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ABSTRACT 

The current business model for many industrial firms is to function as system 

integrators, depending on numerous outsourced components from outside component 

suppliers. This practice has resulted in tremendous cost savings; it makes system 

reliability analysis, however, more challenging due to the limited component information 

available to system designers. The component information is often proprietary to 

component suppliers. Motivated by the need of system reliability prediction with 

outsourced components, this work aims to explore feasible ways to accurately predict the 

system reliability during the system design stage. Four methods are proposed. The first 

method reconstructs component reliability functions using limited reliability data with 

respect to component loads, and the system reliability is then estimated statistically. The 

second method applies two-class support vector machines (SVM) to approximate limit-

state functions of outsourced components based on the categorical reliability dataset. 

With the integration of the obtained limit-state functions and those of in-house 

components, the joint probability density function of all the components is estimated, 

thereby leading to accurate system reliability prediction. The third method is an extension 

of the second one, and a one-class SVM is proposed to rebuild limit-state functions for 

outsourced components given only the failure dataset. The last method deals with the 

case where no reliability dataset is available. A partial safety factor method is developed, 

which enables component suppliers to provide sufficient information to system designers 

for accurate reliability analysis without revealing the proprietary design details. Both 

numerical examples and engineering applications demonstrate the accuracy and 

effectiveness of the proposed methods. 
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SECTION 

1. INTRODUCTION 

1.1 BACKGROUND 

The current business model for many industrial firms is to function as system 

integrators, depending on numerous outside component suppliers to support the product 

design and development. For example, numerous parts of vehicles are designed and 

manufactured outside except for engines and powertrains that the automaker wants to 

keep in-house. This practice has resulted in tremendous cost savings in product 

development [1, 2].  One downside of this practice, however, is a more difficult reliability 

analysis for new products or systems.  

System reliability is the ability that a system performs its intended function. It is 

often measured by the probability that the system can work properly without any failure. 

Since a system is composed of multiple components, its reliability depends on the 

reliability of each component and the dependency between components. Accurate system 

reliability prediction requires the joint probability density function (PDF) of all the 

component states, which may not be available without knowing the design details of all 

the components such as concrete structures, manufacturing processes, and material 

properties. It is therefore difficult or even impossible to obtain the joint PDF. In addition, 

different working conditions may also make it hard to re-evaluate the component 

reliability for the system designers. Generally, an existing component is designed for a 

given environment, such as a given distribution of a load. The component reliability is 

then assessed and is validated under the given environment by the component designers. 
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When the component is to be used in a new environment for a new product, the 

component reliability will change, making a new system reliability analysis necessary. 

In the past decades, many methods were developed to estimate system reliability. 

A very effective and widely-used method is the independence assumption approach [3], 

which assumes that all the component states are independent. It does not require system 

designers to know component design details, which are proprietary to component 

suppliers. Thus, it is particularly easy to use for systems with outsourced components. 

For example, for a serial system, the system reliability could be easily calculated by the 

product of all the component reliabilities. The major drawback of the independence 

assumption approach is the poor accuracy when component states are strongly dependent. 

To improve the accuracy, researchers proposed new methodologies to obtain narrower 

system reliability bounds [4-7], which require design details of all the components, 

making the methods not applicable for systems with outsourced components.  

On the other hand, traditional physics-based methods are good choices for 

reliability analysis with in-house components, such as the First Order Reliability Method 

(FORM) [8, 9], the Second Order Reliability Method (SORM) [10], the Saddlepoint 

Approximation method (SPA) [11], Stress-Strength Interference Theory (SSIT) [12], 

Monte Carlo Simulation (MCS) [13], and Matrix-Based System Reliability (MSR) 

method [14]. If the limit-state functions of all the components are known, it is possible to 

accurately estimate the system reliability composed of only in-house components. 

In addition to using physics models, the other way to create limit-state functions is 

through statistical learnings. With the dramatic improvements of computer capability, 

statistics-based methods become more and more popular in reliability analysis, such as 
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Support Vector Machines [15, 16], Neural Networks [17], Kriging surrogate [18, 19],  

and Logistic Regression [20]. Given sufficient training points these statistical methods 

could construct reliability models of the outsourced components with very high accuracy. 

However, methodologies for systems reliability analysis with both in-house and 

outsourced components are still limited. Motivated by the lack of effective reliability 

methods for this kind of issues, we developed methodologies as discussed in this 

dissertation. Although the proposed methods are for specific engineering applications, the 

outcomes of this research demonstrate that it is possible to accurately estimate system 

reliability with both in-house and outsourced components by automatically 

accommodating the component dependencies. 

 

1.2 RESEARCH OBJECTIVE 

The objective of this dissertation is to develop accurate and efficient reliability 

methodologies for systems with both in-house and outsourced components. To achieve 

this objective, four research tasks are performed.  

Research task 1 (RT1) focuses on system reliability prediction with unknown 

component design details. This research task is to investigate the feasibility of accurately 

predicting system reliability without component design details. This task creates a 

continuous reliability function with respect to the component load for each of the 

component in the system. The function construction is based on probabilistic data of 

component failure, and the data may be discrete or tabulated. Without knowing 

component design details, for each of the components, system designers construct a 

component limit-state function no matter how many failure modes a component may 
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have. The reconstructed component limit-state function can then predict the state of the 

component (either a working state or failure state). Therefore, the system reliability can 

be accurately predicted with all the available limit-state functions. This research task 

results in Paper 1 [21]. 

Research task 2 (RT2) concentrates on analyzing system reliability with both in-

house and outsourced components. In this task, system designers have access to the 

design details of in-house components; however, they could only obtain limited reliability 

data for outsourced components, which are given in the form of observations of design 

variables at certain state (either safe or failed). An integrated statistics- and physics-based 

method is developed. The method employs FORM directly for in-house components. For 

outsourced components whose reliability is estimated by a statistics-based method, a 

supervised learning strategy through two-class SVM is applied. Trained by the limited 

categorical reliability data, the SVM model approximates an optimal separating 

hyperplane, thereby producing a linear limit-state function that reveals the relationship 

between component states and design variables. With the limit-state functions of all the 

components in the system available, it is possible to predict the system reliability 

accurately. This research task produces Paper 2 [22].  

Research task 3 (RT3) develops a new method for system reliability analysis with 

both in-house and outsourced components. This task is the extension of RT2 in cases 

where only failure data are recorded. A one-class SVM with a bias constraint is 

developed to approximate the limit-state functions of outsourced components given only 

the training points in failure states. Different from the existing one-class SVM methods, 

there is a bias constraint in the SVM model because the constraint comes from the 



 

 

5

probability of failure estimated from the failure data. The one-class failure data is 

maximally separated from a hypersphere whose radius is determined by the known 

probability of failure. The limit-state function is then regressed and directly links the 

states of components with design variables. This makes it possible to obtain the joint 

probability density of all the component states of the system, resulting in a more accurate 

prediction of system reliability. This research task produces Papers 3 [23]. 

Research task 4 (RT4) focuses on developing a new system reliability method 

linking both component-level and system-level analyses. At the component level, the 

proposed method enables component suppliers to provide enough information to system 

designers without revealing their component design details. At the system level, the 

proposed method helps system designers produce a complete joint PDF of all the 

component states. A partial safety factors (PSFs) method is proposed. PSFs are specified 

by component suppliers for shared loads from the system with physics-based reliability 

approaches. Then system designers use the PSFs from component suppliers to reconstruct 

equivalent component limit-state functions and realize accurate system reliability 

prediction. This research task produces Paper 4 [24].  

The outcomes of above research tasks are expected to enable engineers to 

understand how component dependency affects the system reliability estimation and how 

component limit-state functions are reconstructed at system analysis level with limited 

reliability data even if the component design details are unknown. This research will 

benefit new product development in which reliability is a critical design criterion, 

especially for product with outsourced components. With the accurate system reliability 
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prediction during the design stage, this research will help system designers in decision-

making and shorten the design cycle, thereby resulting in cost savings. 

 

1.3 ORGANIZATION OF DISSERTATION 

As discussed in Section 1.2, the four research tasks in this study have produced 

four papers, which constitute this dissertation. The relationship between these papers are 

shown in Figure 1.1. 

 

  Figure 1.1 Relationship between papers in the dissertation  

 

 

  RT1  Paper1 
System reliability with 

unknown component details 

RT2  Paper2 
Integration of statistics- and 

physics-based methods 

RT3  Paper3 
One-class SVM for System 

reliability prediction 

RT4  Paper4 
A partial safety factor method 

for system reliability prediction 

System 
reliability 
prediction 

Extension from 
two-class SVM 

to one-class 
SVM 

Extend to cases   
with no probabilistic 
or categorical data 

Extension from usable 
probabilistic data to 

categorical data  
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PAPER 

 
I. SYSTEM RELIABILITY PREDICTION WITH SHARED LOAD AND 

UNKNOWN COMPONENT DESIGN DETAILS 
 
 

Zhengwei Hu, Xiaoping Du 

Department of Mechanical and Aerospace Engineering 

Missouri University of Science and Technology 

 
ABSTRACT 

In many system designs, it is a challenging task for system designers to predict 

the system reliability due to limited information about component designs, which is often 

proprietary to component suppliers. This research addresses this issue by considering the 

following situation: all the components share the same system load, and system designers 

know component reliabilities with respect to the component load, but do not know other 

information, such as component limit-state functions. The strategy is to reconstruct the 

equivalent component limit-state functions during the system design stage such that they 

can accurately reproduce component reliabilities. Since the system load is a common 

factor shared by all the reconstructed component limit-state functions, the component 

dependence can be captured implicitly. As a result, more accurate system reliability can 

be produced compared with traditional methods. An engineering example demonstrates 

the feasibility of the new system reliability method. 
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1. INTRODUCTION 

In the early design stage of an engineering system, it is important to consider the 

reliability of the system under design. Reliability is usually quantified as the probability 

that a system performs its intended function without failures. When generating design 

concepts, designers not only identify potential solutions that can realize the overall 

function of the system, but also normally focus on those solutions that may lead to high 

reliability. After a number of design concepts are generated, best design concepts are 

selected for further developments in the later design stages. System reliability may be 

again a focus when design concepts are evaluated and compared. Design concepts with 

low system reliability are likely to be screened out. It is therefore desirable to accurately 

predict the system reliability during the system design stage. 

Predicting system reliability, however, is difficult because there are many 

uncertainties and challenges that system designers will face. Some of the challenges are 

shown below. 

 Systems, such as mechanical systems, power systems, and software systems, 

become more complicated. It is hard to know the explicit statistical relationships 

between the states of components in a system. This information is often essential 

for the accurate system reliability analysis.   

 Many components of a system are outsourced to outside suppliers. Although this 

common practice brings larger profits by greatly reducing production costs, it also 

poses a challenge since system designers may have no access to details of 

component design [1]. 
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 Without physical prototypes and facilities in the early design stage, it is difficult 

for system designers to obtain enough experimental information to predict system 

reliability [2]. 

In spite of the above challenges, it is possible to predict system reliability 

approximately with assumptions. For example, if the reliability of each component in the 

system is available to system designers, they could use the assumption that component 

sates are independent. Then for a given system configuration (series, parallel, or mix), the 

system reliability is a function of only component reliabilities and can be readily 

calculated [3, 4]. The assumption, however, may lead to large errors, especially for 

engineering systems, such as those in mechanical, civil, and aerospace engineering 

applications. The major reason is that component failures are actually dependent. The 

state of one component affects those of other components in the system.  

Even though components may be designed and manufactured independently by 

different companies, they become dependent once they operate with other components in 

the system. For example, all the components may share the same stochastic external load 

[5] and may be exposed to the same random operating environment. In this case, a failure 

of any component in the system may affect the states of others.  

When components are dependent, the accuracy of the system analysis relies on 

the complete joint probability distribution of all the component states, and only the 

marginal distributions of component states (or component reliabilities) are not sufficient. 

Knowing the joint probability distribution, however, requires that the system designers 

have all the detailed information about the component designs, such as the limit-state 

functions, concrete structures, and material properties of the components. But the 



 

 

10

information is usually unknown to the system designers and is proprietary to only 

component designers. To this end, approximations, especially the bounds of system 

reliability, are used [6, 7]. The common problem is that the difference between the upper 

and lower reliability bounds is often large. In many cases, the width of system reliability 

bounds is too large to make any reliable decisions. 

Feasibility studies on more accurate system reliability prediction have been 

recently reported [1, 8]. A physic-based system reliability method [1] allows system 

designers to obtain narrower system reliability bounds in early design stage by 

considering dependent components that share the same system load. This method treats 

unknown distribution parameters of component details as to-be-determined variables or 

design variables of an optimization model. All information available to system designers, 

such as component reliabilities, are treated as constraints. Optimization is then used to 

solve for such unknown variables while maximizing and minimizing the system 

reliability, thereby producing narrower system reliability bounds. The major contributor 

to the more accurate system reliability is the consideration of component dependence that 

is embedded in the system reliability analysis, which is part of the optimization model. It 

is demonstrated that the narrower system reliability bounds can better assist system 

designers to make decisions on design concept selection.  

The other feasibility study [8] indicates that it is possible to produce a single-

valued system reliability prediction, instead of reliability bounds, with more information 

supplied to system designers by component designers. Given components reliabilities at 

different load levels, system designers can construct physics-based component and 

system reliability models using the strength-stress interference theory. With this method, 
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it is flexible for component designers to generate their component reliability functions 

with respect to the component load. They could use statistics-based approaches based on 

field and testing data, and they could also use any physics-based approaches, such as the 

First Order Reliability Method (FORM), the Second Order Reliability Method (SORM), 

or the Saddlepoint Approximation Approach [9-14]. Since the component reliabilities are 

functions of component loads, which are also functions of the stochastic system load, the 

component reliability functions are statistically dependent. The system reliability model, 

which depends on the dependent component reliability functions, can therefore account 

for component dependence and thus produce an accurate system reliability prediction.  

This work, however, is only a proof-of-concept study, and there are many open questions 

that need to be answered.    

The objective of this research is to realize the concept developed in [8].  More 

specifically, the objective of this research is to allow system designers to accurately 

predict system reliability for systems whose components share a stochastic system load. 

The new developments in this research includes the follows:  

(1) Construct component reliability functions with respect to component loads 

This task creates a continuous reliability function with respect to the component 

load for each of the component in the system. The function construction is based on data 

of component reliabilities, and the data may be discrete or tabulated. 

(2) Construct composite component limit-state functions 

Without knowing component design details, for each of the components, system 

designers construct a component limit-state function no matter how many failure modes a 
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component may have. The reconstructed component limit-state function can accurately 

predict the state of the component (either a working state or failure state). 

(3) Refine the system analysis procedure 

Using the component reliability functions, system designers build the system 

reliability analysis model and obtain the joint probability density function needed for the 

system reliability analysis. Then the system reliability can be produced. 

The rest of this article is organized as follows: Basic concepts and methodologies 

used in this study are reviewed in Sec. 2. The proposed methodology is discussed in Sec. 

4 and is demonstrated with an example in Sec. 4. Conclusion and future work are given in 

Sec. 5. 

 

2. REVIEW OF SYSTEM RELIABILITY ANALYSIS 

System reliability is the probability that a system works properly without failures. 

The overall system may fail due to the failure of one or more components in the system. 

In this work, we focus on time-invariant reliability. 

 

2.1 SYSTEM RELIABILITY WITH INDEPENDENT COMPONENT STATES 

A series system is shown in Figure 1, in which the components in the system are 

denoted by 1 2,  ,  ..., nC C C . The system will fail if one of its components fails. If all the 

component failures are independently, the system reliability SR  is 

 
1

n

S i
i

R R


    (1) 

where  1, 2, ,iR i n    is the reliability of component i . 
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Figure 1 A series system 

 
 
 

Component reliability can be estimated by a statistics-based approach with testing 

or field data. It can also be estimated by a physics-based approach. If the latter approach 

is used, component reliability is given by  

  ( 0Pr )gR Y  X  (2) 

where X  is a vector of random input variables, and Y is the state variable. If 0Y  , the 

component functions; otherwise, the component fails.  

In this work, we focus on mechanical applications where series systems are 

usually involved. 

 

2.2 SYSTEM RELIABILITY BOUNDS 

Eq. (1) is easy to use, but may produce a large error due to the independent 

component assumption and may be too conservative. The actual system reliability is 

bounded as shown [4] 

 
1

min{ },  1,...,
n

i S i
i

R R R i n

      (3) 

If a mechanical system consists of 20 components with identical component 

reliabilities 0.999R  , Eq. (3) gives the bounds of 0.9802 0.999SR  . The bounds 
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may be too wide to help system designers to compare design concepts for concept 

selection. 

 

2.3 SYSTEM RELIABILITY WITH COMPONENTS SHARING THE SAME 
SYSTEM LOAD 

To improve system reliability analysis, we performed a preliminary study for 

systems whose components share the same stochastic system load L [8]. The system 

designers have good knowledge about L  and therefore know the cumulative distribution 

function (CDF) of L . L  is distributed through components, and the component load iL  

( 1, 2, ,i n  ) of component i is a function of L . Such a function is assumed to be 

 i iL Lw  (4) 

where iw  indicates the fraction of the load that the component shares. iw  can be 

determined from an system level analysis, such as a force analysis.  

System designers request component designers to provide component reliability 

functions at different component load levels, specified by variable l . The component 

designers may conduct experiments or use a physics-based approach to calculate 

component reliability iR  by varying the values of l . Then the component reliability 

functions ( )iR l  are available to system designers.  

System designers then assume that the component state could be predicted by the 

following component limit-state function: 

 ( )i ii i i iig L Y S L w LS      (5) 

where iS  is the general resistance of the component.  
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The component limit-state function should reproduce the same component 

reliability; namely, 

  ( ) Pr ( ) 0i ii iR L g L   (6) 

The probability of system failure is then given by 

    1 1 2 2
1

Pr Pr
n

f s n n i i
i

p S L S L S L S w L


           (7) 

The system reliability is then available and is given by 

 1S f sR p   (8) 

It is obvious that component failure events i iS Lw  are dependent because of the 

common random variable L . The component dependence is therefore considered 

automatically. The reliability function ( )iR l  is directly related to the CDF of iS , because 

the CDF of iS  is 1 ( )iR l  [8]. If iS  and L  are independent, system designers know the 

joint distribution of all the random variables in Eq. (7), thus they can use Eq. (7) to find 

the system reliability.  

 

3. SYSTEM RELIABILITY ANALYSIS WITH SHARED LOAD AND 
UNKNOWN COMPONENT DETAILS 

The objective of this research is to realize the concept proposed in the feasibility 

study in [8], which has been reviewed in Sec. 2.3. We now discuss how the concept could 

be realized with more detailed models and procedures.  

We are concerned with systems whose components are provided by outside 

companies. The system may also have in-house components designed and manufactured 

by the firm of system designers. This is a common practice, especially in automotive and 
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defense industries where most of components of a system come from multiple-layer 

suppliers. The proposed method intends to be used by system designers whose task is to 

predict the system reliability in the system design stage. The method is applicable for 

systems with the following features: 

 The system load is distributed through all the components. The components are 

subjected to component loads that are fractions of the system load.  

 System designers know the relationship between the system load and component 

loads through statics, dynamics, stress, or other analyses. 

 Component and system failures are primarily due to excessive general loading, 

such as forces, stresses, deformation, and demand. Component failures can 

therefore be predicted by limit-state functions defined by the design margin, or 

the difference between a general resistance (yield strength, allowable deformation, 

capacity, etc.) and a general load (forces, stress, strain, demand, etc.).  

 

3.1 PROCEDURE OF SYSTEM RELIABILITY PREDICTION 

To make system reliability prediction possible, system designers ask component 

suppliers to provide component reliabilities with respect to their component loads. Since 

the information of component reliabilities may be in different forms, for system 

designers, the first step is to formulate component reliability functions ( )iR l , 

2 ,1,i n  , with respect to the component load l . The second step is to construct 

composite component limit-state functions ( )ig   based on ( )iR l . A composite component 

limit-state function ensures that it can reproduce accurate component reliability 

regardless of the number of failure modes the component may have. A composite 
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component limit-state function does not require any component design details, and thus it 

prevents the proprietary information of the component supplier. Since the common 

system load appears in all composite component limit-state functions, the dependence 

between component states is preserved. This helps improve the accuracy of system 

reliability prediction. The last step is to perform system reliability analysis. The flowchart 

indicating the procedure is given in Figure 2. 

 
 

 

Figure 2 Flowchart of the proposed method 
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3.2 FORMULATE COMPONENT RELIABILITY FUNCTIONS 

Component designers may use different methods to estimate component 

reliabilities ( )iR l , such as using testing, field data, simulations, or a physics-based 

method. This may result in different forms of information about ( )iR l , such as limited 

reliability data, a scatter plot, or a mathematical model. If no mathematical model exits, 

system designers need to fit a model from these limited data. As will be discussed in Sec. 

3.3, the probability of failure, ( ) 1 ( )f i ip l R l  , is actually the CDF of the general 

component resistance. Then, the task becomes to fit a CDF model. Many methods could 

be used for the CDF fitting such as metamodeling methods, the Saddlepoint 

approximation (SPA), and the Weibull analysis.  

Now we discuss how system designers could fit a CDF model given the limited 

reliability data. For a general component with probability of failure ( )fp l , the available 

data are given as  a set of  , ( )j f jl p l , 1, 2, ,j m  . Let the continuous mathematical 

model be  

 ( )fp H l  (9) 

Next, we discuss two specific approaches to obtain ( )H l  from  , ( )j f jl p l , 

1, 2, ,j m  . 

3.2.1 Kriging Method. The Kriging method has been widely used in engineering 

applications, including reliability analysis [15-17]. The Kringing method considers the 

mathematical model in Eq. (9) as a realization of a Gaussian process given by [18] 

 ( ) ( ) ( ) + ( )fp l H l l Z l                         (10) 
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where ( )l  is a regression function, and   is the regression coefficient. ( )Z   is a 

stationary Gaussian process with zero mean. The covariance between il  and jl  is  

                        2( ), ( ) ( , )i j Z i jCov Z l Z l K l l    , 1, 2, , ; 1, 2, ,i m j m     (11) 

where 2
Z  is the variance of the Gaussian process, and ( , )K    is the correlation function 

and is commonly defined by the following Gaussian correlation [18, 19] 

 2( , ) exp ( )i j i jK l l l l      (12) 

where   is a parameter that indicates the correlation between the points. The Best Linear 

Unbiased Predictor (BLUP) [18] of ( )H l  gives to a random prediction 

                      2ˆˆ ( ) ~ ( ), ( )f H Hp H l N l l     (13) 

where the prediction ( )H   and the associated variance are computed by  

                       -1ˆ ˆ( ) ( ) + ( ) ( )T
H l l l    fr K p F   (14) 

  

1

-12 2 -1 -1

-1

1 [ ( )] ( )

ˆ( ) ( ) ( )

( ) ( )

T

TT T
H Z

T

l l

l l l

l l

  



 
 
 

     
 
    

r K r

F K r F K F

F K r

 (15) 

in which K  is the correlation matrix defined by ( , )i jK l l   K . fp  is a column vector of 

responses of current sample points. ( )r  is the vector of cross-correlations between the m  

samples and the prediction point,  1( ) ( , ), , ( , )
T

ml R l l R l l   r . F  is a column vector with 

rows ( )il , 1,2, ,i m  . 2ˆ
Z  is the Maximum Likelihood Estimation of the process 

variance 

 2 11 ˆ ˆˆ ( ) ( )T
Z

m
    f fp F K p F  (16) 
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and ̂  is the generalized least square estimate of   

 
11 1ˆ T T

     fF K F F K p   (17) 

Substituting Eqs. (14) and (15) into Eq. (13), system designers obtain the 

reliability mathematical model in the form of ˆ ( )fp H l  for ( )fp H l  in Eq. (9). 

3.2.2 Weibull Method. A Weibull distribution can fit different data and 

distributions. Due to this advantage, system designers may use a Weibull model to fit the 

component reliability data. A three-parameter Weibull distribution is given by 

 ( ) 1 expf

l
p H l






  
        

 (18) 

in which , 0, 0l        . The location parameter  defines the location of the 

distribution;   is the shape parameter, and   is the scale parameter. 
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Figure 3 Component reliability data 
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Figure 4 The complete fp  model 

 
 
 

For a given set of  , ( )j f jl p l , 1, 2, ,j m  , system designers could use the 

maximum likelihood method [20] to find the three distribution parameters. They could 

also use a curve fitting method [21] to find the three distribution parameters.  

Other regression analysis methods could also be used for the CDF fitting. One 

example showing the CDF fitting follows. Suppose the probabilities of component failure 

fp  at seven load levels are given and are shown in Figure 3. A mathematical model of 

fp  with respect to the component load l  can be then fitted as shown in Figure 4. 

 

3.3 RECONSTRUCT COMPONENT LIMIT-STATE FUNCTIONS 

The next task of system designers is to reconstruct component limit-state 

functions, which should meet the following requirements: 
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 Do not require component design details 

 Maintain dependence between component states 

 Be functions of the system load and easy to evaluate 

 Accommodate multiple component failure modes 

Based on these requirements, for the i-th component, system designers reconstruct 

the limit-state function in the form of 

 i iY S L   (19)  

where iS  is the general component resistance, and L  is the system load. Note that no 

matter how many failure modes the component may have, there is only one reconstructed 

component limit-state function as shown in Eq. (19).  

Although the reconstructed component limit-state function is linear with respect 

to L , it can accommodate the situation where the actual component limit-state function is 

nonlinear with respect  to L . One example follows. Let the yield strength of the i-th 

component be yS . If the maximum stress is ( )h L , where ( )h   is a nonlinear function, also 

depending on other component parameters, such as dimensions, and then component 

designers build their limit-state function as 

 ( )yiY S h L    (20) 

Theoretically, they can solve for L  by letting ( ) 0yS h L   at the limit state and obtain  

 1( )yL h S  (21) 

where 1( )h   is the inverse function of ( )h  . 

Then the limit-state function is modified as 

 1( )i yY h S L   (22) 
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Let 1( )i yS h S , which is regarded as the general component resistance. Then Eq. (22) is 

exactly the one reconstructed by system designers in Eq. (19). This indicates that the 

reconstruct component limit-state functions do cover actual component limit-state 

functions that are nonlinear with respect to the system load. 

Before explaining the procedure of reconstructing the composite limit-state 

function, we first prove that the probability of component failure ( )f ip l  is the CDF of the 

general component resistance iS . According to Eq. (19), for a constant l ,  

 ( ) Pr( )f i ip l S l   (23) 

The CDF of iS  is defined by 

 ( ) Pr( )
iS iF s S s   (24) 

Replacing l  with s  in Eq. (23), we have ( ) Pr( )f i ip s S s  . As a result,  

 ( ) ( ) 1 ( )
iS f i iF s p s R s    (25) 

Since system designers know the component reliability function ( )iR l  or 

probability of component failure ( )f ip l , they also know the CDF of the general 

component resistance iS .  

The composite component limit-state function is not only a simple (linear) 

function, it also safeguards the proprietary information of component designers. Next, let 

us look at the component design of the example that will be presented in Sec.4. 

In the example, Component 2 has two failure modes due to excessive normal 

stress and excessive shear stress. The component designer decide to use a physics-based 
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approach to evaluate the component reliability. The limit-state function of the two failure 

modes are given by 

 
 1

21
2

y

x

h H L
Y S

W


   (26) 

 22

1

2

L
Y

hb
   (27) 

in which / 2L  is the load shared by the component. h , 1H , xW , and b  are random 

parameters related to component details. The two limit-state functions indicated that 

component details are required for the component reliability analysis. The details include 

material properties, component structure, and component dimensions. 

The two limit-state functions for the two failure modes can be rewritten as  

 21 21

1

2 x yW S
Y L S L

h H
    


 (28) 

 22 222Y hb L S L      (29) 

in which 21

1

2 x yW S
S

h H



 and 22 2S hb . Then, the probability of component failure is 

       2 21 22 21 22 2Pr Pr min , Prfp S L S L S S L S L        (30) 

where  2 21 22min ,S S S  is the general component resistance in Eq. (19). Note that, the 

details such as h , 1H , xW , and b  in Eqs. (26) through (29) are only known to 

component designers who could find the component probabilities of failure at different 

load levels of load ( 1,2,..., )il i n    by testing or using a physics-based reliability 

approach. Then the results could be provided to the system designers in the form of 

 2 ( ),f i ip l l . As discussed in Eqs. (24) and (25), the probability of component failure 2fp  
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is exactly the CDF of the general component resistance 2S . Thus, the distribution of 2S  is 

known to system designers, and with this distribution, they no longer need any design 

details. No proprietary information is therefore required.  Eq. (19) also indicates that the 

system load L  appears in all the reconstructed component limit-state functions, and the 

dependence between component states is automatically maintained. Meanwhile, the 

composite limit-state function takes into account the multiple component failure modes, 

and it has a simple expression to evaluate. Thus, the obtained composite limit-state 

functions satisfy all the requirements mentioned above. 

 

3.4 SYSTEM RELIABILITY ANALYSIS 

We now discuss how system designers use the reconstructed composite 

component limit-state functions in Eq. (19) to predict system reliability. The probability 

of system failure is given by 

  
1

Pr 0
n

f s ii
i

p Y S L


     (31) 

The prerequisite for calculating f sp  is to find the joint probability distribution of 

 ( 1, 2, ),iS ni    and L .  We now discuss how to obtain such a joint probability 

distribution. 

Denote the 1n   input random variables by 1 2( , , , , )nS S S L Z  and all the 

output variables by 1 2, ,( ), nYY Y Y . As discussed in Sec. 3.3, the general component 

resistances  ( 1, 2, ),iS ni    are determined by component material properties, concrete 

component structures, geometric dimensions, and other component parameters. Since all 



 

 

26

the components are independently designed, manufactured, and tested by different 

suppliers, their general resistances are likely statistically independent. The system load L  

is also independent from the general component resistances. Thus, all the components in 

Z  are independent. 

Denote the CDF of iS  and L  by ( )
iS iF s , and ( )LF l , respectively. The joint CDF 

of Z  is then given by 

 
1

( )( ) ()
iL

n

i
S iF F F sl



 Z z  (32) 

where 1 2( , , , , )ns s s l z . Since system designers know CDFs of iS  and L , it is ready 

for them to predict the probability of system failure. Denote the joint Probability Density 

Function (PDF) of Z  by ( )fZ z . Then the probability of system failure is computed by 

 ( )f sp f d


  Z z z  (33) 

where   is the system failure region defined by 

   , , 2| ,1 ,iS L i n    Z  (34) 

where f sp  can be calculated by an numerical integration or Monte Carlo Simulation. 

Next, we demonstrate this with two special cases. 

In the first case, the components ( 1, 2, , )i i nS     of 1 2( , , , , )nS S S L Z  follow 

Weibull distributions, while L  follows a distribution with PDF ( )Lf l . Note that 

iiY S L  , thus 1 2, , , nYY Y  are dependent. Since the distribution parameters of Y  are 

unknown, it is unable to directly find f sp  using Eq. (31). However, as we know that 

1 2, , , nS S S , and L  are independent, the joint PDF of Z  could be calculated by  
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n

i

f f f
s s

s s l ls





      
             

  Z Zz  (35) 

Then, according to Eq. (33), by integrating the joint PDF ( )fZ z  in Eq. (35) in the failure 

region   defined in Eq. (34), system designers can obtain the probability of system 

failure.  

In case two, the components of 1 2( , , , , )nS S S L Z  are normally distributed. 

From Eq. (31), the distribution of the reconstructed component limit-state function is 

2~ ( , )
i iY YiY N    with 

i iY S L    , and 2 2

i iY S L    , in which L  and L  are the 

mean and standard deviation of L . All the reconstructed limit-state functions 

1 2, ,( ), nYY Y Y  then follow a multivariate normal distribution determined by the 

following mean vector and covariance matrix. 

 
1 2

( , , , )
nS L S L S L             (36) 
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   



  (37) 

in which   2cov ,i j LY Y  .  For this special case, since the distribution parameters of Y  

could be easily derived, it is more convenient to find f sp  using the PDF of Y , which is 

given by  

      
T 11 1

exp
2(2 )n

f


 
    

 
Y y y μ Σ y μ

Σ
 (38) 

Then f sp  is easily obtained by integrating Eq. (38) in the failure region  | Y Y 0 .  



 

 

28

4. EXAMPLE 

In this section, an engineering example is used to show the procedure of the 

proposed method and demonstrate its feasibility and accuracy.  

 
 
 

 

Figure 5 Lifting system 

 
 
 

 

Figure 6 Cross-section of the spreader beam 
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A lifting system, as shown in Figures 5 and 6, consists of two components from 

different suppliers: one cable (Component 1) from Company 1, and one spreader beam 

(Component 2) from Company 2. 

Company 1 designs the cable with a diameter d  and an allowable tensile stress 

1aS  as shown in Table 1. The designers of Component 1 also evaluates the reliability of 

the cable with respect to different component load levels. They could obtain the 

component reliability using either a physic-based reliability method or by testing. If a 

physic-based reliability method is used, the limit-state function is given by 

 1
11 1

2sin
a

L
Y S


   (39) 

in which 1L  is the component load. Component designers calculate the probabilities of 

component failure 1( )fp l  by replacing 1L  with different load levels, denoted by 1l . Eq. 

(39) is then given by 

 1
1 1 11 1( ) Pr 0

2sin
f a

l
p l Y S



 
    

 
 (40) 

Note that 1l  is a deterministic variable in the component reliability analysis. 

 
 
 

Table 1 Detailed information of Component 1 

Variable Mean 
Standard 
deviation 

Distribution 

(in)d   0.96  31 10  Normal 

1 (psi)aS    328 10  32 10  Normal 
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Component designers then provide the results to system designers, and the results 

are given in Table 2. The reliability results may also be generated by testing at the same 

load levels.  

 
 
 

Table 2 Reliability data of Component 1 

No. 1fp  l1 (lb) 

1 0 11450 

2 64 10  12450 

3 41.527 10  13450 

4 0.0022 14450 

5 0.0193 15450 

6 0.0976 16450 

7 0.3004 17450 

8 0.5982 18450 

9 0.8460 19450 

10 0.9635 20450 

11 0.9949 21450 

12 0.9996 22450 

13 1.0000 23450 

 
 
 

At Company 2, the designers decide to use a W12 40  beam, as shown in Figure 

6. They know the allowable normal and shear stresses of the beam, denoted by 2aS  and 

2a , respectively. The design details are shown in Table 3. There are two failure modes 

caused by excessive normal and excessive shear stresses. The associated limit-state 

functions are then given by 
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 2 1

21 21
2

a

x

L h H
Y S

W


   (41) 

 2
22 2

2
a

L
Y

hb
   (42) 

The component designers perform reliability analysis and supply their results in 

Table 4 to system designers. 

 
 
 

Table 3 Detailed information of Component 2 

Variable Mean 
Standard 
deviation 

Distribution 

(in)b  0.2  31 10  Normal 

3(in )xW   51.9  1.5  Normal 

21 (psi)aS   330 10  32 10  Normal 

2 (psi)a   36 10  31 10  Normal 

(in)h  11.94  -- -- 

(in)W    8.005  -- -- 

1 (ft)H   2.5  -- -- 

2 (ft)H   15  -- -- 

3 (ft)H   2.5  -- -- 

4 (ft)H   5  -- -- 

 
 
 

Note that neither Component 1 designers nor Component 2 designers need to 

know the system load L . Only component loads are needed at the component design 
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level. The component load values are treated as deterministic, and this makes component 

reliability analysis easier.  

 
 
 

Table 4 Reliability data of Component 2 

No. 2fp  l2 (lb) 

1 61.667 10  6000 

2 64 10  7000 

3 51.033 10  8000 

4 52.100 10  9000 

5 54.933 10  10000 

6 41.127 10  11000 

7 42.430 10  12000 

8 45.633 10  13000 

9 0.0020 14000 

10 0.0123 15000 

11 0.0675 16000 

12 0.2353 17000 

13 0.5191 18000 

14 0.7909 19000 

15 0.9405 20000 

16 0.9893 21000 

17 0.9988 22000 

18 0.9999 23000 

19 1.0000 24000 

 
 
 

Now let us discuss how system designers use component reliability functions to 

predict the system reliability. To make the numerical analysis robust, system designers 

may add more data points to the probabilities of component failure. For example, for 



 

 

33

Component 1, the data from company 1 show that when 1 11450 lbl   , 1 0fp  . If the 

component load is less than 11450 lb, 1fp  will therefore be 0. System designers then add 

two more points (9450,0)  and (10450,0)  where the first element denotes the load, and 

the second element denotes the probability of failure. When the load is greater than 

23450 lb, 1fp  will be 1. System designers also add two other data points (24450,1)  and 

(25450,1) . For the same reason, they also add one data point (25000,1)  for Component 

2. Adding more data points makes the CDF fitting more robust. 

All the information that the system designers know is shown in Table 5, including 

the limited component reliability data provided by component 1 and 2 designers, added 

data points, and the distribution of the system load. 

 
 
 

Table 5 Information available to system designers 

Known information Value 

Reliability data of Component 1 Table 2 and added points 

Reliability data of Component 2 Table 4 and added points 

Distribution of system load L   24 31.2 10 , 1.2 10 lbN     

 
 
 

To predict the system reliability, system designers first fit the CDFs of component 

resistances with the Kriging method. The results are shown in Figures 7 and 8. Then they 

reconstruct two composite component limit-state functions as  
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 1 1Y S L   (43) 

 2 2Y S L   (44) 
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  Figure 7 Fitted probability of failure for Component 1  
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Figure 8 Fitted probability of failure for Component 2 
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Finally, the probability of system failure is evaluated by Eq. (45) using MCS. 

Other physics-based reliability methods, such as FORM or SAP, can also be used.  

  1 2Pr 0 0f sp Y Y    (45) 

The results of the probabilities of failure of Component 1 ( 1fp ), Component 2 

( 2fp ) and system ( f sp ) generated by system designers are shown in Table 6. 

 
 

Table 6 Results of system reliability prediction 

 Proposed Method True value Error (%) 

1fp  41.603 10  41.612 10  0.56  

2fp  45.348 10  45.28 10  1.29  

f sp  46.9767 10  46.862 10  0.8  

 
 
 

To evaluate the accuracy of the proposed method, we use MCS to find the true 

probability of system failure as if everything was known at the system analysis level.  

The complete information includes the three original limit-state functions in Eqs. (39), 

(41) and (42); and the distributions of all the design variables and the system load. The 

true result is shown as “True value” in Table 6.  The results indicate that the proposed 

method leads to an accurate probability of system failure, and the error is only 0.8%. 

 

5. CONCLUSIONS 

Accurately predicting system reliability in the design stage is a challenging task, 

and one of the major challenges is to incorporate statistical dependence between 
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components in the system reliability analysis. Previous concept-proof studies have 

demonstrated the feasibility of improving the accuracy of system reliability prediction by 

considering component dependence through a shared system load, and this work develops 

a methodology to realize the concept. 

 The proposed work is intended to be used by system designers and is applicable 

to series mechanical systems with components that share a stochastic system load. The 

components may be designed and manufactured by independent outside suppliers. The 

detailed information about component design is not available to system designers. As a 

result, the statistical component dependence is unknown to system designers even though 

they have access to component reliabilities.  

The requirement of the present method is the component reliability function with 

respect to the component load. System designers therefore need to request information 

about component reliability with respect to the component load and then use the 

information to generate the component reliability function. After this, the proposed 

method helps system designers construct composite component limit-state functions that 

can not only reproduce the same component reliabilities but also incorporate component 

dependence automatically. As a result, system designers can accurately predict system 

reliability without knowing proprietary information about component design. 

The present method is limited to systems with components whose failures are 

caused by excessive loads (stresses, deformation, etc.). It is also limited to applications 

where only one system load is applied.  The method could be extended to multiple system 

loads in the future work. Other future research directions include the application to 
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parallel systems and mix systems, accommodation of time-dependent failures, and 

consideration of non-strength failure modes. 
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ABSTRACT 

Component reliability can be estimated by either statistics-based methods with 

data or physics-based methods with models. Both types of methods are usually 

independently applied, making it difficult to estimate the joint probability density of 

component states, which is a necessity for an accurate system reliability prediction. The 

objective of this study is to investigate the feasibility of integrating statistics- and 

physics-based methods for system reliability analysis. The proposed method employs the 

first-order reliability method directly for a component whose reliability is estimated by a 

physics-based method. For a component whose reliability is estimated by a statistics-

based method, the proposed method applies a supervised learning strategy through 

Support Vector Machines to infer a linear limit-state function that reveals the relationship 

between component states and basic random variables. With the integration of statistics- 

and physics-based methods, the limit-state functions of all the components in the system 

will then be available. As a result, it is possible to predict the system reliability accurately 

with all the limit-state functions obtained from both physics- and statistics-based 

reliability methods. 
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1. INTRODUCTION 

System reliability can be numerically measured by the probability that the system 

performs its intended function without failures. As the system state (safe or failed) is 

determined by the states of its components and it is hard to predict the system reliability 

directly, the system reliability is usually estimated based on component states. The 

accurate system reliability prediction requires the joint probability density of component 

states [1].  

A physical component itself can be considered as a system since it may have 

multiple failure modes, and the reliability of the physical component is determined by the 

states of all the component failures. For this reason, we also consider a failure mode as a 

component and a physical component as a system if it has multiple failure modes. 

Statistics-based methods [2] and physics-based methods [3] are two possible 

choices for component reliability analysis. A statistics-based method relies on field or 

testing data related to failures of a component. In this study, we consider only static 

reliability that does not change over time, which means the reliability estimation does not 

involve time. Physics-based reliability methods use a limit-state function, which is 

derived from physics principles, to predict the state of a component failure mode. The 

limit-state function is usually denoted by ( )y g X , where X  is a vector of basic random 

variables, and y  is the state variable. If 0y  , the state is failed. Then the probability of 

failure fp  with respect to this failure mode is given by 

    Pr state failed Pr ( ) 0f gp y     X  (1) 



 

 

41

Since there is rarely a closed-form solution to Eq. (1), many approximation 

methods have been developed, such as the First Order Reliability Method (FORM) [4], 

the Second Order Reliability Method (SORM) [5], the Saddlepoint Approximation 

method (SPA) [6], Monte Carlo Simulation (MCS) [7], and Matrix-based System 

Reliability (MSR) method [8]. Numerous applications of these methods have been 

reported for many systems, such as mechanical, automation, and communication systems.  

If the limit-state functions for all the failure modes of the components in the 

system are available, it is possible to estimate the system reliability for a given system 

configuration (series, parallel, mixed, and network). Next we take a series system as an 

example because it is commonly encountered in mechanical applications. If one failure 

mode occurs or one component fails, the entire system will fail. Suppose the system 

consists of multiple components and there are totally m  failure modes with each denoted 

by ( 1, 2 , )iP i m   , where iP  stands for failure event ( ) 0ig X , and ( )ig   is the limit-

state function for the i-th failure mode. Then the probability of system failure is 

computed by  

 
1 1

Pr Pr ) 0(
m m

f s
i i

i i iy gp P
 

        
   

X   (2) 

Eq. (2) requires the joint distribution of ( 1, 2 , )iy i m   , but it is difficult to 

obtain such a joint distribution, which requires all the details about ( )ig X  and the 

dependency between components. As a result, the independence assumption is widely 

used in practice [9], where all the component states are assumed to be independent. For 

the above series system, the system reliability is calculated by 

   
1

m

S i
i

R R


    (3) 
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Although this method is easy to use, its result may be far smaller than the true 

value. Without the complete joint probability distribution of component states, it is 

difficult to evaluate system reliability accurately, especially when component reliabilities 

are estimated by statistics- and physics-based methods independently. 

Recently, Hu and Du [10, 11] proposed a new method that reconstructs 

component limit-state functions with limited reliability information, making it possible to 

evaluate system reliability using MCS. The method is effective for cases where 

component reliability data are provided with respect to system loads. A proof-of-concept 

method has also recently been proposed for systems with both in-house and outsourced 

components [12], where the reliabilities of in-house components are estimated with 

physics-based methods and those of the outsourced ones with statistics-based methods. 

The study has shown the feasibility of integrating statistics- and physics-based reliability 

approaches for special problems. The objective of this work is to further investigate the 

method proposed in [12]. For the statistics-based methods, samples of basic variables 

(loading, material properties, dimensions, etc.) and the component states, either safe or 

failed, are available. We adopt Support Vector Machines (SVM) to build linear limit-state 

functions with respect to the basic variables since SVM is one of the best classification 

methods due to its high efficiency and accuracy. It has also been employed in many 

studies [13, 14]. Then, with the limit-state functions generated by SVM and those from 

physics-based methods, the system reliability could be accurately estimated. 

The scope and assumptions of the new method are as follows: Components fail 

due to excessive loads. For components whose reliability is estimated by a statistics-

based method, observations of basic random variables are available. Distributions of all 
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basic random variables are known. The study focuses on series systems although it can be 

extended to parallel systems. 

The proposed method has the following advantages: 1) Limit-state functions built 

from statistical data can be easily integrated with those derived from physics. This helps 

system designers understand the dependency between component failures and enables 

them to construct a complete joint distribution of component states. 2) The proposed 

method does not restrict the number of basic random variables (such as loads) shared by 

components. Hence it has a broader application scope than the previously proposed 

methods [10, 11] that can accommodate only one common system load.  

A brief review of SVM and First Order Reliability Method is given in Section 2. 

In Section 3, the SVM method for building limit-state functions and the procedure of 

system reliability analysis with the proposed method are introduced. Three examples are 

discussed in Section 4. Conclusions and future work are presented in Section 5. 

 

2. METHODOLOGY REVIEW 

In this work, we use FORM for physics-based component reliability analysis and 

use SVM to construct limit-state functions for failure modes (components) whose 

reliabilities are estimated by a statistics-based method. Both methods are reviewed below. 

 

2.1 SUPPORT VECTOR MACHINE (SVM) 

Given a set of training points 

 1 1 2 2( , ), ( , ), ( , ), , ( 1, 1)n
k ky y y R y        x x x x   (4) 
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in which ix  is a training point, and y  is the class label for ix . Note that 

1 2( , , , ) ( 1, 2, , )i i i inx x x i k  x    is an n-dimensional row vector. The value of y  

depends on whether the point belongs to the first class or the second one. In this work, if 

the point falls in the safe region, then 1y   ; otherwise, 1y   . The objective of SVM 

is to separate the training points into two classes with a hyperplane, as shown in Figure 1, 

which is given by 

 0Τ b Xω   (5) 

where ω  is a weight vector, and b  is the bias. The shaded points passed by these 

hyperplanes are called support vectors, and there are no points between these hyperplanes. 

 
 
 

 

Figure 1 Marginal classifiers along with support vectors 

 
 
 

The optimal separating hyperplane appears in the center and can be obtained by 

solving the following quadratic optimal problem:  
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1
min

2

s.t.

T

T
iiy b i k


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
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
ωω

ω

  (6) 

It can be converted into a dual problem according to the Lagrange principle and is given 

by 

 1 1, 1

1

1
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s.t. 0,

k k
T

i i j i j i
i i j
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i i i
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jL y y

y i k

  

 
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


   


          


 



x x



λ
  (7) 

where 1 2( , , , )k   λ  are the Lagrange multipliers. The weight vector is then 

calculated by 

 
1

k

i i i
i

y

 x    (8) 

According to the Karush-Kuhn-Tucker (KKT) conditions, only the support vectors (SV) 

lead to 0i  . This means that only the SVs appear in the optimal result. 

 

2.2 FIRST ORDER RELIABILITY METHOD (FORM) 

FORM is a physics-based reliability method, which linearizes the limit-state 

function ( )g X  at the Most Probable Point (MPP) using the first order Taylor expansion. 

Three steps are involved.  

Firstly, assume that all the random variables in X  (in the X-space) are 

independent. The original random variables 1 2( , , , )nX X XX   are transformed into 

standard normal random variables 1 2( , , , )nU U UU =   in the U-space. The 

transformation is given by [15] 
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  1 ( ) ( ) 1,2, , )ii i ix u T uF ni        (9) 

where ( )iF   and ( )   are the cumulative distribution functions (CDF) of iX  and a 

standard normal variable, respectively, and ( )T   denotes the transformation function.  

Secondly, at the MPP, ( ( ))g T U  can be approximated to a linear function as 

follows: 

 ( ) TG  U U   (10) 

Thirdly, with the new limit-state function ( )G U  obtained in Eq. (10), fp  is 

calculated by 

  Pr ( ) 0 ( )fp G     U  (11) 

 

3. SYSTEM RELIABILITY PREDICTION WITH COMBINED PHYSICS- AND 
STATISTICS-BASED METHODS 

The objective of this study is to integrate statistics- and physics-based reliability 

methods so that the joint probability density function (PDF) of all the component states is 

available. As discussed previously, the two different types of components (failure modes) 

are defined as follows: 

• Type I: Type I components have limit-state functions and their reliabilities can be 

estimated by physics-based reliability methods, such as FORM.  

• Type II: Type II components do not have limit-state functions, and their reliabilities 

are estimated by statistics-based methods. Limited reliability data collected at both 

working and failure states are provided. 
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The main idea of this work is to construct limit-state functions for type II 

components using testing data. Then with all the available limit-state functions, the 

system reliability could be estimated. 

 

3.1 CONSTRUCT A LIMIT-STATE FUNCTION FOR A TYPE II COMPONENT 

Assume that samples of a type II component are tested at a number of training 

points ix , 1, 2 ,,i m  . If the component is working at ix , the state is 1iy    . If the 

component fails at ix , the state is 1iy   . Then we have a dataset ( , )i iyx , 1, 2 ,,i m  . 

Through the X-to-U transformation we have a new dataset ( , )i iyu , 1, 2 ,,i m  , where 

 1( ( ))ij j ijF xu    (12) 

in which subscript j indicates the j-th component of the i-th sample point. 

With sufficient number of experiments, the probability of failure of the 

component fp  can also be estimated with a statistics-based reliability method. We hence 

assume that the component reliability is available.  

In this study, we use SVM to construct the limit-state function in the form of 

II ( ) ΤG  U U , in which   is known and is given by 1( )fp   . Now the task 

becomes to find a unit vector   that defines the hyperplane II ( )G U . This can be done 

with the following two steps. 

Step 1: Assume the hyperplane for dataset ( , )i iyu  obtained from SVM method is 

given by 

 ( ) TH  U Uω   (13) 
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in which 
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 uω   (14) 

where i  is given by  
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  (15) 

Step 2:  Replace   by 
 

ω

ω
, then the linear function of hyperplane II ( )G U  is 

rewritten as 

 II ( ) TG  U U
 

ω

ω
 (16) 

 

3.2 SYSTEM RELIABILITY ANALYSIS 

We now discuss the system reliability analysis using the proposed integrated 

statistics- and physics-based reliability method. Assume there are m  components (failure 

modes) and 2m  . The limit-state functions I
1( ),  i mg i      of 1m  type I 

components are available. For the other 2m 2 1( )m m m   type II components, their 

observations or training points ( , )yx  are available.  

For a type I component, the limit-state functions in the U-space can be written as 

 FORM I I I I
1( )  ( )  T

i i i i mg iG       X U U α  (17) 

For type II components, the limit-state functions constructed by SVM is  

  SVMII II II II II
1 1( ) ( ) =  

j

j

T T
j j j j j jg G m m m          X U U U

 





α  (18) 
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The system reliability is then given by 

 
1

1

I I

1 1

I( )  ( ) ( )Pr 0 0 di

m

s
j m

j

m

i

GR G 
   

 
    





 GU U v v    (19) 

where ( ) G  is the joint PDF of the states of the m  components, and   is the system 

safe region defined by 

   I
1 1

I
1

I| ( 0 0) )  , (i j i m j m mG mG              U U U    (20) 

Thus, ( ) G  is actually the joint PDF of a multivariate normal distribution determined by 

the mean vector μ  and covariance matrix Σ .  The mean vector μ  is given by 

 
1 1 1

I I I II II II
1 2 1 2( , , , , , , )m m m m              μ  (21) 

in which I
1 i i m      is obtained by FORM, and II

1 1 j j m m m         is 

computed by 1II ( )f jj p   . And  is given by  

 

12 1

21 2

1 2

1

1

1

m

m

m m m m

 

 

 


 
 
 
 
 
 

Σ



   



 (22) 

in which ij  is the correlation coefficient between the i-th and j-th components and is 

calculated by 

 

 

 

 

I I
1

I II
1

II II
1

,        

,       

,      

T

i j

T

i j

T

i j

ij ji

i j m

i m j

m i j

 

 

 

 





  




 

 

 

  (23) 
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According to Eq. (18), we have 1 1
II /  j j j j m m m        ωα ω . To 

verify the direction of II
jα , we first substitute II /j jj   ωα ω  into Eq. (18). Since 

( ) 0g X  or ( 0)G U  means a failed state, Eq. (18) should be negative at any sample 

point with given label 1y   . Otherwise, we change the direction of II
jα  by reversing the 

signs of all the components in it. The details of doing this are shown in Example 1 in 

Section 4. 

Now we obtain the mean vector   and covariance matrix , and the expression of 

( )G v  is given by [16] 

    11 1
exp)

2(2 )
(

T

n




 
    

 
G vv Σ v 


 (24) 

Then sR  can be easily evaluated by integrating ( )G v  in the safe region  , and the 

probability of system failure is 1f s sp R  .  

The proposed method provides a new way to approximate linear limit-state 

functions for components with only estimated probabilities of failure and limited 

reliability data. The dependency between components is automatically accommodated in 

the system covariance matrix. Also, it is computationally efficient due to the linear form 

of all the limit-state functions.  

FORM is used in this feasibility study, but it is not a necessity of the proposed 

method. Other reliability methods, such as SORM and SVM-based methods, can also be 

used. One can choose a method if it satisfies the following two requirements: the method 

can produce the probability of failure fp  so that the reliability index is obtained by 
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1( )fp   , and a directional vector   is available or can be derived. Both SORM 

and SVM-based methods satisfy the above requirements. 

 

4. EXAMPLES 

In this section, three examples are presented. To validate the proposed method, 

we at first assume that the true limit-state functions of type II components exist, but 

unknown to system designers. Using these true limit-state functions, we can obtain the 

true system reliability from a physics-based reliability method. To mimic the actual 

physical testing for type II components, we perform computer-based testing (random 

sampling) by calling the true limit-state functions and then apply the proposed method. 

 

4.1 EXAMPLE 1 – A MATHEMATICAL PROBLEM  

A system consists of two physical components, and each has one failure mode. 

There are two basic random variables denoted by 1 2= ( , )X XX , where 2
1 ~ (10,0.8 )X N , 

and 2
2 ~ (30,1.5 )X N . The limit-state function of the first component (Type I) is given by 

 I
1 1 2( ) 152 8.6 + 3.4g X X  X  (25) 

The limit-state function of the second component is unknown, and the component 

probability of failure 6
2 2.5625 10fp    is estimated by a statistics-based approach. 

Thus, this component is a type II component, and a number of experiments are performed 

to estimate its reliability. We assume the true limit-state function is given by 

 II (true)
2 1 2( ) 198 5.4 + 6.4g X X  X  (26) 
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The corresponding true limit-state function in the U-space is  

 II (true)
2 1 2( ) 4.5596 0.4104 0.9119G U U  U  (27) 

26 samples of X  are generated and the corresponding values of y  are computed using Eq. 

(26). The simulated results are given in Table 1. Training points are given in both X- and 

U-spaces, and 2fp  is also obtained based on Eq. (26). 

 
 
 

Table 1 Training points 

  x  u  y  

1 7.6054 24.3070 -2.9932 -3.7953 1  

2 9.4886 22.5981 -0.6392 -4.9346 1  

3 10.0151 31.5254 0.0189 1.0169 1  

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

25 8.7630 23.4822 -1.5462 -4.3452 1  

26 8.2552 22.9919 -2.1810 -4.6721 1  
 
 
 

For the first component, FORM is used directly. The new limit-state function is 

given by 

 I I I
1 1 1 1 2( ) 4.2036 0.8034 0.5955TG U U    U U  (28) 

For the second component, II 1
2 2( ) 4.5596fp    . Using the SVM method, 

an optimal hyperplane is obtained as shown in Figure 2. The weight vector 

 (0.2689,0.5695)=  is acquired. Then the unit vector II
2  is calculated by 

II 2
2

2

(0.4270,0.9042) 
 





, and the corresponding limit-state function is given by 

 II II II
2 2 2 1 2( ) = 4.5596 + 0.4270 + 0.9042TG U U U U   (29) 
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Figure 2 Training points classification using SVM 

 
 
 

To verify the direction of II
2 , we first arbitrarily pick one training point, for 

instance, 1 ( 2.9932, 3.7953)  u , where a failure ( 1y   ) occurs. Then we plug 1u  into 

Eq. (29) and obtain II
2 ( ) 0.11 0G   U , which indicates a failure. Thus, the failed state is 

consistent with the label of 1u , that is 1 1y   , which means II
2  has a correct direction.  

With the obtained limit-state functions in Eqs. (28) and (29), we can easily 

estimate the system reliability by 

  I II
1 2Pr ( ) 0 ( ) 0 ( )dsR G G 



     GU U v v   (30) 

The mean vector μ  of ( )G v  is given by 

 I II
1 2( , ) ( 4.2036, 4.5596)      μ  (31) 
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And the covariance matrix Σ  of ( )G v  is computed by  

 
 

 
12

21

I II
1 2

I II
1 2

0.8811 1

1 1

15

0. 811 8 5

T

T





 
                

Σ
 

 
 (32) 

Substituting Eqs. (31) and (32) into Eq. (30), we obtain 

51 1.4441 10f s sp R     . 

To validate the result, we use I
1 ( )g X  and II (true)

2 ( )g X  to calculate the system 

reliability based on FORM. The result is 51.4523 10  and is regarded as the true 

probability of system failure. For comparison, we also compute the system reliability 

using the independence assumption method. All the results are listed in Table 2. The 

independence assumption method produces an error of 8.1%. The large error comes from 

neglecting the strong correlation indicated by 12 0.8815  . The proposed method has an 

error of only 0.56%, which shows much higher accuracy.  

 
 
 

Table 2 Results of system reliability from different methods 

 Proposed Method Independence Assumption Method True Value 

f sp  51.4441 10  51.5699 10  51.4523 10  

Error (%) 0.56  8.1 ― 

 
 
 
4.2 EXAMPLE 2– A CANTILEVER BEAM PROBLEM WITH MULTIPLE 

FAILURE MODES 

As shown in Figure 3, a cantilever beam is subjected to moments 1M  and 2M ; 

forces 1Q  and 2Q ; and distributed loads denoted by 1 1( , )L Rq q  and 2 2( , )L Rq q . Among 
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these external loads, 1M , 2M , and 1Q  are random variables. The other random variables 

are the dimensions of 1a , 2a , and 1b ; the yield strength aS ; and the allowable shear stress 

a . Thus, there are totally eight basic random variables, as listed in Table 3, in which N 

means Normal Distribution and LogN means Lognormal Distribution. For each 

distribution, the first parameter is the mean value and the second one is the standard 

deviation. The deterministic parameters are listed in Table 4. 

 
 
 

 

Figure 3 A cantilever beam system 

 
 
 

The cantilever beam has three failure modes. Thus this problem involves a system 

reliability analysis, and each failure mode is considered as a component. The first failure 

mode is due to excessive normal stress, and its limit-state function is known and given by 

 I
1 2

6
( ) a

M
g S

wh
 X   (33) 
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in which M  is the bending moment at the root and is calculated by 

 

2 2 2

1 1 1

2

1

( )( ) / 2

       [( )( ) / 2][ 2( ) / 3]

i i i Li i i i i
i i i

Ri Li i i i i i
i

M M Qb q d c d c

q q d c c d c

  



    

    

  


  (34) 

Thus this failure mode is treated as a type I component. 

 
 
 

Table 3 Basic random variables  

 
Random Variables Distribution 

1X  1 (Nm)M  3 3(50 10 , 2 10 )N    

2X  2 (Nm)M  3 3(30 10 , 2 10 )N    

3X  1(m)a  (1.5,0.005)N  

4X  2 (m)a  (4.5, 0.005)N  

5X  1(N)Q  3 3(65 10 ,13 10 )LogN    

6X  1(m)b  (0.7, 0.005)N  

7X  (Pa)aS  6 6(62.5 10 ,10 )N   

8X  (Pa)a  6 5(3.6 10 ,10 )N   

 
 
 

The second failure mode is caused by the excessive shear stress with a known 

limit-state function given by 

 I
2 max( ) ag   X   (35) 

in which a  is the allowable shear stress, and max  is the maximal shear stress computed 

by 

 
2 2 2

max
1 1 1

( )( )3
( )

2 2
Ri Li i i

i Li i i
i i i

q q d c
Q q d c

wh


  

  
    

 
     (36) 

Thus this failure mode is also treated as a type I component. 
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Table 4 Deterministic parameters 

 
Parameters Values 

1 2 (N)Q  330 10  

2 2 (m)b  2.5  

3 1(N/m)Lq  330 10  

4 2 (N/m)Lq  320 10  

5 1(m)c  0.25  

6 2 (m)c  1.75  

7 1(N/m)Rq  320 10  

8 2 (N/m)Rq  310  

9 1(m)d  1.25  

10 2 (m)d  4.75  

11  (m)L  5.1 

12  (m)w  0.204  

13  (m)h  0.403  

 
 
 

The third failure mode is caused by excessive deflection, and its limit-state 

function is not available. It is therefore treated as a type II component. Then reliability 

testing is performed to estimate the probability of failure and the result is 
3fp . To 

simulate physical experiments, we generate training points by simulation. We assume 

that the true limit-state function for FM3 is given by 

 II (true)
3 max( ) ag v v X   (37) 

in which 8.4 mmav   is the allowable deflection, and maxv  is the maximal tip deflection 

given by 
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2 32 3 2 2

max
1 1

4 5 42 2 2

1 1 1

52

1

( ) ( )1

2 2 2 6

( ) ( )( ) ( )1
        

24 120( ) 24

( )( )1
        

120( )

i i i i

i i

Li i Ri Li i Ri i

i i ii i

Ri Li i

i i i

M L a Q L bML BL
v

EI

q L c q q L c q L d

EI d c

q q L d

EI d c

 

  



  
    

 

    
    

 

 




 

  



  (38) 

in which B  is the reaction force at the fixed end. The Young’s modulus is 

9200 10 PaE    and the moment of inertia is 
3

12

wh
I  . We then generate 24 samples of 

X  and obtain samples of y  using Eq. (37). Also, 4
3 4.1309 10fp    is given, which is 

obtained based on Eq. (37). 

Using the proposed SVM method, eight support vectors are obtained, and the 

weight vector is 3 (0.137,0.560, 0.065, 0.037,0.483, 0.059, 0.013,0.012)=    ω . Then 

the approximated limit-state function for FM3 is given by 

 II II II
3 3 3( ) TG  U U   (39) 

in which II 1
3 3) 3.3( 439fp     and II

3  is the unit vector calculated by 

3II
3

3

(0.181,0.738, 0.085, 0.049,0.637, 0.077, 0.017,0.016)     
 

α
ω

ω
.  

The first two failure modes are type I components, and FORM produces the 

following results:  

 I I I ( )  T
i i i iG    U α U  (40) 

in which 

 
I I

1 1

I I
2 2

2.9806,     ( 0.121, 0.121,0,0, 0.926, 0.033,0.335,0)

2.7065,     (0,0,0,0, 0.968,0,0,0.250)





     

  

α

α
  (41) 
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Thus, I ( ) iG i U  and II
3 ( )G U  follow a multivariate normal distribution with 

  and  given by 

 ( 2.9806, 2.7065, 3.3439)   μ  (42) 

 

12 13

12 23

13 23

1 1 0.897 0.705

1 0.897 1 0.613

1 0.705 0.613 1

 

 

 

   
       
      

Σ   (43) 

where 12 13,     and 23  are the correlation coefficients between I
1 ( )G U  and I

2 ( )G U ; 

I
1 ( )G U  and II

3 ( )G U ; and I
2 ( )G U  and II

3 ( )G U , respectively. Then, the system reliability is 

evaluated and is given by 34.1528 10f sp  . 

With all the given limit-state functions I
1 ( )g X , I

2 ( )g X , and II (true)
3 ( )g X , the true 

system reliability could be obtained using FORM and is assumed as a benchmark for 

comparison. Likewise, we also estimate the probability of system failure using the 

independence assumption method. The results are shown in Table 5, which indicates that 

the proposed method is more accurate than the independence assumption method. 

 
 
 

Table 5 Results of system reliability  

 Proposed Method Independence Assumption Method True Value 

f sp  34.1528 10  35.2442 10  34.1582 10  

Error (%) 0.13  26.12  ― 
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4.3 EXAMPLE 3 – A SYSTEM WITH MULTIPLE COMPONENTS 

Figure 4 shows a crank-slider system consists of four physical components. An 

external moment is applied to joint A. We only focus on the time instant when 2 / 2  .  

 
 

  

Figure 4 A crank-slider system 

 
 
 

Physical component 1 is beam AB with a length of 1l , and the cross section is 

defined by the width 1b  and height 1h . Beam AB has one failure mode (FM1) due to 

excessive normal stress, and the limit-state function is known and is given by 

 I
1 1 1( ) ag S S X   (44) 

where 1aS  is the allowable normal stress, and 1
1 3

1 1

( / 2)

/12

M h
S

b h
  is the maximal normal stress.  

Physical component 2 is beam BC with a length of 2l , the cross section is defined 

by the width 2b  and height 2h . The single failure mode (FM2) for beam BC is caused by 

buckling with a known limit-state function given by 

 I
2 ( ) cr BCg P F X   (45) 
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in which 
2

2 2
2

2( )
cr

E I
P

Kl


  is the critical force for buckling, 

3
2 2

2
12

b h
I  , and 1/BCF M l  is the 

force developed in the beam.  

Physical component 3 is the shaft DE with a length of 3l  and a diameter of 4d . 

The shaft has two failure modes (FM3 and FM4) caused by excessive deflection and 

excessive normal stress, respectively. The corresponding limit-state functions are known 

and given by 

 

I
3 3 3

I
4 4 4

( )

( )

a

a

g

g S S

   


 

X

X
  (46) 

in which 3a  is the allowable deflection, and 3  is the maximal deflection given by 

 
  2 2 3/2

1 4 3 4
3 4

4 4 4

sin / 2 ( )

9 3 ( / 4)( / 2)

BCF l l l

l E d

 




 
   (47) 

where 4E  is the Young’s modulus of shaft DE. 4aS  is the allowable normal stress, and 4S  

is the maximal normal stress developed in the shaft and is calculated by 

 
 1 4max

4 4
4 4

sin / 2 ( / 2)

( / 4)( / 2)
BCF dM c

S
I d

 




    (48) 

Physical component 4 is the spring CD with one failure mode (FM5) due to 

excessive shear stress applied to the spring coils. The limit-state function is unknown 

while the probability of failure is given by 3
3 1.04 10fp   . Likewise, to simulate the 

testing, we assume the true limit-state function as 

 II (true)
5 5 5( ) ag   X  (49) 
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in which 6 6 2
5 ~ (100 10 , (25 10 ) ) Paa N    is the allowable shear stress of the spring coil, 

and 5  is the developed maximal shear stress and calculated by 

 
 1

5 3

cos / 2 4 0.615

4 4
BCF D D d d

d D d D

 




  
  

 
  (50) 

in which 3 4~ (34.7 10 ,  10 ) mD N    is the outer diameter of the spring, and 

329.5 10 md    is the spring inner diameter. We then generate 30 training points of X  

and obtain samples of y  based on Eq. (49) and the distributions of 1M , 1l , D , and 5a . 

All the random variables known by the system designers are listed in Table 6 and 

the known deterministic parameters are listed in Table 7. Since D  and 5a  are only 

known by the spring supplier, they are not listed in Table 6. They are denoted as 9X  and 

10X . Thus, there are actually 10 basic random variables in the system. For FM5, the 

training points are provided in the form of 1 2 9 10( , , , )X X X X .  

 
 
 

Table 6 Random variables 

 
Random Variables Distribution 

1X  1 (Nm)M  (350,65)N  

2X  1(m)l  4(0.3,10 )N   

3X  2 (m)l  3(0.9,10 )N   

4X  1(m)b  4(0.022,5 10 )N   

5X  1(m)h  4(0.019,5 10 )N   

6X  2 (m)b  4(0.015,5 10 )N   

7X  2 (m)h  4(0.009,5 10 )N   

8X  4 (m)d  4(0.0228,10 )N   
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Table 7 Deterministic parameters 

No. Deterministic Parameters Values 

1 2 (Pa)E  9200 10  

2 4 (Pa)E  9200 10  

3 K  1 

4 3 (m)l  0.96  

5 4 (m)l  0.31  

6 1(Pa)aS  6400 10  

7 4 (Pa)aS  6460 10  

8 3 (m)a  0.0032  

 
 
 

As discussed in Section 4, the five FMs in the system are treated as five 

components at the system level. The first four FMs with known limit-state functions 

I ( ) ig i  X  belong to type I components, and FM5 is a type II component since 

its limit-state function II
5 ( )g X  is not available. 

For type-I components, I ( )ig X  could be approximated by FORM as  

 I I I ( 4)  T
i i i iG      U α U   (51) 

in which 

 

I I
1 1

I I
2 2

I I
3 3

I I
4 4

3

4 2

2.5099,     ( 0.91,0,0,0.16,0.38,0,0,0,0,0)

2.6609,     ( 0.60,1.4 10 , 0.02,0,0,0.14,0.79,0,0,0)

2.5653,     ( 0.99,2.6 10 ,1.6 10 ,0,0,0,0,0,0.14,0)

2.4145,     ( 0.99,2.











 

  

    

    

  

α

α

α

α 4 26 10 ,1.5 10 ,0,0,0,0,0,0.10,0)  

  (52) 

For the type II component, using the proposed SVM method, the limit-state 

function is reconstructed as  

 II II II
5 5 5( ) TG  U α U   (53) 
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in which II 1
5 5) 3.0( 785fp     and II

5 (0.911, 0.144,0,0,0,0,0,0,0.320, 0.217)   . 

Then I 4( ) iG i   U   and II
5 ( )G U  follow a multivariate normal distribution 

with the mean vector and covariance matrix given by 

 ( 2.5099, 2.6099, 2.5653, 2.4145, 3.0785)     μ  (54) 

 

1 0.546 0.903 0.907 0.831

0.546 1 0.593 0.595 0.546

0.903 0.593 1 0.999 0.902

0.907 0.595 0.999 1 0.906

0.831 0.546 0.902 0.906 1

 
 
 
 
 
 
  

Σ  (55) 

Using Eq. (24), the estimated probability of system failure is 1 0.0133f s sp R   . 

With I ( ) ig i X  and II (true)
5 ( )g X  exactly known, the true system 

reliability could be directly acquired using FORM. The results in Table 8 show that the 

proposed method are more accurate than the independence assumption method. 

 
 

Table 8 Results of system reliability 

 
Proposed 
Method 

Independence 
Assumption Method 

True Value 

f sp  0.0133 0.0238 0.0142 

Error (%) 6.49 67.74 ― 

 
 

 

5. CONCLUSIONS 

This work verifies the feasibility of integrating statistics- and physics-based 

method for system reliability analysis. It is common that component reliability is 
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estimated by a statistic-based method; with the increasing use of physics-based 

computational models, it is also possible that component reliability is estimated by a 

physics-based method. This study deals with the difficulty of obtaining the joint 

probability density when physics-based methods are used for some components (type I) 

and statistics-based methods are used for other components (type II). 

The physics-based method employed in this study is the First Order Reliability 

Method (FORM), which is directly used for type I components whose physics-based 

limit-state functions are available. For type II components whose physics-based limit-

state functions are unknown, with a statistics-based method, reliability experiments are 

performed. Then their reliabilities are estimated.  A supervised learning strategy through 

Support Vector Machines (SVM) is developed to create limit-state functions for type II 

components. The proposed method makes the limit-state functions of all the components 

available thereby leading to a multivariate normal probability density function, whose 

integration in the safe region then produces the system reliability. 

This feasibility study makes a number of assumptions, such as the distributions of 

basic random variables for both types of components are known, the component 

reliability is calculated by FORM, the safety-failure boundary is linear with respect to 

basic variables in the standard normal space, and sample points from reliability testing in 

both safe and failure regions are available. If the data set has a nonlinear pattern, the 

proposed method can still accommodate such nonlinearity by introducing slack variables 

to the SVM model so that the linear assumption could be violated slightly. If the 

nonlinearity is high, SVM methodologies that produce nonlinear models should be 

employed. 
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ABSTRACT 

Support Vector Machine (SVM) methods are widely used for classification and 

regression analyses. In many engineering applications, only one class of data is available, 

and then one-class SVM methods are employed. In reliability applications, the one class 

data available may be failure data since the data are recorded during reliability 

experiments when only failures occur. Different from the problems handled by existing 

one-class SVM methods, there is a bias constraint in the SVM model in this work 

because the constraint comes from the probability of failure estimated from the failure 

data. In this study, a new one-class SVM regression method is proposed to accommodate 

the bias constraint. The one class of failure data is maximally separated from a 

hypersphere whose radius is determined by the known probability of failure. The 

proposed SVM method allows for the generation of regression models that directly link 

the states of failure modes with design variables, and this makes it possible to obtain the 

joint probability density of all the component states of an engineering system, resulting in 

a more accurate prediction of system reliability during the design stage. Two examples 

are given to demonstrate the effectiveness of the new one-class SVM method. 
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1. INTRODUCTION 

Support vector machine (SVM) was originally developed for classifying data 

from two different classes [1-3]. Two-class SVM methodologies obtain an optimal 

decision boundary by maximizing the margin between the training patterns. More 

specifically, given a data set composed of points from two different classes, an optimal 

boundary is built in the form of a hyperplane or hypersurface defined by the maximum 

margin between the points and the boundary, and the points on the maximum margin are 

the so-called support vectors. 

SVM can be analyzed theoretically based on statistical learning theory and 

optimization methods, thus it outperforms other learning algorithms in many aspects. The 

advantage of SVM is attributed to its essence based on the principle of the maximal 

margin [4], the dual theory, and the kernel trick, which enable SVM to solve machine 

learning problems with only limited training points. It overcomes traditional difficulties 

due to the curse of dimensionality and over-fitting. This makes SVM highly successful 

and effective in real applications, and it thus has recently received considerable attention 

in various domains, such as pattern recognition [5-7], data mining [8], fault detection [9-

11], space frame structures optimization [12], and reliability analysis [13-15]. 

Most traditional SVM methods assume more or less equally balanced data from 

both classes, and the decision boundary is therefore determined by the data belonging to 

different classes. However, when encountered with imbalanced data sets where the 

number of data from one of these two classes far outnumbers that from the other class or 

even equals to zero, the performance of  the general two-class SVM may drop 

dramatically [16]. This situation is very common in real-world applications, especially in 
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certain domains such as reliability analysis and design. For example, to evaluate the 

reliability of a system or a component, designers may perform reliability testing 

repeatedly until the system or the component fails. They then record the failure data, such 

as sizes, loads, and the temperature at the time of failure. In this case, all the training 

points belong to only one class (failure). Due to the need of dealing with one-class data, 

many methods have been developed, and they have been used in applications such as 

novelty detection [17], document classification [18], and disease diagnosis [19]. 

The existing one-class SVM methods creates the optimal hyperplane (decision 

boundary) with a weight vector (normal vector) and a bias (intercept), which determine 

the orientation and location of the hyperplane, respectively. Due to the regularization of 

the optimization model, only the weight vector is actually to be determined, and the bias 

is treated separately after the weight vector is obtained. In some engineering applications, 

such as the aforementioned system reliability prediction, the bias is available, leaving 

only the weight vector unknown and to be determined. 

To accommodate the known bias, in this work, we propose a new one-class SVM 

method. The constraint of the known bias geometrically forms a hypersphere centered at 

the origin. By maximizing the minimum distance between one-class training points and 

the hypersphere, the proposed method produces the optimal weight vector (orientation) of 

the desired hyperplane. The hyperplane function is thus determined by the obtained 

weight vector and the known bias. Since the hyperplane function explicitly defines the 

decision boundary which classifies the training points, it could then be used for further 

analysis, such as the aforementioned system reliability estimation, where the hyperplane 

function is actually the reconstructed computational model of the component. 
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The rest of the paper is organized as follows. In Section 2, we briefly review the 

basic methodologies, including the general SVM and one-class SVM. Section 3 

introduces the proposed one-class SVM algorithm with a bias constraint. The application 

of this new method to the system reliability analysis is discussed in Section 4. One 

mathematical example and a real-world engineering example are provided in Section 5, 

followed by conclusions and future work in Section 6. 

 

2. METHODOLOGY REVIEW 

The general support vector machine methods and one-class support vector 

machine are briefly reviewed in this section. 

 

2.1 GENERAL SUPPORT VECTOR MACHINE METHODOLOGY 

The general two-class SVM separates training points from two classes  with a 

hyperplane [3], which is identified by maximizing the minimum distance from the 

hyperplane to the training points. We first review the case of linearly separable training 

points. Given a set of k  training points 1 1 2 2( , ), ( , ), ( , ), n
k ky y y R    x x x x , in which 

1 2( , , , )i i i inx x xx   , 1, 2, ,i k  , are training points, and iy  is the class label for ix . If 

the point belongs to the first class, 1iy   ; otherwise, 1iy   . A hyperplane separating 

the training points into two classes is given by 

 Τ( ) 0g b  X X   (1) 

where   is a weight vector, and b  is the bias. There exists only one optimal hyperplane, 

which maximizes the margin (or distance) between itself and the nearest training points 
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of each class. Then two parallel hyperplanes are obtained by this maximized margin and 

are shown in Figure 1. The shaded points passed by the two boundaries are called support 

vectors. The hyperplane in the center of the two boundary hyperplanes, represented by 

the dotted line, is the optimal separating hyperplane. Note that, no points locate between 

the boundaries hyperplanes. 

 
 
 

 

Figure 1 Marginal classifiers along with support vectors 
 
 
 

The weight vector   is obtained by solving the following minimization problem:  

 
T

T

1
min

2

s.t. iiy b i k





        x 






  (2) 

Eq. (2) shows a quadratic optimal problem, and it can be converted into a dual problem as 

follows: 

 

T

1 , 1

1

1
max

2

s.t. 0,

k k

i i j i j i
i i j

k

i i

j

i
i

L y y

y i k

  

 

 




   


        


 



x x




  (3) 
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where 1 2, , ,    and k  are the Lagrange multipliers. According to the Karush-Kuhn-

Tucker (KKT) conditions, only support vectors lead to 0i   [20]. After the Lagrange 

multipliers are obtained, the weight vector   is computed by 

 
1

k

i i i
i

y


  x   (4) 

And the bias is then given by [21] 

 T

1

1
( )i

k

i
i

b y
k 

  x   (5) 

The function of the hyperplane defined in Eq. (1) is rewritten as 

 Τ

1 1

T1
( ) ( ) 0

k k

i ii i i
i i

g y y
k


 

    X x X x   (6) 

As a decision boundary, ( )g X  is used to determine the class labels of new 

samples. For a new point x , if ( ) 0g x , it belongs to the class 1y   ; otherwise, it 

belongs to 1y   .  

The hyperplane performs well for linearly separable training points. For non-

linearly separable training points, kernel tricks are adopted to map the input space into a 

high dimensional feature space through a transformation ( ) X , making the classification 

problem linearly separable. Then a nonlinear optimal hyperplane in the input space, 

which is equivalent to the linear one in the feature space, is given by 

 
1

( ) ( , )
k

i i i
i

f y K b


 X x X   (7) 

where ( , ) ( ( ), ( ))i iK K  x X x X  is a kernel function [1, 3] , and the bias b  is given by 

 
1 , 1

1
( , )

k k

i i i i j
i i j

b y y K
k

  
 

 
  

 
    (8) 
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2.2 GENERAL ONE-CLASS SUPPORT VECTOR MACHINE 

The one-class SVM [22] is a variant of the general SVM and is used for only one 

class of training points. This method regards the training points available as belonging to 

the first class and the origin as being the second class. Then the general two-class SVM 

techniques could be employed. A decision boundary is built by maximizing the distance 

between training points and the origin, as shown in Figure 2. 

 
 
 

 

Figure 2 Basic principle of general one-class SVM 
 
 
 

For m  training points 1 1 2 2( , ), ( , ), ( , ),  1,2, , ,  n
m my y y i Rm     x x x x ,  which 

belong to the only class 1iy   , the optimization model is given by 

 
T

1

1 1
min

2

s.t. ( ) ,   

m

i
i

i i i

mv

i m


 

   

  


  


          



x 

 




  (9) 

in which   and   are the to-be-determined weight vector and bias, respectively. The 

regularization variable (0,1)v  indicates the maximum value of the fraction of training 
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data set errors, and 1 2=[ , , , ]mξ ξ ξ  is a vector of slack variables that allow point ix  to 

locate on the other side of the optimal hyperplane.  

With introducing Lagrange multipliers i  and i , the Lagrangian of the objective 

function in Eq. (9) is given by 

 T

1 1 1

1 1
( , , ) ( ( ) )

2

m m m

i i i i i i
i i i

L
mv

       
  

         x     (10) 

With the appropriate kernel function ( , ) ( ( ), ( ))i iK K  x X x X , the optimization model 

is then written in the dual form 

 
, 1

1

1
min ( , )

2

1
s.t. 1

m

i j i
i j

m

i i
i

K

mv

 

 









     






x X


 (11) 

Note that when v  approaches zero, most of the training points locate inside the 

estimated support. Then the upper bound of i  in (12) tends to infinity, making the 

second inequality constraint useless, which is similar to the hard margin algorithm used 

in two-class SVM. Since there is no constraints for bias  , the original optimization 

model can still be solved by assigning a large negative value to   [22]. 

Standard quadratic programming can be used to solve for 1 2, , ,    and m . The 

weight vector of the hyperplane is computed by 

 
1

( )
m

i i
i

 


  x   (12) 

And the bias is calculated by 

 
, 1

( , )
m

i i j
i j

b K


  x x   (13) 
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With the determined   and b , the decision boundary for one-class SVM is given by 

 
1 , 1

( ) ( , ) ( , )
m m

i i i i j
i i j

f K K 
 

  X x X x x   (14) 

 

3. A NEW ALGORITHM FOR ONE-CLASS SUPPORT VECTOR MACHINES 
WITH A BIAS CONSTRAINT 

In this work, we propose a new one-class SVM method with a bias constraint. In 

the general SVM algorithm, although a bias exists, it is treated separately and does not 

appear in the optimization model. In the present problem, a bias exists and it is used to 

formulate a constraint function of the optimization model. The existence of the bias 

simplifies the optimization model. 

The problem arises in the field of system reliability analysis. For the prediction of 

the reliability associated with a failure mode, repeated reliability testing is performed, and 

the failure data are recorded until failures occur. Then there is only one class of data. 

With the failure data, the reliability, which is the probability that the failure mode does 

not occur, can be estimated. It is this reliability that determines the bias. While more 

background information about reliability will be provided in Sec. 4, the new one-class 

SVM problem we are dealing with is summarized below.  

Information available includes the following: 

 A data set of m  training points and responses is given by 

1 1 2 2( , ), ( , ), ( , ), n
m my y y R    u u u u , 1iy   ,  1, 2 ,,i m  . Note that different 

from the general SVM where training points are denoted by x , here we use u  for 

training points because it is a common notation for reliability analysis where the 
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new method will be used. The data set is from reliability testing, and they may 

include load, dimensional, temperature, and other parameters that cause a failure. 

The corresponding response is the state of the component under testing, and 

1iy    represents a failure state. There is only one class of data, which are data 

points in the failure region; we do not have the other class in the safe region with 

1iy    (no occurrence of a failure). 

 We know the shortest distance   from the origin to the domain to which the data 

set belongs. This distance comes from the known reliability. 

The assumptions we make for the new SVM method are as follows: 

 We assume that the boundary of the domain to which the data set belongs is a 

hyperplane. This assumption is valid for reliability applications where the First 

Order Reliability Method (FORM) [23] is applicable. 

 The hyperplane is given by 

 TY   U  (15) 

where   is a constant, and   is a unit vector. In the reliability application 

concerned by this study,   is given and is determined by the reliability estimated 

from the training points, and   happens to be a unit vector.  

Our task is to determine the unit vector  . In sum, our present problem is to find 

the optimal normal vector  , of a hyperplane given its distance to the origin being   and 

a data set 1 1 2 2( , ), ( , ), ( , ), n
m my y y R    u u u u . As demonstrated in Figure 3, the problem 

is to find a hyperplane tangent to a hypersphere with a radius of  , and the hyperplane 

also maximizes the distance from any training points to the hypersphere. 
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Figure 3 Basic principle of the proposed one-class SVM 

 
 
 

 

Figure 4 Geometric meaning of id   

 
 
 

Denote the distance from iu  to the hypersphere by id . We also define that points 

located in the negative region enables 0Y  ; otherwise, 0Y   holds. The minimum 

distance is given by  

   Tmin{ } mini id d     u  (16) 
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in which the negative sign indicates that the training points locate in the negative side of 

the hyperplane ( )Z U , thereby making d  positive. Since   is a known constant, d  is 

actually determined by minimizing id  , which is equal to T
i u . Note that id   

indicates the scalar projection of iu  onto  . Since T
iu  is negative here, the direction of 

  is opposite to that of iu . The geometrical meaning of id   is shown in Figure 4.  

To construct the optimal hyperplane, our task then becomes to find the maximum 

d , which can be obtained from the following optimization model 

 
 T

,
max

s.t.

d

i

d

d i m





      u 




  (17) 

This is the basic model of the proposed one-class SVM with a bias constraint determined 

by the given constant  . Let h d   , and Eq. (17) is rewritten as 

 
T

,
max

s.t. i

h
h

h i m




       u 




 (18) 

Set 
h

 


, we have 
1

h 
 

. Then, Eq. (18) becomes 

 
T

max

s.t.

1

1i i m





        u

 



 



  (19) 

which is equivalent to the constrained quadratic programming problem as follows:  

 
T

T

1
min

2

s.t. 1 0i i m





        u 






  (20) 
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With Lagrange multipliers 0i  , the Lagrangian function is given by 

  T T

1

1
( ) 1

2

m

i i
i

L 


  u     (21) 

According to the KKT conditions, we have 

 
1

0    
m

i
i

i

L





   


 u


        (22)  

Submitting Eq. (22) into Eq. (21), the Lagrangian function is rewritten as 

 

T

, 1 1 1

, 1 , 1 1

1 , 1

T

T T

T

1
( ) 1

2

1
        

2

1
         =

2

m m m

i j i i i i
i j i i

m m m

i j i j i
i j i j i

m m

i

i j

i j i j

ii j
i

j
i j

L    

    

  

  

  

 

   
 

  



 
  

 
  

  

 

u u u

u u u u

u u

u

 (23) 

Thus, the dual form of the quadratic programming problem in Eq. (20) is given by 

 1 , 1

T1
max

2

s.t. 0  

i j

m m

i i j
i i j

i i m

  



 


 


       

  u u



   (24) 

Solving the optimization model in Eq. (24) yields the Lagrange multipliers 

1 2, , ,  m   .  Plugging them into Eq. (22) produces the weight vector  .  The unit 

vector   is then recovered by 
 





, which thereby constructs the function ( )Z U  for 

the hyperplane. Similar to the general one-class SVM algorithm, the training points 

satisfying  :  1,2, , ,  0i ii m  x   are support vectors by which the optimal hyperplane 

is finally determined. With the known bias   and the acquired normal vector  ,  the 

function of the hyperplane is determined by 

 T( )Y Z  U U  (25) 
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which is a decision boundary defining the domain of the one-class data set and could then 

be used to predict the state of a new sample. Plug a new sample Nu  into Eq. (25). If 

0Y  , the new sample belongs to the same class as that of the training points, and 

1y   ; otherwise, it is outside the domain of the training points and belongs to the class 

of 1y   .  

The proposed one-class SVM algorithm can easily accommodate the bias 

constraint, which is derived from the given one-class data set. The new algorithm only 

focuses on this data set without considering the origin as the second class. The optimal 

hyperplane is constructed based on the hard margin associated with the bias constraint. 

Specifically, if we regards seeking such an optimal hyperplane as a dynamic process, the 

general one-class SVM technique attempts to move the hyperplane to the desired position 

through rotations and translations. On the other hand, in the proposed method the 

hyperplane only rotates around the origin while keeping tangent to the hypersphere with a 

radius of  . In other words, the hyperplane rolls without slipping on the hypersphere. 

Also, since no slack variables   and regularization parameter v  are introduced, the 

constraints for the optimization model are relatively simple thereby increasing the 

computation efficiency. 

 

4. APPLICATION OF THE NEW ONE-CLASS SVM IN SYSTEM RELIABILITY 
PREDICTION 

System reliability is the probability of a system working normally without failures. 

Since the system state (safe or failed) is determined by the states of its components and it 

may be hard to predict the system reliability directly, the system reliability is usually 
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estimated based on component states. Physics-based methods [23-26] and statistics-based 

methods [27-29] are two possible choices for component reliability analysis. We first 

briefly review the concepts and basic techniques of the two kinds of reliability methods 

and then explain how the proposed algorithm works for system reliability analysis. 

 

4.1 PHYSICS-BASED RELIABILITY METHODS 

Physics-based reliability methods use computational models to estimate reliability, 

which predict the component failure state based on physics principles. The computational 

model is called a limited-state function, denoted by ( )y g X , where X  is a vector of 

basic random variables, which are root variables that affect the state of the failure mode, 

such as component shape and dimensions, loadings, material properties, and 

environmental factors; y  is the state variable. For each failure mode, a limit-state 

function is built. If 0y  , the state is safe. Otherwise, a failure occurs. The reliability 

with respect to the failure mode is given by 

    Pr state safe r ( ) 0P yR g    X  (26) 

The probability of failure fp  is given by  

    Pr state failed (r 1) 0Pf y gp R      X  (27) 

Since it is hard to compute Eq. (27) analytically, many approximation methods 

have been proposed, including FORM [23, 30], the Second Order Reliability Method 

(SORM) [31], the Saddlepoint Approximation method (SPA) [32], and Monte Carlo 

Simulation (MCS) [33]. In this work, we adopt FORM to approximate a linear form of 
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( )g X , then the component probability of failure could be easily estimated. The procedure 

of FORM is briefly summarized in the following three steps. 

Step1: Transform random variables into standard normal variables 

Assume that all the random variables in the X-space are independent. The original 

random variables 1 2( , , , )nX X XX   are transformed into standard normal random 

variables 1 2( , , , )nU U UU =   in the U-space. The transformation is given by [34] 

 ( ) ( ) 1, 2, , )i ii x uF ni       (28) 

where ( )iF   and ( )   are the cumulative distribution functions (CDF) of iX  and a 

standard normal variable, respectively. The transformation could also be given in the 

form of  

 1( ) 1,2, , )( )i i ix u iT u F n         (29)  

in which ( )T   denotes the transformation function.  

Step 2: Approximate a linear limit-state function 

After the transformation, the component probability of failure is computed by 

  Pr ( ( )) 0fp g T U   (30) 

FORM then yields an approximated linear limit-state function [23] given by  

 T( )Z  U U   (31) 

Step 3: Compute fp  

With the new limit-state function ( )Z U  in Eq. (31), which is a linear combination 

of standard normal random variables, fp  is calculated by 

  Pr ( ) 0 ( )fp Z     U  (32) 
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4.2 STATISTICS-BASED RELIABILITY METHODS 

A statistics-based method relies on field or testing data related to failures of a 

component. The component reliability R  is estimated by 

   Pr state safe
fN N

R
N


    (33) 

where Pr ( )   denotes a probability, fN  is the number of failed component, and  N  is the 

total number of components.    

SVM is widely used with the statistics-based method which creates a reliability 

model using the provided training data with no need for physical principle of the 

component. Note that the recorded field or testing data belong to either the safe region or 

failure region. SVM can therefore identify the safety-failure boundary by solving a binary 

classification problem [35]. As is mentioned above, the general two-class SVM is only 

available for cases where two classes of training data are provided. 

 

4.3 APPLICATION OF THE NEW METHOD 

We now discuss how to use the proposed one-class SVM approach to achieve a 

linear decision boundary (limit-state function) if only a one-class training data set is 

given. The details are as follows. 

We still use ( )y g X  as the component limit-state function, and the original 

random variables, denoted by 1 2( , , , )nX X XX   are independent. The counterpart of 

X  in the U-space, denoted by 1 2( , , , )nU U UU =  , are standard normal random 

variables. Given a data set of m  training points at failure states as follows: 

 1 1 2 2( , ), ( , ), ( , ), n
m my y y R    x x x x , 1iy   ,  1, 2 ,,i m   
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The bias   is known, which comes from the component reliability estimated by the 

supplier using the given training points.  

Step1: Transform X  into U  

Similar to FORM, the transformation is given by 

 1 ( )( )  1,2, ,j j jx T u F nu j           (34)  

Step 2: Approximate a linear limit-state function based on one-class SVM  

According to the proposed one-class SVM discussed in Section 3, the optimal 

normal orientation of the to-be-determined decision boundary is given by 
1

i

m

i
i




  u , in 

which i  is available after solving the dual form of the Lagrangian in Eq. (24), and iu  is 

obtained in Step 1. Since the bias   is also available, the linear form of the component 

limit-state function is then obtained by 

 ( )Z  U U   (35) 

in which 
 





.  

Since   is known, there is no need to recalculate component reliability using 

( )Z U . ( )Z U  is actually used for the system reliability prediction by integrating with 

other available limit-state functions from FORM. Next, we will discuss how to do so. 

 

4.4 SYSTEM RELIABILITY ANALYSIS 

System reliability could be estimated either by a physics-based approach, a 

statistics-based approach, or the integration of both. Predicting system reliability is an 

important task, especially for systems with outsourced components. Outsourcing is a 
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common practice because more and more industrial firms function like system integrators 

with numerous components outsourced [36], resulting in urgent demand for integrating 

both statistics- and physics-based approaches. Accurately predicting the system reliability 

requires complete design information for both in-house and outsourced components, such 

as the limit-sate functions and distributions of basic random variables. System designers 

may know everything about the in-house components; however, the design details of 

outsourced components are usually unavailable since they are proprietary to outside 

suppliers. This makes it hard to directly use traditional methods for system reliability 

analysis [37]. To address this issue, the proposed one-class SVM method with a bias 

constraint is used to reconstruct the limit-state functions for outsourced components, 

thereby integrating the new algorithm with physic-based methods for accurate system 

reliability prediction. 

A proof-of-concept method [38] was recently developed, and it validates the 

feasibility of this study. This work is an extension of the algorithm proposed in [38] with 

a bias constraint derived from the data set provided by the component supplier, such as 

the reliability data at failure states. We now introduce how to use the proposed method 

for system reliability prediction. The application scope is summarized as follows: 

 The system has m  components (failure modes) and 2m  . 

 Component states are dependent. 

 There are two types of components: 1) Type I components, whose probabilities of 

failure are obtained through physics-based methods, have available limit-state 

functions I
1( ),  i mg i     , where 1m  is the component number. 2) For the 

other 2m 2 1( )m m m   type II components, no limit-sate functions are available, 
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but the data set of training points from fields or testing is provided, and the 

probabilities of failure are evaluated using a statistics-based method. 

 Assume the system is series. 

 Distributions of all basic random variables are known. 

For a Type I component, the limit-state functions in the U-space are transformed 

by 

 ( )I I I I
1( )  ( )  T T

i i i ig Z i m       X UX U U    (36) 

For Type II components, the limit-state functions produced by the proposed one-

class SVM is given in the form of  

 II II II I
1 1

I( ) =  T T
j j j j

j

j

j m mZ m           U U U
 





  (37) 

Since the components of U  follow a standard normal distribution, the 

reconstructed limit-state functions I ( )iZ U  and II ( )jZ U  also follow normal distributions 

I I I~ (( ) , )i i iNZ  U  and II II II~) ( , )(j j jNZ  U , respectively, in which I I
i i   and 

II II
j j   are their vectors of means, and the covariance of I ( )iZ U  and II ( )jZ U  is ij , 

which will be given in Eq. (40). Thus, the joint PDF of I ( )iZ U  and II ( )jZ U , denoted by 

( )U u , is actually the PDF of a multivariate normal distribution with a mean vector   

and a covariance matrix  .   is given by 

 
1 1 1

I I I II II II
1 2 1 2( , , ,  ,  ,  ,  )m m m m             (38) 

in which I
1 i i m      is obtained from FORM, and II

1 1 j j m m m        is 

calculated by 1II ( )f jj p   .  
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And   is given by  

 

12 1

21 2

1 2

1

1

1

m

m

m m m m

 

 
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

 
 
 
 
 
 



   



  (39) 

in which ij  is the correlation coefficient between the i-th and j-th components and is 

computed by 

 

 

 

 
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1

TI II
1

TII II
1

,        

,       

,      

i j

i j

i

ij i
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i j m
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m i j

 





  




 

 

 

 

 

 

  (40) 

From Eq. (37), we find 1 1
II  

j

j

j

j m m m      
 







, in which II
j  has the same 

direction as j .  

With   and   available, the complete joint PDF ( )U u  is also available and is 

given by 

    
T 11 1

( exp
2(2 )

)
n

  
    

 
U uu Σ u 


 (41) 

The probability of system failure is computed by 

 
1

11 1

I II( ) ( )Pr 0 0
m m

f s
i j m

i jZ Zp
  

 
   

 
U U    (42) 

And the system reliability is  

 
1

1

I I

1 1

I( )  ( ) ( )Pr 0 0 di

m

s
j m

j

m

i

ZR Z 
   

 
    





 UU U u u    (43) 
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where   is the system safe region defined by 

   I
1 1

I
1

I0 0| ( ) ,   ( )i j i m j m mZ mZ              U U U   (44) 

Thus, sR  can be easily evaluated by solving the integral in Eq. (43), and the probability 

of system failure is then 1f s sp R  . A schematic diagram of the proposed method is 

given in Figure 5. 

 
 
 

 

Figure 5 Schematic diagram of the proposed method 

 
 
 

The proposed method makes the following contributions to reliability analysis: 1) 

At the component level, it provides a new way to approximate component limit-state 

functions with only estimated probabilities of failure and limited field or testing failure 

data. 2) At the system level, since the provided component limit-state functions is 

linearized using FORM, which produces the same form as the approximated limit-state 
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functions obtained from the proposed one-class SVM, system reliability analysis could be 

easily conducted. 3) It improves the accuracy of the system reliability prediction because 

it accounts for the dependency between components automatically. 4) It dramatically 

reduces the computational cost due to the linear forms of all the limit-state functions. 

 

5. EXAMPLES 

Two examples are used to demonstrate the effectiveness and accuracy of the 

proposed method. Example 1 is a numerical problem showing how to apply the proposed 

method step by step. Example 2 is an engineering problem concerned with a cantilever 

beam subjected to different kinds of loads, thereby resulting in multiple failure modes. 

 

5.1 NUMERICAL EXAMPLE 

A system is comprised of two physical components, and each has one failure 

mode. If either of component fails, the system fails. There are two independent basic 

random variables 1 2= ( , )X XX , in which 2
1 ~ (12,1 )X N  and 2

2 ~ (40, 2 )X N . The limit-

state function of the first component is available and is given by 

 I
1 1 2( ) 260 8.5 + 5.2g X X  X  (45) 

Thus, the component is a Type-I component. 

FORM produces a linear model, which is given by  

 I I I T
1 1 1 1 2( ) 3.7225 0.6328 0.7743Z U U    U U  (46) 

in which I
1 3.7225   and I

1 (0.6328,0.7743) . 
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Component two is a Type II component since no model is available. The 

probability of failure 5
2 2.5517 10fp    is estimated by a statistics-based reliability 

method using the recorded testing points, which come from reliability testing.  

Although no model is available, to analyze the accuracy, we assume the true 

model in the X-space is given by 

 II (true)
2 1 2( ) 325 5.6 + 8.2g X X  X   (47) 

The linear model in the U-space is  

 II (true)
2 1 2( ) 4.0508 0.3231 0.9463Z U U  U  (48)   

We then use computer experiments to mimic the physical reliability testing. With MCS 

and the model in Eq. (47), we generate a set of training points and transform them into 

the U-space as shown in Table 1. We also assume that the value of 2fp  given above is 

known and is equal to the one estimated using Eq. (47). 

Assume that the linear model for component two is given by 

 II II II T
2 2 2( )Z  U U  (49) 

in which II
2  is calculated by II 1

2 2( ) 4.0508fp    , and II
2  is the to-be-determined 

unit vector. Using the proposed one-class SVM method, we solve for II
2  by 

 

10 10

1 , 1

T1
max

2

s.t. 0  10

i i j
i i

i j
j

i i

  



 


 


      

  u u



   (50) 
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where 1 ( 1.4342, 3.8442)  u , 2 ( 2.1810, 4.6721),   ,  u   and 

10 ( 0.8223, 4.1205)  u  as shown in Table 1. 

 
 
 

Table 1 Training points 

No.  
u  

1U  2U  

1 -1.4342 -3.8442 

2 -2.1810 -4.6721 

3 -0.5057 -4.1478 

4 -1.3443 -3.9958 

5 -1.9988 -3.9879 

6 -1.7684 -3.7517 

7 -2.5285 -3.6413 

8 -1.9114 -3.8673 

9 -3.0726 -3.3558 

10 -0.8223 -4.1205 

 
 
 

After solving the above model, we have the Lagrange multipliers  =  (0.0459, 0, 

0.0099, 0, 0, 41.734 10 , 0, 0, 0, 0), and the three support vectors 1u , 3u  and 6u  marked 

by the circles in Figure 6 are determined by the non-zero multipliers. Plugging  , 1u , 

2u ,   ,  and 10u  into 
1

2

10

ii
i




  u , we obtain the weight vector 2 (0.0712, 0.2182)= , 

resulting in a unit vector II 2
2

2

(0.3101,0.9507) 
 





. Thus the linear model of 

component two is reconstructed by 

 II II II T
2 2 2 1 2( ) = 4.0508 + 0.3101 + 0.9507Z U U U U  (51) 
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The corresponding optimal hyperplane is also shown in Fig 6, separating the one class 

training points (data set at failure state) clearly from the circle with a radius of II
2 . 

 
 
 

 

Figure 6 Support vectors and optimal hyperplane 

 
 
 

The approximated limit-state function in Eq. (51) is very close to the true one 

given in Eq. (48), thereby leading to high accuracy of system reliability prediction, the 

details of which are shown below. 

Since the components of U  follow standard normal distributions, the two 

dimensional random vector I II
1 2= [ ( ), ( )]Z ZZ U U  follows a multivariate normal 

distribution with the joint PDF 

    
T 1

2

1 1
e( xp

2(2 )
)



 
    

 
U u u Σ u 


 (52) 
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where the mean vector   and covariance matrix   are given by 

 I II
1 2( , ) (3.7225,4.0508)      (53) 

 
 

 

TI II
1 2

TI II
1 2

12

21

11 1

1 11

0.9324

0.9324





 
                


 

 
  (54) 

The system reliability is calculated by 

  I II
1 2Pr ( ) 0 ( ) 0 ( )dsR Z Z 



     UU U u u  (55) 

where   is the system safe region defined by 

   I II
1 20, 0| ( ) ( )Z Z   U U U  (56) 

Plugging Eq. (52) into Eq. (55), we have 41 1.0537 10f s sp R     . 

We now discuss the case where the traditional system reliability method is used 

and then compare the results from both methods. The traditional method [39] assumes 

that the states of all the components are independent. Then the system reliability is 

calculated by 

 
1

m

S i
i

R R


   (57) 

where iR  is the reliability of the i-th component. The result is given in Table 2 on the 

“Independence Assumption Method” column. Although this method is easy to use and 

sometimes effective, it may produce large errors when the components are highly 

dependent. 
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To verify the accuracy, we also use the true limit-state functions I
1 ( )g X  and 

II (true)
2 ( )g X  in Eqs. (45) and (47) to evaluate the system reliability based on FORM and 

consider this value as a benchmark. The result obtained is 41.0478 10 . Table 2 shows 

all the results from different methods. The independence assumption method has a large 

error of 18.46%, which is due to the neglected strong correlation indicated by 

12 0.9324  . The proposed method produces an error of only 0.56%, which shows much 

higher accuracy.  

 
 
 

Table 2 Results of system reliability from different methods 

 Proposed Method 
Independence 

Assumption Method 
True Value 

f sp  41.0537 10  41.2413 10  41.0478 10  

Error (%) 0.56  18.46 ― 

 
 
 
5.2 ENGINEERING EXAMPLE 

A cantilever beam is subject to moments 1M  and 2M , forces 1Q  and 2Q , and 

distributed loads denoted by 1 1( , )L Rq q  and 2 2( , )L Rq q  as shown in Figure 7. Assume that 

1M , 2M , and 1Q ; the dimensions variables 1a , 2a , and 1b ; the yield strength aS ; and the 

allowable shear stress a  are basic random variables, which are assumed independent 

and are listed in Table 3. Deterministic parameters are listed in Table 4. 

The cantilever beam fails due to three failure modes, and each is considered as a 

component, thus the reliability of the beam is regarded as a system reliability. 
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Figure 7 A cantilever beam system 

 
 
 

The first failure mode is caused by excessive normal stress, and its limit-state 

function is known and is given by 

 I
1 2

6
( ) a

M
g S

wh
 X   (58) 

in which M is the bending moment at the root calculated by 

 

2 2 2

1 1 1

2

1

( )( ) / 2

       [( )( ) / 2][ 2( ) / 3]

i i i Li i i i i
i i i

Ri Li i i i i i
i

M M Fb q d c d c

q q d c c d c

  



    

    

  


  (59) 

Since the limit-state function is provided, this failure mode is treated as a Type I 

component. The second failure mode comes from the excessive shear stress with a known 

limit-state function given by 

 I
2 max( ) ag   X   (60) 
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in which a  is the allowable shear stress, and max  is the maximal shear stress given by 

 
2 2 2

max
1 1 1

( )( )3
( )

2 2
Ri Li i i

i Li i i
i i i

q q d c
F q d c

wh


  

  
    

 
     (61) 

Similarly, this failure mode is also a Type I component. 

 
 
 

Table 3 Basic random variables  

 
Random 
variables 

Distribution 

1X  1(Nm)M  3 3 2(50 10 , (2 10 ) )N    

2X  2 (Nm)M  3 3 2(30 10 , (2 10 ) )N    

3X  1(m)a  2(1.5,0.005 )N  

4X  2 (m)a  2(4.5, 0.005 )N  

5X  1(N)Q  3 3 2(65 10 , (13 10 ) )N    

6X  1(m)b  2(0.7, 0.005 )N  

7X  (Pa)aS  6 6 2(62.5 10 , (1 10 ) )N    

8X  (Pa)a  6 5 2(3.6 10 , (1 10 ) )N    

 
 
 

The third failure mode (FM3) is due to the excessive deflection with an unknown 

limit-state function. It is therefore a Type II component. The probability of failure 3fp  

due to this failure mode is then evaluated using statistics-based methods with training 

points. Note that the training points used in this example actually come from computer 

simulation, since it is hard for us to perform real physical experiments due to lack of 

measuring devices. Assume the true limit-state function for FM3 is 

 II (true)
3 max( ) ag v v X  (62) 

in which 8.4 mmav   is the allowable deflection, and maxv  is the maximal tip deflection. 
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Table 4 Deterministic parameters 

 
Parameters Values 

1 2 (N)Q  330 10  

2 2 (m)b  2.5  

3 1(N/m)Lq  330 10  

4 2 (N/m)Lq  320 10  

5 1(m)c  0.25  

6 2 (m)c  1.75  

7 1(N/m)Rq  320 10  

8 2 (N/m)Rq  31 10  

9 1 (m)d  1.25  

10 2 (m)d  4.75  

11  (m)L  5.1 

12  (m)w  0.204  

13  (m)h  0.403 

 
 
 

The deflection maxv  can be computed by 

 

2 32 3 2 2

max
1 1

4 5 42 2 2

1 1 1

52

1

( ) ( )1

2 2 2 6

( ) ( )( ) ( )1
        

24 120( ) 24

( )( )1
        

120( )

i i i i

i i

Li i Ri Li i Ri i

i i ii i

Ri Li i

i i i

M L a F L bML BL
v

EI

q L c q q L c q L d

EI d c

q q L d

EI d c

 

  



  
    

 

    
    

 

 




 

  



  (63) 

where B  is the reaction force at the fixed end. The Young’s modulus is 9200 10 PaE   , 

and the moment of inertia is 
3

12

wh
I  . Based on the given limit-state function in Eq. (62), 

twelve training points at failure states are generated by simulation and are transformed 

into the U-space as listed in Table 5. Since aS  and a  do not affect the third failure 
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mode, their components 7U  and 8U  are absent in the training points. As discussed 

previously, 3fp  is estimated by a statistics-based reliability method using the data set 

from reliability testing and is assumed equal to the probability of failure 

4
3 2.864 10fp    produced by FORM with the true-limit state function in Eq. (62). 

 
 
 

Table 5 Training points for FM3 

No. 
u 

1 1( )U M  2 2( )U M  3 1( )U a  4 2( )U a  5 1( )U F  6 1( )U b  

1 2.8351 2.0504 -1.6190 -1.5710 2.0410 0.8219 

2 1.7433 2.2424 -0.1380 0.9161 2.5797 2.1406 

3 1.0681 2.6931 -1.2685 -0.5628 2.0397 -0.1730 

4 4.0026 2.6572 -1.4512 -0.4765 2.0030 -0.4871 

5 2.2738 3.5800 0.4564 0.7455 -0.2342 -0.7254 

6 0.2692 2.6336 1.3638 0.2184 2.8383 0.4362 

7 1.0906 3.1686 0.4705 -0.3467 0.9793 1.6114 

8 1.0306 3.3218 -0.1654 -1.9311 0.9750 1.0332 

9 1.4163 3.3888 0.7300 -0.4728 1.1202 0.9889 

10 1.0380 3.0489 -0.2377 -0.0370 1.3500 0.6203 

11 1.0432 2.6388 -1.6206 0.3320 2.6083 -0.3964 

12 0.6974 3.2863 1.4655 2.2559 1.4333 -0.5095 

 
 
 

Assume the linear model for FM3 is given by 

 II II II T
3 3 3( )Z  U U  (64) 

where II 1
3 3( ) 3.4442fp    . II

3  is obtained from the following optimization model 
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12 12

1 , 1

T1
max

2

s.t. 0  12

i i j
i i

i j
j

i i

  



 


 


      

  u u



   (65) 

in which iu  represents the training points given in Table 5. Solving the above the model, 

we obtain the Lagrange multipliers  =  (0, 0, 0.0345, 0, 0.0047, 0.0037, 0.0203, 0, 0, 

44.25 10 , 0, 0.0108); therefore, six support vectors 3 5 6 7 10,  ,  ,  ,  ,u u u u u  and 12u  are 

determined by the nonzero components 3 5 6 7 10,  ,  ,  ,        and 12   in  . Then using 

1 2,  ,  ,  ,u u   and 12u  in 
1

3

12

ii
i




  u , we have 

3 ( 0.0787, 0.2207, 0.0113, 0.0023, 0.1157, 0.0197 )=      , which produces the 

unit vector II 3
3

3

( 0.3001, 0.8414, 0.0430, 0.0087, 0.4409,   
 





0.0750) . 

Thus, the linear model in Eq. (64) is determined and is given by 

 II
3 1 2 3 4 5 6( ) 3.4442 0.3001 0.8414 0.0113 0.0023 0.1157 0.0197Z U U U U U U      U (66) 

Since the first two failure modes are Type I components, FORM could be directly 

used with the following linear models: 

 I I I T ( )  i i iZ i   U U  (67) 

in which I
1 3.4989  , I

2 3.2470  , I
1 ( 0.181, 0.181,0,0, 0.826, 0.046)     , and  

I
2 (0,0,0,0, 0.92,0)  .  

Thus, vector I I II
1 2 3[ ( ), ( ), ( )]Z Z ZU U U  follows a multivariate normal distribution 

with the joint PDF given by 
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    
T 1

3

1 1
e( xp

2(2 )
)



 
    

 
U u u Σ u 


 (68) 

where the mean   and covariance matrix   are given by 

I I II
1 2 3( , ) (3.4989, 3.2470, 3.4442, )      

and 

12 13

12 23

13 23

1 1 0.7608 0.5744

1 0.7608 1 0.4062

1 0.5744 0.4062 1

 

 

 

   
       
      

 , where 12 13,   and 23  are the 

correlation coefficients between I
1 ( )Z U  and I

2 ( )Z U , I
1 ( )Z U  and II

3 ( )Z U ,  and I
2 ( )Z U  and 

II
3 ( )Z U , respectively.  

The system reliability is then calculated by  

  I I II
1 2 3Pr ( ) 0 ( ) 0 ( ) 0 ( )ds ZR Z Z 



        UU U U u u   (69) 

where   is the system safe region defined by 

   I II II
1 2 3| ( ) ,  (0 0,)  ( ) 0Z Z Z      U U UU  (70) 

Then Eq. (72) yields 31 1.0198 10f s sp R     . 

 
 
 

Table 6 Results from different methods 

 Proposed Method 
Independent 

Assumption Method 
True Value 

f sp  31.0198 10  31.1028 10  31.0155 10  

Error (%) 0.42  8.59  ― 
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For validation, we use FORM and all the given limit-state functions I
1 ( )g X , 

I
2 ( )g X , and II

3 ( )g X  to solve for the true system reliability. Likewise, we also use the 

independence assumption method. The results are shown in Table 6. The proposed 

method outperforms the independence assumption method with much higher accuracy. 

 

6. CONCLUSIONS 

Motivated by the need for creating component models from one-class failure data 

in system reliability prediction, this study develops a new one-class SVM method for 

dada set that is on one side of a hyperplane, which is tangent to a hypersphere with a 

known radius. Different from traditional SVM methods, the new method creates a linear 

model using both the given data set and the radius; in other words, only the direction of 

the hyperplane is determined. 

The advantages of the proposed method for system reliability prediction are 

multifold. At first, it reveals the relationship between component states (safe or failed) 

with factors that affect the state, such as component dimensions, loading, and 

environment. Second, the method makes it possible to account for the dependence 

between component states through the created models. Third, the method allows for a 

complete probability density function of all the component states. Fourth, the method 

provides a feasible way to integrate physics- and statistics-based reliability methods. As a 

result, an accurate system reliability prediction can be produced. 

There are several assumptions for the application of the proposed method, such as 

the distributions of basic random variables are known, the reliability resulting from the 
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first order reliability method is accurate, and no stochastic processes are involved. In our 

future study, we will extend the method to time-dependent problems where the data set 

varies with respect to time. 
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ABSTRACT 

System reliability is usually predicted with the assumption that all component 

states are independent. This assumption is particularly useful for systems with outsourced 

components. The assumption, however, may produce large errors in the system reliability 

prediction since many component states are strongly dependent. The purpose of this 

study is to develop an accurate system reliability method that can produce complete joint 

probability density function (PDF) of all the component states, thereby leading to 

accurate system reliability predictions. The proposed method works for systems whose 

failures are caused by excessive loading. In addition to the component reliability, system 

designers also ask for partial safety factors for shared loadings from component suppliers. 

The information is then sufficient for building a system-level joint PDF. Algorithms are 

designed for a component supplier to generate partial safety factors, which enables 

accurate system reliability predictions without requiring proprietary information from 

component suppliers. 
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1. INTRODUCTION 

System reliability is the ability that a system performs its intended function. It is 

often measured by the probability that the system can work properly without any failure. 

Since a system is composed of multiple components, its reliability depends on the 

reliability of each component. Accurate system reliability prediction requires the joint 

probability density function (PDF) of all the component states. It is difficult or even 

impossible to obtain the joint PDF. For this reason, the system reliability is commonly 

approximated with the assumption that all component states are independent. For a series 

system consisting of n components, the assumption gives 

 
1

n

s i
i

R R


    (1) 

where sR  is the system reliability, and iR  is the reliability of component i. 

The independence assumption is particularly useful for systems whose 

components are outsourced. Outsourcing is a common practice as many industrial firms, 

such as automakers, function as system integrators, relying on various outside component 

suppliers. For example, numerous parts of vehicles are designed and manufactured 

outside except for engines and powertrains that the automaker wants to keep in-house. 

This practice has resulted in huge cost savings in developing new products [1, 2]. During 

the system design stage, system designers can easily estimate the system reliability using 

Eq. (1) after they obtain component reliability iR  ( 1, 2 ,,i n  ) from component 

suppliers. The independence assumption does not require system designers to know 

component design details [3, 4], which in most cases are proprietary to component 

suppliers. When the component reliability is predicted with physics-based reliability 
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methods, the component design details include component limit-state functions that 

specify the component states (safe or failed) [5]. 

The major drawback of the independence assumption method is the poor accuracy 

when component states are strongly dependent. This is often the case for mechanical 

systems. Components in a mechanical system may share the same random operation 

conditions, such as excessive stresses, making component failures highly dependent. Eq. 

(1) is actually the worst-case system reliability when component states are positively 

dependent. (This is the case for most mechanical applications.) The best-case system 

reliability is equal to the worst component reliability 1,2, ,min{ }ii nR   under the assumption 

that all component failures are completely dependent. Then the error of the system 

reliability prediction without knowing the system joint PDF is given by [6]  

 
1

min{ },   ( 1,2 , )
n

i s i
i

R R R i n


      (2) 

The above reliability bound may be too wide to make any useful decisions. To 

narrow this bound, Ditlevsen [7] proposed a method to obtain series system reliability 

bounds with the involvement of both unicomponent probabilities and bicomponent 

probabilities. Zhang [8] generalized this method by introducing joint probabilities of 

larger sets of components. Both methods require complete limit-state functions of all the 

components, making the methods not applicable for systems with outsourced components.  

To address this issue, Hu and Du [9, 10] proposed a physics-based reliability 

method for component adopted in new series systems. The method reconstructs 

component limit-state functions at the system-level using limited reliability information. 

This method is able to build the joint PDF of the component states, thereby estimating 
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system reliability with high accuracy. It requires, however, reliability functions with 

respect to the system load, increasing the burden of component reliability analysis on the 

component supplier side. To fix this problem, a new method [11] was developed to 

rebuild an equivalent component limit-state function under new conditions without 

knowing the relationship between the reliability and load. But the method may be 

inefficient for systems with more than two shared loads among components.  

Many other reliability methods can also be used for the system reliability 

prediction. Yu and Wang [12] proposed a reliability assessment approach by combining 

the extreme value moment method and the improved maximum entropy method for 

systems with multiple failure modes. Recently, they also developed a novel time-variant 

reliability analysis method based on failure process decomposition for dynamic systems 

[13] and a kernel density function based on the uncertainty quantification method for 

estimating the reliability of a robotic device [14].  Some statistical-based methods are 

also widely used for system reliability evaluation, including Linear Regression (LR) [15], 

Artificial Neural Network (ANN) [16], and Support Vector Machines (SVM) [17, 18] . 

Even with no component design details, these methods could reconstruct a precise 

decision boundary (response surface) of the component using training data. To evaluate 

the system reliability, however, they still require additional information from component 

suppliers.  

The objective of this work is to develop a new system reliability method linking 

both component-level and system-level analyses. At the component level, the proposed 

method enables component suppliers to provide enough information to system designers 

without revealing their component design details. At the system level, the proposed 
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method helps system designers produce a complete joint PDF of all the component states, 

thereby leading to accurate system reliability prediction. Specifically, the major approach 

we use in the proposed method is the employment of partial safety factors (PSFs), which 

are specified by component suppliers for shared loads from the system with physics-

based reliability. Then system designers use the PSFs from component suppliers to 

rebuild equivalent component limit-state functions [19, 20], which in turn produce the 

joint PDF that is necessary for the system reliability prediction. 

The rest of this paper is organized as follows. Basic methodologies used in this 

work are reviewed in Section 2. The overview of the proposed methods is given in 

Section 3. The system-level analysis is discussed in Section 4 followed by component-

level analysis in Section 5. In Section 6 the complete procedure of the proposed method 

is described. Examples are discussed in Section 7. Conclusions are given in Section 8. 

 

2. METHODOLOGY REVIEW 

The proposed method can employ any physics-based reliability methods, 

including First-Order Reliability Method (FORM), Second-Order Reliability Method 

(SORM), and Monte Carlo Simulation (MCS). The methods are briefly reviewed in 

Section 2.1. We also review the concept of PSF in Section 2.2. 

 

2.1 FIRST ORDER RELIABILITY METHOD (FORM) 

FORM linearizes a limit-state function ( )g X  at the Most Probable Point (MPP) 

using the first order Taylor expansion, and then the probability of failure fp  is obtained.  
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Step 1 is to transform random variables into standard normal variables. Assume 

that all random variables in 1 2( , , , )nX X XX   are independent. The random variables 

in X  are transformed into standard normal random variables 1 2( , , , )nU U UU =  . The 

transformation is given by [21] 

 ( ) ( ) 1,2, , )i ii X UF ni       (3) 

where ( )iF   and ( )   are the cumulative distribution functions (CDF) of iX  and iU , 

respectively. Then  

 1 ( ) )( 1,2, , )ii iF T nX U iU         (4)  

in which ( )T   denotes the transformation operation.  

Step 2 is to search for the MPP. fp  is computed by 

  
( ( )) 0

Pr ( ( )) 0 ( )f
g T

p g T d


    U
U

U u u   (5) 

in which ( )U u  is the joint PDF of U . FORM linearizes ( ( ))g T U  and minimizes 

linearization error by using an expansion point u  obtained from 

 
min

s.t.  ( ( )) 0

T

g T

 

 





U
UU

U
  (6) 

u  is called the Most Probable Point (MPP), and its magnitude is called the 

reliability index and is given by  

  
T

   u u  (7) 

With the first Taylor expansion series, ( ( ))g T U  is approximated at u  as  

 ( ( )) ( ( )) ( )( ) ( )( )T Tg T g T g g         U u u U u u U u  (8) 



 

 

113

where ( )g  u  is the gradient of ( ( ))g T U  at u and is given by 

 
1 2

( ( )) ( ( )) ( ( ))
( ) , , ,

n

g T g T g T
g

U U U


    
   

    u

U U U
u    (9) 

Set a unit vector   as 

 
( )

( )

g

g









u

u 
    (10) 

Then u  is represented by 

   u    (11) 

Substituting Eqs. (10) and (11) into Eq. (8) and multiplying both sides of Eq. (8) 

by 
1

( )g  u 
 yields a new limit-state function 

 
( ( ))

( )
( )

g T
G

g



  



U
U U

u 
   (12) 

The last step is to compute fp , which is calculated by 

  Pr ( ) 0 ( )fp G     U   (13) 

Since FORM is based on the first order Taylor expansion, it is accurate when the 

limit-state function is not highly nonlinear. Otherwise, SORM is a better choice. 

 

2.2 SECOND ORDER RELIABILITY METHOD (SORM) 

SORM uses the second order Taylor expansion to approximate ( )g X  at the MPP, 

which is given by 

 
2

( ( )) ( ) ( )( )

1
                + ( ) ( )( )

2

g T g g

g

  

  

  

  

U u u U u

U u u U u
 (14) 
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where ( )g  u  is given in Eq. (9) and 2 ( )g  u  is the Hessian matrix. Since there is no 

closed-form expression for fp  [22], an orthogonal transformation Y HU  is conducted. 

This transformation rotates the U-space into a new set of mutually independent standard 

normal variables Y  with nY  coincident with the MPP vector. Matrix H  is an orthogonal 

matrix and is obtained by a Gram-Schmidt [23] orthogonalization. Then the 

approximated limit-state function is rewritten as  

 
1

( ) ( ) ( )
2

T
nYG        Y Y y M Y y  (15) 

where (0,0, , )T y   is the Y-space MPP corresponding to the u , and M  is the 

transformed Hessian matrix and is given by 

 
2 ( )

( )
Tg

g









u
M = H H

u 
 (16) 

After a series of orthogonal transformations, with the first 1n  variables 

being 1 2 1( , , , )T
nY y y y   , the first  ( 1) ( 1)n n    order matrix of M  becomes a 

diagonal matrix, and Eq. (15) becomes 

 
1

2

1

1

2

n

n i i
i

Y k y




    (17) 

where ik  represents the curvature of the response surface at the MPP, and finding ik  can 

be treated as an eigenvalue problem. 

The probability of failure is then estimated using Breitung’s formulation, which is 

given by  

 
1/21

, Breitung
1

( ) (1 )
n

f i
i

p k 




     (18) 
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A more accurate expression is derived from Tvedt’s formulations which is given 

by [23] 

 , Breitung 1 2 3+fp A A A   (19) 

in which 

 

1/21

1
1

2

1/2 1/21 1

1 1

3

1/2 1/21 1

1 1

( ) (1 )

[ ( ) ( )]

        (1 ) (1 ( 1))

( 1)[ ( ) ( )]

        (1 ) Re (1 ( 1))

n

i
i

n n

i i
i i

n n

i i
i i

A k

A

k k

A

k k

 

  

 

   

 





  

 

  

 


    

    

  

      
 

     

   

       
  



 

 

  (20) 

where Re( )  denotes the real part of an imaginary number. 

 

2.3 MONTE CARLO SIMULTATION (MCS) 

MCS is a sampling method. The procedure of MCS is below. 

1) Generate N  samples of X .  

2) Calculate the response ( )g X  at samples of X , and then N  samples of ( )g X  are 

available.  

3) Count the number of samples of ( )g X  in the failure region ( ( ) 0g X ). Denote 

the number of failures by fN . The probability of failure is then given by 

 
f

f

N
p

N
   (21) 
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2.4 PARTIAL SAFETY FACTOR (PSF) 

PSFs are commonly used in modern structural design (limit state design), which 

are usually applied to loads and material properties for a safe design. The PSF for a load, 

which is generally greater than unity, sets the design value of the load equal to the 

product of the PSF and the service load (or desired load). The PSF for a material strength 

is usually less than unity. Multiplying the PSF by the material strength determines the 

permissible stress (strength) of the material. For example, a load acting on a cantilever 

beam is multiplied by a PSF > 1 to account for the variation of the load due to a sudden 

increase. Similarly, a PSF < 1 is applied to the characteristic stress of the material to 

ensure that sufficient strength is provided. 

In general, for a component with limit-state function ( )g X , the basic random 

variables in X  include applied loads  1 2, , , pL L LL   and component strength S . 

With PSFs, the safe state of the component is specified by [24] 

 ( ) ( , ) 0
iS i Lg g    X   (22) 

where 1   is the PSF (reduction factor of strength) for the strength, and i  is the PSF 

(partial load amplification factor) for load iL  ( 1, 2 ,,i p  ); S  is the mean of S , and 

Li  is the mean of iL . 

With distributions of S  and iL  available, the PSFs   and i  could be easily 

computed. Assume that component suppliers use FORM for the reliability analysis, 

which produces the MPP u  and the reliability index  . The partial safety factors   and 

i  can be obtained by 
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 1* ( )S S

S S

FS 


 

  
    (23) 

 
 1* ( )

i

i i

L Li
i

L L

FL 


 

  
    (24) 

in which *S  and *
iL  are components of the MPP in in the X-space for S  and iL , 

respectively; S  and 
iL  are the directional cosine of S  and iL  in the U-space, 

respectively.  

If ( )g X  is not available to component suppliers, physics-based methods cannot 

be directly applied for the reliability analysis. In these cases, statistics-based methods, 

such as Support Vector Machine [18], are good choices to approximate the component 

limit-state function with limited observations; then   and i  will be available. 

 

3. SYSTEM RELIABILITY PREDICTION WITH PSFS 

The proposed system reliability method works for the following systems with 

outsourced components.  

1) System and component failures are caused by excessive stresses. 

2) Components share a number of loads, which are the only common basic variables 

shared by component limit-state functions.  

3) A component may have multiple failure modes. 

4) System designer knows the distributions of loads distributed to components. 

5) System designers do not know component limit-state functions. 

6) System designers know component reliability provided by component suppliers. 
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7) Component suppliers also provide PSFs they used in their component design to 

system designers. 

The basic strategy of the PSF method is that system designers construct 

equivalent component limit-state functions and convert them into a multivariate normal 

distribution, whose distribution parameters are estimated through the component 

reliability and component PSFs provided by component suppliers. Once the joint normal 

PDF is available, the system reliability can be easily estimated. 

It is therefore important for component suppliers to produce component 

reliabilities and PSFs. For the former, any physics-and statistics-based methods, such as 

FORM, SORM, MCS, SVM, and experiments can be used. For the latter, the proposed 

method relies on the concept of equivalent linear safety margin [19, 25] to determine 

PSFs for components with multiple failure modes. 

The PSF method therefore involves both system- and component-level reliability 

analyses. Both of them are discussed in Sections 4 and 5. 

 

4. SYSTEM-LEVEL ANALYSIS 

At the system analysis level, the task of system designers is to accurately predict 

system reliability with only the component reliability and corresponding PSFs.  

Assume that the system consists of m  components and is subjected to multiple 

loads  1 2, , , pL L LL  . Component probabilities of failure fip  and PSFs 

 ,1 ,2 ,, , ,i i i i p     of  1 2, , , pL L LL  , 1, 2 ,,i m  , are provided by component 

suppliers.  



 

 

119

For component i, system designers construct an equivalent limit-state function no 

matter how many failure modes the component may have and what reliability method 

that the component supplier has used. The equivalent limit-state function contains only 

shared load  1 2, , , pL L LL   in a linear form 

 
1 1, ,( )

p pi i i L L i L LG U U     U    (25) 

where i  is the reliability index given by 

 ( )i fip      (26) 

1 2
, , )( ,

pL L L LU U U U  is the transformed vector of  1 2, , , pL L LL  , and 

, , 1, 2, ,
ji L j p   , are coefficients. 

System designers can find , ji L  using PSFs ,i j . The equation is given by 

  1 1
, ,( )

j j ji L i L i j LF         (27) 

Eq. (27) can be easily derived if FORM is used by the component supplier. Since 

*
, , ji j i j LL    is the MPP component of iL  in the X-space, we have 

 * *
,( ) ( )

j jL i j LF L u    (28) 

in which ( )
jLF   is the CDF of jL , and *

jLu  is the MPP component of jL  in the U-space. 

According to Eq. (11) and 
,

*
,i j jL i L iu    , Eq. (27) is rewritten as 

 *
,( ) ( )

j jL j i L iF L       (29) 

This leads to Eq. (27).  

Note that using FORM is not a prerequisite for the PSF method.  As will be 

discussed in Section 5, other reliability methods can also be used.   
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Since the components of U  follow standard normal distributions, the limit-state 

function ( )iG U  with respect to U  also follows a normal distribution with the mean value 

of i  and standard deviation of 1. Thus, the joint PDF of all the component states in Eq. 

(25) follows a multivariate normal distribution with the joint PDF ( ) G  determined by 

the mean vector μ and covariance matrix Σ , which are respectively given by 

 1 2 ,( ), , m     μ   (30) 

 

12 1

21 2

1 2

1

1

1

m
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 

 
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 
 
 
 
 
 

Σ



   



 (31) 

in which ij is calculated by  

 , ,
1

i L

p

ij p j p
k

L 


   (32) 

With the obtained μ and Σ , ( ) G  is given by 

    11 1
exp

2(2
(

)
)

T

n




 
   

 
G v v Σ v 


 (33) 

The system reliability is calculated by 

 ( d ( );) ksR 


   G v v μ Σ  (34) 

where ( ); μ Σ  is the CDF of ( ) G , and  is the system safe region defined by 

  0 | ( )i mG i     U U   (35) 

The system probability of failure is then given by 

 1fs sp R   (36) 
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5. COMPONENT-LEVEL ANALYSIS 

As discussed above, the task of a component supplier is to provide the component 

reliability and PSFs of the shared loads to system designers. We now discuss the 

proposed method for doing so. 

A component may fail due to multiple failure modes. For each failure mode the 

component supplier could use various methods to obtain the component reliability. 

Given component i with q  failure modes and the limit-state 

functions , , ~ ,( ) ( ) ( 1, 2 , )i k i i k i L LG g k q U U U  , where iU  is the vector of the basic 

variables, LU  is the vector of the shared loads, and ~i LU  is the vector of  iU  without LU  

in the U-space. We at first discuss the case where FORM is used. The approximated 

limit-state functions by FORM are given by 

 
1 1, , , 1 ~ 1 , ,( ) ,  1,2 ,

p pi k i k i k i L i kL iL i kL iLG U U U k q            U     (37) 

where ,i k  is the reliability index of the k-th failure mode, and 

1, , 1 , ,( , , , , )
pi k i k i kL i kL         is the directional cosine. If one failure mode occurs, the 

entire component fails. As a result, the component is regarded as a series system. The 

reliability is then given by 

 ,( )k ii iR   μ Σ  (38) 

where 1 2, ,( , )i i i iq     μ   and , ,[ ]kj
T

i i k i j   Σ    ( , 1, 2, , )k j q  . The reliability 

index of the component is therefore given by 

  1
i iR    (39) 
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Each component failure mode has its own PSFs for the shared loads. To enable 

the component supplier to produce PSFs for the entire component with a single limit-state 

function, we employ the method of the equivalent linear safety margin discussed in [19], 

which is given by 

 
1 1,1 1~ , ,( )

p pi i i L i L L i L LG U U U        U    (40) 

Eq. (40) represents only one limit-state function no matter how many failure 

modes a component may have. The coefficients of the random variables on the right-hand 

side are determined by the sensitivity of i  with respect to the basic random variables.  
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1
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 
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



 (41) 

The derivatives in Eq. (41) are evaluated numerically. Increase jU ,  1,2 ,,j n  , 

by a small amount 0j   , and then let (0, , , , 0)j j  ε . The new basic variables 

become 

 2 1 11 , , ,( , , , )j j j j nUU U U U U   U  (42) 

This gives a new reliability index ,i j  by 

  1
, 1 ( )i j i i j

      ε  (43) 

The derivative is then given by 

 ,i j ii

jU

 







  (44) 
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Since the counterpart in the X-space of the MPP of jL  is calculated by 

*
, jj i j LL   and in the U-space the MPP is given by *

, jj i i Lu    , the component PSFs 

for the shared loads are computed by  

 
 1

,

,

( )
  ( 1,2, , )

j j

j

L i i L

i j

L

F
j p

 




  
    (45) 

Then component suppliers provide the component reliability iR  and PSFs ,i j  to 

system designers. iR  and ,i j  do not include proprietary information such as component 

limit-state functions, which may involve structures, dimensions, and material properties.  

Note that although the above discussions are based on FORM, other reliability 

methods can also be used. If SORM is used, the procedure will be the same. Component 

suppliers only need to replace i  obtained by FORM with that by SORM. 

 

6. COMPLETE PROCEDURE 

We now discuss the complete procedure of using the PSF method. The procedure 

consists component-level and stem-level analyses. First, we summarize the information 

known at both levels. 

1)  Component-level: limit-state functions , ( )i kg X  for the k-th failure mode of the i-th 

component, and the distributions of X (basic random variables and system loads). 

2)  System-level: the probability of failure of each component fip , the PSF ,i j  for 

each system load, and the distributions of system loads. The former two pieces of 

information are produced by the component-level analysis. 
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The flowchart of the complete procedure is then provided as shown in Figure1, 

which shows the analysis procedure in detail. 

 
 
 

 

Figure 1 Flowchart of the proposed method 
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7. EXAMPLES 

In this section, the PSF method is applied to two examples. The first mathematical 

example is used to demonstrate the procedure of using the proposed method for system 

reliability estimation while the other example shows an engineering application. 

 

7.1 MATHEMATICAL EXAMPLE 

A system consists of two components, and each component has two failure modes 

(FMs). The components are provided by two different outside suppliers. We now discuss 

the proposed method through both component-level and system-level analysis. 

7.1.1 Component-Level Analysis. Component 1 has two limit-state functions for 

FM1 and FM2, respectively, which are given by 

 1 1,2 1,31,1 1,1( ) 452 8.6 3.6g X X X    X   (46) 

 3 2
1,2 11 1,3,1 1,2( ) 1035 2 3g X X X    X   (47) 

The independent basic random variables are 1 1,1 1,2 1,3 1,1( , , ) ( , )X X X X X L , and 

1 2( , )L LL  contains two shared loads. Their distributions are given in Table 1. 

 
 
 

Table 1. Distribution of basic random variables for Component 1 

Variable Distribution 

1,1X   210,0.8N  

11,2 ( )X L   230,1.5N  

21,3 ( )X L   2300,10N  
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The supplier uses FORM for reliability analysis for FM1 and obtain the 

approximated limit-state function given by 

 
1 1 2 21,1 1,1 1,1 1,1 1 1,11,11 1( ) L L L LG U U U       U  (48) 

where 1,1 3.1614   , 1,11 0.5179  , 
11,1 0.4065L  , and 

21,1 0.7527L  . The probability 

of failure is 4
1,1 1,1( ) 7.8498 10fp       .  

For FM2, the suppliers applies SORM due to the higher nonlinearity. Then the 

reliability index and corresponding directional cosine are obtained by 1,2 3.3435   , 

1,21 0.7012  , 
11,2 0.7006L  , and 

21,2 0.1320L   . The approximated linear limit-state 

function is given by 

 
1 1 2 21,2 1,2 1,1 1,2 1,21,21( ) L L L LG U U U      U  (49) 

The probability of failure is 4
1,2 1,2( ) 4.1359 10fp       . 

Since the joint PDF of 1,1( )G U  and 1,2 ( )G U  follows multivariate normal 

distribution with the mean 1μ  given by 

 1,1 1,1 2, ) ( 3.1614, 3.34( 35)      μ  (50) 

and 1Σ  given by 

 12

1

21

1 1 0.5485

1 0.5485 1





   
    

  
Σ  (51) 

Thus, the probability of failure of component 1 is calculated by 

 1 1
3

1 21 ( ) 1.1650 10fp      μ Σ  (52) 

The corresponding reliability index is 1
1 1( ) 3.0446fp    . 
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The component supplier also needs to provide the PSFs for the system load 

1 2( , )L LL  to system designers. Now we discuss how the component supplier obtains 

the PSFs using the equivalent linear safety margin approach [20].  

The component equivalent reliability index is 1 . Set 0.01  , with 1 0,0    , 

we have 

 

1 2

1 2

1,111,1

1 1

1,1

1
1,2 1,21

1,1

1,2 1,2

0

0

0.01
3.1614 0.5179 3.1666

          
0.4065 0.7527

0.7006 0.132
         = 0

3.3435 0.7012 0
0

L L

L L

T T
 






 

 
                    

 
                  



 





  

3.3505

 
 
 

  (53) 

According to Eq. (43), the new reliability index is  

  1
1,1 2 11( ) 1 ( 3.1666, 3.3505 ) 3.0506       Σ   (54) 

Therefore,  

 
1

1,1 1 11
1,1

0

( ) 3.0506 3.0446
0.6051

0.01




 





 
   

 


 (55) 

Similarly, with 2 0,   , we have 

  
1

1
1, 2 12( ) 1 ( 3.1655, 3.3505 ) 3.0499L       Σ  (56) 

Therefore, 

 1

1

2

1, 21
1,2 1,

0

1( ) 3.0499 3.0446
0.5292

0.01

L

L


 

 





 
    

 


 (57) 

Likewise, with 3 0,0,   , we have 

  
2

1
1, 3 12( ) 1 ( 3.1690, 3.3422 ) 3.0492L       Σ  (58) 
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We then have 

 2

2

3

1, 31
1,3 1,

0

1( ) 3.0492 3.0446
0.4586

0.01

L

L


 

 





 
    

 


 (59) 

By normalizing 1,1 1,2 1,3( , , )   , we obtain a unit vector of (0.6538,0.5718,0.4955) . 

Note that
11,2 1,L   and 

21,3 1,L  , the equivalent safety margin of component 1 is given 

by 

 1 1 2 2

1 2

1 11 1,1 1, 1,,1

1,1

( )

          3.0446 0.65 0.438 0.5718 955

L L L L

L L

G U U U

U U U

      

   

U
 (60) 

The partial safety factors 1,1  for load 1L  is then calculated by 

 
 

1 1

1

1
1 1,

1,1

( ) 27.3884
= 0.9129

30

L L

L

F  




  
   (61) 

Similarly, the partial safety factors 1,2  for load 2L  is calculated by 

 
 

2 2

2

1
1 1,

1,2

( ) 284.9148
0.9497

300

L L

L

F  




  
     (62) 

Then the supplier of component 1 provides 3
1 1.1650 10fp   , 1,1 0.9129  , and 

1,2 0.9497   to system designers. 

Component 2 also has two limit-state functions given by 

 2
2,1 2,2 2,3 22 ,4( ) 2 3 17g X X X  X  (63) 

 2
2,2 2,2 , 2 42 2 3 ,( ) 2g X X X  X  (64) 

The independent basic random variables are 2 2,2 2,3 2,4 2,41 2( , , ) ( , , )X X X L L X X  and 

1 2( , )L L  are the same shared loads as those in FM1. The details are given in Table 2. 
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Table 2 Distribution of basic random variables for Component 2 

Variable Distribution 

2,2 1( )X L   230,1.5N  

22,3 ( )X L   2300,10N  

2,4X   220,2N  

 
 
 

The supplier of component 2 uses FORM to conduct reliability analysis for both 

failure modes. They obtain the component probability of failure 

 4
2 22 21 ( ) 6.8864 10fp     μ Σ   (65) 

in which 2,1 2,2 2, ) ( 3.2559, 3.28( 48)      μ  and 

2

1 0.9799

0.9799 1

 
  
 

Σ . 

The equivalent reliability index is given by 

 1
2 2( ) 3.1994fp      (66) 

The partial safety factor 2,1  for load 1L  is calculated by 

 
 

1 1

1

1
2 2

2,1

( ) 25.3615
= 0.8454

30

L L

L

F  




  
    (67) 

and  2,2  for load 2L  is given by 

 
 

1 2

2

1
2 2

2,2

( ) 307.0055
= 1.0234

300

L L

L

F  




  
    (68) 

Then 2
46.8864 10fp  , 2,1 0.8454  ，  and  2,2 1.0234   are provided to system 

designers. 
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7.1.2 System-Level Analysis. To calculate the system reliability, system 

designers need to find the joint PDF of components 1 and 2. As discussed in Sec. 4, the 

joint PDF follows a multivariate normal distribution. The task of the system designers is 

therefore to find the mean vector μ and covariance matrix Σ . With the given 1fp  and 

2fp , μ is obtained by 

 1 1
1 2, )( ( ) ( ) 3.0446 3.1994( , )f fp p      μ  (69) 

and Σ  is determined by  

 1 2 1 2

1 2 1 2

1, 1, 2, 2,

1, 1, 2, 2,

( , )( , )

( , )( , )

1 1 0.4442

0.4442 11

T
L L L L

T
L L L L

   

   

   
    

   
Σ  (70) 

where , ( , 1,2)
ji L i j   is calculated by 

  
1 1 1

1 1
1, 1 1,1( ) 0.5718L L LF         (71) 

  
2 2 2

1 1
1, 1 1,2( ) 0.4955L L LF         (72) 

  
1 1 1

1 1
2, 2 2,1( ) 0.9665L L LF         (73) 

  
2 2 2

1 1
2, 2 2,2( ) 0.2190L L LF          (74) 

Thus the system probability of failure is given by 

 2
31 ( ) 1.8206 10fsp     μ Σ  (75) 

7.1.3 Result Validation. To validate the result from the PSF method, we calculate 

the true fsp  using MCS method as if all the component design details, including all the 

component limit-state functions and the information in Tables 1 and 2, were available. 
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For comparison, we also compute fsp  using the independence assumption method, which 

is given by 

 1,in, d 2,ind1 (1 ) (1 )fs in fd fp p p     (76) 

in which 

 3
1,ind 11 121 (1 ) (1 ) 1.1982 10f f fp p p         (77) 

 3
2,ind 21 221 (1 ) (1 ) 1.0751 10f f fp p p         (78) 

Plugging Eqs. (77) and (78) into Eq. (76), we have 

 ,
32.2721 10fs indp    (79) 

The results from different methods are summarized in Table 3, which indicates 

that the PSF method produces much higher accuracy than the independence assumption 

method. The accuracy is measured by the relative error with respect to the MCS solution. 

The dependency between components is automatically accommodated in the proposed 

method. The large error from independence assumption method is mainly caused by the 

high correlation between component states. 

 
 
 

Table 3 Results from different methods 

 PSF 
Independence 
Assumption 

True Value 

fsp  31.8206 10  
32.2721 10  31.7689 10  

Error (%) 2.92 28.44 N/A 
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7.2 ENGINEERING EXAMPLE 

A hoisting device has two components as shown in Figure 2. Component 1 

consists of two cables.  Two loads 1L  and 2L  are applied to Component 1. 1L  and 2L  are 

independent, and the mean value of 2L  is much bigger than that of 1L . Component 2 is a 

truss structure and is composed of two rods. Components 1 and 2 are designed and 

manufactured by two independent outside suppliers, and no design details are available to 

the system-level analysis. System designers ask the component suppliers to perform 

reliability analysis under the system loads 1L  and 2L  and to provide component 

reliabilities and PSFs for the loads. 

 
 
 

 

Figure 2 A hoisting device 
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7.2.1 Component-Level Analysis. Component 1 has two failure modes due to 

failures of cables 1 and 2. The corresponding two limit-state functions are given by 

 1 2
1,1 11 2

1

( )
/ 4

L L
g S

d


 X  (80) 

 2
1,2 1 2 2

2

( )
/ 4

L
g S

d
 X  (81) 

The details known by the suppliers of Component 1 are given in Table 4. 

 
 
 

Table 4 Distribution of basic random variables for Component 1 

Random variables Distribution 

1,1 1 ( )X d : diameter of cable 1  3 4 25 10 , (1 10 )  mN      

21,2  ( )X d : diameter of cable 2  3 4 24 10 , (1 10 )  mN      

1,3 1 ( )X S : resistance of cable 1  270,1  MPaN  

1,4 2 ( )X S : resistance of cable 2  295,12  MPaN  

11,5  ( )X L : load 1  2250,30  NlogN  

21,6  ( )X L : load 2  2550,100  NlogN  

 
 
 

The supplier of Component 1 uses FORM for FM1 and then obtains 1,1 3.8555  , 

and directional cosines 
11,1 0.1604L    and 

21,1 0.9451L    with respect to 1L  and 2L , 

respectively. The probability of failure is computed by 5
11 1,1( ) 5.7744 10fp       .   

The supplier then uses SORM for FM2 and obtains 1,2 3.2802  , 
11,2 0L  , and 

21,2 0.6989L   . The probability of failure is then given by 

4
1,2 1,2( ) 5.1873 10fp       . 
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The joint PDF of FM1 and FM2 is then determined by the mean 

 1,1 1,1 2, ) ( 3.8555, 3.28( 02)      μ  (82) 

and the covariance matrix  

 1

1 0.6604

0.6604 1

 
  
 

Σ  (83) 

Thus, the probability of failure of Component 1 is calculated by 

 4
1 11 21 ( ) 5.6356 10fp     μ Σ  (84) 

The corresponding reliability index is 1
1 1( ) 3.2567fp    . 

Based on the equivalent limit-state function of Component 1, the PSFs 1,1  for 1L  

and 1,2  for 2L  are calculated and are given by 1,1 1.0064   and 1,2 1.4418  . The 

supplier then provides 1fp , 1,1  and 1,2  to system designers. 

The two failure modes of Component 2 are caused by excessive axial stresses 

developed in Rods 1 and 2. The limit-state functions for the two failure modes are given 

by 

 
 

1 2 2
2,1 2 2

2 1

2 3 2
3

(
)

8 )
(

L L a
g

a
S

da 




X   (85) 

  
 

1 2 1
2,2 2 2

2 1

2 4 2
4

(
)

8 )
(

L L a
g

a
S

da 




X   (86) 

The distributions of random variables are given in Table 5.  

The supplier of Component 2 applies FORM to both failure modes and obtains 

the reliability index and directional cosines for the loads. For FM1, the supplier obtains 

2,1 2.7199  , 
12,1 0.1907L   , and 

22,1 0.9299L   . For FM2, the results are 
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2,2 2.8845  , 
12,2 0.1789L   , and 

22,2 0.8697L   . The probability of failure is then 

calculated by 3
2 22 21 ( ) 4.3144 10fp     μ Σ , and the reliability index is 

1
2 2( ) 2.6264fp    . The PSFs 2,1 1.0610   for load 1L  and 2,2 1.4506   for load 

2L  are also obtained. The supplier then provides 2fp , 2,1 , and 2,2  to system designers. 

 
 
 

Table 5 Distribution of basic random variables for Component 2 

Random variables Distribution 

2,1 1 ( )X a : length of Rod 1  240.9, (1 10 )  mN    

2,2 2 ( )X a : length of Rod 2  241.8, (1 10 )  mN    

2,3 3 ( )X d : diameter of Rod 1  3 4 26 10 , 1 10  mN       

2,4 4 ( )X d : diameter of Rod 2  3 4 26 10 , (1 10 )  mN      

2,5 3 ( )X S : resistance of Rod 1  295,3  MPaN  

2,6 4 ( )X S : resistance of Rod 2  250,3  MPaN  

12,7  ( )X L : load 1  2250,30  NN  

22,8  ( )X L : load 2  2550,100  NN  

 
 
 

7.2.2 System-Level Analysis. With the provided component probabilities of 

failure 1fp , and 2fp ; PSFs 1,1 , 1,2 , 2,1  and 2,2  for the system loads, system designers 

build the joint CDF of Components 1 and 2, which follows a multivariate normal 

distribution with the mean  

 1 1
1 2, )( ( ) ( ) 3.2567 2.6264( , )f fp p      μ  (87) 

and the covariance matrix given by 
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 1 2 1 2

1 2 1 2

1, 1, 2, 2,

1, 1, 2, 2,

( , )( , ) 0.7072

0.7072( , )(

1 1

11, )

T
L L L L

T
L L L L

   

   

   
    

   
Σ  (88) 

where , ( , 1,2)
ji L i j   is given by 

  
1 1 1

1 1
1, 1 1,1( ) 0.0163L L LF          (89) 

  
2 2 2

1 1
1, 1 1,2( ) 0.7462L L LF          (90) 

  
1 1 1

1 1
2, 2 2,1( ) 0.1937L L LF           (91) 

  
2 2 2

1 1
2, 2 2,2( ) 0.9435L L LF           (92) 

Thus the system probability of failure is given by 

 2
31 ( ) 4.6386 10fsp     μ Σ  (93) 

7.2.3 Result Validation. We also calculate the true system probability of failure 

using MCS method and the independence assumption method, and the results are shown 

in Table 6. 

 
 
 

Table 6 Results from different methods 

 PSF 
Independence 
Assumption 

True Value 

fsp  34.6386 10  
35.7917 10  34.8540 10  

Error (%) 4.43 19.32  N/A 

 
 
 

The results show that the proposed method outperforms the independence 

assumption method with a relatively higher accuracy even with limited information 

available for system reliability analysis. 
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8. CONCLUSIONS 

This works develops a new system reliability method to accurately estimate 

product reliability with only component reliability and partial safety factors for shared 

system loads. The new method provides a solution to the challenge for accurate system 

reliability prediction when component design details are inaccessible to system designers 

because of outsourcing. The new method is more accurate than the traditional 

independence assumption method. The new strategy is for system designers to construct 

equivalent component limit-state functions using the partial safety factors for shared 

system loads provided by component suppliers. Then the joint probability density 

function is obtained at the system level, thereby leading to accurate system reliability 

prediction without revealing proprietary details of outsourced components. 

The proposed method is applicable to series systems whose failures are caused by 

excessive stresses due to random loads. It is assumed that the shared loads are only 

common random variables between the components of the system. If there are other 

common variables, the proposed method can still work as long as the corresponding 

partial safety factors are provided by component suppliers. Our future work will focus on 

extending the proposed method to complicated systems such as parallel or mix systems. 
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SECTION 

2. CONCLUSIONS 

The objective of this work is to investigate the feasibility of accurately predicting 

system reliability with both in-house and outsourced components. Since the design details 

of outsourced components are usually proprietary to the suppliers and are unknown to 

system designers, it is challenging to estimate reliabilities of outsourced components with 

only limited information, making it difficult to estimate system reliability accurately. 

Four methods are developed to address this issue. The first method rebuilds 

component reliability function using only limited reliability data with respect to 

component loads, thereby estimating system reliability statistically. The second method 

employs two-class Support Vector Machine (SVM) to approximate the limit-state 

functions of outsourced components. The joint probability density function (PDF) of all 

the components can be obtained, which produces accurate system reliability prediction. 

The third method is an extension of the second one. A one-class SVM model with bias 

constraint is developed to reconstruct the limit-state functions of outsourced component 

given only the failure dataset. The joint PDF of all the components is then derived to 

estimate system reliability. The last method handles the case where no reliability dataset 

is available. A partial safety factor (PSF) method is proposed, which enables the 

component designers to provide sufficient information to system designers. Then system 

designers could rebuild the equivalent component limit-state functions and obtain the 

estimated joint PDF for system reliability analysis. 
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From the above studies, the following conclusions are drawn: 

(1) System reliability depends on reliabilities and dependencies between components. 

(2) The widely-used independency assumption method may produce large errors for 

systems with strongly dependent components. 

(3) Traditional physics-based reliability method such as First Order Reliability 

Method, relies on component limit-state functions, making it not applicable to 

systems with outsourced components. 

(4) Component reliability functions with respect to load can be reconstructed using 

probabilistic data with respect to failures at different load levels. 

(5) It is possible to reconstruct component limit-state functions using supervised 

learning methods, such as Support Vector Machines. 

(6) With available limit-state functions of all the components, it is able to derive the 

joint PDF for system reliability analysis. 

(7) If no reliability data are available, the limit-state functions of outsourced 

component can be approximated using partial safety factors. 

The current research focuses on series system and assumes that the basic random 

variables are common loads, component dimensions, and properties of materials. In our 

future work, we will further improve the proposed methods and extend them to more 

complicated system configurations with multiple types of random variables, such as 

temperature, humidity, and pressure. In addition, more efforts will be committed to 

integrate all the proposed methods thereby producing a more comprehensive method for 

more general cases, in which systems are composed of outsourced components with 

reliability information given in different forms. 
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