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ABSTRACT 

Nuclear reactor materials are subjected to a harsh environment including 

high temperatures and radiation fluences. In order to extend the lifetime of current 

light water reactors (LWRs) and realize the development of advanced Gen IV 

nuclear reactors new materials must be developed which can withstand such an 

environment. This thesis involves two approaches to solving this materials problem: 

advanced manufacturing of current commercial alloys using severe plastic 

deformation (SPD) and the development of new advanced high entropy alloys 

(HEAs).  

Because SPD is effective at achieving grain refinement, this technique was 

used to obtain material having a high volume fraction of grain boundaries which act 

as effective radiation induced defect sinks. This work aims to study the pre-

irradiation microstructure and irradiation tolerance of nanostructured 304 produced 

using SPD. 

HEAs have been theorized to have retarded diffusion which prevents large 

voids and dislocation loops from forming in addition to their good phase stability.  

Most HEA compositions, however, contain Co which activates under irradiation 

and can cause concerns over waste management. This work studies two 

compositions of Co-free HEAs and evaluates their performance under ion 

irradiation. 
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1. INTRODUCTION 

1.1. RADIATION DAMAGE IN NUCLEAR STRUCTURAL MATERIALS 

 

 

Figure 1.1. Depiction of neutron radiation damage mechanism [1]. 

 

One of the difficult aspects of materials design in a reactor environment comes 

from damage caused by neutron irradiation. This damage occurs from the interaction of 

energetic neutrons with atoms within the lattice as shown in Figure 1.1. As a neutron 

collides with an atom, it transfers its kinetic energy creating what is known as a primary 

knock-on atom (PKA). The neutron will continue to collide with atoms creating there 



 

 

2 

PKAs until it has lost energy such that it can no longer displace an atom from the lattice. 

The PKA will carry energy with it and also collide with surrounding atoms displacing 

them from the lattice. This cascade of collisions will form many point defects in the form 

of vacancies in the original lattice positions of displaced atoms and interstitials formed by 

the displaced atoms. While many of these interstitials and vacancies will recombine, 

many of these defects will remain and accumulate [1]. 

 

 

Figure 1.2. Images of dislocation loops in irradiation 300 series stainless steel [2]. 
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These radiation induced defects can accumulate over time and create larger defect 

structures. Interstitials and vacancies will initially form defect clusters which are often 

referred to as “black-spot” defects due to their appearance in electron microscope images. 

Eventually larger dislocation loops will be formed as can be seen in Figure 1.2. These 

loops can then prevent other dislocations from moving freely throughout matrix. As 

dislocation movement is the mechanism for plastic deformation, this dislocation pinning 

from irradiation induced dislocation loops with reduce ductility of the material and is 

partially responsible for irradiation induced embrittlement [2,3].  

 

 

Figure 1.3. Image of voids formed in neutron irradiated 304 stainless steel [4]. 
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Vacancy combination over time will also create larger voids within the materials. 

These voids will contribute to embrittlement, but also cause significant swelling within 

the material. This issue is exacerbated when elements which transmute and release alpha 

particles after neutron absorption. These alpha particles will remain as He gas within the 

material, and travel towards voids and grain boundaries. As the pressure from these He 

gas atoms builds, it stabilizes voids and the material will develop gas bubbles. These 

bubbles can often be formed along grain boundaries and will increase the chance of 

intergranular failure[2]. Gas bubbles are of concern in materials with high Ni content as 

Ni will transmute when neutron irradiated. Because austenitic stainless steels are alloyed 

with Cr and Ni, they and Ni superalloyes are particularly susceptible to He gas bubble 

swelling and embrittlement [4].  

 

 

Figure 1.4. Schematic of mechanisms responsible for radiation induced segregation [5]. 

 

These defects can also contribute to other effects within the material. Radiation 

induced segregation (RIS) is caused by a phenomenon known as the inverse-Kirkendall 

effect (IKE). This unique, kinetically driven segregation is caused by the matrix being 

supersaturated with irradiation induced vacancies and interstitials. Figure 1.4 shows the 
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three mechanisms by which this segregation occurs. The mechanism which is thought to 

be primarily responsible for RIS is dipicted in Figure 1.4a. As vacancies travel towards 

defect sinks (such as grain boundaries of dislocations), atoms will diffuse against this 

vacancy flux as they will “trade places” within the matrix. A fast diffusing atom will 

therefore travel faster away from sinks, leaving the slow diffusing atoms behind. This 

will cause depletion of fast diffusing atoms and enrichment of slow diffusing atoms at 

defect sinks. The other mechanisms are solute drag (shown in Figure 1.4b) and interstitial 

diffusion (shown in Figure 1.4c). Solute drag occurs when vacancies will “drag” atoms 

(usually oversized) with them towards defect sinks. Interstitial diffusion will cause an 

enrichment of fast diffusing interstial atoms at defect sinks and depletion of slow 

diffusing interstitial atoms [5–7]. Particularly in austenitic steels, Ni and Si tend to enrich 

and Cr will deplete at grain boundaries [8].  

 

 

Figure 1.5. Atom maps showing Ni-Si cluster formation in irradiated high purity 304 [9]. 
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This RIS can also contribute to phase instabilities within the material. Because 

RIS is a kinetically and not thermodynamically driven phenomenon, there can be many 

secondary phases which nucleate under only irradiation conditions. Austenitic steels, for 

example, will often form Ni enriched silicide phases such as the Ni-Ti-Si G-phase of 

Ni3Si γ’ [9–12]. This can lead to depletion of Ni, and cause instability of the austenite 

phase [13]. Precipitation can also cause embrittlement as well. For example, pressure 

vessels often have issues with embrittlement from Cu precipitation [14].   

 

 

Figure 1.6. Schematic of contributing mechanism to intergranular stress corrosion 

cracking in 304 steel used in the reactor environments [15].  

 



 

 

7 

Irradiation will also contribute significantly to stress corrosion cracking (SCC) of 

irradiated steels. This is a compound effect which has many factors which contribute to it. 

Radiation induced embrittlement will cause the material to form cracks more easily. 

Radiation induced segregation will deplete Cr from grain boundaries which will allow for 

intergranular corrosion. He gas bubbles along grain boundaries can assist with 

intergranular failure when small intergranular cracks form [15].  

1.2. MOTIVATION/ADVANCED MATERIALS FOR NUCLEAR APPLICATIONS 

 

 

Figure 1.7. Schematic of a pressurized water reactor showing the various materials used 

[3]. 

 

In a nuclear reactor environment, materials are subject to high tempreatures, 

radiation fluences, and coolants which are often corrosive. Currently, many of the 
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structural materials used in reactors are Ni super alloys or austenitic steels primarily due 

to their corrosion resistance at high temperatures [3]. Austenitic steels are also candidates 

for fuel cladding in sodium cooled fast reactors. These steels and Ni superalloys still 

stuffer from the effects of radiation, and new materials need to be developed in order to 

extend the lifetime of light water reactor components as well as realize the development 

of advanced reactors in which the neutron fluences and energies are much higher than 

current light water reactors [16,17]. 

There are two approaches to developing new radiation resistant materials: 

advanced manufacturing of current commercial alloys and the creation of advanced 

alloys. This thesis explores research on both approaches through evaluating 

nanostructuring of current commercial steels using severe plastic deformation and the 

development of radiation resistant high entropy alloys (HEAs). 

 

 

Figure 1.8. Stress strain curves comparing neutron irradiated coarse grained and ultrafine 

grained ferritc steel. The ultrafine grained steel shows increased resistance to radiation 

induced embrittlement [19]. 
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Figure 1.9. In-situ images of a radiation induced defect cluster being absorbed by and 

annialiating at a grain boundary in nanocrystalline Ni [18]. 

 

Nanostructured materials utilize interfaces as defect sinks and introduce a high 

density of nanosized features in order to create these interfaces [20]. These can be phase 

interfaces as is the case of oxide dispersion strengthened steels [21] or MAX phase 

ceramics [22] or they can be grain boundaries which have also been shown to be effective 

radiation induced defects sinks as seen in Figure 1.8 [18]. Nanograined materials rely on 

grain refinement in order to increase the volume fraction of grain boundaries by reducing 

the grain size. This has been shown to be effective at reducing the radiation induced 
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embrittlement [19] and even RIS [23,24]. However, this is still a new class of materials, 

and more work needs to be done in order to determine the effectiveness of nanostructured 

steels to replace conventional steels in nuclear reactors. 

 

 

Figure 1.10. Images of voids in increasingly complex Ni alloys, showing the most 

complex high entropy alloy to have the greatest resistance to irradiation induced void 

swelling [25]. 
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HEAs are a new class of multicomponent alloys that have exceptional phase 

stability due to their high entropy of mixing from which they gained their name. In 

addition to good phase stability, HEAs have shown promise in having high strength and 

even good corrosion resistance [26–29]. These properties come from not only their high 

mixing entropy, but the high interatomic strain due to the difference in size of the atoms 

in solid solution, sluggish diffusion, and what is described as the “cocktail effect” which 

describes the unique interactions of different species with each other [26]. HEAs have 

generated interest for the use in nuclear applications due to their sluggish diffusion 

preventing defects from agglomerating and forming larger structures. As is seen in Figure 

1.10, HEAs form significantly smaller voids and dislocation loops that conventional 

alloys [30–33]. While HEAs do show significant promise as radiation resistant materials, 

many of the HEA compositions contain Co. Co does not make for a good material in 

nuclear reactor environments as it has only one natural isotope (Co-59) which will 

activate to during neutron irradiation. Thus, materials with Co will be highly radioactive 

after service causing waste concerns. Therefore more work is needed on evaluating Co-

free HEAs and their properties under irradiation as only limited study has been conducted 

on these alloys [31]. 

1.3. MANUFACTURING NANOSTRUCTURED STEELS THROUGH SEVERE 

PLASTIC DEFORMATION 

 

When producing nanostructured materials, there are two possible approaches: 

bottom up and top down. The bottom up approach involves the consolidation of 

nanosized particles (often metal powders). Some examples of consolidation techniques 

are spark plasma sinterting (SPS) [34] and hot isostatic pressing (HIP) [35]. These 
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techniques are designed to allow for the fusing of particles without supplying the thermal 

energy required for grain growth. SPS, for example, utilizes current and pressure in order 

to allow for densification at lower temperatures and shorter times effectively reducing 

grain growth [34,36]. 

In contrast, a top down approach involves techniques where conventional coarse 

grained (CG) materials undergo severe plastic strain. Increase in strain results in the 

formation of new dislocations, and over time these dislocations accumulate. These 

dislocations will form structures such as dislocation cells or walls (which can also be low 

angle grain boundaries). As more dislocations accumulate at the cell boundaries, the cell 

will be rotated until eventually it forms a new high angle grain boundary. There are many 

severe plastic deformation (SPD) techniques such as cryomilling [37] and cryoforging 

[38], but the two SPD techniques which account for most studies are equal channel 

angular pressing (ECAP) and high pressure torsion (HPT) [39]. 

HPT is a technique in which high torsional strain is applied to a sample by a 

rotating anvil under high pressure. ECAP is a technique in which samples are extruded 

through a bent die (typically 90 or 120-degrees) which two equal diameter channels. As 

samples are extruded, radial shear occurs across the bend in the channel. If samples are 

extruded in the same orientation, only a limited number of slip planes will be activated 

which inhibits effective grain refinement. Therefore, in this work samples are rotated 90 

degrees clockwise in between each pass which is also known as the Bc route [41]. 
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Figure 1.11. Schematic of a) high pressure torsion and b) equal channel angular pressing 

[40]. 

 

When comparing HPT and ECAP, HPT is capable of much higher strains, and 

thus is a more effective grain refinement technique. HPT suffers, however, from the size 

of samples produced as samples by nature must be thin discs. ECAP, on the other hand, 

has the potential to be scaled up to industrial scale using a rolling method sometimes 

referred to as ECAP-conform [42]. In this study, HPT is used to understand the basic 

science of nanocrystalline steel while ECAP is used to study the feasibility of industrial 

production of ultrafine grained reactor structural steels. 
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ABSTRACT 

During irradiation or high-temperature aging, stainless steel can develop 

precipitates, significantly affecting mechanical properties. In this study atom probe 

tomography (APT) was used to study grain boundary segregation and secondary phases 

in a purely austenitic SS304 (a Fe-18Cr-8Ni steel) processed by high-pressure torsion 

(HPT) at 300 oC. Ni, Mn, Si enriched phase was observed at grain boundaries, and Cu 

nanoprecipitates were observed along and near phase/grain boundaries. Precipitation is 

facilitated by deformation assisted segregation along grain boundaries with a mechanism 

similar to vacancy diffusion in irradiated steels.  

Keywords: Nanocrystalline Materials, Segregation, Atom Probe Tomography, Severe 

Plastic Deformation, Diffusion, High Pressure Torsion 
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1. INTRODUCTION 

SS304 is an Fe-Cr-Ni austenitic steel used in many industrial applications due to 

its good mechanical properties and corrosion resistance. When aged for extremely long 

times at elevated temperatures secondary phases can form including g-phase (a Ni 

silicide) [1]. Under irradiation conditions, it is also common to see Ni-Si clusters, which 

are assumed to be g-phase at early stages of formation [2]. Cu precipitation is common in 

irradiated reactor pressure vessel steels [3], but has rarely been studied in austenitic steels 

because they are designed to have little or no Cu.  

In addition to precipitation, radiation induced segregation (RIS) is also observed 

in steels. This RIS behavior is a result of vacancy flux through the inverse-Kirkendall 

effect [4]. Because severe plastic deformation (SPD) produces a large number of 

vacancies [5,6], it is suggested that a similar mechanism can occur in SPD processed 

steels. Simulations have shown that plastic deformation at high temperatures can enhance 

solute segregation, primarily due to vacancy super-saturation [7]. This is supported by 

experimental data showing that SPD can enhance secondary phase formation [8] and 

cause GB segregation [9,10]. In this study APT was used to identify grain boundary 

segregation, early stages of g-phase precipitates along GBs and Cu rich precipitates along 

and near GBs in SS304 subjected to HPT at 300 ° C.  
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2. EXPERIMENTAL 

SS304 commercial bar stock (composition shown in Table 1) was normalized at 

1050 oC for one hour followed by water quenching. HPT discs were processed at 300 oC 

under 6 GPa of pressure for 10 rotations at 0.2 rotations per minute with a final thickness 

of ~1.3mm. X-ray diffraction (XRD) was performed before and after HPT using a 

Phillips X’PERT MPD with a Cu source. MAUD software was used to perform XRD 

analysis using Rietveld Refinement. A Technai F20 transmission electron microscope 

(TEM) was used to determine average grain size, and TEM samples were prepared using 

a standard focused ion beam (FIB) lift-out technique. APT tips were prepared using FIB 

lift-out on a Quanta 3D FEG scanning electron microscope (SEM)/FIB. The APT tips 

were examined using a CAMECA LEAP 4000X HR atom probe. APT was performed in 

voltage mode at 55 K with a target pulse fraction of 0.2 and a detection rate of 0.7%.  

Reconstruction and data analyses were carried out using the CAMECA IVAS software. 

3. RESULTS AND DISCUSSION 

Figure 1a shows an TEM image of the microstructure of SS304 after HPT 

processing at 300 °C. Average grain size from 315 grains was 89 ±25 nm. A high 

dislocation density is evident from TEM and the estimated dislocation density from XRD 

is a magnitude of 103 higher after HPT. Figure 1b displays the XRD results of SS304 

samples before and after HPT at 20, 200, and 300 °C. After HPT at both 200 and 300 °C 

no peak corresponding ferrite/martensite is present. Before HPT, a small amount of BCC 
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was detected by XRD (likely formed during quenching). After HPT at 20 °C, a 

significant amount of BCC phase is present due to the deformation induced martensite 

transformation (DIMT) [11]. At 200 and 300 °C, the temperature is high enough to 

suppress this transformation, and no BCC peak is found which agrees with previous HPT 

experiments on SS304 [11]. It can be concluded from both XRD and TEM that the 

microstructure is comprised of austenite, and not duplex austenite-martensite/ferrite.  

Figure 2 shows the results from one APT analysis volume where two secondary 

phases are distinct. The larger precipitates are enriched in Ni, Mn, and Si. Smaller Cu 

enriched nanoprecipitates are also observed which formed along and near the interfaces 

between the matrix and the Ni-Mn-Si phase and along and near one GB. A proximity 

histogram concentration profile (proxigram) of a Ni-Mn-Si enriched precipitate based on 

a 11 at.% Ni isoconcentration surface is displayed in Figure 2b, indicating that the Ni, 

Mn, and Si contents in the precipitate are approximately twice those in the matrix. These 

Ni-Mn-Si enriched precipitates have ~14 at.% Ni, and ~1.5 at.% Mn/Si. While these 

precipitates are not fully developed, their compositions match that of early-stage g-phase. 

Cu precipitates have Cu concentration varying from ~60 to ~1 at.%. An example 

proxigram of one Cu-rich precipitates is displayed in Figure 2c. It is inferred that the Cu-

rich precipitates will eventually form pure Cu. The lower Cu content observed from APT 

is likely due to two reasons: there is trajectory aberration in APT [12] due to a difference 

in the evaporation field between the precipitate and matrix causing matrix atoms to be 

detected within the small precipitates and these precipitates are in the early stages of 

nucleation/growth so the Cu content is expected to be lower than that in fully developed 
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precipitates. While some of the Cu precipitates are as large as 10 nm, the average volume 

equivalent diameter was 4.1 ± 2.6 nm.  

Solute segregation along GBs is also identified. Figure 3 a and b are 1-d 

concentration profiles across two GBs from Figure 2a, showing segregation of Ni, Mn, 

Si, and P along the GBs. The two GBs have different characteristics in that one is 

enriched in P, and the other is not. The P enriched GB also has Cu precipitates along it. It 

is assumed the differences in segregation are due to GB character which is known  [2]. 

Figure 3c shows another APT analysis volume in which one GB was identified, and both 

P and Si are enriched at the GB (as seen in figure 3d), providing further evidence of GB 

segregation during deformation.  

Because of the inter-precipitate distance (it matches with TEM grain size), 

segregation behavior, and the plate like shape, it is suggested that the g-phase has 

precipitated along GBs due to (especially) Ni and Si segregation. GB segregation may 

also partially account for Cu precipitation. Cu is predicted to be depleted at GBs but pile 

up adjacent to the GBs [13]. When this pileup occurs, the Cu concentration will be too 

high for Cu to remain in solid solution and it will precipitate out along and near the GBs. 

Similar formation of Cu precipitates along GBs assisted by RIS has also been observed in 

irradiated SS304 [2].   

4. CONCLUSIONS 

APT was conducted on SS304 subjected to HPT at 300 oC. Nanoscale precipitates 

were identified as Ni-Mn-Si enriched g-phase and Cu enriched precipitates. G-phase 
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precipitates formed along GBs due to enrichment of Ni and Si along GBs. Cu precipitates 

are primarily formed along and near grain and phase boundaries; the formation is 

suggested to be caused by Cu pileup near the GBs, increasing the concentration of Cu 

beyond its solubility in the matrix. This precipitation behavior in the severely plastic 

deformed 304 is unusual for a SS304 that has not been high-temperature aged or 

irradiated. It is suggested that the cause of this precipitation behavior is a combination of 

an increase in nucleation sites (GBs and dislocations), and an increase in point defects 

that enhances diffusion and facilitates kinetically driven segregation at GBs, similar to 

RIS.  
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Table 1. Elemental composition of SS304 

Element Fe Cr Ni Mn Cu Si Mo Ti C 

wt.% Bal. 17.33 8.97 1.13 0.64 0.37 0.29 0.28 0.014 
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Figure 1. a) TEM bright-field image showing general microstructure of SS304 after HPT 

with inset selected-area electron diffraction pattern showing pure austenitic structure; b) 

XRD patterns of SS304 before HPT [coarse-grained (CG)] as well as after HPT at several 

different temperatures. After HPT at 200 and 300 oC, no body-centered cubic (BCC) or 

body-centered tetragonal (BCT) phase is present. 
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Figure 2. a) APT reconstruction with Ni atoms displayed and isoconcentration surfaces of 

11 at.% Ni and 0.9 at.% Cu superimposed. b) proximity histogram concentration profile 

of the middle Ni-Si-Mn enriched precipitate in a); c) proximity histogram concentration 

profile showing Cu concentration of the Cu-rich nanoprecipitate indicated in a). 
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Figure 3 a) and b) 1-D concentration profiles of grain boundaries in figure 2a. c) APT 

reconstruction showing P (red) and Si atoms (blue), a grain boundary and a cylinder 

region of interest across it; d) 1-D concentration profile across the grain boundary 

indicated in c) showing segregation of Si and P along the grain boundary. 
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ABSTRACT 

Nanocrystalline SS304 (Fe-18Cr-8Ni) austenitic steel was produced using high-

pressure torsion at 300°C, and atom probe tomography (APT) was used to study grain 

boundary (GB) segregation and precipitation after annealing and self-ion irradiation at 

500°C. The degree of radiation-induced segregation was significantly reduced with 

decreasing grain size, owing to reduced irradiation-induced defects. Precipitation was 

also significantly reduced with a decrease in grain size. After irradiation, some 

nanocrystalline GBs showed segregation behavior similar to annealed samples, indicating 

that with sufficiently small grain size, thermodynamic effects can dominate kinetic 
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effects of irradiation. Nanostructuring may therefore enhance phase stability and reduce 

corrosion during irradiation. 

 

Keywords: Nanocrystalline Materials, Radiation Induced Segregation, Atom Probe 

Tomography, Severe Plastic Deformation, Diffusion, High Pressure Torsion 

 

Grade 304 austenitic stainless steel (SS304) is commonly used as a structural 

material in light-water reactors. In high temperature conditions, it is common for 300 

series steels to develop Cr enriched M23C6 carbides on or near GBs, which can then lead 

to Cr depletion in the grain interiors. Additionally, under irradiation conditions, 

irradiation-induced defect flux towards GBs leads to Cr depletion at GBs [1–3]. While its 

high Cr content enhances corrosion resistance, the depletion of Cr allows corrosion to 

occur along the GBs and this eventually contributes to stress corrosion cracking (SCC) 

[4]. It is therefore important to find ways to improve resistance to this irradiation-induced 

depletion at GBs in austenitic steels. One approach of interest is to increase the volume 

fraction of defect sinks (i.e., phase boundaries and GBs) through the nanostructuring of 

commercial steels, including both oxide dispersion strengthened steels and grain-refined 

steels [5]. Recent developments in manufacturing nanostructured steels include using 

severe plastic deformation (SPD) techniques, such as equal-channel angular pressing 

(ECAP) and high-pressure torsion (HPT) [6–8]. These ultrafine-grained (UFG, 

100nm<grain size<1µm) and nanocrystalline (NC, grain size<100nm) materials have 

already been proven to be effective in reducing radiation-induced damage [9–11].  
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In the case of Fe-Cr-Ni austenitic steels, it is well known that, during irradiation, 

Ni and Si will be enriched at GBs [3,12]. The enrichment of Ni and Si at GBs can lead to 

the formation of g-phase [13] and the depletion of Ni in the matrix, reducing austenite 

stability, which can cause the formation of ferrite [14]. Radiation induced segregation 

(RIS) is, in large part, caused by the inverse-Kirkendall effect (IKE), which is when the 

matrix is super saturated with vacancies and there is a continuous flux of vacancies 

towards defect sinks (GBs) [15]. As vacancies diffuse towards the GBs, fast diffusing 

atoms (in the case of austenitic steels, Fe and Cr) will travel opposite to the flow of 

vacancies causing the GBs to be depleted of these elements and enriched in slow 

diffusing atoms (Ni and Si). It is therefore anticipated that reducing the supersaturation of 

vacancies in the matrix through nanostructuring should reduce RIS. The reduced vacancy 

concentration also has the effect of reducing homogeneous nucleation of precipitates 

within grains, because vacancies are important for homogenous nucleation. While RIS 

can occur in nanostructured steels [16], a previous study has shown that RIS and 

intragranular cluster formation in NC  316 stainless steel is significantly reduced 

compared to to its coarse-grained counterpart [17]. This field, however, requires 

additional work in exploring the effects of varying grain sizes and evaluating the 

corresponding compositions on GB segregation behavior.  

Since there can be competing effects during elevated-temperature irradiation 

between thermodynamics and the defect flux driven kinetics, it is important to understand 

the differences in GB segregation behavior under various conditions. In our previous 

study, we showed that SPD performed at moderate temperatures (300°C) caused Ni and 

Si segregation at the GBs in SS304, which facilitated the early-stage precipitation of g-
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phase along the GBs [18]. This study is consistent with earlier work that showed GB 

segregation during elevated-temperature SPD and no segregation after low-temperature 

SPD [19]. Other studies performed on HPT of SS304 at room temperature, resulting in a 

purely ferritic microstructure, indicated precipitation of g-phase after short-term 

annealing [20,21]. In this work, we compared the segregation behavior in a NC austenitic 

SS304 (manufactured using HPT at 300oC) after annealing at 500oC for 24 hours to that 

after self-ion irradiation up to 50 displacements per atom (dpa) at 500oC. It was shown 

that the NC material had enhanced resistance to RIS and precipitation and that some GBs 

even exhibited thermodynamically dominant segregation behavior comparable to that in 

the annealed sample. 

SS304 samples were prepared from commercial bar stock with a composition 

shown in Table 1. Bar stock was normalized at 1050 oC for 1 hour and water quenched. 

HPT discs were processed at 300 oC under 6 GPa of pressure for 10 rotations at 0.2 

rotations per minute with a final thickness of ~1.3 mm. Some HPT discs were annealed in 

an argon atmosphere in a vacuum tube furnace at 500°C for 24 hrs. Irradiation was 

performed on as-processed HPT discs using 3.7 MeV Fe2+ ions at 500°C with a 

maximum calculated dose of 50 dpa using SRIM software. APT tips were prepared using 

focused ion beam (FIB) lift-out on a Quanta 3D FEG scanning electron microscope 

(SEM)/FIB. FIB lift outs were milled so that the top of the APT tips came from the 

region ~800-900nm from the surface, which corresponded to a dose of 45-50 dpa. APT 

experiments were performed using a CAMECA LEAP 4000X HR atom probe. APT was 

performed in laser mode at 55K, with a laser energy of 40pJ, and a target evaporation rate 

of 0.007.  Reconstruction and data analyses were carried out using the CAMECA IVAS 
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software. Figure 1a displays an APT reconstruction of SS304 after HPT (hereafter called 

HPT304) showing Ni atoms (purple), and the associated 1-D concentration profile across 

a GB in Figure 1b indicates Ni enrichment at the GBs, which was previously reported 

[18]. Notably, the previous study showed that the sample was fully austenitic after HPT. 

Figure 1c displays an APT reconstruction of HPT304 after annealing at 500°C for 24hrs 

showing Ti atoms (blue) and several GBs denoted by the Ti segregation. In Figure 1d, the 

1-D concentration profiles across the GB (shown in Figure 1c) indicate that Ni was no 

longer enriched at the GBs after annealing and, instead, Cr was enriched. Moreover, Mo, 

Ti and C were also enriched at the GBs after annealing. Cr and Mo are known to enrich at 

the GBs in austenitic steels during heat treatments [22]. P and Si were also found to be 

enriched at the GBs after HPT and after annealing of the HPT sample. While 24 hours is 

not likely to be sufficient time for the system to come to full equilibrium, it is clear that 

thermodynamic segregation behavior is significantly different from that observed after 

SPD. Also, in the previous APT study of HPT304 [18], Cu precipitates were found along 

and near grain/phase boundaries and the early stages of Ni-Mn-Si g-phase were found 

along GBs. After annealing Cu and g-phase precipitates were not found; it is believed 

that these precipitates had gone back into solid solution during annealing.While the 

average grain size observed after HPT was 85nm, transmission electron microscopy 

(TEM) revealed irradiation induced grain growth within the material (see supplemental 

Figure S2). This was expected, based on previous results on irradiated NC materials 

[16,23]. While NC grains remained after irradiation, there were also grains in the UFG 

size regime with grain sizes up to 300nm. Figures 2a and 2d show two different APT 

reconstructions of HPT304 after irradiation at 500°C to 45-50 dpa, with Si atoms (grey), 
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and  Si isoconcentration surfaces that  highlight GB locations. Figure 2a shows primarily 

one large ultrafine grain in the reconstruction volume, as compared to that in Figure 2d 

where many nanocrystalline grains are depicted. While both regions exhibit the 

anticipated RIS, which is depletion of Fe and Cr, and enrichment of Ni, Si and Co, there 

were two distinct differences. First, the amount of depletion of Cr and enrichment of Ni 

and Si was much smaller in the NC grains. Second, Mo was depleted (~-0.1 at.%) at 

some GBs in the UFG region, whereas no Mo depletion was observed in the NC grain 

regions. At the GBs in the UFG region, the depletion of Fe and Cr was -11.6±6.0 Δat.% 

and -7.3±1.6 Δat.%, respectively, and the enrichment of Ni, Si and Co was +13.8±3.0 

Δat.%, +3.7±1.8 Δat.% and 0.2±0.1 Δat.%, respectively. In the NC region, the depletion 

of Fe and Cr at GBs was approximately -4.3±1.4 Δat.% and -3.9±1.4 Δat.%, respectively, 

and the enrichment of Ni, Si and Co was approximately +5.3±1.8 Δat.%, +2.2±0.6 Δat.% 

and 0.1±0.04 Δat.%, respectively. 

Figure 3a shows another APT reconstruction volume from the NC regions in the 

irradiated HPT304, and Figures 3b and 3c display 1-D concentration profiles along the 

cylinder (Figure 3a) across one of the several GBs. The GB had Cr enrichment (+1.5±0.9 

Δat.%), as indicated in Figure 3b. The Cr-enriched GBs in this volume were also slightly 

enriched in Ni (+2.0±1.0 Δat.%), but this Ni enrichment decreased significantly as 

compared to that in other NC regions. Si enrichment (~+1.8 Δat.%) was also significantly 

less than that in other NC regions. It is seen in Figure 3c that these GBs were also 

enriched in Mo (+0.4±0.1 Δat.%), with no enrichment of Co. No intragranular 

segregation was observed in any volume of the irradiated material, including the UFG 
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region, which is attributed to the lack of dislocations and dislocation loops in this 

material. 

Precipitation was also observed in the irradiated HPT304 samples. Figure 4 

displays three different APT reconstructions of irradiated HPT304, with Figure 4a 

showing the same reconstruction volume as that in Figure 2a where practically only one 

ultrafine grain was found. Within this larger grain, many Cu precipitates were observed, 

which had been anticipated, as Cu precipitates are common in irradiated ferritic reactor 

pressure vessel steels [24], observed as well in some austenitic steels with higher Cu 

content [25]. Within the smaller grains (Figures 4b and 4c), the number density of Cu 

precipitates was much lower, when any existed, and precipitate sizes were much smaller. 

A combined proximity histogram (proxigram) of all the Cu precipitates in Figure 4a is 

shown in Figure 4d. Figure 4e displays the combined proxigram of all the Cu precipitates 

in the boxed region of Figure 4c. The Cu concentration values indicate that, in both cases, 

precipitates were in the early stages of nucleation and growth. Notably, the larger 

precipitates in Figure 4c (bottom right) were due to the fact that they were in a ferritic 

grain with much lower Cu solubility.  

Table 2 summarizes the segregation at GBs in the annealed and irradiated 

HPT304. For the irradiated condition, the NC regions have significantly reduced GB 

segregation, as compared to the UFG regions. Similar reduced RIS was also previously 

reported in NC SS316 ion irradiated at 350°C [10,17]. It is noted, however, that there 

have been limited studies of RIS in nanostructured steels, and it has been reported that 

RIS occurred with the same intensity in an ion irradiated NC SS316 at 350°C, as that in a 

neutron or proton irradiated CG SS316 [16]. This discrepancy between studies may be 
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due to the limited statistics of APT as very few GBs (often only one or two) can be 

observed in each reconstruction volume. With few statistics it is difficult to account for 

the effects of GB misorientation on segregation behavior [26]. While the statistics are 

also limited in this study, each region with unique RIS behavior include multiple GBs 

with supportive segregation characteristics. This study, therefore, confirms the enhanced 

resistance to RIS with decreasing grain size below 500nm even at temperatures up to 

500°C. This reduced RIS includes a reduced depletion of Cr that should provide 

enhanced resistance to SCC, as well as limited enrichment of Ni and Si that can help 

suppress the formation of g-phase along the GBs and reduce depletion of Ni within the 

matrix enhancing the stability of the austenite phase. Herein we also report, for the first 

time, Cr enrichment at GBs in an irradiated austenitic steel. These Cr enriched NC GBs 

in irradiated HPT304 also had enrichment of Mo, with no Co enrichment, which matched 

the GB segregation behavior in the annealed HPT304 sample. This observation suggests 

that, if grain sizes are sufficiently small, the thermodynamic effects may dominate the 

kinetic effects, during elevated-temperature irradiation, in contrast with the fact that 

during irradiation of conventional coarse-grained metals the kinetic effects typically 

dominate, because of significant irradiation-induced defects.  

In addition to RIS along GBs, it is common to see Ni and Si segregation in 

irradiated austenitic steels along dislocation loops, which can eventually form Ni3Si 

precipitates [25,27–29]. These Ni and Si enriched precipitates were not observed in any 

previous studies of NC SS316 [10,16,17] or in this study of NC SS304. This is explained 

by the suppression of dislocation loop formation within the NC material, as was observed 

by Matsuoka et. al [30] where SS316 with grain sizes between 100-300nm had 
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signifincaly reduced irradiation-induced defects and associated harndening. In this study, 

Cu precipitates were observed in one large UFG (Figure 4a), which can be explained by 

the larger grain size allowing the development of defects that acted as nucleation sites for 

the Cu preciptiates. Very few Cu precipitates were observed in NC grains (Figures 4b and 

4c), whereas the number density  of Cu precipitates was much higher in the UFG region. 

Thus, it is concluded that, even within the UFG/NC regime, decreased grain sizes can 

significantly reduce irradiation-induced precipitation, via reducing irradiation-induced 

defects. It is also important to distinguish between Cu precipitation during HPT and 

during irradiation. Although Cu precipitates were observed after HPT [18], they were 

near or at phase/grain boundaries, and it was assumed that the Cu precipitation during 

HPT was similar to that observed in irradiated coarse-grained 304 by Jiao and Was [25], 

which was attributed to the pile-up of Cu along the GBs due to RIS. In this study, 

because irradiation was perfomed at 500°C, the Cu precipitates that had formed after 

HPT likely went back into solid solution early in the irradiation, just as was observed in 

the annealed sample in this study. The precipitation observed after irradiation in this 

study was intragranular and was assumed to be associated with small defects that acted as 

nucleation sites within the grains. Notably, Cu precipitation is not commonly observed in 

austenitic steels due to low Cu content to avoid segregation and precipitation, however 

the commercial composition in this study contained 0.64 wt.% Cu which is similar to the 

content of the commercial purity 304 studied by Jiao and Was containing 0.42 wt.% Cu 

[25].  

In summary, we studied the effects of annealing and irradiation at 500°C on 

segregation and precipitation in a NC SS304 manufactured using HPT at 300°C. After 
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annealing, Cr and Mo were enriched, and Fe was depleted at GBs. After irradiation, the 

GBs showed typical RIS, with enrichment of Ni, Si and Co, and depletion of Fe and Cr, 

however, enrichments and depletions were significantly less at the NC GBs, as compared 

to those at the UFG GBs. Some NC GBs showed Cr and Mo enrichment, which indicated 

that segregation along these GBs was driven by thermodynamic effects, rather than by the 

kinetic effects of irradiation. A high number density of Cu precipitates was observed in 

one UFG, whereas the majority of NC grains observed had little or no Cu precipitation. 

These results indicate that nanocrystalline samples have significant resistance to both 

radiation-induced segregation and precipitation, owing to the significantly reduced 

irradiation-induced defects. This property has advantages in reducing mutliple 

irradaition-induced effects, including embrittlement due to precipitation, susceptibility to 

SCC due to Cr depletion, and austenite instability due to depletion of Ni from the matrix. 
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Table 1. Bulk composition of SS304 

Element Wt. % 

Fe Bal 

Cr 17.33 

Ni 8.97 

Mn 1.13 

Cu 0.64 

Si 0.37 

Mo 0.29 

Ti 0.28 

P 0.033 

N 0.04 

C 0.014 

S < 0.002 

 

Table 2. Summary of grain boundary segregation in annealed and irradiated HPT304 

GB 

Description 

# of 

GBs 

Δat.% 

Fe 

Δat.% Cr Δat.% Ni Δat.% Si Δat.% 

Mo 

Δat.% Co 

Annealed 6 -3.5±2.4 +1.5±1.0 - +0.6±0.4 1.2±0.7 - 

Irradiated 

UFG 

3 -

11.6±6.0 

-7.3±1.6 +13.8±3.0 +3.7±1.8 -0.2> +0.2±0.1 

Irradiated 

NC 

18 -4.3±1.4 -3.9±1.4 +5.3±1.8 +2.2±0.6 - +0.1±0.04 

Irradiated 

NC Cr 

enriched 

4 -6.6±2.6 1.5±0.9 +2.0±1.0 +2.0±0.3 +0.4±0.1 - 
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Figure 1. a) APT reconstruction of HPT304 showing Ni atoms (blue) and Ni segregation 

along one GB, b) 1-D profile across ROI shown in a) indicating Ni enrichment but no Cr 

depletion after HPT, c) APT reconstruction of HPT304 annealed at 500°C for 24 hours 

showing Ti atoms (blue); several GBs can be seen, d) and e) 1-D concentration profiles 

across the ROI shown in c) indicating Cr enrichment but no Ni depletion. Mo, Si, Ti, and 

C were all also enriched at the GB. 
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Figure 2. APT reconstruction of irradiated HPT304 showing Si atoms (grey) and 4 at.% 

Si isosurface to highlight grain boundaries; mostly only one UFG was observed; b) and c) 

1-D concentration profiles across the ROI are in a) showing typical RIS behavior with 

enrichment in Ni, Si, Ti, and Co and depletion in Fe, Cr, and Mo; d) Another APT 

reconstruction of irradiated HPT304 showing Si atoms (grey) and 2 at.% Si isosurface to 

highlight grain boundaries; primarily, only NC grains were observed; e) and f) 1-D 

concetration profiles across the ROI shown in d); RIS was reduced in the NC grains, as 

compared to those in the UFG. 
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Figure 3. a), b), and c) APT reconstructions of irradiated HPT304 showing Si atoms 

(grey) and 5 at.% Cu isosurfaces (green) showing precipitation of Cu clusters. UFG in a) 

shows significant intragranular Cu precipitation while NC grains in b) and c) show little 

to no Cu precipitation. d) Proxigram based on all 5 at.% Cu isosurfaces in a). e) 

Proxigram based on all 5 at.% Cu isosurfaces in the boxed region of c). 
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Figure 4. a) APT reconstruction of irradiated HPT 304 with Si atoms (grey) and 4 at.% Si 

isosurfaces to highlight GBs; b) and c) 1-D concentration profiles across ROI, in a) 

showing enrichment of Cr and Mo and no enrichment of Co. 
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ABSTRACT 

 Irradiation induced phase transformation of γ-austenite to α-ferrite has been 

observed in austenitic steels for the past several decades. This transformation can be 

detrimental to structural materials in a nuclear reactor environment as the increased 

fraction of the ferritic phase can cause increased corrosion, embrittlement, and lead to 

stress corrosion cracking. This transformation is caused by both strain induced martensite 

transformation as well as radiation induced segregation and precipitation. In this study, 

two radiation tolerant nanostructured 304 austenitic steels (one ultrafine grained and one 
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nanocrystalline) were manufactured using severe plastic deformation. These 

nanostructured 304 steels were compared to conventional coarse-grained 304 after self-

ion irradiation at 500 °C up to a peak damage of 50 displacements per atom. Through 

grazing incidence x-ray diffraction, precession electron diffraction, and electron 

backscatter diffraction, phase fraction after irradiation was compared. Nanostructured 

304 steels showed significant resistance to irradiation induced austenite to ferrite 

transformation. This resistance was shown to be due to both reduced defect structure 

formation as well as a reduction in radiation induced segregation and precipitation. 

1. INTRODUCTION 

In a nuclear reactor environment, structural materials are subjected to a variety of 

severe conditions including high temperatures and radiation fluences. Radiation damage 

results from neutrons colliding atoms introducing Frenkel pairs of vacancies and 

interstitials [1]. Over time these defects lead to the formation of dislocation loops and 

voids, precipitation, and grain boundary (GB) segregation [2]. These effects lead to 

embrittlement, swelling, and stress corrosion cracking (SCC) [3,4]. Phase instabilities are 

also a concern, and particularly for austenitic steels, the transformation of γ-austenite to 

α-ferrite in austenitic steels during irradiation has widely observed in a variety of grades 

including 304, 316, and 321 [5–7]. While the formation of ferrite in austenite during 

irradiation can contribute to an increase in volume/swelling [3], the formation of ferrite 

may contribute to a reduction in ductility [7], and (compared to austenite) ferrite has poor 

corrosion properties [8] which when combined can lead to additional SCC. It is therefore 
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important to develop austenitic steels which can resist this ferritic transformation in a 

radiation environment. 

While the effects of radiation cannot be avoided all together, many new methods 

are being developed to enhance the radiation tolerance of nuclear structural materials. 

Among these are the development of new alloys such as high entropy alloys [9–12] and 

the development of nanostructured metals [13,14]. Nanostructured metals are designed to 

enhance radiation resistance through increased volume fraction of defect sinks. This can 

be achieved by the addition of nanoprecipitates or phase interfaces as is the case with 

oxide dispersion strengthened steels [15] or by increasing the volume fraction of grain 

boundaries (GB) through grain refinement [16]. In this study we focus on the latter, and 

study the enhanced irradiation tolerance by utilizing GB as radiation induced defect sinks 

[17,18]. This grain refinement was achieved by using two severe plastic deformation 

(SPD) techniques: equal channel angular pressing (ECAP) and high pressure torsion 

(HPT) [19–21]. While HPT can produce much higher strain (and thus is more effective 

for grain refinement), ECAP has the advantage of being commercially scalable [22]. In 

this study nanocrystalline (NC) 304 steel was produced using HPT and ultrafine grained 

(UFG) 304 steel was produced using ECAP. 

Previous work on nanostructure steels has shown that they have good resistance to 

irradiation induced embrittlement and swelling [23–28]. In our previous study, we also 

showed that nanostructured 304 has good resistance to radiation induced segregation 

(RIS). This agrees with other limited studies showing a decrease in RIS with decreasing 

grain size [27,29]. No work, however, has been done on the investigation of enhancing 

austenite stability during irradiation of nanostructured austenitic steels. Boothby and 
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Williams did show that an increase in austenite stability during irradiation was associated 

with an increase in cold work of 12Cr-15Ni austenitic steels under neutron irradiation 

[30]. Gussev and collaborators, however, found the opposite effect in 304 steel where an 

increase in cold work is correlated with increased ferrite during irradiation of 304 steel at 

320 °C, however this was for grain sizes of 20 microns or larger [31]. Hence, more work 

is needed in order to determine the effects of residual strain and grain size on the 

resistance of austentic steels to the radiation induced ferritic transformation. This is the 

first study to report the austenite stability under irradiation of UFG and NC austenitic 

steel. 

2. EXPERIMENTAL 

Before SPD, commercial 304 barstock was homogenized at 1050 °C and water 

quenched. Refer to our previous study for composition. ECAP rods were processed using 

a 120 degree die at 450 °C for 6 passes using a Bc route. HPT discs were prepared using 6 

GPa of pressure at 300°C and samples were rotated for 10 turns. Before irradiation, 

samples were mechanically polished up to a final step using 0.02μm colloidal silica 

solution. Ion irradiation was performed at the University of Wisconsin Ion Beam 

Laboratory. Samples were irradiated using a raster beam of 3.7 MeV Fe2+ ions up to a 

maximum damage of 50 displacements per atom (dpa). Grazing incidence x-ray 

diffraction (GIXRD) was performed using a Panalytical X’PERT materials research 

diffractometer (MRD). Electron backscatter diffraction (EBSD) and energy dispersive 

spectroscopy (EDS) was performed on a FEI HELIOS scanning electron microscope 
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(SEM) with an Oxford HKL EBSD detector. Transmission electron microscope (TEM) 

lamellas were prepared on using a focused ion beam (FIB) liftout using a FEI HELIOS 

SEM. Precession electron diffraction (PED) was performed using a TopSpin ASTAR 

system on a Technai F30 TEM. TEM was performed using a Technai F20 TEM.  

3. RESULTS 

3.1. EFFECT OF GRAIN SIZE ON IRRADIATION INDUCED PHASE CHANGE 

Figure 1a-c show the grazing incidence XRD (irradiated region) and gonio scan 

(unirradiated bulk region) XRD results for the CG, ECAP, and HPT 304. In all the 

GIXRD scans, there is a significant α-110 peak which is not readily observed in the 

gonio XRD scans of the bulk sample. There is a small α-110 with very low intensity 

observed in the gonio scans which could be attributed to either contribution from the 

irradiated surface layer, or from thermal effects. Figure 1d shows XRD for CG, ECAP, 

and HPT 304 after annealing at 500 °C for 24 hrs. Annealing the CG and HPT 304 

samples at 500 °C does induce the formation of α-110 peak, but no α-ferrite peaks are 

observed in the ECAP 304 sample after annealing.  It should be noted that there was a 

small amount of α-ferrite seen in the CG 304 after homogenization and quenching [32], 

but the α-110 peak does increase after annealing at 500 °C. 

In order to confirm the results obtained from XRD, phase analysis using PED was 

performed. Figure 2 shows PED maps of CG, ECAP, and HPT samples in which area 

fraction BCC was estimated to be 33%, 6.5%, and 2% respectively. While PED is a 

useful technique for the nanostructured materials, for the CG samples the statistics are not 
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good as the irradiated portion of TEM lamellas cannot cover many grains. The area 

fraction of BCC therefore may be overestimated from PED of the CG samples. EBSD 

(seen in Figure 3a) was therefore performed on the irradiated CG 304 specimen which 

showed 18% area fraction of BCC respectively which correlates well to those results 

obtained from XRD. It is noted that this EBSD does suffer from being a surface 

technique, and therefore the BCC fraction observed from EBSD likely is underestimated 

as the damage on the surface is ~15 dpa (see supplemental Figure 1).  

3.2. CHEMICAL SEGREGATION BEHAVIOR 

Figure. 3b and c show EDS maps of Ni and Cr in the EBSD scan shown in Figure 

3a. While there is significant segregation observed for many of the α-ferrite regions 

which are enriched in Cr and depleted in Ni, not all α-ferrite grains exhibit this 

segregation behavior. This same behavior was observed from TEM and PED results as 

the α-ferrite grain from Figure 2a labeled “Cr-enriched, Ni-depleted” exhibited this same 

segregation behavior, however the ferritic grain on the left of Figure 2a showed matrix 

chemical composition. The Cr-enriched (Ni-depleted) ferritic grains also showed 

intragranular segregation. Figure 4a shows STEM bright field (BF) of the Cr-enriched 

ferritic grain shown in Figure 2a. Several intragranular precipitates can be seen from the 

chemical maps in Figure 4b-d including Ni enriched silicides, Cu precipitates, and M23C6 

Cr enriched carbides. The Cu and Ni enriched precipitates appear to co-precipitate. It 

should be noted that these are actual precipitates rather than loops with Ni segregation as 

there is no loops structure that could be observed from TEM. The formation of these 

precipitates being initiated by segregation to loops, however, is a likely possibility as it is 
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a common phenomenon observed in 300 series austenitic steels. In contrast, within the 

ECAP and HPT 304 samples, no significant intragranular precipitation was observed. In 

our previous study, we did observe Cu precipitates within UFG in the HPT 304 sample, 

and limited Cu precipitation within the NC grains. Nevertheless, no intragranular 

segregation or precipitation of Ni, Cr, or C was observed. In both the ECAP and HPT 304 

samples there was precipitation of Ni-Ti-Si g-phase, but this precipitation was 

intergranular, and precipitation within the ferritic grains was not observed, though many 

of the ferritic grains showed enrichment of Cr and depletion of Ni.  

3.3. IRRADIATION INDUCED DEFECT STRUCTURES 

In addition to differences in phase and chemical segregation, there were also clear 

differences in deformation behavior between CG, ECAP, and HPT 304. Figure 5 shows 

the formation of loops and defect cluster in CG, ECAP, and HPT 304. Within the CG 

304, many larger loops with an average size of 33±10 nm were found with an estimated 

loop density of 1.8x1021 m-3. When compared to ECAP 304, the average loop size is 

significantly decreased with an average size of 6±3 nm, but the estimated loop density 

increases to 1.2x1022 m-3. This is indicative of reduced damage as these dislocation loops 

have not agglomerated and coarsened. In the HPT 304, no dislocation loops were 

observed, but as can be seen from Figure 5c there are many “black spot” features within 

some of the ultrafine grains indicative of the formation of defect clusters which have not 

yet formed loops. Within the small NC grains in HPT 304, however, these defect clusters 

are not observed. 
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Larger dislocation structures also differ significantly with grain size. Figure 6a 

shows TEM dark field (DF) of CG 304 which shows the formation of a large dislocation 

network after irradiation. This dislocation network can be seen more readily from TEM 

BF shown in Figure 6b in which the irradiated region with dislocation networks is visible 

as compared to the unirradiated region. The unirradiated regionhas many dislocations and 

dislocation tangles from quenching but no networks are readily observed. Figure 6c 

shows TEM BF of the irradiated region and Figure 6d shows TEM BF of the unirradiated 

region in ECAP 304. It is difficult to distinguish between the irradiated and unirradiated 

regions in the ECAP 304 sample, as the as ECAPed condition consists of a 

microstructure which has a high dislocation density and many dislocation tangles and 

cells which is typical in SPD materials especially in the early-mid stages of grain 

refinement. While the dislocation microstructure of the as ECAPed sample makes it 

difficult to compare to the irradiated region, it can be concluded that unlike what was 

observed in the CG 304 sample, the ECAP 304 sample does not form new large 

irradiation induced dislocation networks. 

The microstructure of irradiated HPT 304 shows a few interesting features. As 

can be seen from Figure 6e there is significant irradiation induced grain growth as was 

previously reported in our study of segregation within the irradiated HPT 304 sample. 

This irradiation induced grain growth was also previously reported in other 

nanostructured metals under both ion irradiated austenitic steel and neutron irradiated Cu 

[33,34]. Figure 6f shows TEM BF of HPT 304 annealed at 500°C showing no grain 

growth, and even limited recovery due to thermal effects which can also be seen from 

Figure 6e in the unirradiated region. After irradiation, there are still many dislocations 
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observed in many of the grains as can be seen from the diffraction contrast in Figure 6e. 

The grains in the irradiated region have less observed strain as compared to the 

unirradiated grains, and some of the UFG within the irradiated region are defect free as 

can be seen from the misorientation map in Figure 2a. Therefore, this growth mechanism, 

while undesired, may contribute to the prevention of strain accumulation during 

irradiation.  

3.4. RADIATION INDUCED SEGREGATION 

In our previous study, we showed the behavior of grain size on the RIS within 

HPT 304. In this study, through APT, it was observed that when comparing RIS in 

ultrafine grains compared to NC grains the segregation behavior is significantly 

decreased with a decrease in grain size. The difference in segregation for Cr depletion 

and Ni and Si enrichment was 3.4 at.% Cr, 8.5 at.% Ni, and 1.5 at.% Si respectively. 

There were several NC grains in which the GBs were also observed to have Cr 

enrichment with minimal Ni enrichment. This Cr enrichment was accompanied with 

enrichment in Mo. Both Cr and Mo were observed to be enriched along GBs in HPT 304 

after annealing at 500 °C for 24hrs. Co which was found to be enriched along other 

irradiated GBs was not found in the Cr enriched GBs. This, therefore, demonstrates that 

the observed Cr enriched GBs showed enrichment of other species typically associated 

with GB segregation after thermal annealing, and limited enrichment of species 

associated with RIS. It was concluded that small grain size can reduce the impact of the 

kinetically driven segregation, and, especially in the case of nanocrystalline materials, 

increase the impact of thermal annealing at irradiation temperatures.  
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4. MODELING AND DISCUSSION 

4.1. THERMAL EFFECTS OF PHASE TRANSFORMATION 

As can be seen from Figure 1d, there is a clear transformation of the CG and HPT 

304 during annealing at 500 °C for 24hrs. While the Ni content in Fe-Cr-Ni alloys can 

stabilize the austenitic phase, the stability of austenite decreases with temperature. In 

order to more fully understand the temperature dependence of austenite stability of this 

304 composition CALPHAD (CALculation of PHAse Diagrams) was utilized. Figure 7 

shows the phase fraction vs temperature for the 304 presently studied. The stability of 

austenite steadily decreases below 600 °C which agrees with the XRD results of CG and 

HPT 304 in Figure 1d. The ECAP 304 sample, however, shows good thermal stability 

under annealing which could be due to the high fraction of low angle grain boundaries 

when compared to the CG and HPT 304 samples. This thermal instability does not 

account for the ferritic transformation during irradiation. As can be seen from the 

comparison of gonio XRD scans and GIXRD, the amount of ferrite within the irradiated 

region in all three 304 samples is significantly higher than in the bulk. 

Previous studies also show that the radiation induced austenite to ferrite 

transformation in austenitic steels is not simply irradiation assisted transformation 

towards equilibrium. Keefer et. al showed that proton irradiated 321 steel showed more 

ferrite transformation at 500 °C than was observed at 400 °C [35]. Porter and Wood 

observed a similar trend when neutron irradiated 304 and 316 at temperatures between 

400 and 550 °C, and they found that  fast neutron irradiation at 400 °C resulted in no 

observable ferrite [5,36]. This behavior appeared counterintuitive as the stability of 
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austenite steadily declines with a decrease in temperature. It was therefore concluded that 

rather than a radiation assisted thermal transformation, this is a kinetically driven 

irradiation induced transformation. 

4.2. γ→α TRANSFORMATION MECHANISM 

Because the explanation of the austenite to ferrite transformation could not be 

explained by irradiation assisted thermal transformation, there can be two kinetically 

driven explanations: transformation driven by RIS which can cause depletion of Ni 

within the matrix (consequently decreasing austenite stability) and a deformation induced 

martensite transformation (DIMT) caused by irradiation induced defect formation and 

strain. When Keefer and colleagues first observed this phenomenon, they attributed it to 

the increase in vacancies allowing for enhanced diffusion which drives the phase 

transformation [35]. Porter and Wood observed the formation of austenite rings 

surrounding voids in the material, and that ferritic grains tend to nucleate within faulted 

loop structures [5,36]. While Porter and Wood do claim that these effects are influenced 

by RIS, the cause is likely more complex than being explained simply by segregation and 

precipitation as is commonly cited in more recent studies which observe irradiation 

induce ferrite[6,7].  

Because nucleation tends to occur within faulted loops, this is likely driven by a 

two step martensite transformation which includes transformation from γ→ε→α’ where 

ε-martensite is an HCP structure and is responsible for the dual phase TRIP mechanism 

[37]. While the α’-martensite produced through this mechanism is a body centered 

tetragonal (BCT) structure, in low carbon steels the lack of interstitials will cause α’-
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martensite to relax into a BCC α-ferrite structure. This DIMT is highly dependent on 

stacking fault energy (SFE) as nucleation of ε-martensite tends to occur on stacking 

faults[38]. Maksimkin discusses this relation of SFE to martensite transformation as he 

observed the formation of ε-martensite and α-ferrite after Kr ion irradiation at 400 °C  of 

12Cr18Ni10Ti austenitic steel [39].  This can also be related to the observation that the 

addition of Si and/or Ti will increase the amount of ferrite transformation during 

irradiation as both Si and Ti are known to decrease the SFE in austenitic steels [40–43]. 

Mn is also known to decrease SFE [40], and Gussev et. al also showed that Si and Mn 

have the largest impact on the ferritic transformation during irradiation of austenitic steels 

[31].  

It should be noted, however, that the G-phase which is an irradiation induced 

intermetallic precipitate is a Ni silicide with a possible composition of Ni-Mn-Si or Ni-

Ti-Si [5,44,45]. Ni3Si γ' is another common irradiation induced precipitate [46–49]. 

Therefore, addition of Si, Mn, and Ti also will contribute to the formation of Ni enriched 

precipitates which will deplete the matrix of Ni and contribute to austenite instability. 

The formation of these Ni enriched phases in austenitic steels is primarily caused by RIS 

through the inverse Kirkendall effect (IKE) which is driven primarily by diffusion of 

vacancies towards defect sinks (grain boundaries and dislocations) [50]. As vacancies 

diffuse towards defect sinks, fast diffusing atoms will travel preferentially in the opposite 

direction of this vacancy flux. In austenitic steels, Cr is undersized and is a fast diffuser 

while Ni and Si are oversized and slow diffusers. This causes Cr to deplete and Ni and Si 

to enrich along grain boundaries and dislocations in Fe-Cr-Ni austenitic steels [51,52]. 

This results in depletion of Ni from the matrix, and a decrease in austenite stability. It is 
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reasonable, consequently, that both deformation induced transformation and segregation 

and precipitation will contribute to the phase ferritic transformation during irradiation. 

4.3. GRAIN SIZE EFFECTS ON DEFORMATION INDUCED 

TRANSFORMATION 

 

Previous studies indicated that cold worked steels tend to be more resistant to 

irradiation induced ferrite transformation [5,30]. Nevertheless, it was not fully understood 

as to why the cold work increased the stability of austenite. The reduction of irradiation 

induced ferrite due to DIMT correlated to reduction of grain size can be compared to the 

resistance to DIMT during plastic deformation with a decrease in grain size. Yoo et. al 

showed that the critical stored energy required for deformation induced martensite 

transformation in Fe-Ni-Cr-Mn austenitic steels increases with a reduction in grain size 

[53]. This is confirmed by other studies which have shown that a decrease in grain size is 

associated with an increase in austenite stability during plastic deformation [8,54–56]. 

One major contributing factor to this is the increased GB volume fraction, as dislocation 

density will be decreased with a decrease in grain size because this increases the 

annihilation of dislocations at GBs [21,57–59]. This will, in turn, reduce the number of 

nucleation sites at which martensitic grains can nucleate. 

Just as GB can act as sites for annihilation of dislocations accumulated during 

plastic deformation, GBs also act as sinks for irradiation induced defects [17]. This was 

observed to have two effects in the present study on ion irradiated 304. First, the size of 

loops is significantly decreased as the average loop size in ECAP 304 is ~6 nm as 

compared to CG 304 in which average loop size was ~33 nm making for a difference in 

loop size of ~27 nm. When compared to the HPT 304, no loops were observable and only 
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defect clusters formed. This can be directly correlated to lower dislocation density and 

annihilation of defects at GBs preventing the coarsening of dislocation loops in the 

nanostructured 304 samples. Similarly, the formation of large dislocation structures is 

significantly reduced in the nanostructured 304 steels. As is observed from Figure 6a and 

b, CG 304 forms very large dislocation networks during irradiation which cover the entire 

irradiated region. This not only increases strain, but also the number of martensite 

nucleation sites. In contrast, the ECAP 304 microstructure does contain dislocation cells 

and tangles, but the microstructure is predominantly defined by the pre-irradiation 

microstructure obtained from SPD. The HPT 304 microstructure is relatively free of large 

dislocation structures, and the irradiation induced grain growth mechanism reduces strain 

within the material as there are many relatively defect free ultrafine grains after 

irradiation.  

The nano-structuring of 304 can consequently reduce the irradiation induced 

martensite transformation in two ways. First, the size of faulted dislocation loops is 

reduced in ECAP 304 as compared to CG 304 and in HPT 304 faulted loops do not form. 

Maksimkin notes that it is speculated that irradiation induced martensite formation is 

related to irradiation induced faulted frank loops [39]. Reducing the size or preventing the 

formation of such loops will therefore eliminate one mechanism of martensite nucleation. 

Second, the prevention of the formation of large dislocation networks as is observed in 

the CG 304 can help prevent the creation of martensite “embryos” which form from 

stacking faults and deformation twins [60]. 



 

 

55 

4.4. GRAIN SIZE EFFECTS ON RADIATION INDUCED SEGREGATION AND 

PRECIPITATION 

 

In our previous study, it was reported that within the UFG and NC grains in ion 

irradiated HPT 304, no segregation or precipitation of Ni or Ni silicides was observed. 

This is in good agreement with previous studies of irradiated nanostructured 300 series 

steels [27,29,34]. In contrast, CG 304 shows the precipitation of N3Si as can be seen from 

Figure 4. This formation of Ni3Si is understood to be initiated by RIS which causes 

enrichment of Ni and Si along dislocation loops [46–49]. Because no dislocation loops 

could be found in the irradiated HPT 304 there are no intragranular sites on which this 

RIS can occur which eliminates the mechanism of precipitate formation. In the irradiated 

ECAP 304, although small, dislocation loops were still observed. However, no 

intragranular Ni segregation or Ni enriched precipitation was observed. This can be 

reasonably attributed to the reduction in RIS due to grain size effects. 

Our previous study of irradiated HPT 304 also showed that RIS is reduced with 

decreasing grain size. This also agrees with other studies on nanostructured austenitic 

steels showing that nanostructuring is effective in reducing RIS [27,29]. This reduction in 

RIS can be understood by annihilation of defects at GBs. As GB size is decreased, the 

distance defects must travel to sinks is reduced which causes both the total defect density 

to decrease while also reducing the vacancy flux towards GBs and dislocations which is 

thought to be the primary driving mechanism for RIS [52,61]. This can therefore explain 

the lack of segregation and precipitation of Ni silicide on dislocation loops in the 

irradiated ECAP 304. Additionally, with increased RIS along GBs, Ni will become 

depleted within the matrix reducing austenite stability. Therefore, a reduction in GB 
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segregation in the ECAP and HPT 304 helps to maintain a homogeneous Ni content and 

reduce ferrite transformation due to chemical segregation.  

5. CONCLUSIONS 

304austentic steel with varying grain size was manufactured using two SPD 

techniques: ECAP and HPT. The nanostructured steels were compared to CG 304 after 

self-ion irradiation at 500 °C to a max damage of 50 dpa. The phase stability of austenite 

was compared, and the results are summarized as follows. 

(1) Both XRD and PED show that nanostructured 304 steels are more resistant to 

irradiation induced ferritic transformation when compared to CG 304. 

(2) The irradiation induced ferritic transformation is cause by two mechanisms. 

The first is deformation induced martensite transformation which is a diffusionless 

transformation caused by irradiation induced strain, and results in BCC grains with 

matrix chemical composition. The second is irradiation induced segregation and 

precipitation of Ni and Ni enriched precipitates which causes the depletion of Ni within 

the matrix thus decreasing austenite stability. 

(3) Nano-structuring results in a decrease in irradiation induced defects. The 

ECAP 304 showed reduced dislocation loop size as compared to CG 304. No loops were 

found in HPT 304, and only defect clusters were observed. CG 304 formed large 

dislocation networks after irradiation whereas ECAP 304 and HPT 304 did not form large 

irradiation induced defect structures. 
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(4) RIS is significantly reduced with a decrease in grain size due to a reduced 

vacancy flux towards defect sinks. 

(5) The enhanced resistance to irradiation induced ferritic transformation in 

nanostructured 304 is due to a reduction in irradiation induced defects and RIS. Because 

of annihilation of defects at GBs in nanostructured steels, loop size is either decreased or 

loops are prevented from forming altogether. The prevention of large loop formation and 

large dislocation structures prevents the formation of and dislocation interaction with 

stacking faults and twins reducing the DIMT. A reduction in RIS and precipitation of Ni 

enriched phases prevents Ni depletion enhancing austenite stability. 
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Figure 1. a-c) Low angle XRD and gonio scans showing the ion irradiated thin film 

region and non-irradiated bulk of the CG, ECAP, and HPT 304. A significant amount of 

α-ferrite is seen after irradiation in all samples as seen from the α-110 reflection. d) XRD 

of CG, ECAP, and HPT 304 after annealing at 500 °C for 24 hrs.  
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Figure 2. PED misorientation maps (left) and phase maps (right) showing γ-austenite 

(red) and α-ferrite (green) for a) HPT, b) ECAP, and c) CG 304 ion irradiated at 500 °C. 
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Figure 3. a) EBSD phase map showing austenite (blue) and ferrite (red). EDS chemical 

maps of the map in a) are shown for b) Cr and c) Ni. Not all ferritic regions are depleted 

in Ni and enriched in Cr. 
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Figure 4. a) STEM BF and b)-d) associated EDS chemical maps of ion irradiated CG 304 

showing Ni-Si enriched, Cu, and Cr enriched M23C6 precipitates. 
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Figure 5. Micrographs of different grain sized 304 after ion irradiation. a) TEM BF of CG 

304 showing large faulted loops. b) STEM BF of ECAP 304 showing many small faulted 

loops. c) STEM BF of HPT 304 showing many “black spot” defects indicating formation 

of defect clusters.  

 

 

Figure 6. a) TEM DF  and d) TEM BF of irradiated CG 304 showing the formation of 

large dislocation networks. b) TEM BF of irradiated and e) unirradiated ECAP 304 

showing dislocation cells/tangles and little change in dislocation structures after 

irradiation. c) STEM DF of irradiated HPT 304 showing irradiation induced grain 

growth, but many defect free grains. f) TEM BF of HPT 304 annealed at 500 °C for 24 

hrs showing no grain growth, and limited recovery. 
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Figure 7. Phase fraction vs temperature of 304 steel composition in this study. 
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ABSTRACT 

Two Co-free multi-principal element alloys (MPEAs), a single-phase face-

centered cubic (FCC) Fe30Ni30Mn30Cr10, and an (Fe30Ni30Mn30Cr10)94Ti2Al4 (all 

in atomic percent) with FCC matrix containing a Ni-Ti-Al enriched L12 (ordered FCC) 

secondary phase (γ’), were developed and investigated in this study. The alloys were ion 

irradiated at 300°C and 500°C to a peak damage of 120 displacements per atom (dpa). As 

compared to the (Fe30Ni30Mn30Cr10)94Ti2Al4 alloy, in the Fe30Ni30Mn30Cr10 alloy, 

the dislocation loops were smaller, with a higher number density. The difference in loop 

size between the two MPEAs was attributed to the addition of Ti in the matrix, which 

was anticipated to lower the stacking fault energy and stabilize the faulted Frank loops. 

The γ’ phase showed good stability under irradiation, with no new γ’ precipitation or 

growth in the existing precipitates. Both alloys showed similar irradiation-induced 
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hardening at 300°C, however, the (Fe30Ni30Mn30Cr10)94Ti2Al4 alloy exhibited lower 

irradiation-induced hardening at 500°C as compared to the Fe30Ni30Mn30Cr10 alloy. 

1. INTRODUCTION 

Conventional steels and Ni-based alloys used in nuclear reactors suffer from a 

variety of degradation processes during irradiation, including void swelling, 

embrittlement, precipitation, and stress corrosion cracking [1]. To find a solution to these 

materials challenges in nuclear reactor systems, a variety of new radiation damage 

resistant materials’ concepts have been proposed, including nanostructured steels and 

ceramics, ceramic composites, bulk metallic glasses, and MPEAs [alternatively called 

high-entropy alloys (HEAs)] [2]. MPEAs have generated interest in the last decade due to 

their favorable properties, which include good phase stability, high strength combined 

with good ductility, and superior corrosion resistance [3–6]. They are therefore promising 

candidate materials for nuclear reactor structural materials, where materials are subjected 

to both high temperatures and corrosive coolants during service. 

In addition to the aforementioned advantages, select MPEAs have shown good 

resistance to radiation damage. Previous studies have shown that when compared to pure 

Fe, Ni, or conventional FeNiCr alloys, FeNi based MPEAs have reduced irradiation-

induced void and dislocation loop sizes, swelling, and segregation [7–10]. The reductions 

in void and dislocation loop size were attributed to reduced defect mobility within a 

MPEA microstructures, an effect that has been verified through experiments and 

modeling comparing pure Ni to FeNi binary systems [10,11]. While these systems have 
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shown promise, many MPEA systems contain Co in significant concentrations, which is 

not desirable from the standpoints of neutron activation and waste management. Hence, a 

new MPEA system has been developed by replacing Co with Mn, and the resulting 

FeMnNiCr alloy was also shown to exhibit significant damage resistance to radiation [8]. 

Because studies of Co-free MPEAs have been limited, this study aimed to investigate and 

improve the understanding of such systems, especially in terms of their irradiation 

behavior. 

Along with furthering research of the traditional single-phase FeMnNiCr alloy, 

this study also aimed to determine the effects of secondary phases in Co-free HEAs on 

irradiation behavior. The formation of a γ’ secondary phase was promoted by the addition 

of Ti and Al to FeCoNiCr MPEA systems and shown to significantly improve 

mechanical properties, especially strength [12,13]. In particular, the γ’ precipitates with 

an L12 (ordered FCC) structure in MPEAs can be compared to γ’ precipitation 

strengthening in many Ni-based superalloys [14,15]. This secondary-phase strengthening 

mechanism is important to achieve good mechanical properties as previous studies 

showed that single-phase FCC HEAs showed poor strength at elevated temperatures [16–

18]. The (Fe30Ni30Mn30Cr10)94Ti2Al4 investigated in this study was based on the 

(FeNiCoCr)94Ti2Al4 studied by He et. al [12], with the replacement of Co by Mn and a 

reduction in the Cr content to stabilize the FCC phase. 

In addition to improving strength, it is anticipated that these precipitates can also 

enhance radiation damage resistance by creating phase interfaces that act as radiation 

induced defect sinks [2]. The study of multiphase MPEAs are limited, however, and more 

work needs to be performed in order to understand how secondary phases are affected by 
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irradiation. Previous irradiation studies by Yang, Xia and collaborators focused on 

AlxCoCrFeNi systems that formed B2 [ordered body-centered cubic (BCC)] precipitates. 

These studies have shown that the B2 phase is not stable, and will grow and form new 

precipitates during irradiation [19,20]. Kombaiah et. al showed that irradiation can induce 

precipitation of γ’ in a single-phase Al0.12CrNiFeCo alloy [21]. There have been 

extremely limited studies, however, of the stability of γ’ under irradiation in a MPEA 

system containing both Al and Ti. Therefore, this study served to evaluate the stability of 

the γ’ phase under irradiation in order to aid in the design of MPEAs with stable phase 

compositions for nuclear reactor applications. 

2. EXPERIMENTAL 

Both Fe30Ni30Mn30Cr10 and (Fe30Ni30Mn30Cr10)94Ti2Al4 alloys were cast using arc-

melting. The purity of each element was 99.995%, 99.995%, 99.9%, 99.95%, 99.99%, 

99.99% for Fe, Ni, Mn, Cr, Ti, and Al, respectively. Following casting, samples were 

homogenized at 1200 oC for 10 hours. No further thermomechanical treatments were 

performed on the Fe30Ni30Mn30Cr10 alloy. Following homogenization, the 

(Fe30Ni30Mn30Cr10)94Ti2Al4 was cold rolled to a 30% reduction, solution treated at 

1000°C for 2 hours, and then aged at 800°C for 18 hours. Scanning electron microscopy 

(SEM) and energy dispersive x-ray spectroscopy (EDS) were performed on the as-

fabricated samples using a FEI Helios NanoLab SEM with an Oxford EDS system. 

Transmission electron microscopy (TEM) was carried out on a FEI F20 TEM. Atom 

Probe Tomography (APT) was conducted using a CAMECA LEAP 4000X HR atom 
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probe. APT experiments were performed at 44 K, in voltage mode, with a target pulse 

fraction of 0.2 and a detection rate of 0.005. APT data analysis was performed using 

CAMECA IVAS software.  

The MPEA samples were irradiated using 3.7 MeV Fe2+ ions with a raster beam 

(horizontal and vertical rastering frequencies of 64 and 517 Hz, respectively) in a NEC 

1.7 MV Tandem accelerator at the University of Wisconsin Ion Beam Laboratory, to a 

fluence of 9.9×1016 ion/cm2 at a flux of 5.2 × 1012 ion/cm2/s  at 300 ± 5°C, or 6.9 × 1012 

ion/cm2/s at 494 ± 9°C. The sample temperature was averaged from two thermocouples 

attached to the opposite corners of the sample irradiation stage. The irradiations were 

performed in the base pressure range of 2.6×10-6 – 7.6×10-7 Torr. Figure 1 shows the 

simulated damage and implantation profiles of 3.7 MeV Fe2+ irradiation in 

Fe30Ni30Mn30Cr10, calculated using the Kinchin-Pease model with full cascade in the 

Stopping and Range of Ions in Matter (SRIM) software (Kinchin-Pease model is 

recommended for comparison of ion and neutron irradiation data while full cascade 

calculation is recommended with multicomponent target materials) [22–24]. SRIM 

software was used to calculate the damage and implantation profiles for the 

(Fe30Ni30Mn30Cr10)94Ti2Al4 samples. Results indicated that the profiles were similar to 

those for the Fe30Ni30Mn30Cr10 samples. Samples were partially masked to allow for 

comparison between irradiated regions and non-irradiated regions experiencing the same 

thermal history.  

TEM lamellae were prepared from irradiated samples using a Zeiss Auriga 

focused ion beam (FIB). A 2 μm thick Pt protection layer was deposited on the irradiated 

samples, followed by 30 kV Ga+ ion milling to produce lamellas of ~15 μm × 5 μm × 2 
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μm in size. The lamellae were lifted out and attached to a TEM grid (procured from Ted 

Pella Inc.) and then thinned down to electron transparency sequentially with 30, 8, and 

finally 2 kV Ga+ ions. TEM characterization was conducted with a FEI TF30 instrument 

operated at 300 kV, while scanning transmission electron microscopy (STEM) was 

conducted using a FEI Titan S-Twin aberration-corrected STEM equipped with an EDS 

and operated at 200 kV with an electron beam semi-convergence angle of 24.5 mrad. The 

collection angle is 54-270 mrad for high-angle annular dark field images (HAADF), and 

6 -13 mrad for annular bright field images (ABF). A rel-rod technique was used to image 

Frank loops, and information about the beam conditions for rel-rod imaging can be found 

in studies by Sencer et. al and Edwards et. al [25,26]. Nanoindentation was performed 

using a Hysitron TI-950 TriboIndenter and a cube-corner tip in the displacement control 

mode. Indentations were performed at three displacement depths: 0.1 μm, 0.15 μm, and 

0.2 μm. These indentation depths are designed to be shallow enough that the full 

interaction volume is contained within the irradiated region [27]. At each depth ten 

indentations were performed.  

3. RESULTS AND DISCUSSION 

The Fe30Ni30Mn30Cr10 alloy formed a single solution FCC phase with a sporadic 

distribution of MnO inclusions, which were previously reported in a comparable 

Fe27Ni28Mn27Cr18 alloy [8]. Their number density is not high enough, however, to be 

considered relevant to the irradiation study performed. After homogenization, only a 

single solid-solution FCC phase was observed in the (Fe30Ni30Mn30Cr10)94Ti2Al4 alloy.  
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However, after cold rolling, solution treatment, and aging at 800°C, γ’ Ni3(Al,Ti) 

precipitates were formed. Figure 2a-g show an secondary electron image and EDS maps 

of the (Fe30Ni30Mn30Cr10)94Ti2Al4 alloy with many γ’ precipitates. These precipitates 

form elongated structures with lengths on the order of 1 μm and widths on the order of 

250 nm as seen in the TEM bright-field (BF) image in Figure 2h. Figure 3 shows an BF 

TEM image of a γ’ precipitates with a selected area diffraction pattern (SAED) indicating 

a L12 (ordered FCC) structure that is typical of the γ’ phase. Composition of the matrix 

and γ’ precipitates in the (Fe30Ni30Mn30Cr10)94Ti2Al4 alloy, obtained from EDS or APT, 

are shown in Table 1. Each reported EDS measurement was averaged from 10 point or 

line scans. It is noted that APT experiments were only able to capture a reconstruction 

volume of one γ’ precipitate and, therefore, no standard deviation of the composition 

could be obtained. It is also noted that in the (Fe30Ni30Mn30Cr10)94Ti2Al4  alloy, after 

casting the content of Ti was higher than anticipated. 

Figure 4a and b show TEM BF images of small dislocation loops in the 

Fe30Ni30Mn30Cr10 MPEA after irradiation at 300°C. Most of these loops were less than 10 

nm in diameter, although the largest loops had a diameter of ~35 nm. Figs. 4c and d show 

TEM BF image and the associated rel-rod image of the Fe30Ni30Mn30Cr10 MPEA after 

irradiation at 500°C. The rel-rod image shows the formation of some larger loops on the 

order of 100 nm, although the BF image shows that most of the dislocations caused by 

irradiation in this sample are either smaller loops or form dislocation networks.  

Figure 5a and b display TEM BF and associated rel-rod images of 

(Fe30Ni30Mn30Cr10)94Ti2Al4 after irradiation at 300°C. Multiple smaller Frank loops with 

sizes on the order of 20 nm were observed. Figs. 5c and d show 
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(Fe30Ni30Mn30Cr10)94Ti2Al4 after irradiation at 500°C. At 500°C the alloy exhibited a 

small increase in the average loop size (from ~20 to ~30 nm), but larger loops on the 

order of 170 nm were also observed.  

Under the irradiation conditions tested, no voids were detected in either MPEA. 

This may not be due to the intrinsic properties of the alloys, but rather due to the fact that 

the irradiation was performed with rastered beam rather than a defocused beam,  which 

can reduce the void development and swelling during ion irradiation [28]. Thus, swelling 

was not evaluated in this study. Nevertheless, this study provided valuable insights 

through comparisons in the development of dislocation loops in FeNiMnCr based alloy 

systems.  

Figure 6 shows histograms of the loop size distribution for the Fe30Ni30Mn30Cr10 

and (Fe30Ni30Mn30Cr10)94Ti2Al4 irradiated at 300°C and 500°C, while Table 2 

summarizes the average size and number density of dislocation loops in the two alloys. 

As expected, loop size increased with irradiation temperature, accompanied by a decrease 

in number density, as point defects and small dislocation loops diffused and combined. 

This behavior was previously observed in a Al0.1CoCrFeNi MPEA [29]. Moreover, the 

Fe30Ni30Mn30Cr10 and (Fe30Ni30Mn30Cr10)94Ti2Al4 alloys also differ in the observed loop 

size. In the Fe30Ni30Mn30Cr10 alloy, the loop sizes tended to be smaller with a much 

higher number density, which was anticipated from previous results of irradiated MPEAs 

[7,9]. In the (Fe30Ni30Mn30Cr10)94Ti2Al4 MPEA, however, there was an increase in the 

size of dislocation loops with the addition of Al and Ti. This same behavior of increased 

faulted loop size was also seen by Chen et. al in a helium irradiated FeCoNiCrTi0.2 HEA, 

and this was attributed to a decrease in SFE from the addition of Ti to the system [30]. 
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This increase in the average loop size can, consequently, be attributed to the alloying of 

Al and Ti in the (Fe30Ni30Mn30Cr10)94Ti2Al4 system. It is well known that Ti reduces the 

stacking fault energy in austenitic steels [31,32], and the addition of Ti to an 

Fe30Ni30Co30Mn10 MPEA increased the twin boundary density, which is directly related 

to a lowering of stacking fault energy [33]. Because Ti is a hexagonal close-packed 

(HCP) structure with an ABAB stacking, stacking faults in the FCC structure (which is 

ABCABC) can be viewed as single plane HCP structures since an FCC stacking fault 

leads to ABABC stacking. Al may also lower the SFE, as shown by Peijun et. al for Al 

additions to an FeNiCoCr HPEA where such lowering of SFE assisted in the formation of 

nanotwins [34]. Meanwhile, the precipitation of high SFE elements (Ni and Al) from the 

matrix is also anticipated to lower the SFE of the matrix. 

Although the formation of γ’ precipitates consumes a notable amount of Ti, a 

significant concentration of Ti remained within the matrix, as can be seen in Table 1. 

Loops enriched in Ti were also observed as can be seen in Figure 7. This enrichment in 

Ti may have been due to radiation-induced segregation to dislocation loops, and if so, this 

behavior would be unique. While Ti can enrich at defect sinks (such as dislocation loops), 

Ni also enriches at defect sinks in conventional FCC Fe-Cr-Ni austenitic steels under 

irradiation [35,36]. This Ni enrichment was not observed within the loops in this study. 

Ti enrichment within these faulted Frank loops would lower the stacking fault energy and 

allow for these loops to grow even further. Thus, the increased size of faulted loops in the 

(Fe30Ni30Mn30Cr10)94Ti2Al4 alloy could be directly attributed to the addition of Ti, which 

lowered the stacking fault energy.  
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Figure 8 shows TEM images of the (Fe30Ni30Mn30Cr10)94Ti2Al4 ion irradiated at 

300 and 500°C, showing the γ’ precipitates both within and outside the irradiated regions. 

The morphology and size of the precipitates did not appear to be affected by the 

irradiation. Such phenomenon in this system differs from the observation in previous 

studies of other FCC MPEAs where the addition of Al caused secondary phases to grow 

or new precipitates to form (or both) under irradiation. Yang et. al showed that, although 

single-phase  Al0.1CoCrFeNi exhibited good phase stability, higher Al content in 

AlxCoCrFeNi in general caused the Ni-Al enriched B2 phase to both grow and precipitate 

further under irradiation [19,20]. This B2 phase consistently occurs in FCC FeNiCoCr 

based MPEAs with higher Al content (in the absence of Ti) [37]. However, Kombaiah et. 

al showed that in a single-phase FCC Al0.12CrNiFeCo, irradiation at 500°C induced 

precipitation of L12 structured Ni3Al, which was believed to have been caused by non-

equilibrium radiation induced diffusion [21]. It is noted that even after long term 

annealing, Kombaiah et. al did not observe precipitation, indicating that the precipitation 

observed after irradiation was purely driven by the kinetics of irradiation. It is clear, 

therefore, that AlxCoCrFeNi based systems, no matter single FCC phase or BCC phases 

containing, exhibit poor phase stability under irradiation. In our 

(Fe30Ni30Mn30Cr10)94Ti2Al4 system, the additions of Ti and Al lead to the formation of 

L12 (ordered FCC) γ’ Ni3(Al,Ti) precipitates, which was previously observed by both He 

et. al and Zhao et. al in a (FeNiCoCr)94Ti2Al4 system [12,38]. FeNiCoCrAlxTiy alloys 

containing the γ’ phase were originally studied due to their desirable mechanical 

properties, however, the current study shows that Ni3(Ti,Al) γ’ may also have 

extraordinary phase stability under irradiation. This stability may be due, in part, from the 
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structural coherency of the L12 phase with the FCC matrix. The synergistic effects of Ti 

and Al may also have played a key role in stabilizing this secondary phase. Chen et. al 

showed that in FCC based MPEAs containing γ’, Ti is the primary L12 phase former with 

Al acting as a stabilizer, and that the Ti/Al ratio should be between 0.7 and 2 to stabilize 

the L12 phase [39]. Chen also showed that Cr and Fe can narrow the stability region of 

the L12 phase [39]. Thus, the phase stability of γ’ in the (Fe30Ni30Mn30Cr10)94Ti2Al4 alloy 

in this study may be attributed to both the synergistic effects of Ti and Al, and the 

lowering of the Cr content in this alloy. While the Ti/Al ratio in the 

(Fe30Ni30Mn30Cr10)94Ti2Al4 alloy in this study is low (0.5), the stability region may be 

broadened due to the decrease in the Cr content. Stability of precipitates and solid 

solution under irradiation are key to preventing irradiation-induced changes and 

consequently the mechanical properties of structural materials. In future designs of 

FeNiCr based MPEAs where secondary phases are utilized for either enhanced strength 

or as defect sinks, it may be beneficial to design alloy compositions which promote Ni-

Al-Ti enriched ordered FCC secondary phase rather than a Ni-Al rich ordered BCC 

secondary phase from the standpoint of stability under radiation. 

Table 3 shows the results of nanoindentation for both MPEAs after ion irradiation 

at 300°C and 500°C. Results compare the differences in hardness between the irradiated 

regions and the masked unirradiated regions. At 300°C, both alloys demonstrated very 

similar irradiation-induced hardening. Although the (Fe30Ni30Mn30Cr10)94Ti2Al4 alloy 

showed larger loop size overall, number density of loops was much lower in this alloy. At 

500°C the irradiation induced hardening of (Fe30Ni30Mn30Cr10)94Ti2Al4 was 

approximately half that of the Fe30Ni30Mn30Cr10 alloy suggesting that Ti and Al additions 
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are effective at reducing irradiation induced hardening for higher temperature 

irradiations. The (Fe30Ni30Mn30Cr10)94Ti2Al4 alloy irradiated at 500°C showed a larger 

average loop size and lower number density of loops compared to irradiated 

Fe30Ni30Mn30Cr10 alloy which is attributed to the resistance to irradiation induced 

hardening. Although the number density of γ’ precipitates was low, they are assumed to 

have contributed to the irradiation resistance in the (Fe30Ni30Mn30Cr10)94Ti2Al4 alloy. 

Further work is being conducted to optimize heat treatments to increase number density 

and decrease the size of the γ’ precipitates.  

4. CONCLUSIONS 

The radiation damage behavior of two Co-free MPEAs, namely a single-phase 

FCC Fe30Ni30Mn30Cr10, and an (Fe30Ni30Mn30Cr10)94Ti2Al4 in which the matrix was FCC 

structured single phase with an Ni-Ti-Al enriched L12 (ordered FCC) secondary phase, 

has been investigated. The study was performed by ion irradiation of the samples with 

Fe2+ ions up to 120 dpa at 300°C and 500°C.  The following conclusions are made: 

(1) Both Fe30Ni30Mn30Cr10 and (Fe30Ni30Mn30Cr10)94Ti2Al4 showed an increase in 

loop size at higher irradiation temperatures, due to the enhanced diffusion of defects and 

defect clusters. 

(2) The (Fe30Ni30Mn30Cr10)94Ti2Al4 alloy formed larger loops with a smaller 

number density than those observed in the Fe30Ni30Mn30Cr10. This effect is attributed to 

the addition of Ti, which lowered the stacking fault energy of the FCC system and 

increased the stability of faulted Frank loops. 
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(3) The L12 γ’ phase was stable under ion irradiation with no observed 

irradiation-induced growth or further precipitation. 

(4) Both the Fe30Ni30Mn30Cr10 and (Fe30Ni30Mn30Cr10)94Ti2Al4 alloys showed 

comparable radiation-induced hardening at 300°C. At 500°C the 

(Fe30Ni30Mn30Cr10)94Ti2Al4 alloy had significantly less radiation-induced hardening than 

the Fe30Ni30Mn30Cr10 alloy, due to a lower number density of dislocation loops. 
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Table 1. Composition of matrix and γ’ precipitates in (Fe30Ni30Mn30Cr10)94Ti2Al4 MPEA. 

 Nominal 

Composition 

Matrix 

(EDS) 

Matrix 

(APT) 

γ' (EDS) γ' (APT) 

At.% Al 4 1.16 ± 0.42 1.87 ± 0.43 7.36 ± 2.24 12.9 

At.% Ti 2 1.43 ± 0.53 2.48 ± 0.35 4.79 ± 1.4 6.12 

At.% Cr 9.4 8.21 ± 1.56 7.62 ± 0.73 1.42 ± 3 0.5 

At.% Mn 28.2 31.72 ± 2.68  30.08 ± 1.58 30 ± 2.65 29.43 

At.% Fe 28.2 25.94 ± 4.56 26.43 ± 4.71 7.03 ± 9.15 3.53 

At.% Ni 28.2 31.5 ± 3.31 31.48 ± 3.15 49.37 ± 7.97 47.52 
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Table 2. Summary of dislocation loop size and number density in Fe30Ni30Mn30Cr10 and 

(Fe30Ni30Mn30Cr10)94Ti2Al4 MPEAs ion irradiated nominally to 100 dpa 

Alloy Temperature Average Loop Size Loop Density 

Fe30Ni30Mn30Cr10 300 °C 6.42 ± 6.4 nm 1.1x1022 m-3 

Fe30Ni30Mn30Cr10 500 °C 30.94 ± 37.8 nm 5.63 x1021 m-3 

(Fe30Ni30Mn30Cr10)94Ti2Al4 300 °C 22.6 ± 10.3 nm 4.11 x1021 m-3 

(Fe30Ni30Mn30Cr10)94Ti2Al4  500 °C 47.8 ± 36.6 nm 3.49 x1021 m-3 

 

 

Table 3. Summary of irradiation induced hardening from nanoindentation. 

Alloy Temperature % Irradiation Hardening (  

Fe30Ni30Mn30Cr10 300°C 87 ± 2 % 

Fe30Ni30Mn30Cr10 500°C 37 ± 2 % 

(Fe30Ni30Mn30Cr10)94Ti2Al4 300°C 76 ± 2 % 

(Fe30Ni30Mn30Cr10)94Ti2Al4  500°C 15 ± 4 % 

 

 

 

Figure 1. 3.7 MeV Fe2+ induced damage and implantation profiles in Fe30Ni30Mn30Cr10. 

Ed is atom displacement energy. 
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Figure 2. a) SEM secondary electron image and b)-g) corresponding EDS maps of 

(Fe30Ni30Mn30Cr10)94Ti2Al4 after cold rolling and annealing, showing the Ni, Ti, and Al 

enriched γ’ phase. h) TEM bright field of γ’ precipitates. 

 

 

Figure 3. a) TEM bright field and b) selected area electron diffraction (SAED) pattern 

showing the structure of γ’ phase in the (Fe30Ni30Mn30Cr10)94Ti2Al4 HEA to be L12 

(ordered FCC). 
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Figure 4. TEM results of Fe30Ni30Mn30Cr10 ion irradiated up to 120 dpa. a) and b) bright 

field of dislocation loops in the 300 °C irradiated sample. c) bright field and d) rel-rod 

image with SAED pattern (inset) of the 500 °C irradiated sample. 
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Figure 5. TEM results of (Fe30Ni30Mn30Cr10)94Ti2Al4 ion irradiated up to 120 dpa. a) 

bright field and b) rel-rod image with SAED pattern (inset) of the 300 °C irradiated 

sample. Beam conditions for a) and b) were g=222 with a 112̅ zone axis. c) bright field 

and d) rel-rod image with SAED pattern (inset) of the 500 °C irradiated sample. 
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Figure 6. Loop size distribution for Fe30Ni30Mn30Cr10 ion irradiated at a) 300 °C and b) 

500 °C and (Fe30Ni30Mn30Cr10)94Ti2Al4 ion irradiated at c) 300 °C and d) 500 °C. 
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Figure 7. STEM bright field image of a faulted dislocation loop and associated EDS point 

scans showing an enrichment of Ti. 
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Figure 8. STEM dark-field image of 300 °C irradiated (Fe30Ni30Mn30Cr10)94Ti2Al4 (left) 

and TEM bright-field image of 500 °C irradiated (Fe30Ni30Mn30Cr10)94Ti2Al4 (right) 

showing the morphology of γ’ precipitates in the irradiated and unirradiated regions.  
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SECTION 

2. CONCLUSIONS AND FUTURE WORK 

2.1. CONCLUSIONS  

We have evaluated two different classes of radiation resistant materials: 

nanostructured steels and high entropy alloys. During manufacturing of nanostructured 

304 steel, segregation and precipitation occurred similar to that observed in irradiated 

304. This was understood as being a kinetically driven segregation and precipitation due 

to the flux of deformation induced defects towards grain boundaries [43]. It was shown 

that these features can be removed through annealing at 500°C. 

After ion irradiation of nanostructured 304 at 500°C, it was observed that RIS was 

significantly reduced as a function of grain size. In some of the nanocrystalline grain 

boundaries, segregation behavior was similar to that of grain boundaries during 

annealing. This can be understood by the reduction of defects which accumulate within 

the material due to the anniahlation of defects at grain boundaries. This reduces the 

vacancy flux towards grain boundaries which drives RIS. In the case of small grain 

boundaries, this allows for thermodynamically driven segregation to compete with and 

overcome the kinetically driven RIS. 

Nanostrutured 304 steel also showed enhanced phase stability during ion 

irradiation at 500°C. When compared to the coarse grained 304 steel, nanostructured 304 

shows significantly reduced radiation induced ferrite transformation and precipitation. 

This enhanced austenite stability of nanostructured 304 is attributed to both a reduction in 
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irradiation induced strain which inhibits the deformation induced martensite 

transformation as well as a reduction in RIS allowing for Ni (an austenite stabilizer) to 

remain in the matrix. 

Two Co-free HEA compositions were also ion irradiated at 500°C. 

Fe30Ni30Mn30Cr10 has a single phase FCC microsctructure and (Fe30Ni30Mn30Cr10)94Ti2Al4 

has a primary FCC phase with ordered FCC L12 γ’ precipitates. The 

(Fe30Ni30Mn30Cr10)94Ti2Al4 alloy developed much larger dislocation loops under 

irradiation than the Fe30Ni30Mn30Cr10alloy. This was attributed to the addition of Ti 

which is presumed to have lowered the stacking fault energy and increased the stability of 

faulted frank loops. The stability of γ’ was also evaluated and it was shown that γ’ is 

stable under irradiation, and irradiation does not cause the precipitation of new γ’ 

particles. 

In summary, both nanostructured 304 steel and two Co-free HEAs were evaluated 

for their radiation tolerance. Both showed good radiation resistance, and the development 

of both nanostructured steels and HEAs will likely lead to enhanced performance and 

increased lifetimes of nuclear reactor structural materials. 

2.2. FUTURE WORK 

While it has been shown that nanostructured steels exhibit good radiation 

resistance, there are still many aspects of these steels that need to be explored. This 

includes studying the thermal stability of these materials and how to stabilize the grain 

size under high temperatures and irradiation conditions. The mechanical properties of 

these materials also need to be evaluated including their possible resistance to stress 
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corrosion cracking. Nanostructured steels may also suffer from poor creep resistance due 

to grain boundary slipping, however the effects of RIS on the prevention of grain 

boundary slipping has still yet to be evaluated. This work is part of a larger project 

funded by the U.S. Department of Energy Nuclear Energy Enabling Technologies 

(NEET)-Nuclear Science User Facilities (NSUF) programs, and these aspects will be 

further explored within this project. 

The work performed on HEAs was also insightful in that the γ’ phase in FCC 

HEAs has shown to be stable under irradiation. The precipitates studied, however, did not 

have the desired size or number density to properly act as effective radiation induced 

defect sinks. Further work is now being carried out on how to optimize these 

microstructures through thermomechanical treatments.
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