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Abstract

In this thesis I explore two pertinent avenues of the AdS/CFT correspondence: the rich,

pragmatic context of non-relatavistic holography and the story of holographic multiboundary

wormholes and their relation to the profound interplay between bulk geometry and boundary

entanglement. In chapter 1, I introduce the AdS/CFT correspondence and review the key

ideas that motivate and underlie the work in subsequent chapters. In chapter 2 we consider

the development of a holographic dictionary for asymptotically locally Schrödinger spacetimes

for z < 2 in a massive vector model in various spatial dimensions. We carry out a linearised

analysis of bulk perturbations and identify the boundary data as sources and vevs for the dual

stress-energy complex. We verify that a sensible asymptotic expansion of bulk perturbations

in sub-leading powers of r exists by expanding them in eigenvalues of the boundary dilatation

operator. The third chapter extends the work of the Chapter 2 to the case with z = 2 in the

massive vector model, in various dimensions, where the additional lightlike direction is regarded

as internal from the boundary point of view, qualitatively unlike the z < 2 case. Chapter 4

considers the entanglement structure of states holographically dual to multiboundary wormholes

in the high-temperature limit, in which the thermal scale associated to each boundary is much

larger than the AdS scale. We find that the entanglement structure in this limit is almost entirely

bipartite in this regime. The fifth chapter investigates the extent to which the results of chapter

4 generalise to regions of small moduli. We utilise heuristic tensor network methods to construct

tensor network models of multiboundary wormhole states built by sewing tensors to Coxeter

tilings and their quotients. We find in several cases that we can construct holographic states

representing multiboundary wormhole geometries for which the entanglement structure is mostly,

or almost entirely bipartite.
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1 Introduction

There are at least a couple of reasons why any physicist should care about the AdS/CFT

correspondence. On the one-hand, it entails a fully non-perturbative definition of quantum gravity

and is arguably one of our most powerful hints for a framework that successfully marries gravity

according to Einstein with the microscopic paradigm of quantum mechanics [5–9]. On the other

hand, the AdS/CFT correspondence amounts to an extremely powerful strong/weak duality

providing us with a unique window into the behaviour of strongly-coupled quantum systems,

including condensed matter systems that we can actually realise experimentally [10, 11]. In this

section I present a review of the main ideas underlying the research conducted in this thesis.

I introduce black hole thermodynamics and the holographic principle of which the AdS/CFT

correspondence is an explicit realisation. I describe the AdS/CFT correspondence, discussing

the original result and its natural generalisations, including non-relativistic cases that bring the

powerful formalism of AdS/CFT to experimentally pertinent systems in condensed matter physics

[10, 40–42, 66]. I then discuss the fascinating interplay between bulk geometry and boundary

quantum information that continues to shed light on how the AdS/CFT correspondence is

realised holographically [12–16].
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1.1 Black Holes & The Holographic Principle

Regarding the question of quantum gravity, one of the most important and remarkable results

found in recent times is that black holes are thermal objects; they radiate thermally, and they

carry entropy. Initially, Hawking’s area theorem demonstrated that the area of the event horizon of

a black hole is always increasing, analogous to the second law of thermodynamics [17]. Bekenstein

later argued that black holes would violate the second law of thermodynamics, if a thermodynamic

system was thrown into a black hole, unless the black hole carried an entropy proportional to the

area of its horizon H [18],

S =
1

4l2p
Area(H) (1.1)

where lp is the Planck length.

This remarkable result (1.1), an inevitable feature of semiclassical gravity in black hole

geometries, has profound implications for the amount of information that can be contained in any

portion of space in a theory of quantum gravity. Consider, for simplicity, a spherical shell with

area A occupied by a collection of matter with total energy M which is collapsed to form a black

hole of mass M and horizon area A. According to the second law of thermodynamics, entropy

cannot decrease, hence the entropy of the collapsing system cannot exceed (1.1), as illustrated

in figure 1. A covariant generalisation of this result is provided by the Bousso-bound [19]. This

result strongly suggests that in a quantum theory of gravity, that physical information pertaining

to any portion of spacetime is encoded in its boundary1. This led Susskind and t’Hooft to propose

the holographic principle, according to which quantum gravity is holographic in precisely this

sense [20, 21].

The thermodynamic nature of black holes was decisively clarified by Hawking’s initially

surprising result that black holes evaporate thermally [22]. This result can be obtained most

cleanly by considering the fact that the near-horizon geometry of a Schwarzchild black hole is

locally Rindler space; the same as for a uniformly accelerating observer in flat space. Consequently,

the state of quantum fields observed by a fiducial observer outside the horizon is prepared by

the Euclidean path-integral on an infinite strip sliced in Rindler time, which prepares a thermal

state in the black hole exterior [10]. As such, the state of quantum fields in the exterior region

1Further evidence for includes the fact that boundaries are physical in gravitational systems, since large
diffeomorphisms act non-trivially on physical configurations.
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Figure 1: A spherical shell of matter with radius R collapses to form a black hole with event

horizon radius R. The second law of thermodynamics means that the final black hole has a

greater entropy than the collapsing shell. Consequently, the largest amount of information that

can be contained in any spherical shell is bounded by the entropy of a black hole of the same size,

which scales with the area (as opposed to the volume) of the collapsing shell.
.

of a black hole, according to a fiducial observer, is thermal; if they carried with them a particle

detector they would observe thermal excitations.

In classical thermodynamic systems, the thermodynamic entropy counts the number of

microstates in the statistical ensemble. The question arises then as to whether or not the entropy

carried by the black hole is similarly a reflection of coarse-graining of an underlying microscopic

description. Naively we might think of the black hole entropy as counting classical black hole

microstates, but this is ruled out by the no-hair theorem, stating that a black hole (rather like

a point particle! [23]) does not have any classical microstates; they are uniquely determined

by their mass, angular momentum and charge. The suspicion is therefore that the microstates

associated to the black hole entropy must arise from quantum gravity. Remarkably, the result [24]

by Strominger and Vafa demonstrated that it’s possible to derive the black hole entropy in string

theory, where it arises as the degeneracy of D-brane configurations that support an extremal,

maximally supersymmetric black hole. Though this result also correctly predicts the black hole

entropy for certain non-extremal cases, it’s presently unknown if this result can be generalised to

Schwarzchild black holes.

The fact that the black hole entropy measures the area of it’s horizon in Planck units is perhaps

our most poignnant hint that in a quantum theory of gravity, spacetime should fundamentally be

quantised at o(lp) [25] (see figure 2. Most notably, the result (1.1) amounts to a highly non-trivial

constraint on any candidate theory of quantum gravity. Specifically, the thermodynamic character

of black holes in the IR (according to a fiducial observer in the exterior) must emerge as the

9



Figure 2: In quantum gravity, the black hole entropy can be thought to derive from microscopic

degrees of freedom associated to Planck-scale regions of the black hole horizon, since the Bekenstein-

Entropy measures the horizon area according to (1.1).

red-shifted picture of UV physics close to the horizon, so that the black hole entropy amounts to

an IR constraint on the UV physics of quantum gravity.

The existence of Hawking radiation leads to a startling puzzle known as the black hole

information paradox. Namely, a given infalling pure state is converted to a mixed (thermal) state.

When the black hole eventually evaporates it therefore appears that the information pertaining

to the infalling stuff has been removed from the universe. Hawking’s calculation assumes nothing

other than the effectiveness of local quantum field theory at low energies, locality and unitarily

evolving states. The black hole information paradox appears to offer the radical suggestion that

perhaps Hawking’s original calculation was incorrect, and that in particular some of these most

basic underlying assumptions may prove false in quantum gravity. In this sense addressing the

black hole information paradox might well require the conceptual leap that will utimately lead

to the foundations of a prevailing theory of quantum gravity. The general consensus on this

matter is not settled, though many suggestions have emerged, ranging from suggestions that

information loss in this sense is actually not pathological and even to attempts to modify quantum

mechanics itself. A remarkable answer to the question of black hole information loss comes from

the AdS/CFT correspondence, which we now describe.

1.2 The AdS/CFT Correspondence

In its original form, the AdS/CFT correspondence entails a conjectured full equivalence between

type-IIB string theory with asymptotically AdS5 × S5 boundary conditions and N = 4 Super

Yang-Mills, being a conformal field theory, living at the boundary of the AdS5 [5]. This duality

is a lucid manifestation of the holographic principle, since the 4-dimensional CFT lives at the
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boundary of the 10 dimensional string theory (with 5 dimensions being the compact directions of

the S5). The quintissential relation that captures this duality is an equivalence of the bulk and

boundary partition functions,

ZCFT [φ0] = ZString[φ, φ0] (1.2)

where the CFT is N = 4 SYM and the bulk fields φ have corresponding boundary conditions φ0

realising the asymptotically AdS5 × S5 boundary conditions [6]. As an elementary sanity check

we can observe that the symmetry group of AdS5 × S5, along with supersymmetry, gives the

superconformal group in four dimensions, the group of symmetries of N = 4 SYM , so that both

sides of the duality have the same symmetries. Whilst the field theory lives at the boundary of

the AdS5, the role of the compactified directions in this sense is that their Kaluza-Klein modes

correspond to chiral operators in the CFT [7].

In the terminology of AdS/CFT , the CFT side of the duality is referred to as the boundary

theory, since it effectively lives at the boundary of the asymptotically AdS geometry. The

corresponding dual gravity side is referred to as the bulk theory.

In general we do not know how to compute ZString since for example we do not know how to

quantise string theory with Ramond-Ramond fluxes. However, the r.h.s of (1.2) is tractable when

the string theory is well approximated by semiclassical type IIB supergravity, which is the case

in the limit of large-N and large t’Hooft coupling λ = g2
YMN [6]. In this limit the relation (1.2)

becomes,

ZCFT [φ0] =
∑
i

eSSUGRA(φi,(φ0)i) (1.3)

Where the summation runs over the set of bulk saddles supported by the bulk field configura-

tions (φi, (φ0)i). Most cases seen in the literature consider a single bulk saddle where subdominant

saddle can be neglected, which drops the sum in (1.3).

The regime of large λ means that the CFT is very strongly coupled and the supergravity

theory is weakly coupled. The ensuing strong/weak duality is an extremely powerful result

of the AdS/CFT correspondence that permits one to study the relatively intractable strong-

coupling regime of CFT s from the viewpoint of weakly-coupled, semiclassical gravity. There are

many similar AdS/CFT correspondences that can be motivated using the so-called “top-down”

approach akin to Maldacena’s original method, wherein one motivates the correspondence starting

with D-brane configurations in string theory [26, 27]. The more general and ambitious claim is
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that the AdS/CFT correspondence is an equivalence between any theory of quantum gravity

with asymptotically AdSd+1 ×X boundary conditions (where X is an arbitrary geometry) and a

CFTd which lives at the boundary of AdSd+1. Thus we assume the relation,

ZQG[φ, φ0] '
∑
i

eSGravity(φi,(φ0)i) = ZCFT [φ0] (1.4)

where the first equality is approximately true in the semi-classical case only. This relation

fundamentally represents an equivalence between quantum theories.

But how are observables in each theory related according to (1.4)? There is a natural way to

associate, to each bulk mode in (1.4) a corresponding holographic dual observable operator in the

CFT . In Maldacena’s top-down motivation of the AdS/CFT correspondence, bulk perturbations

φ couple to the D-branes at spatial infinity on which the CFT lives via the interaction term,

Hint =

∫
ddx φ0O (1.5)

where φ0 is the asymptotic value of the corresponding bulk field φ, which acts as a source for the

operator O in the CFT and the coordinates x run along the D-brane worldvolume [5, 6]. This

suggests that the asymptotic values of a given bulk field should be interpreted as source for a

holographic dual operator in the CFT [6, 28] so that,

ZQG[φ, φ0] =

〈
exp

[ ∫
∂M

φ0O
]〉

(1.6)

By using (1.6) we see that turning on a bulk scalar gives rise to a boundary dual primary operator.

It’s easy to see that the scaling dimension of this primary operator is related to the mass of

the dual bulk field [6]. Gauge fields naturally couple to conserved currents in (1.6) so these are

holographically dual to conserved currents in the CFT . Additionally the fact that boundary stress

tensor is the functional derivative of the ZCFT with respect to the boundary metric, we ascertain

that the bulk metric asymptotics are sources for the boundary stress-tensor. As mentioned earlier,

it’s according to (1.6) that the holographic duals of bulk Kaluza Klein modes wrapping the S5 in

the AdS5 × S5 case are the chiral operators of N = 4 SYM .

The complete holographic dictionary that we ascertain from (1.4) is therefore that the

asymptotic conditions for the metric, together with the normalisable bulk modes, determine

a holographic dual state in the CFT which is prepared by the Euclidean path-integral on the

12



Figure 3: Cartoon of the holographic dictionary for AdS/CFT .

asymptotic geometry along with operator insertions corresponding to operators holographically

dual to the bulk modes that are switched on. This general picture of the holographic dictionary

in AdS/CFT is depicted in figure 3

In fully quantum gravity we do not know what the physical states are [25, 29], but in the

semi-classical regime they are classical gravity configurations, so that a choice of bulk saddle

corresponds to a holographically dual state in the CFT according to (1.4). The asymptotic

conditions ∂M for the bulk fix the geometry on which the CFT lives so that Z[φ0, ∂M ]CFT

computes the Euclidean path-integral on ∂M [30]. In this language it’s straightforward to show

that empty AdSd is holographically dual, via (1.4) to the ground state in the dual CFT . Empty

AdSd is just global AdSd which is trivially asymptotically AdS. The geometry of global AdSd is,

ds2 = l2(− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2
d−2) (1.7)

The boundary of Euclidean AdSd (for which we analytically continue t→ iτ) is ∂M = Rτ ×Sd−2,

so that the holographic dual state is prepared by the Euclidean path-integral on ∂M which gives

the ground state in the CFT , as claimed.

In practice, using the relation (1.6) entails determining CFT correlation function by taking

functional derivatives of the bulk gravity action evaluated on an appropriate bulk saddlepoint [6],

however this is generically divergent at the boundary at spatial infinity. On the CFT side the

correlators contain UV divergences that need to be renormalised with appropriate counter-terms.

13



We can use the techniques of renormalisation in this case to obtain a finite bulk action principle

by introducing a cut-off at some finite value of r = ε and then adding boundary counterterms

to the bulk action so as to render it finite in the limit as ε → 0 at the boundary. This is the

process of holographic renormalisation [31]. An important upshot of this discussion is that the

extra radial direction in AdS/CFT is seen to be holographically related to energy scale in the

boundary CFT [32].

We have mentioned the top-down approach to AdS/CFT where one starts from string theory

and heuristically derives the corresponding CFT , but we may conversely consider a “bottom-up”

approach in which one starts from the CFT and then asks which gravitational theory it might be

dual to. CFT s with holographic duals are called holographic CFT s. For a holographic CFT to

have a semiclassical holographic dual we require that the CFT has a huge denegeracy of states

at high-energies and furthermore that the CFT has a mass-gap or equivalently small degeneracy

of low-energy states [33]. We also require that the bulk and boundary central charges coincide2.

This tantalisingly beautiful correspondence, in a very real sense, entails a fully non-perturbative

and background-independent definition of quantum gravity. More remarkably (1.4) implies that

gravity’s quantum avatar is not fundamentally the formidably geometric creature of Einstein’s

theory. Indeed (1.4) suggests that in some immediately obscure sense, quantum gravity is an ordi-

nary, background-dependent conformal field theory 3. Though this relation gives us a definition of

quantum gravity and tells us exactly what theory is it, we first have to decipher what gravitational

dynamics mean to the dual boundary CFT before we can ask interesting questions about the bulk,

quantum gravity side of the duality. So far we’ve seen that at the semiclassical level we have some

substantial traction in this direction, but if we want to explore gravity in the genuinely quantum

regime via this relation we will have to include loop corrections, or equivalently corrections in 1
N

.

Remarkably, AdS/CFT appears to offer a complete (if similarly opaque) resolution of the black

hole information paradox: since the bulk gravity dynamics are fundamentally the same thing as a

unitary boundary CFT , then the whole process of black hole formation and evaporation must

accordingly be described completely by a unitary, information-preserving CFT .

2The bulk central charge arises from two copies of the Virasoro algebra which generate the asymptotic
symmetries of asymptotically AdS spacetimes [34].

3In the present context this makes sense because boundary conditions are not gauge artefacts in gravitational
theories
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1.3 Non-Relativistic Generalisations

It’s extremely tempting to suppose that the correspondence (1.4) can be generalised even further.

The most general statement might be to relax the condition that the boundary is asymptotically

AdS, or equivalently, that the dual theory is not necessarily conformal. Such generalisations

can actually be realised as deformations of a CFT [35–38], where the holographic dictionary

for AdS/CFT can be applied perturbatively. From a pragmatic perspective, we might hope to

harness the power of the strong/weak coupling duality entailed by the correspondence in order

to carry out computations in strongly-coupled quantum systems appearing in nature, which

frequently exhibit non-relativistic scaling symmetries [10, 39]. This leads us presently to the

story of non-relativistic generalisations of AdS/CFT , which will set the backdrop for chapters 2

and 3 [40]. One hope is that we can formulate a generalisation of AdS/CFT to the context of

non-relativistic field theories. This has the added bonus of conferring insight as to the extent to

which the formalism of AdS/CFT can be generalised to arbitrary backgrounds, which may in

turn lead to valuable hints in our attempts to formulate a quantum theory of gravity.

When we learn about field theory it is often presented as a solely relativistic animal. This is

because relativistic quantum field theory is the natural context in which to construct a quantum

theory of interacting particles which is local and causal according to relativity. Needless to

say a quantum field theory need not be relativistic by construction. Non-relativistic quantum

field theories (NRFT s) have preferred time and space directions; the synthesis of spatiality

and temporality of relativity does not occur and the newtonian intuition prevails. A notably

distinct feature is that non-relativistic theories the stress-energy tensor is no longer symmetric;

the off-diagonal elements are independent and furnish a so-called stress-energy complex,

Tµν =



Ttt = E Energy density

Tti = Pi Momentum flux density

Tit = Ei Energy flux density

Tij = Πij Stress density


(1.8)

which is conserved [41].

Many of the strongly coupled, non-relativistic systems found in experiments have hyperscaling

symmetries such as those that describe fermions at unitarity [42–44]. In this case, schematically
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we have a symmetry,

x→ λx t→ λzt (1.9)

where z is the so-called critical scaling exponent [40, 41]. A geometry with this kind of scaling

symmetry is the Lifshitz geometry,

ds2 =

(
−r2zdt2 + r2dx2

i + l2
dr2

r2

)
(1.10)

which is invariant under the scaling xi → λxi, r → λr, t→ λzt and l sets the scale of curvature.

Noteably for z = 1, (1.10) is exactly AdSd. The Lifshitz symmetry group of (1.10) appears at

critical points in condensed matter systems describing low-dimensional magnetic materials, liquid

crystals and cold atoms [43, 44]. In order to bring the machinery of AdS/CFT to bear in these

cases, it is worth considering gravitational theories that are asymptotically of the form (1.10).

We can then assume, for that theory, that a relation of the form (1.4) holds, i.e that a form of

asymptotically-Lifshitz/Lifshitz-NRFT duality holds and set about establishing an analogue of

the standard holographic dictionary that relates observables in each case. With this in hand,

we can translate computations in the strong-coupled Lifshitz field theory to calculations in the

bulk gravity side. In [45], a holographic dictionary for geometries which may asymptotically be

written locally in the form (1.10) was established in precisely this way. Since the non-relativistic

scaling preferentially treats the time and space coordinates differently, this motivates us to work

with frame-fields instead of the metric. That is, we achieve the required asymptotic conditions

for the metric by imposing suitable boundary conditions on the frame fields.

We can write the metric (1.10) with the following choice of frame fields

gµν = eAµ e
B
ν ηAB e(r)

r = lr−1 e
(0)
t = rz e

(I)
i = rdxi (1.11)

where other frame components are set to zero and where ηAB is the flat metric and the local

frame indices A = ((0), (i), (r)). We can partially fix a gauge in which e
(r)
r = lr−1 and e

(r)
α = 0 for

α = (t, xi) running over the time and spatial coordinates. The form (1.11) for the frame fields

motivates the boundary conditions of [45] in which a metric is called asymptically locally Lifshitz

if the frame fields have the following asymptotic form at the timelike boundary at r →∞.

e(0)
α = rz ê(0)

α (r, xα), e(I)
α = rz ê(I)

α (r, xα) (1.12)
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where the expansion around of the ê(r, xα) around r →∞ contains a finite leading piece, plus

sub-leading terms that decay in the limit. This conditions allows the boundary metric to be

locally (1.10). So far we’ve not mentioned which theory we’re considering and the conditions

(1.12) are appropriately generic since the precise, subleading terms appearing in the metric will

be determined by the dynamics of a given theory realising (1.12).

In [45] the asymptotic conditions (1.12) are realised as a particular solution of the massive

vector theory coupled to gravity with the action,

S = − 1

16πG

∫
dds+3x

√−g
(
R− 2Λ− 1

4
FµνF

µν − 1

2
m2AµA

µ

)
− 1

8πG

∫
dds+2ξ

√−γK, (1.13)

for which the massive vector field A supports the non-relativistic hyperscaling symmetry. Sources

and vevs in the boundary NRFT are identified as the leading terms that appear in a linearised

analysis of bulk perturbations to the frame fields compatible with the asymptotic conditions. In

accordance with an appropriate generalisation of (1.4), this leads to an identifcation between

bulk asymptotics and sources for the boundary stress-energy complex in addition to an irrelevant

operator dual to the time-components of the massive vector. In chapters 2 and 3 we will explore

in detail how this rich story generalises to geometries with are asymptotically locally Schrödinger,

again in the context of gravity coupled to a massive vector. The upshot in these cases is that while

we remain agnostic to the existence of the boundary NRFT , appropriate holographic dictionaries

analogous to (1.4) are shown to exist.

For a generic bulk theory, it is not necessarily possible that boundary conditions such as (1.12)

exist, that is that an asymptotic expansion of bulk fields in subleading powers of r consistent with

the interpretation (1.6) exists. In chapters 2 we will see that in the generalisation of AdS/CFT to

asymptotically locally Sch́’odinger backgrounds, the existence of a “good” asymptotic expansion

is strongly dependent on the dynamical critical exponent appearing in the metric.

1.4 Entanglement Entropy

In the last subsections we’ve described the AdS/CFT correspondence and how this formalism can

be applied to more generic, specifically non-relativistic backgrounds. In view of understanding

what AdS/CFT has to tell us about quantum gravity more generally, an extremely important

question is how a relation like (1.4) can possibly work, that is, how are gravitational dynamics
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encoded holographically in a non-gravitational context in the CFT? We know so far that fixing

the asymptotic conditions in (1.4) for the bulk fixes a choice of state in the boundary CFT , so a

pertinent question to ask in the semiclassical case is, how is the geometry in the bulk encoded

holographically? Overwhelmingly the answer appears to be that the key aspect of this is the

interplay between bulk geometry and boundary quantum information, namely entanglement

entropies. This correspondence has led to the inception of the field of holographic entanglement

entropy which has led to intensely rich and exciting developments. Before proceeding further we

should briefly review the idea of entanglement entropy in quantum systems.

Entanglement entropy diagnoses a kind of correlation between quantum systems which is

only possible due to the superposition principle and is therefore a property unique to quantum

mechanics.

Suppose there are two rooms A and B and suppose that Alice and Bob, two observers, are

placed in seperate rooms A and B respectively. Suppose that the total quantum state is the

pure density matrix ρ in a Hilbert space bipartitioned so that H = HA ⊗HB. Supposing that

Alice has no means of measuring B then the quantum state seen by Alice on A the described by

the reduced density matrix associated to the factor HA, obtained by tracing out the degrees of

freedom in B,

ρA = TrB(ρ) (1.14)

That is, ρA contains all of the information about correlation functions in A measurable by Alice.

The density matrix ρA is generically a mixed state due to the fact that Alice and Bob’s systems

may be correlated. Entanglement entropy diagnoses precisely this kind of correlation between

subsystems, that manifests in the case of pure states in the way that the state on a given subsystem

appears mixed. The Von Neumann entropy of the reduced density matrix A measures the amount

of quantum entanglement between A and AC in the pure state ρ;

S(A) = −Tr(ρA log ρA) (1.15)

Equivalently, this quantity diagnoses whether or not a given state on the product of factors is

seperable, that is whether or not it can be write as a product of states on each seperate factor.

For a generic pure state ρ = |ψ〉〈ψ| it’s entanglement entropy is simply S = −Tr(ρ log ρ) =

〈ψ| log 1|ψ〉 = 0, so the entanglement entropy for pure states vanishes.
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Figure 4: Cartoon illustrating that entanglement between subsystems A and B of qubits counts

the number of entangled qubits between A and B. Each node represents a qubit, and the lines

connecting nodes depict maximally entangled qubits. In this case, 4 pairs of qubits are maximally

entangled, hence S(A) = 4 log 2.

The poster-child for an entanglement in quantum mechanics is the maximally-entangled Bell

state of two qubits,

|ψ〉 =
1√
2

(|0〉|0〉+ |1〉|1〉) (1.16)

The entanglement entropy of a single qubit (the first one, for example) in the state (1.16) is,

S(1) = −Tr(ρ2 log ρ2) = −1

2

1∑
i=0

〈i|2 log ρ2|i〉2 =
1

2

1∑
i=0,j=0

〈i|2 log

(
1

2
|j〉2〈j|2

)
|i〉2 = log 2 (1.17)

since ρ2 = 1
2
I2 is diagonal. The entropy (1.15) is maximal when ρA is diagonal, in which case we

say that the state ρA is maximally mixed, or maximally entangled with ρAC . The state (1.16)

evidently maximally entangles the two qubits.

Generally a quantum state inHA can be described as a state of N qubits where dim(HA) = 2N .

If a state on H is maximally entangled we have S(A) = N log 2 = log[dim(HA)] otherwise S(A)

is smaller. This means that the entanglement entropy is bounded by S ≤ log[dim(HA)].

According to (1.17), one way to interpret entanglement entropy S(A) is that it measures the

number of entangled qubits between A and AC , as depicted in the figure 4. Conversely, given

a state ρA in a closed system A with entanglement entropy S(A) ≤ N log 2 = log[dim(HA)], N

counts the minimum number of qubits in an auxilliary system B required to be entangled with

ρA in order that ρA can be obtained by tracing out B from a pure state ρAB. In this case we say

that the auxilliary state ρB purifies the mixed state ρA.
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For a pure state |ψ〉 ∈ H = HA ⊗ HB with (dim[HA], dim[HB]) = (m,n), there exists a

basis {|ai〉} ∈ HA with i = 1, ...m and {|bj〉} ∈ HB with i = 1, ...n so that |ψ〉 has the following

Schmidt decomposition,

|ψ〉 =
∑
i

p
1/2
i |ai〉 ⊗ |bi〉 (1.18)

where pi are real and positive. One can immediately deduce the reduced density matrices on the

factors A and AC ,

ρA =
n∑
i=1

pi|ai〉〈ai| ρB =
n∑
i=1

pi|bi〉〈bi| (1.19)

This makes evident that the entanglement entropies associated to each reduced density matrix

are equal, since their eigenvalues coincide. This expressed that for pure states we have,

S(A) = S(B) (1.20)

whis is manifest in figure 4. For a pure state then we have the further constraint that S(A) ≤
min(log(n), log(m)).

Entanglement entropy in simple quantum mechanical systems, where there are only a finite

number of degrees of freedom such as in the familiar case of a 2-qubit system, are easy to compute.

In field theories, on the other hand, we have an infinite number of degrees of freedom and

computing entanglement entropies is far more difficult. The fact that field theories contain an

infinite number of degrees of freedom means that the entanglement entropy associated to any

spatial subregion diverges in the UV . One can consider taking a field theory on a lattice and

keeping the leading contribution to the entanglement entropy as the lattice spacing goes to zero

in the UV . This regularised piece captures physical information about the entanglement entropy

of the corresponding subregion [46]. For a useful review of the basic properties of entanglement

entropy in quantum mechanics and quantum field theory, see for example [16, 47].

1.5 The Ryu-Takayanagi Conjecture

A remarkable conjecture, relating quantum entanglement and bulk geometry in the context of

AdS/CFT was motivated by Ryu & Takayanagi [12, 16, 47]. Their claim is that the entanglement

entropy of the reduced density matrix associated to a spatial subregion A of a CFT is equal to

the area of a minimal-area codimension-2 spacelike surface γA in the bulk which is homologous

to A, as depicted in figure 5. Given a subregion A of a holographic CFT , the Ryu-Takayanagi
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Figure 5: Cartoon of the RT -formula 1.21 for the entanglement entropy of a subregion A

(shaded) in the boundary CFT , which is given by the area of an extremal codimension-2 surface

in the bulk whose boundary is the boundary of A (shaded green).

conjecture states that,

SA =
1

4Gn

Area(γA) (1.21)

This relationship represents perhaps the most striking equivalence between bulk geometry and

boundary entanglement entropy and has recently been derived from the AdS/CFT dictionary by

Lewkowycz and Maldacena by applying the replica trick to the Euclidean bulk path-integral [15].

There’s an immediately striking resemblance between (1.21) and the Bekenstein-Hawking

entropy 1.1 of a black hole and in fact the RT formula actually generalises the latter. To see

this, consider applying the formula (1.21) in a black hole background to it’s entire asymptotic

boundary. In this case the appropriate bulk extremal surface γ has no boundary, as illustrated in

figure 6. However, the presence of the horizon in the bulk represents a topological obstruction,

meaning that the only surfaces permitted by (1.21), due crucially to the homology constraint,

are those that wrap the horizon. The minimal area surface in this case is precisely the horizon

itself, so that the formula (1.21) gives exactly SA = 1
4Gn

Area(Horizon), which is exactly the

Bekenstein-Hawking entropy formula (1.1) (in natural units).

A covariant generalisation of (1.21) exists called the HRT prescription, which is applicable to

time-dependent cases [48].

The simplest example to check for (1.21) is with the bulk geometry being AdS3, which is

dual to the ground state in the CFT2. The most trivial exercise is to consider the entanglement

entropy of the state on the whole boundary, which we know is the pure ground state. The minimal

area surface on a constant-time slice which is homologous to the whole boundary is simply the
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Figure 6: Schematic depiction of the homology contraint in the RT -formula (1.21) applied to

black holes. The red surface cannot be continuously deformed to the pink-shaded boundary

subregion due to the black hole. However, adding the combination of the red and blue surfaces,

the latter being the black hole horizon, gives a candidate RT -surface which is homoglous to the

pink-shaded region.

Figure 7: The RT-formula (1.21) equates the entanglement entropy, in the ground state, of the

CFT2 subregion A (blue-shaded) of length L to a length of boundary-anchored geodesic γA (red)

on a constant time-slice of AdS3.

empty set, for which the formula (1.21) tells us correctly that the entanglement entropy is zero.

A more interesting case to check is the entanglement entropy of a spatial subinterval A of size L

in the CFT2 in the ground state. The conjecture (1.21) implies that the entanglement entropy of

this subinterval is given by the length L(γ) of a boundary-anchored geodesic on a constant time

slice of AdS3, as depicted in figure 7.

For AdS3 with the geometry,

ds2 =
l2

r2
(−dt2 + dx2 + dr2) (1.22)

The boundary anchored geodesic on the spatial slice with endpoints (x0, x1) = (−L
2
, L

2
) is the
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semicircle,

x(τ) =
L

2
cos τ, r(τ) =

L

2
sin τ, τ ∈ (

ε

L
, π − ε

L
) (1.23)

where ε is introduced to regulate the UV divergence as the geodesic tends to the boundary at

spatial infinity as ε→ 0 [49]. The formula (1.21) then gives the entropy of A

SA =
L

2GN

log

(
L

ε

)
(1.24)

This agrees exactly with the known CFT2 result,

SA =
c

3
log

(
L

ε

)
(1.25)

up to the identification

c =
3l

2GN

(1.26)

This is precisely the Brown-Henneaux central charge for the two copies of the Virasoro algebra

which furnish the group of asymptotic symmetries for asymptotically AdS3 spacetimes [34]4.

1.6 Holographic Eternal Black Holes and ER=EPR

We have already talked about the holographic dual of empty AdSd, which is holographically

dual to the ground state in the CFT , but there are many bulk gravity solutions which are

asymptotically AdS with interesting holographic dual descriptions. Some of the most interesting

are AdS black hole solutions and their multiboundary generalisations which we now describe.

The Schwarzchild-AdSd black holes have two timelike boundaries at spatial infinity, as depicted

in the Penrose diagram 8. The simplest asymptotically AdS black hole is the 3-dimensional case

found by Bañados, Teitelbohm and Zanelli appropriately named the BTZ black hole with two

asymptotic boundaries [50]. The Euclidean BTZ black hole has the geometry,

ds2 = (r2 − 1)dτ 2 +
dr2

r2 − 1
+ r2dφ2 φ ∼ φ+

4π2

β
τ ∼ τ + 2π. (1.27)

Rescaling by a factor of β/2π we find that the boundary at spatial infinity is Iβ × S1 where

Iβ = (0, β) denotes the periodic Euclidean time direction (with period β) which connects the two

4Interestingly though this result predates the AdS/CFT correspondence by 11 years, the relation to the
conformal group in two dimensions was not apparently acknowledged at the time.
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Figure 8: Penrose diagram of the extended Schwarzchild AdS space. Regions I and II are

exterior to the black and white hole horizons in regions III and IV respectively, and their timelike

boundaries ∂ΣI,II lie at spatial infinity in regions I,II. Spacelike singularities are contained behind

the horizon in regions III and IV.

Figure 9: The Euclidean path-integral that prepares the thermofield double (TFD) state on

two copies of S1 (highlighted) on the t = 0 slice of the boundary of the BTZ black hole.

circles on the t = 0 slice. The path-integral that prepares the holographic dual state on each

boundary circle on the t = 0 is the the Euclidean path integral on Iβ/2 × S1, two of which are

sewn together to give Iβ ×S1 as depicted in figure 9. This path-integral generates the thermofield

double state in the dual CFT ,

|TFD〉 =
∑
i

e−
β
2
H |Ei〉1 ⊗ |Ei〉2 (1.28)

This result redounds to a general feature of holographic duality, namely that bulk black holes

are dual to thermal states in the CFT . The thermofield-double state has the property that the
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Figure 10: The RT -surface for the single boundary B1 (shaded blue) on the t = 0 slice of BTZ

is the horizon H which maximally entangles the two boundaries.

reduced density matrix on either factor is the thermal density matrix,

ρThermal = e−βH (1.29)

with inverse temperature β. This means that on any given boundary the state looks exactly

thermal. Since the total state is pure, the thermal character of the state on an single boundary is

entirely a consequence of the entanglement between the two-boundaries, that the state on one

boundary is purified by the state in the opposite boundary. The entanglement entropy on one

boundary on a constant time slice is given by the area of the BTZ horizon which is ∆φ = 4π2/β,

as depicted in figure 10.

Maldacena and Susskind argued that the entanglement between the two boundaries for the

AdS-Schwarzchild black holes, is the wormhole connecting them [14]. Indeed, the boundary

CFT s in the TFD state are not coupled to one another, so that in a sense their correlation comes

entirely from the wormhole that connects them. This underlies the essence of the ER = EPR

conjecture, that the entanglement between a maximally entangled pair of qubits is fundamentally

the same thing as a highly quantum wormhole connecting the qubits (see figure 11); in this sense,

quantum entanglement and bulk connectivity are fungible [51].

The bipartite BTZ wormhole supports the entangled TFD state in the boundary. The

natural generalisations of AdS black holes are the asymptotically AdS multiboundary wormholes

geometries that connect multiple asymptotic boudaries [52–55]. The ER = EPR intuition

suggests that there may be a sense in which intrinsically multipartite entanglement is necessary in

order to support multiboundary wormhole geometries in the bulk (see figure 12). This question is

generically very difficult to answer on the one-hand, since unlike for the BTZ case, we know far less

about how to do the path-integral that prepares the states holographically dual to multiboundary
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Figure 11: Cartoon depicting the ER = EPR conjecture: an EPR pair is conjectured to be

fundamentally equivalent to a highly quantum ER-bridge connecting the locations of the two

qubits.

Figure 12: (Left) The entanglement between the two boundaries in BTZ can be distilled to

bell pairs crossing the horizon, meaning that the entanglement is entirely bipartite. (Right) for a

triply-connected, three-boundary wormhole with three horizons (red, green and blue), we might

anticipate that the entanglement structure is in some sense intrisically tripartite.

wormholes. The so-called high-temperature regime, which is the subject of chapter 4, is one such

regime where we can understand the path-integral for holographic multiboundary wormholes. An

additional complication here is that intrinsically multipartite entanglement is much harder to

diagnose than bipartite entanglement, for which many such measures exist. In both chapters

4 and 5 we attempt to understand the entanglement structure of holographic multiboundary

wormholes.

1.7 Holographic Bulk Locality & Quantum Error-Correcting Codes

In AdS/CFT , the boundary CFT does not manifestly respect locality in the bulk, except insofar

as we’ve seen at a heuristic level where it is related to energy scale in the CFT . However for

certain CFT states to be holographically dual to local bulk geometries then clearly there must be
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a sense in which bulk locality is encoded in CFT states. One could thus consider to what extent

one’s access to bulk information is limited by resticting to access to only a portion of the CFT .

One way to gain a handle on this question is via the approach of holographic bulk reconstruction

[56, 57], which we now describe.

To motivate this approach begin by considering the usual holographic dictionary, where the

restriction of a bulk operator to the boundary defines the source for a corresponding boundary

operator

lim
r→∞

r∆φ(x) = φ0(x) (1.30)

where φ0 is the source for the dual operator of conformal dimension ∆ in the CFT . The “inverse”

of (1.30) is the fact that one can express the bulk operator as an integral over the whole boundary

of the φ0 weighted with the integration kernel K known as the bulk-to-boundary propagator,

φ(X) =

∫
∂M

ddx K(X;x)φ0(x) (1.31)

The role of K is to implement the kinematic constraint (1.30) as well as the dynamics in the form

of the bulk wave equation for φ. Equation (1.31), it should be stressed, is a statement purely

about bulk fields and their asymptotics. The relation (1.31) suggests the following CFT analogue,

wherein one can construct an operator in the CFT which is local in the bulk,

OBulk(X) =

∫
∂M

ddx K(X;x)O(x) (1.32)

where again the role of K, here called the “smearing function” is to implement the kinematic and

dynamical constraints for the bulk local operator OBulk(X). In contrast to (1.31), (1.30) is now a

statement about operators in the CFT . The operator OBulk(X) manifestly acts non-locally in

the CFT . Here then we have a relation that proxies bulk locality purely in terms of non-local

operators in the CFT . We may call OBulk a local bulk operator to the extent that it’s a quantity

which is local in the bulk, but again this is genuinely an operator in the CFT . Causality requires

that OBulk(X) commutes with O(y) for X and y spacelike seperated. This means that K, which

reconstructs OBulk(X) according to (1.32) can be chosen to be supported only on a portion of

the CFT which is the set of points spacelike seperated from X. This is the idea of global AdS

reconstruction [58].

Naturally we can consider further restrictions of K to a subregion A of the CFT . The
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Figure 13: Cartoon of AdS-Rindler wedge reconstruction. The Rindler wedge CA corresponding

to a boundary subinterval A on a constant time slice is the bulk domain of dependence of A,

whose boundary on that constant time slice is the minimal spacelike surface γA. In AdS-Rindler

reconstruction, operators localised in the pink shaded region can be reconstructed as an operator

supported entirely within A.

existence of non-existence of KA in these cases is then a statement about whether or not A

contains information about the support of OBulk(X), which leads to the idea of “subregion-

subregion” duality.

A well-established form of bulk reconstruction for boundary subregions is the AdS-Rindler

reconstruction [56, 57], which describes how to construct a local bulk operator of the form (1.32)

in the Rindler wedge CA, or bulk domain of dependence of a connected CFT subregion A, as

illustrated in figure 13. This is an explicit example of subregion-subregion duality wherein a

connected CFT subregion A contains information about CA. The ensuing encoding of bulk

non-local operators 1.32 is highly redundant due to the fact that a given bulk point lies within the

Rindler wedge of an infinite number of boundary subregions, as illustrated in figure 14 a). Naively

we would claim that reconstruction of a local bulk operator in any wedge (were it possible) gives

rise to the same operator, but this leads to issues, namely that if this were true then Schur’s

lemma forces the operator to be trivially proportional to the identity. The end result is that

a local bulk operator OBulk has a different representation in the CFT on each subregion from

which it can be constructed. The fact that local bulk operators are encoded in a highly redundant

manner in the CFT has motivated some to draw strong parrellels between this feature and the

way in which information is redundantly encoded in quantum error correcting codes.

According to the proposals of [59], bulk locality is encoded in a holographic CFT state at

the level of a sub-algebra of light bulk observables which realise an operator-algebra quantum-
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error-correcting code (QEC). The basic idea, which closely parrellels AdS-Rindler reconstruction,

is that bulk information, namely information about operators that are localised in the bulk, is

robust up to erasures of the CFT subregions. If for example we erase a CFT subregion A whose

causal wedge contains the bulk point X, then operators supported at X cannot be reconstructed

on AC . How sensetive OBulk is to erasures of the boundary depends only on how far X is into

the bulk, as illustrated in figure 14 b). Notably, because bulk locality is herein related only to

the size of the dual erasure threshold, this proposal supports the idea that one can carry out

bulk reconstruction (1.32) outside of the causal wedge, into the entanglement wedge. This latter

idea has recently seen explicit realisations [60, 61]. The QEC proposal maintains that local bulk

information is encoded as a quantum secret-sharing scheme in the boundary state, where access

to information in any particular portion of the bulk requires a sufficiently large share of the

boundary in hand, as depicted in figure 14 c). In chapters 4 and 5 we will observe that the key

features of this relation are realised in the context of holographic multiboundary wormholes.

The redundant nature of the encoding of bulk information in the QEC proposal has been

compared with gauge invariance in the CFT , suggesting that boundary gauge invariance may play

a key role in realising the emergence of locality in the radial direction [62, 63]. Remarkably it has

been recently proposed that the holographic entanglement entropy formula (1.21) can be derived

from the QEC proposals [64] which similarly highlights the role of bulk gauge transformations.

Very recently the notion of causal density matrices in quantum field theories has offered

the tantalising suggestion that the QEC proposals are more generic and far-reaching than has

previously been thought [65]. This approach may in turn shed light on holography beyond

AdS/CFT .

1.8 Outline of the Thesis

In this introduction we’ve described the AdS/CFT correspondence and outlined many of it’s

salient results. Additionally we’ve discussed non-relativistic generalisations of AdS/CFT and

also the problem of understanding the entanglement structure of holographic multiboundary

wormholes. These ideas will set a backdrop for this thesis. In chapter 2 we consider generalising

the formalism of AdS/CFT to the case of asymptotically locally Schödinger backgrounds, where

the dynamical critical exponent z < 2 boundary conditions analogous to (1.12) are motivated and

for the massive vector gravity theory, suitable asymptotic expansion for the bulk fields are found
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Figure 14: Cartoon of the QEC proposal of [59]. a) The operator O(y1) lies within the red

and blue causal wedges of the CFT subregions A and B respectively, and can be accordingly

reconstructed from CFT operators supported entirely on either subregion. As such, the encoding

of O(y1) is redundant in the CFT . b) Regions A and B are chosen so that the points y1,y2 lie

just within the tips of the causal wedges CA and CB. If we erase regions A or B we can no longer

reconstruct operators at y1,y2 respectively. Since y2 is deeper in the bulk than y1, information

about O(y2) is less sensitive to boundary erasures of a given size. c) To reconstruct the operator

O(r = 0) at the central point requires access to a share that is at least half the size of the boundary

[59], the disconnected intervals A contain the central point within it’s entanglement wedge (green),

but not inside the causal wedges of A1 and A2. This implies that one can reconstruct O(r = 0)

within the entanglement wege of A. Since |A| > |B|, information about O(r = 0) cannot be

reconstructed from B. These features furnish a quantum secret-sharing scheme.

with which we associate bulk asymptotics to corresponding sources in the boundary NRFT in

cases with different dimensions. In chapter 3 we work in the similar setting but in the qualitatively

distinct setting where z = 2. In this case the leading asymptotics include contributions from

the additional null direction. We argue that in this case the null direction should be regarded

as an internal spacefrom the boundary NRFT point of view, by analogy with the similar story

that occurs in AdS5 × S5 = SYMN=4 case, where the leading asymptotics similarly contain

contributions from the S5 directions. Here, as for the z < 2 case we establish the existence of

a good holographic dictionary in this context for the same massive vector theory in cases with

different dimensions. In chapter 4 we turn to the question of investigating the entanglement

structure of holographic multiboundary wormholes. We explore the entanglement structure in the

three-dimensional gravity case wherein we can utilise the powerful quotient formalism to construct

multi-boundary geometries. We explore the limit in which the states in each boundary are taken

to have infinitely large temperatures, the so-called high-temperature limit, where substantial

geometric simplifications occur, culminating in the result that the entanglement structure of

the dual state for multiboundary wormholes is almost exclusively bipartite in this limit. In
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chapter 5, we address the question of understanding the entanglement structure of holographic

multiboundary wormholes at generic values of the moduli by using powerful tensor network

methods to proxy the path-integral in this tractable setting. We find, surprisingly, that in many of

the cases we consider, we can construct holographic tensor network states modelling the wormhole

which are entirely, or almost entirely bipartite, suggesting that the main result of chapter 4 might

be more generic than one might have initially supposed. We comment on the fact that these

tensor network models reproduce many of the salient features of the QEC ideas.
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2 Schrödinger Holography for z < 2

The work in this chapter is reproduced from a collaborative paper [1] with Dr. Tomas Andrade, Dr.

Cindy Keeler and Prof. Simon Ross. In this work we investigated holography for asymptotically

Schrödinger spacetimes, using a frame formalism. Our dictionary is based on the anisotropic

scaling symmetry. We consider z < 2, where the holographic dictionary is cleaner; we make some

comments on z = 2, which is subsequently addressed in chapter 2. We propose a definition of

asymptotically locally Schrödinger spacetime where the leading components of the frame fields

provide suitable geometric boundary data. We show that an asymptotic expansion exists for

generic boundary data satisfying our boundary conditions for z < 2.
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2.1 Introduction

Holography for non-relativistic field theories has been actively studied for several years now. It has

the potential to offer us tools to study a broader class of field theories holographically, which may

include theories of interest for modelling condensed matter physics [42, 66, 67]. It also offers the

possibility to deepen our understanding of holographic relations between field theories and gravity.

The non-relativistic theories of interest are characterised by the existence of an anisotropic scaling

symmetry which treats the time and space directions differently, t→ λzt, x→ λx, where z is

called the dynamical exponent. There are two main cases of interest, Schrödinger and Lifshitz.

In the first case the theory has a Galilean boost symmetry; in the latter case there is no such

symmetry, so the theory has a preferred rest frame. As a result Schrödinger theories have a

conserved particle number which is not present in the Lifshitz case. The case z = 2 is special for

Schrödinger, in this case the theory has an additional special conformal symmetry. A holographic

dual for theories with Schrödinger symmetry was proposed first [42, 66], but the Lifshitz case

[67] has been more fully explored, because of its greater simplicity and close resemblance to the

well-understood AdS case.

For Lifshitz, the holographic dual has a metric

ds2 = −dt
2

r2z
+
d~x2 + dr2

r2
, (2.1)

with ds spatial directions ~x, which has an isometry t → λzt, x → λx, r → λr realizing the

anisotropic scaling symmetry. The bulk geometry has a single additional direction, r, related

to energy scale in the dual field theory. Points for which r → 0 are identified with the region in

which the boundary theory lives, although, due to the anisotropic scaling, there is no conformal

boundary properly speaking. Motivated by this, in [41] it was proposed that it is convenient to

describe the geometry in terms of frame fields in constructing the holographic dictionary, and

this dictionary was worked out in detail in [45]. This has been further developed in [68–72], and

an alternative perspective based on a deformation of AdS for z near one developed in [73, 74].

For Schrödinger, the bulk metric is

ds2 = −dt
2

r2z
+

2dtdξ + d~x2 + dr2

r2
. (2.2)

Here we have once again chosen coordinates for which the boundary corresponds to r → 0 in the
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sense explained above. The isometry t→ λzt, x→ λx, ξ → λ2−zξ r → λr realises the anisotropic

scaling symmetry, and there are isometries ~x→ ~x+ ~vt, ξ → ξ − ~v · ~x− 1
2
v2t, which realise the

Galilean boost symmetry. The presence of the additional null direction ξ can be understood in

field theory terms as arising from realizing the non-relativistic field theory with Galilean boosts as

the light cone reduction of a Lorentz-invariant theory in one higher dimension [42, 75]. For z = 2

this reduction is compatible with the anisotropic scaling symmetry. Thus, from the field theory

point of view ξ appears to play a kinematical role, as a useful device for realizing the symmetries

of a Schrödinger theory in the more familiar framework of relativistic theories; momentum in

the ξ direction can be interpreted as a conserved particle number. Its role holographically has

however remained somewhat unclear. The scaling symmetry acts non-trivially on ξ for z 6= 2, so

in this case it is only the higher-dimensional theory that is scale invariant, and it seems natural to

assume that the holographic dictionary is formulated in terms of this higher-dimensional theory.

By a coordinate transformation t→ σt, ξ → σ−1ξ, the metric (2.2) can be rewritten as

ds2 = −σ
2dt2

r2z
+

2dtdξ + d~x2 + dr2

r2
. (2.3)

and for small σ the geometry outside of some neighbourhood of r = 0 can be viewed as

a deformation of AdS. This motivated the programme of [35–38], which studies Schrödinger

holographically as the perturbation of a relativistic theory by an irrelevant vector operator,

decomposing the linearised fluctuations of bulk fields in terms of sources and vevs of operators of

given scaling dimension with respect to the relativistic scaling symmetry. This programme has

had some success, but because the deforming operator is irrelevant, the understanding can only

be perturbative in σ.

Our aim is instead to formulate a holographic dictionary based on identifying modes in

the bulk with sources and vevs of operators of definite scaling dimension with respect to the

anisotropic scaling symmetry, by applying the insights gained from the study of the Lifshitz case.

Focusing on this non-relativistic perspective will allow us to treat the problem non-perturbatively.

We formulate the dictionary in terms of frame fields. Such a formulation was attempted in [76]

for z = 2, where an appropriate choice of frame fields and boundary conditions was identified,

but difficulties were encountered in solving the equations of motion in an asymptotic expansion

for general boundary conditions. One of our key insights is that it is easier to treat the case

z < 2, where the derivatives with respect to the boundary coordinates all come with powers of r,
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so dependence on these coordinates is negligible at leading order, and can be incorporated by

adding appropriate subleading corrections to bulk fields.

The difference between z < 2 and z = 2 can be illustrated by considering a scalar field

on a fixed Schrodinger background. The massive scalar wave equation �φ −m2φ = 0 in the

background (2.2) is

r2∂2
rφ− (ds + 1)r∂rφ+ r2(2∂t∂ξφ+ ∂2

~xφ) + r4−2z∂2
ξφ−m2φ = 0. (2.4)

For z < 2, all of the derivatives along the boundary are suppressed at small r, appearing as

rz∂t, r
2−z∂ξ and r∂~x, and the asymptotic radial falloff of the bulk solution is independent of the

dependence on t, ξ, ~x. Thus we can solve the equation in a power series in r, allowing the leading

term in the series to have an arbitrary dependence on t, ξ, ~x, and adding subleading corrections

depending on derivatives of the leading term. For z = 2 by contrast, the ∂ξ derivatives are not

suppressed, and dependence on ξ cannot be treated in this way.

Physically, this difference in the asymptotic expansion is due to a difference in the holographic

dictionary. For z < 2, φ (with the usual boundary conditions) is holographically dual to a local

operator O of dimension ∆ = 1
2
(ds + 2) +

√
1
4
(ds + 2)2 +m2 (with respect to the anisotropic

scaling symmetry) which lives in a space parametrised by t, ξ, ~x.5 For z = 2 by contrast, it is

natural to decompose φ into Fourier modes, φ =
∑

kξ
φkξ(r, t, ~x)eikξξ, and identify each mode φkξ

with a dual operator Okξ of dimension ∆ = 1
2
(ds + 2) +

√
1
4
(ds + 2)2 +m2 + k2

ξ , living in a space

parametrised by t, ~x. In this z = 2 case, the correlation functions of Okξ are constrained by the

scaling symmetry.6

This distinction between z < 2 Schrödinger and z = 2 Schrödinger is analogous to the

distinction between Lifshitz and the AdS2 × Rd geometry, which is the z →∞ limit of Lifshitz.

For Lifshitz we think of the spatial directions as part of the space the field theory lives in, but

for AdS2 × Rd the Rd directions are internal directions which are not affected by the scaling

symmetry, and we think of the dual as a quantum mechanics living just in the time direction,

with operators O~k labelled by the momentum in the Rd directions.

5Also, for z < 2 the anisotropic scaling symmetry acts non-trivially on the ξ direction, so we have a scaling
invariance only in this higher dimensional theory. If we restricted to the sector of a given momentum kξ, non-zero
kξ will break the scaling symmetry of expressions in the t, ~x space. So for instance the form of correlation functions
in t, ~x is not constrained by the symmetry.

6It is also interesting to note that once we restrict to a sector of fixed kξ, the scalar wave equation has a
non-relativistic structure; the equation is first order in time derivatives.
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Thus, if we take the anisotropic scaling symmetry and the corresponding frame decomposition

as the central elements in formulating the holographic dictionary, it is easier to work out the

correspondence for z < 2, where the dual theory naturally lives in all the t, ξ, ~x directions. The

heart of our discussion will be a detailed treatment of 1 < z < 2 in the context of a massive vector

theory, showing that it is possible to formulate the holographic dictionary in a familiar fashion,

solving the equations of motion for given boundary data depending on t, ξ, ~x in an asymptotic

expansion in powers of r, and constructing a well-behaved action by adding local boundary

counterterms to the bulk action. As in the discussion of Lifshitz, the leading terms in the frame

fields in the bulk will be interpreted as sources for the stress energy complex in the field theory.

Although we do not consider z < 1 in this chapter, we expect that our definitions and frame

analysis can be equally well applied in that case. For the other end of our range, z = 2, our

procedure will need modification. For z = 2 we would want instead to formulate a dictionary in

terms of a non-relativistic theory living in the t, ~x directions, where the different Fourier modes

of the bulk fields are each thought of as corresponding to an operator in this field theory with

kξ-dependent scaling dimension, as discussed above for a scalar field. The ξ direction is at least

asymptotically null, so we cannot decompose the metric in a standard Kaluza-Klein reduction.

However, in our holographic context it is more natural for us to think in terms of the frame

fields, which are one-forms, which we can simply decompose into the component along dξ and

the components along the remaining boundary directions. In this z = 2 case, the zero-modes

in the leading terms in the frame fields in the bulk will be interpreted as sources for the stress

energy complex in the non-relativistic field theory living in the t, ~x directions. In addition, for

z = 2 there are potential logarithmic terms in the asymptotic expansion which need to be treated

carefully. We therefore leave a detailed study of z = 2 until the next chapter.

We start in the next section by reviewing the Schrödinger solution in a little more detail,

introducing the massive vector theory we will work in for the remainder of this chapter (although it

should be easy to extend these ideas to alternative realizations of Schrödinger such as topologically

massive gravity). We introduce our frame decomposition of the metric following [76] and discuss

how the frame rotation symmetry can be partially fixed by relating the frame fields to the massive

vector. We then define our asymptotically locally Schrödinger boundary conditions in terms

of these frame fields. In section 2.3, we review the structure of the stress energy complex for

non-relativistic theories, and discuss the description in the higher-dimensional theory including

the ξ direction. In section 2.4 we give a linearised analysis around the Schrödinger solution for
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z < 2, and identify the linearised modes with sources and vevs for the stress energy complex and

matter operator. In section 2.5, we discuss the asymptotic expansion for z < 2, and show that a

solution can be obtained in an expansion in powers of r,7 and that all divergences in the action

can be eliminated by adding boundary counterterms which are local functions of the boundary

data.

2.2 Asymptotically locally Schrödinger boundary conditions

We consider the metric (2.2) as a solution of the theory with a massive vector introduced in [42].

The action is

S = − 1

16πG

∫
dds+3x

√−g
(
R− 2Λ− 1

4
FµνF

µν − 1

2
m2AµA

µ

)
− 1

8πG

∫
dds+2ξ

√−γK, (2.5)

where γ is the induced metric on the boundary and K is the trace of the extrinsic curvature, with

m2 = z(z + ds), Λ = −(ds + 2)(ds + 1)

2
. (2.6)

The equations of motion that follow are

Rµν −
1

2
Rgµν + Λgµν =

1

2

(
Fα

µFαν −
1

4
F 2gµν

)
+
m2

2

(
AµAν −

1

2
A2gµν

)
(2.7)

∇µF
µν = m2Aν (2.8)

The metric (2.2) is a solution of (2.7), (2.8) supported by the matter field

A = αr−zdt, α =

√
2(z − 1)

z
. (2.9)

The massive vector field Aµ physically singles out the t direction as special.

We want to define a class of asymptotically locally Schrödinger spacetimes which asymptoti-

cally approach (2.2) locally as r → 0. Inspired by the analysis in the Lifshitz case, it is natural to

do so by introducing an appropriate set of frame fields. We will adopt the frame decomposition

7In our analysis, this is traded for an expansion in eigenvalues of a suitable dilatation operator, but the existence
of a dilatation expansion implies the existence of an expansion in powers of r, since each term in the dilatation
expansion has an expansion in positive powers of r.
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proposed in [76] ,

ds2 = gABe
AeB = −e+e+ + 2e+e− + eIeI + erer, (2.10)

for some frame fields eA, A = +,−, I, r. We will always adopt the radial gauge choice er = r−1dr.

In the background (2.2) e+ = r−zdt, e− = rz−2dξ, eI = r−1dxi, so each of the frame fields has a

well-defined scaling with r at large r.8 Note the main novelty compared to more familiar cases is

that to achieve this simple form for the individual frame fields, we take the frame metric gAB to

have off-diagonal components.

The decomposition of the metric does not fix the choice of frame fields uniquely; it is invariant

under transformations which preserve the metric gAB, so we have the freedom to redefine the eA

infinitesimally by

e+ → e+ + αIeI , e− → e− + βIeI , eI → eI − βIe+ + αI(e+ − e−) (2.11)

and

e+ → e+ + γe+, e− → e− + γ(e+ − e−). (2.12)

The decomposition is also invariant under rotations among the spatial frame fields eI . We could

leave this symmetry unfixed in the spirit of the treatment of the Lifshitz case in [71, 72], but we

prefer to relate the distinguished frame fields to physical quantities, fixing this symmetry as much

as possible. This will simplify the task of identifying the sources for the operators in the stress

energy complex.

In our massive vector theory, the symmetries (2.11,2.12) will be restricted by assuming a form

for the massive vector field. We can first restrict (2.11) by assuming A has no eI component, so

A = A+e
+ + A−e

− + Are
r. (2.13)

The transformations which preserve this are those with A+α
I + A−βI = 0, together with the

rotations of the spatial frame fields. The action of (2.12) is

A+ → A+ + γ(A+ + A−), A− → A− − γA−. (2.14)

Since the frame field e+ is a null vector, it doesn’t have a fixed length. The symmetry (2.12)

8Note that for this flat background, the frame index I and the coordinate index i are equivalent.
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rescales it; we can therefore use this flexibility to fix the value of the projection of A along e+. A

convenient choice is to set A+ = α, its background value.

Thus we choose

A = α(e+ + ψe− + sre
r), (2.15)

where α is the constant background value in (2.9), and ψ is the single scalar degee of freedom

in the boundary conditions for the matter field, and we’ve taken an overall factor of α out for

convenience. We will find that the operator dual to ψ is irrelevant, so we always set the source

part to zero.

Given any solution of the massive vector theory, we can write the metric and vector field as

in (2.10,2.15). The physical degrees of freedom are then the frame fields eA and the scalar ψ. As

in Lifshitz, a part of the degrees of freedom in the massive vector field has been assigned to the

frame fields, to make physical some of the components that would have been pure gauge. Unlike

in Lifshitz, this does not make all of the components of e+, e− physical. The remaining gauge

symmetry is

e+ → e+ − ψβIeI , e− → e− + βIeI , eI → eI − βIe+ − ψβI(e+ − e−), (2.16)

together with the rotations of the spatial frame fields eI .

We then say that a spacetime is asymptotically locally Schrödinger if the metric and massive

vector can be written as in (2.10,2.15) with

e+ = r−z ê+, e− = rz−2ê−, eI = r−1êI , (2.17)

and the scalar ψ = r∆−ψ̂ for some exponent ∆−,9 where the fields êA, ψ̂ are arbitrary functions

of t, ξ, ~x, r with finite limits as r → 0. The boundary limits of the êA (which with characteristic

abuse of notation we will sometimes refer to simply as êA) define the boundary geometry for

our asymptotically locally Schrödinger spacetime (while the scalar ψ̂ is the source for a scalar

operator in the dual field theory).

9This leading asymptotic falloff of the scalar will be determined later by the linearised analysis, where for
ds = 2 we find that ∆− = 2− 2z, corresponding to a scalar operator of dimension 2z + 2 in the dual field theory.
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2.3 Stress energy complex and dimensional reduction

We want to view this data as describing the geometry our field theory lives in, so it should

provide sources for the stress energy complex. Let us therefore review the structure of this in a

non-relativistic theory. Any non-relativistic theory, Lifshitz or Schrödinger, will have an energy

density E and an energy flux E i, satisfying the conservation equation (in a flat boundary space)

∂tE + ∂iE i = 0, (2.18)

along with a momentum density Pi and a spatial stress tensor Πij satisfying the conservation

equation

∂tPi + ∂jΠ
j
i = 0. (2.19)

The Schrodinger theory additionally has a conserved particle number, so there is a particle number

density ρ and a particle number flux ρi satisfying

∂tρ+ ∂iρ
i = 0. (2.20)

The scale invariance implies zE + Πi
i + (2− z)ρ = 0; the additional term for z 6= 2 is associated

with the breaking of the scaling symmetry by non-zero particle number. E has dimension z + ds,

which implies E i has dimension 2z + ds − 1, and Pi has dimension 1 + ds, which implies Πij

has dimension z + ds. The particle number has dimension 2− z, so its density ρ has dimension

2− z + ds, so ρi has dimension 1 + ds. In fact, in a non-relativistic theory ρi = Pi = ρvi, where vi

is the local velocity of the particles, so these are not independent operators.

In the Lifshitz story the stress energy complex was realised directly in the holographic dual,

but in Schrodinger the non-relativistic field theory is constructed as the reduction of a one higher

dimensional field theory over a null circle labelled by the coordinate ξ. For z < 2, it is the

higher-dimensional quantities that we expect to appear in our holographic dictionary. In [77],

non-relativistic quantities were obtained by dimensional reduction from the stress tensor of a

relativistic theory. In the present chapter, we work in a frame formalism adapted to the anisotropic

scaling symmetry, so the description in the higher-dimensional theory is still not relativistic; in

particular different components have different scaling dimensions even in the higher-dimensional

description.

In the higher-dimensional theory for z < 2, we expect to have an energy current whose sources

40



are in the frame field ê+, a ξ-momentum current which is physically identified with particle

number whose sources are in ê−, and spatial momentum currents whose sources are in êI . The

energy current consists of an energy density E, an energy flux Ei in the spatial directions, and

an energy flux Eξ in the null direction. The conservation equation is

∂tE + ∂iE
i + ∂ξE

ξ = 0. (2.21)

The relation between these ds + 2 dimensional operators and the above ds + 1 dimensional theory

is that the densities in the ds + 1 dimensional theory are the integral of the higher-dimensional

densities over the ξ circle, so E =
∮
dξE etc. Thus E has dimension ds + 2, so that integrating

over dξ (which has dimension z − 2) gives E dimension z + ds. This can also be understood

directly in the higher-dimensional theory; the densities in this theory are per unit volume in ~x

and ξ. The volume element dξ ddsx has dimension z − 2− ds, so E has dimension ds + 2 so the

total energy obtained by integrating over the volume element has dimension z. The spacetime

volume element in ds + 2 dimensions has length dimension ds + 2 with respect to the anisotropic

scaling, so this is the dimension of a marginal operator. The conservation equation implies Ei

has dimension z + ds + 1 and Eξ has dimension 2z + ds, as ∂ξ has dimension 2− z.

The spatial momentum currents similarly consist of the spatial momentum density Pi, a stress

tensor Tij in the spatial directions, and a stress T ξi in the ξ direction, satisfying the conservation

equation

∂tPi + ∂jT
j
i + ∂ξT

ξ
i = 0. (2.22)

Pi has dimension 3− z + ds, so that the total momentum has dimension 1, and the integral over

ξ gives Pi =
∮
dξPi dimension ds + 1 as expected in a non-relativistic theory. The conservation

equation then implies that Tij has dimension ds + 2 and T ξi has dimension z + ds + 1.

Finally, the ξ-momentum current consists of the momentum density Pξ in the ξ direction,

which will be identified with particle number density. This density comes with a particle number

flux P i
ξ in the spatial directions and P ξ

ξ in the ξ direction, satisfying

∂tPξ + ∂jP
j
ξ + ∂ξP

ξ
ξ = 0. (2.23)

Pξ has dimension 4 − 2z + ds, implying P i
ξ has dimension 3 − z + ds and P ξ

ξ has dimension

ds + 2.As noted earlier, P i
ξ = Pi, and Tij is a symmetric tensor. The Ward identity from the
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scaling symmetry is zE + T ii + (2− z)P ξ
ξ = 0.10

Apart from these Ward identities the components of the stress complex are independent;

note in particular that T ξi and P i
ξ have different dimensions, so the stresses in the spatial and ξ

directions cannot be combined into a symmetric tensor. Note that Eξ, Ei and T ξi are irrelevant

operators.

For z < 2, our holographic dictionary will naturally be formulated in terms of this ds + 2

dimensional field theory, and the frame fields êA provide sources for the corresponding currents,

which can be arbitrary functions of t, ξ, ~x. We can view these currents as the components of the

non-symmetric tensor

TαB =
1√−γ

δ

δeBα
S. (2.24)

The residual gauge symmetry (2.16) corresponds to the fact that there are not independent

physical sources for Pi, P
i
ξ , while the symmetry under rotations of the êI corresponds to Tij being

a symmetric tensor.

As in the Lifshitz case, there are irrelevant operators in the stress energy complex, and we

would expect to need to set their sources to zero. For generic sources, there is no diffeomorphism-

invariant part in the source for T ξi , as we can always make a ξ-dependent redefinition of the xi

coordinates to set the dξ components in eI to zero.11 Therefore the only diffeomorphism-invariant

sources for irrelevant operators are in e+, and we can set these to zero by adopting the irrotational

condition

ê+ ∧ dê+ = 0. (2.25)

As in Lifshitz, this can be viewed as a condition that the boundary geometry defined by the êA

admits a foliation by surfaces of absolute time, as is appropriate for a non-relativistic theory.

As in Lifsihtz we will find that there is a range of values of z for which solutions exist in an

asymptotic expansion even if we do not impose this condition. Since the energy flux Ei is

irrelevant for all z > 1, one might expect that we would always need to set its source to zero.

But the diffeomorphism symmetry implies that only derivatives of this source actually appear, so

there is a range of values for which the asymptotic expansion exists even in the presence of this

source, as in Lifshitz. Here the relevant range is z < 3/2.

10The Ward identities (2.18,2.19,2.20) and zE + Πi
i + (2− z)ρ = 0 are obtained by taking the above identities

and integrating over the ξ circle.
11The zero-mode of the source of T ξi along the ξ direction is diffeomorphism-invariant, so in the discussion of

z = 2 we will have to explicitly set this to zero.
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For z = 2, the story is different. We argued in the introduction that because the anisotropic

scaling symmetry doesn’t act on ξ and the asymptotic falloffs of bulk modes of different kξ are

different, the appropriate holographic dictionary is now in terms of a theory that lives in ds + 1

dimensions, with modes of different kξ identified with distinct operators in this theory, whose

scaling dimensions may be kξ dependent. Thus, to identify the boundary data êA, ψ as sources

for the dual operators, we should expand them in Fourier modes in ξ. For the frame fields, we

should also decompose them as

êA = êAa dx
a + êAξ dξ, (2.26)

where a runs over t, xi. For the zero modes, where êA is independent of ξ, this decomposition is

the analogue in our frame language of the Kaluza-Klein decomposition of the metric and massive

vector field. With respect to the ξ-independent diffeomorphisms acting in the lower-dimensional

boundary coordinates, eAa will transform as a one-form and eAξ will transform as a scalar.

As noted above, the operators in the stress complex in the ds + 1 dimensional non-relativistic

theory are obtained by integrating the higher-dimensional densities over the ξ circle, E =
∮
dξE

etc. That is, they are the zero modes of the higher-dimensional fields along this circle direction.

The sources for these operators are thus the ξ-independent part of the sources êAa . The conservation

equations (2.18 - 2.20) are obtained by integrating (2.21 - 2.23) over the ξ circle; the last terms in

the latter equations will drop out on doing the integral as they are a total derivative. Thus, for

z = 2, we could obtain correlation functions of the non-relativistic stress energy complex just by

considering appropriate ξ-independent sources êAa . We can also consider ξ-independent sources

êAξ , which are interpreted for z = 2 as providing sources for some particular scalar operators.12

2.4 Linearised analysis for z < 2

We now turn to a linearised analysis of the equations of motion (2.7,2.8) for z < 2. We will

see that this analysis confirms that the limits as r → 0 of the rescaled frame fields êAα can be

interpreted as the sources corresponding to the stress energy complex TαB, in that the modes

canonically conjugate to the sources in the symplectic flux satisfy the expected Ward identities

as a consequence of the linearised equations in the bulk. We will identify ψ as the bulk dual of

an operator of dimension 2z + 2 when ds = 2. We will see that the equations can be solved in a

power series in r in the asymptotic region, where the subleading terms are determined locally in

12The situation is similar to the Lifshitz theories obtained by dimensional reduction in [70].
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terms of the sources.

We will consider the case ds = 2, which is physically the most interesting (the results for other

values of ds will be similar in structure) and ds = 0, which is a special case and was previously

analysed in [36], so discussing this case will be useful for comparison purposes.

The linearised version of our frame fields is

ê+ = (1 + δê+
t )dt+ δê+

ξ dξ + δê+
i dx

i, (2.27)

ê− = (1 + δê−ξ )dξ + δê−t dt+ δê−i dx
i, (2.28)

êI = (δIj + δêIj )dx
j + δêItdt+ δêIξdξ. (2.29)

The linearised fields are then δêAα and the ψ, sr in (2.15). The constant modes in δêAα are assumed

to represent sources for the corresponding components of TαA.

The linearised version of the residual gauge symmetry (2.16) is δê−i → δê−i + β̂i, δêIt → δêIt− β̂i

(where βI = rz−1β̂i). This implies that the sources for T+
I = Pi and T I ξ = P i

ξ are not independent,

as expected. The rotation symmetry of the eI also implies that only the symmetric part of δeIj

provide independent sources. The equations of motion are easier to discuss in the metric language,

so we will resolve this gauge symmetry by passing back from the frame fields to the metric and

vector for this linearised analysis.

In the metric language, the linearised perturbations are hµν , aµ. The linearised equations in

the metric language are as in [41]13

∇µf
µν −∇µ(hµλF ν

λ )−∇µh
βνF µ

β +
1

2
∇λhF

λν = m2aν (2.30)

and

R(1)
µν =

2

d− 2
Λhµν +

1

2
fµλF

λ
ν +

1

2
fνλF

λ
µ −

1

2
FµλFνσh

λσ − 1

2(d− 2)
fλρF

λρgµν

+
1

2(d− 2)
FλρF

ρ
σ h

λσgµν −
1

4(d− 2)
FλρF

λρhµν +
1

2
m2aµAν +

1

2
m2aνAµ, (2.31)

13Note that hµν denotes the perturbation of the metric, and indices are raised and lowered with the background
metric, so hµν is the perturbation of the metric with the indices raised, not the perturbation of the inverse metric.
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where d = ds + 3 is the dimension of the spacetime, fµν = ∂µaν − ∂νaµ and

R(1)
µν =

1

2
gλσ[∇λ∇µhνσ +∇λ∇νhµσ −∇µ∇νhλσ −∇λ∇σhµν ]. (2.32)

It is convenient to write

htt = r−2zHtt, htξ = r−2Htξ, hξξ = r2(z−2)Hξξ, (2.33)

hti = r−(z+1)Hti hξi = rz−3Hξi, hij = r−2Hij, (2.34)

ar = αr−1sr at = αr−zst aξ = αrz−2sξ ai = αr−1si. (2.35)

Then, a given linearised mode will contribute at the same order in r in all the different fields, and

the power of r will correspond to the scaling dimension of the mode. The sr here is the same as

in (2.15), and the other fields are related to the linearised frame fields by

Htt = −2δê+
t + 2r2z−2δê−t , Htξ = −r2−2zδê+

ξ + δê−ξ + δê+
t , Hξξ = 2r2−2zδê+

ξ , (2.36)

Hti = −r1−zδê+
i + rz−1δê−i + rz−1δêIt , Hξi = r1−zδê+

i + r1−zδêIξ , Hij = δêIj + δêJi , (2.37)

st = δê+
t , sξ = r2−2zδê+

ξ + ψ, si = r1−zδê+
i . (2.38)

Note that in the expansion about a flat background the I and i indices are equivalent at leading

order, so in these equations, δêIα should be understood as δêIαδIi.

2.4.1 Linearised solutions for ds = 2

Let us now study the equations for ds = 2. Our interest is in understanding the identification of

the solutions of the linearised equations with sources and vevs for the dual operators. We identify

the sources with the leading constant parts of the linearised frame fields δêA, which appear in the

linearised fields in the frame language as set out in (2.36 - 2.38). Since we have not yet carried

out a holographic renormalization procedure, the vevs will also have divergent contributions from

the source modes, but we are interested in identifying the relation between the bulk solutions

which are not locally determined by the sources and the finite part of the vevs. In many cases, we

can identify the mode corresponding to the vev by its conformal dimension alone, but in general

we follow [78] and identify the vev as the linearised solution which is canonically conjugate to the
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source with respect to the symplectic inner product defined by calculating the symplectic flux.

Since dependence on the boundary directions introduces only subleading terms for z < 2, we

can first understand this identification by considering constant modes, which are independent of

the boundary directions. We then discuss briefly the linearised equations for non-constant modes

and check that the solutions we are identifying with the vevs do indeed satisfy appropriate Ward

identities as a result of the asymptotic equations of motion in the non-constant cases.

When the fields are independent of spatial coordinates xi, the rotation symmetry in these

directions will be unbroken, so we can decompose the linearised fields into a tensor, vector and

scalar part with respect to this linearised symmetry. Below we will treat these tensor, vector

and scalar modes first, initially for constant modes and then including dependence on t, ξ. To

make this decomposition we should further decompose Hij into a trace and a trace free part,

Hij = kδij + H̄ij, where H̄ i
i = 0. The tensor mode is H̄ij. The vector modes are Hti, Hξi and si.

The scalar modes are Htt, Htξ, Hξξ, k, st, sξ and sr (which is determined algebraically in terms of

the other modes). We will always assume the t, ξ dependence is harmonic, eiωt+ikξξ, so in writing

equations we will make the replacements ∂t → iω, ∂ξ → ikξ.

When we include dependence on the xi, there is a different decomposition, which splits the

modes into scalars (which now include scalar-derived vectors and tensors) and vectors (including

vector-derived tensors). We set up the equations for this general case in section 2.4.1.4, and

comment on the Ward identities.

2.4.1.1 Tensor modes

The tensor equation of motion is

r2H̄ ′′ij − 3rH̄ ′ij − (k2
ξr

2(2−z) + 2kξωr
2)H̄ij = 0. (2.39)

The solution for ω = kξ = 0 is

H̄ij = H̄
(0)
ij + H̄

(4)
ij r

4, (2.40)

corresponding to the source and vev for the trace free part of the spatial stress tensor Tij. For

general (kξ, ω), we will have an infinite series of subleading corrections which involve boundary

derivatives of these leading terms. As the equation of motion only involves the combinations kξω

46



and k2
ξ , the solution can be written as

H̄ij =
∑
m,n≥0

aij(m,n)(kξωr
2)2m(kξr

2−z)2n + k2
ξω

2r4 log r2
∑
m,n≥0

bij(m,n)(kξωr
2)2m(kξr

2−z)2n. (2.41)

We can take aij(0,0) = H̄
(0)
ij and aij(2,0) = H̄

(4)
ij as the independent coefficients. The expansion

includes log terms because a subleading term determined by H̄
(0)
ij and the independent term H̄

(4)
ij

occur at the same power of r. The subleading terms in the expansion are all determined in terms

of H̄
(0)
ij and H̄

(4)
ij by solving (2.39) in a power series in kξ, ω. The explicit factors of kξ, ω in

(2.41) imply that there will be no factors of kξ, ω in the equations for the aij(m,n), bij(m,n), so the

subleading terms are determined locally in the boundary directions. They are solutions of ODEs

in the radial direction.

2.4.1.2 Vector modes

The vector equations of motion are

r2s′′i − 3rs′i − [(z − 1)(z + 3) + k2
ξr

4−2z + 2kξωr
2]si + zrH ′ξi + z(z − 1)Hξi = 0, (2.42)

kξ[r(H
′
ξi +H ′ti) + (z − 1)(Hξi −Hti − 2si)] + ωr2z−2[rH ′ξi + (z − 1)Hξi] = 0, (2.43)

r2H ′′ξi + (2z − 5)rH ′ξi + [(z − 1)(z − 5)− r2kξω]Hξi + k2
ξr

4−2zHti = 0, (2.44)

and

r2H ′′ti − r(2z + 1)H ′ti + [(z − 1)(z + 3)− k2
ξr

4−2z − r2kξω]Hti

+ 2(z − 1)[(z + 3)si − (z − 1)Hξi − r(si +Hξi)
′] + (r2kξω + r2zω2)Hξi = 0. (2.45)

For kξ = ω = 0, (2.43) is trivially satisfied, and we solve (2.42,2.44,3.37). For general kξ, ω, we

solve (2.42,2.43,2.44), which imply (2.45).

For kξ = ω = 0, the solution for the vector modes can be written as

Hξi = (s
(−)
i +H

(−)
ξi )r1−z +H

(+)
ξi r

5−z, (2.46)

Hti = −s(−)
i r1−z +H

(−)
ti rz−1 +H

(+)
ti rz+3 +

(z − 4)

2(3− z)
H

(+)
ξi r

5−z, (2.47)

si = s
(−)
i r1−z +

z

2(z − 1)
H

(+)
ξi r

5−z + s
(+)
i rz+3. (2.48)
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We have chosen to define and normalise the independent modes so that the solutions with a (−)

superscript correspond to the sources, coming from the constant modes in the frame fields. From

(2.38), we see that s
(−)
i corresponds to the constant part in δê+

i , the source term for the energy

flux Ei. From (2.37), H
(−)
ξi is then the constant part of δêIξ , the source term for the stress T ξi , and

H
(−)
ti is the source term for the momentum density Pi. The modes with a (+) superscript should

then correspond to the vevs of these operators. By dimensions alone we see that 〈Pi〉 ∼ H
(+)
ξi .

The vevs 〈Ei〉 and 〈T ξi 〉 should be related to H
(+)
ti and s

(+)
i .

We can work out the identification by computing the symplectic flux at the boundary

r = 0, and identifying the modes canonically conjugate to the sources with the vevs, following

[78]. Generically, the symplectic flux will have divergent contributions involving just the source

modes, corresponding to the divergences in the vevs which need to be removed by holographic

renormalization, but we focus on constant perturbations for which the result is finite, enabling us

to relate the (+) modes to the finite part of the vevs. The appropriate symplectic current for the

Einstein-massive vector theory we are considering was worked out in [79]. It involves combining

the usual gravitational symplectic current jµg with an additional component jµa ,

jµ = jµg + jµa . (2.49)

These are respectively given by

jµg = P µναβγδ(h∗2αβ∇νh1γδ − h1αβ∇νh
∗
2γδ), (2.50)

jµa = a∗2ν(f
µν
1 − hµλ1 F ν

λ − hβν1 F µ
β +

1

2
h1F

µν)− (1↔ 2), (2.51)

where

P µναβγδ =
1

2
(gµνgγ(αgβ)δ + gµ(γgδ)νgαβ + gµ(αgβ)νgγδ − gµνgαβgγδ − gµ(γgδ)(αgβ)ν − gµ(αgβ)(γgδ)ν),

(2.52)

indices in parentheses are symmetrized, and ∗ indicates complex conjugation.

Given the current found from two linearised solutions, the symplectic flux through the

boundary, F , is defined as the pullback of the current to the surface r = 0. As usual, this is

defined by evaluating the pullback at some cutoff surface r = rε and taking the limit rε → 0, so
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we write

F = lim
rε→0

i

2

∫
r=rε

ddsxdξ
√
γnµjµ, (2.53)

where nµ the unit outward-pointing normal to the boundary. The overall factor of i/2 is purely

conventional.

As mentioned above, for constant perturbations the flux turns out to be finite. In the vector

sector we find

F = −i
∫
r=0

ddsxdξ

[
H

(−)
ξi ∧ (2H

(+)
ti − (z − 1)s

(+)
i ) + 2H

(−)
ti ∧H(+)

ξi

+ s
(−)
i ∧ (2H

(+)
ti +

(z − 1)(z + 2)

z
s

(+)
i )

]
, (2.54)

where A∧B = A1B2−A2B1, where 1, 2 label the two linearised solutions which define the current.

This enables us to identify, up to an overall normalization which we neglect for simplicity,

〈Pi〉 = 2H
(+)
ξi , 〈T ξi 〉 = 2H

(+)
ti − (z − 1)s

(+)
i , 〈Ei〉 = 2H

(+)
ti +

(z − 1)(z + 2)

z
s

(+)
i . (2.55)

For non-zero kξ, ω, the solutions of the linearised equations of motion can be given in a power

series expansion; since the equations involve only kξω and k2
ξ , this will be of the same form as in

(2.41). The interesting new feature here is that because of the different structure of the equations

(we now need to solve (2.43)), there is a reduction in the number of independent mode solutions.

Solving (2.43) at leading order implies a relation among the coefficients,

kξ[2H
(+)
ti − (z − 1)s

(+)
i ] + 2ωH

(+)
ξi = 0, (2.56)

which corresponds to the Ward identity

∂tPi + ∂ξT
ξ
i = 0, (2.57)

confirming our identification of the linearised solutions with the vevs.
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2.4.1.3 Scalar modes

We consider now the scalar modes Htt, Htξ, Hξξ, k, sr, st, sξ. They are governed by the equations

0 =

(
kξz

2
+ ωzr2z−2

)
Hξξ − kξzk + (z − 2)

(
kξ + ωr2z−2

)
sξ + kξrs

′
t − kξzst

+ (kξ + ωr2z−2)rs′ξ − i
(
k2
ξr

2−z + 2kξωr
z + z(z + 2)rz−2

)
sr, (2.58)

0 = − 1

2
r(z + 2)H ′ξξ +

(
1

2
ω2r2z − z2 + z

)
Hξξ − 3rH ′tξ − r2kξωHtξ +

1

2
k2
ξHttr

4−2z

− 3rk′ −
(
k2
ξr

4−2z + 2kξωr
2
)
k + (z − 1)[rs′ξ + 2zsξ − ikξr2−zsr], (2.59)

0 =
ω

2
rH ′ξξ +

(
1

2
kξ(z − 1)r2−2z +

3

2
ω(z − 1)

)
Hξξ +

(
ω

2
− 1

2
kξr

2−2z

)
rH ′tξ

− 1

2
kξr

2−2zrH ′tt + ωrk′ + (z − 1)r2−2zkξ[Htt − k + st]

− ω(z − 1)sξ − i
(
z2 + z − 2

)
r−zsr, (2.60)

0 = − 1

2
ωr2z−2rH ′ξξ − (z − 1)

(
ωr2z−2 +

kξ
2

)
Hξξ +

1

2
kξrH

′
tξ + kξrk

′, (2.61)

0 =
1

2
r2H ′′ξξ + r2H ′′tξ +

1

2
r2H ′′tt + r2k′′ + r

(
z − 5

2

)
H ′ξξ + 2

(
z2 − 3z + 2

)
Hξξ

− (z + 2)rH ′tξ +
1

2
(1− 4z)rH ′tt + 2

(
z2 − 1

)
Htt + (z − 4)rk′

−
(
k2
ξr

4−2z + 2kξωr
2 + ω2r2z

)
k − 2(z − 1)rs′t + 4

(
z2 − 1

)
st

+ (1− z)rs′ξ + 4(z − 1)sξ + i(z − 1)
(
kξr

2−z + 2ωrz
)
sr, (2.62)

0 = r2H ′′ξξ + (4z − 7)rH ′ξξ + 4
(
z2 − 4z + 3

)
Hξξ − 2k2

ξr
4−2zk, (2.63)

0 = r2H ′′ξξ + 2r2H ′′tξ + r2k′′ +
(
ω2r2z − 4z + 4

)
Hξξ − 6rH ′tξ + k2

ξr
4−2zHtt

+ (z − 4)rH ′ξξ − 3rk′ −
(
k2
ξr

4−2z + 2kξωr
2
)
k

− 2kξωr
2Htξ + 2(z − 1)[ikξr

2−zsr − rs′ξ + 4sξ]. (2.64)
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In addition, we have equations

0 = r2s′′ξ + 2(z − 1)zHξξ + k2
ξr

4−2zst + (2z − 5)rs′ξ + zrH ′ξξ

−
(
kξωr

2 + 8z − 8
)
sξ + ikξr

2−z(2sr − rs′r), (2.65)

0 = r2s′′ξ + r2s′′t − kξωr2st +
(
ω2r2z − 2z2 − 2z + 4

)
sξ − 3rs′ξ − (2z + 1)rs′t

+
1

2
zrH ′ξξ − zrk′ + 2i

(
kξzr

2−z + ωrz
)
sr − i

(
kξr

2−z + ωrz
)
rs′r, (2.66)

0 =
1

2
r2H ′′ξξ +

1

2
r2H ′′tξ + r2k′′ +

3

2
(z − 2)rH ′ξξ + 2

(
z2 − 3z + 2

)
Hξξ+

− 3

2
rH ′tξ − 3rk′ −

(
k2
ξr

4−2z + kξωr
2
)
k. (2.67)

For constant modes, (2.58,2.60,2.61) are automatically satisfied if sr = 0, and (2.65,2.66,2.67)

are non-trivial equations. For general kξ, ω, we solve (2.58-2.64), which imply (2.65,2.66,2.67).

The solution for constant modes is

sr = 0, (2.68)

Htt =
(3z − 2)s

(−)
ξ

6z
r2−2z − 2s

(0)
t + 2r2z−2H

(−)
tt + r2z+2H

(+)
tt

+
(6− 5z)H

(+)
ξξ

4(z − 3)(z − 2)
r6−2z +

(6k(4)(z − 4) + 5s
(4)
ξ (z − 1)(z + 2))

6(z − 3)
r4, (2.69)

Htξ = − (H
(−)
ξξ +

2

3
s

(−)
ξ )r2−2z + s

(0)
t +H

(0)
tξ −

1

2
H

(+)
ξξ r

6−2z +

(
(z − 1)(z + 2)

6
s

(4)
ξ − k(4)

)
r4,

(2.70)

Hξξ = 2H
(−)
ξξ r

2−2z +H
(+)
ξξ r

6−2z, (2.71)

k =
1

3
s

(−)
ξ r2−2z + 2k(0) +

1

2(3− z)
H

(+)
ξξ r

6−2z + k(4)r4, (2.72)

sξ = (H
(−)
ξξ + s

(−)
ξ )r2−2z + s

(4)
ξ r4 +

z

2(z − 1)
H

(+)
ξξ r

6−2z, (2.73)

st = − 1

3
s

(−)
ξ r2−2z + s

(0)
t + s

(+)
t r2z+2 +

3zH
(+)
ξξ r

6−2z

4(z − 1)(z − 3)
−
(

zk(4)

2(z − 1)
+

(z + 2)s
(4)
ξ

4

)
r4. (2.74)

We have once again chosen the definition and normalization of the modes so that the (0) and

(−) modes correspond to constant leading terms in the frame fields. The r-independent modes

with a (0) superscript correspond to sources for the diagonal components of the stress energy

complex: s
(0)
t is the constant part of δê+

t , so it is the source for the energy density E, H
(0)
tξ is the

constant part of δê−ξ , so it is the source for P ξ
ξ , and k(0) is the constant part of δêIi , so it is the
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source for the trace of the spatial stress tensor T ii . There is a single mode H
(−)
tt of dimension

2z − 2, which comes from the constant part of δê−t , so it is the source for the particle number

density Pξ. There are two modes of dimension 2 − 2z, corresponding to sources for operators

of dimension 2z + 2. The first is H
(−)
ξξ , which comes from the constant part of δê+

ξ , and hence

corresponds to the source for the energy flux Eξ. The second must be the source part of ψ, so

we learn that this is dual to an operator O of dimension 2z + 2. The source for this should not

change δê+
ξ , so we can identify this source as s

(−)
ξ . Note that as in the Lifshitz case, the source

mode for this matter operator also appears in other fields, unlike the source modes for the stress

tensor, whose appearance is constrained by the boundary diffeomorphism invariance.

We would again like to identify the remaining modes with the vevs of these operators.

Dimensions alone suffices to fix 〈Pξ〉 ∼ H
(+)
ξξ , to relate 〈E〉, 〈T ii 〉 and 〈P ξ

ξ 〉 to k(4) and s
(4)
ξ , and

to relate 〈Eξ〉 and 〈O〉 to H
(+)
tt and s

(+)
t . To determine the relation we use the symplectic flux,

which is calculated as in the vector sector. The symplectic flux is again finite and is given by

F = i

∫
r=0

ddsxdξ

[
s

(0)
t ∧

(
2k(4) +

1

3z
(z − 1)(z2 − 4z − 6)s

(4)
ξ

)
+H

(0)
tξ ∧

(
2k(4) +

1

3
(z − 1)(z + 2)s

(4)
ξ

)
+ k(0) ∧

(
−4k(4) +

2

3
(z − 1)(2z + 1)s

(4)
ξ

)
− 2H

(−)
tt ∧H(+)

ξξ

−H(−)
ξξ ∧

(
2H

(+)
tt +

2(z − 1)

z
s

(+)
t

)
− 2(z2 − 1)

z
s

(−)
ξ ∧ s(+)

t

]
. (2.75)

This implies the identifications

〈Pξ〉 = 2H
(+)
ξξ , 〈P ξ

ξ 〉 = −2k(4) − 1

3
(z − 1)(z + 2)s

(4)
ξ , (2.76)

〈E〉 = −2k(4) − 1

3z
(z − 1)(z2 − 4z − 6)s

(4)
ξ , (2.77)

and

〈T ii 〉 = 〈T 1
1 〉+ 〈T 2

2 〉 = 4k(4) − 2

3
(z − 1)(2z + 1)s

(4)
ξ . (2.78)

The Ward identity from the scaling invariance is zE+T ii + (2−z)P ξ
ξ = 0, which is indeed satisfied

by these vevs. The other vevs are

〈Eξ〉 = 2H
(+)
tt +

2(z − 1)

z
s

(+)
t (2.79)
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Operator Source Expectation value

E s
(0)
t −2k(4) − 1

3z
(z − 1)(z2 − 4z − 6)s

(4)
ξ

Ei s
(−)
i 2H

(+)
ti + (z+1)(z+2)

z
s

(+)
i

Eξ H
(−)
ξξ 2H

(+)
tt + 2(z−1)

z
s

(+)
t

Pi = P i
ξ H

(−)
ti 2H

(+)
ξi

T 1
1 + T 2

2 k(0) 4k(4) − 2
3
(z − 1)(2z + 1)s

(4)
ξ

T 1
1 − T 2

2 , T 1
2 H̄

(0)
ij H̄

(4)
ij

T ξi H
(−)
ξi 2H

(+)
ti − (z − 1)s

(+)
i

Pξ H
(−)
tt 2H

(+)
ξξ

P ξ
ξ H

(0)
tξ −2k(4) − 1

3
(z − 1)(z + 2)s

(4)
ξ

O s
(−)
ξ

2(z2−1)
z

s
(+)
t

Table 1: The identification of linearised modes with sources and vevs for the operators in the
dual field theory.

and

〈O〉 =
2(z2 − 1)

z
s

(+)
t . (2.80)

For a solution with non-zero kξ, ω, there is a power series expansion of the same form as in

(2.41), with an extra factor of kξ in sr. As in the vector case, there is a reduction in the number of

independent mode solutions because of the different structure of the equations of motion. There

is a linear combination of (2.58,2.60) which is independent of sr. That and (2.61) imply the

relations

kξ

(
k(4) +

1

6
(z − 1)(z + 2)s

(4)
ξ

)
− ωH(+)

ξξ = 0, (2.81)

−2kξ

(
H

(+)
tt +

(z − 1)

z
s

(+)
t

)
+ ω

(
2k(4) +

1

3z
(z − 1)(z2 − 4z − 6)s

(4)
ξ

)
= 0; (2.82)

which correspond to the Ward identities

∂tPξ + ∂ξP
ξ
ξ = 0, (2.83)

∂tE + ∂ξE
ξ = 0. (2.84)

This confirms our identification of the vevs in terms of the linearised modes. The identification of

sources and vevs for the different operators is summarized in table 1.
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2.4.1.4 Linearised solutions with spatial dependence

The most general linearised solutions include spatial dependence. Considering a single Fourier

mode in all boundary directions, we can use the rotation symmetry to orient the spatial coordinates

so that the spatial momentum is along the x direction, so the coordinate dependence in all modes

is eiωt+ikξξ+ikxx. Then the modes split up into the scalar modes Htt, Htξ, Hξξ, Htx, Hξx, Hxx, Hyy

st, sx, sr and the vector modes Hty, Hξy, Hxy, sy. As in the discussion with no spatial dependence,

these all have an expansion in powers of kξωr
2 and k2

xr
2. The leading terms take the same form

as for the constant modes above.

The equations of motion in the vector sector are

rkx[r
zωHξy + kξr

2−z(Hty +Hξy)]− (k2
ξr

4−2z + 2kξωr
2)Hxy − 3rH ′xy + r2H ′′xy = 0, (2.85)

z(z − 1)Hξy − k2
xr

2sy − (k2
ξr

4−2z + 2kξωr
2 + (z − 1)(z + 3))sy + r(zH ′ξy − 3s′y + rs′′y) = 0,

(2.86)

kξ[(z − 1)(Hty −Hξy + 2sy)− r(Hty +Hξy)
′]− ωr2z[(z − 1)Hξy + rH ′ξy]− kxrzH ′xy = 0, (2.87)

kx(kξr
3−zHxy − kxr2Hξy) + k2

ξr
4−2zHty + ((z − 1)(z − 5)− kξωr2)Hξy

+ r((2z − 5)H ′ξy + rH ′′ξy) = 0, (2.88)

kxr(r
zωHxy − kxrHty) + (kξωr

2 − k2
ξr

4−2z − (z − 1)(z + 3))Hty + 2(z − 1)(z + 3)sy

+ (kξωr
2 + ω2r2z − 2(z − 1)2)Hξy + r(rH ′′ty − 2(z − 1)(Hξy + sy)

′ − (1 + 2z)H ′ty) = 0. (2.89)

We can solve these equations order by order in kξω and k2
x. The subleading components determine

the subleading terms in the expansion of the fields. But there are also additional constraints

on the leading terms, corresponding to the expected Ward identities. Equation (2.87) gives at

leading order

kξ[2H
(+)
ty − (z − 1)s(+)

y ] + 2ωH
(+)
ξy + kxH̄

(4)
xy = 0 (2.90)

which corresponds to the Ward identity

∂tPy + ∂ξT
ξ
y + ∂xT

x
y = 0. (2.91)
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In the scalar sector, the equations of motion are

0 = 2kxr(kξr
2−z + ωrz)(Htx +Hξx) + k2

xr
2
(1

2
Htt −

1

2
Hξξ −Htξ − k

)
− 2(1− z2)Htt

+ 2(2− 3z + z2)Hξξ − (kξr
2−z + ωrz)2k + i(z − 1)(kξr

2−z + 2ωrz)sr − 4(1− z2)st

− 4(1− z)sξ − (z + 2)rH ′tξ +
1

2
(2z − 5)rH ′ξξ + (z − 4)rk′ − (z − 1)rs′ξ

+ r[(1− 4z)H ′tt − 2(z − 1)s′t] +
1

2
r2H ′′tt + r2H ′′tξ +

1

2
r2H ′′ξξ + r2k′′, (2.92)

0 = kxr
(
kξr

2−zHtx + (2kξr
2−z + ωrz)Hξx

)
− k2

xr
2(Htξ +Hξξ + k) + 4(z2 − 3z + 2)Hξξ

− 2(k2
ξr

4−2z + ωkξr
2)k − 3r

(
H ′tξ − (z − 2)H ′ξξ + 2k′

)
+ r2H ′′tξ + r2H ′′ξξ + 2r2k′′, (2.93)

0 = rkx[ωr
z(Hξξ + k)− 2i(z − 1)sr − kξHtt + (ωrz − kξr2−z)Htξ]

+ (k2
ξr

4−2z + kξωr
2 − (z − 1)(z + 3))Htx − (kξωr

2 + ω2r2z − 2(z − 1)2)Hξx

− 2(z − 1)(z + 3)sx + (2z + 1)rH ′tx + 2r(z − 1)(H ′ξx + s′x)− r2H ′′tx, (2.94)

0 = − 2kxkξr
3−zHξx + k2

xr
2Hξξ − 4(z − 1)(z − 3)Hξξ + 2k2

ξr
4−2zk + (7− 4z)rH ′ξξ

− r2H ′′ξξ, (2.95)

0 = kxr
(
kξr

2−z(Htξ + k)− ωrzHξξ

)
− k2

ξr
4−2zHtx +

(
kξωr

2 − (z − 1)(z − 5)
)
Hξx

+ (5− 2z)rH ′ξx − r2H ′′ξx, (2.96)

0 = r2k′′ + r2H ′′ξξ + 2r2H ′′tξ − (z − 1)rs′ξ − 3rk′ + (z − 4)rH ′ξξ − 6rH ′tξ + 8(z − 1)sξ

+ 2i(z − 1)kξr
2−zsr − (k2

ξr
4−2z + 2ωkξr

2)k +
(

4(1− z) + ω2r2z
)
Hξξ − 2kξωr

2Htξ

+ k2
ξr

4−2zHtt, (2.97)

0 = 2kxr
(
kξr

2−z(Htx + 2Hξx) + ωrzHξx

)
− r2k2

x(2Htx +Hξξ) + r2k′′ + r2H ′′ξξ

− 2(z − 1)rs′ξ − 3rk′ + (z − 4)rH ′ξξ − 6rH ′tξ + 8(z − 1)sξ + 2i(z − 1)kξr
2−zsr

− (k2
ξr

4−2z + 2ωkξr
2)k +

(
4(1− z) + ω2r2z

)
Hξξ − 2kξωr

2Htξ + k2
ξr

4−2zHtt, (2.98)

0 = kxkξr
3−zsx − k2

xr
2sξ + 2z(z − 1)Hξξ + 2ikξr

2−zsr + k2
ξr

4−2zst −
(

8(z − 1) + kξωr
2
)
sξ

rzH ′ξξ − ikξr3−zs′r + (2z − 5)rs′ξ + r2s′′ξ , (2.99)

0 = skxr(kξr
2−z + ωrz)sx − 2k2

xr
2(sξ + st) + 4i(zkξr

2−z + ωrz)sr

+
(

2ω2r2z − 4(z − 1)(z + 2)
)
sξ + zrH ′ξξ − 2zrk′ − 2i(kξr

2−z + ωrz)rs′r − 6rs′ξ − 2kξωr
2st

− 2(1 + 2z)rs′t + 2r2s′′t + 2r2s′′ξ , (2.100)

0 = kxr[2isr + kξr
2−zst + (kξr

2−z + rzω)sξ − irs′r] + z(z − 1)Hξx

− (k2
ξr

4−2z + 2kξωr
2 + (z − 1)(z + 3))sx + zrH ′ξx − 3rs′x + r2s′′x, (2.101)
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and additionally,

0 = k2
ξr

4−2zHtt + 2kξkxr
3−zHtx − 2(k2

x + kξω)r2Htξ + 2rkx(kξr
2−z + ωrz)Hξx

−
(
k2
xr

2 + 2z(z − 1) + ω2r2
)
Hξξ −

(
2k2

ξr
4−2z + r2(k2

x + 4kξω)
)
k

− 2ikξ(z − 1)r2−zsr + 4z(z − 1)sξ − 6rH ′tξ − (2 + z)rH ′ξξ − 6rk′ + 2(z − 1)rs′ξ, (2.102)

0 = kxr
(

(z − 1)(Htx +Hξx)− rH ′tx
)

+ (z − 1)(kξr
2−z + 3ωrz)Hξξ − 2kξ(z − 1)r2−zk

− 2i(z − 1)(z + 2)sr − 2(z − 1)ωrzsξ + kξr
2−z
(

2(z − 1)(Htt + st)− rH ′tt
)

+ (−kξr2−z + ωrz)rH ′tξ + ωrz+1(H ′ξξ + k′), (2.103)

0 = − kxr
(

(z − 1)Hξx + rH ′ξx

)
− (z − 1)(kξr

2−z + 2ωrz)Hξξ + kξr
3−zH ′tξ − rωrzH ′ξξ

+ 2kξr
3−zk′, (2.104)

0 = kξ(z − 1)r2−z(Htx −Hξx + 2sx)− (z − 1)ωrzHξx − kξr3−zH ′tx − (kξr
2−z + ωrz)rH ′ξx

+ kxr
(

(z − 1)(Hξξ + 2sξ) + 2r(H ′tξ +H ′ξξ + k′)
)
, (2.105)

0 = kxr(2zHξx + 2sx + rs′x)− 2ik2
xr

2sr + (kξr
2−z + 2ωrz)zHξξ − 2zkξr

2−zk

− 2i
(
k2
ξr

4−2z + z(z + 2) + 2kξωr
2
)
sr + 2(z − 2)(kξr

2−z + ωrz)sξ + 2kξr
2−z(−zst + rs′t)

+ 2(kξr
2−z + ωrz)s′ξ. (2.106)

Again, the constraints corresponding to the Ward identities are modified. Equation (2.105) gives

kξ[2H
(+)
tx − (z − 1)s(+)

x ] + 2ωH
(+)
ξx + kx[2k

(4) − 1

3
(z − 1)(2z + 1)] = 0, (2.107)

which corresponds to the Ward identity

∂tPx + ∂ξT
ξ
x + ∂xT

x
x = 0; (2.108)

(2.104) gives

kξ

(
k(4) +

1

6
(z − 1)(z + 2)s

(4)
ξ

)
− ωH(+)

ξξ − kxH
(+)
ξx = 0, (2.109)

which corresponds to the Ward identity

∂tPξ + ∂ξP
ξ
ξ + ∂xP

x
ξ = 0; (2.110)
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and there is a linear combination of (2.106) and (2.103) which is independent of sr which gives

kξ

(
2H

(+)
tt +

2(z − 1)

z
s

(+)
t

)
−ω
(

2k(4)+
1

3z
(z−1)(z2−4z−6)

)
+kx

(
2H

(+)
tx +

1

z
(z−1)(z+2)s(+)

x

)
= 0

(2.111)

which corresponds to the Ward identity

∂tE + ∂ξE
ξ + ∂xE

x = 0. (2.112)

Thus the full linearised perturbations behave as we expect.

2.4.2 Linearised solutions for ds = 0

The solution for other values of ds is qualitatively similar to the one discussed above, but the

three-dimensional bulk is a special case. In this case there are no spatial dimensions. Hence the

previous analysis of the spatially independent modes corresponds to the general analysis in this

case, and there are no vector or tensor modes, so the structure is similar to the scalar mode

analysis in ds = 2. There will be no field k in this case, corresponding to the absence of the trace

of the spatial stress tensor.

The solution for the constant modes is

sr = 0, (2.113)

Htt = −2s
(0)
t +H

(+)
tt r2z + 2H

(−)
tt r2z−2 −

zH
(+)
ξξ r

4−2z

2(z − 2)(2z − 3)
+

2z(z − 1)r2s
(2)
ξ

(z − 2)
, (2.114)

Htξ = s
(0)
t +H

(0)
tξ −H

(−)
ξξ r

2−2z −
(z − 1)H

(+)
ξξ r

4−2z

2(z − 2)
+ z(z − 1)r2s

(2)
ξ , (2.115)

Hξξ = 2H
(−)
ξξ r

2−2z +H
(+)
ξξ r

4−2z, (2.116)

sξ = (H
(−)
ξξ + s

(−)
ξ )r2−2z + r2s

(2)
ξ +

zH
(+)
ξξ r

4−2z

2(z − 1)
, (2.117)

st = s
(+)
t r2z + s

(0)
t −

zs
(−)
ξ r2−2z

4z − 2
+

zH
(+)
ξξ r

4−2z

4(z − 2)(z − 1)
− z

2
r2s

(2)
ξ . (2.118)

As in the previous case, the r-independent modes correspond to sources for the stress energy

complex: s
(0)
t is the constant part of δê+

t , so it is the source for the energy density E, and H
(0)
tξ is

the constant part of δê−ξ , so it is the source for P ξ
ξ . There is a single mode H

(−)
tt of dimension

2z − 2, which comes from the constant part of δê−t , so it is the source for the particle number
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density Pξ. The two modes of dimension 2− 2z are H
(−)
ξξ , which comes from the constant part of

δê+
ξ , and hence corresponds to the source for the energy flux Eξ, and s

(−)
ξ , which is the source for

an operator O of dimension 2z + 2.

We would again like to identify the remaining modes with the vevs of these operators.

Dimensions alone suffice to fix 〈Pξ〉 ∼ H
(+)
ξξ , to relate 〈E〉 and 〈P ξ

ξ 〉 to s
(2)
ξ , and to relate 〈Eξ〉

and 〈O〉 to H
(+)
tt and s

(+)
t . The symplectic flux is

F = − i
∫
r=0

ddsxdξ

[
H

(−)
ξξ ∧H

(+)
tt +H

(−)
tt ∧H(+)

ξξ

+ 2(z − 1)s
(−)
ξ ∧ s(+)

t − z(z − 1)H
(0)
tξ ∧ s

(2)
ξ − (z − 1)(z − 2)s

(0)
t ∧ s(2)

ξ

]
. (2.119)

This enables us to identify the vevs

〈Pξ〉 = H
(+)
ξξ , 〈P ξ

ξ 〉 = −z(z − 1)s
(2)
ξ , (2.120)

〈E〉 = −(z − 1)(z − 2)s
(2)
ξ , (2.121)

which indeed satisfy the Ward identity from the scaling invariance, which is zE + (2− z)P ξ
ξ = 0,

〈Eξ〉 = H
(+)
tt , (2.122)

and

〈O〉 = 2(z − 1)s
(+)
t . (2.123)

For non-zero kξ, ω, there will be Ward identities ∂tE + ∂ξE
ξ = 0, ∂tPξ + ∂ξP

ξ
ξ = 0 and

zE + (2− z)P ξ
ξ = 0, which leave us with just one free vev in the stress energy complex.

2.4.2.1 Comparison to previous work

In [36], a full linearised analysis for z < 2 and ds = 0 was carried out. They write the Schrödinger

metric in a different radial coordinate, ρ = r2, and introduce σ as discussed in the introduction by

rescaling the boundary coordinates, u2 = −t2/σ2, v2 = −σ2ξ2, so the Schrodinger metric becomes

ds2 =
dρ2

4ρ2
+

2du dv

ρ
+
σ2du2

ρz
. (2.124)
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Their focus is on z < 1, where σ2 > 0; for the range z > 1 we are interested in we need σ2 < 0.

We will henceforth set σ2 = −1; then their b is identical to our α. The linearised perturbations

are written as

A(1)
µ = aµ, g

(1)
ab = ρ−1hab, (2.125)

where µ = u, v, r, a, b = u, v. Relative to our definitions above,

au = αρ−z/2st, av = αρz/2−1sξ, ar = αρ−1/2sr, (2.126)

and

huu = ρ1−zHtt, huv = Htξ, hvv = ρz−1Hξξ. (2.127)

In [36], the perturbation is decomposed into a part which only affects the metric hab and a V

mode which enters in both aµ and hab (following the decomposition into T and X modes in [35]).

To relate to our analysis above, we will consider the case where the modes are constant in

the boundary directions, so hab, aµ are functions only of ρ. As in our analysis, this implies that

aρ = 0. The metric can be written as

hvv = h(0)vv + ρh(2)vv, huv = h(0)uv + ρh(2)uv −
1

2
ρ1−zh(0)vv −

(1− z)

2(2− z)
ρ2−zh(2)vv, (2.128)

huu = h(0)uu + ρh(2)uu −
z

4(1− 2z)
ρ2−2zh(0)vv −

z

4(3− 2z)
ρ3−2zh(2)vv −

1

2− z ρ
2−zh(2)uv + hVuu,

(2.129)

where

∂2
ρh

V
uu =

zα

2
ρ1−z∂ρ(ρ

−z/2av) + zα∂ρ(ρ
−z/2au). (2.130)

In solving this equation, we will take hVuu to have no constant or linear pieces in ρ, so that h(0)uu

and h(2)uu represent the whole of the ρ0 and ρ coefficients. The vector field satisfies

ρz/2∂ρ[ρ
1−z∂ρ(ρ

z/2av)] = −zα
2
ρ−z/2h(2)vv, (2.131)

ρz/2∂ρ[ρ
1−z∂ρ(ρ

z/2au)] = −(1− z)ρ1−z∂ρav −
z(1− z)α

4
ρ−3z/2h(0)vv +

z2α

4
ρ1−3z/2h(2)vv; (2.132)

and there is a single constraint for constant solutions,

− 4h(2)uv − 2zρ1−zh(2)vv + 2zαρ1−z∂ρ(ρ
z/2av) = 0. (2.133)
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Solving this system of equations, we find that

av =αvρ
−z/2 + βvρ

z/2 +
zα

2(z − 1)
h(2)vvρ

1−z/2, (2.134)

au =αuρ
−z/2 + βuρ

z/2 − z

4z − 2
αvρ

1−3z/2 − z

2
βvρ

1−z/2 +
zα

4(2z − 1)
h(0)vvρ

1−3z/2

+
zα

4(z − 2)(z − 1)
h(2)vvρ

2−3z/2, (2.135)

huu =h(0)uu + ρh(2)uu −
z

2(z − 2)(2z − 3)
h(2)vvρ

3−2z − 1

(2− z)
h(2)uvρ

2−z

− zα

(z − 1)
αuρ

1−z − z2α

2(2− z)
βvρ

2−z, (2.136)

where the constraint (2.133) implies that h(2)uv = z2α
2
βv. The constants αu,v, βu,v correspond to

the V mode solutions of [36].

Comparing to our constant solutions, we see that we can identify the sources

h(0)vv = 2H
(−)
ξξ , h(0)uv = s

(0)
t +H

(0)
tξ , h(0)uu = 2H

(−)
tt , (2.137)

αv = α(H
(−)
ξξ + s

(−)
ξ ), αu = αs

(0)
t ; (2.138)

and vevs

h(2)vv = H
(+)
ξξ , h(2)uv = z(z − 1)s

(2)
ξ , h(2)uu = H

(+)
tt , (2.139)

βv = αs
(2)
ξ , βu = αs

(+)
t . (2.140)

As we might have expected, while the sources for the momentum density and flux appear only in

the metric modes, the sources for the energy density and flux appear also in the V modes. The

vev mode s
(2)
ξ also appears in the V modes. The source and vev for the operator O appear only

in the V modes and not in the metric modes. The constraint (2.133) imposes the trace Ward

identity.

When we go beyond constant modes, there will be subleading terms in the V modes,

determined by solving the equations in [36]. There are also additional constraints; there is a

constraint

∂vh(2)uv = ∂uh(2)uu, (2.141)
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which corresponds precisely to the expected Ward identity ∂tPξ + ∂ξP
ξ
ξ = 0, and a constraint

∂v∂ρhuu = ∂uh(2)uv +
z

2
αρ−z/2(−2∂uav + 2zaρ − 4ρ∂ρaρ − ρ1−z∂vav) (2.142)

+
zα2

4
ρ−z/2(4∂uh(0)vv + 4ρ∂uh(2)vv + ρ1−z(∂vh(0)vv + ρ∂vh(2)vv)).

The ρ derivative of this constraint vanishes by virtue of the other equations of motion; the

constant part gives

∂vh(2)uu = ∂uh(2)uv − zα∂uβv, (2.143)

which is precisely the expected Ward identity ∂tE + ∂ξE
ξ = 0.

Thus our solution is consistent with the one in [36], but our frame perspective offers a different

physical interpretation with a new organisation of the sources and vevs. We agree with [36]

on the split of the linearised solutions into sources and vevs, but we give a different physical

interpretation to these sources and vevs in terms of operators in the field theory.

2.5 Asymptotic expansion for z < 2

In this section, we want to go beyond the linearised analysis by showing that solutions of the

bulk equations of motion exist for arbitrary boundary data. To do so, we will solve the equations

of motion in an asymptotic expansion: that is, we work at large r, and solve the equations in

an expansion in powers of r. We will follow closely the treatment of the asymptotic expansion

for asymptotically Lifshitz spacetimes in [45, 80, 81], using a radial Hamiltonian framework to

analyse the equations. In the course of demonstrating the existence of this asymptotic expansion,

we will also see that when the asymptotic expansion exists we can cancel the divergent terms in

the action in the usual way by adding appropriate local counterterms determined by the boundary

data.

The action we consider is a massive vector theory, which is the same as the theory considered

in [45], so the equations are the same. However [45] considered a four-dimensional bulk, whereas

our main interest here is a five-dimensional bulk, so some dimension-dependent factors are different.

For generality, we write the equations for general ds. By taking the trace, we can rewrite (2.7) as

Rµν =
2

d− 2
Λgµν +

1

2
FµλF

λ
ν −

1

4(d− 2)
FλρF

λρgµν +
1

2
m2AµAν , (2.144)
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where d = ds + 3 is the dimension of the bulk spacetime. The Gauss-Codazzi equations on a

surface of constant r are then

K̇αβ +KKαβ − 2KαγK
γ
β =Rαβ −

2

d− 2
Λhαβ −

1

2
FαγF

γ
β +

2

8(d− 2)
hαβFγδF

γδ

− 1

2
παπβ +

2

4(d− 2)
hαβπγπ

γ − 1

2
m2AαAβ, (2.145)

π̇α +Kπα +∇βF
βα = m2Aα (2.146)

and the constraints become

∇αK
α
β −∇βK

α
α =

1

2
Fβαπ

α +
1

2
m2AβAn, (2.147)

K2 −KαβK
αβ = R− 2Λ +

1

2
παπ

α − 1

4
FαβF

αβ +
1

2
m2A2

n −
1

2
m2AαA

α. (2.148)

and

∇απ
α = −m2An. (2.149)

In the above equations the Ricci tensor Rαβ and covariant derivatives ∇β are those determined

by the induced metric hαβ on a surface of constant r. Because we work here in coordinates where

the boundary is at r = 0, the outward-pointing normal one-form is n = −dr/r, and consequently

there are some sign differences in radial terms relative to [45]. Kαβ is the extrinsic curvature

of the surface of constant r, πα = nµFµα = −rFrα is the conjugate momentum for the massive

vector, the radial component of the gauge field is An = nµAµ = −rAr, and ˙ denotes the derivative

in the normal direction, that is −r∂r.

We want to re-express these equations in terms of frame fields eA. As in [45], we introduce a

frame extrinsic curvature KA
B = eαB ė

A
α , which is not a symmetric object, unlike the usual extrinsic

curvature. Note that frame indices will be raised and lowered with the metric gAB, which is not

diagonal in our case, so it is useful to keep track of the ‘natural’ index positions in tensor objects.
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The equations in frame indices are

K̇(AB)+KK(AB) +
1

2

(
KCAK

C
B −KACK

C
B

)
+

1

2
πAπB −

2

4(d− 2)
ηABπCπ

C

= RAB −
2

d− 2
ΛηAB −

1

2
FACF

C
B +

2

8(d− 2)
ηABFCDF

CD − 1

2
m2AAAB, (2.150)

π̇A+KπA −KA
Bπ

B = −∇BF
BA +m2AA, (2.151)

and the constraints

∇AK(AB) −∇BK
A
A =

1

2
FBAπ

A +
1

2
m2ABAn, (2.152)

K2 −K(AB)K
AB − 1

2
πAπ

A = R− 2Λ− 1

4
FABF

AB +
1

2
m2A2

n −
1

2
m2AAA

A, (2.153)

∇Aπ
A = −m2An. (2.154)

Here FAB = eαAe
β
BFαβ, and ∇A = eαA∇α, where the covariant derivative ∇α is a total covariant

derivative (covariant with respect to both local Lorentz transformations and diffeomorphisms).

Assuming that the metric is asymptotically locally Schrodinger according to the definition

(2.17) then implies that

K+
+ = z + ê+

˙̂e+, K+
− = r2z−2ê− ˙̂e+, K+

I = rz−1êI ˙̂e+, (2.155)

K−+ = r2−2z ê+
˙̂e−, K−− = 2− z + ê− ˙̂e−, K−I = r1−z êI ˙̂e−,

KI
+ = r1−z ê+

˙̂eI , KI
− = rz−1ê− ˙̂eI , KI

J = δIJ + êJ ˙̂eI .

Since we choose the frame fields so that the massive vector is A = α(e+ +ψe− + sre
r) everywhere

in the bulk, the canonical momentum πA has components

πI =α(K+
I + ∂Isr),

π+ =α(K+
+ + ∂+sr),

π− =α(ψ̇ +K+
− + ∂−sr). (2.156)

To show that a solution exists in an asymptotic expansion, we want to fix the sources, which

will fix the terms appearing on the RHS of these equations, and see that we can satisfy the

equations by introducing appropriate subleading terms in r in the expansion which will contribute
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to the radial derivative terms on the LHS of the equations. For this to work, the source terms

need to involve positive powers of r. Explicit powers of r enter where there are derivatives along

the boundary directions: these all come with positive powers of r for z < 2. There are also

explicit powers in the Ricci rotation coefficients, determined by deC = Ω C
AB eA ∧ eB. These are

Ω +
+− ∼ r2−z, Ω +

+I ∼ r, Ω +
−I ∼ r3−2z, Ω +

IJ ∼ r2−z, (2.157)

Ω −
+− ∼ rz, Ω −

+I ∼ r2z−1, Ω −
−I ∼ r, Ω −

IJ ∼ rz, (2.158)

Ω I
+− ∼ r, Ω I

+J ∼ rz, Ω I
−J ∼ r2−z, Ω I

JK ∼ r. (2.159)

Thus, for z < 2, the only term that causes problems is Ω +
−I , which has a power that becomes

negative for z > 3/2. This is associated with the ∂I derivative of the source for Eξ, and the ∂−

derivative of the source for Ei. Hence imposing the geometric condition ê+ ∧ dê+ = 0, which will

set the sources for Eξ and Ei to zero, eliminates the leading constribution to this one dangerous

term (as well as the leading contribution to Ω +
IJ ). Note that because of the diffeomorphism

invariance, it is only derivatives of these sources that appear. Thus, even though Ei is irrelevant

for all z > 1, the asymptotic expansion exists even in the presence of its source for 1 < z < 3/2. It

is only for z > 3/2 that we have to set this source to zero to have a good asymptotic expansion. In

addition, a source for the operator dual to the matter field would make a contribution A− ∼ r2−2z,

so we need to set this source to zero for all z > 1.

Thus, we expect that an asymptotic expansion will exist for z < 3/2 for arbitrary sources in

êA so long as we set the source for the irrelevant operator O to zero, and for 3/2 < z < 2 if the

frame fields satisfy the constraint ê+ ∧ dê+ = 0 and we set the source for the irrelevant operator

O to zero.

Explicitly analysing the equations of motion is however somewhat messy because of the

off-diagonal structure, so we will demonstrate the existence of the asymptotic expansion using

the elegant radial Hamiltonian framework of [80, 81].14 This involves expanding in eigenvalues of

an appropriate bulk dilatation operator. Assuming that we impose some appropriate boundary

or regularity condition in the interior of the spacetime, the on-shell solution of the equations of

motion will be uniquely determined in terms of the asymptotic boundary data, so the on-shell

14An extended version of this formalism for Lifshitz was introduced in [82, 83], but as we work in the frame
formalism, we can work simply with an adapted version of the original formalism with a single dilatation operator.
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action is a function of the boundary data, which we can write as a boundary term,

S =

∫
dd−1x

√−γλ(e(A), ψ). (2.160)

We can then think of the canonically conjugate momenta as determined by functional derivatives

of this action as in a Hamilton-Jacobi approach, so

TAB =
1√−γ e

(A)
α

δ

δe
(B)
α

S, (2.161)

πψ =
1√−γ

δ

δψ
S. (2.162)

For the action (2.5), this gives TAB = πAB + 2πAAB, where πAB = K(AB) −KgAB. The leading

scaling of ψ is r∆− , so if we define the dilatation operator

δD = −
∫
dds+2x

(
ze(+)

α

δ

δe
(+)
α

+ (2− z)e(−)
α

δ

δe
(−)
α

+ e(I)
α

δ

δe
(I)
α

−∆−ψ
δ

δψ

)
. (2.163)

then acting on any function of eA, ψ, this will agree with the radial derivative at leading order in

large r, δD ∼ r∂r. Applying this operator to the action, we have

(ds + 2− δD)λ = zT+
+ + (2− z)T−− + T II −∆−ψπψ. (2.164)

Now we look for a solution in an expansion in dilatation eigenvalues ∆. Any function of

the boundary data will be by construction an eigenfunction of this dilatation operator, so it will

contribute only at one order in the expansion in dilatation eigenvalues. We would then want to

expand the action, and hence TAB, πψ, in an expansion in eigenfunctions of the dilatation operator.

Because of the coincidences in the powers noted in our linearised analysis, there will be some

degenerate eigenvalues, and λ does not actually have an expansion in terms of eigenfunctions;

the dilatation operator δD is not diagonalisable, but can only be written in a Jordan normal

form. This corresponds to the appearance of the logs in the expansion in powers of r in e.g.

(2.41).15. However, the first such degenerate eigenvalue occurs at ∆ = ds + 2, where the dilatation

eigenvalue expansion first makes a finite contribution to the action. Thus, for the purposes of

15Similar logarithms appear in the Lifshitz case for z=2 [84, 85]; for Schrödinger they occur for arbitrary z
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considering the terms that contribute to divergences in the on-shell action, we can expand

λ =
∑

ds+2>∆≥0

λ(∆) + . . . , δDλ
(∆) = ∆λ(∆). (2.165)

where . . . represents terms of higher order which will include logarithms.

Let us now set the source for the irrelevant operator ψ = 0. Expanding in dilatation

eigenvalues, (2.164) then becomes

(ds + 2−∆)λ(∆) =zT
+ (∆)

+ + (2− z)T
− (∆)
− + T

I (∆)
I (2.166)

=(4− 2z)π
(∆)
−− + 4π

(∆)
+− + 2π

I (∆)
I + zαπ

(∆)
−

Expanding the constraint equation (2.153) in dilatation eigenvalues will enable us to evaluate

the RHS of (2.166) in terms of the sources and terms at lower orders in the dilatation expansion.

The expansion of (2.153) gives

∑
s<∆/2

[
2K(s)K(∆−s) − 2K

(s)
(AB)K

AB(∆−s) − π(s)
A πA(∆−s) − 1

m2
(∇Aπ

A)(s)(∇Bπ
B)(∆−s)

]
(2.167)

+

[
K(∆/2)2 −K(∆/2)

(AB) K
AB(∆/2) − 1

2
π

(∆/2)
A πA(∆/2) − 1

2m2
(∇Aπ

A)(∆/2)(∇Bπ
B)(∆/2)

]
= src(∆),

where src(∆) is the source contribution from the RHS of (2.153) which is calculated below in

(2.172) and following. The terms in the sum at s = 0, together with one term at s = ∆−, will

give us the RHS of (2.166). To see this, we need the values of the leading terms in the expansion

in dilatation eigenvalues. These are determined by the assumed leading asymptotics of the bulk

fields (2.17). We have

K
+ (0)

+ = z, K
− (0)
− = 2− z, K

I (0)
J = δI J . (2.168)

For the vector momentum we have

π
(0)
+ = αK

+ (0)
+ = zα, π

(0)
− = 0. (2.169)

From this we can calculate that

T
A (0)
B = −(ds + 4)δAB, (2.170)

66



which is encouraging, as it indicates that this can arise as the functional derivative of a simple

constant term, λ(0) = −(ds + 4). More importantly, (2.166) can now be combined with (2.167) to

give

(ds + 2−∆)λ(∆) =− src(∆) (2.171)

+
∑

s<∆/2,s 6=0

[
−2K

(s)
(AB)π

AB(∆−s) − π(s)
A πA(∆−s) − 1

m2
(∇Aπ

A)(s)(∇Bπ
B)(∆−s)

]

+

[
−K(∆/2)

(AB) π
AB(∆/2) − 1

2
π

(∆/2)
A πA(∆/2) − 1

2m2
(∇Aπ

A)(∆/2)(∇Bπ
B)(∆/2)

]

Now let’s consider the src(∆). We have

src = R− 2Λ− 1

4
FABF

AB − m2

2
AAA

A. (2.172)

Since we are going to turn ψ off, AAA
A = 0, and FAB becomes

FAB = 2Ω +
AB A+. (2.173)

The Ricci scalar is

R = −4∂AΩ AC
C + ΩCADΩCAD + 2ΩCADΩDAC + 4Ω A

AD Ω DC
C , (2.174)

which has contributions at ∆ = 2, 4− 2z, 6− 4z, while F 2 contributes at just 4− 2z and 6− 4z.

Thus only −2Λ contributes to src(0). At ∆ = 2 we have

src(2) =− 4∂+Ω A
A− − 4∂−Ω A

A+ − 4∂IΩ
IA

A + 2Ω +
IJ ΩIJ− + ΩIJKΩIJK (2.175)

+ 4Ω+IJΩ IJ
− + 4Ω +

−I Ω I−
+ + 4Ω +

+I Ω I−
− + 2Ω+−IΩ

I
−+ + 4Ω +

+− Ω −
−+

+ 4Ω B
A+ Ω A

B− + 2Ω B
AI Ω IA

B + 8Ω A
A+ Ω B

B− + 4Ω A
AI Ω IB

B ,

where A,B are taken to run over +,− and all of the I directions. And for 4− 2z we find

src(4−2z) =− 4∂−Ω A
A− − Ω +

IJ ΩIJ+ − 4Ω +
+I Ω I+

− − 2Ω +
+− Ω +

−+ (2.176)

+ 4Ω +
−I Ω I−

− + 2Ω−IJΩ IJ
− + 2Ω B

A− Ω A
B− + 4Ω A

A− Ω B
B−

− α2
(
−2(Ω +

+− )2 + 4Ω +
+I Ω I+

− + Ω +
IJ ΩIJ+

)
.
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Lastly for 6− 4z we have

src(6−4z) =
(
−2− 2α2

)
Ω +
−I Ω I+

− . (2.177)

For z < 3/2 this is a positive eigenvalue and we can allow this term, but for z > 3/2 it is negative,

so we need to restrict the sources so that ê+ ∧ dê+ = 0, so that src(6−4z) = 0.

Thus, the source terms will produce contributions to λ(∆) at ∆ = 2, 4− 2z and for z < 3/2

at ∆ = 6− 4z. These in turn generate terms in TAB, which we should substitute in the quadratic

terms in (2.171) to obtain further contributions to λ. There are two issues to note here.

The first is that some of the expressions for KA
B in terms of êA involve explicit positive

powers of r, so in attempting to solve in a power series in r, one might be concerned that having

a solution for KA
B in positive powers of r might not necessarily imply that the solution for êA

only involved positive powers of r. But by solving first for λ and then determining TAB from

it, we avoid this issue. When we functionally differentiate λ, we pick up a contribution to the

dilatation eigenvalue from the different scalings of the different eA, so

λ(∆) →T+ (∆)
+ , T

− (∆)
− , T

I (∆)
J , T

+ (∆+1−z)
I , T

− (∆+z−1)
I , (2.178)

T
I (∆+z−1)

+ , T
I (∆+1−z)
− , T

+ (∆+2−2z)
− , T

− (∆+2z−2)
+ .

The terms where KA
B in terms of êA involve explicit positive powers of r correspond to those

where the functional derivative increases the dilatation eigenvalue. So if we have an expansion

in positive powers of r for λ, it will imply that there is a solution for êA only involving positive

powers of r.

Contrariwise, one might be concerned that the functional derivative can also lower the

dilatation eigenvalue in (2.178), for T+
−, T+

I and T I−. This could lead to contributions to these

TAB with negative dilatation eigenvalues appearing from terms in λ with positive dilatation

eigenvalues. This could lead to contributions in the sum over quadratic terms in (2.171) with

negative eigenvalues, invalidating our assumption that the sum in λ involves only positive

eigenvalues. For example, differentiating src(6−4z) looks like it could lead to a contribution in T+
−

of eigenvalue 8− 6z, which is negative for z > 4/3. There is an elegant argument that such a term

cannot arise: the stress tensor contribution obtained by this functional derivative is a function of

the boundary data, and is a scalar under boundary diffeomorphisms. Any scalar function of the
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eAα can be expressed in terms of the Ricci rotation coefficients Ω C
AB , and there is no combination

of these coefficients that has this dilatation eigenvalue. Hence the functional derivatives that

would give these terms must actually vanish.

It is nice to see this more explicitly however, so we will give the calculation in a couple of

cases. We find TAB from varying with respect to the frame field as in (2.161), with S as in (2.160).

Since the integrand of S contains a factor of
√−γ we first compute the frame field variation of

this term, finding

e(A)
α

∫
δ

δe
(B)
α

√−γ = −√−γδAB. (2.179)

Next, since src terms consist of factors of Ω C
AB or eα(A)∂α, we work out their variations; functions

f are included in these generic expressions to keep track of derivatives in integration by parts.

For ∂C we have

e(A)
α

∫
δ

δe
(B)
α

f1e
β
(C)∂βf2 = −f1e

(A)
α eα(C)e

β
(B)∂βf2 = −f1δ

A
C∂Bf2. (2.180)

For variations of Ω we find

e(D)
γ

∫
δΩ C

AB

δe
(E)
γ

f = 2Ω C
E[A δ

D
B]f + δCEδ

D
[A∂B]f + δCEδ

D
[A(∂αe

α
B])f + fδCEΩ D

AB , (2.181)

where [AB] = 1
2
(AB −BA).

Using these results we can now quickly compute the contribution to TAB coming from src(6−4z).

We find that all of the potentially negative contributions (T+
−, T+

I and T I−) actually vanish

identically. Considering then the src(4−2z) term, we find this leads to

T
+(6−4z)
− ∝ −4

(
1 + α2

) (
δΩ +

+I

)
Ω I+
− + 4Ω I+

−
(
δΩ −
−I

)
∝ −4α2Ω I+

− Ω +
−I . (2.182)

As predicted by the general argument, the only possible term is quadratic in Ω +
−I . So if z > 3/2,

where we set this term to zero, no contributions are left. For z < 3/2, T+
− does indeed receive

this contribution at ∆ = 6− 4z; the contribution is however unproblematic there because it is

still at a positive ∆.

The story for T+
I is similar; all terms remaining after the variation have a factor of Ω +

−I .

69



We have

T
+(5−3z)
I ∝− 4

∂−
√−γ√−γ

(
δΩ +

+− + δΩ J
J−
)
− 4(1 + A2

+)Ω J+
− δΩ +

+J − 4(1 + A2
+)Ω +

+− δΩ +
−+

+ 4Ω K
− JδΩ

J
−K + 4Ω +

+− δΩ +
+− + 4Ω +

J− δΩ J
+− + 4Ω J

K− δΩ
K

J− (2.183)

+ 8Ω A
A− δΩ +

+− + 8Ω A
A− δΩ J

J− .

Many of the terms here are already multiplied by an Ω +
−I . We need only compute two explicitly:

δΩ +
+− =− Ω +

I− , (2.184)

δΩ J
K− =δJI Ω +

K− . (2.185)

All terms in T
+(5−3z)
I coming from src(4−2z) have a factor of Ω +

−I . As in the previous case, for

z > 3/2 this vanishes. For z < 3/2, 5− 3z > 0, and so all of these contributions are at positive ∆

and thus not a concern.

For T I− we find similarly

T
I(5−3z)
− ∝ −2(1 + A2

+)ΩJK+δΩ +
JK − 4(1 + A2

+)Ω J+
− δΩ +

+J + 4Ω J+
− δΩ −

−J . (2.186)

Using

δΩ
+

JK = 2Ω +
−[J δ

I
K], (2.187)

we again find that every term in T
I(5−3z)
− coming from src(4−2z) has a factor of Ω +

−I .

Thus, to summarise, there is a solution for λ in a series of positive dilatation eigenvalues

∆. Taking functional derivatives of this solution gives the expression for TAB in an expansion in

dilatation eigenvalues, which can be used to reconstruct eAα in an expansion in positive powers

of r which satisfies the equations of motion (with logarithmic terms appearing in the expansion

from order rds+2 onwards, corresponding to the degenerate eigenvalues in the ∆ expansion). The

terms in the ∆ expansion of λ with ∆ < ds + 2 are the divergent contributions to the bare action

so we also see that we can cancel these terms by adding local functions of the boundary data as

boundary counterterms to the action. We can explicitly check that the required counterterms

are local functions of the boundary data by solving for the dilatation expansion coefficients λ(∆)

explicitly. To do this one can insert covariant dilatation expansions of the canonical momenta

into the equations of motion (2.150) and the constraints (2.152) [80]. Solving for the dilatation
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coefficients this way is much more difficult in our case owing to the off-diagonal structure of

the metric in our chosen frame basis. To verify that the boundary counterterms are local thus

requires a more complete analysis than that we have carried out here. We leave this interesting

question for future work.

2.6 Discussion

We have shown that one can construct a holographic dictionary for z < 2 Schrödinger along very

similar lines to the one constructed for Lifshitz in [45]. This dictionary is based on classifying

fields in terms of the anisotropic scaling symmetry of the Schrödinger background, unlike some

previous explorations of holography for Schrödinger which have interpreted it as a deformation of

AdS and focused on the relativistic scaling symmetry of the AdS solution. We have shown that

in this formalism there is an asymptotic expansion for arbitrary boundary data (assuming we set

the sources for irrelevant operators to zero) and the subleading terms in this expansion are all

determined locally in terms of the sources.

The most important direction for future work is to extend this analysis to z = 2, and we

address this in the following chapter. As stressed in the introduction, in our frame formalism it is

clear that the structure of the dictionary for z = 2 will be qualitatively different from z < 2. As

already noted in [35], the dimensions of operators for z = 2 depend on the momentum kξ. We

interpret this as meaning that the dual theory will live just in the t, ~x directions, and modes of

different kξ correspond to different operators in this theory. This will imply a different structure

for the dictionary; but we expect the frame formalism will still be useful for organising the bulk

modes naturally in terms of the sources for the boundary geometry seen by the field theory, and

we expect it will be possible to give an asymptotic expansion at least for arbitrary sources for the

kξ = 0 operators.
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3 Schrödinger Holography with z = 2

The work in this chapter is reproduced from a collaborative paper [2] with Dr. Tomas Andrade, Dr.

Cindy Keeler and Prof. Simon Ross. We investigated holography for asymptotically Schrödinger

spacetimes, using a frame formalism based on the anisotropic scaling symmetry. We build on

the results of the previous chapter for z < 2 to propose a dictionary for z = 2 case. For z = 2,

the scaling symmetry does not act on the additional null direction, which implies that in our

dictionary it does not correspond to one of the field theory directions. This is significantly different

from previous analyses based on viewing Schrödinger as a deformation of AdS. We study this

dictionary in the linearised theory and in an asymptotic expansion. We show that a solution

exists in an asymptotic expansion for arbitrary sources for the relevant operators in the stress

energy complex.
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3.1 Introduction

In this chapter we consider constructing a holographic dictionary for asymptotically locally

Schrödinger spacetimes with z = 2, thus extending the work of the previous chapter beyond

the z < 2 regime considered there. The analysis in this chapter thus follows very closely that

undertaken in chapter 2; we consider the same massive vector model and impose the same gauge

choices that we made there. Consequently the requisite review material for this chapter is already

presented in chapter 2. However, for completeness, we briefly recall the key points of this review

below.

Recalling from the previous chapter, the metric for a (ds + 3)-dimensional Schrödinger

spacetime is,

ds2 = −dt
2

r2z
+

2dtdξ + d~x2
ds

+ dr2

r2
, (3.1)

where the boundary lies at r → 0 and the number of spatial boundary dimensions is ds. The

isometry t → λzt, x → λx, ξ → λ2−zξ, r → λr realises the anisotropic scaling symmetry, and

there are isometries ~x→ ~x+ ~vt, ξ → ξ − ~v · ~x− 1
2
v2t, which realise the Galilean boost symmetry.

Notably in this chapter, where we consider z = 2, we see that the scaling symmetry does not act

on ξ.

As in the previous chapter, our aim is to formulate a holographic dictionary for asymptotically

locally Schroedinger spacetimes with z = 2, based on the anisotropic scaling symmetry, using a

frame formalism as in the Lifshitz case [41, 45]. For z = 2, focusing on the anisotropic scaling

symmetry gives a qualitatively different dictionary to the dictionary constructed in the previous

chapter. In the relativistic theory, the usual scaling symmetry acts non-trivially on all the

boundary coordinates, so one thinks of the dual as living in the (t, ξ, ~x) space. Bulk fields are

dual to local operators O(t, ξ, ~x). The anisotropic scaling, by contrast, does not act on the ξ

direction. Furthermore, as has been known since [42], the asymptotic behaviour of bulk fields, and

hence the scaling dimension of dual operators, depends on kξ. (Some of these will be irrelevant

operators, whose sources we must either set to zero, or deal with perturbatively) Hence if we

want to focus on the anisotropic scaling symmetry, the natural dual is a field theory living in

the (t, ~x) space, with local operators Okξ(t, ~x). To relate bulk fields holographically to these

operators, we need to expand the bulk fields in Fourier modes in the ξ direction.16 The situation

16For scalar fields, this is a straightforward Fourier expansion. For tensor fields, we also need to perform a
decomposition into components along ξ and in the transverse space. This is complicated by the null nature of ξ in
the background (3.1), as we discuss below.
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is analogous to AdS2 × Rd backgrounds, where the dual is a theory with local operators Ok(t)
whose dimensions depending on momentum in the spatial directions [86]. The limit as z → 2

from below is analogous to the z →∞ limit of Lifshitz, which gives the AdS2 × Rd geometry.

As we remarked in the previous chapter, the ξ direction is at least asymptotically null, so we

cannot decompose the metric in a standard Kaluza-Klein reduction. However, since our boundary

conditions are naturally formulated in terms of frame fields, we can decompose these into their

component along dξ and their components along the remaining boundary directions. The key

distinction between the holographic dictionary for z = 2 will be then that the zero-modes (under

∂ξ) in the leading terms in the frame fields in the bulk will be interpreted as sources for the stress

energy complex in the non-relativistic field theory living in just the (t, ~x) directions, and not the

ξ directions. We will therefore primarily focus on understanding holography for z = 2 for the

sector with kξ = 0, that is, for ξ-independent sources. This class includes arbitrary sources for

the stress energy complex in the non-relativistic field theory.

As in chapter 2 we consider the metric (3.1) as a solution of the massive vector theory

introduced in [42], whose action we recall is given by

S = − 1

16πG

∫
dds+3x

√−g
(
R− 2Λ− 1

4
FµνF

µν − 1

2
m2AµA

µ

)
− 1

8πG

∫
dds+2x

√
−hK, (3.2)

with

m2 = z(z + ds), Λ = −(ds + 2)(ds + 1)

2
. (3.3)

Again, ds labels the number of boundary spatial directions. The equations of motion that follow

are

Rµν −
1

2
Rgµν + Λgµν =

1

2

(
F ρ

µFρν −
1

4
F 2gµν

)
+
m2

2

(
AµAν −

1

2
A2gµν

)
, (3.4)

∇µF
µν = m2Aν . (3.5)

The metric (3.1) is a solution of (3.4), (3.5) supported by the matter field

A = αr−zdt, α =

√
2(z − 1)

z
. (3.6)

We will henceforth set z = 2, which implies α = 1.
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Once again we choose a set of frame fields eA, A = +,−, I, r such that the metric is

ds2 = gABe
AeB = −e+e+ + 2e+e− + eIeI + erer. (3.7)

In the background (3.1) at z = 2, e+ = r−2dt, e− = dξ, eI = r−1dxi, so that each of the frame

fields has a well-defined scaling with r at small r, near the boundary. We adopt exactly the same

choice of gauge for the frame fields and the matter field as seen in the previous chapter. These

comprise a radial gauge choice er = r−1dr, and the further restriction that the vector field can be

written as,

A = e+ + ψe− + sre
r, (3.8)

where ψ is the single scalar degree of freedom in the boundary conditions for the matter field and

sr labels the radial component of the field which is left arbitrary here. Again, we will find that

the operator dual to ψ is irrelevant, so we always set the source part to zero.

In the previous chapter, a spacetime was defined to be asymptotically locally Schrödinger if

the metric and massive vector can be written as in (3.7, 3.8) with

e+ = r−z ê+, e− = rz−2ê−, eI = r−1êI , (3.9)

and the scalar ψ = r∆−ψ̂ for some exponent ∆−, where the fields êA, ψ̂ are arbitrary functions of

t, ξ, ~x, r with finite limits as r → 0. Note we do not directly impose a boundary condition on sr,

since it does not represent an independent degree of freedom; it is determined algebraically by

the other components.

This definition requires modification for the case of z = 2. As we argued above, we think

of the dual field theory as living in just the t, ~x directions. As a result, it is just the Fourier

zero modes of the frame fields that we expect to provide geometrical boundary data, that is the

sources for the dual stress tensor complex living in the t, ~x directions. We therefore say that a

spacetime is asymptotically locally Schrödinger for z = 2 if the Fourier zero modes of the frame

fields satisfy

e+
kξ=0 = r−2ê+, e−kξ=0 = ê−, eIkξ=0 = r−1êI . (3.10)

The non-zero modes of the frame fields will have fall-offs that depend on the momentum kξ in

the ξ direction (we will see this explicitly in the linearised analysis in section 3.2). These will be

dual to some additional tensor operators in the field theory. We do not make any assumption
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about the boundary conditions for these fields in defining our asymptotically locally Schrödinger

boundary conditions, but clearly some of them will be irrelevant operators, and to satisfy our

boundary condition (3.10) we will need to set the sources for the irrelevant operators to zero.

In section 3.1.1, we discuss the analogue of Kaluza-Klein reduction in our frame formalism.

In section 3.1.2, we review the structure of the stress energy complex for non-relativistic theories.

In section 3.2 we set up the linearised analysis around the Schrödinger solution for z = 2 in

general dimensions. Section 3.3 discusses the case of two boundary spatial dimensions, ds = 2,

identifying the linearised modes with sources and vevs for the stress energy complex. Section 3.4

discusses the special case ds = 0, including its degenerate Ward identities, and compares it to

previous work. In section 3.5, we discuss the asymptotic expansion for z = 2, and show that a

solution can be obtained in an expansion in powers of r,17 and that all divergences in the action

can be eliminated by adding boundary counterterms which are local functions of the boundary

data. We summarise and discuss future directions in section 3.6.

3.1.1 Kaluza-Klein decomposition

Since we want to relate the bulk theory to a boundary theory living just in the t, ~x directions, it

is useful to set up a decomposition of the bulk fields in the analogue of Kaluza-Klein reduction

on the ξ direction. It is natural to decompose the frame fields as

êA = êAa dx
a + êAξ dξ, (3.11)

where a runs over t, xi. This decomposition is the analogue in our frame language of the Kaluza-

Klein decomposition of the metric. Each of these components should then be expanded in Fourier

components with respect to ξ.

In the bulk, there are diffeomorphisms which preserve our choice of radial gauge, generated

by the vector field

χ = χα∂α + σr∂r −
1

2
r2∂iσ∂i −

1

2
r2∂ξσ∂t −

1

2
(r2∂tσ + ln r∂ξσ)∂ξ, (3.12)

where χα, σ are functions of the boundary coordinates t, ~x, ξ. We use α to denote all nonradial

17In our analysis, this is traded for an expansion in eigenvalues of a suitable dilatation operator, but the existence
of a dilatation expansion implies the existence of an expansion in powers of r, since each term in the dilatation
expansion has an expansion in positive powers of r.
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spacetime coordinates; thus α runs over t, xi, ξ. These generate the diffeomorphisms χα of the

boundary coordinates, which act on the boundary frame fields by the Lie derivative δêA = LχêA,

and an anisotropic Weyl transformation σ on the boundary, which acts as δê+ = 2σê+, δê− =

0, δêI = σêI . In the context of our Kaluza-Klein decomposition, it is natural to decompose χα

and σ in Fourier modes in ξ. The zero modes in the Fourier decomposition of χa, σ correspond

to diffeomorphisms and a Weyl transformation of the field theory background, while that of χξ is

naturally interpreted as a gauge transformation of the vector ê−a , ensuring that the dual operator

is indeed a conserved current.

For the non-zero modes, in a Kaluza-Klein reduction the usual approach is to gauge-fix them.

That is, since we are singling out a direction to reduce along, it is natural to use a formalism

which is covariant in the lower dimensional space, but where we fix symmetries which depend on

the additional direction. In the usual Kaluza-Klein reduction, where we split the metric into a

lower-dimensional metric, vector field and scalar, the usual gauge fixing is to set the non-zero

modes of the vector and scalar to zero, so that the physical content is a massive tensor field.

Analogously, in our frame based description, we will gauge fix the diffeomorphisms χα by setting

the non-zero modes of êAξ to zero. That is, we use the diffeomorphism symmetry to make the

components along the extra dimension constant in ξ. We also have non-zero modes in the Weyl

scaling σ, but we will not gauge fix this as the scaling symmetry may develop an anomaly.

The zero modes of êAa for A = +, I then define the boundary geometry, which provides a

background for the dual field theory living in the t, ~x directions, and will correspond to the sources

for the stress complex in the field theory, which will be reviewed in the next subsection. The

zero mode of ê−a is a one-form vector field which provides the source for the conserved current

associated to particle number. The zero modes of êAξ , which were interpreted as geometrical

in the relativistic context, and in our previous discussion for z < 2, are in this decomposition

instead just sources for additional scalar operators, as is ψ̂.18 After the gauge-fixing above, the

non-vanishing components for the ξ-dependent modes are the êAa , which are sources for additional

massive vector operators in the dual field theory, with kξ-dependent dimensions. Our analysis

will focus mainly on the zero-modes, as in the usual Kaluza-Klein decomposition.

18The êIξ are sources for operators which are scalars under coordinate transformations, but vectors under frame
rotations.
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3.1.2 Stress energy complex

We reviewed the structure of the stress energy complex in a non-relativistic theory in chapter 2.19

We present the important observations again here. In a non-relativistic theory the components of

the stress energy complex satisfy the conservation equations,

∂tE + ∂iE i = 0, (3.13)

∂tPi + ∂jΠ
j
i = 0. (3.14)

∂tρ+ ∂iρ
i = 0. (3.15)

Where we recall that E is the energy density, E i is the energy flux, Pi is momentum density, Πij is

the spatial stress tensor, ρ is particle number and finally ρi is particle number flux (we recall that

the particle number is conseved in a Schrödinger theory). The scale invariance for z = 2 implies

2E + Πi
i = 0. E has dimension 2 +ds, which implies E i has dimension 3 +ds, and Pi has dimension

1 + ds, which implies Πij has dimension 2 + ds. The particle number has dimension zero, so

its density ρ has dimension ds, so ρi has dimension 1 + ds. In fact, in a non-relativistic theory

ρi = Pi = ρvi, where vi is the local velocity of the particles, so ρi and Pi are not independent

operators.

The sources for these operators are then the zero-mode components of the frame fields, êAa :

the components of ê+ provide the sources for E , E i; the components of ê− provide the sources for

ρ, ρi; and the components of êI provide the sources for Pi, Πj
i . We can think of E , E i, Pi, Πj

i , as

components of the non-symmetric tensor

T a B =
1√
−h

δ

δeBa
S. (3.16)

The residual gauge symmetry (2.16) corresponds to the fact that there are not independent

physical sources for Pi and ρi, while the symmetry under rotations of the êI corresponds to the

symmetricity of Πij.

There are scalar operators whose sources are êAξ . Because of the relation to the higher

dimensional stress complex, it is natural to refer to these as Eξ, ρξ, and Pξi for A = +,−, I
19In the z < 2 discussion in the previous chapter, we were interested in the stress complex in a higher-dimensional

spacetime with t, ξ, ~x coordinates, but here we are interested in a dual living just in t, ~x, so the relevant stress
tensor complex operators are those appearing in (3.13), (3.14), and (3.15) below.
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respectively, but we stress again that these are not components of the stress complex in the dual

field theory; they are just some scalar operators (with respect to coordinate transformations; Pξi
is a vector with respect to frame rotations). They have dimensions 4 + ds, 2 + ds, and 3 + ds

respectively. The marginal dimension is 2 + ds, so E i, Eξ and Pξi are irrelevant operators, and as

we will see in the linearised analysis in the next subsection, so is the operator Oψ dual to the

scalar source ψ. For z = 2 the asymptotic expansion only exists if we set the sources for all these

operators to zero. For the scalar operators Oψ, Eξ and Pξi we need to set the sources to zero by

hand. This implies that of the frame fields, only e− is allowed to have a leading component along

dξ. The only irrelevant operator in the stress tensor complex is E i. We can set its source to zero

by adopting the irrotational condition we encountered in the previous chapter,

ê+ ∧ dê+ = 0. (3.17)

3.2 Linearised analysis: generalities

We now turn to a linearised analysis of the equations of motion (3.4,3.5) for z = 2. This will

enable us to confirm several of the features we have asserted in our discussion so far: we will see

how the scaling behaviour of bulk fields depends on the momentum kξ, and we will see that the

set of solutions for kξ = 0 has the expected structure to correspond to the stress tensor complex

and its sources. In this section, we set up the general formalism. In the following two sections we

will discuss ds = 2 and ds = 0 in detail.

The linearised version of our frame fields are, as before, given by (2.27),(2.28) and (2.29).

The linearised fields are then δêAα and the ψ, sr in (3.8). The zero modes in δêAa are assumed

to represent sources for the corresponding components of the stress tensor complex. The zero

modes in δêAξ are sources for scalar operators.

The linearised version of the residual gauge symmetry (2.16) is δê−i → δê−i + β̂i, δêIt → δêIt− β̂i

(where βI = rβ̂i). This implies that the sources for Pi and ρi are not independent, as expected.

The rotation symmetry of the eI also implies that only the symmetric part of δeIj provide

independent sources. The equations of motion are easier to discuss in the metric language, so we

will resolve this gauge symmetry by passing back from the frame fields to the metric and vector

for this linearised analysis.

In the metric language, the linearised perturbations are hµν , aµ. The linearised equations in
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the metric language are as in [41]20

∇µf
µν −∇µ(hµλF ν

λ )−∇µh
βνF µ

β +
1

2
∇λhF

λν = m2aν (3.18)

and

R(1)
µν =

2

d− 2
Λhµν +

1

2
fµλF

λ
ν +

1

2
fνλF

λ
µ −

1

2
FµλFνσh

λσ − 1

2(d− 2)
fλρF

λρgµν

+
1

2(d− 2)
FλρF

ρ
σ h

λσgµν −
1

4(d− 2)
FλρF

λρhµν +
1

2
m2aµAν +

1

2
m2aνAµ, (3.19)

where d = ds + 3 is the dimension of the spacetime, fµν = ∂µaν − ∂νaµ and

R(1)
µν =

1

2
gλσ[∇λ∇µhνσ +∇λ∇νhµσ −∇µ∇νhλσ −∇λ∇σhµν ]. (3.20)

It is convenient to write

htt = r−4Htt, htξ = r−2Htξ, hξξ = Hξξ, (3.21)

hti = r−3Hti hξi = r−1Hξi, hij = r−2Hij, (3.22)

ar = r−1sr at = r−2st aξ = sξ ai = r−1si. (3.23)

Then a given linearised mode will contribute at the same order in r in all the different fields, and

the power of r will correspond to the scaling dimension of the mode. The sr here is the same as

in (3.8), and the other fields are related to the linearised frame fields by

Htt = −2δê+
t + 2r2δê−t , Htξ = −r−2δê+

ξ + δê−ξ + δê+
t , Hξξ = 2r−2δê+

ξ , (3.24)

Hti = −r−1δê+
i + rδê−i + rδêIt , Hξi = r−1δê+

i + r−1δêIξ , Hij = δêIj + δêJi , (3.25)

st = δê+
t , sξ = r−2δê+

ξ + ψ, si = r−1δê+
i . (3.26)

In (3.25) and where appropriate subsequently, the reader should understand δêIt in Hti to stand

for δêIt δIi, where δIi is the Kronecker delta, and similarly for other components with an i index.

20Note that hµν denotes the perturbation of the metric, and indices are raised and lowered with the background
metric, so hµν is the perturbation of the metric with the indices raised, not the perturbation of the inverse metric.
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3.2.1 Flux and inner product

We will identify the modes corresponding to components of the stress tensor by adopting the

approach of [78], computing the symplectic flux at the boundary r = 0, and identifying the modes

canonically conjugate to the sources with the vevs. The appropriate symplectic current for the

Einstein-massive vector theory we are considering was worked out in [79]. It involves combining

the usual gravitational symplectic current jµg with an additional component from the massive

vector field, jµa :

jµ = jµg + jµa . (3.27)

These are respectively given, as before, by (2.50), (2.51). Given the current, the symplectic flux

through the boundary, F , is by definition the pullback of the current to the surface r = 0. As

usual, this is defined by evaluating the pullback at some cutoff surface r = rε and taking the limit

rε → 0, so we write

F = lim
rε→0

i

2

∫
r=rε

dt ddsx dξ
√
γnµjµ, (3.28)

where nµ is the unit outward-pointing normal to the boundary.

We will also be interested in determining which linearised modes are normalizable, to determine

which can be allowed to fluctuate in quantising the bulk theory. This requires us to define a

suitable inner product. The inner product is usually defined in terms of the symplectic current

by considering

({h1, a1}, {h2, a2}) =
i

2

∫
Σ

?j({h1, a1}, {h2, a2}), (3.29)

where j is the symplectic current defined above, ? is the Hodge dual and Σ is a spacelike

surface. However, in the Schrödinger background, there is no natural spacelike surface to consider;

Schrödinger is not stably causal and therefore has no global time function. (The level sets of a

time function would have supplied a natural choice of Σ.)

We will take Σ to be a surface of constant t. We want to argue that this is a natural choice,

as close as we can get to the usual construction in this case. The irrotational condition (3.17)

ensures that even the perturbed spacetime has a foliation, and asymptotically this foliation will be

described by a constant t surface. Also, although this surface is null in the background spacetime,

linear perturbations satisfying our boundary conditions will generically render it timelike.21 From

21The norm of the normal n = dt is n ·n = −r4Hξξ. The leading contribution to Hξξ comes from the source δê+ξ
for Eξ, but this is set to zero by the boundary conditions. We will find in the linearised analysis below that the
leading vev term is the particle number density, which is physically non-negative, so the normal becomes timelike
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an initial condition perspective, the fact that constant t surfaces will continue to foliate the

spacetime under perturbations makes them appealing. Given that they are null in the background,

our remaining concern would be information which propagates ‘parallel’ to the constant t surfaces;

that is, along the ξ direction. However, we work in Fourier modes with constant kξ, and moreover

focus on the sector with kξ = 0 (even setting some kξ 6= 0 components to vanish via gauge choice).

For the crude question we want to ask (for a given mode, is this inner product finite?) this seems

sufficient.

On surfaces of constant t, the expression (3.29) simplifies to

({h1, a1}, {h2, a2}) =
i

2

∫
Σt

drddsxdξ
√
gjt({h1, a1}, {h2, a2}). (3.30)

3.3 Linearised analysis with spatial directions

We now specialise to the case with ds = 2. (We will make some comments on differences for

other values.) In this case, the analysis closely parallels the discussion for z < 2 in the previous

chapter. The main difference is that dependence on the null direction ξ affects the linearised

solutions at leading order, so that we need an independent discussion for the zero modes and the

modes with non-zero kξ. The discussion of the zero modes is most interesting, both because this

sector contains the stress energy complex of the dual field theory and because subtleties such as

anomalies appear only in this sector.

As in the previous chapter, we are interested in identifying the modes corresponding to

sources and vevs of dual operators. In many cases, this identification can be made simply using

the scaling dimensions of the modes. Otherwise we use the flux to identify the vev as the mode

canonically conjugate to the source following [78]. We consider first constant modes, independent

of the boundary directions, to identify all sources and vevs, and then verify that they satisfy

appropriate Ward identities in the non-constant cases.

We will discuss the case where the fields are independent of spatial coordinates xi. The

rotation symmetry in these directions is then unbroken, so we can decompose the linearised fields

into a tensor, vector and scalar part with respect to this linearised symmetry. Below we will

treat these initially for constant modes and then including dependence on t, ξ. To make this

decomposition we should further decompose Hij into a trace and a trace free part, Hij = kδij+H̄ij ,

unless the particle number density vanishes.
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where H̄ i
i = 0. The tensor mode is H̄ij. The vector modes are Hti, Hξi and si. The scalar modes

are Htt, Htξ, Hξξ, k, st, sξ and sr (the last is determined algebraically in terms of the other

modes). We will always assume the t, ξ dependence is harmonic, eiωt+ikξξ, so in writing equations

we will make the replacements ∂t → iω, ∂ξ → ikξ.

The extension to include dependence on the xi is a straightforward extension of the calculation

for z < 2 carried out in chapter 2, so it is postponed to appendix A.

3.3.1 Tensor modes

The tensor equation of motion is

r2H̄ ′′ij − 3rH̄ ′ij − (k2
ξ + 2kξωr

2)H̄ij = 0. (3.31)

This is simpler than the equation in the z < 2 case, so it can be solved in closed form for arbitrary

kξ, ω. For kξ = 0, the solution is simply

H̄ij = H̄
(0)
ij + H̄

(4)
ij r

4, (3.32)

corresponding to the source and vev for the trace free part of the spatial stress tensor Πij. For

non-zero kξ, the solution is

H̄ij = H̄
(−)
ij r2Jν(−i

√
2kξωr) + H̄

(+)
ij r2Yν(−i

√
2kξωr), (3.33)

where Jν and Yν are Bessel functions of the first and second kind and ν =
√

4 + k2
ξ . These modes

are the source and vev for some tensor operator; the asymptotics r2±ν tell us that this is an

operator of dimension 2 + ν. This is an irrelevant operator for all kξ > 0.

3.3.2 Vector modes

The vector equations of motion are

r2s′′i − 3rs′i − [5 + k2
ξ + 2kξωr

2]si + 2rH ′ξi + 2Hξi = 0, (3.34)

kξ[r(H
′
ξi +H ′ti) + (Hξi −Hti − 2si)] + ωr2[rH ′ξi +Hξi] = 0, (3.35)

r2H ′′ξi − rH ′ξi − (3 + r2kξω)Hξi + k2
ξHti = 0, (3.36)
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and

r2H ′′ti − 5rH ′ti + [5− k2
ξ − r2kξω]Hti

+ 2[5si −Hξi − r(si +Hξi)
′] + (r2kξω + r4ω2)Hξi = 0. (3.37)

3.3.2.1 Zero modes

For kξ = ω = 0, (3.35) is trivially satisfied, and we solve (3.34,3.36,3.37). The solutions are

obtained as the limit as z → 2 of the solutions in chapter 2:

si = s
(−)
i r−1 +H

(+)
ξi r

3 + s
(+)
i r5, (3.38)

Hti = −s(−)
i r−1 +H

(−)
ti r −H(+)

ξi r
3 +H

(+)
ti r5, (3.39)

Hξi = (H
(−)
ξi + s

(−)
i )r−1 +H

(+)
ξi r

3. (3.40)

We have chosen to define and normalise the independent modes so that the solutions with a (−)

superscript correspond to the sources, coming from the constant modes in the frame fields: s
(−)
i

is the source term for the energy flux E i, H(−)
ξi is the source term for the extra vector operator

Pξi , and H
(−)
ti is the source term for the momentum density Pi = ρi. The modes with a (+)

superscript should then correspond to the vevs of these operators. By dimensions alone we see

that 〈Pi〉 ∼ H
(+)
ξi . The vevs 〈E i〉 and 〈Pξi 〉 should be related to H

(+)
ti and s

(+)
i .

For kξ = 0, the flux can also be smoothly obtained as the limit z → 2 of the results in the

previous chapter:

F = −i
∫
r=0

dt d2x dξ

[
H

(−)
ξi ∧ (2H

(+)
ti − s(+)

i ) + 2H
(−)
ti ∧H(+)

ξi

+ s
(−)
i ∧ (2H

(+)
ti + 2s

(+)
i )

]
, (3.41)

where A ∧ B = A1B2 − A2B1, with 1,2 labelling the two linearised solutions which define the

current. This enables us to identify, up to an overall normalization which we neglect for simplicity,

〈Pi〉 = 2H
(+)
ξi , 〈Pξi 〉 = 2H

(+)
ti − s(+)

i , 〈E i〉 = 2H
(+)
ti + 2s

(+)
i . (3.42)

For non-zero ω, the solution is modified first in that (3.35) is no longer trivially satisfied; it

sets H
(+)
ξi = 0, corresponding to the expected Ward identity ∂tPi = 0. Secondly, there is an ω2
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term in (3.37), which implies the solution is modified by subleading contributions. In this case

there is a single subleading contribution. The solution is

si = s
(−)
i r−1 + s

(+)
i r5, (3.43)

Hti = −s(−)
i r−1 +H

(−)
ti r +

1

4
ω2H

(−)
ξi r

3 +H
(+)
ti r5, (3.44)

Hξi = H
(−)
ξi r

−1. (3.45)

3.3.2.2 Non-zero kξ

For non-zero kξ, the leading-order solution with ω = 0 can be written as

Hξi = H
(diff)
ξi r−1 + r1−νH(−)

ξi + r1+νH
(+)
ξi + (ν − 2)k2

ξH
(3−)
ξi r3−ν + (ν + 2)k2

ξH
(3+)
ξi r3+ν , (3.46)

si = r1−νH(−)
ξi + r1+νH

(+)
ξi

− r3−νH(3−)
ξi [24(ν − 2) + k2

ξ (ν − 8)]− r3+νH
(3+)
ξi [24(ν + 2) + k2

ξ (ν + 8)], (3.47)

Hti = −r1−νH(−)
ξi − r1+νH

(+)
ξi

− r3−νH(3−)
ξi [12(ν − 2) + k2

ξ (ν − 6)]− r3+νH
(3+)
ξi [12(ν + 2) + k2

ξ (ν + 6)], (3.48)

where ν is as before. We see that we have a source and a vev for an operator of dimension 1 + ν,

and an operator of dimension 3 + ν. The latter is irrelevant for all kξ > 0, the former is relevant

for k2
ξ < 5. The mode H

(diff)
ξi whose dimension is independent of kξ is a pure diffeomorphism.

We see that this mode corresponds to a non-zero mode of δêIξ , as expected. As argued in section

3.1.1, the natural approach is to gauge-fix these ξ-dependent diffeomorphisms by setting this

mode to zero. The physical content in this non-zero mode sector is thus a pair of vector operators

of dimensions 1 + ν, 3 + ν. Including non-zero ω will lead to an infinite series of subleading

corrections in powers of kξωr
2.
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3.3.3 Scalar modes

We consider now the scalar modes Htt, Htξ, Hξξ, k, sr, st, sξ. They are governed by the equations

0 =
(
kξ + 2ωr2

)
Hξξ − 2kξk + kξrs

′
t − 2kξst + (kξ + ωr2)rs′ξ − i

(
k2
ξ + 2kξωr

2 + 8
)
sr, (3.49)

0 = − 2rH ′ξξ +

(
1

2
ω2r4 − 2

)
Hξξ − 3rH ′tξ − r2kξωHtξ +

1

2
k2
ξHtt

− 3rk′ −
(
k2
ξ + 2kξωr

2
)
k + [rs′ξ + 4sξ − ikξsr], (3.50)

0 =
ω

2
rH ′ξξ +

(
1

2
kξr
−2 +

3

2
ω

)
Hξξ +

(
ω

2
− 1

2
kξr
−2

)
rH ′tξ

− 1

2
kξr
−2rH ′tt + ωrk′ + r−2kξ[Htt − k + st]− ωsξ − 4ir−2sr, (3.51)

0 = − 1

2
ωr2rH ′ξξ −

(
ωr2 +

kξ
2

)
Hξξ +

1

2
kξrH

′
tξ + kξrk

′, (3.52)

0 =
1

2
r2H ′′ξξ + r2H ′′tξ +

1

2
r2H ′′tt + r2k′′ − 1

2
rH ′ξξ − 4rH ′tξ −

7

2
rH ′tt + 6Htt − 2rk′

−
(
k2
ξ + 2kξωr

2 + ω2r4
)
k − 2rs′t + 12st − rs′ξ + 4sξ + i

(
kξ + 2ωr2

)
sr, (3.53)

0 = r2H ′′ξξ + rH ′ξξ − 4Hξξ − 2k2
ξk, (3.54)

0 = r2H ′′ξξ + 2r2H ′′tξ + r2k′′ +
(
ω2r4 − 4

)
Hξξ − 6rH ′tξ + k2

ξHtt

− 2rH ′ξξ − 3rk′ −
(
k2
ξ + 2kξωr

2
)
k − 2kξωr

2Htξ + 2[ikξsr − rs′ξ + 4sξ]. (3.55)

In addition, we have the radial-component gravitational constraint equations:

0 = r2s′′ξ + 4Hξξ + k2
ξst + 3rs′ξ + 2rH ′ξξ −

(
kξωr

2 + 8
)
sξ + ikξ(2sr − rs′r), (3.56)

0 = r2s′′ξ + r2s′′t − kξωr2st +
(
ω2r4 − 8

)
sξ − 3rs′ξ − 5rs′t

+ rH ′ξξ − 2rk′ + 2i
(
2kξ + ωr2

)
sr − i

(
kξ + ωr2

)
rs′r, (3.57)

0 =
1

2
r2H ′′ξξ +

1

2
r2H ′′tξ + r2k′′ − 3

2
rH ′tξ − 3rk′ −

(
k2
ξ + kξωr

2
)
k. (3.58)

3.3.3.1 Zero modes

For kξ = ω = 0, (3.49,3.51,3.52) are automatically satisfied if sr = 0, and (3.56,3.57,3.58) are

non-trivial equations. The solution for the scalar modes is not a smooth limit of the solution in

chapter 2, as that solution involved factors of (z − 2)−1, so it does not have a smooth limit. This

arises because some powers of r in the mode solution which are distinct for z 6= 2 coincide for
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z = 2. As a result the solution involves logarithms. The solution is

sr = 0, (3.59)

Hξξ = 2H
(−)
ξξ r

−2 +H
(+)
ξξ r

2, (3.60)

sξ = r−2(s
(−)
ξ +H

(−)
ξξ ) +H

(+)
ξξ r

2 + s
(4)
ξ r4, (3.61)

k =
1

3
s

(−)
ξ r−2 + 2k(0) +

1

2
H

(+)
ξξ r

2 + k(4)r4, (3.62)

Htξ = −r−2(H
(−)
ξξ +

2

3
s

(−)
ξ ) + s

(0)
t +H

(0)
tξ −

1

2
H

(+)
ξξ r

2 + (
2

3
s

(4)
ξ − k(4))r4, (3.63)

st = −1

3
s

(−)
ξ r−2 + s

(0)
t −

3

2
H

(+)
ξξ r

2 − (k(4) + s
(4)
ξ )r4 + s

(+)
t r6, (3.64)

Htt =
1

3
s

(−)
ξ r−2 − 2s

(0)
t −H(+)

ξξ r
2(1 + 4 log r) + 2H

(−)
tt r2

+

(
2k(4) − 10

3
s

(4)
ξ

)
r4 +H

(+)
tt r6. (3.65)

In the familiar AdS case, there are logarithmic terms in the Fefferman-Graham expansion for

even boundary dimension, which are related to the anomaly in the scaling symmetry [87].22 One

might expect that the logarithm appearing in (3.65) would similarly contribute to an anomaly

in the anisotropic scaling symmetry here. However, the anomaly is determined by the variation

of the action under the scaling symmetry δσS, and because the background metric has gtt = 0,

Htt cannot contribute to the action at linear order. Thus there is no anomaly term coming from

(3.65). The logarithmic term will however have implications for boundary conditions, as in the

case of a scalar field at the BF bound, see e.g. [89]. The appearance of the logarithm implies that

the only scale-invariant boundary condition is one which fixes the coefficient of the logarithm

H
(+)
ξξ . If we impose a boundary condition fixing H

(−)
tt at some scale, this evolves into a mixed

boundary condition under scale transformations: r → λr maps H
(−)
tt → λ−2(H

(−)
tt + 2 log λH

(+)
ξξ ).

This is surprising because H
(+)
ξξ corresponds to a component of the stress energy complex, whereas

we had been assuming that our boundary conditions would fix the boundary geometry, encoded

in the (−) modes. We will discuss these issues below after considering the flux and inner product.

We calculate the flux to identify the canonically conjugate pairs of modes and hence identify

the components of the stress tensor complex. The flux is a smooth limit of the expression for

22As noted in [88], the log terms in the FG expansion are proportional to the variation of the integrated anomaly.
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z < 2 in the previous chapter,

F = i

∫
r=0

dt ddsx dξ

[
s

(0)
t ∧

(
2k(4) − 5

3
s

(4)
ξ

)
+H

(0)
tξ ∧

(
2k(4) +

4

3
s

(4)
ξ

)
+ k(0) ∧

(
−4k(4) +

10

3
s

(4)
ξ

)
− 2H

(−)
tt ∧H(+)

ξξ

−H(−)
ξξ ∧

(
2H

(+)
tt + s

(+)
t

)
− 3s

(−)
ξ ∧ s(+)

t

]
. (3.66)

This implies the identifications

〈E〉 = −2k(4) +
5

3
s

(4)
ξ , (3.67)

and

〈Πi
i〉 = 〈Π1

1〉+ 〈Π2
2〉 = 4k(4) − 10

3
s

(4)
ξ . (3.68)

The Ward identity from the scaling invariance is

2E + Πi
i = 0 (3.69)

which is indeed satisfied by these vevs. This confirms that, as argued above, the scale anomaly

vanishes for these modes despite the presence of logarithms in the radial profiles. The other vevs

are

〈Eξ〉 = 2H
(+)
tt + s

(+)
t , (3.70)

〈ρ〉 = 2H
(+)
ξξ , 〈ρξ〉 = −2k(4) − 4

3
s

(4)
ξ , (3.71)

and

〈O〉 = 3s
(+)
t . (3.72)

We would now like to consider the possible boundary conditions. To make the flux through

the boundary vanish, boundary conditions should fix one of each conjugate pair in (3.66).

In addition, we want to fix the non-normalizable modes for which the inner product (3.29)

diverges. For kξ = 0, the inner product is finite in the UV provided we set H
(−)
ξξ = s

(−)
ξ = 0.

If we allow for non-zero kξ, to cancel subleading divergences we must set also k(0) = 0. With

the conditions H
(−)
ξξ = s

(−)
ξ = k(0) = 0, the only divergence that is left is proportional to

kξr
−1(H

(+)
ξξ H

(0)
tξ ), so we need at least one of H

(0)
tξ = 0 or H

(+)
ξξ = 0. A consistent choice is then

to set H
(−)
ξξ = s

(−)
ξ = s

(0)
t = k(0) = H

(0)
tξ = 0; then both H

(−)
tt and H

(+)
ξξ are normalizable, and

we can choose to fix either of them. We would originally have thought we wanted to fix H
(−)
tt ,

88



Operator Source Expectation value

E δê+
t = s

(0)
t −2k(4) + 5

3
s

(4)
ξ

E i δê+
i = s

(−)
i 2H

(+)
ti + 2s

(+)
i

Eξ δê+
ξ = H

(−)
ξξ 2H

(+)
tt + s

(+)
t

ρ δê−t = H
(−)
tt 2H

(+)
ξξ

Pi = ρi δê−i = H
(−)
ti 2H

(+)
ξi

ρξ δê−ξ = H
(0)
tξ −2k(4) − 4

3
s

(4)
ξ

Π1
1 + Π2

2 δêIi = k(0) 4k(4) − 10
3
s

(4)
ξ

Π1
1 − Π2

2, Π1
2 δêIj = H̄

(0)
ij H̄

(4)
ij

Pξi δêIξ = H
(−)
ξi 2H

(+)
ti − s(+)

i

O s
(−)
ξ 3s

(+)
t

Table 2: The identification of linearised modes with sources and vevs for the operators in the
dual field theory. Note that the sources are the zero modes of the indicated frame field component.

corresponding to fixing the boundary geometry, but as noted above, this is not a scale invariant

boundary condition; the only scale invariant boundary condition is to fix instead H
(+)
ξξ = 0. In

the field theory, this is fixing the particle number density to zero, rather than its source.

For non-zero ω, (3.49,3.51,3.52) become non-trivial. One of these fixes sr; the other two

linear combinations give the expected Ward identities ∂tE = 0 and ∂tρ = 0, setting H
(+)
ξξ = 0 and

k(4) = 5
6
s

(4)
ξ . This confirms the identification of the modes corresponding to components of the

stress tensor, which is summarised in table 1.

For ω = 0, fixing the particle number to zero was a natural choice of boundary condition,

as it preserved scale invariance, but other possibilities exist. The particle number at non-zero ω

vanishes as a result of the Ward identity, so we no longer have any freedom in choosing it.

There are also subleading terms in ω2 in solving the other equations. As in the vector case,
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there are a finite number of subleading terms, and the full solution for non-zero ω is

sr = −iω
2

(
1

2
(H

(−)
ξξ − s

(−)
ξ ) + s

(4)
ξ r6

)
, (3.73)

Hξξ = 2H
(−)
ξξ r

−2, (3.74)

sξ = r−2(s
(−)
ξ +H

(−)
ξξ ) + s

(4)
ξ r4, (3.75)

k =
1

3
s

(−)
ξ r−2 + 2k(0) − 1

6
H

(−)
ξξ ω

2r2 +
5

6
s

(4)
ξ r4, (3.76)

Htξ = −r−2(H
(−)
ξξ +

2

3
s

(−)
ξ ) + s

(0)
t +H

(0)
tξ −

1

6
s

(+)
ξ r4 +

1

3
H

(−)
ξξ ω

2r2, (3.77)

st = −1

3
s

(−)
ξ r−2 + s

(0)
t −

11

6
s

(4)
ξ r4 + s

(+)
t r6 +

1

48
(5H

(−)
ξξ + 3s

(−)
ξ )ω2r2 +

3

48
ω2r8s

(+)
ξ , (3.78)

Htt =
1

3
s

(−)
ξ r−2 − 2s

(0)
t + 2H

(−)
tt r2 − 5

3
s

(4)
ξ r4 +H

(+)
tt r6 +

1

24
(2H

(−)
ξξ − s

(−)
ξ )ω2(1 + 4 log r)r2

− 1

2
k(0)ω2r4 +

1

96
H

(−)
ξξ ω

4(1− 4 log r)r6 +
1

72
ω2s

(+)
ξ r8. (3.79)

We see that since the Ward identity sets H
(+)
ξξ = 0, the previous logarithmic term is absent for

non-zero ω, but there are new derivative terms with logarithms. As before, they will not give an

anomaly for the scaling symmetry, as Htt cannot contribute to the action. These now involve

the (−) modes, which we are used to thinking of as sources, so it is not worrying that the scale

invariant boundary condition is to fix these modes.

If we study the scalar system for ds = 1 or ds = 3, the logarithmic term involving H
(+)
ξξ in the

constant modes is absent, but this logarithmic term in the ω-dependent modes persists.

3.3.3.2 Non-zero kξ

For non-zero kξ, the leading-order solution with ω = 0 has three independent bulk diffeomorphism

modes with dimensions which are independent of kξ, and six modes whose dimensions depend on

kξ. The bulk diffeomorphism modes are generated by

χ = rχr0∂r +

(
χt0 −

i

2
kξr

2χr0

)
∂t + (χξ − ikξχr0 log r)∂ξ. (3.80)
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The resulting modes are

sr = −ikξχr0, (3.81)

st = −2χr0, (3.82)

sξ = ikξχ
t
0r
−2 +

1

2
k2
ξχ

r
0, (3.83)

Htt = 4χr0, (3.84)

Htξ = −ikξχt0r−2 − 1

2
(4 + k2

ξ )χ
r
0 + ikξχ

ξ
0 + k2

ξ log rχr0, (3.85)

Hξξ = 2ikξχ
t
0r
−2 + k2

ξχ
r
0, (3.86)

k = −χr0. (3.87)

As argued in section 3.1.1, we can gauge-fix the boundary diffeomorphism symmetry by setting δê+
ξ

and δê−ξ to zero; this corresponds to setting χt0 and χξ0 to zero. We see that there is a logarithmic

term involving χr0; as this is now in Htξ, it may contribute to the anomaly. However, we see

from (3.69), (3.68) (3.67) than only contributions to k(4) and s
(4)
ξ participate in the corresponding

Ward identity, and, because these coefficients are zero in the solution (3.81)-(3.87), the anomaly

must vanish.

The physical degrees of freedom in the non-zero momentum sector are in the other six modes.

The scaling of the fields for these modes is r∆ where ∆ satisfies a sixth-order equation

3∆6 − 36∆5 + (120− 9k2
ξ )∆

4 + 72k2
ξ∆

3+

(9k4
ξ − 112k2

ξ − 528)∆2 − 4(9k4
ξ + 32k2

ξ − 144)− (3k6
ξ + 8k4

ξ − 272k2
ξ ) = 0. (3.88)

The solutions to (3.88) can be found in closed from, although the explicit expressions are not

very illuminating. They are plotted in figure 15. The solutions come in pairs which sum to 4, so

we can identify them as the sources and vevs for three scalar operators. Two of these operators

are irrelevant for all kξ > 0, and the third becomes irrelevant at some critical value of kξ, as we

can see from figure 15.

3.4 Linearised solutions for ds = 0

We now consider the linearised solutions for ds = 0. This case will clearly have a different

behaviour from our present perspective: the absence of spatial directions modifies the structure
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Figure 15: Scaling dimensions of the non-diffeo modes in the scalar sector for ds = 2, z = 2 as a

function of kξ. Pairs of dimensions that add to four are plotted in the same color, using solid and

dashed lines.

of the linearised equations, and implies that the stress energy complex simplifies, as there are

now no spatial fluxes. This case has also been extensively studied in previous work [35–38], under

the name of null warped AdS3, so we consider it in detail to make contact between our analysis

and previous work. In this case, we only have the analogue of the scalar modes in the above

discussion. However, the Ward identities in this case become degenerate, so new behavior arises

which was not present in the ds = 2 case.

The equations of motion read

0 = (kξ + 2r2ω)Hξξ − 2kξst − i(4 + k2
ξ + 2ωkξr

2)sr + (kξ + r2ω)rs′ξ + kξrs
′
t, (3.89)

0 = 2kξHtt + 2kξst − 2r2ωsξ − 4isr + (kξ + 3r2ω)Hξξ

+ ωr3H ′ξξ + (r2ω − kξ)rH ′tξ − kξrH ′tt, (3.90)

0 = ωr3H ′ξξ + (kξ + 2r2ω)Hξξ − kξrH ′tξ, (3.91)

0 = 4sξ +Hξξ(r
4ω2 − 2)− 2kξr

2ωHtξ + k2
ξHtt − 2ikξsr − 2rH ′ξξ − 2rH ′tξ + 2rs′ξ, (3.92)

0 = 16st + 2Hξξ + 4sξ + rH ′ξξ − 4rH ′tξ − 5rH ′tt + 8Htt + 2isr(kξ + 2r2ω)

− 2rs′ξ − 4rs′t + 2r2H ′′tξ + r2H ′′ξξ + r2H ′′tt, (3.93)

0 = 3rH ′ξξ + r2H ′′ξξ, (3.94)

0 = 4Hξξ + k2
ξst − (4 + ωkξr

2)sξ + 2rH ′ξξ − ikξrs′r + rs′ξ + r2s′′ξ , (3.95)

0 = 2ikξsr − kξr2ωst + (r4ω2 − 4)sξ + rH ′ξξ − i(kξ + r2ω)rs′r

− rs′ξ − 3rs′t + r2s′′ξ + r2s′′t . (3.96)
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For constant modes, (3.89), (3.90), (3.91) trivialise, becoming simply sr = 0. A full solution

can be found by solving (3.92)-(3.96). For general kξ, ω, a complete set of equations is given by

(3.89)-(3.94), and we can easily check that (3.95) and (3.96) follow as a consequence of them.

3.4.1 Zero modes

The solution for constant modes is again not a smooth limit of the one in the previous chapter

because of the appearance of factors of (z − 2)−1, which are replaced by logarithmic terms. The

solution is

Hξξ = 2H
(−)
ξξ r

−2 +H
(+)
ξξ , (3.97)

Htξ = −H(−)
ξξ r

−2 + s
(0)
t +H

(0)
tξ +H

(+)
ξξ (1 + log r) + 2s

(+)
ξ r2, (3.98)

Htt = −2s
(0)
t +H

(+)
ξξ (1 + 2 log r) + 2H

(−)
tt r2 − 4s

(+)
ξ (1 + 2 log r)r2 +H

(+)
tt r4, (3.99)

sr = 0, (3.100)

st = −1

3
s

(−)
ξ r−2 + s

(0)
t −H(+)

ξξ log r − s(+)
ξ r2 + s

(+)
t r4, (3.101)

sξ = (s
(−)
ξ +H

(−)
ξξ )r−2 +H

(+)
ξξ + s

(+)
ξ r2. (3.102)

As in the higher-dimensional case, we have logarithms. The logarithms in Htt and st cannot

contribute to the anomaly at linear order for the same reason as above: since the background

has gtt = 0, we cannot build a scalar out of Htt or st. The logarithm in Htξ could in principle

contribute to the anomaly, but this is not the case as we shall see below. The logarithms lead to

inhomogeneous transformations under scaling, as in ds = 2. When r → λr, s
(0)
t → s

(0)
t −H(+)

ξξ log λ,

and H
(−)
tt → H

(−)
tt +4s

(+)
ξ log λ. These again have the surprising feature that modes that correspond

to the components of the boundary geometry have an inhomogeneous transformation depending

on vev modes, implying that we cannot have a scale invariant boundary condition that fixes the

boundary geometry.

To determine the identification of the components of the stress energy complex, we calculate

the flux for these constant modes. This is again the z → 2 limit of the previous expression (for

the appropriate definition of the modes),

F = −i
∫
r=0

dt dξ

[
H

(−)
ξξ ∧H

(+)
tt +H

(−)
tt ∧H(+)

ξξ + 2s
(−)
ξ ∧ s(+)

t − 2H
(0)
tξ ∧ s

(+)
ξ

]
. (3.103)
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Note we have redefined the modes here relative to the z < 2 case in order to cleanly separate the

vevs from the sources. This enables us to identify the vevs

〈ρ〉 = H
(+)
ξξ , 〈ρξ〉 = −2s

(+)
ξ , (3.104)

〈Eξ〉 = H
(+)
tt , (3.105)

and

〈O〉 = 2s
(+)
t . (3.106)

Since there is no term in the flux involving s
(0)
t , we conclude that the vev of E vanishes. Moreover,

this allows us to conclude that the Ward identity for the scaling symmetry is non-anomalous

for constant modes. In fact, in the absence of any spatial directions and with z = 2, this Ward

identity is just 2E = A, where A is the anomaly. Our flux calculation shows that E = 0, so it

must be the case that A = 0.

The calculation of the flux also enables us to identify possible boundary conditions consistent

with flux conservation. An analysis of the inner product (3.30) reveals that the leading divergence

in (3.30) is of order r−5 and it involves the modes parametrised byH
(−)
ξξ and s

(−)
ξ . In addition,

there are subleading divergences at order r−3, r−1 and r−1 log r with are proportional to H
(+)
ξξ .

We conclude then that the modes parametrised by H
(−)
ξξ , H

(+)
ξξ and s

(−)
ξ are non-normalizable.

The boundary conditions should fix these modes, and allow the conjugate modes H
(+)
tt , H

(−)
tt and

s
(+)
t to vary. Both H

(0)
tξ and s

(+)
ξ are normalizable, so we can fix either. If we fix H

(+)
ξξ = 0, we

can also fix s
(0)
t in a scale invariant way.

3.4.1.1 Non-zero ω

When we generalise to non-zero ω for kξ = 0, the structure of the linearised solutions is different

from what we might expect. This is because for non-zero ω, the structure of the Ward identities

is qualitatively different from the higher-dimensional case. The Ward identities are

∂tE = 0, ∂tρ = 0, 2E = A, (3.107)

where we allow for a non-zero anomaly in the trace Ward identity. Note that because of the

absence of spatial directions, E and ρ are now just the energy and particle number, rather than
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densities. The first equation says E is a constant. The trace Ward identity will then imply a

restriction on the sources: the term appearing in the anomaly for the trace Ward identity must

also be a constant.23 Any non-zero ω modes in A must vanish for us to be able to consistently

quantise the theory on a given background. The point is that the Ward identities viewed as a

system of linear equations for the non-zero ω modes of the vevs are degenerate, and so they have

no solutions in the inhomogeneous case (with an anomaly source on the right-hand side).

This might seem a remarkably novel feature, but actually the same degeneracy happens for

1+1 dimensional relativistic field theories. There the Ward identities are in general

∂tT
t
t + ∂xT

x
t = 0, ∂tT

t
x + ∂xT

x
x = 0, T tt + T xx = A ∼ R(0), (3.108)

where we have noted that the anomaly in this case is proportional to the Ricci scalar of the

background geometry. These equations are not generically degenerate, but if we consider the

special kinematics where ω = ±k, that is ∂t = ±∂x, then we have T tt = ∓T xt = ±T tx = −T xx , so

the left-hand side of the last equation vanishes, and the anomaly contribution must vanish.

This implies that the metric component huu cannot have a contribution which is just a function

of v and independent of u, and hvv cannot have a component which is just a function of u and

independent of v, where u, v = t±x are light-like boundary coordinates. Physically, this is setting

some potential non-gauge components of the boundary geometry to zero. In general, the boundary

metric in the relativistic 1+1 CFT is pure gauge; by a diffeomorphism and a Weyl transformation

one can set the boundary metric to be flat. Working about a background ds2 = −2dudv, the

diffeomorphisms and conformal transformation generate a linearised perturbation huu = 2∂uξu,

hvv = 2∂vξv, huv = ∂(uξv) + σ. But a component huu which is independent of u cannot arise

from differentiating ξu, and similarly a component hvv which is independent of v cannot arise

from differentiating ξv, so these modes are not diffeomorphism modes (assuming x is periodically

identified, so we do not allow linear functions in ξ). But it is precisely these modes that are set

to zero by the above anomaly argument, so the theory can only be studied consistently on a

background which is in fact diffeomorphic to the flat metric.24

23Our analysis of the constant modes above found that 〈E〉 = 0, indicating that the constant part of A also
vanishes, but this statement is (at least potentially) special to the specific holographic theory we are considering,
while the vanishing of the non-constant modes of A is a consequence of the general structure of the Ward identities
and must be true for any such theory.

24Modulo components which are independent of both u and v; these are also not diffeomorphisms, but are not
ruled out by the anomaly.
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Returning to the non-relativistic case, this analysis of the Ward identities predicts that for ω

non-zero, we will have H
(+)
ξξ = 0, one restriction on the source modes, and some set of subleading

terms involving ω2. This is precisely what we find. The solution for non-zero ω is

Hξξ = 0, (3.109)

Htξ = s
(0)
t +H

(0)
tξ + 2s

(+)
ξ r2, (3.110)

Htt = −2s
(0)
t + 2H

(−)
tt r2 − 4s

(+)
ξ (1 + 2 log r)r2 +H

(+)
tt r4 − 1

6
r6ω2s

(+)
ξ , (3.111)

sr =
i

2
(s

(−)
ξ + s

(+)
ξ r4), (3.112)

st = −1

3
s

(−)
ξ r−2 + s

(0)
t − s(+)

ξ r2 + s
(+)
t r4 +

1

4
ω2r2s

(−)
ξ +

1

12
ω2r6s

(+)
ξ , (3.113)

sξ = s
(−)
ξ r−2 + s

(+)
ξ r2. (3.114)

It turns out that the restriction on the sources is to set H
(−)
ξξ = 0. This is the source for Eξ, which

is the extra component in the stress energy complex which is left undetermined because of the

degeneration of the Ward identities. It is a non-diffeomorphism mode, as in the above discussion

of the relativistic case.

We can learn more about the structure of the scale Ward identity by looking at the (first

order) radial components of the equations of motion. More concretely, when we have not yet

imposed these first order equations, the r2 term in (3.110) appears as an independent constant,

which we denote by H
(+)
tξ . This will of course propagate to the other functions, but we do not

need the details here. Plugging the solution of the second order equations into the first order

equations we learn that

ωH
(+)
ξξ = 0 (3.115)

ω(H
(+)
tξ − 2s

(+)
ξ ) = 0 (3.116)

2(H
(+)
tξ − 2s

(+)
ξ ) =

1

2
ω2H

(−)
ξξ (3.117)

Equations (3.115)-(3.117) correspond to the Ward identities (3.107) provided we identify

ρ ∼ H
(+)
ξξ E ∼ H

(+)
tξ − 2s

(+)
ξ A ∼ ω2H

(−)
ξξ (3.118)

where the ∼ indicates equality up to an ω-independent constant. Hence, the anomaly is propor-

tional to ω2H
(−)
ξξ , and is set to zero due to the conservation equation ωE = 0.
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It is also useful to note that the relativistic and Schrödinger restrictions are related. If we take

the b→ 0 limit of the Schrödinger solution, we recover AdS, and the null coordinate ξ becomes a

null coordinate in AdS, so considering zero modes kξ = 0 corresponds in this limit precisely to

the special kinematics ω = ±k where the AdS Ward identities degenerate, and H
(−)
ξξ = 0 reduces

to the restriction coming from the Ricci scalar noted above.

3.4.2 Non-zero kξ

We now consider the sector of non-zero kξ. For our purposes, this sector is less interesting, as the

bulk modes are just dual to some higher dimension operators in the field theory. However, in

previous work on Schrödinger as a deformation of AdS, attention has naturally focused on this

discussion, as this is the generic kinematics. We will therefore give the full results for purposes of

comparison.

For non-zero kξ, we generally expect the scaling dimensions to depend on kξ. However, just

as in the higher-dimensional case, there are some modes which can be generated by acting with

an appropriate ξ-dependent diffeomorphism.

For ω = 0, the full solution is

Hξξ = H
(−)
ξξ r

−2 − 1

2
k2
ξs

(0)
t , (3.119)

Htξ = −1

2
H

(−)
ξξ r

−2 +H
(0)
tξ −

1

2
log rk2

ξs
(0)
t , (3.120)

Htt = −2s
(0)
t + 4(1− δ1)s

(1−)
t r1−δ1 + 4(1 + δ1)s

(1+)
t r1+δ1 , (3.121)

st = s
(0)
t + s

(1−)
t r1−δ1 + s

(1+)
t r1+δ1 + s

(3−)
t r1−δ3 + s

(3+)
t r1+δ3 , (3.122)

sr =
i

2
kξ

(
s

(0)
t + k2

ξs
(1−)
t r1−δ1 + k2

ξs
(1+)
t r1+δ1 − s(3−)

t r1−δ3 − s(3+)
t r1+δ3

)
, (3.123)

sξ =
1

4
(H

(−)
ξξ r

−2 − k2
ξs

(0)
t )− 1

2
(3 + δ3)r1−δ3s(3−)

t − 1

2
(3− δ3)r1+δ3s

(3+)
t

− 1

2
(1− δ1)r1−δ−k2

ξs
(1−)
t − 1

2
(1 + δ1)k2

ξr
1+δ1s

(1+)
t , (3.124)

where δ1 =
√

1 + k2
ξ , δ3 =

√
9 + k2

ξ . The bulk diffeomorphism modes are H
(−)
ξξ , H

(0)
tξ and s

(0)
t ,

which correspond to δê+
ξ , δê−ξ and δê+

t . As discussed in section 3.1.1, we can set the first two to

zero by gauge-fixing the ξ-dependent boundary diffeomorphisms. The logarithmic term does not

contribute to the anomaly, as it does not enter at O(r2), which is the right order to modify the

vevs and participate in the Ward identity.
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The other four modes correspond to sources and vevs for scalar operators of dimension

∆ = 1 +
√

1 + k2
ξ , ∆ = 1 +

√
9 + k2

ξ . (3.125)

These are both irrelevant for all kξ > 0. For general ω, if we set the diffeomorphism modes to

zero, we can find the solution for these modes in the same way as in [35]. We find that we can set

Htξ = Hξξ = 0 without loss of generality (they only carry diffeo modes), and eliminate Htt and sr

algebraically. One is left with two coupled second order equations for st and sξ, which can be

decoupled by increasing the number of derivatives. The diff-invariant dynamics are then captured

by the following fourth order equation

r4s′′′′ξ + 2r3s′′′ξ − (9 + 2k2
ξ + 4kξωr

2)r2s′′ξ + (9 + 2k2
ξ − 4kξωr

2)rs′ξ

+ [k2
ξ (8 + k2

ξ ) + 4kξω(4 + k2
ξ )r

2 + 4kξω
2r4]sξ = 0. (3.126)

The solutions to this equation have the form

sξ = r∆
∑
i=0

sξ(i)r
2i, (3.127)

where the sξ(i) are constants and the values of ∆ are those found in the ω = 0 case, corresponding

to the source and vev for two operators of dimensions (3.125).

3.4.3 Comparison to previous work

We now consider the comparison of our results to previous work on null warped AdS3. We focus

on the linearised analysis in [35, 38] and the analysis of boundary conditions in [90].

Our analysis of the linearised solutions for kξ 6= 0 is the same as in [35]. The diffeomorphism

modes are what they call the T modes, and the operators of dimension (3.125) correspond to their

X modes. The significant difference between our analysis and theirs is our emphasis on the role of

the zero modes. For [35], the zero modes are not especially interesting: T modes are the source for

the relativistic stress energy complex, and the zero modes are a special subsector of non-generic

kinematics, which they do not consider explicitly. But in our non-relativistic description, the dual

field theory lives in one lower dimension, and the zero modes are accordingly the most important

sector to understand. We have also seen that the analysis of the zero modes has novel features
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which do not appear in the discussion for kξ 6= 0.

The importance of this sector can be stated in a different way that is more independent of

our interpretation: Apart from terms determined by the anomalies, the stress tensor only has

non-zero components with kξ = 0. Our perspective focuses in a natural way on this part, and

at the price of not being fully covariant in both the t and ξ directions, simplifies the duality by

only introducing sources for the potentially non-zero part of the stress tensor at kξ = 0. The

kξ 6= 0 part of the T mode sources considered in [35] are simply set to zero by gauge-fixing in our

approach.

In [38], it was proposed that the appropriate sources for the relativistic stress tensor at

kξ 6= 0 involve a combination of the T and X modes. This does not arise in our analysis. Such a

mixing was possible only because the analysis is perturbative in b; in our analysis at finite b, the

diffeomorphism modes and the other modes have different dimensions, so it is not possible for

them to mix.

In [90], a notion of asymptotically Schrödinger boundary conditions was proposed, and it

was found that the asymptotic symmetry group for these boundary conditions was an infinite

extension of the isometry group. Their boundary condition is different from ours, and does

not appear to be satisfied bty our linearised solutions. Their analysis was for asymptotically

Schrödinger rather than asymptotically locally Schrödinger boundary conditions, so one might

think it should be recovered by setting the boundary geometry modes in our analysis to zero.

However, it is easy to see that our zero mode solutions do not satisfy their boundary conditions in

this case. In the constant modes (3.97), a non-zero H
(+)
ξξ generates a constant metric perturbation

hξξ. This perturbation violates their boundary conditions, which require that hξξ ∼ O(r2) in

our notation. In addition, turning on s
(+)
ξ will generate a term htt ∼ s

(+)
ξ r−2 log r, violating their

boundary condition htt ∼ O(r−2).

What if we consider other boundary conditions? In fact H
(+)
ξξ is a non-normalizable mode, so

we should take a boundary condition where it is fixed. If we take H
(+)
ξξ = 0, this is consistent

with the boundary conditions of [90]. However, this is fixing the particle number to zero, which

seems a strong restriction on the dual field theory. Both s
(+)
ξ and its conjugate mode H

(0)
tξ are

normalizable, so we can choose a boundary condition where s
(+)
ξ = 0 and H

(0)
tξ fluctuates. This

has two drawbacks: it’s setting the field theory energy to zero, and while we get rid of the problem

with s
(+)
ξ , allowing H

(0)
tξ to fluctuate generates htξ ∼ H

(0)
tξ r

−2, which is again inconsistent with
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their boundary conditions, which require htξ ∼ O(r0).

Thus, there is no obvious choice of boundary conditions for our zero modes which will satisfy

the assumptions of [90]. It would clearly be interesting to analyse the asymptotic symmetries for

our boundary conditions defined in section 3.1, but we leave this for future work.

3.5 Asymptotic expansion

In this section, we want to go beyond the linearised analysis by showing that solutions of the

bulk equations of motion exist for arbitrary boundary data in precisely the same way as we did

in section 2.5 in the previous chapter, for the z < 2 case. Again, we will solve the equations

of motion in an asymptotic expansion: that is, we work at large r, and solve the equations in

an expansion in powers of r. Here we restrict ourselves to considering the Fourier zero modes,

which include the sources for the stress energy complex, and we will of course be setting sources

for irrelevant operators to zero. In the course of demonstrating the existence of this asymptotic

expansion, we will also see that when the asymptotic expansion exists we can cancel the divergent

terms in the action in the usual way by adding appropriate local counterterms determined by the

boundary data.

The general formalism was discussed in the previous chapter, but we review it here. We

work in terms of the frame fields, and adopt a radial Hamiltonian formalism. The momentum

conjugate to Aα is πα = nµFµα = rFrα. The conjugate to the frame fields is written in terms of a

frame extrinsic curvature KA
B = eαB ė

A
α , which is not a symmetric object. The equations in frame

indices are

K̇(AB)+KK(AB) +
1

2

(
KCAK

C
B −KACK

C
B

)
+

1

2
πAπB −

2

4(d− 2)
ηABπCπ

C

= RAB −
2

d− 2
ΛηAB −

1

2
FACF

C
B +

2

8(d− 2)
ηABFCDF

CD − 1

2
m2AAAB, (3.128)

π̇A+KπA −KA
Bπ

B = −∇BF
BA +m2AA, (3.129)
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and the constraints

∇AK(AB) −∇BK
A
A =

1

2
FBAπ

A +
1

2
m2ABrAr, (3.130)

K2 −K(AB)K
AB − 1

2
πAπ

A = R− 2Λ− 1

4
FABF

AB +
1

2
m2(rAr)

2 − 1

2
m2AAA

A, (3.131)

∇Aπ
A = −m2rAr. (3.132)

Here FAB = eαAe
β
BFαβ, and ∇A = eαA∇α, where the covariant derivative ∇α is a total covariant

derivative (covariant with respect to both local Lorentz transformations and diffeomorphisms),

and ˙ denotes the derivative in the normal direction, which is −r∂r.

To show that a solution exists in an asymptotic expansion, we want to fix the sources, which

will fix the terms appearing on the RHS of these equations, and see that we can satisfy the

equations by introducing appropriate subleading terms in r in the expansion which will contribute

to the radial derivative terms on the LHS of the equations. For this to work, the source terms need

to involve positive powers of r. Explicit powers of r enter where there are derivatives along the

boundary directions. There are also explicit powers in the Ricci rotation coefficients, determined

by deC = Ω C
AB eA ∧ eB.

We restrict ourselves to considering sources which are independent of the ξ coordinate; that

is, we assume that the boundary data has a Killing symmetry ∂ξ. Note that we do not assume

that ∂ξ is either null or Killing in the bulk; it is only the boundary sources that are required to

have this symmetry, and we can allow the vev modes to be arbitrary functions of ξ, this will not

affect the derivation of the asymptotic expansion.25 This is thus slightly different from a similar

case considered in [76], where ∂ξ was taken to be a Killing vector in the bulk.

We need to set to zero the sources for the irrelevant operators. We set the scalar sources ψ,

ê+
ξ and êIξ to zero by hand. Thus, we assume that

ê+ = ê+
a dx

a, êI = êIadx
a, ê− = ê−ξ (dξ + ẽ−a dx

a). (3.133)

The one-forms ê+
a , êIa will then define the boundary geometry the dual field theory lives in, while

ẽ−a is a one-form gauge potential (as usual infinitesimal xa dependent transformations of the ξ

25We would not expect it to be possible to extend the construction of an asymptotic expansion to include sources
with arbitrary dependence on ξ; since the dimensions of the dual operators increase as we increase kξ, sources
with large enough kξ are sourcing irrelevant operators, which should cause the expansion to break down. It may
be possible to extend the analysis to include sources with sufficiently small kξ, but as it is not clear what the
interesting values might be, we have not attempted to pursue this.
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coordinate induce gauge transformations of ẽ−a ), dual to the conserved particle number. Note

that because we chose to set the dξ components of the other frame fields to zero, non-degeneracy

implies ê−ξ 6= 0. We will set the source for the irrelevant operator E i to zero without choosing a

coordinate system by setting

ê+ ∧ dê+ = 0, (3.134)

so that the boundary geometry admits a foliation by surfaces of absolute time. For z = 2, all

these restrictions are necessary to ensure the existence of the asymptotic expansion.

These restrictions on the frame fields imply that the Ricci rotation coefficients

Ω +
+− = 0, Ω +

−I = 0, Ω +
IJ = 0, Ω I

−J = 0, Ω I
+− = 0. (3.135)

Thus, the non-zero Ricci rotation coefficients are

Ω +
+I ∼ r, Ω I

+J ∼ r2, Ω I
JK ∼ r, (3.136)

Ω −
+− ∼ r2, Ω −

+I ∼ r3, Ω −
−I ∼ r, Ω −

IJ ∼ r. (3.137)

The structure of the one-forms implies e− has only a ∂ξ component, so ∂− vanishes. Thus, the

only derivatives appearing are ∂+, which comes with a factor of r2, and ∂I , which comes with a

factor of r. Thus, we expect an asymptotic expansion to exist for any such boundary data, with

arbitrary dependence on t, xi subject to ê+ ∧ dê+ = 0.

This can be checked by analysing the theory in the radial Hamiltonian framework of [80, 81],

as in chapter 2. This involves expanding in eigenvalues of an appropriate bulk dilatation operator.

Assuming that we impose some appropriate boundary or regularity condition in the interior of

the spacetime, the on-shell solution of the equations of motion will be uniquely determined in

terms of the asymptotic boundary data, so the on-shell action is a function of the boundary data,

which we can write as a boundary term,

S =

∫
dd−1x

√−γλ(e(A), ψ). (3.138)

We can then think of the canonically conjugate momenta as determined by functional derivatives
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of this action as in a Hamilton-Jacobi approach, so

TAB =
1√−γ e

(A)
α

δ

δe
(B)
α

S, (3.139)

πψ =
1√−γ

δ

δψ
S. (3.140)

The leading scaling of ψ is r∆− , so if we define the dilatation operator

δD = −
∫
d4x

(
2e(+)

α

δ

δe
(+)
α

+ e(I)
α

δ

δe
(I)
α

−∆−ψ
δ

δψ

)
, (3.141)

then acting on any function of eA, ψ, this will agree with the radial derivative at leading order in

large r, δD ∼ r∂r. Applying this operator to the action, we have

(ds + 2− δD)λ = 2T+
+ + T II −∆−ψπψ. (3.142)

Compared to the z < 2 case, we note that (3.141) does not involve e(−), and (3.142) does not

involve T−−, as this component does not enter into the trace Ward identity. We determine λ by

expanding in dilatation eigenvalues and using (3.142) and (3.131) to determine the contribution

at each order in terms of the contributions at earlier orders and the sources.26 The expansion is

λ =
∑

ds+2>∆≥0

λ(∆) + . . . , δDλ
(∆) = ∆λ(∆). (3.143)

where . . . represents terms of higher order which will include logarithms. The dilatation eigen-

functions λ(∆) are determined by

(ds + 2−∆)λ(∆) =− src(∆) (3.144)

+
∑

s<∆/2,s 6=0

[
−2K

(s)
(AB)π

AB(∆−s) − π(s)
A πA(∆−s) − 1

m2
(∇Aπ

A)(s)(∇Bπ
B)(∆−s)

]

+

[
−K(∆/2)

(AB) π
AB(∆/2) − 1

2
π

(∆/2)
A πA(∆/2) − 1

2m2
(∇Aπ

A)(∆/2)(∇Bπ
B)(∆/2)

]
.

The quadratic terms in this expression involve lower orders in δ, which are determined from the

26As for z < 2, there is not actually a complete expansion in dilatation eigenvalues, as the logarithms in our
linearised solutions indicate that the action of the dilatation operator is not completely diagonalizable. The
linearised solution indicates that ∆ = 2 would be the first order of concern, so these terms contribute at positive
powers and thus do not impede the existence of an expansion.

103



action by the variations (3.139,3.140). We want to focus on the sources:

src = R− 2Λ− 1

4
FABF

AB − m2

2
AAA

A. (3.145)

Since we are going to turn ψ off, AAA
A = 0, and FAB becomes

FAB = 2Ω +
AB A+. (3.146)

Because of the constraints on the Ricci rotation coefficients, the only non-zero term is F+I , so F 2

has no non-zero contributions (as g++ = 0). The Ricci scalar is

R = −4∂AΩ AC
C + ΩCADΩCAD + 2ΩCADΩDAC + 4Ω A

AD Ω DC
C . (3.147)

Because of the constraints on the sources, particularly the irrotational condition (3.17), the Ricci

scalar has contributions only at ∆ = 2. Thus only −2Λ contributes to src(0). At ∆ = 2 we have

src(2) =− 4∂+Ω A
A− − 4∂−Ω A

A+ − 4∂IΩ
IA

A + ΩIJKΩIJK (3.148)

+ 4Ω+IJΩ IJ
− + 4Ω +

+I Ω I−
−

+ 4Ω B
A+ Ω A

B− + 2Ω B
AI Ω IA

B + 8Ω A
A+ Ω B

B− + 4Ω A
AI Ω IB

B ,

where A,B are taken to run over +,− and all of the I directions. Since the Ω’s only contribute to

sources with positive eigenvalues, we now know a solution for λ involving only positive eigenvalues

of δD will exist. As in the previous chapter, we could additionally be concerned that T+
−, T+

I ,

and T I− might pick up contributions at negative dilatation eigenvalue from the derivatives of

λ as in (3.139). However, as discussed in the previous chapter, any such contribution would

be a boundary scalar, writable entirely in terms of the Ω; as the only nonzero Ω have positive

powers of r, the TAB cannot pick up a contribution at negative eigenvalue. Consequently, the

desired asymptotic expansion must exist. As we noted in the previous chapter, we could check

whether or not the counterterms for the on-shell action are local by explicitly plugging in covariant

dilatation expansions of the bulk on-shell momenta and solving for the divergent contrubitions in

the dilatation expansion of the on-shell action. The essential difficulty in this case, exactly as

for the z < 2 case considered in the previous chapter, is that the off-diagonal structure of the

frame metric makes inverting the covariant expansions very difficult, and so again we leave this

question for future work.
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3.6 Discussion

In this chapter, we have constructed the holographic dictionary for Schrödinger spacetimes with

dynamical exponent z = 2 based on a frame field formalism. We have proposed a notion of

asymptotically locally Schrödinger boundary conditions, identified the sources and vevs for the

stress tensor complex, and demonstrated that solutions satisfying our boundary conditions exist

in an asymptotic expansion. We worked in a theory with a massive vector action in 3 and 5 bulk

dimensions. Our method is readily generalizable to other dimensions, and in principle to other

supporting matter.

The main difference from our previous analysis of the Schrödinger z < 2 case in chapter 2 is

that in the z = 2 case the ξ direction becomes auxiliary; it is invariant under radial rescalings. We

argued that consequently, as in AdSn × Rd holography, the appropriate dictionary is formulated

by expanding the bulk fields in Fourier modes in ξ and identifying each Fourier mode with the

source and vev of a boundary operator Okξ whose conformal dimension depends on kξ. This is

also different from previous work starting with [35] which treated z = 2 Schrödinger spacetime as

a perturbation of AdS.

In addition, as in the Lifshitz z = 2 case studied in [70, 84], there are logarithmic terms in

our linearised analysis. In the AdS and Lifshitz cases, the logarithmic terms corresponded to

anomalies in the scaling symmetry. However, we find that because of the null structure of the

background, some of the logarithms that arise in our case do not contribute to the anomaly at

linear order. It would be interesting to understand this from the field theory point of view, or to

explore it in the full non-linear theory. We also found a curious feature in the ds = 0 case: there

is a degeneracy in the Ward identity for the zero modes in ξ that forces us to set source modes

that contribute to the scaling anomaly to zero. We noted that a similar feature also appears in

the relativistic case for lightlike modes.

Our analysis followed the philosophy of the work in [41, 45] on Lifshitz and chapter 2 on

Schrödinger. We therefore gauge fixed the frame transformation symmetries as much as possible.

It would be interesting to explore the analogue of the discussion of Lifshitz in [71, 72, 91, 92]

instead, where this symmetry is left unfixed. This has been argued to give a more general

perspective on the boundary geometry.
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4 Hot Multiboundary Wormholes from

Bipartite Entanglement

The work in this chapter is reproduced from a collaborative paper [3] with Prof. Don Marolf, Dr.

Henry Maxfield and Prof. Simon Ross. In this chapter we analyze the 1+1 CFT states dual to

hot (time-symmetric) 2+1 multiboundary AdS wormholes. These are black hole geometries with

high local temperature, n ≥ 1 asymptotically-AdS3 regions, and arbitrary internal topology. The

dual state at t = 0 is defined on n circles. We show these to be well-described by sewing together

tensor networks corresponding to thermofield double states. As a result, the entanglement is

spatially localized and bipartite: away from particular boundary points (“vertices”) any small

connected region A of the boundary CFT is entangled only with another small connected region

B, where B may lie on a different circle or may be a different part of the same circle. We focus

on the pair-of-pants case, from which more general cases may be constructed. We also discuss

finite-temperature corrections, where we note that the states involve a code subspace in each

circle.
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4.1 Introduction

The thermofield double (TFD) state

|TFD〉 =
∑
E

e−E/2T |E〉|E〉 (4.1)

on two copies of a quantum field theory serves as the poster child for many ideas [12–15, 30, 48, 93]

relating the emergence of bulk geometry to entanglement in some dual theory. As explained in

[30], although a single copy of a CFT can be naturally dual to bulk quantum gravity with a single

asymptotically AdS boundary, the particular entanglements between the two copies described

by (4.1) allow it to be dual to a two-sided eternal black hole in which two distinct asymptotic

regions are connected by an Einstein-Rosen bridge27. The state also typifies relations between

the area of codimension-2 surfaces and CFT entanglement encapsulated in the Ryu-Takayangi

conjecture [12] and the covariant generalization by Hubeny, Rangamani, and Takayanagi (HRT)

[48]. Here and below we work in the regime where the bulk planck scale `p is small in comparison

with the bulk AdS scale `AdS (which we generally set to 1), or equivalently where N � 1 in the

CFT (i.e., large central charge c for a 1 + 1 CFT).

In discussing |TFD〉, it is natural to focus on the bipartite entanglement between the

associated two copies of the CFT. This entanglement has a special structure: as shown in [95],

the entanglement is both local and bipartite in the sense that, when studying regions of the CFT

of size greater than the thermal scale, a given region can be said to be entangled only with the

corresponding spatial region in the second CFT. In particular, when we consider regions A, B (in

the same or opposite CFTs) separated by more than this scale, the mutual information

I(A : B) = S(A) + S(B)− S(AB), (4.2)

vanishes at leading order in large N . This result can easily be understood from a CFT path

integral point of view. In general, the thermofield double state is calculated by a CFT path

integral over a cylinder, linking the two copies of the spatial section the state (4.1) is defined

on. In the high temperature limit, this cylinder becomes short compared to its circumference, so

when we consider regions larger than the length of the cylinder, the resulting state naturally only

entangles regions on one boundary with the corresponding region on the other boundary.

27Though there may be interesting subtleties; see e.g. [94].
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Figure 16: A simple tensor network displaying the localized purely-bipartite entanglement

characteristic of holographic |TFD〉 states at large N on scales longer than the thermal scale.

Each node represents a region in the CFT of scale longer than the thermal scale. We focus mainly

on CFT states on S1 × R where one takes a high-temperature limit in order to fit many such

long-distance regions onto the circle, though one may equally-well consider the planar case. The

solid links are the entangling tensors implied by (4.1). The dashed lines guide the eye by linking

neighbouring regions in each of the two CFTs.

It will be useful below to visualize this result in the language of tensor networks; see e.g.

[96]. The rather trivial nature of the above entanglement then translates into a similarly-trivial

coarse-grained tensor network description of |TFD〉 as shown in figure 16.

While the thermofield double state is a useful simple example, it is important to find further

examples where we can understand the relation of bulk geometry to CFT entanglement structures.

We are also interested in exploring the role played by multi-party entanglement in connections

between 3 or more subsystems and what form it takes in the associated CFT states, see e.g.

[97–99].

The vast literature on holographic entanglement has focused primarily on bipartite relations

between a given subsystem in the CFT and its complement, so that relatively little is known about

multiparty issues. One general result is the monogamy of holographic entanglement established

in [100]. But a more detailed investigation of multipartite entanglement was recently initiated

in [98] using a class of 2+1-dimensional black hole spacetimes [52–55] describing a collapsing

wormhole that connects n regions each asymptotic to (global) AdS3. When the corresponding

Euclidean geometries define the dominant saddle of a natural path integral, such geometries are

dual to entangled states on n copies of a 1+1 dimensional CFT on S1 × R defined by a path

integral on a Riemann surface Σ with n circular boundaries [30, 101–103]. The corresponding

entanglement was found to display a rich dependence on the moduli, including regimes of purely

bipartite entanglement, and others of strong multipartite entanglement. Interestingly, the strongly
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multipartite regions identified in [98] corresponded to bulk black holes with temperature less than

the AdS scale28. The recent work [104] describes an infinite family of generalizations of results

from both [100] and [98].

We focus below on the opposite limit in which all bulk black holes have high temperature.

The length of their horizons is then very large with respect to the AdS scale. We will show that

these geometries are dual to states constructed by sewing together copies of |TFD〉, as shown in

figure 17. The entanglement is thus both local and bipartite away from small regions containing

certain “vertices” where the sewing involves three or more copies of |TFD〉. From the CFT path

integral point of view, this arises because the boundary circles are large compared to the distance

between them; in a conformal frame where the boundaries are finite size, there are thin strips

joining them, corresponding to the short tensor networks in figure 17. In section 4.4 we will justify

this picture more quantitatively by showing that local pieces of the surface Σ are described by

regions of BTZ up to exponential corrections. As a result, as in [105] tripartite entanglement

appears to localise in isolated AdS-scale regions of the bulk. Away from these vertices, the

construction of the state involves only the sewing together |TFD〉’s of inverse temperature β1

and β2, giving a local version of the |TFD〉 of inverse temperature β1 + β2. Since we focus on

1+1 CFTs, we henceforth refer to the limit of large central charge c rather than large N .

Note that nothing prevents sewing operations that link together disjoint regions in the same

CFT as shown in figure 17 (bottom). As we will see, this also provides an interesting picture in

our limit of CFT states dual to single-boundary black holes with internal topology. The reader

should thus be aware that, while we use term “multiboundary” below, this explicitly includes the

very interesting case n = 1 as well as n ≥ 2.

One may expect each local piece of |TFD〉 in figure 17 (right) to correspond to a bulk region

whose geometry near t = 0 is well-approximated by a corresponding piece of BTZ. We show in

section 4.5 that this is indeed the case, and thus that bulk Ryu-Takayanagi (or, more precisely,

HRT) calculations are consistent with the entanglements shown.

We begin by reviewing aspects of general multiboundary wormholes and their relation to CFT

states in section 4.2. Section 4.3 then studies the high temperature (equivalently, large horizon

length L) limit of the geometry of Σ. We show that the region between the horizons in Σ becomes

28It remains an open question whether such phases ever dominate the path integrals described above. But even if
not, one presumes them to be dual to some other class of CFT states whose entanglement must be correspondingly
multipartite.
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Figure 17: Two topologically-distinct ways in which three copies of the tensor network in

figure 16 can be sewn together (left figures) into a single tensor network (right figures) defining

a state on 3 copies of the system. The dashed lines (red in color version) internal to the left

diagrams guide the eye toward recognising the 3 constituent copies of the network in figure 16.

The gray nodes depict identifications between nodes which are identified by sewing together

copies of the network in figure 16. Links that meet across adjoining pairs of dashed lines are

contracted, establishing entanglement between the remaining boundaries (marked 1, 2, and 3).

In the bottom-left figure, two parts of the outermost tensor network are contracted with each

other, resulting in two well-separated regions of boundary 1 becoming entangled with each other

as shown in the bottom-right figure. As discussed below, all 3-boundary time-symmetric vacuum

wormholes with pair-of-pants topology (orientable with no handles) and large horizons correspond

at the moment of time-symmetry to one of the cases shown, or to the degenerate case that

interpolates between them, when described in the “round” conformal frame in which the energy

density is taken to be constant along each of the 3 boundaries. Although we show only a simplified

cartoon of the full tensor network, we argue below that sewing the actual |TFD〉 tensor networks

together in this way describes the corresponding CFT states with exponential accuracy away

from the two ‘vertices’ in each diagram where 3 |TFD〉’s meet.

unimportant in this limit. This allows us to argue in section 4.4 that the CFT path integral

produces the structure described by figure 17. Section 4.5 then describes how this same result is

seen in the bulk HRT calculation and argues that the desired bulk wormhole does indeed dominate

the corresponding bulk path integral. Section 4.6 briefly addresses finite temperature corrections

and we conclude in section 4.7 with discussions of the general n-boundary case, internal topology,
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higher dimensions, and future directions. In particular we comment explicitly on examples with

n = 1.

4.2 Path integrals, states, and bulk geometries

We now commence our review. As is well known, the thermofield double state of inverse

temperature β is computed by the CFT path integral on the cylinder of circumference 2π and

height β/2. Here one regards each of the two circular boundaries as the (say) t = 0 slice of a

corresponding CFT. The path integral between field configurations φ1, φ2 on the two boundaries

then gives the wavefunction Ψ(φ1, φ2) of the joint state of the two CFTs.29 At sufficiently high

temperatures, the corresponding bulk path integral is dominated by a saddle point associated

with the Euclidean BTZ black hole. In this case we may say that, to good approximation, the

corresponding Lorentz-signature bulk black hole is dual to |TFD〉.

The cylinder of circumference 2π and height β/2 plays two important roles in the BTZ

geometry. First, it is conformally equivalent to (half of) the boundary of Euclidean BTZ. This

is what allows Euclidean BTZ to be a saddle for the desired bulk path integral. But this same

cylinder is also conformal to the BTZ geometry at t = 0, which may be equally-well considered

as a slice of either the Euclidean or the Lorentzian black hole. This may be seen by recalling

[106] that Euclidean BTZ can be constructed as a quotient of global Euclidean AdS3 (i.e., of the

hyperbolic three-space H3) by an isometry. The simplest statement requires two steps. One first

writes Euclidean AdS3 in terms of its slicing by hyperbolic planes H2 (equivalently, by copies of

Euclidean AdS2) as
ds2

`2
AdS

= dt2E + cosh2 tEdΣ2, (4.3)

where dΣ2 is the metric on the unit-radius H2. One then quotients each H2 slice by a discrete

group Γ = {gn : n ∈ Z} generated by some hyperbolic element g of its SL(2,R) group.30 The

action of g and its fundamental domain in H2 are indicated in figure 18. Since the different H2

slices in (4.3) differ only by the overall scale factor cosh2 tE, the same is true of their quotients.

The spatial slice at t = 0 (equivalently, tE = 0) is thus conformal to the geometry at tE = −∞.

This is half of the Euclidean boundary, with the other half being tE = +∞. We may therefore

29In this discussion we assume for simplicity that the CFTs admit (anti-unitary) time-reversal symmetries T
which can be used to map bra-vectors to ket-vectors and vice versa, and which can therefore be used to construct
(4.1) from the thermal operator e−

1
2βH .

30In other words, thinking of SL(2,R) as the Lorentz group SO(2, 1) of 2+1 Minkowski space this g must be a
boost preserving some spacelike direction.
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Figure 18: The quotient of the hyperbolic plane H2 by Γ. The pair of labeled geodesics are

identified by g, so the region between them forms a fundamental domain for the quotient. The

minimal closed geodesic H is the horizon for the resulting BTZ geometry.

write |TFD〉 as given by the CFT path integral over the Riemann surface defined by the t = 0

slice of the corresponding BTZ geometry.

This final conclusion can be extended to a much larger class of states. Any Riemann surface

Σ with n boundaries can be written as a quotient of H2 by some discrete subgroup ΓΣ of SL(2,R).

We may use (4.3) to construct a corresponding quotient of Euclidean AdS3, with Σ conformal

to both the slices at t = 0 and tE = −∞. So long as this saddle point dominates the bulk path

integral with boundary conditions defined by the tE = −∞ slice, to good approximation the

corresponding Lorentz-signature bulk solution – given by substituting tE = −it into (4.3) – is dual

to the CFT state defined by the path integral over the slice at t = 0. For notational simplicity

we identify Σ with this slice below and write the CFT state as |Σ〉. These quotients of AdS3

were first considered in [53], and the holographic relation to |Σ〉 was introduced in [101–103]. An

exploration of the entanglement properties of these states was initiated in [98].

The Lorentz-signature solutions describe wormholes connecting n asymptotically-AdS3 bound-

aries. By topological censorship [107, 108], each boundary is associated with a distinct event

horizon. A special property of AdS3 vacuum solutions is that the geometry outside each event

horizon is precisely that external to some BTZ black hole. This allows us to define a useful

“round” conformal frame, in which the usual rotational symmetry of this BTZ region is a symmetry

of the boundary. That is, for each of these exterior regions there is a coordinate φi such that
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∂φi is an exact rotational Killing field in the region outside the horizon (and in fact in an open

neighbourhood in the interior of the horizon as well). The round conformal frame is the one in

which the CFT lives on a spacetime with standard cylinder metric

ds2 = −dt2 + dφ2
i (4.4)

with φ ∼ φ + 2π. In addition, the BTZ exterior implies that the bifurcation surface of each

horizon – where the future and past horizons meet – is a geodesic in the t = 0 surface. The key

novelty in the n > 2 cases is the existence of a “causal shadow” region in between these horizons.

Our ideas will apply to a codimension one limit in the moduli space of such Riemann surfaces

for any n, but for simplicity we will focus our discussion on the case where Σ is an orientable

surface with three boundaries and no handles. Such surfaces are topologically the same as a

pair of pants. This is the simplest non-trivial example, and is also a primitive building block

for constructing other cases, since a general orientable Riemann surface can be constructed by

sewing together pairs of pants. The relevant quotient of H2 is depicted in figure 19. The moduli

space of pair-of-pants Riemann surfaces can be parametrized by the lengths La (a = 1, 2, 3) of

the three horizons, which as usual we take to be measured in units with `AdS = 1. Without loss

of generality we take L3 ≥ L1, L2. The causal shadow is the region in between these geodesics.

Properties of such states were explored in [98], with most emphasis on the so-called puncture

limit La � 1. In particular, [98] showed that in this limit Σ is conformal to the Riemann sphere

with small holes removed around n points, and hence |Σ〉 can be related to an n-point function in

the CFT. For the three-boundary case, the state was determined up to some constant factors to

be, in the round conformal frame,

|Σ〉 =
∑
ijk

Cijke
− 1

2
β̃1H1e−

1
2
β̃2H2e−

1
2
β̃3H3|i〉1|j〉2|k〉3, (4.5)

where

β̃a = βa − 2 ln rd − 2 ln 3, (4.6)

and Cijk are the three-point OPE coefficients, βa = 4π2

La
is the inverse temperature of the BTZ

geometry associated with the region near the a’th boundary, and rd is an undetermined constant

independent of the moduli. The rather explicit expression (4.5) exhibits both dependence on the

structure of the CFT and Boltzmann-like suppression factors similar to the thermofield double
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B1−
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H1+
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Figure 19: The surface Σ as a quotient of the Poincaré disc for n = 3. The pairs of labeled

geodesics (blue and red in colour version) are identified by the action of Γ. The region of the

Poincaré disc bounded by these geodesics provides a fundamental domain for the quotient. B3,

B2 and B1 = B1+ ∪B1− become the desired three circular boundaries. There are corresponding

minimal closed geodesics H3, H2 and H1 = H1+ ∪H1−. The lengths La of these geodesics fully

characterize the geometry of Σ.

state.

4.3 Geometry of Σ in the high temperature limit

Our current aim is to elucidate the structure of |Σ〉 in the limit La →∞ with fixed ratios La/Lb.

This is the opposite of the limit emphasized in [98, 105]. We assume L3 ≥ L1, L2, so the ratios

L1/L3, L2/L3 take values in (0, 1]. In this limit, the geometry of Σ again simplifies. The essential

point is that the causal shadow region will play a relatively unimportant role. We will focus on

the pair of pants case, but the discussion is easily extended to arbitrary Riemann surfaces. We

comment on this extension in section 4.7.

Our limit can be characterised as a high temperature limit, in the sense that the BTZ horizon

in each of the exterior regions becomes large compared to the AdS scale (as for a high T BTZ

black hole). But we note that the restriction of the state |Σ〉 to a single boundary is not necessarily

even approximately thermal: as discussed in [98], when one La is larger than the sum of the other

ones, reduced density matrix in that exterior region has much less entropy than the thermal value

at the same energy.

To understand the geometry of Σ in our limit, it is useful to introduce a different presentation
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B1−

B1+

G23

G13

G12

H3+

H1+

H2+

G23G13

G12

H3+

H1+ H2+

x1 x2
ρ =∞

ρ = −∞
x = L3

4
x = −L3

4

Figure 20: The region Σ+ bounded by the geodesics Gab, half each of B2, B3, and B1+ shown in

the Poincaré disc (left) and the BTZ frame strip (right). The BTZ presentation is chosen to place

the half-horizon H3+ along the BTZ horizon. The geodesics G13, G23 are respectively the lines

x = −L3

4
, x = L3

4
. In contrast, G12 lies in the upper half of the strip; its endpoints have x = x1, x2

with ρ = +∞. Half each of B1, B2 is mapped respectively to the line segments x ∈ [−L3

4
, x1],

x ∈ [x2,
L3

4
] at ρ =∞ respectively, whilst half of B3 is mapped to ρ = −∞. The corresponding Σ−

is the symmetric region below G23 in the Poinaré disk (left) and has an identical representation

in the BTZ strip.

using two patches with BTZ coordinates on each31. We split figure 19 in half along the horizontal

geodesic (not drawn explicitly) joining boundaries B1 and B2. This divides Σ into two identical

regions Σ±, each containing half of each horizon Ha. The surface Σ is then recovered by gluing

together Σ± along three geodesics, the two identified geodesics in figure 19 and the new split. We

label these geodesics Gab = Gba with a 6= b labelling the boundaries they run between; see figure

20 (left). They can be described more formally as the fixed points of a Z2 isometry of Σ, which

acts as a reflection φ→ 2π − φ in the round conformal frame on each of the boundaries (with

appropriate choices of the origin φ = 0 on each boundary). The event horizon Ha of boundary a

is the unique geodesic that runs orthogonally between the two geodesics Gab, Gac (b 6= c) that

end on boundary a. Our partition of Σ into Σ± also breaks each horizon Ha into two pieces Ha±.

It is useful to describe Σ± in planar BTZ coordinates.32 Consider for definiteness Σ+. We

31In the actual history of our project, this description was also inspired by computing mutual information on
pairs of pants with large La using the technology of [109].

32By planar BTZ we mean the usual BTZ coordinates with no identification on the spatial coordinate on the
boundary; this provides a coordinate system on the whole of H2, thought of as the t = 0 surface in AdS3. Since
our Σ± are subregions of H2, they can be conveniently described in these coordinates.
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B3

0−L3

4
L3

4

x

ρ =∞

ρ = −∞

(a) L1 + L2 > L3

x1 x2

G12

G13 G23

B1 B2

(b) L1 + L2 ∼ L3

x1 x2

G12
G13 G23

(c) L3 > L1 + L2

Figure 21: Half of the pair-of-pants (either Σ+ or Σ−) described as a region in planar BTZ.

Three examples are shown representing distinct regions of moduli space: L1 + L2 > L3 (top),

L1 + L2 ∼ L3 (middle), L3 > L1 + L2 (bottom).

choose the BTZ coordinates to be

ds2
BTZ

`2
AdS

=
dρ2

ρ2 + 1
+ (ρ2 + 1)dx2, (4.7)

with ρ ∈ (−∞,∞). Thus our reference BTZ solution has inverse temperature 2π. Without loss of

generality, we take L3 ≥ L2 ≥ L1 and orient Σ+ such that the portion of H3 in Σ+ lies along the

horizon at ρ = 0, and the boundary B3 lies at ρ = −∞, in both cases for x ∈ [−L3/4, L3/4]. Since

the geodesics G13 and G23 intersect H3 orthogonally, they will lie at x = −L3/4 and x = L3/4 in

these coordinates. The other two boundaries B1 and B2 lie at ρ =∞, for x ∈ [−L3/4, x1] and

x ∈ [x2, L3/4] (with x1 < x2), and the remaining geodesic G12 runs between these points x1, x2.

The portions of H1, H2 in Σ± are the geodesics running from the edges of the strip to meet G12

orthogonally. These coordinates are illustrated in figure 20.
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The half-surface Σ+ is thus a strip x ∈ [−L3/4, L3/4] in the planar BTZ coordinates, with

a bite cut out of the middle above G12. It is important to emphasize that the boundaries at

−L3/4, L3/4 are not identified with each other; instead they and G12 are identified with the

corresponding boundaries in a second copy of this region.

In general we could check that a subregion of planar BTZ in the coordinates (4.7) we consider

covers half of the pair-of-pants geometry by taking the explicit forms of the metric in the inner

and outer charts for the pair-of-pants wormhole found in [103]. There, maps from the outer and

inner charts of the pair-of-pants to portions of the Poincare patch of AdS3 are given. Relating

these coordinates to our BTZ coordinates would allow us to determine an explicit map from half

of the corresponding t = 0 slice to the region of planar BTZ illustrated in figure 20 (right). We

do not do this calculation here.

As we verify in appendix B, varying the endpoints x1, x2 of B1, B2 generates all possible

lengths L1, L2 for the remaining horizons H1, H2 and the map (x1, x2) 7→ (L1, L2) is both smooth

and one-to-one. When we take the limit of large La (at fixed ratios), the results simplify, with a

form that depends on the relative lengths. For L3 − (L1 + L2)� 1,

x1 ∼
L1

2
− L3

4
− log 2, x2 ∼

L3

4
− L2

2
+ log 2, (4.8)

where the tildes (∼) represent agreement up to exponentially small corrections. Note that up to

a fixed order-one offset, the endpoints are respectively L1/2 and L2/2 from the ends of the strip.

In the complementary case L3 − (L1 + L2)� 1, we find instead

x1 + x2

2
∼ L1 − L2

4
,

x2 − x1

2
= exp

(
−L1 + L2 − L3

4

)
. (4.9)

In our BTZ presentation, the long length of H3 corresponds directly to the large width of the

strip. The horizons H1, H2 are also long as a result of extending over a large coordinate distance

in the x direction and possibly also from extending out towards the boundary of the strip at large

ρ. If both of them together are shorter than H3 (L1 + L2 ≤ L3), they terminate on G12 in the

interior of the strip, staying within an order one distance from the horizon H3 at ρ = 0 along

their whole length, as in the last panel of figure 21. When the sum is larger (which includes the

case where the three lengths are equal), the length of the interval x2 − x1 is exponentially short,

hence H1, H2 meet G12 at large ρ, as in the first panel of figure 21. In both cases, H1 and H2
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approach H3 exponentially for |x− x1,2| � 1.

The contributions to L1, L2 from the width of the strip or from H1 and H2 running to large

ρ look different, but we should remember that Σ+ treats the three horizons symmetrically, so

this is just an artifact of our choice of coordinates. The symmetry can be made manifest in an

appropriate Poincaré disk representation; see e.g. figure 8 of [98]. The relationship between any

pair of horizons is thus much the same; consider for example H1 and H3. We can see explicitly

from the calculation in appendix B that the minimal distance between them is exponentially

small, and that they remain exponentially close over a large region. Thus, the area of the causal

shadow region remains finite even as their length becomes large.

In fact, since the boundaries of the causal shadow are closed geodesics (and thus have vanishing

extrinsic curvature), the Gauss-Bonnet theorem requires this area ACS to be independent of the

moduli La (for any fixed genus g and number of boundaries n). For the pair of pants we find

ACS = 2π; more generally ACS = 2(n− 2 + 2g)π. As we will see in the next section, this implies

that the causal shadow region plays little role in the path integral construction of the CFT state

|Σ〉 at high-T.

In the case where L3 − (L1 + L2) � 1, the endpoints of the geodesic G12 are far apart

in coordinate distance, and it will also be exponentially close to H3 over most of its length.

When we glue Σ+ and Σ− to form Σ, the section of H3 that is close to G12 will lie close to the

corresponding section of H3 in Σ−, as in figure 17 (right). All remaining cases with L3 ≥ L2 ≥ L1

are intermediate between the two just described.

4.4 The CFT state at large La

Let us now consider the implications of the above results on the structure of Σ for the CFT state

|Σ〉. In this section we will argue for large La that |Σ〉 will be described to exponential accuracy

by figure 17 (right). In particular, when restricted to appropriate regions it agrees to exponential

accuracy with the corresponding restriction of a thermofield double state |TFD〉. We also show,

under the assumption that non-handlebody contributions can be ignored, that the Euclidean bulk

geometry (4.3) dominates the bulk path integral defined by using Σ as the conformal boundary.

It follows that, to exponential accuracy, our bulk pair-of-pants wormhole is dual to the state

described by figure 17 (right).

Recall that |Σ〉 is defined by the CFT path integral over Σ. We will use the BTZ representation
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of Σ± associated with figure 21 to break Σ into three pieces Σ1,2,3 that are topologically cylinders,

corresponding to figure 17 (left). Each piece Σa will contain the entire pair-of-pants boundary

Ba, but no portion of the boundaries Bb for b 6= a. The decomposition is defined by drawing a

graph in Σ as shown in figure 22. As noted in the figure caption, far from the vertices the piece

Σa nearly coincides with the region Ea of Σ exterior to Ha (i.e., lying between Ha and boundary

a). The geometry in this latter region is just that of the appropriate BTZ solution outside the

horizon and is conformal to a round (rotationally-invariant) cylinder.

We wish to regard both Ea and Σa as path integrals constructing states |Ea〉, |Σa〉, each

of which is defined on two copies of our CFT (on the outer and inner boundaries of Ea or Σa

respectively). Indeed, we may write |Σa〉 = Ŝa|Ea〉 where Ŝa is the operator defined by the path

integral over the causal shadow region Sa = Σa/Ea in Σa beyond the horizon Ha. We specify

the conformal frames of all states by again taking φa to define the standard angle on the CFT

cylinder; this involves a natural extension of φa through the causal shadow Sa. The region Sa

is topologically an annulus and so can be conformally transformed to a cylinder. But Sa is

exponentially thin over most of its circumference; indeed, setting a = 3 (so that we may replace

φ3 by 2π/L3 times the BTZ x) and multiplying the BTZ metric (4.7) by `−2
AdS(1 + ρ2)−1 gives a

metric

ds2
S3

= dx2 + dy2, (4.10)

where y = tan−1 ρ ranges over [0, f(x)] with f(x) is exponentially small far from the vertices of

our graph. Introducing ỹ = y/f along with x̃ such that dx̃ = dx/f , and multiplying (4.10) by

f−2 gives a metric

f−2ds2
S3

= dx̃2 + (dỹ + f ′ỹdx̃)2, (4.11)

where f ′ = df/dx, on cylinder of unit height ỹ ∈ [0, 1] but with exponentially large circumference.

The metric is not flat, though it differs from the standard cartesian flat metric dx̃2 + dỹ2 only by

exponentially small corrections proportional to powers of f ′. It follows that there is a further

conformal transformation to a metric cylinder of unit height – and with exponentially small

difference in circumference from the range of x̃ – whose action on the region far from the vertices

is exponentially close to the identity map33.

Rescaling this cylinder to one of circumference 2π allows us to write the path integral over Sa

33Here we use the fact that conformal transformations satisfy an elliptic equation with a Green’s function that
decays exponentially along a strip. We expect that similar arguments are common in the literature, but for a
specific example the interested reader interested in details may consult for comparison e.g. section 3.1.1 of [98].
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Figure 22: The decomposition of Σ± into pieces Σ1±,Σ2±,Σ3±. We then glue Σa+ to Σa− along

the relevant Gab to make pieces Σa conformal to cylinders with Σa containing all of boundary a.

The decomposition is determined by a graph. In cases (a) and (c), the graph has two trivalent

vertices. In case (a) each piece Σ± contains one vertex v±. The 3 edges of the graph each connect

v+ to v− running between two distinct horizons Ha, Hb for a 6= b. In case (c) both vertices v, v′

lie on the cut along G12, as does the edge that connects them. The other two edges are loops

connecting v to v or v′ to v′. One lies between H1 and H3 while the other lies between H2 and

H3. Case (b) represents a degenerate limit interpolating between the two in which we choose to

fuse the two vertices into a single 4-valent vertex lying on G12. The graph has two edges, each

of which are loops. One lies between H1 and H3 while the other lies between H2 and H3. In

the regions far from the vertices the pieces Σ1,2,3 defined by cutting Σ along the edges of the

appropriate graph differ from the cylinders defined by the regions outside horizons H1,2,3 only by

exponentially small amounts.

in terms of the operator e−βH with exponentially small β. Up to exponentially small corrections,

this operator acts as the identity with respect to degrees of freedom associated with spatial regions

of order-one size as measured by the original spatial coordinate φa. So far from the vertices we
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may identify |Ea〉 and |Σa〉 with exponential accuracy.

On the other hand, the exterior region Ea is half of the BTZ t = 0 surface, so |Ea〉 is given

by a path integral over a cylinder of length β/4, so it is a copy |TFD〉a of (4.1) at twice the

temperature of the associated bulk horizon. Thus |Σa〉 is, up to exponentially small corrections, a

thermofield double state. Recall that for large La such |TFD〉a are described by a tensor network

of the form shown in fig. 16.

It remains only to sew the |Σa〉 = |TFD〉a together into |Σ〉. The sewing procedure is defined

by the way the path integrals Σ1,2,3 combine to form Σ. Away from the vertices of the graph, this

identifies the horizons in E1,2,3: for L1 + L2 > L3, parts of H3 are identified with each of H1 and

H2, and the remaining parts of H1 and H2 are identified with each other. For L1 + L2 < L3, H1

and H2 are each entirely identified with corresponding parts of H3, and the remaining regions

of H3 along G12 are identified with each other. Since the sewing operation on path integrals

coincides with the sewing operation on tensor networks – one simply sets all arguments equal

along the seam and integrates over allowed values34– this implies that the state |Σ〉 is given to

exponential accuracy by fig. 17 (right), with the top picture relevant for L1 + L2 > L3 and the

bottom picture relevant for L1 + L2 < L3.

Finally, we also wanted to see that |Σ〉 is dual to our bulk geometry with moment of time

symmetry Σ. As in [98] we assume that the dominant saddle of the associated bulk integral

is a handlebody. The other possible bulk saddles discussed in [98] correspond to disconnected

Lorentzian geometries. It is natural to expect this saddle to dominate at large temperatures,

by analogy to the familiar result for |TFD〉 that disconnected solutions dominate only at low

temperatures. But one can now make a further argument based on entanglement. If the HRT

proposal is correct, and in particular if entanglement is associated with extremal surfaces in the

real Lorentz-signature geometry, the disconnected geometries cannot reproduce the entanglement

structure of figure 17 (right), which involves entanglement between the different boundaries at

leading order in the central charge. It would be interesting to verify this conclusion by direct

computation of the Euclidean actions, as it would serve as a check on HRT.

34Here for simplicity we again make use of the time-reversal symmetry mentioned in section 4.2 to turn
bra-vectors into ket-vectors.
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4.5 Holographic entanglement calculations

The previous section used the CFT path integral to show that the CFT state |Σ〉 is given by

figure 17 (right), so that the state has local bipartite entanglement with the same local structure

as the thermofield double state. In this section we will buttress that argument by showing that

our picture of the geometry of Σ, now thought of as the t = 0 surface in the bulk spacetime,

gives consistent results for entanglement from holographic Ryu-Takayanagi calculations. Indeed,

in the history of our project we originally discovered that the state had this simple bipartite

structure by performing these holographic calculations explicitly. We consider the entanglement

for a region in boundary 3, since our coordinates are adapted to this boundary, but by symmetry

similar results apply in the other cases.

Consider first a region in boundary 3 where the horizon H3 is exponentially close to either H1

or H2, that is x1 − x� 1 or x− x2 � 1. In the exterior region E3, the planar BTZ coordinate

x is identical (up to a scale and a shift of origin) to the round conformal frame coordinate φ3

defined in section 4.2: φ3 = 2π
L3
x. In the other exterior region, at similar x but outside H1, H2,

because the horizon H1,2 is exponentially close to H3, the planar BTZ coordinate x agrees with

φ1,2 (up to a scale and a shift of origin) up to exponentially small corrections. We can take for

example φ1 = 2π
L1
x. This is manifestly true near ρ = 0 (see (4.7)) and continues to hold at large

ρ due to the properties of geodesics in hyperbolic geometry35. So for x1 − x � 1, x − x2 � 1

we may take x to define the round conformal frame on all three boundaries up to exponentially

small corrections.

The above relations allow us to easily map those geodesics involved in any HRT calculation

of the mutual information between subregions of boundaries 1 and 3 (or 2 and 3) that lie far from

x1, x2 to geodesics in BTZ. The BTZ calculation was studied in [95], who found that for regions

much larger than the thermal scale, the mutual information is simply proportional to the size of

the overlap between the two regions. The overlap is maximal when the two regions are directly

opposite each other, in which case the high-temperature result (3.27) of [95] becomes

I(A : B) = S(A) + S(B)− S(A ∪B) =
L

4G

(∆φ+ 2π − (2π −∆φ))

2π
=

L

2G

∆φ

2π
+O(L0). (4.12)

35Two geodesics on H2 fired at slightly different angles from the same point will diverge exponentially as
measured by the proper distance separating them as the curves approach the boundary. So curves of constant
φ1,2 and x that meet at the horizon also diverge in a similar manner near the boundary. But two geodesics fired
orthogonally from different points x′, x′′ of the horizon again diverge exponentially at precisely the same rate. So
a curve of constant φ1,2 that meets the horizon at x′ with |x′ − x1,2| � 1 will meet the boundary at some x′′ with
|x′′ − x′| still exponentially small.
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Applying appropriate scalings to (4.12), the mutual information between corresponding regions

of boundaries 1 and 3 with x1 − x� 1 is

I(A : B) =
1

2G
∆x+O(1) =

L1

2G

∆φ1

2π
+O(1) =

L3

2G

∆φ3

2π
+O(1). (4.13)

In addition, since the region of boundary 1 with x1 − x� 1 is well-separated in the bulk from

the region of boundary 2 with x− x2 � 1, it also follows that these two regions share no mutual

information. The situation is exactly similar for the region in boundary 3 with x− x2 � 1, which

has a mutual information of the same form with a region in boundary 2.

If |x2 − x1| � 1, there are large parts of H1, H2 that are far from H3, and so have yet to

be described. This indicates that there are large intervals of φ1,2 along boundaries 1 and 2

with x-values close to the endpoints x1, x2. But it also implies a large conformal transformation

between the round conformal frame for B1, B2 and the planar BTZ coordinate x. As a result,

the renormalized length of any geodesic connecting boundary 3 to these regions of boundaries 1, 2

is very long and HRT calculations give no mutual information between boundary 3 and these

regions.

For |x2−x1| � 1, the above results describe the entanglement properties of boundary 3, with

the exception of a region with length of order the thermal length scale (which in the planar BTZ

coordinates is of order the AdS scale) near x1, x2. So away from the vertices the entanglement

structure obtained from bulk calculations corresponds precisely with that predicted by the state

pictured in the top panel of figure 17, given by sewing together thermofield double states.

We now turn to the complementary case |x2 − x1| � 1. There is then a large region of

boundary 3 not covered by the regions x1 − x� 1, x− x2 � 1 studied above. But across the

region satisfying both x− x1 � 1 and x2 − x� 1, the geodesic G12 lies exponentially close to

H3. So sewing together Σ+ and Σ− in this region is well-approximated by simply gluing to each

other the boundaries of E3 (the region outside H3; the lower half of each diagram in figure 21)

along H3±; i.e., the result is well approximated by the region of the two-sided BTZ geometry with

x1 < x < x2.

Note that the two asymptotic boundaries of this new BTZ geometry are identified with

different regions of boundary 3 coming respectively from Σ+ and Σ−. In particular, since our

slicing of the pair of pants into Σ± was performed using the Z2 reflection symmetry, we see that

a given value of x with x1 < x < x2 corresponds both to some point φ3 and also to 2π − φ3 in
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terms of the usual coordinate on boundary 3 that defines the round conformal frame. Thus, in

this case the mutual information of a region in boundary 3 with the corresponding region on the

opposite side in boundary 3 will be as given in (4.13), supporting the local thermofield-double like

entanglement between the two pieces of this boundary as indicated in the bottom panel of fig. 17.

4.6 Finite size corrections

We have shown that |Σ〉 has a simple structure in the high temperature limit. To use this as a

systematic approximation to the state corresponding to finite-size wormholes, it is interesting to

investigate finite-temperature corrections to this. In this section we will consider this first for the

simple two-boundary case and then for three boundaries.

4.6.1 Two boundaries

In the two-boundary case, we want to understand and characterise the departure from the trivial

network pictured in figure 16. The departure will be significant when we consider small regions,

of order the thermal scale or smaller. For simplicity, we diagnose this by considering the mutual

information between a subregion in one boundary and the whole of the other boundary.

The key finite temperature effect is that, for small regions, there is a competition between

different possible minimal surfaces in the bulk homologous to A. For S(A), we need the smaller of

l(γA), the length of the minimal (connected) geodesic γA homotopic to A, or l(γAc) +L, where γAc

is the minimal (connected) geodesic homotopic to Ac and L is the length of the closed geodesic

at the horizon. Similarly S(Ac) is determined by either l(γAc) or l(γA) + L, and there is an

interesting competition between these two possibilities when A is nearly the whole boundary.

At high temperature the geodesics γA, γAc behave as shown in figure 23. As a function of the

angle φ, they drop quickly from the boundary to the horizon, hug the horizon while traversing an

angle nearly 2π −∆φ, and then quickly return to the boundary. One thus finds

l(γA) = L
∆φ

2π
+O(L0), l(γAc) = L

(
1− ∆φ

2π

)
+O(L0), (4.14)

which reproduces the behaviour in (4.12) found in [95].

At finite L, corrections to (4.14) are exponentially small in L when A and Ac are larger than

the thermal scale, and the entropy remains close to linear in ∆φ. But for any finite L there is a
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Figure 23: The geodesics giving, in the high-temperature limit, the phases of entanglement

entropy of the union of a pair of intervals (cyan) lying on opposite boundaries, along with the

event horizon added to satisfy the homology constraint, marked by the horizontal dashed line.

When one of the intervals is a whole boundary, there are only two relevant phases (left), otherwise

a third phase (right) may dominate, for which the corresponding geodesics cross the horizon and

have endpoints lying on opposite boundaries.
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Figure 24: Left: Plot for L = 10 of the mutual information I(I1; 2) between an interval I1 of size

∆ in B1 and all of B2, as a function of ∆, scaled by the maximal value 2S. The mutual information

increases approximately linearly in ∆ and becomes non-zero at the phase transition where ∆ ∼ l−1

(vertical line near left edge). Right: Plot of the deviation in the mutual information shown at

left from the high-temperature estimate 2S ∆
2π

. This deviation is very small; for readability the

vertical scale has been magnified relative to the left-hand plot. The deviation is most significant

for small and large values of ∆, and decays exponentially in L at intermediate values as expected.

Ryu-Takayanagi phase transition when either A or Ac becomes sufficiently small. In that regime

the relevant entropy S(A) or S(Ac) becomes controlled by the disconnected geodesic. Thus, when

the length of A falls below 2π log 2/L+O(e−L/L) one finds I(A : B) = 0. For Ac smaller than

this threshold, one finds I(A : B) = 2S(B) = L
2G
. Plotting the full I(A : B) at large but finite T

clearly shows these “plateaux” as in figure 24. These plateaux were studied in [110]; they can be

characterised in terms of saturation of the Araki-Lieb inequality as discussed in [111].

The fact that small intervals do not capture the entanglement with boundary 2 indicates

that this information is encoded in a way that is non-local on the thermal length scale. This is
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not surprising, but it is useful to note that this correction to the large L picture has a natural

expression in the language of [59]. It says that at finite temperature the information about the

entanglement between the two boundaries is not encoded locally in degrees of freedom at individual

spatial points, but rather in a code subspace in each boundary, which entangles individual spatial

degrees of freedom on the thermal scale. The ability to recover all of the information from any

sufficiently large spatial subset of the degrees of freedom is the characteristic signature of such

encoding in a code subspace. In [59], the size of the region needed to access information in a code

subspace was related to the radial location of the bulk region encoded. Similarly, in BTZ this

size is related to the radial position of the horizon.

On a related note, the plateau at large ∆φ appears precisely when the Ryu-Takayanagi surface

for region A is γ(Ac) plus the horizon. In other words, it occurs precisely when the so-called

entanglement wedge [93] – the region inside this Ryu-Takayanagi surface – reaches all the way to

the horizon. Indeed, in this case we see that it touches each and every point on the horizon and

on A’s side of the horizon it misses only a small part of the space near Ac. This suggests that the

bulk near-horizon degrees of freedom are encoded non-locally in the CFT in such a way that they

can be perfectly recovered from a large spatial subset A that remains slightly smaller than the

entire boundary.

4.6.2 Pair of pants

For the pair of pants, we again study finite temperature corrections by considering the departure

of the mutual information between a region in one boundary, say boundary 3, and the whole of

another boundary, say boundary 1,

I(A3 : 1) = SA3 + S1 − SA3∪1, (4.15)

from the approximation suggested by (4.13). As for the two boundary case, we expect the

main departure to come near transitions between different phases, where different geodesics are

exchanging dominance in the calculation of the holographic entanglement entropies. For this case,

the phase transitions depend on two parameters: the size of A3 and its location on boundary

3. The different possible phases for S(A3) and S(A3 ∪ B1) are illustrated in figures 25 and 26

respectively.

The calculation of the associated geodesic lengths can be easily automated using the description
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(a) Phase 1: 1 (b) Phase 2: g−1
1

(c) Phase 3: g−1
2 (d) Phase 4: g2g

−1
1

Figure 25: The geodesics giving the four possible phases of entanglement entropy of a single

interval, in red, along with the event horizons added to satisfy the homology constraint, marked

by dashed lines.

(a) Phase 1: 1 (b) Phase 2: g−1
1

(c) Phase 3: g−1
2 (d) Phase 4: g2g

−1
1

Figure 26: The geodesics giving the four possible phases of entanglement entropy of the union

of a single interval A1 and the whole of boundary 2, in red, along with the event horizons added

to satisfy the homology constraint, marked by dashed lines.

of the geodesic lengths as traces of corresponding SL(2,R) group elements exploited in [109].

The lengths of the relevant geodesics can be found by computing the appropriate matrix products

and traces. While the exact form of the answer is complicated and unilluminating, the general

structure is fairly simple, being built mostly from polynomials in parameters encoding horizon
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Figure 27: Deviation of the mutual information I(A : B1) between a region A = {φ3 ∈
[φ̄−∆φ/2, φ̄+ ∆φ/2]} in B3 and the whole of boundary 1 from the piecewise-linear form implied

by figure 17 (lower right) for L1 = 9, L2 = 15, L3 = 30. We plot the ratio between the error and

the maximal mutual information (twice the entropy of B1). Here φ3 = 0 is the leftmost point in

figure 17 (lower right) and for comparison the inverse temperature β3 is (2π)2

30
≈ 1.3. The error is

exponentially small in L, except in a region of thermal scale around certain phase transitions,

where the order L0 terms in (4.13) contribute. The diagonal lines with largest error occur where

an endpoint of A leaves the region of B3 entangled with B1. The vertical lines with similarly

large error are along a plateau phase transition, as occurs in the two boundary case.

lengths and the position of the interval. With a list of all contributing monomials in hand, finding

the length in the large L limit is equivalent to finding the maximum of a set of linear functions.

This calculation is implemented in Mathematica by performing a truncated series expansion.

Of course, the full series can also be computed numerically. The results are summarized

in figure 27, which shows numerical results at finite-temperature for deviations from the high-

temperature approximation (4.13). The errors are indeed largest near the regions where nearby

horizons are not exponentially close (i.e., where the causal shadows become large) and for intervals

of size comparable to the thermal scale. Such regimes are close to phase transitions in the mutual

information, where pairs of minimal curves exchange dominance.

In addition to the bipartite entanglement, at large but finite temperature one expects to find

tripartite entanglement associated with the shadow region between the horizons. But as noted

above the area of the pair-of-pants causal shadow is ACS = 2π in AdS units for all values of the

moduli La. Chopping off the exponentially thin “arms,” it can be useful to model this region as

an AdS-scale disk. This is quite reminiscent of the picture obtained in the tensor network model
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of the AdS vacuum in [105], where different spatial regions mostly had bipartite entanglement,

with a residual multipartite component corresponding to an AdS-scale region.

4.7 Discussion

Our main result is that, in the limit of large black hole horizons, the pair-of-pants wormhole in

2+1 gravity is dual to a CFT state formed by sewing together thermofield doubles in one of the

manners shown on the right of figure 17, or to the degenerate case that interpolates between

them. We showed this by directly analyzing the CFT path integral defining the state |Σ〉, and

used consistency with bulk holographic calculations of the mutual information to argue that the

Σ-wormhole dominates the associated bulk Euclidean path integral. We focused on the pair of

pants for simplicity but – as will be discussed further below – it is easy to extend the central

aspects of our discussion to more complicated wormhole spacetimes.

We also focused on the case of circular boundaries, but the same conclusions apply to the

planar case. In 2+1 bulk dimensions, such high-temperature n-boundary planar cases are just

AdS3 in non-standard coordinates corresponding to performing certain conformal transformations

on the dual CFT vacuum that are singular at n points on the circle, with each segment running

between two such singular points representing a distinct planar boundary. One may also consider

wormholes having both planar and circular boundaries.

Let us now briefly describe the extension to more general Riemann surfaces. Recall that a

general orientable Riemann surface Σ (other than the sphere or annulus) can be decomposed into

pairs-of-pants. Let us think of Σ as the t = 0 slice of a wormhole spacetime with n boundaries

each asymptotic to AdS3. Then the surface contains geodesics Hi (i = 1, 2, . . . , n) that define

bifurcation surfaces of the event horizons for each boundary. In addition, it contains a number

of internal geodesics. Each pair-of-pants decomposition of Σ corresponds to cutting Σ into

pair-of-pants pieces along some set of these internal geodesics. It will be convenient for us to

also cut along the Hi so that we in fact decompose Σ into n cylinders Ci and some number of

pair-of-pants pieces ΣI . In a somewhat redundant notation, we will refer to the geodesics forming

the three boundaries of ΣI as HIa for a = 1, 2, 3. Note that the set of HIa includes the horizons

Hi. In this decomposition, the moduli space of the Riemann surface is parametrised by the

lengths LIa of the HIa and the twists θIa specifying the relative rotation between the two pairs of

pants on the internal geodesics where we are sewing pairs of pants together.
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H

L̃, θ BC1

Σ1

B
B

Figure 28: A decomposition of the torus wormhole (left) with one boundary B into a single pair

of pants Σ1 and a single cylinder C1. Taking boundary 3 of Σ1 to adjoin C1, we see that there are

three distinct moduli: the length L3 of H, L1 = L2 = L̃, and a possible twist θ. Tensor networks

for θ = 0 dual CFT states with large L3, L̃ are also shown for L3 < 2L̃ (middle) and L3 > 2L̃

(right). In both cases, corresponding cyan and orange links are to be identified as dictated by the

twist angle θ. For θ = 0, this identification is reflection about the vertical axis through the center

of each diagram. (Without this reflection, the spacetime is a punctured Klein bottle instead of a

torus.) The cyan and orange links should be viewed as exponentially short, while the black links

have length β/2 set by the inverse effective temperature β of the black hole. So for θ = 0 these

identifications generate exponentially short closed loops which can be removed from the tensor

without changing the state at leading order in large L3, L̃ and central charge c. See discussion in

main text below.

Each ΣI has the same geometry as the causal shadow region lying between the three horizons

in figure 21 as defined by the corresponding LIa. So each Σ± has area precisely 2π, independent

of moduli. Any HIa which is long will lie exponentially close to another HIa (or another region of

the same HIa) across the causal shadow region. As a result, a large number of such ΣI can be

sewn together without introducing an appreciable causal shadow or an appreciable reduction of

the local energy density along each boundary. Away from the special points in each boundary

corresponding to vertices in our previous discussion, the effective |TFD〉 temperature remains

uniform in the round conformal frame specified by the cylinders Ci. Note that this is needed for

consistency with the fact that the solution is precisely BTZ outside each horizon Hi, so that each

boundary has constant energy density in our round frame36. Some simple examples are shown in

figures 28 and 29, the former being a 1-boundary wormhole whose causal shadow at t = 0 has the

topology of a punctured torus.

36When the number of such pieces becomes comparable to the lengths Li of the horizons Hi, the qualitative
effect on the CFT state |Σ〉 will depend on how these pieces of causal shadow are distributed along each boundary,
and in particular on whether any regions of the boundaries do in fact remain far enough away to retain their
|TFD〉 description.
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(c) θ = π

1 2 H3

1′ 2′ H3′

Figure 29: (Left diagrams) Two pairs-of-pants Σ and Σ′ are each cut along H3,3′ (red) and

the pair of interior portions are sewn together along the cuts with twists θ = 0, π/2, π to form

a four-boundary wormhole. Here we consider the case with L3 > L1 + L2, L3′ > L1′ + L2′ . In

(a,c left) each pair of pants is bisected by an additional closed geodesic (not shown) that runs

vertically around the diagram. In the high-temperature limit, the corresponding entanglement

structure is given by identifiying the outer boundaries H3,3′ of a pair of “eyeglass” diagrams,

shown in red on the right-hand figure. This identification entails a twist θ which is represented

by the dot in each cut which are identified across the join in accordance with the twist. For θ = 0

(top) we infer that boundaries 1 and 2 are each entangled only with 1′ and 2′ respectively. For

θ = π
2

(middle) and the chosen values of La intervals within any given boundary are entangled

with intervals in each of the others. The pattern of such entanglements become chaotic at generic

θ, though a twist in this setting never entangles two distinct intervals within the same boundary.

For θ = π (bottom) boundaries 1 and 2 are each entangled only with 2′ and 1′ respectively.
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Interesting new behaviour can arise as a function of the twists as we sew together pairs of

pants with the structure of the lower panel in figure 17, as we illustrate by example in figure 29.

Consider for example a four-boundary wormhole with external horizons H1, H2, H ′1, H ′2, and split

it into two pairs of pants along an internal geodesic H3 = H ′3 separating H1,2 from H ′1,2. We take

L3 � L1 + L2, L3 � L′1 + L′2. If H3 and H ′3 are identified via some twist θ, a given region in

say H1 is entangled with a region in H3, which is in turn identified with some region in H ′3. For

generic θ at large L3 this will be entangled with some other region in H ′3, which is then identified

back to H3. For large L3 we will cycle through the identification between H3 and H ′3 many times

before finally identifying the region with one of the other horizons (H2, H1′ , H2′). In the limit

where L3 is much larger than the external horizons, the identifications resulting from a general

twist are chaotic and appear to give a fractal entanglement structure. It would be interesting to

characterize these structures in more detail, and to relate this behavior to the well-known chaotic

dynamics of geodesics on compact hyperbolic spaces.

Another subtlety arises in cases like that shown in figure 29 a), where we consider the

four-boundary system with zero twist, and take for simplicity L1 = L′1 and L2 = L′2 with L3 again

very large. Then sewing together the two copies of figure 17 (lower right) indicates that B1 is

entangled only with B1′ and that B2 is entangled only with B2′ . As a result, taking A = B1 ∪B1′

and B = B2∪B2′ , the CFT state has I(A : B) = 0 (at leading order in large c and L). This result

may seem is surprising from the bulk point of view, as Σ contains a closed geodesic that runs

vertically around figure 29 (a), separating A from B. So HRT predicts I(A : B) = L/2G, where

L is the length of this geodesic. This would be consistent with the above prediction as large L3

makes this geodesic exponentially short so that its length can be ignored at leading order. Note

that this geodesic is short only for zero twist: we saw that for small-but-nonzero twist θ a part

of B1 is instead entangled in a local |TFD〉 state with part of B2′ , so the mutual information is

non-zero and grows as we scale up the La. Thus A and B can no longer be separated by a closed

bulk geodesic of negligible length37.

Despite the above consistency, the appearance of such a short geodesic also suggests that

our Σ-wormhole may not in fact be the dominant bulk saddle for the CFT state |Σ〉. It seems

natural to conjecture that – unless forbidden by global features like a choice of spin structure –

when Σ contains such exponentially short geodesics there will be another bulk saddle of smaller

37This is also clear from the fact that the local bulk geometry of these regions is essentially that of a segment of
BTZ, and any such separating geodesic must traverse part of this segment of BTZ and thus have non-negligible
length
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Figure 30: The entanglement structure of the 4-boundary wormhole (figure 29) with large

L3 = L3′ for L1 = L1′ = L2 = L2′ = 1
4
L3 and θ = 11π

8
. The state is well-described by a tensor

network analogous to figure 17 right. The state on any pair of boundary intervals formatted

in the same way (color, dots/dashes/solid lines) is a local piece of |TFD〉; the labels 1, 1′, 2, 2′

indicate the boundaries connected to each TFD segment. The TFD intervals join at four vertices

A,B,D,E located as shown. Each vertex connects the 3 local TFD states listed in the key below

the diagram. C,F are not vertices, but are simply in the middle of the indicated (relatively

long) TFD intervals. Some TFD strips connect oppositely-oriented intervals, while some preserve

orientation.

action where the geometry is modified so that these geodesics are contractible when viewed as

living on the boundary of the new saddle. That is, we conjecture that |Σ〉 in such cases is in fact

dual to a bulk geometry with t = 0 surface Σ′ built by cutting Σ along all exponentially small

geodesics and capping off the resulting holes with small disks. This Σ′− “wormhole” may not then

connect all the boundaries. From the tensor network point of view, the point is that the network

obtained by gluing together two copies of figure 17 with no twist breaks up into two disconnected

components, one connecting B1 and B1′ and one connecting B2 and B2′ . The remaining chains

merely form closed loops. At leading order in large central charge c the properties of the state |Σ〉
are unchanged if we remove all chains that form closed loops rather than ending on boundaries.

The resulting tensor network defines the manifold Σ′. The difference between |Σ〉 and |Σ′〉 is

then exponentially small at large c, and we conjecture the Σ′-“wormhole” to be the leading bulk

saddle describing both states. This feature also arises for the punctured torus shown in figure 28
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for L3 < 2L̃ (middle figure) with vanishing twist θ.

It is worth elaborating further on this last point. As noted in the caption for figure 17, the

diagrams in this chapter include only a simple cartoon of the |TFD〉 tensor networks from e.g.

[14]. The full tensor network for |Σ〉 obtained by sewing together |TFD〉 pieces as we describe

will be correspondingly more complicated as well. In particular, returning to the simple example

of two pairs of pants with very large L3 sewn together along the corresponding boundary, this full

tensor network will certainly not factorize into unentangled states on B1B1′ and B2B2′ . Instead,

it will merely imply that the mutual information between B1B1′ and B2B2′ remains of order 1 at

large central charge c. This is analogous to |TFD〉 below the Hawking-page transition where it

describes two entangled copies of a thermal gas on pure global AdS3 backgrounds. Our conjecture

is thus that the dominant bulk geometry at t = 0 is correctly predicted by removing parts of the

full tensor network that fail to transmit mutual information of order c. We note that evaluating

this criterion requires understanding the tensor structure of each node in the tensor network

implied by the CFT dynamics; it is not apparent from the graph representation of the tensor

network alone.

So far we have considered tensor networks constructed by sewing together pair of pants

networks in the way suggested by bulk wormhole geometries. But it is possible to consider a more

general class of states defined by sewing together high-temperature |TFD〉 states in arbitrary

fashions. For example, one may sew a |TFD〉 to itself (or others) so as to introduce a ‘bud’

on the tensor network as shown in figure 31. Second, some pieces of some |TFD〉’s – or even

entire such states – may now be entirely internal to the tensor network, lengthening some chains

and thus lowering the local temperature. In general, the chain length can then be non-uniform

across any boundary. Together, these two effects recover the freedom to make arbitrary conformal

transformations relative to the round conformal frame used above. That is, these more general

states must be related to the states considered above rewritten in a more general conformal frame.

Finally, one may also generate non-orientable Σ by performing antipodal identifications on

some circle boundary. For example, doing so one one boundary of a cylinder shows that the CFT

state dual to the high-temperature AdS3 geon (see e.g. [112]) is given by the thermofield double

tensor network on a Möbius strip.38 The Möbius strip can of course be constructed by cutting

38This creates a local connection between antipodal points on the boundary. The fact that the bulk geodesic
between antipodal points is short in the large temperature limit can be seen from the explicit formula for the
geodesic lengths in [113], although it is incorrectly stated there that the length of the geodesic through the
identification is always longer than the one outside the horizon.
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1 2

Figure 31: Another way to sew three |TFD〉 states together. Here the outer |TFD〉 has been

sewn to itself at the ends as well as in the middle. The sewing at the ends creates features we call

‘buds.’ Such buds are removed if one transforms the result to the round conformal frame. One

may construct similar buds from the vacuum by applying a smooth conformal transformation

approximating over some region the singular one that gives the infinitely long planar thermofield

double state.

open the cylinder along φ = 0 and gluing the two ends back together with a half twist. It is an

interesting question to what extent such gluing operations reproduce desired states when applied

to particular e.g. MERA-like tensor network representations of states at finite temperature and

finite central charge c. Results related to this issue will appear in [114].

While we have stressed the limit where all La become large, the discussion may be generalized

to allow some La to remain small. The pair-of-pants CFT states |Σ〉 are then described by figure

17 (right) with the small-L boundaries contracted to points that merge with the vertices where

the approximation by local TFDs breaks down. But regions of any large-L boundaries far from

the new vertices remain well-described by the indicated local TFDs. One should be aware that,

due to the possibility of bulk phase transitions like those described above, having some La small

may make it less clear which bulk spacetime is in fact dual to |Σ〉. Nevertheless, the local TFD

description of |Σ〉 remains valid. In particular, any entanglement of large-L boundaries with those

having small-L will be confined to intervals no longer than the effective thermal scale. The tensor

network issue dual to uncertainties regarding bulk connectivity is that some new vertices may

now be trivial in the sense that they no longer lead to order-c mutual information with the small

boundary. When this occurs and creates a ‘bud’ as in figure 31, the bud may again be absorbed

into a neighboring vertex without changing the large-c structure of the state other than by acting

with a conformal transformation39. Similar comments apply to Σ having more boundaries or

more general topology when some of the LIa remain small.

Although we have discussed 2+1-dimensional bulk geometries above, but many of our

39It is then the diagram without the bud that describes the round conformal frame.
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considerations clearly apply to the higher dimensional case as well. In particular, sewing together

high-temperature |TFD〉’s defines a zoo of interesting states |Σ〉 and conformal geometries Σ.

And it is again natural to conjecture the CFT states |Σ〉 defined by such sewing operations to

be dual to Σ′-wormholes defined by having a moment of time-reflection symmetry on which the

induced geometry differs from (planar) Schwarzschild-AdS only by small corrections outside a

finite number of AdS-scale regions. But much remains to be understood and the details will

prove interesting to explore. In particular, one would like to find an algorithm that takes the

tensor network naturally associated with |Σ〉 defined by the above gluing procedure and turns

it into one in which the geometry of Σ′ is manifest – e.g., with the tensor network providing a

cellular decomposition of Σ′ in terms of AdS-scale cells [115–118]. One wonders if solving the

Euclidean Einstein equations to construct Σ′ from Σ can be related to a renormalization-group

flow on tensor networks akin to those discussed in [119, 120].
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5 Tensor Network Models of Multiboundary

Wormholes

The work in this chapter is reproduced from a collaborative paper [4] with Prof. Simon Ross. In

this chapter we consider the entanglement structure of states dual to multiboundary wormhole

geometries using tensor network models. Perfect and random tensor networks tiling the hyperbolic

plane have been shown to provide good models of the entanglement structure in holography. We

extend this by quotienting the plane by discrete isometries to obtain models of the multiboundary

states. We show that there are networks where the entanglement structure is purely bipartite,

extending results obtained in the large temperature limit. We analyse the entanglement structure

in a range of examples.
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5.1 Introduction

Multiboundary wormhole geometries are a useful laboratory for studying the relation between

the entanglement structure of CFT states and the bulk geometry. In [98], an investigation

of the entanglement structure of a class of asymptotically AdS 2 + 1 dimensional spacetimes

with n asymptotic boundaries was initiated; these are dual to states in n copies of the CFT on

S1 × R. These solutions were introduced in [52–55], and their holographic study was initiated

by [101–103]. The CFT states are given by a path integral on a Riemann surface Σ with n

boundaries. The entanglement structure of these states has a complicated dependence on the

moduli of the Riemann surface, exhibiting regions of multipartite entanglement but also regions

where bipartite entanglement between different copies is dominant. In the previous chapter,

the entanglement structure in a region of large moduli, where the CFT states involve highly

excited states on each S1 × R factor, was explored in more detail. This is effectively a regime

of high temperature, although the reduced density matrix in a single copy of the CFT is not

necessarily thermal. The structure in this regime is dominated by local, bipartite entanglement

between subregions on each boundary on a scale set by the effective temperature. There can be a

multipartite component in this regime, but it is associated just with a single thermal volume, so

it is a small part of the overall state.

It is difficult to gain more insight into the entanglement structure for more generic moduli

from the full CFT path integral. This motivates the study of tensor network models, which

share many of the entanglement and geometrical features of the full state.40 Other approaches to

multiboundary wormholes have recently been explored in [125, 126]; see also the interesting work

on multipartite entanglement in tensor networks [127].

The models we consider were introduced in [105, 128, 129] to model the relation of the

entanglement structure of the vacuum state to global AdS, explicitly exhibiting the ideas of code

subspaces in [59]. They are based on tiling the hyperbolic plane with perfect or random tensors,

and were shown to reproduce the Ryu-Takayanagi formula for entanglement entropies. Following

[130], we consider discrete quotients of the tiled plane, and use the tensor network on the quotient

space as a model of the CFT states dual to such multiboundary geometries. In these models,

40The most robust model of the holographic entanglement structure are MERA networks [96, 121], which
provide a good description of the ground state in conformal field theories, and have been related to holographic
descriptions of the state [115, 117, 122, 123]. A MERA version of the quotient giving BTZ was constructed in
[124]. However, it appears difficult to extend this construction to the more general quotients we are interested in
with multiple generators. We will therefore focus our attention on more phenomenological models.
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we can explore intermediate regions in the moduli space of Riemann surfaces, and study the

entanglement structure of the corresponding states.

Surprisingly, we find that even at generic values of the moduli, there can be tilings where the

entanglement structure is purely bipartite. Although this result presumably reflects the limited

resolution of the discrete tensor network models, it is interesting as it provides explicit illustration

of the way in which a connected multiboundary state can be built up from purely bipartite

entanglement. In these cases, the state is distillable to a state containing just Bell pairs. For other

tilings, there is a residual multipartite component, and we attempt to characterise the multipartite

structure in its entanglement using negativity of the reduced density matrices, comparing to a

random state on the same Hilbert space. Further characterisation of this multipartite component

is an interesting challenge for further work. Our computations are for low bond dimension, and it

would also be interesting to see how they extend to higher bond dimension.

In the next section, we review previous work on multiboundary wormholes. In section 5.3, we

construct tilings of the Riemann surface Σ for discrete values of the moduli by quotienting tilings

of the hyperbolic plane by discrete isometries. We discuss the discrete analogue of horizons and

the causal shadow region in these tilings, and show that in some cases there is no causal shadow

region. In section 5.4, we review the tensor network models built on the tilings of the hyperbolic

plane. In section 5.5, we apply these methods to the tilings of the Riemann surface Σ and analyse

the entanglement structure of the resulting states.

5.2 Holographic Multiboundary Wormholes

The holographic description of multiboundary wormholes generalises the relation between the

thermofield double state

|TFD〉 =
∑
E

e−
β
2
E |E〉1 |E〉2 (5.1)

in two copies of the CFT and the eternal black hole [30]. This state is obtained as the result of a

Euclidean CFT path integral on a cylinder of length β/2 (taking the S1 to have period 2π). The

trace over one copy gives a thermal density matrix, at inverse temperature β. At sufficiently high

temperatures (small β), the dominant bulk saddle for these boundary conditions is a Euclidean

black hole. Analytically continuing to Lorentzian time, the two copies of the CFT live on the two

boundaries of the black hole, and the entanglement of the state (5.1) is essential to account for

139



the connectedness of the bulk geometry.

In [98], this picture was extended to consider the role of the entanglement in the CFT

in multiboundary wormhole geometries. In 2 + 1 dimensions, such geometries can easily be

constructed by considering quotients of vacuum AdS3. The Euclidean quotients we are interested

in are usefully described by writing the Euclidean AdS3, equivalently H3, in a coordinate system

ds2

l2AdS
= dt2E + cosh2 tEdΣ2 (5.2)

where tE is Euclidean time and dΣ2 is the unit-radius metric on H2. The eternal BTZ black hole

arises as a quotient by a discrete subgroup Γ of the SL(2,R) isometry group of this H2 generated

by a single hyperbolic element [106]. This converts H2 into a cylinder with two boundaries, with

a hyperbolic metric. The more general quotients we are interested in correspond to considering

discrete subgroups Γ generated by k hyperbolic elements. These geometries were introduced in [52–

55]. The resulting surface Σ = H2/Γ is a smooth Riemann surface with genus g and n boundaries.

This Riemann surface has 6g− 6 + 3n moduli, which are encoded in the choice of discrete group Γ.

Since the quotient acts on the surfaces of constant tE, we can define a corresponding Lorentzian

geometry by analytically continuing tE → −it. This has n asymptotically AdS regions, connected

by a collapsing wormhole which generalises the Einstein-Rosen bridge in the eternal black hole.

Topological censorship implies that associated to each boundary of the geometry is a horizon

[107, 108]. The absence of local degrees of freedom implies that the geometry in the exterior

regions outside the horizons is exactly the BTZ geometry exterior to a black hole.

We want to understand the structure of the dual CFT state which encodes this geometry,

and specifically its entanglement. The holographic description of these geometries was initiated in

[101–103]. The conformal boundary of this spacetime lies at tE → ±∞, and consists of two copies

of the surface Σ. The CFT path integral over this surface has a rich phase structure [98, 131].

In a region of the moduli space, the dominant bulk contribution comes from the multiboundary

wormhole (5.2), where the spatial slices are the Riemann surface Σ. Thus, in this region of moduli

space the t = 0 bulk geometry Σ corresponds to a CFT state on the n boundaries obtained by a

path integral on Σ.

For the BTZ black hole, the entanglement structure of the state (5.1) is purely bipartite. In

the high temperature limit, this has a particularly simple structure: high temperature is small β,

so the cylinder is short, and if we consider scales larger than the thermal scale β on the spatial
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Figure 32: The surface Σ as a quotient of the Poincaré disc for the pair of pants. The pairs of

labeled geodesics (blue and red in colour version) are identified by the action of Γ. The region of

the Poincaré disc bounded by these geodesics provides a fundamental domain for the quotient. B3,

B2 and B1 = B1+ ∪B1− become the desired three circular boundaries. There are corresponding

minimal closed geodesics H3, H2 and H1 = H1+ ∪H1−. The lengths La of these geodesics fully

characterize the geometry of Σ.

circle, the path integral simply identifies states on the two boundaries. This local character of the

entanglement was verified in [95] by considering mutual informations between subregions on the

two boundaries.

The next simple example is the three-boundary wormhole or pair of pants, whose Euclidean

geometry is obtained by quotienting by a group Γ generated by a pair of hyperbolic elements

g1, g2. A fundamental domain of the identification on H2 is the region bounded by a pair of

geodesics identified by g1 and a pair of geodesics bounded by g2, as depicted in figure 32. This

surface has three moduli, corresponding to the lengths of the three minimal closed geodesics

shown in the figure. In the Lorentzian spacetime, these geodesics become the bifurcation surfaces

of the event horizons in each asymptotic region. The CFT path integral on the pair of pants is

hard to do analytically, but it simplifies in limits of the moduli space. In [98] the entanglement

properties of the dual state were studied in the “puncture limit”, where the minimal geodesics

are short.

In chapter 4, the structure in the “high-temperature” limit, where the geodesics are long,

was studied. This leads to particular simplifications. For the three-boundary wormhole, the

“high-temperature” limit is defined by scaling the sizes of all of the horizons to infinity, whilst

141



fixing their ratios, which then characterise the high temperature geometry. The geometry outside

the horizons are high-temperature BTZ solutions, which justifies the name, although the CFT

state on the boundaries is not thermal. Since the exterior cylinders are BTZ, they behave in the

same way as before: considering scales above the thermal scale, the state on the boundary is

identified with the state on the horizon. There is a causal shadow region between the horizons,

but its volume is fixed in AdS units by the Gauss-Bonnet theorem, so as the horizons become

long, the distance between them shrinks over almost all of the horizon. The causal shadow region

is thus effectively a seam which connects the horizons of the exterior regions and whose shape

is determined by the ratios of the moduli. Thus, in the high-temperature limit we infer that

the path-integral just identifies states across this seam, so that intervals in different boundaries

which are opposite each other across the shadow region are maximally entangled, and again the

resulting entanglement structure is almost entirely bipartite and local. This behaviour is depicted

in figure 33. There could be some residual multipartite component, but this would only involve a

subregion of order the thermal scale on each boundary.

Note the figure depicts the regime where the horizons are all roughly of the same length. If

we take L1 ≥ L2 ≥ L3, this is the regime L1 < L2 + L3, referred to in the previous chapter as the

“wheel” regime, after the figure on the right side of figure 33. The alternative regime L1 ≥ L2 +L3

is referred to as the “eyeglass” regime. The entanglement remains primarily bipartite in this

regime, but there are regions of boundary 1 which are entangled with other regions of boundary

1, rather than with one of the other boundaries.

The result generalises easily to wormholes with more boundaries and topology behind the

horizon. Any Riemann surface can be decomposed into pairs of pants, sewn together across

minimal geodesics. There is a region of the moduli space where all the minimal geodesics involved

in the sewing are long, and the individual pairs of pants are in the high-temperature configuration

described above. The path-integral then identifies states across the regions between minimal

geodesics, again generating a local bipartite entanglement structure which can be characterised

by appropriate compositions of the diagrams of which figure 33 c) is an example.

5.3 Hyperbolic Tilings & Quotients

The tensor network models of [105, 129] are based on tiling the hyperbolic plane with perfect

or random tensors. We want to take a quotient of these networks by a discrete isometry of
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Figure 33: The geometry of the pair-of-pants in the high temperature limit and the resulting

entanglement structure. a) the pair-of-pants geometry with the three coloured boundaries

indicated and labelled 1-3, the black lines depict the horizons pertaining to each exterior region,

and are labelled Ha, a = 1, 2, 3. The interior of the horizons is the causal shadow region. b)

Cartoon of a) in the high-temperature limit, with fixed ratios of the moduli. The exterior cylinders

shrink (the strips should be thought of as being extremely thin, we’ve exaggerated them here)

and the distance between the horizons across the causal shadow region is small almost everywhere.

The black lines represent identifications between horizons, which is true to exponential accuracy

away from the junctions. c) The resulting entanglement structure can be depicted with this

“wheel” diagram: the path integral locally identifies the states in portions of the three boundaries.

States localised in some boundary interval are purified by an interval of the same size on the

opposite side of the seam, which may lie on any of the three boundaries, as the ratios of the

moduli are varied. The resulting entanglement structure is almost entirely bipartite.

the network to obtain a model of the multiboundary wormholes. We can usefully seperate the

geometrical aspects of choosing a tiling of the hyperbolic plane and its quotients by discrete

isometries from the choice of tensors, so we will first discuss the geometric aspects in this section.

Introducing a regular tiling of the hyperbolic plane provides us with a natural discretization of

H2. A particular choice of tiling will preserve some discrete subgroup of the SL(2,R) isometries

of H2, and we can quotient by some of these isometries of the tiling to obtain discretizations of

the Riemann surface Σ for some discrete values of the moduli. In this section, we describe the

tilings and quotients, and define analogues of the horizons in the tiling.

As in [130], we describe the tilings in terms of Coxeter groups [132–134]. A constant curvature

connected Riemann surface can be tiled by repeated reflections of a seed triangle about its edges.

If the interior angles of the seed triangle are given by π
r
, π
p

and π
q

for p, q, r ∈ Z+ then the set of

all reflections in its edges form a Coxeter group, denoted [r, p, q]. The triangulation of a space

obtained by repeated reflection of a seed triangle in its edges is referred to as a Coxeter tiling,
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Figure 34: The [2,4,6] tiling of the hyperbolic plane H2. One of the seed triangles is indicated,

the whole tiling is covered by the action of reflecting the seed along its edges. The black, primary

tiling lines divide the network into a regular array of hexagons.

and the Coxeter group forms the discrete isometries of the tiling. By the Gauss-Bonnet theorem,

for hyperbolic spaces, the required seed triangle must have

1

p
+

1

q
+

1

r
< 1. (5.3)

The [r, p, q] tilings satisfying (5.3) tile H2 with a regular array of q-gons. These Coxeter tilings

underly the tensor networks considered in [105, 129, 130]. An example hyperbolic tiling is

illustrated in figure 34. The edges of the q-gons are geodesics in H2, so the volume of each q-gon

is of order the AdS scale.

The tensor networks considered in [105, 128, 129] are constructed by thinking of the tiling as

a graph, and taking the tensor network to be the dual graph. That is, each q-gon face in the

tiling is replaced by a vertex in the tensor network, which has q legs, connecting it to the tensors

in the adjacent faces, across the edges of the tiling. There are uncontracted legs at the boundary

of the hyperbolic plane.

The tiling is invariant under reflections in any of these edges, forming the Coxeter group

associated with the tiling. We can quotient by any subgroup of this group. In the construction of

the Riemann surface Σ in the previous section, we considered quotients by hyperbolic elements,

which identified pairs of geodesics in the hyperbolic plane. We can obtain such hyperbolic elements

by combining a pair of reflections in distinct geodesics [130]. We can see that this follows by
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considering AdS3 as the hyperboloid embedded in R4,

X2
0 +X3

3 −X2
1 −X2

2 = l2 (5.4)

the t = 0 slice corresponds to X3 = 0. Now consider the two hyperplanes P1 and P2 with corre-

sponding normals n1 = (0, 0, 1, 0), n2 = (cosh(η
2
), sinh(η

2
), 0, 0) respectively. Under a reflection in

the hyperplane with normal n, a point X transforms as

X̃ = X − 2(n ·X)n (5.5)

So that under the pair of subsequent reflections, first in P1 and then in P2, the t = 0 slice is

preserved whilst the X0 and X2 are Lorentz boosted, by X̃0

X̃2

 =

− cosh(η) sinh(η)

cosh(η) − sinh(η)

X0

X2

 . (5.6)

Thus, the hyperbolic element identifying any pair of geodesics which form edges of the tiles

will be an isometry of the tiling. We can thus quotient by discrete groups Γ composed of such

hyperbolic elements to obtain a tiling of a Riemann surface Σ = H2/Γ, and hence (considering

the dual graph) a tensor network with the topological structure of Σ. We can construct this

tiling only for some discrete choices of the moduli of the Riemann surface, as given a tiling,

the area of the tiles, and hence the distance between the geodesics to be identified, is fixed by

the Gauss-Bonnet theorem. In [130], this approach was used to obtain tilings and hence tensor

networks corresponding to the BTZ geometry. We now want to generalize this to multiboundary

wormholes. Our detailed analysis will focus mainly on the pair of pants. An illustrative example

of the construction is given in figure 35.

Despite the discretization of the moduli of Σ, the minimal geodesics will not generally lie

along edges of the tiling. Thus, it is important to identify the analogues in the tiling of these

minimal geodesics. We will take this to be the minimal closed path along the edges of the tiling

homologous to each boundary. This is natural because once we introduce the tensors in each

tiling, this path will cut across the links between tensors.41 This will lead to degeneracy in some

41Note that this is slightly different from the prescription in [130], where the BTZ horizon in the example in
figure 35 was identified with a tensor in the network, as the actual minimal geodesic runs along the middle of the
tile. For the more general case we consider, it is more natural to take the definition above, even though this leads
to an artificial degeneracy in the BTZ case.
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Figure 35: An illustration of the quotient operation in the [2,4,6] tiling. We take rA, rB, rC to

be the reflections in the geodesics labelled in the left-hand diagram. Quotienting by Γ generated

by g1 = rArB gives the tiling of BTZ shown in the middle diagram. Quotienting by Γ generated

by g1 = rArB and g2 = rBrC gives the tiling of the pair of pants shown in the right-hand diagram.

The unshaded region is a fundamental region for the identification in both cases.

cases, where there can be multiple paths of the same length along the edges. Some examples are

illustrated in figure 36.

An interesting feature is that in some cases there is then no causal shadow region in the tiling;

the minimal length paths in the network can coincide. We will see below that this leads to tensor

networks where the entanglement is entirely bipartite. In the continuum, there is of course still a

causal shadow for these choices of Σ, which partially covers some tiles, so this could be viewed

as just a discretization error, but we argue that it is actually an interesting feature. It implies

that in the context of the tensor network models, it is possible to have a network on the pair

of pants that gives rise to a state with only bipartite entanglement, providing further evidence

that multipartite entanglement is not an essential component in obtaining multiply connected

geometries. These explicit examples help us to understand how the geometry arises from purely

bipartite entanglement.

5.4 Tensor Networks & Holography

We now turn to the specific tensor network models we use, following [105, 129]. We obtain a

network from the tiling by considering the dual graph, with a network vertex in each tile and legs

connecting the vertices in adjacent tiles. In general, a network is used to define a quantum state

by first associating a tensor Ti1...in to each vertex in the network, with the rank of the tensor

equal to the number of legs at the vertex. We then associate a state |T 〉 in a tensor product
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Figure 36: Illustrations of three-boundary tilings obtained by quotienting the tilings of the

hyperbolic plane indicated by each column, and with discrete moduli in the regimes indicated

by each row. The unshaded region is a fundamental region for the identification. The minimal

closed paths along tile boundaries homologous to each conformal boundary are indicated. The

cases with two paths of the same colour, where one is dashed, represent degeneracies in the choice

of closed path. The second group of examples show cases where there is no causal shadow; the

minimal closed paths coincide, so the entanglement between different regions is entirely bipartite.

Hilbert space H = ⊗nHn with the tensor,

|T 〉 =
∑
ik

Ti1...in|i1〉1 ⊗ ...⊗ |in〉n, (5.7)
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where |ik〉k is a basis for the kth factor with ik = 1, . . . , Dk where Dk is the dimension of Hk,

which we will take to be some constant χ for all legs, called the bond dimension. Taking the

product over all the vertices defines a product state |{T}〉 = ⊗V |T V 〉. For each leg joining two

vertices, we make a projection onto the maximally entangled state

|ij〉 =
1√
χ

χ∑
a=1

|a〉i ⊗ |a〉j (5.8)

in the associated Hilbert spaces. This defines a state in the Hilbert space associated to the

uncontracted legs,

|T̃ 〉 = ⊗{ij}〈ij| {T}〉, (5.9)

where the product runs over all the contracted legs, which could include self-contractions in

general.

If we take the network constructed from the dual graph of a Coxeter tiling of H2, the remaining

uncontracted legs are located at the boundary of the hyperbolic plane. Given a choice of tensor

at each vertex, this defines a state on the boundary legs. This is referred to as a holographic

state. In an alternative construction, a q + 1 legged tensor is associated to each vertex, leaving

one uncontracted leg at each vertex in the network, which are referred to as bulk legs, in addition

to the uncontracted boundary legs. This network can be viewed as a map from the Hilbert space

HBulk of the bulk legs to the Hilbert space HBoundary of the boundary legs. This model can be

used to study the encoding of local bulk operators in the boundary Hilbert space, so it is referred

to as a holographic code.

Holographic states realise a discrete version of the Ryu-Takayanagi formula [12], relating the

entanglement entropy of some subset of the boundary legs to the length of a cut in the bulk.

Suppose we have two boundary regions A and AC , and a cut γA in the bulk, which is a path in

the bulk along edges of the tiling, which cuts through tensor legs, separating the network into two

components, such that one component has boundary γA ∪A and the other has boundary γA ∪AC .

Then the number of legs |γA| along the cut provides an upper bound for the entanglement entropy

of the reduced density matrix on A in the holographic state given by the network [105]:

SA ≤ |γA| lnχ, (5.10)

where χ is the bond dimension. We obtain the tightest bound by considering the minimal cut,
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Figure 37: Some examples of topologically interesting holographic states constructed from

quotients of various coxeter tilings. The fundamental domain between colour-coded pairs of

identified cuts is the unshaded region in each case. These are holographic states representing

the three-boundary wormhole (left), a torus wormhole (centre) and a four-boundary wormhole

(right).

which we can think of as the network analogue of a minimal surface. This bound is saturated if

the two components of the network are isometries from γA to A and from γA to AC . This then

realises a lattice version of Ryu-Takayanagi, relating the entropy to the length of the minimum

cut. There can be degenerate minimal cuts in the networks, though this does not alter the bound

5.10 as in such cases, the minimal cuts are of equal length.

Applying the same prescription to the quotient tilings, we can build tensor networks on a

Riemann surface Σ, giving states and codes for multiboundary geometries. A selection of examples

are illustrated in figure 37.

5.4.1 Perfect Tensors

In [105], the tensors at each vertex were taken to be perfect tensors. A perfect tensor is a 2n

index tensor T such that for any division of its indices into a set A and its complement AC such

that Dim(HA) < Dim(HAC ), T is proportional to an isometry from HA to HAC . That is, the

map from HA to HAC preserves the inner product up to an overall factor. If we denote the indices

in A by a collective index a, and the indices in AC by b′, the condition is

∑
b′

T †ab′Tb′c = Cδac (5.11)

for some constant C. A visual depiction of isometric tensors is given in figure 38,
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Figure 38: Cartoon illustrating the property of isometric tensors. a) The tensor T has two

legs A and B, so it describes a state in the Hilbert space HA ⊗HB. Equivalently, T defines a

linear map from a state in HA to a corresponding state in HB. b) The property that T is an

isometry from HA to HB (or equivalently from the leg A to B) implies that contracting T with

its conjugate on leg B, as depicted, resolves the identity map on leg A. c) the isometry property

b) is usefully depicted using arrow assignments, as shown. In this case, the fact that one arrow is

incoming on leg A and another is outgoing on B represents the fact that T is an isometry from A

to B.

The isometry property implies that we can convert an operator acting on HA into an operator

acting on HAC ; given an operator O acting in HA, we define

Õ =
1

C
TOT † (5.12)

acting in HAC , so that TO = ÕT . In a holographic code, this enables us to rewrite an operator

acting on a bulk leg as an operator acting on some subspace of the boundary Hilbert space, by

using the perfect tensors in the network to push the operator outwards, as illustrated in figure 39.

An example depicting how operator pushing can be used to reconstruct bulk legs from portions

of the boundary of a holographic code is illustrated in figure 40. This provides a tensor network

realisation of bulk reconstruction. Since we can use the perfect tensor property to map the bulk

leg to different subsets of the boundary legs, it can be mapped to operators acting on different

subspaces of the boundary Hilbert space, realising the ideas of [59].

In [105], a greedy algorithm was introduced to identify the portion of the bulk that can be

reconstructed from a given region A of the boundary, not necessarily connected. This proceeds

by taking some initial region that can be reconstructed from the boundary region (consisting of

tensors in the asymptotic region) and iteratively adding to this region a tensor with more than
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Figure 39: Cartoon depicting operator pushing through isometric tensors. a) The tensor T is

an isometry from leg A to leg AC , as represented by the arrow assignments. b) Because T is an

isometry, the light blue operator O acting on the legs A of T is equivalent to the orange operator

Õ acting on the legs AC of T , where Õ = T †OT is depicted in c). We say that because T is an

isometry from A to AC , then the operator O acting on A can be “pushed through” T onto the

legs AC (becoming Õ), according to the arrow assignment. d) The spectrum of Õ on the legs

AC is the same as the spectrum of O on the legs A, as depicted, due to the isometry property

of T shown in a). Consequently, the fact that O can be pushed through T means that we can

reconstruct the action of O on legs A from the action of Õ on legs AC .

half of its legs connected to tensors already in the region, until there are no more such tensors.

The boundary of this region is a cut of the network referred to as the greedy geodesic γA. In

the case of the holographic state, the collection of tensors GA lying between A and γA define

an isometry from γA to A. For holographic codes, we have an isometry from γA and the bulk

Hilbert space in GA to A. This gives a tensor network realisation of the idea of the bulk wedge

associated with a given boundary region. Since GA defines an isometry, we can view moving from

the boundary region A to γA as a process of distillation, extracting the degrees of freedom in A

which are entangled with AC .

If we divide the boundary into several different regions, there will be a greedy geodesic

associated to each of them, and the union of the different wedges GA may not cover the whole

network. The remaining portion was called in [105] the residual multipartite region, and can be
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Figure 40: Bulk reconstruction for the holographic heptagon code. Due to the fact that each

tensor is perfect, the local bulk operator O acting on the bulk leg of the yellow-highlighted tensor

can be pushed to a non-local boundary operator in multiple ways, corresponding to different

arrow assigments that describe isometric maps from a given bulk leg to different (not-necessarily

connected) boundary subregions. Two examples of such isometric maps are indicated by the red

and green arrow assignments. The green arrow assignment defines an isometry from the bulk leg

of the yellow-highlighted tensor to the operator O2 acting on the connected interval shown in

green, while the red arrow assignment defines an isometry from this site to an operator O1 acting

on the disconnected interval shown in red. For the maps defined by the arrow assignments to be

an isometry, we require that for each tensor with outgoing arrows, that the number of ingoing

arrows is more than half of the total number of legs. For this heptagon code, this requires that

every tensor with outgoing arrows must have at least four ingoing arrows assigned to its legs.

This is indeed the case for the arrow assignments depicted.

thought of as encoding the entanglement between the different boundary regions. We expect the

causal shadow region in our quotient networks to play a similar role.

It was also shown in [105] that for holographic states, for any connected region A on the

boundary of a simply-connected perfect tensor network of non-positive curvature, the lower bound

in (5.10) is saturated, so that the lattice Ryu-Takayanagi formula holds.
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5.4.2 Random Tensors

In [129], a different approach was taken based on selecting the individual tensors in the network

independently at random from a suitable distribution. This corresponds to taking the state at

the individual vertices (5.7) to be a Haar random state.

In the limit of large bond dimension χ, the calculation of the second Renyi entropy averaged

over the randomness was mapped to a partition function of an Ising spin system. This was used

to show that these random tensor networks also satisfy a lattice Ryu-Takayanagi formula.

Random tensors are not perfect tensors, but it was shown that in the limit of large bond

dimension, they are approximately perfect tensors. This is essentially because the Page theorem

[135] says that a random tensor is approximately an isometry from any subset of less than half

of its indices to the remaining set. The maximum entanglement entropy of the reduced density

matrix on an n-dimensional share of a state in an (m+ n)-dimensional Hilbert space is

Smax = Log(m)− m

2n
+ ... (5.13)

where the “...” terms refer to terms subleading in m
n

. For a Haar random state of dimension

n = χN , defined by an N -legged tensor T with bond dimension χ, (5.13) implies that the reduced

density matrix on any subset of M < N
2

legs is approximately maximally mixed and hence the map

from the M legs to the remaining (N −M) legs is an approximate isometry. This approximate

isometry is sufficient for results similar to the perfect tensors to apply; we can map local bulk

operators in a holographic code to operators acting on subspaces of the boundary, and given a

boundary region there is a corresponding bulk region which is reconstructable.

5.5 Multiboundary Networks

5.5.1 BTZ

We now apply these tensor network constructions to the tilings obtained for multiboundary

geometries in section 5.3. If we consider first the BTZ black hole, there is a single identification.

Asymptotically far from the black hole, the network will look like the network for H2. The region

outside a large black hole was already analysed qualitatively in [105]. For holographic states,

the network lying between the minimal closed path and the boundary will be an (approximate)
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Figure 41: BTZ networks exhibiting tiling artifacts. The network shown on the left has two

equal-length minimal cuts, being either of the orange, dashed cuts. The continuum horizon is not

a mirror of the tiling underlying this network. The network in the centre has a unique minimal

cut, but has a bipartite residual region consisting of the 6 tensors lying inbetween the pink greedy

geodesic (being a pair of disconnected cuts). Due to the identification, there are too few legs

crossing the greedy geodesic to be able to push it to the minimal cut. The network on the right

exhibits the behaviour we expect; there is a unique minimal cut that is reached by the greedy

geodesic so that we can distill all of the entanglement between the two boundaries to Bell pairs

crossing the minimal cut.

isometry, so we can think of the network legs lying across the minimal closed path as representing

the distilled entanglement between the two asymptotic regions. This minimal closed path provides

a minimal cut in the network, where we take the region A to be the whole of one of the boundaries.

In this case the entanglement is entirely bipartite, with each leg across the cut corresponding to

a pair of Hilbert spaces in the maximally entangled state (5.8) - the analogue of a Bell pair for

systems of dimension χ.

Our choice of a minimal closed path as the analogue of the horizon introduces some minor

differences from the analysis of [130]. As previously noted, some choices of BTZ tiling lead to

degenerate minimal closed paths, as in the left example in figure 41. This is just a failure of the

discretization; the actual minimal geodesic does not lie along the tile boundaries, so there are

degenerate approximations to it.

The greedy algorithm can also fail to reach all the way to the minimal closed path, so the

greedy geodesic associated to one boundary may be different from the minimal closed path,

leading to the appearance of a non-trivial bipartite residual region, as depicted in the central

example in figure 41. The failure of the greedy geodesic to reach the minimal closed path arises

because of closed loops in the network, where the number of legs pointing “out” towards the
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boundary is smaller than the number of other legs. Since we have not yet reached the minimal

closed path, the number of legs pointing “out” must overall be less than the number of legs

pointing “in”, but the legs around the identification can lead to situations where the exterior legs

do not contain enough information to reconstruct the tensors in the shadow region.

Self-contractions of tensors within the network are an interesting special case which are a

new feature of the quotient networks. For the perfect tensors, the self-contracted tensor is no

longer an isometry from a subset of the remaining legs to the other legs. For sufficiently generic

perfect tensors, it is however still an approximate isometry from less than half the remaining legs

to the other subset of remaining legs. This feature can inhibit bulk reconstruction by preventing

greedy geodesics from crossing loops in order to reach a minimal cut, as depicted in figure 42.

For closed loops, each tensor remains a perfect tensor, but if there are the same number of

legs below and above a loop, there will not be enough information in the legs below the loop to

be able to push onto the loop itself and subsequently be able to reconstruct the outgoing legs, as

depicted in figure 42 a). If there are more legs below, we can push onto the loop and push past it,

as in figure 42 b).
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Figure 42: Reconstruction with loops and self-contractions within tensor networks. for a) there

is not enough information on the lower legs for the greedy algorithm to push across the loop

(green), in either the random or perfect tensor case. b) There is enough information on the

lower legs of the central tensor for the greedy algorithm to push onto the loop using the arrow

assignment depicted. c) The self-contracted tensor is not an isometry from the upper to the lower

legs. d) there are sufficiently many legs below for the self-contracted tensor to be an approximate

isometry from the upper to the lower legs in the large χ limit.

5.5.2 Multiboundary wormholes

Considering a more general Riemann surface Σ, the portion of the network between a given

boundary and the minimal cut homologous to this boundary is the same as for BTZ; thus, this

defines an isometry from the minimal cut to the boundary, and we can distill the state on the

boundary to a state on the legs crossing the cut, which describes the entanglement with the

other regions. Hence, the causal shadow region lying between these minimal cuts encodes the

entanglement between the different boundaries. For the three boundary case, this causal shadow

region will encode the residual tripartite entanglement between the three boundaries.

As noted in section 5.3, we can have examples where there is no causal shadow region. In

this case, we can now see that the entanglement in the holographic state is entirely bipartite,

encoded in the maximally entangled states (5.8) on each leg crossing the cuts. This is similar to

the entanglement structure seen in the high temperature limit of the CFT path integral, but it is

surprising that we can find cases where the entanglement is entirely bipartite, and that this can

occur even for generic moduli. Examples of this behaviour for the wheel and eyeglass regimes are

illustrated in figure 43.

In other cases, there will be a tripartite residual region, and we can ask about the importance
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Figure 43: Purely bipartite tensor network states for low-T three-boundary wormholes. The

fundamental domain is the unshaded region, and the minimal cuts homologous to each region are

colour-coded. In each case, there is no multiparty residual region, and states across the minimal

cuts are identified. The set of Bell pairs corresponding to states identified across each cut are

depicted below each network; coloured lines guide the eye to recognise across which minimal

cuts states are identified. These reproduce, schematically, the known structure of the high-T

entanglement.

of this region and the nature of its entanglement. It is interesting to first make contact with

our previous work in the high-temperature limit. We can do so by carefully choosing a low-T

network and then letting the quotient mirrors retreat to produce a high-T network with large

horizons. What we expect to find in this limit is that the minimal cuts associated to each of the

three boundaries become identified for most of their length up to an AdS scale tripartite residual

region consisting of only a small number of tensors, whose size remains fixed in this limit. One

example of this behaviour is illustrated in figure 44. Note however that it requires a choice of

network to realise these expected features; in other cases the causal shadow grows (or disappears

altogether) due to the tiling artefacts illustrated in figure 41.

The main interest in studying the tripartite residual region in these tensor network models,

however, is that we can study the structure for small values of the discrete moduli, where the

network in the causal shadow region is of modest size, and we can hope to analyse the resulting

state on the legs crossing the horizon, and directly address questions about the nature of the

entanglement. An example is shown in figure 45. However, even for the smallest values of

the moduli we are in a regime where there is no full classification of multipartite entanglement

structures, so there is a shortage of general expectations to compare to. In [98], the entanglement
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Figure 44: Taking the high-T limit of a low-T three-boundary network. For convenience, only

half of the tiling (left) is displayed, the non-visible half (the mirror image of what is depicted) is

located on the opposite side of the black mirror. We can take a high-T limit by letting the red,

blue and black mirrors retreat, increasing the length of each horizon by the same amount. This

produces a wheel network in which the horizons have approximately equal lengths. Notably, the

tripartite residual region representing the causal shadow, being the central tensor (along with

it’s unseen reflection) between the coloured cuts, is invariant in the limit. This accords with

our intuition that the size of the causal shadow is fixed due to the Gauss-Bonnet theorem. As

the minimal cuts become larger, they become identified for most of their length, giving rise to

the entanglement structure depicted in the cartoon (right). Bell pairs are identified across the

minimal cuts, up to the pair tensors depicted, inhabiting the tripartite residual region.

entropies obtained from holographic calculations were found to be consistent with those expected

for random states in a reduced Hilbert space. This motivates us to compare the results obtained

for the network in the causal shadow region to those for a Haar-random state on the legs crossing

the minimal cuts, drawn as a blob in the right panel of figure 45.

We characterise the states by considering the entanglement entropy associated to each of the

asymptotic regions, and by considering the logarithmic negativity for pairs of regions [136, 137].

The logarithmic negativity for a density matrix ρ on a Hilbert space HA⊗HAC is defined as [138]

L = log(2N + 1) (5.14)

where N is the entanglement negativity defined to be,

NA =
‖ρTA‖ − 1

2
(5.15)
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Figure 45: (Left) The tripartite residual region of a network representing a very low temperature

three-boundary wormhole. The coloured region containing circular boundary nodes depict the

three different boundaries, and the cuts of the same colour indicate the horizon corresponding to

each boundary. We compare the entanglement structures of the tensor network state and a state

in the same Hilbert space defined by a Haar random state (right).

and where ρTA is the partial transpose of the density matrix ρ on the factor A. If ρ has components

ρab a′b′ , The components of the partially transposed density matrix are (ρTA)ab a′b′ = (ρTA)a′b ab′ .

The logarithmic negativity (5.14) provides an upper bound for the distillable entanglement, or

the number of Bell pairs that can be distilled between the factor A and its complement [139].

Consider a Hilbert space of dimension χN (such as the state defined by an N-legged tensor with

bond-dimension χ), the maximum number of Bell pairs that could be ideally distilled from this

state is NBell = N log2(χ). When we have L < NBell it indicates that there can be some component

of the entanglement between A and AC which is intrinsically multipartite.

Results comparing the entanglement structure of tripartite residual regions for low-temperature

wormholes built from a selection of tilings are shown in figure 46. We find that the distinction

between these networks and random blobs depends strongly on the tiling. Not surprisingly, for

choices of tilings where the causal shadow contains a single tensor, the results are as for a Haar

random state, as is the case for the examples shown in figure 47. In contrast, networks for which

the causal shadow region contains multiple tensors generically exhibit distinct entanglement

structure, as with the networks shown in figure 46. The right-hand plots of figure 46 correspond

to non-vanishing logarithmic negativities on a single boundary factor. This is qualitatively unlike

the GHZ state, for which the logarithmic negativity on any single factor vanishes, and suggests

the presence of some bipartite entanglement even in the state in this tripartite residual region.
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Figure 46: Results comparing the entanglement structures of tripartite residual regions (high-

lighted regions of each network) of very low-temperature networks built out of Haar random

tensors. We compare a pair of networks in each of the eyeglass (A and B) and wheel (D and E)

regimes with a corresponding random states (C and F respectively) with the same dimensions.

We compare the resulting entropy and logarithmic negativity on the light-blue factor in each

case and compare the result with an appropriate random state, as shown in the plots on the

right; error bars are barely perceptible. In the cases illustrated, the entanglement structure is

quantitatively distinct to a random state. Here we take χ = 3.

Figure 47: Networks for low-T three-boundary wormholes for which the causal shadow (unshaded)

is presicely a Haar random state, in the eyeglass (left) and wheel (right) regimes.

The fact that the logarithmic negativities do not reach their maximum value however implies a

degree of intrinsically multipartite entanglement, as we expect. Though our results correspond

only to relatively low bond-dimension, we expect the results for high bond-dimension should be

at least qualitatively similar insofar as the entanglement structure of tensor network states is

primarily dependent on the set of contractions within it.
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Figure 48: A holographic septagon code for three-boundary wormhole in the wheel regime.

Dangling bulk legs are indicated by thicker lines. The red and green arrow assignments depict

our attempts to reconstruct the operator bulk site at the centre. The red arrow assignment

corresponds to choosing the 1 and 2 for which we can reconstruct the central site. The green arrow

assignment attempts to reconstruct the central site from just boundary 1 and 3’ (half of boundary

3) and fails. The code thus behaves like a quantum secret sharing scheme, for which access to

information, here pertaining to local bulk information, is only accessible with a sufficiently large

share in hand; in this case being a sufficiently large portion of the boundary.

It is also interesting to take a holographic code network, and consider the reconstruction of

operators in the causal shadow region in terms of boundary operators. This requires us to push the

operator back to the boundary through the tensors in the network. If there are self-contractions

on the tensors this can lead to obstructions, but in general we find results that are consistent with

the expectation that we can reconstruct an operator in this region from a subset of the boundary

including more than half the legs along the boundary of the causal shadow region. An example is

given in figure 48.

We can also consider cases with more boundaries. These will then contain internal cycles,

which can lead to important differences from the Haar random blob structure for the multipartite

residual region. Short internal cycles constrain the maximum value of the entropy associated to

a given subregion to less than the typical maximal value. One example is the four-boundary

wormhole with a short internal cycle. In the continuous case it is easy to see that sufficiently short
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Figure 49: A four boundary wormhole with horizons Ha, a = 1, ...4 (cyan, brown, pink, purple)

and internal cycles Ib, b = 1, 2 (orange,blue) depicted. Here, I1 < H1 + H2, H3 + H4 and so

I1 is the RT surface for regions 1 & 2 and regions 3 & 4. A corresponding holographic state

(right) is depicted, with colour-coded horizons and emphasised internal cycles indicated. Having

|I1| < |H1|+ |H3| constrains S(1 ∪ 2) ≤ |I1| lnχ = 3 lnχ. In contrast, for a Haar random blob we

would have S(1 ∪ 2) ≤ ln(dim(H1 ⊗H2)) = 5 lnχ.

internal cycles are dominant RT surfaces, as illustrated in figure 49 (left). In a corresponding

network this amounts to a constraint on the maximum entropy of the state on a set of boundaries

for which the internal cycle is shorter than it’s corresponding greedy geodesic, as illustrated in

figure 49 (right).

Another example with internal topology is the torus wormhole. We find that networks

constructed on tilings of the torus wormhole exhibit the expected features of their continuum

analogues, up to tiling artefacts like those shown in figure 41. In particular, we expect the

torus networks to have a minimal cut homologous to the boundary that wraps the throat of the

torus. Behind this region is the causal shadow with the topology of a torus. We expect that for

low-temperature torus wormholes, the causal shadow region is reconstructible only with the entire

boundary, whereas for higher temperatures we expect to be able to reconstruct information in

the causal shadow with only subsets of the boundary. Examples of this behaviour are illustrated

in figure 50 a) and b).
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Figure 50: low-T torus wormhole networks. a) A very low-T octagon state for which the

minimal cut (dashed, green) wrapping the throat coincides with the greedy geodesic for the whole

boundary (purple). Here we cannot reconstruct the central tensor encoding the causal shadow. b)

A higher-T octagon state for which the greedy geodesic is trivial meaning we can construct the

central tensor lying behind the minimal cut from the whole boundary as we expect. In fact, we

can reconstruct the tensor at the centre from only a subset of the boundary, as depicted by the

yellow greedy geodesic associated to the portion of the boundary highlighted in the same colour,

which passes through the central tensor. This mimics the anticipated high-T behaviour. c) A very

low-T pentagon state with tiling artifacts in which the residual region does not reach the minimal

cut. d) A higher-T pentagon state with the same tiling artifacts wherein we cannot reconstruct

the region behind the minimal cut even with the whole boundary, because its corresponding

greedy geodesic cannot penetrate the identifcation.
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Outlook

The work in this thesis invariably presents outstanding issues that are sources for further questions;

here I outline some of these questions, as well as some approaches that have generated results in

related directions.

In chapters 2 and 3 we established the existence of a good holographic dictionary for

asymptotically locally Schrödinger spacetimes. One issue with this work is that we remain

agnostic to the existence of a dual field theory; it’s assumed to be the dual Schrödinger field

theory of the asymptotically locally Schrodinger bulk massive vector theory. From the condensed

matter point-of-view finding a holographic Schrödinger field theory to proxy systems seen in

nature (such as cold atoms at unitarity) would be extremely desirable. In this case the generalised

holographic machinery that we’ve developed can be brought to bear. A top-down approach

which derives the Schrödinger geometry in the context of string theory via a so-called null Melvin

twist is discussed in [140]. Related top-down approaches to non-relativistic holography may

identify explicit NRFT constructions applicable to condensed matter systems seen in nature. We

compare our results with the related approach [35–38] which treats Schrödinger field theory as a

perturbation of a relativistic CFT by an irrelevant vector operator. Our construction, in contrast,

is non-perturbative owing to the identification of boundary data as sources and vevs for boundary

operators with definite scaling dimensions with respect to the non-relativistic, anisotropic scaling

symmetry. Another approach that could provide valuable hints in this direction is non-relativistic

holography for 3D higher-spin theories [141, 142]. There, the huge amount of redundancy deriving

from the higher-spin gauge transformations leads to very large asymptotic symmetry groups.

The naturally constraining nature of symmetries may lead to the successful identification of a

Schrodinger field theory with these corresponding, large symmetry groups. For z > 2 we do not

know if a sensible holographic dictionary is possible, since as we’ve stated, the leading asymptotics

no longer carry leading r dependence. There’s then no immediately obvious way to interpret

boundary data as boundary sources in the usual sense, nonetheless this by itself does not rule out

the possibility that there is a tenable holographic interpretation; this is an interesting question

for future work. An interesting problem for Schrodinger holography and for non-AdS holography

in general is whether or not the RT formula holds unchanged in these cases. The result [143]

would seem to suggest, as least for the asymptotically Lifshitz case, that naive application of the

usual holographic entropy calculations may be fraught with additional subtleties. A similar story
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may persist for the asymptotically locally Schrödinger geometries.

One of the main open questions of chapter 4 is the extent to which the results there generalise

suitably to regions of smaller moduli. There we had some discussion as to what can happen

when not all of the moduli are large, where the identifications of boundary states persist away

from the smaller boundaries. In general the work in chapter 5 is an attempt to provide an

answer to this question using the formalism of holographic tensor networks. In the latter case

we unearthed the interesting suggestion that the main result of chapter 4 does generalise even

to cases of very small moduli. It would be interesting to explore how the results of chapter 5

generalise to large bond-dimensions, where the random tensors should more closely resemble

perfect tensors. Exploring this regime presently entails a computationally expensive barrier.

Another issue is that the tensor network models considered in chapter 5 are highly heuristic,

they merely serve as proxies for the path-integrals on Riemann surfaces and do not pertain

to any particular dynamics. A more robust approach could entail looking for an appropriate

generalisation of the MERA network to multiboundary states. It was shown in [124] that one

can obtain thermal states as quotients of MERA. This naturally suggests that one can take

similar quotients to obtain network models for the pair-of-pants geometry, for example. One

can indeed show that an appropriate quotient construction for the pair of pants geometry exists

[144], but what is far less obvious is a sensible choice of cut-off that respects the symmetries of

the quotient. In a related approach [119] it was shown that through a prescribed series of local

replacements called tensor network renormalisation (TNR) that one can coarse-grain the tensor

network representation of the Euclidean path-integral on the infinite strip to generate precisely

the MERA for the CFT ground state. This suggests that one might be able to apply a similar

tensor network replacement algorithm to a lattice network on the pair-of-pants geometry in order

to obtain a MERA for the corresponding boundary state. It’s not clear that there’s a way to

apply TNR to such a network without leading to inconsistencies. We can choose to start from the

networks obtained in chapter 5, but then it seems that one cannot implement local replacements

in a scale-invariant way. The results of chapters 4 and 5 also play a part in shedding light on ideas

of bulk reconstruction, particularly the idea of entanglement vs. causal wedge reconstruction

and whether or not information pertaining to boundary regions is sufficient to reconstruct bulk

information localised beyond the horizons, which in turn is related to the hotly debated story of

firewalls and the black hole information paradoxes [145–150]. The general intuition, especially in

relation to the QEC proposals [59], is that reconstruction of local bulk operators located beyond
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the horizon is possible due to the quantum secret-sharing character of holographic states. In

the multiboundary holographic states considered in chapter 5 we find that boundary regions of

sufficient size may be used to reconstruct operators located within the causal shadow region in

accordance with these proposals.

Since its inception almost 20 years ago, interest in the AdS/CFT correspondence has bloomed.

The correspondence continues to generate vast bodies of powerful and far-reaching results in our

attempts to understand quantum gravity, strongly-coupled condensed matter systems and beyond.

In time, the significance of the relation between bulk geometry and boundary entanglement has

been explicated in many different examples and while many exciting open questions abound, it

seems that in this regard we are drawing surely closer to an understanding of the inner workings

of the correspondence. The great expectation is that it’s only a matter of time before this fruitful

story inspires the next great step that will lead to the formulation of a successful theory of

quantum gravity.
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Appendices

A Spatially dependent modes for z = 2

We consider here for completeness the linearised equations for ds = 2 with dependence on the

spatial directions ~x included. The equations are the z → 2 limit of the analysis in chapter 2.

Considering a single Fourier mode in all boundary directions, we can use the rotation symmetry

to orient the spatial coordinates so that the spatial momentum is along the x direction, so the

coordinate dependence in all modes is eiωt+ikξξ+ikxx. Then the modes split up into the scalar

modes Htt, Htξ, Hξξ, Htx, Hξx, Hxx, Hyy st, sx, sr and the vector modes Hty, Hξy, Hxy, sy. As in

the discussion with no spatial dependence, these all have an expansion in powers of kξωr
2 and

k2
xr

2. The leading terms take the same form as for the constant modes above.

The equations of motion in the vector sector are

0 = rkx[r
2ωHξy + kξ(Hty +Hξy)]− (k2

ξ + 2kξωr
2)Hxy − 3rH ′xy + r2H ′′xy, (A.1)

0 = 2Hξy − k2
xr

2sy − (k2
ξ + 2kξωr

2 + 5)sy + r(2H ′ξy − 3s′y + rs′′y), (A.2)

0 = kx(kξrHxy − kxr2Hξy) + k2
ξHty − (3 + kξωr

2)Hξy + r(−H ′ξy + rH ′′ξy), (A.3)

0 = kxr(r
2ωHxy − kxrHty) + (kξωr

2 − k2
ξ − 5)Hty + 10sy + (kξωr

2 + ω2r4 − 2)Hξy

+ r(rH ′′ty − 2(Hξy + sy)
′ − 5H ′ty), (A.4)

and additionally,

0 = kξ[(Hty −Hξy + 2sy)− r(Hty +Hξy)
′]− ωr2[Hξy + rH ′ξy]− kxr2H ′xy. (A.5)

We can solve these equations order by order in kξω and k2
x. The subleading components determine

the subleading terms in the expansion of the fields. But there are also additional constraints on

the leading terms, corresponding to the expected Ward identities. Equation (A.5) gives at leading

order

kξ[2H
(+)
ty − s(+)

y ] + 2ωH
(+)
ξy + 2kxH̄

(4)
xy = 0. (A.6)

At kξ = 0, this corresponds to the Ward identity

∂tPy + ∂xΠ
x
y = 0. (A.7)
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In the scalar sector, the equations of motion are

0 = 2kxr(kξ + ωr2)(Htx +Hξx) + k2
xr

2
(1

2
Htt −

1

2
Hξξ −Htξ − k

)
+ 6Htt − (kξ + ωr2)2k

+ i(kξ + 2ωr2)sr + 12st + 4sξ − 4rH ′tξ −
1

2
rH ′ξξ − 2rk′ − rs′ξ − r[7H ′tt + 2s′t] +

1

2
r2H ′′tt

+ r2H ′′tξ +
1

2
r2H ′′ξξ + r2k′′, (A.8)

0 = kxr
(
kξHtx + (2kξ + ωr2)Hξx

)
− k2

xr
2(Htξ +Hξξ + k)− 2(k2

ξ + ωkξr
2)k

− 3r
(
H ′tξ + 2k′

)
+ r2H ′′tξ + r2H ′′ξξ + 2r2k′′, (A.9)

0 = rkx[ωr
2(Hξξ + k)− 2isr − kξHtt + (ωr2 − kξ)Htξ] + (k2

ξ + kξωr
2 − 5)Htx

− (kξωr
2 + ω2r4 − 2)Hξx − 10sx + 5rH ′tx + 2r(H ′ξx + s′x)− r2H ′′tx, (A.10)

0 = − 2kxkξrHξx + k2
xr

2Hξξ + 4Hξξ + 2k2
ξk − rH ′ξξ − r2H ′′ξξ, (A.11)

0 = kxr
(
kξ(Htξ + k)− ωr2Hξξ

)
− k2

ξHtx +
(
kξωr

2 + 3
)
Hξx + rH ′ξx − r2H ′′ξx, (A.12)

0 = r2k′′ + r2H ′′ξξ + 2r2H ′′tξ − rs′ξ − 3rk′ − 2rH ′ξξ − 6rH ′tξ + 8sξ + 2ikξsr − (k2
ξ + 2ωkξr

2)k

+
(
− 4 + ω2r2z

)
Hξξ − 2kξωr

2Htξ + k2
ξHtt, (A.13)

0 = 2kxr
(
kξ(Htx + 2Hξx) + ωr2Hξx

)
− r2k2

x(2Htx +Hξξ) + r2k′′ + r2H ′′ξξ − 2rs′ξ − 3rk′

− 2rH ′ξξ − 6rH ′tξ + 8sξ + 2ikξsr − (k2
ξ + 2ωkξr

2)k +
(
− 4 + ω2r4

)
Hξξ − 2kξωr

2Htξ

+ k2
ξHtt, (A.14)

0 = kxkξrsx − k2
xr

2sξ + 4Hξξ + 2ikξsr + k2
ξst −

(
8 + kξωr

2
)
sξ + 2rH ′ξξ − ikξrs′r − rs′ξ

+ r2s′′ξ , (A.15)

0 = kxr(kξ + ωr2)sx − 2k2
xr

2(sξ + st) + 4i(2kξ + ωr2)sr + 2
(
ω2r4 − 8

)
sξ + 2rH ′ξξ − 4rk′

− 2i(kξ + ωr2)rs′r − 6rs′ξ − 2kξωr
2st − 10rs′t + 2r2s′′t + 2r2s′′ξ , (A.16)

0 = kxr
(

2isr + kξst + (kξ + r2ω)sξ − irs′r
)

+ 2Hξx −
(
k2
ξ + 2kξωr

2 + 5
)
sx + 2rH ′ξx

− 3rs′x + r2s′′x, (A.17)
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and additionally,

0 = k2
ξHtt + 2kξkxrHtx − 2(k2

x + kξω)r2Htξ + 2rkx(kξ + ωr2)Hξx −
(
k2
xr

2 + 4 + ω2r2
)
Hξξ

−
(

2k2
ξ + r2(k2

x + 4kξω)
)
k − 2ikξsr + 8sξ − 6rH ′tξ − 4rH ′ξξ − 6rk′ + 2rs′ξ, (A.18)

0 = kxr
(

(Htx +Hξx)− rH ′tx
)

+ (kξ + 3ωr2)Hξξ − 2kξk − 8isr − 2ωr2sξ

+ kξ

(
2(Htt + st)− rH ′tt

)
+ (−kξr2−z + ωrz)rH ′tξ + ωrz+1(H ′ξξ + k′), (A.19)

0 = − kxr
(
Hξx + rH ′ξx

)
− (kξ + 2ωr2)Hξξ + kξrH

′
tξ − rωr2H ′ξξ + 2kξrk

′, (A.20)

0 = kξ(Htx −Hξx + 2sx)− ωr2Hξx − kξrH ′tx − (kξ + ωr2)rH ′ξx

+ kxr
(

(Hξξ + 2sξ) + 2r(H ′tξ +H ′ξξ + k′)
)
, (A.21)

0 = kxr(4Hξx + 2sx + rs′x)− 2ik2
xr

2sr + 2(kξ + 2ωr2)Hξξ − 4kξk − 2i
(
k2
ξ + 8 + 2kξωr

2
)
sr

+ 2kξ(−2st + rs′t) + 2(kξ + ωr2)s′ξ. (A.22)

Again, the constraints corresponding to the Ward identities are modified. Equation (A.21) gives

at leading order

kξ[2H
(+)
tx − s(+)

x ] + 2ωH
(+)
ξx + kx[2k

(4) − 5

3
s

(4)
ξ ] = 0. (A.23)

At kξ = 0, this corresponds to the Ward identity

∂tPx + ∂xΠ
x
x = 0. (A.24)

Equation (A.20) gives

kξ

(
k(4) +

2

3
s

(4)
ξ

)
− ωH(+)

ξξ − kxH
(+)
ξx = 0. (A.25)

At kξ = 0, this corresponds to the Ward Identity

∂tρ+ ∂xρ
x = 0. (A.26)

Finally, there is a linear combination of equations (A.22) and (A.19) which eliminates sr giving,

kξ

(
2H

(+)
tt + s

(+)
t

)
− ω

(
2k(4) − 5

3
s

(4)
ξ

)
+ kx

(
2H

(+)
tx + 2s(+)

x

)
= 0. (A.27)
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At kξ = 0, this corresponds to the Ward Identity

∂tE + ∂xEx = 0. (A.28)

Thus the full linearised perturbations behave as we expect.
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B The horizons H1, H2 in BTZ coordinates

We now compute the parameters characterising the region Σ+, corresponding to half of the t = 0

slice of the three-boundary wormhole with horizons H1, H2, H3, of respective lengths L1, L2, L3.

In chapter 4 we ordered the lengths so that L3 > L1, L2; this assumption is relaxed here. The

region Σ+ is bounded by three geodesics Gab, running between the boundary components labelled

by a and b, and meeting horizons Ha, Hb orthogonally.

We use the metric (4.7) with H3 lying at ρ = 0 and G13, G23 lying at x = ±L3

4
. Thus x ∈

[−L3

4
, L3

4
]. Consider a geodesic parameterised by arclength s, using a dot to denote differentiation

with respect to s. From translation invariance, there is a conserved quantity (1 + ρ2)ẋ, which for

geodesics with both endpoints at ρ =∞ is given by
√

1 + ρ2
0, where ρ0 > 0 is the minimal value

of ρ. The geodesic is then given by

ρ = ρ0 cosh s, x = x0 + tanh−1

(
tanh s√
1 + ρ2

0

)
. (B.1)

Consider first the geodesics G12 and that corresponding to H1+ (see fig. 51 for the various

relevant geodesics and quantities). The endpoints of G12 lie at x = x1, x2, and it will be convenient

to parametrise these by the centre x̄ = x1+x2
2

and the half-width ∆x = x2−x1
2

. We intend to find

L1 in terms of these parameters, and along the way will also obtain the minimal distance d13

between H1+ and H3+, as well as the position at which G12 and H1+ intersect.

The geodesics are given by

G12 : ρ =
cosh s

sinh ∆x
, x = x̄+ tanh−1 (tanh ∆x tanh s) , s ∈ R, (B.2)

H1+ : ρ = sinh d13 cosh s, x = −L3

4
+ tanh−1

(
tanh s

cosh d13

)
, 0 ≤ s ≤ L1

2
, (B.3)

with the constraint that they intersect at right angles at the endpoint of H1+, where the arclength

along H1+ is s = L1

2
, and along G12 is s = s1, say, where s1 < 0.

The condition that two geodesics intersect orthogonally determines the value of ρ at which

they meet in terms of the conserved quantities for the two geodesics; for H1+ and G12 it gives

ρ2 = sinh2 d13 + coth2 ∆x = cosh2 d13 + csch2 ∆x at intersection. (B.4)
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H1+
H2+

H3+

G12

G13 G23

x1 x2

d13
d23

ρ = −∞

ρ =∞
x = −L3

4
x = L3

4

s = s1

s = L1

2

s = s2

s = −L2

2

Figure 51: The geodesics Gab bounding the patch Σ+ in BTZ coordinates. The horizons Ha+

are also shown. The ρ direction runs vertically, and x horizontally. The positions where the

geodesics intersect are labelled with the arclength along each curve, measured from the deepest

point (minimal ρ), and d13, d23 mark the minimal distances between the horizons.

We now get two equations from identifying the value of ρ at intersection with the values of ρ for

G12 at s = s1, and for H1+ at s = L1

2
. A third comes from identifying the x coordinates at these

same arclengths:

coth ∆x = sinh d13 sinh
L1

2
, (B.5)

sinh s1 = − sinh ∆x cosh d13, (B.6)

x̄+ tanh−1(tanh ∆x tanh s1) = −L3

4
+ tanh−1

(
tanh L1

2

cosh d13

)
. (B.7)

We then solve for L1, d13, s1 in terms of x̄,∆x to obtain

cosh
L1

2
=

sinh
(
L3

4
+ x̄
)

sinh ∆x
, tanh d13 =

cosh ∆x

cosh
(
L3

4
+ x̄
) , tanh s1 = − tanh ∆x

tanh
(
L3

4
+ x̄
) . (B.8)

It is straightforward to translate these results into expressions for L2, the distance d23 between

horizons H2+ and H3+, and s2, the arclength along G12 at which it intersects H2+:

cosh
L2

2
=

sinh
(
L3

4
− x̄
)

sinh ∆x
, tanh d23 =

cosh ∆x

cosh
(
L3

4
− x̄
) , tanh s2 =

tanh ∆x

tanh
(
L3

4
− x̄
) (B.9)

Finally, the above can be inverted to find x̄, ∆x, and dab (where, in particular, d12 = s2 − s1
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is the minimal distance between H1+, H2+) in terms of L1, L2, L3.

sinh x̄ =

(
cosh L1

2
− cosh L2

2

)
sinh L3

4√
cosh2 L1

2
+ cosh2 L2

2
+ 2 cosh L1

2
cosh L2

2
cosh L3

2

, (B.10)

sinh ∆x =
sinh L3

2√
cosh2 L1

2
+ cosh2 L2

2
+ 2 cosh L1

2
cosh L2

2
cosh L3

2

, (B.11)

cosh d12 =
cosh L1

2
cosh L2

2
+ cosh L3

2

sinh L1

2
sinh L2

2

(and permutations) (B.12)

In particular, the explicit inversion shows that the mapping between (x1, x2) and (L1, L2) is

bijective and smooth.

We may now work out the asymptotic values of these quantities in the limit where all lengths

La are large. The typical expressions reduce to sums of exponentials of linear combinations of La,

so there are separate regimes depending on the relative sizes of the exponents; these turn out

to be three regimes where one horizon is longer than the sum of the others (L1 > L2 + L3 and

permutations), and the regime where no horizon is dominant in this way.

x̄ ∼


L3

4
− 1

2
exp

(
−L1−L2−L3

2

)
L1 > L2 + L3

−L3

4
+ 1

2
exp

(
−L2−L1−L3

2

)
L2 > L1 + L3

L1−L2

4
otherwise

(B.13)

∆x ∼



exp
(
−L1−L3

2

)
L1 > L2 + L3

exp
(
−L2−L3

2

)
L2 > L1 + L3

L3−L1−L2

4
+ log 2 L3 > L1 + L2

exp
(
−L1+L2−L3

4

)
otherwise

(B.14)

d12 ∼



L3−L1−L2

2
+ 2 log 2 L3 > L1 + L2

2 exp
(
−L2

2

)
L1 > L2 + L3

2 exp
(
−L1

2

)
L2 > L1 + L3

2 exp
(
−L1+L2−L3

2

)
otherwise

(B.15)

The corrections in each case are exponentially small in the La, except when L3 −L1 −L2 is order
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one, for example.

The interval [x1, x2] looks qualitatively different in each of the four regimes. When L3 >

L1 + L2, it is long (the same order as the horizon lengths), and at a generic position. When

L1 > L2 + L3, it is exponentially short, and also close to the right end of the strip; it is similarly

short and close to the left end when L2 > L1+L3. In the remaining regime, it is again exponentially

short, but in a generic position.
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