
Durham E-Theses

Bayes Linear Strategies for the Approximation of

Complex Numerical Calculations Arising in Sequential

Design and Physical Modelling Problems.

JONES, MATTHEW,JAMES

How to cite:

JONES, MATTHEW,JAMES (2017) Bayes Linear Strategies for the Approximation of Complex Numerical

Calculations Arising in Sequential Design and Physical Modelling Problems., Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/12529/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/12529/
 http://etheses.dur.ac.uk/12529/
htt://etheses.dur.ac.uk/policies/

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

2

http://etheses.dur.ac.uk

Bayes Linear Strategies for the
Approximation of Complex

Numerical Calculations Arising in
Sequential Design and Physical

Modelling Problems.

Matthew Jones

A Thesis presented for the degree of

Doctor of Philosophy

Statistics and Probability Group

Department of Mathematical Sciences

University of Durham

England

October 2017

Bayes Linear Strategies for the Approximation of

Complex Numerical Calculations Arising in

Sequential Design and Physical Modelling

Problems.

Matthew Jones

Submitted for the degree of Doctor of Philosophy

October 2017

Abstract

In a range of different scientific fields, deterministic calculations for which there is no

analytic solution must be approximated numerically. The use of numerical approx-

imations is necessary, but introduces a discrepancy between the true solution and

the numerical solution that is generated. Bayesian methods are used to account for

uncertainties introduced through numerical approximation in a variety of situations.

To solve problems in Bayesian sequential experimental design, a sequence of complex

integration and optimisation steps must be performed; for most problems, these cal-

culations have no closed-form solution. An approximating framework is developed

which tracks numerical uncertainty about the result of each calculation through each

step of the design procedure. This framework is illustrated through application to

a simple linear model, and to a more complex problem in atmospheric dispersion

modelling. The approximating framework is also adapted to allow for the situation

where beliefs about a model may change at certain points in the future.

Where ordinary or partial differential equation (ODE or PDE) systems are used to

represent a real-world system, it is rare that these can be solved directly. A wide

variety of different approximation strategies have been developed for such problems;

the approximate solution that is generated will differ from the true solution in some

unknown way. A Bayesian framework which accounts for the uncertainty induced

through numerical approximation is developed, and Bayes linear graphical analysis

iii

is used to efficiently update beliefs about model components using observations on

the real system. In the ODE case, the framework is illustrated through application

to a Lagrangian mechanical model for the interaction between a set of ringing bells

and the tower in which they are hung; in the PDE case, the framework is illustrated

through application to the heat equation in one spatial dimension.

March 22, 2018

Declaration

The work in this thesis is based on research carried out at the Statistics and Prob-

ability Group, the Department of Mathematical Sciences, Durham University, UK.

No part of this thesis has been submitted elsewhere for any other degree or qualifi-

cation and it is all my own work unless referenced to the contrary in the text.

Copyright© 2017 by Matthew Jones.

“The copyright of this thesis rests with the author. No quotation from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged”.

iv

Acknowledgements

I would like to thank the Engineering and Physical Sciences Research Council and

Shell Global Solutions for providing me with the opportunity to write this thesis

through a CASE studentship. I would also like to thank the Durham CDT in

Energy for providing additional support for my research. Thanks also, of course,

to my supervisory team: to Michael Goldstein for giving guidance and a general

Bayesian education; to Phil Jonathan for his advice and support, and for his almost

unbounded enthusiasm; and to David Randell for his invaluable assistance with the

practicalities of everything.

Thanks to Phil and David, and to everybody in the Statistics and Chemometrics

group at Shell for giving me the opportunity to work with them as an intern, and

thanks to the group’s internal and external collaborators for letting me loose on

their projects. In particular, thanks to Bill Hirst for the many interesting discussions

about LightTouch and the dynamics of boomerang throwing, and to Rakesh Paleja

for his mentorship and for his accurate summaries of the world around us.

Last, but definitely not least, thanks to all of my friends and family for their support

throughout the years. Thanks to Lara for her patience and organisational assistance,

and to my parents for the same, and for allowing me to stay with them so often.

v

Contents

Abstract ii

Declaration iv

Acknowledgements v

1 Introduction 1

1.1 Atmospheric dispersion modelling . 2

1.1.1 General model: The advection-diffusion model 3

1.1.2 Simplified model: Numerical solution 5

1.1.3 Simplified model: The Gaussian plume 6

1.1.4 Example data . 10

1.2 Seismic hazard risk assessment . 11

1.2.1 Modelling . 11

1.3 Extreme ocean wave modelling . 14

1.3.1 Modelling . 15

1.4 Outline of the rest of the thesis . 19

2 Bayesian methodology 20

2.1 Bayesian analysis . 20

2.1.1 Probabilistic Bayesian inference 21

2.1.2 Bayes linear analysis . 25

2.1.3 Bayes linear graphical models 27

2.2 Bayesian analysis for functions . 31

2.2.1 Gaussian Processes . 32

vi

Contents vii

2.2.2 Second-order analysis . 34

2.2.3 Covariance functions . 36

2.2.4 Model fitting procedure . 40

2.3 Applications . 41

2.3.1 Uncertainty analysis for complex functions 42

2.3.2 Inference for integrals and derivatives 46

2.4 Performing calculations on random functions 50

2.4.1 Bayesian quadrature . 50

2.4.2 Input uncertainty propagation and uncertainty analysis 52

2.4.3 Inferring the inputs: calibration 55

2.4.4 Inferring the inputs: history matching 57

2.5 Simple example . 59

2.6 Example: Ocean simulator . 64

2.6.1 Simulator . 64

2.6.2 Emulator . 67

2.6.3 System model . 71

2.6.4 Discussion . 74

3 Bayesian optimal design 77

3.1 Making decisions . 78

3.1.1 Loss functions . 79

3.1.2 Risk under a Bayes linear model 81

3.2 Design calculations . 82

3.2.1 Implementation issues . 83

3.2.2 Value of information . 85

3.2.3 Simple example . 86

3.3 Sequential design calculations . 89

3.3.1 Problem specification . 91

3.3.2 Backward induction . 93

3.3.3 The computational burden . 96

3.4 Approximation of the backward induction calculation 97

3.4.1 Approximating procedure . 100

March 22, 2018

Contents viii

3.4.2 Running example . 102

3.4.3 Characterising distributions 104

3.4.4 Fitting a risk emulator . 107

3.4.5 Illustrative example: fitting 112

3.4.6 Computing expectations . 117

3.4.7 Illustrative example: expectation 117

3.4.8 Characterising the minimum risk 118

3.4.9 Illustrative example: minimum sampling 122

3.4.10 Stopping . 124

3.4.11 Choosing inputs for risk evaluations 126

3.4.12 Illustrative example, wave 1: remaining steps 127

3.4.13 Illustrative example, wave 2 130

4 Example: atmospheric dispersion problem 135

4.1 Atmospheric dispersion problem . 136

4.1.1 Forward model . 136

4.1.2 Decision problem and belief adjustment 137

4.2 Running the algorithm . 141

4.2.1 Basis and covariance functions 143

4.2.2 First wave . 145

4.2.3 Second wave . 152

4.3 Discussion . 157

4.3.1 Practical difficulties . 157

4.3.2 Further work . 160

5 Design for developing models 161

5.1 Model development: Reification . 161

5.1.1 Reifying principle . 163

5.2 Model structure . 164

5.3 Calculations . 166

5.3.1 Full joint prior . 167

5.3.2 Adjustment . 168

March 22, 2018

Contents ix

5.3.3 Propagation and Calibration 171

5.4 Design . 173

5.4.1 No evolution . 174

5.4.2 Evolution . 175

5.5 Approximate backward induction- evolving models 182

5.5.1 Outline of the approximating procedure 182

5.5.2 Characterisation of moments 185

5.5.3 Emulating the experimental risk 188

5.5.4 Emulating the simulator risk 190

5.5.5 Characterising the optimal simulator risk 193

5.5.6 Assessing the result . 195

5.5.7 Choosing inputs for risk evaluations 198

5.6 Example: Building a model . 199

5.6.1 Stochastic atmospheric dispersion model 199

5.6.2 Relating simulators . 203

5.6.3 Design problem . 210

5.7 Example: Running the backward induction 214

5.7.1 Basis and covariance functions 215

5.7.2 First wave . 218

5.8 Discussion . 221

6 Bayes linear numerical modelling 224

6.1 Ordinary differential equations . 225

6.1.1 Numerical schemes . 227

6.1.2 Numerical discrepancy . 229

6.1.3 Bayesian analysis for numerical schemes 230

6.1.4 Model specification . 232

6.1.5 Quantifying the diagram . 236

6.1.6 Bayes linear prior specification 240

6.1.7 Bayes linear adjustment . 245

6.1.8 Example: projectile trajectory 246

6.2 Example: coupled bell-tower model 249

March 22, 2018

Contents x

6.2.1 Equations of motion . 254

6.2.2 Numerical scheme . 256

6.2.3 Numerical discrepancy model 257

6.2.4 Results . 259

6.2.5 Discussion . 264

6.3 Partial differential equations . 265

6.3.1 Numerical schemes . 267

6.3.2 Numerical discrepancy: finite element schemes 271

6.3.3 Bayesian analysis for numerical schemes 274

6.3.4 Example: diffusion equation 277

6.4 Discussion . 283

A Notation 288

A.1 Atmospheric modelling . 288

A.2 Bayesian analysis . 289

A.2.1 Bayes linear analysis . 289

A.2.2 Emulation of complex functions 290

A.2.3 Applications . 290

A.3 Experimental design . 291

A.3.1 Design calculations . 291

A.3.2 Sequential design calculations 292

A.3.3 Approximate design algorithm 293

A.4 Design for developing models . 294

A.4.1 Model structure . 294

A.4.2 Backward induction- evolving models 294

A.4.3 Approximate backward induction- evolving models 295

A.5 Bayes linear numerical modelling . 296

A.5.1 Ordinary differential equations 296

A.5.2 Partial differential equations 298

Appendix 288

March 22, 2018

Contents xi

B Mean and covariance functions 300

B.1 Covariance: squared-exponential . 300

B.1.1 Derivatives . 301

B.1.2 Integrals . 302

B.2 Covariance: Matèrn . 307

B.2.1 Derivatives . 308

B.2.2 Integrals . 309

B.3 Mean: Splines . 309

B.3.1 Derivatives . 310

B.3.2 Integrals . 311

C Diffusion equation example- implementation details 312

C.1 Evaluating the real solution . 312

C.2 Finite element: basis integrals . 313

D Bayes linear emulator code 319

D.1 Updating the emulator . 320

D.2 Computing adjusted simulator predictions 322

D.3 Updating using system data . 323

D.4 Computing adjusted system predictions 325

E Sequential design code 327

E.1 Fit risk model . 328

E.2 Generate risk inputs . 331

E.3 Evaluate risks . 333

E.4 Generate candidate designs . 336

F Bell-tower model code 338

F.1 Solver class . 339

F.2 Junction tree class . 344

F.2.1 Clique class . 345

F.2.2 Sequential adjustment . 347

March 22, 2018

List of Figures

1.1 Data obtained from an aircraft-mounted concentration sensor flown

downwind of two landfill sites in Canada: Figure 1.1(a) shows log (u−

min (u)) plotted onto the flightpath of the aircraft; on this log scale

we can see the shape of the plume originating at each of the two

landfill locations. Figure 1.1(b) shows the observed concentration as

a function of time, with clear peaks every time the aircraft intersects

one of the plumes. Figure 1.1(c) shows the wind vector (from UKMO

data) for every 50th measurement location; note that this data has

been highly regularised, and so is likely to miss local deviations from

the prevailing direction. 9

1.2 Seismic events recorded around the Groningen gas field up to mid-

March 2014: Figure 1.2(a) marks the estimated location of each of

the measured events, and the colour scale indicates the measured

magnitude; Figure 1.2(b) shows a histogram of the event count for

each year from 1991 to 2014, showing a steadily increasing rate of

occurrence; Figures 1.2(c) and 1.2(d) show the estimated reservoir

compaction levels in the reservoir in the first and final years of the

measured event catalogue, demonstrating a large increase. 12

1.3 Storm-peak significant wave height (black markers) for a location in

the Makassar Strait between August 1956 and July 2012, plotted as a

function of direction of arrival (top panel) and season (bottom panel);

taken from Randell et al. [2015]. The dashed grey lines correspond

to storm trajectories. 18

xii

List of Figures xiii

2.1 Plots showing the adjusted moments for the example in Section 2.5:

Figure 2.1(a) shows the adjusted expectation of f1 (.) as a function of

b and a, with the design points used to fit the model shown as black

markers; Figure 2.1(b) shows the corresponding adjusted standard

deviation; Figure 2.1(c) shows the adjusted moments of both func-

tions as a function of (b + a), with the adjusted expectation shown

in blue, two standard-deviation error bars shown in dashed red, and

the true underlying function shown in black. 61

2.2 Plot of the moments of the integral of the function: the means EF

[
f̄i (b)

]
are shown in blue, and the error bars EF

[
f̄i (b)

]
± 2VarF

[
f̄i (b)

]
1/2

are shown in dashed red. The true result of the integral is shown in

black. 62

2.3 Plot of the predictions for the functions f̂i (b) after the propaga-

tion of the uncertainty on a through the function: EF

[
f̂i (b)

]
is

shown in blue, and the error bars EF

[
f̂i (b)

]
± 2VarF

[
f̂i (b)

]
are

shown in dashed red. The green lines show the actual system func-

tion y (b) which is used to adjust beliefs about the uncertain inputs

a∗. The expectation of the true function is shown in black; the blue

line (EF

[
f̂i (b)

]
) is almost entirely obscured by this black line. 63

2.4 Observed data z (green) plotted alongside the moments E
[
f̂ (b)

]
±

3Var
[
f̂ (b)

]
1/2 (solid blue and dashed red) obtained by re-computing

these moments using Ez [a∗] , Varz [a∗] ; we see that our beliefs about

the f̂ (.) having learned about the input setting a∗ correspond much

more closely to the underlying ‘true’ function. 65

2.5 Plot of the initial regression fit to the ocean simulator data (Section

2.6.2): in each window, the true simulator output Fik is on the hori-

zontal axis, and the mean prediction E [βipgp (θk)] from the regression

model is on the vertical axis. The points are coloured according to

the platforms to which they correspond. 71

March 22, 2018

List of Figures xiv

2.6 Plots of the full emulator fit to the ocean wave simulator (Section

2.6.2): Figure 2.6(a) shows the mean predictions EF [fi (θ)] and error

bars EF [fi (θ)] ±3VarF [fi (θ)] 1/2 generated from the fitted emulator

(vertical axis) against the true simulator output (horizontal axis) for

the validation set of 500 points; Figure 2.6(b) shows the corresponding

standardised residuals. Again, the colour of the bars represents the

platform to which the prediction corresponds. 72

2.7 Updating the discrepancy model: Figure 2.7(a) shows the mean pre-

dictions E
[
f̂i (b)

]
(markers) and error bars E

[
f̂i (b)

]
±3Var

[
f̂i (b)

]
1/2

(dashed lines) under the emulator (vertical axis) against the true mea-

sured values zik (horizontal axis); Figure 2.7(b) shows the mean pre-

dictions E [yi (b)] and error bars E [yi (b)] ± 3Var [yi (b)] 1/2 for the

system (vertical axis) against the measured values (horizontal values)

after joint updating of the emulator and the discrepancy as described

at 2.4.2. As in Figures 2.5 and 2.6, the colours correspond to the

platform. 75

3.1 Plots of the risk function from Section 3.2.3 for different parameter

settings: Figure 3.1(a) shows ρ [d1] for a single observation, with

the colour scale varying over Var [q2] ; Figure 3.1(b) shows the same

risk, with the colours representing different settings of Var [ε] . Figure

3.1(c) shows the change in the risk as we incrementally acquire data

z1, . . . , z50; the different coloured lines represent different space-filling

choices of d. 90

March 22, 2018

List of Figures xv

3.2 Plots showing the difference between the mean regression surface and

the true risk as a function of d2 for different settings of the param-

eters {z[1], d[1]}; in Figure 3.2(a), we set d1 = −0.5 and z1 such that

P (z1|d1) = 0.25, with the colour scale signifying different values

P (z2|d2) = qz2 at which we generate z2; in Figure 3.2(b), the same

is plotted by for d1 = 0 and P (z1|d1) = 0.5; lastly, Figure 3.2(c) has

d1 = 0.5 and P (z1|d1) = 0.75. In all cases, the surface
∑

p α
(1)
2p h

(1)
2p

is shown as a black line. In each case, the mean regression surface

tracks the shape of the risk function, with the difference between this

surface and the true risk clearly a systematic function of d2 and z2. . 115

3.3 Moments of the emulator r
(1)
2 [.] , fitted in Section 3.4.5: Figure 3.3(a)

shows the adjusted expectation E
R

(1)
2

[
r

(1)
2

]
as a function of d1 and

d2, with the observations z[2] fixed to the mean values of their dis-

tribution at each point; Figure 3.3(b) shows the corresponding ad-

justed standard deviation Var
R

(1)
2

[
r

(1)
2

]
1/2; Figure 3.3(c) shows the

true value of the risk ρt2, and Figure 3.3(d) shows the absolute value

of the standardised distance (ρt2 − E
R

(1)
2

[
r

(1)
2

]
)/Var

R
(1)
2

[
r

(1)
2

]
1/2 be-

tween the prediction and the truth at each point. 116

3.4 Plots of the emulator r̄
(1)
2 for the expected risk. Figure 3.4(a) shows

the expectation E
R

(1)
2

[
r̄

(1)
2

]
for a range of different settings of (d1, d2),

and Figure 3.4(b) shows the standard deviations Var
R

(1)
2

[
r̄

(1)
2

]
corre-

sponding to the same points. For all predictions, z1 is fixed so that

P (z1|d1) = 0.5. 119

3.5 Plots of candidate minimum samples generated according to the pro-

cedure in Section 3.4.8 for the linear model example (Section 3.4.9):

the first stage design is fixed to d1 = 0, and z1 is varied across the

quantiles of the distribution p
(
z1|d[1]

)
; 20 minimum samples are gen-

erated for each setting {z1, d1}, and the resulting values of the mo-

ments (3.4.17) and (3.4.18) are shown. E
[
s

(1)
2

]
is shown in blue, and

error bars E
[
s

(1)
2

]
± 3× Var

[
s

(1)
2

]
1/2 are shown in dashed red. . . . 123

March 22, 2018

List of Figures xvi

3.6 Plot of the beliefs about r̄
(1)
1 [.] after wave 1 of the algorithm; E

R
(1)
1

[
r̄

(1)
1

]
is shown in solid blue, and error bars E

R
(1)
1

[
r̄

(1)
1

]
± 3×Var

R
(1)
1

[
r̄

(1)
1

]
are shown in dashed red. 200 candidate designs (generated according

to algorithm 3) are shown in black. 130

3.7 Risk profile for the experimental design procedure that begins with

an experiment performed at d̂1: Figure 3.7(a) shows the approximate

density of the resulting risks, and Figure 3.7(b) shows the approx-

imate cumulative distribution function. Both plots were generated

using 100 sampled trajectories, and the density was estimated using

the Matlab function ‘ksdensity’. 131

3.8 Plot of the emulators for r̄
(i)
1 [.] resulting from both waves i = 1, 2

of the analysis; the solid blue line shows E
R

(1)
1

[
r̄

(1)
1

]
, and the dashed

red lines show the error bars E
R

(1)
1

[
r̄

(1)
1

]
± 3Var

R
(1)
1

[
r̄

(1)
1

]
1/2; the cor-

responding means and error bars from wave 2 are shown in green

and magenta respectively. Candidate designs d̃1 generated from the

emulator at the second wave are shown as cyan markers. 133

3.9 Risk profile plot for the second wave of the analysis, for a proce-

dure which begins with an experiment at d̂1: Figure 3.9(a) shows the

approximate density, and Figure 3.9(b) shows the approximate cu-

mulative density. Both plots were generated using the same sample

of 100 trajectories. 134

4.1 Expected concentrations E [z] at an altitude of 200 metres for the

sources located at the magenta markers (colour scales in Figures

4.1(a) to 4.1(c)), under wind conditions indicated by the black arrows,

and the corresponding adjusted moments Ez[j] [q] (Figure 4.1(d)) and

Varz[j] [q] 1/2 (Figure 4.1(e)) for the source emission rates given data

z[j] observed on the flight paths shown. 142

March 22, 2018

List of Figures xvii

4.2 Plots of the adjusted emulator moments for the emulator fitted at

the final stage (wave i = 1). The black markers show the locations

of the observations made at stage 1, and the magenta markers show

the locations of the observations at stage 2; the colour scale in Figure

4.2(a) represents the expected risk E
R

(1)
3

[
r

(1)
3

]
for varying (d3x, d3y),

and the colour scale in Figure 4.2(b) represents the standard devi-

ation Var
R

(1)
3

[
r

(1)
3

]
1/2 for the same points. The remaining design

parameters are fixed to djh = 200, djw = 1000 and djd = 200 for all

stages. 147

4.3 Plots of adjusted moments for the emulator r
(1)
3 . Figure 4.3(a) shows

the expectation E
R

(1)
3

[
r

(1)
3

]
and Figure 4.3(b) shows the standard de-

viation Var
R

(1)
3

[
r

(1)
3

]
1/2; colour scales, marker colours and {djh, djw, djd}

settings correspond between figures. Risks are predicted at the same

design input settings (d3x, d3y) as in Figure 4.2, but the designs for

stages 1 and 2 are switched; both design settings give poor coverage of

the survey area, and so the predicted risks are correspondingly higher. 148

4.4 Plots of the adjusted moments for the emulator r
(1)
2 . Figure 4.4(a)

shows the adjusted expectations E
R

(1)
2

[
r

(1)
2

]
and Figure 4.4(b) shows

the adjusted standard deviations Var
R

(1)
2

[
r

(1)
2

]
1/2 for a range of differ-

ent (d2x, d2y) settings, for fixed d1 (flight path shown as black mark-

ers), with djh = 200, djw = 1000 and djd = 200 for j = 1, 2. 149

4.5 Plots of the adjusted moments for the emulator r
(1)
1 . Figure 4.5(a)

shows the adjusted expectations E
R

(1)
1

[
r

(1)
1

]
and Figure 4.5(b) shows

the adjusted standard deviations Var
R

(1)
1

[
r

(1)
1

]
1/2 for a range of differ-

ent (d1x, d1y) settings. For all predictions, the other design parameters

are fixed to d1h = 200, d1w = 1000 and d1d = 200. 150

4.6 Scatter plot of 100 candidate design points d̃1 generated using the al-

gorithm 3. The colour scale indicates the expected risk E
R

(1)
1

[
r̄

(1)
1

[
d̃1

]]
+

c1

(
d̃1

)
at each of these points. 152

March 22, 2018

List of Figures xviii

4.7 Contour plots showing the densities of a sample of 100 candidate

design points {d̂1, d̂2, d̂3} sequentially generate using the procedure

3; red contours enclose regions of high density and blue contours

enclose regions of low density. All densities were generated using the

‘ksdensity’ function in Matlab. 153

4.8 Risk profile plots for the first wave of the approximate backward

induction procedure, generated by sampling experimental trajectories

according to the emulators that we fitted at wave i = 1. Figure 4.8(a)

shows the approximate density of risks, and Figure 4.8(b) shows the

corresponding cumulative density; both plots are generated using a

sample of 50 trajectories. 154

4.9 Scatter plot of candidate designs d̃1 generated using algorithm 3. The

colour scale indicates the expected risk E
[
r̄

(2)
1

[
d̃1

]]
+c1

(
d̃1

)
at each

point. 157

4.10 Risk profile plots for the emulators fitted at the second wave of analy-

sis, generated by sampling trajectories of the experimental procedure,

selecting designs as outlined in algorithm 3. Figure 4.10(a) shows the

density of sampled risks, and Figure 4.10(b) shows the corresponding

cumulative density. Both plots are generated using a sample of 50 risks.158

5.1 DAG displaying the structure of the reified model. 165

5.2 Plots of the simulator levels: Figures 5.2(a) and 5.2(b) show the mean

and standard deviation of the simulator f (1) at the first stage; Figures

5.2(c) and 5.2(d) show our predictive mean and standard deviation

surfaces for the simulator f (2), given the uncertainty specification

outlined in Section 5.6.2; Figures 5.2(e) and 5.2(f) show our predictive

mean and standard deviation surfaces for the reified simulator f ∗,

again using the uncertainty specification outlined in Section 5.6.2. . . 211

March 22, 2018

List of Figures xix

5.3 Example inference using the model outlined in Section 5.6.2: the

colour scales in Figures 5.3(a) and 5.3(b) show the expected values of

the data that we could collect at each of the available design choices

under two different sets of wind conditions (w = [3.15, 2.15] in Figure

5.3(a) and w = [2.15, 3.15] in Figure 5.3(b)), and the locations of the

the actual observations are shown as black markers. Figure 5.3(c)

shows the effect of these two data points on our beliefs about the

emission rate: our prior expectation E [ψ∗] is shown in cyan, with

two-standard deviation error bars shown in dashed magenta, and our

adjusted mean and error bars are shown in blue and dashed red re-

spectively. The true value of ψ∗ used to generate the data is shown

in green. 212

5.4 Plots of the fitted emulators from the first wave of the analysis: Fig-

ure 5.4(a) shows the mean level E
R

(1)
2

[
r

(1)
2 [.]

]
of the emulator for the

experimental risk, and Figure 5.4(b) shows the corresponding stan-

dard deviation, Var
R

(1)
2

[
r

(1)
2 [.]

]
1/2; Figures 5.4(c) and 5.4(d) show

the mean E
T

(1)
2

[
t
(1)
2 [.]

]
and Var

T
(2)
1

[
t
(1)
2 [.]

]
1/2 of the emulator fitted

to the simulator risk; Figures 5.4(e) and 5.4(f) show the corresponding

moments for the r
(1)
1 [.] . 222

5.5 Set of candidate designs d̃1 generated from the emulator r̄
(1)
1 as de-

tailed in Section 3.4.8; the colour scale indicates the expected risk

E
R

(1)
1

[
r̄

(1)
1

[
d̃1

]]
+ c1

(
d̃1

)
at each point. 223

6.1 DAG representing the structure of the model for the ODE solution u

and its relationship to the system y. 234

6.2 Triangulated moral graph corresponding to a simplified version of the

DAG 6.1. Edges are coloured according to how they are introduced:

green edges are present in the original DAG, and red edges are intro-

duced through moralization (‘marrying the parents’) in the DAG. . . 237

6.3 Junction tree formed from the cliques of the triangulated moral graph

6.2. 238

March 22, 2018

List of Figures xx

6.4 Prior moments of the trajectory u (t) (with E [u (t)] in cyan and

E [u (t)]±3Var [u (t)] 1/2 in dashed magenta) plotted alongside separately-

adjusted moments Ez [u (t)] (dashed) and Ez [u (t)]±3Varz [u (t)] 1/2

(double dashed) for data generated under 5 different parameter set-

tings (see legend for real values corresponding to colours). 3 observa-

tions are made of each trajectory, with these observations shown as

black markers and the real solutions shown as black lines for each case.250

6.5 Prior (E [η (t)] in solid cyan and E [η (t)] ± Var [η (t)] 1/2 in dashed

magenta) and adjusted moments (Ez [η (t)] solid and Ez [η (t)] ±

Varz [η (t)] 1/2 dashed, in various colours) for the numerical discrep-

ancy components at each time step, for the same cases as in Figure

6.4. 251

6.6 Prior and adjusted moments of the parameters ξ∗ = (γ, ż0)T; E [ξ∗] is

shown as a magenta marker, with 1, 2 and 3 standard deviation con-

tours shown in dashed magenta; the adjusted expectation Ez [ξ∗] for

each case is plotted as a coloured marker, with colours corresponding

to those in Figures 6.4 and 6.5, with associated uncertainty ellipses. . 252

6.7 Plots of the prior and adjusted moments for the bell-tower model;

first update case. Figure 6.7(a) shows the trajectory of θ̇i (t) for

bells i = 1, 3, 8, 10, and Figure 6.7(b) shows θi (t) for the same four

bells. Figure 6.7(c) shows both components ẋi (t) of the tower veloc-

ity (i = 1, 2), and Figure 6.7(d) shows the components of the tower

displacement xi (t) . In all cases, the prior expectation of the trajec-

tory is shown in green, and three-standard deviation error bars are

shown in dashed red; the adjusted moments are shown in coloured

lines in each case, with a solid line for the adjusted mean and a

dashed and dotted line for the three-standard deviation adjusted error

bars. The trajectory from which the samples are actually generated

is shown in black. 262

March 22, 2018

List of Figures xxi

6.8 Plots of the prior and adjusted moments for the bell-tower model; sec-

ond update case. The plots in each window are of the same quantities

as the equivalent windows in Figure 6.7, with the same line styles and

colours being used for the prior and adjusted moments, and for the

actual trajectory. 263

6.9 DAG representing the structure of the PDE model 278

6.10 Undirected graph for the model components at times tk and tk+1. . . 282

6.11 Prior moments of the solution surface u (x, tk) for time knots {t2, t5, t10, t15, t20, t25}

at 50 evenly-spaced spatial knots: the prior mean E [u (x, tk)] is

shown as a solid coloured line, and three-standard deviation error

bars E [u (x, tk)] ± 3Var [u (x, tk)] 1/2 are shown as dashed coloured

lines. The true solution in each case is shown as a solid black line. . . 284

6.12 Adjusted moments of the solution surface at the same time points

as in Figure 6.11: the line styles and colours used correspond across

these two figures. 285

March 22, 2018

List of Tables

2.1 Elements of b . 68

2.2 Elements of a . 69

3.1 n-way table loss function (see Section 3.1.1). 81

6.1 Fixed bell parameters used as input to the model (6.2.9). The weights

and layout are those of the bells at Durham Cathedral [Dove, 2015],

and the other bell parameters are those of the old bells at Great St

Mary, Cambridge (taken from [Smith and Hunt, 2008]) 256

C.1 Values of the basis function integrals of type (C.2.3) for all powers p

of the linear term and all elements j for which the integral is non-zero.316

C.2 Values of the basis function integrals of type (C.2.4) for all powers p

of the linear term and all elements j for which the integral is non-zero.317

C.3 Values of the basis function integrals of type (C.2.5) for all powers p

of the linear term and all elements j for which the integral is non-zero.318

xxii

Chapter 1

Introduction

In a very wide range of scientific and industrial problems, the main aim is the

analysis of the behaviour of a complex system using a quantitative model; scientists

specify a model as a description of the system, tune the parameters of the model so

that it gives predictions which match the behaviour of the system, and then use the

model’s predictions to make decisions concerning future system behaviour. Both

systems and models vary greatly in complexity between fields of study.

Generally, many different sources of uncertainty will exist within a given problem.

Models typically give a simplified representation of real-world behaviour, leaving

uncertainty about the relationship between the model and the real world. Even if

the model is believed to be a perfect description of the system under study, there is

generally still uncertainty about which model input settings give the best description

of the real data.

In this thesis, we consider the specification and analysis of models which take account

of all of our uncertainties about a given system, and develop methodology for the

design of experiments on the system which take into account these uncertainties and

decisions about the system which we will make using the model and the observed

data. In this introductory section, we outline a number of problems encountered in

the energy industry which contain a number of different sources of uncertainty and

thus would be suitable for such an analysis.

In Section 1.1, we consider an atmospheric dispersion problem, in which sources of

gas must be mapped from remotely-observed concentration data, and decisions must

1

1.1. Atmospheric dispersion modelling 2

be made about further exploration or mitigation of these sources. In Section 1.2,

we outline the problem of assessing the level of seismic activity in a given region, in

which a model for the rates and magnitudes of seismic events must be developed,

before being used to inform decisions about infrastructure developments, such as

strengthening buildings. Finally, in Section 1.3, we consider a problem in which

extreme ocean characteristics must be modelled in order to make decisions about

the design of offshore assets. An outline of the structure of the remainder of the

thesis is given in Section 1.4.

1.1 Atmospheric dispersion modelling

The main problem which we will consider in this thesis is one in the field of atmo-

spheric dispersion modelling; in such a problem, we seek to use observations of the

concentration of a given gas species made at particular, known points to learn about

the locations and emission rates of any sources of this gas within a given region of

interest. This problem is of interest for scientists working in a number of different

areas:

� in the oil and gas industry, naturally-occurring sources of methane can indi-

cate the presence of underground hydrocarbon reserves, and so mapping these

sources is a useful exploration tool [Hirst et al., 2013]. Airbourne measure-

ments of the atmospheric concentration of methane can be obtained quickly

and relatively inexpensively, and can be used to target the use of more costly

exploration techniques, such as seismic surveys, at regions which are more

likely to contain hydrocarbons;

� often, industrial processes must comply with environmental regulations which

stipulate allowable emission levels for particular gas species; it is useful for any

monitoring procedure to be able to determine the origin of emissions which

breach the allowed limits, as this allows the monitoring body to determine

responsibility for the emissions (if necessary) and also allows for targeted re-

medial action [Hirst et al., 2017];

March 22, 2018

1.1. Atmospheric dispersion modelling 3

� defence agencies in many countries believe that attacks on their soil may in-

volve the release of airbourne toxins in densely populated areas; they are

therefore interested in being able to rapidly identify the source of the release

so that risk to life can be minimised, and so that steps can be taken to isolate

the sources of the release [Senocak et al., 2008].

The motion of gas particles within the atmosphere is an extremely complex pro-

cess, as can be determined by considering even something as simple as the motion

of leaves being blown by the wind. Given that there will always be a limit to our

ability to specify or to measure the process and the parameters which drive it (since

the concentration and, for example, the wind field are infinite dimensional functions

over any continuous domain), we can see before we have even specified a model that

we will always remain uncertain about some aspects of the system.

We wish to develop a model for the concentration of gas at a range of locations as a

function of a set of parameters which we might reasonably be able to specify (prefer-

ably, though not necessarily, ones that we can specify from measurements made on

the system); we then wish to use this model, in conjunction with a specification

for all of our uncertainties about its relationship to the system, to draw conclusions

about likely source locations, before using this information to make decisions. In the

following sections, we will review the existing literature on atmospheric dispersion

modelling, and present some standard models for this situation.

1.1.1 General model: The advection-diffusion model

The standard mathematical model for the behaviour of gas concentrations under

given atmospheric conditions is the advection-diffusion model (also referred to in the

literature as the convection-diffusion model); Stockie [2011] gives an introduction to

the field of atmospheric dispersion modelling. This model is derived from the law

of conservation of mass, which can be written as a differential form for the mass

concentration u (x, t) (in kg/m3) at a location x = (x, y, z) ∈ R3 (metres) and time

t (seconds) as follows
∂u

∂t
+∇.J (u (x, t)) = h (x, t) (1.1.1)

March 22, 2018

1.1. Atmospheric dispersion modelling 4

where J (u) (kg/m2s) is the mass flux of gas at a particular location and concen-

tration level, and h (x, t) (kg/m3s) is a source or sink term. The conservation law

states that the rate of change of the mass concentration (hereafter abbreviated to

concentration) within a given infinitesimal volume is controlled by the mass flux

over the boundary of the volume, and any sources or sinks within the volume. In-

tegrating equation (1.1.1) over a volume V and applying Stokes’ theorem gives the

following, more intuitive conservation law for a general volume

∂

∂t

(∫
V

u (x, t) dV

)
= −

∫
∂V

J (u (x, t)) .n (x) dσ (x) +

∫
V

h (x, t) dV

which states that the rate of change of the mass of the gas species within volume V

is equivalent to the negative flux of gas across its boundary ∂V (where n (x) is an

outward normal vector at x) plus the total contribution from any sources or sinks

within V.

The model is completed by specifying a form for the mass flux J (.) ; we assume

that this is due to the combined effects of an advection process (transport due to

the wind) and a diffusion process (transport due to turbulent eddy motion in the

atmosphere). Fick’s law [Fick, 1855] states that the diffusive flux is proportional to

the concentration gradient, and we assume a simple linear advective flux, allowing

us to write J (u (x, t)) = −K (x)∇u+w (x)u, where K (x) is a matrix of diffusion

constants and w (x) is a transport vector, and resulting in the following partial

differential equation (PDE)

∂u

∂t
+∇.(w (x)u)−∇.(K (x)∇u) = h (x, t) . (1.1.2)

This is the advection-diffusion equation (ADE); when supplemented with an appro-

priate set of initial and boundary conditions, it can be shown that this is a well-posed

problem with a unique solution.

Sources of uncertainty If our model for the dispersion of gas is given by the

solution to (1.1.2), and we have access to a finite number of observations of the

concentration and wind fields at known locations, then before we can infer properties

of h (x, t) , we must specify our beliefs about each of the following:

� the wind field at all locations and times;

March 22, 2018

1.1. Atmospheric dispersion modelling 5

� the diffusion matrix (possibly as a function of location and wind field) at all

locations and times;

� the likely properties of the source field (eg: constrained to be on the ground,

locations that are ruled out);

� the behaviour of processes which the model does not adequately capture (eg:

small-scale turbulence).

All of these aspects are likely to be subject to significant uncertainty.

An additional and important source of uncertainty in the case of this model arises

from the fact that we cannot solve the differential equation (1.1.2) for realistic cases,

and so must approximate the solution in some way. There are many ways in which

this can be done; we consider two such ways in the following subsections. In Section

1.1.2, we consider how the equation can be solved using a finite-dimensional approx-

imation, and in Section 1.1.3, we consider an exact solution which can be obtained

using a particular (unrealistically simple) set of initial and boundary conditions.

1.1.2 Simplified model: Numerical solution

While differential equation models are commonly postulated as suitable models for

physical (and other; economic etc.) systems, it is rare that we may derive an exact

solution to such equations; it is common, therefore to look for finite-dimensional ap-

proximations to the infinite-dimensional solutions of these equations which converge

in the limit to the true solution of the original equations. Such finite-dimensional

approximations are referred to as numerical schemes, or numerical solvers.

A large variety of such schemes have been developed over time; for ordinary dif-

ferential equations (ODE), which feature only derivatives with respect to a single

independent variable, Euler and Runge-Kutta schemes are perhaps the most widely

used [Hairer et al., 1993], whereas in the case of PDE, the most commonly used are

the finite-element (see for example Iserles [2008]) and finite-volume schemes (see,

for example, Eymard et al. [2000]).

The finite-volume approximation of the ADE is a popular choice, in part because this

scheme has a direct relationship with the conservation law from which the equation

March 22, 2018

1.1. Atmospheric dispersion modelling 6

is derived. To use this approximation, we impose a polygonal (for example, cubic,

tetrahedral) mesh on the domain and derive discrete approximations to the coeffi-

cient functions in (1.1.2) on the mesh: these discrete coefficient values are then used

to derive a system of equations relating a set of discrete, unknown concentration

values to the discretized boundary, source and parameter functions.

Additional sources of uncertainty Choosing to use such a numerical scheme

as a model for an atmospheric dispersion process introduces additional uncertainty,

owing to the fact that the numerical predictions provided by our discrete model are

only an approximation to the true, underlying solution of (1.1.2). This additional

uncertainty arises through:

� the use of an averaged value to summarize the originally infinite-dimensional

behaviour of the coefficient functions over a given volume and time element of

the input domain;

� the use of an averaged value to summarize the concentration over the volumes

used to discretize the input domain.

This additional uncertainty will manifest itself as an additional discrepancy between

our numerical predictions for the gas concentrations, and the real behaviour of the

gas; in addition to the difference between the initial model (the real solution to

(1.1.2)) and the real world due to effects that this model does not capture, we now

have an additional discrepancy between the numerical model which we actually use,

and the (unknown) underlying model that we would like to have used.

1.1.3 Simplified model: The Gaussian plume

A popular alternative strategy in the field of atmospheric dispersion modelling is to

make use of a solution to (1.1.2) which is available under a much more restrictive

class of initial and boundary conditions. This solution is known as the Gaussian

plume and its simple (albeit non-linear, for some important parameters) form has

made it a very attractive model for a variety of authors: Pasquill [1971], Draxler

[1976], Hirst et al. [2013] and Kennedy and O’Hagan [2001] all use this as a model

March 22, 2018

1.1. Atmospheric dispersion modelling 7

for the transport of particulate matter.

Stockie [2011] describes the necessary additional assumptions and derives the plume:

for a collection of sources of a particular gas species at locations {g1, . . . , gnψ} (with

gj = (gjx, gjy, gjz)
T the three-dimensional location of each source) with scalar emis-

sion rates {ψ1, . . . , ψnψ}, and constant wind velocity field w = (wx, wy)
T, the con-

centration at spatial location x = (x, y, z)T is modelled as

u (x, {gj, ψj}, w) =

nψ∑
j=1

a (ω(x, gj, w), gj, w)ψj + b (x,w)

where ω(x, g, w) is the vector from the source to the measurement location projected

onto the wind direction and normalised by the wind magnitude
ωx

ωy

ωz

 =
1

|w|

wx wy 0

−wy wx 0

0 0 1

xx − gx
xy − gy

z

 .

b (x,w) is the background concentration of the gas species at x under wind condi-

tions w (that is, the component of the concentration measurement not attributable

to the sources at g), and the individual coupling constants are computed as

a (ω, g, w) =
1

4π|w|√κyκz
exp

(
−

ω2
y

4κy

)
×

[
exp

(
− (ωz − gz)2

4κz

)
+ exp

(
− (ωz + gz)

2

4κz

)]

×

[
exp

(
− (2D − ωz − gz)2

4κz

)
+ exp

(
− (2D − ωz + gz)

2

4κz

)]
where D is the height of the atmospheric boundary layer (effectively the ‘top of the

atmosphere’, for the purposes of gas transport), and κy and κz are related to the

diffusion constants in equation (1.1.2) as follows

κy =
1

|w|

∫ ωx

0

Ky (η) dη .

In practice, κy and κz are usually specified directly as the plume ‘variances’; a

popular choice is

κy = (ωx tan (γh) + h)2 κz = (ωx tan (γv))
2

where γh and γv are constants which are determined from atmospheric data, and h

is the half-width of the source.

March 22, 2018

1.1. Atmospheric dispersion modelling 8

Additional sources of uncertainty While the Gaussian plume is a popular

modelling choice because of its simplicity and low computational burden, its use

also introduces additional discrepancies between the model and the real world which

should be accounted for when using such a model to make predictions, inferences or

decisions:

� to obtain the simplified solution, it is necessary to reduce the representation

of the wind and diffusion parameters down to the scalar values w and κ for

each direction. This constitutes a huge simplification of our description, and

introduces even greater systematic discrepancies between the model and the

real world than we would see if using a numerical solution of the form described

in Section 1.1.2;

� in deriving the solution, it is necessary to assume stationarity; this means

that the Gaussian plume describes instantaneous transport of matter from the

source to the measurement location. This is clearly not a valid assumption

for individual particles of gas, and so in practice, this restricts the use of the

Gaussian plume model to cases where the gas has been transported under

steady atmospheric conditions for a long period of time.

In practice, the steady-state assumption used in deriving the Gaussian plume model

restricts its applicability somewhat. In problems where airbourne concentration

measurements are made over a short period of time (a few hours at most) in a stable

atmosphere, it generally gives a reasonably good description of the data, since the

average behaviour of the gas over long length-scales (tens of kilometres) resembles

a plume. However, in problems where measurements are made at short range (may

be a few hundred metres), the behaviour of the wind is much more variable, and

the direction of transport may change drastically over the course of a few minutes;

unless the local atmosphere is exceptionally calm, the Gaussian plume is generally

not a good model in such situations.

March 22, 2018

1.1. Atmospheric dispersion modelling 9

0 1 2 3 4

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

4

Relative Eastings (m)

R
el

at
iv

e
N

or
th

in
gs

 (
m

)

lo
g 10

(∆
C

on
c.

)
C

H
4 (

pp
m

)

−1.4

−1.2

−1

−0.8

−0.6

−0.4

(a)

16:45 17:00 17:15 17:30 17:45 18:00 18:15
1.8

2

2.2

2.4

2.6

2.8

Time (UTC)

C
on

c.
 C

H
4 (

pp
m

)

(b)

0 1 2 3 4

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

4

Relative Eastings (m)

R
el

at
iv

e
N

or
th

in
gs

 (
m

)

(c)

Figure 1.1: Data obtained from an aircraft-mounted concentration sensor flown

downwind of two landfill sites in Canada: Figure 1.1(a) shows log (u − min (u))

plotted onto the flightpath of the aircraft; on this log scale we can see the shape of

the plume originating at each of the two landfill locations. Figure 1.1(b) shows the

observed concentration as a function of time, with clear peaks every time the aircraft

intersects one of the plumes. Figure 1.1(c) shows the wind vector (from UKMO data)

for every 50th measurement location; note that this data has been highly regularised,

and so is likely to miss local deviations from the prevailing direction.

March 22, 2018

1.1. Atmospheric dispersion modelling 10

1.1.4 Example data

The data presented in Hirst et al. [2013] provide an excellent illustration of gas

transport under relatively static wind conditions; over the course of about 2 hours,

an aircraft fitted with a concentration sensor is flown downwind of two landfill sites,

which are known to be potent sources of anthropogenic methane (CH4). The concen-

tration is measured every 3 seconds, and the trace plot of the observed concentrations

(in parts per million) in time is shown in Figure 1.1(b). The atmospheric background

concentration of methane is about 1.9ppm, and there is clearly measurement noise

on the data; however, it is clear that the large peaks in the data correspond to

anomalous, non-natural contributions. The log of the increase in concentration over

the minimum observed value is plotted on the flight path of the aircraft in Figure

1.1(a), to enhance our ability to see the shape of the plumes emanating from the

landfills. The arrows in Figure 1.1(c) show the approximate wind direction for each

observation, obtained from model data supplied by the UK MET Office; it is clear

from this data that the prevailing wind direction is relatively static for the duration

of the flight.

We see in Figure 1.1(a) that under relatively static wind conditions, the behaviour

of the gas in the real system looks much like that of the stationary Gaussian plume

model outlined in Section 1.1.3. However, we can also see some of the types of

discrepancy discussed in the previous sections manifesting themselves:

� Downwind of the Eastern landfill, we see that the centre of the observed plume

appears to bend between flight lines as we move away from the source; local

trends in the wind between flight lines result in systematic deviations from

the standard model. The wind information that we have is itself the product

of smoothing, and so even if our model allowed for this effect, it is unlikely

that we would have wind information of a high-enough resolution to be able

to explain it.

� We can also see evidence of turbulent effects causing systematic deviations

within individual flight lines; for example, again, downwind of the Eastern

landfill. Since the Gaussian plume is a stationary solution of the governing

March 22, 2018

1.2. Seismic hazard risk assessment 11

equation, we expect long-term average behaviour to be plume-like, but for

an individual snapshot, we expect systematic variability like this over short

length-scales.

1.2 Seismic hazard risk assessment

In recent years, there has been a marked increase in the number of seismic events

which have been measured in the area around the Groningen gas field in the Nether-

lands; van Thienen-Visser and Breunese [2015] give an overview of the history of

seismic activity and production for this field. The largest measured event over the

past 20 years had a magnitude of 3.6, and several recent events have been large

enough to cause damage to buildings in the area above the field, and to present a

risk of harm to local residents. Figures 1.2(a) and 1.2(b) show event data recorded

in the field up to mid-March 2014.

The company responsible for the operation of the gas field is keen to explore the

relationship between the extraction of gas from the field and the observed events,

in order to determine the extent to which the increases in rate and magnitude are

being driven by gas extraction. Any relationships which are found between prop-

erties of the field and rate and magnitude of events will then be used to predict

the properties of future events, before these predictions are fed into a further model

which describes the behaviour of local structures during seismic events. The output

from this analysis will then be used to assess the risk posed to property and to life

from continued extraction.

1.2.1 Modelling

The relationship between local human activity and the rate and magnitude of seismic

events is relatively poorly understood (certainly in comparison to the relationship

between gas sources and concentration fields- see Section 1.1); the lack of a gener-

ally accepted model within the community of domain experts presents additional

challenges when accounting for all of the uncertainty about rate and magnitude.

Modelling this problem will involve:

March 22, 2018

1.2. Seismic hazard risk assessment 12

2.3 2.4 2.5 2.6 2.7

x 10
5

5.6

5.7

5.8

5.9

6

6.1

6.2
x 10

5

Eastings (m)

N
or

th
in

gs
 (

m
)

M
ag

ni
tu

de
1.5

2

2.5

3

3.5

(a)

1990 1995 2000 2005 2010 2015
0

5

10

15

20

25

30

Year

E
ve

nt
 C

ou
nt

(b)

Eastings (m)

N
or

th
in

gs
 (

m
)

1991

2.3 2.4 2.5 2.6

x 10
5

5.7

5.75

5.8

5.85

5.9

5.95

6

6.05

6.1

6.15
x 10

5

C
om

pa
ct

io
n

(m
)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(c)

Eastings (m)

N
or

th
in

gs
 (

m
)

2013

2.3 2.4 2.5 2.6

x 10
5

5.7

5.75

5.8

5.85

5.9

5.95

6

6.05

6.1

6.15
x 10

5

C
om

pa
ct

io
n

(m
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(d)

Figure 1.2: Seismic events recorded around the Groningen gas field up to mid-March

2014: Figure 1.2(a) marks the estimated location of each of the measured events, and

the colour scale indicates the measured magnitude; Figure 1.2(b) shows a histogram

of the event count for each year from 1991 to 2014, showing a steadily increasing rate

of occurrence; Figures 1.2(c) and 1.2(d) show the estimated reservoir compaction

levels in the reservoir in the first and final years of the measured event catalogue,

demonstrating a large increase.

March 22, 2018

1.2. Seismic hazard risk assessment 13

� specifying a set of candidate models for rate and magnitude as a function of

field properties;

� using historical event data to learn about uncertain parameters in these mod-

els;

� using historical event data to compare different models against each other,

identifying which field properties are useful in modelling the events, and which

are not;

� using predictions from the best available models in conjunction with models for

the damage caused by earthquakes to quantify the risks of different production

strategies.

One field property which is of particular interest is compaction. The extraction

of gas from the reservoir has, over decades, caused compaction in the reservoir to

occur. While this compaction cannot be directly measured, it can be estimated

from subsidence measurements made in areas above the reservoir, and there is great

interest in using these estimates of reservoir-level compaction as covariates to predict

event properties. Bourne and Oates [2015] use a spatial point-process model, in

which compaction is used as a linear predictor for the rate of occurrence, with some

success. Bourne et al. [2015] consider the risk quantification problem in detail.

Sources of uncertainty In this problem, we will encounter some of the same

sources of uncertainty as outlined in Section 1.1; our model will be an imperfect

description of the behaviour of the system (even more so than in the atmospheric

dispersion problem), and so we must make sure that we account for possible differ-

ences between model predictions and observed data. In this context, we may also

encounter the following sources of uncertainty:

� many of the predictors that we wish to use to model the seismic activity are

themselves subject to uncertainty, due to the fact that we cannot measure them

directly. This uncertainty must be handled both when fitting and predicting

from the model;

March 22, 2018

1.3. Extreme ocean wave modelling 14

� since there is disagreement between experts as to the form that the model

should take, we must also be able to handle uncertainty about which model

should be used to reproduce system behaviour. It may be the case that there

is a single ‘best’ model which we use to represent the system, but alternatively,

it may be that different models give varying qualities of prediction in different

parts of their input spaces.

1.3 Extreme ocean wave modelling

Another area of interest in the oil and gas industry is that of offshore platform de-

sign. Offshore platforms are used to extract hydrocarbons from reservoirs located

below the sea: they must often be operated in extremely challenging ocean environ-

ments, and so it is crucial that they are designed to withstand the worst conditions

that they could experience in a given area.

This need to design to withstand harsh environments must be offset against the

cost of doing so: companies must be run so that they are profitable, and so oil will

only be extracted from reservoirs where it is economical to do so. One of the main

factors in determining the economic viability of extraction from a given reservoir is

the cost of the necessary equipment: therefore, reducing the cost of designing safe

platforms increases the profit that can be made through operating offshore fields,

and opens up the possibility of exploration in areas which were previously deemed

economically inviable.

Much work has been done on modelling ocean waves in the past, and many compa-

nies employ specialists who develop models that use atmospheric and ocean condi-

tions to simulate the characteristics of waves. These ocean simulators are tuned by

running them as hindcasts, meaning that they are run using historic atmospheric

data as inputs in order to re-create conditions that were actually observed; if re-

liable forecasts for future atmospheric behaviour are available, then a simulator

can be run to predict the worst waves that may occur in the future, and offshore

structures can be designed against these. In situations where suitable models or

atmospheric forecasts are not available, then designs are chosen by multiplying the

March 22, 2018

1.3. Extreme ocean wave modelling 15

worst historically-observed waves by industry-standard safety factors. These safety

factors are typically conservative, and so while the resulting designs are safe, they

are wasteful in many situations.

There has been much recent interest in developing models which can handle uncer-

tainties about future waves when generating designs, and can represent the effects of

storm parameters on the worst observed waves; in the following section, we consider

the way in which this modelling is usually carried out, and the sources of uncertainty

that need to be considered.

1.3.1 Modelling

Ocean behaviour is recorded in terms of sea states; these are periods of time (typ-

ically 1 or 3 hours) in which ocean characteristics (e.g. wave height, wave period,

power spectrum) are believed to be roughly stationary. Within these sea states,

ocean behaviour is recorded in terms of a number of summary statistics, for exam-

ple:

� the significant wave height HS is defined as 4 times the standard deviation of

the ocean surface elevation over a given sea state;

� the peak wave period TP is the period corresponding to the peak spectral

frequency during a sea state;

When modelling for platform design, we are interested in the extremes of ocean

behaviour. The extreme behaviour of a process is typically characterised in one of

two standard ways:

� Block maxima: under this approach, the data is divided into temporal blocks

(in the case of sea states, typically days, months), and the maximum of the

process is taken within each block;

� Peaks over threshold: here, a threshold is set, and the extremes are defined

as the maxima of the process within any continuous period during which it

exceeds this threshold.

March 22, 2018

1.3. Extreme ocean wave modelling 16

For ocean sea states, the maxima are most commonly defined in terms of peaks over

threshold; any period during which a characteristic exceeds the threshold is classed

as a storm, and the largest within the storm is known as the storm-peak value of

that characteristic.

In each of these cases, it is possible to derive the limiting distribution of the extreme

values (see, for example, Jonathan and Ewans [2013], Coles [2001]) for general dis-

tributions; in the Block maxima case, the extremes follow a generalized extreme

value (GEV) distribution (for large enough blocks), and in the peaks over threshold

case, they are distributed according to a Generalized Pareto (GP) distribution (for

large enough thresholds). The GP distribution for HS at a particular setting of some

inputs θ (e.g. location, time) is

p (HS (θ) |HS (θ) > µ (θ) , ξ (θ) , σ (θ)) =

1

σ (θ)

[
1 +

ξ (θ) (HS (θ) − µ (θ))

σ (θ)

]−(1+ 1
ξ(θ)

)

. (1.3.3)

This distribution for the peaks (over threshold µ (θ)) is characterised by a shape

parameter ξ (.) and a scale parameter σ (.) . When fitting such an extreme value

model, the choice of a suitable threshold µ (.) is critical. The fitting of such a

covariate-dependent extreme value model is described in, for example, Randell et al.

[2015] and Randell et al. [2016], and the paper by Jones et al. [2016] compares

different parametrisations of the model. Figure 1.3 (taken from Randell et al. [2015])

shows storm-peak significant wave heights for a location in the Makassar Strait

between the islands of Borneo and Sulawesi in Indonesia, observed during the period

from August 1956 to July 2012; it is clear from this plot that both of the covariates

(direction of arrival and season) have a systematic effect on the distribution ofHS (.) .

Since interest lies in the extreme quantiles of the ocean characteristics, a large

quantity of data is needed in order to obtain a large enough number of exceedences

of a high enough threshold for a model fit. Observation of the real ocean typically

only provides a limited amount of data for a small number of locations, and so

a common approach is to generate the data for the fitting of the extreme value

model using an ocean simulator. To begin with, the ocean simulator is run as a

hindcast, using historical atmospheric information to predict historically observed

March 22, 2018

1.3. Extreme ocean wave modelling 17

wave characteristics; the simulator is then tuned to give the best possible match to

the sea state characteristics that were actually observed. Once it has been tuned,

the simulator is then run using a forecast of future atmospheric characteristics,

predicting future wave behaviour; this simulated wave data is then used to fit a

covariate-dependent extreme value model to the storm-peak characteristics.

Sources of uncertainty In this problem, the key sources of uncertainty which

must be handled are as follows:

� the ocean simulator used to model the historic wave data will typically have

a number of non-physical parameters which must be selected so as to give the

best representation of the real ocean. We wish to use the observed waves to

learn about the range of appropriate settings;

� we then wish to use our uncertainty about these parameters to work out

our corresponding uncertainty specification for the simulator at this unknown

‘best’ setting for all of the other storms that we are modelling;

� since the simulator is a simplified representation of the ocean, there will always

be aspects of the real wave behaviour that it fails to capture; we want to use

the data that we did observe on the system to learn about the structure of

the difference between the simulator and the real ocean, and then compute

the implications of this uncertainty for the simulator predictions at all other

points;

� when using the simulator to represent the real ocean, uncertainty about the

wind field generating the waves explains a substantial amount of the uncer-

tainty about the waves themselves;

� once we have worked out our uncertainty about the wave characteristics at all

prediction locations, we aggregate this information and use it to fit an extreme

value model of the form (1.3.3); in doing so, we must compute the implications

of our uncertainty about HS (θ) for our ability to estimate the components of

the model.

March 22, 2018

1.3. Extreme ocean wave modelling 18

Figure 1.3: Storm-peak significant wave height (black markers) for a location in

the Makassar Strait between August 1956 and July 2012, plotted as a function of

direction of arrival (top panel) and season (bottom panel); taken from Randell et al.

[2015]. The dashed grey lines correspond to storm trajectories.

March 22, 2018

1.4. Outline of the rest of the thesis 19

1.4 Outline of the rest of the thesis

The remainder of this thesis details methodology for handling aspects of the un-

certainty detailed in the problem descriptions above, in particular, in relation to

experimental design problems for large systems.

In Chapter 2, we outline the Bayesian statistical approach to handling uncertainty,

and provide an introduction to relevant material from the literature, which will be

called upon in the remainder of the thesis. In Chapter 3, we consider the Bayesian

approach to making decisions under uncertainty, again introducing relevant mate-

rial from the literature; we go on to consider the implications of this for the design

of experiments to collect data from the system, and propose a Bayesian treatment

of the numerical calculations which we need to carry out in order to generate an

optimal design for a given system. In Chapter 4, we present two case studies in

which this procedure is applied to experimental design problems.

In Chapter 5, we extend our treatment of the uncertainty in such problems by intro-

ducing a framework which allows us to specify beliefs about how our model might

evolve in the future, and we examine the implications of this for our existing design

calculations. We consider an additional example, in which we link together different

development stages for an atmospheric dispersion model. In Chapter 6, we develop a

framework for Bayesian analysis of differential equation problems, which can explic-

itly handle the uncertainty induced by the need to solve the equation numerically

in cases where an exact solution to the equation is not known.

Appendix A summarises important aspects of the notation used throughout the the-

sis, and a selection of the code used to implement the examples in Chapter 4 and

Section 6.2 is presented in Appendices D to F. A non-sequential version of the ap-

proximate design procedure presented in Chapter 3.4 was published as Jones et al.

[2015], and the work presented in Chapters 3 and 4 is currently under review for

publication in Technometrics [Jones et al., 2017].

March 22, 2018

Chapter 2

Bayesian methodology

In this chapter, we introduce some of the Bayesian methodology which will be used

throughout the remainder of the thesis. In Section 2.1, we motivate both the fully

probabilistic and the Bayes linear forms of Bayesian analysis, starting from the same

point, highlighting the similarities and differences between the two, and considering

the practicalities of the inference procedure in both instances. Then, in Section 2.2,

we give an introduction to emulation, which is simply a special case of the general

probabilistic or second-order Bayesian analysis used for the analysis of functions.

In Section 2.3, we review the situations in which emulators are used, and the types of

uncertainty which we may handle using them, linking these to the problems discussed

in Section 1; then in Section 2.4, we perform some of the calculations necessary

to propagate input uncertainty or to do inference using an emulator. Finally, we

illustrate some of the elements discussed through application to a simple example

in Section 2.5, and through application to a more complex example in Section 2.6.

2.1 Bayesian analysis

During the following chapters, we will have cause to consider two different types

of Bayesian analysis; namely, a probabilistic Bayesian analysis and a Bayes linear

analysis. As one would perhaps expect, the two types are very similar in nature, and

so in the following subsections, we provide motivation for both approaches, starting

from the same point in each case, and describe the structure of a typical analysis

20

2.1. Bayesian analysis 21

for each.

One important point which is worth making straight away is that any specification

of beliefs, be they qualitative or quantitative, or about the functional form of a par-

ticular model or about a set of quantities within a given model, is entirely subjective

and is therefore owned by an individual or a group of individuals who have reached

a consensus. This is the subjective Bayesian point of view, which will be adopted

for the remainder of this thesis. For a more detailed introduction to the subjective

Bayesian point of view, see, for example, de Finetti [1975] or Savage [1972].

In what follows, we follow de Finetti (and others; for example, Whittle [1992]) in

using expectation as a primitive, where an individual’s expectation for a particular

quantity X is defined to be the value E [X] that they would specify if they would

incur the following penalty upon realisation of X (for any scalar cost c)

L = c(X − E [X])2 . (2.1.1)

If we introduce random quantity A with the further restriction that A is an event

(i.e. a proposition which is either logically true or false; for example, X = 3.2 or

‘the postman will visit before 11am today’), and define the indicator function

I(A) =

1 if A occurs,

0 else

then the probability of A is defined as P (A) = E [I(A)] . Probabilities are con-

strained to lie in [0, 1], with 1 indicating certainty of truth of a proposition and 0

indicating certainty of falsehood.

2.1.1 Probabilistic Bayesian inference

A probabilistic Bayesian analysis has, at its core, a specification of the probabilities

of all of the different possible outcomes of a given experiment. Even for small prob-

lems, it may be extremely challenging to make such a specification, but the reward

for doing so is access to a provably coherent set of rules for updating beliefs upon

learning the values of certain quantities within the model.

March 22, 2018

2.1. Bayesian analysis 22

Motivation Jeffrey [2002] considers fair prices for betting slips which pay out

upon the occurrence of certain events as a means of proving the basic properties

which probability specifications must obey, and of deriving update rules which must

be obeyed. For a finite or countably infinite set of incompatible events A1, A2, . . . ,

if we define the event H = A1 ∨A2 ∨ . . . , then Jeffrey argues that if presented with

tickets which pay rewards in probability currency (P (H) if H occurs, P (A1) if

A1 occurs etc.), then in order to avoid inconsistently valuing the same proposition

presented to us in different ways, we must have

P (H) = P (A1) + P (A2) +

We may use a similar ‘Dutch book’ argument to handle relationships between con-

ditional (for example, the probability P (H|D) that H will occur given that D

occurs) and joint (for example, the probability P (H,D) that both H and D will

occur) probabilities: in a situation where we have a ticket which pays 1 if H ∧ D

occurs and P (H|D) if ¬D occurs, it can also be shown that

P (H ∧D) = P (H|D)P (D) . (2.1.2)

If we have a set of events {Di} which form a partition (i.e. exactly one of them

must occur), then we can combine these two rules to obtain

P (H) =
∑
i

P (H|Di)P (Di) .

Analysis The results which Jeffrey gives can be generalised to the case of continu-

ous parameters by making appropriate additional assumptions. For a given problem,

then, we should perform a Bayesian analysis by introducing a set of assumptions

M (referred to as model assumptions) which specify the functional relationships be-

tween a set of parameters θ = {θ1, . . . , θnp}; these parameters are assumed to take

values in some space Θ. Our model then consists of a probability density function

(pdf) p (θ|M) which generates the probabilities of individual events θ ∈ χ (for some

set χ) as follows

P (θ ∈ χ|M) =

∫
χ

p (θ|M) dθ

March 22, 2018

2.1. Bayesian analysis 23

where integration should be replaced by summation in the case of discrete parame-

ters, and our pdfs are normalised so that

P (θ ∈ Θ|M) =

∫
Θ

p (θ|M) dθ = 1 . (2.1.3)

Using a probabilistic model, we recover the expectation of an individual parameter

θi as

E [θi] =

∫
Θi

θip (θi) dθi (2.1.4)

with similar relations for the variance and the higher-order moments of the distri-

bution. Under any given probability distribution, we can compute the marginal

(unconditional) distribution of a set of parameters (indexed by I) by ‘integrating

out’ all others

p (θI) =

∫
Θ¬I

p (θ) dθ¬I (2.1.5)

and we can compute the conditional distribution of a set of parameters given the

remainder by ‘dividing out’

p (θI |θ¬I) =
p (θ)

p (θ¬I)
.

Using this final relation, we can obtain perhaps the most useful probabilistic rela-

tionship; if θ = {α, β}, then as a trivial consequence of the continuous version of

the product rule (2.1.2), we have that

p (β|α) =
p (α|β) p (β)

p (α)
. (2.1.6)

This relation tells us how we should use data to learn about the world. If, before

observing the data, our beliefs about β are summarised through p (β) (known as

the prior distribution), and we make a specification p (α|β) for the distribution of

α conditional on each possible value of β (often referred to as the likelihood), then

if we learn the value of α, we know that our beliefs about β should be updated

according to (2.1.6) (where the denominator p (α) is computed using (2.1.5) and

(2.1.2)). This is a powerful and widely applicable result; if α is the outcome of

an experiment that we will perform in order to learn about β, and we can specify

p (α|β) for all values of α that we might obtain, then (2.1.6) automatically gives us

our updated belief state from our prior specification.

March 22, 2018

2.1. Bayesian analysis 24

Implementation For a continuous parameter θ, the direct specification of a prob-

ability density p (θ) would require us to specify relative density values at an infinite

number of parameter settings (and then integrate to enforce the condition (2.1.3));

doing this through explicit consideration of the individual elements of the parameter

space Θ is only really possible for discrete problems, and even then, it may present

a significant challenge. In practice, therefore, models are built using a small handful

of well-known distributional forms.

While a probability distribution should be chosen so that it represents our beliefs

about the distribution of a given parameter as faithfully as possible, in practice,

the choice of distributions on the basis of their nice computational properties is far

more common. Members of the exponential family of distributions are particularly

common choices, since they have the very useful property that for certain choices of

such distributions for the prior and the likelihood, the posterior distribution will be

of the same type as the prior [Diaconis and Ylvisaker, 1979].

Even when using such conjugate distributions to build models, in problems with

more than a handful of parameters, we can quickly lose our ability to directly per-

form the integrals necessary to compute marginal distributions for subsets of the

parameters (equation 2.1.5) or to compute moments of functions of parameters (e.g.

expectations, variances, covariances; see equation 2.1.4). In recent years, much work

has been done towards handling such problems through numerical integration tech-

niques; perhaps the most commonly encountered are Markov-Chain Monte-Carlo

(MCMC) methods. These work by generating a Markov chain (a stochastic se-

quence in which each state is sampled as a function of previous states) in such a

way that the set of generated samples is guaranteed to converge in the limit to a

set of samples from the required distribution. The Metropolis-Hastings algorithm

is the simplest and perhaps the most widely used MCMC method; Robert [2015]

gives an introduction, and provides references to more detailed works. A descrip-

tion of a wider range of Monte-Carlo sampling methods is provided in Robert and

Casella [1999], and some more advanced methods which exploit gradient informa-

tion to give better exploration of the distribution are presented in Girolami and

Calderhead [2011].

March 22, 2018

2.1. Bayesian analysis 25

A very large literature now also exists investigating situations in which larger num-

bers of parameters and a more complex dependency structure are required; graphical

models (see, for example, Bishop [2003], Lauritzen and Wermuth [1989], Rue and

Held [2005]) provide a useful framework for specifying the dependence structure

between parameters, and also for performing the calculations necessary to extract

information from the model upon updating using data.

2.1.2 Bayes linear analysis

Instead of building a framework for analysis by specifying a full probability distribu-

tion for each of the quantities involved, Bayes linear methods build such a framework

starting from only the first- and second-order moments of all of the quantities in-

volved; such a prior specification is much easier to make in almost all situations,

and the resulting analysis can often be much simpler to perform.

Motivation For any collection C = {C1, . . . , Cn} of quantities, we make a prior

specification consisting of expectations E [Ci] and variances Var [Ci] for each mem-

ber of the collection, and covariances Cov [Ci, Cj] for each pair of members. These

prior expectations can be interpreted as those which an individual (or a group) would

choose under penalty (2.1.1) on realisation of each of the quantities; Goldstein and

Wooff [2007] provide a more detailed discussion of some of the issues surrounding

such a prior specification.

The fact that a distributional specification is not required already makes such an

analysis an appealing prospect in many instances; for example, technical experts in

a particular field who have little statistical knowledge may be reluctant to choose

a particular distribution to describe a set of parameters, but may be much more

willing to give a rough quantification of their beliefs about the means and variances

of individual parameters, and any correlations between them. This makes the task

of eliciting relevant information about the problem much simpler.

Having made a prior specification for the collection, we consider the effect on our

beliefs of learning the values of a given subset of the quantities. Splitting the collec-

tion into two subsets, C = {B,D}, we specify that our updated beliefs about B on

March 22, 2018

2.1. Bayesian analysis 26

learning D should be a linear combination of the {Di}. In the Bayes linear context,

we speak of adjusted beliefs; for a single member of B, X, we use ED [X] to denote

our adjusted expectation for X given observations of the collection D, and we seek

coefficients hi such that

ED [X] = h0 +

nD∑
i=1

hiDi .

We use the same quadratic penalty as we considered when choosing our prior beliefs;

we obtain the adjusted expectation by finding the set of h = (h0, h1, . . . , hnD) which

minimises

E

[[
X −

nD∑
i=0

hiDi

]2
]

where D0 = 1. It can be shown (see, for example, the book by Goldstein and Wooff)

that under this prior specification, choice of linear form and penalty, the resulting

adjusted expectation is a function only of the prior specification and the observed

values

ED [X] = E [X] + Cov [X,D] Var [D] −1(D − E [D]) .

The adjusted variance is then defined as the expectation of the quadratic penalty,

and is also simple to compute as a function of the prior moments

VarD [X] = Var [X] − Cov [X,D] Var [D] −1Cov [D,X] .

These expressions are easily extended to adjustments for collections of quantities;

these expressions are presented in the following paragraph.

Analysis For collections A, B and D, we start by specifying (or eliciting) prior

expectations, variances and covariances; the adjusted means, variances and covari-

ances are then computed as follows

Definition 1 The adjusted expectation of a collection of random quantities B

given the observed values of a set of quantities D is given by

ED [B] = E [B] + Cov [B,D] Var [D] −1(D − E [D]) .

Definition 2 The adjusted variance of the collection B given D is

VarD [B] = Var [B] − Cov [B,D] Var [D] −1Cov [D,B] .

March 22, 2018

2.1. Bayesian analysis 27

Definition 3 The adjusted covariance of the collections B and A given D is

CovD [B,A] = Cov [B,A] − Cov [B,D] Var [D] −1Cov [D,A] .

Modelling When using a second-order specification, the whole process of con-

structing and analysing a model is considerably simpler than when using a fully

probabilistic model; we make a prior specification (possibly having elicited this from

a domain expert), we observe a subset of the quantities, and we adjust our beliefs

about all of the remainder as described. Goldstein and Wooff [2007] (chapters 4

and 5) discuss various diagnostic measures for a Bayes linear model; for example,

we may need to revisit our original prior specification in the light of observed data

which is outside the range of what we might have expected, or we may wish to assess

which components of the observed data contribute the most to our learning about

certain other parameters.

A big additional advantage of the Bayes linear framework lies in the fact that all

update calculations can be performed in closed-form; no matter how complex the

problem under consideration, we will never need to resort to numerical sampling

techniques in order to assess the moments of any of our model components. This

can lead to huge savings in the computational effort required for some problems.

Bayes linear graphical models are useful tools for large problems; these will be con-

sidered in more detail in the next section.

2.1.3 Bayes linear graphical models

For a general Bayesian analysis, a graphical model is a useful description of our

belief structure; it serves as both a qualitative description of relationships between

the different quantities in the problem, and a quantitative framework, which we can

use to structure (and potentially reduce the complexity of) the calculations that

we need to carry out in order to quantify our beliefs. In a fully Bayesian analysis,

the structure of the graph imposes conditional independence relationships between

quantities in the problem (which are commonly then exploited in the design of

sampling schemes); a Bayes linear graphical model performs the equivalent function

for a second-order belief specification.

March 22, 2018

2.1. Bayesian analysis 28

Directed graphical models A Bayes linear graphical model (Goldstein and

Wooff [2007], chapter 10) is a representation of the belief separations between

the individual quantities in a problem. A directed acyclic graph (DAG) consists

of nodes {B1, B2, . . . , Bm}, where each node represents a collection of quantities

Xi = {Xi1, Xi2, . . . , XinBi
}, with directed edges between some of the nodes. Any

two nodes can be connected, subject to the restriction that there are no cycles (i.e.

it is not possible to repeatedly visit the same node when tracing out a path along

the directions of the edges).

If there is a directed edge from node Bi to node Bj, then we say that Bi is a parent

of Bj, and that Bj is a child of Bi; for a general node Bi, we denote its parents

by Pa (Bi) and its children by Ch (Bi) . Based on these definitions, we may con-

struct a (not necessarily unique) ordering of all nodes in the graph by starting at

any node with no parents and labelling this as node 1, and then assigning the la-

bels 2, 3, . . . ,m sequentially to any node whose parents are already numbered. Any

ordering constructed like this has the property that it is not possible to reach any

lower-numbered node from a higher-numbered one; the ordering is said to be con-

sistent with the graph.

Based on the above, we define a Bayes linear graphical model as follows [Goldstein

and Wooff, 2007]

Definition 4 A model is a directed (second-order) graphical model if, when

B1, . . . , Bm is a consistent ordering on the nodes, then for each k, node Bk is sepa-

rated by its parent nodes from all predecessor nodes in the list; we write

Bk ⊥ B (k − 1) /Pa (Bk) (2.1.7)

where B (j) = {B1, . . . , Bj}

If the nodes Bj and Bk are separated by the node Bi (Bj ⊥ Bk/Bi in the above nota-

tion), this implies that the collection of quantities represented by Bi is Bayes linear

sufficient for Bk for adjusting Bj; this is the Bayes linear analogue of the conditional

independence property in the fully probabilistic case, and implies that Bk will not

provide any further information about Bj after adjustment by Bi. In the Bayes

linear case, we speak of belief separation, rather than of conditional independence.

March 22, 2018

2.1. Bayesian analysis 29

Computations on the graph Once we have specified a graph which captures all

of our qualitative beliefs about the structure of the model, we can use the graph as a

tool to quantify aspects of our belief structure. For a general problem, we must make

a full second-order belief specification for all quantities, comprising expectations and

variances for each quantity, and covariances between pairs of quantities; however, if

we can represent the structure of our model using a DAG, we only need to specify

a subset of these moments, and the structure of the graph will determine the rest.

If for any sets of quantities Bi, Bj, Bk, we have that Bk ⊥ Bj/Bi, then this implies

that

Cov [Bk, Bj] = Cov [Bk, Bi] Var [Bi]
−1Cov [Bi, Bj]

so we may determine the covariance between Bk and Bj in terms of the covariance of

each with Bi and the variance Var [Bi] . Using the property (2.1.7) of the graphical

model, we know that for any consistent ordering of the nodes, a node is separated

from all lower-numbered nodes in the graph by its parent set; combining these two

properties, for nodes Bj and Bk, with j < k, we have

Cov [Bk, Bj] = Cov [Bk,Pa (Bk)] Var [Pa (Bk)] −1Cov [Pa (Bk) , Bj] . (2.1.8)

This means that, for a graphical model, we must only make a limited prior specifica-

tion, consisting of expectations and variances for all nodes, and covariances between

nodes corresponding to the edges in the graph; given this specification, all remaining

covariances (which do not correspond to edges in the graph) are determined by the

graph structure through (2.1.8).

Junction trees For a general DAG, repeatedly exploiting the result (2.1.8) allows

us to compute the covariance between any pair of nodes. In general, however, this

procedure can be quite complex, owing to the fact that there may be many different

paths between a pair of nodes, all of which must be accounted for. For a particular

problem, we can simplify the calculations by imposing a simple graph structure;

if the graph is a tree (a graph in which there is only one path between each pair

of nodes), then we must only compute covariances along a chain of parent nodes,

and minor local deviations from this form will generally not make the calculations

March 22, 2018

2.1. Bayesian analysis 30

too onerous. In many instances, our actual beliefs will suggest a structure which is

considerably more complex than this, and so we may be unwilling to make such a

big simplification.

It is, however, relatively simple to reduce a general directed graph to an undirected

tree; if we can find a way to compute covariances between nodes using the undirected

graph, then this will greatly reduce the complexity of the procedure. We start down

this path by defining the undirected moral graph associated with a DAG.

Definition 5 The moral graph associated with a particular DAG is formed by:

(i) ‘marrying’ unmarried parents by drawing an (undirected) arc between any two

unconnected nodes with a common child;

(ii) dropping the arrows from all directed edges.

Goldstein and Wooff [2007] (chapter 10) discuss the properties of general undirected

graphical models in some detail. We now use the procedure outlined in the book by

Goldstein and Wooff to find the (non-unique) junction tree associated with a DAG.

Definition 6 A Junction tree can be constructed from a general DAG through

the following procedure:

(i) Create the moral graph associated with the DAG;

(ii) Triangulate the graph- add edges to ensure that there are no cycles of length 4

or more without a chord;

(iii) Carry out a maximum cardinality search: arbitrarily pick a node and label it

as node 1; then, at steps k = 2, . . . ,m, we label as node k the node with the

greatest number of labelled neighbours;

(iv) Find and label the cliques:

� the cliques {Qi} are the maximal sets of nodes which are all joined to each

other;

� these cliques are ordered according to the highest-numbered node within

them;

March 22, 2018

2.2. Bayesian analysis for functions 31

(v) Create the junction tree:

� the nodes of the tree are the cliques;

� each clique Qi is joined to at most one of the lower-numbered cliques

{Qj}, j < i by imposing an edge between it and any one of the earlier

cliques which contains the intersection between Qi and all nodes in all

lower-numbered cliques.

The proof that this algorithm generates a junction tree is provided in, for example,

Lauritzen [1996]; the properties of a junction tree are explored in more detail in

Goldstein and Wooff [2007]. The junction tree generated through the above algo-

rithm is an undirected graph with the property that there is only one path between

any pair of nodes.

Using this construction, we can compute covariances between any nodes in adjacent

cliques as follows: if cliques Qi and Qj are neighbours in the junction tree, and we

denote the intersection between these cliques by A = Qi ∩ Qj, then the covariance

between nodes Bk ∈ Qi and Bl ∈ Qj is

Cov [Bk, Bl] = Cov [Bk, A] Var [A] −1Cov [A,Bl] . (2.1.9)

We can use the relation (2.1.9) to compute the covariance between any pair of nodes

on the graph; we simply propagate the covariance through the cliques by sequentially

computing covariances between clique intersections along the tree.

2.2 Bayesian analysis for functions

A Bayesian analysis for a function is simply a particular case of the standard proba-

bilistic or Bayes linear analysis; however, it is one which has received much attention

because of its wide range of possible applications. Since this type of model will be

used repeatedly in the remainder of this thesis, we explore it here in detail. In the

following subsections, we consider two possible prior uncertainty specifications that

can be made for functions, and present the calculations for updating beliefs in both

cases; a fully probabilistic prior specification leads to a Gaussian process model,

March 22, 2018

2.2. Bayesian analysis for functions 32

which is outlined in Section 2.2.1, and a second-order prior specification produces a

Bayes linear emulator, discussed in Section 2.2.2. In Section 2.3, we outline some of

the modelling problems that can be addressed using this type of model, and in Sec-

tion 2.4, we detail some of the calculations that we will need to perform to achieve

these modelling goals.

2.2.1 Gaussian Processes

Formally, a Gaussian process is a (possibly infinite) collection of quantities, any

finite-dimensional subset of which has a multivariate Gaussian distribution (see, for

example, Rasmussen and Williams [2006]); we write

r (θ) ∼ GP (0, k (θ, θ′))

to denote that the scalar function r (.) is a mean-zero Gaussian process, where

covariances between function values at different input settings are determined by

the covariance function k (θ, θ′)

Cov [r (θ) , r (θ′) |λ] = k (θ, θ′|λ)

where λ are parameters of the covariance function, which are assumed fixed for

the purposes of this discussion (Section 2.2.3 discusses the determination of λ); we

suppress the dependence of the covariance on λ for the remainder of this section.

When building a model, a Gaussian process is often combined with a linear regression

term; the regression surface is used to capture any global trends in the function value,

and the Gaussian process acts as a correlated residual, picking up any systematic

local deviations from these global trends. Our model for a general, scalar function

f (.) is

f (θ) = g (θ) Tβ + r (θ) (2.2.10)

where g (θ) = (g1 (θ) , . . . , gng (θ))T is a vector of known basis functions, and β is

a corresponding vector of weighting parameters, about which we are uncertain. We

specify our prior beliefs about β through a probability distribution p (β) ; β and r (.)

are assumed to be a priori independent of each other. The basis functions g (.) are

either specified using our prior knowledge about the function, or determined from

March 22, 2018

2.2. Bayesian analysis for functions 33

the data; for further discussion on the selection of a suitable basis, see Section 2.2.3.

If we further specify a Gaussian prior distribution for the regression parameters,

β ∼ N (µβ, Vβ) , then we may exploit the Gaussianity of finite-dimensional collec-

tions of values of r (.) to derive a closed-form relationship between a set of observed

function values and our corresponding updated beliefs about the function at any

input θ. We observe the function at the input points Θ = {θ1, . . . , θn}, obtaining

data F = (F1, . . . , Fn)T, where Fj = f (θj) + εj and the εj are mean-zero mea-

surement error terms, with εj ∼ N (0, σ2) independently of all other components

and for each observation. By marginalising over the β and conditioning [Rasmussen

and Williams, 2006], we obtain another Gaussian process summarising our posterior

beliefs about f (θ) given F

f (θ) |F ∼ GP
(
m̂ (θ) , k̂ (θ, θ′)

)
where

m̂ (θ) = g (θ) β̂ + d (θ) TK−1(F −Gβ̂)

k̂ (θ, θ′) = k (θ, θ′) − d (θ) TK−1d (θ′) +R (θ) TV̂βR (θ′)

where d (θ) = (d1 (θ) , . . . , dn (θ))T is a vector with elements di (θ) = k (θ, θi) , K

is a covariance matrix with elements Kij = k (θi, θj) + σ2Iij, G is a design matrix

with elements Gij = gj (θi) , and

R (θ) = g (θ) T −GTK−1d (θ)

and

V̂β =
[
Vβ
−1 +GTK−1G

]−1

β̂ = V̂β

[
Vβ
−1µβ +GTK−1F

]
.

The above calculations were all carried out conditionally on fixed values of any pa-

rameters λ present in the covariance function; of course, in practice, we will also

be uncertain about the settings of these parameters which are appropriate for a

particular analysis. Under a fully Bayesian framework, we should specify our prior

beliefs p (λ) about these parameters, and then compute marginal posterior beliefs

March 22, 2018

2.2. Bayesian analysis for functions 34

about f (.) by integrating over these beliefs; for most useful choices of covariance

function, however, this is not possible analytically. For a fully Bayesian analysis,

then, we would need to use a numerical integration procedure (typically an MCMC

scheme).

A more common and practical approach is to select the parameters of the covariance

function using a maximum likelihood procedure and then carry out the remainder

of the analysis using these fixed values. In Section 2.2.3, we discuss a maximum

likelihood procedure based on leave-one-out cross-validation, in which we maximise

the predictive likelihood for each point based on a fit to the remainder.

It is relatively simple to extend the above analysis to cases where f (.) is a multi-

output function; we simply vectorise all of the quantities. To avoid cluttering the

the notation, we do not consider multivariate function models in the probabilistic

case in this thesis; we do, however, consider multi-output second-order function

models in Section 2.2.2. For a treatment of the multivariate Gaussian process case,

see, for example, Rougier [2008], Conti and O’Hagan [2010] or Fricker et al. [2013].

The paper by Rougier also considers how we might impose and exploit a separable

covariance structure in order to efficiently invert the matrix K.

2.2.2 Second-order analysis

A second-order analysis for functional data begins in exactly the same way as a

fully probabilistic analysis, through specification of a model for the function as the

sum of a regression term and a correlated residual process as in (2.2.10); in this

context, however, we take the same approach as Williamson [2010] in introducing

index notation and considering multi-output functions

fi (θ) = βipgp (θ) + ri (θ) (2.2.11)

where we use the Einstein summation convention that repeated indices are summed

over. In the Bayes linear context, we make a second-order prior specification for all of

the quantities on the right-hand side (i.e. E [βip] , Cov [βip, βkq] and Cov [ri (θ) , rk (θ′)] ,

again making the assumptions that β and r (θ) are uncorrelated and that r (θ) has

March 22, 2018

2.2. Bayesian analysis for functions 35

zero prior mean); we can then use noise-corrupted measurements Fij = fi (θj) + εij

of the function at a known set of locations Θ = {θ1, . . . , θj, . . . , θn} to adjust our

beliefs about these quantities, and about the function value at unobserved inputs.

The expectations of and covariances between function observations can be calculated

using our prior beliefs

E [Fij] = E [βip]Gpj

Cov [Fij, Fkl] = GpjCov [βip, βkq]Gql + Cov [ri (θj) , rk (θl)]

+ Cov [εij, εkl]

where Gpj = gp (θj) is the usual basis matrix, and we have assumed that the noise

terms εij are uncorrelated with the other components. We use Var [F] to denote the

four-dimensional object with elements Var [F] ijkl = Cov [Fij, Fkl] , and we compute

the elements of its inverse as follows: we create the vector F̃ by stacking the data

so that F̃i+(j−1)nf = Fij, and set

Var [F] −1
ijkl = Var

[
F̃
]
−1
(i+(j−1)nf),(k+(l−1)nf)

where Var [F] −1
ijkl is the (ijkl)th element of Var [F] −1. We can compute the adjusted

moments of the parameters β and the process r (θ) as follows (see, for example,

Williamson [2010], Craig et al. [2001], Vernon et al. [2010] for examples of similar

calculations)

� EF [βij] :

EF [βij] = E [βij] + Cov [βij, Fkl] Var [F] −1
klpq

[
Fpq − E [Fpq]

]
= E [βij] + Cov [βij, βkr]GrlVar [F] −1

klpq

[
Fpq − E [Fpq]

]
� CovF [βij, βkl] :

CovF [βij, βkl] = Cov [βij, βkl]

− Cov [βij, βpr]GrqVar [F] −1
pqstGutCov [βsu, βkl]

� EF [ri (θ)] :

EF [ri (θ)] = E [ri (θ)] + Cov [ri (θ) , Fkl] Var [F] −1
klpq

[
Fpq − E [Fpq]

]
= Cov [ri (θ) , rk (θl)] Var [F] −1

klpq

[
Fpq − E [Fpq]

]
March 22, 2018

2.2. Bayesian analysis for functions 36

� CovF [ri (θ) , rj (θ′)] :

CovF [ri (θ) , rj (θ′)] = Cov [ri (θ) , rj (θ′)]

− Cov [ri (θ) , rk (θl)] Var [F] −1
klpqCov [rp (θq) , rj (θ′)]

� CovF [βij, rk (θ)]

CovF [βij, rk (θ)] = −Cov [βij, βpr]GrqVar [F] −1
pqstCov [rs (θt) , rk (θ)]

The adjusted moments of the function f (.) at a new input θ can now be computed

by re-combining these elements using simple properties of adjusted expectation and

covariance [Goldstein and Wooff, 2007]. Our adjusted expectation is

EF [fi (θ)] = EF [βik] gk (θ) + EF [ri (θ)] (2.2.12)

and our adjusted covariances between function values at new inputs are

CovF [fi (θ) , fj (θ′)] =gk (θ) CovF [βik, βjl] gl (θ
′) + CovF [ri (θ) , rj (θ′)]

+ gk (θ) CovF [βik, rj (θ′)] + CovF [ri (θ) , βjl] gl (θ
′)

(2.2.13)

Again, our prior specification Cov [ri (θ) , rj (θ′)] = kij (θ, θ′|λ) for the covariance

structure of r (.) takes the form of a covariance function which depends in a complex

manner on parameters λ. The above analysis is all carried out conditionally on a

fixed value of λ, and procedures for determining a suitable value are discussed in

Section 2.2.3.

2.2.3 Covariance functions

One of the main issues encountered when trying to fit both Gaussian process models

and second-order emulators is in the selection of a covariance function and the de-

termination of its parameters. In both models, the covariance function determines

the marginal variance of the residual process output ri (θ) at input θ and the de-

gree of correlation between residual function outputs ri (θ) and rj (θ′) at different

March 22, 2018

2.2. Bayesian analysis for functions 37

input locations θ and θ′. A common simplification is to decouple the inter-output

covariance structure from the correlation induced as a function of θ, as

Cov [ri (θ) , rj (θ′)] = kij (θ, θ′)

= Vijc (θ, θ′) (2.2.14)

where Vij is the marginal covariance between outputs ri (.) and rj (.) (with Vii the

marginal variance of an individual output i), and c (θ, θ′) is a correlation function,

which determines the degree of correlation between the pair of outputs evaluated at θ

and θ′. In order to ensure that the resulting covariance matrices are positive-definite,

we require that c (., .) is a positive-definite function, and that V is a positive-definite

matrix. Two common choices of correlation function are the squared-exponential

and the Matèrn forms, both of which are outlined below.

Squared exponential This is simply an un-normalised Gaussian form

c (θ, θ′) = exp

[
− 1

2
(l (θ, θ′))

2

]
where

l (θ, θ′) =
[
(θ − θ′)TΛ(θ − θ′)

]1/2

is a scaled distance between θ and θ′, and Λ is a positive-definite matrix. The

eigenvectors of the matrix Λ determine the (orthogonal) principal directions of cor-

relation imposed, and the rates of decay of the correlation along these directions

are governed by the corresponding eigenvalues. This form is popular because it is

simple to work with (for much the same reasons that the Gaussian distribution is

easy to work with). In particular, choosing a squared exponential covariance can

greatly simplify a number of the more complex calculations that are described in

Section 2.4; further details are given there and in appendix B.

Matèrn This correlation function also depends on the same transformed distance

between points, but in a more complex manner

c (θ, θ′) =
1

2ν−1Γ (ν)
(l (θ, θ′))νKν (l (θ, θ′)) .

March 22, 2018

2.2. Bayesian analysis for functions 38

As well as the matrix of scaling parameters Λ for the distance measure, the Matèrn

correlation is also parametrized by a roughness measure ν. This second parameter

controls the differentiability of the covariance function, and thereby the smoothness

of the process; this makes the Matèrn correlation function much more flexible than

the squared exponential, which is useful in cases where the infinite-differentiability

of the latter is clearly not justified. However, this flexibility needs to be traded off

against the need to select an additional parameter, and the additional complexity

that this choice may entail for some of the calculations in Section 2.3.

Determining the parameters In order to perform a fully Bayesian analysis for

a function, we need to specify a suitable model (Gaussian process or Bayes linear),

and then use the data to derive updated beliefs about the coefficients β, the inter-

output covariance matrix V and the correlation function parameters λ before using

these posterior beliefs to make predictions about function values at unobserved input

locations. However, in practice, this is a very challenging task, as the dependence

of the covariance function on its parameters is typically complex, and as such, no

closed-form update rules exist. In the fully Bayesian context, we would need to

resort to sampling methods to obtain parameter estimates for the correlation func-

tion parameters, and then to characterise the predictive distribution for f (θ) , which

would significantly complicate the analysis, and remove the possibility of a closed-

form expression for predictions at new input locations.

A much more common approach is to fix V and λ using empirical procedures. For

the correlation parameters we may use a cross-validation procedure: when fitting

an emulator, we divide the data into a ‘training’ dataset and a ‘test’ dataset. The

training data is used to fit the model, and then the model is used to predict the test

data; the quality of this prediction is then assessed for different settings of the co-

variance function parameters, and the best such setting (by some suitable criterion)

is then fixed and used in all predictions for new function values.

In the Gaussian process case, the approach that is most commonly taken is to numer-

ically maximise the predictive log-likelihood of the test points over the covariance

function parameters; for test input set Θ̂ = {θ̂1, . . . , θ̂nc}, and test data F̂j = f
(
θ̂j

)
,

March 22, 2018

2.2. Bayesian analysis for functions 39

we have

l(λ) = −1

2
log
(∣∣K̂−1

∣∣)− 1

2

(
F̂ − m̂

)
TK̂−1

(
F̂ − m̂

)
where m̂ = (m̂1, . . . , m̂nc)

T with m̂i = m̂
(
θ̂i|λ

)
, and K̂ is the predictive covariance

matrix with K̂ij = k̂
(
θ̂i, θ̂j|λ

)
. In cases where data is scarce, and we cannot sacrifice

it to being part of the test set, leave-one-out cross validation is a popular variant

of this procedure; each individual data point is left out in turn, and is predicted

from a Gaussian process fit to the rest. Rasmussen and Williams [2006] show how

the likelihood for the leave-one-out procedure can be computed in such a way that

we only need to invert the data covariance matrix once, making this an extremely

efficient procedure.

In the Bayes linear case, a common choice of criterion is the Mahalanobis distance;

assuming multi-output functions again, we have

M(λ) =
(
F̂ij − EF

[
F̂ij|λ

])
VarF

[
F̂|λ
]
−1
ijkl

(
F̂kl − EF

[
F̂kl|λ

])
.

Low values of this quantity indicate a good prediction for the test data, and so we

minimise over λ.

Fast inversion & memory management When fitting a Gaussian process or

second-order emulator, the most computationally expensive and memory-hungry

step is the calculation, inversion and storage of the inverse data covariance matrix,

Var [F] −1. If our model has nf outputs and we have access to n runs, then Var [F]

is an (nf × n)× (nf × n) matrix, and for moderately high values of nf and n, it is

easy for the inversion of this matrix to become unmanageable.

Where we anticipate that this will be a problem, we can structure the covariance

function and the design of the simulator runs in such a way that we can take ad-

vantage of the Woodbury matrix inversion lemma [Rougier, 2008]; if we define the

reshaped variances

Ui+(k−1)nf ,j+(l−1)nf = Var [Fik, Fjl]

Bi+(k−1)nf ,j+(l−1)nf = Var [βik, βjl]

Ri+(k−1)nf ,j+(l−1)nf = Var [ri (θk) , rj (θl)]

March 22, 2018

2.2. Bayesian analysis for functions 40

then the variance of the vectorised simulator data is

U = G̃BG̃T +R

where G̃ = GT ⊗ Inf . If we apply the Woodbury matrix inversion lemma to this

form, then we obtain

U−1 = R−1 − (R−1G̃)(B + G̃R−1G̃)−1(R−1G̃)T . (2.2.15)

If R has a Kronecker product structure, then we can compute the inverse U−1 much

more quickly using this expression; the inverse of the matrix B + G̃R−1G̃ is of

dimension (nfng)× (nfng), which is usually much smaller than the original variance

matrix, and the inverse of R can be computed as

R−1 = Σ−1
θ ⊗ V

−1 .

If there is further product structure in the matrix R, then we can compute the

inverse even more efficiently by exploiting this structure too. We recover the inverse

object required for the update equations in Section 2.2.2 as

Var [F] −1
ikjl =

[
U−1

]
i+(k−1)nf ,j+(l−1)nf

.

If U is so large that even carrying it around inside the update code presents memory

issue, then the structure of the inverse (2.2.15) can also be used to reduce the

memory requirements. Instead of holding U−1 in memory, we store the components

of the product, and we also compute and store (R−1G̃) (which is of dimension

(nfn) × (nfng)); any future products of U−1 with the covariance can be computed

using the product structure, without having to compute the whole matrix, and any

products of U−1 with the basis terms can be computed using (R−1G̃), which is much

smaller than the full matrix.

2.2.4 Model fitting procedure

We detail the procedure that we will use to fit emulators in the remainder of the

thesis, combining all of the elements discussed above:

March 22, 2018

2.3. Applications 41

� We begin by using a small subset F̃ of the data to fit the regression surface, in

the absence of the residual term. If we are unsure as to which basis functions

to choose, then we first carry out the regression using multiple different basis

choices and compare the parameter estimates which we obtain; having settled

on a basis, the parameter estimates from the regression are used to fix the

prior moments E [βij] and Cov [βij, βkl] .

� In order to fix the inter-output covariance matrix V, we use the fitted regression

surface to compute the residuals Rij = F̃ij−E [βip]Gpj, and fix the components

of V to the empirical residual covariances

Vij =
1

nF̃

∑
k

(
Rik − R̄i

) (
Rjk − R̄j

)
where R̄i = 1

nF̃

∑
k Rij.

� Once the marginal covariances have been fixed, we use a cross-validation pro-

cedure (as outlined at the end of Section 2.2.3) to determine the correlation

parameters λ; we fix them to a value λ̂ which maximises a suitable criterion,

and then use the covariance function Cov [r (θ) , r (θ′)] = Cov
[
r (θ) , r (θ′) |λ̂

]
for the remainder of the analysis.

2.3 Applications

Section 2.2 details how to fit a model comprising a regression component and a

correlated residual process to a set of observations of a function at known input

locations, in order to use this model to make predictions of the function at input

settings where it has not yet been sampled. While predicting the function may be of

interest in its own right, we are often more interested in making statements about

other quantities which are related to this function.

Often, the function which is being modelled is itself a representation of a particular

system, commonly one which has a long run time, with the model being used as

a quick approximation to its output. In this situation, we are interested in being

able to use our model to make statements about the system, or to use data from

March 22, 2018

2.3. Applications 42

the system to tune our model; the different aspects of this problem are considered

in detail in Section 2.3.1.

Another common situation is that in which we are not interested in the function

itself, but in integrals or derivatives thereof; for example, we may want to translate

our beliefs about a function into beliefs about its expectation with respect to the

distribution of one of its inputs. Emulators make this task an extremely simple one;

we consider previous work in this area in Section 2.3.2.

2.3.1 Uncertainty analysis for complex functions

As a result of rapid advances in the capabilities of computers in the latter part of

the 20th century, there has been a correspondingly rapid increase in the scope and

scale of models that are used to study various phenomena; scientists increasingly

find themselves in situations where their knowledge of the behaviour of a system

leads them to postulate a model which has a very large number of input and/or

output parameters and takes a significant amount of time to run for any given set-

ting of these variables. For example, in climate science, even low resolution models

can take days to run on a cluster (see, for example, Smith et al. [2008], Williamson

et al. [2013]), and still contain many hundreds of input parameters which must be

specified for each run of the model.

These models are also generally deterministic (a given setting of the input parame-

ters will always lead to the same output); this presents an additional set of challenges

when we come to link the model to the system which it is supposed to represent.

Frequently, we will be uncertain about both a subset of the input parameters, and

the relationship between the model output and the system under any given setting

at which it is run.

In this context, we introduce a distinction between the model that we postulate

for a system, and the computer simulator that we use to actually use to generate

numerical values for attributes of our system; the relationship between the two is

the following [Vernon et al., 2010]

Simulator = Model + Treatment .

March 22, 2018

2.3. Applications 43

That is, the model is the abstract mathematical description of a system (possibly

only implicitly defined– see Section 1.1.1 for an example), whereas the simulator is

the actual implementation which allows us to predict aspects of the system. The

‘Treatment’ component of the simulator may, for example, consist of a particular

set of decisions about the domain discretization that we use to solve the governing

equations. The model may sometimes be sufficiently simple that we can implement

it exactly, without having to make any decisions about its numerical treatment (for

example, the Gaussian plume model in Section 1.1.3); in this situation, the model

and the simulator are the same object.

Bayesian analysis of such models conveys great advantages; an emulator (i.e. a

stochastic representation of the form outlined in Sections 2.2.1 or 2.2.2) can be

fitted to a small number of runs on the full computer simulator, and then used

to predict outputs at as-yet unobserved input settings in a fraction of the time it

would take to run the simulator again. We can also use this probabilistic or second-

order framework to specify our beliefs about the discrepancy between the simulator

outputs and the real values that the system takes, and use input uncertainty to

generate a corresponding uncertainty specification for the system value. This type

of analysis is generally referred to as a Bayesian uncertainty analysis.

Belief specification We build up our belief specification about the data observed

on the system at given input settings by considering uncertainties arising from a

number of different sources. We adopt the same specification as used by Kennedy

and O’Hagan [2001], Vernon et al. [2010] and others; we assume that the observations

z which we make on the system are noise-corrupted measurements of underlying

system values y (.) measured at known settings of some system inputs b

zij = yi (bj) + εi (bj) (2.3.16)

where yi (.) is the ith system output, and ε (.) is a measurement noise process, for

which we make an appropriate prior specification. y (.) and ε (.) are assumed to

be independent of each other; while we may not believe this to be the case in some

instances (for example, the measurement error is proportional to the system value

in many real applications), we will generally make this assumption in order to retain

March 22, 2018

2.3. Applications 44

tractability of later calculations. We denote our simulator by f (.) ; this simulator is

built so as to mimic the behaviour of the system, but is assumed to be an imperfect

representation of it.

We also assume that there is an additional set of simulator inputs a which must be

specified in order to run the simulator, but which do not necessarily have physical

analogues, and are not measured. We make a ‘best input’ assumption for these

parameters (see, for example, Craig et al. [2001]); that is, we assume that there

exists a setting a∗ of these parameters such that running the simulator at this point

will provide all of the information available in f (.) about y (.) .

We specify the following relationship between the simulator and the system

yi (b) = f̂i (b) + δi (b) (2.3.17)

where f̂ (b) = f (a∗, b) is the simulator evaluated at its best input, and δ (.) is

the discrepancy between the simulator and the system value at this point. We also

specify that f̂ (.) and δ (.) are a priori independent.

If the simulator itself is a complex function and has a long run time, then we also

fit an emulator as a surrogate; this emulator has the same form as given in (2.2.11),

where the full emulator input set is θ = {a, b}

fi (θ) = βijgj (θ) + ri (θ) .

An appropriate (Bayes linear or probabilistic) prior specification must be made for

β and r (.) .

Working within this framework, we represent all of the following kinds of uncertainty

[Vernon et al., 2010]:

1. Simulator uncertainty: f (θ) represents our simulator, which is assumed to

be a deterministic function of its inputs. Until f (.) has been run at a particular

setting of θ its value at that location is unknown, and so is treated as a random

variable within a subjective Bayesian framework. We expect that points which

are close together in input space will produce similar function output values-

we therefore generally specify that our emulators are made up of a regression

component βijgj (.) and residual component ri (.) , with the regression terms

March 22, 2018

2.3. Applications 45

being used to absorb any global effects and the residual terms capturing any

local deviations from these values. We make a prior (probabilistic or second-

order) specification for the β and for r (.) , and we update these beliefs using

runs from the simulator, as described in Section 2.2. Modelling the simulator

in this way can produce large savings in computation time, as the emulator is

generally much cheaper to run than the simulator which it represents.

2. Parameter uncertainty: Uncertainty about the input setting a∗ which best

reproduces system behaviour can arise in a number of different ways; in some

situations, these inputs may be a property of the model only (for example,

the resolution of the grid used to solve a differential equation), whereas in

others, the model inputs may correspond to idealised representations of mea-

sured quantities (for example, the ground properties in Huntley and Goldstein

[2016]), properties of processes which are believed to exist but which cannot

be directly measured (for example, the effect of dark matter on the galaxy

formation simulator in Vernon et al. [2010]), or real-world quantities which we

are just uncertain about (because they have been measured with error, or not

measured at all). In all of these cases, our treatment is the same, we specify

our beliefs through a probability distribution and propagate this uncertainty

through the emulator as described in Section 2.4.2.

3. Observational error: The observational error (or noise) term ε (θ) captures

imperfections in the observations on the system; the noise can be either cor-

related between inputs or uncorrelated, depending on prior beliefs about the

data-gathering process. Perhaps the simplest and most common specification

here is that ε has mean zero and is uncorrelated throughout the input space;

this is generally used to represent direct but imperfect measurements of par-

ticular aspects of the system. However, for more complex problems, data may

be obtained indirectly by propagating observed quantities through additional

processes to obtain quantities that can be compared with model predictions-

this can cause additional complexities in the error structure, as in the Galaxy

formation example considered by Vernon et al. [2010].

March 22, 2018

2.3. Applications 46

4. Simulator discrepancy: Even if we had access to enough computer power

to evaluate the simulator at every input setting of interest, unless the system

under study is extremely simple (e.g. a pendulum in a controlled environment),

the simulator will still give an incomplete representation of the real world.

For instance, the Gaussian plume description of the transport of particulate

matter discussed in Section 1.1.3 neglects some of the physics represented in

the underlying equation, which in turn neglects some of the turbulent effects

that would be present in a more complex description of the behaviour of the

atmosphere. This is handled in (2.3.17) through δ (.) , which encodes our

beliefs about the discrepancy between the simulator and the real system. This

term may contain both systematic and non-systematic components.

After making a prior specification for all components described above, we begin

by updating the emulator for the simulator as described in Section 2.2; then we

propagate the uncertainty on the parameters a∗ through this emulator, and use the

resulting simulator predictions in conjunction with data observed on the system to

estimate the discrepancy δ (.) and to further update f̂ (.) . Details of this calculation

when using Bayes linear assumptions are given in Section 2.4.2. If required, we can

also use the data observed on the system to learn about settings of a∗ which give an

acceptable match to the system; we can do this either through calibration (Section

2.4.3) or history matching (Section 2.4.4).

2.3.2 Inference for integrals and derivatives

Gaussian processes and second-order emulators have the extremely useful property

that expectations and covariances of derivatives and integrals of the random function

can be computed directly from the mean and covariance functions of the process itself

[Yaglom, 1986]. This means that such processes can be useful tools for numerical

integration, and for the approximation of solutions of differential equations.

Derivatives: If we make a prior specification for an unknown function, then, im-

plicitly, we are also making a prior specification for all of its derivatives. If we specify

March 22, 2018

2.3. Applications 47

E [fi (θ)] and Cov [fi (θ) , fj (θ′)] for a function f (.) , then we also have that

E

[
∂

∂θk

(
fi (θ)

)]
=

∂

∂θk

(
E [fi (θ)]

)
we can also determine covariances between derivatives evaluated at different input

settings as

Cov

[
∂

∂θk

(
fi (θ)

)
,
∂

∂θ′l

(
fj (θ′)

)]
=

∂

∂θk

∂

∂θ′l

(
Cov [fi (θ) , fj (θ′)]

)
and covariances between the original function and its derivatives are

Cov

[
fi (θ) ,

∂

∂θ′l

(
fj (θ′)

)]
=

∂

∂θ′l

(
Cov [fi (θ) , fj (θ′)]

)
.

Expectations and covariances for higher-order derivatives can be computed by taking

further derivatives of the moments in the same way.

This property has a number of potential uses:

� where it is difficult to algebraically compute the derivative of a complex func-

tion, we can fit an emulator as an approximation, and then use the emulator

to predict the derivative at any input setting;

� it is possible to obtain derivative information from some computer simulators

almost ‘for nothing’, since such models generally solve systems of differential

equations, and so pass around derivative information which can easily be ex-

ploited. These derivative observations can be used in conjunction with the

above relationships in order to improve the quality of the fit; such an analysis

is carried out by Killeya [2004] for a simple, compartmental ecosystem model;

� linear differential equation problems relate different derivative states of the

solution to each other, and to a set of parameters and forcings; making a

prior specification for the solution function and computing the corresponding

moments for the operator-transformed function allows us to infer the solution

from the forcing, or the forcing from the solution. Several such problems are

considered by Graepel [2003].

Care should be taken when using an emulator fitted to a function to reason about

its derivatives; the fact that a particular model performs well in validation checks

March 22, 2018

2.3. Applications 48

against samples of the function does not mean that it would pass the same checks

against observations of the function’s derivatives. Before we can make predictions of

derivatives with confidence, we must confirm that we actually believe the smoothness

properties of the mean and covariance specifications that we have used.

Integrals: If we perform the integral of a Gaussian process or second-order emula-

tor against another, known function, the resulting stochastic process is of the same

type as the original (see O’Hagan [1991] for a demonstration of the Gaussian case);

consider the case where we integrate the product of the random function f (.) and

a known function g(.) with respect to a single, scalar input a (where the full input

set is θ = {a, b}) between known limits

f̄i (la, ua, b) =

∫ ua

la

fi (a, b) g(a)da .

For both second-order and probabilistic specifications, we can compute the mean

and covariance functions of f̄ (.) directly from those of the original process

E
[
f̄i (la, ua, b)

]
=

∫ ua

la

E [fi (a, b)] g(a)da

Cov
[
f̄i (la, ua, b) , f̄j (l′a, u

′
a, b
′)
]

=

∫ ua

la

∫ u′a

l′a

g(a)Cov [fi (a, b) , fi (a
′, b′)] g(a′)dada′ .

The ease with which we can carry out these calculations depends on the mean and

covariance functions, and on the function g(.). It is similarly easy to compute the

covariance between the integral with respect to g(.) and the original functon

Cov
[
f̄i (la, ua, b) , fj (θ′)

]
=

∫ ua

la

g(a)Cov [fi (a, b) , fi (θ
′)] da .

These properties extend in an obvious manner to integrals in multiple input pa-

rameters. In the case where the covariance function is separable in all parameters

and there is no dependence between the limits of the integrals for different inputs,

then the covariance of the integral can be computed as a product of terms for the

individual inputs; introducing dependency between the integral limits, or using non-

separable covariance functions can introduce additional difficulties into the above

calculations, but these are not necessarily insurmountable.

March 22, 2018

2.3. Applications 49

These properties have received much attention in recent years as a means of perform-

ing integrals numerically; Diaconis [1986] discusses the general case in which calcu-

lations of the above form are used as an alternative to numerical integration tech-

niques, and O’Hagan [1991] and Rasmussen and Ghahramani [2003] both consider

the use of Gaussian processes as an alternative to traditional stochastic Monte-Carlo

methods. Indeed, O’Hagan [1987] goes a step further and argues that traditional

Monte-Carlo methods are not Bayesian, since their justification relies on the use of

limit theorems and they throw away information about the shape of the distribution

under study, and proposes that approximation using random functions is superior.

As pointed out by Diaconis [1986], while we may know a great deal about the prop-

erties of a function (particularly in simple cases), we do not know its value at a

given point until we have actually evaluated it there; in numerical problems, there-

fore, just as in any other problem, we should adopt a Bayesian approach, fitting

a model to the function and then using the model to reason about the integral.

Performing integrals in this way conveys a number of advantages over traditional

numerical integration methods, in which we evaluate the function at a number of

specially-chosen knots and then compute a weighted sum. The Bayesian approach:

� generates an estimate of the integral, but also generates our uncertainty about

this estimate; if we are happy that the resulting level of uncertainty is suffi-

ciently small for our purposes, then we may proceed, but if our uncertainty is

still too great, then we may repeat the calculation, having made more evalua-

tions of the original function, in the hope of reducing it. If we were happy with

the fit to the original function, then we can be assured that this uncertainty

has been propagated through coherently to our uncertainty about the integral.

Under traditional quadrature approaches, it is very hard to know how good

the approximation of the integral is.

� scales much better with dimension; while traditional numerical approaches

require evaluations on a specific grid or mesh, under the Bayesian approach,

evaluations can be made anywhere in the space in such a way as to provide the

best information about the parameters and residual process under a particular

specification.

March 22, 2018

2.4. Performing calculations on random functions 50

� provides us with an opportunity to build in beliefs that we hold about func-

tion properties; for example, we may know that a particular function is twice

differentiable, and we can choose mean and covariance functions which also

have this property.

Recently, this approach to numerical integration has been used to propagate un-

certainty through ordinary differential equation models; for example, if we fit a

Gaussian process to the right-hand side of a first order equation, then we may inte-

grate this process over a short time step, before plugging the resulting distribution

for the new state back into the RHS again, giving a distribution for the trajectory

of the solution, rather than a point estimate. For details of this approach, see, for

example, Chkrebtii et al. [2016].

We perform the calculations necessary for learning about the integral of a random

function in Section 2.4.1; we will use this approach to evaluate difficult numerical

integrals that we encounter when solving complex sequential design problems in

chapter 3.

2.4 Performing calculations on random functions

In this Section, we explicitly carry out some of the calculations detailed in Section 2.3

for second-order emulators: in Section 2.4.1, we transfer our adjusted beliefs about

a random function to our corresponding beliefs about the function’s integral by

directly integrating the moments, and in Section 2.4.2, we perform the calculations

necessary to propagate input uncertainty through an emulator for a simulator, and

adjust the resulting moments and discrepancy by the data observed on the system.

Then in Section 2.4.3, we consider using the system data to learn about the best

input setting, and in Section 2.4.4, we consider using history-matching to carry out

the same task.

2.4.1 Bayesian quadrature

Suppose that we have constructed a second-order emulator for a function in the

usual way (as detailed in Section 2.2.2), starting with prior moment specifications

March 22, 2018

2.4. Performing calculations on random functions 51

for the basis coefficients and residual process, and then adjusting these moments

using a number of runs on the function itself. We split the input parameters into two

subsets, θ = {a, b}, and we wish to compute our corresponding moment specification

for f̄ (b) , the expectation of f (θ) with respect to p (a)

f̄i (b) =

∫
A
fi (a, b) p (a) da .

As discussed in Section 2.3.2, this is another second-order process, and we can obtain

its moments by integrating the mean and covariance functions directly. Integrating

the expression (2.2.12) for the adjusted expectation at a new point, we obtain

EF

[
f̄i (b)

]
=

∫
A

EF [fi (a, b)] p (a) da (2.4.18)

=

∫
A

[
EF [βik] gk (a, b) + EF [ri (a, b)]

]
p (a) da

= EF [βik] ḡk (b) + EF [r̄i (b)] (2.4.19)

where

ḡk (b) =

∫
A
gk (a, b) p (a) da

and r̄i (b) is the expectation of the residual process over a, whose adjusted moments

can be computed as

EF [r̄i (b)] = Cov [r̄i (b) , rk (θl)] Var [F] −1
klpq

[
Fpq − E [Fpq]

]
with

Cov [r̄i (b) , rk (θl)] =

∫
A
kik (a, b, θl) p (a) da

where k (., .) is the covariance function for the residual process. The covariance

function for the integral can be computed by starting from (2.2.13) and integrating

in both arguments

CovF
[
f̄i (b) , f̄j (b′)

]
= ḡk (b) CovF [βik, βjl] ḡl (b

′) + CovF [r̄i (b) , r̄j (b′)] (2.4.20)

+ ḡk (b) CovF [βik, r̄j (b′)] + CovF [r̄i (b) , βjl] ḡl (b
′)

(2.4.21)

where

CovF [βik, r̄j (b′)] = −Cov [βik, βpv]GvqVar [F] −1
pqrsCov [rr (θs) , r̄j (b′)]

March 22, 2018

2.4. Performing calculations on random functions 52

with a similar expression for the final term, and

CovF [r̄i (b) , r̄j (b′)] =Cov [r̄i (b) , r̄j (b′)]

− Cov [r̄i (b) , rk (θl)] Var [F] −1
klpqCov [rp (θq) , r̄j (b′)]

with

Cov [r̄i (b) , r̄j (b′)] =

∫
A

∫
A
kij (a, b, a′, b′) p (a) p (a′) dada′ .

In this instance, if we were to start with a Gaussian process assumption, the calcula-

tions for deriving the expectation and variance of the integral would be exactly the

same (O’Hagan [1991] considers the univariate case in detail), the only difference

being that we would obtain another Gaussian process for f̄ (b) , with EF

[
f̄ (b)

]
as

its mean function and CovF
[
f̄ (b) , f̄ (b′)

]
as its covariance function.

2.4.2 Input uncertainty propagation and uncertainty anal-

ysis

In Section 2.3.1, we outlined the standard relationship assumed between a simulator

and the system that it represents when carrying out a Bayesian uncertainty analysis;

now, for a Bayes linear specification, we compute our moments of f̂ (b) = f (a∗, b)

by propagating uncertainty about a∗ through the emulator, and then adjust these

moments jointly with the discrepancy using data observed on the system.

Propagating input uncertainty As in equation 2.3.17, we have that yi (b) =

f̂i (b) + δi (b) , and so to compute the moments of y (.) , we must first compute

the moments of f̂ (.) for any input setting. We do this as follows, where all outer

expectations and covariances are taken with respect to our beliefs p (a∗) about the

best input setting

E
[
f̂i (b)

]
= E [EF [fi (a

∗, b)]]

Cov
[
f̂i (b) , f̂j (b′)

]
= E [CovF [fi (a

∗, b) , fj (a∗, b′)]]

+ Cov [EF [fi (a
∗, b) |a∗] ,EF [fj (a∗, b′)]] .

March 22, 2018

2.4. Performing calculations on random functions 53

The expectation EF

[
f̂i (b)

]
is equivalent to the expectation EF

[
f̄i (b)

]
computed

in (2.4.19). To compute the covariance, we begin by expanding the second term

Cov
[
f̂i (b) , f̂j (b′)

]
= E [CovF [fi (a

∗, b) , fj (a∗, b′)]]

+ E [EF [fi (a
∗, b)] EF [fj (a∗, b′)]]

− EF

[
f̂i (b)

]
EF

[
f̂j (b′)

]
.

The expectation of the covariance is computed as

E [CovF [fi (a
∗, b) , fj (a∗, b′)]] = CovF [βik, βjl]hk,l (b, b

′)

+ ui,j (b, b′) − Var [F] −1
klpqwikl,jpq (b, b′)

− Cov [βik, βpv]GvqVar [F] −1
pqrsvk,rsj (b, b′)

− Var [F] −1
pqrsGwsCov [βrw, βjl] vl,pqi (b

′, b)

where we have introduced the following functions

ui,j (b, b′) =

∫
A
kij (a∗, b, a∗, b′) p (a∗) da∗

hk,l (b, b
′) =

∫
A
gk (a∗, b) gl (a

∗, b′) p (a∗) da∗

vk,rsj (b, b′) =

∫
A
gk (a∗, b) krj (θs, a

∗, b′) p (a∗) da∗

wikl,jpq (b, b′) =

∫
A
kik (a∗, b, θl) kjp (a∗, b′, θq) p (a∗) da∗ .

The second term can then be found as

E [EF [fi (a
∗, b)] EF [fj (a∗, b′)]] = EF [βik] EF [βjl]hk,l (b, b

′)

+ EF [βik] vk,pqj (b, b′)Wpq

+Wpqvl,pqi (b
′, b) EF [βjl]

+Wklwikl,jrs (b, b′)Wrs

where

Wkl = Var [F] −1
klpq

[
Fpq − E [Fpq]

]
.

Our ability to perform these calculations in closed-form depends on our choice of ba-

sis and covariance functions; the calculations are performed for certain combinations

of basis and covariance function in appendix B.

March 22, 2018

2.4. Performing calculations on random functions 54

System and data moments Having computed the moments of the simulator

evaluated at its best input, we can compute the moments of the system, using our

specification that the discrepancy is a priori uncorrelated with the simulator and

the best input setting

E [yi (b)] = E
[
f̂i (b)

]
+ E [δi (b)]

Cov [yi (b) , yj (b′)] = Cov
[
f̂i (b) , f̂j (b′)

]
+ Cov [δi (b) , δj (b′)] .

For E [δ (.)] and Cov [δ (.) , δ (.′)] , we assume the same form for the discrepancy as

we did for our original emulator

δi (b) = β
(δ)
ip g

(δ)
p (b) + r

(δ)
i (b) .

The prior moments of the full discrepancy are then obtained by specifying moments

E
[
β(δ)
]

, Var
[
β(δ)
]

and Cov
[
r

(δ)
i (.) , r

(δ)
j (.′)

]
(assuming, as usual, prior indepen-

dence of the components, mean zero residual) and combining.

The expectations and covariances of the observed data are then

E [zij] = E [yi (bj)] (2.4.22)

Cov [zij, zkl] = Cov [yi (bj) , yk (bl)] + Cov [εi (bj) , εk (bl)] (2.4.23)

where we have used our assumption that the measurement error ε is uncorrelated

with the system y

Adjusting using system data On observing the data, we use this to adjust the

moments of the system for new input values; using Var [z] ijkl = Cov [zij, zkl] to

denote the full variance matrix of the data, and Var [z] −1
ijkl to denote an element of

its inverse, the adjusted moments of the system are

Ez [yi (b)] = Ez

[
f̂i (b)

]
+ Ez [δi (b)]

Covz [yi (b) , yj (b′)] = Covz

[
f̂i (b) , f̂j (b′)

]
+ Covz [δi (b) , δj (b′)]

+ Covz

[
f̂i (b) , δj (b′)

]
+ Covz

[
δi (b) , f̂j (b′)

]
.

March 22, 2018

2.4. Performing calculations on random functions 55

For the best input simulator value and the discrepancy, we compute the adjustments

as

Ez

[
f̂i (b)

]
= E

[
f̂i (b)

]
+ Cov

[
f̂i (b) , zkl

]
Var [z] −1

klpq

[
zpq − E [zpq]

]
Covz

[
f̂i (b) , f̂j (b′)

]
= Cov

[
f̂i (b) , f̂j (b′)

]
− Cov

[
f̂i (b) , zkl

]
Var [z] −1

klpqCov
[
zpq, f̂j (b′)

]
where

Cov
[
f̂i (b) , zkl

]
= Cov

[
f̂i (b) , f̂k (bl)

]
and

Ez [δi (b)] = Ez

[
β

(δ)
ip

]
g(δ)
p (b) + Ez

[
r

(δ)
i (b)

]
Covz [δi (b) , δj (b′)] = g(δ)

p (b) Covz

[
β

(δ)
ip , β

(δ)
jq

]
g(δ)
q (b′) + Covz

[
r

(δ)
i (b) , r

(δ)
j (b′)

]
g(δ)
p (b) Covz

[
β

(δ)
ip , r

(δ)
j (b′)

]
+ Covz

[
r

(δ)
i (b) , β

(δ)
jq

]
g(δ)
q (b′)

where the individual components of this adjustment are computed in the same way

as those of the Bayes linear emulator update described in Section 2.2.2, substituting

moments of F for moments of z where appropriate. It then only remains to compute

the adjusted covariance between the best input simulator and the discrepancy, which

is

Covz

[
f̂i (b) , δj (b′)

]
=

− Cov
[
f̂i (b) , zkl

]
Var [z] −1

klpq

[
G(δ)
rq Cov

[
β(δ)
pr , β

(δ)
js

]
g(δ)
s (b′) + Cov

[
zpq, r

(δ)
j (b′)

]]
where G

(δ)
rq = g

(δ)
r (bq) is the design matrix for the discrepancy basis functions and

Cov
[
zpq, r

(δ)
j (b′)

]
= Cov

[
r(δ)
p (bq) , r

(δ)
j (b′)

]
.

2.4.3 Inferring the inputs: calibration

When using an emulator as a representation for a system, we are often interested

in the question of what observations on the system can tell us about the best input

parameters to the model: which parts of the input space for a are likely to have

produced particular observations? Relatively how likely are different parts of the

March 22, 2018

2.4. Performing calculations on random functions 56

input space? Using system data to learn about the parameters in this way is re-

ferred to as calibration; Kennedy and O’Hagan [2001] considered the calibration of

a Gaussian process model in this way, using a fully Bayesian framework in which

the observations define a posterior distribution over the model input space, and

future predictions are calibrated by numerically integrating the predictive distribu-

tion against this posterior. Here, we consider the Bayes linear calibration methods

of Goldstein and Rougier [2006], in which a suitable second-order model specifica-

tion leads to us being able to derive all of the moments necessary to adjust beliefs

about the input parameters using the data.

The moments of the data observed on the system were computed in equations

(2.4.22) and (2.4.23); the Bayes linear adjustment equations for inputs a∗i are now

simply

Ez [a∗i] = E [a∗i] + Cov [a∗i , zkl] Var [z] −1
klpq

[
zpq − E [zpq]

]
Covz

[
a∗i , a

∗
j

]
= Var

[
a∗i , a

∗
j

]
− Cov [a∗i , zkl] Var [z] −1

klpqCov
[
zpq, a

∗
j

]
.

In order to carry out this adjustment, we need to compute the covariances Cov [a∗i , zkl]

as

Cov [a∗i , zjk] = E [a∗iEF [fj (a∗, bk)]] − E [a∗i] E [EF [fj (a∗, bk)]]

where again, the outer expectations are computed with respect to our beliefs p (a∗)

about the best input setting. The first term is then

E [a∗iEF [fj (a∗, bk)]] = EF [βjp]
[∫
A
a∗i gp (a∗, bk) p (a∗) da∗

]
+Wpq

[∫
A
a∗i kjp (a∗, bk, θq) p (a∗) da∗

]
where W is defined as in Section 2.4.2.

Caution should be exercised when using the Bayes linear approach to learning about

the inputs. If the behaviour of the function f (.) is highly variable across the input

space, then it may be the case that there are multiple different parts of the space

which will give good matches to the system; if this is the case, then the probabilistic

approach of Kennedy and O’Hagan may be preferable, since it has the ability to

capture this multi-modality. In other cases, it may be that there is no setting of the

March 22, 2018

2.4. Performing calculations on random functions 57

inputs that gives a match to the system data which we would consider acceptable;

in this instance, calibration is not an appropriate technique, since it will always

result in a set of moments, or a normalised probability distribution. The paper

by Brynjarsdottir and O’Hagan [2014] contains a detailed discussion of this point;

in this situation, we should explore the input space using history matching, as in

Section 2.4.4.

Having used the system data to learn about the best input setting a∗, it is natural

to ask about the benefit that we could obtain by re-running the full simulator at

this point; obtaining this run and re-adjusting our emulator to include it has the

potential to significantly decrease our uncertainty in an important part of the input

space. The paper by Goldstein and Rougier [2006] considers the benefit that we

might obtain by re-running the simulator at Ez [a∗] by computing the joint moment

specification for a∗ and f (Ez [a∗] , b) .

2.4.4 Inferring the inputs: history matching

An alternative approach to learning about the input space of the model is known as

history matching [Vernon et al., 2010]. Instead of using the observations to perform

a Bayes linear adjustment, or to define a full posterior probability distribution, we

proceed by means of a discrepancy measure between the system prediction and the

data observed on the system itself.

Rather than attempting to integrate out a best setting of the simulator inputs a,

we compute moments for the data as a function of these inputs by combining our

emulator (after adjustment by F) with our prior beliefs about the discrepancy and

about the measurement error structure; we then use these moments to define a

measure of our degree of surprise at having seen the data z at a particular setting

of the simulator inputs, and we use this measure to discriminate between different

values of a. As a function of a, then, our beliefs about the data are

E [zij(a)] = EF [fi (a, bj)] + E [δi (bj)]

Cov [zij(a), zkl(a)] = CovF [fi (a, bj) , fk (a, bl)] + Cov [δi (bj) , δk (bl)]

+ Cov [εi (bj) , εk (bl)] .

March 22, 2018

2.4. Performing calculations on random functions 58

We define the implausibility measure I (a) to measure the discrepancy between

the data and the simulator predictions for this particular value of a. We choose a

definition based on the Mahalanobis distance, though other choices can be made;

the paper by Vernon et. al. contains further discussion of this point

I (a) =
(
zij − E [zij(a)]

)[
Var [z(a)] −1

]
ijkl

(
zkl − E [zkl(a)]

)
.

Higher values of I (a) indicate a greater discrepancy between the simulator pre-

diction at this setting of its inputs and the system data. We use this measure to

define a non-implausible space of inputs by imposing a threshold χ above which

we believe that it is very unlikely that the data could have been generated by this

a; the non-implausible space A∗ then consists of inputs for which I (a) < χ. For

the multivariate measure defined above, a suitable choice for χ could be a 95 or

99 percent quantile of the chi-squared distribution; this effectively corresponds to

making a Gaussian specification for the each of the model components. Where uni-

variate measures are to be used, a common choice is χ = 3, owing to the result

of Pukelsheim [1994] that 95% of the probability mass lies within three standard

deviations of the mean for any continuous, unimodal probability distribution.

History matching is generally performed in waves; we fit an initial emulator to the

simulator f (.) , and we use this emulator (and prior beliefs about discrepancy and

measurement error) to define a measure I1 (a) at the first wave. We then use this

implausibility measure to sample non-implausible settings of a, before using these

points to fit a second emulator to the simulator defined within the non-implausible

space A∗1 at this first wave. Because this emulator is fitted only in a subset of the

full input space, we hope to be able to increase the accuracy of its predictions, which

will increase our power to discriminate between good and bad settings of a.

The first- and second-wave emulators are then used to define a space A∗2 of settings

a satisfying I1 (a) < χ1 and I2 (a) < χ2; this space then has the property that

A∗2 ⊂ A∗1, giving us tighter constraints on the settings of a that we consider could

give an acceptable match to the system. We can perform as many waves of history

matching as we deem necessary; we would typically stop performing waves either

when our description A∗k of the space of possible best inputs is sufficiently accurate

for our purposes, or when we cease to see any significant reduction in the size of the

March 22, 2018

2.5. Simple example 59

non-implausible space between successive waves.

2.5 Simple example

We now illustrate the analyses outlined in this chapter through application to a

simple example; we generate 10 samples from the following pair of functions at a

Latin hypercube of input locations in b ∈ [0, 1], a ∈ [0, 1]

f1 (a, b) = sin (2π(b + a))

f2 (a, b) = cos (2π(b + a)) .

If we know of underlying structure in the functions that we are trying to model,

then we can increase the power of our model by building this structure into it; in

this instance, we use the fact that f2 (.) is offset from f1 (.) by a quarter period

when selecting our mean and covariance functions.

When setting up our prior, we assume that we are uncertain about the function’s

behaviour, but that we wish to build in the quarter-period offset property between

the two outputs. First, the regression component; we believe that the functions will

exhibit non-polynomial behaviour around a constant level, and so we specify that

g1 (a, b) = 1 .

Our beliefs about this constant level are symmetric about zero, and so set all prior

basis parameter expectations to zero (E [βij] = 0), and we specify that

Var [β11] = 0.12 Cov [β11, β21] = 0

Cov [β21, β11] = 0 Var [β21] = 0.12
.

For the covariance functions, we use the following forms

kij (a, b, a′, b′) = Vij exp

(
− λ

2
((b + a + ξi)− (b′ + a′ + ξj))

2

)
where the ξi are known offset parameters, with ξ1 = 0 and ξ2 = 1

4
, imposing the

usual squared exponential correlation between values of the same output and an

offset squared exponential correlation between different output values. The matrix

elements Vij determine the degree of marginal covariance between the appropriately

March 22, 2018

2.5. Simple example 60

offset function values; we believe the residual of output 1 to be perfectly correlated

with the residual of output 2 at a quarter-period offset, and so we specify that

Vij = 1 for all {i, j}.

Update Having completed the prior specification, we perform the calculations in

Section 2.2.2 and update the emulator. In order to determine the parameters of

the covariance function, we check our fit against a new data set: we generate an

additional 10 points from the underlying function, fit the model, and then compute

the standardised distance from the model prediction to the observed function value,

as described in Section 2.2.3. In this particularly simple example, we simply use these

standardised distances to manually tune the correlation parameter λ; we settle on

the value λ = 1
0.32

.

Figure 2.1 shows some plots of the fitted emulator: Figure 2.1(a) shows the adjusted

mean EF [f1 (a, b)] as a function of b and a, with the locations of the design points

used to fit the model shown in black; Figure 2.1(b) shows the corresponding adjusted

standard deviation, and Figure 2.1(c) shows both f1 (.) and f2 (.) as a function of

(b + a).

Expectation of the integral We now use our adjusted beliefs to compute our

corresponding beliefs about the integrals

f̄i (b) =

∫
Y
fi (a, b) p (a) da .

We specify that p (a) = 1 (a uniform distribution), and compute the moments

described in Section 2.3.1. Figure 2.2 shows the moments of f̄1 (.) and f̄2 (.) as a

function of b.

Propagation of parameter uncertainty We now use our adjusted beliefs about

f (a, b) to compute our corresponding beliefs about f̂ (b) = f (a∗, b) , given our

beliefs p (a∗) about a∗; so we can easily compare the two cases, we also specify that

p (a∗) = 1, i.e. that the input which gives the best match to the system could lie

anywhere within the domain of a.

Figure 2.3 summarizes our beliefs E
[
f̂ (b)

]
and Var

[
f̂ (b)

]
for both outputs; note

March 22, 2018

2.5. Simple example 61

x

y

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
[f 1(x

)]

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

x

y

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V
ar

[f 1(x
)]

1/
2

0.1

0.2

0.3

0.4

0.5

0.6

(b)

0 0.5 1 1.5 2
−2

0

2

4

f 1(x
,y

)

0 0.5 1 1.5 2
−2

0

2

4

x+y

f 2(x
,y

)

(c)

Figure 2.1: Plots showing the adjusted moments for the example in Section 2.5:

Figure 2.1(a) shows the adjusted expectation of f1 (.) as a function of b and a, with

the design points used to fit the model shown as black markers; Figure 2.1(b) shows

the corresponding adjusted standard deviation; Figure 2.1(c) shows the adjusted

moments of both functions as a function of (b + a), with the adjusted expectation

shown in blue, two standard-deviation error bars shown in dashed red, and the true

underlying function shown in black.

March 22, 2018

2.5. Simple example 62

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

f 1(x
)

0 0.2 0.4 0.6 0.8 1
−0.6

−0.4

−0.2

0

0.2

x

f 2(x
)

Figure 2.2: Plot of the moments of the integral of the function: the means EF

[
f̄i (b)

]
are shown in blue, and the error bars EF

[
f̄i (b)

]
± 2VarF

[
f̄i (b)

]
1/2 are shown in

dashed red. The true result of the integral is shown in black.

that the mean (solid blue) is the same in both cases as the mean EF

[
f̄ (b)

]
, as

outlined in Section 2.4.2. In this case, however, the marginal variance Var
[
f̂ (b)

]
1/2

is much larger than Var
[
f̄ (b)

]
1/2, since in the former case, the total variance is a

sum of both the uncertainty in the mean level due to uncertainty in the setting of

a∗, and uncertainty in the emulator for a given setting of a∗.

Learning the uncertain inputs Having computed the moments of the function

evaluated at its best input, we make observations of the original function (subject

to measurement error) at a particular value of a∗, and use the calculations outlined

in Section 2.4.3 to infer this setting. To complete our specification for the observed

data, we assume that δ (b) = 0, and so

E [yi (b)] = E
[
f̂i (b)

]
Cov [yi (b) , yj (b′)] = Cov

[
f̂i (b) , f̂j (b′)

]

March 22, 2018

2.5. Simple example 63

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

f 1(x
)

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

x

f 2(x
)

Figure 2.3: Plot of the predictions for the functions f̂i (b) after the propagation of

the uncertainty on a through the function: EF

[
f̂i (b)

]
is shown in blue, and the

error bars EF

[
f̂i (b)

]
± 2VarF

[
f̂i (b)

]
are shown in dashed red. The green lines

show the actual system function y (b) which is used to adjust beliefs about the

uncertain inputs a∗. The expectation of the true function is shown in black; the

blue line (EF

[
f̂i (b)

]
) is almost entirely obscured by this black line.

March 22, 2018

2.6. Example: Ocean simulator 64

so that at known observation locations {bk}, we have that

E [zik] = E
[
f̂i (bk)

]
Cov [zik, zjl] = Cov

[
f̂i (bk) , f̂j (bl)

]
+ Cov [εik, εjl]

where the errors are assumed to be uncorrelated between observations, so Cov [εik, εjl] =

(10−3) only if i = j and k = l.

We collect 20 observations at different locations on each of the two outputs; these

observations are made at a∗ = 0.8, and are shown in green in Figure 2.3. The quan-

tities detailed in Section 2.4.3 are then computed, and prior moments E [a∗] = 0.5

and Var [a∗] = 1
12
' (0.2887)2 (taken from the uniform distribution) are adjusted to

Ez [a∗] = 0.7961 Varz [a∗] = (0.1306)2 .

Calibrating in this way has resulted in a posterior mean which is very close to the

true value at which we generated the data and a reasonably large reduction from

the prior standard deviation. Figure 2.4 shows the data used for the adjustment (in

green) alongside the moments E
[
f̂ (b)

]
, Var

[
f̂ (b)

]
re-computed using the uniform

distribution parametrized by the adjusted moments Ez [a∗] and Varz [a∗] .

2.6 Example: Ocean simulator

We now carry out a Bayesian uncertainty analysis for a more complex system; we

consider a problem of the type discussed in Section 1.3, where we must link together

the output from an ocean simulator with observations on the real ocean in order to

generate an uncertainty specification for ocean characteristics that we might observe

in the future.

2.6.1 Simulator

The simulator for this system is the third-generation MIKE model for coastal wave

behaviour, developed by the Danish Hydrological Institute (DHI). The wave action

density spectrum, N (x, y, φ, σ, t) (which is a function of location (x, y), time t,

March 22, 2018

2.6. Example: Ocean simulator 65

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

f 1(x
)

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

x

f 2(x
)

Figure 2.4: Observed data z (green) plotted alongside the moments E
[
f̂ (b)

]
±

3Var
[
f̂ (b)

]
1/2 (solid blue and dashed red) obtained by re-computing these moments

using Ez [a∗] , Varz [a∗] ; we see that our beliefs about the f̂ (.) having learned about

the input setting a∗ correspond much more closely to the underlying ‘true’ function.

March 22, 2018

2.6. Example: Ocean simulator 66

wave direction φ and wave period σ) is assumed to evolve in time according to the

following wave action conservation equation [Sørensen et al., 2004]

∂N

∂t
+∇.(cN) =

s

σ
. (2.6.24)

Here, c (x, y, φ, σ, t) = (cx, cy, cφ , cσ)T is the four-dimensional characteristic prop-

agation velocity of a wave-group, and s (x, y, φ, σ, t) is an energy source term. In

order to make this a well-posed problem, the initial and boundary behaviour of N (.)

must also be specified. The characteristic propagation velocities can be computed

for any input point using a set of kinematic relationships.

The energy source term in this equation is sub-divided into several different compo-

nents, representing the different sources of energy transfer to the system:

� sin (.) represents the energy transferred from the wind;

� snl (.) represents the energy transfer from non-linear interactions between

waves;

� sds (.) represents the dissipation of energy due to the white-capping of waves;

� sbot (.) represents the dissipation of energy due to bottom friction;

� ssurf (.) represents the dissipation of energy due to wave-breaking.

Further sets of assumptions are made in order to estimate these quantites from

available atmospheric information.

The equation (2.6.24) cannot be solved directly, and so the simulator must be con-

structed using a numerical solver; Sørensen et al. [2004] use a cell-centred finite-

volume method, which exploits the fact that (2.6.24) has the form of a conservation

law. A polygonal mesh (tetrahedral or quadrilateral) is imposed on the domain,

and the action density spectrum N (.) is approximated on each mesh element by a

constant (assumed to be located at the centre of the element for the purposes of

the solver). Algebraic relationships are then specified between the discrete spectral

states at one time-step and the next by integrating (2.6.24) over each mesh element,

applying Stokes’ theorem and, where necessary, approximating the integrals of the

characteristic wave speeds and forcings over the cell boundaries.

March 22, 2018

2.6. Example: Ocean simulator 67

Once (2.6.24) has been solved numerically, the resulting wave action density values

must be post-processed in order to obtain predictions for the storm characteristics

of interest within different sea-states (see Section 1.3). This post processing involves

finding moments of the wave spectra for different locations and times. In the case

of storm-peak significant wave height, we must also find the maximum wave height

within a given storm (which is defined to be an unbroken sequence of sea-states

during which wave heights exceed a given threshold- see Section 1.3.1). The outputs

that we emulate are outlined in Section 2.6.2.

2.6.2 Emulator

The wave simulator that we use has 5 outputs:

� f1 (θ) = HmpF78(θ): Storm-peak significant wave height;

� f2 (θ) = Hm0peq
(θ): Most probable wave height;

� f3 (θ) = Tpwmean(θ): Peak wave period;

� f4 (θ) = T02wmean(θ): Mean wave period;

� f5 (θ) = log10

(
sigmaeq(θ)

)
: log of the storm duration.

We fit an emulator as a function of inputs θ = {a, b}; the b are storm covariates

that we will know (or can compute from atmospheric information), and the a are

parameters which we must specify in order to be able to run the simulator, but which

are not measured on the system. Table 2.1 describes each of the storm covariates

used to fit the model, and table 2.2 describes each of the simulator-specific inputs.

We begin our model fit by specifying the basis functions and the covariance structure

of the residual process. For the vector of basis functions, we choose

g (θ) =
(

1, I5(b1), I12(b1), I13(b1), I22(b1), b2, b
2
2, b

3
3, cos (b3), sin (b3), . . .

cos (b4), sin (b4), a1, . . . , a5, a
2
1, . . . , a

2
5

)
T .

That is, we use an overall intercept, an indicator function for each platform except

platform 2, first order Fourier terms for the wind direction, polynomial terms up to

March 22, 2018

2.6. Example: Ocean simulator 68

Name Range Description

b1 = Platform {2,5,12,13,22} Platform (index within full set)

b2 = WSmax [1.9,32.4] Maximum storm wind speed (m/s)

b3 = WDmax [0,360] Direction of max. storm wind (meteoro-

logical degrees)

b4 = Season [0,365] Storm season (days)

Table 2.1: Elements of b

3rd order in the wind speed and first- and second-order terms for each of the tuning

inputs. The covariance of the residual is assumed to have the simple form discussed

in Section 2.2.3

Cov [ri (θ) , rj (θ′)] = Vijc (θ, θ′)

where the correlation function is a squared exponential

c (θ, θ′) = ca (a, a′) cb (b, b′)

= exp
[5∑
k=1

λak
2

(ak − a′k)2
]

× exp
[λb2

2
(b2 − b′2)2 +

λb3
2

sin (
b3 − b3

2
)2 +

λb4
2

sin (
b4 − b4

2
)2
]

.

This choice of covariance is separable in inputs and outputs, and in all input vari-

ables. Using the separability in input and output variables, we can write the covari-

ance of the residual components Rik = ri (θk) in the following Kronecker product

form

Var [Vec (R)] = Σψ ⊗ V

where Vec (R) is the vector obtained by unwrapping the matrix R. This allows us

access to the fast inversion procedure outlined at 2.2.3, since we can invert the full

residual covariance by inverting each of the above terms separately

Var [Vec (R)] −1 = Σ−1
ψ ⊗ V

−1 .

Fitting Having selected the basis and covariance functions, we proceed to fit the

emulator. We begin by dividing our data into three; we randomly choose 15000

March 22, 2018

2.6. Example: Ocean simulator 69

Name Range Description

a1 = Cdiss [1.7,2.5] Whitecapping induced dissipation

a2 = Ddiss [0.3,0.8] Whitecapping induced dissipation

a3 = Kn [1,5] Roughness size (metres)

a4 = %current [0,3] Surface current velocity (as a percentage of 10m wind speed)

a5 = Triad [0,1] Triad interactions (on/off)

Table 2.2: Elements of a

points for an initial linear regression, in order to fix our prior specification for the

regression weights, and we set aside 500 points which will be used to check our model

predictions at each stage. We then randomly choose a set of 3000 points which will

be used to fit the emulator.

First, we determine our prior moments for the regression parameters by carrying

out a linear regression (in the absence of the residual term) using the 15000-point

dataset. The moments E [βip] gp (θk) that we obtain for each of the 5 outputs are

plotted in Figure 2.5 against the true simulator values for the validation set of 500

points; we see that in this problem, the regression surface alone does a good job of

capturing the structure in the response.

We then use this initial regression surface to estimate the marginal residual covari-

ance structure across the different outputs. We compute the fitted values F̂ik =

E [βip]Gpk for this regression surface, and compute the residuals R̂ik = Fik− F̂ik; we

then fix the marginal covariance matrix of the residual to V = V̂ , where

V̂ij = sisjCorr
[
R̂i, R̂j

]
where the empirical marginal standard deviations are

s = (0.5785, 1.0396, 0.7380, 0.4152, 0.1794)T

March 22, 2018

2.6. Example: Ocean simulator 70

and the empirical residual correlation matrix is

Corr
[
R̂i, R̂j

]
=

1.0000 0.9444 0.7592 0.9179 −0.0653

0.9444 1.0000 0.7379 0.8926 0.2609

0.7592 0.7379 1.0000 0.8862 −0.0080

0.9179 0.8926 0.8862 1.0000 0.0052

−0.0653 0.2609 −0.0080 0.0052 1.0000

.

Outputs f1 (.) to f4 (.) are all quantities that we would expect to be high for the

most severe storms, and so we would expect such a high degree of correlation between

them.

Having fixed the regression prior and the inter-output covariance, it only remains

for us to fix the correlation lengths of the residual process; this is done using a

leave-one-out cross validation procedure. Under this procedure, each point is left

out of the fitting data set in turn, and the fit to the remainder of the data is

used to predict the value of the excluded point; the quality of the fit for a particular

setting of the correlation lengths is then evaluated using the sum of the log-Gaussian

likelihoods for each of the predictions. To speed up this procedure, we treat the

regression parameters as fixed for the purposes of the cross-validation and determine

the correlation lengths through fitting to the residuals from the mean regression

surface. This allows us to use the algebraic expressions for the predictive means and

variances under the leave-one-out procedure presented in Rasmussen and Williams

[2006] (Chapter 5), meaning that we must only invert the data covariance matrix

once in order to be able to make predictions for each individual point given the rest.

A Latin hypercube of 1500 different correlation settings is searched, the correlation

parameters are fixed at the setting which minimises the likelihood criterion over

this collection, and the regression and residual surfaces are jointly updated at this

setting, as described in Section 2.2.2.

Figure 2.6 contains plots of the fitted emulator. Figure 2.6(a) shows predictions from

the emulator (vertical axis) against the true simulator output value for each of the

5 outputs for the set of 500 validation points set aside earlier. Figure 2.6(b) shows

the corresponding standardised residuals against the true simulator output value.

In all windows, the colour of the point corresponds to the platform it was generated

March 22, 2018

2.6. Example: Ocean simulator 71

6 8 10 12

Hm0-p-eq

5

6

7

8

9

10

11

12

E
[

ik
]g

k(x
)

10 15 20

Hmp-For78

8

10

12

14

16

18

20

22

E
[

ik
]g

k(x
)

8 10 12 14 16 18

Tpwmean

8

10

12

14

16

18

E
[

ik
]g

k(x
)

7 8 9 10 11 12

T02wmean

7

8

9

10

11

12

E
[

ik
]g

k(x
)

2.5 3 3.5 4 4.5

sigma-eq

2.5

3

3.5

4

4.5

E
[

ik
]g

k(x
)

Figure 2.5: Plot of the initial regression fit to the ocean simulator data (Section

2.6.2): in each window, the true simulator output Fik is on the horizontal axis, and

the mean prediction E [βipgp (θk)] from the regression model is on the vertical axis.

The points are coloured according to the platforms to which they correspond.

at. Overall, this relatively simple emulator is able to capture a large amount of the

structure in the data.

2.6.3 System model

Having fitted an emulator to the ocean simulator, we use a set of observations of

real ocean properties to link the simulator to the system, as described in Section

2.4.2. A total of 4182 data points are available from the platforms for which our

emulator is fitted, for a variety of different wind fields. Our emulator for the ocean

simulator was fitted to data for only a limited range of input conditions, and so we

first screen the data to find only those real storms which lie within the range where

we expect reasonable performance from this model; after screening, we find that

only 1095 measurements remain.

March 22, 2018

2.6. Example: Ocean simulator 72

(a)

(b)

Figure 2.6: Plots of the full emulator fit to the ocean wave simulator (Sec-

tion 2.6.2): Figure 2.6(a) shows the mean predictions EF [fi (θ)] and error bars

EF [fi (θ)] ± 3VarF [fi (θ)] 1/2 generated from the fitted emulator (vertical axis)

against the true simulator output (horizontal axis) for the validation set of 500

points; Figure 2.6(b) shows the corresponding standardised residuals. Again, the

colour of the bars represents the platform to which the prediction corresponds.

March 22, 2018

2.6. Example: Ocean simulator 73

For the basis and covariance functions, we choose the same specifications as when

fitting the emulator (Section 5.3.2), dropping any dependence on the a. We fix

the simulator parameters a to the setting a∗ = {1.92, 0.391, 2.52, 2.49, 0}, since this

setting is believed by the model developers to give an acceptable match to the

system. To fit the model, we use the same procedure as for the emulator. First, we

split the data, and we use a sample of 250 points to carry out an initial regression,

to fix the prior moments of the coefficients; the data for this regression are obtained

by subtracting the mean of the emulator from the system measurements. Having

fixed E
[
β(δ)
]

and Var
[
β(δ)
]

, we compute the residuals for the regression fit, and fix

the marginal covariance of the residual process to the empirical covariance matrix

of the residuals. We have Cov
[
r

(δ)
i (b) , r

(δ)
j (b)

]
= V̂ij

V̂ij = sisjCorr [Ri, Rj]

where this time, the empirical residual standard deviations are

s = (0.6944, 1.2361, 0.7539, 0.4414, 0.1937)T

and the empirical residual correlation matrix is

Corr [Ri, Rj] =

1.0000 0.9778 0.8057 0.9231 −0.0995

0.9778 1.0000 0.8108 0.9113 0.1049

0.8057 0.8108 1.0000 0.8702 −0.0032

0.9231 0.9113 0.8702 1.0000 −0.0745

−0.0995 0.1049 −0.0032 −0.0745 1.0000

.

We see that the residual process for the discrepancy has much the same marginal

structure as that of the emulator.

Having fixed the regression prior and the marginal covariance of the residual process,

we use the data to estimate the parameters of the correlation function. We employ

the same procedure as in the fitting of the emulator. We temporarily fix the emulator

and the prior regression surface to their respective mean levels, and for the sample

of 795 points which we are using to update the emulator, we subtract these from

the measured values; we then carry out the numerical leave-one-out cross validation

procedure for the resulting sample of residuals. Treating the emulator and prior

March 22, 2018

2.6. Example: Ocean simulator 74

regression surfaces as fixed allows us to temporarily ignore the interactions between

these and the residual when approximately determining the correlation parameters,

allowing us access to the fast expressions for the predictive mean of each individual

point, given the remainder (Rasmussen and Williams [2006], Chapter 5).

We run the cross-validation procedure for a Latin hypercube of 1500 different corre-

lation parameter settings, using the log-Gaussian predictive likelihood as a criterion

for comparing different settings; we choose the setting which minimises this criterion,

and then jointly update the emulator and the discrepancy model here, as described

at 2.4.2. Figure 2.7 demonstrates the update procedure for the discrepancy model.

Figure 2.7(a) compares predictions from the emulator for the simulator values (ver-

tical axis) with the true measured value (horizontal axis) for a validation set of 50

points; we see that the predictions for the ocean model tend to be over-estimates of

the measured system value, particularly for low values of the first four output com-

ponents. Figure 2.7(b) then compares the predictions from the full system model

(emulator and discrepancy, jointly updated; vertical axis) with the true measured

values (horizontal axis) for the same set of 50 points. We see that including the

discrepancy in the model and using the system data to learn about it has the effect

of improving the quality of our uncertainty specification for the system at points

where we have not yet measured the system.

2.6.4 Discussion

In this section, we considered an application of the uncertainty analysis methodol-

ogy presented in Sections 2.3.1 and 2.4.2 to a particular example, where we must

predict the properties of storms from knowledge of certain atmospheric information.

An expensive ocean simulator is first emulated as a function of some storm covari-

ates and simulator calibration parameters, and then a model for the discrepancy is

posed and updated (jointly with the emulator) using observations of real storms, at

a particular, fixed setting of the hindcast calibration parameters.

A few different issues presented themselves during this work, which could be the

focus of future work on this problem. First, it was necessary to simplify our treat-

ment of our uncertainty about the hindcast calibration parameters a because, for

March 22, 2018

2.6. Example: Ocean simulator 75

4 6 8 10

Z Hm0-p-eq

3

4

5

6

7

8

9

10

11

E
[f

* i(b
)]

 +
/-

 3
V

ar
[f

* i(b
)]

1/
2

5 10 15

Z Hmp-For78

4

6

8

10

12

14

16

E
[f

* i(b
)]

 +
/-

 3
V

ar
[f

* i(b
)]

1/
2

6 8 10 12 14

Z Tpwmean

6

8

10

12

14

E
[f

* i(b
)]

 +
/-

 3
V

ar
[f

* i(b
)]

1/
2

5 6 7 8 9 10

Z T02wmean

5

6

7

8

9

10

E
[f

* i(b
)]

 +
/-

 3
V

ar
[f

* i(b
)]

1/
2

3 3.5 4 4.5

Z sigma-eq

3

3.5

4

4.5

E
[f

* i(b
)]

 +
/-

 3
V

ar
[f

* i(b
)]

1/
2

(a)

4 6 8 10

Z Hm0-p-eq

3

4

5

6

7

8

9

10

11

E
[y

i(b
)]

 +
/-

 3
V

ar
[y

i(b
)]

1/
2

5 10 15

Z Hmp-For78

4

6

8

10

12

14

16

E
[y

i(b
)]

 +
/-

 3
V

ar
[y

i(b
)]

1/
2

6 8 10 12 14

Z Tpwmean

6

8

10

12

14
E

[y
i(b

)]
 +

/-
 3

V
ar

[y
i(b

)]
1/

2

5 6 7 8 9 10

Z T02wmean

5

6

7

8

9

10

E
[y

i(b
)]

 +
/-

 3
V

ar
[y

i(b
)]

1/
2

3 3.5 4 4.5

Z sigma-eq

3

3.5

4

4.5

E
[y

i(b
)]

 +
/-

 3
V

ar
[y

i(b
)]

1/
2

(b)

Figure 2.7: Updating the discrepancy model: Figure 2.7(a) shows the mean pre-

dictions E
[
f̂i (b)

]
(markers) and error bars E

[
f̂i (b)

]
± 3Var

[
f̂i (b)

]
1/2 (dashed

lines) under the emulator (vertical axis) against the true measured values zik (hor-

izontal axis); Figure 2.7(b) shows the mean predictions E [yi (b)] and error bars

E [yi (b)] ± 3Var [yi (b)] 1/2 for the system (vertical axis) against the measured val-

ues (horizontal values) after joint updating of the emulator and the discrepancy as

described at 2.4.2. As in Figures 2.5 and 2.6, the colours correspond to the platform.

March 22, 2018

2.6. Example: Ocean simulator 76

operational reasons, we were unable to perform future runs on the hindcast having

carried out an initial wave of analysis, meaning that a history match (Section 2.4.4)

was not possible. If further access to the hindcast was possible in the future, then

we could re-focus our emulators on regions of the parameter space which give an ac-

ceptable match to the system data, reducing our uncertainty about the simulator in

these regions. We could then propagate our uncertainty about these inputs through

the emulator by sampling values within our non-implausible space.

March 22, 2018

Chapter 3

Bayesian optimal design

Models are sometimes developed because they are interesting in their own right, but

often, they are developed in order to inform decisions which must be made about the

systems that they represent. When faced with a decision about a complex system,

Bayesian decision analysis provides us with a general framework in which we can

specify all of the possible decisions that we might make, and their consequences un-

der different realisations of the system, before using this information, in conjunction

with our inferences about the system, to compare the quality of different decisions

against each other.

Once we have specified both a model and a decision problem, there will typically be

parameters in our model which we must specify before we can perform an experi-

ment, collect data and perform an inference. This provides us with the opportunity

to tune our collection of data on the system in order to increase the likelihood of

being able to make a good decision once we have obtained data and computed our

posterior beliefs. This is a problem in Bayesian optimal design for which we will

develop methods in this chapter.

In Section 3.1, we consider a general Bayesian decision analysis, and discuss some

of the computational complexities that the relatively simple written form of the

calculations can mask; then in Section 3.2, we consider the design calculations that

arise from this decision calculation, and discuss some of the additional computa-

tional issues encountered and simple diagnostics that can be used. In Section 3.3,

the decision and design frameworks are extended to the situation in which multiple

77

3.1. Making decisions 78

different experiments are available to us in stages, and at each stage, we must choose

whether to stop and make an immediate decision, or to continue sampling in the

hope that our knowledge about the system will improve so that we may make better

decisions in the future.

In Section 3.4, we develop an approximation procedure for the numerical calcula-

tions which draws on some of the analyses discussed in the previous chapter; this

framework is designed so as to allow us to track the uncertainty on the individual

numerical calculations through the entire problem, to allow us to assess our degree

of confidence in the decisions that we make. We illustrate the procedure as it is

presented through application to a simple problem, and we go on to consider a more

complex application in Section 4.

3.1 Making decisions

Suppose that, after careful consideration, all stakeholders in a given problem have

agreed that they wish to make decisions a ∈ A about a system which is described by

the parameter vector q ∈ Q, and have also specified that the consequences of these

decisions under any possible state of the system are described by the loss function

L (a, q) : A × Q → R. Consequences of a particular decision/parameter combina-

tion can also be expressed in terms of a utility function U(a, q) = −L (a, q) , but we

choose to work in terms of losses for the remainder of this thesis.

Then, if beliefs about the parameters are described by probability distribution

p (q|φ) , given conditioning parameters φ which determine the characteristics of the

distribution, the optimal decisions are those which minimise the expected loss

a∗(φ) = arg min
a

∫
Q

L (a, q) p (q|φ) dq

or equivalently, if we were to formulate the problem in terms of utility

a∗(φ) = arg max
a

∫
Q

U(a, q)p (q|φ) dq .

Assuming that we will always choose to make the optimal decision, we also define

the risk from an optimal decision as

ρ [φ] = min
a

∫
Q

L (a, q) p (q|φ) dq . (3.1.1)

March 22, 2018

3.1. Making decisions 79

These calculations are completely general, and extremely simple to express. How-

ever, for general posterior distributions and loss functions, it can be very difficult to

compute a∗, and by extension, ρ [φ] . The integral in (3.1.1) can only be computed

exactly for certain combinations of distribution and loss, and even if this integral

can be computed, it is generally not the case that we can perform the optimisation

over decisions analytically. Some common, simple cases in which we can compute

the optimal decision and the corresponding risk are presented in Section 3.1.1; if

we don’t wish to operate under these highly restrictive conditions, however, then

we must resort to numerical evaluation of the integral and numerical optimisation

routines.

3.1.1 Loss functions

We consider some particular loss functions which are widely applied in the litera-

ture. These are generally popular for one (or both) of two reasons: either they give

rise to a particularly simple form for the risk (under particular/general choices of

distribution), or the decisions and losses that they describe are meaningful in a wide

variety of problems.

Quadratic loss For a vector of parameters q = (q1, . . . , qnq)
T, the weighted

quadratic loss is defined as [Chaloner and Verdinelli, 1995]

L (a, q) = (q − a)TW (q) (q − a)

where W (q) is a symmetric, positive-definite weight matrix. If we differentiate the

integral in the risk (3.1.1) with respect to a and set to zero, we find that

W̄a∗ =

∫
Q

(W (q) q) p (q|φ) dq

where W̄ = E [W (q) |φ] is the expectation of the weight matrix over q; the optimal

decision is therefore

a∗ = W̄−1E [W (q) q|φ] .

If we substitute this optimal action back into the expression for the risk, we obtain

ρ [φ] = E
[
qTW (q) q|φ

]
− E [W (q) q|φ] TW̄−1E [W (q) q|φ] .

March 22, 2018

3.1. Making decisions 80

If the elements of the weighting matrix are polynomial functions of the model pa-

rameters, then this risk can be evaluated in closed form using the moments of the

distribution p (q|φ) .

n-way table For a scalar parameter q, we can also assume a loss function of the

form given in table 3.1; we divide the parameter space Q into disjoint segments

divided by limits tj, j = 1, . . . ,m, and when the value of q falls within segment j =

0, . . . ,m, the consequences of choosing action ai from a discrete set A = {a1, . . . , an}

are given by the scalar Cij.

Under this loss function, the integral in (3.1.1) can be evaluated easily if the form

of the cumulative distribution is known, or if it is simple to evaluate numerically;

we have that

ρ [φ] = min
ai

[
Ci0P (q ≤ t1|φ) +

m−1∑
j=1

CijP (tj ≤ q < tj+1|φ) + CimP (tm ≤ q|φ)
]

(3.1.2)

where

P (tl ≤ q < tr|φ) =

∫ tr

tl

p (q|φ) dq .

There is no general method for optimising the expression (3.1.2) over actions ai;

however, even for a large number of decisions, this discrete optimisation problem is

simple in comparison to the continuous optimisation problem which we must solve

numerically for general problems with continuous decision spaces. The fact that we

must only specify a discrete set of decisions and corresponding consequences may

also make the parameters of this problem simple to elicit from an expert.

If we are using a complex loss function or a complex probability distribution and

we find that the computational effort required to evaluate the integral or the opti-

misation in the risk calculation (3.1.1) is too great, then the loss function in table

3.1 can also be used as the basis for an approximation strategy. If we impose a

grid in (a, q)-space and approximate the loss function as constant in each cell, then

we can compute the expected loss as above; this only requires us to repeatedly

evaluate the CDF of the distribution, something which is simple for a fairly wide

class of distributions. In doing this, we have replaced the continuous optimisation

problem with a much simpler discrete one. A similar approximation can be used

March 22, 2018

3.1. Making decisions 81

L (a, q) q ≤ t1 t1 ≤ q < t2 · · · tm ≤ q

a1 C10 C11 · · · C1m

a2 C20 C21 · · · C2m

...
...

...
...

an Cn0 Cn1 · · · Cnm

Table 3.1: n-way table loss function (see Section 3.1.1).

for multi-dimensional decision problems, though achieving a good approximation

through gridding is harder in higher-dimensional spaces.

3.1.2 Risk under a Bayes linear model

If we do not wish to make a full probabilistic specification for the quantities in a

given problem, we may instead choose to make a second-order specification and

perform a Bayes linear analysis (as described in chapter 2.1.2); in this instance we

do not automatically have access to a probability distribution for q with which to

evaluate the integral (3.1.1).

For problems in which the loss function only contains linear and quadratic terms,

then we can simply compute the expectation of the loss function directly using our

second-order specification; however, in problems where the loss function depends

on parameter moments of higher orders or other non-linear terms, then we must

specify the higher order moments of the parameters in order to be able to evaluate

the expected loss. If information about the form of the higher order moments exists

(for example, from Bayes linear variance learning: see Goldstein and Wooff [2007],

Chapter 8), then this can be incorporated; a more common strategy is simply to

assume a probability distribution with first and second moments which match the

Bayes linear specification, and then use this to evaluate (3.1.1).

If we use the weighted quadratic loss (Section 3.1.1) with a constant weight matrix,

then we may evaluate the risk exactly using only the first- and second-order moments

from the Bayes linear specification; for higher-order polynomials, we must specify

at least those moments which are needed to evaluate the expectations of the higher-

March 22, 2018

3.2. Design calculations 82

order terms, based on the Bayes linear specification. If, however, we use the n-way

table, we must specify a probability distribution using our second-order moments in

order to be able to evaluate the expression for the risk.

3.2 Design calculations

In many problems, while we may not observe q directly, we may perform an exper-

iment whose outcome depends on its value, and then use Bayes theorem to update

beliefs about q before making decisions about its value. We therefore sub-divide

the conditioning set φ of the general probability distribution p (q|φ) to reflect the

experiment that we will perform in order to learn about the parameters. Following

Raiffa and Schlaifer [1961], we subdivide the conditioning set as φ = {z, w, d}, where

� d = {d1, . . . , dnd} is a set of design inputs which must be selected before

an experiment can be carried out. For example, in simple cases, d may be an

input that specifies which of a discrete number of experiments we will perform,

whereas in more complex ones, it may be a set of continuous parameters which

govern the location or time at which a measurement is made;

� w = {w1, . . . , wnw} is a set of external or environmental inputs which

affect the likely outcomes of the experiment in a way determined by the sys-

tem model, but which cannot be fully controlled- though the choice of design

parameters may alter their distribution p (w|d) ;

� z = {z1, . . . , znz} are the observations that are to be collected on the system,

which we will use to learn about the parameters q. In order for the experiment

to be a useful one, our model must specify that the distribution of the data is

a non-trivial function of q.

within a probabilistic framework, before we carry out an experiment, we specify our

prior beliefs p (q) about the parameters (we assume that these are independent of

{w, d}) and we specify a model p (z|q, w, d) which describes the distribution of the

data z for given q, w and d. We then carry out the experiment and observe z, at

March 22, 2018

3.2. Design calculations 83

which point we can compute our updated beliefs about q in the light of this data

using Bayes theorem

p (q|z, w, d) =
p (z|q, w, d) p (q)

p (z|w, d)
.

We then make decisions about q based on our posterior beliefs about the value of q

using equation (3.1.1)

ρ [z, w, d] = min
a

∫
Q

L (a, q) p (q|z, w, d) dq . (3.2.3)

We have control over the value of d at which we carry out the experiment, and

through the dependency of p (w|d) on d, we have some control over the value of w

which we are likely to get; it is therefore natural to ask how d might be chosen so

as to minimise the risk from experimentation. We must also take into account that

different experiments are likely to have different costs c (d) (also in utility units).

This is the design question.

To answer it, we must first take account of the fact that we do not know the value

of the data or the environmental parameters before we carry out the experiment; we

do this by computing the expectation of the risk over the conditional distributions

of both to obtain

ρ̄ [d] =

∫∫
ρ [z, w, d] p (z|w, d) p (w|d) dzdw . (3.2.4)

We now optimise this to find the design with the lowest risk

d∗ = arg min
d

[
ρ̄ [d] + c (d)

]
where the corresponding risk is denoted by ρ∗ = ρ̄ [d∗] + c (d∗) .

3.2.1 Implementation issues

While it is simple to describe the steps of the optimal design calculation in the

general case, when implementing such an analysis in practice, all of the usual com-

putational difficulties associated with a fully Bayesian analysis are magnified.

Computing the risk (3.2.3) from an optimal terminal decision requires us first to

perform an integral involving the posterior distribution and loss function; unless we

March 22, 2018

3.2. Design calculations 84

are willing to assume conjugate forms for the prior distribution and the likelihood

for q, leading to a known form for the posterior, and to assume a simple, tractable

form for the loss function, such as those discussed in 3.1.1, then we will instantly

run into problems. If we are not willing to specify such simple forms, then we must

resort to numerical methods (e.g. MCMC) to evaluate the integral, and to numerical

optimisation routines to find the optimal decision; this is already a large computa-

tional burden, since in general, the integral must be evaluated numerically for each

proposed setting of a.

Even making conjugacy assumptions and choosing a simple loss will not generally

save us from tractability issues when we come to consider the next stage of the cal-

culation; we must compute the expectation of the risk (which we may only evaluate

numerically, possibly at great expense) over the distribution of the data for given

design and environmental parameters, and then over the distribution of the envi-

ronmental parameters given the design. If the posterior p (q|z, w, d) is complex, it

is usually as a result of choosing a non-conjugate, potentially non-linear conditional

distribution p (z|q, w, d) for the data, and so computing the expectation of the risk

over the data is likely to be an even more difficult computational challenge than

those encountered so far, and the expectation over the environmental parameters is

just the icing on an already very hard-to-swallow cake. It is clear, therefore, that

an approximation procedure is going to be necessary for problems of this type.

There is a well-developed literature considering design problems. Raiffa and Schlaifer

[1961] is an excellent early piece of work in this area; they present a rich variety of

worked examples, restricting themselves to loss functions and distributions which

give closed-form risks (in some cases after considerable analytical effort). Chaloner

and Verdinelli [1995] also review some linear and simple non-linear design problems,

again restricting consideration to problems in which we can derive a closed-form

expression for the risk, or for an approximation to the risk. Simulation-based ap-

proaches to identifying optimal designs and evaluating the corresponding risk are

considered by a number of authors: for example, Clyde et al. [1996] and Muller

[1998] adopt an MCMC approach, defining a ‘dummy’ probability distribution based

on the risk and exploring the design space stochastically, and Huan and Marzouk

March 22, 2018

3.2. Design calculations 85

[2013] develop a framework which uses polynomial chaos expansions as surrogates

for highly non-linear models and adopts a stochastic approximation approach to the

design calculations themselves.

3.2.2 Value of information

In order for risks such as those in equations (3.2.3) and (3.2.4) to have meaning,

they must be placed in the context of other costs associated with the problem at

hand: if we perform this calculation and find an optimal design with a risk of 13.2,

is this a good or a bad thing? In order to answer this question, there are a number

of quantities that we may compute.

Value of sample information We can define a measure of how much we have

gained by performing a given experiment by considering the difference between the

risk from acting optimally under the prior and the risk from the decision which turns

out to be optimal after the experiment. Define

a0 = arg min
a∈A

∫
L (a, q) p (q) dq

as the optimal action under the prior distribution. Then, the conditional value of

sample information (CVSI; Raiffa and Schlaifer [1961]) for an experiment parametrized

by d, which results in environmental parameters w and data z is

v (z, w, d) = min
a∈A

∫ [
L (a0, q) − L (a, q)

]
p (q|z, w, d) dq .

For a given experimental design, we can then compute the expected value of sample

information

v (d) =

∫∫
v (z, w, d) p (z|w, d) p (w|d) dzdw .

The value of a design d is then v (d) − c (d) - the expected reduction in the risk that

is obtained by sampling, minus the cost of performing the experiment at d.

Value of perfect information In a similar way, we can compute an upper bound

on the value of any experiment by considering the theoretical experiment which gives

March 22, 2018

3.2. Design calculations 86

us perfect information about the model parameters q. If q is known exactly, then

we can find the optimal decision in any given situation

a∗(q) = arg min
a∈A

L (a, q) .

The conditional value of perfect information is then the difference between the loss

incurred by making the ideal decision and that incurred by making the optimal

decision under the prior distribution [Raiffa and Schlaifer, 1961] for a particular

value of q

w (q) = L (a0, q) − L (a∗(q), q) .

The expected value of perfect information is then the expectation of this conditional

value over our prior beliefs about q

w∗ = min
a∈A

∫ [
L (a0, q) − L (a∗(q), q)

]
p (q) .

The EVPI w∗ tells us the value of an experiment in which we would learn the value

of q exactly; therefore, there is no real experiment for which we could achieve a lower

risk. We can use this value to perform a simple screening of potential experiments.

If we find that

c (d) ≥ w∗

for an experiment parametrised by d, then we know without further analysis that

the experiment is not worth performing, since the reduction in risk from carrying

out the experiment can never be great enough to offset the cost of experimentation.

3.2.3 Simple example

We perform the design calculations for a linear model in order to demonstrate some

of the difficulties that we will encounter in even simple examples; each data point

is assumed to be the sum of a linear combination of basis functions (with unknown

weights) and an error term

zj = g (wj, dj)
Tq + εj

where g (wj, dj) = (g1 (wj, dj) , . . . , gnq (wj, dj))T is a vector of known functions, and

q = (q1, . . . , qnq)
T is the vector of parameters about which we wish to learn. For the

March 22, 2018

3.2. Design calculations 87

full data vector, our model is

z = G (w, d) q + ε

where G (w, d) =
(
g (w1, d1) , . . . , g

(
wnz , dnz

))
T is the usual regression design ma-

trix and ε = (ε1, . . . , εnz)
T is the corresponding vector of errors. We make a Gaussian

specification for both the prior p (q) and the error distribution

q ∼ N (µq, Vq) ε ∼ N
(

0,
1

λε
I

)
.

Making a Gaussian specification for the prior and the error structure ensures that

all of relevant predictive, marginal and posterior distributions are also Gaussian; for

our design calculations, we require the marginal distribution of the data p (z|w, d) ,

which is simply

z|w, d ∼ N (µz (w, d) , Vz (w, d))

where

µz (w, d) = G (w, d)µq Vz (w, d) = G (w, d)VqG (w, d) T +
1

λε
I .

After observation of the data, our posterior beliefs about the parameters are sum-

marised by another Gaussian distribution

q|z, w, d ∼ N
(
µ̂q (z, w, d) , V̂q (w, d)

)
where the parameters are

V̂q (w, d) =
[
Vq
−1 + λεG (w, d) TG (w, d)

]−1
(3.2.5)

µ̂q (z, w, d) = V̂q (w, d)
[
Vq
−1µq + λεG (w, d) Tz

]
.

Let us now assume that our decision problem is specified through a weighted quadratic

loss function (see Section 3.1.1), with constant, symmetric, positive-definite weight

matrix W ; the resulting risk under the posterior is then [Chaloner and Verdinelli,

1995]

ρ [z, w, d] = ρ [w, d] = tr
(
WV̂q (w, d)

)
.

The risk does not depend on the observed values of the data in this case, owing to the

fact that the posterior variance also does not depend on z. Even with this property,

March 22, 2018

3.2. Design calculations 88

deriving a closed-form expression for this risk will be difficult for high-dimensional

parameter vectors, since we must invert a dense matrix ((3.2.5)) which is a function

of both the design and environmental inputs in order to do so.

Specific example To bypass some of the numerical difficulties presented by even

this problem, we consider the problem in which the data does not depend on any

environmental parameters w, in which our basis vector is

g (dj) =

 1

(1 + dj)(1− dj)

and our prior covariance matrix for the parameters q is Vq = Diag (1/λq1 , 1/λq2) .

Using this vector of regressors, the resulting posterior variance is

V̂q (d) =
1

Dq (d)

λq2 + λε
∑

j(1 + dj)
2(1− dj)2 −λε

∑
j(1 + dj)(1− dj)

−λε
∑

j(1 + dj)(1− dj) λq1 + λεnz

where Dq (d) is the determinant of the inverse matrix

Dq (d) = (λq1+λεnz)

(
λq2 + λε

∑
j

(1 + dj)
2(1− dj)2

)
−

(
λε
∑
j

(1 + dj)(1− dj)

)2

.

From this, we can obtain an expression for the risk by multiplying by the weight

matrix W and taking the trace.

Removing any dependence on the environmental parameters and assuming a form

for the loss which results in a data-independent risk turns computing the expecta-

tion of the risk over these two components into a triviality; we can see through the

resulting non-linear dependence of the risk on d though that such expectations could

not have been computed analytically anyway. Even after simplifying our problem

to allow us to progress this far, we arrive in a situation where we must resort to

numerical optimisation techniques in order to find the optimal design and the cor-

responding risk.

Figure 3.1 shows the risk function plotted at different values of various parameters;

all plots are generated for W = I. Figure 3.1(a) shows the risk ρ [d1] for an ex-

periment where we make only a single observation z1; the different coloured lines

correspond to different settings of the prior variance Var [q2] of the second model

March 22, 2018

3.3. Sequential design calculations 89

parameter. Because of the symmetry of both g (.) in their input arguments, our

minimum risk either lies in the centre of the input domain (d1 = 0) or at its edges

(d1 = 1 or d1 = −1). Figure 3.1(b) shows the same risk function, but with the

different colours representing different values of Var [ε] . Figure 3.1(c) shows the be-

haviour of the risk as we acquire observations z1, . . . , z50 incrementally, calculating

the risk after each data point is acquired; the different colours correspond to differ-

ent space-filling samples of d = {d1, . . . , d50}. We see that the decrease in the risk

as we acquire the first few observations is relatively sharp, with the rate of decrease

slowing as each data point makes less of a difference to our state of knowledge about

q.

3.3 Sequential design calculations

In many real-world data collection problems, we have the option to perform multi-

ple experiments to learn about the same set of parameters. An obvious benefit of

performing multiple experiments in any case is that each will decrease our uncer-

tainty about the parameter values, though this benefit must be offset against the

costs of performing the experiments. In the case where the experiments are to be

performed in sequence, the results of the experiments which we have performed so

far will be available to us at the point where we must decide whether to commission

further sampling; in this situation, we can design the next experiment against our

posterior beliefs given the data obtained so far, enabling us to maximise the value

of the information that we will collect in the future.

Consider the following example: we are collecting observations of the atmospheric

concentration of a particular gas species in order to infer the locations and emission

rates of gas sources in a given region. Before any data has been observed, we be-

lieve that sources are equally likely to be anywhere in the region. Suppose that we

make a first set of concentration observations, and we consider the effect of these

observations on our beliefs; we find that there is an elevated concentration in mea-

surements made when the wind is blowing from a particular arc of directions. If

we now have the opportunity to re-locate our measuring equipment, then we may

March 22, 2018

3.3. Sequential design calculations 90

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

4

4.5

d
1

ρ[
d 1]

Var[t
2
]1/2 = 0.01

Var[t
2
]1/2 = 2.00

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

d
1

ρ[
d 1]

Var[e]1/2 = 0.01

Var[e]1/2 = 1.00

(b)

0 5 10 15 20 25 30 35 40 45 50
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

n
z

ρ[
n z]

(c)

Figure 3.1: Plots of the risk function from Section 3.2.3 for different parameter

settings: Figure 3.1(a) shows ρ [d1] for a single observation, with the colour scale

varying over Var [q2] ; Figure 3.1(b) shows the same risk, with the colours represent-

ing different settings of Var [ε] . Figure 3.1(c) shows the change in the risk as we

incrementally acquire data z1, . . . , z50; the different coloured lines represent different

space-filling choices of d.

March 22, 2018

3.3. Sequential design calculations 91

use the information that we have already obtained to help select a location; if the

signal in the data seems to be coming from a particular part of the domain, then

moving the sensors downwind of this region may improve the information content of

the data that we collect in the future, and potentially allow us to more accurately

determine the locations and emission rates of sources.

While re-designing after data has been observed in this way has potential benefits,

it also presents a large computational challenge when applied to a general problem.

When selecting design parameters at early stages of the problem, we need to con-

sider the effects of our design choices now on the value of the information that we

might collect in the future, making this problem exponentially more complex than

the single-experiment design problem outlined in Section 3.2. In the remainder of

this section, we outline the calculations that we need to perform in order to find the

optimal sequential design; Section 3.3.1 introduces the problem and notation, and

Section 3.3.2 outlines the calculations that we need to perform in order to select

a design. In Section 3.3.3, we relate the computational burden of this calculation

to that of those that we have already encountered, and motivate the need for an

approximating framework.

3.3.1 Problem specification

We begin by introducing a notation and formally specifying the problem to be solved:

our treatment of the sequential problem follows that of DeGroot [1970]. We assume

that there is a sequence of n possible experiments that we can perform, which we

index by j, each of which allows us to collect data which is informative for q. We

specify our prior beliefs about q, and we assume that the forward model for each of

the experiments has been specified.

Before the observations from the jth experiment can be collected, a corresponding

set of design parameters must be specified; each set of observations has an associated

cost (possibly depending on the setting of the design parameters). After the obser-

vations have been collected, we have a choice: we may make an immediate decision,

based on our current belief state, which minimises our expected loss; alternatively,

we may choose to perform the (j + 1)th experiment (for which we must select a

March 22, 2018

3.3. Sequential design calculations 92

design), after which we will be faced with the same choice between an immediate

decision and further sampling. As in the non-sequential problem, we assume that

our beliefs about the data will be affected by a set of external parameters, which

will be unknown to us at the point at which we must select our design.

Our goal is to be able to determine, for any state that we find ourselves in, whether

it is optimal to take the next set of observations, or to make an immediate decision

based on our current beliefs. We introduce the following notation for the sequential

problem:

� We denote the data available from experiment j by zj = {zj1, . . . , zjnzj }, and

we denote the set of all data available up to and including experiment j by

z[j] = {z1, . . . , zj};

� We denote the external inputs which affect the jth experiment by wj = {wj1, . . . , wjnwj },

and the collection of all such parameters up to and including experiment j by

w[j] = {w1, . . . , wj};

� We denote the design inputs which control the jth experiment by dj = {dj1, . . . , djndj },

and the collection of all of these up to and including experiment j by d[j] =

{d1, . . . , dj};

� If making a decision immediately after experiment j, we must select actions

aj ∈ Aj, and the losses that we incur are described by the loss function

Lj (aj, q) . The optimal decision that we make immediately after experiment

j is denoted by a∗j ;

� The cost of choosing design setting dj for experiment j is given by the cost

function cj (dj) .

After having carried out the experiments 1, . . . , j, at design parameter settings d[j]

and under external inputs w[j], our posterior beliefs about the parameters q are

p
(
q|z[j], w[j], d[j]

)
=
p
(
z[j]|q, w[j], d[j]

)
p
(
q|w[j], d[j]

)
p
(
z[j]|w[j], d[j]

)
=
p
(
z[j]|q, w[j], d[j]

)
p (q)

p
(
z[j]|w[j], d[j]

)
March 22, 2018

3.3. Sequential design calculations 93

where, as in the single-experiment design problem, we assume that our prior be-

liefs about q do not depend on {w[j], d[j]}. In general, we assume that our beliefs

p
(
w[j]|d[j]

)
about the external parameters depend on the setting of the design in-

puts; we also assume that we do not use the data z[j] to learn about the external

parameters.

In this thesis, we consider only bounded sequential decision problems; that is, prob-

lems in which there is a maximum number n of experiments which can be performed.

We will see in Section 3.3.2 that we can develop an algorithm which computes the

risk from an optimal course of action for general bounded problems; due to the

lack of a final experiment at which to begin, we cannot develop such an algorithm

for general unbounded problems. It is, however, possible to find solutions for some

particular, simple, unbounded problems; see, for example, Berger [1985]. If an un-

bounded problem cannot be solved exactly, then it is usually approximated by a

bounded problem with a large number of stages, and the sensitivity to the number

of stages used in the approximation is assessed. For further discussion of unbounded

problems, see, for example, the books by Berger or DeGroot [1970].

3.3.2 Backward induction

We begin by considering whether the first set of observations should be taken (at

some design setting), or whether a decision should be taken immediately, based on

our prior beliefs. If these were the only observations that we could make, then we

would proceed as in Section 3.2 and evaluate the relative merits of obtaining the

data against taking an immediate decision. However, in the sequential problem,

after this initial experiment, we must make another choice: we must decide whether

to take a second set of observations, or whether to take a decision based on our

posterior beliefs given the first data-set. In order to solve the design problem for the

first experiment, then, we must know the risks from deciding to carry out a second

experiment for all possible outcomes of the first. By the same argument, we must

also know the risks from a third experiment for all possible outcomes of the second

in order to solve the design problem for the second, and so on.

This argument is used by DeGroot [1970] to motivate the development of an algo-

March 22, 2018

3.3. Sequential design calculations 94

rithm which starts from the last possible set of observations which we might make;

at this point, further sampling is not possible, and so we must make an immedi-

ate decision based on the data that we have obtained so far. From this point, we

sequentially perform single-experiment design calculations, as in Section 3.2, com-

paring the risk from an optimally designed future experimentation procedure with

the risk from an immediate decision based on the information available up to the

present time. If we choose to stop after experiment j and make an immediate de-

cision, then the resulting risk from an optimal decision (known as the risk from an

optimal terminal decision, or the terminal risk) is defined in the same way as in

equation (3.2.3)

ρtj
[
z[j], w[j], d[j]

]
= min

aj∈Aj

∫
L (aj, q) p

(
q|z[j], w[j], d[j]

)
dq . (3.3.6)

The backward induction algorithm uses these terminal risks to build a sequence of

risk functions ρj [.] which describe the risk as a function of all parameters {z[j], w[j], d[j]}

at the current stage under the assumption that we will act optimally at all points

in the future.

In what follows, ‘Stage j’ of the calculation refers to the point at which (j − 1)

experiments have been performed, and we must assess the value of the jth. At

stage n, the final stage, we perform the usual design calculations as a function of

{z[n−1], w[n−1], d[n−1]}:

� After the nth experiment, further samples are not possible, and so our overall

risk is the same at the terminal risk

ρn
[
z[n], w[n], d[n]

]
= ρtn

[
z[n], w[n], d[n]

]
.

� The data zn and the environmental parameter wn will be unknown at the point

where we must select dn, so we compute the expectation of the risk over these

parameters

ρ̄n
[
z[n−1], w[n−1], d[n]

]
=

∫∫
ρn
[
z[n], w[n], d[n]

]
p
(
zn|z[n−1], w[n], d[n]

)
× p

(
wn|w[n−1], d[n]

)
dzndwn . (3.3.7)

March 22, 2018

3.3. Sequential design calculations 95

� For given {z[n−1], w[n−1], d[n−1]}, we optimise this risk over dn in order to find

the risk from an optimally-designed experiment at the final stage, taking into

account the cost of the experiment

ρ∗n
[
z[n−1], w[n−1], d[n−1]

]
= min

dn∈Dn

[
ρ̄n
[
z[n−1], w[n−1], d[n]

]
+ cn (dn)

]
. (3.3.8)

Having identified the risk from an optimally-designed experiment at the final stage

as a function of the designs and observed quantities from the previous experiments,

we use the risk ρ∗n [.] to initialise the remainder of the algorithm, carrying out the

following steps for stages j = (n− 1), . . . , 1:

� After the jth experiment, we find the risk ρj from an optimal course of action

for any setting of {z[j], w[j], d[j]} by comparing the risk ρtj from an immediate

decision with the risk ρ∗j+1 from optimally-designed future sampling

ρj
[
z[j], w[j], d[j]

]
= min

[
ρtj
[
z[j], w[j], d[j]

]
, ρ∗j+1

[
z[j], w[j], d[j]

]]
. (3.3.9)

The risk ρ∗n from an optimally-designed experiment at the final stage is defined

in (3.3.8); for any other stage, the risk ρ∗j+1 is defined in (3.3.11).

� We compute the expectation ρ̄j of this risk over our beliefs about the observed

data zj and environmental parameters wj at this stage

ρ̄j
[
z[j−1], w[j−1], d[j]

]
=

∫∫
ρj
[
z[j], w[j], d[j]

]
p
(
zj|z[j−1], w[j], d[j]

)
× p

(
wj|w[j−1], d[j]

)
dzjdwj . (3.3.10)

� We find the optimal design d∗j for the jth experiment and the corresponding

risk ρ∗j as a function of the risk inputs {z[j−1], w[j−1], d[j−1]} from the previous

stages, taking into account the cost of running the experiment at a particular

dj

ρ∗j
[
z[j−1], w[j−1], d[j−1]

]
= min

dj∈Dj

[
ρ̄j
[
z[j−1], w[j−1], d[j]

]
+ cj (dj)

]
. (3.3.11)

Working backward through these steps, we eventually compute the risk ρ∗1 from an

optimally designed experiment at the first stage; this risk takes account of all possible

March 22, 2018

3.3. Sequential design calculations 96

future outcomes, assuming that we will always design and act optimally based on

the information currently available to us. At this point, we face our first real choice,

between performing the first experiment and making an immediate decision based

on our prior beliefs. Of course, we make this choice by comparing ρ∗1 with ρt0:

� if ρt0 ≤ ρ∗1, then the costs of collecting the data offset any benefit that we

might expect to gain from observing them; in this instance, it is optimal just

to make a decision a∗0 now based on our prior beliefs;

� if ρt0 > ρ∗1, then our analysis has concluded that it is worth performing the

first experiment at d∗1.

If we conclude that it is optimal to carry out at least the first experiment, then

we do so (at d∗1), collecting {z1, w1}. In the light of this new information, we now

assess whether it is optimal to make an immediate decision at this point, or whether

we should perform the second experiment; we do this by comparing ρt1 [z1, w1, d
∗
1]

with ρ∗2 [z1, w1, d
∗
1] in the same way. We work forward through the experiments in

this way, deciding on the optimal course of action after experiment k by comparing

ρtk

[
z[k], w[k], d

∗
[k]

]
with ρ∗k+1

[
z[k], w[k], d

∗
[k]

]
, where d∗[k] = {d∗1, . . . , d∗k}.

The backward induction calculation is also presented as pseudo-code in algorithm

1. Note that if it is possible to compute all of the functions (3.3.6), (3.3.9), (3.3.10)

and (3.3.11) without resorting to numerical methods, then we only need to run the

algorithm once, as then after each experiment, we can simply substitute the observed

values {zk, wk} and the chosen design d∗k into the appropriate risk functions, and read

off the resulting d∗k+1, ρ∗k+1 and ρtk. However, as will be discussed in the following

section, this simple situation is extremely unlikely to occur.

3.3.3 The computational burden

It is clear from the form of the backward induction calculation that all of the

tractability issues encountered in the non-sequential problem will also be encoun-

tered in the sequential problem, but compounded by the recursive nature of the cal-

culation. As was the case for non-sequential problems, it is only for very carefully-

chosen priors, likelihoods and loss functions that we can even compute ρtn [.] in

March 22, 2018

3.4. Approximation of the backward induction calculation 97

closed-form; even in this situation, we are almost guaranteed to lose tractability at

some point during steps (3.3.7) or (3.3.8) at stage n, so comparing risk functions

ρtn−1 [.] and ρ∗n [.] point-wise as in (3.3.9) will not result in a closed-form expression.

If we want to perform this calculation, then, we are going to have to do it numer-

ically; however, it is easy to see how we might run into problems here too. Tradi-

tional numerical integration or optimisation techniques (for example, Gauss-Hermite

quadrature or the Nelder-Mead simplex algorithm) require us to evaluate the target

function at a specially-chosen sequence of points. Applying these methods naively

to this problem would result in the number of risk function evaluations required

increasing exponentially in the number of stages of the problem: the numerical op-

timisation over dj that would be required to evaluate ρ∗j [.] would require a separate

numerical integral to be performed to evaluate ρ̄j for each candidate setting of dj;

numerically evaluating ρ̄j in turn requires ρ∗j+1 to be evaluated for many different

values of {zj, wj}, which calls for for a numerical optimisation to be performed for

each such input setting, and so on. This approach would clearly be infeasible in

all but the simplest of problems. In Section 3.4, we review some of the ways in

which these calculations have been approximated in the past, before going on to

develop an approximation which uses Bayes linear emulators to track uncertainty in

the numerical calculations that we perform.

3.4 Approximation of the backward induction cal-

culation

Since it looks to be computationally infeasible to perform the calculations in al-

gorithm 1 using traditional numerical techniques, we must develop an alternative

means of approximation. An approach which uses second-order emulators would

seem to confer a number of advantages in this context:

� The risk functions ρj [.] are systematic functions of their inputs, and fitting

emulators allows us to exploit this structure in our numerical calculations; if we

were instead to use a traditional Monte-Carlo scheme for numerical evaluation,

March 22, 2018

3.4. Approximation of the backward induction calculation 98

Algorithm 1 Backward induction algorithm for sequential design problems

1: for k = 0, 1, . . . , (n− 1) do

2: for j = n, (n− 1), . . . , (k + 1) do

3: Compute the risk

4: if j = n then

ρn
[
z[n], w[n], d[n]

]
= ρtn

[
z[n], w[n], d[n]

]
5: else

ρj
[
z[j], w[j], d[j]

]
= min

[
ρtj
[
z[j], w[j], d[j]

]
, ρ∗j+1

[
z[j], w[j], d[j]

]]
6: end if

7: Compute the expected risk

ρ̄j
[
z[j−1], w[j−1], d[j]

]
=

∫∫
ρj
[
z[j], w[j], d[j]

]
p
(
zj|z[j−1], w[j], d[j]

)
× p

(
wj|w[j−1], d[j]

)
dzjdwj

8: Compute the optimal design, and corresponding risk:

ρ∗j
[
z[j−1], w[j−1], d[j−1]

]
= min

dj∈D

[
ρ̄j
[
z[j−1], w[j−1], d[j]

]
+ cj (dj)

]
9: end for

10: if ρtk ≤ ρ∗k+1 then

11: Cease sampling, and take immediate decision a∗k

12: else

13: Pay observation cost ck+1

(
d∗k+1

)
, and observe data {zk+1, wk+1} at d∗k+1.

14: end if

15: end for

March 22, 2018

3.4. Approximation of the backward induction calculation 99

we would throw away some of this structural information, potentially increas-

ing the computer time needed for the calculation (see the second objection in

O’Hagan [1987]);

� If we can emulate the risk as a function of its inputs, then we immediately

gain access to the tools developed for emulators in Section 2.3; in particular,

we can approximate the expectations that we are required to compute in line 7

of the algorithm by integrating the emulator directly, thereby translating our

inferences about the function itself directly into inferences about its expected

value;

� The global optimisation that we are required to perform in line 8 presents a

particular challenge, since standard numerical optimisation techniques are not

guaranteed to find a global minimum. We would also run into difficulty if

trying to use a Gaussian process to find the probability that any given input

setting is the minimum, since the resulting distribution is difficult to write

down, and even more difficult to work with (see Henning and Schuler [2012]).

Using a second-order emulator has the potential to make things easier; we

can develop a procedure similar to history matching which allows us to rule

out parts of the input space that are unlikely to be minima, and then try to

sequentially reduce the size of this space through further analysis.

The procedure that we propose in the coming sections approximates the risk at

each stage of the backward induction calculation using second-order emulators; we

then approximate each expected risk by integrating our emulator directly, and use

a simple sampling procedure to characterise our uncertainty about each risk at its

minimum. We run this procedure in waves, in a similar way to the history matching

procedure of Vernon et al. [2010]: at the first wave, we fit emulators that explore

the structure of the risk over the whole of the design space, and use these to rule out

designs which are unlikely to minimise the risk; then, at later waves, we re-fit our

emulators in those parts of the space which have not been ruled out, allowing us to

focus our efforts on modelling the risk in those regions which are most interesting.

As the volume of the design input domain for our emulator decreases, we can fit a

March 22, 2018

3.4. Approximation of the backward induction calculation 100

more accurate emulator within this region, giving us greater power to discriminate

between designs on the basis of their risks.

Previous work in this area includes that of Müller et al. [2007]; in their study, they

approximate the sequential design problem in relatively low-dimensional cases by

gridding the design space at each stage and explore this gridded space by using an

MCMC scheme which simulates from the priors. This approach works well in prob-

lems with a small number of design parameters which must be found, but quickly

becomes difficult when experiments depend on a large number of design inputs, or

where a large number of experimental stages are possible. Williamson and Goldstein

[2012] provide decision support for policy makers in a climate modelling problem by

using emulators to approximate the backward induction calculation which arises.

More recently, Huan and Marzouk [2016] cast the sequential optimal design problem

in a dynamic programming framework, and consider the relationship between the

full sequential design and simple approximations in which the experiments are sim-

ply designed separately (‘batch design’) or designed in sequence without considering

the possibility of future experiments (‘greedy design’). They then propose an ap-

proximation to the general sequential design problem which fits a regression model

to each risk, and uses a ‘one step look-ahead’ approximation to the full backward

induction calculation which only considers the next available experiment.

In Section 3.4.1, we outline the steps of the approximating procedure, linking them

to the steps of the original backward induction algorithm, and in Section 3.4.2,

we set up a simple problem, which will be used as a running example to illustrate

the steps taken throughout the chapter; then, in Sections 3.4.3 to 3.4.10, we con-

sider implementation details for each of the steps of the approximation, and, where

appropriate, illustrate them through application to our simple problem.

3.4.1 Approximating procedure

We perform the approximating procedure in waves, indexed by i = 1, 2, . . . ; the

backward induction algorithm is approximated by iterating the following steps for

stages j = n, (n− 1), . . . , 1. The approximate backward induction procedure is also

presented as pseudo-code in algorithm 2.

March 22, 2018

3.4. Approximation of the backward induction calculation 101

Emulate the risk We begin by fitting an emulator r
(i)
j to the risk at stage j:

this emulator has the common regression plus residual form, with an additional iid

‘nugget’ term

r
(i)
j

[
z[j], w[j], d[j]

]
=
∑
p

α
(i)
jph

(i)
jp

(
z[j], w[j], d[j]

)
+ u

(i)
j

(
z[j], w[j], d[j]

)
+ ξ

(i)
j (3.4.12)

where the h
(i)
jp (.) are known basis functions, and the uncertain components (coef-

ficients {α(i)
jp }, residual process u

(i)
j (.) and nugget ξ

(i)
j) are assumed to be a priori

independent. We specify prior moments for the components of the model, and then

use a set of evaluations of the risk to adjust these moments.

The generation of the risk evaluations that we use to adjust our prior beliefs is

discussed in detail in Section 3.4.4, and such an adjustment is carried out for our

simple example in Section 3.4.5. In Section 3.4.11, we discuss the selection of the

input settings at which we run the risk to generate the data for the update.

Approximate the expected risk Our approximation to the expected risk ρ̄j at

wave i is simply the integral of the emulator r
(i)
j

r̄
(i)
j

[
z[j−1], w[j−1], d[j]

]
=

∫∫
r

(i)
j

[
z[j], w[j], d[j]

]
× p

(
zj|z[j−1], w[j], d[j]

)
p
(
wj|w[j−1], d[j]

)
dzjdwj .

(3.4.13)

Our beliefs about r̄
(i)
j are computed by directly integrating our beliefs about r

(i)
j

as described in Section 2.4.1; implementation in this context is discussed further

in Section 3.4.6. The characterisation of the distributions p
(
zj|z[j−1], w[j], d[j]

)
and

p
(
wj|w[j−1], d[j]

)
for complex models is discussed in Section 3.4.3.

Characterise the risk from an optimal design Our approximation to the risk

ρ∗j from an optimal design at wave i is denoted by s
(i)
j , with

s
(i)
j

[
z[j−1], w[j−1], d[j−1]

]
= r̄

(i)
j

[
z[j−1], w[j−1], {d[j−1], d

∗
j}
]

+ cj
(
d∗j
)

. (3.4.14)

The value of d∗j is unknown; we represent our uncertainty about the optimal design

by sampling candidate designs d̃j from within a candidate design space D(i)
j which

could plausibly contain the optimal design. Our strategy for sampling the candidate

designs and for characterising our beliefs about s
(i)
j is discussed in Section 3.4.8.

March 22, 2018

3.4. Approximation of the backward induction calculation 102

Algorithm 2 Backward induction approximation algorithm

1: for i = 1, 2, . . . do

2: for j = n, (n− 1), . . . , 1 do

3: Specify risk model (Section 3.4.4)

r
(i)
j

[
z[j], w[j], d[j]

]
=
∑
p

α
(i)
jph

(i)
jp

(
z[j], w[j], d[j]

)
+ u

(i)
j

(
z[j], w[j], d[j]

)
+ ξ

(i)
j

4: Approximate the expected risk (Section 3.4.6)

r̄
(i)
j

[
z[j−1], w[j−1], d[j]

]
=

∫∫
r

(i)
j p
(
zj|z[j−1], w[j], d[j]

)
p
(
wj|w[j−1], d[j]

)
dzjdwj

5: Characterise the minimum risk (Section 3.4.8)

s
(i)
j

[
z[j−1], w[j−1], d[j−1]

]
= r̄

(i)
j

[
z[j−1], w[j−1], {d[j−1], d

∗
j}
]

+ cj
(
d∗j
)

6: end for

7: end for

3.4.2 Running example

Throughout this chapter, we illustrate some of the approximation steps taken through

application to a simple problem; in this problem, the forward model is simply a

Gaussian linear model, and we will make only one observation at a time. In this

section, we set up the model and derive all of the necessary posterior and marginal

distributions, then we set up the decision problem that we will solve for this model,

and compute the terminal risk. We will begin the approximate design calculations

for a two stage problem in Section 3.4.5.

System model As with the model in Section 3.2.3, the data is represented using

a linear combination of basis functions g (d) = (g1 (d) , . . . , gnq (d))T with weights

q = (q1, . . . , qnq)
T; we assume that we make a single observation at each stage, and

so we have

zj = g (dj)
Tq + εj

where εj is a measurement error term. The data are assumed not to depend on

any external parameters wj in this example. Assuming that in this case, z[j] =

March 22, 2018

3.4. Approximation of the backward induction calculation 103

(z1, . . . , zj)
T is a vector, we have the following for multiple data points

z[j] = G
(
d[j]

)
q + ε

where

G
(
d[j]

)
=

g (d1) T

...

g (dj)
T

 ε =

ε1
...

εj

 .

Assuming as before that our prior beliefs q ∼ N (µq , Vq) and error distributions

εj ∼ N
(

0, 1
λε

)
are Gaussian, our posterior distribution at stage j is

q|z[j], d[j] ∼ N
(
µ̂q
(
z[j], d[j]

)
, V̂q
(
d[j]

))
where

V̂q
(
d[j]

)
=
[
V −1
q + λεG

(
d[j]

)
TG
(
d[j]

)]−1

µ̂q
(
z[j], d[j]

)
= V̂q

(
d[j]

) [
V −1
q µq + λεG

(
d[j]

)
Tz[j]

]
.

It is also simple to compute the predictive distribution of a new data point ẑ at a

new design setting d̂ based on these posterior beliefs

ẑ|d̂, z[j], d[j] ∼ N
(
µẑ
(
z[j], d[j]

)
, Vẑ
(
d[j]

))
(3.4.15)

where the parameters of the distribution are

µẑ
(
z[j], d[j]

)
= g

(
d̂
)
µ̂q
(
z[j], d[j]

)
Vẑ
(
d[j]

)
= g

(
d̂
)
V̂q
(
d[j]

)
g
(
d̂
)

T +
1

λε
.

Decision problem To maintain the simplicity of the problem, we use the weighted

quadratic loss function outlined in Section 3.1.1, and we specify that our loss is based

on the prediction ẑ for the system data at a new, known design input d̂; the weighting

function that we use at stage j is chosen to be a second-order polynomial in ẑ

wj (ẑ) = aj ẑ
2 + bj ẑ + cj .

Using this weighting in the quadratic loss, the resulting closed-form risk at stage j

is

ρtj
[
z[j], d[j]

]
= E

[
wj (ẑ) ẑ2

]
− 1

E [wj (ẑ)]
E [wj (ẑ) ẑ] 2

March 22, 2018

3.4. Approximation of the backward induction calculation 104

where

E
[
wj (ẑ) ẑ2

]
=ajm4 (µẑ, Vẑ) + bjm3 (µẑ, Vẑ) + cjm2 (µẑ, Vẑ)

E [wj (ẑ) ẑ] =ajm3 (µẑ, Vẑ) + bjm2 (µẑ, Vẑ) + cjm1 (µẑ, Vẑ)

E [wj (ẑ)] =ajm2 (µẑ, Vẑ) + bjm1 (µẑ, Vẑ) + cj

and mt (µ, V) is the tth (non-central) moment of a univariate Gaussian distribution

with mean µ and variance V .

3.4.3 Characterising distributions

In order to carry out any of the calculations in the approximate backward induction

procedure, we need to be able to characterise the distributions p
(
q|z[j], w[j], d[j]

)
and p

(
z[j]|w[j], d[j]

)
for any stage j of the algorithm. For simple, conjugate model

specifications (such as the Gaussian-Gaussian specification used in Section 3.4.2), or

for relatively simple, non-conjugate specifications, where the conditional and poste-

rior distributions can be evaluated relatively easily, this does not present an issue; in

these situations, we can just run the algorithm (Section 3.4.1, algorithm 2) using the

these distributions. For general models, however, the relationship p
(
z[j]|q, w[j], d[j]

)
has the potential to be non-linear, complex and slow to evaluate; in these situations,

we can turn to the Bayesian uncertainty analysis framework presented in Sections

2.3.1 and 2.4.2 for assistance.

We assume that our data zj are noise-corrupted measurements of some underlying

system, as in Section 2.3.1

zjk = yk (wj, dj) + εk (wj, dj)

where independence between y (.) and ε (.) is assumed. We also assume that we

have a simulator f (.) which gives an imperfect representation of the system, relating

the two together by including the discrepancy between the simulator and the system

yk (wj, dj) = fk (q, wj, dj) + δk (wj, dj)

where, as in Section 2.3.1, we assume that δ is independent of {f, q}. In this context,

we assume that q is the ‘best input’ setting for our simulator; we assume that running

March 22, 2018

3.4. Approximation of the backward induction calculation 105

f (.) at setting q provides all of the information available from f (.) about the system

y (.) . In the design problem, we are interested in using the data zj to learn about

this setting.

We now approximate the complex forward relationship between general parameter

setting t and the model output through the common emulator specification

fk (t, wj, dj) =
∑
p

βkpgp (t, wj, dj) + rk (t, wj, dj) .

We make a second-order prior specification for both β and r, and we observe a

set of runs F on f at known locations, before using these to obtain expressions for

the adjusted predictions EF [f (.)] and CovF [f (.) , f (.′)] at any new input setting

(Section 2.2.2).

Propagating uncertainty If we take care when creating this approximation to

f, we can ensure that we may carry out the uncertainty propagation calculations in

Section 2.4.2 with relatively little computational effort, allowing us to obtain mo-

ments of f̂ (wj, dj) = f (q, wj, dj) by computing expectations over p (q) .

In turn, these moments allow us to compute the moments of the system y (.) by

incorporating beliefs about the discrepancy δ (.) , and then the data zj by incorpo-

rating beliefs about the error structure ε (.) ; since the data are all assumed to be

generated under the same model structure, we can use the specification in Section

2.2.2 and the calculations in Section 2.4.2 to compute the expectation E [zj|wj, dj]

of the data at any stage of the problem and the covariance Cov [zj, zk|wj, dj, wk, dk]

between the data sets at any two stages. Having computed this full joint specifica-

tion for all of the data, we can perform another adjustment to find the moments of

any individual data set zj given all previously-observed data z[j−1]; re-introducing

the summation convention, and stipulating that indices in square brackets are not

summed over, we have

Ez[j−1]

[
zjk|w[j], d[j]

]
= E [zjk|wj, dj] + Cov

[
zjk, zpq|w[j], d[j]

]
× Var

[
z[j−1]|w[j−1], d[j−1]

] −1
pqrs

[
zrs − E

[
zrs|w[j−1], d[j−1]

]]

March 22, 2018

3.4. Approximation of the backward induction calculation 106

Varz[j−1]

[
zjk, zjl|w[j], d[j]

]
= Var [zjk|wj, dj] − Cov

[
zjk, zpq|w[j], d[j]

]
× Var

[
z[j−1]|w[j−1], d[j−1]

] −1
pqrsCov

[
zrs, zjl|w[j], d[j]

]
where the sums over p and r range from 1, . . . , (j − 1), the sums over q and s range

over 1, . . . , nzp and 1, . . . , nzr respectively, and the elements of Var
[
z[j−1]|w[j−1], d[j−1]

] −1

are the elements of the inverse of

Var
[
z[j−1]|w[j−1], d[j−1]

]
pqrs = Cov

[
zpq, zrs|w[j−1], d[j−1]

]
re-shaped into an appropriate four-dimensional array.

We use these adjusted moments for the data to characterise the conditional distri-

butions p
(
zj|z[j−1], w[j], d[j]

)
wherever they are encountered, as an approximation

to the true conditional distribution, which is too expensive for us to work with; we

may choose the distribution p (.) that we feel best represents the behaviour of zj,

and then specify its parameters according to these moments. Often, the desire to

ensure computational simplicity will come into play here; if we choose, for example,

a Gaussian or a uniform distribution, then this will have the potential to simplify

some of the numerical calculations that we need to perform later (Section 3.4.6).

Learning about q We can also use our emulator to approximately characterise the

distributions p
(
q|z[j], w[j], d[j]

)
needed to evaluate the risks (3.3.6); the calculations

described in Section 2.4.3 can be carried out in order to obtain Cov [ql, zjk|wj, dj]

for any individual element of the dataset at stage j. We can then carry out an

adjustment upon learning z[j] to obtain

Ez[j]

[
ql|w[j], d[j]

]
= E [ql] + Cov

[
ql, zpq|w[j], d[j]

]
× Var

[
z[j]|w[j], d[j]

] −1
pqrs

[
zrs − E

[
zrs|w[j], d[j]

]]

Covz[j]
[
ql, qm|w[j], d[j]

]
= Cov [ql, qm] − Cov

[
ql, zpq|w[j], d[j]

]
× Var

[
z[j]|w[j], d[j]

] −1
pqrsCov

[
zrs, qm|w[j], d[j]

]
where the sums over p and r range from 1, . . . , j, and the sums over q and s range

over 1, . . . , nzp and 1, . . . , nzr respectively. Again, since we have used a Bayes linear

March 22, 2018

3.4. Approximation of the backward induction calculation 107

calculation to approximate a fully probabilistic one, we choose a suitable form for

the distribution p
(
q|z[j], w[j], d[j]

)
and parametrize it by approximating the true

conditional moments using the adjusted moments computed above. For some choices

of loss function, however, this may not be necessary; if the loss results in a risk which

is a function of only first- and second-order moments, then we can simply proceed

using only the adjusted second-order specification that we have derived (see the

discussion in Section 3.1.2).

3.4.4 Fitting a risk emulator

We fit the emulator (3.4.12) as described in Section 2.2.2. We first make a prior

specification for the moments of the basis parameters, E
[
α

(i)
j

]
and Var

[
α

(i)
j

]
, and

for the covariance structure of the residual process, Cov
[
u

(i)
j (.) , u

(i)
j (.′)

]
; then, we

generate data from the risk function at this stage at known settings of the risk

inputs, and use this data to adjust our prior moments. This allows us to make fast

predictions for the risk at any new setting of its inputs with an uncertainty level

which describes our confidence in these predictions. We consider some aspects of

this model fit.

Generating risk evaluations: In order to fit the emulator, we generate evalu-

ations of the risk at known input settings. At wave i, we denote the set of N
(i)
j

risk values that we use for the adjustment by R
(i)
j = {R(i)

j1 , R
(i)
j2 , . . . , R

(i)

jN
(i)
j

}; R(i)
jk is

the kth evaluation of the risk, obtained at input setting {z[j]k, w[j]k, d[j]k}. When

generating the risk evaluations, there are two separate cases to consider:

� At the final stage, j = n, the data is generated directly from the risk (3.3.6)

from an optimal terminal decision

R
(i)
nk = ρtn

[
z[n]k, w[n]k, d[n]k

]
the amount of data that we can use to update the emulator is therefore limited

by the computational effort required to evaluate (3.3.6), and the computational

resources that we have available. In the case where this risk is closed-form (see

Section 3.1.1) and the model is simple, generating data incurs almost no cost,

March 22, 2018

3.4. Approximation of the backward induction calculation 108

and the process of inverting the data covariance to update the emulator is the

more rate-limiting step; however, if the model is more complex, or if there is

no closed-form expression for the risk, then we must use numerical methods,

making the data generation more costly. Where the terminal risk must be

evaluated numerically, we may do this using an MCMC algorithm, or using

the Bayesian integration technique presented in Section 2.4.1; any uncertainty

about the terminal risk value resulting from its numerical evaluation is ac-

counted for as measurement error when fitting the risk emulator.

� At any other stage j = (n−1), . . . , 1, the risk is computed through comparison

of the risk from an optimal terminal decision at the current stage with the risk

from an optimally-designed experiment at the next stage

R
(i)
jk = min

[
ρtj
[
z[j]k, w[j]k, d[j]k

]
, s

(i)
j+1

[
z[j]k, w[j]k, d[j]k

]]
. (3.4.16)

Our numerical approximations to the risks introduce uncertainty, and so s
(i)
j+1

is unknown. As discussed in Section 3.4.8, our emulator for the risk at stage

(j + 1) induces an uncertainty specification for this quantity; we can com-

pute the expectation E
[
s

(i)
j+1

[
z[j]k, w[j]k, d[j]k

]]
for each input setting, and the

covariances Cov
[
s

(i)
j+1

[
z[j]k, w[j]k, d[j]k

]
, s

(i)
j+1

[
z[j]l, w[j]l, d[j]l

]]
between risks at

each pair of inputs. We then use this uncertainty specification to characterise

a multivariate Gaussian distribution, and we use samples drawn from this dis-

tribution to compute expectations E
[
R

(i)
jk

]
and covariances Cov

[
R

(i)
jk , R

(i)
jl

]
for the risk values. We fit our emulator to the expectations E

[
R

(i)
jk

]
, using

the covariances to characterise the measurement error structure.

Modelling choices: When building our model for the risk at stage j, we want to

choose the basis functions h
(i)
jp (.) and the covariance of the residual process u

(i)
j (.)

in such a way that we can obtain an accurate representation of the risk at any given

input point; however, we also want to make sure that we can carry out the integrals

(3.4.13) as cheaply as possible, and that the sampling procedure used to charac-

terise the minimum of the risk (Section 3.4.8) does not become too computationally

expensive. The following specifications may be suitable in a wide range of problems:

March 22, 2018

3.4. Approximation of the backward induction calculation 109

� Risk as a mean function: where we can compute the risk ρtj [.] from an

optimal terminal decision directly, or relatively inexpensively using numerical

methods, it is often the case that using this as a basis function for the regres-

sion term will account for a large amount of the systematic variation in the

true risk; in parts of the input space where it is optimal to make an immediate

decision, this basis function will completely account for the risk behaviour,

and in parts of the space where we will continue sampling, the variation can

be absorbed using other mean functions and the residual process.

Where the expectation of ρtj [.] over zj or wj cannot be computed easily, as

required in equation 3.4.13, then using ρtj [.] as a basis function can introduce

complications at this stage of the approximation procedure; to get around

this, we can instead use ρtj
[
z̃[j], w̃[j], d[j]

]
as a basis function, where z̃[j] =

{z1, . . . ,E
[
zj|z[j−1], w[j−1], d[j−1]

]
} and w̃[j] = {w1, . . . ,E

[
wj|w[j−1], d[j]

]
} are

the data and external input sets with the value at the current stage j replaced

by the expectation conditional on the values from previous stages (for com-

plex models where we use an approximating emulator, as in Section 3.4.3,

we approximate the full conditional moments using the adjusted moments

Ez[j−1]

[
zj|w[j−1], d[j−1]

]
and Ew[j−1]

[
wj|d[j]

]
). The difference between this ba-

sis function and the true risk can then be explained using additional basis

functions, the residual process or the nugget term. The terminal risk is used

as part of the basis function for the emulator in both the simple example in

Section 3.4.5 and the more complex one presented in Section 4.1.

� Input space reduction: in a problem with many input variables or large

amounts of data, it may be the case that the majority of the variability in

the risk function is driven by a small number of linear combinations of the

{z[j], w[j], d[j]}; in this instance, modelling the risk in terms of only these linear

combinations has the potential to significantly reduce the complexity of the

emulator that we fit, and the subsequent calculations. For example, in the case

where we collect a large amount of data at each stage, we may choose to fit an

emulator in terms of the sample mean of the zj, or we might choose to identify

the directions of canonical correlation between zj and R
(i)
j and model in terms

March 22, 2018

3.4. Approximation of the backward induction calculation 110

of the linear combinations of zj that explain the most variability. Mardia et al.

[1979] (chapter 11) provide an introduction to canonical correlation analysis.

� Variable removal: where there is little evidence that a variable has a sys-

tematic effect on the value of the risk, it may be appropriate to remove it from

the model entirely, absorbing any remaining variability using an uncorrelated

residual term; for example, where all distributions are Gaussian, and the loss

function is an un-weighted quadratic, the data zj has no effect on the risk,

and so can safely be removed from the model without decreasing our ability

to explain the behaviour of the risk.

Specifying the prior: Often, our prior knowledge about the behaviour of the risk

will be poor, and so specifying an appropriate basis function set and corresponding

prior coefficient moments is challenging; the amount of risk data that we have avail-

able, however, is only limited by the amount of computer time that we can devote

to generating it. In most cases, therefore, we can generate an additional, smaller set

of risk evaluations which can be used to carry out an initial linear regression. This

regression can be used to fix the prior moments E
[
α

(i)
jp

]
and Cov

[
α

(i)
jp , α

(i)
jq

]
of the

basis coefficients. We can also use the residuals of this regression fit to empirically

fix the prior marginal covariance Var
[
u

(i)
j (.)

]
of the residual process.

Determining the nugget variance: Where we include a nugget term ξ
(i)
j , we do

so to account for variability in the risk which cannot be explained using the regres-

sion and residual terms which we have selected; for example, where we have specified

that the systematic components depend only on a low-dimensional summary of the

observed data, and we must account for the risk variability which cannot be ex-

plained using this summary. In most cases, we can assess the level of this variability

by generating further samples from the risk.

Where we can, we assess Var
[
ξ

(i)
j

]
by holding constant those inputs for which we

expect the regression and residual components to explain risk variability, and then

varying the inputs which will induce the variability that we want to capture using

the nugget; this should be done at a number of different settings of the fixed inputs,

March 22, 2018

3.4. Approximation of the backward induction calculation 111

to check that the level of variability does not change drastically across the input

space. Var
[
ξ

(i)
j

]
is fixed to the variance of the sample (or the average variance of

the samples from different settings of the fixed inputs).

Fitting the emulator: For a particular setting of the correlation parameters, we

can adjust our beliefs about r
(i)
j using the calculations outlined in Section 2.2.2;

our adjusted expectation E
R

(i)
j

[
r

(i)
j [.]

]
is computed as in equation (2.2.12) and

our adjusted covariance Cov
R

(i)
j

[
r

(i)
j [.] , r

(i)
j [.′]

]
between function values at different

input settings is computed as in equation (2.2.13) .

Determining correlation parameters: Having used the initial regression and

residual analysis to empirically fix the regression priors and the marginal variance of

u
(i)
j (.) , it remains to determine any parameters which govern the degree of correla-

tion between input settings for the residual; since the dependence of the covariance

function on these is typically non-linear, we cannot perform the usual Bayes linear

analysis by specifying a prior and using the data to adjust. Instead, we fix the corre-

lation parameters using a leave-one-out cross validation procedure [Rasmussen and

Williams, 2006]; we leave out each point in turn, and predict it using the fit to the

remainder. To assess the quality of the fit for each candidate correlation parameter

setting, we use the sum of the predictive Gaussian likelihoods for all points. For

further discussion of cross validation, see Section 2.2.3.

Checking inter-wave correspondence: Under the procedure 2, we have the

option of performing multiple waves of analysis. At the first wave (i = 1), we

emulate the risk function at each stage for the first time; then, at subsequent waves

(i = 2, 3, . . .), we repeatedly re-emulate the same risk functions over sub-regions of

the design input space. We hope that as we focus our models on sub-regions of the

design input space, we will be able to model risk behaviour more accurately; at a

minimum however, we expect that the predictive error bars of the emulator fitted at

wave i should overlap with those of the emulators fitted at stages 1, . . . , (i−1). This

property can be checked to ensure that our models are behaving as they should.

If we do not see overlap between emulators at consecutive waves, this could be an

March 22, 2018

3.4. Approximation of the backward induction calculation 112

indication of problems with our model specification; for example, failure to fully

acknowledge the level of our uncertainty about the risk at one or more stages.

3.4.5 Illustrative example: fitting

We now illustrate the risk emulator fitting procedure outlined in Section 3.4.4

through application to the problem outlined in Section 3.4.2; we consider an ex-

perimental design problem in which we may make at most n = 2 observations, and

where we must eventually decide whether it is worth carrying out the first experi-

ment, or whether we should just make an immediate decision under the prior.

We set up the elements of the problem as follows:

� the vector of basis functions at each stage is g (dj) = (1, (1 + dj)(1− dj))T;

� the design parameter at each stage is constrained to lie in the range dj ∈

[−1, 1];

� the prior moments of the model parameters are set to µq = (0, 0)T, Vq =

Diag ((0.52, 0.52)) ;

� the measurement precisions are set to be λε1 = 1/(0.52), λε2 = 1/(0.12), so we

have the option of a more accurate measurement at the second stage;

� our losses depend on the data value ẑ at new input setting d̂ = 1/
√

2;

� the weightings for the loss function are set to be the same at all stages, with

aj = cj = 1 and bj = 0;

� the measurement costs are set to be constant across the design space, and

so that the first observation is cheaper than the second; c1 (d1) = 0.05 and

c2 (d2) = 0.2.

Having specified all of these elements, we are ready to start our analysis of the risk.

For this example, we adopt the strategy (discussed in Section 3.4.4) of using the

modified terminal risk as a mean function; with reference to the general emulator

March 22, 2018

3.4. Approximation of the backward induction calculation 113

form (3.4.12), we specify that h
(1)
21 = 1

h
(1)
22

(
z[2], d[2]

)
= ρt2

[
z̃[2], d[2]

]
where z̃[2] = (z1,E [z2|z1])T, so z2 has been replaced in the risk function by its ex-

pectation conditional on z1. This modified risk function is useful as a basis term,

since it closely mirrors the behaviour of the risk ρ
[
z[2], d[2]

]
, but does not have a

direct dependence on z2, which means that it will be simple to integrate when we

need to compute expectations of the risk in Sections 3.4.6 and 3.4.7.

For the residual, we choose a simple, separable squared exponential covariance func-

tion

Cov
[
u

(1)
2

(
z[2], d[2]

)
, u

(1)
2

(
z′[2], d

′
[2]

)]
= v

(1)
2

2∏
k=1

[
c (dk, d

′
k|λd) c (zk, z

′
k|λz)

]
where v

(1)
2 = Var

[
u

(1)
2

]
is the marginal variance parameter and c (., .|λ) is a squared

exponential correlation function with correlation parameter for a scalar input

c (θ, θ′|λ) = exp
[
− λ

2
(θ − θ′)2

]
.

For further details relating to the SE correlation function, see Appendix B.1.

Since this is the final stage of the problem, ρ2 [.] = ρt2 [.] , and the sole basis function

is this terminal risk evaluated at a central setting of the observation z2; the purpose

of the residual process in this instance, therefore, is to absorb structured variability

in the risk function due to z2 which is not captured by the regression component

(over the range of possible inputs {z[1], d[2]}). The squared exponential is chosen

because it is simple to integrate with respect to a Gaussian distribution, and so will

ensure that the calculations that we must perform in the coming sections (3.4.6 and

3.4.7) are relatively simple. The correlation parameters {λd , λz} are fixed to be the

same at both stages k = 1, 2, in order to simplify the problem of determining them

from the data.

Having selected our mean and covariance functions, we are in a position to start

fitting the risk model. First, we must specify our prior beliefs about the regression

coefficients {α(1)
21 α

(1)
22 }. As discussed in Section 3.4.4, we do this by performing an

March 22, 2018

3.4. Approximation of the backward induction calculation 114

initial linear regression, using a set of 200 risk evaluations (with the dj where we eval-

uate the risk chosen according to a Latin hypercube). We fix the prior moments to

the parameter estimates obtained using this regression fit, giving E
[
α

(1)
21

]
= 0.0037

and E
[
α

(1)
22

]
= 1.01, with Var

[
α

(1)
21

]
= (2.4×10−7)2 and Var

[
α

(1)
22

]
= (5.59×10−6).

Next, we fix the marginal variance of the residual process using the residuals from

this regression fit (again, as discussed in Section 3.4.4); this results in us specifying

Var
[
u

(1)
2 (.)

]
= v

(1)
2 = (0.0101)2. In this instance, we believe that all of the vari-

ability in ρ2 [.] will be accounted for by the regression and residual components, and

so we simply set Var
[
ξ

(1)
2

]
= (10−3)2 in order to ensure numerical stability of the

update calculations.

We fix the correlation lengths for the covariance function using leave-one-out cross-

validation. First, we generate R
(1)
2 , the set of N

(1)
2 = 300 risk evaluations that we

will use to perform the joint update for the regression and residual components; we

also predict E
[
R

(1)
2k

]
for each risk evaluation using the prior specification for the

α
(1)
2 computed above, and compute the residuals Dk = R

(1)
2k −E

[
R

(1)
2k

]
. We generate

a Latin hypercube of 2000 points {λd , λz}; then, we test the quality of each such

specification by leaving out each of the Dk out in turn, fitting the model to the

remaining residuals, and computing the predictive log-Gaussian likelihood for Dk

under this fit. We fix the correlation parameters to the setting which minimises the

sum of these likelihoods. See Section 2.2.3 for further details of this procedure.

The fitting procedure for this emulator is illustrated in Figures 3.2 and 3.3. Figure

3.2 shows the relationship between the expected regression surface
∑

p E
[
α

(1)
2p

]
h

(1)
2p (.)

and the risk ρ2 [.] , for different settings of {z[2], d[2]}; we see that, in all of the dis-

played cases, the regression surface mirrors the behaviour of the risk function across

the design space, with systematic deviations from this level driven by the value of

the observed data z2. Figure 3.3 shows the final fitted emulator, after the marginal

variance and the correlation parameters of the residual process have been determined

as described above.

March 22, 2018

3.4. Approximation of the backward induction calculation 115

-1 -0.5 0 0.5 1
d

2

0.02

0.04

0.06

0.08

0.1

r 2
[d

[2
],z

[2
]]

q = 0.05
q = 0.95

(a)

-1 -0.5 0 0.5 1
d

2

0.02

0.03

0.04

0.05

0.06

0.07

r 2
[d

[2
],z

[2
]]

q = 0.05
q = 0.95

(b)

-1 -0.5 0 0.5 1
d

2

0.02

0.04

0.06

0.08

0.1

r 2
[d

[2
],z

[2
]]

q = 0.05
q = 0.95

(c)

Figure 3.2: Plots showing the difference between the mean regression surface and

the true risk as a function of d2 for different settings of the parameters {z[1], d[1]}; in

Figure 3.2(a), we set d1 = −0.5 and z1 such that P (z1|d1) = 0.25, with the colour

scale signifying different values P (z2|d2) = qz2 at which we generate z2; in Figure

3.2(b), the same is plotted by for d1 = 0 and P (z1|d1) = 0.5; lastly, Figure 3.2(c)

has d1 = 0.5 and P (z1|d1) = 0.75. In all cases, the surface
∑

p α
(1)
2p h

(1)
2p is shown

as a black line. In each case, the mean regression surface tracks the shape of the

risk function, with the difference between this surface and the true risk clearly a

systematic function of d2 and z2.

March 22, 2018

3.4. Approximation of the backward induction calculation 116

-1 -0.5 0 0.5 1

d
1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

d
2

0.02

0.03

0.04

0.05

0.06

0.07

0.08

E
[r

2(1
)]

(a)

-1 -0.5 0 0.5 1

d
1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

d
2

1.1

1.2

1.3

1.4

1.5

1.6

V
ar

[r
2(1

)]1/
2

10-3

(b)

-1 -0.5 0 0.5 1

d
1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

d
2

0.03

0.04

0.05

0.06

0.07

0.08

2

(c)

-1 -0.5 0 0.5 1

d
1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

d
2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

|S
T

D
|

(d)

Figure 3.3: Moments of the emulator r
(1)
2 [.] , fitted in Section 3.4.5: Figure 3.3(a)

shows the adjusted expectation E
R

(1)
2

[
r

(1)
2

]
as a function of d1 and d2, with the

observations z[2] fixed to the mean values of their distribution at each point; Figure

3.3(b) shows the corresponding adjusted standard deviation Var
R

(1)
2

[
r

(1)
2

]
1/2; Figure

3.3(c) shows the true value of the risk ρt2, and Figure 3.3(d) shows the absolute

value of the standardised distance (ρt2 − E
R

(1)
2

[
r

(1)
2

]
)/Var

R
(1)
2

[
r

(1)
2

]
1/2 between the

prediction and the truth at each point.

March 22, 2018

3.4. Approximation of the backward induction calculation 117

3.4.6 Computing expectations

We use the model r
(i)
j fitted in Section 3.4.4 to characterise an approximation r̄

(i)
j

to the expected risk ρ̄j (defined in equation (3.3.10)). As outlined in Section 2.4.1,

the moments of the expectation of the process can be derived by integrating the

moments of the process directly. The expectation of r̄
(i)
j is

E
R

(i)
j

[
r̄

(i)
j

[
z[j−1], w[j−1], d[j]

]]
=∫

E
R

(i)
j

[
r

(i)
j [.]

]
p
(
zj|z[j−1], w[j], d[j]

)
p
(
wj|w[j−1], d[j]

)
dzjdwj

and the covariance between r̄
(i)
j values at any pair of input settings is

Cov
R

(i)
j

[
r̄

(i)
j

[
z[j−1], w[j−1], d[j]

]
, r̄

(i)
j

[
z′[j−1], w

′
[j−1], d

′
[j]

]]
=∫

Cov
R

(i)
j

[
r̄

(i)
j [.] , r̄

(i)
j [.′]

]
p
(
zj, wj|z[j−1], w[j−1], d[j]

)
× p

(
z′j, w

′
j|z′[j−1], w

′
[j−1], d

′
[j]

)
dzjdwjdz

′
jdw

′
j .

These definitions correspond to those in equations (2.4.19) and (2.4.21) from Section

2.4.1.

The ease with which we can compute these moments depends on how we have

constructed the emulator: if we took care to choose basis and covariance func-

tions which can be integrated analytically with respect to p
(
zj|z[j−1], w[j], d[j]

)
and

p
(
wj|w[j−1], d[j]

)
, then the procedure for generating a prediction from the integrated

emulator requires no greater computational expense than the process of generating a

prediction from the emulator itself. However, if choosing basis and covariance func-

tions which can be integrated analytically against these distributions is not possible

without sacrificing too much of the explanatory power of the emulator then we must

resort to numerical integration in order to compute these terms. As always, the

predictive power of the emulator must be traded off against the speed with which it

(and its integrated moments) can be evaluated.

3.4.7 Illustrative example: expectation

Having fitted the risk emulator in Section 3.4.5, we must now use this to compute

our beliefs about the expected risk, as outlined in Section 3.4.6; because of our

March 22, 2018

3.4. Approximation of the backward induction calculation 118

choices of basis and covariance function, this is a relatively simple job. Since there

is no external parameter in our illustrative problem, we must only compute the

expectation of the risk emulator over p
(
z2|z[1], d[2]

)
. Because of the simple model

form, this distribution is a Gaussian, the form of which is given in equation 3.4.15.

Since the basis functions have no dependence on z2, these integrals are easy; we have

that

h̄
(1)
2p

(
z[1], d[2]

)
= h

(1)
2p

(
z[1], d[2]

)
for both functions p = 1, 2. For the covariance function, the integral is relatively

simple to compute, because of the choice of a separable squared exponential form;

integrating once, we have that

Cov
[
ū

(1)
2

(
z[1], d[2]

)
, u

(1)
2

(
z′[2], d

′
[2]

)]
= v

(1)
2

[2∏
k=1

c (dk, d
′
k|λd)

]
c (z1, z

′
1|λz)

× c̄
(
µz2
(
z[1], d[2]

)
, Vz2

(
d[2]

)
, z′2|λz

)
where c̄ (., .|λz) is computed by integrating the covariance function c (., .|λz) with

respect to the distribution p
(
z2|µz2

(
z[1], d[2]

)
, Vz2

(
d[2]

))
; details of this calculation

are provided in the Appendix B.1.2. Integrating a second time, this time with

respect to the distribution p
(
z′2|µz2

(
z′[1], d

′
[2]

)
, Vz2

(
d′[2]

))
, we find

Cov
[
ū

(1)
2

(
z[1], d[2]

)
, ū

(1)
2

(
z′[1], d

′
[2]

)]
= v

(1)
2

[2∏
k=1

c (dk, d
′
k|λd)

]
c (z1, z

′
1|λz)

× ¯̄c
(
µz2
(
z[1], d[2]

)
, Vz2

(
d[2]

)
, µz2

(
z′[1], d

′
[2]

)
, Vz2

(
d′[2]

)
|λz
)

where again, ¯̄c (., .) is computed for a general Gaussian distribution in Appendix

B.1.2. Plugging these quantities into the expressions (2.4.19) and (2.4.21) allows us

to evaluate the moments E
R

(1)
2

[
r̄

(1)
2 [.]

]
and Cov

R
(1)
2

[
r̄

(1)
2 [.] , r̄

(1)
2 [.′]

]
of the emulator

for the expected risk. Figure 3.4 plots the moments of r̄
(1)
2 for a range of different

settings of (d1, d2).

3.4.8 Characterising the minimum risk

To run the procedure outlined in Section 3.4.1, we must be able to assess which

design inputs could plausibly be optimal at any given stage, and be able to char-

acterise our corresponding uncertainty about the value of the risk at the minimum.

March 22, 2018

3.4. Approximation of the backward induction calculation 119

-1 -0.5 0 0.5 1

d
1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

d
2

0.03

0.04

0.05

0.06

0.07

0.08

0.09

E
[r

2(1
)]

(a)

-1 -0.5 0 0.5 1

d
1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

d
2

1.1

1.2

1.3

1.4

1.5

1.6

1.7

V
ar

[r
2(1

)]1/
2

10-3

(b)

Figure 3.4: Plots of the emulator r̄
(1)
2 for the expected risk. Figure 3.4(a) shows the

expectation E
R

(1)
2

[
r̄

(1)
2

]
for a range of different settings of (d1, d2), and Figure 3.4(b)

shows the standard deviations Var
R

(1)
2

[
r̄

(1)
2

]
corresponding to the same points. For

all predictions, z1 is fixed so that P (z1|d1) = 0.5.

Characterising exactly the distributions of the extrema of a stochastic function is a

complex and open problem (see, for example, Henning and Schuler [2012] or Adler

[1990] for discussions), and so we do not attempt to do this; instead, we adopt an

approximate procedure, in which we sample the risk at a space-filling set of inputs

and find the design which minimises the risk over this design, checking that the num-

ber of points which we generate does not unduly influence the size of the resulting

space.

Candidate design space We represent our uncertainty about the optimal design

d∗j by using the emulator r̄
(i)
j to define a ‘candidate design space’ D(i)

j . For a given

setting of the inputs {z[j−1], w[j−1], d[j−1]}, we generate a space filling set of M
(i)
j trial

design inputs {dj1, dj2, . . . , djM(i)
j
} inside the space D(i−1)

j (where D(0)
j = Dj, the full

design space), and we sample corresponding risks r̄
(i)
j from a multivariate Gaussian

characterised by the moments E
R

(i)
j

[
r̄

(i)
j [.]

]
and Cov

[
r̄

(i)
j [.] , r̄

(i)
j [.′]

]
. We accept

as a ‘candidate design’ d̃j the trial design input which minimises the risk over this

set. The candidate design space D(i)
j is simply the set of design inputs which are

identified as candidate designs by this procedure.

The sampling procedure that we use to identify candidate designs is summarised in

March 22, 2018

3.4. Approximation of the backward induction calculation 120

algorithm 3. As defined, this procedure is recursive; we must be able to generate

designs from the space D(i−1)
j in order to be able to generate designs from the

space D(i)
j . The computational complexity of running algorithm 3 will therefore

grow rapidly as we progress through the waves. If running the full procedure for

a given problem is computationally challenging, and the candidate designs that we

generate lie within identifiable sub-regions of the full design space, then we will

generally choose to approximate the full procedure by characterising D(i−1)
j using

simple limits. This is the approach that we take in both the simple linear model

example (Section 3.4.12) and the more complex example presented in Section 4.2.

Algorithm 3 Sample a candidate design d̃j at stage j, wave i.

1: Generate M
(i)
j space-filling trial designs {dj1, dj2, . . . , djM(i)

j
} within the candi-

date space D(i−1)
j

2: Jointly sample r̄
(i)
j

[
z[j−1], w[j−1], {d[j−1], djk}

]
values for the set of all trial designs

{djk} from a Gaussian distribution

3: Set

d̃j = arg min
djk

[
r̄

(i)
j

[
z[j−1], w[j−1], {d[j−1], djk}

]
+ cj (djk)

]

Moments of s
(i)
j Having fixed our procedure for characterising the candidate de-

sign space, we use this procedure to characterise our uncertainty about the risk s
(i)
j

at the minimum (defined in (3.4.14)). We do not know the location of the true

optimal design d∗j , but our uncertainty about this quantity is characterised by the

sampling procedure 3; we therefore compute moments of s
(i)
j by substituting can-

didate designs d̃j for the true optimal design setting and computing the average

behaviour of the risk over the design space by sampling.

Our expectation for s
(i)
j is computed using the law of total expectation

E
[
s

(i)
j

[
z[j−1], w[j−1], d[j−1]

]]
= E

[
E
R

(i)
j

[
r̄

(i)
j

[
d̃j

]]
+ cj

(
d̃j

)]
(3.4.17)

March 22, 2018

3.4. Approximation of the backward induction calculation 121

and our covariance between s
(i)
j values at different input settings is computed using

the law of total covariance

Cov
[
s

(i)
j

[
z[j−1], w[j−1], d[j−1]

]
, s

(i)
j

[
z′[j−1], w

′
[j−1], d

′
[j−1]

]]
=

Cov
[
E
R

(i)
j

[
r̄

(i)
j

[
d̃j

]]
+ cj

(
d̃j

)
,E

R
(i)
j

[
r̄

(i)
j

[
d̃j

]]
+ cj

(
d̃j

)]
+ E

[
Cov

R
(i)
j

[
r̄

(i)
j

[
d̃j

]
, r̄

(i)
j

[
d̃j

]]]
(3.4.18)

where in all cases, the outer expectations and covariances are computed with respect

to d̃j and we have suppressed the dependencies on the inputs {z[j−1], w[j−1], d[j−1]}

and {z′[j−1], w
′
[j−1], d

′
[j−1]} on the right-hand side of all expressions.

For many problems, it will be computationally infeasible to assess the moments

(3.4.17) and (3.4.18) for every input setting using multiple candidate design settings

sampled according to algorithm 3; in such problems we opt to characterise both mo-

ments using only a single candidate design value d̃j. In this case, we fix the expecta-

tion (3.4.17) to the value E
R

(i)
j

[
r̄

(i)
j

[
d̃j

]]
, and we fix the second term in the covari-

ance (3.4.18) to be the covariance Cov
R

(i)
j

[
r̄

(i)
j

[
d̃j

]
, r̄

(i)
j

[
d̃j

]]
between r̄

(i)
j values at

this candidate design setting. We approximate the first component of the covariance

by assuming that it is fixed across the input space {z[j−1], w[j−1], d[j−1]}. We approxi-

mate the variance of the expectation E
R

(i)
j

[
r̄

(i)
j

[
d̃j

]]
+cj

(
d̃j

)
for any input setting

by sampling multiple candidate designs at a number of different input settings, com-

puting the variance of each sample, and fixing Var
[
E
R

(i)
j

[
r̄

(i)
j

[
d̃j

]]
+ cj

(
d̃j

)]
to

the mean of these variances; we then fix all covariances between expectations at

different input settings to be zero.

Sensitivity to trial design size When using this procedure, it is important to

assess the sensitivity of the result to the size of the Latin hypercube used in the

sampling procedure. Provided the trial design size M
(i)
j is large enough, increasing

the size of the trial design will not change the characteristics of the space being

targeted by the algorithm 3; however, a sample which is too large wastes computa-

tional effort. The size of the Latin hypercube that we need to generate is affected

by the dimensionality of the design space and our level of uncertainty about the risk

function within it. Determining this optimal Latin hypercube size, beyond which

March 22, 2018

3.4. Approximation of the backward induction calculation 122

there is no change in the sampled minimum characteristics, is generally a challenging

task.

Since the determination of the optimal sample size looks to be too challenging, we

instead plot the characteristics of the candidate design space D(i)
j for a number of

different sample sizes M
(i)
j and select a sample size which we feel represents an ad-

equate trade-off between computation time and stability of these characteristics. If

we double M
(i)
j and there is little change in the characteristics of the sampled d̃j

for a range of different {z[j−1], w[j−1], d[j−1]}, then we may choose to use the smaller

value of M
(i)
j , or to investigate using an even smaller value than this. However, if

doubling the sample size results in a noticeable change in the behaviour of the d̃j

values, then we should use the larger sample size, or if this looks to be infeasible,

investigate intermediate values for M
(i)
j .

3.4.9 Illustrative example: minimum sampling

We illustrate aspects of the procedure outlined in Section 3.4.8 through application

to the linear model example. First, we carry out a rough assessment of the size M
(1)
2

of the Latin hypercube of design inputs that we use to interrogate the emulator r̄
(1)
2

when running the algorithm 3. We do this by trying two different design sizes, 200

and 400, and comparing the characteristics of the resulting candidate design spaces.

We find that doubling the design size to 400 has little noticeable effect on the range

of values d̃2 which we sample, and so we choose to fix M
(1)
2 = 200, the smaller of the

two values. In a larger problem, we might also look at the effect of choosing an even

smaller trial design size; however, in this simple problem, it is not as critical that

we make every possible computational saving, and so we do not examine this further.

Figure 3.5 shows the expectations (3.4.17) and marginal variances (3.4.18) of s
(1)
2

[
z[1], d[1]

]
for a range of different values of z1 for fixed d1 = 0; the moments at each point are

assessed by evaluating the outer expectations and covariances in the expressions

(3.4.17) and (3.4.18) using 20 candidate designs generated according to the proce-

dure 3.

When running the approximate backward induction procedure at stage 1, we will

adopt the strategy outlined in Section 3.4.8 of using only a single candidate design

March 22, 2018

3.4. Approximation of the backward induction calculation 123

-1 -0.5 0 0.5 1

z
1

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

s 2(1
) [z

[1
],d

[1
]]

Figure 3.5: Plots of candidate minimum samples generated according to the proce-

dure in Section 3.4.8 for the linear model example (Section 3.4.9): the first stage

design is fixed to d1 = 0, and z1 is varied across the quantiles of the distribution

p
(
z1|d[1]

)
; 20 minimum samples are generated for each setting {z1, d1}, and the

resulting values of the moments (3.4.17) and (3.4.18) are shown. E
[
s

(1)
2

]
is shown

in blue, and error bars E
[
s

(1)
2

]
± 3× Var

[
s

(1)
2

]
1/2 are shown in dashed red.

sample to evaluate the moments (3.4.17) and (3.4.18) of s
(1)
2 for each setting of its

inputs {z[1], d[1]}. We use the single candidate design d̃2 to evaluate the expectation

(3.4.17) and the second term of the covariance (3.4.18) for each input setting, and we

fix the first term of (3.4.18) to be constant across the input space. We fix its value by

evaluating the expected risk surface E
R

(1)
2

[
r̄

(1)
2

[
d̃2

]]
+c2

(
d̃2

)
for 20 different candi-

date designs at each of 10 different settings of the inputs {z[1], d[1]}. We compute the

variance of the set of expectations for each of the 10 locations; the minimum variance

that we obtain is (0.0006)2, and the maximum is (0.0013)2. On this basis, we judge

that approximating this variance component as constant across the input space is

reasonable, and we fix all variances Var
[
E
R

(1)
2

[
r̄

(1)
2

[
d̃2

]]
+ c2

(
d̃2

)]
= (0.0008)2,

the mean of these variances. We set all covariances between expectation values at

different inputs to zero.

March 22, 2018

3.4. Approximation of the backward induction calculation 124

3.4.10 Stopping

Suppose that at wave i, we have run the algorithm back to stage k (1 ≤ k < n),

having already carried out the first (k − 1) experiments at design settings d[k−1],

observing {z[k−1], w[k−1]}; based on the information available in our emulator r̄
(i)
k , we

must either choose make an immediate decision a∗k−1 based on our current beliefs

about q, or choose to carry out the kth experiment at a particular setting of the

design parameters dk.

If we knew all risk functions exactly, this choice would be simple: we would just

compare ρtk−1 with ρ∗k, and if ρ∗k < ρtk−1, we would carry out the kth experiment

at d∗k; otherwise, we would make an immediate decision. However, since we are

uncertain about ρ∗k, we must make a choice which accounts for this uncertainty. Our

strategy is as follows: first, we determine the design that we would choose if we were

to carry out the kth experiment; then, we assess whether, at this setting, we would

commission the experiment or terminate; finally, we assess the maximum benefit

that we might expect to gain from another wave of the procedure 2.

Choosing a design First, we choose a design for the kth experiment; we denote

the design that we choose by d̂k, and we select the d̂k which minimises the sum of

our expectation of the risk and the design cost

d̂k = arg min
dk

[
E
R

(i)
k

[
r̄

(i)
k [dk]

]
+ ck (dk)

]
.

This optimisation problem is approximately solved either by using a suitable nu-

merical optimisation procedure, or by interrogating the mean and cost surface using

a large Latin hypercube of design inputs and selecting the setting which minimises

the surface over this set.

Choosing a course of action Having fixed d̂k, we must choose whether we

will actually perform the kth experiment; we make this choice by comparing our

expectation for the risk at d̂k with the risk from an immediate decision. If

E
R

(i)
k

[
r̄

(i)
j

[
d̂k

]]
+ ck

(
d̂k

)
< ρtk

March 22, 2018

3.4. Approximation of the backward induction calculation 125

then we carry out the kth experiment at design setting d̂k; otherwise, we opt for an

immediate decision, based on our current beliefs p
(
q|z[k−1], w[k−1], d[k−1]

)
.

Assessing the value of further waves Having identified the course of action

that we would take based on our current beliefs, we perform a simple assessment of

the maximum value that we could gain from running another wave of the procedure,

to learn more about the risks involved. If we knew the risk function r̄
(i)
k and the

optimal design setting d∗k, then the risk from an optimal course of action would be

min
[
ρtk−1, r̄

(i)
k [d∗k] + ck (d∗k)

]
.

Now suppose that, once we have used our emulator to decide what to do, we dis-

cover that d∗k is the true optimal design for this experiment; in this situation, our

expectation for the loss incurred by deciding to experiment at d̂k rather than at d∗k

is

v
(i)
k = min

[
ρtk−1,ER

(i)
k

[
r̄

(i)
k

[
d̂k

]]
+ ck

(
d̂k

)]
− E

[
min

[
ρtk−1, r̄

(i)
k [d∗k] + ck (d∗k)

]]
(3.4.19)

where the expectation of the second term is approximated by sampling candidate

designs d̃k as outlined in algorithm 3.

The quantity v
(i)
k is the expected value of perfect information (EVPI) for the risk

calculation. This is the amount that we expect to gain from exact knowledge of the

risk function; as such it constitutes an upper bound on the amount that we should

be willing to pay for further analysis of the risk function (as outlined in Section

2.2.2).

Suppose that the cost of another wave of analysis would be cwv(i+1)
. If cwv(i+1)

≥ v
(i)
k ,

then the cost of further analysis is greater than our expected gain from perfect

knowledge of the risk; the additional knowledge that we might gain about the risk is

not worth the amount that we would have to pay for it, and so we should just make a

decision based on our current beliefs about the risks. Alternatively, if cwv(i+1)
< v

(i)
k ,

then we must make a judgement about whether a further wave of analysis would

provide enough information to be worth its cost. Suppose that after the (i + 1)th

March 22, 2018

3.4. Approximation of the backward induction calculation 126

wave, we believe that the EVPI will be about E
[
v

(i+1)
k

]
; then if cwv(i+1)

< v
(i)
k −

E
[
v

(i+1)
k

]
, we believe that the next wave will be worth its cost.

In general, the cost cwv(i+1)
of the computational resources required for another wave

and our expectation E
[
v

(i+1)
k

]
for the EVPI after an additional wave may be difficult

to assess; we do not attempt to do so for either of our two examples (Sections 3.4.12

and 4). For E
[
v

(i+1)
k

]
, one strategy might be to make an approximate uncertainty

specification for the risk r̄
(i+1)
k and then assess the EVPI as above.

3.4.11 Choosing inputs for risk evaluations

When fitting the emulators as described in Section 3.4.3, we must select a set of

points {z[j]k, w[j]k, d[j]k} at which we evaluate the risk function to generate the data

R
(i)
jk ; naturally, we wish to do this in a way which provides the most useful infor-

mation about the risk. At the first wave of the analysis (i = 1), we have no prior

information about which design inputs are likely to be optimal, and so we simply

wish to select the design input settings in a way which provides good coverage of

the whole input space; at wave 1 therefore, we simply adopt the standard approach

of using a space-filling Latin hypercube design in dj (see, for example, Santner et al.

[2002]), and then generating corresponding wj and zj by sampling from the distri-

butions p
(
wj|w[j−1], d[j]

)
and p

(
zj|z[j−1], w[j], d[j]

)
.

At later waves, however, we have already fitted a sequence of emulators to the risk

functions, and so we have access to information which could be used to inform the

selection of the {z[j]k, w[j]k, d[j]k} at later stages. Specifically, we want to avoid eval-

uating the risk at points that we have already established are unlikely to be reached;

that is, points dj where it is unlikely that the risk ρ∗j from future sampling will be

preferable to the risk ρtj−1 from stopping and making a decision now. We therefore

adopt the following design procedure for the later waves of analysis:

Wave i = 2, 3, . . . : At later waves, design inputs dj must satisfy both of the

following criteria to be selected for the risk emulator:

� They are candidate designs d̃j (sampled as in Section 3.4.8) for the current

setting of {z[j−1], w[j−1], d[j−1]}.
March 22, 2018

3.4. Approximation of the backward induction calculation 127

� They satisfy the following criterion (for j > 1)

P
(
r̄

(i−1)
j

[
z[j−1], w[j−1], d[j]

]
+ cj (dj) ≤ ρtj−1

[
z[j−1], w[j−1], d[j−1]

])
≥ 0.05 .

That is, there is a greater than 5% chance that, under this setting of dj, we

would choose to perform the experiment at stage j (under our beliefs about

r
(i−1)
j at wave (i − 1)). While we do not have a full probabilistic description

of r
((i−1))
j , the three-sigma rule of Pukelsheim [1994] allows us to derive an

approximately equivalent second-order rule

E
[
r̄

(i−1)
j

[
z[j−1], w[j−1], d[j]

]]
+ cj (dj) − ρtj−1

[
z[j−1], w[j−1], d[j−1]

]
[
Var

[
r̄

(i−1)
j

[
z[j−1], w[j−1], d[j]

]]]1/2 ≤ 3 .

(3.4.20)

After having generated design inputs which are likely to be informative, we complete

the input set needed to run the risk by sampling wj and zj from p
(
wj|w[j−1], d[j]

)
and p

(
zj|z[j−1], w[j], d[j]

)
respectively.

If, after exploring the space, we can find no design inputs which satisfy the above

criteria, then (provided we are happy with our previously fitted emulators) this

suggests that we will never choose to continue experimenting as far as stage j,

under any settings of the inputs at the previous stages. This is an indication that

we may want to re-think the specification of our original decision problem. If we

no longer believe that we will ever carry out the experiments beyond stage j, then

we should remove these from consideration, and solve only the resulting, simpler

backward induction problem. Alternatively, if the option is open to us, we may

want to replace the experiments that we were originally considering at stages j and

above with cheaper and/or more informative alternatives, which we may actually

deem worth performing.

3.4.12 Illustrative example, wave 1: remaining steps

Finally in this section, we complete our analysis of the simple, linear model example

first introduced in Section 3.4.2, and discussed in Sections 3.4.5 3.4.7 and 3.4.9. In

Section 3.4.9, our final action was to determine the procedure that will be used to

March 22, 2018

3.4. Approximation of the backward induction calculation 128

characterise uncertainty about s
(1)
2 ; in this Section, we begin our analysis of the risk

function at the first stage (j = 1) of the design problem, for the first wave (i = 1)

of the analysis.

Stage j = 1 First, we select the basis and covariance functions that we will use

at this stage. Again, we relate our basis function specification to the risk itself; we

choose a two-element basis, with h
(1)
11 = 1, and

h
(1)
12

(
z[1], d[1]

)
= min

[
ρt1
[
z̃[1], d[1]

]
,E

R
(1)
2

[
r̄

(1)
2

[
z̃[1], d̄[2]

]]
+ c2

(
d̄2

)]
where z̃[1] = E [z1|d1] , and d̄[2] = {d1, d̄2}, where d̄2 is a fixed, user-specified setting

of the design parameter at stage 2 which is close to optimal for a wide range of

input settings {z[1], d[1]}. We fix d̄2 = 0.68 on the basis of output from the candidate

design sampler.

For the covariance function, we opt for the same, separable, squared exponential

form

Cov
[
r

(1)
1

[
z[1], d[1]

]
, r

(1)
1

[
z′[1], d

′
[1]

]]
= v

(1)
1 c (d1, d

′
1|λd) c (z1, z

′
1|λz)

where v
(1)
1 is the marginal variance of the residual, and c (., .|λ) is a squared expo-

nential correlation function (Appendix B.1).

Having specified these functions, we fit the emulator. When generating data for

the update, we cannot evaluate R
(1)
1 exactly because of our uncertainty about s

(1)
2 .

As outlined in Section 3.4.4, we instead assess E
[
R

(1)
1k

]
and Cov

[
R

(1)
1k , R

(1)
1l

]
for

each of the risk evaluations by evaluating ρt1
[
z[1]k, d[1]k

]
, E

[
s

(1)
2

[
z[1]k, d[1]k

]]
and

Cov
[
s

(1)
2

[
z[1]k, d[1]k

]
, s

(1)
2

[
z[1]l, d[1]l

]]
for all input settings, assuming a multivariate

Gaussian distribution for s
(1)
2 and assessing the moments of the expression (3.4.16)

by sampling.

We fit the risk model r
(1)
1 as outlined in Section 3.4.4. First, we perform a regres-

sion using a set of 200 risk evaluations; using the output from this regression, we

fix E
[
α

(1)
11

]
= 0.0832 and E

[
α

(1)
12

]
= 0.611, with Var

[
α

(1)
11

]
= (3.11 × 10−6)2 and

Var
[
α

(1)
12

]
= (1.60 × 10−5)2. Using the residuals from the regression, we fix the

marginal variance of the residual component to v
(1)
1 = (0.0178)2. We carry out the

cross validation in the same way as described in Section 3.4.5, fixing the correlation

March 22, 2018

3.4. Approximation of the backward induction calculation 129

parameters {λd , λz} of the covariance function to the setting from a Latin hypercube

of such points which minimises the sum of predictive log-Gaussian likelihoods.

Lastly at this stage, we integrate our emulator as detailed in Section 3.4.6. As at

the second wave (Section 3.4.7), because we were careful to eliminate dependence

of the basis functions on z1, integrating these is simple; we have that h̄
(1)
1p = h

(1)
1p for

p = 1, 2. Also, since we have chosen an equivalent form for the covariance function,

we integrate with respect to p (z1|d1) in the same way as we integrated with respect

to p
(
z2|z[1], d[2]

)
in Section 3.4.7. The moments of the emulator r̄

(1)
1 for the expected

risk are plotted in Figure 3.6.

Stopping Now that we have completed the approximate backward induction pro-

cedure 2 for this problem, we assess the results and determine what we should do

next, as outlined in Section 3.4.10. First, we identify what we would do if we were to

continue experimenting; we interrogate the expected risk surface E
R

(1)
1

[
r̄

(1)
1 [d1]

]
+

c1 (d1) at a Latin hypercube of 2000 design settings, and fix d̂1 = −0.018 to the

setting which minimises the risk over these points. At this point, our expected risk

is E
R

(1)
1

[
r̄

(1)
1

[
d̂1

]]
+ c1

(
d̂1

)
= 0.2520, with Var

R
(1)
1

[
r̄

(1)
1

[
d̂1

]]
= (0.0006)2. We

compare this with the risk ρt0 = 0.635 from an immediate decision based on our

prior beliefs; since we are extremely confident that E
R

(1)
1

[
r̄

(1)
1

[
d̂1

]]
+ c1

(
d̂1

)
< ρt0,

we conclude that based on this analysis, we should perform the first experiment at

d̂1.

We now compute the expected value of perfect information v
(1)
1 for the risk calcula-

tion, to help us assess whether another wave of our procedure would be appropriate.

The EVPI is computed as in equation (3.4.19), where the expectation of the second

component is approximated by sampling candidate designs as in Algorithm 3. Based

on a sample of 200 candidate designs, we find that v
(1)
1 = 0.0011. Given that this

only a small fraction (around 0.4%) of the risk from the experiment that we would

carry out, the potential gains from further analysis are relatively small, so unless

our computer resources were cheap, it is unlikely that we would carry out another

wave of analysis for this problem. We do not attempt to assess the cost of analysis

here, and we opt to carry out a further wave of analysis to illustrate the procedure.

March 22, 2018

3.4. Approximation of the backward induction calculation 130

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

d
1

0.245

0.25

0.255

0.26

0.265

0.27

0.275

0.28

0.285

r 1(1
)

Figure 3.6: Plot of the beliefs about r̄
(1)
1 [.] after wave 1 of the algorithm; E

R
(1)
1

[
r̄

(1)
1

]
is shown in solid blue, and error bars E

R
(1)
1

[
r̄

(1)
1

]
± 3 × Var

R
(1)
1

[
r̄

(1)
1

]
are shown in

dashed red. 200 candidate designs (generated according to algorithm 3) are shown

in black.

As an additional diagnostic tool, we plot the risk profile of the procedure conducted

according to these fitted emulators; designing the first experiment at d̂1, we generate

z1 from p (z1|d1) and then use our fitted emulators to choose between performing the

second experiment at d̃2 (generated using the procedure 3) and making an imme-

diate decision. We compute the actual terminal risk from each of the experimental

procedures that we generate, and we plot the density of these risks. Figure 3.7(a)

shows the density of a sample of 100 risks sampled in this way (generated using the

‘ksdensity’ function in Matlab), and Figure 3.7(b) shows the corresponding cumu-

lative density.

3.4.13 Illustrative example, wave 2

Stage j = 2 Our first task at this wave is to fit the emulator r
(2)
2 inside the

candidate design spaces from the first wave. To reduce the computational burden

presented by the second wave, we characterise the candidate design spaces D(1)
1 and

D(1)
2 by generating a single set of 200 pairs of candidate designs {d̃1, d̃2} using the

procedure 3, and restricting the designs that we generate for the fit at this wave to

lie between the minimum and maximum values in the sample; this way, we restrict

d1 ∈ [−0.31, 0.23] and d2 ∈ [−0.76, 0.76] at this wave.

March 22, 2018

3.4. Approximation of the backward induction calculation 131

0.22 0.24 0.26 0.28 0.3 0.32 0.34

1

0

10

20

30

40

50

60

70

80

90

100

p(
1
)

(a)

0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33

r
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(

1
<

r 1
)

(b)

Figure 3.7: Risk profile for the experimental design procedure that begins with an

experiment performed at d̂1: Figure 3.7(a) shows the approximate density of the

resulting risks, and Figure 3.7(b) shows the approximate cumulative distribution

function. Both plots were generated using 100 sampled trajectories, and the density

was estimated using the Matlab function ‘ksdensity’.

We judge that the basis and covariance functions that we used at the previous wave

to have performed well, and so we use the same choices at this wave (for details,

see Section 3.4.5). As in Sections 3.4.4 and 3.4.5, we fix the prior specification

using an initial linear regression. We generate 200 evaluations of ρt2 for this regres-

sion, and based on the parameter estimates, we fix E
[
α

(2)
21

]
= −2.29 × 10−5 and

E
[
α

(2)
22

]
= 1.08, with Var

[
α

(2)
21

]
= (2.02 × 10−7)2 and Var

[
α

(2)
22

]
= (4.34 × 10−6).

Based on the residuals from this regression, we fix the marginal variance of the

residual process to be v
(2)
2 = (0.0125)2. The usual leave-one-out cross-validation

procedure is run, testing each point in a Latin hypercube of 2000 correlation param-

eter settings {λd , λz} and keeping the one which performs best. 200 risk evaluations

are used for the cross-validation and joint regression-residual update, and a further

100 are used for model checking after the fit.

Since we have used the same basis and covariance functions at this wave, the mo-

ments of r̄
(2)
2 are also computed in the same way as at wave 1; for details of this

calculation, see Section 3.4.7.

March 22, 2018

3.4. Approximation of the backward induction calculation 132

Stage j = 1 Moving back to the first stage of the calculation, the first thing that

we must do is set up our procedure for assessing the moments (3.4.17) and (3.4.18)

of the risk s
(2)
2 (see Section 3.4.8). Again, this is done in the same way as for the first

wave (Section 3.4.9). We fix the size of our trial design set for the candidate design

sampling procedure 3 to be M
(2)
2 = 200, on the basis that this size worked well

over a larger design space at the first wave. We then generate 20 candidate designs

at each of 10 input settings, and fix the first component of the covariance (3.4.18)

to Var
[
E
R

(1)
2

[
r̄

(1)
2

[
d̃2

]]
+ c2

(
d̃2

)]
= (0.0007)2, the average of the variance in the

expectation across these input settings. All covariances between expectations at

different input settings are set to zero.

Again, we use the same basis and covariance function specification for this stage at

this wave as we did at wave 1. All risk moments for the fit are generated by sampling

(3.4.16), using a multivariate Gaussian to draw samples of s
(1)
2 (see Section 3.4.12 for

more detail), and we use the same basis and covariance functions as at the first wave.

We generate 200 risk evaluations for the initial regression, fixing E
[
α

(2)
11

]
= 0.265

and E
[
α

(2)
12

]
= −0.349, with Var

[
α

(2)
11

]
= (1.09× 10−4)2 and Var

[
α

(2)
12

]
= (5.74×

10−4)−2; the residuals from the regression are used to fix the marginal variance of the

residual to v
(2)
1 = (0.0156)2. 2000 possible correlation parameter settings {λd , λz}

(generated according to a Latin hypercube) are compared using the usual cross-

validation procedure, and these parameters are fixed to the best setting for the joint

update. After performing the joint update, a further 100 risk evaluations are used

for model checking.

Since the basis and covariance functions used at this wave are the same as those

used at wave 1, the moments of the expected risk r̄
(2)
1 are also computed in the same

way as before; see Sections 3.4.7 and 3.4.12 for further details.

Stopping Having run the second wave, we re-run the steps outlined in Section

3.4.10 to determine what we should now do. First, we interrogate the mean surface

E
R

(1)
1

[
r̄

(1)
1 [d1]

]
+ c1 (d1) at a Latin hypercube of 2000 design settings, and fix d̂1 =

0.103 to the setting which minimises the risk over these points. At this point, we

have E
R

(1)
1

[
r̄

(1)
1

[
d̂1

]]
+ c1

(
d̂1

)
= 0.252 and Var

R
(1)
1

[
r̄

(1)
1

[
d̂1

]]
= (0.0002)2.

March 22, 2018

3.4. Approximation of the backward induction calculation 133

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

d
1

0.25

0.2505

0.251

0.2515

0.252

0.2525

0.253

0.2535

0.254

0.2545

0.255

r 1(1
)

Figure 3.8: Plot of the emulators for r̄
(i)
1 [.] resulting from both waves i = 1, 2 of

the analysis; the solid blue line shows E
R

(1)
1

[
r̄

(1)
1

]
, and the dashed red lines show

the error bars E
R

(1)
1

[
r̄

(1)
1

]
± 3Var

R
(1)
1

[
r̄

(1)
1

]
1/2; the corresponding means and error

bars from wave 2 are shown in green and magenta respectively. Candidate designs

d̃1 generated from the emulator at the second wave are shown as cyan markers.

We again compute the EVPI for the risk calculation, to help us assess the value of

further computation. By evaluating the expectation of the second term in (3.4.19) by

generating 200 candidate designs d̃1 using algorithm 3, we assess that v
(2)
1 = 0.0001

after this wave. There has been a small reduction in the EVPI value between waves

1 and 2, owing to a reduction in our uncertainty about the risk within the candidate

design space (as demonstrated in Figure 3.8). As before, whether we choose to carry

out further analysis based on this value depends on the relative cost of the computer

resources required; for the purposes of illustrating the algorithm, however, we stop

here.

In Figure 3.9, we plot the risk profile for the second wave of the analysis, again using

100 risks from experimental trajectories sampled as outlined in Section 3.4.12. We

see by comparing Figures 3.7 and 3.9 that the distribution of risks that we might

expect from designing experiments according to our fitted emulators has changed

little between waves of analysis.

March 22, 2018

3.4. Approximation of the backward induction calculation 134

0.22 0.24 0.26 0.28 0.3 0.32 0.34

1

0

5

10

15

20

25

30

35

40

45

50

p(
1
)

(a)

0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32

r
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(

1
<

r 1
)

(b)

Figure 3.9: Risk profile plot for the second wave of the analysis, for a procedure which

begins with an experiment at d̂1: Figure 3.9(a) shows the approximate density, and

Figure 3.9(b) shows the approximate cumulative density. Both plots were generated

using the same sample of 100 trajectories.

March 22, 2018

Chapter 4

Example: atmospheric dispersion

problem

In this section, we apply the approximate backward induction procedure to a more

complex example, in which we must estimate the locations and emission rates of a

particular gas species using concentration measurements obtained from an airbourne

sensor. In this problem, the forward model has a more complex dependence on its

input parameters, and the design and data spaces are much higher dimensional.

In Section 4.1.1, we set up the forward model for this problem by combining the

Gaussian plume model introduced in Section 1.1.3 with a parametric form for the

flight path of the plane. Then, in Section 4.1.2, we present the decision problem

that we will solve, and outline the calculations that we will need to perform in

order to adjust our prior beliefs about the model parameters. Then in Section

4.2, we run algorithm 2 for a three-stage version of this problem, discussing the

results of our analysis. Finally, in Section 4.3, we consider some of the practical

difficulties encountered, and outline future work which we feel would be helpful

in overcoming these issues. Some of the code used to implement this example is

supplied in Appendix E.

135

4.1. Atmospheric dispersion problem 136

4.1 Atmospheric dispersion problem

We now consider the application of the sequential design algorithm from Section

3.4 to a more complex atmospheric modelling problem. The forward model in this

problem links gas emission rates at a grid of points on the ground to concentration

measurements made on the flight path of an aircraft flown above the region using

the Gaussian plume outlined in Section 1.1.3. The observations made by the aircraft

are then to be used to make decisions about the source emission rates on the ground.

Since the flights are costly, we want to have the ability to re-evaluate our state of

information after each data set has been obtained, and to stop sampling if it is

unlikely that any further flights will provide enough of a reduction in the risk to

offset their cost.

In Section 4.1.1, we set up our model for the observed concentration data. Then, in

Section 4.1.2, we introduce a parametrisation for the flight paths in terms of a small

number of key parameters and combine this with our model for the individual data

points and introduce the decision problem that we will solve using our posterior

beliefs. Then, in Section 4.2, we run the approximating algorithm for a 3-stage

problem, and interpret the results.

4.1.1 Forward model

Our model for the observed concentration data is based on the Gaussian plume

outlined in Section 1.1.3; the contribution made by a set of sources g = {g1, . . . , gnψ}

with corresponding emission rates ψ = {ψ1, . . . , ψnψ} to the concentration at a

location x under wind conditions w is assumed to be

u (x, g, ψ, w) =

nψ∑
j=1

a (ω(x, gj, w), gj, w)ψj

where the wind-projected distances ω(.) and the Gaussian plume coupling coeffi-

cients a (.) are computed as in Section 1.1.3. The source locations {gj} are fixed at

the centres of a grid at ground level within a rectangular domain, and we seek to

estimate the emission rates {ψj} associated with each location.

Each flight path is assumed to be composed of a series of nfl straight lines, parametrised

March 22, 2018

4.1. Atmospheric dispersion problem 137

in terms of a set of five design variables d, where:

� {dx, dy} (metres) determine the centre of the flight path in the horizontal plane;

� dh (metres) determines the altitude of the aircraft for the whole data-collection

period of the flight;

� dw (metres) determines the length of each flight line;

� dd (metres) determines the distance between the flight-lines.

We also specify the cruising speed of the observing aircraft, and the frequency with

which the measuring equipment mounted on the plane will record data; based on

this information, a deterministic mapping xp = ξp (d) then determines the relation-

ship between this 5-dimensional parametrisation of each flight and the 3-dimensional

spatial locations of the observations that will actually be collected.

Combining this description of the flight path with the representation of the concen-

tration observations, and identifying the model parameters q = ψ with the emission

rates, we obtain our model for the data {zk} observed at d

zk =

nψ∑
l=1

Akl (w, d) ql + εk (4.1.1)

where the {εk} are measurement error terms, which are assumed to be independent of

the parameters q and all other inputs, and the Akl (w, d) = a (ω(ξk (d) , gl, w), gl, w)

are the components of a coupling matrix which links the emission rates to the ob-

served data. We make an uncertainty specification for {q, ε} in Section 4.1.2.

4.1.2 Decision problem and belief adjustment

Decision problem We combine this model for the concentration with a specifica-

tion for the decision problem that we will solve using our posterior beliefs; we specify

that we make a decision about each individual source, and that our loss function

decomposes into a sum of losses corresponding to each individual decision

L (q, a) =

nψ∑
k=1

lk (qk, ak)

March 22, 2018

4.1. Atmospheric dispersion problem 138

where we specify that each of the individual components of the loss function is a

weighted quadratic loss (Section 3.1.1)

lk (qk, ak) = γ (qk) (qk − ak)2 .

The optimal decision a∗ is found by choosing the decision which minimises each

individual component of the loss; recall from Section 3.1.1 that each optimal decision

is

a∗k =
1

E [γ (qk)]
E [γ (qk) qk] .

After observing z[j] (at {w[j], d[j]}) and computing our posterior beliefs about qk, the

terminal risk from an optimal decision is made up of corresponding individual risk

components

ρtj
[
z[j], w[j], d[j]

]
=

nψ∑
k=1

ρtjk
[
z[j], w[j], d[j]

]
where

ρtjk
[
z[j], w[j], d[j]

]
= E

[
γ (qk) q

2
k

]
− 1

E [γ (qk)]
E [γ (qk) qk]

2 (4.1.2)

where the expectations are computed using the posterior marginal distributions

p
(
qk|z[j], w[j], d[j]

)
.

In this problem, the cost of the observations is determined by the cost of the flying

the plane (e.g. fuel, rental, manpower). Instead of attempting to work out the

exact length of the flight path (which we would almost certainly get wrong, since

the actual path taken will depend on the atmospheric conditions on the day), we

use a simple approximation to its length, comprising the length of the return trip

to the centre of the flight path and the horizontal distance flown during the survey.

In terms of the 5-dimensional parametrisation of the flight path introduced earlier,

the cost of a flight is

c (d) = cst + cfl

[
2
(
(dx − x(0)

x)2 + (dy − x(0)
y)2

)1/2
+ (nfl − 1)dd + nfldw

]
where cfl is the cost per metre of the flight path, x(0) is the location of the airport at

which the aircraft will take-off and land, and cst is a constant set-up cost. The cost of

a flight is assumed to be the same for all stages of the problem, i.e. cj (dj) = c (dj) .

March 22, 2018

4.1. Atmospheric dispersion problem 139

Inference A number of different fully probabilistic prior specifications could be

used for this model. At the simplest level, we could assume a multivariate Gaussian

prior distribution for the emission rates; if we were to do this, the linear forms of

all of the relationships specified in Section 4.1.1 would mean that we could simply

make a joint Gaussian specification for all components (conditional on any correla-

tion parameters and marginal variances for the discrepancy and measurement error

terms), marginalise over the discrepancy and the error distributions and compute

our posterior beliefs about q, resulting in another multivariate Gaussian.

Hirst et al. [2013] raise a number of issues with this approach. First, the use of a

multivariate Gaussian distribution does not constrain the source emission rates to

be positive; an emission rate qk < 0 would correspond to a gas sink (which absorbs

gas from the atmosphere), and while this is physically possible, we do not believe

that there are likely to be any sinks within a typical survey area. Additionally, we

expect sources of gas to be localised. We do not expect low emissions from a wide

range of ground locations; rather, we expect larger emission rates from a smaller

number of constrained areas.

Procedures exist for imposing these characteristics on sources. Hirst et al. [2013] use

a model with an unknown number of circular sources with fixed radii, with a prior

uniform distribution for the emission rates which imposes that qk ≥ 0; however, since

we do not know the number of sources in the domain, this must be estimated from

the observed data using a reversible jump MCMC scheme (Green [1995]), alongside

all of the other components of the model. The need to use such a computationally

expensive MCMC scheme for inference would make the algorithm in Section 3.4

computationally infeasible. Indeed, even imposing the positivity requirement for

the emission rates within a probabilistic framework would remove tractability and

introduce the need for a large MCMC scheme for inference.

For the purposes of the design calculation, we opt instead to make a second-order

specification for each of the model components in 4.1.1 and to carry out inference by

performing a Bayes linear adjustment upon observation of the data; we impose the

positivity requirement for emission rates by simply setting any emission rates for

which qk < 0 to zero before computing the corresponding risk. While this second-

March 22, 2018

4.1. Atmospheric dispersion problem 140

order specification does not capture our beliefs about localisation and positivity, it

gives a simple characterisation of our uncertainty, which we believe will be sufficient

for assessment of suitable designs.

Using (4.1.1), our model for the components of the data zj = {zj1, . . . , zjnzj } ob-

served at experiment j at design setting dj, under external conditions wj (the wind

field at stage j) is

zjl =

nψ∑
p=1

Alp (wj, dj) qp + εjl .

We make a second-order prior specification for the emission rates and the measure-

ment error terms, consisting of components E [qp] , Cov [qp, qq] and Var [εjk] (the εjk

are assumed to be uncorrelated with each other); re-introducing the Einstein sum-

mation convention, our corresponding second-order prior specification for the data

is then

E [zjl] = Alp (wj, dj) E [qp]

Cov [zjl, zkr] = Alp (wj, dj) Cov [qp, qt]Art (wk, dk)

+ Cov [εjl, εkr] .

After observing the data z[j] = {z1, . . . , zj} from the first j experiments, we adjust

our beliefs about the emission rate parameters q as follows

Ez[j] [qp] = E [qp] + Cov [qp, ztu] Var
[
z[j]|w[j], d[j]

] −1
tuvw

[
zvw − E [zvw]

]
Covz[j] [qp, qr] = Cov [qp, qr] − Cov [qp, ztu] Var

[
z[j]|w[j], d[j]

] −1
tuvwCov [zvw, qr]

where the covariances between the data and the model parameters are

Cov [qp, zjl] = Cov [qp, qt]Alt (wj, dj) .

We use these adjusted moments to evaluate the components (4.1.2) of the risk func-

tion; where evaluating these components requires the specification of higher-order

moments, we obtain these from a Gaussian distribution characterised by our ad-

justed expectation and variance.

March 22, 2018

4.2. Running the algorithm 141

For the remainder of this chapter, we fix our prior expectations and covariances for

the emission rates as follows, corresponding to the mean and covariance specifica-

tions for a log-Gaussian distribution

E [qp] = exp (µp)

E [qp, qr] = exp
(
µp + µr +

1

2

(
Σpp + Σrr

))(
exp

(
Σpr

)
− 1
)

where µp = −4, and

Σpr = (22) exp
(
− 1

2(10002)
(gp − gr)2

)
.

Additionally, we fix Var [εjp] = (1× 10−8) for all measurement error terms.

Figure 4.1 shows a set of expected concentrations generated under this model for

fixed q, and the corresponding inference; Figures 4.1(a) to 4.1(c) show the expected

concentrations generated at an altitude of 200 metres by the sources located at

the magenta markers (both of which have a true emission rate of qp = 1) under

three different wind vectors (indicated by the black arrows), alongside flight paths

which are used to collect data in each instance. Figures 4.1(d) and 4.1(e) show

our adjusted expectations Ez[j]

[
q|w[j], d[j]

]
and variances Varz[j]

[
q|w[j], d[j]

]
for the

source emission rates given the data observed on the displayed flight paths.

4.2 Running the algorithm

Using the model and decision problem specifications outlined above, we run the

algorithm outlined in Section 3.4 for a three-stage version of the problem; we may

commission a maximum of 3 flights over the survey area, and we wish to determine,

after the data from each flight has been analysed, whether we should pay for another

one, or stop and make a decision using the data the we have already obtained.

Parameter specification: For this run of the algorithm, we fix the source domain

to be the box [0, 5000]× [0, 5000], and we impose an even 10× 10 grid of locations

{gk}. We fix the limits of the design space as follows:

dx ∈ [0, 5000] dh ∈ [100, 300] dd ∈ [100, 500]

dy ∈ [0, 5000] dw ∈ [500, 1000] .

March 22, 2018

4.2. Running the algorithm 142

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Eastings (m)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
N

or
th

in
gs

 (
m

)

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Eastings (m)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

N
or

th
in

gs
 (

m
)

(b)

0 1000 2000 3000 4000 5000

Eastings (m)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

N
or

th
in

gs
 (

m
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

E
[z

j]

10-6

(c)

0 1000 2000 3000 4000 5000

Eastings (m)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

N
or

th
in

gs
 (

m
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
z [j]

[q
]

(d)

0 1000 2000 3000 4000 5000

Eastings (m)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

N
or

th
in

gs
 (

m
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

V
ar

z [j]

[q
]1/

2

(e)

Figure 4.1: Expected concentrations E [z] at an altitude of 200 metres for the sources

located at the magenta markers (colour scales in Figures 4.1(a) to 4.1(c)), under wind

conditions indicated by the black arrows, and the corresponding adjusted moments

Ez[j] [q] (Figure 4.1(d)) and Varz[j] [q] 1/2 (Figure 4.1(e)) for the source emission rates

given data z[j] observed on the flight paths shown.

March 22, 2018

4.2. Running the algorithm 143

That is, we allow the flight path to be centred at any point vertically above the

source domain, between 100 and 300 metres above ground, and we allow the length

of an individual flight line to vary between 500 and 1000 metres, with between 100

and 500 metres between flight lines. We specify that an aircraft will carry out 5

flight lines, and that it will make 20 observations along the length of each flight line.

We specify that our beliefs about the wind field are different at each stage of the

problem (all units are m/s):

� at stage j = 1, (wx, wy) ∈ [−3,−2]× [2, 3];

� at stage j = 2, (wx, wy) ∈ [2, 3]× [−3,−2];

� at stage j = 3, (wx, wy) ∈ [−3,−2]× [−3,−2].

We do not impose a dependence of the distribution of winds on the flight-path design,

and we specify an independent uniform distribution for each individual component

of the wind at each stage, so

p (wj|dj) = p (wj) = p (wjx) p (wjy) = U ([ljx, ujx])U ([ljy, ujy])

where the limits ljx, ujx etc are specified above.

Finally, we specify the components of the decision problem. For the flight costs,

we specify cfl = 1 × 10−4 and cst = 2, and for the weighting for the quadratic loss

function, we choose

γ (q) = 2 .

Having specified all of these components, we are ready to run the algorithm. In

Section 4.2.1, we outline the basis and covariance function specifications that we use

for our risk emulators. Then, in Section 4.2.2, we provide details relating to the first

wave of analysis, and in Section 4.2.3, we provide details relating to a second wave.

4.2.1 Basis and covariance functions

The basis and covariance function specifications that we use are common across both

waves; we provide details relating to both in this section.

March 22, 2018

4.2. Running the algorithm 144

Basis functions For all risk functions, we use two basis functions; the first is an

intercept term h
(i)
j1 = 1, and the second is related to our current beliefs about the

risk. At the final stage (j = n = 3), we choose

h
(i)
n2

(
z[n], w[n], d[n]

)
= ρtn

[
z̃[n], w̃[n], d[n]

]
so that the basis function is the terminal risk with the inputs z[n] and w[n] replaced

with z̃[n] = {z1, z2,Ez[2]

[
z3|w̃[3], d[3]

]
} and w̃[n] = {w1, w2,E [w3] }. At stages j = 1, 2,

we set

h
(i)
j2

(
z[j], w[j], d[j]

)
= min

[
ρtj
[
z̃[j], w̃[j], d[j]

]
,E

R
(i)
j+1

[
r̄

(i)
j

[
z̃[j], w̃[j], d̄[j+1]

]]
+ cj+1

(
d̄j+1

)]
where z̃[j] and w̃[j] are defined in the same way as above, replacing zj and wj with

their expectations, and d̄[j+1] = {d1, . . . , d̄j+1}, where d̄j+1 is a design parameter

setting which we fix to a value that we believe will be close to optimal for a wide

variety of different input settings {z[j], w[j], d[j]}.

These forms for the basis functions have been carefully selected so that they have no

dependence on the inputs {zj, wj} over which we must integrate. When computing

the moments of r̄
(i)
j (as outlined in Section 3.4.6), we simply have that h̄

(i)
j1 = h

(i)
j1

and h̄
(i)
j2 = h

(i)
j2 .

For this example, the use of the above risk function greatly improves the ability

of the fitted emulator to capture the non-linear and interacting behaviour of the

risk, compared with the use of a traditional polynomial basis. The alteration of

the input terms to remove dependencies on any inputs that we must integrate over

allows us to build a regression surface which captures a substantial amount of the

global behaviour of the risk, while still retaining the ability to compute integrals of

the adjusted emulator moments in closed-form.

Covariance functions Because of our choice of a constant weight function for the

loss, none of the risk functions depend on the data z[j]; for our covariance functions,

March 22, 2018

4.2. Running the algorithm 145

then, we choose the following separable form for all waves i and stages j

Cov
[
u

(i)
j

(
z[j], w[j], d[j]

)
, u

(i)
j

(
z′[j], w

′
[j], d

′
[j]

)]
= v

(i)
j

j∏
k=1

[[5∏
p=1

c
(
djp, d

′
jp|λ

(i)
dp

)][2∏
p=1

c
(
wjp, w

′
jp|λ(i)

wp

)]]
where c (., .|λ) is a scalar squared exponential (SE) correlation function (see Ap-

pendix B.1) with correlation parameter λ, v
(i)
j is the marginal variance of the process

at the jth stage and ith wave, and λ
(i)
dp

is the correlation parameter corresponding to

the design parameter djp for all stages j at wave i. As discussed in Section 3.4.4, for

each emulator fit, the marginal variance of the residual process is fixed to the vari-

ance of the residuals from the initial regression fit, and the correlation parameters

are fixed using leave-one-out cross-validation.

After fitting each emulator r
(i)
j , we use this to compute beliefs about the expecta-

tion r̄
(i)
j of the risk; in order to compute the moments outlined in Section 3.4.6, we

must integrate this covariance function with respect to p (wj) . As outlined at the

start of Section 4.2, the external parameter components are independently uniformly

distributed at each stage, and so we have that

Cov
[
ū

(i)
j

(
z[j−1], w[j−1], d[j]

)
, u

(i)
j

(
z′[j], w

′
[j], d

′
[j]

)]
= v

(i)
j

j∏
k=1

[[5∏
p=1

c
(
djp, d

′
jp|λ

(i)
dp

)][2∏
p=1

c̄
(
w′jp|λ(i)

wp

)]]
and that

Cov
[
ū

(i)
j

(
z[j−1], w[j−1], d[j]

)
, ū

(i)
j

(
z′[j−1], w

′
[j−1], d

′
[j]

)]
= v

(i)
j

j∏
k=1

[[5∏
p=1

c
(
djp, d

′
jp|λ

(i)
dp

)][2∏
p=1

¯̄c
(
λ(i)
wp

)]]
.

The functions c̄
(
.|λ(i)

wp

)
and ¯̄c

(
λ

(i)
wp

)
are computed by integrating the SE function

as outlined in Appendix B.1.2.

4.2.2 First wave

In this section, we run a first wave of the procedure outlined in Section 3.4, providing

details of the emulator fits and discussing the results. At all stages j = 1, 2, 3,

March 22, 2018

4.2. Running the algorithm 146

the fitted risk emulator is checked against an additional set of risk evaluations to

ensure that fewer than 5% of the new points lie outside the three-standard deviation

predictive error bars generated by the emulator.

Stage j = 3 We follow the general emulator fitting procedure outlined in Section

3.4.4; this being the final stage, the data R
(1)
3 for the emulator update are generated

directly from the terminal risk (equation (3.3.6)), which can be evaluated quickly as

outlined in Section 4.1. We generate 200 risk evaluations for the initial regression,

500 for the joint adjustment of the regression surface and the residual component,

and 100 for post-fit checking of our emulator. Performing the initial regression,

we find that E
[
α

(1)
31

]
= 0.535 and E

[
α

(1)
32

]
, with Var

[
α

(1)
31

]
= (2.5 × 10−3)2 and

Var
[
α

(1)
32

]
= (2.8 × 10−5)2. Using the residuals from this regression surface, we fix

Var
[
u

(1)
3

]
= v

(1)
3 = (2.09)2.

Next, we determine the correlation parameters for the covariance function using

leave-one-out cross validation. We treat the regression surface as fixed at its mean

level, and subtract these mean predictions from the risk evaluations; the cross-

validation procedure is then run for these regression-subtracted values. We compare

the quality of the prediction for each individual point using the fit to the remainder

for a Latin hypercube of 2000 {λ(i)
d , λ

(i)
w } values, using the sum of predictive log-

Gaussian likelihoods as our criterion for the comparison. We fix the correlation

parameters to the best performing setting. Having fixed the correlation parameters,

we are in a position to be able to compute adjusted moments for new input settings,

as outlined in Section 2.2.2. The fitted emulator is checked against the 100 additional

points generated earlier.

Two sets of predictions from the fitted emulator are shown in Figures 4.2 and 4.3;

in both figures, the risk is predicted at a grid of (d3x, d3y) values for fixed settings

of the flight design at stages 1 and 2. We use a different setting of (d1x, d1y) (flight

path shown in black markers) and (d2x, d2y) (magenta markers) in each Figure. In

Figure 4.2, the chosen designs are downwind of the majority of sources in both cases,

so the observations that we make cause a substantial reduction in our uncertainty,

resulting in lower risks; however, in Figure 4.3, the designs selected in each instance

March 22, 2018

4.2. Running the algorithm 147

0 1000 2000 3000 4000 5000

d
1x

 (m)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

d
1y

 (
m

)

34

36

38

40

42

44

46

48

50

E
R

[r
1(1

)]

(a)

0 1000 2000 3000 4000 5000

d
1x

 (m)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

d
1y

 (
m

)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

V
ar

R
[r

1(1
)]1/

2

(b)

Figure 4.2: Plots of the adjusted emulator moments for the emulator fitted at the

final stage (wave i = 1). The black markers show the locations of the observations

made at stage 1, and the magenta markers show the locations of the observations

at stage 2; the colour scale in Figure 4.2(a) represents the expected risk E
R

(1)
3

[
r

(1)
3

]
for varying (d3x, d3y), and the colour scale in Figure 4.2(b) represents the standard

deviation Var
R

(1)
3

[
r

(1)
3

]
1/2 for the same points. The remaining design parameters

are fixed to djh = 200, djw = 1000 and djd = 200 for all stages.

are upwind of the majority of sources, resulting in a small reduction in uncertainty,

and higher risks.

Stage j = 2 Moving back to consider the risk at stage j = 2, our first task is

to specify how we will approximate the moments of the risk s
(1)
3 from an optimal

design at the final stage. The candidate design space is characterised as outlined

in Section 3.4.8 (Algorithm 3). Sampling multiple candidate designs for each set-

ting of {z[2], w[2], d[2]} would greatly increase the computational complexity of the

fitting procedure; we therefore opt to sample only a single candidate design d̃3 for

each input setting, to approximate the expectation (3.4.17) using the expectation

of r̄
(1)
3 at this point, and to approximate the second term in the covariance (3.4.18)

using the covariance between r̄
(1)
3 values at pairs of d̃3 values. We approximate the

second contribution to the covariance (3.4.18) by fixing it to be constant across the

inputs space. To do this, we generate 20 candidate designs at each of 10 different

input settings and compute the variance of E
R

(1)
3

[
r̄

(1)
3

]
+ c3

(
d̃3

)
at each setting of

March 22, 2018

4.2. Running the algorithm 148

0 1000 2000 3000 4000 5000

d
3x

 (m)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

d
3y

 (
m

)

100

110

120

130

140

150

160

170

E
R

[r
3(1

)]

(a)

0 1000 2000 3000 4000 5000

d
3x

 (m)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

d
3y

 (
m

)

1.35

1.4

1.45

1.5

1.55

1.6

1.65

V
ar

R
[r

3(1
)]1/

2

(b)

Figure 4.3: Plots of adjusted moments for the emulator r
(1)
3 . Figure 4.3(a)

shows the expectation E
R

(1)
3

[
r

(1)
3

]
and Figure 4.3(b) shows the standard deviation

Var
R

(1)
3

[
r

(1)
3

]
1/2; colour scales, marker colours and {djh, djw, djd} settings correspond

between figures. Risks are predicted at the same design input settings (d3x, d3y) as

in Figure 4.2, but the designs for stages 1 and 2 are switched; both design settings

give poor coverage of the survey area, and so the predicted risks are correspondingly

higher.

{z[2], w[2], d[2]}; we then fix Var
[
E
R

(1)
3

[
r̄

(1)
3

[
d̃3

]]
+ c3

(
d̃3

)]
= (1.99)2, the average

variance across these 10 input locations, and fix all covariances between different

input settings to zero.

Having fixed our characterisation of s
(1)
3 for all input settings, we proceed to fit

the emulator. We generate a set of 100 risk evaluations for the initial regres-

sion, a set of 300 evaluations for the joint regression surface-residual update, and

a set of 100 for checking the fitted emulator. Performing the initial regression, we

fix E
[
α

(1)
21

]
= 8.39 and E

[
α

(1)
22

]
= 0.62, with Var

[
α

(1)
21

]
= (4.47 × 10−7)2 and

Var
[
α

(1)
22

]
= (5.93 × 10−9)2, and using the residuals, we fix the marginal variance

of the residual to v
(1)
2 = (3.80)2. We fix the correlation lengths using leave-one-

out cross validation, testing 3000 different correlation parameter settings generated

according to a Latin hypercube, and choosing the setting which minimises the log-

Gaussian predictive likelihood. Using this prior specification, we pre-compute and

store the moments of the update data R
(1)
2 ; we now have all the information that we

need to compute adjusted expectations and covariances for risk values at new input

March 22, 2018

4.2. Running the algorithm 149

0 1000 2000 3000 4000 5000

d
2x

 (m)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

d
2y

 (
m

)

36

38

40

42

44

46

48

50

52

54

56

E
R

[r
2(1

)]

(a)

0 1000 2000 3000 4000 5000

d
2x

 (m)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

d
2y

 (
m

)

2

2.5

3

3.5

V
ar

R
[r

2(1
)]1/

2

(b)

Figure 4.4: Plots of the adjusted moments for the emulator r
(1)
2 . Figure 4.4(a)

shows the adjusted expectations E
R

(1)
2

[
r

(1)
2

]
and Figure 4.4(b) shows the adjusted

standard deviations Var
R

(1)
2

[
r

(1)
2

]
1/2 for a range of different (d2x, d2y) settings, for

fixed d1 (flight path shown as black markers), with djh = 200, djw = 1000 and

djd = 200 for j = 1, 2.

settings.

Figure 4.4 plots the fitted emulator for a range of different (d2x, d2y) settings, for

a fixed flight path design d1 at the first stage; all predictions are made for fixed

settings of {djh, djw, djd} at stages 1 and 2.

Stage j = 1 Moving back to stage j = 1 of the calculation, our first task is again

to characterise our uncertainty about the risk s
(1)
2 from an optimal design at stage

2. We adopt the same strategy as before; to reduce the computational burden of

the fitting procedure, we choose to use only a single candidate minimum sample d̃2

to characterise the expectation (3.4.17) and the second component of the covariance

(3.4.18) for each setting of the inputs {z[1], w[1], d[1]}. We approximate the first

component of the covariance (3.4.18) by generating 20 samples at each of 10 input

settings, and computing the variance of E
R

(1)
2

[
r̄

(1)
2

]
+ c2

(
d̃2

)
at each set of inputs.

We fix Var
[
E
R

(1)
2

[
r̄

(1)
2

[
d̃2

]]
+ c2

(
d̃2

)]
= (2.06)2, the average variance across these

10 input locations, and fix all covariances between different input settings to zero.

We now proceed to fit the emulator; we use 100 risk evaluations for the initial

regression, 300 for the joint regression-residual update, and 100 for model checking.

March 22, 2018

4.2. Running the algorithm 150

0 1000 2000 3000 4000 5000

d
3x

 (m)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

d
3y

 (
m

)

35

40

45

50

55

60

65

70

E
R

[r
3(1

)]

(a)

0 1000 2000 3000 4000 5000

d
3x

 (m)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

d
3y

 (
m

)

1.35

1.4

1.45

1.5

1.55

1.6

1.65

V
ar

R
[r

3(1
)]1/

2

(b)

Figure 4.5: Plots of the adjusted moments for the emulator r
(1)
1 . Figure 4.5(a)

shows the adjusted expectations E
R

(1)
1

[
r

(1)
1

]
and Figure 4.5(b) shows the adjusted

standard deviations Var
R

(1)
1

[
r

(1)
1

]
1/2 for a range of different (d1x, d1y) settings. For

all predictions, the other design parameters are fixed to d1h = 200, d1w = 1000 and

d1d = 200.

Performing the initial regression, we fix E
[
α

(1)
11

]
= 7.57 and E

[
α

(1)
12

]
= 0.622, with

Var
[
α

(1)
11

]
= (6.98×10−7)2 and Var

[
α

(1)
12

]
= (1.32×10−8)2, and we use the residuals

from this regression to fix v
(1)
1 = (3.03)2. For the cross validation, we test 5000

different correlation parameter settings, generated according to a Latin hypercube,

and choose the setting which minimises our predictive log-Gaussian criterion. Using

this prior specification, we compute and store the prior moments of R
(1)
1 ; we are now

in a position to be able to generate risk predictions for new input settings. Figure

4.5 shows the emulator fit at this stage for a range of different (d1x, d1y) settings.

Stopping All of the steps of the approximate backward induction procedure 2

have now been completed for this problem; we now examine the results, and de-

termine the course of action that we should take, as outlined in Section 3.4.10.

First, we approximately identify the design which minimises the expected risk; we

do this by interrogating the surface E
R

(1)
1

[
r

(1)
1 [d1]

]
+ c1 (d1) at a Latin hypercube

of 2000 points, and fixing d̂1 to be the design which minimises the risk surface

over this set. At this point, we find that E
R

(1)
1

[
r

(1)
1

[
d̂1

]]
+ c1

(
d̂1

)
= 32.26, with

Var
R

(1)
1

[
r

(1)
1

[
d̂1

]]
= (1.19)2. Figure 4.6 shows a sample of 100 candidate designs

March 22, 2018

4.2. Running the algorithm 151

generated using the procedure 3; we see from this plot the extent of the constraints

imposed on the design space by the risk emulator. The range of designs which we

still believe could be optimal has been strongly restricted in (d1x, d1y) space, and we

also see some restrictions emerging in the other three input spaces.

We compare this risk with the risk ρt0 = 196.34 from an immediate decision under

our prior beliefs; we are the risk from an optimally-designed future procedure is

much less than the risk from an immediate decision, and so we conclude that it we

were to proceed without further analysis of the risk, we would perform an experi-

ment at d̂1 before considering the second experiment in the light of this outcome.

Having established what we would do if we were to continue, we compute expected

value of perfect information for the risk calculation, to help us decide whether a

further wave of the procedure would be beneficial. We do this by sampling 200

candidate designs, and their corresponding risks, using algorithm 3; we find that

v
(1)
1 = 0.62; this is around 2% of our expectation for the risk from the experiment at

d̂1. Whether or not we would choose to perform another wave of the procedure at

this point would depend on the cost of the computational resources required to do

so. If this cost is small relative to the losses that we might incur by selecting a bad

design, then we might pay for another wave (see the discussion in Section 3.4.10).

We do not attempt to quantify the cost of running another wave in this work; we

simply perform another wave to demonstrate the procedure.

As an additional diagnostic tool, we also generate risk profile plots, shown in Figure

4.6. We repeatedly simulate the sequential design procedure, by selecting a design

for each experiment using the emulators fitted at this wave of the procedure (algo-

rithm 3), comparing risks to see whether we should perform the experiment (Section

3.4.10), and then sampling the corresponding external parameters and data for the

experiment if we decide to continue. The risk profile plot gives us an indication of

the spread of risks that we might expect if we were to design our experiments based

on the information provided by our current emulators.

March 22, 2018

4.2. Running the algorithm 152

0 5

x

0.2

0.4

d

0.6

0.8

1

w

0.1

0.2

0.3

h
0

5

y
x

0 5

y
0.1 0.2 0.3

h
0.6 0.8 1

w
0.2 0.4

d

32.5

33

33.5

34

34.5

35

E
[r

1(1
)] +

 c
1

Figure 4.6: Scatter plot of 100 candidate design points d̃1 generated using the algo-

rithm 3. The colour scale indicates the expected risk E
R

(1)
1

[
r̄

(1)
1

[
d̃1

]]
+ c1

(
d̃1

)
at

each of these points.

4.2.3 Second wave

At the second wave, we re-run the algorithm inside the parts of the design space

which are not screened out by our emulators at the first wave. We choose points

{z[j]k, w[j]k, d[j]k} at which to run the risk as outlined in Section 3.4.11; we choose

only designs dj which feature in the candidate design spaces defined by our emulators

at the first wave, and we check all the designs that we generate using the criterion

(3.4.20). Figure 4.7 shows contour plots of the densities of 100 designs d[3] sampled

in this way; we see that the emulators at the first wave impose strong constraints

on the design space at all three stages.

Each candidate design that we generate requires us to run the algorithm 3, which

is a computationally expensive task. We see from Figure 4.6 that the designs that

we generate through running this procedure are concentrated in certain regions of

the design space. On this basis, instead of using the full procedure from Section

3.4.11 to generate design inputs for our second wave, we simply identify the space

of design parameters for the second wave by sampling a single set of candidate

designs {d̃1, d̃2, d̃3} across the three stages, and restricting designs to lie between the

March 22, 2018

4.2. Running the algorithm 153

x

0

5

y

0.1

0.2

0.3

h

0.6

0.8

1

w

0 5

x

0.2

0.4
d

0 5

y
0.1 0.2 0.3

h
0.6 0.8 1

w
0.2 0.4

d

(a) j = 1

x

0

5

y

0.1

0.2

0.3

h

0.6

0.8

1

w

0 5

x

0.2

0.4

d

0 5

y
0.1 0.2 0.3

h
0.6 0.8 1

w
0.2 0.4

d

(b) j = 2

x

0

5

y

0.1

0.2

0.3

h

0.6

0.8

1

w

0 5

x

0.2

0.4

d

0 5

y
0.1 0.2 0.3

h
0.6 0.8 1

w
0.2 0.4

d

(c) j = 3

Figure 4.7: Contour plots showing the densities of a sample of 100 candidate design

points {d̂1, d̂2, d̂3} sequentially generate using the procedure 3; red contours enclose

regions of high density and blue contours enclose regions of low density. All densities

were generated using the ‘ksdensity’ function in Matlab.

March 22, 2018

4.2. Running the algorithm 154

20 25 30 35 40 45 50

1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

p(
1
)

(a)

26 28 30 32 34 36 38 40 42

r
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(

1
<

r 1
)

(b)

Figure 4.8: Risk profile plots for the first wave of the approximate backward induc-

tion procedure, generated by sampling experimental trajectories according to the

emulators that we fitted at wave i = 1. Figure 4.8(a) shows the approximate den-

sity of risks, and Figure 4.8(b) shows the corresponding cumulative density; both

plots are generated using a sample of 50 trajectories.

minimum and maximum values generated.

The basis and covariance functions that we use for all fits are the same as for the

first wave, as outlined in Section 4.2.1. Below, we provide details relating to the

emulator fit at each stage. As at the first wave, all fitted emulators are checked

against an additional set of risk evaluations, to ensure that fewer than 5% of the

new points lie outside three-standard deviation predictive error bars generated from

the emulator. Additionally, as discussed in Section 3.4.4, we check all sets of risk

evaluations that we generate at this wave against the emulators fitted at the first

wave, again ensuring that fewer than 5% lie outside predictive error bars.

Stage j = 3 We first generate 200 risk evaluations for the initial regression, 500

for the joint regression-residual update, and 100 for post-fit model checking. All

data at this stage is generated directly from the terminal risk ρt3. Performing the

initial regression, we fix E
[
α

(2)
31

]
= 0.860 and E

[
α

(2)
32

]
= 0.9831, with Var

[
α

(2)
31

]
=

(3.5× 10−3)2 and Var
[
α

(2)
32

]
= (8.64× 10−5)2; using the regression residuals, we fix

v
(2)
3 = (1.23)2.

We carry out the same cross-validation procedure, comparing 5000 different settings

March 22, 2018

4.2. Running the algorithm 155

of the correlation parameters generated according to Latin hypercube and selecting

the setting which minimises the sum of the predictive log-Gaussian likelihoods for

the left-out points. Based on this prior specification, we compute the moments of

the data R
(2)
3 and store, in preparation for computing adjusted predictions at new

risk input settings. This completes the emulator fit at this stage.

Stage j = 2 When characterising s
(2)
3 , we choose the same approximations as at

wave 1. The expectation (3.4.17) is fixed to the expectation E
[
r̄

(2)
3

[
d̃3

]]
+ c3

(
d̃3

)
at a single candidate design, and the second term of the covariance (3.4.18) is approx-

imated by the covariances at the same points. The first term of (3.4.18) is fixed to be

constant across the input space. We fix Var
[
E
R

(2)
3

[
r̄

(2)
3

[
d̃3

]]
+ c3

(
d̃3

)]
= (1.05)2

by sampling 20 candidate designs at 10 different input locations, computing the vari-

ance of the expectation at each, and computing the average variance across these

input settings; we fix all covariances between expected risks at different input loca-

tions to be zero.

We generate 50 risk evaluations for the initial regression, 200 for the joint regression-

residual update, and 50 for post-fit model checking. The initial regression leads us

to fix E
[
α

(2)
21

]
= 12.3 and E

[
α

(2)
22

]
= 0.458, with Var

[
α

(2)
21

]
= (1.03 × 10−6)2

and Var
[
α

(2)
22

]
= (2.45 × 10−8)2; the residuals from this regression are used to fix

v
(2)
2 = (2.70)2. For this fit, our cross validation chooses the best-performing point

(under the usual criterion) from a Latin hypercube of 5000 correlation parameter

settings.

Stage j = 1 Our procedure for characterising s
(2)
2 is the same as for stage 3, and for

this stage at the previous wave; in this instance, our approximation to the first term

of the covariance (3.4.18) for an individual input setting is Var
[
E
R

(2)
2

[
r̄

(2)
2

[
d̃2

]]
+ c2

(
d̃2

)]
=

(0.737)2, and we again set the covariances between s
(2)
2 values at different input set-

tings to zero.

50 risk evaluations are used for the initial regression, 200 are used for the joint

regression-residual update, and 50 are used for model checking after the fit. After

the initial regression, we fix E
[
α

(2)
11

]
= 2.95 and E

[
α

(2)
12

]
= 0.766, with Var

[
α

(2)
11

]
=

(2.76×10−6)2 and Var
[
α

(2)
12

]
= (8.37×10−8)2; the residuals from this regression are

March 22, 2018

4.2. Running the algorithm 156

used to fix v
(2)
2 = (0.974)2. For the cross-validation, we choose the best-performing

point from a Latin hypercube of 5000 correlation parameters settings.

Stopping After the second wave of analysis, we again stop and determine what

we should now do, as outlined in Section 3.4.10. First, we approximately identify

the design setting which minimises the expected risk E
[
r̄

(2)
1 [d1]

]
+ c1 (d1) ; we do

this by interrogating the risk at a Latin hypercube of 2000 designs and fixing d̂1 to

be the design from this set with the lowest risk. At this point, our expectation for

the risk is E
[
r̄

(2)
1

[
d̂1

]]
+ c1

(
d̂1

)
= 29.21, with Var

[
r̄

(2)
1

[
d̂1

]]
= (0.35)2. Figure

4.9 shows a set of candidate designs sampled from the emulator r̄
(2)
1 using the pro-

cedure 3; we see that this second wave has resulted in a further, but more modest,

reduction in the range of designs which feature in our candidate design space.

We again compute the EVPI for the risk calculation, to aid us in making a decision

about whether we should run another wave of analysis. Again, we approximate the

second term of equation (3.4.19) by sampling 200 candidate designs as in algorithm

3 and using the corresponding risks. We find that v
(2)
1 = 0.04; this is now only about

0.14% of the risk from further experimentation. This reduced value of v
(2)
1 , and the

general reduction in our uncertainty about the risk, indicate that the second wave

has done much to reduce our uncertainty about the risk over this region of the design

space. As discussed in Section 3.4.10, whether or not we would proceed with another

wave of analysis would depend on the relative costs of the resources required to do

so. Clearly, though, after this second wave, it is less likely that we would choose

to run another, since the maximum improvement that we could achieve (v
(2)
1) is

now much smaller relative to the experimental risk. Additionally, since comparing

Figures 4.6 and 4.9 indicates that the reduction in the size of the candidate design

space has been more modest at this wave, we might expect that the improvement in

the accuracy of our emulators over this region of the design space will not increase

much further at wave 3, and therefore that v
(3)
1 might not be much less than v

(2)
1 .

Figure 4.10 shows risk profile plots for the emulators fitted at this wave; as dis-

cussed in Section 4.2.2, these are generated by forward-sampling 50 experimental

procedures, selecting designs according to procedure 3 and comparing experimental

March 22, 2018

4.3. Discussion 157

0 5

x

0.2

0.4

d

0.6

0.8

1
w

0.1

0.2

0.3

h

0

5

y
x

0 5

y
0.1 0.2 0.3

h
0.6 0.8 1

w
0.2 0.4

d

29.3

29.4

29.5

29.6

29.7

29.8

29.9

30

30.1

30.2

30.3

E
[r

1(2
)] +

 c
1

Figure 4.9: Scatter plot of candidate designs d̃1 generated using algorithm 3. The

colour scale indicates the expected risk E
[
r̄

(2)
1

[
d̃1

]]
+ c1

(
d̃1

)
at each point.

risks from our emulators with terminal risks in order to choose between stopping

and continuing. We see by comparing Figure 4.10 with Figure 4.8 that after this

wave, the distribution of risks that we may obtain by designing the experiments

using our emulators has a much lower spread.

4.3 Discussion

Having run the algorithm for two different problems, we discuss our results; in

particular, we consider the feasibility of running the algorithm for more complex

models and loss functions in Section 4.3.1, and we consider further work which

could be done to improve the approximation procedure’s efficiency and accuracy in

Section 4.3.2.

4.3.1 Practical difficulties

In Section 4.1, the approximation procedure is used for the analysis of a 3 stage

problem in which the forward model has a linear dependence on the parameters of

interest; some aspects of the approximation will scale well to the analysis of more

complex problems, but there are also aspects which may require further development

before application to harder problems will be computationally feasible.

March 22, 2018

4.3. Discussion 158

22 24 26 28 30 32 34 36

1

0

0.05

0.1

0.15

0.2

0.25

p(
1
)

(a)

25 26 27 28 29 30 31 32

r
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(

1
<

r 1
)

(b)

Figure 4.10: Risk profile plots for the emulators fitted at the second wave of analysis,

generated by sampling trajectories of the experimental procedure, selecting designs

as outlined in algorithm 3. Figure 4.10(a) shows the density of sampled risks, and

Figure 4.10(b) shows the corresponding cumulative density. Both plots are generated

using a sample of 50 risks.

High-dimensional design spaces Emulators are useful tools for representing

the output of complex computer simulators which have long run-times (see, for

example, Williamson et al. [2013], Vernon et al. [2010]); however, they are no magic

bullet, and it is very easy to encounter difficulties when trying to fit such a model

to represent a model which is very variable across its high-dimensional input space.

The atmospheric dispersion modelling problem encountered in the previous section

required us to choose a 6-dimensional design parameter at each of three stages, but

it is simple to imagine a problem in which a much higher number of parameters

must be specified in order to determine a particular experiment.

When it is feasible to implement, the strategy of using the modified terminal risk

as a basis function is a powerful tool in enabling us to approximate risk functions

well in high-dimensional input spaces; even if we can construct an accurate emulator

for the risk though, the problem of locating the minimum of the risk function also

increases in difficulty as the dimensionality of the design space increases, and this

has the potential to be a much more difficult hurdle to overcome.

March 22, 2018

4.3. Discussion 159

Non-linear dependence on parameters If the dependence of the model for

the system on the parameters q (about which we wish to learn and make decisions)

is non-linear and complex, the usual problems which we would encounter in this

situation are magnified by the need to repeatedly evaluate our posterior beliefs

about q for different designs, external parameters and data sets. We could approach

such a problem by representing the complex deterministic parts of the model using

an emulator (as in Section 2.2, in the usual way for a computer simulator), and

then using the calculations presented in Sections 2.4.2 and 2.4.3 for uncertainty

propagation and adjustment of beliefs about inputs; even if we can implement this

efficiently, though, each inference is likely to be much slower than the inference in

the example above, which may affect our ability to use the terminal risk as a mean

function.

More complex loss functions In both of the examples considered above, the

loss function used is simple to evaluate using our posterior (or adjusted) beliefs

about the model parameters; for the weighted quadratic loss, the optimal terminal

decision can be found exactly in all cases, as can the corresponding terminal risk.

Such loss functions are common in situations where we are unwilling to make a more

detailed specification of our decision problem, but in cases where the loss is a more

complex function, we will need to take more care in our implementation.

It may be the case that the loss function for a given problem is sufficiently complex

that it requires emulation in its own right. If this is the case, and we design our

emulator carefully, then we can compute the expected loss as a function of aj for

any stage by integrating the emulator with respect to p
(
q|z[j], w[j], d[j]

)
. However,

if the loss is complex enough to need emulation, then it is unlikely that the optimal

decision a∗j will be available in closed-form, and so we will need to implement some

form of numerical procedure (e.g. sampling using a Latin hypercube, as in Section

3.4.8, or numerically optimising the mean surface) in order to find the terminal risk.

This has the potential to represent a large extra computational burden, particularly

when the terminal risk is to be used as part of the basis for the risk emulator.

March 22, 2018

4.3. Discussion 160

4.3.2 Further work

Further improvements to the algorithm presented in Section 3.4 will be focussed on

improving its ability to handle high-dimensional and highly variable risks. One of

the least well-developed aspects of the algorithm at the moment is the minimum

sampling procedure from Section 3.4.8; this is because characterising the behaviour

of the minimum of a stochastic function is a difficult problem in general. One pos-

sible solution to this would be to change our formulation of the sequential problem

slightly, so that the risks which we compute retain their dependence on the design

parameters from all stages; if we were to do this, we would obtain a risk emulator

r̄
(i)
1

[
d[n]

]
at the first stage which was a function of the design parameters from all

stages, representing the risk from the sequential decision procedure in which, at

each stage, we have the option of carrying out an experiment at pre-specified design

parameter dj+1, or making an immediate terminal decision a∗j .

If we were to build the emulator in such a way, then the need for an approximate

minimum sampling algorithm such as the one outlined in Section 3.4.8 would be

eliminated for all stages except the first, since we would be able to sample all risks

from known design settings exactly; this would, hopefully, improve the level of sys-

tematic risk variability that we could explain using our emulators. An issue with

fitting the emulator in this way would be the increase in the dimensionality of the

input space for the emulators at stages (n − 1), . . . , 1, and so if carrying out the

analysis in this way, we must assess whether the increased effort required to fit

emulators with higher-dimensional input spaces translates into a suitably improved

representation of the risk function. In any case, we would still need an algorithm

along the lines of the one in Section 3.4.8 in order to assess the likely location of the

minimum risk at stage j = 1.

March 22, 2018

Chapter 5

Design for developing models

5.1 Model development: Reification

The development process for a model for a system often involves a number of sim-

plifications and compromises:

� in the atmospheric modelling example of Hirst et al. [2013], it is extremely clear

that the Gaussian plume model does not capture the true behaviour of the

gas under given atmospheric conditions. The real atmosphere is considerably

more turbulent than the Gaussian plume model allows, and frequently, changes

in the wind over long distances cause systematic discrepancies between the

predictions of the plume and the observed concentration (see, for example,

Figure 1.1);

� climate models are abstractions of extremely large and complex natural sys-

tems, where even if all of the processes were fully understood, inclusion of all of

these in the model would be computationally infeasible. Common simplifica-

tions in such models include the solution of governing equations on extremely

coarse grids which necessarily neglects processes on length scales smaller than

the chosen mesh (as in the example discussed in Goldstein and Rougier [2004]),

or the introduction of a highly idealised representation of the system (as in

the compartmental representation of the Atlantic ocean used by Zickfeld et al.

[2004] in their model).

161

5.1. Model development: Reification 162

It is generally the case that the scientists that develop these models acquire knowl-

edge during the development process about how they might be improved so as to

better describe the behaviour of processes in the true system. For example:

� more accurate models of gas transport processes are well understood (as de-

scribed in chapter 1), but are not implemented in the analysis by Hirst et. al.

because of the extra computer power that would be required and the lack of

availability of high-resolution atmospheric information;

� in both of the climate examples described above, it is simple to imagine (though

potentially complex to implement) ways in which the model might be im-

proved; in the first instance, we could simply solve the equations on a finer

grid, or introduce alternative representations of the sub-grid-scale processes,

and for the Atlantic model, we might introduce additional compartments, or

refine the model output by introducing differential equations which represent

other processes within the existing compartments. Generally within climate

models, it is always possible to introduce representations of additional physical

processes which would bring the model closer to reality.

Where the modellers have such knowledge about how the model might better repre-

sent the system, inferences and predictions about the system made without taking

account of these will not be consistent with their current beliefs. One option is to

continue development of the model; however, in doing this, it is highly likely that

during this additional development, new ideas about further future improvements

will be generated, rendering the new model inadequate as well (while incurring ad-

ditional development costs). It would be better, therefore, to model the system

using a framework which is capable of incorporating such beliefs without the need

to actually build the future models that we postulate.

A consistent approach to handling such expert judgement has been developed by

Goldstein and Rougier [2009]: in the situation where an emulator is used as a

statistical representation of a simulator, we can handle beliefs about likely future

improvements to the simulator or to the underlying model by using a multi-level

framework, introducing additional components which represent the effects of future

March 22, 2018

5.1. Model development: Reification 163

developments and specifying relationships between existing and new processes across

levels.

5.1.1 Reifying principle

As discussed in Section 2.4.1, the best input assumption is a common technique for

linking together simulators for a system with the true, underlying values of partic-

ular system properties: we assume that there is a particular setting a∗ for certain

inputs such that if we were to evaluate the simulator at this point, this run would

provide all of the information available from the simulator about the system, and

no further evaluations would be necessary. In the situation where we are modelling

simulator improvements, making such an assumption for every development stage

of the simulator would be impractical: the best input settings at all stages would

necessarily be strongly correlated (it is difficult to imagine a situation in which

knowledge of the best input at one development stage would tell us nothing about

likely values of the best input at the next stage, where the model has changed only

slightly), and it would be very difficult to get an expert to specify such a correlation

structure.

Indeed, where we have beliefs about how our current simulator might improve in

the future, it is not even clear what we mean when we speak about a ‘best in-

put’ assumption for an individual simulator; if we believe that the simulators are

correlated across their input spaces, then an evaluation of any single simulator is

informative for all of the evaluations that we could make on any of the others, and

so the situation in which a single run of such a simulator could provide us with all

of the information available in the model about the system (see the discussion of

the best input assumption in Section 2.3.1) cannot arise. In the above paragraph,

therefore, what we actually intend to say is that the best input settings would be

correlated across the stages of development, were we to specify correlations between

the simulators and then attempt to link each of the simulators to the system.

To overcome these difficulties, and to develop a framework which handles our beliefs

coherently, Goldstein and Rougier [2009] suggest the adoption of the reifying prin-

ciple, under which we imagine the best possible simulator that we might construct

March 22, 2018

5.2. Model structure 164

for the system, and then assume the following:

Reifying principle: The reified simulator separates our actual simulators from

the underlying system. Our actual simulators are informative for the underlying

system because they are informative for the reified simulator.

Under this principle, the best input assumption is applied only to the reified sim-

ulator; the other simulators that we might construct are then informative for the

system only because they are informative for the reified simulator, and not because

they are linked directly to the system in any way.

The linking of the different system simulators is achieved by using an emulator

as a description of each simulator; we use our judgements about future simulator

behaviour to specify relationships between the basis coefficient and residual com-

ponents of the emulators at different stages. We link the reified simulator to the

system by making a best input assumption, and by specifying our beliefs about the

discrepancy between the reified simulator (evaluated at its best input) and the sys-

tem. For simplicity, in this thesis, we assume that models are only directly linked

together if they correspond to successive development stages, and we do not allow

for the possibility that we may choose multiple ‘development directions’ at any given

stage. In practice, though, it is common that multiple different improvements to

the model might be investigated simultaneously, by different parties. This point is

discussed further in Section 5.8.

5.2 Model structure

We specify our beliefs about how our model may evolve in the future within the

framework outlined by Goldstein and Rougier [2009]. We assume that we can en-

visage constructing ns future simulators; simulators k = 1, . . . , (ns − 1) are indexed

as f (k) (.) , and the reified simulator is denoted by f ∗ (.) and is the ns
th model. We

use an emulator to approximate the behaviour of each of these simulators as a func-

tion of inputs θ, and assume that each of these emulators has the standard form

(see Section 2.2.1); we adopt the summation convention again, with the additional

March 22, 2018

5.2. Model structure 165

β(1) F (1) r(1) (θ)

β(2) F (2) r(2) (θ)

β∗ r∗ (θ)

a∗ f ∗ (a∗, b) y (b) z

δ (b) ε

Figure 5.1: DAG displaying the structure of the reified model.

requirement that superscript indices are not summed over

f
(k)
i (θ) = g

(k)
j (θ) β

(k)
ij + r

(k)
i (θ)

f ∗i (θ) = g∗j (θ) β∗ij + r∗i (θ) .

Note that while the set of input parameters required to run each model may vary, for

simplicity, we assume that θ is the set of inputs that is sufficient to run all models,

including both system and model inputs.

In general, to make a full second-order prior specification for this model, we would

need to specify expectations and variances for each β(k) and covariances between

each pair {β(k), β(l)} and {r(k) (.) , r(l) (.) }: however, as discussed in Section 5.1,

we want our model to have the property that each improvement to the simulator

separates all previous versions from the system, with all simulators linked to the

system through the reified simulator (which we will never actually construct).

We therefore choose the following set of relationships between the model components

at the different development stages: for the basis coefficients, we only require that

β(j) ⊥⊥ β(l)|β(k) for j < k < l, so that knowledge of the set of coefficients at

March 22, 2018

5.3. Calculations 166

development level k is sufficient for inferences about the coefficients at all higher-

numbered levels l > k given the set {β(1), . . . , β(k)} of coefficients up to level k. For

the residual processes, the situation is more complex: only knowledge of a process

for every setting of its inputs is enough to separate the residual processes across

levels in the same way. We assume the following, simple form for our relationships

between the simulators

r
(k)
i (θ) = γ

(k)
ij (θ) r

(k−1)
j (θ) + ν

(k)
i (θ)

where γ
(k)
ij (.) is a known weight function determining the contribution of the residual

function r
(k−1)
j (.) to the residual function r

(k)
i (.) at the next development stage for

each setting of the inputs, and ν
(k)
i (.) is an additional stochastic term which is

assumed to be a-priori uncorrelated with r
(k−1)
j (.) . Under this specification, if we

use the same input set for the simulator runs F (k) at each level, then we recover the

separation property for the residual between levels of the model.

This model structure is depicted in the DAG in Figure 5.1. While it may not always

be easy to directly specify a correlation structure between the β(k) at adjacent levels,

these can derived from any set of linear relationships between components, making

this an extremely flexible general specification to work with.

5.3 Calculations

We now consider how we do calculations using this model: first, in Section 5.3.1,

we use the structure of the model to turn the limited prior specification outlined

in Section 5.2 into a full joint prior specification for all components of the model;

then, in Section 5.3.2, we use this prior specification to compute corresponding prior

beliefs about the simulator runs that we will obtain, and use these runs to adjust

beliefs about the rest of the model; finally, in Section 5.3.3, we use these adjusted

beliefs to propagate uncertainty on a subset of the inputs onto uncertainty about

the system.

March 22, 2018

5.3. Calculations 167

5.3.1 Full joint prior

The graphical representation of the model depicted in Figure 5.1 can be used as a

framework within which we can compute the full joint prior specification. Before the

simulator runs {F (k)} have been observed, the basis coefficients and the residuals

are assumed to be independent, and so we consider the prior specification for each

separately.

In some situations, it may be that there is very little prior information about the be-

haviour of any of the simulators until one has been built and run; in these situations,

it may be preferable to construct the first simulator and then emulate this, before

using this emulator to posit relationships between future versions. If we carry out

our analysis in this order, the observation of the initial runs will induce a covariance

between the coefficients β(k) and residuals r(k) (.) in the resulting prior specification.

While this would not introduce any significant extra complexity into the calculations

that we must perform, this is not how we will proceed in our example, and so we do

not consider this issue further here.

Basis coefficients Our prior specification consists of expectations and variances

E
[
β(k)

]
, Var

[
β(k)

]
for each set of coefficients, and covariances Cov

[
β(k), β(k−1)

]
between adjacent coefficient sets. Because of the belief separation structure imposed

on the model, we can use the graph to compute the covariance between any two

sets of coefficients: because the β(k) are separated from all β(l), l < k by β(k−1),

covariances between these sets of coefficients can be computed as

Cov
[
β

(k)
ij , β

(l)
pq

]
= Cov

[
β

(k)
ij , β

(k−1)
rs

]
Var

[
β(k−1)

] −1
rstuCov

[
β

(k−1)
tu , β(l)

pq

]
.

Residuals For the residual processes, the relationship between stages can be used

to compute the general covariance structure. For two evaluations of the residual

process at the same development level, the covariance between them is defined re-

cursively

Cov
[
r

(k)
i (θ) , r

(k)
j (θ′)

]
=γ

(k)
ip (θ) Cov

[
r(k−1)
p (θ) , r(k−1)

q (θ′)
]
γ

(k)
jq (θ′)

+ Cov
[
ν

(k)
i (θ) , ν

(k)
j (θ′)

]
.

March 22, 2018

5.3. Calculations 168

Across stages, we pick up additional factors of the scaling functions: for k > l, we

have

Cov
[
r

(k)
i (θ) , r

(l)
j (θ′)

]
= γ

(k)
ip (θ) γ(k−1)

pq (θ) . . . γ(l+1)
vw (θ) Cov

[
r(l)
w (θ) , r

(l)
j (θ′)

]
.

5.3.2 Adjustment

Using the prior specification outlined in Section 5.3.1, we now consider the effect on

our beliefs of observing runs on some of the simulators. First, we derive our prior

beliefs about the simulator runs; then, we observe the runs, and use these to adjust

our prior beliefs about all simulator components; finally, we consider the effect of

this adjustment on our beliefs about the behaviour of the system.

Moments of the simulator runs Having derived the full joint prior specification

for the simulators, we can use this to calculate the moments of the simulator data

that we will use to adjust our beliefs. To simplify the notation for the adjustment, we

lower the index for the level, using Fijk to denote the ith output of the kth simulator

evaluated at input setting θj

Fijk = f
(k)
i (θj) .

Recall that superscript indices are not summed over. The prior moments of these

values can be derived directly from the prior specification: the means are

E [Fijk] = E
[
β

(k)
il

]
Gljk

where the elements of the design matrix are

Gljk = g
(k)
l (θj)

and the covariances between values can be computed as

Cov [Fijk, Fpqr] = GljkCov
[
β

(k)
il , β

(r)
ps

]
Gsqr

+ Cov
[
r

(k)
i (θj) , r

(r)
p (θq)

]
.

March 22, 2018

5.3. Calculations 169

Additionally, in order to perform the update, we will need the following covariances,

which we define here for notational simplicity

Cov
[
β

(k)
ij , Fpqr

]
= Cov

[
β

(k)
ij , β

(r)
ps

]
Gsqr

Cov
[
r

(k)
i (θ) , Fpqr

]
= Cov

[
r

(k)
i (θ) , r(r)

p (θq)
]

.

Using these moments of the observed simulator runs, we first adjust the prior mo-

ments of the simulator at all stages; later, using these adjusted moments, we will

incorporate the discrepancy in order to compute our corresponding beliefs about the

system.

Adjusted moments of the simulators We now use the output from the simu-

lators that we have run in conjunction with the model structure outlined in Section

5.3.2 to derive our adjusted beliefs about each of the simulators. Using the relevant

properties of adjusted expectations and covariances, the adjusted expectation for

the simulator f (k) (.) evaluated at a new input θ is

EF

[
f

(k)
i (θ)

]
= EF

[
β

(k)
ij

]
g

(k)
j (θ) + EF

[
r

(k)
i (θ)

]
(5.3.1)

and the adjusted covariances between simulators f (k) (.) and f (l) (.) at input settings

θ and θ′ are

CovF

[
f

(k)
i (θ) , f

(l)
j (θ′)

]
= g(k)

p (θ) CovF

[
β

(k)
ip , β

(l)
jq

]
g(l)
q (θ′)

+ CovF

[
r

(k)
i (θ) , β

(l)
jq

]
g(l)
q (θ′)

+ g(k)
p (θ) CovF

[
β

(k)
ip , r

(l)
j (θ′)

]
+ CovF

[
r

(k)
i (θ) , r

(l)
j (θ′)

]
. (5.3.2)

In order to evaluate the expressions (5.3.1) and (5.3.2), we must compute the relevant

adjusted moments of the components; these are computed in the same way as in

Section 2.2.2, taking into account the extra index over simulator level. The adjusted

expectations of the coefficients and the residuals are

EF

[
β

(k)
ip

]
= E

[
β

(k)
ip

]
+ Cov

[
β

(k)
ip , Fklm

]
Var [F] −1

klmrst [Frst − E [Frst]]

EF

[
r

(k)
i (θ)

]
= Cov

[
r

(k)
i (θ) , Fklm

]
Var [F] −1

klmrst [Frst − E [Frst]]

March 22, 2018

5.3. Calculations 170

and the adjusted covariances are

CovF

[
β

(k)
ip , β

(l)
jq

]
= Cov

[
β

(k)
ip , β

(l)
jq

]
− Cov

[
β

(k)
ip , Frst

]
Var [F] −1

rstuvwCov
[
Fuvw, β

(l)
jq

]
CovF

[
r

(k)
i (θ) , r

(l)
j (θ′)

]
= Cov

[
r

(k)
i (θ) , r

(l)
j (θ′)

]
− Cov

[
r

(k)
i (θ) , Frst

]
Var [F] −1

rstuvwCov
[
Fuvw, r

(l)
j (θ′)

]
CovF

[
r

(k)
i (θ) , β

(l)
jq

]
=− Cov

[
r

(k)
i (θ) , Frst

]
Var [F] −1

rstuvwCov
[
Fuvw, β

(l)
jq

]
.

Beliefs about the system Using our adjusted beliefs about the reified simulator,

we compute our beliefs about the system itself by incorporating uncertainty about

the best input setting and discrepancy. As in Section 2.4.2, we split our input set

θ = {a, b} into simulator inputs a and system inputs b, and we adopt the best

input assumption, where our beliefs about a∗ are summarised by the probability

distribution p (a∗) . Under this assumption, the moments of the system are

E [yi (b)] = E
[
f̂ ∗i (b)

]
+ E [δi (b)] (5.3.3)

Cov [yi (b) , yj (b′)] = Cov
[
f̂ ∗i (b) , f̂ ∗j (b′)

]
+ Cov [δi (b) , δj (b′)] (5.3.4)

where we have specified that the reified simulator and the discrepancy δ (.) are a

priori independent, and that

f̂ ∗i (b) = f ∗i (a∗, b) .

The moments of f̂ ∗i (.) are computed in Section 5.3.3. Finally, we assume that the

zij = yi (bj) + εij are noise-corrupted observations of the system; incorporating an

uncertainty specification for the measurement error ε, the moments of the data are

E [zij] = E [yi (bj)]

Cov [zij, zkl] = Cov [yi (bj) , yk (bl)] + Cov [εij, εkl]

where, as usual, we have assumed that the measurement error is independent of the

system and its inputs.

March 22, 2018

5.3. Calculations 171

5.3.3 Propagation and Calibration

Uncertainty propagation As with the standard emulator outlined in chapter 2,

we want to be able to propagate beliefs about the best input through our emulator

representation of the reified simulator, so that we can evaluate the moments (5.3.3)

and (5.3.4) of the system; as in Section 2.4.2, the expectation of the reified simulator

at its best input is found as follows

E
[
f̂ ∗i (b)

]
= E [EF [f ∗i (a∗, b) |a∗]]

where the outer expectation is taken with respect to p (a∗) . Inserting the expression

for the adjusted expectation, we obtain

E
[
f̂ ∗i (b)

]
= EF

[
β∗ij
] ∫

g∗j (a∗, b) p (a∗) da∗

+Wklm

∫
Cov [r∗i (a∗, b) , Fklm] p (a∗) da∗ (5.3.5)

where Wklm = Var [F] −1
klmrst [Frst − E [Frst]] . The covariance is again found using

the law of total covariance

Cov
[
f̂ ∗i (b) , f̂ ∗k (b′)

]
= E [CovF [f ∗i (a∗, b) , f ∗k (a∗, b′) |a∗]]

+ Cov [EF [f ∗i (a∗, b) |a∗] ,EF [f ∗k (a∗, b′) |a∗]] (5.3.6)

where again, the outer expectations and covariances are taken with respect to p (a∗) .

Considering the second component of (5.3.6) first, we must evaluate

Cov [EF [f ∗i (a∗, b) |a∗] ,EF [f ∗k (a∗, b′) |a∗]] =

EF

[
β∗ij
]

EF [β∗kl]

∫
g∗j (a∗, b) g∗l (a∗, b′) p (a∗) da∗

+ EF

[
β∗ij
]
Wpqr

∫
g∗j (a∗, b) Cov [r∗k (a∗, b′) , Fpqr] p (a∗) da∗

+WpqrEF [β∗kl]

∫
Cov [r∗i (a∗, b) , Fpqr] g

∗
l (a∗, b′) p (a∗) da∗

+WlmnWpqr

∫
Cov [r∗i (a∗, b) , Flmn] Cov [r∗k (a∗, b′) , Fpqr] p (a∗) da∗

− E
[
f̂ ∗i (b)

]
E
[
f̂ ∗k (b′)

]
(5.3.7)

March 22, 2018

5.3. Calculations 172

and for the first, we have

E [CovF [f ∗i (a∗, b) , f ∗k (a∗, b′) |a∗]] =

CovF
[
β∗ij, β

∗
kl

] ∫
g∗j (a∗, b) g∗l (a∗, b′) p (a∗) da∗

− Var [F] −1
pqrstuCov [Fstu, β

∗
kl]

∫
Cov [r∗i (a∗, b) , Fpqr] g

∗
l (a∗, b′) p (a∗) da∗

− Cov
[
β∗ij, Fpqr

]
Var [F] −1

pqrstu

∫
g∗j (a∗, b) Cov [r∗k (a∗, b′) , Fstu] p (a∗) da∗

+

∫
Cov [r∗i (a∗, b) , r∗k (a∗, b′)] p (a∗) da∗

− Var [F] −1
pqrstu

∫
Cov [r∗i (a∗, b) , Fpqr] Cov [r∗k (a∗, b′) , Fstu] p (a∗) da∗ . (5.3.8)

Calibration Also as before (Section 2.4.3), we can use the data observed on the

system to learn about a∗; the adjusted moments are computed using the usual Bayes

linear adjustment equations

Ez [a∗i] = E [a∗i] + Cov [a∗i , zkl] Var [z] −1
klpq

[
zpq − E [zpq]

]
Covz

[
a∗i , a

∗
j

]
= Cov

[
a∗i , a

∗
j

]
− Cov [a∗i , zkl] Var [z] −1

klpqCov
[
zpq, a

∗
j

]
and the covariances between the a∗i and the data zkl are

Cov [a∗i , zkl] = E [a∗i zkl] − E [a∗i] E [zkl] .

The joint expectations are then computed by substituting the expectation of the

reified simulator evaluated at its best input

E [a∗i zkl] = E [a∗iE [f ∗k (a∗, bl) |a∗]]

= EF

[
β∗kp
] ∫

a∗i g
∗
p (a∗, bl) p (a∗) da∗

+Wpqr

∫
a∗iCov [r∗k (a∗, bl) , Fpqr] p (a∗) da∗ .

Feasibility of calculations While the expressions for these quantities are not any

more complicated than for the single-level case, evaluating all of the required inte-

grals is potentially more difficult; this is due to the terms involving the covariance

function Cov [r∗i (.) , r∗k (.)] , which is a recursive function composed of weightings

γ
(k)
ij (.) and residual component covariances Cov

[
ν

(k)
i (.) , ν

(k)
j (.′)

]
for each level.

March 22, 2018

5.4. Design 173

This means that integrals involving a single such covariance function actually re-

quire the evaluation of ns times as many integrals as the equivalent integral in

Section 2.4.2, and the integral involving a product of two such covariances requires

the evaluation of ns
2 times as many terms.

In cases where we are dealing with multiple output functions and multiple simula-

tor levels, and we have made a detailed specification for all the required functions,

this can represent quite a large additional burden; if we are able to do so, we must

algebraically compute and code all of these terms, and if we are not able to do this

algebraically, then we must evaluate them all numerically instead.

When designing the reification framework in a particular situation, careful consid-

eration should be given to how we are going to perform these calculations; in this

framework, the ability to perform integrals analytically potentially confers large

benefits, because there are so many more of them. In cases where we are fitting

the model using relatively large numbers of simulator evaluations, then the final

terms in both of the above expressions can be particularly expensive to evaluate; we

must compute a matrix the size of Var [F] for each pair of inputs {b, b′} which, for

problems involving any significant amount of system data, can be a slow process.

In many cases, therefore, it may be preferable to simply numerically evaluate the

required system expectations and covariances directly from the adjusted expecta-

tions and covariances for the reified simulator; if this is an expensive operation, then

an alternative approach might be to re-emulate these numerically-evaluated terms

and then use the emulator predictions for the system directly. The chosen approach

should be checked to make sure that it adequately reproduces the properties of the

underlying reifying framework.

5.4 Design

We now consider the consequences of a model specified in this way for the design of

a sequence of experiments to collect data on the system. If the structure outlined

in the preceding sections is used to construct a model for a system, it can introduce

additional complications into the sequential design procedure of Section 3.3. There

March 22, 2018

5.4. Design 174

are two cases to consider:

� in some instances, while we have beliefs about how the current simulator may

evolve in the future, we have no plans for development during the time-scale

of the proposed sequence of experiments;

� in others, we may have the option (or the commitment) to construct some of

the envisaged simulators between particular experimental stages;

In the following sections, we consider the effect on the design procedure in each of

these situations.

5.4.1 No evolution

If the proposed additional simulators are not to be developed within the time-frame

of the experiments which will collect the system data, then there is no substantial

modification which needs to be made to the backward induction procedure; we have

simply introduced a more complex forward model structure into the problem.

Within the reifying framework, the system data zj to be collected at stage j are

represented by a combination of the reified simulator f ∗ (.) and the discrepancy δ (.) ,

and so beliefs about the system at any given setting of the design and environmental

inputs are computed by propagating uncertainty about the best setting a∗ of the

model parameters through the reified simulator as described in Section 5.3.3; as

before, at stage j of the problem, if q = a∗ and b = {wj, dj}, then the moments of

the zj (where zjk is the kth element of the jth set of observations) are

E [zjk] = E [yk (wj, dj)]

Cov [zjk, zlp] = Cov [yk (wj, dj) , yp (wl, dl)] + Cov [εjk, εlp]

where the system value is a linear combination of the reified simulator evaluated at

its best input setting and the discrepancy at this point

yk (wj, dj) = f̂ ∗k (wj, dj) + δk (wj, dj)

March 22, 2018

5.4. Design 175

and the expectations and covariances of these system values are as before

E [yk (wj, dj)] = E
[
f̂ ∗k (wj, dj)

]
+ E [δk (wj, dj)]

Cov [yk (wj, dj) , yp (wl, dl)] = Cov
[
f̂ ∗k (wj, dj) , f̂

∗
p (wl, dl)

]
+ Cov [δk (wj, dj) , δp (wl, dl)] .

The backward induction algorithm can then be performed as outlined in Section 3.4

(algorithm 2) using the moments E [zjk] and Cov [zjk, zlp] for the system data; where

required, the conditional moments E
[
zj|z[j−1], w[j], d[j]

]
and E

[
wj|w[j−1], d[j]

]
are

approximated using the adjusted moments Ez[j−1]

[
zj|w[j], d[j]

]
and Ew[j−1]

[
wj|d[j]

]
as

in Section 3.4.3 (with corresponding approximations for the conditional variances).

The main additional complication in this situation, therefore, is the potential for the

uncertainty propagation calculations described in Section 5.3.3 to be challenging;

otherwise, the procedure is no more difficult than before.

5.4.2 Evolution

If we have the option to build at least one improved simulator at some point dur-

ing the experimental procedure, then things become more complicated. Under the

modelling framework assumed in Section 5.3, when we construct and evaluate an

improved simulator, we resolve some of our uncertainty about the system that the

simulators represent; our uncertainty will be reduced by different amounts in dif-

ferent parts of the system input space, potentially by amounts which depend on

decisions about the development and evaluation of these simulators which we will

not make until nearer the time. This resolution of uncertainty at a certain point

in the future could affect the designs that we choose for our experiments, or could

even change our decision about whether to carry out a particular experiment at all.

If we consider the simulator development process as part of our design procedure,

then at stage j:

� we consider the simulator development options available to us at stage j, and

determine the optimal set of developments;

� we build the improved simulator, and collect a set of runs on it;

March 22, 2018

5.4. Design 176

� under our current beliefs, we determine the optimal design for the next avail-

able experiment, and we consider whether it is worth paying for this experi-

ment, or whether we should just make a decision based on the experimental

data and simulator runs collected so far;

� if we consider the next experiment to be worth its price-tag, then we carry it

out, before using this information to determine whether it is worth paying for

a further round of simulator development, or whether we should just make a

decision about the system using the information collected up until now.

In the remainder of this section, we adapt the backward induction procedure pre-

sented in Section 3.3 to handle the availability of simulator developments at each

stage.

Full backward induction algorithm: In order to adapt the backward induction

for the case of evolving simulators, we introduce the following notation (in addition

to that introduced in Section 3.3.1):

� We denote the set of simulator developments chosen at stage j by φj =

{φj1, . . . , φjnφj }, and we denote the collection of such inputs up to stage j

by φ[j] = {φ1, . . . , φj}.

� We denote the jth set of simulator runs that we obtain by Fj, with the collection

up to stage j denoted by F[j] = {F1, . . . , Fj}; note that we allow for the

possibility that we may construct and evaluate multiple simulators at the

same stage.

Allowing our simulators to evolve between stages, the analogue of the terminal risk

(3.3.6) takes account of the information available from the simulator runs performed

up to stage j

ρtj
[
z[j], w[j], d[j], F[j], φ[j]

]
= min

aj∈Aj

∫
Lj (q, aj) p

(
q|z[j], w[j], d[j], F[j], φ[j]

)
dq (5.4.9)

where the posterior distribution for the model parameters is

p
(
q|z[j], w[j], d[j], F[j], φ[j]

)
=
p
(
z[j]|q, w[j], d[j], F[j], φ[j]

)
p (q)

p
(
z[j]|w[j], d[j], F[j], φ[j]

) (5.4.10)

March 22, 2018

5.4. Design 177

where, as in Section 3.3, we have assumed that our prior beliefs about q do not

depend on any of {w[j], d[j], F[j], φ[j]}. The backward induction algorithm then runs

as follows, for stages j = n, (n− 1), . . . , 1:

� At stage n, the risk is simply the risk from an optimal terminal decision at

that stage: ρn
[
z[n], w[n], d[n], F[n], φ[n]

]
= ρtn. Otherwise, we compare the risk

from an optimal terminal decision with the risk from future sampling

ρj
[
z[j], w[j], d[j], F[j], φ[j]

]
= min

[
ρtj, ψ

∗
j+1

]
(5.4.11)

where ψ∗j+1 is defined in (5.4.17) at the final step of the algorithm.

� The expectation over observed data and external parameters is then computed

in the same way as in (3.3.10)

ρ̄j
[
z[j−1], w[j−1], d[j], F[j], φ[j]

]
=

∫∫ [
ρjp
(
zj|z[j−1], w[j], d[j], F[j]

)
p
(
wj|w[j−1], d[j]

)]
dzjdwj (5.4.12)

where, as in Section 3.3 (algorithm 1), we assume that we do not use the data

z[j] or the simulator runs F[j] to learn about the external parameters w[j].

� Optimising over dj then gives the risk from an optimal future procedure, con-

ditional on the simulator runs Fj that we obtained from the new model built

and run at this stage

ρ∗j
[
z[j−1], w[j−1], d[j−1], F[j], φ[j]

]
= min

dj∈Dj

[
ρ̄j + cj (dj)

]
. (5.4.13)

� Upon reaching this stage of the procedure, we will have the option of either

making an immediate decision based on the data observed and the simulator

runs obtained up until this point, or performing the experiment at stage j and

proceeding optimally from that point. As a function of all parameters, this

choice has the following risk

ψj
[
z[j−1], w[j−1], d[j−1], F[j], φ[j]

]
= min

[
ρ∗j , ρ

f
j

]
(5.4.14)

March 22, 2018

5.4. Design 178

where ρfj is the risk from choosing to make a decision about the system and

terminate after constructing and running the simulator f (j) (.)

ρfj
[
z[j−1], w[j−1], d[j−1], F[j], φ[j]

]
=

min
aj∈Aj

∫
Lj (q, aj) p

(
q|z[j−1], w[j−1], d[j−1], F[j], φ[j]

)
dq . (5.4.15)

� This risk is then averaged over our beliefs about the simulator runs Fj condi-

tional on all of the simulators that have so far been constructed and the points

at which it has been run

ψ̄j
[
z[j−1], w[j−1], d[j−1], F[j−1], φ[j]

]
=∫

ψjp
(
Fj|z[j−1], w[j−1], d[j−1], F[j−1], φ[j]

)
dFj . (5.4.16)

� Finally, we optimise the risk over the possible simulator development choices

φj, including the cost cfj (φj) of choosing to make a particular set of develop-

ments

ψ∗j
[
z[j−1], w[j−1], d[j−1], F[j−1], φ[j−1]

]
= min

φj

[
ψ̄j + cfj (φj)

]
. (5.4.17)

The procedure is also presented as an algorithm in 4 (and sub-algorithms 5 and 6

describing the parts related to the system experiments and the simulator).

Computational issues To generate an optimal design for the first experiment,

taking account of all of the experimental and simulator costs and uncertainties, we

must compute all of the functions listed above. Of course, since we could not do this

analytically for the simpler problem where the system model was fixed throughout,

and where we only needed to consider the experiment (Section 3.3), we certainly

cannot do it for this problem. Again, then, we need a procedure for approximating

the calculations numerically; we must adapt the procedure presented in Section 3.4

to include the new steps, taking care to ensure that doing so does not render the

whole thing too computationally expensive to be carried out.

There are two main additional features of this problem which have the potential to

cause computational difficulty; we consider each of these below, and discuss simpli-

fication strategies to help us deal with them:

March 22, 2018

5.4. Design 179

� In general, the simulator development inputs φj set should contain variables

which specify the ways in which we make improvements to the simulator at

a particular stage, but also variables which specify the points at which we

will run our simulator in order to collect the runs Fj. It is regularly the

case that we will have access to many more simulator runs than system data,

and so while we may be able to set up the problem so that the development

choices have a low-dimensional parametrisation, attempting to design for the

simulator runs would make φj a high-dimensional variable (relative to dj), and

make optimising the risk over this quantity a hard problem. To reduce the

dimensionality of this optimisation problem, we simply ignore the simulator

run design problem, instead fixing a Latin hypercube design at which we will

evaluate the simulator once it is built. This is a common strategy for computer

experiments (see, for example, Santner et al. [2002]); instead of attempting to

solve the (difficult) design problem posed by a particular simulator, a simple,

space-filling design is chosen to give good coverage of the input space.

� In this problem, the data that we observe on the system in our experiments

contains not only information about the parameters q, but also information

about the simulators that we have developed, or that we might develop in

the future. If we were to take account of all this information, then, we would

compute the expectation of the risk (equation (5.4.16)) with respect to the pos-

terior distribution p
(
Fj|z[j−1], w[j−1], d[j−1], F[j−1], φ[j]

)
for the simulator runs

given all of the information obtained so far. This is a highly complex posterior

distribution, and so to simplify the procedure, we do not attempt to evaluate

it; instead, in our approximation procedure, we compute the expectation of

the risk with respect to the conditional distribution p
(
Fj|F[j−1], φ[j]

)
for the

current simulator runs given past simulator runs and development choices.

March 22, 2018

5.4. Design 180

Algorithm 4 Backward induction procedure with simulator development.

1: for k = 0, 1, . . . , (n− 1) do

2: for j = n, (n− 1), . . . , (k + 1) do

3: Run algorithm 5: compute the optimal experimental risk

ρ∗j
[
z[j−1], w[j−1], d[j−1], F[j], φ[j]

]
4: Run algorithm 6: compute the optimal simulator risk

ψ∗j
[
z[j−1], w[j−1], d[j−1], F[j−1], φ[j−1]

]
5: if ρtk ≤ ψ∗k+1 then

6: Cease, take immediate decision a∗k (risk ρtk)

7: else

8: Pay cost cfk+1

(
φ∗k+1

)
, make simulator developments φ∗k+1, obtain Fk+1

9: if ρfk+1 ≤ ρ∗k+1 then

10: Cease, take immediate decision a∗k+1 (risk ρfk+1)

11: else

12: Pay cost ck+1

(
d∗k+1

)
, observe {zk+1, wk+1} at d∗k+1

13: end if

14: end if

15: end for

16: end for

March 22, 2018

5.4. Design 181

Algorithm 5 Compute the experimental risk, to feed into algorithm 4.

1: Compute the experimental risk

2: if j = n then

ρn
[
z[n], w[n], d[n], F[n], φ[n]

]
= ρtn

[
z[n], w[n], d[n], F[n], φ[n]

]
3: else

ρj
[
z[j], w[j], d[j], F[j], φ[j]

]
= min

[
ρtj
[
z[j], w[j], d[j], F[j], φ[j]

]
, ρ∗j+1

[
z[j], w[j], d[j], F[j], φ[j]

]]
4: end if

5: Compute the expected experimental risk

ρ̄j
[
z[j−1], w[j−1], d[j], F[j], φ[j]

]
=

∫∫
ρjp
(
zj|z[j−1], w[j], d[j], F[j], φ[j]

)
× p

(
wj|w[j−1], d[j]

)
dzjdwj

6: Compute the optimal experimental risk:

ρ∗j
[
z[j−1], w[j−1], d[j−1], F[j], φ[j]

]
= min

dj∈D

[
ρ̄j
[
z[j−1], w[j−1], d[j], F[j], φ[j]

]
+ cj (dj)

]

March 22, 2018

5.5. Approximate backward induction- evolving models 182

Algorithm 6 Compute the simulator risk, to feed into algorithm 4.

1: Compute the simulator risk

ψj
[
z[j−1], w[j−1], d[j−1], F[j], φ[j]

]
= min

[
ρ∗j
[
z[j−1], w[j−1], d[j−1], F[j], φ[j]

]
, ρfj
[
z[j−1], w[j−1], d[j−1], F[j], φ[j]

]]
2: Compute the expected simulator risk

ψ̄j
[
z[j−1], w[j−1], d[j−1], F[j−1], φ[j]

]
=

∫
ψjp

(
Fj|z[j−1], w[j−1], d[j−1], F[j−1], φ[j]

)
dFj

3: Compute the optimal simulator risk

ψ∗j
[
z[j−1], w[j−1], d[j−1], F[j−1], φ[j−1]

]
= min

φj

[
ψ̄j
[
z[j−1], w[j−1], d[j−1], F[j−1], φ[j]

]
+ cfj (φj)

]

5.5 Approximate backward induction- evolving mod-

els

We now present an approximation procedure for the backward induction calculation

presented in Section 5.4, in which we have the option to select simulator modifica-

tions as well as experimental designs. The algorithm runs in much the same way as

the one presented in Section 3.4 (see algorithm 2); we begin by giving an outline of

the approximating procedure in Section 5.5.1, and we provide further detail about

each of the required steps in Sections 5.5.2 to 5.5.7.

5.5.1 Outline of the approximating procedure

As in Section 3.4.1, the approximation procedure runs in waves, indexed by i =

1, 2, . . . ; at each wave, we re-emulate inside the candidate design space found at the

previous wave. The following steps are performed for each stage of the backward

induction procedure.

March 22, 2018

5.5. Approximate backward induction- evolving models 183

Emulate the experimental risk As before, our first step is to fit an emulator to

the risk ρj (equation (5.4.11)) from an optimal course of action after the experiment

j has been carried out. Denoting our approximation to the risk at stage j at wave

i by r
(i)
j [.] , we assume the common regression, residual and nugget form for the

emulator

r
(i)
j

[
z[j], w[j], d[j], F[j], φ[j]

]
=
∑
p

α
(i)
jph

(i)
jp

(
z[j], w[j], d[j], F[j], φ[j]

)
+ u

(i)
j

(
z[j], w[j], d[j], F[j], φ[j]

)
+ ξ

(i)
j (5.5.18)

where, as in Section 3.4.1, the h
(i)
jp (.) are a set of known basis functions, and the

regression coefficients {α(i)
jp }, residual process u

(i)
j (.) and nugget ξ

(i)
j are assumed

to be a priori independent. We make a prior specification for all of the uncertain

components of the model (5.5.18), and we adjust these prior moments using a set of

risk evaluations. In Section 5.5.3, we outline a general procedure for making a prior

specification, and generating evaluations of the risk for the adjustment. In Section

5.5.7, we consider the selection of the risk inputs that we use to generate data for

the adjustment.

Approximate the expected experimental risk The next step of the backward

induction algorithm is to compute our beliefs about the expectation of the risk with

respect to p
(
zj|z[j−1], w[j], d[j], F[j], φ[j]

)
and p

(
wj|w[j−1], d[j]

)
; this is done in exactly

the same way as described in Section 3.4.6, by integrating the emulator directly. Our

approximation to the expectation ρ̄j (equation (5.4.12)) of the risk is denoted by

r̄
(i)
j , with

r̄
(i)
j

[
z[j−1], w[j−1], d[j], F[j], φ[j]

]
=

∫
r

(i)
j p
(
zj|z[j−1], w[j], d[j], F[j], φ[j]

)
p
(
wj|w[j−1], d[j]

)
dzjdwj . (5.5.19)

Computation of the moments of r̄
(i)
j is discussed in Section 5.5.3, and the character-

isation of the distributions required to evaluate the integral is discussed in Section

5.5.2.

Characterise the risk from an optimal experimental design As in Section

3.4.1, we denote our approximation to the risk ρ∗j (equation (5.4.13)) from an optimal

March 22, 2018

5.5. Approximate backward induction- evolving models 184

design by s
(i)
j , where

s
(i)
j

[
z[j−1], w[j−1], d[j−1], F[j], φ[j]

]
= r̄

(i)
j

[
z[j−1], w[j−1], {d[j−1], d

∗
j}, F[j], φ[j]

]
+ cj

(
d∗j
)

.

(5.5.20)

As before, we do not know the optimal design setting d∗j , and so we represent our

uncertainty about it by sampling candidate designs d̃j from a candidate design space

D(i)
j defined by the emulator r̄

(i)
j . This corresponds to the strategy adopted in Section

3.4.8, before we allowed for the possibility of evolving models. Its implementation

in this instance is discussed in Section 5.5.3.

Emulate the simulator risk We must now model the risk from an optimal choice

between performing the next experiment and making a decision about the system

immediately after building a new simulator. In order to approximate the simulator

risk ψj (equation 5.4.14) we re-emulate: we denote our approximating emulator

by t
(i)
j , and we assume the common regression, residual and nugget form for our

emulator

t
(i)
j

[
z[j−1], w[j−1], d[j−1], F[j], φ[j]

]
=
∑
p

α̂
(i)
jp ĥ

(i)
jp

(
z[j−1], w[j−1], d[j−1], F[j], φ[j]

)
+ û

(i)
j

(
z[j−1], w[j−1], d[j−1], F[j], φ[j]

)
+ ξ̂

(i)

j . (5.5.21)

As usual with our emulators, the ĥ
(i)
jp (.) are known basis functions, and the uncertain

components (regression coefficients {α̂(i)
jp }, residual process û

(i)
j (.) and nugget ξ̂

(i)

j)

are assumed to be a priori uncorrelated. We make a prior specification for the

uncertain components of the model, and then we adjust these prior beliefs using a

set of risk evaluations. The specification of the prior, and the generation of the risk

evaluations for the adjustment are discussed in Section 5.5.4.

Approximate the expected simulator risk We denote our approximation to

the expected simulator risk ψ̄j (defined in (5.4.16)) by t̄
(i)
j ; as with the expected

experimental risk r̄
(i)
j , it is computed by integrating the emulator directly

t̄
(i)
j

[
z[j−1], w[j−1], d[j−1], F[j−1], φ[j]

]
=

∫
t
(i)
j p
(
Fj|F[j], φ[j]

)
dFj . (5.5.22)

March 22, 2018

5.5. Approximate backward induction- evolving models 185

As with the data and the external parameters, we compute this expectation by

integrating the emulator directly, as described in Section 2.4.1. The fitting and

integration of the emulator t
(i)
j [.] are discussed in Section 5.5.4.

Characterise the risk from an optimal experimental design Our approxi-

mation v
(i)
j to the risk ψ∗j (equation (5.4.17)) from an optimally-designed simulator

is generated in the same way as our approximation to the risk s
(i)
j from an optimally-

designed experiment

v
(i)
j

[
z[j−1], w[j−1], d[j−1], F[j−1], φ[j−1]

]
= t̄

(i)
j

[
z[j−1], w[j−1], d[j−1], F[j−1], {φ[j], φ

∗
j}
]

+ cfj
(
φ∗j
)

. (5.5.23)

The optimal simulator design φ∗j is unknown; we represent our uncertainty about its

value by sampling candidate simulator designs φ̃j from a candidate simulator design

space P(i)
j defined by the emulator t̄

(i)
j . Generation of the candidate simulator designs

and characterisation of our uncertainty about v
(i)
j is discussed in Section 5.5.5.

5.5.2 Characterisation of moments

We need to be able to characterise the posterior distributions p
(
q|z[j], w[j], d[j], F[j], φ[j]

)
and p

(
q|z[j−1], w[j−1], d[j−1], F[j], φ[j]

)
of the parameters at any stage of the problem,

as well as the conditional distributions p
(
zj|z[j−1], w[j], d[j], F[j], φ[j]

)
and p

(
Fj|F[j−1], φ[j]

)
.

If we were to use a fully probabilistic specification for all of the components of the

model, then we would need to resort to computationally expensive numerical inte-

gration methods in order to characterise these distributions. The fact that we can

represent our model as a DAG would help slightly in this, as it would allow us to

construct an MCMC scheme in which we can sample from each of the conditional

distributions in turn; however, this scheme would still suffer from all of the usual

issues (difficulty in identifying convergence, long computation times).

Instead, we adopt the same strategy as in Section 3.4.3 and use the second-order

moments provided by our Bayes linear analysis to characterise the moments of the

required distributions at each stage.

March 22, 2018

5.5. Approximate backward induction- evolving models 186

Algorithm 7 Backward induction approximation algorithm, with evolving models.

1: for i = 1, 2, . . . do (loop over waves)

2: for j = n, (n− 1), . . . , 1 do (loop over stages)

3: Specify experimental risk model (Section 5.5.3)

r
(i)
j

[
z[j], w[j], d[j], F[j], φ[j]

]
=
∑
p

α
(i)
jph

(i)
jp + u

(i)
j + ξ

(i)
j

4: Approximate expected experimental risk (Section 5.5.3)

r̄
(i)
j =

∫∫
r

(i)
j p
(
zj|z[j−1], w[j], d[j], F[j], φ[j]

)
p
(
wj|w[j−1], d[j]

)
dzjdwj

5: Characterise the risk from an optimal experiment (Section 5.5.3)

s
(i)
j = r̄

(i)
j

[
z[j−1], w[j−1], {d[j−1], d

∗
j}, F[j], φ[j]

]
+ cj

(
d∗j
)

6: Specify simulator risk model (Section 5.5.4)

t
(i)
j

[
z[j−1], w[j−1], d[j−1], F[j], φ[j]

]
=
∑
p

α̂
(i)
jp ĥ

(i)
jp + û

(i)
j + ξ̂

(i)

j

7: Approximate expected simulator risk (Section 5.5.4)

t̄
(i)
j =

∫
t
(i)
j p
(
Fj|F[j], φ[j]

)
dFj

8: Characterise the risk from an optimally-designed simulator (Section 5.5.5)

v
(i)
j = t̄

(i)
j

[
z[j−1], w[j−1], d[j−1], F[j−1], {φ[j], φ

∗
j}
]

+ cfj
(
φ∗j
)

9: end for

10: end for

March 22, 2018

5.5. Approximate backward induction- evolving models 187

Marginal data moments First, the observed data; the marginal moments of the

data zj available at the jth stage are computed for fixed wj, dj and F[j]

E
[
zjk|wj, dj, F[j]

]
= E [yk (wj, dj)]

Cov
[
zjk, zlp|wj, dj, F[j]

]
= Cov [yk (wj, dj) , yp (wl, dl)]

+ Cov [εjk, εlp]

where the moments of y (.) are computed as in Section 5.3.2. The adjusted moments

Ez[j−1]

[
zj|w[j], d[j], F[j]

]
and Varz[j−1]

[
zj|w[j], d[j], F[j]

]
are computed from these marginal

moments as

Ez[j−1]

[
zjk|, w[j], d[j], F[j], φ[j]

]
=

E [zjk] + Cov [zjk, zrs] Var
[
z[j−1]

] −1
rstu

[
ztu − E [ztu]

]

Covz[j−1]

[
zjk, zjp|w[j], d[j], F[j], φ[j]

]
=

Cov [zjk, zjp] − Cov [zjk, zjp] Var
[
z[j−1]

] −1
rstuCov [ztu, zjp]

where the sums over r and t range from 1, . . . , (j−1), and the sums over s and u range

over 1, . . . , nzs and 1, . . . , nzu respectively, and all of the moments on the right hand

side are conditioned on {w[j], d[j], F[j], φ[j]}. These adjusted moments are used to

approximate the conditional distributions p
(
zj|z[j−1], w[j], d[j], F[j], φ[j]

)
; we simply

use these adjusted moments to characterise a multivariate Gaussian distribution.

Posterior parameter moments We characterise the posterior distribution at

each stage by computing the adjusted moments of the model parameters given the

data, as in Section 5.3.3

Ez[j]

[
ql|w[j], d[j], F[j], φ[j]

]
= E [ql] + Cov [ql, zrs] Var

[
z[j]

] −1
rstu

[
ztu − E [ztu]

]

Covz[j]
[
ql, qm|w[j], d[j], F[j], φ[j]

]
=

Cov [ql, qm] − Cov [ql, zrs] Var
[
z[j]

] −1
rstuCov [ztu, qm]

where the sums over r and t range from 1, . . . , j, the sums over s and u range over

1, . . . , nzr and 1, . . . , nzt respectively, and all moments on the right-hand side are

March 22, 2018

5.5. Approximate backward induction- evolving models 188

conditioned on {w[j], d[j], F[j], φ[j]}. These moments are then used to characterise

an appropriate distribution, usually a multivariate Gaussian. In addition to these

adjusted moments computed after specification of {z[j], w[j], w[j], F[j], φ[j]} (after the

experiment at stage j), we must also be able to approximate the corresponding

adjusted moments after specification of {z[j−1], w[j−1], w[j−1], F[j], φ[j]}, in order to

characterise the posterior after the simulator developments at stage j, but before

the jth experiment has been carried out. These are approximated using the adjusted

moments computed in exactly the same way, simply adjusting the conditioning sets

and the ranges of the summation indices appropriately.

Conditional simulator moments We must also be able to specify the distribu-

tions p
(
Fj|F[j−1], φ[j]

)
of the simulator runs that we obtain at stage j; we specify

that each of these is a multivariate Gaussian distribution, characterised by the ad-

justed second order moments for the simulator runs computed as at 5.3.2. The

simulator that we choose to construct at stage j is determined by the parameters

φj; within this, we allow for the possibility that we may choose to construct multiple

simulators at a given stage, or that we may choose to construct none at all. In any

case, the joint moments of any runs that we do obtain can be computed as at 5.3.2.

5.5.3 Emulating the experimental risk

In this section, we discuss the fitting of the emulator r
(i)
j to the experimental risk ρtj

Evaluating the risk At the jth stage of the ith wave of the approximation proce-

dure, we evaluate the risk at N
(i)
j input settings {z[j]k, w[j]k, d[j]k, F[j]k, φ[j]k} to obtain

risk evaluations R
(i)
j = {R(i)

1k , . . . , R
(i)

jN
(i)
j

}. At the final stage, these risk evaluations

are obtained directly from the terminal risk (5.4.9)

R
(i)
nk = ρtn

[
z[n]k, w[n]k, d[n]k, F[n]k, φ[n]k

]
.

At any other stage of the algorithm, the evaluations are obtained by comparing the

terminal risk with our approximation (5.5.23) to the risk from an optimal future

March 22, 2018

5.5. Approximate backward induction- evolving models 189

procedure

R
(i)
jk = min

[
ρtj
[
z[j]k, w[j]k, d[j]k, F[j]k, φ[j]k

]
,

v
(i)
j+1

[
z[j]k, w[j]k, d[j]k, F[j]k, φ[j]k

]]
. (5.5.24)

The uncertainty induced through our numerical approximations means that v
(i)
j+1 is

unknown, which means that we cannot evaluate R
(i)
jk exactly; therefore, as in Section

3.4.4, we compute E
[
R

(i)
jk

]
and Cov

[
R

(i)
jk , R

(i)
jl

]
by using the moments E

[
v

(i)
j+1 [.]

]
and Cov

[
v

(i)
j+1 [.] , v

(i)
j+1 [.′]

]
computed in Section 5.5.5 to characterise a multivariate

Gaussian distribution and sampling the expression (5.5.24). The emulator is then

fitted to the expected values, with the covariance structure being used to characterise

the measurement error.

Model specification The procedure for specifying and fitting the emulator for the

experimental risk is the same as the one outlined in Section 3.4.4. First, we select the

basis functions {h(i)
jp } and specify the covariance function Cov

[
u

(i)
j (.) , u

(i)
j (.′)

]
for

the residual component. Then, we make a prior specification for the basis coefficients

{α(i)
jp } and the marginal variance of the residual process by performing an initial

linear regression. The correlation parameters of the residual covariance function are

determined through leave-one-out cross-validation; see Sections 2.2.3 and 3.4.4 for

further details of this process.

As previously discussed (Section 3.4.4), using a modified version of the risk as a basis

function may help to explain a substantial proportion of the global structure of the

risk function. However, in this case, the complexity of the general model structure

outlined in Section 5.3 has the potential to make the evaluating risks (5.4.9) or

(5.4.15) too computationally intensive for them to be practical as basis function

choices; when sampling candidate designs (below), or candidate simulator designs

(Section 5.5.5), we will generally have to evaluate the emulator many thousands of

times at different input settings.

Instead of using the risks (5.4.9) or (5.4.15) directly as a component of the basis,

then, we might opt to use a simplified version of the risk. For example, we could:

� simplify the uncertainty propagation calculations in Section 5.3.3 by dropping

March 22, 2018

5.5. Approximate backward induction- evolving models 190

terms; for example, the integrals involving the covariance twice can be partic-

ularly slow to evaluate, since we must compute a large matrix for each pair of

observations;

� reduce the number of points used when numerically evaluating the moments

in Section 5.3.3;

� simplify the risk by using only a sub-sample of the data z[j] to evaluate it;

� use the risk from a simplified problem (for example, one in which we do not

consider improvements to the model) which shares many of the features of the

actual problem.

Approximating the expected experimental risk Once the emulator r
(i)
j has

been fitted, the moments of our approximation to the expected risk are characterised

exactly as outlined in Section 3.4.6, by integrating with respect to the distributions

p
(
zj|z[j−1], w[j], d[j], F[j], φ[j]

)
and p

(
wj|w[j−1], d[j]

)
; in this case, we must allow for

the dependence of our emulator and data distribution on {F[j], φ[j]}, the simulator

runs and simulator design choices.

Characterise the risk from an optimal experimental design Once we have

computed the moments of r̄
(i)
j as outlined in Section 3.4.6, our procedure for gen-

erating candidate designs d̃j and assessing the moments of s
(i)
j is also the same as

outlined in Section 3.4.8; again, in this case, we must take account of any dependency

of our fitted model on the simulator components {F[j], φ[j]}.

5.5.4 Emulating the simulator risk

In the procedure where we may build simulators in order to resolve parts of the

uncertainty about the system, we must account for the effect of the simulator runs

that we might observe at this stage on our beliefs about the system. In order to do

this, we must characterise the risk ψj (defined in equation (5.4.14)), and its expected

behaviour ψ̄j over possible values of Fj. Since, again, the risk ψj is computed as

the minimum of two already very complex functions, we emulate again in order to

March 22, 2018

5.5. Approximate backward induction- evolving models 191

proceed; the emulator that we fit has the common regression, residual and nugget

form (see equation (5.5.21)).

Evaluating the risk In order to fit the model, we need to generate data from the

risk function. We evaluate the risk at a set of Ñ
(i)
j input settings {z[j]k, w[j]k, d[j]k, F[j]k, φ[j]k},

and we denote the risk values that we obtain at these points by {T (i)
jk }. The risk eval-

uations are generated by comparing the risk ρfj (equation (5.4.15)) from a decision

immediately after the construction of the jth set of simulators with our approxima-

tion s
(i)
j (equation (5.4.13)) to the risk from an optimally-designed experiment at

stage j

T
(i)
jk = min

[
ρfj
[
z[j]k, w[j]k, d[j]k, F[j]k, φ[j]k

]
, s

(i)
j

[
z[j]k, w[j]k, d[j]k, F[j]k, φ[j]k

]]
.

(5.5.25)

Since we are uncertain about s
(i)
j , we compute E

[
T

(i)
jk

]
and Cov

[
T

(i)
jk , T

(i)
jl

]
by

sampling. We compute ρfj [.] for any setting of its inputs by evaluating (5.4.15),

and we compute E
[
s

(i)
j [.]

]
and Cov

[
s

(i)
j [.] , s

(i)
j [.′]

]
for any pair of input settings

as outlined in Section 5.5.3; we use these moments to characterise a multivariate

Gaussian distribution ove all input settings, and then assess the moments of T
(i)
jk by

repeatedly sampling the expression (5.5.25).

Choosing the basis functions All previous considerations (Sections 5.5.3 and

3.4.4) apply in this instance too; however, this time, we are looking to ensure that

we can handle integrals of our basis and covariance functions with respect to the

distribution p
(
Fj|F[j−1], φ[j]

)
of simulator runs at this stage.

If it is computationally feasible to do so, then choosing

ĥ
(i)
j

(
z[j−1], w[j−1], d[j−1], F[j], φ[j]

)
= ρfj

[
z[j−1], w[j−1], d[j−1], F̃[j], φ[j]

]
where F̃[j] = {F1, . . . ,EF[j−1]

[
Fj|φ[j]

]
} is the set of simulator runs with Fj replaced

with its adjusted expectation, may provide a good approximation to the risk. The

variability in the risk due to the actual values of the simulator runs can then be

absorbed using either the residual process û
(i)
j or the nugget term ξ̂

(i)

j .

Evaluating the above basis function requires us to compute the adjusted moments of

March 22, 2018

5.5. Approximate backward induction- evolving models 192

Fj given F[j−1], and then to re-compute the adjusted moments of the reified simulator

for each value of F̃[j]. This could potentially represent too large a computational

burden (given the need to evaluate this emulator many times in order to carry

out the minimum sampling procedure described in Section 5.5.5); instead then, we

could simply choose to use the terminal risk ρfj−1 evaluated at the expectation of

the simulator runs from all stages

ĥ
(i)
j

(
z[j−1], w[j−1], d[j−1], F[j], φ[j]

)
= ρfj

[
z[j−1], w[j−1], d[j−1],E

[
F[j]|φ[j]

]
, φ[j]

]
.

This means that, in order to repeatedly evaluate the risk (5.4.15), we do not need to

keep re-updating the moments of the reified simulator as the set of simulator runs

changes.

Under either of these basis function choices, we sacrifice some of our ability to

explain the variation in the risk function in order to achieve integrability of the

resulting emulator and to reduce the time and effort that it takes to evaluate the

approximation. For a specific problem, the effect of each of these choices of basis

function should be carefully assessed, so that we may make a judgement about the

appropriate trade-off between computational effort and uncertainty about the risk.

Determining the prior Once the basis functions have been selected, the prior is

determined in the usual way (see Section 3.4.4); a set of risk evaluations is generated,

and we use this to perform an initial linear regression. The parameter estimates from

this fit are then used to fix the prior moments E
[
α̂

(i)
jp

]
and Cov

[
α̂

(i)
jp , α̂

(i)
jq

]
, and the

residuals of the regression are then used to determine the marginal variance of the

residual process Var
[
û

(i)
j (.)

]
.

If a nugget is used, its variance Var
[
ξ̂

(i)

j

]
is determined empirically as in the orig-

inal design procedure (Section 3.4.4); we generate risk evaluations where only the

parameters whose effect is to be represented by the nugget are allowed to vary, and

we compute the sample variances of these risk data sets at multiple different settings

of the fixed parameters. If the variances do not differ greatly across the locations,

then we fix Var
[
ξ

(i)
j

]
to the average of the sample variances.

Once the prior for the regression, the marginal variance of the residual and the vari-

ance of the nugget have been fixed as above, we determine the correlation lengths for

March 22, 2018

5.5. Approximate backward induction- evolving models 193

the residual process using leave-one-out cross-validation (see Sections 2.2.3, 3.4.4).

For a particular setting of the correlation parameters, we omit each individual ele-

ment of the data set T
(i)
j in turn, and predict its value using the fit to the remainder;

we compare the quality of different correlation parameter settings using the sum of

the predictive Gaussian likelihoods for all elements. We then fix the correlation

lengths to the best-performing setting for the remainder of the analysis.

Approximate the expected simulator risk Once we have fitted the emulator

t
(i)
j , we integrate it to obtain t̄

(i)
j , our approximation to the risk ψ̄j at the ith wave of

the algorithm. As discussed in Section 2.4.2, and implemented for the experimental

risk in Section 3.4.6, moments of the integral of a function are obtained by integrating

the moments directly; we have that

E
T

(i)
j

[
t̄
(i)
j

[
z[j−1], w[j−1], d[j−1], F[j−1], φ[j]

]]
=

∫
E
T

(i)
j

[
t
(i)
j [.]

]
p
(
Fj|F[j−1], φ[j]

)
dFj

and that

Cov
T

(i)
j

[
t̄
(i)
j

[
z[j−1], w[j−1], d[j−1], F[j−1], φ[j]

]
, t̄

(i)
j

[
z′[j−1], w

′
[j−1], d

′
[j−1], F

′
[j−1], φ

′
[j]

]]
=

∫
Cov

T
(i)
j

[
t
(i)
j [.] , t

(i)
j [.′]

]
p
(
Fj|F[j−1], φ[j]

)
p
(
F ′j|F ′[j−1], φ

′
[j]

)
dFjdF

′
j .

In order to compute the integrals of these expectations and covariances, we must

compute the integrals of the basis and and covariance functions, as outlined in Sec-

tion 2.4.2. If we took care to design our emulator so that these functions could be

integrated analytically with respect to p
(
Fj|F[j−1], φ[j]

)
, then evaluating the mo-

ments of t̄
(i)
j will be no more complex than evaluating those of t

(i)
j . In general, we

will approximate the distribution p
(
Fj|F[j−1], φ[j]

)
by using the adjusted moments

EF[j−1]

[
Fj|φ[j]

]
and VarF[j−1]

[
Fj|φ[j]

]
(computed as in Section 5.3.2) to characterise

a multivariate Gaussian.

5.5.5 Characterising the optimal simulator risk

Because of our uncertainties about the risk functions, the optimal set of simula-

tor developments φ∗j cannot be located exactly; for the same reasons as outlined in

March 22, 2018

5.5. Approximate backward induction- evolving models 194

Section 3.4.8, it is also not possible to obtain an exact characterisation of our un-

certainty about the risk at the minimum. In order to assess our uncertainty about

v
(i)
j , then, we adopt a procedure analogous to the one used when characterising our

uncertainty about s
(i)
j ; we use a sampling procedure to identify simulator designs

which could plausibly be optimal, and we use designs generated in this way to assess

our uncertainty about v
(i)
j .

Candidate simulator design space We represent our uncertainty about the op-

timal simulator design φ∗j by using the emulator t̄
(i)
j to define a ‘candidate simulator

design space’ P(i)
j . For any setting of the risk inputs {z[j−1], w[j−1], d[j−1], F[j−1], φ[j−1]},

we generate a space-filling set of M̃
(i)
j trial simulator designs {φj1, φj2, . . . , φjM̃(i)

j
}

inside the space P(i−1)
j (where P(0)

j = Pj, the full simulator design space), and we

sample corresponding risks t̄
(i)
j from a Multivariate Gaussian characterised by our

beliefs E
[
t̄
(i)
j

]
. Our ‘candidate simulator design’ is the trial simulator design which

minimises the risk over this set. The space P(i)
j is the set of simulator designs which

are identified by this procedure. This procedure is summarised in algorithm 8.

As with the procedure for sampling candidate experimental designs (Section 3.4.8,

algorithm 3), as defined, this procedure is recursive; we must be able to generate

simulator designs which lie in the space P(i−1)
j before we can generate designs which

lie in P(i)
j . As we progress through the waves, this will cause the complexity of the

procedure to increase substantially. Generally, however, the candidate simulator de-

signs which we obtain will lie within easily-identifiable sub-regions of the full design

space, which we can characterise using simple limits; therefore, we can approximate

the full procedure by characterising P(i−1)
j in this way, and then generating points

within this space using a Latin hypercube.

Moments of v
(i)
j As with the optimal experimental risk (Section 3.4.8), we use the

sampling procedure to characterise our uncertainty about v
(i)
j , our approximation

to ψ∗j at wave i; we simply substitute candidate designs φ̃j generated according to

algorithm 8 for the true optimal simulator design φ∗j in the expression (5.4.17), and

March 22, 2018

5.5. Approximate backward induction- evolving models 195

Algorithm 8 Generate candidate simulator design φ̃j at stage j wave i.

1: Generate M̃
(i)
j space-filling trial simulator designs {φj1, φj2, . . . , φjM̃(i)

j
} within

the candidate design space P(i−1)
j

2: Jointly sample t̄
(i)
j

[
z[j−1], w[j−1], d[j−1], F[j−1], {φ[j−1], φjk}

]
values for the set of

all trial simulator designs {φjk} from a Gaussian distribution.

3: Set

φ̃j = arg min
φjk

[
t̄
(i)
j

[
z[j−1], w[j−1], d[j−1], F[j−1], {φ[j−1], φjk}

]
+ cfj (φjk)

]

compute expectations and covariances by sampling. Our expectation is

E
[
v

(i)
j

[
z[j−1], w[j−1], d[j−1], F[j−1], φ[j−1]

]]
= E

[
E
T

(i)
j

[
t̄
(i)
j

[
φ̃j

]]
+ cfj

(
φ̃j

)]
(5.5.26)

and our covariance is

Cov
[
v

(i)
j

[
z[j−1], w[j−1], d[j−1], F[j−1], φ[j−1]

]
, v

(i)
j

[
z′[j−1], w

′
[j−1], d

′
[j−1], F

′
[j−1], φ

′
[j−1]

]]
= Cov

[
E
T

(i)
j

[
t̄
(i)
j

[
φ̃j

]]
+ cfj

(
φ̃j

)
,E

T
(i)
j

[
t̄
(i)
j

[
φ̃j

]]
+ cfj

(
φ̃j

)]
+ E

[
Cov

T
(i)
j

[
t̄
(i)
j

[
φ̃j

]
, t̄

(i)
j

[
φ̃j

]]]
(5.5.27)

where all outer expectations and covariances are computed with respect to φ̃j

5.5.6 Assessing the result

After performing a wave of the analysis described in this section, we must use the

results to decide how to proceed in the actual design problem. This time, however,

we have two different situations in which we must carry out an assessment. In

the first case, the decision is the same as before (Section 3.4.10); should we carry

out an experiment at stage j, or should we make an immediate decision based on

our current beliefs? In the other case, we must determine whether, having carried

out an experiment at stage j, we should construct the simulator at stage (j + 1),

or whether we should make a terminal decision using the information from the

simulators already constructed and the experiments already performed. We consider

both of these cases below.

March 22, 2018

5.5. Approximate backward induction- evolving models 196

Assessing the value of constructing a simulator At the point where we have

obtained the (k−1)th set of simulator runs, and carried out the (k−1)th experiment,

we must next decide whether we should carry out further simulator developments,

or whether we should stop and make an immediate decision based on our current

beliefs. In order to make this choice, we must first decide what we would do if we

were to decide to continue development, so that we can compare the risk from this

course of action with the risk from stopping.

Since we are uncertain about the risk function, the best that we can do is to find the

minimum of our expectation for the risk, taking into account the cost of a particular

set of developments

φ̂k = arg min
φk

[
E
T

(i)
k

[
t̄
(i)
k [φk]

]
+ cfk (φk)

]
.

Having determined that we would carry out the developments φ̂k if we were to

proceed, we compare the risk from stopping with the expected risk from continuing:

if

E
T

(i)
k

[
t̄
(i)
k

[
φ̂k

]]
+ cfk

(
φ̂k

)
< ρtk−1

then we conclude that it is optimal to pay for the next set of simulator developments

(at setting φ̂k), and then to proceed optimally from this point; if the converse is true,

then we conclude that it is optimal to make a decision about the system based on

our current beliefs, and that it is not worth continuing beyond this point.

As with the original sequential design procedure (Section 3.4.10), we compute the

expected value of perfect information (EVPI) for the risk calculation, in order to

help us to decide whether a further wave of analysis would help. If we knew the

risk function v
(i)
k and the optimal simulator design φ∗k exactly, then our risk from an

optimal course of action would be

min
[
ρtk−1, v

(i)
k [φ∗k] + cfk (φ∗k)

]
.

Suppose that after deciding to carry out simulator developments at setting φ̂k, we

learn φ∗k, the true optimal simulator design setting; our expectation for the loss that

March 22, 2018

5.5. Approximate backward induction- evolving models 197

we incur by choosing to experiment at φ̂k rather than at φ∗k is

ṽ
(i)
k = min

[
ρtk−1,ET

(i)
k

[
t̄
(i)
k

[
φ̂k

]]
+ cfk

(
φ̂k

)]
− E

[
min

[
ρtk−1, v

(i)
k [φ∗k] + cfk (φ∗k)

]]
.

As in Section 3.4.10, we approximate the expectation of the second term by sampling

candidate designs φ̃k.

As before (Section 3.4.10), this quantity should be compared to the cost of running

another wave of the risk analysis, and the likely benefits from doing so. The EVPI ṽ
(i)
k

constitutes a upper bound on the amount that we should be willing to pay for further

computation, and so we must make a judgement about the likely benefit that we will

obtain from another wave; if cwv is our assessment of the cost of further computation,

and we expect that the EVPI after this additional wave will be E
[
ṽ

(i+1)
k

]
, then we

should pay for the additional wave if cwv < ṽ
(i)
k − E

[
ṽ

(i+1)
k

]
, and proceed with the

decision problem otherwise.

Assessing the value of the next experiment If we have chosen to develop the

simulator according to φk, and we have observed Fk, then we must decide whether it

is now optimal to continue and carry out the kth experiment, or whether we should

stop and make a decision about the system. The procedure at this point is exactly

the same as the one described in Section 3.4.10.

First, we find the risk from the experiment that we would actually choose; again,

we don’t know the risk function, and so we choose the experimental design which

has the lowest expected risk. We denote by d̂k the design setting which minimises

E
[
r̄

(i)
k [dk]

]
+ ck (dk) ; at this design setting, we make an immediate decision based

on the information available from the simulators run experiments carried out so far

if E
[
r̄

(i)
k

[
d̂k

]]
+ ck

(
d̂k

)
≥ ρfk , and we perform the kth experiment if the converse

is true.

In the same way as for the original design procedure, we can compute the expected

value of perfect information v
(i)
k

(
d̂k

)
about the risk, to help us make a decision

about whether we should pay for another wave of analysis; see Section 3.4.10 for

details of the calculation.

March 22, 2018

5.5. Approximate backward induction- evolving models 198

5.5.7 Choosing inputs for risk evaluations

As with the approximate backward induction framework presented in Section 3.4,

the fitting of multiple different emulators to the same risk functions across different

waves provides us with the opportunity to select the risk evaluations used for fitting

so that the emulator will be as informative as possible for our analysis at a given

wave. In the sequential design problem, there may be parts of the design space that

we will never reach, because the reduction in the risk from an experiment at such

a design is almost certainly less than the cost of carrying out an experiment there;

when building our emulator for the risk, then, we want to avoid fitting it in these

parts of the space, since this information will never be useful for our analysis.

When considering the sequential design problem with the potential for model de-

velopment, we must select both experimental design parameters dj and φj at a

particular stage j in order to be able to evaluate the risk; we consider the choice of

suitable settings for both types of design parameter.

Selecting dj At wave i = 1, we simply generate design inputs dj according to a

Latin hypercube. For later waves i = 2, 3, . . . , we generate design choices that fulfil

both of the following criteria:

� They could be candidate designs d̃j (sampled according to Section 3.4.8, algo-

rithm 3) for the current input setting {z[j−1], w[j−1], d[j−1], F[j], φ[j]}.

� For later stages j > 1, they satisfy the following

E
[
r̄

(i−1)
j

[
z[j−1], w[j−1], d[j], F[j], φ[j]

]]
+ cj (dj) − ρfj−1[

Var
[
r̄

(i−1)
j

[
z[j−1], w[j−1], d[j], F[j], φ[j]

]]]1/2 ≤ 3 .

That is, under our beliefs about r̄
(i−1)
j [.] at wave i−1, there is a greater than 5%

chance (again using the three-sigma rule of Pukelsheim [1994]) that we will con-

tinue to experiment at design dj, at stage j, given setting {z[j−1], w[j−1], d[j−1], F[j], φ[j]}

for all inputs at previous stages.

Selecting φj At wave i = 1, we also generate simulator design inputs φj according

to a Latin hypercube. At later waves i = 2, 3, . . . , we generate simulator design

March 22, 2018

5.6. Example: Building a model 199

settings which fulfil both of the following criteria

� They could be candidate simulator designs φ̃j (sampled according to Section

3.4.8, algorithm 3) for the current input setting {z[j−1], w[j−1], d[j−1], F[j−1], φ[j−1]}.

� For later stages j > 1, they satisfy the following

E
[
t̄
(i−1)
j

[
z[j−1], w[j−1], d[j−1], F[j−1], φ[j]

]]
+ cfj (φj) − ρtj−1[

Var
[
t̄
(i−1)
j

[
z[j−1], w[j−1], d[j−1], F[j−1], φ[j]

]]]1/2 ≤ 3 .

5.6 Example: Building a model

We illustrate the procedure from Section 5.5 through application to an example

related to the atmospheric dispersion model outlined in Section 1.1. In Section

5.6.1, we develop a stochastic representation of the transport of particulate matter

through the atmosphere, which allows for the possibility of deviations from the

standard model outlined in Section 1.1. Then, in Section 5.6.2, we combine this

model with the framework outlined in Section 5.3 to link our current version of the

plume to our beliefs about developments to the model that we might make in the

future. In Section 5.7, we then run the backward induction procedure from Section

5.5 for this model, and discuss the results.

5.6.1 Stochastic atmospheric dispersion model

We consider what happens to a particle of gas which is released from a source in

a particular location; using the orthonormal co-ordinates ω = (ωx, ωy, ωz)
T (which

are aligned with the direction of the wind, as defined in Section 1.1), we assume

that the particle moves along the direction of the wind at a constant rate, while

perpendicular to the wind (in the horizontal plane), it undergoes fractional Brownian

motion (see, for example, Yin [1996]); i.e. it follows a Gaussian process χy (ωx) which

has E [χy (ωx)] = 0 for all ωx and

Cov [χy (ωx) , χy (ω′x)] = cy (ωx, ω
′
x) =

σ2
y

2

[
(ωx)

2Hy + (ω′x)
2Hy − |ωy − ω′x|2Hy

]
where between them, the marginal standard deviation σy and the Hurst parameter

Hy govern the distribution of independent increments of the process (the increment

March 22, 2018

5.6. Example: Building a model 200

χy (ωx + t) − χy (ωx) has variance t(2Hy)σ2
y). We now assume that N independent

such particles are released, and we use Gaussian kernels to construct a measure

of the density of particles at a particular location ωy for a given point ωx on the

trajectory

α (ωx, ωy) =
1

N

N∑
i=1

1√
2πηy

exp
[
− 1

2η2
y

(ωy − χyi (ωx))2
]

where ηy parametrises the roughness of the cross-section. We imagine that, as N

grows, the average will converge to a Gaussian; indeed, if we compute the expectation

of this smoother over the distribution of the driving process for given χy (ωx) , we

obtain

E [α (ωx, ωy)] =
1

N

∑
i

∫ ∞
−∞
N
(
ωy|χyi (ωx) , η2

y

)
N (χyi (ωx) |0, vy (ωx)) dχy (ωx)

=
1√

2π(η2
y + vy (ωx))

exp
[
−

ω2
y

2(η2
y + vy (ωx))

]
where the marginal variance of the process at a given point is denoted by

vy (ωx) =
σ2
y

2
ω(2Hy)
x .

The Gaussian form also allows us to compute the covariance between the particle

densities at different points

Cov
[
α (ωx, ωy) , α

(
ω′x, ω

′
y

)]
=

1

N2

∑
i

∑
j

Cov
[
αi (ωx, ωy) , αj

(
ω′x, ω

′
y

)]
=

1

N2

∑
i

Cov
[
αi (ωx, ωy) , αi

(
ω′x, ω

′
y

)]
where the αi (.) are the contributions of the individual particles to the density, and

the simplification in the second line is possible because of the independence of the

trajectories. The individual covariances are

Cov
[
αi (ωx, ωy) , αi

(
ω′x, ω

′
y

)]
= E

[
αi (ωx, ωy)αi

(
ω′x, ω

′
y

)]
− E [αi (ωx, ωy)] E

[
αi
(
ω′x, ω

′
y

)]
and

E
[
αi (ωx, ωy)αi

(
ω′x, ω

′
y

)]
=

1

2π|Vy +Ry|1/2
exp

[
− 1

2
tTy (Vy +Ry)

−1ty

]
March 22, 2018

5.6. Example: Building a model 201

where

ty =

ωy
ω′y

 Vy =

 vy (ωx) cy (ωx, ω
′
x)

cy (ω′x, ωx) vy (ω′x)

 Ry =

η2
y 0

0 η2
y

with Vy describing the correlation between the processes at different points, and Ry

describing the contribution of the smoothing parameters of the Gaussian kernels.

We can do exactly the same calculation for the vertical direction.

Combining the components in both the horizontal and vertical directions, we define

the corresponding full random process as

α (ωx, ωy, ωz) = αy (ωx, ωy)αz (ωx, ωz) .

Assuming that the horizontal and vertical driving processes are uncorrelated, the

expectation of this process is then

b (ω) = E [α (ωx, ωy, ωz)]

= E [αy (ωx, ωy)] E [αz (ωx, ωz)]

=
1√

2π(η2
y + vy (ωx))

exp
[
−

ω2
y

2(η2
y + vy (ωx))

]
× 1√

2π(η2
z + vz (ωx))

exp
[
− ω2

z

2(η2
z + vz (ωx))

]
and its covariance is

c (ω, ω′) = Cov
[
α (ωx, ωy, ωz) , α

(
ω′x, ω

′
y, ω

′
z

)]
=

1

N

[
1

2π|Vy +Ry|1/2
exp

[
− 1

2
tTy (Vy +Ry)

−1ty

]
× 1

2π|Vz +Rz|1/2
exp

[
− 1

2
tTz (Vz +Rz)

−1tz

]
− b (ω) b (ω′)

]
where Vz, Rz and tz are defined in the same way as their counterparts in the hor-

izontal plane. It would be possible to introduce additional correlations into the

process by assuming a two-dimensional driving fractional Brownian motion in the

horizontal and vertical planes; however, doing so would require the evaluation of a

4-dimensional Gaussian pdf when computing the covariance function, which would

make the evaluation of c (ω, ω′) much slower, so we use the above, separable form.

The functions b (.) and c (., .) have been designed so that the process which they

March 22, 2018

5.6. Example: Building a model 202

describe reproduces the attractive properties of the plume; the expected concentra-

tion of particulate matter has a Gaussian shape, with a spread which increases as

a function of the distance downwind of the source, the correlations between con-

centration values at different points are derived by considering the likely behaviour

of packets of gas under transport by the wind, and the magnitude of the marginal

variation at a given point decreases exponentially to zero as we move away from the

centre of the plume. These functions will therefore form the basis of our description

of the system.

Wind drift When building this model, if we modify the driving process slightly,

we can allow for the effect of local deviations in the wind field on the resulting

shape of the plume; we introduce a wind drift term into the process, altering the

expectation to

E [χy (ωx)] = µy (ωx)

where µy (0) = 0, and

µy (ωx + hx) = µy (ωx) +

∫ ωx+hx

ωx

ξy (ζ) dζ

and where the function ξy (ωx) is the effect of the wind perpendicular to the pre-

vailing direction at downwind location ωx.

The function µy (.) describes the total effect of wind drifts as a function of downwind

distance ωx, and ξy (.) is a known function describing deviations from the trajectory

of the wind in the horizontal direction (with a similar definition for ξz (.)). If we

compute the mean and covariance functions in the same way as above, we obtain

similar Gaussian forms which have undergone a location shift to be centred around

March 22, 2018

5.6. Example: Building a model 203

the wind drift value at ωx

bw (ω) =
1√

2π(η2
y + vy (ωx))

exp
[
− (ωy − µy (ωx))2

2(η2
y + vy (ωx))

]
× 1√

2π(η2
z + vz (ωx))

exp
[
− (ωz − µz (ωx))2

2(η2
z + vz (ωx))

]
cw (ω, ω′) =

1

N

[
1

2π|Vy +Ry|1/2
exp

[
− 1

2
(ty −my (ωx))T(Vy +Ry)

−1(ty −my (ωx))
]

× 1

2π|Vz +Rz|1/2
exp

[
− 1

2
(tz −mz (ωx))T(Vz +Rz)

−1(tz −mz (ωx))
]

− bw (ω) bw (ω′)

]
where my (ωx) = (µy (ωx) , µy (ω′x))T is the vector of wind drift terms at ωx and ω′,

with a similar definition for the vertical term.

Modifications for other atmospheric effects The Gaussian plume model fre-

quently includes modifications to take account of the effect of reflection in the at-

mospheric boundary layer (ABL) and in the ground. These can be introduced into

the stochastic model by simply including the relevant terms in the kernel used to

smooth the random processes. We do not consider this further here.

5.6.2 Relating simulators

We now use the stochastic process constructed in the previous section to build a

series of emulators describing an improving sequence of models for the atmospheric

dispersion problem; all simulators that we consider in this section predict the con-

centration contribution at an individual location, and so all functions are scalars, i.e:

f
(k)
1 (.) = f (k) (.) at all levels k. With reference to the notation from Section 1.1.3,

we model the concentration in the presence of a single source with emission rate ψ.

The full input set for all simulators is θ = {x, g, ψ, w, σ, ρ(2)
a , ρ∗a, ξ}; the parameter

ρ
(2)
a is an input to all simulators from the second level onwards, and the parameters

ρ∗a and ξ are inputs to the reified simulator.

Level 1: At the first level, our simulator f (1) (.) is simply

f (1) (θ) = ψ × b (θ)

March 22, 2018

5.6. Example: Building a model 204

with the Hurst parameters set to Hy = Hz = 1; this gives a simplified version of the

standard Gaussian plume, where, using the notation of Section 1.1.2

κy = σ2
yω

2
x κz = σ2

zω
2
x .

Because of the simplicity of our simulator, we also specify that

g
(1)
1 (θ) = ψ × b (θ)

so that the basis function agrees exactly with the simulator itself; correspondingly,

we specify that E
[
β

(1)
1

]
= 1 and Var

[
β

(1)
1

]
= 0. To give numerical stability when

we perform the full update, we specify that the covariance of the residual at this

stage is

Cov
[
r(1) (θ) , r(1) (θ′)

]
= (10−12)× I(θ, θ′)

where

I(θ, θ′) =

1 if θ = θ′

0 else.

Level 2: We now consider how our model might evolve in the future, and link

these beliefs to the initial simulator within the framework outlined in Section 5.2.

We expect that our main focus in this initial development stage will be on improving

the model’s handling of systematic local effects in the concentration at different

points on the downwind trajectory; we know that the simple plume model is far too

smooth to capture turbulent effects in the atmosphere and local stochastic behaviour

of gas particles. Our experience of the use of the simple model also indicates that it

fails to capture changes in the wind field along particle trajectories (see, for example,

the landfill data shown in Figure 1.1(a)), but we choose to defer developments in

this direction until the next stage.

Before we have begun to explore different developmental avenues it is unclear to us

whether the improved model will come about through introducing modifications to

the existing plume, or through development of a model which solves the governing

equations more carefully; it is also unclear to us at this stage exactly how the

additional effects which we will include will be parametrised. However, we are willing

March 22, 2018

5.6. Example: Building a model 205

to make an approximate specification for our level of uncertainty at each point on

the existing plume through use of the basis and covariance functions developed in

Section 5.6.1.

We judge that our expectations for the behaviour of such an improved simulator are

best described by a scaled mixture of plumes driven by different values of the Hurst

parameter; specifically, we choose to use a mixture of two differently shaped plumes,

with parameter ρ
(2)
a ∈ [0, 1] determining the contribution of each component, and

we choose

g
(2)
1 (θ) = ρ(2)

a × g
(1)
1 (θ) = ρ(2)

a × b (θ|H = 1)

g
(2)
2 (θ) = (1− ρ(2)

a)× b (θ|H = 0.9)

where the stated value of the Hurst parameter is used in both the horizontal and the

vertical directions. We are uncertain about the combination of these basis functions

which gives the best fit to our new simulator, and we judge that an appropriate

representation of our uncertainty is given by

β
(2)
1 = β

(1)
1 + ε

β
(2)
1

β
(2)
2 = β

(1)
1 + ε

β
(2)
2

for uncorrelated stochastic terms ε
β
(2)
1

and ε
β
(2)
2

. Within this framework, we specify

that E
[
ε
β
(2)
1

]
= E

[
ε
β
(2)
2

]
= 0, and that Var

[
ε
β
(2)
1

]
= Var

[
ε
β
(2)
2

]
= (0.05)2, and we

can then deduce that

E
[
β

(2)
1

]
= 1 Var

[
β

(2)
1

]
= Var

[
ε
β
(2)
1

]
= (0.05)2

E
[
β

(2)
2

]
= 1 Var

[
β

(2)
2

]
= Var

[
ε
β
(2)
2

]
= (0.05)2 .

Our beliefs about the remaining systematic behaviour of the improved simulator are

then captured through the residual process r(2) (.) ; our covariance function for this

process is simply a scaled version of the covariance function developed in Section

5.1.1

Cov
[
ν(2) (θ) , ν(2) (θ′)

]
= v(2)

ν × (1− ρ(2)
a)(1− ρ(2)

a
′)× (ψψ′)× c (θ, θ′)

where v
(2)
ν is a marginal standard deviation term, which scales the contribution of

the residual to the total variability. We also choose that γ(2) (θ) = ρ
(2)
a , so that

March 22, 2018

5.6. Example: Building a model 206

uncertainty about the first model is propagated appropriately; since the covariance

of the first model is essentially zero, however, we obtain no contribution from this

stage when we perform the update anyway. The Hurst parameter for the covariance

function is set to Hy = Hz = 0.9, corresponding to the choice in the second mean

function, and the smoothing parameters are set to be ηy = 50 and ηz = 50; the

marginal variance term is set as v
(2)
ν = (2× 10−3)2.

Reified simulator: We now consider the form that our reified simulator might

take; we consider all of the further improvements that we might make to the model

that we propose to build at stage two, if we had access to an large development

budget and computer resources. We propose that we would make improvements in

two main areas; we would improve the model’s representation of wind drift along the

trajectory of the plume, and we would introduce a representation of the diffusion of

gas particles that takes place upwind of a gas source.

To describe the effect of including wind-drift in our model, we down-weight the

effect of the existing basis functions on the reified simulator, and we introduce a

third basis function

g
(3)
1 (θ) = ρ∗a × ρ(2)

a × b (θ|H = 1)

g
(3)
2 (θ) = ρ∗a × (1− ρ(2)

a)× b (θ|H = 0.9)

g
(3)
3 (θ) = (1− ρ∗a)× bw (θ|H = 0.9)

where ρ∗a ∈ [0, 1] is an additional scaling parameter which determines the size of the

additional global effect introduced by our wind drift modelling. The wind-drift term

in the function bw (.) is chosen to have a piecewise linear form, i.e.

µy (ωx) =

∫ ωx

0

ξy (ωx) dωx

where

ξ (ωx) =

nξ∑
k=1

ξykIk (ωx) Ik (ωx) =

1 if tk−1 ≤ ωx < tk

0 else

for knots tk along the prevailing wind direction and constants ξyk which are added

to the model input set. We use the same specification for µz (ωx) as a function of

March 22, 2018

5.6. Example: Building a model 207

parameters ξz.

We judge that much of the behaviour captured by our model at stage 2 will still be

present in our reified model, and so we judge that coefficients of the corresponding

basis functions will be strongly correlated across stages; we specify that

β
(3)
1 = β

(2)
1 + ε

β
(3)
1

β
(3)
2 = β

(2)
2 + ε

β
(3)
2

where the variances of both additional, uncorrelated, mean zero, stochastic terms

are set at Var
[
ε
β
(3)
1

]
= Var

[
ε
β
(3)
2

]
= (0.005)2, leading to the following prior speci-

fications

E
[
β

(3)
1

]
= 1 Var

[
β

(3)
1

]
= (0.05)2 + (0.005)2

E
[
β

(3)
2

]
= 1 Var

[
β

(3)
2

]
= (0.05)2 + (0.005)2 .

We specify our beliefs about β
(3)
3 in relation to our beliefs about β

(2)
2

β
(3)
3 = β

(2)
2 + ε

β
(3)
3

where Var
[
ε
β
(3)
3

]
= 0.052, which, of course, allows us to find an expectation and a

variance for this parameter

E
[
β

(3)
3

]
= 1 Var

[
β

(3)
3

]
= (0.05)2 + (0.05)2 .

Using these relationships, we can also find the covariances between the parameters;

for example

Cov
[
β

(3)
1 , β

(3)
2

]
= Cov

[
β

(2)
1 , β

(2)
2

]
= 0

Cov
[
β

(3)
1 , β

(3)
3

]
= Cov

[
β

(2)
1 , β

(2)
2

]
= 0

Cov
[
β

(3)
2 , β

(3)
3

]
= Var

[
β

(2)
2

]
= (0.05)2 .

For the residual process, we specify that γ∗ (θ) = ρ∗a, and that the covariance func-

tion for the additional residual process ν∗ (.) is

Cov [ν∗ (θ) , ν∗ (θ)] = v(3)
ν × (1− ρ∗a)(1− ρ∗a′)× (ψψ′)× cw (θ, θ′) + cd (θ, θ′)

March 22, 2018

5.6. Example: Building a model 208

where cw (., .) is the plume covariance function which includes the wind-drift term

and cd(., .) is a covariance function describing the systematic variation in the con-

centration caused by diffusion of gas from the source. Again, v
(3)
ν is a marginal

standard deviation parameter which scales the effect of the plume covariance term,

and we fix v
(3)
ν = (1× 10−3)2

Uncertain parameter ranges: In order to make predictions for the system, we

must now propagate our uncertainty about the model inputs through our beliefs

about the reified simulator; first, we divide our full input set into the sets of simulator

inputs a and known system inputs b, so that θ = {a, b}. When we make observations

of the real concentration, we will know the measurement location x and the wind

vector w, and so our collection of system inputs is b = {x,w}; the remainder

of the inputs will be unknown at the point of observation, and so we have that

a = {g, ψ, σ, ρ(2)
a , ρ∗a, ξ}.

We assume that each of these uncertain parameters has a uniform distribution over

a given range, with these ranges specified as follows

� gx ∈ [0, 100], gy ∈ [0, 100];

� ψ ∈ [0.0798, 3.3991];

� σy ∈ [tan (10), tan (10)], σz ∈ [tan (10), tan (10)];

� ρ
(2)
a ∈ [0.7, 0.8];

� ρ∗a ∈ [0.8, 0.9];

� ξyk ∈ [0, 0], ξzk ∈ [0, 0].

Under this specification, we believe that there is a source somewhere in the box

[0, 100]× [0, 100], and we are uncertain about its emission rate; we are also uncertain

about the settings of the scaling factors ρ
(2)
a and ρ∗a which control the effects of

the different simulators on our eventual prediction for the system value. In the

decision problem that we will solve, we will be interested in the ability of different

experiments and simulator developments to resolve our uncertainty about the source

emission rate.

March 22, 2018

5.6. Example: Building a model 209

Discrepancy: Having imagined some of the ways in which the model might change

during future development stages and the implications of this for our current un-

certainties about the future model predictions, the final component of the structure

in the graph 5.1 which it remains for us to specify is the discrepancy between our

reified simulator and the real atmospheric concentration data. This consists of two

components: the systematic discrepancy δ (.) and the measurement error ε.

First, the systematic discrepancy: as usual, we have included any beliefs about the

global structure in our beliefs about the models that we will develop, and so we spec-

ify that E [δ (b)] = 0. After propagation of our beliefs about the best input setting

of the parameters a∗ through our beliefs about the reified simulator, we judge that

our beliefs about any remaining discrepancy are best represented by a stationary

stochastic process, and so we specify that

Cov [δ (b) , δ (b′)] = vδcδ (b, b′)

where vδ is a marginal variance parameter governing the amount of additional vari-

ability introduced by the discrepancy at all points, and the correlation function is

simply a squared exponential

cδ (b, b′) = exp
[
− 1

2

∑
j

λbj(bj − b′j)2
]

.

We fix the marginal variance for the discrepancy to be vδ = (10−3)2 and the corre-

lation parameters to be λbj = 1/(5002) for the remainder of the example.

Model plots: Predictions for each of the simulator models (using the parameter

specifications above) are plotted in Figure 5.2. In each of these plots, the source is

fixed at g = (0, 0), and has emission rate ψ = 3.40; the wind vector is w = (2, 2), and

the scaling factors are fixed to ρ
(2)
a = 0.7 and ρ∗a = 0.8. Observations are constrained

to lie in the horizontal box [1000, 2000] × [1000, 2000], corresponding to the design

problem that we will outline in Section 5.6.3. Figure 5.2(a) shows the expected

plume EF

[
f (1) (.)

]
at the first level, and Figure 5.2(b) shows the corresponding

marginal standard deviation VarF
[
f (1) (.)

]
1/2; at this level, we are certain about

the simulator. Figures 5.2(c) and 5.2(d) show the mean and standard deviation sur-

faces for the simulator f (2) (.) ; at this level, the shape of the expected plume within

March 22, 2018

5.6. Example: Building a model 210

the displayed region has changed, owing to an additional contribution from the basis

function g(2) (.) at a different setting of the Hurst parameters {Hy, Hz}. We are also

now uncertain about the simulator values in this region, since we have not collected

any runs at this level yet. Figures 5.2(e) and 5.2(f) show our prediction for the

reified simulator based on our current beliefs; the shapes of the mean and standard

deviation surfaces are largely unchanged from the simulator at the second level, but

there is some additional uncertainty introduced through the unknown scaling on the

third basis function and the diffusion term in the covariance function.

Figure 5.3 illustrates the inference procedure for this model; two concentration obser-

vations are made (corresponding to the black markers in Figures 5.3(a) and 5.3(b))

under two different wind fields, and these are combined to compute adjusted beliefs

for the simulator parameters a∗ (as outlined in Section 5.3.3).

5.6.3 Design problem

Section 5.6.2 sets up the relationship between our current simulator, our current

beliefs about future simulators, and the input parameters of the model and the

system. In this section, we outline the decision problem that we will solve using

observations on the system, and we set up the corresponding design problem that

we will approximately solve in Section 5.7.

Decision problem As in the decision problem specified in Section 4.1, we choose

a weighted quadratic loss function (introduced in Section 3.1.1)

L (a, q) =

nq∑
k=1

Lk (ak, qk)

=

nq∑
k=1

γk (qk) (qk − ak)2 .

In this problem, the model parameter set which we infer from the data is the best

input set for the simulator, with q = {g, ψ, σ, ρ(2)
a , ρ∗a, ξ}. For the remainder of the

example, we assume that our losses will depend only on our beliefs about the source

emission rate ψ; we fix γ2 (q2) = 105, and γk (qk) = 0 for all k 6= 2.

March 22, 2018

5.6. Example: Building a model 211

1000 1200 1400 1600 1800 2000

d
x
 (m)

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000
d

y (
m

)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E
[f

(1
) (.

)]

(a)

1000 1200 1400 1600 1800 2000

d
x
 (m)

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

d
y (

m
)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

V
ar

[f
(1

) (.
)]

1/
2

(b)

1000 1200 1400 1600 1800 2000

d
x
 (m)

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

d
y (

m
)

0.1

0.2

0.3

0.4

0.5

0.6

E
[f

(2
) (.

)]

(c)

1000 1200 1400 1600 1800 2000

d
x
 (m)

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

d
y (

m
)

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

V
ar

[f
(2

) (.
)]

1/
2

(d)

1000 1200 1400 1600 1800 2000

Eastings (m)

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

N
or

th
in

gs
 (

m
)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

E
[f

* (.
)]

(e)

1000 1200 1400 1600 1800 2000

Eastings (m)

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

N
or

th
in

gs
 (

m
)

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

V
ar

[f
* (.

)]
1/

2

(f)

Figure 5.2: Plots of the simulator levels: Figures 5.2(a) and 5.2(b) show the mean

and standard deviation of the simulator f (1) at the first stage; Figures 5.2(c) and

5.2(d) show our predictive mean and standard deviation surfaces for the simulator

f (2), given the uncertainty specification outlined in Section 5.6.2; Figures 5.2(e)

and 5.2(f) show our predictive mean and standard deviation surfaces for the reified

simulator f ∗, again using the uncertainty specification outlined in Section 5.6.2.

March 22, 2018

5.6. Example: Building a model 212

1000 1200 1400 1600 1800 2000

Eastings (m)

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

N
or

th
in

gs
 (

m
)

0.05

0.1

0.15

0.2

0.25

0.3

E
[z

1
]

(a)

1000 1200 1400 1600 1800 2000

Eastings (m)

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

N
or

th
in

gs
 (

m
)

0.05

0.1

0.15

0.2

0.25

0.3

E
[z

2
]

(b)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

(c)

Figure 5.3: Example inference using the model outlined in Section 5.6.2: the colour

scales in Figures 5.3(a) and 5.3(b) show the expected values of the data that we

could collect at each of the available design choices under two different sets of wind

conditions (w = [3.15, 2.15] in Figure 5.3(a) and w = [2.15, 3.15] in Figure 5.3(b)),

and the locations of the the actual observations are shown as black markers. Figure

5.3(c) shows the effect of these two data points on our beliefs about the emission

rate: our prior expectation E [ψ∗] is shown in cyan, with two-standard deviation

error bars shown in dashed magenta, and our adjusted mean and error bars are

shown in blue and dashed red respectively. The true value of ψ∗ used to generate

the data is shown in green.

March 22, 2018

5.6. Example: Building a model 213

Experimental design problem For this more complex model, we solve a much

simpler design problem. There are two field experiments that we may choose to carry

out in sequence; in both of them, we may make a single concentration observation

using a point-sensor fixed to a location near the ground. Additionally, we specify

that we will construct the simulator f (2) (.) between the two experiments, and obtain

runs F2.

In this problem, then, the design locations dj at each stage (Section 5.4) correspond

to the measurement locations x (Section 5.6.2), with dj = {xjx, xjy, xjh}; at both

stages j = 1, 2, we restrict the observations that we can make to a box:

� djx ∈ [1000, 2000];

� djy ∈ [1000, 2000];

� djh ∈ [0.5, 3].

We also specify that the wind field at both stages is subject to uncertainty. We

identify the external parameters wj at each stage (Section 5.4) with the wind field

w for each measurement, with wj = {wjx, wjy}; at both stages, we assume that the

components of the wind vector are independently uniformly distributed, over the

following ranges:

� stage 1: w1x ∈ [3, 3.3], w1y ∈ [2, 2.3];

� stage 2: w2x ∈ [2, 2.3], w2y ∈ [3, 3.3].

We also specify that Var [ε1] = (0.001)2 and Var [ε2] = (0.05)2, so that the data

from the first experiment is measured with greater accuracy than the data from

the second. We fix the costs of both experiments to be independent of the design

parameter setting, with c1 (d1) = 5 and c2 (d2) = 5.

Simulator design problem Since we have specified that we will definitely con-

struct the simulator f (2) (.) between experiments, and that there are no decisions

about the development of this simulator that we need to make, we have that φ[2] = ∅

for this problem; this removes the need for us to carry out the optimisation step

over simulator design parameters detailed in Section 5.5.5, and means that we simply

March 22, 2018

5.7. Example: Running the backward induction 214

compare the expected risk over simulator runs t̄
(i)
2 with the risk from an immediate

decision after the first experiment in order to characterise our approximations r
(i)
1

to the risk from experimentation at the first stage. We fix the cost of constructing

the simulator at stage 2 to be constant, at cf2 (φ2) = 1.

5.7 Example: Running the backward induction

Having specified a full set of relationships between the simulators that we might

construct and the system (Section 5.6.2) and set out the decision and design prob-

lems that we wish to solve for this model (Section 5.6.3), we are in a position to

run the approximate backward induction algorithm detailed in Section 5.5. In this

section, we provide details of our implementation for this example, and plots of the

resulting emulators and design spaces; in Section 5.7.1, we specify the basis and

covariance function choices that we make for each of the emulators that we fit, and

in Section 5.7.2, we provide details relating to the risk model fitting procedure. In

Section 5.8, we consider issues arising from the approximate design procedure, and

from this example, and identify areas for future work.

Numerical integration Before we proceed with the backward induction approx-

imation, we must specify our strategy for evaluation of the terminal risks ρtj and ρfj .

For the separable weighted quadratic loss that we have chosen, the optimal terminal

decision and the risk from this choice are easy to identify in terms of the moments

of a general posterior distribution (see Section 3.1.1); however, evaluation of these

moments within the framework outlined in Section 5.6.2 is challenging. Under our

second-order prior specification, the calculations that we must perform in order to

find our second-order adjusted moments Ez[j] [q] and Varz[j] [q] are presented in Sec-

tion 5.3.3; however, for our problem, we cannot perform the basis and covariance

function integrals algebraically, owing to the complex form of the stochastic process

which we have chosen to represent plume behaviour (Section 5.6.1).

We must therefore select a numerical procedure for approximation of these quanti-

ties. Our chosen approximation method is as follows:

March 22, 2018

5.7. Example: Running the backward induction 215

� the full covariances (5.3.6) are approximated by evaluating only (5.3.7) and the

first term from the expression (5.3.8); the remaining terms contain the integrals

which are the most computationally-intensive to evaluate numerically, and we

can get a reasonable approximation to the full covariance by simply ignoring

them;

� the remaining basis functions are evaluated by sampling the integrand at a

space-filling sample of 2500 points and computing the sample average.

The level of variation in the risks ρtj and ρfj induced by variation in the sample of

points used to evaluate the integrals in the expression for the moments (5.3.5) and

(5.3.6) is judged to be negligible in comparison to the variation in the risk across

its design space, and so we proceed with this as an acceptable and computationally

cheap way of approximating the risks throughout the remainder of the procedure.

5.7.1 Basis and covariance functions

In this section, we provide details of the basis and covariance function choices that

we make for all emulators fitted in Section 5.7.2.

Stage 2: experimental risk For the experimental risk model r
(1)
2 at the final

stage of the calculation, we use a basis function specification analogous to the one

used in the linear model example (Section 3.4.5) and the atmospheric dispersion

model example (Section 4.2). Our basis consists of an intercept h
(1)
21 = 1, and a

terminal risk function with a modified input set

h
(1)
22

(
z[2], w[2], d[2], F[2], φ[2]

)
= ρt2

[
z̃[2], w̃[2], d[2], F[2], φ[2]

]
where, as usual, z̃[2] = {z1,Ez[1]

[
z2|w̃[2], . . .

]
} and w̃[2] = {w1,E [w2] }. This choice

of basis functions allows the regression surface to explain a large proportion of the

variation in the risk, while ensuring that we can integrate the basis functions as

required when computing beliefs about r̄
(1)
2 .

For the covariance function, we choose a separable squared exponential form, as

March 22, 2018

5.7. Example: Running the backward induction 216

follows

Cov
[
u

(1)
2 (.) , u

(1)
2 (.′)

]
= η

(1)
2

[2∏
k=1

[2∏
p=1

c
(
wkp, w

′
kp|λwp

)][3∏
p=1

c
(
dkp, d

′
kp|λdp

)]]
where c (., .|λ) is a squared exponential correlation function (Appendix B.1) with

correlation parameter λ, and η
(1)
2 is the marginal variance of the process. As dis-

cussed in Section 5.5.3, the correlation parameters are determined through leave-

one-out cross-validation.

To compute the moments of r̄
(1)
2 (as outlined in Sections 5.5.3, 2.4.1), we must com-

pute integrals of the basis and covariance functions. Because of the choices that we

have made for the basis functions, we have that h̄
(1)
2p = h

(1)
2p for p = 1, 2. Integrating

the covariance function once with respect to p
(
z2|z[1], w[2], . . .

)
and p

(
w2|w[1], d[1]

)
,

we find that

Cov
[
ū

(1)
2 (.) , u

(1)
2 (.′)

]
= η

(1)
2

[2∏
k=1

[3∏
p=1

c
(
dkp, d

′
kp|λdp

)]]
×
[2∏
p=1

c
(
w1p, w

′
1p|λwp

)
c̄
(
w′2p|λwp

)]
and integrating a second time, we have

Cov
[
ū

(1)
2 (.) , ū

(1)
2 (.′)

]
= η

(1)
2

[2∏
k=1

[3∏
p=1

c
(
dkp, d

′
kp|λdp

)]]
×
[2∏
p=1

c
(
w1p, w

′
1p|λwp

)
¯̄c
(
λwp
)]

where c̄
(
.|λwp

)
and ¯̄c

(
λwp
)

are squared exponential covariance functions integrated

with respect to the uniform distributions p (w2p) , p = 1, 2. Details of these calcula-

tions are supplied in Appendix B.1.2.

Stage 2: simulator risk For the simulator risk at stage j = 2, we again fix

ĥ
(1)
21 = 1, and we specify that

ĥ
(1)
22

(
z[1], w[1], d[1], F̃[2], φ[2]

)
= min

[
ρf2

[
z[1], w[1], d[1], F̃[2], φ[2]

]
,E

R
(1)
2

[
r̄

(1)
2

[
z[1], w[1], d̄[2], F̃[2], φ[2]

]]
+ c2

(
d̄2

)]
March 22, 2018

5.7. Example: Running the backward induction 217

where F̃[2] = E [F2] and d̄[2] = {d1, d̄2}, with d̄2 = [1000, 1300, 2] fixed to a design

setting which we believe is likely to be optimal for a wide range of the other param-

eter settings.

For the residual process, we choose another separable squared exponential covariance

function

Cov
[
û

(1)
2 (.) , û

(1)
2 (.′)

]
= η

(1)
2

[2∏
k=1

[2∏
p=1

c
(
wkp, w

′
kp|λwp

)][3∏
p=1

c
(
dkp, d

′
kp|λdp

)]]
× c

(
eF2 , e

′
F2
|λeF

)
where eF2 = ET

F2
F2, and EF2 is the eigenvector corresponding to the largest eigen-

value of Var [F2] . eF2 is the projection of the simulator runs F2 on to the direction

which explains the largest proportion of their variation; we believe that this will be

a low-dimensional summary of the F2 which will enable us to explain the variability

in the risk due to the simulator runs. η
(1)
2 is the marginal variance of the resid-

ual process, and {λd , λw , λeF} are the correlation parameters; again, the correlation

parameters are determined when fitting the emulator by means of a leave-one-out

cross-validation scheme.

In order to compute the moments of the expected simulator risk t̄
(1)
2 , we must in-

tegrate the basis and covariance functions with respect to p (F2|φ2) . Again, we

have selected basis functions which have no dependence on F2, and so we have that

¯̂
h

(1)
2p = ĥ

(1)
2p for p = 1, 2. For the covariance functions, we have that

Cov
[
¯̂u

(1)
2 (.) , û

(1)
2 (.′)

]
= η

(1)
2

[2∏
k=1

[2∏
p=1

c
(
wkp, w

′
kp|λwp

)][3∏
p=1

c
(
dkp, d

′
kp|λdp

)]]
× c̄

(
e′F2
|λeF

)
and

Cov
[
¯̂u

(1)
2 (.) , ¯̂u

(1)
2 (.′)

]
= η

(1)
2

[2∏
k=1

[2∏
p=1

c
(
wkp, w

′
kp|λwp

)][3∏
p=1

c
(
dkp, d

′
kp|λdp

)]]
× ¯̄c

(
λeF
)

where, in this instance, c̄
(
.|λeF

)
and ¯̄c

(
λeF
)

are squared exponential covariance

functions integrated with respect to the Gaussian p
(
eF2|µeF2 , VeF2

)
; see Appendix

March 22, 2018

5.7. Example: Running the backward induction 218

B.1.2 for details of this calculation. The parameters of this distribution are fixed

to µeF2 = ET
F2

E [F2] and VeF2 = ET
F2

Var [F2]EF2 , where E [F2] and Var [F2] are

computed as outlined in Section 5.3.2.

Stage 1: experimental risk For the experimental risk at stage j = 1, we use the

same specification as at the final stage. For the basis functions, we choose h
(1)
11 = 1,

and

h
(1)
12

(
z[1], w[1], d[1], F[1], φ[1]

)
= ρt1

[
z̃[1], w̃[1], d[1], F[1], φ[1]

]
where z̃[1] = E

[
z1|w̃[1], d[1], . . .

]
and w̃[1] = E [w1] .

For the residual process, we use a squared exponential covariance function

Cov
[
u

(1)
1 (.) , u

(1)
1 (.′)

]
= η

(1)
1

[2∏
p=1

c
(
w1p, w

′
1p|λwp

)][3∏
p=1

c
(
d1p, d

′
1p|λdp

)]
where again, η

(1)
1 is the marginal variance of the process, and the parameters {λw , λd}

are determined using leave-one-out cross-validation when fitting the emulator. For

the expected experimental risk r̄
(1)
1 at this stage, the basis and covariance functions

are integrated in exactly the same way as at the second stage.

5.7.2 First wave

In this section, we outline details of each of the emulators that we fit when carrying

out the procedure from Section 5.5. After fitting each emulator, we check the fit

using an additional set of risk evaluations, ensuring that fewer than 5% of these

data lie outside three-standard deviation error bars for emulator predictions at the

corresponding inputs.

Stage j = 2: experimental risk Our first task is to approximate the risk ρ2 at

the final stage of the problem; the basis and covariance functions that we use are

discussed in Section 5.7.1. This being the final stage, the risk is ρ2 = ρt2, and so

generating risk evaluations is simple (as discussed in Section 3.4.4). We generate

200 risk evaluations for the initial regression, 400 for the joint regression-residual

update and 100 for post-fit model checking. Performing the initial regression, we

fix the prior specification for the regression parameters; we set E
[
α

(1)
21

]
= 2.17 and

March 22, 2018

5.7. Example: Running the backward induction 219

E
[
α

(1)
22

]
= 0.950, with Var

[
α

(1)
21

]
= (1.5 × 10−3)2 and Var

[
α

(1)
22

]
= (7.7 × 10−6)2.

Using the residuals from this regression, we set Var
[
u

(1)
2

]
= η

(1)
2 = (8.11)2.

Next, the correlation parameters of the residual covariance function are determined

through leave-one-out cross-validation. Using the 400 risk evaluations generated for

the joint update, we leave out each point in turn and predict it using the fit to the

remainder, for a particular setting of the correlation parameters. We compute the

sum of log-Gaussian predictive likelihoods for all points for a Latin hypercube of

2000 different correlation parameter settings, and fix the correlation parameters for

the fit to the setting from this collection which performs best.

We complete the emulator update by computing and storing the moments of the data

R
(1)
2 . We plot the expectation E

R
(1)
2

[
r

(1)
2

]
and standard deviation Var

R
(1)
2

[
r

(1)
2

]
1/2

for a grid of points in (d2x, d2y)-space in Figures 5.4(a) and 5.4(b) respectively, for

fixed settings of the remaining parameters.

Stage j = 2: simulator risk Having modelled the experimental risk, we turn

our attention to the simulator risk. As discussed in Section 5.5.4, we are un-

certain about the optimal experimental risk s
(1)
2 at this stage, and we must take

account of this when generating risk evaluations for fitting the model t
(1)
2 to the

simulator risk at this stage. The moments E
[
T

(1)
2k

]
and Cov

[
T

(1)
2k , T

(1)
2l

]
are char-

acterised by sampling the expression (5.5.25), using the moments E
[
s

(1)
2 [.]

]
and

Cov
[
s

(1)
2 [.] , s

(1)
2 [.′]

]
obtained as outlined in Section 5.5.3 (and Section 3.4.8). As

in the example presented in Section 4.2, we use a single candidate design to ap-

proximate the moments of s
(1)
2 at each setting of its inputs; the expectation (3.4.17)

and the second term of the covariance (3.4.18) are evaluated at this single setting,

and the first term of (3.4.18) is fixed to be constant across the input space, with

Var
[
E
R

(1)
2

[
r̄

(1)
2

[
d̃2

]]
+ c2

(
d̃2

)]
= (3.16)2 fixed by sampling 20 candidate designs

at each of 10 different input settings, and all covariances between different input

settings set to zero.

Using this specification, we generate the risk evaluations for the fit; we generate

100 evaluations for the initial regression, 200 for the joint regression-residual up-

date and 100 for post-fit model checking. The basis and covariance functions that

March 22, 2018

5.7. Example: Running the backward induction 220

we use for our emulator are discussed in Section 5.7.1. Performing the regression,

we fix E
[
α̂

(1)
21

]
= 3.96 and E

[
α̂

(1)
22

]
= 0.979, with Var

[
α̂

(1)
21

]
= (3.1 × 10−3)2 and

Var
[
α̂

(1)
22

]
= (2.3×10−5)2, and using the residuals from this fit, we fix η

(1)
2 = (10.7)2.

The correlation parameters are then fixed through leave-one-out cross-validation,

where we compare a Latin hypercube of 2000 potential correlation parameter set-

tings.

The moments of the fitted model are plotted in Figure 5.4: Figure 5.4(c) shows the

adjusted expectation E
T

(1)
2

[
t
(1)
2

]
and Figure 5.4(d) the adjusted standard deviation

Var
T

(1)
2

[
t
(1)
2

]
1/2 for a grid of points in (d1x, d1y)-space.

Stage j = 1: experimental risk Lastly, we fit an model r
(1)
1 for the experimental

risk ρ1 at the first stage. There are no simulator design parameters to be optimised

over in this example, and so the candidate simulator design sampling procedure out-

lined in Section 5.5.5 is not required. The moments E
[
T

(1)
2k

]
and Cov

[
T

(1)
2k , T

(1)
2l

]
are

computed for any input setting by sampling the expression 5.5.24 using a Gaussian

distribution for t
(1)
2 , characterised by the moments E

[
t
(1)
2 [.]

]
and E

[
t
(1)
2 [.] , t

(1)
2 [.′]

]
.

We generate 200 risk evaluations for the initial regression, 400 for the joint regression-

residual update, and 100 for post-fit model checking. Performing the initial regres-

sion, we fix E
[
α

(1)
11

]
= 37.1 and E

[
α

(1)
12

]
= 0.419, with Var

[
α

(1)
11

]
= (1.5 × 10−3)2

and Var
[
α

(1)
12

]
= (6.2 × 10−6)2, and using the residuals from this fit, we fix η

(1)
1 =

(11.3)2. For the leave-one-out cross-validation, we test a design of 2000 candidate

design settings. The fitted model is illustrated in Figure 5.4; our adjusted expec-

tation E
R

(1)
1

[
r

(1)
1

]
is shown in Figure 5.4(e), and our adjusted standard deviation

Var
R

(1)
1

[
r

(1)
1

]
1/2 in Figure 5.4(f). Both quantities are plotted for a range of settings

of (d1x, d1y), for fixed values of the remaining risk inputs.

Stopping Since we have already constructed the simulator at the first stage, the

model r
(1)
1 for the experimental risk at stage 1 is the final model that we must

fit; we now perform the analysis detailed in Section 5.5.6 (and Section 3.4.10)

to determine what we should now do. First, we interrogate the expected risk

surface E
R

(1)
1

[
r̄

(1)
1 [d1]

]
+ c1 (d1) at a Latin hypercube of 2000 points in order

to approximately identify the design setting which minimises this quantity. On

March 22, 2018

5.8. Discussion 221

this basis, we fix d̂1 = [1990, 1360, 1.90], and our expected risk at this point is

E
R

(1)
1

[
r̄

(1)
1

[
d̂1

]]
+ c1

(
d̂1

)
= 66.73, with Var

R
(1)
1

[
r̄

(1)
1

[
d̂1

]]
= (1.97)2. Comparing

this with the risk ρt0 = 650.68 from an immediate decision, we see that, based on

this wave of analysis, we should perform the first experiment at design setting d̂1.

To provide guidance when making a choice between performing the first experiment

at this setting and commissioning a further wave of analysis, we compute the ex-

pected value of perfect information for the risk calculation. By approximating the

second term in the expression (3.4.19) by sampling 200 candidate designs, we find

that v
(1)
1 = 0.97. When making decisions about further waves of analysis, this EVPI

value should be compared with the cost of another wave of analysis: if we expect

to be able to achieve a sufficiently large reduction in the EVPI, then we should pay

for another wave; otherwise, we should just proceed optimally based on our current

beliefs about the risk. For he purposes of illustration, however, we stop here.

5.8 Discussion

The algorithm presented in Section 5.5 for sequential experimental design where

model development is envisaged is very closely related to the one presented in Section

3.4; many of the comments made about the strengths and weaknesses of the original

algorithm in Section 4.3 therefore also apply to this algorithm as well. The bulk of

the computational effort involved in both algorithms is required to approximately

sample from the minimum of the risk in design space for different settings of the

design and data parameters at previous stages; any future developments in this area

would therefore have the greatest impact on the computational complexity of the

algorithm, and on its ability to handle more complex problems.

In this particular instance, an additional factor affecting the ability of the algorithm

to generate good designs is the choice that we make to neglect the effect of the

design problem for the model developments. In cases where the models f (j) (.) are

relatively fast to run, have low-dimensional input spaces, and where we can obtain

large numbers of runs on the model, this approximation is unlikely to make a large

difference to the design space identified by the algorithm; however, in the (common)

March 22, 2018

5.8. Discussion 222

1000 1200 1400 1600 1800 2000
d

2
 (m)

1000

1200

1400

1600

1800

2000
d 2

 (
m

)

120

130

140

150

160

E
[r

2(1
) [.]

]

(a)

1000 1200 1400 1600 1800 2000
d

2
 (m)

1000

1200

1400

1600

1800

2000

d 2
 (

m
)

2.5

3

3.5

4

4.5

5

5.5

V
ar

[r
2(1

) [.]
]1/

2

(b)

1000 1200 1400 1600 1800 2000
d

1
 (m)

1000

1200

1400

1600

1800

2000

d 1
 (

m
)

100

150

200

250

E
[t

2(1
) [.]

]

(c)

1000 1200 1400 1600 1800 2000
d

1
 (m)

1000

1200

1400

1600

1800

2000

d 1
 (

m
)

2

2.5

3

3.5

4

4.5

5

5.5

6

V
ar

[t 2(1
) [.]

]1/
2

(d)

1000 1200 1400 1600 1800 2000
d

1
 (m)

1000

1200

1400

1600

1800

2000

d 1
 (

m
)

100

150

200

250

E
[r

1(1
) [.]

]

(e)

1000 1200 1400 1600 1800 2000
d

1
 (m)

1000

1200

1400

1600

1800

2000

d 1
 (

m
)

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

V
ar

[r
1(1

) [.]
]1/

2

(f)

Figure 5.4: Plots of the fitted emulators from the first wave of the analysis: Figure

5.4(a) shows the mean level E
R

(1)
2

[
r

(1)
2 [.]

]
of the emulator for the experimental risk,

and Figure 5.4(b) shows the corresponding standard deviation, Var
R

(1)
2

[
r

(1)
2 [.]

]
1/2;

Figures 5.4(c) and 5.4(d) show the mean E
T

(1)
2

[
t
(1)
2 [.]

]
and Var

T
(2)
1

[
t
(1)
2 [.]

]
1/2 of

the emulator fitted to the simulator risk; Figures 5.4(e) and 5.4(f) show the corre-

sponding moments for the r
(1)
1 [.] .

March 22, 2018

5.8. Discussion 223

1 1.5 2

x

1

2

3

h

1

1.5

2
y

x

1 1.5 2

y
1 2 3

h

61.5

62

62.5

63

63.5

64

64.5

65

E
R

1(1
)[r

11
]

Figure 5.5: Set of candidate designs d̃1 generated from the emulator r̄
(1)
1 as detailed in

Section 3.4.8; the colour scale indicates the expected risk E
R

(1)
1

[
r̄

(1)
1

[
d̃1

]]
+ c1

(
d̃1

)
at each point.

situation where the model is high-dimensional and slow to run, we may only have

access to a small number of runs, and the design choices that we make for them may

have a big effect on the result. If it is also the case that it is much cheaper to generate

additional model runs than to perform experiments on the real system, then it may

be possible for us to reduce the cost of the overall procedure by doing a better job of

resolving uncertainty in the simulator (using a better design), and collecting fewer

observations on the system. If we were to take account of the design selections for

the model development stages, then it is likely that the optimal designs that we

obtain for the model will be strongly influenced by the designs that we choose for

the system, as the system designs will also be influenced by the model designs.

March 22, 2018

Chapter 6

Bayes linear numerical modelling

Thus far in this thesis, we have considered stochastic Bayesian representations of

complex deterministic simulators, and stochastic descriptions of the relationships

between these simulators and the systems that they represent. For the purposes of

our previous analyses, these complex, deterministic simulators are treated as ‘black

box’ functions; that is, no attempt is made to investigate the internal structure of

the simulator, it is simply run at a handful of known input settings, and the re-

sulting output is used to fit a statistical model as a fast, cheap representation of its

behaviour.

In practice, many such ‘black box’ simulators are pieces of code which solve ordinary

or partial differential equation (ODE or PDE) systems for particular input settings;

in the majority of cases, these systems of differential equations are solved numeri-

cally, because an analytic solution is not available. For an ODE system, a numerical

solver approximates the solution trajectory at a set of knots by recursively passing

the current state through a transfer function based on the form of the differential

equations; numerical PDE solvers work in a similar way, imposing a mesh in both

space and time and producing a system of equations which relates sets of discrete

spatial unknowns across time-steps. Using a numerical solution to the PDE allows

us to make progress with a problem where before this was impossible, at the cost

of introducing a discrepancy between the real solution that we implicitly specified

through our choice of differential equation model and the approximate solution that

we obtain using our solver.

224

6.1. Ordinary differential equations 225

Knowledge of the underlying structure presents us with the opportunity to tailor

our model; instead of just directly relating simulator inputs and outputs, we can

carry out our modelling on a much ‘lower’ level by making an uncertainty specifi-

cation for each of the input components and then tracking this uncertainty through

each step of the numerical solver. Modelling in this way would allow us to develop

a much more detailed representation of our uncertainty about the model output

across different settings of the model input than we would have been able to achieve

simply by modelling the simulator output directly. Additionally, modelling solution

uncertainty in this way allows us to explicitly account for the discrepancy between

our numerical solution and the real solution to the differential equation system as

it builds up, and to deduce its implications for our uncertainty about the solution

surface. Much research attention has recently been paid to this problem.

In this chapter, we propose Bayesian modelling frameworks for both the ODE and

PDE problems. In Section 6.1, we consider standard numerical solvers for ODE

systems, and suggest a modelling framework which accounts for the structure of

the numerical discrepancy. We then illustrate the framework through application

to two examples; in Section 6.1.7, we consider a simple problem, in which an ODE

determines the trajectory of a projectile, and in Section 6.2, we consider a more

complex example, in which a system of coupled ODEs is used to represent the inter-

action of a set of ringing bells and the church bell tower in which they are mounted.

In Section 6.3, we consider the PDE problem; we discuss some common numerical

schemes for PDE, and we consider the structure of the numerical discrepancy intro-

duced through use of such a solver. We develop a similar framework for handling

this uncertainty, and illustrate this through application to a simple, one-dimensional

example in Section 6.3.4. We discuss the work in this chapter and consider areas for

future research in Section 6.4.

6.1 Ordinary differential equations

An ordinary differential equation (ODE) model implicitly defines the behaviour of

a function through specification of its derivatives with respect to a single variable

March 22, 2018

6.1. Ordinary differential equations 226

(usually time). Such models are ubiquitous in mathematical modelling:

� In classical mechanics, Newton’s second law is used to relate the forces acting

on a system to the accelerations of its components; this results in systems

of second-order ODEs which must then be integrated (numerically or alge-

braically) in time in order to obtain descriptions of the positions and velocities

of the components (see, for example, Kibble and Berkshire [2004]);

� In climate modelling, ODE systems are sometimes used as simple representa-

tions of the rates of change of system properties (for example, temperature,

salinity, pressure) as a function of current state and parameters (see, for ex-

ample, Zickfeld et al. [2004]).

If a set of ODEs is to be used as a model for a system, then these must be solved

in order to generate a prediction for the system. There are a number of different

strategies which can be used to obtain an analytic solution to the equations; however,

these strategies can only be used in a narrow range of situations and so, for most

problems, numerical methods must be used to approximate the solution.

Numerical solution schemes for ODEs work by imposing a grid on the solution

input domain and then relating the solution at each time-step to the solution at

the previous time-step by approximating the integral of the time-derivative function

between these points. A variety of different such schemes are available, each of

which relates the approximation at one time-step to that at the next through some

functional of the derivative function and the grid properties. In choosing to use a

particular numerical scheme, we are introducing a particular discrepancy between

the approximate solution that we obtain and the unknown, true solution that we

envisaged when we first specified the ODE system. When relating the solution

to the system that it is meant to represent, we must account for this numerical

discrepancy, alongside all of the usual sources of uncertainty (for example, best

input uncertainty, and uncertainty about the discrepancy between the underlying

model and the system).

The remainder of this section is structured as follows. In Section 6.1.1, we outline the

general form for an ODE solver, and consider some of the most commonly-used types;

March 22, 2018

6.1. Ordinary differential equations 227

then, in Section 6.1.2, we specify a general form for the numerical discrepancy, and

consider its leading-order behaviour. In Section 6.1.3, we consider the different types

of uncertainty that we wish to account for in this situation and review previous work

in this area. Then, in Section 6.1.4, we introduce a graphical model which represents

the relationships between the components of the model, considering different aspects

of the belief separation structure implied by the diagram, and in Section 6.1.6, we

consider how we might quantify the diagram in both the fully probabilistic and

Bayes linear cases. In Section 6.1.7, we consider the Bayes linear case in detail;

we illustrate this case through application to a simple problem in Section 6.1.8. In

Section 6.2, we go on to consider a more complex example.

6.1.1 Numerical schemes

A first-order ODE model specifies the first derivatives and initial values of a set

u (t) = {u1 (t) , . . . , unu (t) } of functions

d

dt
(ui (t)) = fi (u (t) , t, ξ) (6.1.1)

ui (t0) = u
(0)
i

where f (.) = {f1 (.) , . . . , fnu (.) } is a set of known functions which govern the

behaviour of the solution derivatives, u(0) = {u(0)
1 , . . . , u

(0)
nu} is a set of initial values

and ξ = {ξ1, . . . , ξnξ} is a set of parameters which control the derivatives through f.

Taken together, this system of differential equations and set of initial conditions is

enough to determine the solution trajectory for all values of t; the solution to the

problem can be written in integral form as

ui (t) = u
(0)
i +

∫ t

t0

fi (u (s) , s, ξ) ds (6.1.2)

though we can only actually identify the function u by performing this integral in a

very limited number of special cases.

If we cannot solve the system (6.1.1) analytically, we must choose a numerical scheme

to use to approximate the solution. All of the numerical schemes which we will

consider have the following common elements; we choose a set of monotonically

increasing knots {t0 < t1 < t2 < . . . < tnt}, and we recursively determine an

March 22, 2018

6.1. Ordinary differential equations 228

approximate solution û at these knots as

ûi (tk+1) = φi (û (tk) , tk, tk+1, ξ)

beginning from the initial point û (t0) = u(0). Our numerical scheme is the form we

choose for the functions φ; various different possibilities exist, and we consider some

of the most common below.

Euler scheme The simplest, and perhaps the most common, numerical scheme

for ODE models is the Euler scheme; we evolve by approximating the derivative as

constant over the duration of the time step. The evolution function is as follows

φi (û (tk) , tk, tk+1, ξ) = ûi (tk) + hkfi (û (tk) , tk, ξ)

where hk = tk+1−tk. Euler schemes are extremely simple to implement, but approx-

imate only the first-order behaviour of the solution; for sufficiently small time-steps,

though, they can still provide an adequate approximation to the solution.

Runge-Kutta scheme Runge-Kutta schemes are designed to capture higher-

order derivative behaviour over the time-step (see, for example, Schober et al. [2014]

for a brief introduction or Iserles [2008] for a more comprehensive treatment). A

Runge-Kutta method of stage s uses s evaluations wp = {w1p, . . . , wnup}, p = 1, . . . , s

of the derivative function collected recursively at points vp = {v1p, . . . , vnup} as

wip = fi (vp, tk + cihk, ξ) vip = ûi (tk) + hk

i−1∑
q=1

apqwiq .

The solution approximation at time tk+1 = tk +hk is then obtained by re-combining

these steps as

ûi (tk+1) = ûi (tk) + hk

s∑
p=1

bpwip .

The coefficients {bp}, {cp} and {apq} are generally chosen so that the expressions for

the numerical scheme and the expressions for the Taylor expansion of the solution

coincide up to a particular order; for further discussion of this, see the book by Iser-

les. These schemes are designed to give greater accuracy than the Euler scheme; this

allows us to have greater confidence in the numerical solution over longer time-steps.

March 22, 2018

6.1. Ordinary differential equations 229

The trade-off for this greater accuracy is the increase in the computational effort

required for each time-step, since we need to make multiple function evaluations for

each. This raises the question of whether such a more complex scheme is warranted

for a particular application; is there a point at which its accuracy is matched and its

performance is outstripped by simply running an Euler scheme on a finer resolution?

To find out, we must set this problem within a statistical framework.

6.1.2 Numerical discrepancy

The use of a numerical scheme to approximate the solution to the system (6.1.1)

produces an approximate solution surface which is discrepant from the true solution

by some unknown amount. While this discrepancy is unknown, we will generally

have beliefs about its likely magnitude across any given time step (possibly based

on analysis of the behaviour of the scheme), which we can incorporate into our

overall uncertainty specification. Additionally, its behaviour is highly systematic,

as a result of the structure of the calculation which generated it; the numerical

discrepancy at any time step is a smooth function of its inputs {û (tk) , tk, tk+1, ξ},

which is generally strongly correlated across time steps. Failure to account for the

effect of the numerical discrepancy will result in a cumulative error across time-steps,

owing to the recursive nature of the numerical solution procedure.

We define the numerical discrepancy at time tk+1 as the difference between the true

solution at this point and the approximation generated under our scheme, assuming

that we numerically evolved from the true solution u (tk) at time tk, so that

ui (tk+1, ξ) = ûi (u (tk) , tk, tk+1, ξ) + ηi (u (tk) , tk, tk+1, ξ) . (6.1.3)

That is: if we start from the point (tk, u (tk)) on the true solution trajectory, and

evolve numerically to time tk+1, then our approximation û will differ from the true

solution at tk+1 by an amount η, which is a function of the same inputs as the

numerical scheme.

We examine the behaviour of the numerical discrepancy generated under the Euler

scheme by considering the Taylor expansion of the solution to (6.1.1) around the kth

March 22, 2018

6.1. Ordinary differential equations 230

time knot

ui (t, ξ) = ui (tk, ξ) + (t − tk)
du

dt
(tk, ξ)

+
1

2!
(t − tk)2d

2u

dt2
(tk, ξ) +

1

3!
(t − tk)3d

3u

dt3
(tk, ξ) +

Using the fact that du
dt

(tk) = fi (u (t) , t, ξ) , the difference between the true solution

at tk+1 and the approximation under the Euler scheme is

ηi (u (tk) , tk, tk+1, ξ) = ui (tk+1, ξ) − ûi (u (tk) , tk, tk+1, ξ)

=
1

2!
(tk+1 − tk)2d

2u

dt2
(tk, ξ) +

1

3!
(tk+1 − tk)3d

3u

dt3
(tk, ξ) + . . .

=
1

2!
h2
k

d2u

dt2
(tk, ξ) +

1

3!
h3
k

d3u

dt3
(tk, ξ) +

Since the Euler scheme can also be viewed as a Taylor expansion truncated at first

order, the discrepancy between it and the solution is, by definition, the (potentially

infinite) series of higher-order terms. While it is not possible to evaluate the discrep-

ancy exactly in this way, for small time-steps, it can be approximated (to a required

degree of accuracy) using some of the remaining low-order terms; this can be used

as the basis for a statistical representation of the discrepancy. Similar analyses can

be carried out for other types of numerical scheme, to determine the leading-order

behaviour of the numerical discrepancy.

6.1.3 Bayesian analysis for numerical schemes

There has been a great deal of interest recently in the development of Bayesian

methods to track uncertainties through the numerical modelling problem outlined

in Section 6.1.1. For a given numerical scheme and a fixed setting of the inputs ξ,

it is simple to generate a numerical approximation to the solution trajectory for a

particular ODE system. However, as in the general Bayesian uncertainty analysis

problem outlined in Section 2.4.2, we will generally be uncertain about which set-

tings of ξ will generate solution surfaces which give an adequate representation of

the system that we are exploring, and about the discrepancy between the numerical

solution generated at this setting and the system that our model represents. In a

general Bayesian uncertainty analysis, we would fit a model to the deterministic nu-

merical solution û, use this model to approximate the uncertainty in the numerical

March 22, 2018

6.1. Ordinary differential equations 231

solution surface induced by uncertainty about the input parameters, and then use

system data to fit a model to the discrepancy between our approximate solution and

the real system. In this case though, the problem structure outlined in Sections 6.1.1

and 6.1.2 provides us with an opportunity to separate out the discrepancy arising

through the numerical approximation to the solution from the discrepancy arising

through the inadequacy of the model as originally specified (for example, due to

physical processes neglected in our treatment).

The complete set of uncertainties that we wish to account for in our model is sum-

marised below:

� Initial condition uncertainty: The starting point for the trajectory, u(0) is

subject to uncertainty;

� Model input uncertainty: We are uncertain about the settings ξ∗ of the

ODE model parameters which give an adequate representation of the system

under study;

� Numerical discrepancy: The use of a numerical solver introduces an un-

known discrepancy between our approximation to the solution and the under-

lying, true solution of the original equations;

� Model discrepancy: Even if we did have access to the true solution to the

ODEs, this true solution would not generally give a perfect description of the

system that it represents, owing to, for example, physical processes neglected

in our model specification.

A number of authors have previously focussed on handling some or all of the above

sources of uncertainty. Graepel [2003] produces a closed-form probabilistic repre-

sentation for the solution of a linear ODE by applying the differential operator to a

Gaussian process (making use of the properties outlined in Section 2.3.2) and then

sampling the forcing function at a number of locations. This approach achieves

some success, though estimating the parameters of the covariance function in this

context can be particularly challenging, since there may not be a particular value

which adequately describes the properties of the solution across the whole of the

March 22, 2018

6.1. Ordinary differential equations 232

solution domain. Fuentes et al. [2003] and Guttorp and Walden [1987] propose a

representation of simulator output and of system data which allows for the presence

of both smoothing errors introduced through the discretization and numerical errors

introduced through implementation of the simulator predictions.

Following in the footsteps of those who used Gaussian processes to produce un-

certainty specifications for the results of numerical integrals (for example, Diaconis

[1986], O’Hagan [1987], O’Hagan [1991]), Chkrebtii et al. [2016] adopt an approach

in which a Gaussian process is fitted to the derivative equations and the solution is

approximated by integrating the emulator across each time-step as in (6.1.2) (again,

using the properties outlined in Section 2.3.2). Parameter uncertainties and the

effect of the choice of knots on the solution are then handled through a sampling

scheme. Hennig et al. [2015] give a general ‘call to arms’ for probabilistic numerical

methods, which handle the numerical uncertainties induced thorough the approxi-

mation of intractable calculations using a probabilistic framework.

Alternatively, Conrad et al. [2017] solve ODEs probabilistically by introducing stochas-

tic representations of the numerical discrepancy into traditional numerical solvers

(e.g. Euler scheme, Runge-Kutta scheme, as in Section 6.1.1) and sampling the

solution trajectory. These probabilistic solvers are shown to converge to the true

solution in the limit as the time-step goes to zero, and are shown through numerical

experiments to produce a more faithful description of our uncertainty about the so-

lution than traditional numerical solvers which ignore the accumulation of numerical

error across time-steps. The model that we present in the following Section (6.1.4)

is most closely related to this last framework.

6.1.4 Model specification

Owing to the large number of elements in this problem, a graph is particularly

useful as a representation of the structure of our beliefs; Figure 6.1 is a DAG which

qualitatively represents the belief structure implied by the discussion in 6.1.2. As in

the Bayesian uncertainty analysis framework outlined in Section 2.4.2:

� We denote the value of the real system at time tk by y (tk) = {y1 (tk) , . . . , ynu (tk) };

March 22, 2018

6.1. Ordinary differential equations 233

� We assume that yi (tk) = ui (tk, ξ
∗) + δi (tk) , where ξ∗ is the unknown ‘best

input’ parameter setting for the model, and δi (tk) is the discrepancy between

the solution to the ODE model and the system at time tk, which is assumed

to be uncorrelated with the u;

� Observations on the system at time tk are denoted by zk = {z1k, . . . , znuk},

with zik = yi (tk) + εik, where the {εik} are measurement error terms which

are uncorrelated across time-steps.

Notably, the graph in Figure 6.1 implies that:

� u (tk, ξ
∗) is separated from the solutions u (tl, ξ

∗) at all earlier times tl < tk

by the pair {û (u (tk−1) , ξ∗) , η (u (tk−1) , ξ∗) } (this property is implied by the

representation (6.1.3));

� The system value y (tk) is separated from all other components of the solution

trajectory by the pair {u (tk, ξ
∗) , δ (tk) };

� The parent set of the numerical discrepancy η (u (tk−1) , ξ∗) at time tk contains

the numerical discrepancies at all earlier times and the best input parameter

setting;

� The parent set of the discrepancy δ (tk) contains the discrepancy terms at all

earlier times.

The DAG representation of our belief structure is useful for making our initial prior

specification for this problem; as discussed in Section 2.1.3, in order to fully char-

acterise a directed graphical model, we must only prior specify expectations and

variances for each node, and prior covariances between each node and its parents.

A procedure for generating a prior specification for the DAG is discussed in Section

6.1.5. It is more difficult to use the DAG to adjust beliefs in the light of observations

on the system; for this purpose, we construct a junction tree which corresponds to

the DAG.

Junction tree A general procedure for constructing a junction tree from a di-

rected graphical model is outlined in Section 2.1.3. A junction tree is an undirected

March 22, 2018

6.1. Ordinary differential equations 234

ξ∗ u (t0)

η (u (t0) , ξ∗) û (u (t0) , ξ∗) δ (t1) ε1

u (t1, ξ
∗) y (t1) z1

η (u (t1) , ξ∗) û (u (t1) , ξ∗) δ (t2) ε2

u (t2, ξ
∗) y (t2) z2

. .

. . δ (tk) εk

u (tk, ξ
∗) y (tk) zk

η (u (tk) , ξ
∗) û (u (tk) , ξ

∗) δ (tk+1) εk+1

u (tk+1, ξ
∗) y (tk+1) zk+1

Figure 6.1: DAG representing the structure of the model for the ODE solution u

and its relationship to the system y.

March 22, 2018

6.1. Ordinary differential equations 235

graphical model which is formed using the cliques of the triangulated moral graph;

the fact that it has a tree structure allows information to be propagated efficiently

around the graph, allowing for computationally efficient belief updates given ob-

served data. Figure 6.2 shows a triangulated moral graph derived from a simplified

version of the DAG 6.1. Note that we have dropped all existing edges between the

discrepancy elements {δ (tk) }; we will re-visit this choice in a few paragraphs’ time.

To obtain this moral graph, we have performed the following steps:

� All edges from the initial DAG 6.1 are retained, with their directionality

removed- these edges are shown in green;

� An edge is introduced between all unconnected pairs of nodes with a common

child in the original DAG:

– the numerical discrepancy η (u (tk−1) , ξ∗) at time-step k is joined to the

corresponding numerical solution û (u (tk−1) , ξ∗) ;

– the solution u (tk, ξ
∗) at time tk is joined to the numerical discrepancies

η (u (tk−2) , ξ∗) , . . . , η (u (t1) , ξ∗) at all earlier times;

– the solution u (tk, ξ
∗) at time tk is joined to the parameters ξ∗;

– the solution u (tk, ξ
∗) at time tk is joined to the corresponding discrepancy

δ (tk) ;

– the measurement error εk at time tk is joined to the corresponding system

value y (tk) .

Edges introduced in this way are shown in red;

� No additional edges are required in this instance in order to triangulate the

graph.

From this graph, we identify the cliques. We identify the following set of cliques for

each time-step tk:

� Q1 (tk) = {u (tk, ξ
∗) , η (u (tk) , ξ

∗) , . . . , η (u (t0) , ξ∗) , ξ∗} for k = 1, . . . nt;

� Q2 (tk) = {u (tk, ξ
∗) , η (u (tk−1) , ξ∗) , û (u (tk−1) , ξ∗) , ξ∗} for k = 1, . . . nt;

March 22, 2018

6.1. Ordinary differential equations 236

� Q3 (tk) = {η (u (tk−1) , ξ∗) , û (u (tk−1) , ξ∗) , u (tk−1, ξ
∗) , ξ∗} for k = 1, . . . nt;

� Q4 (tk) = {u (tk, ξ
∗) , y (tk) , δ (tk) } for k = 1, . . . , nt;

� Q5 (tk) = {y (tk) , zk, εk} for k = 1, . . . , nt.

Figure 6.3 shows the junction tree which is formed from these cliques. As outlined

in Section 2.1.3, we can use this graph as a tool for adjusting beliefs about all model

components given observation of a particular zk; to obtain adjusted beliefs for the

model components, we simply adjust by each data element in turn, using the ad-

justed moments after an individual update as the prior moments for the next.

Adjusting using this junction tree eliminates the need for us to compute and in-

vert a covariance matrix the size of the full set of model components in order to

perform the adjustment, and so helps us to make progress where it would be com-

putationally prohibitive to do so. However, due to the complete graph formed by

the {η (u (tk−1) , ξ∗) }, it may still be time-consuming to repeatedly propagate ad-

justments through the junction tree. One strategy for reducing this computational

complexity is to drop some of the edges between these components; for example,

we might choose to link η (u (tk−1) , ξ∗) to only {u (tk−1, ξ
∗) , . . . , u (tk−q−1, ξ

∗) } for

some q ≥ 0, in order to preserve some of the structure in the numerical discrepancy

model, while lessening the computational burden. This is the strategy adopted for

the example presented in Section 6.2.

The decision to drop the edges present in the DAG 6.1 between the discrepancy

components {δ (tk) } was made in order to make the identification of the junction

tree for the ODE solution model simple. Restoring the complete graph formed by

these components in the original directed graph would mean that we would also

be required to introduce a large number of additional edges in order to triangulate

the resulting graph. Identifying a general way to triangulate the graph with a full

discrepancy covariance structure will be the object of future research in this area.

6.1.5 Quantifying the diagram

We can now use the graph 6.1 to specify a full joint prior distribution across the

components of the model. As with the other modelling problems discussed in previ-

March 22, 2018

6.1. Ordinary differential equations 237

. . . .

u (tk−2, ξ
∗)

η (u (tk−2) , ξ∗) û (u (tk−2) , ξ∗) δ (tk−1) εk−1

ξ∗ u (tk−1, ξ
∗) y (tk−1) zk−1

η (u (tk−1) , ξ∗) û (u (tk−1) , ξ∗) δ (tk) εk

u (tk, ξ
∗) y (tk) zk

η (u (tk) , ξ
∗) û (u (tk) , ξ

∗) δ (tk+1) εk+1

u (tk+1, ξ
∗) y (tk+1) zk+1

. . . .

Figure 6.2: Triangulated moral graph corresponding to a simplified version of the

DAG 6.1. Edges are coloured according to how they are introduced: green edges

are present in the original DAG, and red edges are introduced through moralization

(‘marrying the parents’) in the DAG.

March 22, 2018

6.1. Ordinary differential equations 238

.

Q1 (tk−1) Q2 (tk−1) Q3 (tk−1) Q4 (tk−1) Q5 (tk−1)

Q1 (tk) Q2 (tk) Q3 (tk) Q4 (tk) Q5 (tk)

Q1 (tk+1) Q2 (tk+1) Q3 (tk+1) Q4 (tk+1) Q5 (tk+1)

.

Figure 6.3: Junction tree formed from the cliques of the triangulated moral graph

6.2.

ous chapters, there are two options available to us when it comes to quantifying the

diagram; we can either make a fully probabilistic specification for all components, or

we can make a second-order specification for all nodes and all edges between nodes.

We consider both of these options below.

Probabilistic specification To make a full joint probability specification for all

of the components of 6.1, we must specify a distribution p (v|Pa (v) , . . .) for each

component conditional on its parent nodes (and any other (hyper)parameters which

are not displayed on the graph); the graph and the component distributional speci-

fications then implicitly define a joint prior probability distribution over all compo-

nents. Where we have specific beliefs about the distributions of individual compo-

nents, then we should adopt this probabilistic approach.

Where we do choose to make a fully probabilistic specification, we will not, in gen-

eral, be able to algebraically derive conditional or marginal relationships between

non-adjacent components, or marginal distributions for individual nodes. Indeed,

we could only find all these distributions algebraically in the situation where we

make a conditional linear Gaussian specification for all elements, and in which the

solver and numerical discrepancy input relationships are linear; clearly an unreal-

istically simple specification for most problems of interest. We will therefore need

to rely on numerical sampling schemes in order to characterise the marginal prior

March 22, 2018

6.1. Ordinary differential equations 239

distribution of system values {y (tk) }, or the posterior distribution of these system

values given observation of the data zk at a handful of time-steps.

For such an analysis, the DAG 6.1 can also be used to design an efficient sampling

scheme; the fact that we have specified the full joint distribution through its con-

ditional distributions means that it is simple to implement a Gibbs procedure, in

which we cycle through the components, updating the current state of each con-

ditional on the current states of all others. Where non-Gaussian distributions are

chosen, we must implement a Metropolis-Hastings step for each component update;

if the use of these steps results in slow exploration of the distribution, then we

have the option of using gradient-based proposal mechanisms which exploit local

knowledge of the shape of the conditional distributions in order to generate better

proposals (at an increased computational cost; see Girolami and Calderhead [2011]

for further discussion of these methods).

Second-order analysis In the situation where we do not have strong prior beliefs

about the distributions of the individual components, it may be more appropriate

from both a foundational and practical viewpoint to make a joint second-order prior

specification for all components and carry out a Bayes linear analysis. As discussed

in Section 2.1.2, in specifying only first- and second-order moments, we avoid mak-

ing distributional assumptions that we do not necessarily believe; also, as will be

discussed further in Section 6.1.6, we reduce the computational complexity of the

calculations which we must carry out in order to learn about the components of the

model from data.

As in the probabilistic case, imposition of a particular graphical structure (Figure

6.1) for our model reduces the complexity of the specification needed to generate

a full joint prior. If we specify expectations and variances for each of the nodes,

and covariances corresponding to the edges in the DAG, then the methodology out-

lined in Section 2.1.3 allows us to compute the covariance between any pair of nodes

in the graph, and therefore provides us with access to the corresponding full joint

second-order prior specification. For computational reasons, it may sometimes be

better to specify covariances corresponding to edges in the moral graph directly,

March 22, 2018

6.1. Ordinary differential equations 240

rather than initially characterising the DAG; this point will be discussed further in

Section 6.1.6.

Our second-order specification will generally be insufficient for propagating uncer-

tainty about the solution at one time point through the numerical solver for the next.

As with the uncertainty propagation calculations for an emulator (Section 2.4.2), we

will generally need to specify expectations and (co)variances for higher-order poly-

nomial terms; typically, we will do this through choice of a particular distribution,

usually a Gaussian characterised by our expectation and covariance specification.

6.1.6 Bayes linear prior specification

We now focus on the Bayes linear analysis of a general problem of the form repre-

sented by the graph 6.1. We make a second-order prior specification for the initial

state and the best input parameters, we choose a numerical scheme along with a

numerical integration technique, we specify a model for the structure of the cor-

responding numerical discrepancy term, and then we numerically compute the ele-

ments of the full prior structure implied by these components and the graph 6.1. In

Section 6.1.7, we then discuss the use of the graph to compute the adjusted moments

upon observation of some of the data components.

Limited prior specification The very first thing that we need to do is specify our

prior beliefs about the initial solution state u(0), and about the best input setting

ξ∗. We specify first- and second-order prior moments E
[
u(0)
]

, Var
[
u(0)
]

, E [ξ∗]

and Var [ξ∗] . This specification, when coupled with a particular choice of numerical

scheme and a model for the resulting numerical discrepancy, will determine the

characteristics of the solution for all future time-steps.

Numerical solver We must choose a solver, with which we will generate our

numerical solution estimates at each time step. In practice, this will be either an

Euler solver (possibly augmented with higher-order terms from the Taylor expansion

of the solution) or a Runge-Kutta solver; see Section 6.1.1. Our choice of solver

March 22, 2018

6.1. Ordinary differential equations 241

function determines our solution approximations as

ûi (u (tk) , tk, tk+1, ξ) = φi (u (tk) , tk, tk+1, ξ) .

In order to be able to assess the expectation and variance of û, and its covari-

ance with adjacent nodes, we must be able to propagate uncertainty on {u (tk) , ξ
∗}

through our solver function φ. In order to do this, we will generally need to specify

the expectations and covariances of higher order terms in the expression for φ; we

will generally do this through the specification of a distribution p (u (tk) , ξ) .

If the expression for φ contains terms for which expectations and covariances cannot

be evaluated directly (e.g. sines and cosines, exponentials), then we can assess E [φ] ,

Var [φ] empirically through sampling (for particular distributional assumptions).

Alternatively, we can approximate these moments by emulating φ and propagating

our uncertainty through the emulator, as described in Section 2.4.2. Emulation is

also a useful strategy in the situation where f, and therefore φ, are complex functions

which are slow to evaluate.

Numerical discrepancy A particular choice for φ (.) implicitly defines a numer-

ical discrepancy function which, as discussed in Section 6.1.2, we cannot evaluate

directly. While evaluating this function is not possible, we can perform a prior anal-

ysis which will enable us to model its main effects, and will therefore improve the

accuracy of our model for the solution. We generate numerical discrepancy data by

running the solver at a finer resolution for a handful of time intervals, producing a

more accurate estimate of the solution and a noisy ‘observation’ of the correspond-

ing discrepancy; this data is used to fit a simple model, which is then used as an

input to the remainder of our calculations.

We begin by specifying a simple uncorrelated model for the discrepancy, η0(h),

with mean zero and standard deviation proportional to the time-step (Var [η0(h)] =

(σηh)2), so that for evolution over any interval [tk, tk+1]

ui (tk+1, ξ) = ûi (u (tk) , tk, tk+1, ξ) + η0
i (hk) .

Over the interval [tk, tk+1], we now define a refined grid of n∗k knots, {t∗k0, . . . , t
∗
kn∗}

(where t∗k0 = tk and t∗kn∗ = tk+1), and the solver is run from tk to tk+1 using this

March 22, 2018

6.1. Ordinary differential equations 242

refined grid, sampling the η0(h∗kp) independently from a Gaussian distribution for

each h∗kp = t∗kp− t∗k(p−1). We denote the resulting ‘fine grid’ sample of the solution at

tk+1 by u∗(u (tk) , tk, tk+1, ξ); E [u∗] and Var [u∗] are characterised by repeating this

sampling procedure a number of times using the same inputs. Based on this analysis,

our second-order beliefs about the numerical discrepancy incurred by running the

coarse solver over these time intervals are

E [ηi (u (tk) , tk, tk+1, ξ)] = E [u∗i (u (tk) , tk, tk+1, ξ)] − ûi (u (tk) , tk, tk+1, ξ)

Var [ηi (u (tk) , tk, tk+1, ξ)] = Var [u∗i (u (tk) , tk, tk+1, ξ)] .

We repeat this procedure for a number of different input settings (initial and final

times, initial conditions and parameter settings); note that the time knots used

do not need to correspond to those that we will eventually use for our trajectory

analysis, though running the deterministic numerical scheme forward from a sample

of the initial condition u(0) is a useful way to approximately constrict the data that

we generate to the set of initial points {tk, u (tk) } that we may actually reach in our

final analysis.

We now use this data to fit a model to the discrepancy; we assume this to have the

common ‘regression plus residual’ form

ηi (u (tk) , tk, tk+1, ξ) =

ngη∑
p=1

βipgp (u (tk) , tk, tk+1, ξ) + ri (u (tk) , tk, tk+1, ξ) . (6.1.4)

As when we were fitting emulators to risk functions in chapters 3, 4 and 5, we

may exploit our knowledge of the likely behaviour of the underlying function when

selecting basis functions. In this instance, choosing the elements of g to be terms

from the neglected higher order components of the Taylor expansion of the solution

at tk will generally produce a good model for discrepancy behaviour.

Full prior specification Once we have specified each of the above components,

we may use the graph to generate a full joint prior specification for each of the

components. To do this, we work through the graph in order, using each node’s

relationship with its parents to derive a node expectation and variance specification

and a covariance specification corresponding to the graph’s edges. Beginning from

March 22, 2018

6.1. Ordinary differential equations 243

our initial specification E [ξ∗] ,Var [ξ∗] and E
[
u(0)
]
,Var

[
u(0)
]

, we cycle through the

time knots tk for k = 1, . . . , nt computing:

� moments E [û (tk)] and Var [û (tk)] of the numerical approximation, and co-

variances Cov [û (tk) , u (tk−1)] and Cov [û (tk) , ξ
∗] of this component with its

parents;

� moments E [η (tk)] and Var [η (tk)] of the numerical discrepancy, covariances

Cov [η (tk) , u (tk−1)] , Cov [η (tk) , ξ
∗] with the discrepancy inputs, and covari-

ances Cov [η (tk) , η (tl)] for l = (k−1), . . . , 1 with previous discrepancy terms;

� moments E [u (tk)] and Var [u (tk)] of the solution, and covariances Cov [u (tk) , û (tk)]

and Cov [u (tk) , η (tk)] of this component with its parents.

We consider each of these components in turn. In the case of the numerical solution

û, we must propagate input uncertainty through the solver

E [ûi (tk)] = E [E [φi (θ)]]

Cov [ûi (tk) , ûj (tk)] = E [Cov [φi (θ) , φj (θ)]] + Cov [E [φi (θ)] ,E [φj (θ)]]

where in this context θ = {u (tk−1) , tk−1, tk, ξ
∗}, and the outer expectations and

covariances are taken with respect to {u (tk−1) , ξ∗}. The covariance of this numerical

approximation with its inputs is then

Cov [ûi (tk) , uj (tk−1)] = E [E [φi (θ)]uj (tk−1)] − E [ûi (tk)] E [uj (tk−1)]

Cov
[
ûi (tk) , ξ

∗
j

]
= E

[
E [φi (θ)] ξ∗j

]
− E [ûi (tk)] ξ∗j .

To compute expectations of any non-linear terms in the above expressions, we must

make a specification for the higher-order moments of the components of these expres-

sions; we do this by characterising a probability distribution (generally a Gaussian)

p (u (tk−1) , ξ∗) using the moments of these components and either approximating

the expectation by sampling or integrating directly.

Propagating uncertainty through the numerical discrepancy component is, in gen-

eral, more difficult, owing to the prior correlation imposed between this and all

other discrepancy components. As in the case of the numerical approximation, we

March 22, 2018

6.1. Ordinary differential equations 244

can write the expectation and covariance of ηi (tk) for given settings of Pa (ηi (tk)) ,

and we can compute expectations and covariances of these

E [ηi (tk)] = E
[
Eη(t[k−1]) [ηi (θ)]

]
Cov [ηi (tk) , ηj (tk)] = E

[
Covη(t[k−1]) [ηi (θ) , ηj (θ)]

]
+ Cov

[
Eη(t[k−1]) [ηi (θ)] ,Eη(t[k−1]) [ηj (θ)]

]
where we use η

(
t[k−1]

)
= {η (t1) , . . . , η (tk−1) } to denote the set of discrepancy

components at previous times, and in this instance, the outer expectations are taken

with respect to {η
(
t[k−1]

)
, u (tk−1) , ξ∗}. Again, we specify the required higher-order

moments by choosing a probability distribution p
(
η
(
t[k−1]

)
, u (tk−1) , ξ∗

)
.

Finally, we combine these elements to compute the moment specification for u (tk) ;

we simply have

E [ui (tk)] = E [ûi (tk)] + E [ηi (tk)]

Cov [ui (tk) , uj (tk)] = Cov [ûi (tk) , ûj (tk)] + Cov [ηi (tk) , ηj (tk)]

+ Cov [ûi (tk) , ηj (tk)] + Cov [ηi (tk) , ûj (tk)]

where the final two covariances can be computed as, for example

Cov [ûi (tk) , ηj (tk)] = E
[
E [φi (θ)] Eη(t[k−1]) [ηj (θ)]

]
− E [ûi (tk)] E [ηj (tk)]

where the outer expectation is taken with respect to {η
(
t[k−1]

)
, u (tk−1) , ξ∗}.

Relationship to the system Having computed the set of moments discussed

above, relating the model for the ODE solution to the system that it represents

is relatively simple. First, the solution is related to the system value by simply

adding on the discrepancy component, which is assumed to be uncorrelated with

the solution, so

E [yi (tk)] = E [ui (tk)] + E [δi (tk)]

Cov [yi (tk) , yj (tk)] = Cov [ui (tk) , uj (tk)] + Cov [δi (tk) , δj (tk)]

and the covariances of the system value with its parents are

Cov [yi (tk) , uj (tk)] = Cov [ui (tk) , uj (tk)]

Cov [yi (tk) , δj (tk)] = Cov [δi (tk) , δj (tk)] .

March 22, 2018

6.1. Ordinary differential equations 245

Lastly, we compute the moments of the data by including the contribution of the

(zero mean, uncorrelated) measurement error term

E [zik] = E [yi (tk)]

Cov [zik, zjk] = Cov [yi (tk) , yj (tk)] + Cov [εik, εjk]

where the covariances corresponding to the edges in the graph are

Cov [zik, yi (tk)] = Cov [yi (tk) , yj (tk)]

Cov [zik, εjk] = Cov [εik, εjk] .

6.1.7 Bayes linear adjustment

Once we have generated the full prior specification as outlined in Section 6.1.6, we

generally wish to update the model components upon learning the values of some of

the {zk}. The graph can be a useful tool here too. The most basic approach that we

can take is to directly enumerate the covariances between all pairs of components,

and then update each node expectation, node variance and node pair covariance

using the Bayes linear update rules (Section 2.1.2). For large problems, this approach

quickly becomes impractical. For a very large number of time-steps, it may not

even be possible to hold all of the components of the prior specification in memory

simultaneously; in such a situation, we may be forced to delete and re-compute

covariances multiple times in order to stay within our memory allocation, increasing

the (already potentially large) computation time for the adjustment.

For large problems, the junction tree approach to adjustment outlined in Section

2.1.3 can be extremely useful. If we find the junction tree corresponding to our

graphical model specification, then we must only compute and store in memory

the covariances between pairs of nodes which lie in the same clique; this generally

represents a large reduction in the memory required for a particular problem, and

in the number of computations which must be performed in order to characterise

the prior specification, particularly in cases where we reduce the number of links

between numerical discrepancy components across time-steps.

March 22, 2018

6.1. Ordinary differential equations 246

6.1.8 Example: projectile trajectory

To illustrate the proposed modelling framework, we consider a simple ODE model,

taken from Kibble and Berkshire [2004]. A projectile is launched from a point

u(0) = (0, 0, 0) in three-dimensional space at time t0 = 0 with an initial velocity of

du
dt

(t0) = (ẋ0, 0, ż0). As it travels through the air, it is subject to air resistance λ and

gravity fg. Using Newton’s second laws, we can write down a system of second-order

ODEs which describe the motion

ẍ(t) = −γẋ(t)

ÿ(t) = 0

z̈(t) = −γż(t)− fg

where γ = λ/m, where m is the mass of the projectile. The absence of forces acting

in the y-direction, coupled with the fact that y0 = 0 and ẏ = 0 means that y(t) = 0

for all time. Integration of the other two equations gives the following system of

first-order equations

ẋ(t) = −γx(t) + ẋ0

ż(t) = −γz(t)− fgt + ż0 .

These two equations are both in the form (6.1.1). Because of the simplicity of this

system of equations, it can be solved exactly to give

x(t) =
ẋ0

γ

(
1− e−γt

)
z(t) =

(ż0

γ
+
fg
γ2

)(
1− e−γt

)
− fgt

γ
. (6.1.5)

The fact that we can evaluate the solution to the system exactly in this case provides

us with the opportunity to test how well the modelling framework outlined in Section

6.1.4 works by comparing with the true solution. For the remainder of this Section,

we focus only on the equation describing the motion in the z-direction; we set

u (t) = z(t).

March 22, 2018

6.1. Ordinary differential equations 247

Numerical scheme We choose to use an Euler scheme for our numerical approx-

imations to the solution; we have

φ (u, tk, tk+1, ξ) = u + (tk+1 − tk)f (u, tk, ξ)

= u + (tk+1 − tk)
(
− γu − fgt + ż0

)
.

This function is extremely simple to evaluate, and so we do not choose to further

approximate using an emulator; doing so would not speed up the evaluation of φ,

or assist with the propagation of uncertainty.

Numerical discrepancy model As outlined in Section 6.1.2, the choice of the

Euler scheme means that the numerical discrepancy incurred by evolving from tk

consists of the higher-order terms from the Taylor expansion of u around tk. We

therefore use this expansion as the basis for our numerical discrepancy model and

we use the regression plus residual form from (6.1.4). For the basis functions, we

choose

g (θ) =
1

2
(tk+1 − tk)2d

2u

dt2
(tk)

where the second derivative is

d2u

dt2
(θ) = −γ du

dt
(θ) − fg

= −γf (u (tk) , tk, ξ) − fg .

For the residual process, we assume that E [r (θ)] = 0, and

Cov [r (θ) , r (θ′)] = Vc (θ, θ′)

where V is the marginal variance of the process, and c (., .) is a squared exponential

correlation function

c (θ, θ′) = exp
[
− 1

2

(
λt(tk − t′k)2 + λh(hk − h′k)2

+ λu(u (tk) − u (tk)
′)2 + λξ(ξ − ξ′)2

)]
× min (hk, h

′
k) .

March 22, 2018

6.1. Ordinary differential equations 248

System relationship For the purposes of this example, we simply assume that

there is no systematic discrepancy between the solution to the equation and the

system, so that δi (tk) = 0 for all i, k. For the measurement error, we simply specify

that Var [εik] = (0.01)2, and we will add this level of noise to all data that we

synthetically generate.

Prior specification First, we specify the grid for our solver and our prior mo-

ments for the equation parameters. We consider the trajectory of a projectile in the

interval t = [0, 10], and we sub-divide this trajectory into 40 random intervals by

fixing t0 = 0, t40 = 10 and then choosing 39 additional knots {t1, . . . , t39} according

to a Latin hypercube. Our prior beliefs about the parameters ξ∗ are specified as

E [γ] = 0.55, Var [γ] = (0.2)2, E [ż0] = 40, Var [ż0] = (10)2.

Our first modelling step is to fit the model for the numerical discrepancy using data

generated as described in Section 6.1.6; to do this, we use the same fit procedure

as was used for the risk emulators in the examples from chapters 3, 4 and 5. All

of the discrepancy data for the fit is generated by choosing a random time inter-

val, initialising the fine solver by running the original solver to the start of this

interval, equally sub-dividing the randomly chosen interval into 100 elements and

then sampling the fine solution 500 times in order to empirically estimate its mean

and variance. Our initial iid discrepancy variance specification for this procedure is

Var [η0(h)] = (0.1h)2.

First, a set of 200 numerical discrepancy samples is generated and used to carry out

an initial linear regression; as a result, we fix the prior moments of β to E [β] = 0.918

and Var [β] = (4.43 × 10−4)2; we then use the residuals from this regression to fix

V = (0.0286)2. We then generate a further set of 300 samples, and we use this to

perform a joint update of the regression and residual components, as outlined in

Section 2.2.2. Having carried out this update, we generate a final discrepancy data

set of 100 points and use this to check the model’s predictions. All of the data points

that we generate lie within three standard deviations of the corresponding model

predictions.

March 22, 2018

6.2. Example: coupled bell-tower model 249

Quantifying the diagram We now combine all of the components specified above

with the graph (Figure 6.1) to generate the full joint prior specification; for this small

problem, we simply do this by sampling the nodes in order, assuming a Gaussian

distribution for each. We sample the full trajectory of the graph 5000 times, and

use the resulting samples to empirically estimate the expectations and covariances

for each node, and the covariances between each pair of nodes.

Results We compute the adjusted moments of all components in the model for

noise-corrupted data generated from the real solution (6.1.5) using five different real

settings of the parameters; Figure 6.4 shows the prior moments for the trajectory

alongside the adjusted moments for each of the cases, and Figures 6.5 and 6.6 show

the corresponding prior and adjusted moments for the numerical discrepancy terms

and the model parameters respectively. The adjusted moments for each case are

based on three observations made at locations manually chosen to give good coverage

of those parts of the trajectory for which u (t) > 0.

We see that, while the range of trajectories possible under our prior specification is

wide, the rich covariance structure imposed through the specification of the model

form 6.1 means that making only 3 observations of the trajectory in each case is

enough to generate an accurate prediction for the remainder of the trajectory, and

an accurate estimate for the initial velocity and air resistance parameters. The

fitting of the prior model (6.1.4) to the numerical discrepancy and the use of this

covariance structure in the trajectory prior specification means that we can solve

the ODE on a relatively coarse grid and still obtain accurate results.

6.2 Example: coupled bell-tower model

Churches around the world are equipped with sets of bells; these are used to adver-

tise religious services and special events to those who live in the vicinity. Bells are

designed to make a loud noise which can be heard over a long distance, and they

are typically hung close to the top of a tower, in order to help achieve this goal.

Bells which are set up for ‘English style’ change ringing (also referred to as ‘full

circle’ ringing) are attached to a frame using bearings, which allows them to pivot

March 22, 2018

6.2. Example: coupled bell-tower model 250

0 1 2 3 4 5 6 7 8 9 10

t (s)

-20

0

20

40

60

80

100

u(
t)

 (
m

)

g = 0.9, u
t
(t

0
) = 25

g = 0.8, u
t
(t

0
) = 30

g = 0.6, u
t
(t

0
) = 40

g = 0.4, u
t
(t

0
) = 45

g = 0.2, u
t
(t

0
) = 50

Figure 6.4: Prior moments of the trajectory u (t) (with E [u (t)] in cyan and

E [u (t)] ±3Var [u (t)] 1/2 in dashed magenta) plotted alongside separately-adjusted

moments Ez [u (t)] (dashed) and Ez [u (t)] ± 3Varz [u (t)] 1/2 (double dashed) for

data generated under 5 different parameter settings (see legend for real values cor-

responding to colours). 3 observations are made of each trajectory, with these ob-

servations shown as black markers and the real solutions shown as black lines for

each case.

March 22, 2018

6.2. Example: coupled bell-tower model 251

0 1 2 3 4 5 6 7 8 9 10

t (s)

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

(t
)

(m
)

g = 0.9, u
t
(t

0
) = 25

g = 0.8, u
t
(t

0
) = 30

g = 0.6, u
t
(t

0
) = 40

g = 0.4, u
t
(t

0
) = 45

g = 0.2, u
t
(t

0
) = 50

Figure 6.5: Prior (E [η (t)] in solid cyan and E [η (t)] ± Var [η (t)] 1/2 in dashed

magenta) and adjusted moments (Ez [η (t)] solid and Ez [η (t)] ± Varz [η (t)] 1/2

dashed, in various colours) for the numerical discrepancy components at each time

step, for the same cases as in Figure 6.4.

freely; a wheel is then fixed to each bell, and it is swung through 360° by a person

standing lower down the tower using a rope attached to the wheel. There are over

6000 churches in the world which have four or more bells hung for ringing in this

manner, the majority of which are in the UK.

The ringing of bells in this way causes large forces to act on the towers in which they

are hung. There are many towers in which the largest ringing bell has a mass in ex-

cess of 1000 kg, and the smaller bells in a set are generally sized proportional to the

heaviest (for example, the second-largest bell in the ring is typically two-thirds the

mass of the largest, and the third-heaviest is typically half the mass of the largest).

When installing a set of bells, it is important to assess the likely effect of the forces

generated through ringing on the tower which is to house them; there are numerous

examples of towers where the bells may not be rung because structural analysis of

the tower post-installation indicates that further ringing has the potential to cause

significant damage (for example, the heavy ring of 8 at Baldersby, North Yorkshire).

In less extreme cases, the ringing-induced tower motion can have an effect on the

March 22, 2018

6.2. Example: coupled bell-tower model 252

0 10 20 30 40 50 60 70 80

du/dt(t
0
) (m/s)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

 s
-1

Figure 6.6: Prior and adjusted moments of the parameters ξ∗ = (γ, ż0)T; E [ξ∗] is

shown as a magenta marker, with 1, 2 and 3 standard deviation contours shown

in dashed magenta; the adjusted expectation Ez [ξ∗] for each case is plotted as a

coloured marker, with colours corresponding to those in Figures 6.4 and 6.5, with

associated uncertainty ellipses.

March 22, 2018

6.2. Example: coupled bell-tower model 253

operation of the bells; there are numerous examples of churches where this motion

causes the bells to behave unpredictably, making ringing difficult. Durham Cathe-

dral is a good example of such a tower; it has a ring of 10 bells, with the heaviest

weighing approximately 1500 kg, hung only metres from the top of its central tower.

The motion of the tower and its effect on the ringing of the bells can be studied

through numerical experiments. Smith and Hunt [2008] derive the equations of mo-

tion for the tower and the bells, solve the bell equations independently of the tower,

and then use these solutions as a forcing for the tower equations, allowing them to

study the effect on the motion of the tower of ringing the bells at different speeds

and in different orders. This is a computationally efficient procedure which allows

for simulation of the tower movement induced by the motion of the bells; however, it

does not account for the bell-tower interactions. In order to model the joint motion

of all components, we must numerically solve the system.

Other interesting aspects of the motion of a ringing bell are studied by Woodhouse

et al. [2012]; they use a different system of equations to model the interaction be-

tween a swinging bell and its clapper, relating their model to experimental results

and to the acoustic properties of the bell. Lund et al. [1995] carry out a study of

the dynamic behaviour of a number of bell towers in the North-East of England,

obtaining data by placing accelerometers in each one and ringing the heaviest bell.

In Section 6.2.1, we present the equations of motion for the coupled bell-tower

model, and in Section 6.2.2, we outline the numerical scheme that we will use to

approximate the solution. In Section 6.2.3, we outline our model for the numerical

discrepancy, and describe the procedure for fitting it. Then, in Section 6.2.4, we use

the procedure outlined in Section 6.1.6 to characterise the full prior distribution, and

to update the components using observations. Finally, in Section 6.2.5, we discuss

the results of this example, and the strengths and weaknesses of the framework in

general, and we consider further work which might be done in this area. Some of

the code used to implement the example from this section is supplied in Appendix

F.

March 22, 2018

6.2. Example: coupled bell-tower model 254

6.2.1 Equations of motion

As in Smith and Hunt [2008], we derive the equations of motion for the coupled

bell-tower system from the its Lagrangian. We model the displacement of the tower

in both the horizontal and vertical directions, denoting these values at time t by

x (t) = (x1 (t) , x2 (t))T; ignoring the effect of the bells, the Lagrangian for the tower

is

LT =
2∑
i=1

[1

2
Mẋ2

i −
1

2
κix

2
i

]
(6.2.6)

where M is the mass of the tower, and κi is the tower spring constant in the ith

direction. Applying the Euler-Lagrange equation to determine the equation of mo-

tion and allowing for the damping of the motion, we obtain separate differential

equations for each direction i = 1, 2

ẍi + 2λiẋi + ω2
i xi = 0

where λi is the damping constant in the ith direction, and ω2
i = κ/M is the frequency

of the motion.

For the bells, we denote the angle that bell i makes with the downward vertical

direction at time t by θi (t) , writing the collection as θ (t) = (θ1 (t) , . . . , θnθ (t))T.

Independently of the tower, the Lagrangian for the bells is

LB =

nθ∑
j=1

[1

2
mjr

2
gj
θ̇2
j +

1

2
mjr

2
cj
θ̇2
j +mjfg cos θj

]
(6.2.7)

where mj is the mass of bell j, rcj is the distance from its pivot to its centre of

mass, rgj is its radius of gyration and fg is acceleration due to gravity. Applying

the Euler-Lagrange equation gives

lj θ̈j + fg sin θj = 0

as the equation of motion for each bell, where lj = (r2
gj

+ r2
cj

)/rcj .

Combining the Lagrangians (6.2.6) and (6.2.7), and modifying the kinetic energy of

the bell, so that it receives a horizontal forcing from the motion of the tower, we

March 22, 2018

6.2. Example: coupled bell-tower model 255

obtain the following Lagrangian for the coupled bell-tower system

L =
2∑
i=1

[1

2
Mẋ2

i −
1

2
κixi

]
+

2∑
i=1

nθ∑
j=1

dijmjrcj θ̇jẋi cos θ

+

nθ∑
j=1

[1

2
mjljrcj θ̇

2
j +mjfgrcj cos θj

]
.

Applying the Euler-Lagrange equations to the joint Lagrangian, we obtain one equa-

tion of motion for each of the components of the tower motion, and one for each of

the bells

ẍi + 2λiẋi + ω2
i xi = −

nθ∑
j=1

dij
mjrcj
M

[
θ̈j cos θj − θ̇2

j sin θj
]

(6.2.8)

lj θ̈j + fg sin θj = −
2∑
i=1

dijẍi cos θj (6.2.9)

where dj = (d1j, d2j)
T is an orientation vector for bell j. These equations, supple-

mented with initial positions {xi (t0) } and {θj (t0) }, and initial velocities {ẋi (t0) }

and {θ̇j (t0) } implicitly determine the motion of this system for all time.

Under this model, the motion of the tower is driven by the forces generated by the

rotation of the bells, and the motion of the bells is driven by gravity and the forces

generated by the motion of the tower. It is when the bell is at the top of its swing

(θj = 180° or θj = −180°) that the ringer experiences the effect of the tower move-

ment; the ringing of methods requires the ringer to apply force to the bell through

the rope at or close to the top of its swing, and so any unexpected force applied to

the bell at this point must be compensated for by the ringer if the bell is to strike

at the right moment.

The fixed parameter settings that we use for the bells are summarized in table 6.1.

The bell weights and the swing directions are chosen to coincide with those of the

bells at Durham Cathedral [Dove, 2015]; however, measurements of the other pa-

rameters for these bells are not available, so we simply use values taken from the 10

heaviest bells of the old ring at Great St Mary, Cambridge (provided in Smith and

Hunt [2008]), which were of roughly the same weights as the bells at Durham. The

mass of the tower is fixed at M = (2× 104) kg. The other parameters of the tower

motion (damping constants {λi} and natural frequencies {ωi}) are assumed to be

March 22, 2018

6.2. Example: coupled bell-tower model 256

m

Bell cwt qr lb rc (mm) l (mm) Swing (handstroke)

1 6 1 27 407 628 N-S

2 7 0 8 405 665 S-N

3 7 3 10 417 665 S-N

4 7 3 14 429 712 S-N

5 9 3 25 417 752 S-N

6 11 0 8 428 790 W-E

7 12 2 8 403 856 W-E

8 15 3 1 438 887 W-E

9 21 2 9 451 984 W-E

10 28 0 6 559 1027 S-N

Table 6.1: Fixed bell parameters used as input to the model (6.2.9). The weights

and layout are those of the bells at Durham Cathedral [Dove, 2015], and the other

bell parameters are those of the old bells at Great St Mary, Cambridge (taken from

[Smith and Hunt, 2008])

subject to uncertainty, and this is handled through our modelling in Sections 6.2.2

and 6.2.3.

6.2.2 Numerical scheme

We choose to use another Euler scheme (Section 6.1.1) to generate numerical ap-

proximations for this problem. Since this is a system of second-order equations,

we must track the evolution of both the position and velocity components of the

solution; we stack the components of the model into a (4 + 2nθ)-dimensional state

vector as follows

u (t) =

ẋ (t)

θ̇ (t)

x (t)

θ (t)

 .

March 22, 2018

6.2. Example: coupled bell-tower model 257

This allows us to stack the equations (6.2.8) and (6.2.9) for the acceleration and

(trivial) equations for the velocity as follows

A
du

dt
(t) = b

where the matrix A = A (u (t) , ξ) and the vector b = b (u (t) , ξ) are partitioned

according to the components of the state vector

A (u (t) , ξ) =

Aẋẋ Aẋθ̇ 0 0

Aθ̇ẋ Aθ̇θ̇ 0 0

0 0 I 0

0 0 0 I

 b (u (t) , ξ) =

bẋ

bθ̇

bx

bθ

where bx = ẋ (t) , bθ = θ̇ (t) , and the elements of the remaining components can be

read off from (6.2.8) and (6.2.9)

Aẋiẋj = Iij Aẋiθ̇j = dij
mjrcj
M

cos θj

Aθ̇iẋj = dji cos θi Aθ̇iθ̇j = liIij (6.2.10)

bẋi =

nθ∑
j=1

dij
mjrcj
M

θ̇2
j sin θj − 2λiẋi − ω2

i xi bθ̇j = −fg sin θj .

Using this notation, we have that

du

dt
(t) = f (u (t) , ξ)

= A−1b

where f (.) has no explicit time dependence, and so under our Euler scheme, the ith

component of the solution evolves as

ûi (u (tk) , tk, tk+1, ξ) = ui (tk) + hkf (u (tk) , ξ) .

6.2.3 Numerical discrepancy model

Having set up our numerical scheme, we choose a form for our numerical discrep-

ancy model; since we have again chosen an Euler solver, we specify a basis for the

discrepancy model based on the higher order terms in the power series expansion at

March 22, 2018

6.2. Example: coupled bell-tower model 258

the initial point. We set the vector of basis functions as

g (θ) =

1
2
h2
k
d2u
dt2

(θ)

1
6
h3
k
d3u
dt3

(θ)

where θ = {u (tk) , tk, tk+1, ξ} is the set of solver inputs at this point. The second-

order derivatives are found directly as

d

dt

(
A
du

dt

)
=
db

dt

dA

dt

du

dt
+ A

d2u

dt2
=
db

dt
d2u

dt2
= A−1

[db
dt
− dA

dt

du

dt

]
and the third-order derivatives are also found directly by re-differentiating the second

line of the above

d

dt

[dA
dt

du

dt
+ A

d2u

dt2

]
=
d2b

dt2

d2A

dt2
du

dt
+ 2

dA

dt

d2u

dt2
+ A

d3u

dt3
=
d2b

dt2

d3u

dt3
= A−1

[d2b

dt2
−
(
d2A

dt2
du

dt
+ 2

dA

dt

d2u

dt2

)]
where the components of the first and second derivatives of A and b are easily

obtained from the expressions (6.2.10). For the residual process, we simply set

Cov [ri (θ) , rj (θ′)] = VijI(θ = θ′) .

We choose not to impose a correlated residual structure in this instance because we

judge that, for the time-step lengths and parameter settings that we will be using,

the error introduced through neglecting the terms of higher than third-order from

the power series will be too small for it to be worth us investigating its structure over

its input space. Generating samples with errors small enough for structure of this

magnitude to stand out using the procedure from 6.1.6 would be computationally

expensive, as would using an emulator for our discrepancy model in place of a sample

linear regression.

Using the above components, we run the analysis from Section 6.1.6 to build a prior

model for the numerical discrepancy under our solver. We generate data by setting

March 22, 2018

6.2. Example: coupled bell-tower model 259

Var [ηx0(h)] = (h×10−4)2 for the ẋ and x components, and Var [ηθ0(h)] = (h×0.1)2

for the θ̇ and θ components; these values are selected so as to ensure that the

numerical solution samples generated using the refined grid are always within 3

standard deviations of those generated using coarse grid, for all parameter settings

of interest (see discussion in Section 6.1.6). We fix E [βip] and Cov [βip, βjq] for all

components by performing a linear regression using a sample of 200 points, and

the marginal variance matrix V for the residual process is fixed to the empirical

covariance of the residuals from this regression. The quality of this model is then

assessed using an additional sample of 50 points, all of which are found to lie within

3 standard deviations of the predictive mean.

6.2.4 Results

Using the solver and numerical discrepancy specifications from Sections 6.2.2 and

6.2.3, we now characterise all of the components of the full model. For this example,

we use the junction tree as a basis for analysis; to reduce the computational effort

required, we also drop all edges between the numerical discrepancy components. On

this basis, the junction tree contains three cliques for each time-step tk:

� Q1 (tk) = {ξ∗, u (tk−1) , û (tk) , η (tk) }

� Q2 (tk) = {ξ∗, û (tk) , η (tk) , u (tk) }

� Q3 (tk) = {u (tk) , zk}

and the tree is constructed by attaching {Q1 (tk) ,Q2 (tk) } together in a chain for

k = 1, . . . , nt, and then attaching Q3 (tk) to Q2 (tk) at each time-step. The cliques

are then characterised in the order that they appear in the tree; a sample of 500

points is generated for each component (using a Gaussian distribution), and then

these samples are used to compute the expectations of each component, and the full

covariance structure within each clique. We use a solver grid of 1000 equal intervals,

where t0 = 0, t1000 = 20 and hk = 0.02 for all steps. We initialise our prior sam-

pler by specifying that E [λi] = 1 and Var [λi] = (0.1)2, and that E [ωi] = 1.5 and

Var [ωi] = (0.2)2, both for i = 1, 2; all of the bell parameters and the tower mass

March 22, 2018

6.2. Example: coupled bell-tower model 260

are fixed according to table 6.1.

Once the prior has been characterised in this way, we generate synthetic data for

an adjustment by running the solver (including uncorrelated stochastic numerical

discrepancy components) on a finer grid; we reduce the length of the time-step by

a factor of 200, so that hk = 10−4 for the data generation. The components of the

model are updated by using the structure of the junction tree to compute covari-

ances between each data point and all other nodes (as outlined in Section 2.1.3,

equation (2.1.9)).

Figures 6.7 and 6.8 show two different updates of the same prior specification;

in Figure 6.7, we update using noise-corrupted observations of every 100th time-

point (t100, t200, . . . , t1000), and in Figure 6.8, we update using every 25th time-point

(t25, t50, . . . , t1000). In both cases, all components of the solution are observed at the

selected knots.

In the prior trajectory (which is the same in both cases), we can clearly see the

build-up of numerical uncertainty as the solution evolves in time. The marginal

uncertainty about the tower position and velocity components is relatively much

greater towards the end of the trajectory; the behaviour of these terms is much

more irregular than that of the bell positions and accelerations, resulting in a much

wider range of possible trajectories under the prior specification.

In the adjusted trajectories, we see the effect of the rich covariance structure imposed

through the graphical prior specification. In Figure 6.7 we see that, despite the lim-

ited number of observations, we can make confident and accurate predictions for the

solution values at a wide range of locations. This effect is particularly marked in the

case of the North-South tower displacement component (Figure 6.7(d), top window);

despite the limited number of measurements, we confidently and accurately predict

the true tower displacement for all earlier times based on these measurements. Ad-

ditionally, where our observations do not provide such strong information about the

true trajectory, we see that our adjusted uncertainty specification reflects this; for

example, from 18 to 20 seconds in Figure 6.8(c) (bottom window).

Considering Figure 6.8, we see that in this instance, the 40 observations are enough

to make a fairly accurate assessment of the trajectories of all components across the

March 22, 2018

6.2. Example: coupled bell-tower model 261

whole time period. Additionally, comparing, for example, Figures 6.7(c) and 6.8(c),

we see that the numerical uncertainty that we have introduced to account for dis-

cretization error introduces quite wide variability in possible trajectory shapes for

the tower components. We see from the way in which the adjusted moments adapt

to the trajectory shape that the covariance structure imposed under our prior spec-

ification is flexible enough to be able to capture this variation in trajectory shape

using only a small number of observations.

Model development Through this example, we have demonstrated the ability

of the framework outlined in Section 6.1 to generate uncertainty specifications for

complex ODE problems in which we can have confidence. In terms of the system

under study though, the work in this chapter does not represent a serious attempt

to quantify our uncertainty about the motion of the tower under a variety of dif-

ferent conditions, or the effect of this motion on the behaviour of the bells. Future

improvements to the model could allow for a more detailed study to be undertaken.

For example, we could adapt the model so that it includes a set of forcing terms

which simulate the effect of the ringers applying forces to the bell through the rope,

and so that these forces are applied in such a way as to simulate the ringing of

methods.

In practice, the solution of the system in this way across the whole of a substantial

piece of ringing would not be a sensible strategy; such a simulation would be very nu-

merically intensive, and would provide a lot of superfluous detail. A better strategy

would perhaps be to carry out an analysis using the procedure of Smith and Hunt

[2008] and to use this to find particular ringing regimes which appear to generate

large amounts of tower movement. The analysis described above could then be run

using initial conditions based on these particular ringing regimes, to generate a more

detailed picture of our uncertainties about the tower movement that we might see,

and the effects that this might have on the difficulties experienced by the ringers

due to this tower movement.

March 22, 2018

6.2. Example: coupled bell-tower model 262

0 5 10 15 20

t (s)

-1000

-500

0

500

1000

d
1
/d

t(
t)

 (
de

g/
s)

0 5 10 15 20

t (s)

-1000

-500

0

500

1000

d
3
/d

t(
t)

 (
de

g/
s)

0 5 10 15 20

t (s)

-1000

-500

0

500

1000

d
8
/d

t(
t)

 (
de

g/
s)

0 5 10 15 20

t (s)

-500

0

500

1000
d

10
/d

t(
t)

 (
de

g/
s)

(a)

0 5 10 15 20

t (s)

-400

-200

0

200

400

1
 (

de
g)

0 5 10 15 20

t (s)

-400

-200

0

200

400

3
 (

de
g)

0 5 10 15 20

t (s)

-400

-200

0

200

400

8
 (

de
g)

0 5 10 15 20

t (s)

-400

-200

0

200

400

10
 (

de
g)

(b)

0 2 4 6 8 10 12 14 16 18 20

t (s)

-0.4

-0.2

0

0.2

0.4

dx
1
/d

t(
t)

 (
m

m
/s

)

0 2 4 6 8 10 12 14 16 18 20

t (s)

-0.5

0

0.5

dx
2
/d

t(
t)

 (
m

m
/s

)

(c)

0 2 4 6 8 10 12 14 16 18 20

t (s)

-0.1

-0.05

0

0.05

0.1

x 1
 (

m
m

)

0 2 4 6 8 10 12 14 16 18 20

t (s)

-0.2

-0.1

0

0.1

0.2

x 2
 (

m
m

)

(d)

Figure 6.7: Plots of the prior and adjusted moments for the bell-tower model; first

update case. Figure 6.7(a) shows the trajectory of θ̇i (t) for bells i = 1, 3, 8, 10,

and Figure 6.7(b) shows θi (t) for the same four bells. Figure 6.7(c) shows both

components ẋi (t) of the tower velocity (i = 1, 2), and Figure 6.7(d) shows the

components of the tower displacement xi (t) . In all cases, the prior expectation of

the trajectory is shown in green, and three-standard deviation error bars are shown

in dashed red; the adjusted moments are shown in coloured lines in each case, with a

solid line for the adjusted mean and a dashed and dotted line for the three-standard

deviation adjusted error bars. The trajectory from which the samples are actually

generated is shown in black.

March 22, 2018

6.2. Example: coupled bell-tower model 263

0 5 10 15 20

t (s)

-1000

-500

0

500

1000

d
1
/d

t(
t)

 (
de

g/
s)

0 5 10 15 20

t (s)

-1000

-500

0

500

1000

d
3
/d

t(
t)

 (
de

g/
s)

0 5 10 15 20

t (s)

-1000

-500

0

500

1000

d
8
/d

t(
t)

 (
de

g/
s)

0 5 10 15 20

t (s)

-500

0

500

1000

d
10

/d
t(

t)
 (

de
g/

s)

(a)

0 5 10 15 20

t (s)

-400

-200

0

200

400

1
 (

de
g)

0 5 10 15 20

t (s)

-400

-200

0

200

400

3
 (

de
g)

0 5 10 15 20

t (s)

-400

-200

0

200

400

8
 (

de
g)

0 5 10 15 20

t (s)

-400

-200

0

200

400

10
 (

de
g)

(b)

0 2 4 6 8 10 12 14 16 18 20

t (s)

-0.4

-0.2

0

0.2

0.4

dx
1
/d

t(
t)

 (
m

m
/s

)

0 2 4 6 8 10 12 14 16 18 20

t (s)

-0.5

0

0.5

dx
2
/d

t(
t)

 (
m

m
/s

)

(c)

0 2 4 6 8 10 12 14 16 18 20

t (s)

-0.1

-0.05

0

0.05

0.1

x 1
 (

m
m

)

0 2 4 6 8 10 12 14 16 18 20

t (s)

-0.2

-0.1

0

0.1

0.2

x 2
 (

m
m

)

(d)

Figure 6.8: Plots of the prior and adjusted moments for the bell-tower model; second

update case. The plots in each window are of the same quantities as the equivalent

windows in Figure 6.7, with the same line styles and colours being used for the prior

and adjusted moments, and for the actual trajectory.

March 22, 2018

6.2. Example: coupled bell-tower model 264

6.2.5 Discussion

The modelling framework presented in this chapter, when coupled with a Bayes

linear analysis, is an extremely useful tool in the study of ODE models for physical

systems. Structuring the model according to the graph 6.1 allows us to produce

a much richer covariance structure than it would have been possible to obtain by

simply fitting an emulator to the output for the solver, and one which more closely

represents the behaviour of the true solution. It also allows us to introduce a detailed

model for the structure of the numerical discrepancy, at a level of accuracy appro-

priate for the solution effects which we are trying to assess. This rich covariance

structure means that for many problems, we can accurately predict the solution over

a substantial portion of its input space using only a small number of observations.

We can also account for the effect of parameter uncertainty on solution uncertainty

in a natural way, and use solution observations to learn about the parameters.

The use of a Bayes linear graphical model also provides access to computational tools

which reduce the burden of assessing prior uncertainty about the trajectory induced

by particular uncertainty specifications for the parameters and initial conditions,

and of updating beliefs about the trajectory in the light of observations. We can

store a limited prior specification on the graph, and then efficiently re-construct any

covariance specification for a pair of non-adjacent nodes; additionally, constructing

the junction tree corresponding to a particular graph allows us to adjust beliefs

sequentially along the tree, eliminating the need to compute and store the large ma-

trices required to characterise the full joint prior specification for all components.

The work presented in Sections 6.1 and 6.2 suggests a variety of different interest-

ing areas for future research. First, the two examples presented represent the two

most extreme cases in terms of belief separations for the numerical discrepancy; in

the projectile trajectory example in Section 6.1.8, we impose a full prior correlation

structure for the numerical discrepancy terms (in which each η (tk) has all the η (tl)

as parents for l < k), whereas in the bell-tower example from Section 6.2, we do

not impose any edges between these terms across time-steps. It would be interest-

ing to explore (particularly in the bell-tower model) to what extent the imposition

of a limited parent set (for example, including in the parent set of η (tk) only the

March 22, 2018

6.3. Partial differential equations 265

{η (tk−1) , . . . , η (tk−q) } for some q) allows us to improve the quality of the correla-

tion structure while retaining the efficiency of computation on the junction tree.

More broadly, the graph quantification technique presented in Section 6.1.6 makes

second-order assumptions for all components and then, when higher-order moment

specifications are required for numerical integration steps (propagation of uncer-

tainty through the solver and numerical discrepancy components), we assume a

particular distribution and characterise this using the second-order terms. This of

course makes the result sensitive to this choice of distribution. In the projectile

example (Section 6.1.8), the numerical scheme and the regression component of

the discrepancy involve only polynomial functions of the uncertain inputs, and in

the bell-tower example, we could easily arrive at the same point by approximating

any sines and cosines with low-order Taylor expansions. Within the Bayes linear

framework, we need not limit ourselves to first- and second-order moments of any

particular component; we can carry around first- and second-order moments for as

many integer powers of the component as we like. In the future, then, it would

be interesting to model solution trajectories with the same framework, but using a

second-order specification for component powers up to a given order p. This has

the potential to produce a framework in which we can study the behaviour of a

trajectory without having to make any distributional assumptions, allowing us to

investigate its behaviour under a much more general range of prior specifications for

the components which actually drive its behaviour, without making any superfluous

assumptions for those which don’t, all while retaining the attractive computational

properties of the Bayes linear framework and eliminating the need for sampling.

6.3 Partial differential equations

Partial differential equation (PDE) models are also extremely common in the phys-

ical sciences. A PDE relates different partial derivatives of a function to each other,

and when supplemented with a set of initial and boundary conditions, implicitly de-

fines a solution surface as a function of a number of input variables. The general PDE

model which we will consider has the following form; the nu-dimensional solution

March 22, 2018

6.3. Partial differential equations 266

surface u (x, t) = {u1 (x, t) , . . . , unu (x, t) } defined on the domain (x, t) ∈ Ω×[t0, T]

is known to satisfy the following conditions

∂ui
∂t

(x, t) = Fi

(
u, { ∂u

∂xi
}, . . . , t, ξ

)
+ fi (x, t) for x ∈ Ω, t ∈ (t0, T]

ui (x, t0) = vi (x) for x ∈ Ω (6.3.11)

ui (x, t) = wi (x, t) for x ∈ ∂Ω, t ∈ (t0, T]

where F (.) could be a function of u and all of its spatial derivatives (of any order),

and f (x, t) is a known source function.

PDE systems are generally even more difficult to solve than ODE systems, and so it

is even rarer that we can solve one exactly; where we can find an algebraic solution,

this generally requires us to assume particular, standard forms for the initial and

boundary conditions, which may not be appropriate for our particular application.

In most situations where we use a PDE model, then, we must use some sort of

numerical scheme in order to approximate the solution; this too is a more complex

task than in the ODE case, since we must approximate the evolution of the function

between time-steps over the whole of its spatial domain.

Numerical solution of the system (6.3.11) allows us to make progress at the ex-

pense of introducing a discrepancy between the solution that we obtain, and the

solution that we originally envisaged when we specified (6.3.11); we wish to build

a model for the system under study which accounts for our uncertainty about the

true solution due to this discrepancy, in addition to the other ‘usual’ sources of

uncertainty. Modelling this numerical discrepancy in the PDE case is more difficult

than in the ODE case, due to the fact that we must model its behaviour across

the spatial input domain of the solution as well as over the temporal input domain.

As is the ODE case though, the numerical discrepancy corresponding to a partic-

ular scheme is highly structured, exhibiting systematic behaviour across its input

domain, something which we can again exploit when constructing our model. A

potential additional complication in the PDE case is that implicit solvers are often

used, owing to their greater stability; this can introduce additional complications

around the propagation of numerical or parameter uncertainty through the solver.

Previous work in this area has been undertaken by Conrad et al. [2017], who perturb

March 22, 2018

6.3. Partial differential equations 267

the basis functions of a finite element numerical scheme in order to represent the

uncertainty introduced through numerical approximation, and then demonstrate the

need to account for this source of uncertainty by showing that failure to account for

it can result in mis-estimation of the model parameters. Graepel [2003] represents

uncertainty about the solution of linear PDE by applying the differential operator

to a Gaussian process and then making observations of the forcings and boundary

conditions. Related work has also been carried out by Lindgren et al. [2011], who

derive a stochastic differential equation for which the solution is a Gaussian field,

and then obtain a corresponding finite-dimensional Gaussian specification using a

finite element approximation. Fuglstad et al. [2015] provide further computational

details for this procedure, using a finite volume scheme. In the numerical analysis

literature, much work has been done to derive error bounds for different types of

scheme; see, for example, Eymard et al. [2000] and references therein.

In the remainder of this section, we propose a modelling framework, similar to the

one outlined in Section 6.1, which builds a stochastic representation of the solution

to the system (6.3.11) that accounts for all sources of uncertainty. In Section 6.3.1,

we outline two common methods for deriving discrete approximations to PDE so-

lutions; then, in Section 6.3.2, we focus on the finite element method, and consider

the likely structure of the numerical discrepancy that will arise through its use. In

Section 6.3.3, we propose a model structure similar to the one outlined in Section

6.1.4 which handles all of the types of uncertainty that we wish to account for. In

Section 6.3.4, we illustrate this model through application to a simple example, in

which we numerically approximate the solution of the diffusion equation in one spa-

tial dimension. Finally, in Section 6.1.5, we discuss the PDE modelling framework

which has been proposed, and we consider ways in which it might be improved in

the future.

6.3.1 Numerical schemes

We consider two popular types of numerical schemes for PDE; finite element and

finite volume schemes. Under both of these schemes, we divide the spatial input

domain into a set of discrete elements (or volumes), we define a set of basis func-

March 22, 2018

6.3. Partial differential equations 268

tions over these elements, we represent the solution as a weighted combination of

these basis functions, and we use a weak formulation of the PDE to derive a set of

relationships between the basis weights and the initial and boundary conditions and

forcings. For linear PDE (and some simple non-linear PDE), this procedure results

in a system of relations which can then be inverted to find our approximation to

the solution. For the remainder of this section, we consider only the solution PDE

problems with a single output dimension, where u (x, t) = u1 (x, t) .

Finite element analysis In a general finite element analysis (see, for example,

Iserles [2008], chapter 9), we seek a weak solution to the problem, which we denote

by û, which satisfies the following relation for all test functions s∫ T

t0

∫
Ω

[∂û
∂t
− F (û, . . . , t, ξ) − f (x, t)

]
s (x, t) dV dt = 0 .

Instead of seeking a weak solution over the spatial and temporal input domains,

we approximate the evolution of the solution in time using a finite difference step;

under this approach we seek a sequence of functions û (x, t0) , û (x, t1) , . . . , û (x, tnt)

which satisfy the relations∫
Ω

[1

hk

(
û (x, tk+1) − û (x, tk)

)
− F (û, . . . , tk+1, ξ) − f (x, tk+1)

]
s (x) dV = 0 .

(6.3.12)

To find a solution, we must specify particular forms for û and s; we assume that

both are finite, weighted sums of known basis functions {φi}

û (x, tk) =

nφ∑
i=1

ûi (tk)φi (x) s (x, tk) =

nφ∑
i=1

si (tk)φi (x) . (6.3.13)

Under this assumption, the problem is now one of finding the set of coefficients

{ûi (tk+1) } which satisfy (6.3.12) for all settings of the coefficients {si (tk+1) }, for

known {ûi (tk) } and ξ.

If we substitute the basis expansions (6.3.13) into (6.3.12), we obtain the following

∑
i

si (tk+1)

[∑
j

∫
Ω

[1

hk

(
ûj (tk+1) − ûj (tk)

)
φi (x)φj (x)

− φi (x)F (û, . . . , tk+1, ξ) − φi (x) f (x, tk+1)
]
dV

]
= 0 . (6.3.14)

March 22, 2018

6.3. Partial differential equations 269

To satisfy this relation for all s parametrized in this way, the inner sum must vanish

for all si (tk+1) . If we further assume that F (.) is a linear function of u and its

partial derivatives, then we can re-write (6.3.14) as a system of linear equations

K (θ) û (tk+1) = D (θ) û (tk) − b (θ) + f (θ) (6.3.15)

where θ = {tk, tk+1, φ1, . . . , φnφ , ξ} is the set of solver inputs, and the elements of

the components are

Dij (θ) =

∫
Ω

1

hk
φi (x)φj (x) dV

Kij (θ) = Dij (θ) −
∫

Ω

φi (x)F

(
φj, {

∂φj
∂x
}, . . . , tk+1, ξ

)
dV (6.3.16)

fi (θ) =

∫
Ω

f (x, tk+1)φi (x) dV

where the indices i, j vary over 1, . . . , (nφ−1) and b (θ) contains boundary informa-

tion. To find the basis coefficients at time tk+1, we simply solve the system (6.3.15)

û (tk+1) = A (θ)
[
D (θ) û (tk) − b (θ) + f (θ)

]
where A = K−1.

If the function F (.) is non-linear in u or its partial derivatives, then we can still use

the finite element procedure, but the system of equations that we must solve (the

analogue of (6.3.15)) becomes non-linear. This means that, in order to generate

numerical solutions, we must introduce an additional numerical approximation step

in order to solve the system. For example, finite element schemes for the Euler and

Navier-Stokes equations produce systems of quadratic equations.

Basis functions In order to carry out the above analysis, we must first choose

the basis functions {φi}; these should be selected so that the resulting numerical

approximation is flexible enough to capture variability in the solution, and so that

the integrals in (6.3.16) are easy to perform. In a finite element analysis, we impose

a polygonal (e.g. cubic, tetrahedral) mesh on the domain Ω, and then choose a basis

which consists of a set of compactly-supported polynomials defined on the individual

mesh elements. Defining the basis in this way confers a number of advantages:

March 22, 2018

6.3. Partial differential equations 270

� For complex domains, choosing such a basis affords us a great deal of flexibility

in designing our mesh so that we capture all of the important variability in

the solution; for example, if we use a tetrahedral mesh, we can mesh at a high

resolution in regions where we expect rapid changes in the solution value, or

where we wish to model carefully, and then at a lower resolution in regions

where we expect low variability, or where we are not as interested;

� In order to obtain the expressions (6.3.14), we must only evaluate simple,

polynomial integrals;

� Since the polynomials defined on the mesh elements are supported only on

a small region of the space, the resulting system of linear relations is sparse,

which ensures that it can be solved relatively quickly, even in large problems.

Finite volume analysis A finite volume analysis works in a very similar way to

a finite element analysis; we again seek a weak solution to the PDE problem, but

in this instance, we do so by exploiting conservation laws. Following Eymard et al.

[2000], we assume that the differential equation has the following ‘conservation law’

form
∂u

∂t
= ∇.

(
G

(
u, { ∂u

∂xi
}, . . . , t, ξ

))
+ f (x, t) .

If we then integrate this equation over a volume V, and over a particular time-step,

we trivially obtain∫ tk+1

tk

∫
V

[∂u
∂t
−∇.

(
G

(
u, { ∂u

∂xi
}, . . . , t, ξ

))
− f (x, t)

]
dV dt = 0 .

We can now integrate the first term in time, and we can apply the divergence theorem

to the second term, obtaining∫
V

[
u (x, tk+1) − u (x, tk)

]
dV =∫ tk+1

tk

∫
∂V

[
G

(
u, { ∂u

∂xi
}, . . . , t, ξ

)
.n (x)

]
dω (x) dt +

∫ tk+1

tk

∫
V

f (x, t) dV dt

where ∂V is the boundary of the volume V, n (x) is the outward normal vector to

the boundary at x, and ω (x) is the integration measure on the boundary. Under

this formulation, the total change in u over the interval [tk, tk+1] is equal to the total

March 22, 2018

6.3. Partial differential equations 271

flux of G (.) over the boundary during this period, and the total forcing over this

time interval. We use this relation to derive a discrete approximation to the PDE by

meshing the domain into a set of volumes {Vi} such that ∪iVi = Ω and Vi ∩ Vj = ∅

for i 6= j and introducing the average values

û (tk) =
1

m (Vi)

∫
Vi

u (x, tk) dV f (tk) =
1

m (Vi)

∫
Vi

f (x, tk) dV

where m (Vi) measures the volume of element Vi. The numerical scheme then im-

plicitly defines the û (tk+1) in terms of the û (tk) as

û (tk+1) + Γ (û (tk+1) , tk, tk+1, ξ) = û (tk) + f (tk+1) (6.3.17)

where Γ (.) approximates the values of G.n (x) on the boundary elements of each

volume Vi. As in the finite element case, we must solve the system of equations

resulting from (6.3.17) to obtain û (tk+1) at each time-step. If the original PDE was

linear, the resulting system will be linear; if the original PDE was non-linear, how-

ever, these equations will be non-linear, and so we must introduce some additional

approximation if we are to solve them.

6.3.2 Numerical discrepancy: finite element schemes

By choosing to solve a PDE using a particular numerical scheme, we obtain an

approximate solution which is discrepant from the true solution to the equation in

some unknown way; in order to improve the quality of our predictions, we wish to

assess the magnitude of of this discrepancy, and to model its structure across the

spatial and temporal domains. As in the ODE case, we can further investigate the

structure of the real discrepancy, and we can base our model around components

which we believe make an important contribution. We discuss two ways of structur-

ing the behaviour of the numerical discrepancy in the finite element case. First, we

consider the Taylor expansion of the solution around the central point of the basis

function, and build a model for the discrepancy in terms of the difference between

the numerical approximation and the series representation at these points; then, we

consider further imposing structure on the discrepancy within spatial elements by

generating a further finite element approximation given the (uncertain) true values

at the element boundaries

March 22, 2018

6.3. Partial differential equations 272

Discrepancy at the nodes Consider a PDE in one spatial dimension and time: if

we select our basis functions so that, for any given point x, we have that
∑

i φi (x) =

1 (this is generally the case for finite element basis functions), then we can trivially

represent the real solution to (6.3.11) at time tk as

u (x, tk) =

nφ∑
i=1

u (x,tk)φi (x) .

If we now Taylor expand the solution around a point ci in the centre of the support

of each basis function, we can also write the solution as

u (x, tk) =

nφ∑
i=1

(
u (ci, tk) + (x− ci)

∂u

∂x
(ci, tk) +

1

2!
(x− ci)2∂

2u

∂x2
(ci, tk) + . . .

)
φi (x)

assuming that the series converges to the solution over the support of each basis

function. We use this expression to motivate a model based on the high-order

terms from this expansion; this is effectively a set of local polynomial regressions

centred around the {ci}, supported at the inputs x for which the corresponding basis

functions are non-zero. Because the finite element scheme outlined in Section 6.3.1

represents the time evolution of the solution-basis function inner products, it is not

guaranteed that the numerical solution û will agree with the true solution at the

{ci} if we refine the temporal grid, and so our approximation at time tk is

u (x, tk) = û (x, tk) + η (x, tk)

where û is the finite element approximation of the first ndrv spatial partial derivatives

û (x, tk) =

nφ∑
i=1

(ndrv∑
p=0

1

p!
(x − ci)pû(p)

i (tk)
)
φi (x)

and û
(p)
i (tk) is our finite element approximation to ∂pu

∂xp
(x, tk) at ci, and the dis-

crepancy η is structured so as to ensure agreement with the real solution at the

ci

η (x, tk) =

nφ∑
i=1

(ndrv∑
p=0

1

p!
(x − ci)pη(p)

i (tk)
)
φi (x) + w (x, tk)

where w (.) is designed so that it vanishes at the ci. If the low-order behaviour of

the solution in the region around each ci is approximated by the polynomial terms,

then w (.) should be designed to capture the behaviour of higher-order contributions

March 22, 2018

6.3. Partial differential equations 273

in the series.

For this framework to be useful, we must be willing to make an assessment of our

uncertainty about the numerical discrepancy based on our knowledge of the solution

behaviour. As in the ODE case, there are a number of different ways in which we

could do this:

� At the simplest level, we could make an independent uncertainty specification

for each of the η
(p)
i (tk) at each knot and time step;

� Being slightly more sophisticated, we could incorporate some of our beliefs

about the structure of the discrepancy across space and time by imposing

a simple covariance structure; for example, we could relate the value of the

numerical discrepancy at time tk+1 to its value at time tk, and we could assume

a particular covariance structure across the spatial knots at a particular time-

step;

� For a more detailed description, we could adopt a strategy analogous to the

one detailed in Section 6.1.6 and fit a model to the discrepancy to be used as an

input to our analysis of the solution; as before, we could generate approximate

samples from the discrepancy by making a variance specification which scales

with the coarseness of the mesh and running the solver at a higher resolution.

Within-element discrepancy Once we have specified a model for the numerical

discrepancy at the centres of the basis functions, we must do the same for the con-

tinuous component w (x, tk) ; again, a number of options are open to us, depending

on the level of effort that we wish to put into our model structure. Again, the

simplest thing that we could do would be to assume that this error component is

uncorrelated at each spatial location where we interrogate the solution. At the next

level of complexity, we could impose a spatial stochastic process with some specified

covariance function, taking care to ensure that this process vanishes at the centres

of the basis functions.

If we wish to specify a more detailed model, we can further exploit the structure of

March 22, 2018

6.3. Partial differential equations 274

the solver: at the points {ci}, for each time-step tk, we have imposed that

∂pu

∂xp
(ci, tk) = û

(p)
i (tk) + η

(p)
i (tk) . (6.3.18)

We can use this representation of the solution at the knots as the input to a further

finite element solution. We sub-divide each of the intervals [ci, ci+1] into a set of sub-

elements, and solve on each of these intervals separately; for each interval, our initial

conditions are taken from our representation of the solution at the previous time-

step, and our boundary conditions are determined by the representation (6.3.18).

6.3.3 Bayesian analysis for numerical schemes

We combine the finite element scheme outlined in Section 6.3.1 with a model for the

numerical discrepancy which uses some of the elements outlined in Section 6.3.2 to

create a model for the true solution of the system (6.3.11) which accounts for all

of our uncertainties; as in the ODE case, we use a graphical model to summarise

our belief separation specifications. This graphical model will then again form the

basis for a Bayes linear analysis, in which we characterise the prior by propagating

uncertainty through the diagram, and then use the diagram as a mechanism for

updating beliefs about the model components using observations on the system.

As in the ODE case, our specification is made in four stages. First, we make a

limited prior specification of just the initial condition, boundary condition and pa-

rameter functions; then we choose a numerical scheme with which to generate our

approximate solution. Based on this choice, we then specify a form for the numeri-

cal discrepancy model; finally we use these three components and the graph 6.9 to

work through the components and characterise the full joint prior distribution of

the model. Again, as in the ODE case, we can make either a fully probabilistic or

a Bayes linear specification; in this case, however, we only consider quantification

of the prior in the Bayes linear case. The issues that we must consider if we are to

make a fully probabilistic specification instead are largely the same as those outlined

in 6.1.5.

Limited prior specification For a PDE model, we must specify our prior be-

liefs about the initial condition function, the boundary condition function and any

March 22, 2018

6.3. Partial differential equations 275

(continuous or discrete) parameters of the equation. For both the initial condition

v (x) and the boundary condition w (x, t) , we must make specifications E [v (x)] ,

Cov [v (x) , v (x′)] and E [w (x, t)] , Cov [w (x, t) , w (x′, t′)] for the whole of the rel-

evant (continuous) input domains (Ω and ∂Ω × (0, T] respectively).

The analysis can be simplified by choosing a simple form for both these functions;

for example, if we choose to represent both using a weighted combination of basis

functions, as we do for the numerical solution (equation (6.3.13)), then the integrals

which we need to perform in order to link the initial state to the numerical solution

û (x, t1) at the first time step (e.g. equation (6.3.14)) will be no more complex than

for any other time-step.

Numerical scheme and discrepancy We must also choose a particular numer-

ical scheme and make a prior specification for our numerical discrepancy model.

For the remainder of this section, we assume that we choose to use a finite element

numerical scheme; much of the following would also apply if we were to choose a

finite volume scheme instead. Our options for the numerical discrepancy model are

discussed in Section 6.3.2; whatever choice we make for this model, we must be able

to specify the moments E [η (x, tk)] and Cov [η (x′, tk) , η (x′, tk)] for each time-step,

conditionally on the solution u (x, tk−1) at the previous time-step or the numerical

discrepancies at any previous times where required.

Characterising the full prior Once we have made the limited prior specifica-

tion, selected a numerical solver and specified a form for the numerical discrepancy

model, we can use the graph 6.9 to characterise the full joint prior distribution. At

each time step tk, we need to use our diagram to characterise three different com-

ponents: the numerical approximation û (x, tk) , the numerical discrepancy η (x, tk)

and the solution u (x, tk) .

First, the numerical approximation at time-step tk; recall that we use the basis

representation (6.3.13). Given the components at all previous times, the expecta-

tions of the basis coefficients {ûi (tk) } are as follows (using the Einstein summation

March 22, 2018

6.3. Partial differential equations 276

convention for indices)

E [ûi (tk) |u (tk−1) , ξ∗] = Aip (θ)
[
Dpq (θ)uq (tk−1) − bp (θ) + fp (θ)

]
(6.3.19)

where as before, θ is our abbreviation for the full set of solver inputs. The expec-

tations of these terms independent of their parent nodes are therefore as follows

E [ûi (tk)] = E [E [ûi (tk) |u (tk−1) , ξ∗]] (6.3.20)

where the outer expectation is taken with respect to p (u (tk−1) , ξ∗) , a distribution

for which we must choose a form. The covariances between these components can

be computed using the law of total covariance

Cov [ûi (tk) , ûj (tk)] = E [Cov [ûi (tk) , ûj (tk) |u (tk−1) , ξ∗]]

+ Cov [E [ûi (tk) |û (tk−1) , ξ∗] ,E [ûj (tk) |u (tk−1) , ξ∗]] .

Conditional on the parent components, the covariance between the coefficients is

zero, so we only need to evaluate the second term as

Cov [ûi (tk) , ûj (tk)] = E [E [ûi (tk) |u (tk−1) , ξ∗] ,E [ûj (tk) |u (tk−1) , ξ∗]]

− E [ûi (tk)] E [ûj (tk)] . (6.3.21)

The conditional expectation (6.3.19) is generally quite a complex object; it is a non-

linear function (involving a matrix inverse) of the equation parameters ξ∗. For fixed

ξ∗, we can easily evaluate the expectation (6.3.20) and the covariance (6.3.21) owing

to the linearity of (6.3.19) in the {ûi (tk) }. These points are discussed further in

Section 6.3.4.

For the numerical discrepancy, the predictions of η (x, t) from our fitted model

are dependent on the solution surface at the previous time-step and the parameter

setting, and are generally correlated with the numerical discrepancy values at all

previous time-steps. The exact structure of this correlation between time-steps will

depend on the form that we choose for the numerical discrepancy (see the discussion

in Section 6.1.2); we do not, therefore, explicitly outline the calculations that we need

to perform in the general case. The procedure for uncertainty propagation, however,

is the same as in the ODE case; we specify the expectation and covariance of η (x, tk)

March 22, 2018

6.3. Partial differential equations 277

conditional on the parent set {ξ∗, η (x, t1) , . . . , η (x, tk−1) , u (x, tk−1) }, and we com-

pute the unconditional expectation E [η (xi, tk)] and covariances Cov [η (xi, tk) , η (xj, tk)]

for all locations of interest using the laws of total expectation and covariance.

Finally, we combine these components to determine the expectation and covariance

of the solution at time tk; its expectation is simply

E [u (xi, tk)] = E [û (xi, tk)] + E [η (xi, tk)]

and its covariance is

Cov [u (xi, tk) , u (xj, tk)] = Cov [û (xi, tk) , û (xj, tk)] + Cov [η (xi, tk) , η (xj, tk)]

+ Cov [û (xi, tk) , η (xj, tk)] + Cov [η (xi, tk) , û (xj, tk)] .

Relationship to the system The relationship between the PDE solution surface

u (x, tk) at the system y (x, tk) that it is designed to represent is the same as in the

ODE case; we specify our beliefs about the discrepancy δ (x, t) and the measurement

error ε, and we add on these components (which, as usual, are assumed to be

uncorrelated with each other, and with the solution) to determine our beliefs about

the system value and the observations respectively.

6.3.4 Example: diffusion equation

We now apply the model outlined in Section 6.3.3 to a simple example. The diffusion

equation in one spatial dimension is

∂u

∂t
(x, t) = κ

∂2u

∂x2
(x, t) + f (x, t) , for x ∈ Ω, t ∈ (0, T]

u (x, t0) = v (x) , for x ∈ Ω, t = t0 (6.3.22)

u (x, t) = w (x, t) , for x ∈ ∂Ω, t ∈ (0, T] .

This is a standard model for several different physical systems; for example it is

used to describe the conduction of heat in a particular medium, and the diffusion

of particulate matter. It is a particularly useful example to study here because it

has has an analytic solution for particular input domains and initial and boundary

condition functions. If we assume that the initial condition function v (x) and the

March 22, 2018

6.3. Partial differential equations 278

ξ∗ u (x, t0)

η (u (x, t0) , ξ∗) û (u (x, t0) , ξ∗) δ (x, t1) ε1

u (x, t1, ξ
∗) y (x, t1) z1

η (u (x, t1) , ξ∗) û (u (x, t1) , ξ∗) δ (x, t2) ε2

u (x, t2, ξ
∗) y (x, t2) z2

. .

. . δ (x, tk) εk

u (x, tk, ξ
∗) y (x, tk) zk

η (u (x, tk) , ξ
∗) û (u (x, tk) , ξ

∗) δ (x, tk+1) εk+1

u (x, tk+1, ξ
∗) y (x, tk+1) zk+1

Figure 6.9: DAG representing the structure of the PDE model

forcing f (x, t) have Gaussian forms, and we solve on Ω = (−∞,∞), t ∈ [0,∞], then

we can evaluate the real solution by performing only a simple numerical integration

in t; the solution under this specification is computed in Appendix C.1. Of course,

using the finite element method, we can only solve over finite spatial and temporal

domains. Therefore, for the remainder of our analysis, we fix Ω = [−2, 2], and fix

w (x, t) to be the real solution (obtained as in the appendix) on the boundary of

this domain; we solve for t ∈ [0, 2.5].

Numerical scheme For this problem, we use a finite element solver in which

we track the behaviour of the solution and its first and second derivatives. Using

the linearity of the PDE, it is easy to see that any derivative of the solution also

evolves according to a diffusion equation, forced using the corresponding derivative

of f (x, t) , i.e. for the pth solution derivative, we have

∂

∂t

(
∂pu

∂xp
(x, t)

)
=

∂2

∂x2

(
∂pu

∂xp
(x, t)

)
+

∂p

∂xp
f (x, t)

March 22, 2018

6.3. Partial differential equations 279

where the initial and boundary conditions for the derivative are found easily by

differentiation. We focus on the solution and its spatial partial derivatives up to

second order; as discussed in Sections 6.3.2 and 6.3.3, we assume the following

form for our numerical approximation to the pth spatial partial derivative solution

(p = 0, 1, 2) at time tk

û(p) (x, tk) =

nφ∑
i=1

[2∑
q=p

û
(q)
i (tk)

(q − p)!
(x − ci)q−p

]
φi (x) .

Substituting the form of the diffusion equation into the expression (6.3.14), we find

that our finite element approximation should satisfy the following system of equa-

tions∑
i

si (tk+1)

[∑
j

∫
Ω

[1

hk
φi (x)

(
û(p) (x, tk+1) − u (x, tk)

)
− φi (x)

∂2

∂x2

(
û(p) (x, tk+1)

)
− φi (x) f (x, tk+1)

]
dV

]
= 0

for i, j = 1, . . . , nφ and p = 0, 1, 2. Inputting the expression for each of the deriva-

tives û(p) (x, tk) , we obtain a system of equations of the same form as (6.3.15)

K (θ) û (tk+1) + b (θ) − f (θ) = ū (tk)

where in this instance, we use û (tk) = (û(0) (tk)
T, û(1) (tk)

T, û(2) (tk)
T)T to denote

the vector which consists of the vertically-stacked numerical solution values at the

nodes for all derivative orders. In this form, the matrix K has the following block

structure

K =

K(0) K(1) K(2)

0 K(0) K(1)

0 0 K(0)

where the elements of the matrix K(p) are

K
(p)
ij = D

(p)
ij −

∫
Ω

φi (x)
∂2

∂x2

(
(x − cj)pφj (x)

)
dx

= D
(p)
ij +

∫
Ω

∂

∂x

(
φi (x)

)
.
∂

∂x

(
(x − cj)pφj (x)

)
dx

where the we have applied the divergence theorem and assumed that the basis

functions vanish on the boundary, and the elements of D
(p)
ij are

D
(p)
ij =

∫
Ω

φi (x) (x − cj)pφj (x) dx

March 22, 2018

6.3. Partial differential equations 280

for i, j = 1, . . . , (nφ − 1). The vectors f (tk) and ū (tk) are

f (tk) =

f (0) (tk)

f (1) (tk)

f (2) (tk)

 ū (tk) =

ū(0) (tk)

ū(1) (tk)

ū(2) (tk)

where

ū
(p)
i (tk) =

∫
Ω

∂pu

∂xp
(x, tk)φi (x) dV

f
(p)
i (tk) =

∫
Ω

(
∂p

∂xp
f (x, tk+1)

)
φi (x) dV .

The forcing components are computed by integrating the forcing function against

the basis functions numerically (see appendix C.1 for details of the forcing function

used); the solution at time tk includes a contribution from the numerical discrep-

ancy term, and so the computation of the ūi (tk) is discussed further in the next

paragraph.

For the basis function, we assume the common ‘hat function’ form [Iserles, 2008];

we divide the domain into nφ elements by specifying a set x0 < x1 < . . . < xnφ of

monotonically increasing knots, and we specify that

φi (x) =

(x−xi−1)

di
for xi−1 ≤ x < xi

(xi+1−x)
di+1

for xi ≤ x < xi+1

0 else.

(6.3.23)

Note that for this choice of basis function, the central point of the function φi is the

knot xi, and so ci = xi. The integrals for the solver matrices D and K are computed

in appendix C.2.

Numerical discrepancy For the numerical discrepancy, we adopt the form dis-

cussed in Section 6.3.2. The numerical discrepancy for the pth order derivative of

the solution at time tk is assumed to have the following form

η(p) (x, tk) =

nφ∑
i=1

(2∑
q=p

1

(q − p)!
(x − ci)q−pη(q)

i (tk)
)
φi (x) + w(p) (x, tk) .

As discussed in Section 6.3.2, this form for the discrepancy is designed so that the

knot xi, we have that u (xi, tk) = û
(p)
i (tk) + η

(p)
i (tk) ; that is, the sum of the finite

March 22, 2018

6.3. Partial differential equations 281

element solution and the discrete discrepancy component agrees with the solution

at each xi. For this example, we choose a further basis expansion for the w(p) (.)

w(p) (x, tk) =

nφ∑
i=1

nγ∑
j=1

w
(p)
ij (tk) γij (x)

where the basis functions γij (x) are defined for each element [xi−1, xi] by dividing

into 10 sub-elements and specifying a new set of ‘hat’ basis functions like (6.3.23).

We must now make a (state-dependent) uncertainty specification for each of the

components of this numerical discrepancy model. For the discrepancies {η(p)
i (tk) }

for each of the derivative states at the nodes, we do this by fitting a regression

model. We generate approximate discrepancy data by evaluating the true solution

at two points in time ts and tf , for which 0.05 ≤ (tf − ts) ≤ 0.2, evolving over

this time-step using the finite element scheme, and then subtracting the numerical

solution from the true solution at the nodes. We then use this discrepancy data to

fit joint regression model for the derivative states, which has the following form

η
(p)
i (tf) =

∑
q

βpqgq (u (x, ts) , xi) .

The basis functions g are based on a local finite-difference solution over the interval

[xi−1, xi+1]; the interval is divided into 20 elements, and the solution at tf is re-

approximated by using a 10-step finite difference scheme to evolve from ts. The

solution on the boundary at each time-step is simply approximated using the value

here at the initial time. The finite-difference approximations on this refined grid (for

all derivative states p = 0, 1, 2) form the basis functions for the regression model.

Quantifying the diagram Having specified the form of all of the model com-

ponents, we compute our full joint prior specification by sampling the graph 6.9.

First, we make a second-order prior specification for the initial state; we specify

that E
[
u(p) (xi, t0)

]
= u(p) (xi, t0) , fixing the expectation of the initial state to its

known true value at the knots, and we introduce uncertainty by specifying that

Var
[
u(p) (xi, t0)

]
= (0.1E

[
u(p) (xi, t0)

]
)2, so that the standard deviation of the ini-

tial state is proportional to its expected value. The parameter set ξ = κ consists of

only the diffusion constant; in this example, we simply fix κ = 0.01 and we do not

March 22, 2018

6.3. Partial differential equations 282

u (x, tk−1)

η (x, tk) û (x, tk) εk

u (x, tk) zk

η (x, tk+1) û (x, tk+1) εk+1

u (x, tk+1) zk+1

Figure 6.10: Undirected graph for the model components at times tk and tk+1.

handle best input uncertainty through the model, focussing only on initial condition

and numerical discrepancy uncertainty.

Having specified a prior for the initial state, we quantify the remainder of the di-

agram by sampling; throughout this procedure, all samples are generated by using

the relevant moments to characterise a multivariate Gaussian distribution. We char-

acterise the solution surface at 25 evenly-spaced points in time, with t1 = 0.1, t2 =

0.2, . . . , t25 = 2.5. We begin by sampling an initial solution state from the prior

specification outlined above; we then work our way through the graph, at each stage

generating a finite element solution û (x, tk+1) and sampling a numerical discrep-

ancy η () starting from the state u (x, tk) , and then re-combining these to form

u (x, tk+1) . For all three of these components, we store samples of the component

values at the finite element nodes (for derivative states p = 0, 1, 2), and of compo-

nent values at 50 evenly spaced-points across the spatial input domain.

The samples generated from this procedure are then used to characterise the cliques

of the undirected graph shown in Figure 6.10. Note that for this example, we

specify that only the numerical discrepancy components corresponding to adjacent

time-steps are joined by an edge. This graph has the following cliques for each

time-step:

� Q1 (tk) = {u (x, tk−1) , û (x, tk) , η (x, tk) };

� Q2 (tk) = {û (x, tk) , η (x, tk) , u (x, tk) };

� Q3 (tk) = {η (x, tk) , u (x, tk) , η (x, tk+1) } (for k < 25);

March 22, 2018

6.4. Discussion 283

� Q4 (tk) = {u (x, tk) , εk, zk}.

The prior moments for the solution surface at a subset of the time knots are shown

in Figure 6.11.

Adjustment Having characterised the full prior, we use the junction tree to adjust

our prior beliefs using noise-corrupted measurements of the true solution at two

of the time-steps. The solution is observed at all 50 spatial locations for which

the solution was characterised in the above procedure at time-steps t5 and t20; all

observations were generated by numerically evaluating the true solution (using the

procedure in appendix C.1) and adding on Gaussian random noise with Var [εik] =

(0.001)2. The adjustment is carried out for each set of observations in turn, by

passing a covariance function around the cliques of the junction tree as described in

Section 2.1.3.

The adjusted moments of the solution (for the same time-points as shown in Figure

6.11) are shown in Figure 6.12. As in the ODE examples of Sections 6.1.8 and 6.2,

we see that the rich prior covariance structure that we imposed (through knowledge

of the structure of the problem) allows us to make confident and accurate predictions

for the solution at all time-steps based on a relatively small number of observations.

6.4 Discussion

In this chapter, we considered the sources of uncertainty that we encounter when

representing the real world using a system of differential equations, and we proposed

a Bayesian framework within which all of these sources of uncertainty can be han-

dled. In particular, we introduced a model to describe the structure of the numerical

discrepancy across time-steps, and proposed a procedure for approximately gener-

ating samples from the numerical discrepancy which can then be used to determine

an appropriate prior specification for these components within the full framework.

The graphical representations 6.1 and 6.9 provide a compact and easily interpretable

representation of the flow of information between the components of the model, and

can also form the basis for efficient sampling algorithms in the fully probabilistic

March 22, 2018

6.4. Discussion 284

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

u(
x,

t k)

Figure 6.11: Prior moments of the solution surface u (x, tk) for time knots

{t2, t5, t10, t15, t20, t25} at 50 evenly-spaced spatial knots: the prior mean E [u (x, tk)]

is shown as a solid coloured line, and three-standard deviation error bars

E [u (x, tk)] ± 3Var [u (x, tk)] 1/2 are shown as dashed coloured lines. The true solu-

tion in each case is shown as a solid black line.

March 22, 2018

6.4. Discussion 285

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

u(
x,

t k)

Figure 6.12: Adjusted moments of the solution surface at the same time points as

in Figure 6.11: the line styles and colours used correspond across these two figures.

case, and efficient adjustment in the Bayes linear case.

We considered the Bayes linear case in more detail; if we make a second-order

specification for the initial state, parameters and numerical discrepancy, and then

generate the corresponding full prior specification using the graph (making distribu-

tional assumptions where required), we must only compute and store expectations

and variances for each node and covariances corresponding to the edges. Then, if

we find the junction tree corresponding to the original graph, we can adjust by each

data point that we receive by performing a single pass through the graph, propagat-

ing the adjustment through the cliques as we reach them. Adjusting in this way is

efficient in terms of both computation time and memory usage; for large problems,

we can reduce the computational effort required yet further by reducing the number

of links between numerical discrepancy components across time-steps.

The work in this chapter suggests a wide range of potential avenues for future re-

search; some of these have already been discussed in Section 6.2.5, specifically in

relation to the work on ODE problems. For this problem, future research should

March 22, 2018

6.4. Discussion 286

focus on the propagation of uncertainty through the solver function and numerical

discrepancy model; by specifying and propagating first- and second-order moments

for higher powers of the solution, we can handle ODE solvers which have polynomial

dependence on the solution at the previous time-step exactly, and we can handle

other types of non-linear evolution function by introducing truncated series expan-

sions for the complex terms.

For the PDE problem, many of the same areas could be investigated. For the exam-

ple in Section 6.4, we considered only a simple, one-dimensional linear PDE; in prac-

tice, however, many of the PDE problems that we encounter will contain non-linear

terms, and will have non-linear dependence on parameters. These non-linearities

in the equation will induce non-linearities in the system of discrete equations that

we obtain from the implicit finite element scheme outlined in Section 6.3.1 (or in

any of the other explicit or implicit schemes that we might use), meaning that we

cannot solve the system directly. In the non-stochastic case, an iterative numerical

method is usually employed to find a solution to the system; within the framework

described in Section 6.3 though, we could simply expand our prior specification so

that it contains first- and second-order moments for all of the powers of the solution

that we will encounter. This would then allow us to solve the system of equations

resulting from (6.3.14) as a linear system in these powers, and to propagate our

uncertainty directly.

Additionally, we could introduce an additional layer of modelling to improve our

ability to handle problems with a large number of discrete elements. The use of a

large number of elements results in a large system of equations (6.3.14), which means

that we must invert a large matrix K for each time step. For compactly-supported

basis functions, this matrix will be sparse, but for irregular mesh structures, inver-

sion can still be a computational challenge. Additionally, the fact that we must use

a numerical procedure to invert the matrix means that the only way to propagate

uncertainty through the calculation is through sampling. Instead of sampling the

matrix A for each ξ∗ setting, we could emulate A or the product Au (tk) and then

propagate our uncertainty through the emulator. This procedure would potentially

save us computation time and increase accuracy; because of the sparse structure of

March 22, 2018

6.4. Discussion 287

the matrix K induced by the neighbourhood structure of the mesh, we can fit an

accurate emulator to an element of A using only a limited number of neighbours.

More generally, further work in this area could focus on developing statistical frame-

works for handling other types of numerical schemes for PDE. A framework similar

to the one outlined in Section 6.3.3 could be developed for the finite volume scheme

discussed in Section 6.3.1, though in this case, it is perhaps less easy to imagine

how we might handle uncertainty over the spatial input domain, owing to the use

of a constant solution approximation within each element. It may also be worth in-

vestigating the properties of explicit schemes (finite element, finite volume or finite

difference); solving in this way would perhaps reduce computation time per step

and make it easier to track uncertainty through the components, at the expense of

reducing the stability of the scheme, and the length of the time-steps that we are

able to take.

An altogether different type of solver which may lend itself to treatment within a sta-

tistical framework is the smooth particle hydrodynamics method (see, for example,

Rosswog [2009] or Monaghan [2005]). Within this framework, the initial condition

is discretized by specifying its value at a set of ‘particles’ at known positions within

the spatial input domain; the continuous solution is then approximated by smooth-

ing using an interpolant. Popular choices of interpolating function include the cubic

spline and the Gaussian kernel. These particle positions are then evolved in time

according to the PDE; discretizing in this way results in a system of ODEs for the

particle trajectories, for which a statistical analysis of the kind discussed in Section

6.1 could be performed. This kind of scheme is perhaps a more natural choice for

PDE describing the behaviour of fluids (e.g. Euler, Navier-Stokes equations).

March 22, 2018

Appendix A

Notation

This appendix collects all of the notation defined throughout the thesis, and provides

a reference to the place in the thesis where it is first defined. The notation is grouped

into sections corresponding to those in the main body of the thesis; for each item of

notation, we provide a reference to its first occurrence in the main text.

A.1 Atmospheric modelling

Symbol Description Introduced

u (x, . . .) Scalar (mass) concentration of a gas species as a

function of inputs (generally spatial location x,

and others)

3

x Three-dimensional spatial location (components

x = (xx, xy, xz)
T)

3

w (x, . . .) Three-dimensional wind vector (as a function of

spatial location, and possibly other parameters;

components w = (wx, wy, wz)
T)

4

ω(x, g, w) Three dimensional normalised downwind distance

(components ω = (ωx, ωy, ωz)
T)

7

a (ω,w, g) Gaussian plume coupling coefficient, calculated as

a function of downwind distance ω, wind w and

source parameters g

7

288

A.2. Bayesian analysis 289

ψ Scalar source emission rate (m3/s) for a point

source

7

D Atmospheric boundary later height (metres) 7

κy, κz Squared standard deviation parameters of the

Gaussian plume, in the horizontal and vertical di-

rections

7

A.2 Bayesian analysis

A.2.1 Bayes linear analysis

Prior and adjusted expectations

Symbol Description Introduced

E [B] Expectation of the collection of quantities B. 25

Var [B] Variance matrix for the collection B. For a p di-

mensional quantity, Var [B] is a p× p matrix.

25

Cov [B,C] Covariance between two distinct sets of quantities

B and D. Note that when B = C, Cov [B,B] =

Var [B] .

25

ED [B] Adjusted expectation for the collection B, given

observation of the collection D.

26

VarD [B] Adjusted variance for the collection B, given ob-

servation of the collection D.

27

CovD [B,C] Adjusted covariance between the collections B and

C, given observation of the collection D.

27

Bayes linear graphical models

Symbol Description Introduced

Pa (Bi) Parent set of node Bi in a DAG. 27

Ch (Bi) Child set of node Bi in a DAG 27

Qi Clique i on an undirected graph. 30
March 22, 2018

A.2. Bayesian analysis 290

A.2.2 Emulation of complex functions

Symbol Description Introduced

θ General input set for a complex function. For later

calculations, we will split θ = {a, b}; see Section

A.2.3

32

fi (θ) Vector-valued output of a complex function run at

input setting θ.

32

gi (θ) Vector of basis functions for the regression compo-

nent of the emulator.

32

βij Basis coefficients for the regression component of

the emulator.

32

ri (θ) Correlated residual process at input setting θ. 32

kij (θ, θ′) Covariance function; determines the covariance be-

tween ri (.) and rj (.) evaluated at inputs θ and θ′

respectively.

32

Fij Function data obtained at known input settings

Fij = fi (θj) ; used to adjust prior moments.

34

A.2.3 Applications

Uncertainty analysis

Symbol Description Introduced

{a, b} We split the full input set into θ = {a, b}; in this

context a are simulator-specific inputs, and b are

system inputs.

43

zij Data observed on a system under study; zij is the

jth observation on output i

43

yi (b) Output i of the system under study, evaluated at

system inputs b

43

εi (b) Measurement error process for output i, evaluated

at system input b

43

March 22, 2018

A.3. Experimental design 291

a∗ Best setting of the simulator-specific inputs a;

evaluating the simulator f (.) at this setting is suf-

ficient for our inferences about the system value.

44

f̂i (b) f̂i (b) = fi (a
∗, b) Simulator evaluated at its best

input setting

44

Inference for derivatives and integrals

Symbol Description Introduced

{a, b} We split the full input set into θ = {a, b}; here, we

compute expectations of the function over p (a) ,

as a function of b.

51

f̄i (b) Expectation of the function fi (a, b) with respect

to p (a)

51

A.3 Experimental design

A.3.1 Design calculations

Symbol Description Introduced

q Model parameters which we wish to infer from ob-

servations on the system under study

78

a Decisions which we must make about the system 78

L (a, q) Loss function describing the consequences of our

decisions a upon realisation of model parameters

q

78

cj (dj) Function describing the cost of performing an ex-

periment at design input setting dj at stage j

92

z Observations made on the system 82

d Design inputs which we must select in order to run

an experiment on the system

82

March 22, 2018

A.3. Experimental design 292

w External inputs which affect the prediction for the

system, but which cannot be controlled during ex-

perimentation

82

ρ [z, w, d] Risk from an optimal decision 78

A.3.2 Sequential design calculations

Symbol Description Introduced

Lj (aj, q) Loss function which determines the consequences

of decisions aj upon realisation of model parame-

ters q

92

z[j] The collection {z1, . . . , zj} of observations made on

the system at all j stages.

92

w[j] The collection {w1, . . . , wj} of all external inputs

governing the behaviour of the model for all j

stages

92

d[j] The collection {d1, . . . , dj} of all design inputs for

the experiments on the system carried out at all j

stages

92

ρtj
[
z[j], w[j], d[j]

]
The risk from an optimal terminal decision at stage

j.

94

ρj
[
z[j], w[j], d[j]

]
The overall risk at stage j, taking into account the

risk from an optimal terminal decision at the cur-

rent stage and the risk from an optimally designed

future sampling scheme.

94

ρ̄j
[
z[j−1], w[j−1], d[j]

]
The expectation of the risk over possible data zj

and external inputs wj at stage j.

95

ρ∗j
[
z[j], w[j], d[j]

]
The risk from an optimally-designed experiment

on the system at stage j (taking into account all

possible future samples).

95

d∗j Setting of the design parameter dj which minimises

the risk at stage j.

95

March 22, 2018

A.3. Experimental design 293

A.3.3 Approximate design algorithm

Symbol Description Introduced

r
(i)
j

[
z[j], w[j], d[j]

]
Function which approximates the risk ρj [.] at

wave i and stage j of the approximate backward

induction procedure

101

r̄
(i)
j

[
z[j−1], w[j−1], d[j]

]
Function which approximates the expected risk

ρ̄j [.] at wave i of the approximation algorithm

101

s
(i)
j

[
z[j−1], w[j−1], d[j−1]

]
Approximation to the risk ρ∗j [.] at stage j and

wave i of the approximation algorithm.

101

d̃j Candidate design generated from the approximate

risk r̄
(i)
j [.] using algorithm 3.

119

D(i)
j Candidate design space at wave i, stage j, charac-

terised using algorithm 3.

119

h
(i)
jp

(
z[j], w[j], d[j]

)
Basis functions for the approximating risk emula-

tor chosen at wave i of the approximation algo-

rithm.

101

α
(i)
jp Regression coefficients for the jth risk at the ith

wave of the approximation algorithm.

101

u
(i)
j

(
z[j], w[j], d[j]

)
Residual process of the emulator for the risk at the

jth at the ith wave of the algorithm.

101

R
(i)
jk Risk data point k generated to fit the risk emulator

at stage j, wave i of the algorithm.

107

d̂k Design that we actually select to perform the ex-

periment at stage k (based on the output of the

algorithm).

124

v
(i)
k Expected value of perfect information (EVPI) for

the design selected for the experiment at stage k

(based on beliefs about the risk after wave i).

125

March 22, 2018

A.4. Design for developing models 294

A.4 Design for developing models

A.4.1 Model structure

Symbol Description Introduced

ns Number of simulators in the reifying framework

(including the reified simulator)

164

f
(k)
i (θ) ith output from the simulator for the system at

stage k of the development process, evaluated at

input setting θ.

165

g
(k)
j (θ) jth basis function for the kth emulator in the reify-

ing framework.

165

β
(k)
ij ijth basis coefficient for the kth emulator in the

reifying framework.

165

r
(k)
i (θ) ith residual process for the kth emulator in the

reifying framework.

165

γ
(k)
ij (θ) Scaling function controlling the contribution from

the jth residual output at stage (k − 1) to the ith

residual output at stage k.

166

ν
(k)
i (θ) Additional residual contribution to output i at the

kth development stage.

166

θj jth input at which we evaluate the simulator to

obtain data for adjustment.

168

Fijk Output i from simulator k evaluated at input set-

ting θj; superscript k has been lowered to clarify

the adjustment equations.

167

A.4.2 Backward induction- evolving models

Symbol Description Introduced

March 22, 2018

A.4. Design for developing models 295

ρfj
[
., F[j], φ[j]

]
Risk from the decision to stop sampling im-

mediately after having constructed and run

the jth simulator, with decisions based on

posterior beliefs represented by the posterior

p
(
q|z[j−1], w[j−1], d[j−1], F[j], φ[j]

)
.

178

ψj
[
., F[j], φ[j]

]
Risk from choosing the optimal course of action

between continuing and sampling zj, or stopping

and making an immediate decision based on the

data z[j−1] and the simulator runs F[j].

177

ψ̄j
[
., F[j−1], φ[j]

]
Expectation of ψj with respect to the distribution

p
(
Fj|F[j−1], φ[j]

)
.

178

ψ∗j
[
., F[j−1], φ[j−1]

]
Risk from an optimal course of action at stage j,

obtained by minimising over the design φj used for

the simulator runs at this stage.

178

cfj (φj) Cost of building and running the simulator at stage

j

178

A.4.3 Approximate backward induction- evolving models

Symbol Description Introduced

t
(i)
j

[
., F[j], φ[j]

]
Emulator fitted as an approximation to ψj [.] at

the ith wave of the approximate backward induc-

tion procedure.

184

t̄
(i)
j

[
., F[j−1], φ[j]

]
Emulator for the expected risk ψ̄j [.] at the ith wave

of the approximate procedure, computed by inte-

grating the emulator t
(i)
j against our current beliefs

about Fj.

184

v
(i)
j

[
., F[j−1], φ[j−1]

]
Approximation to ψ∗j [.] at the ith wave of the ap-

proximate procedure; characterised using the pro-

cedure in Section 5.5.5.

185

T
(i)
jk Data used to fit the emulator t

(i)
j . 191

March 22, 2018

A.5. Bayes linear numerical modelling 296

ĥ
(i)
p (.) Basis functions for the emulator t

(i)
j [.] fitted at the

ith wave of the procedure.

184

α̂
(i)
jp Basis coefficients for the emulator t

(i)
j [.] fitted at

the ith wave of the procedure.

184

û
(i)
j (.) Correlated residual component of the emulator

t
(i)
j [.] fitted at the ith wave of the procedure.

184

ξ̂
(i)

j Nugget component of the emulator t
(i)
j [.] fitted at

the ith wave of the procedure.

184

A.5 Bayes linear numerical modelling

A.5.1 Ordinary differential equations

ODE model

Symbol Description Introduced

ui (t, ξ) ith component of the solution to the ODE at time

t and parameter setting ξ (frequently abbreviated

to ui (t)).

227

ξ Parameters governing the evolution of the ODE

solution trajectory.

227

u
(0)
i Initial condition for the ith solution component

(ui (t0) = u
(0)
i).

227

fi (u, t, ξ) Function specifying the behaviour of the time-

derivative of the ith solution component d
dt

(ui (t)).

227

Numerical schemes

Symbol Description Introduced

tk Time knots (k = 0, 1, . . . , nt) for the numerical

solution.

228

ûi (tk, ξ) Numerical solution at time knot tk, parameter set-

ting ξ (frequently)

228

March 22, 2018

A.5. Bayes linear numerical modelling 297

φi (u, tk, tk+1, ξ) Numerical evolution function; generates numerical

solution û (tk+1) from initial state u (tk) (at pa-

rameter setting ξ).

228

θ Abbreviated notation for solver input set; θ =

{u, tk, tk+1, ξ}

242

Numerical discrepancy

Symbol Description Introduced

ηi (u, tk, tk+1, ξ) Numerical discrepancy induced by numerically

evolving from u (tk) to time-step tk+1 (commonly

abbreviated η (tk+1) , with ui (tk+1) = ûi (tk+1) +

ηi (tk+1)).

229

gp (θ) pth basis function for the regression component of

the numerical discrepancy model.

242

βip ipth regression parameter for the numerical dis-

crepancy model.

242

ri (θ) ith element of the residual component of the nu-

merical discrepancy model.

242

System relationship

Symbol Description Introduced

yi (t) System value component i at time t. 232

ξ∗ Best input setting for the parameters ξ of the ODE

model.

232

δi (t) Discrepancy between the ODE solution and the

system (component i at time t).

232

zik Data observed on component i the system at time

tk.

232

εik Measurement error on the observation zik. 232

March 22, 2018

A.5. Bayes linear numerical modelling 298

A.5.2 Partial differential equations

PDE model

Symbol Description Introduced

ui (x, t, ξ) ith component (i = 1, . . . , nu) of the solution to the

PDE at spatial location x and time t, for param-

eter setting ξ (generally abbreviated to u (x, t)).

265

Fi (u, . . . , t, ξ) Function which links the temporal partial deriva-

tive ∂ui
∂t

of the solution to the solution itself, its

spatial partial derivatives {∂u
∂x
, ∂

2u
∂x2
} and the pa-

rameters ξ.

265

fi (x, t) Forcing function which drives the evolution of the

ith component.

265

vi (x) Function specifying the behaviour of the solution

for x ∈ T at the initial time t = t0.

265

wi (x, t) Function specifying the behaviour of the solution

on the boundary region x ∈ ∂Ω for all times t.

265

Finite element scheme

Symbol Description Introduced

û (x, tk, ξ) Numerical approximation to the solution at time

knot tk, spatial location x and parameter setting

ξ (generally abbreviated to û (x, t)).

268

φi (x) ith spatial basis function (i = 1, . . . , nφ) of the fi-

nite element approximation.

268

ûi (tk) Coefficient of the ith basis function in the finite

element approximation.

268

θ Abbreviation for the solver input set θ =

{φ1 (x) , . . . , φnφ (x) , tk, tk+1, ξ
∗}.

269

K (θ) Finite element solver matrix. 269

A (θ) Inverse of the finite element solver matrix (A (θ) =

K (θ) −1).

269

March 22, 2018

A.5. Bayes linear numerical modelling 299

b (θ) Vector of boundary information. 269

f (θ) Vector of basis-integrated forcing values. 269

Numerical discrepancy

Symbol Description Introduced

η (x, tk) Discrepancy between the numerical solution and

the true solution at time tk.

271

η(p) (x, tk) pth partial derivative (wrt x) of the numerical dis-

crepancy at time tk.

271

March 22, 2018

Appendix B

Mean and covariance functions

In this chapter, we consider some of the mean and covariance functions that we might

use in the construction of our emulators: in Section B.1, we consider the squared

exponential covariance function, in Section B.2, we consider the Matèrn covariance

function, and in Section B.3, we consider the use of splines as basis functions for an

emulator. In all cases, we define the basis or covariance function, and we consider

the derivatives or integrals of it that we may need to evaluate in order to be able to

carry out the calculations in Sections 2.3.2, 2.4.1, 2.4.2 and 2.4.3.

B.1 Covariance: squared-exponential

The squared exponential covariance function is the most commonly used covariance

function in this thesis. For a scalar function with inputs θ = (θ1, . . . , θnθ)
T, the most

general form is

Cov [u (θ) , u (θ′)] = k (θ, θ′) = v exp

[
− 1

2
l (θ, θ′) 2

]
where

l (θ, θ′) = [(θ − θ′)TΛ(θ − θ′)]1/2

is the scaled distance between the points θ and θ′, v is the marginal variance of

the process, and Λ is a matrix whose eigenvalues and eigenvectors determine the

magnitudes and directions of correlations in the process. A popular extension for

300

B.1. Covariance: squared-exponential 301

multi-output functions is

Cov [ui (θ) , uj (θ′)] = kij (θ, θ′) = vij exp

[
− 1

2
l (θ, θ′) 2

]
where v is a positive semi-definite matrix whose entries specify the marginal vari-

ances and covariances between function outputs at the same input location. In

practice, it is often too difficult to confidently determine suitable values for a full

matrix Λ, and use of a non-diagonal form also makes integration more difficult;

therefore, Λ is frequently chosen to be diagonal.

B.1.1 Derivatives

As described in Section 2.3.2, for Gaussian or second-order prior belief specification,

the relationship between a process and its partial derivatives can be easily derived:

the derivative process is simply another process of the same type with mean and

covariance functions which are correspondingly differentiated from the originals.

Once-differentiated First, we compute the covariance of u (θ) with its first par-

tial derivative ∂u
∂θp

(θ) with respect to a single input θp; as in Section 2.3.2, we have

that

Cov

[
∂ui
∂θp

(θ) , uj (θ′)

]
=

∂

∂θp
kij (θ, θ′)

= −dp (θ, θ′) kij (θ, θ′)

where

dp (θ, θ′) =
1

2

∂

∂θp

(
l (θ, θ′) 2

)
=
∑
k

Λpk(θk − θ′k) .

Twice-differentiated From the once-differentiated covariance, we can compute

both the covariance between two first partial derivatives and the covariance between

the function and its second partial derivative. The former is computed as

Cov

[
∂ui
∂θp

(θ) ,
∂uj
∂θq

(θ′)

]
=

∂

∂θp

∂

∂θ′q
kij (θ, θ′)

=
[
Λpq − dp (θ, θ′) dq (θ, θ′)

]
kij (θ, θ′)

March 22, 2018

B.1. Covariance: squared-exponential 302

and the latter is

Cov

[
∂2ui
∂θp∂θq

(θ) , uj (θ′)

]
=

∂

∂θp

∂

∂θq
kij (θ, θ′)

=
[
dp (θ, θ′) dq (θ, θ′) − Λpq

]
kij (θ, θ′)

= −Cov

[
∂ui
∂θp

(θ) ,
∂uj
∂θq

(θ′)

]
.

Higher-order derivatives We can compute higher-order derivatives of the co-

variance function in the same way as above.

B.1.2 Integrals

In order to translate beliefs about a function into beliefs about its integral (see

Sections 2.3.2 and 2.4.1), or to propagate uncertainty on a subset of inputs through

an uncertain function (see Sections 2.4.2 and 2.4.3), we must also be able to compute

the integrals of certain products of the basis and covariance functions of an emulator

with respect to particular probability distributions. We consider both of these cases

for the case of a squared exponential covariance function.

Beliefs about the integral In the first case, we want to compute the covariance

of u (θ) with ū (b) , the integral of the function with respect to p (a)

ūi (b) =

∫
ui (a, b) p (a) da .

As discussed in Section 2.3.2, this is simply the integral of the covariance function

k (., .) in its first argument

Cov [ūi (b) , uj (θ′)] = k̄ij (b, θ′)

=

∫
kij (a, b, θ′) p (a) da .

The covariance between ū (b) and ū (b′) can then be found by integrating a second

time

Cov [ūi (b) , ūj (b′)] = ¯̄kij (b, b′)

=

∫∫
kij (a, b, a′, b′) p (a) p (a′) dada′ .

March 22, 2018

B.1. Covariance: squared-exponential 303

For the squared exponential covariance, we compute these integrals in two cases;

the case where the a have a joint multivariate Gaussian distribution, and the case

where they are independently uniformly distributed.

Gaussian case First, the multivariate Gaussian case, where

p (a) =
1

(2π)na/2|Va|1/2
exp

[
− 1

2
(a − µa)TV −1

a (a − µa)
]

.

To simplify the calculation, we assume that the covariance function is separable in

the parameters a and b, so

kij (θ, θ′) = vijca (a, a′) cb (b, b)

where ca (., .) and cb (., .) are squared exponential correlation functions with corre-

lation matrices Λa and Λb . The integrated covariance is then

k̄ij (b, θ′) = vij c̄a (a′) cb (b, b)

where

c̄a (a′) =

∫
exp

[
− 1

2
(a − a′)TΛa(a − a′)

]
p (a) da

=

(
|Λ̂a|
|Λa|

)1/2

exp
[
− 1

2
(µa − a′)TΛ̂a(µa − a′)

]
and

Λ̂a =
[
Va + Λ−1

a

]−1

.

If we integrate for a second time, we find that

¯̄kij (b, b′) = vij ¯̄cacb (b, b)

where

¯̄ca =

∫∫
exp

[
− 1

2
(a − a′)TΛa(a − a′)

]
p (a) p (a′) dada′

=

(
| ˆ̂Λa |
|Λa |

)1/2

exp
[
− 1

2
(µa − µ′a)T ˆ̂

Λa(µa − µ′a)
]

and

ˆ̂
Λa =

[
Va + V ′a + Λ−1

a

]−1

.

March 22, 2018

B.1. Covariance: squared-exponential 304

Uniform case Second, the case where each of the elements {aq} has an indepen-

dent uniform distribution, i.e.

p (a) =
na∏
q=1

p (aq) p (aq) =
1

uaq − laq
.

In this instance, we assume that the covariance function is separable in each of the

elements of a, so that

kij (θ, θ′) = vij

[na∏
q=1

caq
(
aq, a

′
q

)]
cb (b, b′)

where

caq
(
aq, a

′
q

)
= exp

[
−
λaq
2

(aq − a′q)2
]

is a squared exponential correlation function for a scalar input. Integrating this

once, we find that

k̄ij (b, θ′) = vij

[na∏
q=1

c̄aq
(
a′q
)]
cb (b, b′)

where the individual integrated terms are

c̄aq
(
a′q
)

=

∫
caq
(
aq, a

′
q

)
p (aq) daq

=
1

uaq − laq

∫ uaq

laq

exp
[
−
λaq
2

(aq − aq)2
]
daq

=
1

uaq − laq

√
2π

λaq

[
Φ
(√

λaq(uaq − a′q)
)
− Φ

(√
λaq(laq − a′q)

)]
where Φ (.) is the CDF of the standard univariate Gaussian distribution. Integrating

for a second time, we have

¯̄kij (b, b′) = vij

[na∏
q=1

¯̄caq

]
cb (b, b′)

where

¯̄caq =

∫∫
caq
(
aq, a

′
q

)
p (aq) p

(
a′q
)
daqda

′
q .

To compute this quantity, we use the fact that the indefinite integral of a normal

CDF is [Owen, 1980]

ψ (s, v, w) =

∫
Φ (s(v − w)) dw

=
1

s

(
s(v − w)Φ (s(v − w)) +N (s(v − w))

)
March 22, 2018

B.1. Covariance: squared-exponential 305

where N (.) is the density function for the standard univariate Gaussian. The twice-

integrated covariance function is then

¯̄caq =
1

(uaq − laq)(ua′q − la′q)

√
2π

λaq

[
ψ
(√

λaq , uaq , ua′q

)
− ψ

(√
λaq , uaq , la′q

)
− ψ

(√
λaq , laq , ua′q

)
+ ψ

(√
λaq , laq , la′q

)]
.

Uncertainty propagation In order to propagate uncertainty through an emula-

tor, in addition to the integrals evaluated in the previous paragraph, we must be

able to evaluate integrals of the following type (Section 2.4.2)

hk,l (b, b
′) =

∫
A
gk (a∗, b) gl (a

∗, b′) p (a∗) da∗ (B.1.1)

vk,rsj (b, b′) =

∫
A
gk (a∗, b) krj (θs, a

∗, b′) p (a∗) da∗ (B.1.2)

wikl,jpq (b, b′) =

∫
A
kik (a∗, b, θl) kjp (a∗, b′, θq) p (a∗) da∗ . (B.1.3)

We evaluate each of these in the case where the basis g (.) consists of products of

polynomial functions of the inputs, the covariance function k (., .) is a squared expo-

nential which is separable in each input component, and the probability distribution

p (a∗) =
∏na

q=1 p
(
a∗q
)

, where p
(
a∗q
)

is a uniform distribution.

For polynomial basis functions gk (θ) and a product of uniform distributions, it is

easy to obtain expressions for the hk,l (b, b
′) ; we must simply evaluate a polynomial

integral at the limits of the distributions. For integrals of the second type ((B.1.2)),

if the covariance function factorises as

kij (θ, θ′) = vij

[na∏
q=1

c
(
aq, a

′
q

)]
c (b, b)

then we can split the integral as follows

vk,rsj (b, b′) = vrjc
(
b(s), b′

) ∫
A
gk (a∗, b)

[na∏
q=1

c
(
a(s)
q , a∗q

)]
p (a∗) da∗ .

All of the integrals that we must perform, then, are of the following form∫
A

(a′)αc (a, a′) p (a′) da′ (B.1.4)

March 22, 2018

B.1. Covariance: squared-exponential 306

for some scalar power α (where we have dropped the subscript q and the superscript

∗, since what follows holds for any scalar component of the full parameter set). We

cannot evaluate these integrals directly, but we can instead evaluate integrals of the

form ∫ (
λ(a − a′)

)α
exp

[
− λ

2
(a − a′)2

]
da′ (B.1.5)

for all powers 1, 2, . . . , α, and then compute (B.1.4) by expanding out the polynomial

and substituting. First, in the case α = 0, the indefinite integral (B.1.4) is∫
exp

[
− λ

2
(a − a′)2

]
da′ =

√
2π

λ
Φ
(√

λ(a′ − a)
)

and in the case α = 1, integrating and rearranging (B.1.5) gives∫
a′ exp

[
− λ

2
(a − a′)2

]
da′

= a

∫
exp

[
− λ

2
(a − a′)2

]
da′ − 1

λ
exp

[
− λ

2
(a − a′)2

]
= a

√
2π

λ
Φ
(√

λ(a′ − a)
)
− 1

λ
exp

[
− λ

2
(a − a′)2

]
.

For general values of α, integrating (B.1.5) by parts yields∫ (
λ(a − a′)

)α
exp

[
− λ

2
(a − a′)2

]
da′

=
(
λ(a − a′)

)α−1
exp

[
− λ

2
(a − a′)2

]
+ λ(α− 1)

∫ (
λ(a − a′)

)α−2
exp

[
− λ

2
(a − a′)2

]
da′

and continuing to integrate in this manner eventually gives [Owen, 1980]∫ (
λ(a − a′)

)α
exp

[
− λ

2
(a − a′)2

]
da′

=

c (a, a′)

∑n
β=0 λ

n−β (2n)!!
(2β)!!

(
λ(a − a′)

)2β
for odd α = 2n+ 1

c (a, a′)
∑n

β=0 λ
n−β (2n+1)!!

(2β+1)!!

(
λ(a − a′)

)2β+1

+ λn(2n+ 1)!!
√

2π
λ

Φ
(√

λ(a′ − a)
)

for even α = 2n+ 2

where n!! is the double factorial of n (equal to the product of all even numbers from

2 to n for even n, and the product of all odd numbers from 1 to n for odd n).

Expressions for the integral (B.1.4) can now be computed by evaluating the above

March 22, 2018

B.2. Covariance: Matèrn 307

expression for all powers 1, . . . , α, expanding the polynomial expression in the inte-

grand, and then back substituting the results for all lower powers.

Lastly, we must evaluate integrals of two covariance functions against each other (of

the form (B.1.3), again with separable squared exponential covariance functions and

uniform distributions). Under these assumptions, the integral factorises as

wikl,jpq (b, b′) = vikvjpc
(
b, b(l)

)
c
(
b′, b(q)

) ∫
A

[na∏
s=1

c
(
a∗s, a

(l)
s

)
c
(
a∗s, a

(q)
s

)]
p (a∗) da∗ .

(B.1.6)

Under the assumption of independent uniform distributions, in order to evaluate

(B.1.6), we must compute a series of integrals of the following form

I(a′, a′′) =
1

(u − l)

∫ u

l

exp
[
− λ

2
(a − a′)2

]
exp

[
− λ

2
(a − a′′)2

]
da .

Expanding out and completing the square in the exponent, we find that

I(a′, a′′) =
1

(u − l)

∫ u

l

exp
[
− 2λ

2

(
a2 − 2

(a′ + a′′)

2
a +

(
a′ + a′′

2

)2)]
da

× exp
[
− λ

2

(
(a′)2 − (a′ + a′′)2

2
+ (a′′)2

)]
.

Factorising the exponents and performing the integral then gives

I(a′, a′′) =
1

(u − l)

√
π

λ

[
Φ

(√
2λ
(
u − a′ + a′′

2

))
− Φ

(√
2λ
(
l − a′ + a′′

2

))]
× exp

[
− λ/2

2
(a′ − a′′)2

]
.

B.2 Covariance: Matèrn

The Matèrn covariance function is a much more flexible covariance function, which

allows us to control the smoothness of the process as well as its correlation structure.

It has the following form

Cov [u (θ) , u (θ′)] = k (l (θ, θ′) , ν) =
1

2ν−1Γ (ν)
(l (θ, θ′))νKν (l (θ, θ′))

March 22, 2018

B.2. Covariance: Matèrn 308

where ν is a differentiability parameter, Γ (.) is the Gamma function and Kν (.) is

a modified Bessel function of the second kind. As in the squared exponential case,

we can define covariance functions for multi-output functions as

Cov [ui (θ) , uj (θ′)] = kij (l (θ, θ′) , ν)

=
vij

2ν−1Γ (ν)
(l (θ, θ′))νKν (l (θ, θ′)) .

In what follows, we consider only derivatives of the single-output covariance function,

though the results are easily extended to the multi-output case.

B.2.1 Derivatives

We use the following property of the Bessel function to find derivatives of the Matèrn

covariance [Wolfram, 2017]

∂

∂z
Kν (z) = −

[ν
z
Kν (z) +Kν−1 (z)

]
.

Once-differentiated We begin by applying the chain rule

Cov

[
∂u

∂θp
(θ) , u (θ′)

]
=

∂

∂θp
k (l (θ, θ′) , ν)

=
[∂
∂l
k (l)

]
.
∂l

∂θp
.

The derivative of the covariance is

∂

∂l
k (l) =

1

2ν−1Γ (ν)
νlν−1Kν (l)

− 1

2ν−1Γ (ν)
lν
[ν
l
Kν (l) +Kν−1 (l)

]
= − 1

2ν−1Γ (ν)
lνKν−1 (l)

and the derivative of the distance function is

∂

∂θp
[l (θ, θ′)] =

1

l (θ, θ′)

[∑
i

Λpi(θi − θ′i)
]

which gives

∂

∂θp
k (l (θ, θ′)) =−

[
dp (θ, θ′)

]
2(ν − 1)

k (l (θ, θ′) , ν − 1)

where dp (θ, θ′) is defined as in the squared-exponential case.

March 22, 2018

B.3. Mean: Splines 309

Twice-differentiated If we apply the same procedure again, we obtain the fol-

lowing as the covariance between the partial derivatives with respect to two different

variables at inputs θ and θ′

Cov

[
∂u

∂θp
(θ) ,

∂u

∂θq
(θ′)

]
=

∂

∂θ′q

∂

∂θp
k (l (θ, θ′) , ν)

=
1

2(ν − 1)

[
Λpqk (l (θ, θ′) , ν − 1)

− dp (θ, θ′) dq (θ, θ′)

2(ν − 2)
k (l (θ, θ′) , ν − 2)

]
.

If both of the derivatives are taken with respect to the un-primed variable, then we

obtain the covariance between the second partial derivative and the original process

Cov

[
∂2u

∂θp∂θq
(θ) , u (θ′)

]
=

1

2(ν − 1)

[
− Λpqk (l (θ, θ′) , ν − 1)

+
dp (θ, θ′) dq (θ, θ′)

2(ν − 2)
k (l (θ, θ′) , ν − 2)

]
.

B.2.2 Integrals

Unfortunately, there is no indefinite integral of the plain Matèrn covariance func-

tion available in the literature- this is unfortunate, because this covariance is more

appropriate in a variety of situations where we wish to be able to control the dif-

ferentiability of the function which we are modelling. An alternative strategy is

available, however; if we know that we want to integrate with respect to input θk

over a particular range, and we are happy to make a uniform distributional assump-

tion for θk over this range, then we could use the second partial derivative obtained

in Section B.2.1 as the covariance function for the original process, and then ‘reverse

the differentiation’ in order to obtain the covariance of the integral.

B.3 Mean: Splines

Splines are a popular smoothing tool in the literature- see, for example, de Boor

[1986], Vermeulen et al. [1992]- while many different types of spline function exist, we

only consider B-splines (basic splines), which are perhaps the most commonly used.

For functions of a single input variable, splines are built recursively as follows: we

March 22, 2018

B.3. Mean: Splines 310

choose a non-decreasing sequence of knots {ti}, i = 1, . . . , nt which spans the input

space, and define the first-order B-splines as indicator functions for the intervals

between knots

bi1 (θ) =

1 , if ti ≤ θ < ti+1

0 , else.

From these first-order splines, we obtain all higher order splines by recursion: using

k to index order, and defining

ωik (θ) =
θ − ti

ti+k−1 − ti

we have

bik (θ) = ωik (θ) bi(k−1) (θ) + (1− ωik (θ))b(i+1)(k−1) (θ) . (B.3.7)

It is easy to verify (see de Boor [1986]) that each bik (θ) defined in this way is a

compactly-supported polynomial function of degree k, which vanishes outside the

interval [ti, ti+k). Using bk (θ) = (b1k (θ) , . . . , bnbk (θ))T to denote the vector of all

spline functions of a given degree, we simply use the B-splines as our regression

basis; for a scalar function f (.) of scalar input θ, our representation is

f (θ) =

nt∑
i=1

βibik (θ) (B.3.8)

where β is, as before, a coefficient governing the magnitude of the contribution from

each basis function.

B.3.1 Derivatives

Using the representation (B.3.8), the derivative of the function is simply the weighted

sum of the basis function derivatives

d

dθ

(
f (θ)

)
=

nb∑
i=1

βi
d

dθ

(
bik (θ)

)
.

Vermeulen et al. [1992] provide a more convenient representation of this derivative

as a weighted sum of spline functions of one order lower

d

dθ

(
f (θ)

)
=

nb∑
i=1

β
(1)
i bi(k−1) (θ)

March 22, 2018

B.3. Mean: Splines 311

where the coefficients are

β
(1)
i =

k

ti+k − ti
βi −

k

ti+k−1 − ti−1

βi−1

and we define β
(1)
−1 = β

(1)
nt+1 = 0.

B.3.2 Integrals

Similarly, the indefinite integral of the basis representation (B.3.8) is∫
f (θ) dθ =

nb∑
i=1

βi

[∫
bik (θ) dθ

]
.

Again, Vermeulen et al. [1992] derive a simple representation for right-hand side in

terms of spline functions of one order higher∫
f (θ) dθ =

nb∑
i=1

β
(−1)
i bi(k+1) (θ)

where the coefficients are computed in terms of the β as follows

β
(−1)
i =

ti+k+1 − ti
k + 1

[k + 1

ti+k − ti−1

β
(−1)
i−1 + βi

]
where we define β

(−1)
−1 = 0. To evaluate this integral, we need to introduce an

additional knot tnt+1; this is arbitrary, provided it satisfies tnt+1 ≥ tnt . Choosing

that tnt+1 = tnt can help to simplify implementation.

March 22, 2018

Appendix C

Diffusion equation example-

implementation details

In this appendix, we provide implementation details for the diffusion equation exam-

ple presented in Section 6.3.4. In Section B.1, we detail a procedure for evaluating

the real solution of the equation on an infinite domain, for particular forms of the

initial condition and forcing functions. Then, in Section B.2, we carry out the basis

function integrals required for the finite element implementation in this case.

C.1 Evaluating the real solution

If we solve (6.3.22) on the spatial domain Ω = (−∞,∞), and assume that the initial

condition (at t = 0) is a Dirac delta function at the origin, then the solution for all

t ∈ (0,∞) is a Gaussian function with variance parameter 2κt

Φ (x, t) =
1√

4πκt
exp

[
− x2

4κt

]
.

Φ is known as the fundamental solution of the diffusion equation; we can obtain

solutions on this domain for other initial condition and forcing specifications by

convolving these with the fundamental solution [Cannon, 1985]. Clearly, if we make

corresponding Gaussian specifications for our initial condition and forcing functions,

then this convolution will result in a relatively simple form for the solution.

312

C.2. Finite element: basis integrals 313

If we fix f (x, t) = 0 and choose

v (x) =
1

σv
√

2π
exp

[
− 1

2σv2
(x − µv)2

]
then we can find the solution to the resulting initial value problem as

uv (x, t) =

∫
Ω

Φ (x − ξ, t) v (ξ) dξ

=
1√

2π(2κt + σv2)
exp

[
− 1

2

(x − µv)2

(2κt + σv2)

]
. (C.1.1)

Alternatively, if we assume that v (x) = 0 and choose a Gaussian form for f (x, t)

f (x, t) = f (x) =
1

σf
√

2π
exp

[
− 1

2σf 2
(x − µf)2

]
then the solution that we obtain is

uf (x, t) =

∫ t

0

∫
Ω

Φ (x − ξ, t − τ) f (ξ, τ) dξdτ

=

∫ t

0

1√
2π(2κ(t − τ) + σf 2)

exp
[
− 1

2

(x − µf)2

(2κ(t − τ) + σf 2)

]
dτ . (C.1.2)

Additionally, because of the linearity of the equation (6.3.22), we can find the forced

solution which also satisfies the initial value problem by assuming that the solution

is

u (x, t) = uv (x, t) + uf (x, t)

where uv ((C.1.1)) satisfies the un-forced initial value problem, and uf ((C.1.2))

satisfies the forced problem for a zero initial condition. This solution, which is

completely determined through specification of the location parameters {µv, µf}

and scale parameters {σv, σf} for the initial and forcing functions is the one that we

study in the example of Section 6.3.4. To evaluate the integral in (C.1.2), we use

the ‘integral’ numerical integration function in Matlab.

C.2 Finite element: basis integrals

In this section, we provide details of the basis function calculations that must be

performed in order to implement the finite element scheme for the diffusion equation

March 22, 2018

C.2. Finite element: basis integrals 314

example. The basis functions for this example are defined in equation (6.3.23); in

order to evaluate D and K, we must compute three different kinds of integral

I
(p)
Aij

=

∫
Ω

φi (x) (x − xj)pφj (x) dx (C.2.3)

I
(p)
Bij

=

∫
Ω

∂

∂x

(
φi (x)

)
.p(x − xj)p−1φj (x) dx (C.2.4)

I
(p)
Cij

=

∫
Ω

∂

∂x

(
φi (x)

)
.(x − xj)p

∂

∂x

(
φj (x)

)
dx (C.2.5)

for p = 0, 1, 2. Since the basis function φi is only non-zero on the interval xi−1 ≤

x < xi+1, all of the above integrals are only non-zero for j = (i − 1), j = i and

j = (i+ 1). The derivative of the basis function (6.3.23) is
1
di

for xi−1 ≤ x < xi

− 1
di+1

for xi ≤ x < xi+1

0 else.

For each of the integral types (C.2.3), (C.2.4), (C.2.5), we outline the computation

of the integral for the central case i = j, and we tabulate the values of the other

cases.

First case We first consider the integrals of type (C.2.3). For the central case

i = j, the integral has the following form

I
(p)
Aij

=

∫ xi

xi−1

(x − xi−1)2

d2
i

(x − xi)pdx

+

∫ xi

xi−1

(xi+1 − x)2

d2
i+1

(x − xi)pdx . (C.2.6)

Consider the first term; integrating once by parts gives∫ xi

xi−1

(x − xi−1)2

d2
i

(x − xi)pdx =
1

d2
i (p+ 1)

[
(x − xi−1)2(x − xi)p+1

]xi
xi−1

− 2

d2
i (p+ 1)

∫ xi

xi−1

(x − xi−1)(x − xi)p+1dx

March 22, 2018

C.2. Finite element: basis integrals 315

where we see that the first term vanishes. Integrating the second term by parts once

more gives∫ xi

xi−1

(x − xi−1)2

d2
i

(x − xi)pdx =
2

d2
i (p+ 1)(p+ 2)

∫ xi

xi−1

(x − xi)p+2dx

=
2

d2
i (p+ 1)(p+ 2)(p+ 3)

[
(x − xi)p+3

]xi
xi−1

=
2

(p+ 1)(p+ 2)(p+ 3)
(−1)p(di)

p+1

which is negative for odd powers p and positive for even ones. We can now evaluate

the second (right-hand) component of (C.2.6) by noting that each derivative of the

first term will cause another factor of −1 to appear; differentiating this term twice

causes these factors to cancel, giving∫ xi

xi−1

(xi+1 − x)2

d2
i+1

(x − xi)pdx =
2

d2
i+1(p+ 1)(p+ 2)(p+ 3)

[
(x − xi)p+3

]xi+1

xi

=
2

(p+ 1)(p+ 2)(p+ 3)
(di+1)p+1 .

Following a similar procedure for j = (i− 1), we obtain∫ xi

xi−1

(x − xi−1)

di
(x − xi−1)p

(xi − x)

di
dx =

1

d2
i

∫ xi

xi−1

(x − xi−1)p+1(xi − x)dx

=
1

d2
i (p+ 2)

∫ xi

xi−1

(x − xi−1)p+2dx

=
1

d2
i (p+ 2)(p+ 3)

[
(x − xi−1)p+3

]xi
xi−1

=
(di)

p+1

(p+ 2)(p+ 3)

which is (p + 1)/2 times the right-hand integral from the central term. Following

the same procedure for j = (i+ 1) gives∫ xi+1

xi

(xi+1 − x)

di+1

(x − xi+1)p
(x − xi)
di+1

dx =
(−1)p(di+1)p+1

(p+ 2)(p+ 3)

which is (p+ 1)/2 times the left-hand integral from the central term. These results

are evaluated for all powers p = 0, 1, 2 in table C.1.

March 22, 2018

C.2. Finite element: basis integrals 316

I
(p)
Aij

j = (i− 1) j = i j = (i+ 1)

p = 0 di
6

di
3

+ di+1

3
di+1

6

p = 1
d2i
12

−d2i
12

+
d2i+1

12
−d2i+1

12

p = 2
d3i
20

d3i
30

+
d3i+1

30

d3i+1

20

Table C.1: Values of the basis function integrals of type (C.2.3) for all powers p of

the linear term and all elements j for which the integral is non-zero.

Second case For the central case (i = j) of the second type of integral (equation

(C.2.4)), for p >= 2 we must evaluate

I
(p)
Bii

=

∫ xi

xi−1

1

di
p(x − xi)p−1 (x − xi−1)

di
dx

+

∫ xi+1

xi

− 1

di+1

p(x − xi)p−1 (xi+1 − x)

di+1

dx .

Considering the first term, we integrate by parts to find that∫ xi

xi−1

1

di
p(x − xi)p−1 (x − xi−1)

di
dx = − 1

d2
i

∫ xi

xi−1

(x − xi)pdx

= − 1

d2
i

1

(p+ 1)

[
(x − xi)p+1

]xi
xi−1

=
(−1)p

(p+ 1)
(di)

p−1 .

Using the same technique, we evaluate the second term as∫ xi+1

xi

− 1

di+1

p(x − xi)p−1 (xi+1 − x)

di+1

=
−1

(p+ 1)
(di+1)p−1 .

The off-diagonal terms are as follows: for j = (i− 1), we have that

I
B

(p)
i(i−1)

=

∫ xi

xi−1

1

di
p(x − xi−1)p−1 (xi − x)

di
dx

=
1

d2
i

∫ xi

xi−1

(x − xi−1)pdx

=
1

(p+ 1)
(di)

p−1

March 22, 2018

C.2. Finite element: basis integrals 317

I
(p)
Bij

j = (i− 1) j = i j = (i+ 1)

p = 1 1
2

0 −1
2

p = 2 di
3

di
3
− di+1

3
−di+1

3

Table C.2: Values of the basis function integrals of type (C.2.4) for all powers p of

the linear term and all elements j for which the integral is non-zero.

and for j = (i+ 1), we have that

I
(p)
Bi(i+1)

=

∫ xi+1

xi

− 1

di+1

p(x − xi+1)p−1 (x − xi)
di+1

dx

=
1

d2
i+1

∫ xi+1

xi

(x − xi+1)pdx

=
(−1)p+1

(p+ 1)
(di+1)p−1 .

These expressions are evaluated for powers p = 1, 2 in table C.2; note that this term

does not occur for p = 0.

Third case For the final type of integral (C.2.5), the central case i = j for powers

p = 0, 1, 2 is

I
(p)
Cii

=

∫ xi

xi−1

1

di
(x − xi)p

1

di
dx

+

∫ xi+1

xi

(
− 1

di+1

)
(x − xi)p

(
− 1

di+1

)
dx .

The first (left-hand) term is∫ xi

xi−1

1

di
(x − xi)p

1

di
dx =

1

d2
i (p+ 1)

[
(x − xi)p+1

]xi
xi−1

=
(−1)p

(p+ 1)
(di)

p−1

and similarly, the second (right-hand) term is∫ xi+1

xi

(
− 1

di+1

)
(x − xi)p

(
− 1

di+1

)
dx =

1

(p+ 1)
(di+1)p−1 .

March 22, 2018

C.2. Finite element: basis integrals 318

I
(p)
Cij

j = (i− 1) j = i j = (i+ 1)

p = 0 − 1
di

1
di

+ 1
di+1

− 1
di+1

p = 1 −1
2

−1
2

+ 1
2

1
2

p = 2 −di
3

di
3

+ di+1

3
−di+1

3

Table C.3: Values of the basis function integrals of type (C.2.5) for all powers p of

the linear term and all elements j for which the integral is non-zero.

The off diagonal components are as follows: for j = (i− 1), we have

I
(p)
Ci(i−1)

=

∫ xi

xi−1

1

di
(x − xi−1)p

(
− 1

di

)
dx

= − 1

d2
i (p+ 1)

[
(x − xi−1)p+1

]xi
xi−1

= − 1

(p+ 1)
(di)

p−1

and similarly, for j = (i+ 1), we have

I
(p)
Ci(i+1)

=

∫ xi+1

xi

(
− 1

di+1

)
(x − xi+1)p

1

di+1

dx

=
(−1)p+1

(p+ 1)
(di+1)p−1 .

These expressions are evaluated for all relevant p = 0, 1, 2 in table C.3

March 22, 2018

Appendix D

Bayes linear emulator code

This appendix presents the general code used for fitting emulators throughout the

thesis (e.g. the ocean simulator example from Section 2.6, and the sequential design

examples from Chapters 3, 4 and 5). Box D.1 shows the definition of the class

‘BysLinEm.m’; the properties of this class store the prior specification and adjusted

components of a multi-output Bayes linear emulator, and the methods allow us to

adjust our prior beliefs in the light of observations on the simulator f (.) and the

system y (.) , and to make adjusted predictions for both f (.) and y (.) .

Listing D.1: Class ‘BysLinEm.m’: further details of the methods listed are provided

in Sections D.1 to D.4.

1 classdef BysLinEm
2 % BysLinEm: Bayes Linear emulator class
3

4 properties
5 % Properties
6 C % Covariance function object
7 M % Mean function object
8 F % Attached data object
9 nF % Number of outputs

10 X % Attached input design object
11 nD % Number of data pts
12 iUpd % indicates whether the emulator has been ...

updated
13 Q % Structure containing beliefs about Q
14 %------------------------------
15 % Discrepancy
16 Dsc % Discrepancy
17 end
18

19 methods
20 %% Constructor
21 function obj = BysLinEm(ui)
22 % Constructor: assign user input
23 obj.C = CovFun(ui.C);

319

D.1. Updating the emulator 320

24 obj.M = MeanFun(ui.M);
25 obj.iUpd = false;
26 end
27 %% Update
28 obj = BLUpd(obj,F,X);
29 %% Predict f
30 [EF Fp,VarF Fp] = BLPred(obj,pX);
31 %% Compute a
32 CovF Fp = BLAdjCov(obj,X,Xp);
33 %% Update discrepancy
34 obj = BLDscUpd(obj,Z,X);
35 %% Predict system
36 [Ez Y,Varz Y] = BLPredSys(obj,X);
37 %% Predict \bar{f}
38 [EF fb,VarF fb] = BLAvg(obj,pX);
39 end
40

41 end

Some of the most important properties of this class are listed below:

� C: object of class ‘CovFun’, containing model-specific details of the covariance

function specification;

� M: object of class ‘MeanFun’, containing model-specific details of the mean

function specification;

� F: matrix containing the data used for the update;

� X: structure containing the inputs used for the update;

� Dsc: object containing information about the discrepancy specification.

The functions which update the model components and generate predictions are

detailed in Sections D.1 to D.4.

D.1 Updating the emulator

The function ‘BLUpd.m’ shown in Box D.2 updates the emulator by computing and

storing some quantities which will be required we generating adjusted predictions

at new setting of the model inputs (predictions are generated as outlined in Section

2.2.2).

Listing D.2: Function ‘BLUpd.m’: updates emulator components using the simula-

tor runs ‘F’ obtained at input settings ‘X’.

March 22, 2018

D.1. Updating the emulator 321

1 function obj = BLUpd(obj,F,X)
2 % Update: Create static objects needed for update- exploit kronecker
3 % product structure as far as possible
4

5 % Dimensionality of output
6 nF = size(F,1);
7 nD = size(F,2);
8 % Attach data
9 obj.F = F;

10 obj.X = X;
11 obj.nF = nF;
12 obj.nD = nD;
13 % Basis matrix
14 obj.M.G = obj.M.Mean(X);
15 obj.M.nG = size(obj.M.G,1);
16 % Data mean
17 EF = obj.M.Eb*obj.M.G;
18

19 % Inverse data covariance
20 rG = kron(obj.M.G',eye(nF));
21 rVb = reshape(obj.M.Vb,[nF*obj.M.nG,nF*obj.M.nG]);
22

23 % Var[F] = G*Var[b]*G' + Var[U]
24 % This code computes Var[F]ˆ{-1} efficiently
25 % Get V {\theta{}} and V {x}
26 [Cx,Ci] = obj.C.Cov(X,X);
27 Cx = Cx + (obj.C.Prm.ngX).*eye(size(Cx));
28 Ci = Ci + (0).*eye(size(Ci));
29 nX = size(Cx,1); nT = size(Ci,1);
30 % Create Kronecker matrices
31 iCx = pinv(Cx);
32 iCtf = kron(pinv(Ci),pinv(obj.C.Prm.V));
33 % Create Var[U]ˆ{-1}*rG
34 iVUrG = nan(nF*nD,nF*obj.M.nG);
35 for iG = 1:(nF*obj.M.nG)
36 tPrd = iCtf*reshape(rG(:,iG),[nF*nT,nX])*iCx';
37 iVUrG(:,iG) = tPrd(:);
38 end
39 % Create \tilde{V} {b}
40 iVbtil = (rVb\eye(size(rVb)) + iVUrG'*rG)\eye(nF*obj.M.nG);
41 % Create W = Var[F]ˆ{-1}[F-E[F]]
42 iVUFEF = iCtf*reshape(F(:)-EF(:),[nF*nT,nX])*iCx';
43 W = iVUFEF(:) - iVUrG*(iVbtil*(iVUrG'*(F(:)-EF(:))));
44 % Construct E {F}[b]
45 obj.M.EFb = reshape(obj.M.Eb(:)+ rVb*rG'*W,[obj.nF,obj.M.nG]);
46 % Construct Var {F}[b]
47 rGtiVUrG = rG'*iVUrG;
48 obj.M.VFb = reshape(rVb - rVb*(rGtiVUrG - ...

rGtiVUrG*iVbtil*rGtiVUrG')*rVb',[nF,obj.M.nG,nF,obj.M.nG]);
49

50 % store
51 obj.C.iVbtil = iVbtil;
52 obj.C.iVUrG = iVUrG;
53 obj.C.iCx = iCx;
54 obj.C.iCtf = iCtf;
55 obj.C.W = W;
56

57 % Indicate that update has ocurred
58 obj.iUpd = true;
59

60 return

The input ‘obj’ is an object of class BysLinEm, the simulator runs to be used for

the update are denoted by ‘F’, and the object containing the corresponding input

settings is denoted by ‘X’.

March 22, 2018

D.2. Computing adjusted simulator predictions 322

The code computes Var [F] −1 and Var [F] −1
[
F−E [F]

]
efficiently by exploiting the

Kronecker product structure imposed on the covariance matrix (see Section 2.2.3).

The inverse covariance matrix Var [F] −1 is stored in terms of the inverses of the

components of the Kronecker product, reducing the amount of memory that must

be allocated to this object; its structure is then again exploited when generating

predictions for new input settings (see Section D.2). Note that this code assumes

that the covariance matrix has a three-way Kronecker product structure, where

Var [F] = Vf ⊗ Va ⊗ Vb and Va relates to the simulator inputs Vb relates to the

system inputs and Vf relates to the simulator outputs.

D.2 Computing adjusted simulator predictions

The function ‘BLPred.m’ shown in Box D.3 generates predictions from the emulator

at new input settings, using the quantities computed and stored by the function

‘BLUpd.m’.

Listing D.3: Function ‘BLPred.m’: computes adjusted predictive moments

EF [fi (θk)] and CovF [fi (θk) , fj (θl)] at the input settings ‘pX’ using the emula-

tor ‘obj’.

1 function [EF F,VarF F] = BLPred(obj,pX)
2 % Predict: predict the function value at a new set of input
3 % locations
4

5 if obj.iUpd % check whether updated
6 % Covariance function
7 [Cx,Ci] = obj.C.Cov(pX,obj.X);
8 nXp = size(Cx,1); nTp = size(Ci,1);
9 nX = size(Cx,2); nT = size(Ci,2);

10 nDp = nXp*nTp;
11 Ctf = kron(Ci,obj.C.Prm.V);
12

13 % Build mean prediction
14 % E {F}[u {i}(x)]
15 rEUp = Ctf*reshape(obj.C.W,[nT*obj.nF,nX])*Cx';
16 EUp = reshape(rEUp,obj.nF,nDp);
17 % E {F}[\beta {ij}]g {j}(x)
18 Gp = obj.M.Mean(pX);
19 Egb = obj.M.EFb*Gp;
20

21 % E {F}[f {i}(x)]
22 EF F = Egb + EUp;
23 if nargout>1
24 % Covariance function
25 [pCx,pCi] = obj.C.Cov(pX,pX);
26 pCx = pCx + (obj.C.Prm.ngX).*eye(size(pCx));

March 22, 2018

D.3. Updating using system data 323

27 pCtf = kron(pCi,obj.C.Prm.V);
28 % \tilde{G} and \tilde{G} {p}
29 rG = kron(obj.M.G',eye(obj.nF));
30 rGp = kron(Gp',eye(obj.nF));
31 % Var[b]
32 rVb = reshape(obj.M.Vb,[obj.nF*obj.M.nG,obj.nF*obj.M.nG]);
33 % Gp*Var {F}[b]*Gp'
34 rGpVarFbGp = rGp*reshape(obj.M.VFb,...
35 [obj.nF*obj.M.nG,obj.nF*obj.M.nG])*rGp';
36 % Gp*Cov {F}[b,u(x)]
37 CovUpUiVarUrG = kron(Cx*obj.C.iCx,Ctf*obj.C.iCtf)*rG;
38 rGpCovFbUp = ...

-(rGp*(rVb*(rG'*kron(obj.C.iCx*Cx',obj.C.iCtf*Ctf'))) ...
-...

39 (rGp*(rVb*(rG'*(obj.C.iVUrG*obj.C.iVbtil))))*...
40 CovUpUiVarUrG');
41 % Var {F}[u(x)]
42 rVarFUpUp = kron(pCx,pCtf) -...
43 (kron(Cx*obj.C.iCx*Cx',Ctf*obj.C.iCtf*Ctf') -...
44 CovUpUiVarUrG*obj.C.iVbtil*CovUpUiVarUrG');
45

46 % Var {F}[f(x)]
47 VarF F = reshape(rGpVarFbGp + rGpCovFbUp +...
48 rGpCovFbUp' + ...

rVarFUpUp,[obj.nF,nDp,obj.nF,nDp]);
49 end
50 else
51 error('Update emulator before performing other operations')
52 end
53

54 return

Again, the input ‘obj’ is an object of class BysLinEm, and the code first checks

whether this emulator has been updated (by checking the property ‘iUpd’) before

it attempts to construct a prediction. If this test is passed, the code attempts to

evaluate the adjusted expectations EF [fi (θk)] and covariances CovF [fi (θk) , fj (θl)]

at a new set of inputs (passed in as the structure ‘pX’).

D.3 Updating using system data

Once the components of the emulator for f (.) have been updated, the function

‘BLDscUpd.m’ (shown in Box D.4) can be used to jointly update our beliefs about

the simulator and the discrepancy δ (.) , as described in Section 2.4.2.

Listing D.4: Function ‘BLDscUpd.m’: jointly updates simulator and discrepancy

components using the system data ‘Z’ obtained at input settings ‘X’.

1 function obj = BLDscUpd(obj,Z,X)
2 % BLDscUpd: Update the discrepancy using system data
3

4 % # outputs

March 22, 2018

D.3. Updating using system data 324

5 nF = obj.nF;
6 % # basis funs
7 nG = size(obj.Dsc.M.Eb,2);
8

9 % Simulator evaluated at best input
10 if 1
11 % Evaluate at a specific simulator input setting
12 [Efh,Varfh] = obj.BLPred(X);
13 else
14 % Propagate uncertainty about best input setting
15 [Efh,Varfh] = obj.BLFhPred(X);
16 end
17

18 % E[\delta{}(X)]
19 obj.Dsc.M.G = obj.Dsc.M.Mean(X);
20 Edel = obj.Dsc.M.Eb*obj.Dsc.M.G;
21 % E[Z]
22 EZ = EFh + Edel;
23 nD = size(Edel,2);
24

25 % Var[\delta{}(X)]
26 [Cx,Ci] = obj.Dsc.C.Cov(X,X);
27 Cx = Cx + obj.Dsc.C.Prm.ngX.*eye(nD);
28 VarU = kron(Cx,obj.Dsc.C.Prm.V);
29 rG = [];
30 for iD = 1:size(obj.Dsc.M.G,2)
31 rG = [rG;kron(obj.Dsc.M.G(:,iD)',eye(nF))];
32 end
33 rVb = reshape(obj.Dsc.M.Vb,[nF*nG,nF*nG]);
34 % Var[Z]
35 Vardel = VarU + rG*rVb*rG';
36 VarZ = reshape(VarFh,[nF*nD,nF*nD]) + Vardel;
37 % store
38 obj.Dsc.C.iVF = VarZ\eye(size(VarZ));
39 obj.Dsc.C.W = obj.Dsc.C.iVF*(Z(:)-EZ(:));
40

41 % Adjust paramaeters
42 % E {Z}[b]
43 obj.Dsc.M.EFb = reshape(obj.Dsc.M.Eb(:) + ...

rVb*(rG'*obj.Dsc.C.W),[nF,nG]);
44 % Var {Z}[b]
45 obj.Dsc.M.VFb = reshape(rVb - ...

rVb*((rG'*obj.Dsc.C.iVF)*rG)*rVb,[nF,nG,nF,nG]);
46

47 % store inputs
48 obj.Dsc.X = X;
49 % store data
50 obj.Dsc.F = Z;
51

52 return

The code computes the moments E
[
f̂i (bk)

]
and Cov

[
f̂i (bk) , f̂j (bl)

]
(either using

a user-supplied best input setting a∗ or by propagating beliefs about a∗ through

the emulator), and E [δi (bk)] and Cov [δi (bk) , δj (bl)] . These components are then

combined with a variance specification for the measurement error to obtain the ma-

trix Var [z] . The inverse covariance Var [z] −1 and the product Var [z] −1
[
z − E [z]

]
are stored along with the adjusted moments of the parameters β(δ), to enable fast

computation of adjusted predictions. As when updating the emulator (Section D.1),

the Kronecker product structure of the system data covariance matrix is exploited

March 22, 2018

D.4. Computing adjusted system predictions 325

to reduce the memory required to store these components.

D.4 Computing adjusted system predictions

After updating using system data (Section D.3), the function ‘BLPredSys.m’ (Box

D.5) can be used to generate adjusted predictions for the system y (.) (as discussed

in Section 2.4.2).

Listing D.5: Function ‘BLPredSys.m’: computes adjusted predictive moments

Ez [yi (bk)] and Covz [yi (bk) , yj (bl)] for the system.

1 function [EZY,VarZY] = BLPredSys(obj,X)
2 % BLPredSys: Predict the system at inputs X- including both ...

emulator and
3 % discrepancy
4

5 % Compute prior moments of \hat{f}(x)
6 if 1
7 % Evaluate at a specific simulator input setting
8 [Efh,Varfh] = obj.BLPred(X);
9 else

10 % Propagate uncertainty about best input setting
11 [Efh,Varfh] = obj.BLFhPred(X);
12 end
13

14 %--
15 % Adjust simulator moments by data
16

17 % Cov F[\hat{f}(Xp),\hat{f}(X)]
18 nDp = size(Efh,2);
19 nZ = size(obj.Dsc.F,2);
20 rCovFfhZ = ...

reshape(obj.BLAdjCov(X,obj.Dsc.X),[obj.nF*nDp,obj.nF*nZ]);
21 % E[\hat{f}(Xp)]
22 rEZfh = Efh(:) + rCovFfhZ*obj.Dsc.C.W(:);
23 % Var[\hat{f}(Xp)]
24 rVarZfh = reshape(Varfh,[obj.nF*nDp,obj.nF*nDp]) - ...

rCovFfhZ*obj.Dsc.C.iVF*rCovFfhZ';
25

26 %--
27 % Predict discrepancy at new inputs
28

29 % Basis
30 Gp = obj.Dsc.M.Mean(X);
31 rGp = [];
32 for iD = 1:nDp
33 rGp = [rGp;kron(Gp(:,iD)',eye(obj.nF))];
34 end
35 rG = [];
36 for iD = 1:size(obj.Dsc.M.G,2)
37 rG = [rG;kron(obj.Dsc.M.G(:,iD)',eye(obj.nF))];
38 end
39 nG = size(obj.Dsc.M.Eb,2);
40 rVb = reshape(obj.Dsc.M.Vb,[obj.nF*nG,obj.nF*nG]);
41

42 % Cov[U d(Xp),U d(X)]
43 [Cx,¬] = obj.Dsc.C.Cov(X,obj.Dsc.X);
44 rCovUpU = kron(Cx,obj.Dsc.C.Prm.V);

March 22, 2018

D.4. Computing adjusted system predictions 326

45 % Cov[U d(Xp),U d(X)]
46 [Cx,¬] = obj.Dsc.C.Cov(X,X);
47 Cx = Cx + obj.Dsc.C.Prm.ngX.*eye(nDp);
48 rCovUpUp = kron(Cx,obj.Dsc.C.Prm.V);
49 % E[\delta{}(x)]
50 rEZU = rCovUpU*obj.Dsc.C.W(:);
51 rEZGb = reshape(obj.Dsc.M.EFb*Gp,[obj.nF*nDp,1]);
52 rEZdel = rEZGb + rEZU;
53

54 % Var Z[\delta{}(Xp)]
55 rVarZdel = (rGp*rVb*rGp' + rCovUpUp) - (rGp*rVb*rG' + ...

rCovUpU)*(obj.Dsc.C.iVF*(rGp*rVb*rG' + rCovUpU)');
56

57 %--
58 % Collate
59

60 % Cov Z[\delta{}(Xp),\hat{f}(Xp)]
61 CovZdelfh = -(rGp*rVb*rG' + rCovUpU)*(obj.Dsc.C.iVF*rCovFfhZ');
62

63 % sum
64 EZY = reshape(rEZdel+rEZfh,[obj.nF,nDp]);
65 VarZY = reshape(rVarZdel+rVarZfh+CovZdelfh+CovZdelfh',...
66 [obj.nF,nDp,obj.nF,nDp]);
67

68 return

Again, this code uses the Kronecker product structure of the covariance matrices to

reduce the memory required for the calculations.

March 22, 2018

Appendix E

Sequential design code

This appendix contains the code used to implement the example from Section 4. All

code is written and run using the Matlab software package. The box E.1 shows the

Matlab class ‘Risk.m’; the properties of this class specify parameter settings for the

example and store results as they are generated, and the methods implement the

various steps of the procedure outlined in Section 3.4 for this example.

Listing E.1: Risk class: further details of the sub-functions are provided in Section

D.2.

1 classdef Risk
2 % Risk: properties and classes for the risk emulation procedure
3

4 properties
5 % model under analysis
6 Mdl
7 % design domain
8 Dmn
9 % loss function params

10 Ls
11 % emulator for risk
12 Em
13 % control parameters
14 Cnt
15 end
16

17 methods
18 %% Constructor
19 function obj = Risk(ui)
20 % attach model
21 obj.Mdl = ui.Mdl;
22 % domain
23 obj.Dmn = ui.Dmn;
24 % loss fun
25 obj.Ls = ui.Ls;
26 % control params
27 obj.Cnt = ui.Cnt;
28 % emulator

327

E.1. Fit risk model 328

29 try
30 obj.Em = ui.Em;
31 catch
32 obj.Em = cell(1,obj.Cnt.nStg);
33 end
34 end
35 %% Convert risk input to model input
36 rXj = RskXjToDesignXj(obj,Xj,i,j);
37 %% \rho {j}ˆ{t}[.]
38 rjt = rhojt(obj,Xj,i,j);
39 %% Generate candidtae designs \tilde{d} {j}
40 [rjs,Xj] = rhojs(obj,Xj,i,j);
41 %% Approximate \rho {j}[.]
42 [E rhoj,Var rhoj] = rhoj(obj,Xj,i,j);
43 %% c {j}(.)
44 c = cob(obj,Xj,i,j);
45 %% Generate design for emulator update
46 Xj = GenDesign(obj,nD,i,j);
47 %% Fit risk emulator
48 obj = FitRiskModel(obj,i,j);
49 %% Approximate Var[s {j}ˆ{(i)}[.]]
50 obj = AssessVarMin(obj,i,j)
51 end
52

53 end

The Risk class has the following properties:

� Mdl: object of class ‘Model.m’, which stores parameter settings and model

updating routines;

� Dmn: stores domain size specifications for the design problem;

� Ls: stores parameter and cost specifications for the loss function;

� Cnt: stores control parameter settings for the risk emulation procedure;

� Em: i × j cell array of objects of class ‘BysLinEm.m’, which stores emulator

parameter specification and update information.

In the Sections E.1 to E.4, we present a selection of functions which operate on this

class.

E.1 Fit risk model

The main function which operates on objects of this class is ‘FitRiskModel.m’ (Box

E.2); this function performs all of the steps required to fit an emulator to the risk

function (as outlined in Section 3.4.4).

March 22, 2018

E.1. Fit risk model 329

Listing E.2: Function ‘FitRiskModel.m’: fits an emulator to the risk at wave i and

stage j (as outlined in Section 3.4.4).

1 function obj = FitRiskModel(obj,i,j)
2 % FitRiskModel: fit model to the risk at wave i, stage j
3

4 % output to command line
5 fprintf('Beginning emulator fit at stage %g, wave %g...\n',j,i)
6

7 %% Assess uncertainty about the minimum
8

9 if j<obj.Cnt.nStg
10 % if j<n: assess variation in the minimum samples at stage (j+1)
11 if 1
12 obj = obj.AssessVarMin(i,j+1);
13 else
14 obj.Em{i,j+1}.C.Prm.Var rjs = (0.01)ˆ2;
15 end
16 end
17

18 %% Generate data for risk model fit
19

20 % regression data
21 rXj = obj.GenDesign(obj.Cnt.Fit{i,j}.nRg,i,j); % x {j}
22 [rFj,Var rFj] = obj.rhoj(rXj,i,j); % ...

\rho {j}[x {j}]
23 % fit data
24 fXj = obj.GenDesign(obj.Cnt.Fit{i,j}.nFt,i,j); % x {j}
25 [fFj,Var fFj] = obj.rhoj(fXj,i,j); % ...

\rho {j}[x {j}]
26 % validation data
27 vXj = obj.GenDesign(obj.Cnt.Fit{i,j}.nVl,i,j); % x {j}
28 [vFj,Var vFj] = obj.rhoj(vXj,i,j); % ...

\rho {j}[x {j}]
29

30 %% Initialise emulator structure
31

32 % mean
33 ui.M.Nm = obj.Cnt.Fit{i,j}.g.Nm;
34 ui.M.Nmb = obj.Cnt.Fit{i,j}.g.Nmb;
35 % attach risk stuff
36 ui.M.Rsk = obj;
37 % delete emulators
38 for iI = 1:i
39 for iJ = 1:obj.Cnt.nStg
40 if ¬((iI==i)&&(iJ==(j+1)))
41 ui.M.Rsk.Em{iI,iJ} = [];
42 end
43 end
44 end
45 ui.M.Prm.i = i; ui.M.Prm.j = j;
46 ui.M.Prm.dh = obj.Cnt.Fit{i,j}.dh;
47

48 % covariance
49 ui.C.Nm = obj.Cnt.Fit{i,j}.c.Nm;
50 ui.C.Nmb = obj.Cnt.Fit{i,j}.c.Nmb;
51 ui.C.Nmbb = obj.Cnt.Fit{i,j}.c.Nmbb;
52 % attach risk stuff
53 ui.C.Rsk = obj;
54 % delete emulators
55 ui.C.Rsk.Em = cell(i,obj.Cnt.nStg);
56 % stage and wave
57 ui.C.Prm.i = i; ui.C.Prm.j = j;
58 % nugget variance
59 ui.C.Prm.ngX = obj.Cnt.Fit{i,j}.ngX;
60

61 % initialise

March 22, 2018

E.1. Fit risk model 330

62 obj.Em{i,j} = BysLinEm(ui);
63

64 %% Initialise regression components
65

66 % Var[\eps]
67 ve = obj.Cnt.Fit{i,j}.ve;
68 % g(x {j})
69 G = obj.Em{i,j}.M.fG(rXj);
70 % #s inputs and outputs
71 nG = size(G,1); nF = size(rFj,1);
72

73 % E 0[b] and Var 0[b]
74 Eb0 = zeros(nF*nG,1);
75 Vb0 = eye(nF*nG);
76

77 % reshape G
78 rG = kron(G',eye(nF));
79 % Var[b]
80 Vb = ((rG'*((ve.*eye(size(Var rFj)))\rG)) + Vb0\eye(nG))\eye(nG*nF);
81 obj.Em{i,j}.M.Vb = Vb;
82 % E[b]
83 Eb = Vb*(rG'*((ve.*eye(size(Var rFj)))\rFj(:)) + Vb0\Eb0);
84 obj.Em{i,j}.M.Eb = Eb;
85

86 % \hat{\rho} {j}[.]
87 rFjh = obj.Em{i,j}.M.Eb'*G;
88

89 %% Empirically fix Var[r(x)]
90

91 % \hat{r}(x {j})
92 Rj = rFj-rFjh;
93 % Var[r(x)]
94 obj.Em{i,j}.C.Prm.V = cov(Rj');
95 % measurement error term
96 obj.Em{i,j}.C.Prm.erX = Var fFj;
97

98 %% Cross-validate correlation parameters and update
99

100 obj.Em{i,j} = ...
obj.Em{i,j}.CrossValidate(fFj,fXj,obj.Cnt.Fit{i,j}.Cvl);

101

102 %% Check fitted model against validation points
103

104 % E {R}[\rho {j}[.]], Var {R}[\rho {j}[.]]
105 [ER vFj,VarR vFj] = obj.Em{i,j}.BLPred(vXj);
106 vR vFj = diag(VarR vFj);
107 % (\rho {j}[.]-E {R}[\rho {j}[.]])./Var {R}[\rho {j}[.]]ˆ{1/2}
108 s = (vFj-ER vFj)./sqrt(vR vFj' +diag(Var vFj)');
109

110 % output to command line
111 fprintf('%.3f%% of points outside 3 std. dev. error bars at\n ...

stage %g, wave %g.\n',...
112 sum(abs(s)>3).*100./numel(s),j,i);
113 fprintf('Emulator fit at stage %g, wave %g complete.\n',j,i)
114

115 %% if i>1: compare emulator predictions
116

117 if i>1
118 % loop over waves
119 ER vFj = nan(i,obj.Cnt.Fit{i,j}.nVl);
120 vR vFj = nan(i,obj.Cnt.Fit{i,j}.nVl);
121 for iI = 1:i
122 [ER vFj(iI,:),VarR vFj] = obj.Em{iI,j}.BLPred(vXj);
123 vR vFj(iI,:) = diag(VarR vFj);
124 end
125 % command line
126 fprintf('Wave %g compared to wave %g:\n ',i,i-1)
127 % output

March 22, 2018

E.2. Generate risk inputs 331

128 [(ER vFj(2,:)'-3.*sqrt(vR vFj(2,:))'-ER vFj(1,:)')./...
129 (sqrt(vR vFj(1,:))'),...
130 (ER vFj(2,:)'+3.*sqrt(vR vFj(2,:))'-ER vFj(1,:)')./...
131 (sqrt(vR vFj(1,:))')]
132 end
133

134 return

The code initialises the structure ‘obj.Em{i,j}’ as an object of class BysLinEm, fixing

names and parameters of basis and covariance functions using control parameters

supplied from outside the function. Three sets of risk evaluations are generated at

the top of the file: one for an initial regression to fix the prior moment specification

for the basis parameters, one for a joint regression/residual update, and one for

checking the fitted model. The regression is performed, and the prior specification

for the regression components α(i) and the marginal variance for the residual process

u(i) (.) are fixed using the results. The cross validation is then carried out, and the

correlation parameters of the covariance function are fixed. Finally, the regression

and residual components are jointly updated (using the function ‘BLUpd.m’ pre-

sented in Section D.1), and predictions from the fitted emulator are compared with

the validation data set generated earlier. For later waves (i > 1), the function also

compares the predictions from the emulator at this wave with the predictions from

the emulator at the previous wave, to check that they overlap.

Some of the sub-functions called from this function are outlined in the following

sections: Section E.2 discusses ‘GenDesign.m’, which generates risk input sets used

for fitting the emulators; Section E.3 presents ‘rhoj.m’ and ‘rhojt.m’, which generate

risk evaluations at particular input settings; Section E.4 presents ‘rhojs.m’, which

generates candidate designs for a fitted emulator.

E.2 Generate risk inputs

Box E.3 shows the function ‘GenDesign.m’, which is used to generate risk input sets

for fitting the emulators at all stages and waves (as outlined in Section 3.4.11).

Listing E.3: Function ‘GenDesign.m’: generates risk input sets of size ‘nD’ at wave

i, stage j.

March 22, 2018

E.2. Generate risk inputs 332

1 function Xj = GenDesign(obj,nD,i,j)
2 % GenDesign: Generate a candidate design for the
3

4 if (i==1) | |(¬obj.Cnt.DsgSample)
5 %% Generate design in a space-filling way
6 % setup cell
7 Xj = cell(1,j);
8 % Latin Hypercube
9 % # d j

10 ndj = nan(j,1);
11 for iJ = 1:j
12 ndj(iJ) = size(obj.Dmn.L{i,iJ}.d,1);
13 end
14 % # w j
15 nwj = nan(j,1);
16 for iJ = 1:j
17 nwj(iJ) = size(obj.Dmn.L{i,iJ}.w,1);
18 end
19 % latin hypercube
20 LHD = lhsdesign(nD,sum(ndj)+sum(nwj));
21

22 % w [j]
23 for iJ = 1:j
24 Xj{1,iJ}.w = bsxfun(@plus,obj.Dmn.L{i,iJ}.w(:,1)',...
25 bsxfun(@times,diff(obj.Dmn.L{i,iJ}.w,1,2)',...
26 LHD(:,1:nwj(iJ))));
27 LHD = LHD(:,(nwj(iJ)+1):end);
28 end
29 % d [j]
30 for iJ = 1:j
31 Xj{1,iJ}.d = bsxfun(@plus,obj.Dmn.L{i,iJ}.d(:,1)',...
32 bsxfun(@times,diff(obj.Dmn.L{i,iJ}.d,1,2)',...
33 LHD(:,1:ndj(iJ))));
34 LHD = LHD(:,(ndj(iJ)+1):end);
35 end
36

37 % z [j]
38 for iJ = 1:j
39 Xj{1,iJ}.z = cell(nD,1);
40 end
41 for iD = 1:nD
42 % model inputs
43 mx = obj.RskXjToModelXj(Xj,iD,i,j);
44 % sample z j
45 zj = obj.Mdl.GenerateData(mx,1);
46 % store
47 ct = 1;
48 for iJ = 1:j
49 Xj{1,iJ}.z{iD} = zj(ct:(ct+mx.nz(iJ)-1));
50 ct = ct+mx.nz(iJ);
51 end
52 end
53 else
54 %% Generate design in interesing parts of the space
55 % initialise cell
56 Xj = cell(1,j);
57 Xj{1,1}.d = nan(nD,1);
58 % # w j
59 nwj = nan(j,1);
60 for iJ = 1:j
61 nwj(iJ) = size(obj.Dmn.L{i,iJ}.w,1);
62 end
63 % Latin hypercube
64 LHD = lhsdesign(nD,sum(nwj));
65 % loop over stages
66 for iJ = 1:j
67 % sample d {j}ˆ* and \rho {j}ˆ{*}[.]
68 [rjs,Xj] = obj.rhojs(Xj,i-1,iJ);

March 22, 2018

E.3. Evaluate risks 333

69 % sample w j
70 Xj{1,iJ}.w = bsxfun(@plus,obj.Dmn.L{i,iJ}.w(:,1)',...
71 bsxfun(@times,diff(obj.Dmn.L{i,iJ}.w,1,2)',...
72 LHD(:,1:nwj(iJ))));
73 LHD = LHD(:,(nwj(iJ)+1):end);
74 % if iJ>1: screen out points we don't care about
75 if iJ>1
76 % \rho {j}ˆ{t}[.]
77 rjt = obj.rhojt(Xj,i,iJ-1);
78 % test
79 I = ((rjs-rjt')./sqrt(obj.Em{i-1,iJ}.C.Prm.Var rjs))≤3;
80 % reduce design
81 for jJ = 1:iJ
82 % d j
83 Xj{1,jJ}.d = Xj{1,jJ}.d(I,:);
84 % w j
85 Xj{1,jJ}.w = Xj{1,jJ}.w(I,:);
86 % z j
87 if jJ<iJ
88 Xj{1,jJ}.z = Xj{1,jJ}.z(I);
89 end
90 end
91 % output
92 fprintf('Wave %g: %g of %g points (%.2g%%) ...

eliminated at stage %g.\n',...
93 i,sum(¬I),numel(I),iJ);
94 end
95 % sample z j
96 Xj{1,iJ}.z = cell(nD,1);
97 for iD = 1:nD
98 % model inputs
99 mx = obj.RskXjToModelXj(Xj,iD,i,iJ);

100 % sample z j
101 zj = obj.Mdl.GenerateData(mx,1);
102 % store
103 nzj = [0;cumsum(mx.nz)];
104 for jJ = 1:iJ
105 Xj{1,jJ}.z{iD} = zj((nzj(jJ)+1):nzj(jJ+1));
106 end
107 end
108 end
109 end
110

111 return

This function generates risk inputs in each of the two cases discussed in Section

3.4.11: when i = 1, design inputs dj are generated using a Latin hypercube to give

good coverage of the design space; when i > 1, candidate designs are sampled from

the emulator at the previous wave, and these designs are screened to eliminate those

that we would be unlikely to select.

E.3 Evaluate risks

The function ‘rhoj.m’ (Box E.4) is used to generate risk characteristics for particular

risk inputs (passed in as the structure ‘Xj’). The risks are characterised as outlined

in Section 3.4.4.

March 22, 2018

E.3. Evaluate risks 334

Listing E.4: Function ‘rhoj.m’: generate risk characteristics for risk input set ‘Xj’

at wave i, stage j.

1 function [E rhoj,Var rhoj] = rhoj(obj,Xj,i,j)
2 % rhoj: Evaluate \rho {j}[.] at the inputs supplied
3

4 if j==obj.Cnt.nStg
5 %% Final stage (j=n)
6 % \rho {j}[.] = \rho {j}ˆ{t}[.]
7 % \rho {j}ˆ{t}[.]
8 rhojt = obj.rhojt(Xj,i,j);
9

10 % dimensions
11 nD = size(rhojt,2); nF = size(rhojt,1);
12

13 % E[\rho {j}[.]]
14 E rhoj = rhojt;
15 % Var[\rho {j}[.]]
16 Var rhoj = zeros(nD,nD);
17 else
18 %% Intermediate stages (j<n)
19 % \rho {j}[.] = min[\rho {j}ˆ{t}[.],\rho {j+1}ˆ{*}[.]]
20 % \rho {j}ˆ{t}[.]
21 rhojt = obj.rhojt(Xj,i,j);
22 % dimensions
23 nD = size(rhojt,2);
24

25 % \rho {j+1}ˆ{*}[.], d {j+1}ˆ{*}
26 [rjs,Xjs] = obj.rhojs(Xj,i,j+1);
27 % get E[\rho {j+1}[d {j+1}ˆ{*}]], Var[\rho {j+1}[d {j+1}ˆ{*}]]
28 [E rhojs,Var rhojs] = obj.Em{i,j+1}.BLAvg(Xjs);
29 % add on c {j}(d {j})
30 E rhojs = E rhojs' + obj.cob(Xjs,i,j+1);
31 % cholesky
32 try
33 cVar rhojs = ...

chol(Var rhojs+obj.Em{i,j+1}.C.Prm.Var rjs.*eye(nD))';
34 catch
35 [sU,sS,sV] = ...

svd(Var rhojs+obj.Em{i,j+1}.C.Prm.Var rjs.*eye(nD));
36 cVar rhojs = sU*sqrt(sS)*sV';
37 end
38

39 % sample rhoj
40 rhojs = bsxfun(@plus,E rhojs,cVar rhojs*randn(nD,obj.Cnt.nSmp));
41 rhoj = bsxfun(@min,rhojt',rhojs);
42

43 % E[\rho {j}[.]]
44 E rhoj = mean(rhoj,2);
45 % Var[\rho {j}[.]]
46 Var rhoj = (rhoj*rhoj')./obj.Cnt.nSmp - E rhoj*E rhoj';
47

48 % transpose
49 E rhoj = E rhoj';
50 end
51

52 %% For later waves- check data against fitted risk models
53 if i>1
54 % Emulator predictions E {R}[\rho {j}[.]], Var {R}[\rho {j}[.]]
55 [ER rjt,VarR rjt] = obj.Em{i-1,j}.BLPred(Xj);
56 VarR rjt = diag(VarR rjt)';
57 % s(x j)
58 s = (E rhoj-ER rjt)./sqrt(VarR rjt+diag(Var rhoj)');
59 % output
60 fprintf('%.3f%% of new data outside 3 std dev error bars at ...

wave %g.\n',...
61 (sum(abs(s(:))>3)./numel(E rhoj)).*100,i-1)

March 22, 2018

E.3. Evaluate risks 335

62 end
63

64 return

This function computes risk moments in two separate cases: the final stage j = n,

where ρn = ρtn, and any other stage j < n, where ρj = min [ρtj, ρ
∗
j+1]. At the

final stage, we simply evaluate the terminal risk ρtn at the inputs supplied in the

structure ‘Xj’ by calling the function ‘rhojt.m’ (Box E.5). At any other stage, we use

this function to evaluate the terminal risk at these inputs, use the function ‘rhojs.m’

(Box E.6) to generate candidate designs d̃j+1 for each input setting, evaluate our

approximation r̄
(i)
j+1

[
d̃j+1

]
+ cj+1 (j + 1) at these settings, and compare these risks

for each design input by sampling.

Listing E.5: Function ‘rhojt.m’: evaluate terminal risk for risk input set ‘Xj’ at stage

j.

1 function rjt = rhojt(obj,Xj,i,j)
2 % rhojt: generate terminal risk for the inputs
3

4 % # inputs
5 nD = size(Xj{1,1}.d,1);
6

7 % initialise
8 rjt = nan(1,nD);
9 % start timing

10 tic
11 % loop over points
12 for iD = 1:nD
13 % convert to model inputs
14 mXj = obj.RskXjToModelXj(Xj,iD,i,j);
15

16 % get E {z [j]}[q], Var {z [j]}[q]
17 [Ezj q,Varzj q] = obj.Mdl.BayesLinearAdjust(mXj);
18 vzj q = diag(Varzj q);
19 % get E {z [j]}[\sum {k}q k], Var {z [j]}[\sum {k}q k]
20 Ezj qt = ones(1,numel(Ezj q))*Ezj q;
21 Varzj qt = ones(1,numel(Ezj q))*diag(diag(Varzj q))*...
22 ones(numel(Ezj q),1);
23 % moments
24 mom(:,1) = Ezj qt;
25 mom(:,2) = Ezj qt.ˆ2 + Varzj qt;
26 mom(:,3) = Ezj qt.ˆ3 + 3.*Ezj qt.*Varzj qt;
27 mom(:,4) = Ezj qt.ˆ4 + 6.*(Ezj qt.ˆ2).*Varzj qt +...
28 3.*(Varzj qt.ˆ2);
29

30 % loss components
31 % E[w(q)]
32 E w = obj.Ls.alp(1) + obj.Ls.alp(2).*mom(:,1) +...
33 obj.Ls.alp(3).*mom(:,2);
34 % E[w(q).q]
35 E wq = obj.Ls.alp(1).*mom(:,1) + obj.Ls.alp(2).*mom(:,2) +...
36 obj.Ls.alp(3).*mom(:,3);
37 % E[w(q).(qˆ2)]
38 E wq2 = obj.Ls.alp(1).*mom(:,2) + obj.Ls.alp(2).*mom(:,3) +...
39 obj.Ls.alp(3).*mom(:,4);

March 22, 2018

E.4. Generate candidate designs 336

40

41 % E[L(q,a)]
42 rjt(:,iD) = obj.Ls.C + E wq2 - (1./E w).*(E wq.ˆ2);
43

44 % count
45 if rem(iD,10)==0
46 fprintf('#')
47 if rem(iD,100)==0
48 fprintf('\n')
49 fprintf('%.1f%% of data generated in %.1f ...

seconds.\n',...
50 100*iD/nD,toc)
51 end
52 end
53 end
54

55 return

E.4 Generate candidate designs

The function ‘rhojs.m’ (Box E.6) is used to generate candidate designs d̃j at partic-

ular risk input settings (supplied in the structure ‘Xj’).

Listing E.6: Function ‘rhojs.m’: generate candidate designs d̃j (at wave i, stage j)

at the risk input settings supplied in the structure ‘Xj’.

1 function [rjs,Xj] = rhojs(obj,Xj,i,j)
2 % rhojs: evaluate \rho {j}ˆ{*}[.] at the inputs supplied (for ...

stage j, wave
3 % i)
4

5 % # inputs
6 nD = size(Xj{1,1}.d,1);
7

8 % initialise
9 rjs = nan(nD,1);

10 ds = nan(nD,size(obj.Dmn.L{i,j}.d,1));
11 % loop over data points
12 pause(0.5)
13 parfor progress(nD);
14 pause(0.5)
15 parfor iD = 1:nD
16 % Xj- test design
17 tXj = testXj(obj,Xj,iD,i,j);
18 % E {R}[\rho {j}[.]], Var {R}[\rho {j}[.]]
19 [ER rj,VarR rj] = obj.Em{i,j}.BLAvg(tXj);
20 VarR rj = squeeze(VarR rj);
21 % add on c {j}(.) (obs cost)
22 ER rj = ER rj' + obj.cob(tXj,i,j);
23

24 % sample \rho {j}[.]
25 try
26 cVarR rj = chol(VarR rj)';
27 catch
28 [sU,sS,sV] = svd(VarR rj);
29 cVarR rj = sU*sqrt(sS)*sV';
30 end
31 rj = ER rj + cVarR rj*randn(obj.Cnt.Min{i,j}.nTs,1);

March 22, 2018

E.4. Generate candidate designs 337

32

33 % find min
34 [mrj,mi] = min(rj);
35 % attach
36 rjs(iD) = mrj;
37 ds(iD,:) = tXj{1,j}.d(mi,:);
38

39 % count
40 parfor progress
41 end
42 pause(0.5)
43 parfor progress(0);
44 pause(0.5)
45

46 % attach d {j}ˆ{*}
47 Xj{1,j}.d = ds;
48

49 return
50

51 function tXj = testXj(obj,Xj,iD,i,j)
52 % Generate space-filling design to interrogate emulator
53

54 % # d j
55 ndj = size(obj.Dmn.L{i,j}.d,1);
56

57 % # test points
58 nTs = obj.Cnt.Min{i,j}.nTs;
59

60 % Latin hypercube
61 LHD = lhsdesign(nTs,ndj);
62

63 % replicate iDˆth inputs up to stage (j-1)
64 tXj = cell(1,j);
65 for iJ = 1:(j-1)
66 % d j
67 tXj{1,iJ}.d = repmat(Xj{1,iJ}.d(iD,:),[nTs,1]);
68 % w j
69 tXj{1,iJ}.w = repmat(Xj{1,iJ}.w(iD,:),[nTs,1]);
70 % z j
71 tXj{1,iJ}.z = repmat(Xj{1,iJ}.z(iD),[nTs,1]);
72 end
73

74 % attach Latin hypercube at stage j
75 tXj{1,j}.d = bsxfun(@plus,obj.Dmn.L{i,j}.d(:,1)',...
76 bsxfun(@times,diff(obj.Dmn.L{i,j}.d,1,2)',LHD));
77

78 return

For each of the supplied input settings, the code generates a Latin hypercube inside

the candidate design space at the previous wave, evaluates the risk emulator at each

point in the Latin hypercube, and then retains as a candidate design the point which

minimises the risk over this Latin hypercube. The candidate designs are re-attached

to the input structure ‘Xj’, before being passed out of the function. This function

makes use of Matlab’s ‘parfor’ loop, which distributes the iterations of the ‘for’

loop over the available CPUs, cutting the overall computation time by performing

calculations in parallel.

March 22, 2018

Appendix F

Bell-tower model code

In this appendix, we present a selection of the Matlab code used to implement the

coupled bell-tower model example from Section 6.2. Box F.1 presents the class

definition ‘Model.m’; this class stores model properties and defines methods which

perform operations on these properties.

Listing F.1: Class ‘Model.m’: stores information and performs operations for the

example presented in Section 6.2.

1 classdef Model
2 % Model: store parameters and perform operations for the ...

bell-tower
3 % model solver
4

5 properties (SetAccess = private)
6 Slv % Solver (class: Solver)
7 Ndc % Numerical discrepancy (class: NumDiscrepancy)
8 P % Paramteter names and characteristics
9 end

10

11 properties (SetAccess = public)
12 J % Junction tree (class: JunctionTree)
13 Grd % Temporal grid properties
14 Cnt % Sampler control parameters
15 Dmn % Domain specification
16 Eps % Measurement error properties
17 end
18

19 methods
20 %% Constructor
21 function obj = Model(ui)
22 obj.Slv = Solver(ui.Slv);
23 obj.Ndc = NumDiscrepancy(ui.Ndc);
24 obj.Eps = ui.Eps;
25 end
26 %% Generate graphical prior
27 obj = Prior(obj,E0,Cov0);
28 %% Plot solution
29 PlotSolution(obj,Adj,Elm);

338

F.1. Solver class 339

30 end
31

32 end

The properties of this class include the following:

� Slv: object of class ‘Solver’ (see Section F.1), which contains parameter set-

tings for the ODE solver from Section 6.2.1, and defines methods which im-

plement the numerical scheme outlined in Section 6.2.2;

� Ndc: object of class ‘NumDiscrepancy’, which stores properties of the numer-

ical discrepancy model outlined in Section 6.1.6;

� J: object of class ‘JunctionTree’ (see Section F.2), which stores information

about the structure of the junction tree and defines methods for adjusting the

whole graph given observations of certain nodes.

F.1 Solver class

The class ‘Solver.m’ (Box F.2) stores parameter settings for the ODE system out-

lined in Section 6.2.1 and defines methods which implement the numerical scheme

developed in Section 6.2.2.

Listing F.2: Class ‘Solver.m’: stores parameters for the bell-tower ODE system

(Section 6.2.1), and implements numerical schemes (Section 6.2.2).

1 classdef Solver
2 % Solver for the bell-tower system of ODEs
3

4 properties (SetAccess = private)
5 Prm % Fixed solver params
6 Nms % Input names
7 end
8

9 methods
10 %% Constructor
11 function obj = Solver(ui)
12 obj.Prm = ui.Prm;
13 obj.Nms = ui.Nms;
14 end
15 %% Derivative function
16 % du i/dt(t) = f i(t,u(t),\theta)
17 function [du,A,b] = f(obj,phi)
18 % # data inputs
19 nD = size(phi.th,2);
20 % storage
21 du.ddx = nan(2,nD);

March 22, 2018

F.1. Solver class 340

22 du.ddth = nan(obj.Prm.B.n,nD);
23 for iD = 1:nD
24 %----------------------
25 % dˆ{2}\phi i/dtˆ{2}
26 % A
27 cA = cell(2,2);
28 % dˆ{2}x/dtˆ{2} equations
29 cA{1,1} = eye(2);
30 cA{1,2} = bsxfun(@times,obj.Prm.B.drc',...
31 ((obj.Prm.B.m.*obj.Prm.B.rc./obj.Prm.C.M).*...
32 cos(phi.th(:,iD)))');
33 % dˆ{2}\theta{}/dtˆ{2}
34 cA{2,1} = ...

bsxfun(@times,cos(phi.th(:,iD)),obj.Prm.B.drc);
35 cA{2,2} = diag(obj.Prm.B.l);
36 % b
37 cb = cell(2,1);
38 % dˆ{2}x/dtˆ{2} equations
39 cb{1} = ...

obj.Prm.B.drc'*((obj.Prm.B.m.*obj.Prm.B.rc./...
40 obj.Prm.C.M).*...
41 (phi.dth(:,iD).ˆ2).*cos(phi.th(:,iD))) -...
42 2.*phi.lam(:,iD).*phi.dx(:,iD) -...
43 (phi.wg(:,iD).ˆ2).*phi.x(:,iD);
44 % dˆ{2}\theta{}/dtˆ{2} equations
45 cb{2} = -obj.Prm.g.*sin(phi.th(:,iD));
46 %----------------------
47 % solve
48 A = cell2mat(cA); b = cell2mat(cb);
49 v = A\b;
50 % dˆ{2}x/dtˆ{2}
51 du.ddx(:,iD) = v(1:2);
52 % dˆ{2}\theta{}/dtˆ{2}
53 du.ddth(:,iD) = v(3:end);
54 end
55 % degree conversion
56 du.ddth = du.ddth;
57 end
58 %% Higher-order derivative function
59 function du = df(obj,phi)
60 % # data inputs
61 nD = size(phi.th,2);
62 % storage
63 du.ddx = nan(2,nD);
64 du.ddth = nan(obj.Prm.B.n,nD);
65 du.dddx = nan(2,nD);
66 du.dddth = nan(obj.Prm.B.n,nD);
67 du.ddddx = nan(2,nD);
68 du.ddddth = nan(obj.Prm.B.n,nD);
69 % loop over data
70 for iD = 1:nD
71 %----------------------
72 % f(u,\theta)
73 % A
74 cA = cell(2,2);
75 % x eq.
76 cA{1,1} = eye(2);
77 cA{1,2} = bsxfun(@times,obj.Prm.B.drc',...
78 ((obj.Prm.B.m.*obj.Prm.B.rc./obj.Prm.C.M).*...
79 cos(phi.th(:,iD)))');
80 % \theta eq.
81 cA{2,1} = ...

bsxfun(@times,cos(phi.th(:,iD)),obj.Prm.B.drc);
82 cA{2,2} = diag(obj.Prm.B.l);
83 % b
84 cb = cell(2,1);
85 % x eq.
86 cb{1} = ...

March 22, 2018

F.1. Solver class 341

obj.Prm.B.drc'*((obj.Prm.B.m.*obj.Prm.B.rc./...
87 obj.Prm.C.M).*...
88 (phi.dth(:,iD).ˆ2).*cos(phi.th(:,iD))) -...
89 2.*phi.lam(:,iD).*phi.dx(:,iD) -...
90 (phi.wg(:,iD).ˆ2).*phi.x(:,iD);
91 % \theta eq.
92 cb{2} = -obj.Prm.g.*sin(phi.th(:,iD));
93 % f
94 A = sparse(cell2mat(cA)); b = cell2mat(cb);
95 iA = A\eye(size(A));
96 fv = iA*b;
97 du.ddx(:,iD) = fv(1:2);
98 du.ddth(:,iD) = fv(3:end);
99 %----------------------

100 % df/dt(u,\theta)
101 % dA/dt
102 cdA = cell(2,2);
103 % x eq.
104 cdA{1,1} = zeros(2,2);
105 cdA{1,2} = -bsxfun(@times,obj.Prm.B.drc',...
106 ((obj.Prm.B.m.*obj.Prm.B.rc./obj.Prm.C.M).*...
107 phi.dth(:,iD).*sin(phi.th(:,iD)))');
108 % \theta eq.
109 cdA{2,1} = ...

-bsxfun(@times,obj.Prm.B.drc,phi.dth(:,iD).*...
110 sin(phi.th(:,iD)));
111 cdA{2,2} = zeros(obj.Prm.B.n);
112 % db/dt
113 cdb = cell(2,1);
114 % x eq.
115 cdb{1} = obj.Prm.B.drc'*...
116 ((obj.Prm.B.m.*obj.Prm.B.rc./obj.Prm.C.M).*...
117 (2.*phi.dth(:,iD).*du.ddth(:,iD).*...
118 sin(phi.th(:,iD)) +...
119 (phi.dth(:,iD).ˆ3).*cos(phi.th(:,iD)))) -...
120 2.*phi.lam(:,iD).*du.ddx(:,iD) -...
121 (phi.wg(:,iD).ˆ2).*phi.dx(:,iD);
122 % \theta eq.
123 cdb{2} = ...

-obj.Prm.g.*phi.dth(:,iD).*cos(phi.th(:,iD));
124 % df/dt
125 dA = cell2mat(cdA); db = cell2mat(cdb);
126 dfv = iA*(db - dA*fv);
127 du.dddx(:,iD) = dfv(1:2);
128 du.dddth(:,iD) = dfv(3:end);
129 %----------------------
130 % dˆ{2}f/dtˆ{2}(u,\theta)
131 % dˆ{2}A/dtˆ{2}
132 cddA = cell(2,2);
133 % x eq.
134 cddA{1,1} = zeros(2,2);
135 cddA{1,2} = -bsxfun(@times,obj.Prm.B.drc',...
136 (obj.Prm.B.m.*obj.Prm.B.rc./obj.Prm.C.M)'.*...
137 (du.ddth(:,iD).*sin(phi.th(:,iD)) ...

+...
138 (phi.dth(:,iD).ˆ2).*cos(phi.th(:,iD)))');
139 % \theta eq.
140 cddA{2,1} = -bsxfun(@times,obj.Prm.B.drc,...
141 du.ddth(:,iD).*sin(phi.th(:,iD)) ...

+...
142 (phi.dth(:,iD).ˆ2).*cos(phi.th(:,iD)));
143 cddA{2,2} = zeros(obj.Prm.B.n);
144 % dˆ{2}b/dtˆ{2}
145 cddb = cell(2,1);
146 % x eq.
147 cddb{1} = ...

obj.Prm.B.drc'*((obj.Prm.B.m.*obj.Prm.B.rc./...
148 obj.Prm.C.M).*...

March 22, 2018

F.1. Solver class 342

149 2.*(du.dddth(:,iD).*phi.dth(:,iD) ...
+...

150 du.ddth(:,iD).ˆ2).*sin(phi.th(:,iD)) ...
+...

151 5.*du.ddth(:,iD).*(phi.dth(:,iD).ˆ2).*...
152 cos(phi.th(:,iD)) ...

-...
153 (phi.dth(:,iD).ˆ4).*sin(phi.th(:,iD))) ...

-...
154 2.*phi.lam(:,iD).*du.dddx(:,iD) -...
155 (phi.wg(:,iD).ˆ2).*du.ddx(:,iD);
156 % \theta eq.
157 cddb{2} = ...

-obj.Prm.g.*(du.ddth(:,iD).*cos(phi.th(:,iD)) ...
-...

158 (phi.dth(:,iD).ˆ2).*sin(phi.th(:,iD)));
159 % dˆ{2}f/dtˆ{2}
160 ddA = cell2mat(cddA); ddb = cell2mat(cddb);
161 ddfv = iA*(ddb - ddA*fv - 2.*dA*dfv);
162 du.ddddx(:,iD) = ddfv(1:2);
163 du.ddddth(:,iD) = ddfv(3:end);
164 end
165 end
166 %% Euler evolution function
167 % \hat{u} i(t) = F {i}(t,u(t),\theta)
168 function uh = Fel(obj,phi)
169 %----------------------
170 % Evaluate f(.)
171 f = obj.f(phi);
172 uh = phi;
173 %----------------------
174 % \hat{dx/dt} i(t)
175 uh.dx = phi.dx + bsxfun(@times,f.ddx,phi.dt);
176 %----------------------
177 % \hat{d\theta/dt} j(t)
178 uh.dth = phi.dth + bsxfun(@times,f.ddth,phi.dt);
179 %----------------------
180 % \hat{x} i(t)
181 uh.x = phi.x + bsxfun(@times,uh.dx,phi.dt);
182 %----------------------
183 % \hat{\theta} j(t)
184 uh.th = phi.th + bsxfun(@times,uh.dth,phi.dt);
185 %----------------------
186 % impose hard stop at top of swing
187 % >180
188 uh.dth(uh.th>pi) = -uh.dth(uh.th>pi);
189 uh.th(uh.th>pi) = pi;
190 % <-180
191 uh.dth(uh.th<-pi) = -uh.dth(uh.th<-pi);
192 uh.th(uh.th<-pi) = -pi;
193 end
194 %% Second-order Runge-Kutta evolution function
195 function uh = Frk2(obj,phi)
196 %----------------------
197 % Evaluate components
198 % constants
199 a21 = 1/2;
200 c2 = 1/2; b2 = 1;
201 h = phi.dt;
202 % \xi 1
203 xi1 = phi;
204 % \xi 2
205 fx1 = obj.f(xi1);
206 xi2.dx = phi.dx + a21.*bsxfun(@times,fx1.ddx,h);
207 xi2.x = phi.x + a21.*bsxfun(@times,xi1.dx,h);
208 xi2.dth = phi.dth + a21.*bsxfun(@times,fx1.ddth,h);
209 xi2.th = phi.th + a21.*bsxfun(@times,xi1.dth,h);
210 xi2.lam = phi.lam;
211 xi2.wg = phi.wg;

March 22, 2018

F.1. Solver class 343

212 %----------------------
213 % Approximation
214 % initialise
215 uh = phi;
216 % evolve \xi 2
217 fx2 = obj.f(xi2);
218 % update
219 uh.dx = uh.dx + b2.*bsxfun(@times,fx2.ddx,h);
220 uh.x = uh.x + b2.*bsxfun(@times,xi2.dx,h);
221 uh.dth = uh.dth + b2.*bsxfun(@times,fx2.ddth,h);
222 uh.th = uh.th + b2.*bsxfun(@times,xi2.dth,h);
223 end
224 %% Second-order evolution function
225 function uh = Fel2(obj,phi)
226 %----------------------
227 % Evaluate f(.) and derivatives
228 df = obj.df(phi);
229 uh = phi;
230 %----------------------
231 % \hat{dx/dt} i(t)
232 uh.dx = phi.dx + bsxfun(@times,df.ddx,phi.dt) +...
233 bsxfun(@times,df.dddx,phi.dt.ˆ2).*(1/2);
234 %----------------------
235 % \hat{d\theta/dt} j(t)
236 uh.dth = phi.dth + bsxfun(@times,df.ddth,phi.dt) +...
237 bsxfun(@times,df.dddth,phi.dt.ˆ2).*(1/2);
238 %----------------------
239 % \hat{x} i(t)
240 uh.x = phi.x + bsxfun(@times,uh.dx,phi.dt) +...
241 bsxfun(@times,df.ddx,phi.dt.ˆ2).*(1/2);
242 %----------------------
243 % \hat{\theta} j(t)
244 uh.th = phi.th + bsxfun(@times,uh.dth,phi.dt) +...
245 bsxfun(@times,df.ddth,phi.dt.ˆ2).*(1/2);
246 %----------------------
247 % impose hard stop at top of swing
248 if any(uh.th(:)>pi) | | any(uh.th(:)<-pi)
249 pi
250 end
251 % >180
252 uh.dth(uh.th>pi) = -uh.dth(uh.th>pi);
253 uh.th(uh.th>pi) = pi;
254 % <-180
255 uh.dth(uh.th<-pi) = -uh.dth(uh.th<-pi);
256 uh.th(uh.th<-pi) = -pi;
257 end
258 end
259

260 end

This class definition contains a number of function definitions. The function ‘f’ eval-

uates the first-order derivatives du
dt

(t) as outlined in Section 6.2.2, and the function

‘df’ evaluates the corresponding higher-order derivatives (up to third-order). The

input structure ‘phi’ contains the components of the current solution state vector

and parameter specifications. The function ‘Fel’ uses these derivative functions to

implement a first-order Euler solver, and ‘Fel2’ implements a second-order Euler

scheme.

March 22, 2018

F.2. Junction tree class 344

F.2 Junction tree class

The class ‘JunctionTree.m’ (Box 2.4.2) allows for specification of a junction tree

graphical model (see Section 2.1.3) and implements methods which adjust the prior

moments of all components by propagating information around the junction tree.

Listing F.3: Class ‘JunctionTree.m’: stores clique specifications and prior and ad-

justed moments for model components, and provides methods for adjusting all com-

ponents by propagating information around the junction tree.

1 classdef JunctionTree
2 % JunctionTree: class to store properties and methods for a ...

Bayes
3 % linear junction tree
4

5 properties (SetAccess = private)
6 % Associated graph
7 G
8 % Cliques
9 Clq

10 % # cliques
11 nC
12 end
13

14 methods
15 %% Constructor
16 function obj = JunctionTree(ui)
17 % attach graph
18 obj.G = ui.G;
19 % # cliques
20 obj.nC = numel(ui.Clq);
21 % initialise cliques
22 ui.Clq(1).G = ui.G;
23 obj.Clq = Clique(ui.Clq(1));
24 for iC = 2:obj.nC
25 ui.Clq(iC).G = ui.G;
26 tic
27 obj.Clq(iC) = Clique(ui.Clq(iC));
28 t = toc;
29 fprintf('Clique %g of %g created in %.1f ...

seconds.\n',iC,obj.nC,t)
30 end
31 end
32 %% Establish clique membership
33 function mid = CliqueMembership(obj,Ndi)
34 % convert input type
35 if ischar(Ndi)
36 iI = find(strcmp({obj.Nde.Lbl},Ndi));
37 elseif isnumeric(Ndi)
38 iI = Ndi;
39 end
40 % search through cliques
41 mid = false(obj.nC,1);
42 for iC = 1:obj.nC
43 if ismember(iI,obj.Clq(iC).nid)
44 mid(iC) = true;
45 end
46 end
47 mid = find(mid);
48 end

March 22, 2018

F.2. Junction tree class 345

49 %% Establish clique intersection
50 function cis = CliqueIntersection(obj,Cqi,Cqj)
51 % find intersection
52 cis = intersect(obj.Clq(Cqi).nid,obj.Clq(Cqj).nid);
53 end
54 %% Establish clique neighbours
55 function [cng,cis] = CliqueNeighbours(obj,Cqi)
56 % loop over cliques
57 cis = cell(obj.nC,1);
58 cng = false(obj.nC,1);
59 for iC = 1:obj.nC
60 cis{iC} = obj.CliqueIntersection(Cqi,iC);
61 if ¬isempty(cis{iC})
62 cng(iC) = true;
63 end
64 end
65 % reduce
66 cng = find(cng);
67 cis = cis(cng);
68 % delete cell itself
69 cis(cng==Cqi) = [];
70 cng(cng==Cqi) = [];
71 end
72 %% Cov[v i,v j]
73 Cov vi vj = PairwiseCov(obj,Ndi,Ndj);
74 %% Sequentially adjust
75 obj = SequentialAdjust(obj,F);
76 obj = newSequentialAdjust(obj,F);
77 end
78

79 end

This class has the following notable properties:

� G: contains the original DAG specification for the problem (ordering, neigh-

bourhood structure and prior moment specification);

� Clq: nC × 1 structure array of objects of class ‘Clique.m’, with each corre-

sponding to an individual clique. Each structure specifies which nodes on the

original graph are members of the clique, the full covariance structure for all

clique components, and which cliques are neighbours of this one.

The class ‘Clique.m’ is presented in Section F.2.1, and in Section F.2.2, we present

the function ‘SequentialAdjust.m’, which performs adjustments on the junction tree

as outlined in Section 2.1.3.

F.2.1 Clique class

The class ‘Clique.m’ stores information about an individual clique of the junction

tree.

March 22, 2018

F.2. Junction tree class 346

Listing F.4: Class ‘Clique.m’: stores information about an individual clique of the

junction tree.

1 classdef Clique
2 % Clique: clique class for the junction tree
3

4 properties (SetAccess = private)
5 % Clique number
6 n
7 % Prior Moments
8 E % Expectation of each node
9 Cov % Covariance between pairs of nodes

10 end
11

12 properties (SetAccess = public)
13 % Adjusted moments
14 EF % Expectation of each node
15 CovF % Covariance between pairs of nodes
16 % Fields
17 Fld
18 % Field indices
19 nid
20 % # fields
21 nF
22 % Neighbouring cliques
23 Ngb
24 end
25

26 methods
27 %% Constructor
28 function obj = Clique(ui)
29 % field names
30 obj.Fld = ui.Fld;
31 % clique number
32 obj.n = ui.n;
33 % # fields
34 obj.nF = numel(obj.Fld);
35 % corres. indices
36 obj.nid = nan(obj.nF,1);
37 for iF = 1:obj.nF
38 obj.nid(iF) = ...

find(strcmp({ui.G.Nde.Lbl},obj.Fld{iF}));
39 end
40 % neighbours
41 obj.Ngb = ui.Ngb;
42 % prior expectations and covariances
43 obj.E = ui.E;
44 obj.Cov = ui.Cov;
45 end
46 end
47

48 end

The fields ‘E’ and ‘Cov’ are cell arrays containing the prior expectation and co-

variance specifications for the nodes in this clique, and the fields ‘EF’ and ‘CovF’

contain the corresponding adjusted moments once they have been computed using

the function ‘SequentialAdjust.m’ (Section F.2.2). The field ‘Ngb’ specifies which

cliques are neighbours of this one on the junction tree.

March 22, 2018

F.2. Junction tree class 347

F.2.2 Sequential adjustment

For a given junction tree object, the function ‘SequentialAdjust.m’ (Box F.5) adjusts

all nodes on the graph using each data point in turn, by using the structure of the

junction tree to propagate information between the cliques.

Listing F.5: Function ‘SequentialAdjust.m’: adjust all model components by prop-

agating information around the cliques of the junction tree.

1 function obj = SequentialAdjust(obj,F)
2 % SequentialAdjust: work outwards from the observed clique, and ...

adjust
3 % clique components sequentially
4

5 % # data points
6 nF = numel(F.I);
7

8 %% Initialise adjusted moments
9

10 if isempty(obj.Clq(1).EF)
11 % Loop over cliques
12 for iC = 1:obj.nC
13 obj.Clq(iC).EF = obj.Clq(iC).E;
14 obj.Clq(iC).CovF = obj.Clq(iC).Cov;
15 end
16 end
17

18 %% Sequential update
19

20 for iF = 1:nF
21 %% Create copy for partial adjustment
22 pob = obj;
23

24 %% Data moments
25 % current observed node
26 fNd = F.I(iF);
27 % observed clique
28 allfClq = obj.CliqueMembership(fNd);
29 fClq = allfClq(1);
30

31 % D {ik}
32 Dk = cell2mat(F.Nde(fNd).D);
33 % E[D {ik}]
34 dI = obj.Clq(fClq).nid==fNd;
35 E Dk = cell2mat(obj.Clq(fClq).EF{dI});
36 % Var[D {ik}]
37 Var Dk = cell2mat(obj.Clq(fClq).CovF{dI,dI});
38 % Var[D k]ˆ{-1}
39 iVar Dk = Var Dk\eye(size(Var Dk));
40

41 %% Adjust observed clique
42 % Loop over elements
43 for iN = 1:obj.Clq(fClq).nF
44 % Cov[D {ik},v {jl}]
45 Cov Dk vj = cell2mat(obj.Clq(fClq).CovF{dI,iN});
46 % E {D k}[v {jl}]
47 EDk vj = cell2mat(obj.Clq(fClq).EF{iN}) +...
48 Cov Dk vj'*(iVar Dk*(Dk-E Dk));
49 % restore
50 pob.Clq(fClq).EF{iN} =..
51 mat2cell(EDk vj,obj.G.Nde(obj.Clq(fClq).nid(iN)).nV,1);

March 22, 2018

F.2. Junction tree class 348

52 for jN = 1:iN
53 % Cov[D {ik},v {pq}]
54 Cov Dk vp = cell2mat(obj.Clq(fClq).CovF{dI,jN});
55 % Cov {D k}[v {jl},v {pq}]
56 CovDk vj vp = cell2mat(obj.Clq(fClq).CovF{iN,jN}) -...
57 Cov Dk vj'*(iVar Dk*Cov Dk vp);
58 % restore
59 pob.Clq(fClq).CovF{iN,jN} = mat2cell(CovDk vj vp,...
60 obj.G.Nde(obj.Clq(fClq).nid(iN)).nV,...
61 obj.G.Nde(obj.Clq(fClq).nid(jN)).nV);
62 pob.Clq(fClq).CovF{jN,iN} = mat2cell(CovDk vj vp',...
63 obj.G.Nde(obj.Clq(fClq).nid(jN)).nV,...
64 obj.G.Nde(obj.Clq(fClq).nid(iN)).nV);
65 end
66 end
67

68 %% Propagate adjustment outwards from here
69 % initialise stopping indicator
70 Stop = false;
71

72 % initialise current clique C i
73 cClq = fClq;
74 % initialise current nodes N i
75 cEl = {fNd};
76 % initialise history
77 hstClq = cClq;
78 % Cov[D k,.]
79 CFn = {eye(sum(obj.G.Nde(fNd).nV))};
80

81 % propagate
82 while ¬Stop
83 % time
84 tic
85 % Find Ngb(C i)
86 cNgb = cell(numel(cClq),1);
87 for iC = 1:numel(cClq)
88 cNgb{iC} = obj.Clq(cClq(iC)).Ngb;
89 % eliminate ones already visited
90 cNgb{iC}(ismember(cNgb{iC},hstClq)) = [];
91 end
92

93 % Find C i\cap{}C j and update state
94 newCFn = [];
95 newcEl = [];
96 for iC = 1:numel(cClq)
97 for jC = 1:numel(cNgb{iC})
98 % C i\cap{}C j
99 Ci n Cj = ...

obj.CliqueIntersection(cClq(iC),cNgb{iC}(jC));
100 % check for bad specification
101 if isempty(Ci n Cj)
102 error('No intersection between neighbouring ...

cliques!')
103 end
104 % Cov[v {ik},{C i\cap{}C j} {jl}]
105 Cov vi CinCj = cell(numel(cEl{iC}),numel(Ci n Cj));
106 for kC = 1:numel(cEl{iC})
107 for lC = 1:numel(Ci n Cj)
108 lI = obj.Clq(cClq(iC)).nid==cEl{iC}(kC);
109 rI = obj.Clq(cClq(iC)).nid==Ci n Cj(lC);
110 Cov vi CinCj{kC,lC} =...
111 cell2mat(obj.Clq(cClq(iC)).CovF{lI,rI});
112 end
113 end
114 % Var[C i\cap{}C j]
115 Var CinCj = cell(numel(Ci n Cj));
116 for kC = 1:numel(Ci n Cj)
117 for lC = 1:numel(Ci n Cj)

March 22, 2018

F.2. Junction tree class 349

118 lI = obj.Clq(cClq(iC)).nid==Ci n Cj(kC);
119 rI = obj.Clq(cClq(iC)).nid==Ci n Cj(lC);
120 Var CinCj{kC,lC} =...
121 cell2mat(obj.Clq(cClq(iC)).CovF{lI,rI});
122 end
123 end
124 % update Cov[D k,.]
125 newCFn = ...

[newCFn;{CFn{iC}*(cell2mat(Cov vi CinCj)/...
126 cell2mat(Var CinCj))}];
127 % update current elements
128 newcEl = [newcEl;{Ci n Cj}];
129 end
130 end
131

132 % Update state
133 % list of visited cliques
134 for iC = 1:numel(cNgb)
135 hstClq = [hstClq;cNgb{iC}];
136 end
137 % current state
138 cClq = [];
139 for iC = 1:numel(cNgb)
140 cClq = [cClq;cNgb{iC}];
141 end
142 % Cov[D k,.]
143 CFn = newCFn;
144 % Elements
145 cEl = newcEl;
146

147 % Stop?
148 if isempty(cClq)
149 Stop = true;
150 break
151 end
152

153 % Adjust nodes of neighbouring cliques
154 for iC = 1:numel(cClq)
155 for iN = 1:obj.Clq(cClq(iC)).nF
156 % Cov[C i\cap{}C j,v p]
157 Cov CinCj vp = cell(numel(cEl{iC}),1);
158 for jC = 1:numel(cEl{iC})
159 lI = obj.Clq(cClq(iC)).nid==cEl{iC}(jC);
160 Cov CinCj vp{jC} =...
161 cell2mat(obj.Clq(cClq(iC)).CovF{lI,iN});
162 end
163 % Cov[D k,v p]
164 Cov Dk vp = CFn{iC}*cell2mat(Cov CinCj vp);
165 % E {D k}[v {ik}]
166 EDk vk = cell2mat(obj.Clq(cClq(iC)).EF{iN}) +...
167 Cov Dk vp'*(iVar Dk*(Dk-E Dk));
168 % restore
169 pob.Clq(cClq(iC)).EF{iN} = mat2cell(EDk vk,...
170 obj.G.Nde(obj.Clq(cClq(iC)).nid(iN)).nV,1);
171 for jN = 1:iN
172 % Cov[C i\cap{}C j,v l]
173 Cov CinCj vq = cell(numel(cEl{iC}),1);
174 for jC = 1:numel(cEl{iC})
175 lI = obj.Clq(cClq(iC)).nid==cEl{iC}(jC);
176 Cov CinCj vq{jC} =...
177 cell2mat(obj.Clq(cClq(iC)).CovF{lI,jN});
178 end
179 % Cov[D k,v q]
180 Cov Dk vq = CFn{iC}*cell2mat(Cov CinCj vq);
181 % Cov {D k}[v p,v q]
182 CovDk vp vq =...
183 cell2mat(obj.Clq(cClq(iC)).CovF{iN,jN}) -...
184 Cov Dk vp'*(iVar Dk*Cov Dk vq);

March 22, 2018

F.2. Junction tree class 350

185 % restore
186 pob.Clq(cClq(iC)).CovF{iN,jN} = ...
187 mat2cell(CovDk vp vq,...
188 obj.G.Nde(obj.Clq(cClq(iC)).nid(iN)).nV,...
189 obj.G.Nde(obj.Clq(cClq(iC)).nid(jN)).nV);
190 pob.Clq(cClq(iC)).CovF{jN,iN} = ...
191 mat2cell(CovDk vp vq',...
192 obj.G.Nde(obj.Clq(cClq(iC)).nid(jN)).nV,...
193 obj.G.Nde(obj.Clq(cClq(iC)).nid(iN)).nV);
194 end
195 end
196 end
197

198 % stop time
199 t = toc;
200 % output
201 for iC = 1:numel(cClq)
202 fprintf('Clique %g updated in %.2f ...

seconds.\n',cClq(iC),t)
203 end
204 end
205

206 %% Restore partially-adjusted object
207 obj = pob;
208 end
209

210 return

The input ‘obj’ is an object of class ‘JunctionTree’, and the input structure ‘F’

identifies the nodes which were observed and stores the observed values. The code

loops over the observed nodes, adjusting all moments stored on the graph using

each node in turn, and using the moments after each adjustment as the prior for

the next. For each observed node, the code first adjusts all members of a clique of

which the observed node is a member. It then updates outwards from this clique:

at each iteration of the inner ‘while’ loop, the code identifies all neighbours of the

current clique set which have not yet been visited, and computes the covariance of

the observed node with the nodes of these neighbouring cliques by identifying the

intersection between the current clique set and its neighbours. The code stops and

moves on to the next observed node when all cliques have been updated.

March 22, 2018

Bibliography

Robert J Adler. Lecture Notes-Monograph Series, volume 12. Institute of Mathe-

matical Sciences, 1990. ISBN 094060017X.

James O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer,

1985. ISBN 9780387960982.

Christopher M Bishop. Pattern Recognition and Machine Learning. Springer, 2003.

ISBN 9780387310732. doi: 10.1073/pnas.0703993104.

S. J. Bourne and S. J. Oates. An activity rate model of induced seismic-

ity within the Groningen Field (Part 1)- NAM report. Technical report,

2015. URL https://nam-feitenencijfers.data-app.nl/download/rapport/

8b6f2ff1-b98e-4148-a1db-bf06881579e5?open=true.

S. J. Bourne, S. J. Oates, J. Bommer, B. Dost, J. van Elk, and D. Doornhof. A

Monte Carlo Method for Probabilistic Hazard Assessment of Induced Seismicity

due to Conventional Natural Gas Production. Bulletin of the Seismological Society

of America, 105(3), 2015. doi: 10.1785/0120140302.

Jenny Brynjarsdottir and Anthony O’Hagan. Learning about physical parameters:

The importance of model discrepancy. Inverse Problems, pages 1–21, 2014. ISSN

13616420. doi: 10.1088/0266-5611/30/11/114007.

John Rozier Cannon. The One-Dimensional Heat Equation. Cambridge University

Press, 1985. ISBN 9780521302432.

Kathryn Chaloner and Isabella Verdinelli. Bayesian Experimental Design: A Re-

351

https://nam-feitenencijfers.data-app.nl/download/rapport/8b6f2ff1-b98e-4148-a1db-bf06881579e5?open=true
https://nam-feitenencijfers.data-app.nl/download/rapport/8b6f2ff1-b98e-4148-a1db-bf06881579e5?open=true

BIBLIOGRAPHY 352

view. Statistical Science, 10(3):273–304, 1995. ISSN 0883-4237. doi: 10.1214/ss/

1177009939.

Oksana A. Chkrebtii, David A Campbell, Ben Calderhead, and Mark A Girolami.

Bayesian Solution Uncertainty Quantification for Differential Equations. Bayesian

Analysis, 11(4):1239–1267, 2016. doi: 10.1214/16-BA1017. URL http://arxiv.

org/abs/1306.2365.

Merlise A Clyde, Peter Muller, and Giovanni Parmigiani. Exploring Expected Utility

Surfaces by Markov Chains. Technical report, 1996.

Stuart G. Coles. An introduction to Statistical Modeling of Extreme Values. 2001.

ISBN 1852334592. doi: 10.1007/978-1-4471-3675-0.

Patrick R Conrad, Mark Girolami, Simo Särkkä, Andrew Stuart, and Konstanti-

nos Zygalakis. Statistical analysis of differential equations : introducing prob-

ability measures on numerical solutions. Statistics and Computing, 27(4):1065–

1082, 2017. ISSN 1573-1375. doi: 10.1007/s11222-016-9671-0. URL https:

//link.springer.com/content/pdf/10.1007{%}2Fs11222-016-9671-0.pdf.

Stefano Conti and Anthony O’Hagan. Bayesian emulation of complex multi-output

and dynamic computer models. Journal of Statistical Planning and Inference, 140

(3):640–651, 2010. ISSN 03783758. doi: 10.1016/j.jspi.2009.08.006.

Peter S. Craig, Michael Goldstein, Jonathan C. Rougier, and Allan H. Seheult.

Bayesian Forecasting for Complex Systems Using Computer Simulators. Journal

of the American Statistical Association, 96(454):717–729, 2001. ISSN 0162-1459.

doi: 10.1198/016214501753168370. URL http://lysander.asa.catchword.

org/vl=791500/cl=18/nw=1/rpsv/cw/asa/01621459/v96n454/s30/p717.

Carl de Boor. B (asic)-spline basics. Fundamental Developments of Computer-Aided

Geometric Modeling, pages 27–43, 1986. URL ftp://ftp.cs.wisc.edu/Approx/

bsplbasic.pdf.

Bruno de Finetti. Theory of probability: a critical introductory treatment. Wiley,

1975. ISBN 0471926116. doi: 10.1038/163464a0.

March 22, 2018

http://arxiv.org/abs/1306.2365
http://arxiv.org/abs/1306.2365
https://link.springer.com/content/pdf/10.1007{%}2Fs11222-016-9671-0.pdf
https://link.springer.com/content/pdf/10.1007{%}2Fs11222-016-9671-0.pdf
http://lysander.asa.catchword.org/vl=791500/cl=18/nw=1/rpsv/cw/asa/01621459/v96n454/s30/p717
http://lysander.asa.catchword.org/vl=791500/cl=18/nw=1/rpsv/cw/asa/01621459/v96n454/s30/p717
ftp://ftp.cs.wisc.edu/Approx/bsplbasic.pdf
ftp://ftp.cs.wisc.edu/Approx/bsplbasic.pdf

BIBLIOGRAPHY 353

Morris H. DeGroot. Optimal Statistical Decisions. Wiley, 1970. ISBN

9780471680291. doi: DOI:10.1002/0471729000.

Persi Diaconis. Bayesian Numerical Analysis- Stanford University, Report EF-

SNSF261. Technical report, 1986. URL https://statistics.stanford.edu/

research/bayesian-numerical-analysis.

Persi Diaconis and Donald Ylvisaker. Conjugate Priors for Exponentail families.

The Annals of Statistics, 7(2):269–281, 1979.

Dove. Dove’s Guide: Durham Cathedral, 2015. URL http://dove.cccbr.org.uk/

detail.php?searchString=Durham+Cath{&}Submit=+Go+{&}DoveID=DURHAM.

R.R. Draxler. Determination of atmospheric diffusion parameters. Atmospheric

Environment (1967), 10(2):99–105, 1976. ISSN 00046981. doi: 10.1016/

0004-6981(76)90226-2.

Robert Eymard, Thierry Gallouet, and Raphaele Herbin. Finite volume methods.

Handbook of Numerical Analysis, 7:713–1018, 2000. ISSN 15708659. doi: 10.1016/

S1570-8659(00)07005-8.

Adolf Fick. Ueber Diffusion. Annalen der Physik, 170(1):59–86, 1855. doi: 10.1002/

andp.18551700105.

Thomas E. Fricker, Jeremy E. Oakley, and Nathan M. Urban. Multivariate Gaussian

Process Emulators With Nonseparable Covariance Structures. Technometrics, 55:

47–56, 2013. ISSN 0040-1706. doi: 10.1080/00401706.2012.715835. URL http:

//www.tandfonline.com/doi/abs/10.1080/00401706.2012.715835.

Monserrat Fuentes, Peter Guttorp, and Peter Challenor. Statistical Assessment of

Numerical Models. International Statistical Review, 71(2):201–221, 2003. doi:

10.1111/j.1751-5823.2003.tb00193.x.

G. A. Fuglstad, Finn Lindgren, Daniel Peter Simpson, and H. Rue. Exploring

a New Class of Non-stationary Spatial Gaussian Random Fields with Varying

Local Anisotropy. Statistica Sinica, 25(1):115–133, 2015. URL http://arxiv.

org/abs/1304.6949.

March 22, 2018

https://statistics.stanford.edu/research/bayesian-numerical-analysis
https://statistics.stanford.edu/research/bayesian-numerical-analysis
http://dove.cccbr.org.uk/detail.php?searchString=Durham+Cath{&}Submit=+Go+{&}DoveID=DURHAM
http://dove.cccbr.org.uk/detail.php?searchString=Durham+Cath{&}Submit=+Go+{&}DoveID=DURHAM
http://www.tandfonline.com/doi/abs/10.1080/00401706.2012.715835
http://www.tandfonline.com/doi/abs/10.1080/00401706.2012.715835
http://arxiv.org/abs/1304.6949
http://arxiv.org/abs/1304.6949

BIBLIOGRAPHY 354

Mark Girolami and Ben Calderhead. Riemann manifold Langevin and Hamiltonian

Monte Carlo methods. Journal of the Royal Statistical Society. Series B: Statistical

Methodology, 73(2):123–214, 2011. ISSN 13697412. doi: 10.1111/j.1467-9868.2010.

00765.x.

Michael Goldstein and Jonathan Rougier. Probabilistic formulations for transfer-

ring inferences from mathematical models to physical systems. SIAM Journal

on Scientific Computing, 26(0):467–487, 2004. ISSN 1064-8275. doi: 10.1137/

S106482750342670X. URL http://dx.doi.org/10.1137/S106482750342670X.

Michael Goldstein and Jonathan Rougier. Bayes Linear Calibrated Pre-

diction for Complex Systems. Journal Of The American Statisti-

cal Association, 101(475):1132–1143, 2006. ISSN 0162-1459. doi:

10.1198/016214506000000203. URL http://amstat.tandfonline.com/doi/

full/10.1198/016214506000000203{%}5Cnpapers2://publication/uuid/

EF7F6A79-EA3A-4A0A-8BFA-9275DFEDB349.

Michael Goldstein and Jonathan Rougier. Reified Bayesian modelling and inference

for physical systems. Journal of Statistical Planning and Inference, 139(3):1221–

1239, 2009. ISSN 03783758. doi: 10.1016/j.jspi.2008.07.019.

Michael Goldstein and David Wooff. Bayes Linear Statistics: Theory and Methods.

Wiley, Chichester, first edition, 2007. ISBN 978-0-470-01562-9. doi: 10.1002/

9780470065662.

Thore Graepel. Solving Noisy Linear Operator Equations by Gaussian Processes:

Application to Ordinary and Partial Differential Equations. Twentieth Interna-

tional Conference on Machine Learning, 2003.

Peter J Green. Reversible jump Markov chain Monte Carlo computation and

Bayesian model determination. Biometrika, 82(4):711–732, 1995.

Peter Guttorp and Andrew Walden. On the evaluation of geophysical models. Geo-

physical Journal of the Royal Astronomical Society, 91(1):201–210, 1987. doi:

10.1111/j.1365-246X.1987.tb05220.x.

March 22, 2018

http://dx.doi.org/10.1137/S106482750342670X
http://amstat.tandfonline.com/doi/full/10.1198/016214506000000203{%}5Cnpapers2://publication/uuid/EF7F6A79-EA3A-4A0A-8BFA-9275DFEDB349
http://amstat.tandfonline.com/doi/full/10.1198/016214506000000203{%}5Cnpapers2://publication/uuid/EF7F6A79-EA3A-4A0A-8BFA-9275DFEDB349
http://amstat.tandfonline.com/doi/full/10.1198/016214506000000203{%}5Cnpapers2://publication/uuid/EF7F6A79-EA3A-4A0A-8BFA-9275DFEDB349

BIBLIOGRAPHY 355

Ernst Hairer, Syvert P Norsett, and Gerhard Wanner. Solving Ordinary Dif-

ferential Equations I, volume 8. 1993. ISBN 978-3-540-56670-0. doi:

10.1007/978-3-540-78862-1. URL http://www.springerlink.com/index/10.

1007/978-3-540-78862-1.

Philipp Hennig, Michael A Osborne, and Mark Girolami. Probabilistic Numerics

and Uncertainty in Computations. Proceedings of the Royal Society A, 471(2179),

2015. doi: 10.1098/rspa.2015.0142.

Phillipp Henning and Christian J Schuler. Entropy Search for Information-Efficient

Global Optimization. Machine Learning Research, 13(1999):1809–1837, 2012.

ISSN 15324435.

Bill Hirst, Philip Jonathan, Fernando González del Cueto, David Randell, and Oliver

Kosut. Locating and quantifying gas emission sources using remotely obtained

concentration data. Atmospheric Environment, 74(October):141–158, 2013. ISSN

13522310. doi: 10.1016/j.atmosenv.2013.03.044.

Bill Hirst, David Randell, Matthew Jones, Philip Jonathan, Benjamin King, and

Marcella Dean. A new technique for monitoring the atmosphere above on-

shore carbon storage projects that can estimate the locations and mass emis-

sion rates of detected sources. In Energy Procedia, volume 114, pages 3716–

3728. The Author(s), 2017. doi: 10.1016/j.egypro.2017.03.1502. URL http:

//dx.doi.org/10.1016/j.egypro.2017.03.1502.

Xun Huan and Youssef M. Marzouk. Simulation-based optimal Bayesian experi-

mental design for nonlinear systems. Journal of Computational Physics, 232(1):

288–317, 2013. doi: 10.1016/j.jcp.2012.08.013. URL http://arxiv.org/abs/

1108.4146http://dx.doi.org/10.1016/j.jcp.2012.08.013.

Xun Huan and Youssef M. Marzouk. Sequential Bayesian optimal experimental

design via approximate dynamic programming. Submitted, 2016. URL http:

//arxiv.org/abs/1604.08320.

Nathan Huntley and Michael Goldstein. Assessing internal discrepancy for fast

computer models. To appear, 2016.

March 22, 2018

http://www.springerlink.com/index/10.1007/978-3-540-78862-1
http://www.springerlink.com/index/10.1007/978-3-540-78862-1
http://dx.doi.org/10.1016/j.egypro.2017.03.1502
http://dx.doi.org/10.1016/j.egypro.2017.03.1502
http://arxiv.org/abs/1108.4146 http://dx.doi.org/10.1016/j.jcp.2012.08.013
http://arxiv.org/abs/1108.4146 http://dx.doi.org/10.1016/j.jcp.2012.08.013
http://arxiv.org/abs/1604.08320
http://arxiv.org/abs/1604.08320

BIBLIOGRAPHY 356

Arieh Iserles. A first course in the numerical analysis of differential equation. 2008.

ISBN 9780521734905. URL http://books.google.com/books?hl=en{&}lr=

{&}id=7Zofw3SFTWIC{&}oi=fnd{&}pg=PR11{&}dq=A+first+course+in+the+

numerical+analysis+of+differential+equation{&}ots=iLGGpB1TWb{&}sig=

J803q-6DK5o{_}cSWHyPBpD0r4MoI.

Richard Jeffrey. Subjective Probability: the Real Thing. Cambridge University Press,

2002. ISBN 9780521829717. doi: 10.1017/CBO9780511816161.

Philip Jonathan and Kevin Ewans. Statistical modelling of extreme ocean envi-

ronments for marine design: A review. Ocean Engineering, 62(December 2012):

91–109, 2013. ISSN 00298018. doi: 10.1016/j.oceaneng.2013.01.004.

Matthew Jones, Michael Goldstein, Philip Jonathan, and David Randell. Bayes

linear analysis for Bayesian optimal experimental design. Journal of Statistical

Planning and Inference, 171:115–129, 2015. ISSN 03783758. doi: 10.1016/j.jspi.

2015.10.011. URL http://dx.doi.org/10.1016/j.jspi.2015.10.011.

Matthew Jones, David Randell, Kevin Ewans, and Philip Jonathan. Statis-

tics of extreme ocean environments : Non-stationary inference for direction-

ality and other covariate effects. Ocean Engineering, 119:30–46, 2016. doi:

10.1016/j.oceaneng.2016.04.010.

Matthew Jones, Michael Goldstein, Philip Jonathan, and David Randell. Bayes

Linear Analysis of Sequential Optimal Design Problems. Forthcoming, 2017.

M C Kennedy and A O’Hagan. Bayesian calibration of computer models. J. R.

Stat. Soc. Ser. B, 63:425–464, 2001. doi: 10.1111/1467-9868.00294.

Tom W B Kibble and Frank H Berkshire. Classical Mechanics. Imperial College

Press, London, 2004. ISBN 978-1-86094-435-2.

Matthew R.H. Killeya. ”Thinking inside the box”: Using derivatives to improve

Bayesian black box emulation of computer simulators with application to com-

partmental models. PhD thesis, Durham University, 2004.

March 22, 2018

http://books.google.com/books?hl=en{&}lr={&}id=7Zofw3SFTWIC{&}oi=fnd{&}pg=PR11{&}dq=A+first+course+in+the+numerical+analysis+of+differential+equation{&}ots=iLGGpB1TWb{&}sig=J803q-6DK5o{_}cSWHyPBpD0r4MoI
http://books.google.com/books?hl=en{&}lr={&}id=7Zofw3SFTWIC{&}oi=fnd{&}pg=PR11{&}dq=A+first+course+in+the+numerical+analysis+of+differential+equation{&}ots=iLGGpB1TWb{&}sig=J803q-6DK5o{_}cSWHyPBpD0r4MoI
http://books.google.com/books?hl=en{&}lr={&}id=7Zofw3SFTWIC{&}oi=fnd{&}pg=PR11{&}dq=A+first+course+in+the+numerical+analysis+of+differential+equation{&}ots=iLGGpB1TWb{&}sig=J803q-6DK5o{_}cSWHyPBpD0r4MoI
http://books.google.com/books?hl=en{&}lr={&}id=7Zofw3SFTWIC{&}oi=fnd{&}pg=PR11{&}dq=A+first+course+in+the+numerical+analysis+of+differential+equation{&}ots=iLGGpB1TWb{&}sig=J803q-6DK5o{_}cSWHyPBpD0r4MoI
http://dx.doi.org/10.1016/j.jspi.2015.10.011

BIBLIOGRAPHY 357

S.L. Lauritzen. Graphical Models. Clarendon Press, Oxford, 1996. ISBN

9780191591228.

S.L. Lauritzen and N. Wermuth. Graphical models for associations between vari-

ables, some of which are qualitative and some quantitative. The Annals of Statis-

tics, 17(1):31–57, 1989.

Finn Lindgren, H̊avard Rue, and Johan Lindström. An explicit link between gaus-

sian fields and gaussian markov random fields: The stochastic partial differential

equation approach. Journal of the Royal Statistical Society. Series B: Statisti-

cal Methodology, 73(4):423–498, 2011. ISSN 13697412. doi: 10.1111/j.1467-9868.

2011.00777.x.

J.L. Lund, A.R. Selby, and J.M. Wilson. The dynamics of bell towers - a survey in

northeast England. Transactions on the Built Environment, 15, 1995. URL https:

//www.witpress.com/Secure/elibrary/papers/STR95/STR95006FU2.pdf.

J Mardia, J Kent, and J Bibby. Multivariate Analysis. 1979. ISBN 9780124712522.

J J Monaghan. Smoothed particle hydrodynamics. Online, 68:1703–1759, 2005.

ISSN 0034-4885. doi: 10.1088/0034-4885/68/8/R01.

Peter Muller. Simulation Based Optimal Design. In J.M. Bernardo, J.O. Berger,

A.P. Dawid, and A.F.M Smith, editors, Bayesian Statistics, pages 459–474. 1998.

doi: 10.1016/S0169-7161(05)25017-4. URL http://linkinghub.elsevier.com/

retrieve/pii/S0169716105250174.

Peter Müller, Don A. Berry, Andy P. Grieve, Michael Smith, and Michael Krams.

Simulation-based sequential Bayesian design. Journal of Statistical Planning and

Inference, 137(10):3140–3150, 2007. ISSN 03783758. doi: 10.1016/j.jspi.2006.05.

021.

A. O’Hagan. BayesHermite quadrature. Journal of Statistical Plan-

ning and Inference, 29(3):245–260, 1991. ISSN 03783758. doi: 10.

1016/0378-3758(91)90002-V. URL http://www.sciencedirect.com/science/

article/pii/037837589190002V.

March 22, 2018

https://www.witpress.com/Secure/elibrary/papers/STR95/STR95006FU2.pdf
https://www.witpress.com/Secure/elibrary/papers/STR95/STR95006FU2.pdf
http://linkinghub.elsevier.com/retrieve/pii/S0169716105250174
http://linkinghub.elsevier.com/retrieve/pii/S0169716105250174
http://www.sciencedirect.com/science/article/pii/037837589190002V
http://www.sciencedirect.com/science/article/pii/037837589190002V

BIBLIOGRAPHY 358

Anthony O’Hagan. Monte Carlo is Fundamentally Unsound. Journal of the Royal

Statistical Society. Series D, 36(2):247–249, 1987.

D. B. Owen. A table of normal integrals. Communications in Statistics- Simulation

and Computation, 9(4):389–419, 1980. doi: 10.1080/03610918008812164.

F. Pasquill. Atmospheric dispersion of pollution. Quarterly Journal of the Royal

Meteorological Society, 97(414):369–395, 1971. ISSN 00359009. doi: 10.1002/qj.

49709741402. URL http://doi.wiley.com/10.1002/qj.49709741402.

F Pukelsheim. The three sigma rule. The American Statistician,

48(2):88–91, 1994. ISSN 00031305. doi: 10.1080/00031305.1994.

10476030. URL http://www.jstor.org/stable/2684253{%}5Cnpapers2://

publication/uuid/9ACCD11F-DDFC-4267-84CB-68C447DC1CCC.

H Raiffa and R Schlaifer. Applied Statistical Decision Theory. 1961. ISBN

047138349X.

D Randell, G Feld, K Ewans, and P Jonathan. Distributions of return values for

ocean wave characteristics in the South China Sea using directionalseasonal ex-

treme value analysis. Environmetrics, 26(6):442–450, 2015. doi: 10.1002/env.2350.

D Randell, K Turnbull, K Ewans, and P Jonathan. Bayesian inference for non-

stationary marginal extremes. Environmetrics, 27(7):439–450, 2016. doi: 10.

1002/env.2403.

Carl Edward Rasmussen and Zoubin Ghahramani. Bayesian Monte Carlo. Advances

in Neural Information Processing Systems 15, (1):489–496, 2003. ISSN 10495258.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for

machine learning. MIT Press, 2006. ISBN 0-262-18253-X. URL http://www.

gaussianprocess.org/gpml/.

Christian P. Robert. The Metropolis-Hastings algorithm. (Mcmc):1–15, 2015. URL

http://arxiv.org/abs/1504.01896.

March 22, 2018

http://doi.wiley.com/10.1002/qj.49709741402
http://www.jstor.org/stable/2684253{%}5Cnpapers2://publication/uuid/9ACCD11F-DDFC-4267-84CB-68C447DC1CCC
http://www.jstor.org/stable/2684253{%}5Cnpapers2://publication/uuid/9ACCD11F-DDFC-4267-84CB-68C447DC1CCC
http://www.gaussianprocess.org/gpml/
http://www.gaussianprocess.org/gpml/
http://arxiv.org/abs/1504.01896

BIBLIOGRAPHY 359

Christian P. Robert and George Casella. Monte Carlo Statistical Methods. Springer,

New York, 1999. ISBN 9780387212395.

Stephan Rosswog. Astrophysical smooth particle hydrodynamics. New Astronomy

Reviews, 53(4-6):78–104, 2009. ISSN 13876473. doi: 10.1016/j.newar.2009.08.007.

Jonathan Rougier. Efficient Emulators for Multivariate Deterministic Functions.

Journal of Computational and Graphical Statistics, 17:827–843, 2008. doi: 10.

1198/106186008X384032.

Havard Rue and Leonhard Held. Gaussian Markov Random Fields: Theory and

Applications. 2005. ISBN 1584884320. doi: 10.1007/s00184-007-0162-3.

Thomas J Santner, Brian J Williams, and William I Notz. The Design and Analysis

of Computer Experiments. Springer, New York, 1 edition, 2002. ISBN 1475737998,

9781475737998.

Leonard J Savage. The Foundations of Statistics. Dover, New York, 1972. ISBN

0-486-62349-1.

M. Schober, D. Duvenaud, and P. Hennig. Probabilistic ODE Solvers with Runge-

Kutta Means. Advances in Neural Information Processing Systems 27, page 18,

2014. URL http://arxiv.org/abs/1406.2582.

Inanc Senocak, Nicolas W. Hengartner, Margaret B. Short, and W. Brent Daniel.

Stochastic event reconstruction of atmospheric contaminant dispersion using

Bayesian inference. Atmospheric Environment, 42:7718–7727, 2008. ISSN

13522310. doi: 10.1016/j.atmosenv.2008.05.024. URL http://dx.doi.org/10.

1016/j.atmosenv.2008.05.024.

R. S. Smith, J. M. Gregory, and A. Osprey. A description of the FAMOUS (version

XDBUA) climate model and control run. Geoscientific Model Development, 1(1):

53–68, 2008. ISSN 1991959X. doi: 10.5194/gmd-1-53-2008.

Richard Smith and Hugh Hunt. Vibration of bell towers excited by bell ringing a

new approach to analysis. In International Conference on Noise and Vibration

March 22, 2018

http://arxiv.org/abs/1406.2582
http://dx.doi.org/10.1016/j.atmosenv.2008.05.024
http://dx.doi.org/10.1016/j.atmosenv.2008.05.024

BIBLIOGRAPHY 360

Engineering, 2008. ISBN 9781615671915. URL http://www2.eng.cam.ac.uk/

{~}hemh1/isma2008.pdf.

Ole R Sørensen, Henrik Kofoed-Hansen, Morten Rugbjerg, and Lars S Sørensen. A

third-generation spectral wave model using an unstructured finite volume tech-

nique. Proceedings of the 29th Intern. Conf. on Coastal Eng., pages 894–906,

2004. ISSN 01613782. doi: 10.1142/9789812701916-0071.

John M. Stockie. The Mathematics of Atmospheric Dispersion Modeling.

SIAM Review, 53:349–372, 2011. ISSN 0036-1445. doi: 10.1137/10080991X.

URL http://epubs.siam.org/doi/pdf/10.1137/10080991X{%}5Cnpapers2:

//publication/uuid/75D838F0-6E28-4CFA-965F-568BCC65CA79.

K van Thienen-Visser and J N Breunese. Induced seismicity of the Groningen gas

field : History and recent developments. The Leading Edge, 34(6):664–671, 2015.

doi: 10.1190/tle34060664.1.

AH Vermeulen, RH Bartels, and GR Heppler. Integrating products of B-splines.

SIAM Journal on Scientific Statistical Computing, 13(4):1025–1038, 1992. URL

http://epubs.siam.org/doi/pdf/10.1137/0913060.

Ian Vernon, Michael Goldstein, and Richard G. Bower. Galaxy formation: a

Bayesian uncertainty analysis. Bayesian Analysis, 5(4):619–669, 2010. ISSN 1936-

0975. doi: 10.1214/10-BA524. URL http://projecteuclid.org/euclid.ba/

1340110846.

Peter Whittle. Probability via Expectation. Springer-Verlag, Cambridge, UK, 3

edition, 1992. ISBN 0-387-97764-3.

D. Williamson. Policy making using computer simulators for complex physical sys-

tems ; Bayesian decision support for the development of adaptive strategies. PhD

thesis, Durham University, 2010.

D Williamson and M Goldstein. Bayesian policy support for adaptive strategies

using computer models for complex physical systems. Journal of the Operational

March 22, 2018

http://www2.eng.cam.ac.uk/{~}hemh1/isma2008.pdf
http://www2.eng.cam.ac.uk/{~}hemh1/isma2008.pdf
http://epubs.siam.org/doi/pdf/10.1137/10080991X{%}5Cnpapers2://publication/uuid/75D838F0-6E28-4CFA-965F-568BCC65CA79
http://epubs.siam.org/doi/pdf/10.1137/10080991X{%}5Cnpapers2://publication/uuid/75D838F0-6E28-4CFA-965F-568BCC65CA79
http://epubs.siam.org/doi/pdf/10.1137/0913060
http://projecteuclid.org/euclid.ba/1340110846
http://projecteuclid.org/euclid.ba/1340110846

BIBLIOGRAPHY 361

Research Society, 63(8):1021–1033, 2012. ISSN 0160-5682. doi: 10.1057/jors.2011.

110. URL http://dx.doi.org/10.1057/jors.2011.110.

Daniel Williamson, Michael Goldstein, Lesley Allison, Adam Blaker, Peter Chal-

lenor, Laura Jackson, and Kuniko Yamazaki. History matching for exploring and

reducing climate model parameter space using observations and a large perturbed

physics ensemble. Climate Dynamics, 41(7-8):1703–1729, 2013. ISSN 09307575.

doi: 10.1007/s00382-013-1896-4.

Wolfram. Wolfram Mathematica: derivatives of the modified Bessel func-

tion of the second kind, 2017. URL http://functions.wolfram.com/

Bessel-TypeFunctions/BesselK/20/ShowAll.html.

J. Woodhouse, J. C. Rene, C. S. Hall, L. T. W. Smith, F. H. King, and J. W.

McClenahan. The Dynamics of a Ringing Church Bell. Advances in Acoustics

and Vibration, 2012:1–19, 2012. ISSN 1687-6261. doi: 10.1155/2012/681787. URL

http://www.hindawi.com/journals/aav/2012/681787/.

A. M. Yaglom. Correlation Theory of Stationary and Related Random Functions.

Springer-Verlag, New york, 1986. ISBN 978-1-4612-9090-2.

Z-M Yin. New Methods for Simulation of Fractional Brownian Motion. Journal of

Computational Physics, 127:66–72, 1996.

K Zickfeld, T Slawig, and S Rahmstorf. A low-order model for the response of

the Atlantic thermohaline circulation to climate change. Ocean Dynamics, 54

(1):8–26, 2004. ISSN 1616-7341. doi: 10.1007/s10236-003-0054-7. URL http:

//link.springer.com/10.1007/s10236-003-0054-7.

March 22, 2018

http://dx.doi.org/10.1057/jors.2011.110
http://functions.wolfram.com/Bessel-TypeFunctions/BesselK/20/ShowAll.html
http://functions.wolfram.com/Bessel-TypeFunctions/BesselK/20/ShowAll.html
http://www.hindawi.com/journals/aav/2012/681787/
http://link.springer.com/10.1007/s10236-003-0054-7
http://link.springer.com/10.1007/s10236-003-0054-7

