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Abstract

Dynamic models offer a powerful framework for the modelling and analysis of time

series, especially noisy time series, which are subject to abrupt changes in pattern.

They are used in many time series applications from finance and econometrics, to

biological series used in clinical monitoring. In this thesis we describe in detail

how dynamic models can be used to model time series, following work from West

and Harrison [1]. In particular, we will focus our attention to a specific problem of

monitoring kidney failure in patients that have just had cardiac surgery. This work

is in joint collaboration with the cardiac surgery unit at the University Hospital

of South Manchester. The particular problem studied is that of developing an on-

line statistical procedure to monitor the progress of kidney function in individual

patients who have recently had heart surgery.
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Chapter 1

Introduction

Acute kidney injury (AKI), as defined by the KDIGO (Kidney Disease Improving

Global Outcomes) guidelines (Table 1.1) occurs in up to 75% of patients on the gen-

eral intensive care unit (ICU) [3, 4] and in up to 30% of patients following cardiac

surgery on the cardiac intensive care unit (CICU) [5]. It is essential that AKI is de-

tected early and treated promptly, since without quick identification and treatment,

abnormal levels of salts and chemicals can build up in the body, which affects the

ability of other organs to work properly [6]. If a patient’s kidneys fail completely,

a patient may require temporary, or long term support from a dialysis machine (re-

nal replacement therapy) thus we will aim to identify AKI as early as possible. In

this chapter we will introduce the current world guidelines for monitoring kidney

function and describe limitations with these criteria. This will lead us to consider

monitoring kidney function by using statistical models in order to accurately detect

and diagnose AKI.

1.1 Acute Renal Failure (ARF) and the KDIGO

Guidelines

The KDIGO guidelines are clinical practice guidelines for the diagnosis, evaluation,

prevention, and treatment of kidney disease. The concept of acute renal failure

1



(ARF) has undergone significant review over recent years. Evidence suggests that

changes in the urine output and blood chemistries indicate injury to the kidney or

impairment of kidney function [7]. These changes are warnings of serious clinical

consequences [8, 9, 10, 11, 12], but traditionally, most studies only emphasise the

most severe reduction in kidney function. It has only been recently that minor

decreases of kidney function have been recognised as potentially important in the

critically ill [7]. Identifying and intervening in patients with minor decreases in kid-

ney function is clinically important as this can prevent kidney failure and mortality.

The glomerular filtration rate (GFR) is widely accepted as the most accurate mea-

sure of kidney function [7]. However, GFR is difficult to measure and is commonly

estimated from the serum level of filtration markers, such as creatinine [7], which is

often only measured once per day for patients in our dataset since it requires a blood

test which takes time to analyse. Patients can be classified as having ARF within

hours after having heart surgery, sometimes before the first measurement of serum

creatinine is made, therefore identifying ARF in these patients is very difficult using

serum creatinine alone. In this thesis we consider other variables (urine output),

that are easy to measure on a regular basis, that can help identify which patients

are likely to suffer kidney injury.

1.2 AKI: Acute Kidney Injury/Impairment

Due to recognition of the importance of minor decreases in kidney function, the

RIFLE (Risk, Injury, Failure, Loss, End stage renal disease) criteria was defined. By

redefining the acute changes in renal function more broadly, RIFLE criteria moves

beyond ARF and focuses on a wide range of levels of kidney injury. The term acute

kidney injury (AKI) was proposed to encompass minor changes in renal function

as well as the requirement for renal replacement therapy (RRT) [13]. AKI covers

the whole spectrum from minor to severe renal conditions. Moreover, AKI includes

patients without actual kidney damage but with functional impairment relative to

the physiologic response to surgery. Including such patients in the classification is

clinically useful because these are precisely the patients that may benefit from early

intervention. AKI by serum creatinine and urine output are classifications used

worldwide for identifying and monitoring kidney deterioration, and the different

levels of AKI are shown in Table 1.1.
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Stage Serum Creatinine Urine Output
of AKI

1 1.5− 1.9 times baseline < 0.5ml/kg/hr for ≥ 6 hours
or ≥ 26.5µmol/l increase

2 2.0− 2.9 times baseline < 0.5ml/kg/hr for ≥ 12 hours
3 3 times baseline < 0.3ml/kg/hr for ≥ 24 hours

or ≥ 353.6µmol/l or Anuria for ≥ 12 hours
Initiation of RRT

Table 1.1: KDIGO AKI criteria for adult patients. If one or the other criteria is met then
a patient is considered suffering AKI

1.3 Monitoring Cardiac Patients

In the early stages following cardiac surgery, some patients will experience com-

plications, which may result in deterioration in function of the patient’s kidneys.

Clinicians are therefore concerned with identifying methods for monitoring patients

in order to detect sudden changes in performance of the patient’s kidneys.

The urine output criteria classify patients as suffering stage one AKI if their urine

output is less than 0.5ml/kg/hr for six consecutive hours (see Table 1.1). This

criterion is used worldwide but studies in general ICU patients have suggested that

this urine output criterion may be too sensitive as patients diagnosed with stage

one AKI by urine output alone have better outcomes than those who meet both

(stage one) urine output and the serum creatinine criteria together [4, 2]. Ralib et

al demonstrated that a threshold of 0.3ml/kg/hr for six consecutive hours (which

is what we will refer to when stating “severe oliguria”) was more closely associated

with adverse outcomes in general ICU patients [2]. However, if this threshold is

used instead of the existing AKI stage one urine output definition (instead of using

0.5ml/kg/hr for 6 consecutive hours), patients may suffer harm in the time required

for severe oliguria to be observed (see Figure 1.1).

Figure 1.1 shows a urine output time series (a series of observations taken sequen-

tially over time) for a patient that has just entered CICU after heart surgery. The

blue dot, at hour 8, is the hour at which this person would have been classified as

suffering stage one AKI by urine output (see Table 1.1) and the red dot, at hour

24, is the hour at which this person would have been classified as suffering severe

oliguria, as defined in [2]. By the time the classification of severe oliguria is made,
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Figure 1.1: AKI Stage 1 Urine Output and Ralib Classifications. The blue line represents
the stage one AKI urine output threshold (see Table 1.1) and the red line represents the
threshold defined by Ralib [2]. The blue dot, at hour 8, is the time at which this patient
would have been classified as suffering stage one AKI. The red dot, at hour 24, is the time
at which this patient would have been classified as suffering severe oliguria

harm may have already occurred to the patient’s kidneys in the time gap between

classification of stage one AKI by urine output and severe oliguria. For example,

in Figure 1.1, the time gap between classifications for AKI and severe oliguria is 16

hours. During this period a patient’s kidneys can drastically deteriorate and harm

may occur. By the time a patient is classified as suffering severe oliguria it may

be too late for minor intervention methods to normalise kidney function and hence

more complicated interventions are required.

We will therefore forecast severe oliguria (using statistical models), recalling that

severe oliguria is more closely associated with adverse outcomes than the AKI stage

one urine output criteria [2], in order to prevent harm from occurring whilst waiting

for severe oliguria to be observed.
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1.4 Data Description

In this study, we use prospectively collected data from the cardiac unit at the Uni-

versity Hospital of South Manchester. Data collected from adult patients admit-

ted between January 2013 and November 2017 was analysed. The data collected

contains many variables, such as weight, height, age, gender, urine output, and

biochemistries for the patients.

Since a patient’s urine output is dependant upon their weight we model the nor-

malised urine output, namely urine output per kilogram. However, we have observed

that urine output does not depend on age, or gender and hence these variables,

amongst others, will not be included in our analysis.

1.5 Structure

This thesis is concerned with the prediction of severe oliguria and its consequences

using dynamic linear models. Our methods of clinical prevention will be compared

to methods currently used to detect and avert the consequences caused by renal

dysfunction.

In this chapter we have introduced our motivation behind monitoring kidney func-

tion and we will then return to this area in Chapter 5 and analyse clinical problems

for monitoring kidney function in detail. In Chapters 2 and 3 we discuss and analyse

static linear models and dynamic linear models, respectively. Chapter 3 continues to

discuss benefits of dynamic modelling when compared to static modelling. Chapter

3 concludes by discussing time series analysis and presents ideas and concepts of

the Bayesian analysis of the dynamic linear model. In Chapter 4 we explore the

mathematical structure of building complex dynamic models in detail.

In Chapter 5 we return to the problem of monitoring kidney function and we dis-

cuss how dynamic models can be used to prevent adverse outcomes associated with

kidney failure, comparing our methods of clinical prevention to current worldwide

guidelines. In Chapters 6 and 7 we discuss how to monitor model forecast perfor-

mance and propose a framework for modelling noisy time series which are subject

to abrupt changes in pattern.

5



6



Chapter 2

Linear Models

In this chapter we will discuss and analyse static linear models and we will also en-

counter scenarios where static linear models drastically fail to capture the dynamics

of the system of interest.

2.1 Linear Regression

Linear regression is a method where a function of a response variable is modelled

by a weighted linear combination of predictors [14]. Generally, the linear model, in

matrix notation, is given by

Y = Xθ + ν, (2.1.1)

where Y is an n-dimensional vector of responses; X is an (n × p) design matrix,

where each column represents a predictor variable; θ is a p-dimensional parameter

vector; and ν is an n-dimensional residual vector.

Fitting the model using least squares estimates, assuming linearity, i.e. E[νi] = 0 for

i = 1, . . . , n, where νi is the ith component of the residual vector ν; homoscedasticity,

i.e. Var(νi) = σ2 for i = 1, . . . , n; and independence between observations, i.e.
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Cov(νi, νj) = 0,∀i 6= j, yields estimates θ̂ and σ̂ given by (see Appendix ??) [? ]

θ̂ = (X ′X)−1X ′Y ,

σ̂2 =
ν̂ ′ν̂

n− p
=

RSS

n− p
,

(2.1.2)

where RSS is the residual sum of squares. These estimates are frequentist estimates,

and are only used in this chapter.

Assumptions can be made about (2.1.1) for simplicity and tractability. A linear

model, with normally distributed residuals, can be written as

Y ∼ Nn(Xθ, σ2I), (2.1.3)

where I is the (n × n) identity matrix. The assumptions of (2.1.3) are that the

residuals are assumed to have mean zero, E[νi] = 0; the variance of the observations

is assumed constant, Var(νi) = σ2; the residuals are assumed to be uncorrelated,

Cov(νi, νj) = 0,∀i 6= j; and that νi are normally distributed.

2.2 Urine Output Series: Static Linear Regres-

sion

Let us consider the linear regression model of a scalar response

Y = µ+ βt+ ν, (2.2.1)

for some constants µ and β, the response Y is urine output per kilogram for a patient,

and we assume ν ∼ N(0, σ2). In the notation of Equation (2.1.3), θ = (µ, β)′, and

X =


1 t1
...

...

1 tn

 ,

where t1, . . . , tn are the times at which the urine outputs were recorded. We want

to be able to make predictions about urine output (per kilogram) for the next six

hours, every hour, for a patient (i.e. predicting severe oliguria, see Section 1.3).

These predictions will give the expected urine output for hours t+1, . . . , t+6, given

that we have observed urine outputs 1, . . . , t, and 95% prediction intervals for the
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forecasts. This will give us point predictions and also a measure of the uncertainty

of the predictions.
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Figure 2.1: Linear model point forecasts with corresponding 95% prediction intervals.
The blue and red lines represent the AKI stage one urine output threshold and Ralib’s
threshold, respectively

Figure 2.1 shows six-step forecasts at time t = 11. The prediction intervals obtained

from the static linear model are too large to be useful to clinicians and also include

negative values, e.g. the six-step ahead 95% prediction interval ranges from −0.014

to 0.82. It is not possible to have a negative urine output and so the intervals are

physically implausible as well as being too wide. This is not desirable, but a way to

overcome this is to transform the data.

2.3 Data Transformations

Many patients, after having spent hours in theatre for heart surgery, exhibit an expo-

nential decay in urine output to begin with. This nonlinearity violates an assumption

of the regression model defined in Equation (2.1.3). A logarithmic transformation

resolves this problem by linearising this decay. Furthermore, the regression model
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imposes no constraints that force the predictions made to be positive. As a result,

by using the regression model defined in Equation (2.1.3), the urine output fore-

casts can be negative (see Figure 2.1). This is physically impossible and makes it

difficult to interpret forecasts. However, if we take the logarithm of the response, fit

the model, and then transform back to the raw scale, the resulting predictions are

strictly positive.

When making a logarithmic transformation care must be taken for the zeros in the

data. For the system that we are considering, a urine output recording of zero,

corresponding to anuria (failure of the kidneys to produce urine) is possible and

happens in a large proportion of patients. As a result we add a small constant to

the data before taking logarithms. We consider the transformation Y 7−→ log(Y +ε).
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Figure 2.2: Linear model point forecasts with corresponding 95% prediction intervals. The
prediction intervals are not symmetric anymore after applying a logarithmic transforma-
tion

10



2.4 Urine Output Series: Transformation

Following the discussion above we transform Y 7−→ log(Y + ε) and refit the (trans-

formed) linear model

log(Y + ε) = µ+ βt+ ν, (2.4.1)

for some constants ε, µ, and β, the response log(Y + ε), where ε = 0.1 (this value

was chosen to match the value of ε used in Sections 5, 6, and 7. Appendix D shows

a sensitivity analysis for different choices of epsilon) is the transformed urine output

per kilogram for a patient, and we assume ν ∼ N(0, σ2).

Figure 2.2 shows six-step forecasts at time t = 11. The prediction intervals are

shorter than in Figure 2.1 and are now more useful to clinicians measuring the

uncertainty in the predictions, e.g. the six-step ahead 95% prediction interval ranges

from 0.39 to 0.92 (note that the figure and forecasts in this discussion relate to the

observation scale, not to the transformation scale on which the analysis is being

performed: Communication is always in terms of the quantities directly meaningful

to the investigator). We can also see that the prediction intervals are not symmetric

anymore but do not extend into negative values and hence the prediction intervals

are now physically useful to interpret.

We see that the (transformed) static linear model is adequate for modelling and

performing forecasts in a steady case. However, the patient that we are considering

starts with a simple downward trend and so a static model is (not surprisingly) able

to capture the dynamics of the trend quite well. However, often the series of urine

outputs for a patient is extremely noisy as a result of biological variation and errors

arising in the collection, measurement and processing of the data. Furthermore,

these series may be subject to several different types of abrupt change. If a patient

has a downward trend it is not uncommon that the patient is given an intervention

to increase their urine output. In this scenario the trend of the urine output can

change drastically. The sign and rate of change of the slope can change frequently

and the linear model soon becomes incapable of modelling such a complex system. In

addition, many unknown, random, biological sudden changes occur in many urine

output series which can create a lot of noise in the series and can cause sudden

changes in the trend of the series.
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2.5 The Downfall of Static Linear Models

In some circumstances a static linear model is a perfectly valid model to use, however,

if the trend or shape of the data changes over time, these models soon become

inadequate. Let us consider what happens when modelling the same patient as in

the previous examples, but over a longer period of time. Once again, we consider

the transformed data and remind the reader that the figure and forecasts in the

discussion relate to the observation scale, not to the transformation scale on which

the analysis is being performed.
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Figure 2.3: The Downfall of Static Linear Models. The point forecasts are unable to adapt
to the changing trend of the urine output series and prediction intervals are too wide to
be useful to clinicians

From Figure 2.3 it is clear that the patient’s urine output drastically increases at hour

20 and at this point the static linear model starts to break and is unable to recognise

the newer changing trends. Even 15 hours after the high urine output at hour 20,

after observing the urine output at hour 35, the static linear model still predicts a

downward trend. Static models use all observations (up to and including the current

time) when calculating the forecast points and intervals. This is unwanted since a
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urine output at time, t − 15 say, is unlikely to be useful when forecasting ahead

at time t. The most useful observations will be those most recent to the current

forecast time. Figure 2.3 shows that the predicted points are far from adequate

and the prediction intervals are far too wide to be of any use to clinicians, e.g. the

six-step ahead 95% prediction interval ranges from 0.36 to 1.51. Retrospectively,

we can see that there is both a level change after hour 20 and then a slope change

which is not recognised by the static model. For complex, noisy, time series data, it

is essential that model parameters are able to evolve over time to capture changing

trends and to make precise forecasts.

In summary, we see that the static linear model could not adapt to the noisy time

series data quickly enough which lead to imprecise forecasts. The static model only

suffices when a patient has a roughly constant trend but even simply changing from

one steady trend to another is slow to be recognised by a static model. It is rarely

the case that a patient has a roughly constant trend and if it is the case it is only

for a short period of time. Therefore, it would be useful if we could incorporate

our subjective knowledge into the model to make the predictions more useful to

clinicians, and for the model parameters to sequentially update simultaneously with

the system in order to capture the dynamics of the ever changing time series. In the

example considered, when predicting the next six urine outputs at time t, the most

recent urine outputs will be the most informative about what the forecasted urine

outputs will be. We do not want past evidence of unhealthy decline influencing our

forecasts when the trend has changed and the kidneys are performing adequately,

since this can mislead clinicians. The idea of information loss over time as new

information becomes available is the key to modelling complex time varying systems,

and leads us to the next chapter which introduces dynamic linear models.
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Chapter 3

Dynamic Linear Models

In this chapter we discuss time series and introduce dynamic linear models. We

examine the nature of time series and we present ideas and concepts of Bayesian

forecasting with dynamic models.

3.1 The Nature of Time Series

A time series is a series of observations taken sequentially over time. In a standard

regression model the order in which observations are included in the data set is irrel-

evant. It is the ordering property of observations that distinguishes time series from

non-time series data. Observations made at some time have effects on observations

at later times.

Three basic model forms describe the majority of time series and forecasting situa-

tions [1]. They are models for time trends, systematic cyclic variation, and regres-

sions. Combinations of these forms via block structuring (see Section 4.7) provides

a large class of dynamic models suitable for modelling time series in many applica-

tions. Trend models are the simplest component models which represent a system

with a straightforward linear progression.
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3.2 Dynamic Models

The class of dynamic linear models is a class of models which contains the class of

static models. Static models are models with one set of parameters whose values

are fixed across all observational units. In some circumstances this assumption is

valid, but in some circumstances it is a dangerous assumption to make, especially in

the urine output time series (see Section 2.5). Time always brings changing circum-

stances and new considerations. For example, changes from healthy to deteriorating

kidneys or vice versa. Dynamic models are a powerful way to handle time series

problems since they are formulated to allow for changes in parameter values over

time to reflect changing trends as new information becomes available.

We can think of additional information arriving sequentially as increasing our knowl-

edge about the system and how the system is changing with time. If we make a new

observation, say at time t, this gives us additional information about our model that

we did not have at time t − 1. However, not all information that we have about a

system will be useful to us at time t when making decisions and forecasts about the

future. If we were forecasting the response of urine output this coming hour, the

urine output level from 10 hours ago will be less useful to us when making decisions

about a patient’s current kidney function than the level of urine output from the

most recent observations. The idea of parameters evolving over time to adapt to new

trends and to “forget” older trends is the key to dynamic models. This information

loss is what distinguishes dynamic models from static models and allows dynamic

models to capture changing trends by evolving to reflect new information. When

building dynamic models we define a form for parameters of a series which is only

appropriate locally [1], (see Figure 3.1). The aim being to “forget” older trends and

to put more emphasis on local information. Static models have relationships that

apply globally, due to the static parameters. Figure 3.1 is an example of data that

changes markedly over time. It is clear that the trend in region one is completely

different to the trend in region two. If we fit a static linear model (blue line) to

the data we see that, by using all observations (up to and including time t = 6),

we drastically under forecast at time t = 7 and we completely miss the changing

trends of the data. We see that a model that is able to adapt to different regions is

required.
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Figure 3.1: Local linearity of dynamic linear models compared to a static model with
global parameters (adapted from [1])

3.3 The Dynamic Linear Model

For a response variable Y , and a vector of regressor variables x, the equation for a

single observation from a static linear model is usually written as

Y = x′θ + ν, (3.3.1)

where x′ represents the transpose of x, θ is a vector of unknown parameters and ν

is an unobservable stochastic error term.

The equation for a single observation from a dynamic linear model is usually written

as

Yt = x′tθt + νt, (3.3.2)

where xt is a column vector at time t and x′t is its transpose. This equation is

often referred to as the observation equation [1]. The dynamic model exhibits two
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generalisations over the static model. Firstly, the time ordering of the observation

sequence, Y1, Y2, . . . , Yt, as noted in Section 3.1, distinguishes time series from non-

time series data. Secondly, each time has an individual parameterisation, θt, as

noted in Section 3.2, evolving parameters are essential to capture changing trends.

For example, it is often the case that the patient, after being in theatre for hours

for surgery, will start with a high urine output, due to the patient’s urine output

not being measured for hours during surgery, and a decline in level immediately

afterwards. If the patient’s urine output gradually levels out, at a healthy, but

roughly constant level, we do not want the early decline in urine output to influence

our forecasts for this patient at the current time, and hence a model with time

varying parameters is required. Figure 3.2 shows the difference between a static

model and a dynamic model in the scenario described above. In this figure the

patient starts with a steady downward trend but then, after a jump in urine output

at hour 71, levels out to a healthy steady trend. By “forgetting” the initial unhealthy

trend the dynamic model is able to rapidly adapt to the changing trend of the urine

output data (Figure 3.2 (right)). Conversely, we can see that the static model

(Figure 3.2 (left)) breaks down at hour 13 (when the slope in the data gets less

steep), and is completely unable to adapt to the trend change at hour 71. As a

result, the static model could misleadingly alarm experts that the patient’s kidneys

are failing by providing such poor, inaccurate, forecasts.

The parameter sets for each observation in the static linear model are the same

set. Conversely, in the dynamic linear model, parameter sets are distinct for each

observation, but are stochastically related through the system equation [1]. The

system equation describes the evolution of parameters through time. The evolution

of the parameters is a first order Markov process,

System Evolution Equation: θt = Gtθt−1 + ωt, (3.3.3)

where Gt is a matrix of known coefficients and ωt is a vector of uncorrelated, unob-

servable stochastic error terms [1]. The system evolution matrix,Gt, defines a known

relationship of the state vector at time t with its value at time t− 1. Through the

system equation information on the state vector is propagated through time. The

presence of the stochastic element, ωt, adds random noise to the propagation and

is crucial to dynamic modelling. The amount of movement in the parameters is de-

scribed by the stochastic vector ωt, the more uncertain one is about the parameter
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Figure 3.2: Static Model (left) versus Dynamic Model (right). Urine output observations
are shown by red dots with corresponding point forecasts and 95% prediction intervals
shown by black lines

values the larger the components of the stochastic error vector ωt, and conversely

the more certain one is about the parameter values the smaller the components of

the stochastic error vector ωt. In Section 6 we will see how increasing values in

the stochastic vector ωt, to reflect increased uncertainty about the future, allows

dynamic models to adapt more rapidly to changing trends.

Generally the observation and the evolution equations can be written as [1]:

Observation Equation: Yt = F ′tθt + νt, νt ∼ N(0, Vt),

System Evolution Equation: θt = Gtθt−1 + ωt, ωt ∼ N(0,Wt).
(3.3.4)
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3.4 Urine Output Series: Regression Model

Consider the following example of a dynamic regression model. The model we will

use for illustration is a two component model in which the components are a level and

a regression variable, where once again, the response represents the (transformed)

urine output per kilogram

log(Yt + 0.1) = µt + βtCVPt + νt, νt ∼ N(0, V ), (3.4.1)

where the response is composed of an underlying level, µt, and an amount determined

by CVP, the central venous pressure. Here the evolution equations are described by

random walks (see section 4.6.3)

µt = µt−1 + ωµt, ωµt ∼ N(0,Wµt),

βt = βt−1 + ωβt, ωβt ∼ N(0,Wβt).
(3.4.2)

The amount of movement in the level over time is determined by the stochastic

term ωµt, which is governed by the variance, Wµt. As this variance increases (or

decreases), the more (or less) volatile the series becomes. At the limit Wµt = 0 there

is no volatility in the level and the dynamic parameter, µt, reduces to the static

parameter, µ. At the limit Wµt −→ ∞ there is complete “information loss” from

time t − 1 to time t, allowing the level parameter to rapidly adapt to future data

(see Section 6).

In this example (see Equations (3.3.4)), F ′t = (1,CVPt), θt = (µt, βt), Gt = G = I2,

Vt ≡ V , and the system variance matrix is

Wt =

(
Wµt Wµβt

Wµβt Wβt

)
, (3.4.3)

where Wµβt = Cov(ωµt, ωβt) = Cov(ωβt, ωµt) = Wβµt.

3.4.1 Overview

The observation and system evolution equations (3.3.4), illustrate the concepts and

important features of the class of dynamic linear models (DLMs). This class of

DLMs is described and analysed in detail in Chapter 4, but here we provide a
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basis for what follows in later chapters. The principles of Bayesian forecasting and

dynamic modelling in this thesis involve

1. Parametric models with a probabilistic representation of information about

parameters with the means to incorporate external information (see Section

6.2);

2. A sequential model definition utilising conditional independence (see Figure

3.3);

3. Probability distributions describing forecasts (see Section 4.2.1);

4. Model monitoring (see Chapter 6);

5. Dynamic mixture models (see Chapter 7).

We are interested in a scalar time series, Yt, which represents urine output per

kilogram. At time t − 1 the current information is Dt−1 = {Dt−2, Yt−1}. At time

t − 1 the information relevant to predicting future observations is represented in

the posterior probability distribution (θt−1 | Dt−1). Given information up to time

t − 1 the conditional distribution (θt−1 | Dt−1) is sufficient for predicting future

forecasts [1]. There will also be occasions when external information is included by

the forecaster. In these cases, changes in θt may be required to allow the model to

adapt to new circumstances. These occurrences can be very difficult to recognise

and are discussed in Chapter 6.

The next modelling step is to relate the current information about the state into the

future using the system evolution equation so that predictive distributions (Yt+k |
Dt−1), k ≥ 0, can be derived. This is achieved by specifying a sequential relation to

combine the forecasted system distributions (θt+k | θt−1, Dt−1) with the observation

relations (Yt+k | θt+k, Dt−1). In combination with the posterior distribution, (θt−1 |
Dt−1), these distributions enable us to derive a full joint forecast distribution.

A crucial property enabling dynamic modelling is conditional independence (see Fig-

ure 3.3). The key structural feature is that given θt, the past present and future

are mutually independent. Also, given information up to time t, Dt, all of the infor-

mation concerning the future is contained in the posterior parametric distribution
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(θt | Dt). If we are only concerned with normal DLMs then we can go further and

say that if (θt | Dt) ∼ N(mt,Ct) then the pair {mt,Ct} contains all of the relevant

information about the future [1].

Yt−2 Yt−1 Yt Yt+1 Yt+2

θt−2 θt−1 θt θt+1 θt+2

Figure 3.3: The DLM Conditional Independence Structure, adapted from [1]

Conditional independence features strongly in dynamic model building. As we shall

see in Section 4.6 the principle of superposition states that any linear combination

of independent normal DLMs is a DLM. In the case of the two-component DLM,

with θ′t = (θ′t1, θ
′
t2), the two series representing different components of the DLM,

{θt+i,1, i > 0} and {θt+i,2, i > 0} evolve independently (see Figure 3.4). This impor-

tant consequence allows us to construct a complex DLM from a linear combination

of simple DLMs [1].

θt+1,1|Dt

θt|Dt

θt+2,1|Dt
. . . θt+k,1|Dt

θt+1,2|Dt θt+2,2|Dt
. . . θt+k,2|Dt

Figure 3.4: The Parametric Conditional Independence Structure, adapted from [1]

Using Bayes rule the joint distribution for the observations and parameters at time

t may be derived using

p(Yt,θt | Dt−1) = p(Yt | θt, Dt−1)p(θt | Dt−1). (3.4.4)
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The one-step ahead forecast is given by the marginal distribution (Yt | Dt−1), and

the posterior distribution, (θt | Dt), is the conditional distribution (θt | Dt−1, yt).

There are many external factors that can affect this and using Bayesian models this

external information can be routinely incorporated into the system at any time.

Bayesian dynamic models also allow for model monitoring. This involves using the

proposed model routinely unless exceptional circumstances arise (see Chapter 6).

These circumstances can occur in two ways. The first is when relevant external

information is received which drastically changes the system. This can be routinely

handled with Bayesian dynamic models and is sometimes referred to as a forward

intervention (see Section 6.2). The second type of exception is model feedback. This

occurs when a monitoring system is used to keep track of model performance and the

monitoring system flags a significant inadequacy warning when the routine model

performs poorly compared to some other alternative models. When the monitoring

system flags a warning, diagnostics are performed to help correct the routine model.

Model inadequacies can be very difficult to recognise and are discussed in Chapter

6. Automatic model monitoring schemes can be used to detect and diagnose model

deficiencies and are used to monitor model performance.

Automatic model monitoring schemes will then lead us to using dynamic mixture

models (see Chapter 7) to more concretely handle exceptional circumstances and to

provide a more powerful framework for modelling noisy time series.

3.4.2 Definitions and Notation

The general DLM is defined for a vector observation Yt. However in this thesis

we are only interested in the univariate case. Let Yt be an observation on a time

series. Following from the model defined by Equations (3.3.4) we have the following

definitions and notation.

Definition 3.4.2.1. The general normal dynamic linear model is characterised by

a set of quadruples [1]

{F ,G, V,W }t = {Ft,Gt, Vt,Wt} (3.4.5)

for each time t, where Ft is a known (n× 1) matrix, Gt is a known (n× n) matrix,
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Vt is a known (1 × 1) variance, and Wt is a known (n × n) variance matrix (in

Sections 4.8 and 4.9 we discuss how to incorporate learning procedures for unknown

variances Wt and Vt respectively). This quadruple defines the model relating Yt to

the (n× 1) parameter vector θt at time t, and the θt sequence through time, via the

sequentially specified distributions

(Yt | θt) ∼ N(F ′tθt, Vt)

(θt | θt−1, Dt−1) ∼ N(Gtθt−1,Wt).
(3.4.6)

The conditional independence structure shown in Figure 3.3 applies. Given θt, Yt

is independent of all other observations and parameter values. In general, given the

present, the future is independent of the past.
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Chapter 4

Analysis of the DLM

In this chapter we present ideas and concepts of the Bayesian analysis of the dynamic

linear model.

4.1 Model Form and Notation

The general univariate dynamic linear model is written as

Observation Equation: Yt = F ′tθt + νt, νt ∼ N(0, Vt),

System Evolution Equation: θt = Gtθt−1 + ωt, ωt ∼ N(0,Wt),

Initial Information: (θ0 | D0) ∼ N(m0,C0),

(4.1.1)

for some prior moments m0 and C0. The time origin t = 0 is just an arbitrary label

and applies particularly when the data Y1, Y2, . . . represents the continuation of a

previously observed series. In such cases the initial prior is viewed as sufficiently

summarising the information from the past. The initial state vector, θ0, is concretely

interpreted as the final state vector from the historical data. Otherwise, θ0 has no

such interpretation and the model may be equivalently initialised by specifying a

normal prior, (θ1 | D0), for the first state vector [1, 15]. Moreover, Yt denotes

the observation series at time t, Ft is a vector of known constants (the regression

vector); θt denotes the vector of model state parameters; νt is a stochastic error

term having a normal distribution with zero mean and observational variance Vt;
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Gt is a matrix of known coefficients that defines the systematic evolution of the state

vector across time; and ωt is a stochastic error term having a normal distribution

with zero mean and evolution covariance matrix Wt. The two stochastic series {νt}
and {ωt} are assumed to be temporally independent and mutually independent, i.e.

Cov[νs, νt], Cov[ωs,ωt], ∀s 6= t, and Cov[νs,ωt], ∀s, t are zero. In this thesis we

will only consider models with a constant evolution matrix, Gt ≡ G and we only

consider univariate time series Yt.

4.2 Updating: Prior to Posterior Analysis

Prior information on the state vector for time t + 1, given information up to time

t, Dt, is summarised as a normal distribution with mean at+1 = E[θt+1 | Dt] and

covariance matrix Rt+1 = Var(θt+1 | Dt),

θt+1 | Dt ∼ N(at+1,Rt+1), (4.2.1)

where Dt denotes the state of knowledge at time t [15]. From the prior information,

forecasts are generated using the observation equation.

4.2.1 Forecasting One Step Ahead

The forecast quantity Yt+1 is a linear combination of normally distributed variables,

θt+1 and νt+1, and is therefore also normally distributed. The forecast mean and

variance are:

E[Yt+1 | Dt] = E[F ′t+1θt+1 + νt+1 | Dt]

= E[F ′t+1θt+1 | Dt] + E[νt+1 | Dt]

= F ′t+1at+1

= ft+1,

Var[Yt+1 | Dt] = Var[F ′t+1θt+1 + νt+1 | Dt]

= Var[F ′t+1θt+1 | Dt] + Var[νt+1 | Dt]

= F ′t+1Rt+1Ft+1 + Vt+1

= Qt+1.

(4.2.2)
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Thus the one-step ahead forecast distribution is given by (Yt+1 | Dt) ∼ N(ft+1, Qt+1)

[15]. Note that we used the assumption that the observation disturbance, νt+1, is

uncorrelated with the state, θt+1.

4.2.2 Forecasting k-Steps Ahead

Forecasting k-steps ahead requires the prior information to be projected into the

future through repeated application of the evolution equation. Given information

up to time t, Dt, and the state prior for time t+1, the prior for time t+2, p(θt+2 | Dt)

is obtained by applying the evolution equation. We find:

θt+2 = Gθt+1 + ωt+2, ωt+2 ∼ N(0,Wt+2). (4.2.3)

Linearity ensures that this two step ahead prior will be normal. The moments are

given by

E[θt+2 | Dt] = GE[θt+1 | Dt] + E[ωt+2 | Dt]

= Gat+1

= at(2)

Var[θt+2 | Dt] = GVar[θt+1 | Dt]G
′ + Var[ωt+2 | Dt]

= GRt+1G
′ +Wt+2

= Rt(2).

(4.2.4)

Note that we used the assumption that the evolutional disturbance, ωt+2, is uncor-

related with the state, θt+1.

This procedure can be extended to find the k-step ahead state predictions. The

state prior for time t+ k (given information up to and including time t, Dt) is given

by

(θt+k | Dt) ∼ N(at(k),Rt(k)), (4.2.5)
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where, for k ≥ 2, the mean and variance are given by

at(k) = Gk−1at+1

Rt(k) = Gk−1Rt+1G
′k−1 +

k∑
j=2

Gk−jWt+jG
′k−j.

(4.2.6)

Note that the sum runs from j = 2. This is seen by observing thatRt+1 = Var[θt+1 |
Dt] = GVar[θt | Dt]G

′ + Var[ωt+1 | Dt] = GRtG
′ +Wt+1 and so we see that the

stochastic evolution variance, Wt+1, is already included in the state prior variance

Rt+1. Given this forecast for the state, the corresponding forecast for the observation

series is obtained from the observation equation as

(Yt+k | Dt) ∼ N(ft(k), Qt(k)), (4.2.7)

where (by using the observation equation) the moments are defined as,

ft(k) = E[Yt+k | Dt]

= E[F ′t+kθt+k + νt+k | Dt]

= F ′t+kat(k),

Qt(k) = Var[Yt+k | Dt]

= Var[F ′t+kθt+k + νt+k | Dt]

= F ′t+kRt(k)Ft+k + Vt+k.

(4.2.8)

It is now a good point to discuss covariance between forecasts. We will now deter-

mine an expression for the covariance between two observations in the series [15].

The covariance Cov(Yt+i, Yt+j | Dt) = Qt(i, j), where, for i > j, the covariances are

defined by

Qt(i, j) = F ′t+iCt(i, j)Ft+j,

Ct(i, j) = Gi−jRt(j).
(4.2.9)

To see this result consider two future values of the observation series, given infor-

mation up to time t, Dt

Yt+i = F ′t+iθt+i + νt+i,

Yt+j = F ′t+jθt+j + νt+j,
(4.2.10)

where i > j.
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The covariance between the state at time t + i and time t + j can be derived by

application of the system equation. For a constant evolution matrix G

θt+i = Gθt+i−1 + ωt+i

= G(Gθt+i−2 + ωt+i−1) + ωt+i

= G2θt+i−2 +Gωt+i−1 + ωt+i

= G3θt+i−3 +G2ωt+i−2 +Gωt+i−1 + ωt+i

= · · · = Gjθt+i−j +Gj−1ωt+i−j+1 + · · ·+ ωt+i

= Gjθt+i−j +

j−1∑
l=0

Glωt+i−l

= Gi−jθt+j +

i−j−1∑
l=0

Glωt+2j−l (relabelling j = i− j)

= Gi−jθt+j +Wt(i, j),

(4.2.11)

where Wt(i, j) is a linear combination of the innovation terms for times t + j +

1, . . . , t+ i.

The covariance between these two observations is (noting that the covariances Cov(νs, νt),

Cov(ωs,ωt) for all s 6= t, and Cov(νs,ωt) for all s, t are zero):

Cov(Yt+i, Yt+j | Dt) = Cov(F ′t+iθt+i + νt+i,F
′
t+jθt+j + νt+j | Dt)

= Cov(F ′t+iθt+i,F
′
t+jθt+j | Dt) + Cov(F ′t+iθt+i, νt+j | Dt)

+ Cov(νt+i,F
′
t+jθt+j | Dt) + Cov(νt+i, νt+j | Dt)

= F ′t+iCov(θt+i,θt+j | Dt)Ft+j

+ Cov(F ′t+iG
i−jθt+j +Wt(i, j), νt+j | Dt)

= F ′t+iCt(i, j)Ft+j.

(4.2.12)

Note that on the fifth line of (4.2.12) we use the substitution θt+i = Gi−jθt+j +

Wt(i, j) and we then use the assumption that the observation disturbance, νt+j, is

uncorrelated with the state, θt+j.

Using Equations (4.2.11) and (4.2.12) the desired covariance between observations

29



can be written as:

F ′t+iCov(θt+i,θt+j | Dt)Ft+j = F ′t+iCov(Gi−jθt+j +Wt(i, j),θt+j | Dt)Ft+j

= F ′t+iG
i−jVar(θt+j | Dt)Ft+j

= F ′t+iG
i−jRt(j)Ft+j.

(4.2.13)

As a special case (for the model structure that we will use to model the urine output

time series, see Chapter 5), take

Ft = F =

(
1

0

)
,G =

(
1 1

0 1

)
, (4.2.14)

and note that

Gi−j =

(
1 i− j
0 1

)
. (4.2.15)

Then we can express, for i > j

Cov(Yi, Yj | Dt) = F ′Gi−jRt(j)F = Rµ,t(j) + (i− j)Rµβ,t(j), (4.2.16)

where

Rt(j) =

(
Rµ,t(j) Rµβ,t(j)

Rµβ,t(j) Rβ,t(j)

)
. (4.2.17)

4.3 Joint Probabilities

Now that we have expressions for k-step ahead forecasts and for covariances be-

tween forecasts we can find joint probability distributions and hence calculate joint

probabilities.

In Section 2.4 we considered a (transformed) regression model which we wanted

to use to make forecasts about the urine output (per kilogram) for the next six

hours for a patient. It is of interest to us to predict the joint probability that

the next six urine outputs will all be below log(0.3)ml/kg (see Section 1.3), since

this is an indication of the likelihood that a patient’s kidneys will be in a state of

severe oliguria, indicating that a patient’s kidneys are not working sufficiently. This
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requires a joint normal distribution of the form:

Zt | Dt =


Zt+1

...

Zt+6

 | Dt ∼ N



ft(1)

...

ft(6)

,


Qt(1) . . . Qt(1, 6)
...

. . .
...

Qt(1, 6) . . . Qt(6)


 . (4.3.1)

In shorthand

Zt | Dt ∼ N[ft,Qt], (4.3.2)

where ft is a (6× 1) vector of the six point forecasts and Qt ≡ [Qt(i, j)]1≤i≤6,1≤j≤6

is the (6 × 6) covariance matrix, where, for i > j, Qt(i, j) = Cov(Zt+i, Zt+j | Dt)

(see Equations (4.2.9)); and for i = j, Qt(i, j) = Qt(i) = Var(Zt+i | Dt), where

Zt+i = log(Yt+i + 0.1).

4.4 Posterior Distribution

The model likelihood, is the conditional forecast distribution evaluated at an ob-

served value. It has the normal form

L(θt | Yt = yt, Vt) ∝ p(Yt = yt | θt, Vt)

∼ N(F ′θt, Vt).
(4.4.1)

The prior information is combined with the likelihood using Bayes’ theorem to yield

the posterior distribution on the state,

p(θt | Dt) = p(θt | Dt−1, yt) =
p(Yt = yt | θt, Vt)p(θt | Dt−1)

p(Yt = yt)
. (4.4.2)

For the dynamic model the state posterior is the product of two normal density func-

tions yielding another normal density [15]. Recalling that (θt | Dt−1) ∼ N(at,Rt)

we obtain

p(θt | Dt) ∝ p(Yt = yt | θt, Vt)p(θt | Dt−1)

∝ exp{−0.5V −1
t (yt − F ′θt)2} × exp{−0.5(θt − at)′R−1

t (θt − at)}

∝ exp{−0.5(θt −mt)
′C−1

t (θt −mt)},
(4.4.3)
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where the moments are defined as

mt = at +Atet,

Ct = Rt −AtA
′
tQt,

At = RtF /Qt,

et = yt − ft.

(4.4.4)

The above result states that the posterior distribution (θt | Dt) ∼ N(mt,Ct) with

moments defined in (4.4.4) [15]. This result is derived in Appendix A.

These moments are key to why dynamic models are more powerful than static linear

models. The posterior mean mt is the prior mean at plus a multiple of the one-step

ahead forecast error. The amount of adjustment from the prior mean is determined

by the adaptive factor, At [15]. The adaptive factor is determined by the size of

the state prior variance, |Rt|, and the observation variance Qt = F ′RtF + Vt. The

larger the observation variance compared to the state prior variance, the smaller the

adaptive factor and as At → 0 the posterior mean is approximately the prior mean,

i.e. mt ≈ at. The intuition here is that (recalling that (θt | Dt−1) ∼ N(at,Rt) and

(Yt | Dt−1) ∼ N(ft, Qt)) if Qt � |Rt| then we are more certain about the parameter

values than we are about the forecasts. This means that large forecast errors are

possible. Since the data up to time t − 1 has given us an adequate state estimate

(since here Qt � |Rt|) we do not want the estimate to be largely changed by a large

forecast error and so intuitively At should be small. Conversely, if |Rt| � Qt then

the state prior variance is large compared to the observation variance. This means

we are uncertain about the state parameter but the observation variance is small

(compared to the state prior variance) and so the observation has a lot of useful

information for the state and so adjustment from the prior to the posterior should

reflect that useful observation.

State posterior variances are smaller than the corresponding prior variances because

we have gained more information from the observation at time t. The only exceptions

to this are two special cases [15]. One case is when F = 0 when the observation

yt is completely uninformative on the state and the posterior variance is identical

to the prior variance. This applies only to the regression components since trends

and seasonal components have constant, nonzero regression vectors. The second

case is when an observation is missing. Posterior moments are then equal to prior
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moments. If yt is missing then p(θt | Dt) = p(θt | Dt−1, yt) = p(θt | Dt−1).

Once an observation is made, and posterior distribution is calculated, we repeat the

cycles of prior to forecast to posterior to next prior. These stages characterise the

routine analysis of the DLM and we now have the means to update our recurrence

relations and forecast distributions.

The recurrence relations, for a constant and known evolution matrix Wt = W ,

and a known constant observational variance Vt = V , are described in Algorithm 1

(adapted from West and Harrison [1]).

4.5 Bayesian Updating of the DLM

To illustrate the essence of dynamic models we will consider how to update our beliefs

using Bayes’ rule. For simplicity and illustration purposes we will consider updating

an initial prior normal distribution with data that follows a normal distribution with

known precision.

We are interested in making inferences about the level of urine output for a pa-

tient, µ. In our dataset we have measurements of a patient’s urine output, y =

{y1, . . . , yn}. Assume that our given measurement system has known precision, λ,

with unknown mean, µ, and yi ∼ N(µ, λ−1), where each yi is independently dis-

tributed. Thus,

l(µ | y, λ) =
n∏
i=1

p(yi | µ, λ−1),

= (2πλ−1)−n/2 exp

[
− λ

2

n∑
i=1

(yi − µ)2

]
,

= (2πλ−1)−n/2 exp

[
− λ

2

n∑
i=1

[(yi − ȳ)− (µ− ȳ)]2
]
,

= (2πλ−1)−n/2 exp

[
− λ

2

{ n∑
i=1

(yi − ȳ)2 − 2(µ− ȳ)
n∑
i=1

(yi − ȳ) + n(µ− ȳ2)

}]
,

= (2πλ−1)−n/2 exp

[
− nλ

2
[s2 + (µ− ȳ)2]

]
,

(4.5.1)
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Algorithm 1 Recurrence Relations for known W and known V

Input: m0, C0, W , and V
1: At time t the posterior for the state is given by

(θt | Dt) ∼ N(mt,Ct). (4.4.5)

2: Set at(0) = mt and Rt(0) = Ct.
3: The prior for the state at time t+ k, for k > 0, given information up to time t,
Dt, is given by

(θt+k | Dt) ∼ N(at(k),Rt(k)), (4.4.6)

where
at(k) = Gat(k − 1),

Rt(k) = GRt(k − 1)G′ +W .
(4.4.7)

4: The prior for the forecasts at time t+k, for k > 0, given information up to time
t, Dt, is given by

(Yt+k | Dt) ∼ N(ft(k), Qt(k)), (4.4.8)

where
ft(k) = F ′t+kat(k),

Qt(k) = F ′t+kRt(k)Ft+k + V.
(4.4.9)

5: Then, after observation yt+1 is observed we update Equation (4.4.5) to time t+1

(θt+1 | Dt+1) ∼ N(mt+1,Ct+1) (4.4.10)

where we set at+1(0) = mt+1 and Rt+1(0) = Ct+1, where

et(1) = yt+1 − ft(1),

At+1 = Rt(1)Ft+1/Qt(1),

mt+1 = at(1) +At+1et(1),

Ct+1 = Rt(1)−At+1A
′
t+1Qt(1).

(4.4.11)
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where ȳ =
∑n

i=1 yi/n and s2 =
∑n

i=1(yi − ȳ)2/n. Thus we have

l(µ | y, λ) ∝ exp

[
− nλ

2
(µ− ȳ)2

]
. (4.5.2)

Assume that our prior uncertainty about µ can be described by a normal distribu-

tion, µ ∼ N(a,R), so that its pdf is

p(µ | a,R) =

√
R−1

2π
exp

[
− R−1

2
(µ− a)2

]
. (4.5.3)

Updating our prior beliefs through Bayes’ rule, we obtain

p(µ | ȳ, λ, a, R) ∝ l(µ | y, λ)× p(µ | a,R),

∝ exp

[
− nλ

2
(µ− ȳ)2

]
exp

[
− R−1

2
(µ− a)2

]
,

∝ exp

{
− 1

2
[nλ(µ− ȳ)2 +R−1(µ− a)2]

}
,

∝ exp

{
− 1

2
[nλ(µ2 − 2ȳµ+ ȳ2) +R−1(µ2 − 2aµ+ a2)]

}
,

∝ exp

{
− 1

2

[
(nλ+R−1)

(
µ2 − 2µ

nλȳ + aR−1

nλ+R−1

)
+ ȳ2nλ+ a2R−1

]}
.

(4.5.4)

By completing the quadratic and dropping terms that do not depend on µ, we obtain

p(µ | ȳ, λ, a, R) ∝ exp

[
− nλ+R−1

2

(
µ− nλȳ + aR−1

nλ+R−1

)2]
. (4.5.5)

This is the kernel of a normal distribution for µ with mean, m, and precision, C−1,

given by

m =
nλ

nλ+R−1
ȳ +

R−1

nλ+R−1
a,

C−1 = nλ+R−1.

(4.5.6)

Notice that the posterior mean is a weighted average of the prior and the sample

means, with weights depending on the number of observations, and the precisions of

the prior and the likelihood. A key point to note is that for a sample size, n, large

enough, the posterior mean will be dominated by the sample mean and the posterior

precision will hardly be influenced by the initial prior precision. So, when enough

relevant information is accumulated, the initial prior influence in the posterior is

overpowered by that contained in the sample. However, this is not necessarily the
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case when n is relatively small.

To see the role of the initial prior distribution, as more data is collected, we will con-

sider updating from prior to posterior for four different sample sizes, n = 1, 10, 25, 50.

We will assume that the initial prior distribution for µ is given by µ ∼ N(−4, 1/2)

and that λ = 1 and that ȳ = 0 for all n.
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Figure 4.1: Role of initial prior distribution as n increases. Blue lines represent prior
distributions, red lines represent posterior distributions, and black lines represent the
likelihoods. We see that as the sample size increases, the posterior distribution resembles
the likelihood more and more

From Figure 4.1 we see that for n = 1, representing the first update from prior

to posterior, the prior and information from observation y1 are quite different and

hence the posterior lies in between both distributions (see Equations (4.5.6)). We

also see that, as the sample size increases, the posterior distribution resembles the

likelihood more and more, regardless of the initial prior. This illustrates a key point

about DLMs and Bayesian analysis. The initial prior has little influence on the

posterior distributions as n increases.
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4.6 Component Forms

Building a suitable model for a time series is a difficult task in Bayesian modelling.

In this section we will see several component forms and outline the mathematical

structure of building more complex dynamic models.

4.6.1 Polynomial Trend Components

The simplest polynomial trend model is the first order polynomial model, or the level

model. Observed series values are stochastically distributed about a time varying

constant:

Yt = µt + νt, νt ∼ N(0, Vt),

µt = µt−1 + ωt, ωt ∼ N(0,Wt).
(4.6.1)

The system equation defines the level to be a simple random walk through time [15].

Here we see that the regression vector, F , and the system evolution matrix, G are

both 1 (see Equations (4.1.1)). A second order polynomial trend model allows for

systematic growth or decline in level. That is, a model with both level and slope.

The additional parameter quantifies the change in level over time,

Yt = µt + νt,

µt = µt−1 + βt−1 + ωµt,

βt = βt−1 + ωβt,

(4.6.2)

where νt ∼ N(0, Vt) and ωt ∼ N(0,Wt) where

Wt =

(
Wµt Wµβt

Wµβt Wβt

)
.

The state vector θt = (µt, βt)
′, where µt and βt represent the level and the rate of

change in level at time t, respectively. Here we see that the regression vector and

system matrix are given by (see Equations (4.1.1))

F =

(
1

0

)
, G =

(
1 1

0 1

)
. (4.6.3)
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Higher order polynomial DLMs are defined by extension [16]. The class of polyno-

mial models of order p have p-dimensional state vectors, F = (1, 0, . . . , 0)′ and a

(p × p) evolution matrix G given by the (p × p) Jordan form (diagonal and super-

diagonal entries are one, and all other entries are zero)

G =



1 1 0 . . . 0

0 1 1 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


. (4.6.4)

Then we have

Yt = θ1t + νt

θ1t = θ1,t−1 + θ2,t−1 + ω1t

θ2t = θ2,t−1 + θ3,t−1 + ω2t

...
...

θjt = θj,t−1 + θj+1,t−1 + ωjt
...

...

θpt = θp,t−1 + ωpt.

(4.6.5)

The element θjt of the state vector represents the jth difference of the trend in the

series at time t.

4.6.2 Seasonal Component Models

Modelling seasonal patterns in time series requires a periodic component form. One

way of representing such a form is to isolate an underlying trend from periodic

movement about that trend [15]. Over a complete cycle the effects sum to zero since

the trend, which is the average of the factors over the cycle, contains the overall

series movement over that time span. The seasonal effects model defines parameters

to measure seasonal departures from a trend. For example, a set of seasonal factors

1, 1.4, 0.8, and 1.2 is equivalent to a trend of 1.1 and seasonal effects -0.1, 0.3, -0.3,

and 0.1.

Suppose that we have quarterly data Yt, for t = 1, 2, . . . on the sales of a store
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which show a cyclic behaviour [17]. Assume for simplicity that the series has zero

mean (a non-zero mean is modelled separately by adding a first order polynomial

component, or if there is an underlying level that may grow or decay over time,

by adding a second order polynomial component, (see Section 4.7)), so we consider

the series as purely seasonal. Here we describe the quarterly data by introducing

seasonal deviations from the mean, expressed by different coefficients αi for different

quarters, i = 1, 2, 3, 4. So, if Yt−1 refers to the first quarter of the year and Yt to the

second quarter, we assume

Yt−1 = α1 + νt−1

Yt = α2 + νt

Yt+1 = α3 + νt+1

(4.6.6)

and so on. This model can be written as a DLM by writing θt−1 = (α1, α4, α3, α2)′

and F = (1, 0, 0, 0)′.

The state equation must rotate the components of θt−1 into the vector θt = (α2, α1, α4, α3)′,

so that Yt = Fθt + νt = α2 + νt. This required permutation of the state vector can

be obtained by a permutation matrix G defined by

G =


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

 . (4.6.7)

In general, for a seasonal model with n seasons, we have F = (1, 0, . . . , 0) and

G =



0 0 . . . 0 1

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


, (4.6.8)

an (n× n) matrix.
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4.6.3 Regression Components

Regression components are easily added to a DLM through the regression vector.

For example, regression on CVP (central venous pressure) with an underlying level,

looks like

Yt = µt + βtCVPt + νt,

µt = µt−1 + ωµt,

βt = βt−1 + ωβt,

(4.6.9)

where the regression vector Ft = (1,CVPt) and the system matrix is, G = I2,

the (2 × 2) identity matrix. The regression coefficients have a simple random walk

evolution. Regressing on several variables, X1, ..., Xq, has the form

Yt = β1tX1t + · · ·+ βqtXqt + νt,

βit = βi,t−1 + ωit, i = 1, . . . , q,
(4.6.10)

where the regression vector Ft = Xt = (X1t, . . . , Xqt)
′, and the system matrix is the

(q × q) identity matrix, G = Iq [15].

4.7 Superposition: Block Structured Models

Derived from the principle that any linear combination of independent linear models

is a linear model, the superposition principle gives us a means of constructing more

complex dynamic models. Component forms for trend, seasonal, and regression are

the building blocks for constructing models of complex time series behaviour. The

linear additive structure of the (normal) DLM enables component models to be

brought together in a straightforward way.

A linear growth plus regression model is a DLM that is often used when the dataset

has many explanatory variables describing a response variable. We could represent

this series as

Yt = YTt + YRt + νt, (4.7.1)
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where

YTt = F ′TtθTt,

θTt = GTtθT,t−1 + ωTt,
(4.7.2)

represents the trend component and

YRt = F ′RtθRt,

θRt = GRtθR,t−1 + ωRt,
(4.7.3)

represents the regression component. From Equations (4.7.2) and (4.7.3) we can see

that the state variables for each component evolve independently (see Figure 3.4).

The observation is a linear combination of these components

Yt = F ′TtθTt + F ′RtθRt + νt,

= F ′tθt + νt,
(4.7.4)

where Ft = (FTt,FRt)
′ and θt = (θTt,θRt)

′. For the system equation we can write

θt = Gtθt−1 + ωt, (4.7.5)

where ωt = (ωTt,ωRt)
′. The evolution and system variance matrices have the diag-

onal form:

Gt =

(
GTt 0

0 GRt

)
, Wt =

(
WTt 0

0 WRt

)
. (4.7.6)

Many complex dynamic models can be built in the same way. The following holds

[1]

Theorem 4.7.0.1. Consider h time series Yit, generated by DLMs

Mi = {Fit,Git, Vit,Wit}, i = 1, . . . , h. (4.7.7)

This quadruple defines the model relating Yit to the (ni × 1) parameter vector, θit,

at time t and the observation and evolution error series are νit and ωit, respectively.

The state vectors are distinct, and for all i 6= j, the series νit and ωit are temporally

independent and mutually independent.
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Then the series

Yt =
h∑
i=1

Yit, (4.7.8)

follows the n-dimensional DLM {Ft,Gt, Vt,Wt}, where n = n1 + · · · + nh and the

quadruple and the state vector, θt, are given by

θt =


θ1t

...

θht

 , Ft =


F1t

...

Fht

 , (4.7.9)

Gt =


G1t . . . 0

...
. . .

...

0 . . . Ght

 , Wt =


W1t . . . 0

...
. . .

...

0 . . . Wht

 , (4.7.10)

and

Vt =
h∑
i=1

Vit. (4.7.11)

4.8 Block Discounting

In the preceding analysis we have used knowledge of the system evolution covari-

ances, Wt. In practice this evolution variance will be unknown and difficult to

specify. The system evolution covariance matrix can be updated in the same man-

ner that the parameters are updated. We could specify an initial prior distribution

and then, using Bayes’ theorem, update this distribution when observational in-

formation becomes available. However, this gets very difficult to implement on a

routine basis, but fortunately a practical solution called information discounting ex-

ists to capture the evolution of the system covariances [15]. Information discounting

is an important method to handle models with unknown evolution variances, Wt.

This practical solution captures the evolution of the system variance and a Bayesian

learning approach.

Earlier we noted that as information ages its value diminishes. This ageing process
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is modelled in the DLM through the system evolution. Information discounting

increases uncertainty when forecasting into the future. Consider Equations (4.1.1),

with G = 1, in particular the system evolution equation

System Evolution Equation: θt = θt−1 + ωt, ωt ∼ N(0,Wt). (4.8.1)

The mechanism of the dynamic linear model is to add extra variance to the state

posterior distribution to yield the prior for the next time.

Var(θt | Dt−1) = Var(θt−1 | Dt−1) +Wt. (4.8.2)

Another way to model information loss is in percentage or in discount terms [15]. In

other words, we might want to quantify the loss of information as an α% increase in

uncertainty as information ages by one time period, where α ≥ 0. We could write

Var(θt | Dt−1) = (1 + α)Var(θt−1 | Dt−1). (4.8.3)

To see that Equations (4.8.2) and (4.8.3) are equivalent set Wt = αVar(θt−1 | Dt−1).

Here we define the discount factor δ = (1+α)−1. The discount factor varies between

0 and 1 and for a discount factor δ ∈ (0, 1] the information loss through the evolution

process is summarised as

Var(θt | Dt−1) = δ−1Var(θt−1 | Dt−1). (4.8.4)

For a 15% information loss, δ ≈ 0.87 and when δ = 1 we have Var(θt | Dt−1) =

Var(θt−1 | Dt−1), that is, the prior variance at time t is the same as the posterior

variance at time t− 1. This is practically unrealistic since forecasting to the future

always brings additional uncertainty. The idea of information discounting is given

information up to time t the prior variance for time t+ 1 should be larger than the

posterior variance for time t. In the absence of further knowledge after time t this

captures the essence of future uncertainty [15].

The state prior variance at any time is computed as a function of the most recent

posterior variance determined by a discount factor, δ ∈ (0, 1]. The discount factor

represents the amount of information loss attributed to future advancement, more

generally (recalling (θt−1 | Dt−1) ∼ N(mt−1,Ct−1)),

Var(θt | Dt−1) = δ−1GVar(θt−1 | Dt−1)G′

= δ−1GCt−1G
′.

(4.8.5)
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In addition we have (see Equation (4.4.7) with k = 1 and replacing t with t− 1 and

replacing W with Wt),

Rt = Var(θt | Dt−1) = GCt−1G
′ +Wt = Pt +Wt, (4.8.6)

where Ct−1 is the posterior variance at time t − 1. The matrix Pt = GCt−1G
′

can be thought of as the prior variance in a DLM with no evolution error, i.e. in a

model with Wt = 0, where the state vector is stable and has no stochastic variation.

This situation is practically useless, however, it can be assumed that Rt = Pt

δ
for

δ ∈ (0, 1], and so the prior variance at time t is that of a model without stochastic

error times a factor which inflates such variance. When δ = 1 we have a static

model. Using Rt = Var(θt | Dt−1) = Pt +Wt and Rt = Pt

δ
, we have

Wt =
1− δ
δ
Pt. (4.8.7)

So we see that discounting variances is equivalent to setting the evolution variance

as a proportion of the posterior variance,

Wt =

(
1

δ
− 1

)
GCt−1G

′. (4.8.8)

Low values of the discount factor δ are consistent with high variability in the θt

sequence, while high values, with δ ≥ 0.9 are more practically useful [16]. This rep-

resentation is general and for models with multiple components the recommended

discount strategy is to proceed component by component. Separate discount factors

are specified for each component and individual component evolution variance ma-

trices computed. The overall state evolution variance matrix is then set to the block

diagonal composition of these individual elements. For example, in the trend plus

regression component model considered in Section 4.7, we could define two discount

factors for these components, δT and δR. The evolution covariance matrix would be

Wt =

(
WT 0

0 WR

)

=


(

1
δT
− 1

)
GTCT,t−1G

′
T 0

0

(
1
δR
− 1

)
GRCR,t−1G

′
R

 ,

(4.8.9)

where CT,t−1 is the posterior covariance matrix for the trend component at time

t− 1, and CR,t−1 is the posterior covariance matrix for the regression component at
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time t− 1.

Using block discounting to structure the evolution covariance allows for separate

discount factors. This allows for separate components of the DLM to have different

variability inflations and to evolve more or less quickly than other components.

The trend variation could be seen to be more stable than regression variation, for

example.

4.8.1 Practical Discount Strategy

Discounting is a practical solution that captures the evolution of the system variance

and a Bayesian learning approach. When forecasting one-step ahead we do not need

to computeWt explicitly sinceRt = Pt/δ. However, when forecasting k-steps ahead

at time t it is not the case that repeat application with the same discount factor will

produce the relevant sequence of variance matrices [1]. For example, consider a DLM

with Ft = F and Gt = G with one discount factor, δ, for each of its components,

repeated application of the system equation, given information up to time t, Dt (see

Equations (4.1.1) with Gt = G) and using Equation (4.8.8) leads to

Var(θt+1 | Dt) = Var(Gθt + ωt+1 | Dt) = GCtG
′ +Wt+1

= GCtG
′ +

(
1

δ
− 1

)
GCtG

′ =
GCtG

′

δ
= Rt(1),

Var(θt+2 | Dt) = Var(Gθt+1 + ωt+2 | Dt) = G
GCtG

′

δ
G′ +Wt+2

=
G2CtG

2′

δ
+

(
1

δ
− 1

)
GRt+1G

′

=
G2CtG

2′

δ
+

(
1

δ
− 1

)
G2CtG

2′

δ
=
G2CtG

′2

δ2
= Rt(2).

(4.8.10)

This process can be repeated for up to k-steps into the future and we obtain

Var(θt+k | Dt) = Rt(k) =
GkCtG

′k

δk
. (4.8.11)

The use of δk as a discount factor k-steps ahead implies an exponential decay in

information, and this is not strictly consistent with the DLM in which the informa-

tion decays arithmetically through the addition of future evolution error variance

matrices [1]. Hence, this discount approach must be adapted when forecasting more
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than one-step ahead.

A practical approach is suggested in West and Harrison (1997) [1]. This approach

assumes that the one-step ahead evolution variance matrix is appropriate for fore-

casting k-steps into the future, determining a constant step-ahead variance matrix.

The resulting discount procedure is as follows.

1. Given (θt | Dt) ∼ N(mt,Ct), calculate Wt+1 = Pt+1(1 − δ)/δ, where Pt+1 =

GCtG
′.

2. In forecasting k-steps ahead, adopt the conditionally constant variance

Var(ωt+k | Dt) = Wt+k = Wt+1, (k = 1, ...). (4.8.12)

Thus, step-ahead forecast distributions will be based on the addition of evo-

lution errors with the same variance matrix, Wt+1 for all k.

3. When Yt+1 is observed the posterior (θt+1 | Dt+1) can be derived and then

Pt+2 = GCt+1G
′ and thus Wt+2 can be calculated. Thus forecasting ahead

from time t+ 1, we have

Var(ωt+k | Dt+1) = Wt+k+1 = Wt+2, (k = 1, ...). (4.8.13)

4. Continue in this manner at time t+ 2, and so on.

Prior to Section 4.8 we assumed that Wt was known, and constant, for all times

t. This implied that the evolution matrices were independent of the history of

the series. Now, with the proposed discount strategy, the evolution matrices have

been modified to depend on the current state of information, Dt, and this allows

a learning discount strategy to be applied representing the evolution matrices as a

proportion of the most recent state posterior variance. This allows DLMs to express

more (less) uncertainty at times where we are less (more) certain about the values

of the parameters.
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4.9 Variance Learning

So far we have assumed a known, constant observational variance Vt ≡ V . In many

applications the observation variance will not be constant over the full range of a

time series. Similarly to the evolution variance a learning mechanism is necessary.

According to Bayes’ rule,

p(θ | x) =
p(x | θ)p(θ)∫

Θ
p(x | θ)p(θ)dθ

, (4.9.1)

and in order to fully know the posterior distribution we must be able to perform the

integral appearing in the denominator. This is sometimes unfeasible but fortunately,

in some circumstances, performing the integral in the denominator can be avoided.

One way to avoid doing this integral is to ensure that p(θ | x) and p(θ) have the

same functional form, i.e. they belong to the same family.

Definition 4.9.0.1. A family F of probability distributions on Θ is said to be

conjugate for a likelihood function p(x | θ) if, for every prior p ∈ F , the posterior

distribution, p(θ | x), also belongs to F .

Using a conjugate prior distribution an analytical solution to the learning mecha-

nism for the observational variance exists [15]. This involves using normal-gamma

conjugate analysis. Defining the constant unknown variance DLM, in terms of the

precision φt = V −1
t , as

Observation Equation: Yt = F ′tθt + νt, νt ∼ N(0, φ−1
t ),

System Evolution Equation: θt = Gθt−1 + ωt, ωt ∼ N(0,W ∗
t φ
−1
t ).

(4.9.2)

The scaling of the system disturbance covariance by the unknown observation vari-

ance is necessary for a conjugate analysis [15]. Setting Wt = W ∗
t φ
−1
t recovers the

normal form of the system equation as in Equations (4.1.1).

4.9.1 Prior Information

At time t we now have two distributions describing the prior information given the

information up to time t−1, Dt−1. One describing the state and the other describing
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the scale parameter

(θt | Dt−1, φt) ∼ N(at,R
∗
tφ
−1
t ),

(φt | Dt−1) ∼ Ga(nt−1/2, dt−1/2).
(4.9.3)

Setting Rt = R∗tφ
−1
t recovers the normal form of the prior as in Equation (4.2.1)

(with t replaced with t + 1). The parameters of the gamma prior on the scale

represent the degrees of freedom, nt−1, and sums of squared errors, dt−1, with mean

equal to the ratio of these quantities, nt−1/dt−1.

4.9.2 Forecasts

The conditional forecast distribution is, like before, normal but now we make the

scale factor explicit,

(Yt | Dt−1, φt) ∼ N(ft, Q
∗
tφ
−1
t ), (4.9.4)

where the observation scale-free forecast variance is

Q∗t = 1 + F ′tR
∗
tFt. (4.9.5)

From standard normal-gamma theory, unconditionally the forecast has a T distri-

bution on nt−1 degrees of freedom [15],

(Yt | Dt−1) ∼ Tnt−1(ft, Qt), (4.9.6)

where the mean and scale parameter are given by

ft = F ′tat

Qt = St−1 + F ′tR
∗
tFtSt−1,

(4.9.7)

where St−1 = dt−1/nt−1.

We note that the expected forecast, ft, is the same as the known constant variance

scenario. The observational variance learning mechanism does not change the point

forecasts. The aim of this mechanism being that the observational variance can

learn and evolve simultaneously with the other parameters and hence, when neces-

sary, the prediction intervals can be smaller (when more confident) or larger (when

more uncertain) than in the constant observational variance case, depending on the

48



state of the series at different times. This learning mechanism illustrates a better

understanding of the uncertainty in the system rather than assuming the observa-

tional variance to be constant throughout. Notice that the forecast scale has the

same algebraic form as in the case of the known constant variance case in Equations

(4.4.9) (with k = 1 and t replaced by t+ 1), except the now unknown observational

variance is estimated by its prior expected value, St−1 = dt−1/nt−1 [15].

4.9.3 Posterior Information

The posterior distribution on the scale parameter is obtained by using Bayes’ theo-

rem

p(φt | Dt) = p(φt | Dt−1, yt) ∝ p(yt | Dt−1, φt)p(φt | Dt−1)

∝ (φ−1
t Q∗t )

−1/2 exp

{
− 1

2
(φ−1

t Q∗t )
−1/2(yt − ft)2

}
× φnt−1/2−1

t exp

{
− φt

2
dt−1

}
∝ φ

(nt−1−1)/2
t exp

{
− φt

2

[
e2
t

Q∗t
+ dt−1

]}
∼ Ga

(
1

2
(nt−1 + 1),

1

2

[
e2
t

Q∗t
+ dt−1

])
∼ Ga(nt/2, dt/2),

(4.9.8)

where

nt = nt−1 + 1

dt =
e2
t

Q∗t
+ dt−1.

(4.9.9)

The degrees of freedom parameter increases by one as an additional piece of infor-

mation has been processed, and the rate parameter is incremented by the square

of the (scaled) forecast error [15]. The expected value for the posterior precision at

time t is

E[φt | Dt] =
nt/2

dt/2
=
nt
dt

=
1

St
. (4.9.10)

Hence the expected value for the posterior variance at time t is St, and S0 is the prior

estimate for the observational variance at time t = 0. The intuition of Equations
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(4.9.9) being that if the squared forecast error e2
t is sufficiently small compared to the

scale-free forecast variance Q∗t then this indicates that the observation at time t is

in accord with the forecast distribution (4.9.4), i.e., yt is not an outlier and is in the

range of values where we expected it to be. This in accord forecast is reflected in the

updating of the observational variance. In the limiting case if et = 0 then dt = dt−1

and the posterior variance at time t, St = dt−1/(nt−1 + 1) < St−1 = dt−1/nt−1. This

is as expected because we want our prediction intervals to be shorter when we are

more confident because our forecasts errors are small and our forecasts are in accord

to what we expect (e.g. in stable periods). Conversely, we want our prediction

intervals to be larger, expressing more uncertainty, when a forecast is not in accord

to what we expect. Moreover, the posterior variance at time t will be smaller than

the posterior variance at time t− 1 precisely when

dt
nt
<
dt−1

nt−1

=⇒ nt−1dt < dt−1(nt−1 + 1)

=⇒ nt−1

(
e2
t

Q∗t
+ dt−1

)
< dt−1(nt−1 + 1)

=⇒ e2
t

Q∗t
<
dt−1

nt−1

= St−1.

(4.9.11)

Note that in many texts [1,3,4,5], until a variance discounting method is adapted

(see Section 4.9.4), φt is written without the time subscript, φ. The reason for this

can be seen by considering the prior distribution at time t+ 1

(φt+1 | Dt) ∼ Ga(nt/2, dt/2). (4.9.12)

We can see that the expected value for the prior precision at time t+ 1 is the same

as the expected value for the posterior precision at time t (see Equations 4.9.8), as

expected. We can also observe that

Var(φt+1 | Dt) = 2
nt
d2
t

= Var(φt | Dt). (4.9.13)

Indicating that the prior information at time t + 1 does not exhibit any additional

uncertainty compared to the posterior at time t. This is unrealistic as the passage of

time always brings additional uncertainty. For this reason many texts drop the sub-

script indicating that there is no need to distinguish between priors and posteriors

until a variance discounting mechanism is introduced. However, we will use sub-
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scripts to distinguish between the unknown precision posteriors at different times.

Since the posterior at time t will have a different point estimate and variance to the

posterior at time t+ 1, it is useful to distinguish between these with a subscript.

To obtain the posterior for the state we consider the joint distribution with an

observation. Since both conditional distributions, (Yt | Dt, φt) and (θt | Dt, φt) are

normal their joint distribution is also normal. The covariance of the state and the

observation at time t, given information up to time t − 1, Dt−1, and φt, is derived

using the observation equation

Cov(Yt,θt | Dt−1, φt) = Cov(F ′tθt + νt,θt | Dt−1, φt)

= F ′tVar(θt | Dt−1, φt) = F ′tR
∗
tφ
−1
t ,

(4.9.14)

and similarly

Cov(θt, Yt | Dt−1, φt) = Cov(θt,F
′
tθt + νt | Dt−1, φt) = Var(θt | Dt−1, φt)Ft

= R∗tφ
−1
t Ft = R∗tFtφ

−1
t = (F ′tR

∗
tφ
−1
t )′.

(4.9.15)

Hence the joint distribution is given by(
Yt

θt

)
| Dt−1, φt ∼ N

[(
ft

at

)
,

(
φ−1
t Q∗t F ′tR

∗
tφ
−1
t

R∗tFtφ
−1
t R∗tφ

−1
t

)]
. (4.9.16)

Using properties of the multivariate normal distribution, conditioning the state on

the observed value yields a normal distribution which is given by

(θt | Dt−1, Yt = yt, φt) ∼ N(mt,C
∗
t φ
−1
t ), (4.9.17)

where the moments are updated from their prior values with the scale conditioning

made explicit and are given by (see Appendix C)

mt = at +R∗tFtφ
−1
t (φ−1

t Q∗t )
−1(yt − ft)

= at +R∗tFtet/Q
∗
t ,

(4.9.18)

C∗t φ
−1
t = R∗tφ

−1
t −R∗tFtφ−1

t (φ−1
t Q∗t )

−1F ′tR
∗
tφ
−1
t

= R∗tφ
−1
t −R∗tFtF ′tR∗tφ−1

t /Q∗t .
(4.9.19)

The marginal posterior state distribution, for a p-dimensional state vector uncondi-

tional of the scale parameter, is obtained by integrating over the scale parameter,
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φt, in the joint distribution,

p(θt | Dt) =

∫
p(θt, φt | Dt)dφt. (4.9.20)

Using Bayes’ theorem this integral can be expressed in terms of the state conditional

distribution and the marginal distribution for the scale parameter.

p(θt | Dt) =

∫
p(θt | Dt, φt)p(φt | Dt)dφt

∝
∫
|C∗t φ−1

t |−1/2 exp

{
− 1

2
(θt −mt)

′[C∗t φ
−1
t ]−1(θt −mt)

}
× φnt/2−1

t exp{−φtdt/2}dφt.

(4.9.21)

Since C∗t φ
−1
t is a covariance matrix the leading diagonal terms must be positive and

hence for a p-dimensional state vector, θt, the determinant |C∗t φ−1
t | ∝ φ−pt and hence

|C∗t φ−1
t |−1/2 ∝ φ

p/2
t . Therefore (4.9.21) is proportional to∫

φ
(nt+p)/2−1
t exp

{
− φt

2

[
(θt −mt)

′C∗−1
t (θt −mt) + dt

]}
dφt. (4.9.22)

Using Equation (G.0.3) (with n = (nt+p)/2 and d = [(θt−mt)
′C∗−1

t (θt−mt)+dt]/2)

it follows that (4.9.22) is proportional to[
(θt −mt)

′C∗−1
t (θt −mt) + dt

]−(nt+p
2

)
. (4.9.23)

Writing St = dt/nt (the point estimate of the variance scale parameter), (4.9.23)

can be expressed, by dividing by dt, as[
1 +

(θt −mt)
′(C∗t St)

−1(θt −mt)

nt

]−(nt+p
2

)
. (4.9.24)

Using Equation (G.0.5) this can be recognised as a p-dimensional T distribution on

nt degrees of freedom with mean mt and scale Ct = C∗t St. That is,

(θt | Dt) ∼ Tnt(mt,Ct). (4.9.25)
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4.9.4 Variance Discounting

In Section 4.8 we stressed the importance of dynamic change when modelling the

stochastic element of the system equation, which describes parametric change. Sim-

ilar arguments apply to the scale parameter as to the system state. The variance

learning model discussed in Section 4.9 does not allow for such a dynamic, and it

was noted in Section 4.9.3 that the prior (for the scale parameter) at time t has the

same moments as the posterior at time t − 1. This is unrealistic as forecasting to

the future always brings additional uncertainty. The variance learning in Section

4.9 can be extended to allow for stochastic change in the scale using the information

discounting strategy. Posterior information on the scale at time t − 1 is described

by a gamma distribution,

(φt−1 | Dt−1) ∼ Ga(nt−1/2, dt−1/2), (4.9.26)

where the mean and variance of the posterior information for the scale parameter

are given by

E[φt−1 | Dt−1] =
nt−1

dt−1

Var(φt−1 | Dt−1) = 2
nt−1

d2
t−1

.
(4.9.27)

The system equation specifies a formal model for stochastic evolution of the state,

but that is very difficult to do for the scale parameter. This is due to the gamma

distribution not having the convenient mathematical properties that the normal dis-

tribution has [15]. However, we can still apply an information discounting strategy

to the scale parameter. What matters is to have the time t prior information suit-

ably adjusted from the time t − 1 posterior information to reflect the additional

uncertainty due to temporal advancement. Discounting the precision scale param-

eter by discounting both parameters of the gamma distribution achieves this aim

[15]. For a variance component discount factor, δV , define the prior information on

the scale at time t as

(φt | Dt−1) ∼ Ga(δV nt−1/2, δV dt−1/2). (4.9.28)

The mean of the prior is exactly the same as before when we did not have a discount

information approach for the observational variance, as expected. However, the
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variance is inflated by a factor of (δV )−1 (see Equations (4.9.27)),

E[φt | Dt−1] =
δV nt−1/2

δV dt−1/2
=
nt−1

dt−1

,

Var(φt | Dt−1) =
δV nt−1/2

(δV dt−1/2)2
= 2(δV )−1nt−1

d2
t−1

.

(4.9.29)

4.9.5 Observational Variance Practical Discount Strategy

Similarly to Section 4.8.1, discounting the observational variance in this way is an

elegant way of coping with the observational variance series, Vt. Once again, when

forecasting one-step ahead, at time t, there are no issues and using an observational

discount factor, δV , the prior variance, at time t+ 1, is inflated by a factor of (δV )−1

(compared to the posterior variance at time t). However, inflating the k-step ahead

prior variance by a factor of δ−k implies an exponential growth in variance, which is

not consistent with the DLM. Hence, this discount approach must be applied with

thought when forecasting more than one-step ahead.

We use an approach that uses multiples of the one-step ahead observational variance

for forecasting k-steps into the future. The resulting discount procedure is then as

follows.

1. Given

(φt | Dt) ∼ Ga(nt/2, dt/2). (4.9.30)

Discount the precision scale parameter by discounting both parameters of the

gamma distribution. This results in

(φt+1 | Dt) ∼ Ga(δV nt/2, δV dt/2), (4.9.31)

and hence

E[φt+1 | Dt] = E[φt | Dt],

Var(φt+1 | Dt) = (δV )−1Var(φt | Dt).
(4.9.32)

2. In forecasting k-steps ahead, adopt the variance

Var(φt+k | Dt) = k × Var(φt+1 | Dt) = k(δV )−1Var(φt | Dt). (4.9.33)
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3. Forecast in this manner at time t+ 1 and so on.

Prior to Section 4.9 we assumed that Vt was known, and constant, for all times t.

This implied that the observational variances, Vt, were independent of the history

of the series. Now, with the proposed discount strategy, the observational variances

have been modified to depend on the current state of information, Dt, and this

allows a learning discount strategy to be applied by inflating the prior variances by

a discount factor δ−1
V . This allows DLMs to express more (less) uncertainty at times

with more (less) stochastic variation.

4.9.6 Recurrence Relations

Unconditional forecast, state prior and posterior distributions are modified to repre-

sent the information discounting strategies discussed in Sections 4.8.1 and 4.9.5. The

forecasting algorithms, given an unknown evolution matrix, Wt, and an unknown

observational variance, Vt, where the evolution matrix and observational variance

have discount learning mechanisms with discount factors δ and δV respectively, are

described in Algorithm 2 (adapted from West and Harrison [1]).

Note that in Section 4.8 it was mentioned that block discounting allows for separate

discount factors. This allows for separate components of the DLM to have different

variability inflations and to evolve more or less quickly than other components. In

this case (see Section 4.7),

Wt =


W1t . . . 0

...
. . .

...

0 . . . Wht

 , and Ct =


C1t . . . 0

...
. . .

...

0 . . . Cht

 , (4.9.42)

and Equation (4.9.35) in Algorithm 2 becomes

Wi,t(k) ≡Wi,t(1) = (1/δi − 1)GiCi,tG
′
i, (4.9.43)

for i = 1, . . . , h.
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Algorithm 2 Recurrence Relations for unknown Wt and unknown Vt

Input: m0, C0, δ, δV , n0, and d0

1: At time t the posterior for the state and the posterior for the scale parameter
are given by

(θt | Dt) ∼ Tnt(mt,Ct),

(φt | Dt) ∼ Ga(nt/2, dt/2),
(4.9.34)

where the point estimate for the variance at time t is given by St = dt/nt and
we set at(0) = mt and Rt(0) = Ct. The evolution matrix for time t + k, for
k > 0, given information up to time t, Dt, is calculated using Equation (4.8.8)

Wt(k) ≡Wt(1) = (1/δ − 1)GCtG
′. (4.9.35)

2: The prior for the state at time t+ k, for k > 0, given information up to time t,
Dt, is given by

(θt+k | Dt) ∼ TδV nt(at(k),Rt(k)), (4.9.36)

where
at(k) = Gat(k − 1),

Rt(k) = GRt(k − 1)G′ +Wt(k).
(4.9.37)

3: The prior for the forecasts at time t + k given information up to time t, Dt, is
given by

(Yt+k | Dt) ∼ TδV nt(ft(k), Qt(k)), (4.9.38)

where
ft(k) = F ′t+kat(k),

Qt(k) = F ′t+kRt(k)Ft+k + kSt.
(4.9.39)

4: Then, after observation yt+1 is observed we update Equation (4.9.34) to time
t+ 1

(θt+1 | Dt+1) ∼ Tnt+1(mt+1,Ct+1),

(φt+1 | Dt+1) ∼ Ga(nt+1/2, dt+1/2),
(4.9.40)

where the point estimate for the variance at time t + 1 is given by St+1 =
dt+1/nt+1 and we set at+1(0) = mt+1 and Rt+1(0) = Ct+1, where

et(1) = yt+1 − ft(1),

nt+1 = δV nt + 1,

dt+1 = δV dt + Ste
2
t (1)/Qt(1),

St+1 = dt+1/nt+1

At+1 = Rt(1)Ft+1/Qt(1),

mt+1 = at(1) +At+1et(1),

Ct+1 = (St+1/St)[(Rt(1)−At+1A
′
t+1Qt(1)].

(4.9.41)
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Chapter 5

Monitoring Renal Dysfunction:

An Application of Dynamic Linear

Models

In this chapter we show how dynamic models can be used to predict severe oliguria

and its consequences, comparing our methods of clinical prevention to the KDIGO

stage one urine output criterion (see Table 1.1) and Ralib’s criterion [2]. The work

in this chapter is in joint collaboration with Dr Samuel Howitt, and results produced

by Dr Samuel Howitt are clearly referenced.

5.1 Introduction

It was mentioned in Section 1 that acute kidney injury (AKI), defined by the KDIGO

guidelines (Table 1.1), occurs in up to 75% of patients on the general intensive care

unit (ICU) [3, 4] and in up to 30% of patients following cardiac surgery on the cardiac

intensive care unit (CICU) [5]. The KDIGO stage one urine output criterion for AKI

(< 0.5ml/kg/hr for 6 consecutive hours) lacks specificity (true positive rate) when

identifying patients at risk of adverse renal outcomes [18, 19], meaning that many

patients who are classified as suffering kidney injury, according to the stage one
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urine output criterion, do not go on to suffer adverse renal outcomes, and hence a

better classification method is needed. In this chapter we develop and validate a

novel monitoring system to analyse urine output in order to identify those at risk of

severe oliguria (< 0.3ml/kg/hr for 6 consecutive hours) and its consequences. We

discuss in detail how dynamic models can be used to identify a group of patients at

increased risk of adverse outcomes due to renal dysfunctioning and the advantages

of using dynamic models over current methods.

The most widely used tool which can identify patients at risk of adverse outcomes

related to renal dysfunctioning are the KDIGO AKI guidelines (Table 1.1). These

guidelines were designed to identify the severity of AKI according to urine output

and serum creatinine concentration. The evidence for risk stratification by serum

creatinine is stronger than that for stratification according to urine output. Serum

creatinine within the guidelines have been shown to identify cardiac surgery patients

with increased risk of a prolonged length of stay (> 10 days) [20], and increased risk

of mortality [21, 22]. However, recall from Section 1.1 that serum levels, such as

creatinine are only measured once per day for most patients in our dataset, since

it requires a blood test which takes time to analyse. Patients can be classified as

having ARF within hours after having heart surgery, and identifying ARF in these

patients is very difficult using sparsely measured variables such as serum creati-

nine alone. Moreover, experts made the decision to start renal replacement therapy

(RRT) within 66 hours for 90% of patients in our study, giving only two measure-

ments of serum creatinine for most patients. Hence, in this thesis, we model and

monitor kidney deterioration by using urine outputs, which are easy to measure on

a regular basis.

Studies which have attempted to validate the urine output guidelines as a risk strat-

ification tool for cardiac surgery patients have shown that patients who suffer AKI

by urine output alone have outcomes that are only marginally worse than those who

do not suffer AKI [18, 19]. This may be because a large proportion of patients who

undergo cardiac surgery experience AKI stage one kidney injury (see Table 1.1) as

part of the physiological response to surgery. This response is short-term and does

not lead to adverse outcomes. The KDIGO guidelines assign higher levels of AKI to

those who suffer more prolonged periods of low urine output, however, at least 12

hours of oliguria (low urine output) must pass before a higher classification of AKI

can be made. In this setting the delays in identification of higher levels of AKI may
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lead to harm to the kidneys which could be minimised if detected earlier.

Ralib et al demonstrated that a threshold of 0.3ml/kg/hr for six consecutive hours

was more closely associated with adverse outcomes in general ICU patients [4, 2].

However, if this threshold is used instead of the existing AKI stage one urine out-

put definition, patients may suffer harm in the six hours of oliguria required for

identification before the increased risk is identified (see Figure 1.1 and discussion).

Dynamic models have been used in similar studies [23, 24] and underpin the ap-

proach that we will use to model the urine output series. Using dynamic models it

is possible to use the definition proposed by Ralib (which is able to identify a group

of patients more likely to suffer adverse outcomes), but instead of waiting for six

consecutive urine outputs below 0.3ml/kg/hr to be observed, we forecast the next

six urine outputs and at each hour calculate the joint probability (see Section 4.3)

that these six forecasted urine outputs are all below 0.3ml/kg/hr. Using dynamic

models we can forecast severe oliguria, aiming to intervene before damage to the

kidneys occurs.

The clinician wishes to have a decision rule to intervene if a patient is at high risk

of suffering severe oliguria, i.e.

Pr(Yt+1 < T, . . . , Yt+6 < T | Dt) ≥ p, (5.1.1)

for some threshold T and probability p, and where Yt+1, . . . , Yt+6 are the urine

outputs at times t+1, . . . , t+6, given information up to time t, Dt. In this study we

take T = 0.3ml/kg (Ralib’s threshold) and use p = 0.8. This value of p was chosen

by the clinical team from the University Hospital of South Manchester, with the aim

to produce a model with high specificity. If the probability of suffering severe oliguria

is higher than 0.8, at time t, then this will be a high risk warning and the patient

will be considered high risk by our model. This approach will be used to identify

patients at increased risk of severe oliguria. The above decision rule is specified so

that we can compare the first high risk warning raised by our model to the AKI

guidelines and to Ralib’s criterion. However, our model (with model monitoring, see

Section 6) is developed into an R shiny application (see Section 8) and is more than

a single decision rule. Clinicians can easily use the shiny application to monitor

the progress of patients over time. The model automatically runs and requires no

coding experience nor experience in statistics. Using the application clinicians can

59



potentially intervene before a patient is considered “high risk”, if say, the probability

of severe oliguria is rapidly increasing over time, for example. Clinicians can observe

and monitor how a patient reacts to a drug (aimed at increasing urine output) or

another intervention, and intervene accordingly using the application and expert

experience. The R shiny application is discussed in Section 8.

Using dynamic models, which update in real time, we identify patients at risk of

suffering severe oliguria on the cardiac intensive care unit (CICU). The model’s

predictions are updated on an hourly basis according to the measured hourly urine

output. Using these methods a patient could be identified as being likely to suffer

severe oliguria before it happens. The first aim of this study is to test the feasi-

bility of realtime screening of patient data to identify those at risk early enough

to allow intervention to prevent or lessen harm caused by prolonged oliguria. The

secondary aim of the study is to compare the model’s ability to identify patients

at risk of adverse outcomes with the stage one urine output criterion within the

KDIGO guidelines (see Table 1.1). The third aim of the study is to compare the

model’s ability to identify patients at risk of adverse outcomes with the criterion

proposed by Ralib et al (observing six consecutive urine outputs < 0.3ml/kg).

We will test the model’s (defined in Section 5.2) performance throughout a patient’s

CICU admissions up to 72 hours. This time frame was chosen by the clinical team

from the University Hospital of South Manchester. Our analyses will classify a

success if the model identifies a patient who is going to suffer severe oliguria within

12 hours of prediction and also if patients classified as low risk by our model do not

go on to suffer severe oliguria. The threshold of 12 hours was chosen by the clinical

team from the University Hospital of South Manchester as an acceptable monitoring

period following a high risk classification.

Prospectively collected data, from the University Hospital of South Manchester, of

3602 adult patients admitted to the cardiac intensive care unit (CICU) following

cardiac surgery between January 2013 and November 2017 were analysed. Patients

receiving mechanical circulatory support (MCS) or cardiac transplantation were ex-

cluded (228). Patients who received RRT (renal replacement therapy) preoperatively

were also excluded (4). This left 3370 eligible patients. Of the eligible patients, 981

were chosen at random to be assigned to the development group and the remaining

2389 were assigned to the validation group (≈ 30% : 70%). Stratified sampling was
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used where the sets were chosen randomly and the sets have a 3 : 7 ratio of RRT

(patients that had renal replacement therapy) and non-RRT patients (patients that

did not have renal replacement therapy). Data from the development set were used

to estimate model parameters (see Appendix D). Data from the validation set were

used to test the three aims of our study described above. Model discrimination and

calibration when identifying those likely to suffer severe oliguria within 12 hours

were tested at 12, 24, 36, 48 and 72 hours using data from the validation dataset.

Model calibration is used to test the models performance at different time stamps

to see if the model performs adequately at all times.

5.1.1 Missing Data

In this analysis, at the request of doctors, where hourly urine output recordings were

missing, the next recorded urine output was divided by the number of hours that

had elapsed since the previous reading and this value was substituted for the hourly

values for these hours. When patient weight was missing these values were imputed

using the median weight for a patient of that gender. Patient weight was missing

for 13 (1.3%) and 23 (1.0%) of the patients in the development and validation sets

respectively.

5.2 Model Development

We will now apply the models and methods discussed in Section 4 to identify patients

likely to suffer severe oliguria. A patient’s urine level stochastically varies over time,

and the functioning of a patient’s kidneys can cause the urine output level to grow

and decline. For these reasons we decided to start with a second-order polynomial

dynamic model (see Section 4.6). The first component will capture the expected

level for the urine output and the second component allows for a systematic change

in level and captures the changing decline and growth dynamics of the urine output

recordings.

In Section 2.2 it was discussed that the prediction intervals for the static model

can include negative values and that many patients exhibit an exponential decay

in urine output to begin with. Hence we, once again, transform the response to
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Y 7−→ log(Y + ε), where ε is constant (see Section 2.3 for discussion). A sensitivity

analysis was performed for different values of epsilon, see Appendix D, and this

analysis led us to choose ε = 0.1.

5.2.1 Second Order Polynomial Model

Using theory described in Section 4.6 we begin modelling the transformed urine

output data using a second-order polynomial model with an unknown evolution

variance series, Wt, and an unknown observational variance series, Vt. Both of

these unknown variances are modelled using information discounting (see Sections

4.8 and 4.9.4 respectively). The model is given below

log(Yt + 0.1) = µt + νt,

µt = µt−1 + βt−1 + ωµt,

βt = βt−1 + ωβt.

(5.2.1)

The state vector θt = (µt, βt)
′, where µt allows for systematic variation about a time

varying level and βt allows for systematic growth and decline of the level, where

νt ∼ N(0, Vt) and ωt ∼ Tnt−1(0,Wt) where

V −1
t | Dt ∼ Ga(δV nt/2, δV dt/2), Wt =

(
Wµt +Wβt Wβt

Wβt Wβt

)
, (5.2.2)

where Wµt = Cµ,t−1(δ−1
µ − 1) and Wβt = Cβ,t−1(δ−1

β − 1), where Var(µt−1|Dt−1) =

Cµ,t−1 and Var(βt−1|Dt−1) = Cβ,t−1. Having separate discount factors, δµ and δβ,

for the level and growth parameters respectively, allows the parameters to evolve

at different rates. At certain times the level could evolve more quickly than the

slope and vice versa. The observation and evolution discounts chosen are δV = 0.95,

δµ = 0.80, and δβ = 0.90 respectively (see Appendix D for a sensitivity analysis

performed on δV , δµ, and δβ). Note that higher discount factors usually lead to

better forecasts, but noisy data often pulls the discount factors downwards, and this

is unwanted. Techniques to prevent this are discussed in Chapters 6 and 7.
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5.2.2 Parameter Estimation and Diagnostics

Several measures of forecasting accuracy can be used to compare models formally.

Commonly used criteria are the mean absolute deviation (MAD), and the mean

square error (MSE), defined respectively by the following formula [15]

MAD =
1

n

n∑
t=1

|et|,

MSE =
1

n

n∑
t=1

e2
t .

(5.2.3)

Noting that these quantities should always be calculated on the untransformed scale,

with the same units used for communication. This is required to understand the

measures on the scale most useful to us, but also to prevent a model being under or

over credited by using smaller or larger units.

The criterion for estimating the initial parameters in our model is to minimise the

number of type two errors (see below). Diagnostics are shown in Appendix D (for

the discount factors) alongside: the type one errors, the MAD, and the MSE. We

now define type one and type two errors in this context.

Definition 5.2.2.1. A type one error is recorded when the model predicts that a

patient will suffer severe oliguria in six hours when, in fact, they do not suffer severe

oliguria in six hours. That is, when the next six urine outputs are not all below

0.3ml/kg/hr but we predict that

Pr(Yt+1 < 0.3, . . . , Yt+6 < 0.3 | Dt) ≥ 0.8. (5.2.4)

where Dt = {Dt−1, yt}.

Definition 5.2.2.2. A type two error is recorded when the model predicts that a

patient will not experience severe oliguria in six hours when the patient is observed

suffering severe oliguria six hours later. In other words, when the next six observed

urine outputs are all below 0.3ml/kg/hr and

Pr(Yt+1 < 0.3, . . . , Yt+6 < 0.3 | Dt) < 0.8, (5.2.5)
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where Dt = {Dt−1, yt}.

The proportion of type one and type two errors will both ideally be as small as

possible. However, it will be the case that some patients experience oliguria for five

hours or the patient’s kidneys are in a deteriorating state and the model classifies

this patient at high risk of severe oliguria at said times (see Figure 5.1 (left)). If

the patient (even slightly) improves for just one hour because of an intervention or

for other reasons, even if they stay at an unhealthy level or go back to deteriorating

afterwards, this is classified as a type one error (see Figure 5.1 (left)). Alerting these

patients as at high risk of suffering severe oliguria is classified as a type one error

but as we can see from the example described above, some type one errors will be

unavoidable and are not a cause for concern. In fact, some of these type one errors

are the reason why we are using dynamic models. For example, suppose that a

patient has five consecutive urine outputs below 0.3ml/kg, an outlying observation

around 0.56ml/kg, and then returns back to a deteriorating level and finally has

six urine outputs below 0.3ml/kg (see Figure 5.1 (left)), and assume that our DLM

alerts that this patient is at “high risk” at hours 6, 7, 8 and 9. This patient will not

be considered as suffering severe oliguria until hour 16, however, it is clear that the

one-off outlying observation should not remove the past evidence of this patient’s

deteriorating kidneys. Although this will cause four type one errors, the model has

successfully identified a patient with deteriorating kidney function at hours 6, 7, 8

and 9. Consider now Figure 5.1 (right), if the model identifies this patient as high

risk at hours 6, 7, 8 and 9, this would cause four type one errors (again). However,

in real time, this urine output series would be a cause for concern to clinicians, at

hours 6, 7, 8 and 9. Hence we use type one errors with caution, knowing that some

are not a cause for concern.

On the other hand, a problem arises if, say, (see Figure 5.1 (right)), the model still

signals that the patient is at high risk at, say hour 14. It may be the case that

this patient is identified as likely to suffer severe oliguria in the deterioration stage,

however, if the model fails to adapt to changing parameter values and continues

to forecast that this patient is likely to suffer severe oliguria (from past evidence

of deteriorating kidneys), then this is a more drastic type one error reflecting poor

model forecasting performance, see Figure 3.2 (left). Poor model performance is

discussed in Chapter 6.
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Figure 5.1: Type Two Errors. Figures illustrate times at which type two errors can occur.
Figure (left) shows an example of when a type two error can occur due to an outlier.
Figure (right) shows an example of when a type two error can occur due to poor model
forecasting

In contrast, type two errors are classified as more severe, by the clinical team from the

University Hospital of South Manchester, than type one errors, since these patients

may be overlooked and this is a drastic model failure. This could be due to the model

slowly adapting from a healthy trend to an unhealthy trend, reflecting poor model

forecasting performance. In order to be clinically useful the model will be designed

to minimise the number of type two errors, so that a “low risk” classification can

be trusted. Type one errors, MAD, and MSE will also be considered in parameter

estimation.

5.2.3 Prior Elicitation

Data processing through Bayes’ Rule aids in updating beliefs. By using an initial

prior we are able to update our beliefs, as new data becomes available, to obtain

a posterior distribution. Then as more data becomes available this posterior dis-

tribution becomes our prior distribution and so on. With dynamic models as data
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collection continues the initial prior information gets overwhelmed by the data. In

other words, when enough relevant information is accumulated, the initial prior in-

fluence on the current posterior distribution is swamped by that contained in the

sample (see Section 4.5). The prior distribution required to start the recurrence

relations will now be constructed from data analysis, and expert opinions.

After a patient has been in an operating theatre, it is expected that their urine

output will be higher than usual due to a long surgery. Analysing the development

set shows that the first urine output for a patient is, on average, around 1.5ml/kg.

Also, the urine output for the following hours should decrease since the patient’s

urine outputs are measured regularly again. Data analysis leads us to choose (on

the log-scale) m0 = (mµ,0,mβ,0) = (0.55,−0.2) and

C0 =

(
0.01 0

0 0.001

)
. (5.2.6)

This reflects that we expect the first urine output after surgery to be 1.42 and

95% of the time we expect the first urine output after surgery to lie in the interval

[0.71, 2.27] (using algorithms summarised in Section 4.9.6), on the raw scale. This

agrees with the data and also with what experts expect after a patient has just

had heart surgery. This reflects a large amount of uncertainty and this is due to

not having any preoperative data to understand the functioning of patient’s kidneys

before operation; and also due to not knowing how patient’s kidneys will react to

having cardiac surgery and medication. The functioning of the patient’s kidneys

post surgery is very much uncertain and hence we reflect this in our prior beliefs.

However, having a large variance to reflect great uncertainty about the future allows

dynamic models to rapidly adapt to future observations (see Chapter 6). It is best

to be cautious, and have large variances, so that the model can adapt quickly and

perform well for future forecasts.

The same diagnostics shown in Appendix D were performed with values of expected

initial level varying from 0 ≤ mµ,0 ≤ 1, expected initial slope varying from −0.5 ≤
mβ,0 ≤ 0, and initial variances for the level and slope ranging from 0.001 < Cµ,0 <

0.1, 0.0001 < Cβ,0 < 0.1, respectively (recall that these values are on the log-scale).

These tables are omitted to avoid showing repetitive analysis, however following the
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criteria, mentioned in Section 5.2.2, leads to choosing the initial prior below

(θ0 | D0) ∼ Tn0

[(
0.55

−0.2

)
,

(
0.01 0

0 0.001

)]
. (5.2.7)

We take the prior value for the observational variance to be S0 = 0.1, with n0 = 20

and d0 = 2 (see Equation (4.9.10)). Once again, this is chosen by following the

criteria defined in Section 5.2.2.

5.3 Results

The results of the model’s performance in the validation group (2389 patients) are

now presented. To allow comparison of the model’s output with the existing cate-

gorical KDIGO classification, patients were assigned to either a high risk or a low

risk group based on their first high risk warning. The analyses tested the model’s

ability to identify which patients would suffer severe oliguria (UO < 0.3ml/kg for 6

hours) within 12 hours of the high risk prediction. Risk classifications made during

the last 12 hours of a patient’s admission were disregarded since it was not possible

to ascertain whether severe oliguria had occurred following discharge from CICU.

The model discriminated very well between those who went on to develop severe

oliguria and those who did not at multiple time points during the first 72 hours

in CICU. In the early stages of CICU admissions the model overestimated risk but

calibration was very good following the first 24 hours. In the first 24 hours the risk

predicted was higher than risk observed. The poor calibration of the model in the

first 24 hours may be due to the recovery from the initial physiological response to

surgery (it is problematic that we do not know when a patient will recover from an

initial physiological response, and this can cause models to breakdown (see Chapters

6 and 7)). Interventions made in response to falling urine outputs will also have

played a role in the model overestimating risk. However, if a clinician intervenes

when our model identifies a patient as highly likely to suffer severe oliguria, and

this patient recovers, then this is a success. Intervention effects, and physiological

responses, will be less evident as time from surgery increases, since it is unlikely

that a patient will have a physiological response lasting longer than 24 hours, also

clinicians are likely to have exhausted minor interventions in the first 24 hours

and hence after that time point interventions are unlikely to affect the model’s
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performance. Interventions and physiological responses can drastically affect the

level and slope of a patients urine output and these sudden changes in the series can

be difficult to model. This and other sudden changes are discussed in Chapters 6

and 7. Table 5.1 below shows model performance over time, by considering observed

severe oliguria (SO) compared to predicted severe oliguria (within 12 hours).

Time Point (number of Observed SO Predicted SO O:E ratio
patients still on CICU) (% of patients) (% of patients)

12 hours (1947) 61 (3.1) 153 (7.9) 0.40
24 hours (1694) 57 (3.4) 91 (5.4) 0.63
36 hours (1137) 51 (4.5) 40 (3.5) 1.28
48 hours (909) 54 (5.9) 46 (5.1) 1.17
72 hours (545) 35 (6.4) 30 (5.5) 1.17

Table 5.1: Calibration of model’s predictive performance, produced by Dr Samuel Howitt.
Table shows DLM performance over time by comparing observed severe oliguria to pre-
dicted severe oliguria

5.4 Discussion

In the validation group, 2088 (87.4%) patients suffered at least one hour of urine

output below 0.3ml/kg. Severe oliguria was experienced in 197 (8.2%) patients.

Renal replacement therapy was required in 89 (3.7%) patients, for 19 (0.8%) patients

RRT was initiated within three hours of arrival on CICU and these patients were

excluded from the RRT analyses. In all 19 excluded cases the decision to start

RRT had been made prior to arrival on CICU by the anaesthetist responsible for

intraoperative care; hence there is no clinical need for the model to predict RRT in

these cases. Prolonged length of stay (PLOS) was observed in 589 (24.7%) patients

and 36 (1.5%) patients died prior to hospital discharge. The results of the model

are summarised in Table 5.2.

Group RRT PLOS Hospital Mortality
(2389) (70) (589) (36)

High Risk (202) 37 (18.3%) 113 (55.9%) 13 (6.4%)
Low Risk (2187) 33 (1.5%) 476 (21.8%) 23 (1.1%)

Table 5.2: Outcome of patients according to dynamic model, produced by Dr Samuel
Howitt. Table shows proportion of patients who required RRT, had a PLOS, and died in
hospital for patients classified as high risk by our model and for patients classified as low
risk by our model
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The model defined in Section 5.2 classified 202 (8.46%) patients in the validation

group as being at high risk and assigned 2187 (91.54%) patients to the low risk

group. Patients in the high risk group were at increased risk of RRT (OR 17.8, 95%

CI 9.7-33), PLOS (OR 4.0, 95% CI 2.9-5.7) and hospital mortality (OR 5.3, 95% CI

3.0-13.0) compared with those in the low risk group (see Table 5.2). The odds ratio

(OR) is the ratio of the odds of an event (here RRT, PLOS, or hospital mortality)

for patients considered high risk compared to patients considered low risk. We see

that, 95% of time, patients considered high risk are 9.7-33 times more likely to need

RRT, 2.9-5.7 times more likely to have a prolonged length of stay (PLOS > 10 days)

in hospital, and 3-13 times more likely to die in hospital.

It is clear from Table 5.2 that the dynamic model is able to distinguish between

patients likely to suffer adverse outcomes compared to those that are unlikely to

suffer adverse outcomes. Hence, completing our first aim of testing the feasibility

of realtime screening of patient data to identify those at risk early enough to allow

intervention to prevent or lessen harm caused by prolonged oliguria.

The KDIGO guidelines classified 628 (26.3%) patients as suffering AKI stage one by

urine output, that is, the KDIGO guidelines identified 628 (26.3%) patients as “high

risk” and 1761 (73.7%) patients as “low risk”. The results of classification by the

model and the KDIGO criterion are summarised in Table 5.3. The subgroup of 451

(71.8% of the AKI stage one urine output high risk group) patients classified as “high

risk” by the KDIGO guidelines, who met the AKI urine output stage one criterion

but were classified as low risk by our model, experienced rates of RRT (4.0%), PLOS

(33.3%) and mortality (2.7%) which were significantly lower than those classified as

high risk by our dynamic model (see Table 5.2). Our second aim was to compare

the model’s ability to identify patients at risk of adverse outcomes with the stage

one urine output criterion within the KDIGO guidelines. Table 5.3 confirms that

our model outperforms the current AKI stage one urine output criterion.

In addition, when used to predict future RRT requirement, the dynamic model has a

higher positive predictive value (PPV - the proportion of true positives) and model

specificity than the KDIGO AKI stage one urine output criterion. The negative pre-

dictive value (NPV - the proportion of true negatives) for the DLM and the KDIGO

AKI stage one urine output criterion was found to be the same. Furthermore, the

model’s classification was almost identical to that achieved by classification accord-
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Group N (%) RRT PLOS Hospital
Mortality

Low risk and 1736 (72.7%) 15 (0.9%) 326 (18.8%) 11 (0.6%)
no AKI by UO

Low risk and 451 (18.9%) 18 (4.0%) 150 (33.3%) 12 (2.7%)
AKI by UO

High risk and 25 (1.0%) 3 (12.0%) 14 (56.0%) 2 (8.0%)
no AKI by UO

High risk and 177 (7.4%) 34 (19.2%) 97 (54.8%) 11 (6.2%)
AKI by UO

Table 5.3: Comparison of model against KDIGO AKI urine output stage one guideline,
produced by Dr Samuel Howitt. Table compares rates of adverse outcomes for patients
classified as high or low risk by our model to patients classified as high or low risk by the
KDIGO AKI stage one urine output guideline

ing to observed rather than predicted severe oliguria (see Table 5.4).

Outcome Criterion Sensitivity Specificity PPV NPV

RRT AKI-UO 0.74 0.75 0.08 0.99
Dynamic Model 0.53 0.93 0.18 0.99
Severe Oliguria 0.41 0.94 0.18 0.98

Table 5.4: Comparison of model, KDIGO AKI urine output stage one guideline and severe
oliguria, produced by Dr Samuel Howitt. Table compares our DLM, the AKI stage one
urine output criterion, and Ralib’s criterion when identifying patients who went on to need
RRT

From the tables above we can see that the model defined in Section 5.2 is able to

identify a group of patients that are more likely to suffer adverse outcomes. Pa-

tients assigned to the high risk group were significantly more likely to suffer adverse

outcomes than those assigned to the low risk group. The model outperformed the

existing KDIGO AKI stage one urine output criterion when identifying those at risk

of poor outcomes. As in previous studies we have found that the KDIGO AKI stage

one urine output criterion is too sensitive, since many of those identified as high risk

by the criterion went on to have good outcomes [19, 25].

The dynamic model’s high risk group contained under a third as many patients as

the “high risk” group identified by the KDIGO criterion (202 vs 628). The rate of

adverse outcomes was higher in the dynamic model’s high risk group than in the

AKI group. A large subgroup (n = 451) met the AKI criterion but were classified as

low risk by the model (see Table 5.3). Outcomes for these patients were significantly
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better than for the group classified as high risk by our model (see Table 5.2). This

suggests that most of the patients with the highest risk within the AKI group were

also identified as high risk by our model, whereas lower risk patients in the AKI group

were not identified by our model. This illustrates the models ability to outperform

the AKI stage one urine output criterion. As expected, as the AKI group contained

nearly three times as many patients as the dynamic model’s high risk group, the

AKI classification was more sensitive when identifying those who would go on to

require RRT; however, specificity and positive predictive values were greater for the

dynamic model (see Table 5.4).

The increased risk associated with predicted or observed oliguria confirms similar

findings from Ralib et al’s study in general ICU patients [2]. Our third aim was to

compare the model’s ability to identify patients at risk of adverse outcomes with

the criterion proposed by Ralib et al. In our study, risk stratification was not

significantly improved when classifications were made according to observed rather

than predicted severe oliguria. This suggests that there is no advantage to using

observed rather than predicted oliguria as the classifier. Conversely, there is a clear

advantage to using our dynamic model’s predictions; the model provides a warning of

severe oliguria before it occurs, allowing time to deliver treatments to prevent severe

oliguria and its consequences. The median (IQR) time from high risk classification

to severe oliguria of 3.0 (2.0 − 4.3) hours would be enough to allow interventions

aimed at preserving a healthy, constant renal output. In reality patients for whom

risk of severe oliguria is increasing are likely to be reviewed before a probability of

0.8 is reached, affording even more time for intervention.

While these results are a great start, analyses of urine output alone cannot iden-

tify all patients at risk of adverse outcomes related to renal dysfunctioning. There

were 33 patients (see Table 5.2) who received RRT while they were classified as

being at low risk of suffering severe oliguria by our model because their urine out-

put was maintained around or above 0.3ml/kg/hr. Indicating that the model is

forecasting the urine output series accurately, however, it is also missing other vari-

ables that could be contributing to adverse outcomes related to renal dysfunctioning.

Analysing these patients identified deranged biochemistry (elevated urea and/or cre-

atinine concentrations) (n = 27), fluid overload (n = 11), elevated lactate (n = 4)

and sepsis (n = 1) as the reasons for RRT initiation. Further work should focus

on integrating the novel analysis of urine output described in this study with bio-
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chemistries to identify patients at risk of adverse outcomes who have a healthy urine

output level.

In Section 5.1 we mentioned that experts made the decision to start RRT within 66

hours for 90% of patients in our study. This meant that, for most patients, we did

not have enough creatine measurements to make inferences about the performance

of a patient’s kidneys. However, including creatine measurements, alongside urine

output for all patients, in particular for those who spend a long length of time in

hospital (> 5 days), could help identify a large percentage of the 33 patients that

were missed while maintaining a healthy urine output series.

5.5 Limitations

As this is a retrospective study we observed interventions that were made with the

intention of normalising urine output (and not just the adverse outcomes that we

were aiming to detect). However, if our model signals a high risk warning and this

patient is given an intervention (such as a drug to normalise urine output) then these

high risk warnings are also successes, since they were given because the patient’s

urine output was deteriorating. A total of 30 (14.9%) patients who were classified

as high risk by our model received diuretics during the 6 hours before or the 6

hours post classification. Many patients also received a fluid challenge; although the

retrospective nature of this study made it impossible to classify these interventions

as it occurred in various forms including oral intake and intravenous fluids with

differing strengths. Data on these interventions could not be reliably incorporated

into the analysis since the data did not include the strengths nor the form of intake.

These two crucial pieces of information would be needed to include feed-forward

interventions (see Section 6.2).

5.6 Conclusions

In this chapter we have shown that using a dynamic linear model to identify those

at risk of severe oliguria following cardiac surgery can identify a group of patients

who are significantly more likely to suffer adverse outcomes. Similarly to previous

studies [19], we found that the current AKI stage one urine output criterion is
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not well suited to use in cardiac surgery patients during the postoperative period

since it appears to be too sensitive. Therefore there is a clinical need for a better

means of screening patients on the CICU in order to identify those at risk of adverse

outcomes related to postoperative renal dysfunctioning. Classifying patients as high

risk once they had suffered more severe oliguria, (Ralib et al [2]), would likely create

a high risk group that would suffer higher rates of adverse outcomes. However,

this classification method would be less clinically useful because by the time six

consecutive urine outputs below 0.3ml/kg are observed and the patient is classified

as high risk, harm may already have occurred (see Figure 1.1 and discussion). For

this reason we used a dynamic model to predict severe oliguria rather than waiting

for severe oliguria to occur. The disadvantage of predicting severe oliguria is that the

predictions are not accurate for all patients (although in Section 5.2.2 we discussed

that this is not always a cause for concern). In order to ensure that the model was

clinically useful, it was designed to provide a low false negative rate at the expense

of a higher false positive rate, so that a low risk classification could be trusted.

Despite this strategy the model’s high risk group is still much smaller than the AKI

by urine output stage one group (see Table 5.3). In addition, the higher risk group

identified by our model has significantly higher rates of all adverse outcomes studied.

Furthermore, we have shown that there is no advantage to using observed severe

oliguria as opposed to forecasted severe oliguria, however, there is a huge advantage

in using dynamic models since the model provides a high risk warning of severe

oliguria before it occurs (median (IQR) time 3.0 (2.0-4.3) hours before). This allows

experts enough time to intervene. In addition, the model is currently built into a

shiny application (with model monitoring, see Chapter 6) which allows clinicians

to monitor kidney deterioration with ease and to monitor how quickly a patient’s

kidneys are deteriorating. This way clinicians can use their own subjectivity to

intervene and also monitor the progress and success of interventions (see Chapter

8).

5.6.1 Forecast Analysis

In Section 5.2.1 we noted that higher discount factors usually produce better fore-

cast performance than lower discount factors. However, the time series that we are

considering is extremely noisy. The analysis shown in Appendix D suggests the

discount factors δV = 0.95, δµ = 0.8, and δβ = 0.9. This kind of analysis is a com-
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promise because any structural changes other than smooth dynamic variation pull

component discount factors in a downward direction. Although using the suggested

discount factors allow for the structural changes to be adapted to, it also means that

during routine intervals there is excessive uncertainty during evolution, resulting in

imprecise forecasts. When the forecast system is explicitly on the lookout for struc-

tural changes, such a compromise over discounting is not necessary. In Chapter 6

we discuss an explicit monitoring system to monitor model performance, which can

result in not having to compromise by using lower discount factors. Monitoring fore-

cast performance provides invaluable information on model adequacy and indicates

possible changes in the time series structure.

5.7 Model Diagnostics

One of the most important aspects of statistical modelling is the analysis of model

residuals. When examining forecast residuals one is looking for evidence that the

model is lacking in some way: outlying points, clusters of similarly signed residuals

(indicating that your model is either underpredicting or overpredicting), clusters

of greater or less variability (i.e. periods of larger than “normal” or smaller than

“normal” residuals), and any other kind of structure.

Since we have thousands of patients we are unable to show diagnostics for each

individual patient. However, below we show the forecast residuals for each of the

six forecasts series, (et+1 | Dt), . . . , (et+6 | Dt), over time, for a patient.

We see that the scatterplots for the forecast errors for each forecast are centred

around zero. This indicates that the expected value, for each forecast, is zero (as

required). The scatterplots also have no signs of clusters. This indicates that the

model residuals are not correlated, and also that the model is not underpredicting

nor overpredicting.
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Figure 5.2: Forecast errors for the six future forecasts for a patient. Plot indicates that
each forecast is centred around zero. There are also no signs of correlation, and no signs
of underpredicting nor overpredicting
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Chapter 6

Intervention and Monitoring

In this chapter we introduce the idea of interventions, and consider how routine

interventions can be incorporated into existing DLMs and why such interventions

may be necessary to sustain predictive performance. Statistical interventions, such

as those described by Brown [26], Box et al [27], and Harrison and Veerapen [28] have

been used to adapt forecasting systems to maintain efficient forecasting performance.

Interventions can be roughly classified as feedforward or feedback [1]. Feedforward

interventions are anticipatory. Feedback interventions are corrective, responding to

events that had not been foreseen or adequately allowed for (see Figure 6.1). Correc-

tive actions often arise when it is seen that forecasting performance has deteriorated,

warning the forecaster to diagnose any problems. In these situations, any informa-

tion which was not available beforehand must be used retrospectively to attempt to

adjust the model appropriately to the current, local conditions. Forecasting systems

operate according to the principal of management by exception [1]. That is, a sta-

tistical model is routinely used to process data and information, providing forecasts

that are used unless exceptional circumstances arise. Exceptional circumstances oc-

cur in two forms. The first relating to known external information, corresponding to

feedforward interventions (such as fluid interventions when the clinician knows the

amount and strength of the fluid). The second relating to model monitoring which

is used to detect deterioration in forecasting performance. We focus on the latter

when encountering unknown abrupt changes in the urine output series and take
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Figure 6.1: Corrective Feedback Intervention. Model (left) closed to intervention vs model
(right) with corrective intervention. Model (right) increases prior variances at hour 71 after
noticing model deterioration

the form of an automatic, statistical error analyses that continually monitors model

performance and issues signals of breakdown when necessary. When forecast per-

formance deteriorates the model forecasts can completely miss the dynamics of the

system and struggle to ever recover (see Figure 6.1 (left)). In some circumstances

the reason for model deterioration may be unknown. In this situation increasing

the variance in the system allows the model to be more adaptive to new data, so

that changes that may have taken place are rapidly identified and estimated. Thus,

models can be self-correcting if uncertainties about parameters can be significantly

increased at points of suspected change [1].

For reference we remind the reader of the general univariate dynamic linear model

(with a constant evolution matrix),

Yt = F ′tθt + νt, νt ∼ N(0, Vt),

θt = Gθt−1 + ωt, ωt ∼ N(0,Wt).
(6.0.1)

The historical data, Dt−1, (including past observations and any previous interven-
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tions) is summarised in terms of the posterior distribution for θt−1

(θt−1 | Dt−1) ∼ N(mt−1,Ct−1). (6.0.2)

The (one-step ahead) prior for the state vector at time t− 1 is,

(θt | Dt−1) ∼ N(at,Rt), (6.0.3)

with at = Gmt−1 and Rt = GCt−1G
′ +Wt.

6.1 Types of Intervention

6.1.1 Ignoring Observation yt

The first type of intervention that we will consider involves treating yt as an outlier

[1]. This could be due to a blocked catheter creating a huge spike in urine output,

or it could be a spike due to diuretics or a fluid challenge which are one-off high

values, and any other interventions in the environment of the time series that may

lead to a single observation being discrepant and unrelated to the rest of the series.

In these cases it is suggested that the observation should not be used in updating

the model for forecasting the future, since it provides no relevant information. If yt

is classified as an outlier, then yt is uninformative about the future and so should

be given no weight in updating the model distributions. Thus, Dt = {It, Dt−1} is

equivalent to Dt−1. The posterior for the state vector at time t is just the prior,

with (θt | Dt) ∼ N(mt,Ct), where mt = at and Ct = Rt.

Formally, this can be modelled in the DLM format by viewing the observation as

having a very large variance Vt. If we let Vt tend to infinity, or V −1
t tend to zero,

in the model equations, the observation will provide no information for θt (nor for

the scale parameter in the case of variance learning). In the updating equations,

the one-step ahead forecast variance Qt tends to infinity with Vt, and hence the

posterior for θt is just the prior, as required. Thus,

It = {V −1
t = 0}. (6.1.1)
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Immediately following such an intervention, it may be that the series will develop

in a different way than currently forecast. After an event, described above, such

as a blocked catheter or an intervention such as diuretics or a fluid challenge, the

patient’s urine output may continue at the higher, healthier level; or the urine output

may decrease below the initial spike, slowly or rapidly. The parameters in the DLM

considered may drastically change or they may not change at all. If the patient’s

deteriorating kidneys do not respond well to the intervention it is expected that

the patient’s urine output will continue to be below a healthy level. Conversely, if

the patient’s kidneys do respond well then it is expected that the parameters will

drastically change. In order to adapt to the changing pattern after the omitted

observation, an additional intervention to increase uncertainty about components of

θt may be required. This second type of intervention is discussed in the following

section.

Figure 6.2 shows the types of possible change after observing a wild observation in

the second order polynomial model given by Equations (5.2.1). After observing the

observation shown in red, at hour 17, there are three possibilities. This observation

could be an outlier and the series could continue as usual and no parametric changes

are required (shown by the purple urine outputs). The wild observation could be

followed by a parametric change. This could result in a change in level parameter

(shown by the green urine outputs) or a change in slope parameter (shown by the

blue urine outputs). Until more observations are available, from the point of view

of the forecaster at hour 17, we are uncertain which of the changes will take place.

As a result, a further adjustment to the state priors is required (alongside ignoring

yt) in order to allow the model to adapt to any of the three above possible changes.

6.1.2 Additional Evolution Noise

Changes in conditions that affect the development of the series subsequently in-

creases uncertainty about the future. This is reflected by increased uncertainties

about some or all of the existing model parameters [1]. After a patient has a spike

in their urine output it is unknown whether the patients urine output level will

remain at a healthy level and continue around that level, or if the patients urine

output will reduce back to an unhealthy, deteriorating level, or some other trend.

We are more uncertain about the future after such an event and the uncertainty in
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Figure 6.2: Types of change after a wild observation (shown in red). The purple, green
and blue dots indicate that the red observation is an outlier, a level change, or a slope
change, respectively

the parameters will be greater. One way to model this is to increase the prior vari-

ances of some (if it is evident that certain components are not going to be affected)

or all of the components of the model [1]. This reflects the view that although

something has changed, it is difficult to attribute the change to a particular com-

ponent. In extremely noisy time series, like the urine output series, it is often the

case that all elements of the covariance matrix, Rt, are increased to reflect increased

uncertainty about all parameters without changing the prior mean, at, that would

indicate the direction of change. This leads to great uncertainty about the entire

state vector and is a technique to be used in cases with completely unknown sources

of change. Therefore, unless completely uncertain about the source of change, it is

best to increase uncertainties only on those components that are viewed as poten-

tially subject to major change. In the series that we consider it is often the case

that we do not know the source of uncertainty and that we have to increase the

entire prior covariance matrix. The sudden changes that are frequently encountered

in the urine output series are due to random biological variation and physiological

responses. Many patients after having heart surgery will exhibit a decreasing urine
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output as a physiological response to surgery and not due to harm to the kidneys.

It is not known when this response will end but it causes the series to be extremely

noisy and exhibit sudden, random changes. In order to allow our model to adapt to

future trends, after such a random event, it will be the case that we must increase

all parameter prior variances to incorporate the three possible changes (see Figure

6.2) that could occur after an unknown, wild observation.

All such interventions to the system evolution equations can be represented in DLM

form by extending the model to include a second evolution of the state vector in

addition to that in the general DLM defined by Equations (6.0.1) [1]. Suppose the

intervention information is given by

It = {ht,Ht}, (6.1.2)

where ht is the mean vector and Ht is the covariance matrix of a random quantity,

ξt, with

ξt ∼ N(ht,Ht). (6.1.3)

The intervention is implemented by adding the additional noise term to the system

evolution equation shown in Equations (6.0.1). Equivalently, the post-intervention

prior distribution is defined via the extended evolution equation

θt = Gtθt−1 + ωt + ξt. (6.1.4)

Thus,

(θt | It, Dt−1) ∼ N(a∗t ,R
∗
t ), (6.1.5)

where a∗t = at+ht and R∗t = Rt+Ht [1]. In the case that the source of uncertainty

is unknown, ht = 0. Writing the evolution equations in this form allows for many

practically useful variance inflations. This is very flexible and allows for cases of

complete uncertainty through to subjective uncertainty where some of the elements

of Ht can be set to 0, meaning that those parameters are unlikely to be subject

to change (although there will be some correlation due to the off-diagonal terms in

Rt). Although it is difficult in general to be able to say that a parameter is not

going to have any additional uncertainty after an intervention. In general it is better

to be more cautious, and increasing parameter variances significantly (in addition

to ignoring yt by letting Vt tend to infinity) so that the model will be adaptive
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to future data, rapidly identifying and estimating changes. The theorem below

concretely confirms that the interventions can be written in the usual DLM form [1]

(so that the interventions can be routinely updated in the recurrence relations given

by Algorithms 1 and 2).

Theorem 6.1.2.1. From West and Harrison [1]. Conditional on information {It, Dt−1},

the DLM (described by Equations (6.0.1), (6.0.2), and (6.0.3)) holds with the system

evolution equation in (6.0.1) amended according to Equation (6.1.4), written now

as

θt = Gtθt−1 + ω∗t , (6.1.6)

where ω∗t = ωt + ξt is distributed as

ω∗t ∼ N(ht,W
∗
t ), (6.1.7)

where W ∗
t = Wt +Ht.

This theorem confirms that the interventions can be written in the usual DLM form,

with a generalisation to possibly non-zero mean for the evolution stochastic error

series. A special case of this theorem is when ht = 0, when the addition of ξt simply

increases the uncertainty about θt. An automatic intervention technique described in

Section 6.5.1 uses this approach and we use it as an automatic monitoring technique

for the urine output series.

6.2 Forward Intervention

Intervening in an on-line analysis to incorporate external information is achieved by

adjusting the model based prior p(θt | Dt−1) to a new prior p(θt | Dt−1, It), where

It is the external information from the intervention [15]. The urine output data

has many forms of sudden change which can cause the time series to be extremely

noisy. When a patient’s kidneys are deteriorating it is routine that the patient is

given more or stronger fluids to hopefully restore the functioning of the kidneys.

In this study we do not know the strengths of the fluids used and so this makes

it extremely difficult to predict the effects of such interventions. However, when a
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patient is given a fluid intervention we can say that uncertainty about the future is

increased. Forward interventions, in the hands of an experienced forecaster, are an

extremely useful way to incorporate subjective information into dynamic models.

To help convey forward interventions we will consider a time that a clinician gives a

patient a “fluid challenge”. The clinician will be expecting an increase in urine out-

put at the next recording (fluid interventions that include a drug called furosemide

are expected to work within 15 minutes) if the patient’s kidneys are not severely

failing. However, there is a lot of uncertainty about whether the mean parameters

will change much at all or if they will drastically change (due to not knowing the

strength of the interventions and also due to uncertainty about the performance of

the patient’s kidneys, although in application the clinician will know how strong the

intervention is). This is not an atypical scenario for noisy time series and one way of

modelling an intervention of this nature is to drastically increase the prior variances

and to not adjust the prior means (setting ht = 0 in Equation (6.1.3)).

Suppose that (see Section 5.2.1) we model the (transformed) urine output time series

by using a second order polynomial model. That is,

log(Yt + 0.1) = µt + νt,

µt = µt−1 + βt−1 + ωµt,

βt = βt−1 + ωβt,

(6.2.1)

where µt allows for systematic variation about a time varying level and βt allows

for systematic growth and decline of the level, where νt ∼ N(0, Vt) and ωt ∼
Tnt−1(0,Wt) where

V −1
t | Dt ∼ Ga(δV nt/2, δV dt/2), Wt =

(
Wµt +Wβt Wβt

Wβt Wβt

)
, (6.2.2)

where Wµt = Cµ,t−1(δ−1
µ − 1) and Wβt = Cβ,t−1(δ−1

β − 1), where Var(µt−1|Dt−1) =

Cµ,t−1 and Var(βt−1|Dt−1) = Cβ,t−1.

Suppose that our routine prior beliefs at time t−1 about the urine output level and

growth parameters are aµt < 0.3 and aβt < 0, respectively. This is a scenario where

a clinician may intervene with a “fluid challenge”. Our prior beliefs are summarised
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below

(θt | Dt−1) ∼ TδV nt−1

[(
aµt

aβt

)
,

(
Rµt Rµβt

Rµβt Rβt

)]
. (6.2.3)

Various strengths and compounds can have various levels of effects on different

patients and it is difficult to estimate an increase in expected level. However, we

know that there is some additional uncertainty in the next forecast and this can

be expressed with a forward intervention by increasing prior variances. Our post-

intervention prior is determined directly as

(θt | Dt−1, It) ∼ TδV nt−1

[(
aµt

aβt

)
,

(
Rµt Rµβt

Rµβt Rβt

)
+Ht

]
, (6.2.4)

where Ht is commonly set to be a multiple of the most recent posterior covariance

matrix, Ct−1 (see Section 6.5.3 for more details on how to choose Ht). Figure 6.3

shows the difference between including a subjective forward intervention and not

including the additional subjective information. We see that the model (left) that

does not incorporate this external information breaks down, when the intervention

is given at hour 70, and is unable to recover. Conversely, we see that the model

(right), that does incorporate this external information, prepares for additional fu-

ture uncertainty by increasing prior variances at hour 70 and allows the model to

rapidly adapt to the new future trend.

In Section 4.5 we considered the role of the initial prior distribution in a Bayesian

updating analysis as n increases. We saw that as the sample size increases the

posterior distribution resembles the likelihood more and more.

We now investigate what happens when updating from prior to posterior when we

observe a level change. This is a common scenario when modelling noisy time series

and is encountered frequently in the urine output series. We will consider the effect

of a level change for a DLM that is closed to intervention, and the effect of a level

change for a DLM that is open to intervention.

Suppose that we are modelling a stable time series and suppose that after t obser-

vations our posterior distribution, at time t, resembles the likelihood at time t (see

plot for n = 50 in Figure 4.1).

If there is an unexpected level change in the series we see that (see Figure 6.4) the
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Figure 6.3: Intervention (right) Vs No Intervention (left). Forecasts for model closed to
interventions are poor and prediction intervals are not useful to clinicians. Model (right)
increases prior variances at hour 70 allowing model to rapidly adapt to the future trend

model is very slow to adapt to the new trend (see also Figure 6.3 (left)). This slow

adaption due to a sudden level change can cause a DLM to break if not handled

correctly. From Figure 6.4 we can see that after the level change, the posterior

distribution (red) places density on incorrect regions of µ and has high confidence

in these regions which could lead to misleading inferences.

However, if we are aware of this level change in advance (or if we account for it

retrospectively like in Section 6.5) and increase prior variances we see from Figure

6.5 that the model is quickly able to adapt to the new trend and, once again,

the posterior distribution resembles the likelihood (immediately). Figure 6.5 shows

the updated prior (and prior to posterior updates) after including interventions

(θt | Dt−1, It) as opposed to Figure 6.4 representing a prior (and prior to posterior

updates) with no intervention (θt | Dt−1).
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Figure 6.4: Model Breakdown. Blue lines represent prior distributions, red lines represent
posterior distributions, and black lines represent the likelihoods. We see that the level
is slow to adapt to the future trend. Note that this is not the updates for the series
considered in Figure 6.3 (left). This Figure is for illustration purposes only

6.3 Model Performance

6.3.1 Bayes’ factors for model assessment

We consider models operating subject to continual monitoring to detect deteriora-

tions in predictive performance that indicate some form of model breakdown (in

particular, changes in parameters). We now discuss automatic methods of sequen-

tially monitoring the forecasting activity to detect breakdowns. This is essential

when modelling patients since many of the clinicians around the hospital will not

know how to statistically intervene, nor have the time to do so, and so automatic

methods are required. Model assessment examines the extent to which the observed

values of the time series are consistent with forecasts based on the model. In the

DLM framework, the focus is on consistency of each observation with the corre-

sponding one-step ahead forecast distribution [1]. Equivalently, the assessment can
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Figure 6.5: Forward intervention. Blue lines represent prior distributions, red lines rep-
resent posterior distributions, and black lines represent the likelihoods. We see that the
level rapidly adapts to the future trend. Note that this is not the updates for the series
considered in Figure 6.3 (right). This Figure is for illustration purposes only

be made on the basis of the standardised, one-step ahead forecast errors, measuring

the extent to which they deviate from standard normal (in the case of known obser-

vational variance), or T distributed (in the case of unknown observational variance),

quantiles. Assessing model performance relative to the performance of one or more

alternative models is key to assessing model performance and model breakdown [1].

The alternative models under consideration are specifically designed, by the fore-

caster, to account for the expected changes in the time series under consideration. In

the urine output series these alternative models will account for parameter changes

(changes in level or growth) and outlying observations. Specific models are chosen

to be based on the specific forms of departure anticipated from the routine model

and model comparisons are made by using Bayes’ factors, we define these below.

Consider any two models, denoted by M0 and M1 with the same mathematical

structure, differing only through the values of defining parameters (e.g. different

discount factors). That is, M0 = {Ft,Gt,V0t,W0t}, and M1 = {Ft,Gt,V1t,W1t},

88



recalling that both the observational and evolution variances can be modelled with

discount factors (see Sections 4.8 and 4.9.4). M0 is the routine model that is used and

monitored to detect for any deterioration in forecast performance and M1 (there can

be multiple alternative models) is an alternative model that is used to assess model

performance of M0. At time t− 1 the models both provide a predictive distribution

for Yt given Dt−1. Since we now have different models we formally include this in

the conditioning and write

p(Yt | Dt−1,Mi) ≡ pi(Yt | Dt−1), (6.3.1)

where i = 0, 1 in this illustration but any number of suitable models can be con-

sidered and Dt−1 is the historical information that is common to the two models

at time t − 1. We now describe how Bayes’ factors use these densities to compare

model performance [1].

Definition 6.3.1.1. • The Bayes’ factor for M0 versus M1 based on the ob-

served value of Yt is defined as

Ht = p0(Yt | Dt−1)/p1(Yt | Dt−1). (6.3.2)

• For integers k = 1, . . . , t, the Bayes’ factor for M0 versus M1 based on the

sequence of k consecutive observations Yt, Yt−1, . . . , Yt−k+1 is defined as

Ht(k) =
t∏

r=t−k+1

Hr =
p0(Yt, Yt−1, . . . , Yt−k+1 | Dt−k)

p1(Yt, Yt−1, . . . , Yt−k+1 | Dt−k)
. (6.3.3)

These Bayes’ factors provide measures of predictive performance of M0 relative to

M1. For each k, Ht(k) measures the evidence provided by the most recent (up to and

including time t) k consecutive observations, and is used to detect slower changes

in parameter values. Some features of Bayes’ factors include:

• Setting k = 1 in Ht(k) leads to Ht(1) = Ht, for all t and taking k = t gives

the Bayes’ factor based on all of the data, Ht(t).

• The Bayes’ factor for M1 versus M0 are the reciprocals of those for M0 versus

M1, Ht(k)−1.
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• Evidence for or against the model, M0, accumulates multiplicatively as data

are processed. For each t > 1,

Ht(k) = HtHt−1(k − 1), (k = 2, . . . , t). (6.3.4)

• On the log scale, evidence is additive, with

log(Ht(k)) = log(Ht) + log(Ht−1(k − 1)), (k = 2, . . . , t). (6.3.5)

• Following Jeffreys (1961) [29], a log Bayes’ factor of 1 (-1) indicates evidence

in favour of model 0 (1), a value of 2 or more (-2 or less) indicates strong

evidence in favour of model 0 (1). The value 0 indicates no evidence either

way.

Note that we do not need to construct a fully specified alternative model for the

data, a suitable sequence of alternative, one-step ahead forecast densities to provide

the denominator for the Bayes’ factors are all that is needed (see Section 6.5.2).

6.3.2 Cumulative Bayes’ Factors

The overall Bayes’ factor, Ht(t), is used as a measure of overall model assessment.

However, with dynamic models, the focus is on local model performance. We do

not want high Bayes’ factors from the past (reflecting strong evidence that the

routine model is outperforming the alternatives) affecting Bayes’ factors calculated

now. Hence, the individual Bayes’ factors Ht and the cumulative measures Ht(k)

for k < t are key for assessing dynamic model performance [1]. Suppose that t = 11

and that Hr = 2 for r ≤ 10 meaning that the first 10 observations are well in accord

with the routine model M0, their individual Bayes’ factors each being 2. Thus the

cumulative Bayes’ factor, representing the cumulative evidence for M0 relative to M1

from the first 10 observations, H10(10) = 210 = 1024. Then if Y11 is an outlier under

M0, even if it is out in an extreme tail of the forecast distribution, the cumulative

Bayes’ factor H11(11) will likely still exceed 1, thus the cumulative Bayes’ factor

indicates no evidence against M0, although by definition it is clearly an observation

that is not in accord to the predictions of M0. We would require H11 ≤ 1/1024,

indicating that Y11 is 1024 times more likely to come from the alternative model M1

compared to M0, to even begin to doubt M0. The evidence for the routine model
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from earlier observations dominates the evidence against the standard model at time

t = 11 in the cumulative measure. Hence the need to consider the individual Bayes’

factors as they arise for the case of outlying observations. However, in some cases,

when there are gradual changes in the time series, the individual Bayes’ factors

will be smaller than one (indicating model deterioration) but not small enough to

prompt a warning signal. These small changes in the time series can be identified

by looking back over recent observations and calculating cumulative Bayes’ factors,

but discarding past information that favoured M0 so that the cumulative factor is

not dominated by evidence in favour of the routine model [1].

Recall earlier how we mentioned that a urine output observation from 10 hours prior

to the current time is less useful than the most recent observations when forecasting

the future. The same is true when monitoring model performance, so that past

evidence does not affect current decisions. We should only be considering local

Bayes’ factors when monitoring forecast performance. A small individual Bayes’

factor Ht(1) = Ht provides a warning of a possible outlier or the onset of change

in the series at time t. A small Ht(k) for k > 1 is indicative of possible changes

having taken place k − 1 steps back in the past. The following theorem illustrates

the methods described above (adapted from [1]).

Theorem 6.3.2.1. With Ht and Ht(k) as in Definition 6.3.1.1, let

Lt = min
1≤k≤t

Ht(k), (6.3.6)

with L0 = 1 so that L1 = H1(1). Then the quantiles Lt are updated sequentially

over time by

Lt = Ht min{1, Lt−1} (6.3.7)

for t > 1. The minimum at time t is taken at k = lt, with Lt = Ht(lt), where the

integers lt are updated sequentially via

lt =

1 + lt−1, if Lt−1 < 1,

1, if Lt−1 ≥ 1.

(6.3.8)

Proof: By definition Ht(1) = Ht and for 2 ≤ k ≤ t, Ht(k) = HtHt−1(k− 1). Thus
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Lt = min{Ht, min
2≤k≤t

HtHt−1(k − 1)}

= Ht min{1, min
2≤k≤t

Ht−1(k − 1)}

= Ht min{1, min
1≤j≤t

Ht−1(j)}

= Ht min{1, Lt−1},

(6.3.9)

as stated. By (6.3.6) we can write Lt = Ht(lt), where 1 ≤ lt ≤ t. By definition

L1 = H1 = H1(1) = H1(l1), where l1 = 1. Consider time t = 2, using (6.3.7) we can

write

L2 =



H2(1)L1, if L1 < 1,

H2(1)H1(l1),

= H2(1 + l1),

H2(1), if L1 ≥ 1.

(6.3.10)

Noting that we used the multiplicative property (6.3.4) Ht(k) = HtHt−1(k − 1). In

other words, L2 = H2(l2), where

l2 =

1 + l1, if L1 < 1,

1, if L1 ≥ 1.
(6.3.11)

Consider now time t = s, we can write

Ls =



Hs(1)Ls−1, if Ls−1 < 1,

= Hs(1)Hs(ls−1),

= Hs(1 + ls−1),

Hs(1), if Ls−1 ≥ 1.

(6.3.12)

92



In other words, Ls = Hs(ls), where

ls =

1 + ls−1, if Ls−1 < 1,

1, if Ls−1 ≥ 1.
(6.3.13)

�

The sequence of local Bayes’ factors, Lt, provides the basis of a local monitoring

scheme, with the run-length, lt, indicating how long ago the model deterioration

may have begun by counting the number of recent observations contributing to the

minimum cumulative Bayes’ factor. If there is evidence in favour of the routine

model at time t−1, the model is deemed adequate and future judgement will ignore

the past. At the next time, t, the local Bayes’ factor is set to the Bayes’ factor

for just that time, Lt = Ht, and decisions about possible inadequacies of the model

are based on Yt alone and the local Bayes’ factor is not affected by past evidence

favouring the routine model [15]. If this single Bayes’ factor is “very small” (we

define “very small” to be a Bayes’ factor that breaks a pre-specified threshold, see

Section 6.4. The Bayes’ factor threshold is chosen by the forecaster and will depend

on experience and on the system under consideration), then the observation, Yt, is

a possible outlier or may indicate a parametric change. If this single Bayes’ factor

exceeds one, then the model is adequate and the system rolls forward once more

as before. Furthermore, if this Bayes’ factor lies between these two extremes then

there is some evidence against the model, but not enough to signal a warning. In

this scenario, the evidence is held over for combined judgement with later evidence

by using local Bayes’ factors. If there is inconclusive evidence against the routine

model before time t, so that the local Bayes’ factor is less than one, Lt−1 < 1,

then evidence from the current observation is cumulated through the Bayes’ factor

product Lt = HtLt−1, and the run length increases by one, lt = lt−1 + 1. If Lt now

breaks the Bayes’ factor threshold, then the lt most recent observations together

suggest evidence of reduced forecast performance. If Lt exceeds one, then, the

model is deemed adequate and previous concerns are forgotten. If there is still no

decision either way, the evidence is held over once again [15]. Finally, if the local

Bayes’ factor, Lt, is consistently less than one but does not break the pre-specified

threshold, then a run-length threshold can be specified. That is, if Lt < 1 and lt > l

93



(where l is chosen by the forecaster), then a warning can be raised, indicating a slow

parametric change causing deterioration to model performance.

6.4 Urine Output Series: Corrective Feedback

Consider a series of forecasts that begin favouring the routine model, e.g., this could

be a patient who has a steady downward trend and is forecasted adequately by the

routine model. Following Jeffreys (1961) [29] we will consider a monitoring system

that signals a warning when the cumulative Bayes’ factor falls below a threshold

τ = exp(−2) ≈ 0.135 which corresponds to -2 on the log-scale. If the cumulative

Bayes’ factor falls below τ = 0.135 this will warn that there is significant evidence

for the alternative model and against the routine model.

At time t = 1 (recalling that L0 = l0 = 1)

H1 = 1.5 =⇒ L1 = H1 ×min(1, L0) = H1 = 1.5,

l1 = 1.

At time t = 2

H2 = 2 =⇒ L2 = H2 ×min(1, 1.5) = H2 = 2,

l2 = 1.

As we can see, the favourable evidence in the first forecast is excluded from the

assessment of the second. While forecasts favour the routine model, the local Bayes’

factor equals the individual Bayes’ factor for the current observation and the run

length is one. No signals are generated. Suppose we now observe some poor fore-

casts. These poor forecasts could be due to an abrupt change in the urine output

series. This could be due to the patient adjusting to the surgery they just had

(overcoming the physiological response to surgery) or due to an increased amount

of fluids given by clinicians.

At time t = 3

τ = 0.135 < H3 = 0.4 < 1 =⇒ L3 = H3 ×min(1, 2) = H3 = 0.4,

l3 = 1.
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There is some evidence of model inadequacy, L3 < 1, but there is not enough

evidence to signal a warning, since L3 > τ . The evidence is held over until the next

time. At time t = 4

τ < H4 = 0.3 < 1 =⇒ L4 = H4 ×min(1, 0.4) = 0.12,

l4 = 2.

The monitor signals a warning (L4 < τ) with evidence accumulated over two periods,

l4 = 2, a run-length of two. This indicates that two observations contributed to the

evidence and that the model began to breakdown at time t = (4−2+1) = 3. At this

point the forecaster (or the automatic diagnostics system) is warned of a potential

problem and the model is adjusted accordingly before continuing. The monitor then

resets to a neutral state before proceeding. The evidence that led to a warning at

time t = 4 is removed because it has already been brought to the attention of the

forecaster (or the automatic diagnostics system) and appropriate adjustments made.

Just as a build-up of favourable evidence is prevented from overpowering current

monitor performance, so is a build-up of unfavourable evidence once diagnostics

have been performed [15].

At time t = 5

τ < H5 = 0.65 < 1 =⇒ L5 = H5 ×min(1, 1) = H5 = 0.65,

l5 = 1.

At time t = 6

τ < H6 = 0.85 < 1 =⇒ L6 = H6 ×min(1, 0.65) = 0.5525,

l6 = 1 + 1 = 2.

Evidence is building up against the routine model, L6 < 1 but it is not yet sufficient

to cause a warning signal since L6 > τ , so evidence is held over. At time t = 7

H7 = 3 =⇒ L7 = H7 ×min(1, 0.5525) = 1.6575,

l7 = 2 + 1 = 3.

Observation Y7 strongly favours the routine model, L7 > 1, and so removes the

concern that had been building and the model performance is considered satisfactory,

and so the evaluation next time will start from a neutral position and the run-length
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starts over. At time t = 8

H8 = 0.5 < 1 =⇒ L8 = H8 ×min(1, 1.6575) = H8 = 0.5,

l8 = 1.

Note that if H7 = 1.5 then L7 = 1.5 × 0.5525 = 0.82875 and although observation

Y7 would have favoured the routine model, the model performance would still have

been inconclusive and the evidence would have, once again, been held over.

One final situation remains. It is possible for a series of observations to consistently

provide evidence against the model, but in small enough quantities that the run-

length grows considerably without the Bayes’ factor threshold being breached. This

can indicate slowly changing parameter values and should raise a performance warn-

ing. This slow change is made aware of by extending the monitor system to issue a

signal whenever the run-length exceeds a preset limit in addition to signalling when

the Bayes’ factor threshold is passed.

6.5 FeedBack Intervention

6.5.1 Automatic Detection and Diagnosis

Identifying model breakdown is the first step in automatic monitoring, detection

and diagnosis. The signals that are raised when a model is underperforming should

prompt a user response in the form of a feedback intervention. The following logical

scheme (adapted from [1]) provides a guide for the use of Bayes’ factors in detecting

and diagnosing model breakdowns.

At time t proceed as follows:

(A) Calculate the single Bayes’ factor Ht. If Ht ≥ τ , then Yt is viewed as consistent

with M0; proceed to (B) to assess the possibilities of model failure from changes

in parameter values prior to time t. However, if Ht < τ , then Yt is a potential

outlier and should be omitted from the analysis, being treated as a missing

value. However, Yt may be the onset of change in the model parameters and

these changes must be allowed for after rejecting the observation. Thus the
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need for intervention is identified and we can proceed to (C).

(B) Calculate the local cumulative Bayes’ factor, Lt, and the corresponding run-

length, lt, to assess the possibility of changes prior to time t. If Lt ≥ τ and

lt < l, then M0 is satisfactory and proceed to (D) to perform standard up-

dates. Otherwise, Lt < τ indicates change that should be addressed, requiring

intervention; proceed to (C). Slower parametric changes can also be identified

by signalling a possible breakdown of M0 if either Lt < τ or lt > l (where l

is chosen by the forecaster). The idea being that l recent observations may

provide evidence marginally favouring M1 over M0, but this may be so small

that τ < Lt < 1, and so a run-length threshold is required. If Lt > τ but lt > l

then this indicates change that should be addressed, requiring intervention;

proceed to (C).

(C) Issue signal of model deterioration and perform model diagnostics, as in Sec-

tion 6.1.2, to adapt the model for the future. Update the time index to t + 1

for the next observation stage, and proceed to (A), reinitialising monitoring

by setting Lt = 1. The prior (θt+1 | Dt, It) will be used at time t+ 1, where It

is an external intervention as described in Section 6.1.

(D) Perform usual analysis and updating with M0, proceeding to (A) at time t+1.

The prior (θt+1 | Dt) will be used at time t+ 1.

We now specify the forms of intervention at points of possible changes. We have

described interventions in Section 6.1 and we now focus on automatic alternatives

for routine use.

6.5.2 Alternative Models for the DLM

Suppose that the routine model, M0, to be assessed is a standard normal DLM

producing one-step ahead forecast distributions (Yt | Dt−1) ∼ N(ft, Qt). Assessing

consistency of the observed values Yt with these distributions is equivalent to assess-

ing the consistency of the standardised forecast errors et/Q
1/2
t = (Yt−ft)/Q1/2

t with

the standard normal distribution [1]. Thus we will use Bayes’ factors based on the

predictive densities of the standardised forecast errors.
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Figure 6.6: Monitoring system illustrating the steps performed at each time point to
identify model deterioration

Recall that the focus is on the local performance of the model. It is the extent

to which the current and most recent observations accord with the model that

determines whether or not some form of intervention is required. Consider a single

observation and hence a single forecast error, and without loss of generality take

ft = 0 and Qt = 1, so that under M0 the forecast distribution for et = Yt is

(et | Dt−1,M0) ∼ N(0, 1), (6.5.1)
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and so

p0(et | Dt−1) = (2π)−1/2 exp{−0.5e2
t}. (6.5.2)

There are various alternative models, M1, that provide for the types of departure

from M0 encountered in practice for the urine output series. The first alterna-

tive model can be used to capture a level change after a patient has received a

successful intervention, or after a drastic increase marking the end of a physiolog-

ical response to surgery. A suitable alternative model, M1, to capture the level

change, in which et has non-zero mean, h, is one with forecast distribution for et

given by (et | Dt−1,M1) ∼ N(h, 1) [1]. This reflects that the errors are shifted and

E[(et | Dt−1,M1)] = h, representing a level shift by hml/kg. Thus we have

p1(et | Dt−1) = (2π)−1/2 exp{−0.5(et − h)2}. (6.5.3)

For any fixed shift h, the Bayes’ factor at time t is

Ht = p0(et | Dt−1)/p1(et | Dt−1) = exp{0.5(h2 − 2het)}. (6.5.4)

Ranges of appropriate values of h will depend on the size of the error and the Bayes’

factor threshold. For example, suppose that the error is positive and consider the

point at which Ht = 1, indicating no evidence for or against M0, from et alone

(in Section 6.3.2 we discussed that although Ht ≥ 1 the cumulative Bayes’ factor

could still be less than 1 and so there would be evidence against the routine model

even though there is no evidence against M0 from et. But here we are analysing the

individual Bayes’ factor). At this point, log(Ht) = 0 and so we have 0.5(h2−2het) =

0 and hence, since h is non-zero, h = 2et. To be indifferent between M0 and M1

based from, say, et ≈ 2, alone (at roughly the 97.5% point of the standard normal

distribution) suggests that h = 4. This means that if we considered an alternative

model, such that, (et | Dt−1,M1) ∼ N(4, 1) and an error of et = 2 is observed, then

Ht = 1, and there is no evidence, from et = 2 alone, against the routine model and

assuming that the cumulative Bayes’ factor is also above a chosen threshold and

the run-length is below the chosen threshold (see Section 6.3.2) there would be no

warning from the monitoring system and forecasts would be made for time t+ 1 as

usual.

Suppose that the forecaster specifies a threshold Ht = τ, (0 < τ � 1) below which

the evidence is accepted as a strong indication that et (alone) is inconsistent with M0.
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Using Equation (6.5.4), taking logs and rearranging, leads to a quadratic equation

in h, namely

h2 − 2het − 2 log(τ) = 0. (6.5.5)

Thus if we, once again, take et = 2 (at roughly the 97.5% point of the standard

normal distribution) and, using a threshold of -2 for the log-Bayes’ factor (Jeffreys

(1961) [29]), i.e. taking τ = e−2 ≈ 0.135, we obtain

h2 − 4h+ 4 = 0

=⇒ h = 2.
(6.5.6)

Thus, et ≈ 2 leads to strong evidence against M0 in favour of M1 when h = 2, and

indifference between M0 and M1 when h = 4. This reflects that an observation at

time t with a corresponding error et ≈ 2 is equally likely to be from the standard

normal distribution or from the N(4, 1) distribution but much more likely to be from

the N(2, 1) distribution. Moreover, if we consider using (et | Dt−1,M1) ∼ N(2, 1) as

our alternative model then the Bayes’ factor, at time t, is given by

Ht = p0(et | Dt−1)/p1(et | Dt−1) = exp{0.5(4− 4et)}. (6.5.7)

For Ht < τ ≈ 0.135 this would mean that

log(Ht) = 0.5(4− 4et) < −2

=⇒ et > 2.
(6.5.8)

Illustrating that if the error et > 2 is observed then this error will be enough evidence

to breach the chosen threshold and indicate that the model performance is poor

compared to M1 and diagnostics can be performed. Finally, very importantly, if the

forecaster decides that for a single observation to be considered an outlier, (following

Jeffreys (1961) [29] and using a threshold of -2 for the log-Bayes’ factor) and not in

accord to the routine model, it must be outside of the 95% (highest density) pre-

diction interval (which for positive et means above the 97.5% point of the standard

normal distribution) at time t then the alternative model (et | Dt−1,M1) ∼ N(2, 1)

would suffice. Using (et | Dt−1,M1) ∼ N(2, 1) for the automatic monitoring system

allows the monitor to signal a warning and perform diagnostics at the levels defined

above. Similarly, if the forecaster decides that an error outside of the 90% (highest

density) prediction interval at time t is considered large enough for the model to

be performing inadequately, then similar values of h can be defined via the above
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analysis. Note if h is negative the sign of h must be reversed in the above findings.

Now consider a different form for the alternative model M1 (although in practice

a forecaster can define many alternative models). A useful alternative is the scale

shift model, M1, in which et has standard deviation k rather than unity [1], i.e.

(et | Dt−1,M1) ∼ N(0, k), with

p1(et | Dt−1) = (2πk2)−1/2 exp{−0.5(et/k)2}. (6.5.9)

Modelling a scale inflation with k > 1 provides a useful alternative model for mod-

elling noisy time series like the urine output series. In Section 6.3.2 we discussed that

when modelling on-line an outlier is indistinguishable from a parametric change. In

this scenario we mentioned that a good response to such uncertainty is to dras-

tically increase the prior variances and to leave the prior means unchanged (see

Section 6.1.2). By increasing the prior variances substantially this allows the model

to rapidly adapt to parametric changes (see Figure 6.5). In addition, the model will

also be able to rapidly adapt if the wild observation corresponds to an outlier. The

alternative model (6.5.9) captures such changes that the routine model does not.

Using the alternative model (6.5.9), the Bayes’ factor at time t is given by

Ht = k exp{−0.5e2
t (1− k−2)}. (6.5.10)

For the models M0 and M1 to be indifferent, Ht = 1, i.e. log(Ht) = 0, implies that

log(k)− 0.5e2
t

(
k2 − 1

k2

)
= 0. (6.5.11)

Once again, we will consider et ≈ 2 meaning that et lies outside of the upper 97.5%

point of the standard normal distribution. Substituting et = 2 gives

log(k)− 2

(
k2 − 1

k2

)
= 0

=⇒
(

k2

k2 − 1

)
log(k)− 2 = 0.

(6.5.12)

An explicit expression for k does not exist, but we can use numerical techniques to

find that the solution lies in the range 7 < k < 8 (see Figure 6.7). For et to equal

the threshold defined by Jeffreys (1961) (a log-Bayes’ factor of -2 [29]) we would
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require that

log(k)− 0.5e2
t

(
k2 − 1

k2

)
= −2

=⇒
(

k2

k2 − 1

)
[log(k) + 2]− 0.5e2

t = 0.

(6.5.13)

It is not possible to obtain a value of k which satisfies the above when |et| = 2. We

can see from Figure 6.7 that if the monitoring system was programmed to signal a

warning when |et| = 2 the threshold would have to be around 0.45 and k = 2 (or

higher thresholds for different values of k). If k = 7 and we observed an error of

size |et| = 2 this would indicate (close to) indifference between M0 and M1. For the

threshold τ = 0.135 (the dashed horizontal line in Figure 6.7) we see that all values

of k would produce an error if |et| & 2.9.
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Figure 6.7: Bayes’ factors Ht for normal scale inflation model plotted against |et| for
different scale inflations k. Black horizontal line at Ht = 1 represents indifference between
M0 and M1. Black dashed line at ≈ 0.135 represents our chosen threshold to indicate poor
model performance

A key point to make is that, above a certain level, the particular value of k is

irrelevant. The point is that alternative models provide a larger variance than M0,

thus large errors will tend to be more consistent with M1 no matter how large
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the variance inflation is [1]. This is illustrated in Figure 6.7. The curves plotted

provide Bayes’ factors as a function of |et| over the range of 2−4, for k = 2, 3, . . . , 8.

This range of values of |et| focuses attention on the region of observations that would

make us doubt M0. As expected, evidence in favour of M0 decreases as |et| increases.

Notice from Figure 6.7 that as |et| becomes extreme relative to M0, the choices of k

are indistinguishable. The Bayes’ factors are all around 0.1 when |et| = 2.9.

6.5.3 Automatic Adaption in Cases of Parametric Change

Consider we are at (C) in the scheme described in Section 6.5.1, having identified that

changes have occurred and M0 is underperforming. Intervening by adding additional

evolution noise (see Section 6.1.2) at the time of suspected change allows the routine

model, M0, to adapt to the changes automatically. In the case of the urine output

series, when changes are abrupt and we cannot identify which parameters are subject

to change, it is best to be cautious and increase all prior variances. This feedback

intervention at (C) can be automatically achieved by following Theorem 6.1.2.1 with

ht = 0 such that θt = Gtθt−1+ω∗t , where, ω∗t ∼ N(0,Wt+Ht) (if we are considering

an unknown observational variance ω∗t ∼ Tnt−1(0,Wt +Ht)). This is the form of

intervention that we will use to adapt the model described in Section 5.2.

There are many ways to specify the additional variance matrix Ht. One way to

specify Ht, when all parameters are subject to change, is in terms of the standard

evolution variance matrix Wt. Taking

Ht = (ρ− 1)Wt, (6.5.14)

where ρ > 1, has the effect of inflating the standard variance of θt by a factor of ρ

[1].

An alternative specification can be seen by recalling from Section 4.8 that low values

of discount factors are consistent with high variability in the θt sequence. Thus

reducing the discount factors, resulting in a more heavily discounted version of

the matrix Wt, when the monitoring system signals a warning is a way for the

model to adapt to the onset of change. This is possible by specifying Ht so that

W ∗
t = Wt + Ht is of that form. If we consider Wt to take the form given by

Equation (6.2.2), i.e. an evolution matrix with separate discount factors for the
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level and growth parameters

Wt =

(
Wµt +Wβt Wβt

Wβt Wβt

)
, (6.5.15)

where Wµt = Cµ,t−1(δ−1
µ − 1) and Wβt = Cβ,t−1(δ−1

β − 1), where Var(µt−1 | Dt−1) =

Cµ,t−1 and Var(βt−1 | Dt−1) = Cβ,t−1. Then if we denote the reduced discount factors

by δ∗µ and δ∗β then

W ∗
t =

(
W ∗
µt +W ∗

βt W ∗
βt

W ∗
βt W ∗

βt

)
, (6.5.16)

where W ∗
µt = Cµ,t−1(δ∗−1

µ − 1) and W ∗
βt = Cβ,t−1(δ∗−1

β − 1). This results in the

following form for Ht = W ∗
t −Wt

Ht =

(
Cµ,t−1(δ∗−1

µ − δ−1
µ ) + Cβ,t−1(δ∗−1

β − δ−1
β ) Cβ,t−1(δ∗−1

β − δ−1
β )

Cβ,t−1(δ∗−1
β − δ−1

β ) Cβ,t−1(δ∗−1
β − δ−1

β )

)
. (6.5.17)

A similar discount lowering technique can be used for the observation equation.

Recall from Section 4.9.4 that

φt | Dt−1 ∼ Ga(δV nt−1/2, δV dt−1/2). (6.5.18)

When a single Bayes’ factor is lower than the Bayes’ factor threshold at time t, it

implies that the observation at time t is either an outlier or the onset of change. In

this scenario, we ignore Yt (as well as adding additional evolution variance). This

can be achieved by letting St (the estimate for Vt) tend to infinity (see Section 6.1.1).

Note that if the diagnostic threshold is broken because of more than one observation,

from using local Bayes’ factors with more than one observation or from breaking the

run-length, then additional observation variance is not added, since these signals are

not indicative of an outlier. One way of letting St tend to infinity is to reduce the

observational discount factor, δV , to a lower value, δ∗V .

One way to do this and also follow the DLM framework is by extending Theorem

6.1.2.1. The extended observation equation takes a similar form where

Yt = Ftθt + ν∗t , (6.5.19)
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where ν∗t = νt + ψt (where νt and ψt are uncorrelated) is distributed as

ν∗t ∼ N(0, V ∗t ), (6.5.20)

where V ∗t = Vt+ Ψt. Reducing the observational discount factor at times of possible

outliers can be achieved by specifying Ψt = V ∗t − Vt, where

(φt | Dt−1, It) ∼ Ga(δ∗V nt−1/2, δ
∗
V dt−1/2), (6.5.21)

is the updated prior distribution.

Notice from Algorithm 2 that

nt = δV nt−1 + 1,

dt = δV dt−1 + St−1e
2
t/Qt,

St =
dt
nt

=
δV dt−1 + St−1e

2
t/Qt

δV nt−1 + 1
.

(6.5.22)

At times of possible outliers we would like

S∗t =
d∗t
n∗t

=
δ∗V dt−1 + St−1e

2
t/Qt

δ∗V nt−1 + 1
. (6.5.23)

This can be achieved by setting the additional point estimate for the unknown

observational variance Sψt = S∗t − St. It follows that the additional point forecast

for the observational variance is

Sψt =
δ∗V dt−1 + St−1e

2
t/Qt

δ∗V nt−1 + 1
− δV dt−1 + St−1e

2
t/Qt

δ∗nt−1 + 1

=
(δV nt−1 + 1)(δ∗V dt−1 + St−1e

2
t/Qt)− (δ∗V nt−1 + 1)(δV dt−1 + St−1e

2
t/Qt)

(δ∗V nt−1 + 1)(δV nt−1 + 1)

=
(δ∗V − δV )(dt−1 − nt−1St−1e

2
t/Qt)

(δ∗V nt−1 + 1)(δV nt−1 + 1)
.

(6.5.24)

The forms of Ht and Sψt above allow us to automatically add additional evolution

variance and observational variance when model deteriorations are detected.
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6.6 Intervention Modelling

In Sections 5.2.1 and 5.6.1 it was mentioned that higher discount factors usually pro-

duce better forecast performance. However, due to the time series being extremely

noisy this pulled component discount factors in a downward direction and so we had

to make a compromise. We now add a monitoring system to detect model deteriora-

tion, and as a result we will not have to compromise by lowering component discount

factors. The theory described throughout this chapter will be applied to the urine

output series to allow the routine model described in Section 5.2 to handle outliers

and to adapt to changing trends by reducing evolution and observation discount

factors, using the methods defined in Section 6.5.3. The evolution equation is now

adapted and takes the form

θt = Gtθt−1 + ωt + ξt

= Gtθt−1 + ω∗t ,
(6.6.1)

where ω∗t = ωt + ξt is distributed as

ω∗t ∼ Tnt−1(0,W
∗
t ), (6.6.2)

where W ∗
t = Wt +Ht, with Ht defined as in Equation (6.5.17). The observation

equation takes a similar form where

Yt = Ftθt + ν∗t , (6.6.3)

where ν∗t = νt + ψt (where νt and ψt are uncorrelated) is distributed as

ν∗t ∼ N(0, V ∗t ), (6.6.4)

where V ∗t = Vt + Ψt, with the estimate of Ψt, S
ψ
t , defined as in Equation (6.5.24).

The second order polynomial model described in Section 5.2 is adapted to include

an automatic monitoring system. The routine model, M0 is described in detail in

Section 5.2 and the alternative model M1 (remembering that we could have many

different alternative models) is designed to detect for abrupt changes in parameter

values and for possible outliers. An alternative model that can account for possible

outliers and parametric changes is the scale shift model defined in Section 6.5.2.

A similar analysis to that in Section 6.5.2 can be performed for the case of un-

known observational variance. The mathematics is not as convenient but defining
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the standardised forecast distribution for et = Yt as

(et | Dt−1,M0) ∼ TδV nt−1(0, 1) (6.6.5)

and so

p0(et | Dt−1) =
Γ( δV nt−1+1

2
)√

δV nt−1πΓ( δV nt−1

2
)

(
1 +

e2
t

δV nt−1

)−nt
2

. (6.6.6)

Defining an alternative, M1, with a larger scale than M0, with forecast distribution

for et

(et | Dt−1,M1) ∼ TδV nt−1(0, k) (6.6.7)

and so

p1(et | Dt−1) =
Γ( δV nt−1+1

2
)√

δV nt−1kπΓ( δV nt−1

2
)

(
1 +

e2
t

kδV nt−1

)−nt
2

. (6.6.8)

The Bayes’ factor at time t is then

√
k

(
1 +

e2
t

δV nt−1

)−nt
2
(

1 +
e2
t

kδV nt−1

)nt
2

. (6.6.9)

For illustration purposes, to plot Bayes’ factors as a function of |et| against k, we

fix nt = n,∀t (hence δV nt = δV n is fixed ∀t). Consider an observational discount

factor δV = 0.95 and n0 = 20; we see that, nt = δV nt−1 + 1 = 20,∀t. Figure 6.8

shows a plot of Bayes’ factors as a function of |et| against k. Once again, a key point

to make is that above a certain level the particular value of k is irrelevant. The

curves plotted provide Bayes’ factors as a function of |et| over the range of 2-4, for

k = 2, 3, . . . , 8. For the threshold τ = 0.135 (the dashed horizontal line in Figure

6.8) we see that all values of k would produce an error if |et| & 3.25. We will use a

scale shift model with k = 3 to monitor the performance of the routine model used

in Section 5.2.
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Figure 6.8: Bayes’ factors Ht for T distribution scale inflation model plotted against |et|
for different scale inflations k. Black horizontal line at Ht = 1 represents indifference
between M0 and M1. Black dashed line at ≈ 0.135 represents our chosen threshold to
indicate poor model performance

6.7 Urine Output Series: Second-Order Polyno-

mial Model with Monitoring

In Section 5 we used a second-order polynomial model to monitor the urine output

time series in order to forecast severe oliguria. In Section 5.3 we discussed how in the

early stages of CICU admissions the second-order polynomial model overestimated

risk and discussed how this poor model performance was likely to be due to phys-

iological responses to surgery or interventions attempting to normalise a patient’s

urine output. In this section we construct and use a model monitoring scheme to

automatically correct the second-order polynomial model, used in Section 5, when

poor model performance is detected. The results of forecasting severe oliguria and a

discussion about its consequences are also given and results produced by Dr Samuel

Howitt are clearly referenced.
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6.7.1 Urine Output Series: Model Monitoring Scheme

The model used to monitor the urine output series was described in Section 5.2

and represented by Equations (5.2.1). It was also noted in Sections 5.2.1 and 5.6.1

that higher discount factors usually produce better forecast performance than lower

discount factors, however, the time series that we are considering is extremely noisy

which pulled component discount factors in a downward direction. The analysis

shown in Appendix D suggested that the discount factors δV = 0.95, δµ = 0.80,

and δβ = 0.90, which minimise the number of type two errors, are suitable options.

This kind of analysis was a compromise because any structural changes other than

smooth dynamic variation pull component discount factors towards zero. Although

using the suggested discount factors does allow for adaption to structural changes,

it also means that during routine intervals there is excessive uncertainty during

evolution resulting in imprecise forecasts. Now that the forecast system is explicitly

on the lookout for structural changes, such a compromise over discounting is not

necessary. In Section 6.6 we discussed an explicit monitoring system to monitor

model performance which can result in not having to compromise by using lower

discount factors. For convenience we remind the reader of the model described in

Section 5.2.1

log(Yt + 0.1) = µt + νt,

µt = µt−1 + βt−1 + ωµt,

βt = βt−1 + ωβt.

(6.7.1)

The state vector θt = (µt, βt)
′, where µt allows for systematic variation about a time

varying level and βt allows for systematic growth and decline of the level, where

νt ∼ N(0, Vt) and ωt ∼ Tnt−1(0,Wt) where

V −1
t | Dt ∼ Ga(δV nt/2, δV dt/2), Wt =

(
Wµt +Wβt Wβt

Wβt Wβt

)
, (6.7.2)

where n0 = 20, d0 = 2 (and hence S0 = 0.1) and δV = 0.95, also Wµt = Cµ,t−1(δ−1
µ −

1) and Wβt = Cβ,t−1(δ−1
β − 1), where Var(µt−1 | Dt−1) = Cµ,t−1 and Var(βt−1 |

Dt−1) = Cβ,t−1, where

(θ0 | D0) ∼ Tn0

[(
0.55

−0.2

)
,

(
0.01 0

0 0.001

)]
, (6.7.3)
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and δµ = 0.80, and δβ = 0.90. We write

M0 = {F ,G, Vt,Wt}, (6.7.4)

where Vt and Wt are given by Equation (6.7.2) and (see Equation(4.6.3))

F =

(
1

0

)
, G =

(
1 1

0 1

)
. (6.7.5)

We now use the model described above, but also include a model monitoring scheme.

In addition we use a larger level discount factor δµ = 0.9 (chosen by using the criteria

discussed in Section 5.2.2). That is, we will use the routine model, M0, and assess

forecast performance at each time point by using the detection scheme discussed in

Section 6.5.1. The alternative model, which we use to assess the forecast performance

of M0 is a scale inflation model, M1, which allows for the types of sudden changes

that we expect in the urine output series (discussed in Sections 6.5.2 and 6.6). The

Bayes’ threshold is taken to be τ = 0.135 [29], the run-length threshold is taken to

be l = 2; this means that if the cumulative Bayes’ factors are less than one, but do

not break the threshold, τ , for three consecutive hours, then the model will signal a

warning. The scale inflation of the alternative model is taken to be k = 3 (see Figure

6.8), this value is chosen as it is the first (scale inflation) alternative model to break

the defined Bayes’ threshold. Once the detection scheme flags a warning, indicating

poor model performance, automatic diagnostics will be applied to correct the routine

model. The automatic diagnostics take the form of reducing the discount factors

of the unknown evolution matrix, Wt, and of the unknown observational variance,

Vt, as described in Section 6.5.3. The parameter estimates for the reduced discount

factors (by using the criteria discussed in Section 5.2.2) are δ∗µ = δ∗β = 0.12, and

δ∗V = 0.8.

6.7.2 Model Monitoring Scheme: Results

The results of the model with monitoring are now presented, recalling that the

validation group consisted of 2389 adult patients. We remind the reader that in

order to allow comparison of the model’s output with the existing stage one AKI

classification (within the KDIGO guidelines), patients were assigned to either a

high risk or a low risk group based on their first high risk warning. The analyses
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tested the model’s ability to identify which patients would suffer severe oliguria (UO

< 0.3ml/kg for 6 consecutive hours) within 12 hours of the high risk prediction.

Table 6.1 shows model performance over time, by considering observed severe olig-

uria (SO) compared to predicted severe oliguria.

Time Point (number of Observed SO Predicted SO O:E ratio
patients still on CICU) (% of patients) (% of patients)

12 hours (1947) 61 (3.1) 82 (4.2) 0.74
24 hours (1694) 57 (3.4) 61 (3.6) 0.93
36 hours (1137) 51 (4.5) 44 (3.9) 1.16
48 hours (909) 54 (5.9) 48 (5.3) 1.13
72 hours (545) 35 (6.4) 30 (5.5) 1.15

Table 6.1: Calibration of model’s (with model monitoring) predictive performance, pro-
duced by Dr Samuel Howitt. Table shows DLM performance over time by calculating the
proportion of the DLM’s high and low risk predictions that were correct at different time
points

In Section 5.3 we discussed how interventions and physiological responses are likely

to have been two reasons why the model (without monitoring) overestimated risk for

the first 24 hours. Comparing Table 5.1 to Table 6.1 we can see that the diagnostics

performed after poor model performance is detected have improved this issue. The

model is now able to retrospectively identify when physiological responses have

ended, and the model can detect interventions used to normalise urine outputs,

allowing the model to rapidly adapt to future trends. In addition, the model with

monitoring performs better after 24 hours as well. From Tables 5.1 and 6.1 we can

see that the DLM with model monitoring is calibrated better (at each time point)

than the DLM with no model monitoring.
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Chapter 7

Multi-Process Models

Multi-Process models offer a powerful framework for modelling and analysing time

series which are subject to abrupt changes in pattern. In particular this approach

can be used to provide on-line probabilities of whether changes have occurred in the

series, as well as identifying the types of change that are involved. This method-

ology has been used to monitor the progress of kidney function in the past and is

documented in West (1992) [30], Smith and West (1983) [23], Smith et al (1983)

[31], and Trimble et al (1983) [32]. These documents were concerned with detecting

and interpreting abrupt changes in the pattern of time series data. In this chap-

ter we extend on the previous analysis in Chapter 6 to provide a more powerful

model to capture the abrupt changes of the urine output series. Multi-process mod-

els are combinations of several DLMs, while individual DLMs are single process

models. There are two classes of multi-process models, first introduced by Harrison

and Stevens (1976) [33], and in this chapter we will focus on Class II multi-process

models.

Recall from Definition 3.4.2.1 that a DLM is characterised by a quadruple

Mt : {F ,G, V,W }t, (7.0.1)

at each time t, conditional on initial information D0. From now on, any defining

parameters that are possibly subject to uncertainty are denoted by α. For example,

in Section 6.5.3 we discussed a method where the discount factors were reduced to
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allow the DLM in use to rapidly adapt to future trends. As a result, we could have

denoted Wt by Wt(α) and Vt by Vt(α), where α = {δµ, δβ, δV }, to represent uncer-

tainty in the evolution matrix and observational variance (caused by uncertainty in

the evolution and observational discount factors). We now represent the model on

these uncertain quantities by writing

Mt = Mt(α). (7.0.2)

For any given value of α, Mt(α) is a DLM for each time t. The uncertainty about

the value of α is what leads us to consider multi-process models [1]. Let A denote

the set of possible values for α. If the size of α is uncountably infinite, for example

a discount factor is defined in the range δ ∈ (0, 1], then we can approximate A by a

discrete set of values. For example, if α = δ, a single discount factor, then we could

approximate A ∈ (0, 1] by A = {0.05, 0.10, 0.15, . . . , 0.95, 1}.

The class of DLMs at time t is given by

{Mt(α) : α ∈ A}. (7.0.3)

Then for some sequence of values αt ∈ A, Mt(αt) holds at time t. The description

above reflects that there is no single DLM accepted as adequate for all times. This

is usually the case when modelling noisy time series and this leads us to the next

section discussing and analysing class II multi-process models.

7.1 Class II Multi-process Models

Extending on the theory described above that no single DLM is accepted as adequate

for all times we define class II multi-process models.

Definition 7.1.0.1. Suppose that at each time t, α takes a value in the discrete

set A = {α1, . . . ,αk}. Then the Yt series is said to follow a multi-process, class II

model [1].

It remains to specify the probabilistic mechanisms by which a particular value of α

is chosen at each time.

Definition 7.1.0.2. In the multi-process class II framework, the value α = αj at
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time t, defining the model Mt(j), is selected with known probability

πt(j) = Pr[Mt(j) | Dt−1] = Pr[α = αj at time t | Dt−1]. (7.1.1)

The series Yt is said to follow a multi-process, class II mixture model [1]. Here πt(j)

could depend on the history of the process, but in this thesis we will assume fixed

model selection probabilities

πt(j) = π(j) = Pr[Mt(j) | D0] (7.1.2)

for all t.

In other words, Mt(j) has prior probability π(j) at each time t no matter what

the values of Y1, . . . , Yt−1. Consider one of the discount factor components in the

model monitoring technique discussed in Section 6.7.1. In this example α = δµ, and

the parameter space A = {0.9, 0.12}. If we define the prior probabilities of using

models M1 and M2 to be π(1) = 0.95, and π(2) = 0.05, where M1 and M2 refer

to the models with discount factors 0.9 and 0.12 respectively; this means that we

expect sudden changes to happen around 5% of the time before observing any of

the data. Using fixed model selection probabilities this means that at time t we still

expect a sudden change with probability 0.05, irrespective of what has happened in

the past. The probability of using model 1 at time t, Mt(1) is 0.95, irrespective of

Dt−1.

7.1.1 Fixed Selection Probability Models

For simplicity we will set αj = j and refer to integer indices rather than parameters.

As a result, the model index set is now A = {1, . . . , k}, and we refer to Mt(j) as

model j at time t [1]. We define, for each time t and integer h, (0 ≤ h < t), the

probabilities

pt(jt, jt−1, . . . , jt−h) = Pr[Mt(jt),Mt−1(jt−1), . . . ,Mt−h(jt−h) | Dt]. (7.1.3)

To gain a better understanding of dynamic mixture models, consider the position

at time t = 1, assuming that (θ0 | D0) has a normal or T distribution as usual.

At time t = 1, there are k possible DLMs, M1(j1), with prior probabilities π(j1),
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(j1 = 1, . . . , k). In DLM j1 the state vector has posterior p(θ1 | M1(j1), D1) and by

Bayes’ theorem, the DLM has posterior probability

p1(j1) = Pr[M1(j1) | D1] ∝ p(Y1 |M1(j1), D0)π(j1). (7.1.4)

Unconditionally, inferences about the state vector are based on the discrete mixture

p(θ1 | D1) =
k∑

j1=1

p(θ1 |M1(j1), D1)p1(j1), (7.1.5)

a sum of k components. Proceeding to time t = 2, any of the k possible DLMs,

M2(j2), (j2 = 1, . . . , k), may be selected, with probabilities π(j2). It is only possible

to retain the components of standard DLM analyses if the models possible at time

t = 1 are also considered. Hence, conditional on both M2(j2) and M1(j1) for some

j2 and j1, the posterior for θ2 given D2, depending on j2 and j1 is denoted by

p(θ2 |M2(j2),M1(j1), D2). This mixture can be written as

p(θ2 |M2(j2), D2) =
k∑

j1=1

p(θ2,M2(j2),M1(j1), D2) Pr[M1(j1) | D2]. (7.1.6)

Thus, conditional on j2 at time t = 2, the posterior is a mixture of k standard forms,

depending on which model was obtained at time t = 1. Thus, unconditionally,

p(θ2 | D2) =
k∑

j2=1

p(θ2 |M2(j2), D2)p2(j2)

=
k∑

j2=1

k∑
j1=1

p(θ2,M2(j2),M1(j1), D2)p2(j2, j1).

(7.1.7)

Unconditionally the posterior for θ2 depends on k2 components. This continues as

time goes by. Then at time t, the posterior density can be written as

p(θt | Dt) =
k∑

jt=1

p(θt |Mt(jt), Dt)pt(jt)

=
k∑

jt=1

k∑
jt−1=1

p(θt,Mt(jt),Mt−1(jt−1), Dt)pt(jt, jt−1).

(7.1.8)
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This can be written as

p(θt | Dt) =
k∑

jt=1

k∑
jt−1=1

· · ·
k∑

j1=1

p(θt |Mt(jt),Mt−1(jt−1), . . . ,M1(j1), Dt)

× pt(jt, jt−1, . . . , j1).

(7.1.9)

Thus to obtain the marginal posterior as a mixture, we need to consider all kt

possible combinations that may apply [1].

A problem arises with the above analysis. As t increases the number of possible com-

binations that need to be considered tends to infinity. After t observations there are

kt possible combinations of models that may apply. Schervish and Tsay (1988) per-

formed an analysis with k = 4 and t up to approximately 200. Practically, however,

the large amount of combinations required in some mixtures will be computationally

unfeasible (especially when forecasting multiple steps ahead (see Section 7.3.1)). In

the following sections we will discuss how to reduce the number of components by

approximations, leading to more manageable mixtures.

7.1.2 Approximation of Mixtures

In this thesis we have emphasised many times that as time progresses, what has

occurred in the past becomes less and less relevant for inferences made for the future.

This key property of dynamic models is essential, and we will now apply this to

mixtures. The possible models obtaining in the past losing relevance to inferences

made at the current time t as t increases. In other words, the full conditional

posterior p(θt | Mt(jt),Mt−1(jt−1), . . . ,M1(j1), Dt) will depend negligibly on early

models M1(j1), M2(j2), etc., when t is large [1]. That is, for some h ≥ 1, the full

conditional posterior can be approximated by

p(θt |Mt(jt),Mt−1(jt−1), . . . ,M1(j1), Dt)

≈ p(θt |Mt(jt),Mt−1(jt−1), . . . ,Mt−h(jt−h), Dt).
(7.1.10)

This approximation means that the number of components in the mixture posterior

at any time will not exceed kh+1. Unconditionally, the full mixture (7.1.9) will be
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approximated as

p(θt | Dt) =
k∑

jt=1

k∑
jt−1=1

· · ·
k∑

jt−h=1

p(θt |Mt(jt),Mt−1(jt−1), . . . ,Mt−h(jt−h), Dt)

× pt(jt, jt−1, . . . , jt−h).

(7.1.11)

It now remains to calculate the posterior model probabilities weighting the posteriors

in this mixture. Using Bayes’ theorem,

pt(jt, jt−1, . . . , jt−h) ∝ Pr[Mt(jt),Mt−1(jt−1), . . . ,Mt−h(jt−h) | Dt−1]

× p(Yt |Mt(jt),Mt−1(jt−1), . . . ,Mt−h(jt−h), Dt−1).

(7.1.12)

The second term in Equation (7.1.12) is given by

p(Yt |Mt(jt),Mt−1(jt−1), . . . ,Mt−h(jt−h), Dt−1) =

k∑
jt−h−1=1

p(Yt |Mt(jt),Mt−1(jt−1), . . . ,Mt−h(jt−h),Mt−h−1(jt−h−1), Dt−1)

× Pr[Mt−h−1(jt−h−1) | Dt−1],

(7.1.13)

an average, with respect to models h + 1 steps back, of the normal or T one-step

predictive densities for Yt under each of the models in the conditionings. The prob-

abilities weighting these terms are obtained from

Pr[Mt−h−1(jt−h−1) | Dt−1] =
k∑

jt−1=1

· · ·
k∑

jt−h=1

pt−1(jt−1, . . . , jt−h). (7.1.14)

The first term in (7.1.12) is similarly calculated by

Pr[Mt(jt),Mt−1(jt−1), . . . ,Mt−h(jt−h) | Dt−1]

= Pr[Mt(jt) |Mt−1(jt−1), . . . ,Mt−h(jt−h), Dt−1]pt−1(jt−1, . . . , jt−h)

= π(jt)pt−1(jt−1, . . . , jt−h)

= π(jt)
k∑

jt−h−1

pt−1(jt−1, . . . , jt−h−1).

(7.1.15)

Further approximations to the mixture can also be made to reduce the number of

components in (7.1.11). Three considerations are as follows [1]:
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1. Ignore components that have very small posterior probabilities.

2. Combine components that are roughly equal into a single component, also

combining probabilities.

3. Replace the contribution of a collection of components by a component that

represents their contribution.

7.1.3 Kullback-Leibler Directed Divergence

In the previous section we discussed mixture approximating, or collapsing, in order

to approximate the full posterior by only using models up to h-steps back. In this

section we derive collapsing techniques and methods that are fundamental to the

application of multi-process, class II models. To begin, assume that the density of

the random vector θ is the mixture

p(θ) =
k∑
j=1

pj(θ)p(j). (7.1.16)

Here the component densities may generally take any forms, although often they will

have the same functional form, such as normal or T, differing only through defining

parameters such as means, variances, etc. The probabilities p(j) are known. Our

aim is to approximate (7.1.16) by a density p∗(θ) and hence collapse the sum of k

densities to one (generally the approximation can be used to reduce the summation

to a number smaller than k but our aim is to completely collapse the summation to

just one component). For example, a mixture of T densities may be approximated

by a T density with location and scale to be chosen in some optimal way. Clearly

p∗(.) should be close to p(.) and this brings in the need for a distance measure

between densities to measure how close one density is to another.

Viewing p(.) as the true density of θ to be approximated by p∗(.), consider the

quantity

− E{log[p∗(θ)]} = −
∫

log[p∗(θ)]p(θ)dθ. (7.1.17)

For any approximating distribution with density p∗(.), this entropy related quantity

is a measure of the closeness of approximation to the true distribution p(.) [1].
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Choosing the approximating density to achieve a small value of (7.1.17) is equivalent

to minimising the quantity K(p∗) defined by

K(p∗) = E{log

[
p(θ)

p∗(θ)

]
} =

∫
log

[
p(θ)

p∗(θ)

]
p(θ)dθ. (7.1.18)

This is the Kullback-Leibler directed divergence between the approximating distri-

bution whose density is p∗(.) and the true distribution with density p(.) [1]. Here

we focus on continuous distributions and assume that p(.) and p∗(.) have the same

support. As a result, p(θ) > 0 if and only if p∗(θ) > 0 and two key properties are

that

• K(p∗) ≥ 0 for all densities p∗(.), and

• K(p∗) = 0 if and only if p∗ = p.

We will use the Kullback-Leibler divergence to measure closeness of approximations

to mixtures. Recall that if Vt is known the state and observation distributions are

normal distributions and if Vt is unknown the state and observation distributions

are T distributions. Since we are focusing on continuous distributions and assuming

that p(.) and p∗(.) have the same support we will only need to consider measuring

closeness of approximations to normal or T mixtures.

Example 7.1.3.1. From West and Harrison [1]. Suppose that θ follows a multi-

variate normal distribution with a mean vector, E[θ], and variance matrix, Var(θ),

and that the approximating distribution is multivariate normal, N(m,C). Then as

a function of m and C, the Kullback-Leibler divergence is given by (see Appendix

E)

2K(p∗) = 2{E[log{p(θ)}]− E[log{p∗(θ)}]}

= c+ log(|C|) + trace(C−1Var(θ)) + (E[θ]−m)′C−1(E[θ]−m),

(7.1.19)

for some constant c that does not depend on m or C. Noting E[log{p(θ)}] does not

depend on m or C.

Example 7.1.3.2. From West and Harrison [1]. Suppose that the q-vector θ and
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the scalar φ have a joint distribution that is a mixture of normal/gamma forms.

The mixture has k components, the jth component being defined as follows:

1. Given φ, (θ | φ) ∼ N(m(j),C(j)/[S(j)φ]) for some mean vector m(j), vari-

ance matrix C(j), and estimate S(j) > 0 of φ−1.

2. Marginally, φ ∼ Ga(n(j)/2, d(j)/2) for n(j), d(j) > 0, and E[φ] = S(j)−1 =

n(j)/d(j).

3. Integrating out φ gives the marginal, multivariate T distribution in model j,

θ ∼ Tn(j)(m(j),C(j)).

Suppose that the mixture is to be approximated by p∗(θ, φ), a single, normal gamma

distribution defined by parameters m, C, n, and d, giving (θ | φ) ∼ N(m,C/[Sφ]),

where S = d/n, φ ∼ Ga(n/2, d/2) and θ ∼ Tn(m,C). The Kullback-Leibler

divergence with respect to the joint mixture distribution of θ and φ can be written

as (using Equation (7.1.18) and Bayes’ theorem)

K(p∗) = Eθ,φ{log[p(θ,φ)]} − Eθ,φ{log[p∗(θ,φ)]}

= constant− Eθ,φ{log[p∗(θ | φ)] + log[p∗(φ)]},
(7.1.20)

since Eθ,φ{log[p(θ,φ)]} does not depend on m, C, n, or d. Using the densities

defined in 1. and 2. above results in (see Appendix F)

2K(p∗) = constant− 2Eφ{Eθ{log[p∗(θ | φ)]}} − 2Eφ{log[p(φ)]}

= constant

− n log(d/2) + 2 log(Γ(n/2))− (n+ q − 2)Eφ[log(φ)] + dE[φ] + log(|S−1C|)

+ S

k∑
j=1

S−1(j){trace(CC(j)) + (m(j)−m)′C−1(m(j)−m)}p(j).

(7.1.21)

Minimising with respect to m, C, d and n leads to the following:
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(a) Minimising with respect to m we find that

m =

{ k∑
j=1

S(j)−1p(j)

}−1 k∑
j=1

S(j)−1m(j)p(j). (7.1.22)

(b) Minimising with respect to C leads to,

C = S
k∑
j=1

S(j)−1{C(j) + (m−m(j))(m−m(j))′}p(j). (7.1.23)

(c) Minimising with respect to d leads to

S−1 = E[φ] =
k∑
j=1

S(j)−1p(j). (7.1.24)

We can then rewrite (a) and (b) as follows,

m =
k∑
j=1

m(j)p∗(j),

C =
k∑
j=1

{C(j) + (m−m(j))(m−m(j))′}p∗(j),

(7.1.25)

where the weights p∗(j) = p(j)S/S(j) sum to unity.

(d) Minimising with respect to n leads to

Eφ[log(φ)] = γ(n/2)− log(d/2). (7.1.26)

7.2 Second-Order Polynomial Models with Excep-

tions

In this section we extend on the analysis discussed in Section 6.6 and build a more

powerful framework for modelling with exceptions. The second order polynomial

model discussed in Section 5.2.1 will be used unless exceptional events, namely

outliers and changes in level and growth, occur.

To begin recall the second order polynomial model for the urine output series (see
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Section 5.2.1)

log(Yt + 0.1) = µt + νt,

µt = µt−1 + βt−1 + ωµt,

βt = βt−1 + ωβt,

(7.2.1)

where the state vector θt = (µt, βt)
′. Here µt allows for systematic variation about

a time varying level and βt allows for systematic growth and decline of the level,

where νt ∼ N(0, Vt) and ωt ∼ Tnt−1(0,Wt) where

V −1
t | Dt ∼ Ga(δV nt/2, δV dt/2), Wt =

(
Wµt +Wβt Wβt

Wβt Wβt

)
, (7.2.2)

where Wµt = Cµ,t−1(δ−1
µ − 1) and Wβt = Cβ,t−1(δ−1

β − 1), where Var(µt−1 | Dt−1) =

Cµ,t−1 and Var(βt−1 | Dt−1) = Cβ,t−1. In addition (see Section 4.6.1),

F =

(
1

0

)
, G =

(
1 1

0 1

)
. (7.2.3)

This model can be described by the quadruple

{F ,G, Vt,Wt}. (7.2.4)

Consider modelling outliers and changes in parameter values in a series thought to

behave generally according to the model described above. An outlying observation,

Yt, may be modelled via a large observational error νt. A single, extreme value of νt

is an exception in the model described above but perfectly consistent with a model

with a large enough observational variance [1]. If outliers are expected to occur

some percentage of the time, then the alternative DLM

{F ,G, VtV (2),Wt}, (7.2.5)

where V (2) > 1, will adequately model them, whilst (7.2.4) applies during routine

periods.

In a similar fashion, changes in level µt much greater than predicted by (7.2.4) can

be allowed for by replacing Wt with an alternative in which the variance term Wµt

is inflated. The alternative DLM

{F ,G, Vt,Wt(3)}, (7.2.6)
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where Wt(3) has an inflated level variance compared to Wt will adequately model

them. This DLM will be used for the times of a level change. With this DLM Wµt

can be far greater in absolute value than in (7.2.4), allowing for significant changes

in level.

Finally, to model jumps in growth of the series the alternative DLM

{F ,G, Vt,Wt(4)}, (7.2.7)

where Wt(4) has an inflated growth variance compared to Wt, will be used.

The above DLMs each apply at any given time with probability of applying given

by fixed model probabilities (see Section 7.1.1). In this thesis we specify that

• the routine DLM (7.2.4) applies with probability 117/120;

• the outlier DLM (7.2.5) applies with probability 1/120;

• the level change DLM (7.2.6) applies with probability 1/120;

• the growth change DLM (7.2.7) applies with probability 1/120.

Meaning that the series is expected to use the routine DLM about 97.5% of the

time. The chance of an outlier at any time is 0.83%. Level shifts are expected to

occur 0.83% of the time and growth changes are expected to occur 0.833% of the

time. Note that the values chosen are not estimated in any way, and are only used

for illustrative purposes later in this section.

Here we have models Mt(j) indexed by αj = j, (j = 1, . . . , 4).

7.2.1 Model Analysis

Recall that, in realtime, outliers are indistinguishable from the onset of a parametric

change until more observations are available (see Figure 6.2). In this section we show

how subsequent observations can be used to distinguish between the different types

of change shown in Figure 6.2.
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In this thesis we approximate mixtures by collapsing over models in the past by

taking h = 1 (see Section 7.1.2). This approach has been used to approximate

mixtures by Smith and West (1983). We have models

Mt(jt) : {F ,G, Vt(jt),Wt(jt)}, (jt = 1, . . . , 4). (7.2.8)

For each jt, it is assumed that Mt(jt) applies at time t with fixed and pre-specified

probability π(jt) = Pr[Mt(jt) | Dt−1] = Pr[Mt(jt) | D0]. Therefore at time t, the

model is defined by observation and evolution equations

(Yt | θt,Mt(jt)) ∼ TδV nt−1(F
′θt, Vt(jt)) (7.2.9)

and

(θt | θt−1,Mt(jt)) ∼ TδV nt−1(G
′θt−1,Wt(jt)) (7.2.10)

with probability π(jt). Also, at time t = 0, the initial prior for the state vector and

scale factor are given by

(θ0 | D0) ∼ Tn0(m0,C0),

(φ0 | D0) ∼ Ga(n0/2, d0/2),
(7.2.11)

where m0, C0, n0, and d0 are known and fixed at time t = 0 irrespective of possible

models obtaining at any time. The initial point estimate S0 of V is given by d0/n0.

The algorithms and position at time t−1 are now summarised and follow from West

and Harrison [1].

Historical information, Dt−1, is summarised in terms of a 4-component mixture

posterior distribution for θt−1. Within each component, the usual conjugate nor-

mal/gamma analysis applies

1. For jt−1 = 1, . . . , 4, model Mt−1(jt−1) applied at time t−1 with posterior prob-

ability pt−1(jt−1). These probabilities are now known and fixed and p0(j0) =

π(j0).

2. Given Mt−1(jt−1) and Dt−1, θt−1 and φt−1 are

(θt−1 |Mt−1(jt−1), Dt−1) ∼ Tnt−1(mt−1(jt−1),Ct−1(jt−1)),

(φt−1 |Mt−1(jt−1), Dt−1) ∼ Ga(nt−1/2, dt−1(jt−1)/2),
(7.2.12)
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where St−1(jt−1) = dt−1(jt−1)/nt−1 is the estimate of Vt−1 = φ−1
t−1 in model

Mt−1(jt−1). All quantities, except for the degrees on freedom parameter, nt−1,

depend on the model applying at time t−1. The degrees of freedom parameter,

nt−1, is common to each of the four possible models.

Evolving to time t, statements about θt, Yt and φt depend on the combinations of

possible models applying at both t− 1 and t.

3. For each jt−1 and jt we have

(θt |Mt(jt),Mt−1(jt−1), Dt−1) ∼ TδV nt−1(at(jt−1),Rt(jt, jt−1)),

(φt |Mt(jt),Mt−1(jt−1), Dt−1) ∼ Ga(δV nt−1/2, δV dt−1(jt−1)/2),
(7.2.13)

where at(jt−1) = Gmt−1(jt−1), Rt(jt, jt−1) = GCt−1(jt−1)G′ + Wt(jt), and

δV allows for observational variance learning (see Section 4.9.4). Note that

at(jt−1) does not differ across the Mt(jt) since G is common to these models.

4. The one-step ahead forecast distribution is given, for each possible combination

of models, by

(Yt |Mt(jt),Mt−1(jt−1), Dt−1) ∼ TδV nt−1(ft(jt−1), Qt(jt, jt−1)), (7.2.14)

where ft(jt−1) = F ′at(jt−1), andQt(jt, jt−1) = F ′Rt(jt, jt−1)F+St−1(jt−1)V (jt).

Noting that the means of the sixteen forecast distributions depend only on the

models applying at time t− 1 and hence take only four distinct values.

The forecast distribution unconditional on possible models at time t − 1 and t in-

volves the mixing of these standard T components with respect to their relevant

probabilities. These probabilities are calculated as follows:

5. For each jt and jt−1,

Pr[Mt(jt),Mt−1(jt−1) | Dt−1] = Pr[Mt(jt) |Mt−1(jt−1), Dt−1]

× Pr[Mt−1(jt−1) | Dt−1]

= π(jt)pt−1(jt−1),

(7.2.15)
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where we use the assumption that models apply at time t with constant

probabilities irrespective of the past, so that Pr[Mt(jt) | Mt−1(jt−1), Dt−1] =

Pr[Mt(jt) | D0] = π(jt).

6. The marginal predictive density for Yt is a mixture of the 16 components in

(7.2.14) with respect to the probabilities (7.2.15),

p(Yt | Dt−1) =
4∑

jt=1

4∑
jt−1=1

π(jt)pt−1(jt−1)p(Yt |Mt(jt),Mt−1(jt−1), Dt−1).

(7.2.16)

Once the observation yt is made, the prior distributions in 3. can be updated to

posterior distributions.

7. The posterior distributions for the states and the scale are given by

(θt |Mt(jt),Mt−1(jt−1), Dt) ∼ Tnt(mt(jt, jt−1),Ct(jt, jt−1)),

(φt |Mt(jt),Mt−1(jt−1), Dt) ∼ Ga(nt/2, dt(jt, jt−1)/2),
(7.2.17)

where

mt(jt, jt−1) = at(jt−1) +At(jt, jt−1)et(jt−1),

Ct(jt, jt−1) = [St(jt, jt−1)/St−1(jt−1)]

× [Rt(jt, jt−1)−At(jt, jt−1)A′t(jt, jt−1)Qt(jt, jt−1)],

et(jt−1) = yt − ft(jt−1)

At(jt, jt−1) = Rt(jt, jt−1)F /Qt(jt, jt−1)

nt = δV nt−1 + 1

dt(jt, jt−1) = δV dt−1(jt−1) +
St−1(jt−1)e2

t (jt−1)

Qt(jt, jt−1)

St(jt, jt−1) = dt(jt, jt−1)/nt.

(7.2.18)

8. The joint posterior probabilities across the sixteen possible models are given
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by

pt(jt, jt−1) = Pr[Mt(jt),Mt−1(jt−1) | Dt]

= ct Pr[Mt(jt),Mt−1(jt−1) | Dt−1]p(Yt |Mt(jt),Mt−1(jt−1), Dt−1)

= ctπ(jt)pt−1(jt−1)p(Yt |Mt(jt),Mt−1(jt−1), Dt−1)

=
ctπ(jt)pt−1(jt−1)

Q
1/2
t (jt, jt−1)[δV nt−1 + e2

t (jt−1)/Qt(jt, jt−1)]nt/2
,

(7.2.19)

where ct is the constant of normalisation such that

4∑
jt=1

4∑
jt−1=1

pt(jt, jt−1) = 1. (7.2.20)

Inferences about θt are based on the unconditional, sixteen component mixtures

that average (7.2.17) with respect to the joint posterior model probabilities (7.2.19).

9. Thus

p(θt | Dt) =
4∑

jt=1

4∑
jt−1=1

p(θt |Mt(jt),Mt−1(jt−1), Dt)pt(jt, jt−1),

p(φt | Dt) =
4∑

jt=1

4∑
jt−1=1

p(φt |Mt(jt),Mt−1(jt−1), Dt)pt(jt, jt−1).

(7.2.21)

This completes the evolution and updating up to time t. However, to proceed to

time t+1, we need to remove the dependence of the joint posterior (7.2.21) on models

at time t− 1. If we do not remove this dependence and evolve (7.2.21) to time t+ 1

directly, the mixture will depend on 43 = 64 components for θt+1. However, at the

beginning of this section, we assumed that the effects of different models at time

t − 1 are negligible for time t + 1. Hence, when evolving to time t + 1, we need to

collapse the sixteen component mixture (7.2.21) over possible models at time t− 1.
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For each jt = 1, . . . , 4, it follows that

pt(jt) = Pr[Mt(jt) | Dt] =
4∑

jt−1

pt(jt, jt−1),

Pr[Mt−1(jt−1) | Dt] =
4∑

jt=1

pt(jt, jt−1),

Pr[Mt−1(jt−1) |Mt(jt), Dt] = pt(jt, jt−1)/pt(jt).

(7.2.22)

The first equation here gives the current model probabilities at time t. The second

gives posterior probabilities over the possible models one-step back in time. These

one-step back posterior probabilities are extremely useful for retrospective assess-

ment to distinguish between outliers and parametric changes. The third equation,

which we shall use to collapse the mixture (7.2.21) with respect to time t− 1, gives

the posterior probabilities of the models at time t−1 conditional on possible models

at time t. Note that (7.2.21) can be written as

p(θt | Dt) =
4∑

jt=1

p(θt |Mt(jt), Dt)pt(jt),

p(φt | Dt) =
4∑

jt=1

p(φt |Mt(jt), Dt)pt(jt),

(7.2.23)

where

p(θt |Mt(jt), Dt) =
4∑

jt−1=1

p(θt |Mt(jt),Mt−1(jt−1), Dt)pt(jt, jt−1)/pt(jt),

p(φt |Mt(jt), Dt) =
4∑

jt−1=1

p(φt |Mt(jt),Mt−1(jt−1), Dt)pt(jt, jt−1)/pt(jt).

(7.2.24)

In moving to time t + 1 the posteriors (7.2.24) will have the required form (7.2.12)

if each of the components in (7.2.24) is replaced by a single T distribution.

This is a very similar scenario to Example 7.1.3.2. We have

(θt | φt,Mt(jt),Mt−1(jt−1), Dt) ∼ N(mt(jt, jt−1),Ct(jt, jt−1)/[St(jt, jt−1)φt])

(θt |Mt(jt),Mt−1(jt−1), Dt) ∼ Tnt(mt(jt, jt−1),Ct(jt, jt−1)),

(φt |Mt(jt),Mt−1(jt−1), Dt) ∼ Ga(nt/2, dt(jt, jt−1)/2).

(7.2.25)
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In addition,

p(θt, φt |Mt(jt), Dt) =
4∑

jt−1=1

p(θt, φt |,Mt(jt),Mt−1(jt−1), Dt)pt(jt, jt−1)pt(jt).

(7.2.26)

In other words, for each jt, we have a 2-vector θt and a scalar φt with a joint

distribution that is a mixture of normal/gamma forms. Each mixture has k = 4

components and the jtht−1 component is defined by Equations (7.2.25).

Consider each value of jt in turn. If we consider jt = 1, we have

(θt | φt,Mt(1),Mt−1(jt−1), Dt) ∼ N(mt(1, jt−1),Ct(1, jt−1)/[St(1, jt−1)φt])

(θt |Mt(1),Mt−1(jt−1), Dt) ∼ Tnt(mt(1, jt−1),Ct(1, jt−1)),

(φt |Mt(1),Mt−1(jt−1), Dt) ∼ Ga(nt/2, dt(1, jt−1)/2),

(7.2.27)

and

p(θt, φt |Mt(1), Dt) =
4∑

jt−1=1

p(θt, φt |,Mt(1),Mt−1(jt−1), Dt)pt(1, jt−1)pt(1).

(7.2.28)

In other words, we have a 2-vector θt and a scalar φt with a joint distribution that is

a mixture of normal/gamma forms. The mixture has k = 4 components and the jtht−1

component is defined by Equations (7.2.27). It is now evident that this is the same

form as Example 7.1.3.2 (but with nt fixed across models applying at time t). Note

that in Example 7.1.3.2 the probability of model j applying was written as p(j). In

Equations (7.2.27), the probability of model jt−1 applying at time t given Mt(1) is

pt(1, jt−1)pt(1) (see Equations (7.2.22)). The same arguments hold for jt = 2, 3, 4.

We are essentially applying Example 7.1.3.2 four times, one for each jt. To this end,

we show how to collapse over models applying at time t− 1.

130



Using part (c) of Example 7.1.3.2, for each jt define the variance estimates St(jt) by

St(jt)
−1 =

4∑
jt−1=1

St(jt, jt−1)−1pt(jt, jt−1)/pt(jt), (7.2.29)

with

dt(jt) = ntSt(jt). (7.2.30)

Define the weights

p∗t (jt, jt−1) = St(jt)St(jt, jt−1)−1pt(jt, jt−1)/pt(jt), (7.2.31)

noting that
∑4

jt−1=1 p
∗
t (jt, jt−1) = 1. Furthermore, using (a) and (b), in Example

7.1.3.2 the mean vectors mt(jt) and the variance matrices Ct(jt) are given by

mt(jt) =
4∑

jt−1=1

mt(jt, jt−1)p∗t (jt, jt−1),

Ct(jt) =
4∑

jt−1=1

{Ct(jt, jt−1) + (mt(jt)−mt(jt, jt−1))(mt(jt)−mt(jt, jt−1))′}

× p∗t (jt, jt−1).

(7.2.32)

Since nt is fixed across models applying at any time, we do not need to consider

part (d) of Example 7.1.3.2.

For each jt, the mixture posterior p(θt, φ |Mt(jt),Mt(jt−1), Dt) is then approximated

by single normal/gamma distribution posteriors having marginals

(θt |Mt(jt), Dt) ∼ Tnt(mt(jt),Ct(jt)),

(φt |Mt(jt), Dt) ∼ Ga(nt/2, dt(jt)/2).
(7.2.33)

These approximate the components in the mixture (7.2.24), thus collapsing from four

to one standard normal/gamma component. This completes the cycle of evolution

from time t− 1 to time t.
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7.3 Urine Output Series: Multi-Process Modelling

The model analysis is illustrated using the urine output series and we note that the

model parameters and values given below have not been estimated in any way. This

example is for illustration purposes only and is adapted from [1]. The second-order

polynomial multiprocess model discussed in Section 7.2 is used. The four component

multiprocess model at time t is as follows, with Vt, and Wt defined by Equations

(7.2.2) (with δV = 0.9):

1. Routine DLM: {F ,G, VtVt(1),Wt(1)}, having fixed model probability π(1) =

117/120, where Vt(1) = 1, and Wt(1) = Wt with δµ = δβ = 0.9 (see Equations

(7.2.2)).

2. Outlier DLM: {F ,G, VtVt(2),Wt(2)}, having fixed model probability π(2) =

1/120, where Vt(2) = 1000 is an inflated variance consistent with the oc-

currence of observations that would be extreme in the standard DLM, and

Wt(2) = Wt(1) = Wt.

3. Level Change DLM: {F ,G, VtVt(3),Wt(3)}, having fixed model probability

π(3) = 1/120, where Vt(3) = 1, and Wt(3) is an evolution matrix consistent

with level changes. In this example, Wt(3) takes the form of Wt but with

δµ = 0.01.

4. Growth Change DLM: {F ,G, VtVt(4),Wt(4)}, having fixed model probability

π(3) = 1/120, where Vt(3) = 1, and Wt(4) is an evolution matrix consistent

with growth changes. In this example, Wt(3) takes the form of Wt but with

δβ = 0.01.

Initial priors are defined by

(θ0 | D0) ∼ Tn0(m0,C0),

(φ0 | D0) ∼ Ga(n0/2, d0/2),
(7.3.1)

where

m0 =

(
0.55

−0.2

)
, C0 =

(
0.01 0

0 0.001

)
, (7.3.2)
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n0 = 20 and d0 = 2, so that the initial estimate for the observational variance is

S0 = d0/n0 = 0.1.
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Figure 7.1: Urine output series with sudden changes at hours 25 and 71. The types of
change correspond to an outlier, at hour 25, and a parametric change, at hour 71

Figure 7.1 shows a urine output series for a patient. The patient starts off with

an exponential decay in urine output, and the urine output series has two sudden

changes. The first sudden change, at hour 25, is an outlier, and the second sudden

change, at hour 71 is a parametric change. Retrospectively these changes are clear

and easy to identify. However, in real time, an outlier is indistinguishable from a

parametric change (see Figure 6.2). Fortunately, using probabilistic mixtures, we

have a means of distinguishing between types of change by using one-step back

posterior probabilities.

Consider now the position at hour 24. Up until this time, the series is stable and

is modelled well by the routine DLM, M1. The posterior model probabilities shown

in Figure 7.2 illustrate how the routine DLM dominates during this stable period

and hence the routine DLM carries more weighting in the point forecasts and in

the updating of parameters (see Equations (7.2.21) and (7.2.16)). Figure 7.2 shows

that, during the initial stable period, the posterior model probabilities for models
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Figure 7.2: Posterior model probabilities showing (from left to right) the posterior prob-
abilities of the routine, outlier, level change, and growth change DLMs respectively

M2, M3 and M4 are very small. This reflects that the forecast distributions from

the outlier model, and the level and growth change models, carry little weighting to

the mixed forecasts for the first 24 hours.

Figure 7.3 displays the posterior density (7.2.23) of the level parameter, p(µ24 | D24),

at hour 24. The four (state) components (7.2.12) are also plotted on the graph.

Note that the routine (red) and level change (green) components are underneath

the black (mixed) component. Even though the discount factor for the level change

model δµ(3) = 0.01, and the discount factor for the routine model, δµ(1) = 0.9 we

see that the level posterior for these models is (approximately) identical at time

24. This is because the discount factors only affect the prior distributions (through

Rt(jt, jt−1) = GCt−1(jt−1)G′+Wt(jt)). The level priors at time 25 would look very

different for those conditioning on M24(1) and M24(3).

From Figure 7.3 we can see that the components are all located between approxi-

mately -0.791 and -0.747, and mostly spread between -0.9 and -0.6. The posterior

based on M24(1) is the most peaked and has posterior probability p24(1) = 0.997.
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Figure 7.3: Posteriors for µ24 at t = 24. The black line represents the mixed posterior,
the red, purple, green and blue lines represent the posteriors for the routine, outlier, level
change, and growth change DLMs respectively. The three dashed lines, from left to right,
represent m24(2) = −0.79,m24(1) ≈ m24(3) ≈ m24 = −0.78 (where m24 is the median for
the mixed level component at time t = 24), and m24(4) = −0.75.

This reflects the previous stability of the series and consistency of the routine DLM.

Thus, the mixture of these four components (Figure 7.3) closely resembles the rou-

tine component (so closely that the mixture overlaps with the posterior based on

M24(1)). This is standard in stable periods.

Figure 7.4 displays the one-step ahead forecast density (7.2.16), p(Y25 | D24), at hour

24. The sixteen components (7.2.14) are also plotted. The mixture is shown in black

and corresponds closely to the highly peaked, red components near the centre. The

more diffuse, purple components correspond to the models that condition on the

outlier model at time 25. The observational variance inflation factor of 1000 in the

definition of Mt(2) makes these components more spread. However, the outlier, level

change, and growth change components have small probabilities and so contribute

little to the mixture. This is to be expected in stable periods.

Moving now to hour 25. Y25 = 1.10, corresponding to 0.18 on the log-scale (log(Y25+

135



0

2

4

6

8

−4 −2 0 2
Y25

De
nsi

ty M(i,1)

M(i,2)

M(i,3)

M(i,4)

Mixed

Forecast Distributions

Figure 7.4: Forecasts for Y25 at t = 24. The black line represents the mixed forecast
distribution, the red, purple, green and blue lines represent the forecast distributions that
include M25(1), M25(2), M25(3), and M25(4), respectively. The dashed line represents
Y25 ≈ −0.79

0.1)), is a wild observation relative to the standard forecast distribution, p(Y25 | D24),

and most of the probability under the mixture density in Figure 7.4 is concentrated

between -1 and -0.6, on the transformed scale, corresponding to around 0.27 and

0.45 on the untransformed scale. The alternative models, however, in particular the

outlier components, give appreciable probability to values larger than 0.18. Hence,

in updating to posterior model probabilities given D25, the components that include

M25(2) (and also to a lesser extent M25(3), and M25(4)) will receive much increased

weights. This is evident from Figure 7.2. The outlier, level change, and growth

change models share most of the posterior probability at t = 25.

Figure 7.5 plots the posterior density, p(µ25 | D25), at hour 25 alongside the four indi-

vidual components. This plot is very much different to Figure 7.3. The components

are more disparate and the mixed posterior is bimodal, reflecting the ambiguity to

whether the wild observation, Y25, is an outlier or a parametric change. The (pur-

ple) peaked component located near -0.8 corresponds to the outlier model for Y25,
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Figure 7.5: Posteriors for µ25 at t = 25. The black line represents the bimodal mixed
posterior, the red, purple, green and blue lines represent the posteriors for the routine,
outlier, level change, and growth change DLMs respectively. The three dashed lines, from
left to right, represent m25(1) = −0.05,m25(2) = −0.79, and m25(3) ≈ m25(4) ≈ 0.18,
respectively

this component represents the density p(µ25 | M25(2), D25). In this scenario, the

observation is considered an outlier and is ignored, the inference being that the level

remains between (around) -0.9 and -0.7. That is, the state is unchanged and the

wild observation is an outlier.

The two peaked (green and blue respectively) components (in Figure 7.5) located

around the region 0.18 (corresponding to the observation Y25 on the transformed-

scale) come from the level and growth change models. If the observation is not an

outlier, and corresponds to a parametric change (in level and/or growth), then the

inference is that the current level lies between 0 and 0.35. The fourth (red), more

diffuse component located near -0.05 is p(µ25 | M25(1), D25), the posterior from the

routine model at time t = 25. The inference here being that if Y25 is a reliable

observation and no level or growth change has occurred, then the posterior for the

level is between the prior located near -0.8 and the likelihood from Y25 located

around 0.18. Intuitively, conditional on M25(1), if observation Y25 is consistent with
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the routine model, this means that observations that were considered extreme at

time 24 are now consistent with the routine model. Hence, the updated routine

model is more diffuse allowing for a larger range of values; indicating more (routine)

uncertainty in the series. However, as can be seen from Figure 7.2, this density

receives negligible weighting in the mixture at time 25.
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Figure 7.6: Forecasts for Y26 at t = 25. The black line represents the mixed forecast
distribution, the red, purple, green and blue lines represent the forecast distributions that
include M26(1), M26(2), M26(3), and M26(4) respectively. The three dashed lines, from
left to right, represent f26(2) ≈ Y26 ≈ −0.81, f26(3) = 0.16 and f26(4) = 1.12, respectively

The bimodal posterior at time 25 represents uncertainty to whether the extreme

observation represents an outlier or a parametric change. Until another obser-

vation is made, there is a split between the two inferences (although in favour

of the observation being an outlier, see Figure 7.2). Forecasting ahead to time

t = 26, the ambiguity is once again clear from Figure 7.6. The forecast distribu-

tion, in Figure 7.6, is multimodal. The components located around -0.81, corre-

spond to the forecasts that depend on the outlier model at time t = 25, that is

(Y26 | M25(2),M26(i)) for i = 1, 2, 3, 4. Similarly, the components located around

0.16, correspond to the forecasts that depend on the level change model at time

t = 25, that is (Y26 | M25(3),M26(i)) for i = 1, 2, 3, 4; and the components located
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around 1.12, correspond to the forecasts that depend on the growth change model

at time t = 25, that is (Y26 |M25(4),M26(i)) for i = 1, 2, 3, 4.
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Figure 7.7: One-step back model probabilities showing (from left to right) the probabilities
of the routine, outlier, level change, and growth change DLMs, respectively

An hour later we observe Y26 = 0.35, or -0.81 on the transformed-scale. It is now

clear that observation Y25 = 1.10 was an outlier. Figure 7.7 represents one-step back

posterior model probabilities. For each time, the bars in Figure 7.7 represent the ret-

rospective probabilities Pr[Mt−1(jt−1) | Dt] for jt−1 = 1, . . . , 4. These probabilities

are extremely useful for retrospective assessment of model occurrence at any time

given one further observation. In this example, observing Y26 verifies the position

at time 25, confirming that Y25 was in fact and outlier, with Pr[M25(2) | D26] ≈ 1.

The outlier has been identified and is now ignored when updating to the posterior

distributions at time 26.

Figure 7.8 (left) shows p(µ26 | D26), along with its four components, after having

identified Y25 as an outlier. The corresponding one-step ahead forecast densities are

shown in Figure 7.8 (right). It is clear from Figure 7.8 that the series is stable again,

with unimodal distributions, once the extreme observation has been identified.
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Figure 7.8: Perspective at time 26. Plots show posterior distribution (left) and (one-
step) forecast distributions at time 26 after identifying Y25 as an outlier. Line colours for
posteriors and forecasts are described in Figures 7.5 and 7.6, respectively

To summarise, the posteriors for model parameters tend to be very similar during

stable periods, but most of the weighting in the posterior mixture is from the routine

posterior distribution. These components separate out at the onset of an event due

to ambiguity to whether the event corresponds to an outlier or a parametric change.

A further observation usually identifies the event, and posteriors then update to

reflect this, and the series reverts back to being consistent with the routine DLM.

To illustrate the analysis further, consider the parametric change at time t = 71. Fig-

ure 7.9 shows plots for p(µt | Dt), along with the four components p(µt |Mt(jt), Dt),

jt = 1, . . . , 4, for t = 71 and t = 72. Here the extreme observation Y71 initially

leads to bimodality in the posterior for µ71, see Figure 7.9 (left), and once again

the posterior model probabilities favour the outlier model, see Figure 7.2. The ob-

servation is either an outlier or the onset of a parametric change, but the model

cannot distinguish between the two until more information is available. Observing

Y72 confirms a level change, from around -0.93 to 0.23 (from around 0.29 to 1.15 on

the untransformed scale). Finally, current and one-step back probabilities indicate
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the switching between models over time and the diagnosis of events.
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Figure 7.9: Posteriors at hours 71 and 72. Plot (left) shows ambiguity to whether obser-
vation Y71 corresponds to an outlier or parametric change. Plot (right) shows posteriors
after one further observation identifies Y71 as a parametric change. The two dashed lines,
from left to right, represent m72(2) = −0.93, and m72(1) ≈ m72(3) ≈ m72(4) ≈ 0.23,
respectively. Line colours are described in Figure 7.5

Figure 7.10 shows the urine output series with one-step ahead forecasts and cor-

responding 95% prediction intervals at each time point. From Figure 7.10 we can

see that the forecasts after Y26 are unaffected by the outlier Y25. This is because

the multiprocess model was able to identify Y25 as an outlier after observing Y26.

Similarly, we can see that the forecasts are able to adapt to the parametric change

at hour 71. After observing Y72 the multiprocess model is able to identify that the

sudden change at hour 71 is a parametric change and not an outlier and the model

adapts accordingly.

7.3.1 Forecasting k-Steps Ahead

Throughout this thesis we have emphasised that our aim is to forecast the next six

urine outputs in order to predict severe oliguria to prevent adverse outcomes. Using
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Figure 7.10: One-step ahead modal point forecasts (see Equation (7.2.16)) with corre-
sponding 95% prediction intervals. Red dots represent urine output recordings and the
black lines represent the modal forecasts and corresponding 95% prediction intervals

the four-component model discussed in Section 7.2, we will develop the methods

required to forecast k-steps ahead.

Consider the position at time t with the posterior distributions summarised in

(7.2.26). The one-step ahead forecast distribution for Yt+1 is given by (see Equation

(7.2.16)) the 42 component mixture of T forecast densities

p(Yt+1 | Dt) =
4∑

jt+1=1

4∑
jt=1

π(jt+1)pt(jt)p(Yt+1 |Mt+1(jt+1),Mt(jt), Dt). (7.3.3)

Consider now forecasting two steps ahead for Yt+2. Given any combination of models

at time t, t + 1, t + 2, it follows that the two-step ahead forecast distribution has

density [1]

p(Yt+2 |Mt+2(jt+2),Mt+1(jt+1),Mt(jt), Dt), (7.3.4)

where jt, jt+1 and jt+2 can each take values from 1 to 4. Once again, using Bayes’
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rule, the mixing probabilities are given by

Pr[Mt+2(jt+2),Mt+1(jt+1),Mt(jt) | Dt],

= Pr[Mt+2(jt+2) |Mt+1(jt+1),Mt(jt), Dt]

× Pr[Mt+1(jt+1),Mt(jt) | Dt],

= Pr[Mt+2(jt+2) |Mt+1(jt+1),Mt(jt), Dt]

× Pr[Mt+1(jt+1) |Mt(jt), Dt] Pr[Mt(jt) | Dt],

= π(jt+2)π(jj+1)p(jt).

(7.3.5)

Using (7.3.5), the two-step ahead forecast distribution for Yt+2 is the 43 component

mixture

p(Yt+2 | Dt) =
4∑

jt+2=1

4∑
jt+1=1

4∑
jt=1

π(jt+2)π(jt+1)pt(jt)

× p(Yt+2 |Mt+2(jt+2),Mt+1(jt+1),Mt(jt), Dt).

(7.3.6)

The above derivation can be extended for forecasting further ahead. The k-step

ahead forecast distribution for Yt+k is the 4k component mixture

p(Yt+k | Dt) =
4∑

jt+k=1

· · ·
4∑

jt+1=1

4∑
jt=1

π(jt+k) . . . π(jt+1)pt(jt)×

p(Yt+k |Mt+k(jt+k), . . . ,Mt+1(jt+1),Mt(jt), Dt).

(7.3.7)

Forecasting further ahead increases the number of components in the mixture to

account for all possible models obtaining between time t and the forecast time point

t+ k [1]. It is clear that, once again, the computational demand for mixture models

can become computationally infeasible. Forecasting k-steps ahead requires a mixture

of 4k components. As k increases the number of components in the mixture tends

to infinity.

In some models (such as the second-order polynomial model) features can be ex-

ploited to simplify the problem of summarising the forecast distributions given by

(7.3.7) [1]. For example, the structure of the second-order polynomial multiprocess

model is such that the models, Mt(j), differ only through the evolution and obser-

vational variances for all t and all j. In particular, E[Yt+1 | Mt+1,Mt(jt), Dt] does

not depend on jt+1, and E[Yt+k | Mt+k, . . . ,Mjt(jt), Dt] does not depend on jt+l for

l = 1, . . . , k. This means that there are only four distinct point forecasts for each
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time point. Other simplifications mentioned in Section 7.1.2 can be used to reduce

the number of calculations required in mixtures.

7.4 Multi-Process Models with Monitoring

Recall in Section 7.1.2 that we mentioned that a way of reducing computational de-

mand of multiprocess models is to ignore components that have very small posterior

probabilities. The reason being that computing mixtures at points of stability (when

the routine model will dominate the mixture) is computationally redundant and we

may ignore components that carry little weighting in the mixtures. This reduction

method leads us to combine methods from this chapter with methods discussed in

Chapter 6, as in Ameen and Harrison (1985b) [34].

Most of the time, a series will be stable over periods of observations. This will mean

that most of the time, during mixtures, most of the weighting will come from the

routine DLM and hence the multi-process will be redundant in these periods. Only at

times of sudden changes and exceptional events, and in regions locally following these

events, is the full multiprocess model required. The following approach recognises

this and combines Chapters 6 and 7 to avoid the redundancy of mixture models but

also utilises the multi-process framework simultaneously [1].

1. Model the series with the routine DLM subject to a monitoring system (such as

the system described in Section 6.7). This way we can use the routine model

for the stable periods and have a system in place to monitor the model’s

performance. If the monitoring system indicates that the data is consistent

with the routine model, then continue to use the routine model as usual. At

the same time, update alternative models that allow for the anticipated forms

of change from the routine model (see Section 7.2 for an example regarding a

specific type of model). However, do not perform any computationally costly

mixtures at this point. Just update the alternative models for when they are

required (see stage 2.).

2. When the monitoring system signals deterioration in forecast performance of

the routine DLM, begin a period of using the multi-process (class II) approach.

This will be when we use the alternative models from stage 1. As a reminder,
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using only models from h = 1 steps back (or the value of h chosen by the

forecaster) as approximations for mixtures; and the methods of reduction dis-

cussed in Section 7.1.2 are still used here.

3. Continue to use the multi-process model until the “unstable” period is over.

This will be when the posterior model probabilities are essentially negligible

for all alternative models, and hence are near unity for the routine model.

4. Switch back to stage 1. and continue.

The above scheme utilises the powerful framework of multi-process models and also

provides a solution to the computational redundancy during stable periods.
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Chapter 8

Shiny Application

8.1 Introduction

Shiny is an R package that builds interactive web applications from R. Shiny applica-

tions are an easy way to allow clinicians to use the models discussed throughout this

thesis, without having to know how to code and without having to know any statis-

tics. In this chapter we show how clinicians can use the shiny application to monitor

the functioning of a patient’s kidneys by using the DLM with model monitoring,

discussed in Section 6.7. This application was designed to display and monitor

information needed by clinicians at the University Hospital of South Manchester.

8.2 Using the Application

When a clinician runs the shiny application they are prompted by three dropdown

boxes (see Figure 8.1). These boxes allow the clinician to choose how many steps

ahead they would like to forecast, k (in our study this was 6); which patient they

would like to monitor, “Select Patient”; and the hour at which they would like to

monitor, “Enter Observation”. The option to choose an hour to monitor allows the

clinician to view what has happened in the past, and at the current time, t. Below

these dropdown boxes is a summary of the patient. This is to allow clinicians to
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Figure 8.1: Shiny application. In the top left of the screen you can see dropdown boxes that
clinicians can easily use to monitor patients. Below the dropdown boxes is a description
of the patient’s history. On the right side of the interface we see a box showing the
joint probability of suffering severe oliguria at the chosen hour; and below this box we
see a plot of the urine output time series with corresponding k-step ahead forecasts and
corresponding 95% prediction intervals

easily view the patient’s history. To the right we see a box that displays the joint

probability that a patient will suffer severe oliguria in six hours time; this probability

will be used by clinicians to make key decisions about a patient’s kidneys. Below

this warning box we see a plot of the patient’s urine output; with k-step ahead point

forecasts and corresponding prediction intervals at times t+ 1, . . . , t+ k.

Below the plot of the forecasts there is a table summarising key results of the model.

Table 8.2 displays the forecast times; the point forecasts; the lower intervals; the

upper intervals; the observations; the residuals; and the probabilities that a forecast

is less than 0.3ml/kg, i.e.

Pr(ft+k < 0.3 | Dt), (8.2.1)

for k = 1, . . . , 6. Below the summary table are (biochemistry) plots of interest to

clinicians (see Figures 8.3 and 8.4). Having all of these available in one place is

extremely convenient for clinicians and allows clinicians to monitor patients with
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Figure 8.2: Below Figure 8.1 is a summary table. This table shows quantities of interest
to the forecaster, namely the forecast times; the point forecasts; the lower intervals; the
upper intervals; the observations; the residuals; and the probability that a forecast is less
than 0.3ml/kg

ease.

Figure 8.3: Below Figure 8.2 is a plot of the central venous pressure (CVP). This is a
quantity that clinicians are often interested in when monitoring patients

Moreover, clinicians can use the application to monitor kidney function during pe-

riods when the patient is considered high risk by our DLM. In Figure 8.5 we see

that the patient was considered high risk by our DLM at hour 37 (since the patient

has been at high risk for 5 hours at hour 42). This high risk count will increase

by one if the patient is consecutively considered high risk by our DLM. This allows

clinicians to see if interventions used to normalise urine output are working or not.

In addition, we see that our DLM indicates that this patient is at high risk 11 hours

earlier than experts decided that this patient needed RRT. Furthermore, clinicians

can use the application and their subjective expertise to intervene whenever they
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Figure 8.4: Below Figure 8.3 is a plot of the patient’s arterial blood pressure. This is
another quantity that is useful for clinicians

like. For example, by using the application clinicians can see how rapidly a patient’s

risk (of severe oliguria) is increasing and intervene accordingly, even before the risk

of severe oliguria reaches 0.8. Or, perhaps a clinician gives more fluids to a patient

considered high risk; further decisions can then be made (by monitoring this patient

using the shiny application) if this patient is still considered high risk in the hours

that follow.
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Figure 8.5: Shiny application showing how clinicians can monitor a high risk patient. The
box above the urine output plot displays how long patients have been at high risk. This
allows clinicians to monitor if interventions are working. In addition, for use in our study,
the actual decision time to start RRT is also shown
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Chapter 9

Conclusion

This thesis is concerned with the modelling of noisy time series using dynamic linear

models. Throughout this thesis the particular application of monitoring renal failure

was considered, with the aim of predicting severe oliguria in order to identify patients

that are likely to suffer adverse outcomes related to kidney deterioration as early as

possible.

Chapter 1 began by introducing the acute kidney injury (AKI) guidelines and how

they are used to identify kidney injury and the possible adverse outcomes associated

with kidney deterioration. The KDIGO AKI guidelines use two variables to identify

kidney injury at different levels of severity. In our study it was observed that sparsely

measured variables such as serum creatinine could not be used alone for identifying

kidney injury, and this compelled us to monitor kidney injury using a patient’s

urine output. We discussed how recent studies have found the current AKI stage

one urine output criterion to be too sensitive and this lead us to Ralib’s work [2].

Ralib’s study demonstrated that the stage one urine output criterion is too sensitive

and Ralib proposed a lower threshold. We then suggested that by the time Ralib’s

criterion identifies a patient as likely to suffer adverse outcomes, harm may have

already occurred, and hence the need for a better classification for patients likely

to suffer adverse outcomes due to kidney injury. This lead us to using statistical

models to forecast a patient’s urine output time series with the aim of being able to

identify a group of patients at higher risk of adverse outcomes before harm occurs.
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Chapter 2 introduced (static) linear models and how they can be used to forecast

the urine output time series. Data transformations were introduced to address the

nonlinearities of the urine output data and to resolve negative, infeasible forecasts.

We concluded this chapter by showing the downfall of static models when modelling

noisy time series that are subject to sudden changes. This prompted the need for a

model with time varying parameters that could adapt to changing trends.

Chapter 3 introduced dynamic linear models (DLMs) and compared DLMs to static

models to show the power of a model with time varying parameters. We intro-

duced the observation and system equations describing DLMs and discussed how

the system evolution stochastic error term was key to modelling noisy time series.

We discussed the conditional independence of DLMs and outlined an approach for

building DLMs and modelling noisy time series.

Chapter 4 analysed the mathematical structure of DLMs in detail. We outlined how

to update from prior to posterior distributions and showed how to forecast ahead us-

ing DLMs. We derived moments for forecasted state and observational distributions

for a normal analysis with a known observation variance series, and a known evolu-

tion variance series. We derived crucial results, such as joint probabilities, which are

used to determine whether a patient is likely to suffer severe oliguria or not. We then

introduced component forms and how the principle of superposition can be used to

construct more complex DLMs. We then analysed dynamic models with unknown

evolution matrices and unknown observation error series. These methods allowed

for dynamic models to adapt to regions with more or less stochastic variation and

allowed model forecasts to represent more or less uncertainty, resulting in a more

precise model.

In Chapter 5 we used DLMs to predict severe oliguria in order to model and monitor

kidney deterioration to identify kidney injury and the possible adverse outcomes as-

sociated with kidney deterioration. Our aims were to use dynamic models to test the

feasibility of realtime screening of patient data to identify those at risk early enough

to allow intervention to prevent or lessen harm caused by prolonged oliguria; to

compare the model’s ability to identify patients at risk of adverse outcomes with

the stage one urine output criterion within the KDIGO guidelines (see Table 1.1);

and to compare the model’s ability to identify patients at risk of adverse outcomes

with the criterion proposed by Ralib et al (observing six consecutive urine outputs
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< 0.3ml/kg). We used methodology developed in Chapter 4 to construct a second

order polynomial model with learning mechanisms for the observation and evolu-

tion variance series. Prior elicitation and parameter estimation for the DLM were

discussed. We then showed the results obtained by using the DLM and found that

using dynamic models to model the urine output time series can identify a group

of patients more likely to suffer adverse outcomes, and that the model outperforms

the KDIGO stage one urine output criterion and Ralib’s criterion.

In Chapter 6 we discussed model performance and causes of model breakdown. We

showed how to use interventions to prevent model breakdown by using external,

anticipated information. We then introduced methods for correcting an underper-

forming model retrospectively. We described an automatic model monitoring and

diagnostics scheme that uses local Bayes’ factors and alternative models to identify

and correct model deterioration. We then incorporated an automatic model mon-

itoring and diagnostics scheme to the DLM constructed in Chapter 5. This model

was compared to the model used in Chapter 5.

In Chapter 7 we introduced more powerful models, namely multi-process dynamic

models. These models illustrated how model mixing can be used to model noisy time

series subject to outliers and parametric changes. We showed, in detail, how to use

a multi-process dynamic model for a second-order polynomial structure. We then

illustrated how to distinguish between types of change using retrospective probabil-

ities. We concluded this chapter by showing how multi-process models can be used

to model the urine output time series. We also discussed limitations of using multi-

process dynamic models and proposed how one could use multi-process models with

model monitoring to combat these limitations.

In Chapter 8 we described how clinicians can use a shiny application to easily mon-

itor the functioning of a patient’s kidneys. In this chapter we presented an applica-

tion that was designed to meet the needs of clinicians at the University Hospital of

South Manchester. The application displayed a patient’s medical history, alongside

the joint probability of suffering severe oliguria at the current, chosen time. The

application displayed how long a high risk patient had been considered at risk by

the DLM, making it easy for clinicians to monitor the success of minor interven-

tions. In addition, the application showed a plot of the urine output time series

with point forecasts and corresponding 95% prediction intervals. Furthermore, the
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application showed a summary table and additional plots of interest to clinicians

when monitoring a patient’s kidneys.

In summary, this thesis described in detail how to construct a powerful dynamic

model for modelling noisy time series. The methods provided can be used in a wide

range of applications from finance and econometrics, to biological series used in

clinical monitoring. Similarly to Smith and West (1983), we showed that a particular

type of dynamic model can be used to model and monitor kidney injury and can be

used as a useful classification for identifying patients at risk of adverse outcomes.

Furthermore, the DLM with model monitoring, discussed in Section 6.7, is built into

a shiny application. This shiny application can be used with ease by clinicians, and

requires no statistical background nor coding experience. The shiny application can

be used to monitor kidney function over time for patients and signals warnings at

times of high risk of suffering severe oliguria.
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Appendix A

Proof of Equation (4.4.3)

The state posterior for the general univariate dynamic model is given by

p(θt | Dt) ∝ P (Yt = yt | θt, Vt)p(θt | Dt−1)

∝ exp{−0.5V −1
t (yt − F ′tθt)2} × exp{−0.5(θt − at)′R−1

t (θt − at)}

∝ exp{−0.5(θt −mt)
′C−1

t (θt −mt)},
(A.0.1)

where the moments are defined as

mt = at +Atet,

Ct = Rt −AtA
′
tQt,

At = RtFt/Qt,

et = yt − ft.

(A.0.2)

Proof: Taking natural logarithms, multiplying by −2, and expanding we find

−2 ln[p(θt | Dt)] = (θt − at)′R−1
t (θt − at)

+ (Yt − F ′tθt)′V −1
t (Yt − F ′tθt) + constant

= (θ′tR
−1
t θt − θ′tR−1

t at − a′tR−1
t θt + a′tR

−1
t at)

+ (Y ′t V
−1
t Yt − Y ′t V −1

t F ′tθt − θ′tFtV −1
t Yt + θ′tFtV

−1
t F ′tθt) + constant.

(A.0.3)

The constant not involving θt. This is a quadratic function of θt and can be rear-

ranged with a new constant (once again the constant not involving θt) and expressed
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as

θ′t(R
−1
t + FtV

−1
t F ′t )θt − 2θ′t(R

−1
t at + FtV

−1
t Yt) + constant. (A.0.4)

Above we were able to combine terms by noting that a (1× 1) matrix is symmetric,

that is, c′ = c where c is a constant. Namely,

θ′tR
−1
t at = a′tR

−1
t θt

θ′tFtV
−1
t Yt = Y ′t V

−1
t F ′tθt.

(A.0.5)

Now with Ct as defined above,

(R−1
t + FtV

−1
t F ′t )Ct = In, (A.0.6)

the (n× n) identity matrix, hence

C−1
t = R−1

t + FtV
−1
t F ′t . (A.0.7)

Further, with mt as defined above

C−1
t mt = R−1

t at + FtV
−1
t Yt. (A.0.8)

See Appendix B for proof of results (A.0.7) and (A.0.8). Therefore,

− 2 ln[p(θt | Dt)] = θ′tC
−1
t θt − 2θ′tC

−1
t mt + constant. (A.0.9)

Once again we are able to combine terms by noting that a (1×1) matrix is symmetric,

using m′tC
−1
t θt = θ′tC

−1
t mt. Finally, noting that m′tC

−1
t mt is a constant not

involving θt, we obtain

− 2 ln[p(θt | Dt)] = (θt −mt)
′C−1

t (θt −mt) + constant. (A.0.10)

Dividing by −2 and exponentiating gives the final result:

p(θt | Dt) ∝ exp{−0.5(θt −mt)
′C−1

t (θt −mt)}. (A.0.11)

�
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Appendix B

Proof of Equations (A.0.7) and

(A.0.8)

Given (θt | Dt−1) ∼ N(at,Rt), (Yt | Dt−1) ∼ N(F ′tθt, Vt), and (θt | Dt) ∼ N(mt,Ct),

we have

C−1
t = R−1

t + FtV
−1
t F ′t , (B.0.1)

and

C−1
t mt = R−1

t at + FtV
−1
t Yt, (B.0.2)

Proof:

C−1
t = R−1

t + FtV
−1
t F ′t , (B.0.3)

and using Ct as stated in Section 4.4, Ct = Rt −AtA
′
tQt we find:

In = C−1
t Ct = (R−1

t + FtV
−1
t F ′t )Ct

= R−1
t (Rt −AtA

′
tQt) + FtV

−1
t F ′t (Rt −AtA

′
tQt)

= In −R−1
t AtA

′
tQt + FtV

−1
t F ′tRt − FtV −1

t F ′tAtA
′
tQt.

(B.0.4)
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Cancelling common terms and using At as stated in Section 4.4, At = RtFt/Qt we

find:

R−1
t AtA

′
tQt − FtV −1

t F ′tRt + FtV
−1
t F ′tAtA

′
tQt = 0

=⇒ FtA
′
t − FtV −1

t F ′tRt + FtV
−1
t F ′tRtFtA

′
t = 0.

(B.0.5)

Using the definition of Qt = F ′tRtFt +Vt, defined in Section 4.2.1, we can rearrange

and multiply by V −1
t to find V −1

t F ′tRtFt = QtV
−1
t − 1. Using this result and

cancelling common terms we find:

FtA
′
t − FtV −1

t F ′tRt + FtV
−1
t F ′tRtFtA

′
t = 0

=⇒ FtA
′
t − FtV −1

t F ′tRt + Ft(QtV
−1
t − 1)A′t = 0

=⇒ V −1
t Ft(F

′
tRt −QtA

′
t) = 0.

(B.0.6)

Finally noting that, from the definition in Section 4.4, QtA
′
t = F ′tRt (since Rt is

symmetric R′t = Rt) we see that the above result is, in fact, zero. Now using the

definitions ofmt, C
−1
t and Yt in Section 4.4, mt = at+Atet, C

−1
t = R−1

t +FtV
−1
t F ′t ,

et = Yt − ft we find:

C−1
t mt = (R−1

t + FtV
−1
t F ′t )(at +Atet)

= R−1
t at + FtV

−1
t Yt − FtV −1

t et +R−1
t Atet + FtV

−1
t F ′tAtet.

(B.0.7)

Using, At = RtFtQ
−1
t we find:

C−1
t mt = R−1

t at + FtV
−1
t Yt − FtV −1

t et +R−1
t Atet + FtV

−1
t F ′tAtet

= R−1
t at + FtV

−1
t Yt − FtV −1

t et + FtQ
−1
t et + FtV

−1
t F ′tRtFtQ

−1
t et.

(B.0.8)

Finally using the definition of Qt, F
′
tRtFt = Qt − Vt we find:

C−1
t mt = R−1

t at + FtV
−1
t Yt − FtV −1

t et + FtQ
−1
t et + FtV

−1
t F ′tRtFtQ

−1
t et

= R−1
t at + FtV

−1
t Yt − FtV −1

t et + FtQ
−1
t et + FtV

−1
t (Qt − Vt)Q−1

t et

= R−1
t at + FtV

−1
t Yt.

(B.0.9)
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Appendix C

Proof of Equation (4.9.17)

The joint distribution, conditional on φt, between an observation and the state at

time t, given information up to time t− 1, Dt−1, is

(
Yt

θt

)
| Dt−1, φt ∼ N

[(
ft

at

)
,

(
φ−1
t Q∗t F ′tR

∗
tφ
−1
t

R∗tFtφ
−1
t R∗tφ

−1
t

)]
. (C.0.1)

Using properties of the multivariate normal distribution, conditioning the state on

the observed value yields a normal distribution which is given by

(θt | Dt−1, Yt = yt, φt) ∼ N(mt,C
∗
t φ
−1
t ), (C.0.2)

where the moments are updated from their prior values with the scale conditioning

made explicit and are given by

mt = at +R∗tFtφ
−1
t (φ−1

t Q∗t )
−1(yt − ft)

= at +R∗tFtet/Q
∗
t ,

(C.0.3)

C∗t φ
−1
t = R∗tφ

−1
t −R∗tFtφ−1

t (φ−1
t Q∗t )

−1F ′tR
∗
tφ
−1
t

= R∗tφ
−1
t −R∗tFtF ′tR∗tφ−1

t /Q∗t .
(C.0.4)
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Proof: Suppose that a vector random variable X = (X1, X2, . . . , Xk)
′ has a mul-

tivariate normal distribution with pdf given by

πX(x) = −
(

1

2π

)k/2
|Σ|−1/2 exp

{
1

2
(x− µ)′Σ−1(x− µ)

}
, (C.0.5)

where Σ is the (k × k) covariance matrix, and µ is the (k × 1) mean vector. First

partitionX into two componentsX1 andX2 of dimensions d and (k−d) respectively,

that is, X ′ = (X ′
1,X

′
2). Writing

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, (C.0.6)

where Σ11 is (d× d), Σ22 is (k − d)× (k − d), and Σ21 = Σ′12. Now, define a third

variable z = x2 +Ax1 where A = −Σ21Σ
−1
11 is called the regression matrix of X2

on X1. Since all conditional distributions of a multivariate normal distribution are

normal, all that is left to do is calculate the mean vector and covariance matrix.

The covariance between z and x1 is given by

Cov(z,x1) = Cov(x2 + Ax1,x1)

= Cov(x2,x1) + AVar(x1,x1)

= Σ21 −Σ21Σ
−1
11 Σ11 = 0.

(C.0.7)

Therefore z and x1 are uncorrelated, and since they are jointly normal they are

independent (See Appendix G, Correlations and Independence). Also E[z] = µ2 +

Aµ1. Hence

E[x2 | x1] = E[z −Ax1 | x1]

= E[z | x1]−AE[x1 | x1]

= E[z]−Ax1

= µ2 +A(µ1 − x1)

= µ2 + Σ21Σ
−1
11 (x1 − µ1).

(C.0.8)

Finally, we need to calculate the covariance matrix of the conditional distribution

Var(x2 | x1) = Var(z −Ax1 | x1)

= Var(z | x1) +AVar(x1 | x1)A′ −ACov(x1, z)− Cov(z,x1)A′

= Var(z | x1) = Var(z).

(C.0.9)
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Evaluating the variance of z gives the expression

Var(z) = Var(x2 +Ax1)

= Var(x2) +AVar(x1)A′ +ACov(x1,x2) + Cov(x2,x1)A′

= Σ22 + Σ21Σ
−1
11 Σ11Σ

−1
11 Σ12 −Σ21Σ

−1
11 Σ12 −Σ21Σ

−1
11 Σ12

= Σ22 + Σ21Σ
−1
11 Σ12 − 2Σ21Σ

−1
11 Σ12

= Σ22 −Σ21Σ
−1
11 Σ12.

(C.0.10)

Therefore the conditional distribution for (X1 |X2 = x2) is given by

(X2 |X1 = x1) ∼ N(µ2 + Σ21Σ
−1
11 (x1 − µ1),Σ22 −Σ21Σ

−1
11 Σ12). (C.0.11)

Comparing terms to Equation (C.0.1) we see that x1 = yt, x2 = θt, µ1 = ft, µ2 = at,

Σ11 = φ−1
t Q∗t , Σ12 = F ′tR

∗
tφ
−1
t , Σ21 = R∗tFtφ

−1
t , and Σ22 = R∗tφ

−1
t and hence we

recover the conditional distribution with the moments defined as above.
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Appendix D

Sensitivity Analysis

In this Appendix we show a sensitivity analysis for the discount factors, δµ, δβ and

δV , for the second order polynomial dynamic model discussed in Section 5.2.1. The

criteria for estimating the initial parameters in this study is to minimise the number

of type two errors. The number type one errors, the MAD, and the MSE are also

considered (see Section 5.2.2 for definitions of the diagnostic measures).

Below are diagnostic tables for varying values of δµ fixing δβ = 0.9 and δV = 1,

meaning that the observational variance has no information discounting. The initial

prior for the unknown observational variance is V0 = 0.1 and so we start with

S0 = 0.1:

δµ Type 1 Type 2 MAD MSE

0.70 0.1065855 0.002914519 635.2311 1202.452
0.75 0.108088 0.002770723 634.5539 1194.602
0.80 0.1046256 0.002662096 634.1929 1187.282
0.85 0.0996045 0.003074558 634.1619 1180.404
0.90 0.1001783 0.003048288 634.4256 1173.759

Table D.1: Diagnostics Table for varying values of δµ. Type 1 represents the proportion
of type one errors; type 2 represents the proportion of type two errors; MAD is the total
mean absolute deviation for all patients in the development set; and MSE is the total
mean square error for all patients in the development set, see Section 5.2.2 for definitions
of diagnostic measures

The proportion of type one errors is given in the column named “Type 1”, and the
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proportion of type two errors is given in the column named “Type 2” (see Section

5.2.2 for definitions). Minimising the proportion of type two errors is our main

diagnostic tool for the model to be clinically useful. The proportion of type one

errors, the MAD, and the MSE will be considered as secondary measures. We can

see from Table D.1 that the different values for δµ do not differ very much in any of

the criteria considered. We choose δµ = 0.8 since this value has the smallest number

of type two errors.

Now varying δβ and fixing δµ = 0.8, and δV = 1:

δβ Type 1 Type 2 MAD MSE

0.70 0.1755006 0.003394694 892.7208 26560.71
0.75 0.1484301 0.00325695 788.7378 4610.318
0.80 0.1310137 0.003265415 718.8231 2229.61
0.85 0.1116297 0.003231378 669.3413 1512.267
0.90 0.1046256 0.002662096 634.1929 1187.282

Table D.2: Diagnostics Table for varying values of δβ

From Table D.2 we can see that as δβ decreases the MAD and MSE both increase.

In addition, and most importantly, δβ = 0.9 has the smallest number of type two

errors (and the smallest number of type one errors). Thus we choose δβ = 0.9.

Now varying the observational discount factor δV and fixing δµ = 0.8, and δβ = 0.9:

δV Type 1 Type 2 MAD MSE

0.80 0.0804836 0.002592593 634.1929 1187.282
0.85 0.0791978 0.002597999 634.1929 1187.282
0.90 0.0772865 0.00287948 634.1929 1187.282
0.95 0.0835598 0.002499021 634.1929 1187.282
1.00 0.1046256 0.002662096 634.1929 1187.282

Table D.3: Diagnostics Table for varying values of δV

From Table D.3, we see that, as expected, the point forecast predictions are the same

(the MAD and MSE are unchanged) but since the prediction intervals are changing,

due to the discount strategy applied to the observational variance, the proportion of

type one and type two errors has changed. Minimising the proportion of type two

errors, leads us to choose an observational variance discount factor of δV = 0.95.
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D.1 Epsilon

In Section 5.2.1 we transformed the urine output data. We added a small constant ε

before taking logarithms. In this section we perform a sensitivity analysis on ε. We

use the model discussed in Section 5.2.1 and use δµ = 0.8, δβ = 0.9, and δV = 0.95.

ε Type 1 Type 2 MAD MSE

0.01 0.1972809 0.005213838 663.5979 1246.137
0.05 0.1636685 0.00584558 648.4412 1212.771
0.1 0.0835598 0.002499021 634.1929 1187.282
0.2 0.1045625 0.01141064 677.9085 1274.49
0.3 0.08755216 0.01558025 686.3824 1298.138

Table D.4: Diagnostics Table for varying values of ε

From Table D.4 we can see that ε = 0.1 has the lowest number of type one and

type two errors. In addition, ε = 0.1 has the smallest MAD and the smallest MSE.

Consequently, we choose ε = 0.1 and use the transformation Y 7−→ log(Y + 0.1).

D.2 Other Transformations

In Section 2.3 we discussed how the urine output data is nonlinear. In order to

linearise the data we used a logarithmic transformation. In this section we discuss

other transformations that could also be used to address this issue. Power trans-

formations have been used in many applications [15] (Chapter 4) , [35] and will be

considered here.

Transformation Type 1 Type 2 MAD MSE

log(Y + 0.1) 0.0835598 0.002499021 634.1929 1187.282
square root 0.1871771 0.003369517 720.6166 1304.78
3/4 power 0.1282401 0.007016891 678.4285 1206.623

Table D.5: Diagnostics Table for different transformations

Table D.5 shows the results of a sensitivity analysis performed using three different

transformations of the urine output data. We considered log(Y +0.1), a square root

transformation, and a 3/4 power transformation. From Table D.5 we can see that

the logarithmic transformation log(Y +0.1) has a lower MAD and MSE compared to

the power transformations considered. In addition, the logarithmic transformation
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has the lowest number of type one and type two errors. As a result, we use the

logarithmic transformation log(Y + 0.1) in this thesis.
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Appendix E

Proof of Results in Example

7.1.3.1

Suppose that θ has true distribution with mean vector, E[θ], and variance matrix,

Var(θ), and that the approximating distribution is multivariate normal, N(m,C).

The approximate and true densities are given by

p(θ) = |2πVar(θ)|1/2 exp

{
− 1

2
(θ − E[θ])′Var(θ)−1(θ − E[θ])

}
p∗(θ) = |2πC|1/2 exp

{
− 1

2
(θ −m)′C−1(θ −m])

}
.

(E.0.1)

Using Equation 7.1.18 we find

K(p∗) = E[log(p(θ))]− E[log(p∗(θ))]

= E

[
− 1

2
log(|2πVar(θ)|)− 1

2
(θ − E[θ])′Var(θ)−1(θ − E[θ])

]
− E

[
− 1

2
log(|2πC|)− 1

2
(θ −m)′C−1(θ −m)

]
.

(E.0.2)
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Multiplying by -2 and rearranging

2K(p∗) = log

(
|C|
|Var(θ)|

)
− E[(θ − E[θ])′Var(θ)−1(θ − E[θ])]

+ E[(θ −m)′C−1(θ −m)]

= c+ log(|C|) + E[(θ −m)′C−1(θ −m)],

(E.0.3)

where c does not depend on m or C. Furthermore,

2K(p∗) = c+ log(|C|) + E[(θ −m)′C−1(θ −m)],

= c+ log(|C|) + E[(θ − E[θ] + E[θ]−m)′C−1(θ − E[θ] + E[θ]−m)]

= c+ log(|C|) + E[(θ − E[θ])′C−1(θ − E[θ])] + E[(θ − E[θ])′C−1(E[θ]−m)]

+ E[(E[θ]−m)′C−1(θ − E[θ])] + E[(E[θ]−m)′C−1(E[θ]−m)]

= c+ log(|C|) + E[(θ − E[θ])′C−1(θ − E[θ])] + E[(E[θ]−m)′C−1(E[θ]−m)].

(E.0.4)

In addition,

E[(θ − E[θ])′C−1(θ − E[θ])] = E[Tr(θ − E[θ])′C−1(θ − E[θ])] =

Tr[C−1E(θ − E[θ])′(θ − E[θ])] = Tr[C−1Var(θ)].
(E.0.5)

Putting all of this together we have

2K(p∗) = c+ log(|C|) + Tr[C−1Var(θ)] + E[(E[θ]−m)′C−1(E[θ]−m)]. (E.0.6)
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Appendix F

Proof of Results in Example

7.1.3.2

Using Equation (7.1.18) and Bayes’ theorem we have that

K(p∗) = Eθ,φ{log[p(θ,φ)]} − Eθ,φ{log[p∗(θ,φ)]}

= constant− Eθ,φ{log[p∗(θ | φ)] + log[p∗(φ)]}

= constant− Eθ,φ{log[p∗(θ | φ)]} − Eφ{log[p∗(φ)]}.

(F.0.1)

Firstly, consider the term −Eθ,φ{log[p∗(θ | φ)]}. This term can be written as

Eθ,φ{log[p∗(θ | φ)]} = Eφ[Eθ{log[p∗(θ | φ)]}]. (F.0.2)

From (E.0.6) we know Eθ{log[p∗(θ)]} and we can simply obtain Eθ{log[p∗(θ | φ)]}
by substituting C/Sφ for C. Thus we have

−2Eφ{Eθ{log[p∗(θ | φ)]}} = Eφ{c+ log(|C/(Sφ)|) + Tr[{C/(Sφ)}−1Var(θ)]

+ Eθ[(E[θ]−m)′{C/(Sφ)}−1(E[θ]−m)]}.
(F.0.3)
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By noting that |φC| = φq|C| where C is a (q × q) matrix and using logarithmic

rules, we have that

−2Eφ{Eθ{log[p∗(θ | φ)]}} = c

+ log(|S−1C|)− qE[log(φ)] + Eφ[SφTr(C−1Var(θ))]

+ Eφ[Sφ(E[θ]−m)′C−1(E[θ]−m)].

(F.0.4)

Consider the final two terms in (F.0.4).

Eφ[SφTr(C−1Var(θ))] = Eφ[SφTr(C−1Var(θ))]

= S
k∑
j=1

S−1(j)Tr(C−1C(j))p(j).
(F.0.5)

The last step in (F.0.5) can be seen by considering a single component of the mixture

p∗(θ|φ). The estimate for φ under model j is S(j)−1. Also, the marginal multivariate

T distribution in model j is given by θ ∼ Tn(j)(m(j),C(j)). That is, the true

variance under model j is C(j). Similarly, the true mean under model j is m(j)

and hence

Eφ[Sφ(E[θ]−m)′C−1(E[θ]−m)] =

S
k∑
j=1

S−1(j)(m(j)−m)′C−1(m(j)−m)p(j).
(F.0.6)

Hence

Eφ{Eθ{log[p∗(θ | φ)]}} = c+ log(|S−1C|)− qE[log(φ)]+

S
k∑
j=1

S−1(j){Tr(CC(j)) + (m(j)−m)′C−1(m(j)−m)}p(j).
(F.0.7)

Marginally we have

p(φ) =
(d/2)n/2

Γ(n/2)
φn/2−1 exp{−φd/2}. (F.0.8)

Taking logarithms of both sides gives

log[p(φ)] = (n/2) log(d/2)− log(Γ(n/2)) + (n/2− 1) log(φ)− φd/2. (F.0.9)

Taking expectations with respect to φ and multiplying by −2 gives

−2Eφ{log[p(φ)]} = −n log(d/2)+2 log(Γ(n/2))−(n−2)Eφ[log(φ)]+dE[φ]. (F.0.10)
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Thus we can write

2K(p∗) = constant− 2Eφ{Eθ{log[p∗(θ | φ)]}} − 2Eφ{log[p(φ)]}

= constant

− n log(d/2) + 2 log(Γ(n/2))− (n+ q − 2)Eφ[log(φ)] + dE[φ] + log(|S−1C|)

+ S
k∑
j=1

S−1(j){Tr(CC(j)) + (m(j)−m)′C−1(m(j)−m)}p(j).

(F.0.11)

1. Differentiating with respect to m we obtain (using Equation (G.0.7))

2
∂K(P ∗)

∂m
= 2S

k∑
j=1

S(j)−1C−1(m(j)−m)p(j). (F.0.12)

Setting equal to zero we have

k∑
j=1

S(j)−1p(j)C−1m =
k∑
j=1

S(j)−1C−1m(j)p(j). (F.0.13)

Multiplying both sides on the left by C and rearranging gives

m =

[ k∑
j=1

S(j)−1p(j)

]−1 k∑
j=1

S(j)−1m(j)p(j). (F.0.14)

2. Differentiating with respect to C we obtain (using Equations (G.0.8), (G.0.9),

and (G.0.10))

2
∂K(P ∗)

∂C
= C−1

+ S
k∑
j=1

S(j)−1{−C−1C(j)C−1 −C−1(m(j)−m) (m(j)−m)′C−1}p(j).

(F.0.15)

Setting equal to zero and multiplying on the left and right by C we have

C − S
k∑
j=1

S(j)−1{C(j)− (m(j)−m)(m(j)−m)′}p(j) = 0. (F.0.16)
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Rearranging for C we have

C = S
k∑
j=1

S(j)−1{C(j)− (m(j)−m)(m(j)−m)′}p(j). (F.0.17)

3. Differentiating with respect to d we have

2
∂K(P ∗)

∂d
= −n

d
+ Eφ[φ]. (F.0.18)

Setting equal to zero and rearranging we obtain

Eφ[φ] =
n

d
= S−1 =

k∑
j=1

S(j)−1p(j), (F.0.19)

where S(j)−1 is the estimate of φ−1 in model j. Using this result we can write

m follows

m =

[ k∑
j=1

S(j)−1p(j)

]−1 k∑
j=1

S(j)−1m(j)p(j)

=
k∑
j=1

SS(j)−1m(j)p(j)

=
k∑
j=1

m(j)p∗(j),

(F.0.20)

where p∗(j) = p(j)S/S(j). Similarly C can now be written as

C =
k∑
j=1

{C(j)− (m(j)−m)(m(j)−m)′}p∗(j). (F.0.21)

4. Differentiating with respect to n we obtain

2
∂K(P ∗)

∂n
= − log(d/2) + γ(n/2)− Eφ[log(φ)], (F.0.22)

noting that

2
∂ log(Γ(n/2))

∂n
=

2∂Γ(n/2)/∂n

Γ(n/2)
, (F.0.23)

where, by using the chain rule, we have

2
∂Γ(n/2)

∂n
= 2

Γ(n/2)

∂(n/2)

∂(n/2)

n
= Γ′(n/2). (F.0.24)
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Thus we have

2
∂ log(Γ(n/2))

∂n
=

Γ′n/2

Γ(n/2)
= γ(n/2). (F.0.25)

Setting equal to zero and rearranging gives

Eφ[log(φ)] = γ(n/2)− log(d/2). (F.0.26)
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Appendix G

Statistical Distributions and

Useful Results

In this Appendix we provide essential distributions and theory that are used through-

out this thesis.

Univariate Normal Distribution

A random quantity X is said to be normally distributed with mean µ and variance

σ2 if it has the probability density function

p(X) =
1√
2πσ

exp

[
− 1

2

(
x− µ
σ

)2]
, (σ > 0). (G.0.1)

We use the notation X ∼ N(µ, σ2).

Multivariate Normal Distribution

A random p-vector X is said to be jointly normal distributed with mean vector µ

and covariance matrix Σ if it has the joint probability density function

p(X) =
1

(2π)p/2|Σ|p/2
exp

[
− 1

2
(x− µ)′Σ−1(x− µ)

]
. (G.0.2)

We use the notation X ∼ N(µ,Σ).
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Correlations and Independence

In general, random variables may be uncorrelated but statistically dependent. But

if a random vector has a multivariate normal distribution then any two or more of

its components that are uncorrelated are independent.

Gamma Distribution

A positive random quantity φ is said to have a gamma distribution with parameters

n > 0 and d > 0 if it has the probability density function

p(φ) =
dn

Γ(n)
φn−1 exp(−φd), (G.0.3)

where Γ is the gamma function. The mean and variance are given by

E[φ] =
n

d
,

Var(φ) =
n

d2
.

(G.0.4)

We use the notation φ ∼ Ga(n, d).

Multivariate Student-T Distribution

A random p-vector is said to have a joint Student-T distribution on n degrees of

freedom with mode m and scale matrix C if it has the joint probability density

function

p(X) =
Γ[(n+ p)/2]

Γ(n/2)np/2πp/2|C|1/2
[n+ (x−m)′C−1(x−m)]−(n+p)/2. (G.0.5)

We use the notation X ∼ Tn[m,C].

Properties of Covariance Matrices

If we have a p-dimensional random variable X and a q-dimensional random variable

Z, then the following hold:

1. Cov(AX + a, BZ + b) = ACov(X,Z)B′,

2. Var(X + Y ) = Var(X) + Var(Y ) + Cov(X,Y ) + Cov(Y ,X) if p = q.

(G.0.6)

Vector Derivatives
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Let m be an n× 1 column vector and C be an n× n symmetric matrix, then [36]

∂m′Cm

∂m
= (C +C ′)m = 2Cm (G.0.7)

since C = C ′.

Matrix Derivatives Let C be an n× n symmetric matrix, then [36]

∂ log |C|
∂C

= C−1. (G.0.8)

For a symmetric n× n matrix C(j) [36]

∂Tr(C−1C(j))

∂C
= −C ′−1C(j)C ′−1

= −C−1C(j)C−1,

(G.0.9)

since C = C ′.

For an n× 1 column vector m [37]

∂m′C−1m

∂C
= C ′−1mm′C ′−1

= C−1mm′C−1,

(G.0.10)

since C = C ′.
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Appendix H

Notation

Notation Description Section

KDIGO Kidney Disease Improving Global Outcomes 1

ICU Intensive Care Unit 1

CICU Cardiac Intensive Care Unit 1

ARF Acute Renal Failure 1.1

GRF Glomerular Filtration Rate 1.1

RIFLE Risk, Injury, Failure, Loss, End stage renal disease 1.2

AKI Acute kidney injury 1.2

RRT Renal replacement therapy 1.2

Severe Oliguria Six consecutive urine outputs below 0.3ml/kg 1.3

Anuria Failure of the kidneys to produce urine 2.1

CVP Central venous pressure 3.3

Dt Information up to time t 3.4.1

Ft Regression vector 4.1

θt p-dimensional paramater vector 4.1

νt Observational stochastic error series 4.1

Table H.1: Table of Notation and Terminology
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Notation Description Section

Vt Observational variance 4.1

Gt Evolution matrix 4.1

ωt Evolution stochastic error series 4.1

Wt Evolution variance 4.1

D0 Historical information 4.1

at State prior mean vector 4.2

Rt State prior covariance matrix 4.2

ft Mean of forecasted observation distribution 4.2.1

Qt Variance of forecasted observation distribution 4.2.1

mt State posterior mean vector 4.4

Ct State posterior covariance matrix 4.4

At Adaptive factor 4.4

It External information 6.2

et Difference between observation and forecast mean 4.4

δ System discount factor ∈ (0, 1] 4.8

φ Observational precision 4.9

nt 2× Location of precision parameter, φ 4.9.1

dt 2× Scale of precision parameter, φ 4.9.1

St Observational variance estimate 4.9.2

δV Observational discount factor ∈ (0, 1] 4.9.4

Oliguria Low output of urine 5.1

ht Mean vector of intervention, It 6.1.2

Ht Covariance matrix of intervention, It 6.1.2

ξt Additional evolution variance, ξt ∼ N(ht,Ht) 6.1.2

Table H.2: Table of Notation and Terminology Continued
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