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ABSTRACT 

 

This work presents a geometric error compensation method for large 5-axis 

machine tools. The compensation method presented here uses tool tip measurements 

recorded throughout the axis space to construct a position-dependent geometric error 

model that can easily be used for error compensation. The measurements are taken using 

a laser tracker, permitting rapid error data gathering at most locations in the axis space. 

First two model types are compared for generating table-based error compensation and 

experimental results are presented. Table-based compensation is then extended to 

machine tool controller types with restrictions on the number or combination of 

compensation tables using an artificial intelligence method. The overall methodology is 

then extended to the integration of additional instruments. A particular strength of the 

proposed methodology is the simultaneous generation of a complete set of compensation 

tables that accurately captures complicated kinematic errors independent of whether they 

arise from expected and unexpected sources. 
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SECTION 

1. INTRODUCTION 

Monolithic parts have become increasingly common in the aerospace industry. 

Figure 1.1 shows an example of such a part. These parts can be beneficial in decreasing 

the amount of hand work and number of fasteners, but also increases part complexity and 

the demand for tight tolerances over longer distances, so new strategies for improving the 

accuracy of these machines is needed.  

 

 

 

 

Figure 1.1: An example of a monolithic part that combines smaller components 
with features requiring tight tolerances.  

 

 

 

Additionally, many machine shops have aging. The accuracy of machine tool is 

typically improved through calibration or mechanical adjustment since machine tools are 

very repeatable. Machine tool accuracy may also change over time due to wear or 

collisions with a work part or table, so calibration is a part of regular maintenance. 

Calibration common practice in the industry, but based on techniques developed 

originally for three-axis machine tools. Three-axis machine tools often used direct 

measurement methods since they have only linear axes. Direct measurement methods are 
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measurement methods that attempt to isolate an individual error. These methods can be 

more time consuming and are not as suited to more complex machines. Sartori and Zhang 

[1] and Schwenke et al [2] both give an overview of direct measurement methods. ISO

230-1 describes the current practice for machine tool calibration [3]. These methods 

generally calibrate the three linear axes individually, then measure the rotary axes 

separately. Calibration of the rotary axes uses indirect measurement, which uses 

measurement of the tooltip position, rather than a direct measurement of individual 

errors. Indirect measurement types are summarized in [4], including instruments such as a 

ball bar [5, 6] or the R-test [7, 8]. The ball bar has traditionally been used to identify 

errors between two linear axes, but has been extended to rotary axes in Tsustsumi and 

Saito [5], Zargarbashi and Mayer  [6], and Lei et al [9]. Some less common instruments 

include the cross grid encoder, “capball”, developed by Zargarbashi and Mayer [6], and 

“non-bar,” developed by Jywe et al [10]. These methods assume perfectly calibrated 

linear axes so that the errors of the rotary axes can be isolated.  There are several 

problems with this approach. First, assumptions are being made that the errors on each 

axis can be separated from one another and that after the linear axes are calibrated, their 

errors have no further influence on the rotary axes. In addition to this, each of these 

individual errors requires a different instrument and/or setup, and a full calibration can 

require several weeks to complete according to experts inside Boeing. In response to this, 

Dr. Phil Freeman and Sam Easley developed a method to calibrate a machine tool using a 

laser tracker in a single setup and implement compensation through a real-time inverse 

Jacobian based algorithm [11]. This work was completed through a Metals Affordability 

Initiative project, and won a Defense award in 2006 as a ground breaking technology. 

The real-time algorithm was developed in conjunction with Siemens, and as a result can 

only be implemented on the Siemens 840D. Even without this specific restriction, the 

real-time algorithm requires deep access to the control, and will not work on many 

controller types. However, most controllers have some type of position dependent look 

up tables meant to be used for geometric error compensation.  

This work presents a method for generating optimal table-based compensation for 

a variety of controllers and presents results on multiple machines. Paper I presents a 

general method for creating optimal table-based compensation from tool tip 
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measurements taken with a laser tracker and provides experimental results on a 5-axis 

machine tool in a laboratory setting. 

Section 2 presents results using the methodology presented in Section 2 on six 

additional machines. Two of these machines are Boeing Defense production, two are 

Boeing Commercial production, one is an additional Boeing lab machine, and one is a 

NASA production machine.   

Paper II presents and extension of the table-based compensation methodology 

proposed in Paper I to multiple controller types. Table-based compensation method 

developed previously assumes that all tables will be available on a machine tool 

controller, and this is frequently not the case, particularly on older controllers. There is 

often some freedom in how the available tables are assigned, so what is the best way to 

assign them for a specific machine. An artificial intelligence methodology is presented to 

solve this problem.  

Section 3 addresses concerns about laser tracker accuracy and presents methods to 

mitigate any issue with instrument accuracy as well as a way of integrating other 

measurement instruments. Some studies raise concerns about the accuracy of laser 

trackers being inadequate for machine tool calibration. While it is true that laser trackers 

are less accurate than some traditional instruments like interferometers, there are 

techniques for mitigating noisy measurements. Additionally, the laser tracker is used to 

measure volumetric error, which tends to be larger than the errors of an individual axis. 

The accuracy of the laser tracker does impact the number of measurements required and 

to some extent the model accuracy, so ways to integrate more accurate instruments at 

sensitive poses or to better use the information available are needed. This section 

experiments with using native spherical coordinate measurements from the laser tracker 

and their uncertainties in a maximum likelihood estimator.  
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PAPER 

I. TABLE-BASED VOLUMETRIC ERROR COMPENSATION FOR LARGE 5-
AXIS MACHINE TOOLS 

J. Creamer1, D.A. Bristow2, R.G. Landers2, P. Freeman3, S. Easley1 

1Boeing Research and Technology, St. Louis, MO 
2Department of Mechanical and Aerospace Engineering, 

Missouri University of Science and Technology, Rolla, MO 
3Boeing Research and Technology, Charleston, NC 

ABSTRACT 

This paper presents a geometric error compensation method for large 5-axis 

machine tools uses tool tip measurements recorded throughout the axis space to construct 

an explicit model of a machine tool’s geometric errors from which a corresponding set of 

compensation tables are constructed. The measurements are taken using a laser tracker, 

permitting rapid error data gathering at most locations in the axis space. Two position-

dependent geometric error models are considered in this paper. The first model, referred 

to as the six degree-of-freedom model, utilizes a six degree-of-freedom kinematic error 

description at each axis, and the second model, referred to as the axis perturbation model, 

describes geometric errors as small perturbations to the axis commands. The parameters 

of both models are identified from the measurement data using a maximum likelihood 

estimator. Compensation tables are generated by projecting the error model onto the 

compensation space created by the compensation tables available in the machine tool 

controller. Experimental results on a commercial 5-axis machine tool are presented and 

analyzed. Compensation using the first model is found to reduce the mean volumetric 

error of a validation data set from 551 to 38 µm, a 93.1% reduction. Compensation using 

the second model reduced the mean volumetric error for the same validation data set to 

43 µm, a 92.2% reduction. Despite significant differences in the machine tool error 

descriptions, both methods produce similar results, within the repeatability of the 

machine tool.  Reasons for this unexpected result are discussed.  Analysis of the models 

and compensation tables reveals significant complicated, and unexpected kinematic 
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behavior in the experimental machine tool.  A particular strength of the proposed 

methodology is the simultaneous generation of a complete set of compensation tables that 

accurately captures complicated kinematic errors independent of whether they arise from 

expected and unexpected sources. 

Keywords: 5-axis machine tools, geometric errors, volumetric error compensation 

 

1. INTRODUCTION 

The trend towards the manufacture of large monolithic parts in the aircraft and 

other industries is driving the demand for high accuracy from 5-axis machine tools. One 

of the largest sources of machine tool inaccuracy is geometric errors, which are typically 

corrected through regular calibration. Five-axis machine tools are known to have 41 basic 

geometric errors [1] and standard methods for measuring these errors are well 

established. Many of these methods separate measurement of the three linear axes from 

the two rotary axes. The basic geometric errors are then typically isolated and directly 

measured individually, particularly those associated with the linear axes. Such methods 

are well described in ISO standard 230-1 [2], and are frequently used for calibrating 5-

axis machine tools. Other methods use indirect measurements of the error through 

measurements of the tooltip and a fitting process to identify several errors simultaneously 

and, thus, are an improvement over direct methods. Common indirect measurement 

methods for rotary axes include the ball bar [3, 4], R-test [5, 6], touch trigger probes [7, 

8, 9], and machining tests [10]. These methods are summarized in [11]. Nearly all of the 

previously described tools calibrate only a portion of machine tool geometric errors and 

must be combined with other tools and methods to capture all 41 basic geometric errors. 

This piecemeal approach means that calibration becomes a time-consuming and 

expensive process. Furthermore, a complete picture of the machine tool behavior 

throughout the workspace is not obtained; therefore, some errors, especially complicated 

or unexpected geometric errors, are not measured, leading to erroneous confidence in the 

compensation. 

As an alternative to some of the measurement tools described above, another 

indirect measurement instrument, the laser tracker, can be used to measure machine tool 

geometric errors more rapidly as it only requires one set up. The laser tracker is less 
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accurate than some conventional measurement instruments due to the inaccuracy of the 

angular positioning. For example, the accuracy of a typical laser interferometer is 0.5 

ppm, while the angular accuracy of a typical laser tracker is 3.5 ppm. To mitigate this, 

multiple laser trackers [12, 13] or multiple set up locations [14, 15] have been used. Since 

the geometric errors are not being directly measured, more measurement points and a 

fitting algorithm that accounts for measurement variances can also mitigate less accurate 

individual measurements. Both Freeman [16] and Nubiola and Bonev [17] reported 

measuring hundreds of points in a few hours on a small 5-axis machine tool and a 6-axis 

industrial robot, respectively, demonstrating the speed of this instrument. Both used a 

single laser tracker for calibration and reported good improvement over the workspace, 

suggesting this instrument is not only quick, but has the accuracy needed to measure the 

geometric errors present in these types of machines. 

In order to use indirect measurements for compensation, a model of the geometric 

errors must be constructed. It is desirable for a geometric error model to be 1) complete, 

in that it models each machine tool error, 2) continuous, in that small changes in the axis 

positions do not cause large changes in the compensation values, and 3) minimal, in that 

the model does not include redundant parameters. Several conventions are used to 

describe the rigid body kinematics of machines and their geometric errors. The Denavit-

Hartenberg (D-H) convention based models, originally described by Denavit and 

Hartenberg [18], have been used for the kinematic calibration of robots and machine 

tools. However, the D-H convention lacks continuity when two axes are parallel and the 

model is not complete. Modifications have been proposed by Hayati [19] and 

Veitschegger and Wu [20]. Alternative kinematic models that attempt to address these 

issues include modeling shape and joint transformations separately [21, 22, 23], the 

Complete and Parametrically Continuous (CPC) model proposed by Zhuang et al. [24], 

the multi-body system model [25], screw theory [26], product-of-exponentials model [27, 

28] for robot calibration, and the matrix summation method proposed by Lin and Shen 

[29]. The work in this paper makes use of the Zero Reference Model [30] to describe the 

nominal kinematics and describes geometric errors as three small translations and 

rotations between each machine tool axis, which is a common way to represent these 

types of errors [31, 32]. This method has been shown to be complete, continuous, and 
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minimal [16], making it an appropriate model to use for machine tool geometric error 

calibration.  

The overall goal of calibration is to improve a machine tool’s accuracy, which is 

typically achieved through compensation. Geometric error compensation is achieved by 

adjusting the machine tool’s commanded axis positions to account for the modeled 

geometric errors. Typically this compensation is implemented using options available on 

machine tool controllers such as table-based compensation. Alternatively, offline 

compensation is implemented through the alteration of pre-task trajectories or the 

alteration of the part program for each part, as was done in [33]. 

Compensation tables, available on most machine tool controllers, may be a more 

practical option since they are calculated offline and are well integrated with other 

controller features. Each table contains a set of compensation values that correspond to a 

set of axis positions. The compensation values are the amounts a compensation axis will 

move when the input axis is at the corresponding axis position. When the input axis is at 

a position not found in the set of axis positions, interpolation is utilized. Different 

machine tool controllers have varying numbers of compensation tables, table resolution, 

and limitations on the combinations of tables that can be utilized. Most compensation 

tables use the measurement from an input axis to adjust the position of an output axis to 

correct for the geometric errors. For 3-axis machine tools, determining how to fill the 

compensation tables is relatively straight forward; however, this is not always the case for 

5-axis machine tools. Therefore, a method to quickly and accurately calibrate 5-axis 

machine tools using table-based compensation is needed. 

The primary contribution of this chapter is the development of a novel modeling 

framework for capturing complicated geometric errors and generating the corresponding 

table-based compensation for those geometric errors. Specifically, two models capable of 

describing complicated geometric error models are proposed. The first describes each 

machine tool axis with a six degree-of-freedom kinematic error that changes continuously 

along the range of the axis, while the second describes the machine tool with axis 

command-based geometric errors that lack the physical intuition of the former model, but 

are more amenable to the generation of compensation tables. A compensation-table 

generating algorithm for each model is presented and experimental evaluation of both 
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methods are obtained and compared. The remainder of the paper is organized as follows. 

Section 2.2 develops the kinematics for two geometric error models. Model identification 

is discussed in Section 2.3 and the compensation methods are presented in Section 2.4. 

The experimental setup is described in Section 2.5, Section 2.6 presents experimental 

results, and Section 2.7 summarizes this chapter and presents conclusions. 

 

2. KINEMATIC MODELING 

This section presents nominal machine tool kinematics, as well as two different 

kinematic models that describe position-dependent machine tool geometric errors. 

2.1. Nominal Kinematics. Nominal kinematic equations describe the ideal

 position and orientation of a machine tool. Given a set of axis commands, the expected 

tooltip position is determined by transforming the machine tool base frame through a 

series of coordinate frames associate with each axis to the tooltip. Such transformations 

can be described using Linear Homogeneous Transformation (LHT) matrices [18], 

 

 

0 0 0 1

x x x x

y y y y

z z z z

n o a p

n o a p

n o a p

 
 
 =
 
 
 

T  , (1) 

 

where the unit vectors, n = [nx ny nz]T, o = [ox oy oz]T, and a = [ax ay az]T are the 

orientations of the x, y, and z-axes, respectively, of a frame with respect to the previous 

frame and p = [px py pz]T is a vector from the origin to the origin of the current frame. The 

nominal kinematics for an n-axis machine tool is 

 

 ( ) ( ) ( ) ( ) ( )1 1 2 2 1 1n n n n nq q q q− −=F T T TTq ⋯ , (2) 

 

where q = [q1 q2 … qn]T is the axis command vector and T1(q1),…,Tn(qn) are LHTs for 

axes 1,…,n, respectively. 
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The Zero Reference model [34] is a convenient way to define the LHT between 

two axes for machine tools. Using the Zero Reference model, the orientation of the 

machine tool reference coordinate frame can be chosen arbitrarily; however, it is 

convenient to select an orientation that aligns the positive coordinate directions with the 

positive direction of travel of the linear axes. The location of the reference coordinate 

frame is also arbitrary; however, depending on the machine tool configuration, some 

locations can simplify the kinematics. For 5-axis machine tools with both rotary axes at 

the spindle, it is convenient to place the reference coordinate frame at the intersection of 

the axes of rotation of the rotary axes. 

Because of inaccuracies in machine tool component fabrication and assembly, the 

actual machine tool kinematics are never equivalent to those of the nominal kinematics. 

In the following two subsections, two models are proposed to describe the actual machine 

tool kinematics. 

2.2. Six Degree of Freedom (6-DoF) Model. The Six Degree of Freedom 

(6-DoF) model assumes the actual machine tool kinematics can be described by 

the nominal kinematic model with three small position-dependent error rotations and 

three small position-dependent error translations included in each axis transformation. 

This idea is illustrated in Figure 1 where an error transformation appended to the nominal 

transformation is used to describe the location of the actual transformation. 

For an n-axis machine tool, the 6-DoF model takes the form, 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )6 1 1 1 1 2 2 2 2DoF n n n nq q q q q q=F q T E T E T E⋯ , (3) 

 

where Ek(qk) is the axis position-dependent 6-DoF kinematic error transformation from 

axis k to axis k’. Assuming the kinematic errors are small, the kinematic error 

transformation can be modeled by the linear approximation, 

 

 ( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1

1

1

0 0 0 1

kz k ky k kx k

kz k kx k ky k
k k

ky k kx k kz k

q q q

q q q

q q
q

q

ε ε δ
ε ε δ
ε ε δ

− 
 − =
 −
 
 

E , (4) 
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where εkx, εky, and εkz are position-dependent rotational errors in the kth axis’s local 

coordinate frame about the X, Y, and Z axes, respectively, and δkx, δky, and δkz are 

position-dependent translational errors in the kth axis’s local coordinate frame along the 

X, Y, and Z axes, respectively. 

 

 

 

Xk-1

Yk-1

Zk-1
Xk

Yk Zk

Xk’

Yk’

Zk’

Ek

Nominal kth 
axis coordinate 

frame

Actual kth axis 
coordinate 

frame
 

Figure 1: Illustration of nominal and actual axis coordinate frames where Ek 
describes transformation from nominal frame k to actual frame k’. 

 

 

 

In order to capture complicated geometric errors, the 6-DoF errors are permitted 

to change along the range of the axis. To facilitate this position dependency, each of the 

error functions (e.g., εkx, εky, εk, δkx, δky, and δkz) are described by a function basis. In 

practice, a finite set of the basis functions are selected such that the number of basis 

functions is used as a tuning variable to select between model complexity and error 

modeling fidelity. To be a good candidate, basis functions need to be orthogonal over an 

interval and have similar scaling over the same interval. In the authors’ experience, 

Chebyshev polynomials provide a particularly efficient basis for modeling machine tool 

geometric errors and, thus, are used throughout this paper. The Chebyshev polynomial 

basis functions are described recursively such that an mth order Chebyshev polynomial 

normalized to the range -1 < x < 1 is 

 

 ( ) ( ) ( ) ( ) ( )0 0 1 1 2 2 m mf x c x a c x a c x a xa c+ + += +⋯ ,  (5) 



11 

 

 

where 

 

 ( ) ( ) ( ) ( ) ( ) ( )2
0 1 2 1 21, , 2 1, , 2m m mc x c x x c x x c x xc x c x− −= = = − = −…   (6) 

 

and a0, a1,…, am are model parameters that need to be identified.  

This type of model has been commonly used to evaluate the errors of machine 

tools [16, 32]. The 6-DoF model is complete [16], continuous if the function basis is 

continuous, and, depending on the machine tool configuration, minimal. For machine tool 

configurations where the 6-DoF model is not minimal, it can be made minimal by 

identifying and removing redundant terms, i.e., multiple terms describing the same 

position and orientation change at the tool tip. These redundant terms can cause model 

fitting issues such as slow fitting and poor estimates, so removing them from the model is 

preferable. Typically, the redundant terms for a specific axis depend on the axis which 

directly follows it. More detailed derivations of the redundant terms are available in [35]. 

For the XYZCB machine tool used in Section 4, the only redundant terms are the first 

order terms in δk(qk) that are orthogonal to the direction of travel for the translational 

axes. Proof that the model can be made minimal is contained in [16] based on the work in 

[35].  

2.3. Axis Perturbation (AP) Model. A new machine tool geometric error 

model is presented here for the purpose of efficiently calculating machine tool 

compensation tables. Compensation tables typically are look-up tables which depend on a 

single axis position (i.e., input axis) and contain a small adjustment to a single axis (i.e., 

output axis). The geometric error model that corresponds to this type of compensation 

space is one that represents the machine tool’s geometric errors as small position-

dependent perturbations to the nominal axis commands. This model is referred to in this 

paper as the Axis Perturbation (AP) model, and is 

 

 ( ) ( )( )ˆnAP = +F q F q q q , (7) 
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where ( ) ( ) ( ) ( )[ ]1 2
ˆ ˆ ˆ ˆ

T

nq q q=q q q q q⋯  is a vector of functions that perturb the nominal 

axis commands and Fn is the nominal kinematic model as described in (2). Remark: The 

reader may note that while the 6-DoF model introduces error kinematics, Ei, with a direct 

connection to the underlying geometric errors, the explicit relationship between the 

perturbation functions in the AP model and specific geometric errors may not be 

apparent.  Indeed, the AP model is not explicitly motivated by specific geometric errors, 

but rather by the structure of the compensation tables that will be generated by the model.  

Thus, while the 6-DoF model can be said to be motivated by kinematics, the AP model is 

motivated by compensation.  As will be shown and discussed in Section 5, both models 

demonstrate good capability for describing and compensating complicated kinematic 

errors.  

Unlike the 6-DoF model, the AP model is not necessarily a complete model of the 

basic geometric errors. An example is the translational offset between the axes of rotation 

in successive rotational axes, which is illustrated in the experimental system in Section 4. 

In some cases, the offset corrections for such errors, referred to here as mechanical 

offsets, can be corrected as parameters in the machine tool controller, which is different 

from the compensation tables. As demonstrated in Section 4, the AP model can be easily 

extended to include additional parameters corresponding to these additional 

compensation parameters. 

The axis command perturbation functions in the AP model are described as an 

uncoupled sum of perturbations of each axis command (q1, q2,…, qn) as, 

 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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⋯
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⋮

⋯

, (8) 

 

where fij(qi) is a scalar function mapping the axis command, qi, on axis i onto a 

perturbation to the command for axis j. As in the 6-DoF model, the unknown error-

describing functions, fij(qi), are modeled with a Chebyshev polynomial basis, (5) and (6) 
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in this paper. Although the AP model is not complete, as discussed above, the axis 

perturbation structure ensures that it is continuous when the basis functions are 

continuous. 

 

3. MODEL PARAMETER IDENTIFICATION 

The first step in the model parameter identification process is to measure a variety 

of machine tool positions and orientations. In Section 4.1, the measurement technique 

used in this paper is described. Once measurements are collected, a maximum likelihood 

estimator is used to identify the model parameters. This algorithm is described in Section 

4.2. The geometric error model is then used to find an optimal set of table compensation 

functions, as described in Section 4.3.  

3.1. Measurement. The proposed method uses a laser tracker to acquire

position measurements of a tool located in the spindle. The position measured by the 

laser tracker is described by, 

 

 ( )0m m Tl= + +*p T E F q ν p ξ , (9) 

 

where pm = [xm ym zm 1]T is the (xm, ym, zm) measurement in the laser tracker measurement 

frame, Tm is the nominal transformation from the machine tool base frame to the 

measurement frame, E0 is the (unknown) 6-DoF error kinematic in the transformation Tm, 

 

 

0 0 0

0 0 0
0

0 0 0

1

1

1

0 0 0 1

z y x

z x y

y x z

ε ε δ
ε ε δ
ε ε δ

− 
 −
 =
− 
 
 

E , (10) 

 

*F is the 6-DoF model, (3), or the AP model, (7), ν is the positioning error of the axes, ξ is 

the measurement noise, and pTl = [uxLT uyLT uzLT 1]T, where LT is the length of the 

measurement tool mounted in the machine spindle and [ux uy uz]T is the unit vector 

defining the tool direction with respect to the last axis frame. Note that here, the 
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positioning error, ν, represents the random positioning error of the machine tool, typically 

measured as repeatability. The measurement noise and the positioning error are assumed 

to be Gaussian. 

3.2. Parameter Identification. The model parameter identification method

 chosen for this problem is the Implicit Loop Method (ILM) as described in [36]. The 

ILM treats the machine tool as having a closed kinematic chain from the reference 

coordinate frame to the tooltip, with the measurement instrument included in the chain in 

order to close the loop. The unknown machine parameters are estimated to maximize the 

likelihood, while satisfying the constraint. A key advantage of this method is that 

measurement errors and machine tool repeatability errors can be treated independently, 

using separate statistical models for each. 

Let ξΣ  be the covariance of the measurement noise, ξ, and νΣ  be the covariance 

of the positioning error (repeatability) of the machine tool axes, ν reflecting that the 

machine tool axes do not always achieve exactly the commanded position. Let b be a 

vector containing the E0 parameters in (10), all mechanical offsets to be modified in the 

machine tool controller, and the model parameters. The model parameters are the 

Chebyshev polynomial coefficients for the 6-DoF parameters in (5) in the case of the 6-

DoF model, and the Chebyshev polynomial coefficients for the perturbation functions in 

(8) in the case of the AP model. Now, consider the parameters in b as random variables 

with normal distributions and assign a standard deviation, σ, to each parameter in b. 

Then, the covariance matrix for b is, ( )2 2 2
1 1, , ,

bb Ndiag σ σ σ=Σ … , where σi is the standard 

deviation for the i th parameter in b and the vector b contains Nb parameters. Then, the 

most likely parameter description of the system is obtained by minimizing, 

 

 ( )
1 1

1 1 1

, , , , , 1

argmin
N N

N
T T T
i i i i b

i
ν ξ

ξ ξ

− − −

=

+ +∑
ν ν b

ν Σ ν Σ b Σ bξ ξ
…

, (11) 

 

subject to the implicit loop constraints from (9), given by, 
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 ( ), 0 1,2, ,m i m i i Tl i i N− + + = =*p T E F q ν p ξ 0 … , (12) 

 

where the index i represents the measurement number and N measurements are acquired.  

In practice, determining appropriate standard deviations, σi, i = 1,…,Nb, a priori 

for the parameters b is challenging. Therefore, here these standard deviations are treated 

as tuning variables that can be used to control the relative magnitude of each of the 

parameters to be identified. Larger values for the standard deviations will encourage a 

tighter model fit, but can cause challenges in the convergence of (11), (12) due to 

numerical sensitivity. Based on experience, the best models are obtained by starting with 

small variances and iteratively tuning the variances until desirable model performance is 

achieved. Model performance can be judged based on the residual volumetric errors and 

the value of the objective function, χ2, given in (11). The expected value of χ2 based on 

[36] is 5N with a standard deviation of 10Nσ = . For large enough values of N, the 

distribution of χ2 is approximately Gaussian, and χ2 will value within three standard 

deviations of the expected value 99.7% of the time When χ2 is above this range, the 

parameter or measurement variances may not be large enough, and when it falls below, 

they may be too large. The residual volumetric errors for the geometric error models of 

most machine tools measured with a laser tracker will typically fall below 0.125 mm, and 

when the residual error is larger than this, model fit may be improved by identifying 

errors outside of the typical range and increasing those parameter variances (ie comparing 

the size of parameters to their variances individually).  

3.3. Compensation. The identified kinematic models provide the 

foundation for constructing optimal machine tool compensation tables. Compensation 

tables are lookup tables whose input is the measurement of one axis and output is a value 

to be added to (or subtracted from) an axis command. For example, a table whose input is 

a measurement of axis i and output is a correction to axis o may be represented as, 
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 (13) 

 

where ,
t
i jq  is the j th table listing of the input axis, ,oi jt  is the corresponding compensation 

value to be added to the axis command for the output axis, and tN  is the number of table 

entries. Then, the compensated command to axis o, c
oq , is linearly interpolated from table 

entries as, 

 

 ( ), , 1
, 1

, 1
, , 1

i
o oi j oi j

t
i jc

o oi j t t
i j i j

q q
q q t t t

q q
−

−
−

−

−
= + + −

−
 (14) 

 

where j is selected such that the measured input axis position qi satisfies , 1 ,
t t
i j i jiq q q− ≤ ≤  

and qo is the nominal command of the output axis. 

To reduce the computational cost of generating optimal tables from the identified 

machine tool models (6-DoF or AP), the compensation functions, toi, are treated as 

smooth during optimization. After optimal smooth compensation functions are identified, 

they are discretized for lookup table entry. Consider a complete set of compensation 

tables, that is, a table for each combination of measurement axis inputs to compensation 

axis outputs. Then, the compensated axis commands are, 

 

 ( )c = +q q t q  (15) 

 

where, 1 2

Tc c c c
nq q q=   q ⋯ , and, 



17 

 

 

 ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
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⋮
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⋯

. (16) 

 

The table functions should be selected so that the kinematics of the actual system, with 

compensated commands, are close to the nominal kinematics. That is, it is desirable to 

have ( ) ( )c
n∗ ≈F q F q . For the AP model, the table optimization problem is solved from (7) 

and (15) by selecting compensation tables as the negative of axis perturbations, or 

 

 ( ) ( )ˆAP = −t qq q , (17) 

 

for which ( )( ) ( )AP AP n=+F t Fq q q . For the 6-DoF problem equality is not guaranteed and 

some tradeoff must be determined between accuracy in the position versus orientation of 

the compensated machine. The approach used here leverages the numerical tools 

developed for parameter identification in Section 4.2 to solve the table optimization 

problem. Two tool lengths, pTl, are selected to span the length of cutting tools for the 

machine tool, one short tool length and one long tool length. A sequence of joint 

commands spanning the axis workspace are generated and pseudo-measurements of the 

6-DoF model and nominal model are obtained numerically at each tool length and joint 

command, yielding the implicit loop constraint equation, 

 

 ( )( ) ( )6 6 1, ,DoF i DoF i Tl n i Tl i pmi N+ − − = =tF q q p F q p e 0 … , (18) 

 

where ei is the position error of the compensated system and Npm is the number of 

pseudo-measurements. The tables 6DoFt  are approximated with a basis of Chebyshev 

polynomials whose coefficients are collected in the vector bt optimized through the 

minimization of, 
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e e b Σ b
…

, (19) 

 

with constraint (18), where 
tbΣ  is a diagonal matrix of weighting parameters to aid in the 

optimization. 

 

4. EXPERIMENTAL SETUP 

An industrial 5-axis machine tool with a Siemens 840D controller, shown in 

Figure 2, was used to evaluate and compare the 6-DoF and AP models and their 

respective methods of generating compensation tables. The axis ordering for this machine 

tool is XYZCB, with both rotary axes at the spindle.   

The machine tool axis limits are listed in Table 1. The nominal distance between 

the center of the B axis and the spindle face is Toffset = 98.0 mm. This is the only 

mechanical offset necessary for this machine tool configuration due to the choice of the 

fixed reference coordinate frame, which is shown in Figure 3. The fixed reference frame 

for the Zero Reference model is placed at the center of the B axis when all of the axes are 

in their zero positions. The unit vectors that describe the machine tool axes are with 

respect to this frame. 

 

 

Table 1: Axis limits for industrial 5-axis machine tool. 
Axis Minimum Maximum 

X (mm) -8.1 6101.0 
Y (mm) -2.5 2557.3 
Z (mm) 0 1001.8 

C -272° 272° 

B -111° 111° 
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The nominal kinematics for an XYZCB 5-axis machine tool are 

 

 ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 5Y Bn X Z Cq q q q q=F q T T T TT , (20) 

 

where 
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 (21) 

 

and qX, qY, qZ, qC, and qB are the commands for the X, Y, Z, C, and B axes, respectively. 

The parameter Toffset is a modifiable mechanical offset in the machine tool controller; 

therefore, a correction to it is included in the model parameter vector, b, for both error 

models.  

The machine tool tip position is measured using an Automated Precision Inc. T3 

laser tracker and Active Target (AT). This instrument has a reported volumetric accuracy 

of ±15 µm or 5ppm, whichever is greater. Over the length of the experimental machine, 

the volumetric accuracy is at least 30 µm. The repeatability of the laser tracker to a static 

target was also measured at three locations measured over distances between 1-8 m, and 

the standard deviation is shown in Figure 4. The repeatability of the tracker should lie 

within three standard deviations 99.7% of the time if the noise is Gaussian, so 

considering this and that the experimental machine has average volumetric errors in 
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excess of 0.5 mm (Table 2), the laser tracker is accurate enough to measure these errors 

given enough measurement points.  

 

 

 

 

Figure 2: Industrial 5-axis machine tool used for experimental studies conducted 
in this paper. 
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Figure 3: Diagram of axis kinematics for industrial 5-axis machine tool. 
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Figure 4: Standard deviation for laser tracker repeatability. 
 

 

 

The machine tool repeatability, a measure of its ability to return to the same 

commanded position, is meaningful in the context of calibration in that it provides a 

lower bound to the measureable accuracy of the calibrated machine tool. To determine 

machine tool repeatability, a sequence of Np random positions throughout the machine 

tool axis space are measured Nt times each. The order in which the positions are 

measured is random for each sequence. The repeatability of the i th position for the j th 

measurement, pi,j = [pi,jx pi,jy pi,jz]T, is 
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= − 
 
∑p p   (22) 

 

For Np = 12 and Nt = 4, the repeatability of the machine tool used in this paper has 

a mean of 18 µm, and a standard deviation of 8 µm, which is within the same range as the 

instrument’s repeatability, meaning that the machine is likely more repeatable than can be 

measured with this instrument. 

A set of 295 commanded positions are measured twice, each set with a different 

tool length, giving a total of 590 three dimensional position measurements. The two 

measurement sets, referred to as the short tool measurement set and the long tool 

, 
m
m
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measurement set, ensure that the complete measurement data is rich enough to contain 

spindle position and orientation. The length of each tool is calculated using 

measurements of a tool of known length, a Spherically Mounted Retrotreflector (SMR), 

and the laser tracker. The known tool is inserted into the spindle and its position is 

measured with the laser tracker. Then, without moving the machine tool, this tool is 

replaced with the AT, and the AT is aligned to the center of the spindle axis.  The AT 

position is measured and compared against the measurement from the fixed length tool to 

obtain the AT tool length. This is illustrated in Figure 5. For this experiment, the short 

and long tool lengths are 214.88 and 312.86 mm, respectively.  

The measurement points are distributed throughout the axis space using a random 

number generator. However, some points are removed to satisfy line-of-sight and 

collision-avoidance constraints. Figure 6 shows the axis space distribution of the 

measurement points with the areas labeled “LOS” and “CA” where points were removed 

due to Line-Of-Sight and Collision-Avoidance constraints, respectively. These 

measurements are then used to identify the 6-DoF and AP model parameters. Section 5 

describes the performance of these models, as well as the experimental results when 

compensation based on these models is implemented on the industrial 5-axis machine 

tool. 

 

 

 

 

Figure 5: Illustration of tool length measurement. 
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5. EXPERIMENTAL RESULTS AND DISCUSSION 

The accuracies of the 6-DoF and AP models are measured by the distance 

between the measured points and the corresponding points predicted by the model. In 

addition to the 590 points used to identify the models, 35 additional measurement points 

distributed throughout the axis space are selected using a quasi-random sequence to serve 

as validation points. Both models are constructed using a variety of Chebyshev 

polynomial orders for the basis functions. Both models include E0, the correction to the 

laser tracker and machine frame, and the nominal (uncompensated) model includes a 

nominal transformation from the instrument to the base frame of the machine tool.   As 

seen in Table 2, the performance of both models improves with increasing basis order up 

to a point, after which the validation residual errors begin to increase, an indication of 

over fitting.  For the 6-DoF model, 80% of the mean volumetric error in the identification 

data set can be accounted for using a zero order model, unlike the AP model, which only 

accounts for between 43-60% of the mean volumetric error, based on either the validation 

or identification set, respectively. The 6-DoF type of description has more complexity at 

low order than the AP model. The AP model can offset each axis (5 parameters) and 

correct the base frame (6 parameters), while the 6-DoF model has 6 zero order 

parameters per axis and 6 for the base frame, giving a total of 36. Additionally, as will be 

shown later, this machine has a significant rotary axis offset which can be described as a 

single parameter in the 6-DoF model, but requires a high order position-dependent 

description in the AP model. Beyond zero order, the models perform similarly. 

Expanding on this, the effect of using less data to construct both models was explored. A 

50 and 150 point subset was randomly selected from the identification set and used to fit 

models of different polynomial orders. The results are shown in Figure 7 and Figure 8. 

The 6-DoF model fits the identification and validation data better than the AP model 

when fewer points are used, with a more pronounced effect when only 50 points are used. 

This could be because the 6-DoF model is able to describe some errors using a lower 

order polynomial, as discussed previously.  

The best validation results for the 6-DoF model are obtained with 6th order 

polynomials, while the best results for the AP model are 5th order, with only minor 

performance loss at 6th and 7th order. For consistency, 6th order polynomials are used for 
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both models in the subsequent analysis in this paper.  A histogram of the identification 

measurements for the 6th order models is shown in Figure 9. 

Comparing the selected models, the 6-DoF model shows a slightly larger mean 

error at 62 µm versus 49 µm for the AP model, while the AP model has a larger 

maximum error at 132 µm versus 92 µm for the 6-DoF model.  Recalling that the 

machine tool repeatability was measured at 18 µm, both models achieve a mean accuracy 

over the entire workspace of approximately three times the machine tool repeatability.  

Noting that both models achieve approximately 90% improvement compared to the 

nominal model, it is clear that significant improvement is obtained.  
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Figure 6: Distribution of measurement points used for model identification. Large circles 
show where points were removed due to Collision Avoidance (CA) and Line Of Sight 

(LOS) constraints.  
 

 

 

A set of 25 machine tool compensation tables (five tables for each axis) and the 

correction to the mechanical offset Toffset are generated for each model using the 
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procedures outlined previously.  The correction to Toffset was 68 µm for the AP tables and 

72 µm for the 6-DoF tables. Figure 10 shows the generated 6-DoF and AP table 

compensation functions. The horizontal axis on the graphs is the traveling, or input, 

machine tool axis and the vertical axis on the graphs is the compensating, or output, 

machine tool axis. As seen in Figure 10, the table compensation functions generated from 

both models are similar. The function with the greatest difference, fbz, is on average 8 µm 

different and at the maximum 64 µm different. The slight differences may be due to the 

additional fitting step required to generate the 6-DoF compensation tables. 

 

 

 

Table 2: Polynomial order selection via identification and validation residual errors for 6-
DoF and AP models. 

 
 
 
 

The compensation functions shown in Figure 10 include traditional pitch and 

linear straightness errors, as well as some less common geometric errors. Pitch 

compensation functions are along the diagonal (a correction to an axis based on the 

position of that axis).   
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Figure 7: Mean residual volumetric error for different polynomial orders using 50 
randomly selected points.  

 

 

 

 

Figure 8: Mean residual volumetric error for different polynomial orders using 50 
randomly selected points. 

 

 

The linear straightness errors are located in the off-diagonal of the upper 3x3 

graphs.  The dominating linear component of these graphs can be attributed to squareness 

errors in the axis.  However, the higher-order components of these graphs, especially 

notable in the fxz graph, can be attributed to the non-straightness of the axes.  The largest 

linear compensations to the X and Y axes arise from the rotary C axis position (fcx and 

fcy). The sinusoidal shape and 90° offset in fcx and fcy can be attributed to an offset 
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between the spindle axis and the C axis, resulting in a circular path in the X-Y plane for 

C rotations.  The amplitude and phase of the sinusoids provides the magnitude and 

direction, respectively, of the offset.  The C axis contains another large error in its pitch 

compensation fcc, where the sinusoidal shape indicates that there is an eccentricity in the 

transmission between the C axis and the motor or the encoder mounting and the axis 

average line.  The sinusoidal shape has more than one full rotation because the C axis has 

more than 360° of travel, returning the axis to the same physical location more than once 

during its full travel. Notably lacking in the tables are any significant coupling from the 

linear axes to the rotary axes, which would arise from a position-dependent angular error 

in the linear axes. 

 

 

 

 

Figure 9: Histogram of identification measurements for nominal, 6-DoF, and AP 
models. 
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The complexity of the identified errors highlights a particular strength of the 

proposed method of populating compensation tables; no prior knowledge of the important 

machine tool errors is required. While some errors were not expected, other errors that 

may have been expected were not seen or were very small. Therefore, good performance 

over the entire workspace was achieved without a priori knowledge of the significant 

error sources.  Likewise, time was not wasted in measuring errors that ultimately were 

insignificant.  Furthermore, the complete set of compensation tables was generated in one 

step without recursively editing compensation tables with each measurement, as is 

typically done in classical methods. 

The identified compensation functions were discretized into 1024 points along 

each axis and the resulting values were loaded onto the machine tool controller 

compensation tables. Then, the controller value for Toffset is modified by the amount 

identified. The compensation tables for both methods were activated in separate 

experiments and a new set of machine positions were measured at each of these points 

using the short tool length and the laser tracker. The measurements are compared to the 

uncompensated machine measurements in Table 3, and a histogram of the measurement 

accuracy is shown in Figure 11. The compensated accuracy in Table 3 is comparable with 

the model accuracy results in Figure 9.  The differences between the model identification 

set and compensation results, in this case within approximately twice the repeatability, 

are expected since these points are not the same as those used to identify or validate the 

models. 

As seen in Figure 11, both sets of compensation tables reduce the mean machine 

geometric error of the uncompensated system by approximately 90%. However, the 

performance difference between the two compensation solutions is a fraction of the 

machine tool repeatability, and therefore negligible. Thus, it can be concluded that both 

methods provide comparable performance improvement.  This conclusion is notable 

because 6-DoF solutions originate from a complete model, whose foundations are well 

rooted in classical kinematics (a 6-DoF kinematic correction to each axis), whereas the 

AP model is incomplete and lacks a clear connection to foundational kinematics.  The 

comparable performance may be attributable to the fact that both methods are constrained 

to the same solution space, compensation tables.  While the AP model maps identically 
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onto the compensation space, there is a loss of information in the incomplete mapping of 

the 6-DoF model to the table-based compensation. 

 

 

 

 

Figure 10: Compensation table functions generated from AP and 6-DoF models. 
 

 

 

Table 3: Mean and maximum residuals between measured compensated positions and 
commanded positions and error reduction for each compensation type. 

Model Mean (mm) Error 
Reduction 

Maximum (mm) Error 
Reduction 

Uncompensated 0.551 -- 0.940 -- 
6-DoF Tables 0.038 93.1% 0.099 89.5% 
AP Tables 0.043 92.2% 0.094 90.0% 
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Figure 11: Histogram of validation measurements for compensated performance 
of AP and 6-DoF models. 

 

 

 

A final compensation test, referred to as the rotation test, is performed to illustrate 

the performance improvements in the two methods. This test involves placing the tool tip 

at a location and rotating the orientation through a 180° arc, requiring a coordinated 

motion (and compensation) of at least three axes. The experimental results are shown in 

Figure 12. The uncompensated points are 377 µm from the average location at the worst 

point, while the compensated points are 53 µm from the average location at the worst 

point for the AP tables and 58 µm from the average location at the worst point for the 6-

DoF tables. Both experiments further demonstrate that the compensation methods are 

effective in reducing machine tool geometric errors, which are particularly useful for 

complex 5-axis motions. 
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Figure 12: Experimental results for rotation test. 
 

 

 

6. SUMMARY AND CONCLUSIONS 

A method to generate table-based compensation for machine tool geometric errors 

using tool tip measurements distributed throughout the axis space is presented. Two 

models for the geometric errors of a machine tool are presented, and methods for 

identifying optimal table compensation from each are developed. Measurements are 

taken using a laser tracker with two tool lengths to capture both position and orientation 

errors. An industrial 5-axis machine tool was used for the experimental tests conducted in 

this paper. The machine tool was measured in 295 positions with two tool lengths, giving 

590 total measurements, and was found to have volumetric errors of up to 1.417 mm, 

with a mean volumetric error of 0.602 mm. The machine tool repeatability was found 

experimentally as 18 µm. Both methods compensate the machine tool well, with average 

volumetric errors over the entire workspace of 0.038 mm and 0.043 mm for the 6-DoF 

and AP solutions, respectively.  Both solutions are within 2.5 times the machine tool 

repeatability, demonstrating good accuracy, and the difference between the two is a 

fraction of the repeatability, demonstrating negligible difference between the solutions. 

Analysis of the effect of increasing polynomial basis order on the model accuracy, 

as well as analysis of the compensating table solutions, demonstrates that significant and 

unexpected complicated kinematic behavior of the machine tool is present.  The novel 
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methodology presented in this paper, a one-time measurement sequence using 

simultaneous motion of all axes over the entire workspace and simultaneous generation 

of all compensating tables, is particularly effective in efficiently capturing the unexpected 

complicated kinematics of the machine tool. 
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TABLES FOR 5-AXIS MACHINE TOOLS 
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ABSTRACT 

Machine tool geometric inaccuracies are frequently corrected through the use of 

compensation tables available in machine tool controllers. Each compensation table 

contains a set of values that determine the incremental change in the commanded position 

of an axis given the current positions of the axes. While a five-axis machine tool, for 

example, can have at most 25 compensation tables, most machine tool controllers limit 

the number of compensation tables that can be implemented and provide constraints on 

the combinations of compensation tables that can be utilized. This work presents an 

artificial intelligence-based methodology to select and populate the optimal set of 

machine tool compensation tables when these limitations and constraints exist. Using 

data from an industrial 5-axis machine tool to construct a kinematic error model, 

simulation results for the proposed methodology and a heuristic based on the impact of 

individual compensation tables when selecting six compensation tables are compared, 

and the proposed methodology is found to outperform the heuristic. The proposed 

methodology and a solution based on a full set of compensation tables are experimentally 

implemented on the machine tool and the mean volumetric error resulting from the 

proposed methodology is found to be only 25 µm less than the volumetric error resulting 

from the full set of tables. The proposed methodology is then implemented in two more 

simulation studies where constraints are imposed on which combination of compensation 

tables could be used and which type of compensation tables could not be utilized. The 

resulting mean volumetric error was 7.0 and 28.3 µm greater, respectively, than the 

unconstrained solution. 

Keywords: volumetric error, geometric error compensation, 5-axis machine tools 

 



38 

 

 

1. INTRODUCTION 

Changes in the way parts are manufactured in the aerospace industry are driving a 

need for more accurate 5-axis machine tools. More parts are designed as monolithic 

structures, requiring a machine tool capable of manufacturing a large part with small, 

geometrically complex features, while maintaining tight tolerances over large distances. 

Machine tools inherently have errors arising from a variety of sources, such as geometric 

errors due to manufacturing and assembly tolerance errors and wear of machine tool 

components, thermal expansion, and structural deformation. No machine tool design 

changes can eliminate all geometric errors, and higher accuracy machine tools are much 

more expensive to manufacture and maintain. However, a large fraction of machine tool 

errors are repeatable and, as a result, machine tool calibration can be a cost effective 

means to substantially increase accuracy. In general, machine tool geometric errors 

change slowly over time due to wear of the moving parts; however, they can change 

quickly in the event the cutting tool collides with the part or machine tool table. As a 

result, a machine tool should be recalibrated at regular intervals or after a collision. 

Machine tool down time is costly and, therefore, methods for quickly calibrating machine 

tools are in demand. 

Conventional approaches to machine tool calibration often attempt to isolate and 

measure individual geometric errors, which is time consuming and often makes the 

complete calibration of a machine tool prohibitive. These traditional methods are 

described in the ISO 230-1 standard [1]. Sartori and Zhang [2] and Schwenke, et al. [3] 

provided thorough overviews of direct measurement methods, and indirect measurement 

methods are summarized in Ibaraki, et al. [4]. Direct measurement methods measure 

machine tool errors individually [5], while indirect measurements attempt to identify 

several errors simultaneously. However, indirect methods typically require that the linear 

and rotary axes be calibrated separately, or make assumptions about being able to isolate 

the rotary axis errors from other geometric errors. Therefore, these methods typically 

involve multiple measurement instrument set ups and skilled personnel, leading to long 

calibration times (i.e., several days), and may not result in an accurate description of the 

machine tool geometric errors. Further, most geometric error modeling techniques 

employ low order models. Cheng et al. [6] used static geometric error models to conduct 
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an analysis based on multibody system theory to determine critical geometric errors. 

Matrix summation modeling using linear geometric errors was conducted in [7] such that 

the errors had physical meaning. Given the low order error modeling employed in these 

studies, they cannot account for the complexity of some geometric errors, such as sagging 

and twisting. 

A method for machine tool geometric error compensation addressing the issues of 

long calibration times and the inability to describe complex machine tool errors was 

proposed in [8]. Unlike many calibration techniques [e.g., 6,7], the method in [8] uses 

high-order error descriptions to capture complex geometric errors. This method also uses 

a laser tracker, a metrology tool being used in more and more industrial applications [9], 

and was shown to work very well for the volumetric compensation of a subset of machine 

tool controllers that allow for the use of a complete set of compensation tables [10]. 

Many common machine tool controllers limit the number of compensation tables 

available due to memory or computational constraints, as well as cost, often with 

limitations on the possible combinations of compensation tables that can be implemented. 

Therefore, a method to select and populate the best possible set of compensation tables 

when limitations exist is needed. Selecting and populating a subset of compensation 

tables from all possible sets of compensation tables, while satisfying existing constraints, 

is a computationally intensive combinatorial optimization problem. A brute force 

approach that analyzes all possible combinations of compensation tables is impractical 

for this type of problem. Further, this class of problem cannot be solved with traditional 

gradient search techniques. An artificial intelligence method capable of incorporating 

constraints is needed. A genetic algorithm is a common technique for combinatorial 

optimization and can easily be tailored to constraints common in machine tool 

controllers. 

The rest of the paper is organized as follows. Section 2 briefly describes the 

general method to populate an unconstrained set of machine tool compensation tables. 

Section 3 presents a method of selecting and populating the optimal set of compensation 

tables when constraints exist. Section 4 presents results using data from an industrial 5-

axis machine tool and Section 5 presents the implementation and experimental validation 

of compensation tables selected with the methodology and additional simulations for 
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several classes of constraints. Section 6 summarizes the paper and draws conclusions 

from the work. 

 

2. BACKGROUND 

A novel method for machine tool calibration using machine tool compensation 

tables was developed in [10]. Compensation tables are lookup tables on the machine tool 

controller whose input is the measurement of an axis and whose output is an incremental 

value to be added to (or subtracted from) an axis position command. Note these axes may 

or may not be the same. A table whose input is a measurement of axis i and whose output 

is a correction to axis o may be represented as, 
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where ,
t
i jq  is the j th table listing of the i th input axis, ,oi jt  is the corresponding 

compensation value to be added to (or subtracted from) the axis command of the oth 

output axis, and Nt is the number of table entries. Then, the compensated command to 

axis o is linearly interpolated from the table entries as, 
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where j is selected such that the measured input axis position qi satisfies , 1 ,
t t
i j i jiq q q− ≤ ≤  

and qo is the nominal position command of the output axis. 
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This method takes tool tip error measurements distributed throughout the axis 

space with a laser tracker using two different tool lengths, i.e., distances between the 

spindle face and measurement device, allowing both position and orientation errors to be 

measured. In order to relate the position and orientation measurements of the machine 

tool with the commanded axis positions, a model of the relationships between the 

nominal axes is developed by assuming the machine tool can be treated as a kinematic 

chain of rigid axes, with the relationships between the axes described by Linear 

Homogeneous Transformation (LHT) matrices [4], 
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where the unit vectors, n = [nx ny nz]T, o = [ox oy oz]T, and a = [ax ay az]T are the orientations 

of the x, y, and z-axes, respectively, of an axis coordinate frame with respect to the 

coordinate frame of the previous axis in the kinematic chain and l = [lx ly lz]T is a vector 

from the origin of an axis coordinate frame to the origin of the coordinate frame of the 

previous axis in the kinematic chain. The nominal kinematic model for an n-axis machine 

tool is, 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 1,
lTn T n n n n TL q q q q L− −=F q T T T TT ⋯ , (4) 

 

where q = [q1 q2 … qn]T is the axis command vector, T1(q1),…,Tn(qn) are LHTs for axes 

1,…,n, respectively, TTl is the transformation from the last axis to the tool tip, and LT is 

the tool length. The conventions described in the Zero Reference Model [11], a model 

commonly applied in robotics [12], are used to define the vectors n, o, a, and l for each 

transformation matrix. 

 Machine tools are never perfectly described by the nominal kinematics due to 

manufacturing tolerances, errors in assembly, and wear over time. Consider a model of 

the actual kinematics as Fa(q,LT), which may be generated by any kinematic modeling 

method.  One method accounts for complex kinematic errors by introducing an error 
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transformation, Ek(qk), between each axis transformation in the nominal kinematic model, 

as in Freeman [8]. For an n-axis machine tool, the actual kinematics are modeled as, 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 2 2 2 2,
lTa T n n n n TL q q q q q q L=F q T E T E T E T⋯ , (5) 

 

The kinematic error transformation at machine tool axis k, Ek, is described by 

three rotational errors and three translational errors that depend on the commanded axis 

position qk. For small errors, the kinematic error transformation of the kth axis can be 

approximated by 
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where εkX, εkY, and εkZ are rotational errors in the kth axis’ local coordinate frame about the 

x, y, and z axes, respectively, and δkX, δkY, and δkZ are translational errors in the kth axis’ 

local coordinate frame along the x, y, and z axes, respectively. The error transformations 

are identified from the machine tooltip error measurements using a maximum likelihood 

estimator [13].  

 The kinematic error model can be used to generate corrections to the nominal 

machine tool commands to improve the machine tool’s accuracy via machine tool 

compensation tables. These tables are modeled as continuous, position-dependent 

corrections to the axis commands and populated such that the difference between the 

nominal machine tool position and orientation and the compensated actual machine tool 

position and orientation is minimized. That is, ( )( ) ( ), ,a T n TL L+ ≈F q t q F q , where, 
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is the update to the axis commands based on the values contained in the individual 

compensation tables, tij(qj), where i is the output axis and j is the input axis. For ease of 

optimizing compensation tables from the identified machine tool model, Fa, the discrete 

data in each compensation table will be modeled by smooth functions. After these 

functions, referred to here as compensation functions, are determined, they are sampled 

discretely to populate the compensation tables. Further information regarding the 

kinematic error models can be found in [10]. As discussed in [10], the kinematic error 

model is not a complete geometric error model of the machine tool. Rather, the kinematic 

error model is based on the compensation tables available in the machine tool controller. 

 The next step in the calibration process is to identify the parameters of the 

compensation functions. The approach used here leverages the numerical tools developed 

for parameter identification [13] to identify the parameters of the basis functions used to 

represent the compensation functions. Two measurement tool lengths are selected to span 

a considerable portion of the length of cutting tools typically used in the machine tool: 

one short measurement tool length and one long measurement tool length, denoted α = 1 

and 2, respectively. A sequence of axis commands spanning the axis workspace are 

generated over which the cost function, 
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is minimized for all axis commands. This cost function minimizes the positional errors, e, 

with the most likely values of geometric error model parameters, bt. The i th position error 

of the compensated system for tool α, ei, is, 
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where Npm is the number of pseudo-measurements, which are tool tip positions discretely 

sampled from the machine tool geometric error model, Fa. The compensation tables t(q) 

are approximated by Chebyshev polynomials whose coefficients are collected in the 

vector bt. The matrix Σbt is a diagonal matrix of weighting parameters that are set based 

on experience to appropriately scale the problem, leading to easier optimization. Poor 

scaling, due to the finite precision of any solver, can cause numerical instability. After 

optimal, smooth compensation functions are identified, they are discretized into 

compensation tables and loaded onto a machine tool controller.  

However, the full set of compensation tables can only be implemented on 

relatively few models of machine tool controllers. When there are a limited set of 

compensation tables available and constraints on compensation table combinations exist, 

it is not clear how to best select and populate the compensation tables. A method that can 

select the optimal set of compensation tables satisfying constraints imposed by a specific 

machine tool controller is needed to extend this calibration method to machine tool 

controllers with limited compensation options. A method based on artificial intelligence 

optimization, in this case a genetic algorithm, is described in the next section. 

 

3. REDUCED TABLE SELECTION METHODOLOGY 

The problem of selecting the best set of machine tool compensation tables from 

the full set of compensation tables is a combinatorial optimization problem. These types 

of problems tend to be very computationally intensive. For a five-axis machine tool, 

assuming the five pitch compensation tables are always included, there are 20 

compensation tables to choose from. Figure 1 shows an example of a full set of 

compensation tables for a 5-axis machine tool. These tables are divided into four 

sections. The upper left section contains six straightness tables (on the off diagonals) and 

three pitch tables (on the diagonals) that compensate the linear axes by incrementing 
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linear axis positions. The bottom left section consists of tables that compensate rotary 

axes by incrementing linear axis positions. These tables, in combination with other tables, 

can be used to correct some of the linear axis angular errors. The top right section 

contains six tables that compensate linear axes by incrementing rotary axis positions, and 

compensate geometric errors such as an offset of a rotary axis. The bottom right section 

contains four tables that compensate rotary axes by incrementing rotary axis positions. 

The two tables on the diagonals are the rotary pitch tables. Remark 1: A 5-axis machine 

tool does not have enough degrees of freedom to compensate all possible geometric 

errors; therefore, even the full set of compensation tables do not describe all of the 

machine tool geometric errors. 

When there are 20 total compensation tables from which k tables are selected, 

where k < 20, the number of table combinations is, 
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The identification of a single solution requires approximately 10 min using a 2.6 GHz 

Intel Xeon processor with 12 parallel cores. For k = 6, Ns = 38,760, which would require 

approximately 550 hr using the same computer. Brute force methods (i.e., exhaustive 

searches) are, therefore, impractical for all but the simplest problems. One way to 

efficiently determine the optimum set of compensation tables is to apply artificial 

intelligence. One such technique is a Genetic Algorithm (GA), which is based on 

biological principles and is widely used for complex and intensive search and 

optimization problems. This technique is particularly useful for optimization problems 

with large discrete decision spaces since it does not require the evaluation of all possible 

solutions, while still sampling from the solution space effectively [14]. 

Genetic Algorithms find the solution to search and optimization problems by 

mimicking the biological natural selection process to iteratively improve the solutions. 

Each iteration is referred to as a generation. Genetic algorithms operate on a set of 

individual solutions, which is referred to as a population. Individual solutions are referred 

to as chromosomes, and the variables that compose each chromosome are referred to as 
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genes. For the compensation table selection problem considered here, each gene is a 

specific compensation table, and a chromosome is a complete set of compensation tables. 

Genes are denoted here by the pair ij , where i is the output axis and j is the input axis. For 

example, if six compensation tables are to be chosen for a machine tool with three linear 

axes (denoted x, y, and z) and two rotational axes (denoted b and c), a potential 

chromosome would be ‘cx cy xy cb zx yz’, where the six genes are 

‘cx,’‘cy,’‘xy,’‘cb,’‘zx,’ and ‘yz.’  

 

 

 

 

Figure 1: Example of full set of compensation tables. Horizontal axis is ranges of 
machine tool axes to be compensated (i.e., input axes) and vertical axis is compensation 

functions of axes to be incremented (i.e., output axes). 
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The performance of a particular chromosome is referred to as its fitness. Here, the 

mean volumetric error, em, which is the distance between the actual tool tip position at a 

given set of position commands and the nominal tool tip position, is used as the fitness. It 

is calculated using the geometric error model and identified compensation tables, 
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where N is the total number of measurements and A is the total number of tool lengths. 

Solutions with smaller mean volumetric errors over a large set of commanded positions 

are more fit (i.e., they are better solutions).   

Once a fitness value is assigned to each chromosome, a new generation of 

chromosomes is created. New chromosomes are introduced into the population in two 

ways: reproduction and mutation. A percentage, 50% in this study, of the fittest 

chromosomes of the previous population (i.e., the parents) is retained and new 

chromosomes are added through reproduction. Reproduction is the process of splicing 

together genes from two parents to produce new chromosomes. In order to ensure more 

fit chromosomes are chosen as parents, weighted random selection is used. A standard 

weighted random selection algorithm [15] is used to select parents based on a set of 

weights calculated below. Each chromosome is ranked based on its fitness from the most 

fit (i.e., n = 1) to the least fit, and this rank, n, is used to determine the weight for each 

chromosome, 
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where Nkeep is the number of chromosomes to retain each iteration and n is the 

chromosome rank. Only the chromosomes ranked between 1 and Nkeep are used for 

reproduction (i.e., the creation of new chromosomes). The chromosomes selected as 

parents are paired randomly. To create new chromosomes from the parents, several 
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different methods can be employed. The most common methods of reproduction 

employed in GAs are not well suited to this problem since the ordering of compensation 

tables in the chromosome does not matter. For this problem, a new method that does not 

consider the order of genes is introduced.  A random number of genes from the parents 

are selected and swapped for the same number of genes in the other parent. The genes to 

be swapped are initially selected in the first parent. For each gene to be swapped in the 

first parent, the second parent is checked to determine if it contains a copy of this gene.  

If it does, then the duplicate genes are exchanged so that new chromosome will not have 

more than one copy of a specific gene (i.e., the set of compensation tables should not 

contain multiple instances of the same compensation table). Machine tool controllers may 

have constraints that create limitations when exchanging genes which must be integrated 

into the algorithm for gene exchange. These constraints and their resulting limitations on 

the exchange of genes during reproduction are discussed below. The entire reproduction 

process for the compensation table selection problem is illustrated in Figure 2. Remark 2: 

It is possible for both parents to be identical, which would result in all ν genes in parent 

#1 existing in parent #2. In this case, the resulting chromosome is the same as the parents 

before mutation. This can lead to saturation, or the presence of only very similar 

solutions, which can be mitigated by using mutation operations, as discussed below. 

After reproduction occurs, random mutations alter a percentage of the genes in the 

population. For the compensation table selection problem, a percentage of the 

compensation tables are exchanged for other compensation tables selected at random 

from the set of all possible compensation tables, subject to machine tool controller 

constraints. If the randomly selected new gene violates a constraint, a new gene is 

selected at random until a gene is found that creates a valid solution.  Mutations serve as 

a way to randomly introduce new solutions. A higher mutation rate creates an algorithm 

which acts more like a random search method, while a lower mutation rate limits the rate 

at which new genes are introduced into potential solutions. The GA reproduction method 

without mutation is prone to saturation, also called in-breeding. That is, the population 

will contain only very similar solutions and be unable to create different solutions via 

reproduction. Either extreme (i.e., high or low mutation rates) is slow and inefficient. 

 



49 

 

 

 

 

Select number of genes 

to exchange, ν

Select ν genes in parent 

#1

For i = 1, .., ν

Gene i exists in 

parent #2?

Swap 

duplicates

Randomly select 

a gene to swap in 

parent 2

Check parent 1 

for conflicts
i=i+1

End

Exists
Does not exist

i < ν

i = ν

Exists

j = j+1

Weighted random 

selection to chose two 

parents from top 50%

j < Ν

j = Ν

Does not 

exist

For j = 1, .., Ν 

No gene is 

exchanged 

All genes conflict

 

Figure 2: Illustration of reproduction. 
 

 

 

The iterative process then starts over with the evaluation of the fitness for each 

chromosome in the new generation, and the process repeats until a specified convergence 

criterion is satisfied. An outline for the sequence of steps for the GA used in this work is 

shown in Figure 3. 
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Figure 3: Outline of Genetic Algorithm steps. 
 

 

 

 3.1. Parameter Tuning. The GA has several tunable parameters, namely the

mutation rate, population size, and convergence criterion. The effect these parameters 

have on the compensation table selection problem is now explored using data from the 

machine described in Section 4 for the selection of six compensation tables. Figure 4 

shows the minimum cost at each generation averaged over five different GA runs for 

different mutation rates. The 0% mutation rate shows saturation in early iterations and 

does not perform as well as higher mutation rates even after 50 generations. Once the 

algorithm is completely saturated and without mutation to introduce new compensation 

tables, it will never perform better regardless of how many generations it is allowed to 

run. At the other extreme, a mutation rate of 85% causes the best solution to improve 

more slowly. By 50 generations, the best solution has a mean volumetric error of 0.046 

mm, while lower mutation rates have a best solution less than 0.040 mm. High mutation 

rates cause the algorithm to rely mostly on random search, which is slow and does not 

take advantage of previous solutions with good performance. For this problem, a 

mutation rate of 20% produces the lowest minimum cost; therefore, this mutation rate 

provides enough of a random search element to prevent saturation without causing the 

algorithm to require significantly more iterations to converge. Figure 5 shows the 
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minimum cost at each generation averaged over five different GA runs for population 

sizes of 8, 16, and 24. Note that this study was conducted on a computer with 8 processor 

cores; therefore, population sizes with multiples of 8 were selected. Initially, larger 

population sizes perform better, but after 35 generations, all population sizes have 

approximately the same performance, although larger population sizes reach this 

performance level in fewer generations. Since the final performance between all 

population sizes is similar and a population size of 8 runs faster (though requires more 

generations), a population size of 8 is used in this study. The iteration limit is set to 50 for 

both the mutation rate and population size studies. The average minimum cost for both 

studies reaches their minimum value before 50 generations, with many occurring before 

35 generations. The convergence criterion is selected to be a maximum of 50 generations 

for the rest of the experiments conducted in this study based on this fact since additional 

generations add significant time to experiments with little probability of increased 

performance. If the algorithm remains at the same minimum cost for more than 20 

generations, it is assumed to have converged and terminates even if 50 generations have 

not yet been completed. 

3.2. Constraint Inclusion. Three general classes of table compensation

constraints exist. The first is a constraint on the overall number of compensation tables. 

The other two are 1) constraints on the specific axes that may be used and 2) constraints 

on the combinations of compensation tables that may appear together. 

3.2.1. Constrained number. Many controllers limit the total number of 

compensation tables or the memory allocated for compensation tables. This is the most 

common constraint and has been discussed in detail earlier in this paper. 

3.2.2. Constrained axes. This constraint can be caused by the way an axis is

 integrated into a machine tool controller. In some configurations, an axis encoder signal 

is available to the machine tool controller; however, the axis motion is controlled 

separately and, therefore, may not be able to accept compensation commands. 

Implementation of such a rule would involve reducing the number of compensation tables 

available to select from. For example, for a typical 5-axis machine tool, there are 25 

compensation tables. If a specific axis cannot be set as an output axis, then there are five 

fewer compensation tables to choose from. 
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Figure 4: Minimum cost averaged over five runs for various mutation rates and 
population size of eight.  

 

 

 

 

Figure 5: Minimum cost averaged over five runs for various population sizes and 
20% mutation rate. 

 

 

 

3.2.3. Constrained combinations. This type of constraint is often machine

tool controller specific. An example of this type of constraint is circular compensation, 

i.e., when two compensation tables have swapped input and output axes, such as the two 

compensation tables ‘bc’ and ‘cb’. If a gene selected from parent 1 would combine with a 
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gene in parent 2 to form an illegal combination, then the selected gene is instead swapped 

with the gene in parent 2 which would cause the constraint violation, yielding new 

solutions that do not violate any constraints. This process is illustrated in Figure 6. Other 

machine tool controller constraints can be incorporated in a similar manner. 

 

4. RESULTS AND DISCUSSION 

Data collected from an industrial 5-axis machine tool located in a Boeing 

experimental laboratory is used in the following experiments. The machine tool 

configuration is illustrated in Figure 7 and the axis limits are listed in Table 1. The 

machine tool is measured at 295 unique random axis configurations using an API T3 

laser tracker and active target (see Figure 8). Each position is measured twice, using long 

and short tool lengths of 317.15 mm and 218.44 mm, respectively, which are the 

distances from the active target to the spindle face. The tool length is obtained using laser 

tracker measurements and a comparison to a tool with known length. A parameter is 

included in the geometric error model to correct for inaccuracies in the tool length 

measurements. Using two tool lengths allows both position and orientation errors to be 

captured. 

This data is used to fit the error model described in Section 2. The volumetric 

errors between the model outputs and measured data are shown in Table 2. The error 

model fits its identification data well, with the mean distance between the measured tool 

tip position and the modeled position being only 25 µm, which is within twice the 

machine tool repeatability. A set of compensation tables is then identified as described in 

Section 2 and, to analyze their ability to compensate the machine tool, the performance in 

simulation for the set of identification points is evaluated. The identified set of 

compensation tables is predicted to be able to account for 94.0% of the mean volumetric 

error and 93.9% of the maximum volumetric error, which is the largest volumetric error 

over the entire set of measured volumetric errors. 
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Figure 6: Illustration of reproduction when circular compensation is prohibited. 

 

 

 

Table 1: Axis limits of industrial 5-axis machine tool used in experimental studies. 
Axis Minimum Maximum 

X (mm) -8.1 6101.0 

Y (mm) -2.5 2557.3 

Z (mm) 0 1001.8 

B -111o 111o 

C -272o 272o 
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Figure 7: Industrial 5-axis machine tool kinematic diagram. 
 

 

 

The most basic set of compensation tables only accounts for individual axis 

positioning. These compensation tables are known as pitch compensation tables and are 

included on virtually every machine tool controller. This set of compensation tables 

serves as a performance baseline, i.e., any set of compensation tables that includes more 

than this basic set should perform better. The pitch compensation tables are applied to the 

identification points in simulation and are able to account for 76.2% of the mean 

volumetric error and 75.5% of the maximum volumetric error. These sets of 

compensation tables (i.e., full and pitch) form bounds for other sets of compensation 

tables. The volumetric errors for any set of compensation tables should be less than when 

using pitch compensation tables alone and more than when using the full set of 

compensation tables.  

The compensation table selection methodology is now applied to the problem of 

selecting the best six compensation tables out of 20 possible compensation tables, 

assuming the pitch compensation tables are always utilized. Note the 20 possible 

compensation tables are the non-diagonal tables in Figure 1. The problem of selecting six 
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compensation tables is considered here as many machine tool controllers only allow six 

compensation tables to be implemented. 

 

 

 

Spindle 
axis

 

Figure 8: Illustration of laser tracker and active target. 
 

 

 

Table 2: Volumetric errors for error model and table-based compensation.  
Model Mean error (mm) Maximum error (mm) 

Uncalibrated 0.597 1.420 

Error model 0.025 0.071 

Full set of tables 0.031 0.071 

Pitch tables only 0.142 0.348 
 

 

 

The algorithm is run on a computer with 12 Intel Xeon 2.60 GHz processing 

cores. Solution evaluations for each generation are run in parallel. The population size 

and mutation rate are 12 and 20%, respectively, and the convergence criterion is that the 

GA produces the same solution for 20 generations or 50 generations have been produced, 
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whichever occurs first. The results are shown in Table 3. The average calculation time for 

the GA solutions is 5.2 hr, which is significantly faster than 550 hr (i.e., the time required 

for an exhaustive search to calculate all 38,640 possible solutions). The solutions share 

the compensation tables ‘yc xz zx’ and all but one solution has the compensation table 

‘xc’. The full set of compensation tables are plotted in Figure 9. The shared compensation 

tables ‘yc xz zx’ and the compensation table ‘xc’ are all large when compared to the 

machine volumetric error, with ‘xz’ and ‘zx’ spanning 0.25 mm and 0.14 mm, 

respectively, which is 42.3% and 23.7% of the volumetric error; however, other 

compensation tables such as ‘yb’ and ‘cy’ span 0.025 mm and 0.004 mm. Compensation 

tables correcting the rotary axes are not as obvious since they cannot be directly 

compared to the volumetric error. Additionally, the pitch errors on the rotary axes of this 

machine tool clearly dominate, with compensation tables such as ‘bc’ and ‘cy’, having 

maximum values of 5.8% and 3.1% of the maximum of the pitch compensation function, 

fcc. 

Another solution to the problem of selecting compensation tables may be to 

develop a heuristic to select compensation tables based on the relative size of each 

compensation function. Many metrics can be used to compare the significance of each 

compensation table. One possible heuristic is based on the impact an individual 

compensation table has on the overall compensation performance, as measured by the 

mean volumetric error for the identification set. 

 
 
 

Table 3: Performance for each GA run. 
Run Computation Time (hrs) Mean error (mm) Solution 

1 6.1 0.0493 xz zx yc xc yb cy 

2 4.7 0.0493 xz zx yc xc cb bc 

3 5.8 0.0445 xz zx yc xc yx bc 

4 5.8 0.0460 xz zx yc xy cb zc 

5 3.8 0.0460 xz zx yc xc yb zy 

Average 5.2 0.0470 -- 
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Table 4 shows the mean volumetric errors for models including all compensation 

tables except the one listed in the first column. The larger the mean volumetric error is 

without a compensation table, the greater the impact of that compensation table on the 

compensation performance. The six compensation tables with the most impact are then 

selected to form the heuristic solution. Using the identification measurement set collected 

above, the heuristic solution is ‘yz zx xc yc zy bx’ with a mean volumetric error of 

0.0625 mm, 15.3 µm worse than the GA solution and 31.3 µm worse than the full set of 

compensation tables. Referring to the GA solutions, some of the selected compensation 

tables, such as ‘yb’, ‘zc’, and ‘cy,’ are ranked as having low impact in Table 4. These 

compensation tables are ranked 15th, 16th, and 19th, respectively. Therefore, examining 

the impact of the mean volumetric error of an individual compensation table is not always 

an adequate indicator of whether the compensation table should be included in the 

solution. The compensation functions using the full set of compensation tables are plotted 

alongside the GA solution and the heuristic solution in Figure 9. Where the heuristic or 

GA solutions share tables with the solution that utilizes all of the tables, the shape and 

magnitude for some of those compensation functions can be very different, for example, 

the compensation functions ‘xx’, ‘yx’, and ‘zx’. This method of identifying table-based 

compensation finds the best set of functions to reduce the machine tool kinematic errors 

so that the tool tip position and orientation most closely match the desired position and 

orientation described by Fn. As a result, some errors are being approximated by 

compensation functions that do not necessarily describe the physical source of the 

measured error, which will be particularly true with a reduced number of compensation 

tables. Evaluating the impact of a single compensation table on the mean or maximum 

volumetric error of the full set does not measure how well an error might be 

approximated using other terms, only its size in a complete solution. For this reason, 

evaluating the entire solution together is more effective than evaluating the impact of a 

single compensation table. The heuristic solution is compared to the average GA solution 

in Table 5. 
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Figure 9: Compensation table functions generated from error model for full set of 
compensation tables, best GA solution, and heuristic solution. 

 

 

 

4.1. Experimental Compensation Results. The previously described machine

 tool was measured at 295 unique measurement locations using two tool lengths, and the 

new set of data was used to identify a set of compensation tables using the GA. The GA 

compensation tables are compared in simulation first, then implemented on the machine 

tool controller. The predicted mean volumetric error for the GA compensation tables is 

the same as for the full set of compensation tables, while the maximum mean volumetric 

error is 11 µm larger. However, the repeatability of the machine tool and measurement 

instrument is 17 µm, so there is unlikely to be a measureable difference between the two. 

The set of compensation tables identified using the GA was implemented on the machine 

tool and compared to the full set of compensation tables experimentally. Both sets of 

compensation tables are discretized into 1024 points per table. The compensated mean 

volumetric errors are evaluated over a validation set of 35 quasi-random points, which are 
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different from those used to generate the compensation tables. The results are shown in 

Table 6.  The GA compensation tables have a mean volumetric error 8 µm larger than the 

full set of compensation tables for the validation set. The maximum error is similarly 

close, with the GA compensation tables being 10 µm larger than the full set of 

compensation tables. Good performance over the validation set indicates that the low 

mean volumetric error for the GA compensation tables is not due to overfitting, and 

translates to verifiable performance improvement on the machine tool. The GA 

compensation tables perform nearly as well as the full compensation tables when 

implemented on the machine tool, demonstrating the GA is able to find near optimal 

solutions even when the number of compensation tables is restricted. 

 

 

 
Table 4: Model mean volumetric error excluding compensation table listed in column 1. 

Table Rank Mean error (mm) 

zx 1 0.1169 

yc 2 0.1126 

xc 3 0.1000 

zy 4 0.0924 

yz 5 0.0792 

bx 6 0.0751 

by 7 0.0725 

bc 8 0.0724 

bz 9 0.0701 

. . . 

. . . 

. . . 

xb 17 0.0530 

cx 18 0.0489 

cy 19 0.0474 

cz 20 0.0463 
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Table 5: Performance of heuristic and average GA solutions.  
Solution Computational Time (hr) Mean error (mm) Solution 

Full tables -- 0.0310 -- 

Heuristic 1.0 0.0625 yz zx xc yc zy bx 

Average GA 5.2 0.0470 -- 

  

 

 

Table 6: Volumetric errors for validation experiments on 5-axis industrial machine tool, 
mm. 

  

 

 

4.2. Constraint Inclusion. Data from the previously described machine tool 

is used to test two specific controller constraints, which were described in Section 3.2. 

The first constraint is largely seen in older machine tool controllers and prevents what is 

termed circular compensation, i.e., the situation where the compensation table ij  is 

populated and, thus, the compensation table ji  may not be used. The GA is run five times 

for each constraint and the mean volumetric errors over the identification set are 

compared to the unrestricted GA in Table 7. The GA with the constraint on circular 

compensation is slightly worse than the average GA, with one solution 5.6 µm worse and 

the other solution 10.1 µm worse. The difference between the GA solutions with 

constraints on circular compensation and the unconstrained GA solutions is statistically 

significant based on a paired t-test of the mean volumetric error using a significance level 

of 0.05.  This is expected since added constraints reduce the number of possible solutions 

and, for this particular machine tool, there are several circular combinations of 

compensation tables that are large. For example, the machine tool has a significant error 

described by the compensation table function ‘zx’, which represents sagging of the long 

axis, X, as well as an error described by the compensation table function ‘xz’ that 

  Model errors Comp. errors 

Model Tables Mean Maximum Mean Maximum 

Full tables -- 

0.036 0.086 .043 0.122 

GA xc zx yc yx yz cz 

0.036 0.097 .051 0.132 
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represents the Z axis ram not travelling straight. There also is significant coupling 

between the rotary axes, described by the compensation table functions ‘cb’ and ‘bc’. 

 

 

 

Table 7: Mean volumetric error for ga solutions with no constraints, no circular 
compensation, and no x axis compensation.   

Model Mean error (mm) Solution 

Full tables 0.0310 -- 

Average GA 0.0470 -- 

Best GA 0.0445 xz yc xc yx zx bc 

Circular compensation    

Result 1 0.0571 zx yc xc zy cb xb  

Result 2 0.0526 zx yc xc xy yb xb  

Result 3 0.0526 xz yc xc yx cb yb 

Result 4 0.0540 xz yc xc yx cb zy 

Result 5 0.0535 xz yc xc yx yb xb  

Restricted axis (X)   

Result 1 0.0753 zx yx yc zb cb bc 

Result 2 0.0753 zx yx yc zb cb bc 

Result 3 0.0753 zx yx yc zb cb bc 

Result 4 0.0753 zx yx yc zb cb bc 

Result 5 0.0753 zx yx yc zb cb bc 

 

 

 

The second constraint considered here does not allow compensation for a specific 

axis, in this case the X axis. Three runs of the GA found the same solution for the second 

constraint, and this solution performs worse than the unrestricted GA solution, with the 

mean volumetric error being 28.3 µm worse than the average unrestricted GA solution. 

This is not unexpected based on the size of the X axis compensations in the full set of 

compensation table functions shown in Figure 9 and the unrestricted GA solutions, the 

best of which contains the tables ‘xz’ and ‘xc’. 

The proposed volumetric error compensation methodology differs from the 

methodologies reported in the literature, summarized in [3,4], in two ways. First, nearly 

every machine tool calibration methodology measures only a few geometric errors in one 
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set up, e.g., interferometers for linear axes and ball bars and R test for rotational axes, 

and, thus, populates only a few compensation tables with each set up. The proposed 

methodology measures geometric errors over the entire axis space and is able to populate 

the entire set of compensation tables, if no limitations or constraints exists, in just one set 

up. Second, if there is a limitation on the number of compensation tables that can be 

implemented or there are constraints on the combination of compensation tables that can 

be utilized, the proposed methodology is able to optimally select the best combination of 

compensation tables. To the authors’ knowledge, this issue has not been previously 

addressed in the literature. 

 

5. SUMMARY AND CONCLUSIONS 

A quick machine tool geometric error calibration method that generates 

compensation tables from tooltip measurements was extended in this paper to situations 

where the number of machine tool controller compensation tables is limited and 

constraints exist on the possible combinations of tables that can be utilized. The reduced 

table selection methodology is based on artificial intelligence that utilizes a Generic 

Algorithm (GA) to find the optimal set of compensation tables without having to evaluate 

all possible combinations of tables. Data from an industrial 5-axis machine tool was used 

in a simulation study to compare the GA methodology to the selection of compensation 

tables using a heuristic. The heuristic uses a logical metric based on the impact of 

individual compensation tables to select a set of compensation tables. When selecting six 

compensation tables, the mean volumetric error for tables selected by the GA 

methodology was 44.7% smaller than the mean volumetric error for the tables selected by 

the heuristic. The heuristic and GA methodology required 1 and 5.2 hr, respectively, to 

find solutions, while 550 hr were required for an exhaustive search, which is impractical 

for most applications. The GA methodology was then experimentally implemented on an 

industrial 5-axis machine tool using a validation data set and the resulting mean and 

maximum volumetric errors were 8.0 and 10.1 µm, respectively, greater than the mean 

and maximum volumetric errors when the full set of compensation tables were 

implemented. In a second simulation study, the GA methodology was used to select six 

compensation tables for the industrial machine tool assuming that circular compensation 
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could not be utilized. The GA methodology was implemented and the resulting mean 

volumetric error was 7.0 µm greater than the mean volumetric error for the compensation 

tables found by the unconstrained GA methodology. This demonstrates the importance of 

using circular compensation for this machine tool, as the compensation tables xz and zx 

were present in the unconstrained solution. In a third simulation study, the GA 

methodology was used to select six compensation tables for the industrial machine tool 

assuming that compensation could not be implemented for the x axis. The GA 

methodology was implemented and the resulting mean volumetric error was 28.3 µm 

greater than the mean volumetric error for the compensation tables found by the 

unconstrained GA methodology. This demonstrates the importance of compensating the x 

axis for this machine tool, as the compensation tables xz and xc were present in the 

unconstrained solution. The GA methodology presented here is able to efficiently select 

compensation tables for a variety of machine tool controllers, even when their existing 

compensation options limit the number of tables that can be implemented or the 

combination of tables that can be utilized. 

 

ACKNOWLEDGEMENTS 

The work presented here was supported by the Boeing Company, the Center for 

Aerospace Manufacturing Technologies at the Missouri University of Science and 

Technology, the National Science Foundation (grant CMMI-1335340), and the 

Department of Education (grant P200A120062). 

 

REFERENCES 

[1] ISO 230-1, "Test Code for Machine Tools Part I: Geometric Accuracy of Machine 
Tools Operating Under No-Load or Quasi-Static Conditions," ISO, Geneva, 
Switzerland, 2012. 

 
[2] S. Sartori and G. X. Zhang, "Geometric Error Measurement and Compensation of 

Machines," CIRP Annals -- Manufacturing Technology, vol. 44, no. 2, pp. 599-
609, 1995.  

 



65 

 

 

[3] H. Schwenke, W. Knapp, H. Haitjema, A. Weckermann, R. Schmitt and F. 
Delbessine, "Geometric Error Measurement and Compensation of Machines-An 
Update," CIRP Annals - Manufacturing Technology, vol. 57, no. 2, pp. 660-675, 
2008.  

 
[4] S. Ibaraki and W. Knapp, "Indirect Measurement of Volumetric Accuracy for 

Three-axis and Five Axis Machine Tools: A Review," International Journal of 
Automation Technology, vol. 6, no. 2, pp. 110-124, 2012.  

 
[5] Khan, A.W. and Chen, W., "A Methodology for Systematic Geometric Error 

Compensation in Five-Axis Machine Tools," International Journal of Advanced 
Manufacturing Technology, vol. 53, pp. 615-628, 2011. 

 
[6] Cheng, Q., Zhao, H., Zhang, G., Gu, P., and Cai, L., "An Analytical Approach for 

Crucial Geometric Errors Identification of Multi-Axis Machine Tool Based on 
Global Sensitiity Analysis," International Journal of Advanced Manufacturing 
Technology, vol. 75, pp. 107-121, 2014. 

 
[7] Lin, Y. and Shen, Y., "Modelling of Five-Axis Machine Tool Metrology Models 

using the Matrix Summation Approach," International Journal of Advanced 
Manufacturing Technology, vol. 21, pp. 243-248, 2003. 

 
[8] P. Freeman, "A Novel Means of Software Compensation for Robots and Machine 

Tools," in Aerospace Manufacturing and Automated Fastening Conference and 
Exhibition, Toulouse, France, September, 2006.  

 
[9] Wang, Z., Mastrogiacomo, L., Franceschini, F., and Maropoulos, P., 

"Experimental Comparison of Dynamic Tracking Performance of iGPS and Laser 
Tracker," International Journal of Advanced Manufacturing Technology, vol. 56, 
pp. 205-213, 201. 

 
[10] Creamer, J., Sammons, P.M., Bristow, D.A., and Landers, R.G., 2017, “Table–

Based Volumetric Error Compensation of Large 5–Axis Machine Tools,” ASME 
Journal of Manufacturing Science and Engineering, Vol. 139, No. 1, pp. 021011-
1:11. 

 
[11] B. Mooring, "The Effect of Joint Axis Misalignment on Robot Positioning 

Accuracy," in Proccedings of the 1983 ASME Computers in Engineering 
Conference, Chicago, Illinois, August 1983.  

 



66 

 

 

[12] B. Mooring, Z. S. Roth and M. R. Driels, Fundamentals of Manipulator 
Calibration, John Wiley and Sons, Inc., 1991.  

 
[13] C. Hollerbach, J. Wampler and T. Arai, "An Implicit Loop Method for Kinematic 

Calibration and Its Application to Closed-Chain Mechanisms," IEEE Trans. 
Robotics and Automation, vol. 11, no. 5, pp. 710- 724, 1995.  

 
[14] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine 

Learning, Reading, MA: Addison-Wesley Publishing Company, Inc., 1989.  

 
[15] P. S. Efraimidis and P. Spirakis, "Weighted Random Sampling," in Encyclopedia 

of Algorithms, Springer Science and Business Media, 2008, pp. 1-99. 



67 

 

 

SECTION 

2. TABLE-BASED VOLUMETRIC ERROR COMPENSATION 
IMPLEMENTATIONS 

In addition to the laboratory machine presented in the previous papers, table-

based volumetric error compensation has been implemented or evaluated for 

implementation on a variety of other machine tools. For each machine tool was 

evaluated, a set of tool tip measurements were collected using a laser tracker and a table-

based model was identified In the following sections, each machine is described and 

some results from measurement and modeling are presented.  

 

2.1. CINCINNATI 20V, BOEING RESEARCH AND TECH ST. LOUIS 

The Cincinnati 20V, shown in Figure 2.1, is also located in a laboratory 

environment. It is a small 5-axis hard metals machining center with an XYZAB 

configuration with axis travel shown in Table 2.1. The machine has a Siemens 840D 

controller.   

 

 

 

Table 2.1:Axis limits for Cincinnati 20V 
Axis Minimum Maximum 

X -.14 in 80 in 

Y -30.16 in .23 in 

Z -24 in 0 in 

B -25 deg 25 deg 

A -25 deg 25 deg 
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Model performance is shown in Table 2.2. The mean volumetric error for the JP 

model is 0.7x10-3 in, which is a 96.5% reduction in error. The model accuracy over its 

identification set is nearing the accuracy of the measurement instrument, (repeatability of 

0.7x10-3 in, as detailed in Paper I), indicating that much of the residual error could be 

attributed to measurement noise. The gage line offset correction was found to be 0.5x10-3 

in, which is near the accuracy of the tool length measurement, so this is small enough to 

be noise.  The axis perturbation functions are plotted in Figure 2.2.  

 

 

 

 

Figure 2.1: Cincinnati machine 
 

 

 

Table 2.2: Machine volumetric error, new data 
Model Mean (in x10-3) Max (in x10-3) 

Uncalibrated 20.1 37.4 

JP 0.7 2.1 

 

 

 



69 

 

 

Some high order effects are present at Z axis positions close to the table, but this 

is likely due to poor measurement coverage in this area due to the length of the active 

target mounted in the spindle. This area is considered to be outside the work volume for 

most standard tools.  The largest translational compensations are to the Z axis. One is 

dependent on Y position, representing that this axis is slanted. The other is the Z 

positioning error. The largest X compensation depends on the B axis position. The largest 

angular compensation is the angular positioning error of the A axis, but a close second is 

the Z dependent B compensation, which has a large peak near the top of the Z axis.  This 

machine has significantly less travel in the rotary axes than the previous experimental 

machine (Flow 5-axis, C travel [-272, 272] and B travel [-11,111]) and has a smaller 

work volume. It was expected that this type of calibration would provide less benefit to 

small machines with less complexity, however, this machine, despite small travels for the 

rotary axes, has non-trivial errors that depend on the rotary axis location (fbx, fbz). The 

model accuracy on this machine also predicts significant error reduction, demonstrating 

that VEC is of benefit to even small 5-axis machines.  

 

2.2.  SNK 120V BOEING DEFENSE AND SPACE, ST. LOUIS 

The SNK 120V is a production 5-axis machining center with XYZAB 

configuration and axis travels shown in Table 2.3. This machine has a Fanuc 30i 

controller. Results for this machine are shown in Table 2.4. This machine presents a new 

challenge compared to most others in this section. A majority of the machines evaluated 

have Siemens 840D controllers, which allow a large number of compensation tables (64). 

However, the Fanuc 30i allows 5 pitch compensation tables and 6 straightness tables of 

some description. There are 20 straightness tables that are possible, so a new method to 

select the best tables is needed. A method using artificial intelligence is presented in 

Paper II.  
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Figure 2.2: Axis perturbation functions.  
 

 

 

Table 2.3: Axis limits for SNK. 
Axis Minimum Maximum 

X -.4 in 120 in 

Y -48 in 0 in 

Z -27 in 0 in 

A -25 deg 25 deg 

B -25 deg 25 deg 
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Table 2.4: Results for the SNK machine tool.  
 Mean (inx10-3) Max (inx10-3) 

Uncalibrated 8.4 19.1 

AP Model 0.8 2.5 

 

 

 

2.3.  INGERSOLL HORIZONTAL MACHINING CENTER, NASA  

The NASA Ingersoll is a large 5-axis gantry horizontal machining center with and 

additional rotary table and tail stock. It has an XYZCA configuration with axis travels 

shown in Table 2.5 (without considering the rotary table). The machine is pictured in 

Figure 2.3. This machine was measured as a part of a joint effort with Automated 

Precision, Inc.  

 

 

 

Table 2.5: NASA Ingersoll axis limits. 
Axis Min Max 

X (in) -196.89 276.22 

Y (in) -0.04 157.52 

Z (in) -1.97 137.83 

C  -400o 400o 

A  -110o 110o 

 

 

 

The machine was measured using a set of pseudo-random points and an axis 

perturbation model was fit. The initial results are shown in Table 2.6. The performance of 

the compensation degrades as a function of Y axis position on the grid of validation 
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points, indicating that some error on the machine is not well described by the model, as 

shown in Figure 2.4. 

 

 

 

 

Figure 2.3: Photo of machine tool during calibration. 
 

 

 

The Y gantry of this machine is known to have significant skewing based on the 

original compensation and the mismatched current of the two motors, so it may be that 

these errors are hard to model using the AP model. Terms representing possible skewing 

between the gantry axes are introduced and a new set of model parameters are identified. 

For the Y gantry, a small rotation about the X axis, θYg, is inserted, and for the X gantry, a 

similar small rotation, θXg, is introduced as 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ
X g Y gg g

X X Y Y YA Z Z Z C C C AX Y A T tP X Aq q q q q q q q q qθ θθ θ+ + + + + += TF q q T T T T TT T  (23) 

 

where θYg is modeled as a function of each axis position,  
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 ( ) ( ) ( ) ( ) ( )θ = + + + +
gY X Y Z C Af q f q f q f q f q   (24) 

 

and  θXg, is modeled  in much the same way.. In this model, the maximum residual error 

is reduced to 3.21x10-3 from 5.5x10-3, which is a 42% decrease. The identified functions 

are plotted in Figure 2.5.  

 

 

 

 

Figure 2.4: Vector plot of grid point errors with compensation active. 
 

 

 

Table 2.6: Residual error for uncompensated machine and AP model. 
Model Mean (in) Max (in) 

Uncompensated 10.5x10-3 25.0x10-3 

AP model 1.57x10-3 5.50x10-3 

AP+θYg, θXg model 1.34 x10-3 3.21 x10-3 

AP tables (validation) 2.6x10-3 4.8x10-3 

Original tables  5x10-3 10x10-3 
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2.4. SPAR MILL 23, BOEING COMMERCIAL (BCA), SEATTLE, WA 

Spar mill 23 is a 110ft long four-axis mill with two spindles that run mirrored, 

meaning that their movements are synchronized but opposite. The controller is a Fanuc 

33i. This machine is older, but had undergone a recent retrofit. The repeatability of the 

machine is shown in Figure 2.7, and is found to degrade somewhat over several hours 

between the two data sets shown. The volumetric error on the uncompensated machine is 

shown in Figure 2.6. Data is shown ordered by point number to check for any time 

dependence in the measurements. Based on a long term repeatability of 3.4 thou and a 

mean volumetric error of 3.6 thou with an observed maximum of 8.2 thou, it was 

determined that the machine was unlikely to benefit from VEC and no tables were 

implemented.  

 

 

 

 

Figure 2.5: Functions for the model including both θYg  and θXg. 
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Repeatability of this machine was established by measuring nine points four times 

using the SMR over 19 minutes, and again by comparing the two sets of identification 

measurements, taken over 5 hours and 50 minutes. The distributions of the repeatability 

over long and short measurement times are shown in Figure 2.10 and Figure 2.11. The 

results are in Table 2.8. 

 

 

 

 

Figure 2.6: Volumetric error before compensation on Spar Mill 23. 
 

 

 

The average repeatability over the short measurement period is on average 0.7 

thou, which is approximately equivalent to the repeatability of the instrument, meaning 

the machine is more repeatable than a laser tracker can measure when time dependent 

effects (such as thermal changes) are minimized. However, when the repeatability was 

calculated using 287 points over 5.8 hours, the mean increases to 2.1 thou and the 

maximum to 9.0 thou. During this time, 4o F of temperature change was recorded at the 

machine table, and this temperature change may be partially responsible for the 

degradation of the repeatability.  
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Figure 2.7: Grid of repeated points evaluating repeatability of Spar Mill 23 over 
time. 

 

 

 

Table 2.7: Master Mill axis limits. 
Axis Min Max Naming 

X (in) -325 325 AX1, AX8 

Y (in) -80 80 AX2 

Z (in) 30 110 AX3 

C -200o 200o AX4 

A -110o 110o AX5 

 

 

 

These measurements were then used to fit a joint perturbation model using the 

implicit loop method. This model used a base frame with orientation fixed to the machine 

table. Table 2.9 shows the mean and maximum volumetric error between the model and 

identification points.  The functions are shown in Figure 2.12.  
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Figure 2.8: Master Mill machining a complex part. 
 

 

 

 

Figure 2.9: View down the long axis (X) of the Master Mill. 
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Figure 2.10: Distribution of short term repeatability. 
 

 

 

 

Figure 2.11: Distribution of long term repeatability. 
 

 

 

Table 2.8: Mean and maximum repeatability. 
Repeatability type Mean (thou) Max (thou) Std. (thou) Time (hr) 

Short term 0.7 2.3 0.1 0.3 

Long term 2.1 9.0 1.6 5.8 
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Table 2.9: Model residual errors, thousandths of an inch.  
 Identification Validation 

Model Mean Max Mean Max 

Uncompensated 11.6 30.4 11.6 20.4 

Joint perturbation 2.2 5.8 3.7 8.7 

 

 

 

 

Figure 2.12: Axis perturbation functions, thousandths of an inch (thou) and 
degrees.  

 

 

 

In Figure 2.12, the horizontal axis for each function is the input axis, and the 

vertical axis is the compensated machine axis. The functions fcx and fcy are sinusoidal in C 

position, representing an unaccounted for offset between the C and A axes. The function 

fyx indicates that the Y axis bows out in the X direction.  In addition to the compensation 
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tables, the nominal lengths of any links are corrected. The correction to the gage line 

offset was 0.3 thou. 

The AP model functions, shown in the previous section in Figure 2.12, were each 

discretized into 1024 points and loaded into 30 compensation tables. Normally there are 

5x5=25 tables possible for a 5-axis machine, but this machine has a gantry system and 

needs to have X compensation tables for both the leading and following axes. The 

functions in the top row of Figure 2.11 were placed in two tables, one for the leading and 

one for the following axis. 

Both new and old compensation tables were evaluated over this validation set, 

and the mean and maximum residual errors after compensation are shown in Table 2.10. 

Figure 2.13 shows the distribution of residual volumetric error for both sets of 

compensation tables and the uncompensated machine. 

 

 

 

Table 2.10: Compensated residual error, thousandths of an inch. 
Compensation Mean Max 

Uncompensated 11.6 20.4 

Original 14.2 23.2 

Volumetric 6.7 13.6 

 

 

 

2.6. UNDISCLOSED PRODUCTION MACHINE, ST. LOUIS, MO 

The undisclosed production machine is a large gantry that has an XYZBAW 

configuration, where W is the translational axis mounted after the B and A rotary axes 

that moves in the tool Z direction. The axis limits are shown Table 2.11. This machine 

has a Siemens 840D controller and is a production implementation of table-based VEC. 

The machine is calibrated in small zones to get better compensation performance, which 

is a strategy unique to this machine in terms of VEC implementations. The performance 
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overall and in these zones is shown in Table 2.12. The residual volumetric error after 

compensation is marginally higher than on other machines presented here, but may 

partially be attributed to the longer X-axis and single tracker setup. This distance causes 

the laser tracker to have more error in its measurements, affecting both the model quality 

and the ability to measure the true residual error over a small set of points. Future 

implementations on this machine should consider two laser tracker locations to mitigate 

the distance related measurement error.  

 

 

 

 

Figure 2.13: VEC performance over old validation set 
 

 

 

2.7. MACHINE TOOL EVALUATION SUMMARY 

This section has presented results from measurement or implementation on a variety of 

machines in different settings. Two machines were Boeing Defense production machines 

(SNK 120V and the undisclosed production machine), two were Boeing Commercial 

production machines (Master mill and the Spar mill), one was a Boeing lab machine, and 
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encountered in the lab setting such as temperature fluctuations and skewing between 

multiple gantry axes. Despite this, table-based VEC was able to reduce errors on all of 

these machines with the exception of a single machine whose accuracy was already as 

good as typical VEC accuracies. 

 

 

 

Table 2.11: Axis limits of production machine.  
Axis Min Max 

X 450 in 1000 in 

Y 0 in 30 in 

Z 0 in 130 in 

B -5o 5 o 

A -200 o 17 o 

W -15 in 0 in 

 

 

 

Table 2.12: Compensation performance in selected zones. 
Model Overall East West 

 Mean Max Mean Max Mean Max 

Uncalibrated 16.4 33.9 18.6 46.6 13.6 34.3 

AP Model 2.2 6.0 1.8 4.2 1.8 4.1 

Compensated 5.6 9.4 4.3 7.1 4.2 8.4 
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3. INSTRUMENT INTEGRATION 

3.1 INTRODUCTION 

The cost of machine down time and the speed with which laser trackers can 

collect measurements of a machine tool has driven their use as a calibration tool for 

machine tools. Due to the lower accuracy of the angular positioning of a laser tracker, 

multiple laser trackers [17, 18]or multiple positions [43, 19] are sometimes used so that 

the three-dimensional position of the tool tip may be found by triangulation. Ibaraki et al 

[18] found that even using this method, the laser tracker error in identifying the position 

of a corner cube could be as large as typical positioning errors. In [20], Nubiola and 

Bonev used a single laser tracker and multiple reflectors to calibrate an ABB IRB1600 

robot and achieved good improvement in the volumetric error in simulation. A laser 

tracker is also used for measurements by Aguado et al [44]. Most of the measurement 

methods reviewed here require several different set ups to acquire enough measurements 

to build a complete model. Some require additional measurement methods. Laser trackers 

have the potential to be very fast, and are the only instrument required to build a 

complete model. Nubiola and Bonev [20] reports taking 1000 measurements in 1-2 hours. 

However as of 2009, even using multilateration, laser trackers were reported in [18] not 

to be accurate enough for this purpose. The commercial laser tracker used in [20] has a 

volumetric accuracy at 10m of 49 µm, and an error of 23 µm when measuring a 2.3 m 

scale bar from 2 m away.  

The use of large numbers of measurements (200-500) and a maximum likelihood 

estimator can mitigate the issue of laser tracker accuracy. Measurements of the tooltip are 

typically recorded in Cartesian coordinates since this is how the machine tool kinematics 

are described. However, it is known that the angular measurements are much less 

accurate than the range measurements for the laser tracker, and that the accuracy depends 

on the distance away from the laser tracker. This information can be incorporated into the 

maximum likelihood estimator to improve the model accuracy by converting the 

kinematic equations to spherical coordinates.   
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3.2. BACKGROUND 

The relationship between a set of axis commands qi = [q1 q2…qn] and the tooltip 

position and orientation can be described by treating the machine tool as a kinematic 

chain of rigid links. The relationship between these links can be described using Linear 

Homogeneous Transformation (LHT) matrices, as described in Paper I.  

The machine tool kinematics are modeled using the Zero Reference Model [45], a 

method commonly applied in robotics [33]. The nominal kinematics for an n-link 

machine tool are then given by 

 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 1, ,, n n nT Tn TL q q q q Lα α− −=nF q T T T TT ⋯  (25) 

 

where and T1(q1),…,Tn(qn) are LHTs for axes 1,…,n respectively and TT(LT,α) is the 

transformation from the last joint to the tool tip where LT,α is the length of the tool. 

Because of inaccuracies in machine tool component fabrication and assembly, the actual 

kinematics of the machine tool are not equivalent to those of the nominal kinematic 

model. Errors are introduced as a small deviation from the nominal axis command. For an 

n-link machine tool, the actual kinematics are 

 

 ( ) ( ) ( )( ), 0 ,
ˆ, , , ,T TAP L Lα α= +nF p q p F q q p qE  (26) 

 

where p is a vector of model parameters and ( ) ( ) ( ) ( )[ ]1 2
ˆ ˆ ˆ ˆ, , , ,

T

nq q q=q p q p q p q p q⋯  is a 

vector of axis perturbation functions that perturb the nominal joint variables. The base 

frame correction E0 is defined as three small constant rotary corrections and three small 

constant translational corrections,  
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Each perturbation is composed of a combination of basis functions depending on 

each joint position individually and is represented as an mth order Chebychev polynomial,  
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where Ck(qi) is the kth order Chebychev polynomial. Then the parameter vector, p, is 

composed of the six terms from E0 and the aijk terms,  

 

0 0 0 0 0 0 110 11 0y zxx y nm n n mz na a a aδ δε δε ε =  p ⋯ ⋯ ⋯  (29) 

 

The position and orientation of the machine tool tip are measured at each of 

hundreds of axis positions qi. The position and orientation are captured by measuring the 

tool tip position with two tool lengths, LT,1 and LT,2.. The laser tracker measures three 

dimensional position for each tool length in spherical coordinates,   
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T

i L i iR
α α α αφ θ =  s  (30) 

 

where i =1,.., N, N being the total number of measurements, α = 1, …, NT is the number 

of tools, Ri,α is the range, φi,α is the elevation, and θi,α is the azimuth. The kinematics for a 

machine tool expressed in Cartesian coordinates, so the laser tracker measurement is 

often converted to Cartesian coordinates for the identification of parameters. The tool tip 

measurement is then  
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where xi,α , yi,α , and zi,α are the x, y, and z components of the tooltip measurement, 

respectively. Assume for some p that the machine motion is described by 

( ), ,A P i i TL α+F p q qɶ , then the measurement can be described as  
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where [ ]1

T

i nq q=qɶ ɶ ɶ⋯ is the error on the axis commands and , , , ,T

T

i L i i ix y z
α α α α =  xɶ ɶ ɶ ɶ  

is the error on the measurement. The Cartesian tooltip measurement is related to the 

spherical one by the operator Crt(-) 
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Since the measurement is natively in spherical coordinates, the measurement 

error,
,, , , ,T

T

i L i i iR
α α α αφ θ =  s ɶ ɶɶɶ , is also. Then,  
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where Crt(-) is the spherical to Cartesian conversion. However, since Crt(-) is a nonlinear 

transformation, ( ) ( ) ( )
, , , ,, , , ,T T T Tr t i L i L r t i L r t i LC C C
α α α α

+ ≠ +s s s sɶ ɶ , so the information about the 

measurement error cannot be directly used in Cartesian coordinates. To best utilize 
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information about measurement accuracy (i.e., that it depends on the range, Ri from the 

tracker), the kinematics are also expressed in spherical coordinates using the following 

conversion operator, S(-), 
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where x = [px py pz]T is a position in Cartesian coordinates and tan-1(-) is the four quadrant 

inverse tangent. Figure 3.1 illustrates the relationship between Cartesian and spherical 

coordinate systems. The measurement can then be modeled as  
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Figure 3.1: Illustration of the conversion between spherical and Cartesian 
coordinates. 
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 Methods for identifying the model parameters, p, and the measurement errors 

1, ,, ,T NT T
i i L i L i

 =
 

s s s qɶ ɶ ɶ ɶ⋯  from the machine tooltip error measurements are described in 

Section 0. The constraint equations are developed based on the Implicit Loop Method 

[38], but can be adapted to other solution methods.  

Rather than consider the measurements and their respective noise in spherical 

coordinates, sometimes multiple laser trackers are used and the noisy azimuth and 

elevation measurements are discarded in a process called multilateration. The next 

section compares the technique described in this section to multilateration.  

  

3.3.  TRIANGULATION AND MULTILATERATION 

Triangulation or multilateration refers to the process of using three (or multiple) 

laser trackers or laser tracker locations to measure the position of a retroreflector more 

accurately. This is the common practice when laser trackers are used for metrology of 

tooling and parts and for machine tool calibration. This section will demonstrate that 

using a maximum likelihood estimator and a single laser tracker approaches the solution 

with multiple laser trackers.  

 Triangulation assumes the position of three laser trackers is exactly known. Both 

techniques use only the distance measurement, Rij, where i = 1, …, N is the measurement 

number and j = 1, …, M is the tracker number, and Rij is the distance between the ith tool 

position and the jth laser tracker. The tracker position for the j th tracker is Uj = [uj vj  wj]T. 

Then the i th tool tip position pi = [xi yi zi]T is the solution to  

 

 i j i jR p U= −  (37) 

 

for i = 1, …, N and  j = 1, …, M. When M = 3, the positions of the laser trackers, Uj, must 

be exactly known in order to identify each pi. When M > 3, the additional measurements 

can be used to identify the laser tracker locations. In literature, this system of equations is 

often solved with the Newton Method, or a similar method [18]. To formulate this 

problem in the same way as the use of one laser tracker, it is assumed that there is 
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Gaussian noise on the measurement Rij and on the axis commands qi, giving a constraint 

equation similar to the ball bar for each of M trackers and N measurements, 
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This problem can also be formulated in the same way as a single laser tracker 

with minor modifications. The constraint equations are 
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where i = 1, …, N, N being the total number of measurement commands, α = 2M and p 

contains 6(M-1) additional parameters to define the location of each laser tracker. The 

model parameters, p, and the measurement errors ,1 , Ti i i N i
 =  s s s qɶ ɶ ɶ ɶ⋯  are identified 

from the machine tooltip error measurements using a constrained optimization routine. 

The error on the measurements and the model parameters, ,is pɶ , are assumed to be 

independent and Gaussian with the probability density function 
1 /2T

e η η−Σ−  where 

T
iη  =  s pɶ  and Σ is the covariance matrix for the measurement errors and the 

parameters. Based on these assumptions (independent, Gaussian), maximizing the 

likelihood is the same as minimizing 1Tη η−Σ  [46]. The maximum likelihood estimate is 

then  
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while satisfying (49) for all i and α. For a single laser tracker,  

 

( )i x y z c bx q q q q q Rdiag θ φσ σ σ σ σ σ σ σ = Σ 
  (41) 

 

where σqx,…,σqb are the standard deviations for the machine axes, and σR, σθ, and σϕ are 

the static standard deviations associated with each measurement component from the 

laser tracker. The multilateration solution can be approached assuming: 
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Then, rewriting the objective function,  
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and taking the limit 
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the solution reduces to a simple least squares minimization of the sum of the squared 

errors on the measurement Ri,α. This shows that this methodology approaches the solution 

achieved using multilateration under certain circumstances, but is more flexible since the 

estimates include information on measurement noise.  

 

3.4. RADIAL FRAMEWORK   

On some machines, it may be desirable to integrate small or more accurate 

measurement tools into the calibration strategy presented in previous sections. One such 

instrument that might be integrated alongside the laser tracker is the telescoping ball bar, 

and this will be used as an example of how additional instruments can be integrated.  

3.4.1. Ball Bar Description. The telescoping ball bar measures the deviation of 

the radius of a circle, as illustrated in Figure 3.2.  
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Figure 3.2: Diagram of ball bar measuring a machine.  
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The ball bar returns a single scalar value, a radius, at each measurement position. 

To predict this radius, the distance between the tooltip position as modeled and the 

mounting location of the ball bar, o = [ox oy oz]T,  
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The measured radius can be represented as the distance between the actual 

machine with noise on the axis positions, iqɶ , and the mounting location, o, with noise irɶ  

corrupting the measured radius,  
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This instrument is incorporated as an additional loop equation (constraint 

equation) in the ILM or another solution method as 
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where ixɶ  is a vector of measurement noise on both the axis positions ( iqɶ ) and the tooltip 

measurement (irɶ ).  
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3.4.2. Parameter Identification. Throughout the majority of this work, the 

Implicit Loop Method has been used to identify parameters of the geometric errors 

models. This method is generally well suited to this task, but encounters some problems 

when integrating different types of measurements together. The following subsections 

discuss methods of solving the constrained optimization problem using the constraint 

(loop) equations and cost function presented in previous sections, beginning with one of 

the most common solvers, then discussing the ILM, and finally discussing the quasi-

newton methods used by commercially available solver packages such as Matlab.  

3.4.2.1. Newton method. The Newton method is a common optimization routine 

when an x that minimizes g(a) is desired. Starting with some initial value, a0, the new 

value of a, ak, can be calculated based on the previous value, ak-1,  

 

 ( ) ( )11 2 1 1k k k ka t g a ga a
−− − −− ∇ ∇=   (48) 

where t is the step size. This method requires the second derivatives of the objective 

function, which may be difficult to obtain. Several methods to avoid using second 

derivatives have been developed. For the problem of machine tool and robot calibration, 

an algorithm called the Implicit Loop Method (ILM) [38] has been developed and is 

presented below.  

3.4.2.2. Implicit loop method. The model parameters, p, and the measurement 

errors 
1, ,, ,T NT T

i i L i L i
 =
 

s s s qɶ ɶ ɶ ɶ⋯  are identified from the machine tooltip error 

measurements using the Implicit Loop Method (ILM) [citation], which is a maximum 

likelihood estimator. The ILM uses constraint equations, called loop equations, which 

ensure that all deviation between the measured tool tip position and modeled one be 

assigned either to the model parameters, p, or the measurement and axis position errors, 

isɶ ,  
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where i = 1, …, N and α = 1, …, A. The implicit loop method then finds the most likely 

values for isɶ  and model parameters, p, so that these loop equations are satisfied. The 

error on the measurements and the model parameters,,is pɶ , are assumed to be 

independent and Gaussian with the probability density function 
1 /2T

e η η−Σ−  where 

T
iη  =  s pɶ  and Σ is the covariance matrix for the measurement errors and the 

parameters. Based on these assumptions (independent, Gaussian), maximizing the 

likelihood is the same as minimizing 1Tη η−Σ  [46]. The maximum likelihood estimate is 

then  
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while satisfying (49) for all i and α. For each i, the loop equations are  
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In order to simplify the solution to the minimization, an iterative method that 

requires only the first derivatives of the loop equations, fi,α, is developed. First, the 

normalized variables ξi and ψ are introduced, each having a covariance matrix equal to 

identity. These are related to the measurement noise and parameters by 

 

 1/2 1/2,
ii s i p

− −Σ= = Σxξ ψ pɶ  (52) 

 

Rewriting the cost, χ2 in (50),  
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The algorithm is initialized with a guess of zero for both ξi and ψ. At each step a 

correction ∆ξi and ∆ψ is calculated to minimize 
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subject to the constraints 
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ii i i i i x i pfJ Jξ ψ+∆ ∆ = − Σ Σ+ξ ψ s ξ ψ  (55) 

 

where Jψi and Jξi are matrices of partial derivatives of fi obtained using the chain rule. To 

simplify the solution, an orthogonal decomposition to remove ∆ψi can be performed. 

First the QR-decomposition of the Jacobian matrix is calculated 
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Then, the decomposition is used to define Ei and Di, which are used to pose the 

problem in the form of least squares, 
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Then ∆ξi is the least squares solution to  
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and ∆ψ can be found using 

 ( )i i i i i− ∆+ =∆ξ Q E Dξ ψ  (59) 

 

This is iterated upon until convergence, when ∆ψ and ∆ξi are smaller than a set 

tolerance (typically 10-4 has yielded good results).  

3.4.2.3. Quasi-newton methods. These methods are similar to the Newton 

method described in 5.1.1.1, but use first derivatives to approximate the gradient, and are 

advantageous over the solution algorithm in the ILM because they do not use a least 

squares update to the parameters as in (58), which is problematic when using 

measurements with different numbers of constraints since the matrices in (52) would not 

be invertible. A general quasi-Newton method formulates the minimization of g(a) so 

that starting with some initial value, a0, the new value of a, ak, can be calculated based on 

the previous value, ak-1,  
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where t is the step size and Hk-1 is the Hessian at step k-1. One of several ways to update 

the Hessian, Hk, is to use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [47]. 

The inverse update equation based on BFGS is 

 

 
1

1 1
1

T T

T T Tk k

sy ys ss
H I H I

y ys ys s
− −

−

−
   

= − − +   
   

  (61) 

 

where 1k ks a a −−=  and ( ) ( )1k ky g a g a−= ∇ −∇ . This algorithm can be applied with g(a) 

as the previously defined objective function,  
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 ( )2 1 1

1
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=

−= +Σ Σ∑p s s s p pɶ ɶ ɶ   (62) 

with the constraints described in (49).  

 

 3.5. SIMULATION AND EXPERIMENTAL RESULTS 

Below are selected results for a measurement event in spherical coordinates and 

simulations integrating a ball bar with laser tracker measurements.  

3.5.1. Spherical Coordinate Experiments. The Flow machine, described 

previously, was measured at 262 locations using two tool lengths and a single laser 

tracker location. Of those measurement, 50 were reserved for validation purposes and 212 

were used to fit an Axis Perturbation model of the machine geometric errors with the 

measurements described either in Cartesian coordinates with static variances, or with 

Spherical coordinates with variances depending on the distance from the tracker, R. Table 

3.1 shows the mean and maximum residual volumetric error of each model over the 

validation set. The residual error in the R direction is also calculated. Using spherical 

coordinates improves the model by a small margin. The mean residual error is reduced by 

0.28 thousandths of an inch (0.00028”) and the maximum is reduced by 0.13 thousandths. 

The residual in the R direction is significantly smaller when spherical coordinates are 

used, so the more accurate component of the measurement is being used more effectively. 

However, the Flow machine is only 240” long, so the benefit of using spherical 

coordinates is not as obvious since the laser tracker is reasonably accurate in this range 

(see accuracy/repeatability data for the API T3 in paper I). This improvement could be 

more significant on longer machines such as the Master Mill and the Spar Mill presented 

in Section 2. While very long machines still require multiple laser tracker locations, using 

distance-based accuracy information is expected to make the modeling process less 

sensitive to inevitable noisy measurements.  
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Table 3.1: Modeling results for spherical and Cartesian coordinates.  
Measurement type Mean error, thou Max error, thou Mean R resid., thou 

Cartesian 1.70 4.00 1.23 

Spherical  1.42 3.87 -0.02 

 

 

 

3.5.2. Ball Bar Integration. The AP model from 5/2015 Flow data and the Flow 

machine configuration were used to test the integration of the ball bar. Laser tracker (LT) 

data was simulated for 300 quasi-random measurement locations and two tool lengths. 

Ball bar (BB) data was generated for a single location with 300 quasi-randomly selected 

machine orientations and locations on a sphere with a 10 in radius. Two angles, α1 and α2, 

are used to describe the position of the end of the ball bar, and therefore the tool tip. The 

tool tip position depends on the angles by 
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The tool orientation is specified by randomly selecting two of the three 

components of the tool unit vector <i, j, k>. Since random combinations do not 

necessarily make a unit vector, the vector is checked to ensure that for some value of the 

third component, the magnitude is 1. If not, the i and k components are re-selected until 

the criterion is met. Once the unit vector components i and k and the angles α1 and α2 are 

selected, the axis commands are 
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The radial measurements can be calculated from the true model parameters, pa,  
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where ,i simqɶ and ,i simrɶ  are randomly generated to be normally distributed with zero mean 

and variance as listed in Table 1. Similarly, the LT measurements at a position qi are 

generated as 
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where ,i simqɶ and ,i simxɶ  are randomly generated to be normally distributed with zero mean 

and variance as listed in Table 3.4. 

 A validation set of 3000 quasi-random points with no measurement noise was 

generated to evaluate all models. Each validation point, xv,i, is generated from the true 

model parameters, pa,  
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x F q p  (67) 

 
The problem is initialized with all parameter values at zero and all deviation 

between measured and modeled position assigned to measurement noise so that the 

constraints are satisfied. The solver is set to automatically scale the problem based on the 

initial objective and constraint values since the problem as posed is poorly scaled. A sixth 
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order axis perturbation model is fit to the simulated LT measurement data, and the model 

is evaluated over 3000 quasi-random simulated validation points with no measurement 

noise to calculate the residual volumetric error (VE). Different combinations of laser 

tracker and ball bar measurements and different levels for the measurement variances are 

tested to determine the impact of integrating a more accurate instrument on the residual 

volumetric error. The results are shown in Table 3.3. 

 

 

 

Table 3.2: Variance settings for simulated measurements (and algorithm). 
Variance Setting 

σx
2

, σy
2

, σz
2

 (linear axis positioning) 2.5x10-7  

σc
2, σb

2 (rotary axis positioning) 4.0x10-6  

σLT
2   (laser tracker measurements) 1.0x10-6 

σr
2 (ball bar measurements) 1.0x10-8 

 

 

 

Integration of ball bar measurements causes no significant change in the residual 

volumetric error with 300 or 100 LT measurements, with either one tool length or two 

(meaning either only position, or position and orientation data). However, when only 50 

LT measurements are used, an additional 30 ball bar measurements reduce the mean 

residual VE from 13.5 thousandths of an inch to 3.9 with one tool length, and from 6.7 to 

2.8 with two tool lengths. This demonstrates that the ball bar measurements can be 

successfully integrated into the model fitting process without negative effect. The ball 

bar, or a similar instrument could be of particular use where parts of the machine are not 

visible to the laser tracker, or where taking a large number of laser tracker measurements 

is not practical due to space or time constraints.  
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Table 3.3: Mean and maximum residual volumetric errors for models fit from indicated 
measurements. 

Laser 
tracker 

Ball Bar Variances and notes Mean 
(thou) 

Max 
(thou) 

300 0 Baseline 0.6 2.5 

300 30 Baseline 0.7 2.4 

100 0 Baseline 1.4 5.1 

100 30 Baseline 1.3 5.0 

100 0 1 tool length (baseline variances) 1.7 6.4 

100 30 1 tool length (baseline variances) 1.7 7.1 

50 0 1 tool length (baseline variances) 13.5 70.4 

50 30 1 tool length (baseline variances) 3.9 17.2 

50 0 Baseline 6.7 28.2 

50 30 Baseline 2.8 13.1 

 
 

 

 

3.6. CONCLUSIONS 

This section introduced a modeling and parameter selection methodology that 

accounts for the accuracy of individual measurement components, which mitigates the 

lower accuracy of laser trackers. Measurements are used in spherical coordinates so that 

the dependence of the accuracy on the distance from the instrument can be included in 

the modeling process. Spherical and Cartesian measurements are compared 

experimentally on the Flow machine and spherical measurements are found to have an 

advantage even on a machine only 240” in length. Larger benefits are expected on longer 

machines due to the distance dependence of the laser tracker accuracy. This methodology 

was then compared to the industry standard method of handling laser tracker inaccuracy-

multilateration. It is common to measure the same machine or part location from four 

different laser tracker locations and use only the distance measurement from each to 

solve for the three dimensional position. A proof was presented that the methodology 

presented here is equivalent under an assumption that the error variance on the azimuth 

and elevation is infinitely large and the error variance of the range measurement, R, 
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approaches zero. Since this is not practically true, the presented methodology better 

accounts for the real measurement errors and utilizes more available information, which 

will yield a more accurate model.  

This method was then extended to instruments in addition to the laser tracker. The 

ball bar was selected as an example and a description for its measurements was 

developed. Algorithms for parameter identification were examined to allow each 

measurement to have a variable number of constraint equations (i.e. for measurements to 

come from different instruments). Simulations were then performed demonstrating the 

integration of the ball bar with laser tracker measurements. The ball bar was found not to 

significantly impact model accuracy as evaluated over a validation set when a sufficient 

number of laser tracker measurements were used (>100 in this case), but when too few 

laser tracker measurements were used (50), the ball bar measurements were able to 

drastically improve the model accuracy. This could be a particular significance for 

difficult to measure machines that are either very long or have areas of their work volume 

with poor visibility to the laser tracker, allowing a more accurate or compact instrument 

to be used to supplement measurements in that area.  
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4. SUMMARY AND CONCLUSIONS 

This work presents a novel machine tool calibration methodology using a laser 

tracker to collect position and orientation of the tool tip, then examines models of the 

geometric errors and generates optimal compensation for a variety of machine tool 

controllers. Paper 1 presents the general methodology and compares two ways of 

modeling the machine tool geometric errors with the purpose of creating compensation 

that is implemented via look up tables on the machine tool controller. This compensation 

is then validated experimentally on a lab 5-axis machine tool. The table-based volumetric 

error compensation methodology is shown to be able to generate a model of the machine 

that accounts for the interaction between the different machine tool axes that significantly 

reduces the machine geometric errors.  

Section 2 takes this methodology and implements it on a wide variety of machines 

in different settings. Previous work was conducted only on a laboratory machine in a 

well-controlled environment, but this section presents six different machine tools, five of 

which were in a production environment. Two machines each were Boeing Commercial 

and Boeing Defense, and the fifth machine was a NASA production machine.  Each 

machine had its unique challenges, with some being very long (Boeing Commercial-Spar 

Mill), some having odd configurations (Boeing Defense), and some having errors not 

encountered in the lab setting such as temperature fluctuations (Boeing Commercial-

Master Mill) and skewing between multiple gantry axes (NASA Ingersoll). Despite this, 

table-based VEC was able to reduce errors on all of these machines with the exception of 

a single machine whose accuracy was already as good as typical VEC accuracies.  

Compensation was implemented on certain machines with a Siemens 840D, 

which allows a larger number of compensation look up tables. However, several of the 

machine tool controllers encountered had limitations to the number or combinations of 

look up tables that could be used. The method developed in Paper I assumes that all 

possible compensation tables can be implemented on the machine tool controller, and this 

is not the case. In Paper II, an artificial intelligence algorithm was proposed to solve the 

difficult combinatorial optimization problem of selecting an optimal subset of 

compensation tables from the set of possible tables. This method was compared to a 

simple heuristic in simulation and validated on a laboratory machine experimentally. The 
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artificial intelligence algorithm was able to produce a better performing solution than the 

heuristic in less time than a brute force solution.  

Section 3 addresses the accuracy of the instrument used to collect tool tip data for 

the construction of the models used in previous sections. Measurements are modeled in 

spherical rather than Cartesian coordinates and distance dependent variances are used in a 

Maximum Likelihood Estimator to identify model parameters. This method is shown to 

improve model accuracy even on smaller machines, and may have an even larger impact 

on longer machines were laser tracker accuracy particularly suffers. This method was 

also compared to multilateration, which is a standard practice of measuring the same tool 

tip location from at least four different laser tracker locations and identifying the three 

dimensional position from only the more accurate interferometer measurement provided 

by each of the laser trackers. This is demonstrated to be equivalent to the proposed 

method under an assumption that the error variance on the encoder measurements 

(azimuth and elevation) is infinitely large and the error variance of the interferometer 

measurement, R, approaches zero. Since this is not practically true, the presented 

methodology better accounts for the real measurement errors and utilizes more available 

information, which will yield a more accurate model. The model fitting method was also 

adapted to include more accurate instruments, although the studied instrument only 

improved the model over a validation set in simulation when an inadequate number of 

laser tracker measurements were used. However, including an additional instrument 

could be of more benefit when parts of a machine workspace have poor visibility to the 

laser tracker or are not possible to reach with the laser tracker’s active target mounted in 

the spindle. For example, the workspace very close to the table is difficult to measure 

particularly on small machines, and other machine may be very enclosed. In these cases a 

minimal number of laser tracker measurements combined with another instrument could 

allow a model to be made of errors in otherwise unmeasurable areas of the workspace.   

Overall, this work presents a fast method of machine tool calibration that requires 

no foreknowledge of errors and builds whole model of geometric errors with one set of 

measurements. This method is able to create optimal compensation for a variety of 

machine tool controllers and has been proven on a variety of machine tools, bringing 

volumetric error compensation to both old and new machines, regardless of controller 



 

 

105

capability or difficult to measure configurations. The proposed methodology benefits a 

wide variety of machine tools and can bring cost savings by causing less machine down 

time, producing better quality parts, and fewer rejected parts due to machine inaccuracy. 
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