feeder pipe 

inlet, and 4047 Al particle had bigger acceleration than Cu particle according, 4047 Al 

moved faster and exited from nozzle earlier than Cu particle. The powder volume 

percentage history in Figure 5 implied the pre-mixed powder separation since the two 

powders’ volume percentage were not uniform and kept changing, although they were 

designed as 50%:50%. The modeling results had same tendency in volume percentage with 

experiment results. Modeling result had greater volume percentage of 4047 Al and less Cu 

particle volume percentage before the intersecting moment, but less 4047 Al particle and 

more Cu particle after the moment. As a whole, the modeling volume percentages of two 

powders can match the experimental results well. 

5. CONCLUSION 

This paper applied a comprehensive CFD-DEM model to analyze argon gas flow 

rate’s effect on pre-mixed powder separation in LMD process coupled with experimental 

validation. Some conclusions were summarized as follows. 

By solving discrete particle acceleration equations coupled with continuity 

equations and momentum equations for argon gas, the dynamic behavior of pre-mixed flow 

was simulated. Since Al particle has smaller particle size and lighter density than Cu 

particle, the acceleration of Al particle was greater than Cu particle, so that Al particle 

moved faster than Cu particle. The separation phenomenon in pre-mixed powder was 

observed in both modeling result and experiment. 



  69 

 

The pre-mixed powder separation generated the intersection point of Al and Cu 

powder volume percentage plots. Another noteworthy result is the intersection point with 

higher argon gas flow rate appeared earlier than the intersection point with lower argon gas 

flow rate. It was because higher argon gas flow rate caused bigger drag force to particles. 

As a result, powder separation occurred much faster than lower argon gas flow rate. 
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ABSTRACT 

The separation in pre-mixed powder flow is a critical issue in fabricating Functional 

Gradient Material (FGM) using Laser Metal Deposition (LMD), since the powder mixture 

separation can ruin the original mixing composition ratio, which is designed to match the 

FGM. Authors invented a novel particle size optimization method as the solution to 

eliminate the powder separation and reduce the composition deviation. Through optimizing 

particle size, the acceleration of particles can be uniform or close to uniform, so that the 

original mixing composition can be maintained. In this research, the particle size 

optimization’s effect on controlling pre-mixed powder separation was numerically 

analyzed with a comprehensive CFD-DEM model, which was based on the fundamentals 

of discrete element methodology and computational fluid dynamics. Through dealing with 

discrete particle force balance equations combined with argon gas's continuity equations 

and momentum equations, the powder mixture flow's dynamic behavior in feeder pipe and 

out of nozzle was simulated. The modeling results were validated by the experiment done 

by author before. It can be clearly observed that the powder separation was effectively 

controlled in both modeling and experimental results. 



  73 

 

1. INTRODUCTION 

Functional gradient material (FGM) is stimulating an increasing amount of research 

concentration, because it can be customized to fulfill numerous property or functionality 

requirements as the utilization and working conditions needs. Laser Metal Deposition 

(LMD) is a powerful manufacturing process to fabricate functional materials. Within the 

part’s fabrication by LMD, the demanded functional composition can be gained by melting 

pre-mixed powders, which have specified composition ratios to satisfy the usage 

requirement [1]. Many researchers employed LMD process to manufacture the functional 

materials with customized designs, and have done a lot of material characterization and 

related analysis[2-6]. The pre-mixed powders included various powders and collocations.  

The powder separation behavior was an important issue in manufacturing FGM 

through LMD. The separation in pre-mixed powder flow can cause composition deviation 

from the original composition ratio in fabricated functional material, which will default the 

material’s function and value. Figure 1 is a schematic illustration depicting the feeding 

process of pre-mixed powders in LMD. Argon gas flow is applied to drive the powders 

following the powder feeder pipe, then going to the melt pool through the nozzle. Because 

the particles in the powder mixture have various densities and sizes, the movement of 

powders will not be uniform in powder feeder pipe under the same argon gas flow. Lighter 

and smaller particles could move faster while heavier and bigger particles could lag behind. 

The basic reason of powder separation is that the different types of particles have non-

uniform moving velocities in powder feeder pipe. Due to the fact that powder mixture was 

supplied to the pipe inlet with constant initial velocity (zero velocity in general), the non-
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uniform velocities are fundamentally caused by non-uniform accelerations. Based on the 

Lagrangian reference frame integrating the force balance on the particle in the gas fluid-

particle interaction, the particle acceleration can be derived as follows [7]. 

𝑎𝑝 =
18𝜇

𝜌𝑝𝑑𝑝2
𝐶𝐷𝑅𝑒

24
(𝑢 − 𝑢𝑝) +

𝑔(𝜌𝑝 − 𝜌)

𝜌𝑝
                          (1) 

where 𝑎𝑝, 𝑢𝑝 , 𝜌𝑝, and 𝑑𝑝 are the acceleration, velocity, density, and diameter of 

particle, respectively. 𝑢 and 𝜌 are velocity and density of argon gas respectively. 𝐶𝐷 is the 

drag coefficient which is dimensionless quantity. Re is Reynolds number and 𝜇  is the 

viscosity of argon gas flow. If only considering the particle property’s effect, Eqn. (1) 

indicates that the particle acceleration is affected by the product of particle density and 

particle diameter square. 

A standard LMD fluid-particle system is composed of argon gas flow and metal 

powder [8]. In this system, particle’s movement is caused or driven by the argon gas fluid 

medium’s flow motion and fluctuation [9]. An encouraging modeling methodology to 

analyze the above fluid-particle system is a coupled Computational Fluid Dynamics 

method and Discrete Element Method (CFD-DEM)[10], which has appropriate thought of 

particle-particle collisions and fluid-particle interactions. The DEM is Lagrangian method, 

in which all particles in the computational domain are tracked by explicitly to calculate the 

particle trajectoties [11, 12]. The DEM method is capable of solving the contact forces that 

generated by the particles collision, which is modelled by the Spring collision law[13-15]. 

The CFD method is employed to simulate the gas fluid-particle interaction, particle’s 

dynamic behavior in argon gas flow, especially deeply understand the pre-mixed powder 

dynamic behavior [16]. In a CFD model, three types of equations are mainly included: 
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continuity equation of mass; momentum conservation equations, and k-ε kinetic energy 

equations [17]. 

Based on the study of particle acceleration, this work introduced a novel particle 

size optimization method as the solution to eliminate the powder separation. The CFD-

DEM modeling tool was used to simulate the particle fluid behaviors in powder feeder 

pipe, to demonstrate the effect of optimizing particle size in controlling pre-mixed powder 

separation. In addition, an experiment done by author was reviewed in this study. The 

modeling results was then validated by the experimental data. 

 

Figure 1. Schematic illustration of feeding process of pre-mixed powders. 

2. EXPERIMENTAL REVIEW AND PARTICLE SIZE OPTIMIZATION 

APPROACH INTRODUCTION 

Authors published a journal reference [18] which reported a novel particle size 

optimization idea through experimental approach. This particle size optimization idea 
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answered a question: how to address the powder mixture’s separation in LMD processing 

functional material to reduce the composition deviation.  

Two types of powders were used in the experiment. Pure Cu powder and 4047 Al 

powder were supplied from Atlantic Equipment Engineers. Figure 2 depicts the two types 

of powder particles through optical microscope images. The color difference of two 

powders gave convenience to distinguish them in the experiment. Both the Cu and 4047 

Al particles were spherical or close to be spherical in shape. The particle size distributions 

of the two types of powder obtained by sieve analysis are listed in Table.1 and Table.2. 

The experiment set-up is schematically illustrated in Figure 3(a) and Figure 3(b). The pre-

mixed powder was supplied by a commercial powder feeder (Bay State Surface 

Technologies, Inc, Model-1200). Before experiment, the two metal powders were mixed 

for 30 mins with TURBULA Shaker-Mixer, which is a commercial equipment for the 

homogeneous mixing of powders with different specific weights and particle sizes. Two 

linear motors controlled a piece of 6061 Aluminum alloy plate to move following a 

generated path. Sticky epoxy resin was paved on the plate in order to collect the pre-mixed 

4047 Al and Cu powders spraying out from the nozzle. The powder pattern adhered on 

epoxy resin layer was observed with optical microscopy. 87 observed zones with the size 

of 4mm by 3mm distributed with uniform-interval along the central line of the powder path 

were selected for microscopic particle patterns observation. Then the distribution of 

different particles in the pattern was quantified. Due to the color difference of 4047 Al and 

Cu particles, the image processing software Image-J was used to mark these two kinds of 

particles in each observed zone, then count the particle numbers of two powders. Since 

particle sizes were known, the volume percentage of two powders in each observed zone 
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can be calculated by Eqn.2 and Eqn.3. The powder volume percent quantification idea in 

the experiment was schematically illustrated in Figure 3(c). 

𝑉𝑜𝑙𝑝𝑜𝑤𝑑𝑒𝑟 = 𝑁𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 ×
4

3
𝜋𝑟𝑚𝑒𝑎𝑛

3                                          (2) 

𝑉𝑜𝑙.%𝑝𝑜𝑤𝑑𝑒𝑟1 = 100 ×
𝑉𝑜𝑙𝑝𝑜𝑤𝑑𝑒𝑟1

𝑉𝑜𝑙𝑝𝑜𝑤𝑑𝑒𝑟1 + 𝑉𝑜𝑙𝑝𝑜𝑤𝑑𝑒𝑟2
                           (3) 

 

 

(a)                                              (b) 

Figure 2. Optical microscopic images for: (a) Cu particles; and (b) 4047 Al 

particles[18]. 

Table.1. Sieve analysis of pure Cu powder 

Sieve type 
+70 

mesh 

-70/+100 

mesh 

-100/+120 

mesh 

-120/+140 

mesh 

-140/+200 

mesh 

-200/+325 

mesh 

Size (μm) >212 150-212 125-150 106-125 75-106 45-75 

Percentage (%) 0.0 1.3 2.4 3.7 47.4 45.2 

Table.2. Sieve analysis of 4047 Al powder 

Sieve type 
+70 

mesh 

-70/+100 

mesh 

-100/+120 

mesh 

-120/+140 

mesh 

-140/+200 

mesh 

-200/+325 

mesh 

Size (μm) >212 150-212 125-150 106-125 75-106 45-75 

Percentage (%) 1.1 2.8 5.4 20.3 42.5 27.9 
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Figure 3. (a). Experiment design; (b). Experiment set-up; (c). Powder volume 

percent quantification[1]. 

The theory fundamental of the reported optimization idea is the particle acceleration 

equation which described the interaction of metal powder and argon gas flow in gas fluid-

particle system. The particle acceleration (Eqn.1) is a classic first order differential 

equation with variable of particle velocity 𝑢𝑝. In the process of LMD, each particle has 

such a differential equation for itself to describe its dynamic movement in powder feeder 

pipe. The second term on the right side can be simplified as gravitational acceleration 𝑔 

because particle density 𝜌𝑝 is much greater than argon gas density 𝜌. The first term on the 

right side contains several coefficients including argon gas flow velocity 𝑢, drag coefficient 

𝐶𝐷 , argon gas density 𝜌 , and the product of particle diameter 𝑑𝑝  and density 𝜌𝑝 . The 

coefficients 𝑢, 𝐶𝐷 , and 𝜌 are same for all the particles, but the product of density and 

diameter square 𝜌𝑝𝑑𝑝
2 varies for different types of powders. In this study, the two particle 
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densities 𝜌𝑝_𝐶𝑢  and 𝜌𝑝_𝐴𝑙 , represent Cu particle density and 4047 Al particle density 

respectively. One ideal situation is, if Cu powder and 4047 Al powder have same density-

diameter square products (in Eqn.4), then both type of particles will have uniform 

acceleration equations. The initial particle velocity is supposed as zero at powder feeder 

pipe orifice. Therefore, both types of particles will have almost same or very close velocity 

distribution and history, so that the separation of pre-mixed powder could be effectively 

eliminated. 

𝜌𝑝_𝐶𝑢𝑑𝑝_𝐶𝑢
2 = 𝜌𝑝_𝐴𝑙𝑑𝑝_𝐴𝑙

2                                                 (4) 

𝑑𝑝_𝐴𝑙

𝑑𝑝_𝐶𝑢
= √

𝜌𝑝_𝐶𝑢

𝜌𝑝_𝐴𝑙
= √

8.94𝑔/𝑐𝑚3

2.6𝑔/𝑐𝑚3
= 1.854                                 (5) 

The Eqn.4 was rewritten in a new proportion format in Eqn.5, which explains an 

important criterion: if 4047 Al particle diameter is 1.854 times greater than Cu particle 

diameter, both type of particles will have same acceleration equations. Much closer the 

𝑑𝑝_𝐴𝑙/𝑑𝑝_𝐶𝑢 is to the ideal value, more effectively the powder mixture separation could be 

eliminated. 

Based on the above analysis, one particle size optimization method was introduced. 

Sieve processing of Cu powder and 4047 Al powder separated these two powders into 

different size ranges (see in Table.1 and Table.2). Select the powders whose particle 

diameter ratio 𝑑𝑝_𝐴𝑙/𝑑𝑝_𝐶𝑢 was equal or very close to the ideal value 1.854, then mix them 

together. Following the sieve processing result, 4047 Al powder with the particle diameter 

(75-106 μm), and Cu powder with the particle diameter range (45-75 μm) were selected 

and then mixed in the 50%:50% Vol.% ratio. The operating parameters in both experiment 

and modeling were shown in Table.3. 
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Table.3. The operating parameters in experiment and modeling 

Schematic particles (Blue-

Al; Red-Cu)  
 

4047 Al particle diameter 75-106 μm 

Cu particle diameter 45-75 μm 

𝑑𝑝_𝐴𝑙/𝑑𝑝_𝐶𝑢 1.5 

Vol.% ratio 50%:50% 

Argon gas flow rate 6 m/s 

 

 

Figure 4. Quantification of pre-mixed powder composition patterns in experiment[18] 

The quantification of pre-mixed powder composition patterns in experiment-2 was 

shown in Figure 4. Blue color recorded the volume percentage of 4047 Al, while red color 

recorded the volume percentage of Cu. The time in the X-axis indicated the moments when 

the particles in the relative observation zone reached the epoxy resin. By observing the 

optimized pre-mixed powder’s composition distribution patterned in the epoxy resin 
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coating, the powder flow had basically constant volume percentages, which were close to 

50%:50%. Four optical micrographs schematically illustrated the pre-mixed powder 

distribution at different observed zones in the particle pattern. There were not obvious 

differences of color distribution, which mean the powder composition ratio can keep 

approximately uniform. The quantification result and optical micrographs indicated that 

the pre-mixed powder separation can be effectively controlled by optimizing the particle 

size. 

3. SIMULATION RESULTS AND DISCUSSION 

Figure 5 depicted the pre-mixed powder distribution simulated by the CFD-DEM 

modeling. Blue color and red color were used to indicate the trajectories of 4047 Al particle 

and Cu particle respectively. Pre-mixed powder was supplied at the inlet of pipe under the 

condition of 6 m/s argon gas flow rate. A reference zone was defined underneath the pipe 

outlet. The particle concentration in the reference zone was quantified and then compared 

with experiment results. In order to clearly observe the pre-mixed powder distribution in 

argon gas flow, ten different sections in powder feeder pipe were selected, which were 

depicted in Figure 5. The powder distributions in the ten pipe sections shown in Figure 6 

were at the moment of 5 second. From section1 to section10, it can be observed that both 

two powders moved forward uniformly and kept the original mixing composition ratio 

approximately. There was not clear separation phenomenon of pre-mixed powder in all the 

ten sections. The simulation result indicated that both 4047 Al particles and Cu particles 

had almost uniform velocities. Through optimizing particle diameter, the Al particles had 

bigger particle size but less density, while Cu particles had smaller particle size but greater 
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density, so the product of particle density and particle diameter square in Eqn.1 was close 

to be same for all the particles in pre-mixed powder. Therefore, all the particles had almost 

same accelerations under the identical argon gas flow. The initial velocity for any particle 

was supposed to be zero at the inlet of feeder pipe. As a result, all the particles gained 

almost uniform velocity. The simulation result showed that pre-mixed powder separation 

was effectively controlled and all the powders moved along powder feeder pipe neck and 

neck. 

 

Figure 5. The powder distribution in simulation result and ten sections 

In order to observe how the particle distribution changed over time, the particle 

distribution in the section1 and section3 at five different moments were depicted in Figure 

7. The time interval between two adjacent moments was 0.05 second. The section1 located 

close to powder feeder inlet. By observing the particle distributions in section1, it can be 

found that both 4047 Al particles and Cu particles had tendency to move forward with 

almost uniform mixing composition ratio. This tendency totally continued in the section3. 

At the successive five moments, powder mixture gradually started to disperse but still kept 
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uniform mixing ratio. Powder separation was not found in the particle distribution changed 

over time. The particle size optimization method can eliminate the powder separation 

effectively. 

 

Figure 6. The simulated powder distribution results in ten sections. 

The particle volume percentages in the reference zone were quantified and plotted 

in Figure 8. Green color recorded the volume percentage of 4047 Al, while purple color 

recorded the volume percentage of Cu. The time in the X-axis indicated the moments when 

the exiting particles from nozzle reached the reference zone. The time started when the first 

particle was blown to move at the inlet. In the beginning stage (approximately 0s ~ 4s), no 

particle sprayed out from the nozzle, so the volume percentage of two powders was zero. 

Starting from the moment of 4s, a flow of 4047 Al powder and Cu powder mixture exited 

from the nozzle. The volume percent of Cu was slightly greater than Al powder. But after 

about 2 seconds, Al powder volume percent surpassed Cu volume percent and kept greater 

than Cu volume percent for about 6 seconds. Then both powder volume percentages 

oscillated and alternate with time went by. An interesting result was both powder volume 
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percentages oscillated near the 50% standard line. That means pre-mixed powder did not 

separate and kept almost uniform as being blown in powder feeder pipe. Through 

optimizing particle size, pre-mixed powder separation can be effectively controlled based 

on the modeling results. 

 

(a) 

 

(b) 

Figure 7. The powder distribution in (a). section1 and (b). section3 at different moments. 
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Figure 8. Simulation results and experimental validation. 

The experimental validation of simulated results with optimized particle size was 

depicted in Figure 8. The vacant period in the simulation was same with the experiment 

result. Starting from the moment of 4s, a flow of 4047 Al powder and Cu powder mixture 

exited from the nozzle. In the simulation result, both powder volume percentages oscillated 

and alternated with time went by. And both powder volume percentages oscillated near the 

50% standard line. That means pre-mixed powder did not separate and kept almost uniform 

as being blown in powder feeder pipe. In the experimental result, the powder’ s volume 

percentages also showed oscillations near 50% standard line. However, there were not 

alternations of 4047 Al and Cu powder volume percentages compared with the simulation 

results. Al powder volume percentage was always greater then Cu powder. By analyzing 

the optimized pre-mixed powder’s composition distribution simulated with model and 

patterned in the epoxy resin coating, the powder flow had basically stable volume 

percentages, which were close to 50%:50%. Through optimizing particle size, pre-mixed 
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powder separation can be effectively controlled, which was clearly found in both 

simulation and experimental results. 

4. CONCLUSION 

This study presented a comprehensive CFD-DEM model to investigate the particle 

size optimization’s effect on controlling pre-mixed powder flow separation. In the 

simulated results with optimized particle size, both powder volume percentages alternated 

with time went by and oscillated near the 50% standard line. The pre-mixed powder did 

not separate and kept almost uniform as being blown in powder feeder pipe. The modeled 

powder volume percentages showed alternation and oscillation near the 50% line, which 

can be validated by experimental powder volume percentages. Through optimizing particle 

size, pre-mixed powder separation can be effectively controlled, which was clearly found 

in both simulation and experimental results. 
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SECTION 

2. CONCLUSION 

This dissertation investigated the pre-mixed powder flow behaviors in powder 

feeder pipe with both experimental and modeling approaches. The main conclusions can 

be summarized as follows. 

In the pre-mixed powders, which have two types of powder with different densities, 

if the particle diameter ratio is equal to or close to an ideal value, all the particles will have 

the same acceleration when moving in powder feeder pipe. The ideal value is the square 

root of powder density ratio. Therefore, there will be very less powder separation. The 

designed composition in pre-mixed powder can be maintained.  

Otherwise, if the particle diameter ratio is much greater or less than the ideal value, 

powder separation will happen in powder feeder pipe due to the different particle 

accelerations. It will cause the deviation between original composition and real 

composition. The designed composition in pre-mixed powder will be ruined. 

Powder delivered by argon gas flow is a typical fluid-particle system. In this 

system, particle or granular material’s motion is caused or driven by the fluid medium’s 

flow motion and fluctuation. An encouraging modeling approach to investigate the above 

fluid-particle system is a coupled Computational Fluid Dynamics method and Discrete 

Element Method (CFD-DEM), which properly considerates the interaction of fluid and 

particle. By solving discrete particle acceleration equations coupled with continuity 

equations and momentum equations for argon gas, the dynamic behavior of pre-mixed flow 

was simulated. 
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In pre-mixed powder with Cu and 4047 Al powder, since Al particle has smaller 

particle size and lighter density than Cu particle, the acceleration of Al particle was greater 

than Cu particle, so that Al particle moved faster than Cu particle. The separation 

phenomenon in pre-mixed powder was observed in both modeling result and experiment. 

The pre-mixed powder separation generated the intersection point of Al and Cu powder 

volume percentage plots. A noteworthy result is the intersection point with higher argon 

gas flow rate appeared earlier than the intersection point with lower argon gas flow rate. It 

was because higher argon gas flow rate caused bigger drag force to particles. As a result, 

powder separation occurred much faster than lower argon gas flow rate. 
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