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Abstract

The gradient test proposed by Terrell (2002) is an alternative to the likelihood ratio, Wald

and Rao tests. The gradient statistic is the result of the inner product of two vectors —

the gradient of the likelihood under null hypothesis (hence the name) and the result of

the difference between the estimate under alternative hypothesis and the estimate under

null hypothesis. Therefore the gradient statistic is computationally less expensive than

Wald and Rao statistics as it does not require matrix operations in its formula. Under

some regularity conditions, the gradient statistic has χ2 distribution under null hypothesis.

The generalised linear model (GLM) introduced by Nelder & Wedderburn (1972) is one

of the most important classes of statistical models. It incorporates the classical regression

modelling and analysis of variance either for continuous response and categorical response

variables under the exponential family. The random effects model extends the standard

GLM for situations where the model does not describe appropriately the variability in the

data (overdispersion) (Aitkin, 1996a). We propose a new unified notation for GLM with

random effects and the gradient statistic formula for testing fixed effects parameters on

these models. We also develop the Fisher information formulae used to obtain the Rao

and Wald statistics. Our main interest in this thesis is to investigate the finite sample

performance of the gradient test on generalised linear models with random effects. For

this we propose and extensive simulation experiment to study the type I error and the

local power of the gradient test using the methodology developed by Peers (1971) and

Hayakawa (1975). We also compare the local power of the test with the local power of the

tests of the likelihood ratio, of Wald and Rao tests.

Keywords: asymptotic test, overdispersion, generalised linear models
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Chapter 1

Introduction

The gradient test is a relatively new asymptotic test proposed by Terrell (2002) as

an alternative to the likelihood ratio, Wald and Rao tests. The gradient statistic is

the inner product between two vectors — the gradient of the log-likelihood under

null hypothesis (hence the name) and the difference between the estimate under

alternative hypothesis and the null hypothesis. Therefore, the gradient statistic

does not have any matrix or matricial operations in its formula, differently from

the Wald and Rao statistics. This turns to be the most appealing advantage of the

gradient statistic, making it computationally less expensive than the aforementioned

tests. The gradient statistic also is approximately chi-squared for sufficiently large

sample sizes and under some regularity conditions.

Since then, researchers have explored the finite sample properties of the gradient test

for several statistical models. Lemonte & Ferrari (2011b) studied the size and power

in Birnbaum–Saunders regression model, Lemonte & Ferrari (2011c) studied testing

hypotheses in the Birnbaum–Saunders distribution under type-II censored samples,

Lemonte & Ferrari (2011a) evaluated the local power of some tests in exponential

family nonlinear models, Lemonte (2012) studied the local power properties of some

asymptotic tests in symmetric linear regression models, Lemonte & Ferrari (2012)

examined the local power and size properties of the LR, Wald, score and gradient

tests in dispersion models, Vargas et al. (2013, 2014) proposes a Bartlett type cor-

rection for the gradient test, Lemonte (2013) developed the formulae of the gradient

test for generalized linear models with dispersion covariates, Lemonte et al. (2012)

1



Chapter 1. Introduction 2

studied local power of the gradient test in comparison to the likelihood, Wald, Rao

tests, Ferrari & Pinheiro (2014) evaluated the small-sample properties of the gradi-

ent test for extreme-value regression models and Medeiros et al. (2014) studied the

performance of the gradient test for accelerated failure time models.

The random effect is a statistical concept conceived to accommodate an eventual

extra variability due to unknown causes, such as omitted or unobserved variables,

measurement error or model misspecification. Models with random effects represent

a flexible class through which overdispersion and variance component models can

be considered due to the special dependency structure in the variables. Given the

stochastic nature of the random effects, we have to make assumptions concerning

its distribution for inferential purposes. Notation-wise, let y be our sample and the

marginal likelihood m(y|θ) of the model with random effects represented by

m(y|θ) =
∫
f(y|θ, z)g(z)dz

where f(y|θ, z) is the conditional likelihood for the parameter θ which depends on

the random effect z with unknown density g(z). This m(y|θ) is the likelihood of a

mixture model (Aitkin, 1996a). The assumption of normally distributed random ef-

fects is appropriate for many applications, but this also implies that the integration

problem of m(y|θ) is analytically solvable only for conjugated distributions. Numer-

ical methods, such as Gaussian quadrature (Golub & Welsch, 1969), are often used

or the likelihood function is indirectly maximized.

The main issue of assuming any parametric distribution for the random effects is

that this appears very artificial and is difficult to motivate in practice. If it is not

possible to make concrete assumptions about the distribution of the random effects,

it would be useful to estimate the parameters alongside the density g( · ). A

reference of this approach can be found in Anderson & Hinde (1988), where the

iterative EM algorithm of Dempster et al. (1977) is used as an indirect method for

normally distributed mixtures of Poisson variable. Aitkin & Francis (1995) offer

GLIM macros, which calculate the estimators for response distributions from expo-

nential family with unspecified distribution. Application of this technique for the

May 30, 2018



1.1. Organisation of the Thesis 3

analysis of overdispersion in generalised linear models (GLMs) is given in Anderson

(1988) and Aitkin (1994, 1996a).

In this sense, assuming that g( · ) is unspecified, Laird (1978) proposed an estima-

tion method called Nonparametric Maximum Likelihood (NPML) which consists in

estimating z and g(z) alongside to θ using an EM algorithm (Hinde, 1982).

Our main goal in this thesis is to evaluate the gradient test on the context of the

generalised linear models with random effects. We developed the unified formulae for

the gradient test for the models with random effects with normal and unspecified

distribution. We performed an extensive Monte Carlo simulation experiment for

verifying the type I and power of the gradient test for finite samples. We also

present numerical applications to real data sets.

1.1 Organisation of the Thesis

In organizing this thesis, we have divided the work in four main chapters. The

Chapter 2 establishes the background to this work, giving a comprehensive overview

of the asymptotic theory for the likelihood based inference methods and tests. We

also express the general definition of the classic asymptotic tests and the gradient

test.

In Chapter 3 we define the gradient statistic for testing parameters related to the

fixed effects part of the model. For this we define, based on the literature, the

generalised linear model with random effects. We also propose a compact matrix

notation not seen in the literature before. This notation helps in the development

of the R code use latter for simulation and application purposes.

In Chapter 4 we propose the formulae for the Fisher information for generalised

linear models with random effects. The proposed formulae includes an analytic

method for the model with Gaussian random effects. We also propose an alternative

method based on the last EM algorithm estimates which can be applied for either

models with Gaussian or unspecified distribution for the random effects. We provide

simulation results and an illustrative example. Although the gradient statistic does

not use the Fisher information in its formula, we have developed it to obtain the

May 30, 2018



1.2. Spin-off publications 4

Wald and Rao statistics for comparison purposes in the Chapter 5.

In Chapter 5 we present an extensive simulation experiment to verify the finite

sample properties of the gradient test and compare to the likelihood ratio, Wald and

Rao tests. This simulation covered various scenarios of the generalised linear models

with random effects including different sample sizes, response distributions, number

of mass points and random effects distribution. We also provide four illustrative real

data examples for the gradient test.

The Chapter 6 concludes the thesis presenting an overview and discussing the find-

ings of this work.

The Appendix A present the functions in R code used to compute the tests and B

gives the analytic or approximated formulae to estimate the variance under the

model with normal random effects.

1.2 Spin-off publications

Partial results of this thesis have been presented and published in the following

conference proceedings.

• da Silva-Júnior, A. H. M., Einbeck, J. & Craig, P. S. (2015). The

gradient test for generalised linear models with random effects. In A. Blanco-
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& J. Josse, eds., Proceedings of the 31st International Workshop on Statistical

Modelling, vol. 1. 213–218

• da Silva-Júnior, A. H. M. (2017). Gradient test for variance component

models. In M. Grzegorczyk & G. Ceoldo, eds., Proceedings of the 32nd Inter-
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mation on Gaussian quadrature models. Statistica Neerlandica In press.
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Chapter 2

Basics of likelihood inference and

the gradient test

2.1 Introduction

The method of maximum likelihood has been used extensively to estimate parame-

ters in a large variety of models. The likelihood theory lends properties that allow

the formulation of asymptotic hypothesis testing, for instance, likelihood ratio (LR),

developed by Wilks et al. (1938), followed by the Wald, (Wald, 1943) and Rao test

(Rao, 1948). Such tests have in common the χ2 as reference distribution for the

sample size n→∞ and under the null hypothesis.

Recently, a new statistic was proposed by Terrell (2002) and has been called gradient

statistic or Terrell test. The gradient statistic is rather simple to compute and does

not involve any matrix computations such as matrix products or inversions. The

gradient statistic shares the same asymptotic properties of first order with the three

previous statistics. These features make the gradient statistic able to compete with

the three well-established classical asymptotic tests.

We will suppose, initially, the following situation for the construction of the hy-

potheses test. Let y = (y1, . . . , yn)> a sample of n independent observations of

a random vector Y = (Y1, . . . , Yn)>, which has the pdf f( · ;θ) indexed by an un-

known p-dimensional vector of parameters θ = (θ1, . . . , θp)>. The likelihood function

6
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corresponding to the observed vector y from the density f(y,θ) is written

L(θ,y) ≡ L(θ) = f(y,θ) =
n∏

i=1
f(yi,θ).

and the log-likelihood function becomes

`(y,θ) ≡ `(θ) =
n∑

i=1
log f(yi;θ). (2.1.1)

From (2.1.1) comes the score vector, the (observed) information matrix and the

Fisher information matrix defined, respectively, as

U(θ) = ∂`(θ)
∂θ>

, J(θ) = −∂U(θ)
∂θ>

, and

K(θ) = E
[
U(θ)U(θ)>

]
= −E

[
∂U(θ)
∂θ>

]
= E[J(θ)].

The maximum likelihood estimator (MLE) is defined as the unique solution to

θ̂ = arg max
θ∈Θ

`(y;θ),

where θ̂ = θ̂(y) and, if it exists, usually can be obtained by solving the equation

U(θ) = 0 also known as likelihood equations. In effect, the sufficient conditions to

the existence and uniqueness of a MLE depend on the nature of both Θ and `(θ).

If Θ is a compact space and `(θ) is continuous in Θ then there exists a MLE. Also,

if the MLE exists, it is unique when Θ is a convex space and if `( · ,θ) is strictly

concave in θ.

Important inferential tools for the MLE are obtained via Taylor series expansion of

`(θ) and U(θ) around θ0. In this sense, there are conditions to be verified in order

to discuss the asymptotic properties of the MLE and its functions. Such conditions

are often called regularity conditions and will be presented in detail in Section 2.3.
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2.2 Basic concepts of convergence

First, let {Yn} be a sequence of random variables defined for a large n. Here n

does not necessarily represent the sample size. We then present some important

stochastic convergences that will be used on the next sections.

2.2.1 Convergence in probability

The sequence {Yn} converges in probability for a random variable Y (which can be

degenerate) if

lim
n→∞

Pr(|Yn − Y | < ε) = 1

for all ε > 0. This convergence is denoted by Yn
P→ Y and means that Yn and Y are

approximately equal with probability close to 1 for a sufficiently large n.

2.2.2 Almost sure convergence

The sequence {Yn} converges almost surely to a random variable Y if

Pr
(

lim
n→∞

Yn = Y
)

= 1.

We denote this convergence by Yn
a.s.→ Y .

2.2.3 Convergence in distribution

The sequence {Yn} converges in distribution to Y if

lim
n→∞

Pr(Yn < y) = FY (y),

for every y in IR where the distribution function FY ( · ) of Y is continuous. We

denote this convergence by Yn
D→ Y .
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2.2.4 Mann-Wald notation

The Mann-Wald notation is useful for describing the order of magnitude of specified

quantities.

Let {an}∞n=1 be a sequence of positive values and {Yn}∞n=1 a sequence of random

vectors. We denote

Yn = Op(an) which means that a−1
n Yn

P→ 0p, where 0p is a vector in IRp, and

Yn = Op(an) which means that, for any ε > 0 there exist κ < ∞ and n0 < ∞ such

that, for all n > n0

Pr[‖a−1
n Yn‖ > κ] < ε.

2.3 Regularity conditions

The following regularity conditions are used in asymptotic theory to justify and

define the error terms of Taylor series expansions. Some of these conditions or

all of them are necessary to prove the asymptotic properties of the MLE such as

consistency, normality and efficiency.

First, assume that y is a realisation of a random vector Y with distribution Pθ which

belongs to a class P and depends on θ ∈ Θ. Also, the observations y = (y1, . . . , yn)>,

where yi are iid with density f(yi,θ) with respect to θ.

The following assumptions will be required further in this chapter:

(i) the distributions Pθ are distinct, i.e., θ 6= θ′ implies Pθ 6= Pθ′ ;

(ii) the distributions f( · ,θ) have common support for all θ ∈ Θ, i.e., the set

Aθ = {y; f(y,θ) > 0} does not depend on θ;

The condition (i) ensures that the probability distributions are different for distinct

θ and for the given data. The condition (ii) ensures that the sample space of y is

identical and is independent of θ.

Consider the observations y = (y1, . . . , yn)>, where yi are iid with density f(yi,θ)

with respect to θ.
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The assumptions (iii) and (iv) below ensure the regularity of f(y,θ) as function of

θ and the existence of an open set Θ1 in the parametric space Θ such as the true

parameter θ0 belongs to Θ1:

(iii) there exists an open set Θ1 ⊂ Θ which contains θ0 such that the density

function f(y,θ), for almost all y, which admits all the derivatives until third

order in relation to θ, for all θ ∈ Θ1;

(iv) Eθ[U(θ)] = 0 and the information matrix K(θ) is positive definite and has

finite values for all θ ∈ Θ1;

(v) there are functions Mijk(y) which shall not depend on θ such that, for i, j and

k = 1, . . . , p, ∣∣∣∣∣ ∂3f(y;θ)
∂θi∂θj∂θk

∣∣∣∣∣ < Mijk(y)

for all θ ∈ Θ1, where Eθ0 [Mijk(Y )] <∞.

The condition (iii) represents the existence of Θ1 and the derivatives of f(y;θ)

until third order in Θ1. The condition (iv) ensures that the information matrix is

finite and positive-definite in an open neighbourhood of θ0. Finally, the condition

(v) ensures that the third order derivatives of the log-likelihood are bounded by a

integrable function of Y whose expected value is finite (Cordeiro, 1999).

The models discussed on Chapter 3 make use of the mixture models theory from

Aitkin (1996a) for modelling the random effects. In this sense, we have some con-

siderations about the regularity conditions stated above. According to Chen & Li

(2009), the regularity conditions (i), (iv) and (v) are not always valid for Gaussian

mixture models. We have then some undesired consequences such as unbounded likeli-

hood function, loss of strong identifiability and infinite Fisher information. However,

this might not be an issue as we do not intent to test parameters regarding to the

random effects.

On the other hand, for non-parametric maximum likelihood mixture models, Lindsay

(1995, chap. 1, pg. 24) makes the remark: ”one of the most striking features of the

above theory [Nonparametric maximum likelihood estimation] is the complete lack

of regularity conditions on the models and the complete generality with regard to

the parameter space of φ”.
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2.4 Asymptotic properties of the MLE

2.4.1 Consistency

Commonly an estimator is considered a function of the sample size n and, as long as

we increase it (n→∞), we intuitively expect an enhance of the estimator precision.

Definition 2.4.1 Let y = (y1, . . . , yn)> be iid with density f(yi,θ) for each yi,

i = 1, . . . , n. Then, for n→∞, an estimate θ̂n = θ̂n(y) is considered consistent for

the parameter θ if it satisfies

lim
n→∞

MSE(θ̂n) = 0,

where MSE(θ̂n) = E[(θ̂n − θ)>(θ̂n − θ)] is the mean square error of θ̂n.

In general, two definitions of consistency are widely used in asymptotic theory.

Definition 2.4.2 weak consistency: Let θ̂n = θ̂n(y) the estimator for θ based on

the iid sample y. Then, θ̂n is weakly consistent if, for n→∞

θ̂n = θ + Op(1) .

Definition 2.4.3 strong consistency: Let θ̂n = θ̂n(y) the estimator for θ based on

the iid sample y. Then, θ̂n is strongly consistent if, for n→∞

Pr
[

lim
n→∞

‖θ̂n − θ‖ = 0
]

= 1.

This means that the weak or strong consistency happens when θ̂n satisfies the weak

law or the strong law of large numbers, respectively.

2.4.2 Normality

Theorem 2.4.4 Assume the iid sample y = (y1, . . . , yn)> with density f(yi,θ) and

regularity conditions (i)–(v) valid. If θ̃ is a consistent solution for the maximum
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likelihood equations U(θ) = 0, then

√
n(θ̃ − θ0) D→Np(0,k(θ0)−1). (2.4.2)

In other words, for large sample sizes, the distribution of θ̃ is approximately p-

dimensional normal with mean θ0 and covariance matrix K(θ0)−1 = n−1K(θ0)−1.

Cramér (1999, Sec 33.3) and Lehmann & Casella (1998, Sec 6.4) show rigorous

demonstrations of convergence of (2.4.2) for p = 1 and p > 1, respectively.

We shall demonstrate (2.4.2) for the uniparametric case. The general regularity

conditions ensure the expansion of U(θ̃) = 0 around the true parameter θ0 up to

second order

U(θ0) + U′(θ0)(θ̃ − θ0) + 1
2U′′(θ∗)(θ̃ − θ0)2 = 0

where |θ∗− θ0| < |θ̃− θ0| and, therefore, θ∗ is necessarily consistent for θ0. The first

two terms on the left side of the equation are Op

(
n1/2

)
and the third is Op(1), as

U′(θ0) = Op(n), U′′(θ0) = Op(n) and θ̃ − θ0 = Op

(
n−1/2

)
. The U(θ0) and U′(θ0) are

sums of iid random variables so the expansion implies

√
n(θ̂ − θ0)

{
−

n∑
i=1

Ui(θ0)
nK(θ0) + Op

(
n−1/2

)}
=

n∑
i=1

Ui(θ0)√
nK(θ0) .

where K(θ0) = n−1K(θ0) is the information of a single observation. By the weak

law of large numbers,
∑n

i=1 n
−1U′(θ0)/K(θ0) = 1 + Op(1). Then,

√
n(θ̂ − θ0){1 + Op(1)} =

n∑
i=1

Ui(θ0)√
nK(θ0) . (2.4.3)

From (2.4.3) and the condition (iv), we can prove that θ̂ has asymptotic mean equal

0 and covariance structure given by K(θ0). Thus, the asymptotic normality of θ̂ is

obtained via central limit theorem applied to the right side of (2.4.3).

2.4.3 Efficiency

An estimator θ̂ is considered asymptotically efficient for θ if it is consistent, asymp-

totically normal and its covariance matrix is no larger than the covariance matrix
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2.5. The gradient test and the classical asymptotic tests 13

of any other estimator θ∗ ∈ Θ which is consistent and asymptotically normal.

The results of asymptotic efficiency and asymptotic normality can be generalised

for less restritive cases such as mixture models, provided that by week law of large

numbers n−1J(θ) P→ n−1K(θ) (Liang, 1984; Lindsay et al., 1991; Bickel et al., 1993).

2.5 The gradient test and the classical asymptotic

tests

We present here the general idea of the gradient test proposed by Terrell (2002) and

its older sister tests, the likelihood ratio, Wald and Rao.

2.5.1 Simple hypothesis

Our chief concern will be testing the null hypothesis H0 : θ = θ0 against the alter-

native hypothesis Ha : θ 6= θ0 where θ0 is an arbitrary vector.

The definitions of the likelihood ratio, Wald and score test statistics for H0 are,

respectively,

ξLR = 2[`(θ̂)− `(θ0)],

ξW = (θ̂ − θ0)>K(θ̂)(θ̂ − θ0),

ξR = U(θ0)>K(θ0)−1U(θ0),

where θ̂ is the maximum likelihood estimator (MLE) of θ, which can be obtained

by U(θ̂) = 0. A different approach for the Wald test is to substitute the Fisher

information matrix estimated under the alternative hypothesis by the theoretical

equivalent under null hypothesis. Here, we will call this approach as modified Wald

statistic, and define as

ξMW = (θ̂ − θ0)>K(θ0)(θ̂ − θ0).

Cordeiro (1999) shows that the asymptotic distributions of ξW, ξR and ξMW can be
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obtained considering that

√
nU(θ) D→Np(0, K̄(θ))

√
n(θ̂ − θ) D→Np(0, K̄(θ)−1).

where K(θ) = nK̄(θ). If K(θ) is continuous in θ = θ(0) thus, for n→∞,

n−1J(θ(0)) P→ K̄(θ(0))

n−1J(θ̂) P→ K̄(θ(0)).
(2.5.4)

One can show that ξLR has chi-squared distribution using the Taylor expansion of

`(θ(0)) around the solution θ̂ from U(θ̂) = 0 and (2.5.4). Thus,

`(θ(0)) = `(θ̂) +��
��*0

U(θ̂)(θ(0) − θ̂)− 1
2(θ(0) − θ̂)>J(θ̂)(θ − θ̂) + Op(1) ,

= `(θ̂)− 1
2(θ(0) − θ̂)>K(θ̂)(θ(0) − θ̂) + Op(1)

or

ξLR = (θ̂ − θ(0))>K(θ̂)(θ̂ − θ(0)) + Op(1) . (2.5.5)

Likewise, the Taylor expansion for θ̂ around θ(0)

θ̂ = θ(0) + K(θ(0))−1U(θ(0)) + Op

(
n−1/2

)
θ̂ − θ(0) = K(θ(0))−1U(θ(0)) + Op

(
n−1/2

)
(2.5.6)

Substituting (2.5.6) in (2.5.5), we have

ξLR = [K(θ(0))−1U(θ(0))]>K(θ̂)[K(θ(0))−1U(θ(0))] + Op(1)

= U(θ(0))>[K(θ(0))−1]>K(θ̂)K(θ(0))−1U(θ(0)) + Op(1) ,

where commonly K( · ) is a symmetric matrix, then K( · )> = K( · ) (also valid for

its inverse) and by the strong consistency of θ̂, K(θ̂) a.s.→ K(θ(0)), thus

ξLR = U(θ(0))>K(θ(0))−1U(θ(0)) + Op(1) .
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The statistics ξLR, ξW, ξR and ξMW have centred chi-square distribution approx-

imately with p degrees of freedom (χ2
p) under the null hypothesis H0 : θ = θ0.

Therefore, we reject H0 if the observed value of the statistic exceeds the quantile

100× (1− α)% of the χ2
p distribution, with nominal level α.

We are now able to discuss the idea behind the gradient statistic. Let Mp×p a square

matrix that satisfies the condition M>M = K(θ). Using this matrix, we can rewrite

ξR and ξMW as

ξR = [(M−1)>U(θ0)]>(M−1)>U(θ0),

ξMW = [(M)(θ̂ − θ0)]>M(θ̂ − θ0).

Lemonte (2016) shows that

(M−1)>U(θ0) ∼Np(0, Ip),

M(θ̂ − θ0) ∼Np(0, Ip),

where Ip is a p-dimensional identity matrix.

Furthermore, the inner product between (M−1)>U(θ0) and M(θ̂ − θ0) results in

[(M−1)>U(θ0)]>M(θ̂ − θ0) = U(θ0)>M−1M(θ̂ − θ0)

= U(θ0)>(θ̂ − θ0).

Based on the last expression, we have the following definition:

Definition 2.5.1 (Terrell, 2002) The gradient statistic, ξT, to test the simple null

hypothesis H0 : θ = θ0 against Ha : θ 6= θ0 has the form

ξT = U(θ0)>(θ̂ − θ0).

Theorem 2.5.2 Under H0 : θ = θ0, ξT has χ2
p + Op(1) distribution.

Proof : The MLE θ̂ is asymptotically efficient under the regularity conditions and

θ̂ − θ0 = K(θ0)−1U(θ0) + Op

(
n−1/2

)
.
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We already know that, in same conditions,

U(θ0) = Op

(
n1/2

)
,

then

ξT = U(θ0)>(θ̂ − θ0) = U(θ0)K(θ0)−1U(θ0) + Op(1) = ξR.

Therefore, as ξR has χ2
p + Op(1) then ξT has as well. 2

Note that ξT has the advantage of not involving the estimated Fisher information

matrix neither its inverse. We cannot state that ξT is non-negative for any scenario

except for the case stated in the Theorem 2.5.3.

Theorem 2.5.3 (Terrell, 2002) If `(θ) is uni-modal and differentiable in θ, so

ξT = U(θ0)>(θ̂ − θ0) > 0

Proof : Assuming the regularity conditions (i)–(v) and by the uniqueness of the

MLE, θ̂ is the only existent point of maxima of `( · ) and therefore, solution for

U(θ̂) = 0. Let exist a θ′ = (θ′1, . . . , θ′p)> ∈ Θ such that

U(θ′)>(θ̂ − θ′) < 0,

i.e., a violation of the Theorem. Then, U(θ′) 6= U(θ̂) = 0 and θ′ 6= θ̂. This

means that only θ′ < θ̂ or θ′ > θ̂ might be true. If θ′i < θ̂i, for i in 1, . . . , p, then

U(θ′i) < U(θ̂i) by the uni-modality of `( · ). As a consequence,

U(θ′)>(θ̂ − θ′) > 0.

For the second situation, if θ′i > θ̂i, for i in 1, . . . , p, then U(θ′i) > U(θ̂i) also by the

uni-modality of `( · ). Thus,

U(θ′)>(θ̂ − θ′) > 0.

Therefore, we prove by contradiction that ξT > 0 if `(θ) is uni-modal. 2
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Example 2.5.1 Let y = (y1, . . . , yn)> a n size random sample from a Gaussian

distribution with mean θ and variance 1, N(θ, 1). Thus,

`(θ) = log
[

n∏
i=1

(2π)−1/2 exp
{
−(yi − θ)2

2

}]

= −n2 log(2π)− 1
2

n∑
i=1

(yi − θ)2,

which provides the uni-parametric versions of score and Fisher information, respec-

tively

U(θ) =
n∑

i=1
yi − nθ, K(θ) = n.

so that for U(θ) = 0, the maximum likelihood estimator for θ is θ̂ = ∑n
i=1 yi/n = ȳ.

Consider the null hypothesis H0 : θ = θ0. For testing H0, the likelihood ratio statistic

assumes

ξLR = �2
[
���

���
�−n2 log(2π)− 1

�2

n∑
i=1

(yi − ȳ)2 +
��

��
��n

2 log(2π) + 1
�2

n∑
i=1

(yi − θ0)2
]

=
n∑

i=1
[(yi − θ0)2 − (yi − ȳ)2] =

n∑
i=1

[��y
2
i − 2θ0yi + θ2

0�
��−y2

i + 2ȳyi − ȳ2]

= −2nθ0ȳ + nθ2
0 + 2nȳ2 − nȳ2 = n[ȳ2 − 2θ0ȳ + θ2

0]

= n(ȳ − θ0)2.

Similarly, the Wald, Rao and gradient statistics are, respectively,

ξW = (θ̂ − θ0)2K(θ̂)

= n(ȳ − θ0)2,

ξR = U(θ0)2/K(θ0)

= [n(ȳ − θ0)]2/n

= n(ȳ − θ0)2,
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and

ξT = U(θ0)(θ̂ − θ0)

= n(ȳ − θ0)(ȳ − θ0)

= n(ȳ − θ0)2.

Example 2.5.2 Let y = (y1, . . . , yn)> a n size random sample from a exponential

distribution with pdf

f(y; θ) = 1
θ

exp
{
−y
θ

}
.

Thus,

`(θ) = log
[

n∏
i=1

1
θ

exp
{
−yi

θ

}]

= −n log θ − 1
θ

n∑
i=1

yi.

which provides the respectively uni-parametric versions of score and Fisher informa-

tion

U(θ) = −n
θ

+ 1
θ2

n∑
i=1

yi, K(θ) = n

θ2 .

so that for U(θ) = 0, the maximum likelihood estimator for θ is θ̂ = ∑n
i=1 yi/n = ȳ.

Consider the null hypothesis H0 : θ = θ0. For testing H0, the likelihood ratio statistic

is

ξLR = 2
[
−n log ȳ − 1

ȳ

n∑
i=1

yi + n log θ0 + 1
θ0

n∑
i=1

yi

]

= 2n
[
log

(
θ0

ȳ

)
+ ȳ

θ0
− 1

]
.

Similarly, the Wald, Rao and gradient statistics are, respectively,

ξW = (θ̂ − θ0)2k(θ̂)

= n(ȳ − θ0)2 n

ȳ2

= n

(
ȳ − θ0

ȳ

)2
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ξR = U(θ0)2/K(θ0)

=
[
n

θ0

(
ȳ

θ0
− 1

)]2/(
n

θ2
0

)

= n

(
ȳ − θ0

θ0

)2

,

and

ξT = U(θ0)(θ̂ − θ0)

= n

(
ȳ

θ2
0
− 1
θ0

)
(ȳ − θ0)

= n

(
ȳ2 − ȳθ0 − ȳθ0 + θ2

0
θ2

0

)

= n

(
ȳ − θ0

θ0

)2

.

2.5.2 Composite hypothesis

We now will consider the problem of testing the hypotheses

 H0 : θ1 = θ
(0)
1

Ha : θ1 6= θ
(0)
1

,

which implies the partitioning θ = (θ>1 ,θ>2 )> where θ1 = (θ1, . . . , θq)> is a q-

dimensional parameter of interest, θ2 = (θq+1, . . . , θp)> is a (p − q)-dimensional

nuisance parameter and θ
(0)
1 is a specified vector. Let `(θ1,θ2) the log-likelihood

for θ1 and θ2. The unrestricted maximum likelihood estimator is θ̂ = (θ̂>1 , θ̂>2 )>

and the restricted maximum likelihood estimator of θ2 under H0 is written θ̃2; so,

θ̃> = (θ(0)>
1 , θ̃>2 ) represents the estimator of the full parameter vector θ under the

null hypothesis. We make use for further formulae the mathematical accents ∼ and

∧ to represent the estimators under null and alternative hypothesis, respectively.

The score vector U, the Fisher information matrix K and the inverted Fisher infor-
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mation matrix K−1 are also partitioned according to θ = (θ>1 ,θ>2 )>, i.e.

U ≡ U(θ) =

U1

U2

 ,

K ≡ K(θ) =

K11 K12

K21 K22

 , and

K−1 ≡ K−1(θ) =

K11 K12

K21 K22

 ,
Similarly, we can use the same notation for the observed information matrix J and

its inverse J−1. In general, the U1, U2, K11, K12 = K>21 and K22 depend on both

θ1 and θ2.

The likelihood ratio statistic for H0 : θ1 = θ
(0)
1 is

ξLR = 2[`(θ̂1, θ̂2)− `(θ(0)
1 , θ̃2)]. (2.5.7)

The inconvenience of (2.5.7) is that ξLR requires two maximisations. One can show

that ξLR
D→ χ2

q according to Wilks et al. (1938).

The Wald statistic is developed on the basis of the asymptotic normality of the MLE

θ̂1. The idea is that the distribution of θ̂ is, asymptotically, a p-dimensional normal

distribution, where K−1 is the covariance matrix. Thus, under H0, the asymptotic

distribution of θ̂1 is also normal, however, q-dimensional and with mean θ
(0)
1 and

covariance matrix K11. This means that, θ̂1−θ(0)
1

D→Nq(0,K11). The matrix K11 can

be consistently estimated by K11(θ̂1, θ̂2), K11(θ(0)
1 , θ̃2), J11(θ̂1, θ̂2) and J11(θ(0)

1 , θ̃2).

If we choose the first option, the Wald statistic can be expressed by

ξW = (θ̂1 − θ(0)
1 )>K̂11−1(θ̂1 − θ(0)

1 ) (2.5.8)

where K̂11 = K11(θ̂1, θ̂2). In (2.5.8), ξW is a “quadratic form” which corresponds

to an inner product of a two vectors that have the same asymptotically normal

distribution θ̂1 − θ(0)
1

D→Nq(0,K11) and, therefore, ξW
D→ χ2

q under null hypothesis.

The Rao statistic is based on the asymptotic normality for the score function U1 =
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U1(θ(0
1 ,θ2) applied to the vector of parameters under test, i.e.,

U1
D→Nq(0,K11), (2.5.9)

where K̂11 = K11(θ(0)
1 ,θ2) is the asymptotic covariance matrix for θ̂1. Thus, the

Rao statistic is defined by the quadratic form

ξR = Ũ>1 K̃11Ũ1, (2.5.10)

where Ũ1 = U1(θ(0)
1 , θ̃2) and K̃11 = K11(θ(0)

1 , θ̃2). The Rao statistic advantage is

that it depends only on the MLE under null hypothesis. The asymptotic distribution

of ξR, under H0 : θ1 = θ
(0)
1 , comes directly from (2.5.9) which implies ξR

D→ χ2
q.

The gradient statistic comes from the results of (2.5.8) and (2.5.10). Let M a square

matrix with dimensions q × q, which satisfies the condition M>M = K11. Consider

the ξW version which uses K̃11 = K11(θ(0)
1 , θ̃2) to estimate K11. We can rewrite both

ξW and ξR in terms of M as follows

ξW = (θ̂1 − θ(0)
1 )>K̃11−1(θ̂1 − θ(0)

1 )

= (θ̂1 − θ(0)
1 )>(M>M)−1(θ̂1 − θ(0)

1 )

= [(M−1)(θ̂1 − θ(0)
1 )]>(M−1)(θ̂1 − θ(0)

1 ), and (2.5.11)

ξR = Ũ>1 K̃11Ũ1

= Ũ>1 M>MŨ1

= [(M)>Ũ1]>M>Ũ1 (2.5.12)

Both (2.5.11) and (2.5.12) are explicit quadratic forms, so that

(M−1)(θ̂1 − θ(0)
1 ) D→Nq(0, Iq) (2.5.13)

M>Ũ1
D→Nq(0, Iq), (2.5.14)

where Iq is an q-dimensional identity matrix. Therefore, the gradient statistic is

May 30, 2018



2.5. The gradient test and the classical asymptotic tests 22

result of the inner product between (2.5.13) and (2.5.14), i.e.

ξT = [M>Ũ1]>(M−1)(θ̂1 − θ(0)
1 )

= Ũ>1��M��
�M−1(θ̂1 − θ(0)

1 )

= Ũ>1 (θ̂1 − θ(0)
1 ). (2.5.15)

As a result of (2.5.13) and (2.5.14), the gradient statistic is a quadratic form and

ξT
D→ χ2

q. The advantage of (2.5.15) is that it does not depend on any kind of matrix,

such as the Fisher information or observed information matrices.
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Chapter 3

Generalised linear models with

random effects

3.1 Introduction

The class of generalised linear models (GLMs) introduced by Nelder & Wedderburn

(1972) established a new standard in statistical modelling. The GLMs extended

the classic linear models for different situations where the response can be modelled

by exponential family distributions and relating the response mean to the linear

predictor through appropriate monotonic differentiable functions.

The concept of random effect modelling initially came up to accommodate subject-

specific variability. More recently, this concept has been applied in situations where

the model could not handle remain extra variability from the data. In this sense, the

random effect is a part of the model assumed to be unknown, and can be regarded

as a latent variable.

The GLMs with random effects considered is this thesis were proposed by Aitkin

(1996b) for overdispersion modelling in GLMs and by Aitkin (1999) for variance

components modelling. These models rely on the theory of finite mixture modelling

which uses the EM algorithm for finding the maximum likelihood estimates proposed

by Laird (1978). In the special case of a normally distributed random effect, Hinde

(1982) proposed to employ tabulated Gauss-Hermite integration points and masses

considering these values as constants.

23



3.2. The standard random effects model 24

3.2 The standard random effects model

Consider a generalised linear model with random effects (GLMwRE) for a data

set containing n independent observations of a response variable, given by y =

(y1, . . . , yn)>, and corresponding observations on p explanatory variables, given by

x>i = (xi1, . . . , xip)>, for i = 1, . . . , n. The linear predictor for the i-th observation,

ηi, has the form

ηi = x>i β + z∗i , (3.2.1)

where β = (β1, . . . , βp)> is the vector of regression parameters and z∗i is an unob-

served random effect. The relationship between yi|z∗i and ηi is given by the con-

ditional mean µi|z∗i = E[yi|z∗i ] and the monotonic and differentiable link function,

g( · ) such that µi|z∗i = g−1(ηi).

By definition, y is a vector of independent random variables and each yi, i = 1, . . . , n

has a distribution in an exponential family with dispersion parameter. Thus, the

probability density function of yi can be written as

f(yi|θi, φ, z
∗
i ) = exp[φ{yiθi − b(θi)}+ c(yi, φ)], (3.2.2)

where θ1, . . . , θn are unknown parameters, φ > 0 is a precision parameter common

to all observations, and b( · ) and c( · , · ) are known functions. The parame-

ter estimation procedure requires the probability density function in (3.2.2) to be

differentiable with respect to θi and φ.

In (3.2.2), θi is related to µi|z∗i , and consequently to ηi, through two useful properties

of an exponential family:

E[yi|z∗i ] = b′(θi) and Var[yi|z∗i ] = φ−1Vi = φ−1b′′(θi), (3.2.3)

where Vi = V (µi|z∗i ) and V (µi) = dµi/dθi = b′′(θi). The function V (µi|z∗i ) is called

the variance function and φ−1 the dispersion parameter. Note that, unlike the GLM,

Var[yi] > φ−1Vi(µi).
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3.2. The standard random effects model 25

3.2.1 Random effects with normal distribution

According to Anderson & Hinde (1988) there are two approaches for the unobserved

nature of the random effect z∗i . The first consists in substituting z∗i by σzi where

zi ∼N(0, 1) and therefore, the linear predictor is writen as

ηi = x>i β + σzi

= ż>i γ.
(3.2.4)

where żi = (x>i , zi)> and γ = (β>, σ)>. The second is discussed in Subsection 3.2.2.

The likelihood function for (3.2.4) is

L∗(γ, φ) =
n∏

i=1

∫
f(yi|γ, φ, zi)ϕ(zi)dzi (3.2.5)

where ϕ( · ) is the normal density and f( · ) is the response density. However, the

integral in (3.2.5) usually has no analytic solution. One of the several strategies sug-

gested to solve this problem is approximation using a K-point Gaussian quadrature

rule: for any function h(z),

∫
h(z)ϕ(z) dz ≈

K∑
k=1

πkh(z̃k)

where πk are the quadrature weights and z̃k the quadrature points. Both πk and

z̃k, k = 1, . . . , K are known and tabulated, see e.g. Golub & Welsch (1969) or

Abramowitz & Stegun (1972).

Then the approximate likelihood is

L∗(γ, φ) ≈ L(γ, φ) =
n∏

i=1

K∑
k=1

πkf(yi|γ, φ, z̃k) =
n∏

i=1

K∑
k=1

πkfik, (3.2.6)

which is the likelihood for a per-observation K-component mixture of response dis-

tributions. According to Laird (1978), the approximation (3.2.6) becomes accurate

already for a small integer K. Thus, in the subsequent theoretical development, we

shall assume that this mixture model is in fact the true model so that L(γ, φ) is the

true likelihood.
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3.2. The standard random effects model 26

The choice of K is arbitrary. For practical purposes, Einbeck & Hinde (2006b)

suggests that the number of mass points K should start with 1 and augmented as

long as the likelihood improves.

3.2.2 Random effects with unspecified distribution

Restricting the distribution of the random effects to the normal distribution is the

main disadvantage of the previous method. An alternative approach is to assume

that z∗i in (3.2.4) has an unspecified density π( · ). Hence, the likelihood for this

model is

L∗(β, φ) =
n∏

i=1

∫
f(yi|β, φ, zi)π(zi)dzi. (3.2.7)

Once again, for most choices of π( · ) the integral of (3.2.7) cannot be calculated

analytically. The solution proposed by Laird (1978) involves the approximation

of the density π(zi) by a discrete distribution with an arbitrary number K of mass

points zk and π̃k mass probabilities, respectively, for k = 1, . . . , K. Then, the integral

in (3.2.7) is approximated by

L∗(β, φ) ≈ L(β, φ, zk) =
n∏

i=1

K∑
k=1

f(yi|β, φ, zk)π̃k =
n∏

i=1

K∑
k=1

fikπ̃K . (3.2.8)

where fik = f(ui|β, φ, zk). The approximated likelihood in (3.2.8) corresponds to

the model with linear predictor

ηik = x>i β + e>ikζ

= ż>ikγ,
(3.2.9)

with z∗i = e>ikζ where eik is a K-dimensional vector of zeros except the one in the

position ik, ζ = (ζ1, . . . ζK)> is a vector of unknown parameters associated to the

random effects, żik = (x>i , e>ik)> and γ = (β>, ζ>)> is the full vector of linear

predictor parameters. Again, the choice of K is arbitrary and the rule of thumb

involves fit the model with K = 1 and then increase until the likelihood stabilises.

An important practical advantage of this model in comparison to the Gaussian

quadrature is that it does not restrict to one specific parametric model (the normal
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3.3. Unified notation and parameter estimation 27

distribution, for instance) for the random effects distribution. This means that the

NPML model accommodates scenarios where the distribution of the random effects

is asymmetric and discrete.

3.3 Unified notation and parameter estimation

Here we propose a general matrix notation for the GLMwRE. This notation is a

formalisation of the implementation available in R package npmlreg (Einbeck et al.,

2014). The notation is constructed so we can express the GLMwRE as a extension

of the standard GLM and therefore extend some results of this model, such as the

estimation procedure for the fixed effects.

Let
...
y be a vector of nK pseudo-observations

...
y = (y>,y>, . . . ,y>︸ ︷︷ ︸

K times

)>,

and
...
z a vector of nK mass points

...
z = (z̃1, z̃1, . . . , z̃1︸ ︷︷ ︸

n times

, . . . , z̃K , z̃K , . . . , z̃K︸ ︷︷ ︸
n times

)>,

which will estimate the stacked vector of unobserved random effects.

The vector of expected values
...
µ is denoted by

...
µ = (µ11, . . . , µn1, . . . , µ1K , . . . , µnK)

where µik = E[yi|z̃k], for i = 1, . . . , n and k = 1, . . . , K. Then, the linear predictor

can be written as

g(...µ) = ...
η =

...
Zγ (3.3.10)

where g( · ) is the link function and

g(...µ) = (g(µ11), . . . , g(µn1), . . . , g(µ1K), . . . , g(µnK))>,
...
η = (η11, . . . , ηn1, . . . , η1K , . . . , ηnK)>,
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with g(µik) = ηik, for i = 1, . . . , n and k = 1, . . . , K. Finally, we define
...
Z as

...
Z = (ż11, . . . , ż

>
n1, . . . , ż1K , . . . , żnK). (3.3.11)

We can consider (3.3.11) as a pseudo model matrix which includes the observed values

of the covariates and the values to-be-estimated of the random effects. Then
...
Z is

defined according to the chosen approach for the distribution of the random effects.

For the model with normal random effects,
...
Z is a matrix with dimension n× p+ 1,

where żik = (x>i , z̃k)> is for i = 1, . . . , n and k = 1, . . . , K. To match this model

matrix, we have the vector of parameters γ = (β>, σ)>, with σ > 0. For random

effects with unspecified distribution,
...
Z is a matrix with dimension n×p+K, where

żik = (x>i , e>ik)> for i = 1, . . . , n and k = 1, . . . , K. Then, for this latter approach,

the vector of parameters is γ = (β>, ζ>)>. The log–likelihood function for the

GLMwRE is

`(γ, φ) = log L(γ, φ) =
n∑

i=1
log

(
K∑

k=1
πkfik

)
, (3.3.12)

and it turns out that equating the first partial derivatives to zero, that is ∂`/∂γ = 0,

one obtains precisely the single–distribution score equations (Aitkin et al., 2009) for

the GLM, but summed over k = 1, . . . , K and weighted by

ωik = πkfik∑K
l=1 πlfil

. (3.3.13)

Each ωik can be interpreted as the posterior probability that observation yi came

from component k. Alternating between this estimation step and an update step for

the wik leads to an EM algorithm:

E-step Calculate weights ωik according to (3.3.13);

M-step Update the parameter estimates by fitting the GLM (3.3.10) with weights

ωik.

The ordinary generalised linear model (GLM) is a special case of the GLMwRE

when K = 1 whether the choice of distribution for the random effects. In the

normal random effects approach, the special case where σ = 0, the GLMwRE also

reduces to an ordinary generalised linear model (GLM).
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Inference for the precision parameter φ, which we consider as a nuisance parameter,

is not of primary interest in this paper. One can estimate φ in any EM iteration

through

1/φ̂ = 1
n

∑
i

∑
k

wik
(yi − µ̂ik)2

V (µ̂ik) ,

using the current component mean estimates µ̂ik = g−1(x>i β̂ + σ̂z̃k) and weights

wik. The estimate φ̂ can be used at all occasions where φ appears henceforth in this

manuscript. See for instance Einbeck & Hinde (2006a) for details.

For practical applications, it is very important to have reliable inferential tools for

the regression parameters, β. This is relevant, for instance, for the construction

of confidence intervals or the assessment of strength of effects through hypothesis

testing. Such inferences rely on the standard errors of the parameter estimates,

β̂, which, in turn, can be computed via the Fisher information matrix. Therefore,

the ability to compute this matrix accurately is paramount for most subsequent

inferential procedures.

Writing the log–likelihood (3.3.12) as ` = log L(γ), the total score vector for γ,

U = U(γ), is

U = ∂`

∂γ
=

n∑
i=1

1
K∑

l=1
πlfil

K∑
k=1

πk
∂fik

∂γ
.

By the chain rule, we find

U =
n∑

i=1

K∑
k=1

πkfik
∂ log fik

∂γ
K∑

l=1
πlfil

= φ
n∑

i=1

K∑
k=1

ωik

dµik

dηik

(yi − µik)
Vik

xi

z̃k


 , (3.3.14)

where Vik = V (µik) and ωik is given by

ωik = πkfik∑K
l=1 πlfil

. (3.3.15)

Each ωik can be interpreted as the posterior probability that observation yi came

from component k.
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In matrix notation, we can rewrite U as

U =
...
Z>D(...y − ...

µ), (3.3.16)

where D is the diagonal matrix with diagonal entries d11, . . . , dn1, . . . , d1K , . . . , dnK

given by

dik = φ
dµik

dηik

ωik

Vik

.

3.4 The variance components model

The variance components model is a generalisation of the standard random effects

model for grouped data. We consider here the notation given by Aitkin (1999), where

we have a two-stage random sample yij, where i = 1, . . . , nj indexes the observations

and j = 1, . . . , r the groups, with
∑r

j=1 nj = n. Let denote µij|zj = E[yij|zj] the

conditional mean of yij given the unobserved random effect zj. The mean is linked

to a vector of p covariates xij = (xij1, . . . , xijp)> by

g(µij|zi) = ηij = x>ijβ + zj, for i = 1, . . . , nj, j = 1, . . . r, (3.4.17)

where zj is the jth random effect, g( · ) is the link function and β is an unknown

vector of parameters. We interpret zj as random intercepts for each group j. The

likelihood is then defined by

L∗(β, φ) =
r∏

j=1

∫ nj∏
i=1

f(yij|β, φ, zj)π(zj)dzj. (3.4.18)

The integral in (3.4.18) has closed form just for the case where zj ∼N(0, σ2) which

can be approximated by a Gaussian quadrature. Consequently we replace this in-

tegral by a finite sum over K Gaussian quadrature mass points zk with means πk

which is a similarly as the standard Gaussian quadrature model.

Similarly, one can consider that the zj has unspecified distribution and use the

nonparametric estimation already stated for the NPML overdispersion model. The

procedure is equivalent where the likelihood in (3.4.18) is than approximated by
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a finite sum such as in (3.2.8) replacing zj and π(zj) by a discrete distribution

with mass points zk and mass probabilities πk with k = 1, . . . , K. The unknown

parameters and zk and πk are estimated by EM algorithm.

3.4.1 The random coefficient model

Another variant is the random coefficient model which has a random slope β1j =

β1 + uj where uj corresponds to a source of variation in regard to the mean of β1j

so that E[uj] = 0. In this sense, the linear predictor can be expressed as

ηij = β1x1ij + β2x2ij + · · ·+ βpxpij + ujx1ij + zj

= x>ijβ + ujx1ij + zj

(3.4.19)

whilst marginally uj and zj have unknown joint distribution π(zj, uj). The likelihood

for (3.4.19) model is then defined as

L∗(β, φ) =
r∏

j=1

∫ nj∏
i=1

f(yij|β, φ, uj, zj)π(zj, uj)dzjduj (3.4.20)

One can assume the distribution of π(z, u) as a bivariate normal distribution with

unknown covariance, which requires to solve numerically the integral in (3.4.20)

over both zj and uj. Still, Aitkin (1999, p. 120) note that this approach “[...]doubles

the computational load[...]” and might be “[...]unusable for many random param-

eters[...]”. An alternative solution is estimating the joint distribution of zj an uj

nonparametrically, obtaining then the NPML estimate as a discrete distribution on

finite number of mass-points (z̃k,ũk) with mass probability π̃k, for the k–th compo-

nent.

3.5 Gradient test for GLMwRE

Consider testing  H0 : β1 = β
(0)
1

H1 : β1 6= β
(0)
1
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which induce the partitioning β = (β>1 ,β>2 )>, where β1 is a q-dimensional vector

of interest parameters and β2 is a p− q-dimensional vector of nuisance parameters

with q 6 p. The corresponding partitioned model matrix is
...
Z = (

...
Z1,

...
Z2).

The partitioning in β induces the following partition in the score vector

U =

U1(β|y)

U2(β|y)

 =

...
Z>1 D(...y − ...

µ)
...
Z>2 D(...y − ...

µ)


Thus, using the general definiton in (2.5.15) we express the gradient statistic for

testing H0 for GLMwRE by

ξT = U1(β̃|y)>(β̂1 − β(0)
1 ).

The likelihood ratio, Wald and Rao in the same context have the form, respectively,

ξLR = 2[`(β̂)− `(β̃)],

ξW = (β̂1 − β(0)
1 )>K11(β̂|y)(β̂1 − β(0)

1 ),

ξR = U1(β̃|y)>K11(β̃|y)U1(β̃|y).

where β̂ = (β̂>1 , β̂>2 )> and β̃ = (β(0)>
1 , β̃>2 )> are the maximum likelihood estimator

under alternative and null hypothesis, respectively. Under H0 and for n → ∞ the

distribution of ξLR, ξW, ξR and ξT should have chi-square distribution with q degrees

of freedom.
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Chapter 4

Fisher information matrix and

standard errors

This chapter presents the formulae to compute the Fisher information matrix for the

regression parameters of generalised linear models. The Fisher information matrix

relies on the estimation of the response variance under the model assumptions. We

propose two approaches to estimate the response variance: the first is based on an

analytic formula (or a Taylor expansion for cases where we cannot obtain the closed-

form) and the second is an approximation using the model estimates via the EM

process. Further, simulations under several response distributions and a real data

application involving a factorial experiment are presented and discussed. In terms

of standard errors and coverage probabilities for model parameters, the proposed

methods turn out to behave more reliably than the ‘disparity rule’ in (4.3.6) or

approximations with the model fitted in the last EM iteration.

Despite the fact that the Fisher information matrix is not required for the gradient

statistic, we made this effort to obtain the Wald and Rao statistic formulae. Thus

allowing us to compare the gradient test properties to the likelihood ratio, Wald and

Rao tests in Chapter 5.
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4.1 The score vector and the Fisher information

matrix

Recalling the notation present in Section 3.3, we have the log–likelihood (3.3.12) as

` = logL(γ), the total score vector for γ, U = U(γ), is

U = ∂`

∂γ
=

n∑
i=1

1
K∑

l=1
πlfil

K∑
k=1

πk
∂fik

∂γ
.

By the logarithmic differentiation, we find

U =
n∑

i=1

K∑
k=1

πkfik
∂ log fik

∂γ
K∑

l=1
πlfil

= φ
n∑

i=1

K∑
k=1

ωik

dµik

dηik

(yi − µik)
Vik

xi

z̃k


 , (4.1.1)

where ωik is given by (3.3.15) and Vik = V (µik). In matrix notation, we can rewrite

U as

U =
...
Z>D(...y − ...

µ), (4.1.2)

where D is the diagonal matrix with diagonal entries d11, . . . , dn1, . . . , d1K , . . . , dnK

given by

dik = φ
dµik

dηik

ωik

Vik

.

Similarly, denote by K = K(γ) the GLMwRE Fisher information matrix for γ.

Then K = Var [U] and, from (4.1.2), we have

K = Var
[...
Z>D(...y − ...

µ)
]

=
...
Z>DVar [...y ] D

...
Z

=
...
Z>D

...
ΥD

...
Z,

where
...
Υ = Var [...y ] is the unconditional variance-covariance matrix for

...
y . Since the
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observations in the GLMwRE are independent,

Cov(yi, yi) = Var(yi), ∀i ∈ {1, . . . n}, and

Cov(yi, yj) = 0, ∀i 6= j ∈ {1, . . . n},

one finds for the K copies in
...
y that

Cov(y(k)
i , y

(l)
i ) = Var(yi), ∀i ∈ {1, . . . n}, k, l ∈ {1, . . . K}, and

Cov(y(k)
i , y

(l)
j ) = 0 ∀i 6= j ∈ {1, . . . n}, k, l ∈ {1, . . . K},

where y
(k)
i and y

(l)
i are the kth and lth copies of yi, respectively for ∀i ∈ {1, . . . n}

and k, l ∈ {1, . . . K}.

Therefore,

...
Υ =



Υ Υ · · · Υ

Υ Υ · · · Υ
...

...
. . .

...

︸ ︷︷ ︸
K times

Υ Υ · · · Υ




K times,

where Υ = diag(υi) and υi = Var(yi). For compactness of the notation, let

Ψ = D
...
ΥD. The Fisher information matrix for the GLMwRE is then

K =
...
Z>Ψ

...
Z.

Here, the response variances play an important role and the following Section 4.2

develops the necessary formulae.

4.2 Response variance

Recall that, in model (3.2.4), the zi follow a standard normal distribution. That is,

though they are approximated by a discrete set z̃1, . . . z̃K for estimation purposes,
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they are random in nature, so that the unconditional mean and variance of yi are

E[yi] = E[E[yi|zi]] = E[µi] (4.2.3)

and

Var(yi) = E[Var[yi|zi]] + Var[E[yi|zi]]

= φ−1E[V (µi)] + Var[µi]. (4.2.4)

The remaining task is to determine E[V (µi)] and Var[µi]. This can be achieved

either approximately, by use of the Gaussian quadrature rule, or analytically, based

on explicit expressions depending on the response distribution and link function.

We explain both approaches below.

4.2.1 Estimation via analytic expressions

We derived the analytic form of E[V (µi)] and Var[µi] for Normal, Gamma, Poisson,

Binomial and Inverse Gaussian response distribution and a wide range of commonly

used link functions. The resulting expressions for Var(yi) are summarized in Table

4.1. Some combinations of distribution and link function required the use of a Taylor

expansion, which is indicated by a ~. All such expansions were made to third order.

Of course, for the practical use in (4.2.3) and (4.2.4), β and σ need to be replaced

by their corresponding estimates.

All derivations are give in detail in Appendix B but here we explain two exemplary

situations. Firstly, suppose a GLMwRE with normal response with Gaussian ran-

dom effects. Consider that the identity link function is appropriate for this case.

Thus, we have

µi = ηi = x>i β + σzi

and V (µ) = 1. Therefore, E[yi] = x>i β and the response variance is

Var(yi) = φ−1E[1] + Var[x>i β + σzi]

= φ−1 + σ2.
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However, there are cases in which there is no analytical solution for E[V (µi)] and

Var[µi]. In such cases, an approximate solution can be obtained by expanding V (µi)

and µi by Taylor series around zi = 0. Therefore, secondly, consider a GLMwRE

with Gaussian random effects, Gamma response and inverse link. For this configu-

ration, V (µ) = µ2 and

µi = 1
ηi

= 1
x>i β + σzi

.

Thus,

E[φ−1V (µi)] = φ−1E
[
(x>i β + σzi)−2

]
, and

Var[µi] = Var[(x>i β + σzi)−1].

By Taylor expansion around 0, we have

(x>i β + σzi)−1 ≈ (x>i β)−1 − (x>i β)−2σzi + (x>i β)−3σ2z2
i − (x>i β)−4σ3z3

i ,

and

(x>i β + σzi)−2 ≈ (x>i β)−2 − 2(x>i β)−3σzi + 3(x>i β)−4σ2z2
i − 4(x>i β)−5σ3z3

i .

Therefore, after some algebra, we have the response variance as

Var(yi) ≈ φ−1
[
(x>i β)−2 + 3(x>i β)−4σ2

]
+

+ (x>i β)−4σ2 + 8(x>i β)−6σ4 + 15(x>i β)−8σ6.

For practical purposes, the Taylor expansions presented in Table 4.1 are sufficiently

accurate for any σ > 0 and x>i β such that |x>i β| > σ and |σ/(x>i β)| < 0.4.

4.2.2 Estimation via Gaussian Quadrature

Approximating

E[V (µi)] ≈
K∑

k=1
Vikπk, Var[µi] =

K∑
k=1

µ2
ikπk −

(
K∑

k=1
µikπk

)2

,
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Table 4.1: Variance of response under Gaussian quadrature models.
Response Link
Distribution function Var(yi)

Normal identity φ−1 + σ2

log φ−1 + exp{2(x>i β) + σ2}(exp{σ2} − 1)
inverse~ φ−1 + (x>i β)−4σ2 + 8(x>i β)−6σ4 + 15(x>i β)−8σ6

Gamma identity (φ−1 + 1)σ2 + φ−1(x>i β)2

log exp{2(x>i β) + σ2}[(φ−1 + 1) exp{σ2} − 1]
inverse~ φ−1

[
(x>i β)−2 + 3(x>i β)−4σ2

]
+

+(x>i β)−4σ2 + 8(x>i β)−6σ4 + 15(x>i β)−8σ6

Poisson log (exp{x>i β}) exp{σ2/2}×
×[1 + (exp{x>i β}) exp{σ2/2}(exp{σ2} − 1)]

identity x>i β + σ2

square root (x>i β)2 + 4(x>i β)2σ2 + σ2 + 2σ4

Binomial logit~
exp{x>i β}

exp{x>i β}+ 1 −
(exp{x>i β})2

(exp{x>i β}+ 1)2−

− [(exp{x>i β})2 − exp{x>i β}]σ2

2(exp{x>i β}+ 1)3 +

+[(exp{x>i β})3 − (exp{x>i β})2]σ2

(exp{x>i β}+ 1)4 −

−(exp{x>i β})2 − exp{x>i β}]2σ4

4(exp{x>i β}+ 1)6

probit~ Φ(x>i β)− (x>i β)σ2φ(x>i β)
2 − Φ2(x>i β)+

+(x>i β)σ2φ(x>i β)Φ(x>i β)−

−(x>i β)2σ4φ2(x>i β)
4

cauchit~
1
4 −

1
π2

{
arctan(x>i β)− (x>i β)σ2

[(x>i β)2 + 1]2

}2

log exp
{
x>i β + σ2

2

}
− exp{2(x>i β) + σ2}

comp. log-log~ exp{− exp{x>i β}}+ exp{2(x>i β)} − exp{x>i β}]σ2

2 exp{exp{x>i β}}
−

− exp{−2 exp{x>i β}} −
[exp{2(x>i β)} − exp{x>i β}]σ2

exp{2 exp{x>i β}}
−

− [exp{4(x>i β)} − 2 exp{3(x>i β)}+ exp{2(x>i β)}]σ4

4 exp{2 exp{x>i β}}

Inv. Gaussian 1/µ2~ φ−1

 1
(x>i β)

√
x>i β

+ 15σ2

8(x>i β)3
√
x>i β

+

+ σ2

4(x>i β)3 + σ4

2(x>i β)5 + 375σ6

256(x>i β)7

inverse~ φ−1
[
(x>i β)−3 + 6(x>i β)−5σ2

]
+

+(x>i β)−4σ2 + 8(x>i β)−6σ4 + 15(x>i β)−8σ6

identity φ−1[(x>i β)3 + 3(x>i β)σ2] + σ2

log φ−1 exp
{

3(x>i β) + 9σ2

2

}
+ exp{2(x>i β + σ2)}−

− exp
{

2(x>i β) + σ2

2

}
~ Approximated via Taylor expansion.
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one has

Var(yi) ≈ φ−1
K∑

k=1
Vikπk +

K∑
k=1

µ2
ikπk −

(
K∑

k=1
µikπk

)2

. (4.2.5)

The number of mass points K as the quantities φ, Vik, µik and πk are obtained from

the fitted model.

An advantage of this expression is that it extends to nonparametric maximum like-

lihood estimation (NPML) of random effect models (Aitkin et al., 2009) by substi-

tuting µk and zk with their estimates from the final EM iteration. In the context

of Gaussian quadrature, which is the focus of this manuscript, we found (4.2.5)

to behave very similarly to the analytic expressions above, as demonstrated in the

following section.

4.3 Examples

We now provide two examples, using simulated and real data, to illustrate the use

of the Fisher information matrix for the computation of standard errors of the re-

gression parameter estimates. The first example involves four simulated data sets

based on 90 observations, one each for models with Poisson, Gamma, Normal and

Inverse Gaussian responses. The second example illustrates the application of the

Inverse Gaussian distribution to a real dataset with 30 observations. The results in

each example can be reproduced with code available in the supplementary material.

As reference, we use the standard errors obtained by two procedures: (i) via Monte

Carlo with 10.000 replicates, (ii) via the heuristic formula

se(β̂j) .= |β̂j|√
∆ dispj

, (4.3.6)

where ∆ dispj is the change in disparity (−2`) when omitting the explanatory vari-

able xj (Aitkin et al., 2009, pg. 439). A natural limitation of this formula is that it

is not possible to compute the standard error for σ or the intercept term. Therefore

the results for σ and β0 are left blank. The values given in column (iii) are the

standard errors of γ̂ in the GLM fit of the last EM iteration.

The results (iv) and (v) are the standard errors obtained using the analytic formula
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for variance (or the Taylor expansion) from Section 4.2.1 and the approximation

from Section 4.2.2, respectively. In all of (i) to (v), the actual model fitting was

carried out using R function alldist Einbeck et al. (2014), using K = 3 throughout.

For comparative purposes, we also provide the standard errors (vi) and parameter

estimates γ̂∗ produced by the glmer function (Bates et al., 2014), using the default

option for argument nAGQ which implies a Laplace Approximation for the integral

in (3.2.5). The glmer does not return the standard errors for σ thus the results are

left blank.

4.3.1 Simulated data example

For each case, we simulate 10000 data sets of size n = 90 based on the following

linear predictor

ηi = β0 + β1xi + β2i + σzi, i = 1, . . . , n,

with the intercept β0 = 1 for Poisson, Gamma and Normal cases and β0 = 1.5 for

Inverse Gaussian. The covariate x is generated from U(0, 1) with coefficient β1 = −1

for Poisson, Gamma and Normal cases and β1 = −0.125 for Inverse Gaussian. The

β2i represent the coefficients of a factor with three levels, which β2i = (i mod 3)−1

for Poisson, Gamma and Normal cases and β2i = 0.125×{(i mod 3)−1} for Inverse

Gaussian. The random effect term is generated from N(0, 1) and the amount of

variability due to the random effects is controlled by σ with value 0.125 for all

models. We choose τ equal 1 for Gaussian and Gamma model, and equal 1/64 for

the Inverse Gaussian model. The link functions are log for Poisson and Gamma,

identity for Normal and inverse for Inverse Gaussian. We opt for a different set of

parameter values for the Inverse Gaussian model due to the inverse link constraint

ηi 6= 0 and the larger value of τ offers a balance for µ3
i in Var(yi) = E[φ−1µ3

i ]+Var[µi].

We resample a new dataset for cases where alldist or glmer did not fit the model.

For the Normal model, lmer is used instead of glmer.

Tables 4.2, 4.3, 4.4 and 4.5 display, respectively, the average value of γ̂ as well as the

average standard errors of γ̂ for models fitted to the simulated response distributions

Poisson, Gamma, Normal and Inverse Gaussian.
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Table 4.2: Estimated fixed effects and respective standard errors (Poisson model
with log link)

se(γ̂)
γ γ̂ (i) (ii) (iii) (iv) (v) (vi) γ̂∗

β0 1 0.98608 0.17855 — 0.17658 0.17149 0.17658 0.18070 0.98629
β1 -1 -1.00175 0.24900 0.23640 0.24903 0.24019 0.24903 0.25527 -1.00199
β22 1 1.00395 0.16835 0.16769 0.16607 0.16157 0.16607 0.16924 1.00445
β23 -1 -1.01731 0.27644 0.23448 0.27395 0.27098 0.27396 0.27595 -1.01726
σ 0.125 0.12582 0.07255 — 0.07192 0.06912 0.07192 — 0.08803

Standard errors for γ̂ obtained via
(i) Monte Carlo;
(ii) disparity rule;
(iii) GLM fit in last EM iteration (summary.glmmGQ output);
(iv) Fisher information matrix with analytic variance;
(v) Fisher information matrix using approximation (4.2.5); and
(vi) Laplace approximation (glmer output).
∗ shows the estimates for γ obtained via glmer.

For the standard errors of the regression parameters, we see from columns (iv)

and (v) of all four tables that the values obtained using our proposed methods are

slightly below those obtained by Monte Carlo resampling (i). The standard errors

(ii) using the disparity rule offer numbers close to (i) in the Poisson, Gamma and

Normal examples. However, (ii) shows rather small standard error estimates for

the Inverse Gaussian example. The standard errors (iii) taken from the generalised

linear model fit of the last EM iteration are quite accurate for the Poisson model,

but are underestimating the true standard error for the Gamma, Normal and Inverse

Gaussian models. We did not observe much difference between the approaches (iv)

and (v) using the Fisher information, though the standard errors using (v) were

slightly more accurate in general, especially for the Inverse Gauss scenario where a

Taylor expansion was used for the analytic formula (iv). The standard errors using

glmer were usually higher than than those of (i), (iv) and (v), except for the inverse

Gaussian model, and were reasonably consistent with overall results. However, it

is observed that glmer struggles to estimate the σ parameter correctly, sometimes

underestimating (Poisson model) but mostly overestimating, and does not provide a

value for the standard error of σ̂ at all. We further note that, for the Gamma model,

the average of glmer estimates for β0 is less than half of the true value, which might

indicate an identifiability issue.

For the study of coverage probabilities, we provide results estimated for the Poisson

and Gamma models in Tables 4.6 and 4.7, respectively. On each table, the numbers

show the results of estimated coverage probability (C.P.) computed through confi-
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Table 4.3: Estimated fixed effects and respective standard errors (Gamma model
with log link)

se(γ̂)
γ γ̂ (i) (ii) (iii) (iv) (v) (vi) γ̂∗

β0 1 0.96764 0.27011 — 0.14468 0.23456 0.24826 0.29173 0.40759
β1 -1 -0.99366 0.38621 0.33437 0.20773 0.33435 0.35646 0.41886 -0.98002
β22 1 0.99877 0.26766 0.26031 0.14359 0.23107 0.24639 0.28946 1.00816
β23 -1 -0.99716 0.26561 0.25669 0.14350 0.23092 0.24624 0.28927 -0.98762
σ 0.125 0.12427 0.11265 — 0.05980 0.09665 0.10261 — 1.25017

Standard errors for γ̂ obtained via
(i) Monte Carlo;
(ii) disparity rule;
(iii) GLM fit in last EM iteration (summary.glmmGQ output);
(iv) Fisher information matrix with analytic variance;
(v) Fisher information matrix using approximation (4.2.5); and
(vi) Laplace approximation (glmer output).
∗ shows the estimates for γ obtained via glmer.

Table 4.4: Estimated fixed effects and respective standard errors (Normal model
with identity link)

se(γ̂)
γ γ̂ (i) (ii) (iii) (iv) (v) (vi) γ̂∗

β0 1 0.99425 0.27235 — 0.15096 0.25531 0.25903 0.26715 0.99440
β1 -1 -0.99892 0.38068 0.32482 0.21190 0.35837 0.36360 0.37497 -0.99938
β22 1 1.00644 0.26113 0.24809 0.14772 0.24983 0.25348 0.26142 1.00670
β23 -1 -0.99233 0.26064 0.24702 0.14786 0.25007 0.25372 0.26171 -0.99250
σ 0.125 0.12676 0.11043 — 0.06150 0.10400 0.10553 — 0.79139

Standard errors for γ̂ obtained via
(i) Monte Carlo;
(ii) disparity rule;
(iii) GLM fit in last EM iteration (summary.glmmGQ output);
(iv) Fisher information matrix with analytic variance;
(v) Fisher information matrix using approximation (4.2.5); and
(vi) Laplace approximation (lmer output).
∗ shows the estimates for γ obtained via lmer.

dence intervals which use the standard error estimates (i), (ii), (iii), (iv), (v) and

(vi) already discussed. Our intention here is to show two rather different scenarios,

where the first (Poisson model) exemplifies well behaved numbers of C.P. and, in

the second (Gamma model), an extreme case where we are able to note an evident

contrast between the methods on the C.P.s.

Assuming that an specific method to compute the standard errors is reasonably good

to compute the confidence intervals, we overall expect values close to the usual true

confidence levels (C.L.) of 90%, 95% and 99% on average. Thus, we observe that

for the Poisson model on Table 4.6, all five methods are acceptable according to our

criteria, except for the disparity rule in (ii). However, for the Gamma model on

Table 4.7, we note that the Monte-Carlo values in (i) are rather close to the true

confidence levels, followed by the estimates via Fisher information matrix in (v) and

(iv). The values computed using the disparity rule in (ii), the last EM iteration in
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Table 4.5: Estimated fixed effects and respective standard errors (Inv. Gaussian
model with inverse link)

se(γ̂)
γ γ̂ (i) (ii) (iii) (iv) (v) (vi) γ̂∗

β0 1.5 1.50068 0.03923 — 0.02197 0.02801 0.03771 0.02686 1.54060
β1 -0.125 -0.12495 0.05492 0.01756 0.03127 0.03961 0.05366 0.03140 -0.12421
β22 0.125 0.12508 0.03986 0.01699 0.02243 0.02879 0.03849 0.03743 0.12406
β23 -0.125 -0.12523 0.03848 0.01702 0.02153 0.02702 0.03694 0.04122 -0.12429
σ 0.125 0.12490 0.01615 — 0.00910 0.01166 0.01562 — 0.19321

Standard errors for γ̂ obtained via
(i) Monte Carlo;
(ii) disparity rule;
(iii) GLM fit in last EM iteration (summary.glmmGQ output);
(iv) Fisher information matrix with Taylor expansion of the analytic variance;
(v) Fisher information matrix using approximation (4.2.5); and
(vi) Laplace approximation (glmer output).
∗ shows the estimates for γ obtained via glmer.

Table 4.6: Estimated coverage probabilities (Poisson model with log link)
C.P. (%)

C.L. (%) β0 = 1 β1 = −1 β22 = 1 β23 = −1 σ = 0.125
(i) 90.00 89.96 90.26 90.19 90.30 89.94

95.00 94.86 94.94 94.97 94.89 94.93
99.00 98.90 98.97 98.86 98.69 98.94

(ii) 90.00 — 87.30 89.72 83.85 —
95.00 — 92.67 94.56 90.26 —
99.00 — 97.11 98.48 96.06 —

(iii) 90.00 89.86 90.46 89.96 90.87 89.80
95.00 94.91 95.19 94.88 95.71 95.05
99.00 99.05 99.11 98.90 99.17 99.08

(iv) 90.00 88.87 89.12 88.96 90.48 87.71
95.00 94.07 94.31 94.23 95.44 93.21
99.00 98.80 98.77 98.66 99.09 98.26

(v) 90.00 89.86 90.46 89.96 90.87 89.80
95.00 94.91 95.19 94.88 95.71 95.05
99.00 99.05 99.11 98.90 99.17 99.08

(vi) 90.00 89.80 90.46 90.03 90.86 —
95.00 94.93 94.92 94.85 95.69 —
99.00 99.00 99.08 98.83 99.18 —

Estimated coverage probabilities of the CI for γ̂ computed using the standard
errors obtained via

(i) Monte Carlo;
(ii) disparity rule;
(iii) GLM fit in last EM iteration (summary.glmmGQ output);
(iv) Fisher information matrix with analytic variance;
(v) Fisher information matrix using approximation (4.2.5); and
(vi) glmer output.

(iii) and, especially, from glmer output in (vi) are overall smaller than the confidence

levels.
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Table 4.7: Estimated coverage probabilities (Gamma model with log link)
C.P. (%)

C.L. (%) β0 = 1 β1 = −1 β22 = 1 β23 = −1 σ = 0.125
(i) 90.00 90.20 90.10 89.88 89.88 90.05

95.00 94.88 94.74 94.96 94.89 94.73
99.00 98.60 98.99 99.07 98.95 98.73

(ii) 90.00 — 80.33 86.35 86.58 —
95.00 — 85.53 91.62 91.45 —
99.00 — 91.05 96.36 96.08 —

(iii) 90.00 62.39 62.56 62.43 62.46 61.78
95.00 70.70 70.94 70.59 71.07 70.77
99.00 83.03 83.34 82.49 83.12 83.02

(iv) 90.00 84.06 84.13 83.66 84.13 83.40
95.00 90.41 90.48 90.22 90.29 89.32
99.00 96.52 96.80 96.89 96.72 95.15

(v) 90.00 86.63 87.04 86.38 86.94 86.74
95.00 92.42 92.54 92.33 92.54 92.31
99.00 97.65 97.92 97.93 98.03 97.76

(vi) 90.00 39.44 79.00 78.44 79.17 —
95.00 50.37 83.99 83.35 83.90 —
99.00 68.89 87.75 87.80 88.04 —

Coverage probabilities of the CI for γ̂ computed using the standard errors
obtained via

(i) Monte Carlo;
(ii) disparity rule;
(iii) GLM fit in last EM iteration (summary.glmmGQ output);
(iv) Fisher information matrix with Taylor expansion of the analytic variance;;
(v) Fisher information matrix using approximation (4.2.5); and
(vi) glmer output.

4.3.2 Real data example

As a real data example, we take a subsample of the data from a 5 × 2 factorial

experiment given by Ostle & Mensing (1963). This subsample is provided in the R

library mdscore (da Silva-Júnior et al., 2014), using the syntax data(strength).

It is of interest to investigate how the impact strength of an insulating material

is affected by the lot (I, II, III, IV, V) of the material and the type of specimen

cut (lengthwise and crosswise). Previous analysis of the original dataset is given in

Shuster & Miura (1972) and for a subsample in da Silva-Júnior et al. (2014). In

our analysis, we assume that the impact strength measurements of a given replicate

corresponding to the i-th cut and j–th lot are independently distributed as inverse

Gaussian distributions with means µij and a fixed dispersion parameter. We jus-

May 30, 2018



4.3. Examples 45

tify this choice mainly because the variable is strictly positive. Suppose the linear

predictor in the inverse link scale corresponds to the two–way interaction model

µ−1
ij = τ0 + τi + βj + (τβ)ij + σz, i = 1, 2, j = 1, 2, ..., 5, (4.3.7)

where τ1 = 0, β1 = 0, (τβ)11 = · · · = (τβ)15 = (τβ)21 = 0, and z, is a random effect

that has Gaussian distribution.

Again, the estimate γ̂ was obtained using alldist, and columns (ii) to (v) of Table

4.8 report the standard errors of γ̂ obtained using the different techniques. Addi-

tionally, column (i) reports Monte-Carlo standard errors for γ̂ by generating 10000

new samples of size 30 responses based on (4.3.7), taking γ̂ as “true” parameter

values, and refitting the model for each one. It is further noted that, for this data

set and model specification, the glmer attempt to fitting the model (4.3.7) failed to

converge in our trials even when we relax the tolerances and the algorithm stopping

criteria.

Table 4.8: Estimated fixed effects and respective standard errors (strength data da
Silva-Júnior et al. (2014))

se(γ̂)
γ̂ (i) (ii) (iii) (iv) (v)

τ0 1.01704 0.07042 — 0.03197 0.06869 0.06832
τ2 0.32828 0.10564 0.11340 0.04873 0.10462 0.10413
β2 0.03201 0.10043 0.09876 0.04557 0.09780 0.09728
β3 0.35915 0.10711 0.11543 0.04904 0.10531 0.10482
β4 0.14128 0.10273 0.10293 0.04676 0.10037 0.09986
β5 0.82348 0.11757 0.15159 0.05359 0.11513 0.11468

(τβ)22 -0.40636 0.14657 0.15279 0.06637 0.14247 0.14175
(τβ)23 -0.10864 0.15825 0.15968 0.07322 0.15726 0.15661
(τβ)24 -0.35020 0.14937 0.15481 0.06841 0.14689 0.14619
(τβ)25 -0.19501 0.17043 0.17270 0.07879 0.16928 0.16867
σ 0.00887 0.02119 — 0.01131 0.37348 0.37174

Standard errors for γ̂ obtained via
(i) Monte Carlo;
(ii) disparity rule;
(iii) GLM fit in last EM iteration (summary.glmmGQ output);
(iv) Fisher information matrix with Taylor expansion of the analytic variance;

and
(v) Fisher information matrix using approximation (4.2.5).

The numbers in (iv) and (v), for the fixed effects, are very slightly smaller than their
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counterparts in (i) and (ii). However, and contrary to our simulations presented on

Subsection 4.3.1, the numbers in (iv) and (v) for σ̂ are rather large. This might be

due to misspecification of the random effects distribution. Finally, the numbers in

(iii) are considerably smaller than their counterparts in (i), (ii), (iv) and (v).
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Chapter 5

Simulated data experiments and

real data examples

We present here a set of simulation experiments to evaluate the performance of

the gradient test for nested GLMwREs and four illustrative applications to real

data sets. The properties investigated are the type I error, estimated by the test

rejection rates — the proportion of simulated replicas for which the null hypothesis

is rejected considering that this hypothesis is true — and the power of the test,

which is estimated by the test rejection rates under a Pitman sequence of local

alternative hypotheses. The computation has been performed using R code provided

in Appendix A.

The simulation experiment shown in Section 5.1 aims to study the properties of

the gradient test in generalised linear models with random effects, here called GQ,

NPML and VC models for Gaussian quadrature, Nonparametric maximum likelihood

and variance components, respectively. The first two models are commonly applied

for small and moderate overdispersion which means that the fixed effects plays a

major role for explaining the model response variability. The latter model is a gen-

eralisation of the NPML model and it is often used for grouped data, also admitting

random slopes in its formulae. For stability purposes, we discard the large overdis-

persion scenario as it might lead to identifiability issues. Here we consider large

overdispersion when half or more of the true variability of the model is explained by

the random effect. We assume the normal distribution with fixed variance for GQ
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models and a discrete distribution for the random effects simulated for both NPML

and VC models. We also perform the likelihood ratio, the Wald and the Rao tests

for the same simulated samples as comparative measure.

Finally we present four real data examples with applications for the gradient test in

Section 5.2.

5.1 Simulated data experiments

5.1.1 General design

We consider the following GLMwREs for the simulation study

ηGQ
i = β0 + β1x1i + β2i + β3x3i + β4x4i + σzi, for i = 1, . . . , n (5.1.1)

ηNPML
i = β1x1i + β2i + β3x3i + β4x4i + zi, for i = 1, . . . , n (5.1.2)

ηVC
ij = (β1 + uij)x1ij + β2ij + β3x3ij + β4x4ij + zij, for i = 1, . . . , nj, j = 1, . . . , 10

(5.1.3)

where ηGQ
i , ηNPML

i and ηVC
i are the linear predictors for the GQ, NPML and VC

fittings, respectively. In (5.1.1) and (5.1.2), x1i, x3i and x4i are samples of size n

from U(0, 1), F(2, 5) and t(3), respectively. The same applies to (5.1.3), however

each x·ij has size nj such that
∑10

j=1 nj = n. The random effect zi in (5.1.1) is

a sample from a standard normal distribution and σ = 8−1. Analogously, zi in

(5.1.2) is sampled from a discrete distribution which takes K values from N(1, 8−2)

(or N(2, 8−2) for inverse Gaussian) and probabilities from U(0, 1). In (5.1.3), uij

is sampled from a discrete distribution with K values taken from N(0, 8−2) and

probabilities from U(0, 1); zij is sampled from a discrete distribution with K values

from N(1, 8−1) (or N(2, 8−2) for inverse Gaussian) and probabilities from U(0, 1).

For the GQ models, the parameter values are β0 = 1, β1 = −1 and β2i = (i

mod 3) − 1 except for the inverse Gaussian response model where β0 = 2, β1 = 1

and β2i = (i mod 3). For the NPML models, β1 = −1 and β2i = (i mod 3) − 1

except for the inverse Gaussian response model where β1 = 1 and β2i = (i mod 3).

For VC models β1 = −1 and β2i = (i mod 3) − 1 except for the inverse Gaussian
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response model where β1 = 1 and β2i = (i mod 3). This means that ηGQ
i , ηNPML

i

and ηVC
ij are equivalent on average within the same response distribution.

Consider the scenario that βGQ = (β0, . . . , β4)>, βNPML = (β1, . . . , β4)> and βVC =

(β1, . . . , β4)> the full vectors of fixed effects parameters for GQ, NPML and VC

models, respectively. Therefore, (5.1.1), (5.1.2) and (5.1.3) can be also expressed as

ηGQ
i = x>i β

GQ + σzi, for i = 1, . . . , n (5.1.4)

ηNPML
i = x >i β

NPML + zi, for i = 1, . . . , n (5.1.5)

ηVC
ij = x >ij β

VC + zi, for i = 1, . . . , nj, j = 1, . . . , 10. (5.1.6)

where xi and xi are the vectors of covariates with and without intercept, respectively.

Our aim here is to test the composite hypotheses

 H0 : β1 = 0

H1 : β1 6= 0
(5.1.7)

where β1 = (β3, β4)>, hence β• = (β>1 ,β•>2 )> and βGQ
2 = (β0, β1, β2)> and βNPML

2 =

(β1, β2)> for GQ and NPML models, respectively. This also leads to xi = (x>i1,x•>i2 )>

where xi1 = (xi3, xi4)> and x•>i2 can either be xi2 = (1, xi1, xi2)> or xi2 = (xi1, xi2)>.

On top of that, β̂ = (β̂1, β̂2)> and β̃ = (0, β̃•>2 )> are the unrestricted and restricted

to H0 maximum likelihood estimators for β, respectively. From now on, every nota-

tion which shows the accents ∧ or ∼ will refer to the correspondingly unrestricted

and restricted estimators.

For broad comprehension of the problem, we take samples of n = 50, 100, 200 and

400 observations, which covers more or less the “small” to the “large” spectrum of

sample sizes. We set K = 3, 5 and 7 for GQ and NPML and K = 3 and 5 for VC

models. The number of replicas for each set-up of the model is 10000. The procedure

automatically discarded any replica where any of the test statistics was not strictly

positive and the experiment continued until 10000 valid replications were obtained.
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5.1.2 Size and power properties

The size of a test can be defined as the probability of rejecting the null hypothesis

when this hypothesis is true. In other words, it is the probability of making a Type I

error. Therefore, for this simulation experiment, the data is generated under the null

hypothesis and we investigate the empirical rejection rates of each test compared to

the common nominal levels of 10%, 5% and 1%. The rejection rates are reported.

The power of a test is the probability of rejecting the null hypothesis when this

hypothesis is false. For the purpose of simulation, the data is generated under local

alternatives 
H0 : β1 = 0

H1 : β1 = δ√
n

s̃e(β̃1)
(5.1.8)

where δ take values in a numeric sequence of 51 equidistant numbers in the interval

[−4, 4] and s̃e(β̃1) is estimated in a secondary Monte Carlo simulation with 10000

replicates for each scenario. Tables 5.1, 5.2, 5.3, 5.4 and 5.5 show the Monte Carlo

estimated standard errors for β̃1 = (β̃3, β̃4)> and for binomial, Poisson, gamma,

normal and inverse Gaussian, respectively. The alternative hypothesis H1 in (5.1.8)

is called Pitman sequence of local alternative hypotheses and converges to the null

hypothesis at rate n−1/2 (Peers, 1971; Hayakawa, 1975).

Table 5.1: Monte Carlo standard errors for β̃3 and β̃4 for binomial models

GQ model NPML model VC model

n K s̃e(β̃3) s̃e(β̃4) s̃e(β̃3) s̃e(β̃4) s̃e(β̃3) s̃e(β̃4)
50 3 1.46415 1.82727 2.19798 2.54094 2.91587 3.36982
50 5 1.44961 1.87723 2.85978 3.16544 2.83188 3.02434
50 7 1.47694 1.79628 2.98358 3.26368

100 3 1.13778 1.55799 1.50800 2.04084 2.56241 2.92467
100 5 1.04691 1.59621 1.52408 2.13323 2.05865 2.71025
100 7 1.11610 1.57240 1.43595 2.11622
200 3 0.96699 1.44651 1.18572 1.74985 1.99913 2.43245
200 5 0.94696 1.44095 1.13571 1.78531 2.08107 2.51722
200 7 0.92400 1.42501 1.19805 1.78480
400 3 0.85493 1.34797 1.00412 1.65738 2.10897 2.57456
400 5 0.80302 1.36962 1.03307 1.65864 1.87447 2.62991
400 7 0.82325 1.34317 0.97941 1.60115
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Table 5.2: Monte Carlo standard errors for β̃3 and β̃4 for Poisson models

GQ model NPML model VC model

n K s̃e(β̃3) s̃e(β̃4) s̃e(β̃3) s̃e(β̃4) s̃e(β̃3) s̃e(β̃4)
50 3 0.36106 0.44640 0.33815 0.45852 0.33815 0.45852
50 5 0.33471 0.44559 0.32971 0.48655 0.32971 0.48655
50 7 0.37912 0.43213 0.32620 0.44730

100 3 0.29309 0.38531 0.28260 0.43399 0.28260 0.43399
100 5 0.29597 0.37754 0.27553 0.42399 0.27553 0.42399
100 7 0.27925 0.37614 0.27318 0.42965
200 3 0.24227 0.35176 0.24850 0.41673 0.24850 0.41673
200 5 0.25221 0.34898 0.25666 0.40721 0.25666 0.40721
200 7 0.23924 0.34078 0.24540 0.41933
400 3 0.20216 0.32865 0.23649 0.39591 0.23649 0.39591
400 5 0.21631 0.33249 0.24052 0.38981 0.24052 0.38981
400 7 0.20962 0.32838 0.24538 0.38708

5.1.3 Results

Tables 5.7, 5.8, 5.9, 5.10 and 5.11 show the null rejection rates of each of the four

tests for Poisson, binomial, gamma, normal and inverse Gaussian responses. Table

5.6 shows the Figure enumerations for the tests power plots for each scenario of our

simulation.

First, the overall perception is that the gradient test null rejection rates are closer

to the nominal levels, except for a few cases. As expected for an asymptotic test

applied to a finite sample, the numbers for the smallest sample size n = 50 are far

from the true nominal levels. However these improve gradually as n gets to 400.

Nevertheless, the other three tests perform even worse for n = 50. Still, the rejection

rates of all tests are better for GQ and VC models than for NPML models, perhaps

because in the latter, the number of nuisance parameters increases as K increases.

This phenomena can be observed as K increases, the changes in the rejection rates

in the GQ and VC models are mostly due to Monte Carlo variability in contrast to

what happens in the NPML model.

The rejection rates for the Poisson response can be found in Table 5.7. We see that

the numbers for the Rao and Wald test are far from the nominal levels but with

a different behaviour according to the type of the model. For the GQ model, the
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Table 5.3: Monte Carlo standard errors for β̃3 and β̃4 for gamma models

GQ model NPML model VC model

n K s̃e(β̃3) s̃e(β̃4) s̃e(β̃3) s̃e(β̃4) s̃e(β̃3) s̃e(β̃4)
50 3 0.48525 0.72672 0.57586 0.90532 0.93090 1.23926
50 5 0.49069 0.71173 0.61317 0.87460 0.88350 1.10735
50 7 0.51879 0.71193 0.56898 0.89708

100 3 0.42852 0.63736 0.53638 0.77311 0.82672 1.04117
100 5 0.40386 0.64392 0.50369 0.87129 0.87403 1.12312
100 7 0.37654 0.66677 0.54549 0.85204
200 3 0.36303 0.60578 0.41191 0.67903 1.00759 1.07008
200 5 0.38373 0.64668 0.43820 0.74200 0.80962 1.09490
200 7 0.37316 0.60675 0.44970 0.78838
400 3 0.35983 0.60604 0.37529 0.62296 0.91902 1.03648
400 5 0.36530 0.60388 0.37057 0.66236 0.90707 1.19654
400 7 0.35117 0.59884 0.39887 0.69159

Rao test is conservative, rejecting less than the nominal levels and the Wald test

has opposite behaviour, i.e., being liberal. Nevertheless, for the NPML model, the

two tests change roles where the Rao test shows liberal numbers and the Wald test

presents conservative numbers. The gradient test and the likelihood ratio test show

similar rejection rates. But, the gradient test is less sensible to the variation of K

on NPML and VC models where it has rejection rates closer to the nominal levels.

The binomial response model rejection rates are presented in Table 5.8. The GQ

model results show that the Wald test is conservative where the other are liberal.

In this context, the Rao test numbers are less distant to the nominal levels. For

the NPML model, the numbers for all four tests are far from the nominal levels and

the likelihood ratio test showed slightly better performance. However this minor

advantage does not imply that the likelihood ratio test is reliable enough and we

cannot recommend any of the four tests for this scenario. For VC models, the

numbers show that the likelihood ratio test is preferable for smallest sample sizes

and the gradient test for larger ones. The gradient test also showed numbers less

sensitive to the increase in K value.

On the numbers for the gamma response model shown in Table 5.9, we notice that

the Rao test for GQ models are closer to the nominal levels, followed by those from

the likelihood ratio, gradient and Wald tests, in this order. In contrast, the numbers
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Table 5.4: Monte Carlo standard errors for β̃3 and β̃4 for normal models

GQ model NPML model VC model

n K s̃e(β̃3) s̃e(β̃4) s̃e(β̃3) s̃e(β̃4) s̃e(β̃3) s̃e(β̃4)
50 3 0.40644 0.68685 0.51928 0.85372 1.00440 1.15088
50 5 0.42502 0.69523 0.48911 0.84988 0.89231 1.18465
50 7 0.41263 0.66861 0.50860 0.81681

100 3 0.38163 0.61902 0.48246 0.72444 1.06387 1.19559
100 5 0.40598 0.63617 0.46686 0.81638 1.04281 1.05629
100 7 0.39859 0.61461 0.46244 0.81717
200 3 0.37632 0.59516 0.38870 0.65897 0.85826 1.12505
200 5 0.37480 0.60374 0.42959 0.77349 0.92799 1.18951
200 7 0.38679 0.58329 0.42460 0.81239
400 3 0.35200 0.58634 0.34679 0.60326 0.82824 1.02110
400 5 0.34661 0.59011 0.37570 0.66561 1.06520 1.23060
400 7 0.33279 0.58839 0.40109 0.75397

for NPML model show that the Rao test is quite conservative and the Wald test

is quite liberal. In the same case, the likelihood ratio test is less liberal than the

Wald test but still far from the nominal levels. Here, the gradient test is also liberal

however clearly closer to the nominal levels. On VC models, the two simulated

tests have numbers much closer to the nominal levels with a slight advantage to the

likelihood ratio test.

The rejection rates for normal response models are presented in Table 5.10. First,

the Rao and gradient test numbers are exactly the same for the GQ model. We

believe that this happens because, for this particular case, the Rao and gradient

statistics are essentially the same in formulae. The numbers of the likelihood ratio

and Wald test are more conservative than the Rao/gradient test in this case. For the

NPML model, we noticed that the Wald and Rao test are still highly sensitive to the

increase value of K. The likelihood ratio and the gradient test has numbers closer

to but the latter is less sensitive to the increase in K and shows faster convergence

to the nominal levels. The same behaviour is observed on the VC model for this

case.

Lastly, the results in Table 5.11 refers to the models with inverse Gaussian response.

For the GQ model, all tests are liberal but the gradient test shows numbers approach-

ing to the nominal levels. In this sense, the Rao test is the second best, followed
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Table 5.5: Monte Carlo standard errors for β̃3 and β̃4 for inverse Gaussian models

GQ model NPML model VC model

n K s̃e(β̃3) s̃e(β̃4) s̃e(β̃3) s̃e(β̃4) s̃e(β̃3) s̃e(β̃4)
50 3 0.24190 0.39387 0.33015 0.50010 0.72335 0.64688
50 5 0.27986 0.39884 0.32808 0.51103 0.83312 0.62830
50 7 0.26162 0.39837 0.31281 0.49875

100 3 0.24343 0.37792 0.27228 0.43595 0.77675 0.63333
100 5 0.24587 0.36857 0.28961 0.47781 0.77969 0.60643
100 7 0.25272 0.37537 0.30900 0.50034
200 3 0.21888 0.36603 0.21700 0.37698 0.72816 0.66840
200 5 0.21944 0.36389 0.26255 0.44618 0.83758 0.65518
200 7 0.22421 0.34814 0.27679 0.46221
400 3 0.21515 0.35625 0.21203 0.36429 0.71384 0.65915
400 5 0.20396 0.35608 0.22003 0.36857 0.84287 0.63724
400 7 0.20580 0.35013 0.22017 0.41587

Table 5.6: Table of Figure enumerations for non-null rejection curves for each sim-
ulated scenario

Response K GQ model NPML model VC model

3 5.1 5.4 5.7
Poisson 5 5.2 5.5 5.8

7 5.3 5.6
3 5.9 5.12 5.15

binomial 5 5.10 5.13 5.16
7 5.11 5.14
3 5.17 5.20 5.23

gamma 5 5.18 5.21 5.24
7 5.19 5.22
3 5.25 5.28 5.31

normal 5 5.26 5.29 5.32
7 5.27 5.30
3 5.33 5.36 5.39

inverse Gaussian 5 5.34 5.37 5.40
7 5.35 5.38

by the likelihood ratio and Wald tests. At a first look, one could think that the

Rao test has rejection rates closer to the nominal levels. However, those numbers

are not consistent for all K and n values. In fact, the Rao test numbers deviate

from the nominal levels when the sample size n increases. Alternatively, the other

three tests does not suffer from this behaviour and the gradient test numbers show
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faster convergence to the nominal levels. Moreover, the gradient test numbers are

less sensible to the variation in K.

We have some remarks regarding to the non-null rejection rates represented by the

power plots referenced in Figures 5.1 to 5.40. First, for GQ models we notice that

there is no visible difference of changing K within the response distribution. This

can be seen in Figures 5.1, 5.2 and 5.3 which present the power curves for Poisson

GQ models with K = 3, 5 and 7 respectively.

Second, the power curves show some convergence as long as the sample size n in-

creases, for instance in Figures 5.17, 5.18 and 5.19 which show the power curves for

gamma GQ models with K = 3, 5 and 7, respectively. Our criteria of convergence

relies on how close is the bottom of the curve (the region around δ = 0) to the true

nominal level. In this sense, we observe that the convergence of the power for the

Wald and Rao tests is slightly slower, for instance in Figure 5.11.

On the other hand, the likelihood ratio and gradient test show quite similar power

curves, sometimes one cannot distinguish the difference between the two, for instance

in Figures 5.25, 5.26 and 5.27 which show the power curves for normal GQ models

with K = 3, 5 and 7, respectively. This behaviour is also shown in VC model results

as we can see in Figures 5.31 and 5.32. On the other hand, the Wald and Rao tests

show curves rather different as we can see, for instance, in the Figures 5.2, 5.17 and

5.27. When we read the simulation results of type I error and power together for

GQ models we can conclude that the gradient test has rejection numbers close to

the nominal levels without loosing much power in comparison to the other tests.

One interesting aspect of the results for NPML model is that the small difference

seen in the GQ model between the four tests is amplified, e.g. in Figures 5.20,

5.21 and 5.22. We also see a much slower convergence on the Wald and Rao test

curves when the sample size n increases, see for instance Figures 5.28, 5.29 and 5.30.

On the other hand, the likelihood ratio and gradient test show some improvement

when the sample size n increases, for instance in Figures 5.36, 5.37 and 5.38. We

also notice that the Wald and Rao tests are quite sensitive to the increase in K

showing a much slower convergence for larger K, for example in Figures 5.12, 5.13

and 5.14. In contrast, the likelihood ratio and the gradient test are less sensitive to
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the variation in K. The gradient test is sometimes slightly less powerful then the

likelihood ratio test, such as in Figures 5.12 and 5.13. However, for most of the cases

the gradient test is most powerful then the likelihood ratio test, e.g. in Figures 5.36,

5.29 and 5.19.

Finally, we notice some small difference between the likelihood ratio and the gradient

test on VC models for the smallest sample size n = 50, for example in Figures 5.23,

5.24, 5.31 and 5.32. Apart from the smallest sample size scenario, the difference of

the two test curves is almost negligible. The likelihood ratio and the gradient test

power curves are not much affected by the variation in K, as we can see in Figures

5.39 and 5.40. Therefore the gradient test is at least equivalent to the likelihood

ratio test in power for VC models.
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Table 5.7: Null rejection rates of the four tests for Poisson models

GQ model NPML model VC model

n K ξLR ξW ξR ξT ξLR ξW ξR ξT ξLR ξT

50 3 10.11 11.92 7.90 10.48 9.36 4.89 16.50 8.91 11.69 12.15
50 3 5.01 6.70 3.86 5.46 4.50 2.24 9.64 4.04 5.78 6.21
50 3 1.13 1.74 0.83 1.40 0.73 0.42 2.82 0.60 1.44 1.63

100 3 10.32 12.15 8.56 10.50 9.98 5.31 16.78 9.57 10.53 10.73
100 3 5.20 6.51 4.18 5.43 4.97 2.49 10.06 4.75 5.39 5.53
100 3 1.15 1.65 0.78 1.34 0.88 0.46 3.28 0.92 1.20 1.29
200 3 10.45 11.77 8.53 10.72 10.06 5.59 17.77 9.88 10.71 10.85
200 3 4.98 6.20 4.17 5.22 5.05 2.65 10.80 4.88 5.24 5.37
200 3 0.95 1.47 0.74 1.12 0.93 0.52 3.25 1.01 1.32 1.34
400 3 9.68 11.15 8.25 9.82 9.50 5.06 16.52 9.68 10.29 10.27
400 3 4.86 5.93 4.23 4.97 4.64 2.13 9.89 4.64 5.28 5.26
400 3 0.97 1.41 0.77 1.04 0.87 0.46 2.83 0.93 1.06 1.03
50 5 10.59 12.61 8.28 10.98 9.20 2.68 25.46 8.47 11.25 11.65
50 5 5.07 7.05 3.91 5.52 4.66 1.13 17.08 4.12 5.73 6.18
50 5 1.00 1.98 0.86 1.20 0.77 0.16 6.79 0.71 1.40 1.57

100 5 9.98 11.63 8.24 10.25 8.98 2.51 25.16 8.61 10.82 11.01
100 5 4.98 6.47 3.99 5.38 4.37 1.12 16.74 4.19 5.53 5.58
100 5 0.95 1.49 0.78 1.09 0.83 0.20 6.36 0.89 1.14 1.25
200 5 9.57 11.00 8.19 9.94 9.05 2.21 25.90 8.96 11.02 11.06
200 5 4.89 5.86 4.02 5.20 4.32 0.99 17.24 4.23 5.55 5.64
200 5 1.11 1.55 0.88 1.21 0.77 0.23 6.86 0.70 1.10 1.14
400 5 9.92 11.42 8.36 10.09 9.61 2.39 26.39 9.56 10.88 10.76
400 5 4.97 6.15 4.00 5.08 4.74 1.05 17.68 4.61 5.79 5.75
400 5 0.85 1.51 0.72 1.01 0.91 0.18 7.18 0.92 1.13 1.12
50 7 10.19 12.32 8.04 10.61 9.60 1.28 34.85 8.95
50 7 5.14 6.81 4.05 5.52 4.74 0.43 25.11 4.25
50 7 1.27 1.89 0.79 1.55 0.69 0.02 11.86 0.55

100 7 9.96 11.79 8.32 10.16 8.80 1.39 33.75 8.42
100 7 5.00 6.44 3.93 5.12 4.33 0.60 24.08 4.04
100 7 1.01 1.80 0.84 1.09 0.79 0.08 11.05 0.73
200 7 9.67 11.25 8.52 9.93 9.21 1.03 34.57 9.10
200 7 4.93 6.05 3.96 5.21 4.38 0.41 25.02 4.10
200 7 0.96 1.46 0.84 1.00 0.69 0.03 12.33 0.75
400 7 10.15 11.77 8.66 10.23 9.37 1.21 34.08 9.32
400 7 5.19 6.24 4.44 5.35 4.71 0.54 25.17 4.69
400 7 0.93 1.54 0.76 1.07 1.07 0.16 12.24 1.00
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Table 5.8: Null rejection rates of the four tests for binomial models

GQ model NPML model VC model

n K ξLR ξW ξR ξT ξLR ξW ξR ξT ξLR ξT

50 3 16.52 8.91 11.03 21.44 40.86 43.83 29.02 39.03 19.36 23.38
50 3 9.07 3.66 5.23 14.32 35.40 41.91 20.43 35.37 12.32 16.69
50 3 2.50 0.49 1.08 6.12 27.80 39.44 8.90 30.97 4.78 9.19

100 3 13.90 8.87 10.91 16.88 30.11 29.68 28.97 30.31 15.13 15.89
100 3 7.65 3.98 5.40 10.40 23.81 27.38 19.72 25.59 8.42 9.38
100 3 2.00 0.38 1.07 3.70 15.31 24.14 8.15 19.84 2.35 3.21
200 3 11.33 8.34 9.67 13.25 21.59 20.11 28.59 23.10 13.09 13.07
200 3 5.77 3.59 4.41 7.29 14.81 17.28 19.65 17.54 7.27 7.38
200 3 1.08 0.29 0.73 2.02 6.88 13.37 8.59 10.91 1.73 1.91
400 3 10.97 8.51 9.71 12.42 16.82 12.63 27.73 17.37 11.76 11.46
400 3 5.55 4.04 4.76 6.86 10.33 10.09 19.21 11.44 6.09 5.70
400 3 1.27 0.62 0.93 2.03 3.41 6.35 8.31 5.25 1.34 1.25
50 5 15.66 8.60 10.78 20.06 46.74 49.84 42.29 43.25 20.47 24.45
50 5 8.84 3.40 5.26 13.30 41.10 48.57 33.72 39.97 12.78 17.47
50 5 2.39 0.60 0.95 5.39 33.35 46.88 19.83 36.37 4.39 8.84

100 5 12.57 7.83 9.69 15.43 33.58 32.39 41.09 33.44 15.68 16.66
100 5 6.54 3.34 4.50 9.08 27.64 30.48 32.36 29.05 9.33 10.31
100 5 1.47 0.33 0.78 2.81 19.58 27.78 18.26 23.64 2.63 3.66
200 5 11.98 8.40 9.85 14.04 23.99 20.07 41.34 24.45 12.36 12.45
200 5 6.23 3.96 5.07 8.05 17.54 17.63 32.78 19.12 6.70 6.87
200 5 1.46 0.52 0.94 2.42 9.40 14.54 18.46 12.77 1.68 1.76
400 5 11.65 9.08 10.24 13.39 19.06 14.06 40.36 19.73 12.15 11.78
400 5 5.88 4.02 4.73 7.30 12.71 11.88 31.76 13.97 6.31 6.04
400 5 1.33 0.60 0.85 2.17 5.07 9.02 18.36 7.70 1.45 1.20
50 7 15.44 9.03 10.83 19.94 46.98 49.16 49.21 42.94
50 7 8.90 3.82 5.24 13.18 41.65 48.28 41.59 39.55
50 7 2.40 0.75 1.10 5.26 33.83 46.96 27.69 36.21

100 7 13.20 7.92 10.10 16.14 33.98 31.14 50.06 33.09
100 7 6.83 3.50 4.78 9.68 27.92 29.41 41.40 28.45
100 7 1.71 0.39 0.90 3.58 20.35 27.38 26.89 23.59
200 7 11.79 8.47 9.92 13.96 25.29 19.27 50.06 25.44
200 7 6.28 3.37 4.55 8.24 18.69 17.63 42.07 20.16
200 7 1.25 0.41 0.82 2.15 11.22 15.28 26.93 14.10
400 7 11.16 8.44 9.51 12.95 18.97 11.97 49.43 19.40
400 7 5.49 3.90 4.64 6.88 12.76 10.13 40.70 14.08
400 7 1.26 0.59 0.83 2.06 5.74 7.96 25.83 7.84
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Table 5.9: Null rejection rates of the four tests for gamma models

GQ model NPML model VC model

n K ξLR ξW ξR ξT ξLR ξW ξR ξT ξLR ξT

50 3 13.82 24.11 12.27 15.72 37.34 68.48 7.07 27.10 16.71 20.42
50 3 7.74 16.50 6.75 8.29 27.80 62.10 3.52 17.50 9.81 11.66
50 3 2.05 7.36 1.76 1.88 13.48 51.06 0.93 6.27 2.90 2.89

100 3 12.00 18.55 11.67 13.14 22.91 52.00 5.28 18.62 13.56 15.75
100 3 6.41 11.70 6.49 6.54 15.02 43.84 2.89 10.63 7.44 8.55
100 3 1.54 4.49 2.04 1.40 6.01 31.11 0.90 2.80 1.85 1.76
200 3 10.78 15.65 10.23 11.24 16.57 38.63 5.20 13.89 12.27 13.64
200 3 5.33 9.33 5.37 5.49 10.55 29.63 2.92 7.69 6.35 7.02
200 3 1.18 2.82 1.64 1.12 3.62 17.04 0.79 1.62 1.55 1.63
400 3 10.57 13.07 10.27 10.70 14.10 28.43 5.72 12.22 12.08 12.73
400 3 5.60 7.28 5.29 5.60 8.04 20.40 3.02 6.00 6.37 6.78
400 3 1.10 2.25 1.57 1.09 2.63 10.04 0.77 1.28 1.47 1.18
50 5 13.96 24.68 12.91 15.95 54.63 82.82 5.72 35.93 16.86 19.18
50 5 7.80 17.07 7.06 8.76 44.93 79.12 2.57 24.95 9.61 10.87
50 5 1.94 7.47 2.00 2.04 25.99 71.33 0.36 10.53 2.88 2.91

100 5 12.08 18.65 11.76 13.26 36.21 74.34 2.24 24.69 14.20 16.50
100 5 6.40 11.69 6.46 6.91 26.30 68.96 1.15 15.18 8.04 9.39
100 5 1.55 4.28 1.93 1.53 12.76 58.38 0.31 5.44 2.15 2.12
200 5 11.04 14.70 10.93 11.51 21.68 60.14 2.11 17.87 12.90 14.21
200 5 5.66 8.94 5.92 5.77 14.25 51.95 0.97 10.45 6.69 7.55
200 5 1.15 2.67 1.55 0.97 5.47 38.69 0.23 2.60 1.50 1.54
400 5 11.33 14.35 10.80 11.56 15.25 45.07 2.34 13.03 11.44 12.33
400 5 5.77 8.37 5.87 5.77 8.79 36.30 0.92 6.97 5.78 6.15
400 5 1.37 2.52 1.76 1.23 3.12 22.54 0.21 1.66 1.24 1.22
50 7 13.56 24.64 12.76 15.98 64.94 89.17 6.11 42.85
50 7 7.30 17.06 7.01 8.72 55.77 86.66 2.48 32.08
50 7 2.12 7.32 1.89 1.80 36.67 81.34 0.36 16.37

100 7 12.13 18.92 11.26 13.20 50.27 84.73 1.41 30.76
100 7 6.45 11.91 6.37 6.68 39.55 81.21 0.45 20.82
100 7 1.47 4.46 1.79 1.26 21.51 73.27 0.04 8.41
200 7 10.83 14.98 10.08 11.45 30.26 76.48 0.69 20.82
200 7 5.47 8.95 5.52 5.75 20.97 70.64 0.27 12.55
200 7 1.19 2.77 1.78 1.12 9.35 59.48 0.05 4.22
400 7 10.82 13.37 10.05 10.61 18.51 61.44 1.04 15.58
400 7 5.74 8.00 5.61 5.45 11.01 53.16 0.33 8.68
400 7 1.50 2.48 1.87 1.44 4.08 39.73 0.09 2.16
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Table 5.10: Null rejection rates of the four tests for normal models

GQ model NPML model VC model

n K ξLR ξW ξR ξT ξLR ξW ξR ξT ξLR ξT

50 3 13.36 14.72 11.94 11.94 45.14 75.77 3.79 25.13 16.78 15.07
50 3 7.12 8.13 6.06 6.06 34.07 70.43 1.54 15.50 9.85 8.45
50 3 1.78 2.47 1.12 1.12 16.70 60.60 0.24 4.78 2.53 1.77

100 3 11.72 12.22 11.14 11.14 24.93 60.04 2.58 16.67 13.69 13.16
100 3 6.07 6.58 5.59 5.59 15.70 52.87 1.21 9.14 7.55 6.72
100 3 1.23 1.51 1.07 1.07 5.08 40.06 0.21 2.51 1.99 1.51
200 3 11.45 11.74 11.16 11.16 14.72 41.54 2.92 13.00 11.72 11.39
200 3 5.88 6.05 5.55 5.55 8.60 33.62 1.50 7.04 6.45 6.05
200 3 1.21 1.35 1.08 1.08 2.36 20.66 0.32 1.66 1.47 1.31
400 3 10.47 10.62 10.32 10.32 12.53 30.08 4.12 11.72 10.63 10.47
400 3 5.36 5.52 5.24 5.24 6.73 21.85 1.93 6.33 5.47 5.32
400 3 1.15 1.21 1.09 1.09 1.59 11.31 0.45 1.38 1.19 1.11
50 5 14.05 15.29 12.86 12.86 64.70 89.10 5.32 41.83 16.40 14.82
50 5 7.82 9.11 6.60 6.60 55.05 86.40 1.84 30.72 9.31 7.82
50 5 1.76 2.36 1.13 1.13 35.35 80.87 0.23 15.21 2.40 1.70

100 5 11.56 12.05 11.06 11.06 52.36 85.67 0.91 29.34 13.96 13.17
100 5 6.06 6.63 5.49 5.49 40.55 82.28 0.31 19.57 7.77 7.15
100 5 1.40 1.66 1.13 1.13 21.54 75.34 0.01 7.19 2.07 1.72
200 5 10.96 11.29 10.75 10.75 32.44 79.33 0.34 19.85 12.15 11.74
200 5 5.66 5.96 5.33 5.33 22.04 74.51 0.08 11.49 6.63 6.23
200 5 1.21 1.34 1.05 1.05 8.35 64.55 0.00 3.33 1.54 1.34
400 5 9.73 9.81 9.64 9.64 20.00 68.50 0.38 15.88 11.35 11.14
400 5 5.13 5.24 5.07 5.07 12.00 61.69 0.11 8.46 5.59 5.42
400 5 1.01 1.03 0.95 0.95 3.42 48.17 0.02 2.14 1.16 1.05
50 7 13.71 14.94 12.43 12.43 70.11 92.57 6.53 47.69
50 7 7.37 8.58 6.42 6.42 61.41 90.53 2.67 37.02
50 7 1.93 2.62 1.26 1.26 43.16 86.33 0.31 21.33

100 7 12.16 12.81 11.52 11.52 63.61 91.07 1.01 37.33
100 7 6.54 7.11 5.96 5.96 53.28 89.01 0.25 26.85
100 7 1.66 1.95 1.31 1.31 33.24 84.10 0.03 12.04
200 7 10.68 10.98 10.42 10.42 50.34 89.10 0.13 27.57
200 7 5.72 6.02 5.50 5.50 38.51 86.14 0.05 17.93
200 7 1.24 1.34 1.10 1.10 19.52 80.12 0.00 6.97
400 7 10.22 10.39 10.07 10.07 32.26 84.97 0.02 19.61
400 7 5.11 5.19 5.03 5.03 21.84 81.12 0.00 11.65
400 7 1.05 1.08 1.01 1.01 8.86 73.12 0.00 3.65
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Table 5.11: Null rejection rates of the four tests for inverse Gaussian models

GQ model NPML model VC model

n K ξLR ξW ξR ξT ξLR ξW ξR ξT ξLR ξT

50 3 14.01 15.45 12.84 12.77 38.60 66.27 8.62 22.77 16.19 14.82
50 3 7.59 8.97 6.23 6.21 28.17 60.50 4.56 14.01 9.37 7.94
50 3 1.75 2.56 1.16 1.19 12.60 50.32 1.44 4.22 2.53 1.55

100 3 11.99 12.74 11.49 11.42 20.00 40.71 10.38 14.88 14.12 13.31
100 3 6.17 6.82 5.67 5.67 11.91 34.28 6.17 8.06 7.60 6.94
100 3 1.43 1.88 1.22 1.25 3.55 24.08 2.25 1.61 1.74 1.37
200 3 10.81 11.16 10.51 10.60 13.03 19.32 14.66 11.77 12.02 11.61
200 3 5.70 6.02 5.49 5.50 7.20 14.36 8.98 6.20 6.41 5.98
200 3 1.12 1.34 1.03 1.03 1.70 7.66 3.09 1.29 1.58 1.41
400 3 10.76 11.09 10.74 10.64 11.06 8.79 17.99 10.63 11.53 11.34
400 3 5.67 5.81 5.41 5.45 5.58 5.04 11.50 5.30 5.99 5.83
400 3 1.18 1.27 1.17 1.06 0.96 1.99 3.81 0.81 1.25 1.13
50 5 14.12 15.36 12.94 12.98 63.93 87.77 5.46 37.53 16.69 14.97
50 5 7.76 9.09 6.53 6.36 53.66 84.62 2.29 26.58 9.57 7.97
50 5 1.78 2.54 1.29 1.26 34.21 78.20 0.32 11.72 2.64 1.53

100 5 12.05 12.88 11.49 11.26 45.59 79.09 3.17 25.35 13.96 13.14
100 5 6.33 6.98 5.85 5.72 34.92 74.77 1.63 15.94 7.84 6.99
100 5 1.68 1.92 1.29 1.37 17.18 66.12 0.63 5.39 2.13 1.74
200 5 10.52 10.89 10.32 10.37 22.86 51.58 8.84 16.22 11.59 11.02
200 5 5.48 5.76 5.16 5.13 14.66 46.03 5.95 9.04 6.02 5.64
200 5 1.24 1.47 1.22 1.12 5.23 37.47 2.71 2.45 1.45 1.20
400 5 10.74 11.01 10.60 10.59 12.25 17.10 21.40 11.02 11.62 11.34
400 5 5.70 5.92 5.60 5.63 6.75 13.74 14.87 5.60 6.01 5.71
400 5 1.23 1.43 1.20 1.12 1.89 9.00 6.43 1.05 1.20 1.06
50 7 13.60 15.13 12.60 12.48 72.32 91.99 6.91 45.46
50 7 7.55 8.95 6.50 6.46 63.51 89.53 2.93 34.27
50 7 1.67 2.38 1.12 1.10 44.95 84.93 0.44 18.33

100 7 11.71 12.51 10.96 11.12 60.60 88.66 2.07 33.82
100 7 6.05 6.78 5.49 5.60 50.42 85.87 0.84 23.22
100 7 1.40 1.71 1.10 1.09 30.76 79.13 0.21 9.81
200 7 10.59 10.87 10.23 10.31 40.70 78.92 3.13 22.98
200 7 5.32 5.68 5.07 5.12 30.20 74.90 2.18 14.07
200 7 1.10 1.32 1.03 0.94 14.63 66.50 1.05 4.28
400 7 10.44 10.68 10.34 10.19 20.17 41.67 14.93 14.09
400 7 5.13 5.40 5.08 5.09 13.12 37.78 10.93 7.59
400 7 1.09 1.12 1.00 0.99 4.83 31.21 5.81 1.74
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Figure 5.1: Non-null rejection rates of the four tests for Poisson response model with
Gaussian quadrature fitting and K = 3
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Figure 5.2: Non-null rejection rates of the four tests for Poisson response model with
Gaussian quadrature fitting and K = 5
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Figure 5.3: Non-null rejection rates of the four tests for Poisson response model with
Gaussian quadrature fitting and K = 7

May 30, 2018



5.1. Simulated data experiments 65

p
ow

er

α = 10%

ξLR

ξW
ξR
ξT

n = 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α = 5%
α = 1%

p
ow

er

α = 10%

n = 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α = 5%
α = 1%

p
ow

er

α = 10%

n = 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α = 5%
α = 1%

-4 -2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

δ

p
ow

er

α = 10%

n = 400

δ

α = 5%

-4 -2 0 2 4
δ

α = 1%

-4 -2 0 2 4

δ

p
ow

er

Figure 5.4: Non-null rejection rates of the four tests for Poisson response model with
NPML fitting and K = 3
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Figure 5.5: Non-null rejection rates of the four tests for Poisson response model with
NPML fitting and K = 5
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Figure 5.6: Non-null rejection rates of the four tests for Poisson response model with
NPML fitting and K = 7
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Figure 5.7: Non-null rejection rates of the four tests for Poisson response variance
components model with NPML fitting and K = 3
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Figure 5.8: Non-null rejection rates of the four tests for Poisson response variance
components model with NPML fitting and K = 5
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Figure 5.9: Non-null rejection rates of the four tests for binomial response model
with Gaussian quadrature fitting and K = 3
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Figure 5.10: Non-null rejection rates of the four tests for binomial response model
with Gaussian quadrature fitting and K = 5
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Figure 5.11: Non-null rejection rates of the four tests for binomial response model
with Gaussian quadrature fitting and K = 7
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Figure 5.12: Non-null rejection rates of the four tests for binomial response model
with NPML fitting and K = 3
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Figure 5.13: Non-null rejection rates of the four tests for binomial response model
with NPML fitting and K = 5
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Figure 5.14: Non-null rejection rates of the four tests for binomial response model
with NPML fitting and K = 7
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Figure 5.15: Non-null rejection rates of the four tests for binomial response variance
component model with NPML fitting and K = 3
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Figure 5.16: Non-null rejection rates of the four tests for binomial response variance
component model with NPML fitting and K = 5
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Figure 5.17: Non-null rejection rates of the four tests for gamma response model
with Gaussian quadrature fitting and K = 3
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Figure 5.18: Non-null rejection rates of the four tests for gamma response model
with Gaussian quadrature fitting and K = 5
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Figure 5.19: Non-null rejection rates of the four tests for gamma response model
with Gaussian quadrature fitting and K = 7
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Figure 5.20: Non-null rejection rates of the four tests for gamma response model
with NPML fitting and K = 3
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Figure 5.21: Non-null rejection rates of the four tests for gamma response model
with NPML fitting and K = 5
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Figure 5.22: Non-null rejection rates of the four tests for gamma response model
with NPML fitting and K = 7
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Figure 5.23: Non-null rejection rates of the four tests for gamma response variance
components model with NPML fitting and K = 3
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Figure 5.24: Non-null rejection rates of the four tests for gamma response variance
components model with NPML fitting and K = 5
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Figure 5.25: Non-null rejection rates of the four tests for normal response model
with Gaussian quadrature fitting and K = 3
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Figure 5.26: Non-null rejection rates of the four tests for normal response model
with Gaussian quadrature fitting and K = 5
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Figure 5.27: Non-null rejection rates of the four tests for normal response model
with Gaussian quadrature fitting and K = 7

May 30, 2018



5.1. Simulated data experiments 89

p
ow

er

α = 10%

ξLR

ξW
ξR
ξT

n = 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α = 5%
α = 1%

p
ow

er

α = 10%

n = 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α = 5%
α = 1%

p
ow

er

α = 10%

n = 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α = 5%
α = 1%

-4 -2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

δ

p
ow

er

α = 10%

n = 400

δ

α = 5%

-4 -2 0 2 4
δ

α = 1%

-4 -2 0 2 4

δ

p
ow

er

Figure 5.28: Non-null rejection rates of the four tests for normal response model
with NPML fitting and K = 3
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Figure 5.29: Non-null rejection rates of the four tests for normal response model
with NPML fitting and K = 5
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Figure 5.30: Non-null rejection rates of the four tests for normal response model
with NPML fitting and K = 7
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Figure 5.31: Non-null rejection rates of the four tests for normal response variance
components model with NPML fitting and K = 3
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Figure 5.32: Non-null rejection rates of the four tests for normal response variance
components model with NPML fitting and K = 5
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Figure 5.33: Non-null rejection rates of the four tests for inverse Gaussian response
model with Gaussian quadrature fitting and K = 3
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Figure 5.34: Non-null rejection rates of the four tests for inverse Gaussian response
model with Gaussian quadrature fitting and K = 5
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Figure 5.35: Non-null rejection rates of the four tests for inverse Gaussian response
model with Gaussian quadrature fitting and K = 7
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Figure 5.36: Non-null rejection rates of the four tests for inverse Gaussian response
model with NPML fitting and K = 3
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Figure 5.37: Non-null rejection rates of the four tests for inverse Gaussian response
model with NPML fitting and K = 5
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Figure 5.38: Non-null rejection rates of the four tests for inverse Gaussian response
model with NPML fitting and K = 7
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Figure 5.39: Non-null rejection rates of the four tests for inverse Gaussian response
variance components model with NPML fitting and K = 3
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Figure 5.40: Non-null rejection rates of the four tests for inverse Gaussian response
variance components model with NPML fitting and K = 5
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5.2 Real data examples

We now provide four examples to illustrate the application of the gradient test. All

examples were performed using the code provided in Appendix A. Any code provided

in later subsections must be preceded by the following lines in R.

require(npmlreg)

## Loading required package: npmlreg

require(Matrix)

## Loading required package: Matrix

source("lr.test.R")

source("wald.test.R")

source("rao.test.R")

source("gradient.test.R")

The first two lines in this code load the packages npmlreg (Einbeck et al., 2014) and

Matrix (Bates & Maechler, 2017), respectively. The first package is needed for fitting

any GLMwRE presented in this section and the latter is required because wald.test,

rao.test and gradient.test have embedded functions from this package. The last

four lines load self-written functions to compute the likelihood ratio test (lr.test),

Wald test (wald.test), Rao test (rao.test) and gradient test (gradient.test).

All the test functions must be stored in the respective *.R files.

All four functions require the same basic arguments fit.null and subset.formula.

The argument fit.null receives the object resulting from the model fitted under

the null hypothesis using either alldist or allvc. The argument subset.formula

receives the formula corresponding to the subset of covariates under test. For in-

stance, supose a linear predictor for the full model such as

ηi = β0 + β1x1i + β2x2i + β3x3i + β4x4i + z∗i ,

and we would like to test H0 : β3 = β4 = 0, then we should fit the null model
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# for simple overdispersion model...

fit.null <- alldist(y ~ x1 + x2,

k = k,

data = data,

family = family,

random.distribution = "gq") # or "np"

# ... or for variance components model

fit.null <- allvc(y ~ x1 + x2,

random = ~ 1|id,

k = k,

data = data,

family = family,

random.distribution = "gq") # or "np"

where the user must inform the appropriate arguments for random, k, data, family

and random.distribution. After that, we are able to use the test functions with

the code shown below.

lr.test(fit.null, ~ x3 + x4)

wald.test(fit.null, ~ x3 + x4)

rao.test(fit.null, ~ x3 + x4)

gradient.test(fit.null, ~ x3 + x4)

Each test function returns the values statistic, parameter and p.value which

correspond to the test statistic, degrees of freedom and the p value. This is also

show in R like this.

##

## Gradient test for GLMwRE

##

## null model: y ~ x1 + x2

## alt. model: y ~ x1 + x2 + x3 + x4
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##

## statistic = 4.4963, parameter = 2, p-value = 0.1056

We point out that if the argument random.distribution = "gq" in alldist then

the default variance estimation is performed using the analytic formulae presented

in Section 4.2. This is equivalent to using analytic.var = TRUE however one can

choose EM variance estimation simply by changing for analytic.var = FALSE. For

random.distribution = "np", the argument analytic.var is irrelevant because

in theory we are only able to use the EM variance estimate. Because wald.test

and rao.test rely on the Fisher information or information matrices and we restrict

ourselves to developing the corresponding theory only for the classic overdispersion

models, these two functions do not have an explicit implementation for variance

components models and therefore we advise to not make use of them for fit.null

fitted by allvc.

5.2.1 Risk factors for endometrial cancer grade

This dataset concerns the histology grade and risk factors for 79 cases of endometrial

cancer which can be found in Heinze & Schemper (2002); it has a detailed description

in Agresti (2015, Section 5.7) and is fully available in the package brglm2 (Kosmidis,

2017) through data(endometrial). This data includes the variables

HG histology of 79 cases (0 = low grade for 30 patients, 1 = high grade for 49

patients)

NV neovasculation (1 = present for 13 patients, 0 = absent for 66 patients)

PI pulsatility index of arteria uterina (ranging from 0 to 49)

EH endometrium height (ranging from 0.27 to 3.61).

The original analysis presented by Heinze & Schemper (2002) uses a logistic regres-

sion model for µi = E[HG] with linear predictor

logit(µi) = β0 + β1NVi + β2NIi + β3EHi, for i = 1, . . . , 79. (5.2.9)
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where µi = E[HG], logit(µi) = log(µi)− log(1−µi) and β0, β1, β2 and β3 are unknown

parameters.

For our analysis, we include a random effect zi to (5.2.9) such as

logit(µi) = β0 + β1NVi + β2NIi + β3EHi + σzi, for i = 1, . . . , 79. (5.2.10)

where σ > 0 is unknown. We supose zi ∼ N(0, 1) for estimation purposes and we

choose k = 4. In R, we can load the data and fit the model (5.2.10) using the

following code.

require(brglm2)

## Loading required package: brglm2

data(endometrial) # load data

fit.null = alldist(HG ~ NV + PI + EH, data = endometrial,

family = binomial(logit), k = 4,

random.distribution = "gq",

plot.opt = 0, verbose = FALSE)

summary(fit.null)

##

## Call: alldist(formula = HG ~ NV + PI + EH,

## family = binomial(logit), data = endometrial,

## k = 4, random.distribution = "gq",

## plot.opt = 0, verbose = FALSE)

##

## Coefficients:

## Estimate Std. Error t value

## (Intercept) 4.30816829 1.638445e+00 2.6294243

## NV 18.18796847 1.714746e+03 0.0106068
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## PI -0.04218358 4.434296e-02 -0.9513026

## EH -2.90566755 8.463923e-01 -3.4330034

## z 0.08701383 3.346314e-01 0.2600289

##

## Random effect distribution - standard deviation: 0.08701383

##

##

## -2 log L: 55.4 Convergence at iteration 23

Supose one would like to test if the quadratic value of PI has a relevant effect in the

model. The alternative linear predictor is then expressed as

logit(µi) = β0 + β1NVi + β2NIi + β3EHi + β4PI
2
i + σzi, for i = 1, . . . , 79.

This is equivalent to test the hypothesis

 H0 : β4 = 0

H1 : β4 6= 0

which can be numerically evaluated by the following R code.

lr.test(fit.null,~I(PI^2))

##

## Likelihood ratio test for GLMwRE

##

## null model: HG ~ NV + PI + EH

## alt. model: HG ~ NV + PI + EH + I(PI^2)

##

## statistic = 9.0784, parameter = 1, p-value = 0.002586

wald.test(fit.null,~I(PI^2))

##
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## Wald test for GLMwRE (by analytic variance)

##

## null model: HG ~ NV + PI + EH

## alt. model: HG ~ NV + PI + EH + I(PI^2)

##

## statistic = 7.3862, parameter = 1, p-value = 0.006573

wald.test(fit.null,~I(PI^2),analytic.var=FALSE)

##

## Wald test for GLMwRE (by EM variance estimate)

##

## null model: HG ~ NV + PI + EH

## alt. model: HG ~ NV + PI + EH + I(PI^2)

##

## statistic = 7.1336, parameter = 1, p-value = 0.007565

rao.test(fit.null,~I(PI^2))

##

## Rao test for GLMwRE (by analytic variance)

##

## null model: HG ~ NV + PI + EH

## alt. model: HG ~ NV + PI + EH + I(PI^2)

##

## statistic = 14.405, parameter = 1, p-value = 0.0001474

rao.test(fit.null,~I(PI^2),analytic.var=FALSE)

##

## Rao test for GLMwRE (by EM variance estimate)

##

## null model: HG ~ NV + PI + EH

## alt. model: HG ~ NV + PI + EH + I(PI^2)
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##

## statistic = 14.403, parameter = 1, p-value = 0.0001476

gradient.test(fit.null,~I(PI^2))

##

## Gradient test for GLMwRE

##

## null model: HG ~ NV + PI + EH

## alt. model: HG ~ NV + PI + EH + I(PI^2)

##

## statistic = 9.1896, parameter = 1, p-value = 0.002434

The Table 5.12 summarises the results for the four tests.

Table 5.12: Results for testing H0 : β4 = 0
Statistic value p value

ξLR 9.0784 0.002586
ξW 7.3862 0.006573
ξ∗W 7.1336 0.007565
ξR 14.405 0.0001474
ξ∗R 14.403 0.0001476
ξT 9.1896 0.002434

We note for this example that all tests would reject the null hypothesis H0 : β4 = 0

for any the usual significance levels of 0.10, 0.05 and 0.01, despite the numerical

difference in the estimated values. Also, the gradient test showed an estimated

value closed to the likelihood ratio test and therefore a very similar p value.

5.2.2 Air Sampler Data

Friedl & Stadlober (1997) and Friedl (2013) describes a data from from environmen-

tal microbiology study. In this study, airborne micro-organisms were monitored at

seven outdoor sample sites in the adjacencies of Graz, Austria. The sample collec-

tion ran every two weeks during a period of a year. For our analysis, we consider the
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subsample of two sites (site = 6 and site = 7). This study was performed using

a six stage Andersen air sampler which collected particles (also known as bioaerosols

or biological aerosols) at a rate of ≈ 28.31 litres (1 ft3) per minute. Each stage of

the air sample contains a Petri dish with a proper agar medium where the micro-

organisms may be found. The sampler ran for four minutes then each of the Petri

dish was removed and after incubation, the number of colonies formed units (cfu)

was counted.

It has been registered then the bj and fj data, j = 1, ..., 6 stages, which provides

information on the number of cfu’s observed in 128.3 litres of air for bacteria and

fungi, respectively. Thus, we have the following variables.

date date when measurement was done (in format dd.mm)

site indicates the site where the measures were collected (1–7)

humi relative humidity in percent

temp temperature in degree Celsius

bj bacteria cfu’s sampled on stage j, for j = 1, ..., 6

fj fungi cfu’s sampled on stage j, for j = 1, ..., 6

Some observations were excluded: from 1995 May, 16 – site 3, October, 17 – site 1,

November, 28 – site 4; and from 1996 January, 3 – site 5 because of some measure-

ment error. Because of that, the total sample size of the dataset is 178 (7× 26− 4).

For our analysis, we consider the subset corresponding to the stages 5 and 6 and

sites 6 and 7 only giving a sample size of 150 observations. We can read the full

dataset and take the subset for our analysis by using the code below.

bacteria = read.table("http://www.stat.tugraz.at/courses/files/

bacteria.dat",

head = TRUE)

head(bacteria)

## date site humi temp b1 b2 b3 b4 b5 b6 f1 f2 f3 f4 f5 f6
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## 1 8.03 1 31 13 17 17 19 10 17 21 10 4 1 0 4 1

## 2 8.03 2 32 9 10 6 2 16 7 2 12 6 7 4 2 2

## 3 8.03 3 28 8 5 0 3 2 8 1 7 1 0 3 4 0

## 4 8.03 4 28 9 2 1 4 4 4 0 10 3 3 16 6 0

## 5 8.03 5 28 11 8 11 11 2 3 8 2 1 4 13 10 3

## 6 8.03 6 29 10 2 1 0 2 1 1 0 1 0 2 2 0

bac <- bacteria[(bacteria$site > 5), ]

b.total <- bac$b4 + bac$b5 + bac$b6

date.crit <- bac$date[b.total > 20]

bac <- bac[(bac$date != date.crit), ]

var.sel <- c("date", "site", "humi", "temp")

bac <- rbind(cbind(bac[ ,var.sel], stage = 4, cfu = bac$b4),

cbind(bac[ ,var.sel], stage = 5, cfu = bac$b5),

cbind(bac[ ,var.sel], stage = 6, cfu = bac$b6))

bac$date <- factor(bac$date)

bac$site <- factor(bac$site)

bac$stage <- factor(bac$stage)

Let cfu be the response variable and consider the case that

cfui
ind∼ Pois(λ = µik) for i = 1, . . . , 150 k = 1, 2,

where µik = E[cfui|zk] which is linked to the explanatory variables by

log(µik) = β1stage5i + β2stage6i + β3site7i + β4(stage5isite7i)+

+ β5(stage6isite7i) + β6tempi + β7temp
2
i + zk,

where βj for j = 1, . . . , 7 are unknown parameters and zk is an unobserved random

effect, for k = 1, 2. Our approach here supposes that the distribution of zk is

unspecified which allow us to use the NPML estimation method. Therefore, one can

use the code below to fit this model.
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fit <- alldist(cfu ~ stage*site + temp + I(temp^2),

data = bac, family = poisson, k = 2,

random.distribution = "np",

plot.opt = 0, verbose = FALSE)

summary(fit)

##

## Call: alldist(formula = cfu ~ stage * site + temp + I(temp^2),

## family = poisson, data = bac, k = 2,

## random.distribution = "np", plot.opt = 0,

## verbose = FALSE)

##

## Coefficients:

## Estimate Std. Error t value

## stage5 0.394199122 0.1972243502 1.99873455

## stage6 -0.256549988 0.2337363398 -1.09760420

## site7 0.145078383 0.2124451177 0.68289817

## temp 0.058464594 0.0175809700 3.32544758

## I(temp^2) -0.002053258 0.0006214078 -3.30420297

## stage5:site7 -0.505734904 0.2888280442 -1.75098961

## stage6:site7 0.238191454 0.3100037225 0.76835030

## MASS1 0.019053172 0.1913314231 0.09958203

## MASS2 1.325236225 0.2009559641 6.59465983

##

## Mixture proportions:

## MASS1 MASS2

## 0.870212 0.129788

##

## Random effect distribution - standard deviation: 0.438969

##

## -2 log L: 526.5 Convergence at iteration 56
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We wish to test  β1 = 0

β1 6= 0
,

where β1 = (β6, β7)> from β = (β>1 ,β>2 )> with β2 = (β1, . . . , β5)>. This means

that we are testing if temp plus its quadratic effect has some impact in the model.

We have therefore to fit the model without this effect first, which can be done via

the R code below.

fit.null <- alldist(cfu ~ stage*site, data = bac,

family = poisson, k = 2,

random.distribution = "np",

plot.opt = 0, verbose = FALSE)

summary(fit.null)

##

## Call: alldist(formula = cfu ~ stage * site, family = poisson,

## data = bac, k = 2, random.distribution = "np",

## plot.opt = 0, verbose = FALSE)

##

## Coefficients:

## Estimate Std. Error t value

## stage5 0.4160817 0.1971942 2.1100096

## stage6 -0.2816875 0.2334704 -1.2065238

## site7 0.1360769 0.2122844 0.6410123

## stage5:site7 -0.4919003 0.2887629 -1.7034746

## stage6:site7 0.2709082 0.3094782 0.8753710

## MASS1 0.1989127 0.1599253 1.2437853

## MASS2 1.5629860 0.1700300 9.1924149

##

## Mixture proportions:

## MASS1 MASS2

## 0.8651551 0.1348449
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##

## Random effect distribution - standard deviation: 0.4659099

##

## -2 log L: 534.2 Convergence at iteration 52

Then, the tests can be computed using the following code.

lr.test(fit.null,~temp+I(temp^2))

##

## Likelihood ratio test for GLMwRE

##

## null model: cfu ~ stage * site

## alt. model: cfu ~ stage + site + temp + I(temp^2) + stage:site

##

## statistic = 7.7185, parameter = 2, p-value = 0.02108

wald.test(fit.null,~temp+I(temp^2))

##

## Wald test for GLMwRE

##

## null model: cfu ~ stage * site

## alt. model: cfu ~ stage + site + temp + I(temp^2) + stage:site

##

## statistic = 14.286, parameter = 2, p-value = 0.0007903

rao.test(fit.null,~temp+I(temp^2))

##

## Rao test for GLMwRE

##

## null model: cfu ~ stage * site

## alt. model: cfu ~ stage + site + temp + I(temp^2) + stage:site
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##

## statistic = 3.6195, parameter = 2, p-value = 0.1637

gradient.test(fit.null,~temp+I(temp^2))

##

## Gradient test for GLMwRE

##

## null model: cfu ~ stage * site

## alt. model: cfu ~ stage + site + temp + I(temp^2) + stage:site

##

## statistic = 7.7872, parameter = 2, p-value = 0.02037

For this example, we observe that the Wald statistic has higher value (ξ̂W = 14.286,

p-value ≈ 0.0007903) and the Rao statistic has the lowest value (ξ̂R = 3.6195, p-

value ≈ 0.1637). We have then that, for any of the usual significance levels (10%, 5%

and 1%) that the Wald test would reject H0 and the Rao test would not reject H0.

However, the likelihood ratio and gradient statistics have similar numbers (ξ̂LR =

7.7185 and ξ̂T = 7.7872, respectively) and consequently p-values ≈ 0.02.

5.2.3 Gene sequencing data

The data in this application comprise the results of a gene sequencing study from

Elsensohn et al. (2017). The study evaluates the performance of two pipelines, an

academic (BWA-GATK) and a commercial (TMAP-NextGENe), in terms of the

number of chromosomal positions identified as non-variants on a panel of 41 genes

in 43 epileptic patients.

This data set contains the following variables:

Ident : patient identification,

Nbtot : number of chromosomal positions identified as non-variants,

NbVarTotal : number of total chromosomal positions,
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BG : factor which represents the variant identified by pipeline BWA-GATK, with

two levels: (BG=1) or not (BG=0),

NG : factor with two levels representing the variant identified by pipeline TMAP-

NextGENe (NG=1) or not (BG=0),

Common : factor with two levels that indicate if the variants are found in both

pipelines (Common=1) or not (Common=0),

Nature : factor for variant “identity”.

dt <- load(url("https://static-content.springer.com/esm/art%3A10.1186

%2Fs12859-017-1552-9/MediaObjects/12859_2017_1552_MOE

SM2_ESM.rdata"))

save(dt, file = "Additinal File 2.RData")

source(url("https://static-content.springer.com/esm/art%3A10.1186%2Fs

12859-017-1552-9/MediaObjects/12859_2017_1552_MOESM1_ESM.

r"),

echo = FALSE)

pipelines <- TableContinVar5cell

pipelines$BG <- as.factor(pipelines$BG)

pipelines$NG <- as.factor(pipelines$NG)

pipelines$Common <- as.factor(pipelines$Common)

pipelines$MargeEq <- as.factor(pipelines$MargeEq)

pipelines$Nature <- as.factor(pipelines$Nature)

pipelines$prop <- with(pipelines,Nbtot/NbVarTotal)

Let πijk = E[Nbtotijk/NbVarTotalijk|zk, uk] the expected proportion of chromo-

somal positions identified as non-variants for the ith subject, i = 1, . . . , 43, jth,
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j = 1, . . . , 5 replicate and kth mass, k = 1, . . . , 4. We assume the linear predictor

log
(

πijk

1− πijk

)
=β1BGij + β2NGij + β3Commonij + β4Natureij+

+ zk + ukCommonij, i = 1, . . . , 43, j = 1, . . . , 5, k = 1, . . . , 4,

(5.2.11)

where β1, β2, β3, β4 are the unknown fixed effects parameters, zk represents the

random intercepts and uk the random slopes for the factor Common. Figure 5.41

show the EM trajectories for the computed disparity (−2`) and for the mass points.

See below the code used to fit the model in (5.2.11).

fit <- allvc(prop ~ BG + NG + Common + Nature,

random = ~ Common|Ident,

k = 4, weights = NbVarTotal,

data = pipelines, family = binomial(logit),

tol = .2, plot.opt = 0, verbose = FALSE)

summary(fit)

##

## Call: allvc(formula = prop ~ BG + NG + Common + Nature,

## random = ~Common|Ident, family = binomial(logit),

## data = pipelines, k = 4, tol = 0.2,

## weights = NbVarTotal, plot.opt = 0,

## verbose = FALSE)

##

## Coefficients:

## Estimate Std. Error t value

## BG1 -11.099144026 0.006214437 -1786.0257241

## NG1 -10.666739180 0.005279753 -2020.3101846

## Common1 10.998166559 0.011867248 926.7663846

## Nature1 -1.436302250 0.010429469 -137.7157618

## MASS1 4.725709922 0.004675862 1010.6607766
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## MASS2 4.804489754 0.004664099 1030.1003190

## MASS3 4.875188484 0.004431149 1100.2085860

## MASS4 5.002672115 0.005006465 999.2424510

## MASS1:Common1 0.069787287 0.013738177 5.0798069

## MASS2:Common1 0.162814753 0.013096735 12.4317051

## MASS3:Common1 -0.007777029 0.012834039 -0.6059689

##

## Mixture proportions:

## MASS1 MASS2 MASS3 MASS4

## 0.2325690 0.2453434 0.2895360 0.2325516

##

## Random effect distribution - standard deviation: 0.09847663

##

## -2 log L: 5505.3 Convergence at iteration 12
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Figure 5.41: disparity values over iterations (left) and mass points estimates over
iterations (right) for the model in (5.2.11) fitted using allvc.

We might be interested in testing if the effect of both pipelines interfere on the

proportion of chromosome variants identified. This idea can be translated into the
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hypothesis  H0 : β1 = 0

H1 : β1 6= 0
,

where β1 = (β1, β2)>, a partition from the vector of parameters β = (β>1 ,β>2 )> with

β2 = (β3, β4)>. In R, we have to fit the model under the null hypothesis and then

run the likelihood ratio and gradient tests, which can be seen in the piece of code

below.

#####

# testing for 'BG' and 'NG'

#####

fit.null <- allvc(prop ~ Common + Nature, random = ~ Common|Ident,

k = 4, weights = NbVarTotal,

data = pipelines, family = binomial(logit),

tol = .2, plot.opt = 0, verbose = FALSE)

lr.test(fit.null, ~ BG + NG)

##

## Likelihood ratio test for GLMwRE

##

## null model: prop ~ Common + Nature

## alt. model: prop ~ Common + Nature + BG + NG

##

## statistic = 61352000, parameter = 2, p-value < 2.2e-16

gradient.test(fit.null, ~ BG + NG)

##

## Gradient test for GLMwRE

##

## null model: prop ~ Common + Nature

## alt. model: prop ~ Common + Nature + BG + NG

##

## statistic = 308.79, parameter = 2, p-value < 2.2e-16
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We observe that the likelihood ratio statistic is very high (ξ̂LR = 61352000) which

indicates that it is quite likely that H0 is not true based on this sample (p-value

≈ 0). The gradient test statistic has much smaller value (ξ̂T = 308.79) however still

implies rejection of H0 (p-value ≈ 0). Therefore, according to the tests, both BG and

NG should remain in the model.

5.2.4 Redness data

We take the data from an experiment given by Markussen (2017). It is of interest to

investigate how the continuous measurement of redness of pork meat after slaughter

is affected by the storage (in light or darkness), by the time (1, 4 or 6 days) and

by the breed (old and new, 10 pigs each). Six chops were taken from each pig and

allocated according to the scheme shown in Table 5.13. This gives 2× 10× 6 = 120

Table 5.13: Factor allocation [source: Markussen (2017)].

Storage 1 days 4 days 6 days

Dark chop 1 chop 2 chop 3
Light chop 4 chop 5 chop 6

samples of pork chops in total. Given that the vector of response variables y is

strictly positive, we consider that the redness measurements of a given replicate

corresponding to the ith breed, the jth storage and the kth time are independently

distributed as inverse Gaussian with means µijk|Z and a fixed dispersion parameter.

We also assume the linear predictor is linked to µijk as

µijk|Z = Z + αi + τj + βk i = 1, 2, j = 1, 2, k = 1, 2, 3 (5.2.12)

where Z is a random intercept representing the base level for each pig, α1 = τ1 =

β1 = 0 and (5.2.12) is one of the configurations of the variance component model

defined in Aitkin et al. (2009). Because Z is an unknown random variable, the EM

approach in conjunction with the maximum likelihood method can be applied for

parameter estimation. We assume that the distribution of Z is unspecified for all

the model adjustments and, for estimation purposes we used the Nonparametric

maximum likelihood (NPML) of Einbeck & Hinde (2006a).
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The gradient test

Consider including in 5.2.12 the interaction between storage and time, i.e. testing

the null hypothesis H0 : ((τβ)22, (τβ)23)> = 0. Let ` be the total log-likelihood and

θ = (θ>1 ,θ>2 )> the vector of fixed effects parameters where θ1 = ((τβ)22, (τβ)23)> is

our vector of parameters of interest and θ2 is a vector of nuisance parameters. The

unrestricted MLE for θ is θ̂ = (θ̂>1 , θ̂>2 )> and the restricted to the null hypothesis

is θ̃ = (θ0>
1 , θ̃>2 )>, where θ0>

1 is an arbitrary vector (in our application is equal

to 0, for instance). From now on the top accents ∧ and ∼ represent the MLE

unrestricted and restricted to the null hypothesis. Let U = ∂`/∂θ = (U>1 , U>2 )>

the respective partitioned score vector. Terrell (2002) proposed the gradient statistic

for testing H0 denoted as ξT = Ũ>1 (θ̂1−θ0
1). Note that ξT does not have any matrix

computation in its formula which turns to be its main advantage. In theory, the

reference distribution for ξT is χ2
q where q denote the dimension of θ1. Because of

that, ξT is comparable to the ξLR, the likelihood ratio statistic. Table 5.14 shows

the estimates for the test statistics, the chi-squared p values and the equivalent

bootstrap version.

Table 5.14: Likelihood ratio and gradient tests for the null hypothesis. The p values
were computed using the chi-square distribution with two degrees of freedom and ∗

empirical bootstrap as the reference distributions.

likelihood ratio gradient

Statistic 8.794883 10.25232
p value 0.01230879 0.005939328
p value* 0.01880188 0.00730073

Bootstrap and confidence intervals

The main purpose of the bootstrap experiment here is to verify how accurate is the

chi-square approximation for the test statistics. We propose therefore a bootstrap

in two levels taking the model under null hypothesis as true. In the first level we

resample the estimated random intercepts obeying the respective estimated prob-

abilities (nonparametric bootstrap) and in the second level we generate responses

given the new intercepts (parametric bootstrap). Then the model in (5.2.12) is fit-
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ted and both likelihood ratio and gradient statistics are computed. We replicate the

procedure 9999 times and the results can be seen in Figure 5.42. We also investigate

0

5

10

15

20

0 5 10 15 20

theoretical

sa
m
p
le

0

5

10

15

20

0 5 10 15 20

theoretical

Figure 5.42: Bootstrap samples of the likelihood ratio statistic (left) and gradient
statistic (right) compared to the theoretical χ2

2 for the test with hypothesis H0 :
(τβ)22 = (τβ)23 = 0.

the power of the tests using the rejection rates under the alternative hypothesis

H1 : ((τβ)22, (τβ)23)> = δŝe(( ̂(τβ)22,
̂(τβ)23)>) with δ being a numeric sequence of

51 evenly spaced values in [−3, 3]. For each δ we generate 9999 bootstrap samples

of ξLR and ξT.
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Figure 5.43: Bootstrap power of the likelihood ratio test and the gradient test for
nominal levels of 10% (left), 5% (center) and 1% (right).

Figure 5.43 shows the estimated power curves where the two coloured lines — ξLR

and — ξT represent the rejection rates for the likelihood ratio and gradient tests
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taking χ2
2 as reference, respectively, and the coloured lines — ξ∗LR and — ξ∗T rep-

resent the likelihood and gradient tests taking the bootstrap distribution under H0

of each statistic as reference, respectively for α = 0.1, 0.05 and 0.01. We note that

the difference between the four curves is negligible.

We can produce confidence regions for θ1 = ((τβ)22, (τβ)23)> inverting the gradient

test however there is no analytic procedure so far. Numericaly, we took a grid of two

sequences of 51 values for each (τβ)jk on the interval (τ̂β)jk ± 3se((τ̂β)jk). Then,

we fit the model in (5.2.12) with (τβ)jk as offset for each position of the grid and

compute the test statistics for H0. Therefore, the region consists on the values of

θ1 = ((τβ)22, (τβ)23)> that satisfy ξT < χ2
2. The same procedure has been done for

ξLR. The Figure 5.44 shows the contour maps for the 90% confidence regions.
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Figure 5.44: 90% confidence regions in black for (τβ)22 and (τβ)23 based on the
numerical inversion of the likelihood ratio test (left) and the gradient test (right).
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Conclusion

The gradient test is a useful and important asymptotic test such as the likelihood

ratio, Wald and Rao tests. The gradient statistic is computationally less expensive

than the Wald and Rao statistics because it does not have any matrices or matrix

operations in its formula. This turns to be one of the gradient test most appealing

features. The properties of gradient test have been studied for several different

types of models since its conception. However, before this thesis, the performance of

the gradient test had not been assessed in the context of random effects modelling.

In this thesis, we have argued that the gradient test is a solid alternative to the

likelihood ratio, Wald and Rao tests for GLMwRE considering the type I error and

the power for finite samples.

Central to this work is the development of the formulae and notation required to

compute the gradient statistic for GLMwRE. We proposed in this thesis a compre-

hensive matrix notation for the GLMwRE and for the score vector and the Fisher

information matrix. Despite the fact that the Fisher information matrix is not re-

quired for the gradient statistic, we made this endeavour to obtain the Wald and

Rao statistic formulae. The GLMwRE definition, notation and gradient statistic are

defined in Chapter 3 and the Fisher information for GLMwRE in Chapter 4.

A significant focus of this work was to quantify two properties of the gradient test,

the type I error and the power estimated by the rejection rates under null and alter-

native hypothesis, respectively, for different settings of the GLMwRE. To do this,

we conducted an extensive simulation experiment which covers several different con-
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figurations of the GLMwRE presented in Chapter 5. For simulation purposes, we

grouped the models in three main classes, here named Gaussian quadrature models,

non-parametric models and variance components models. The first two refers to the

estimation process and the choice of random effects distribution together, normal

random effects — Gaussian quadrature estimation and unspecified distribution —

non-parametric maximum likelihood, respectively. These two are frequently applied

to where the classic GLM cannot deal with overdispersion. The last class, the vari-

ance components model, is a generalisation of the overdispersion model for grouped

data. For each of this classes, we explored the gradient test for testing parameters

regarding to the fixed effects and for different possible response distributions and

for a range of different sample sizes. In parallel, we compared the gradient test to

the likelihood ratio, Wald and Rao tests for the same scenarios.

Based on the simulation results presented in Section 5.1, it can be concluded that

the gradient test is preferred over the classic likelihood ratio, Wald and Rao tests.

A few points must be stressed here about the behaviour of the test. All four test

statistics have asymptotically chi-square distribution. However, for a finite sample

size, some difference between the distribution of the test statistic and the chi-square

distribution is to be expected. This translates to some difference between the re-

jection rates and the true nominal levels. For smaller sample sizes, we noticed that

rejection numbers of the four tests are far from the nominal levels with some advan-

tage for the gradient test. This behaviour intensifies for the models estimated with

Non-parametric maximum likelihood, both NP and VC models. We also observed

that the difference to the nominal level increases as the number of mass points in-

crease for these models. We did not see this for GQ models. In all cases the numbers

improve as the sample size increase. Overall, we observed that the rejection rates of

the gradient statistic are fairly close to the true nominal level in all scenarios. The

likelihood ratio test is the second best followed by the Rao test and the Wald test

showed the worst numbers.

The power simulations were performed under the same conditions as the type I error

simulations. In fact, there is a trade-off between the high nominal levels and the

estimated power which leads to artificially higher values for power. This phenomena

May 30, 2018



Chapter 6. Conclusion 125

is clearly seen in the results where the Wald and Rao tests showed very high curves

compared to the other two. On the other side, the gradient test showed power curves

not very distant from the ones produced by the likelihood ratio test despite the fact

that the gradient test showed better approximation to the nominal levels under the

same conditions.

In summary, the message is that the gradient test overall outperformed the well

established asymptotic tests in terms of type I error without much power loss for

GLMwRE. This advantage plus the fact that the gradient test has statistic com-

putationally less costly than the Wald and Rao statistics support the idea that the

gradient test should be preferred in the context of GLMwRE.
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Appendix A

R code

In this Appendix we describe the source code of R functions used in Chapter 5.

The first function code is respvar in A.1 which computes the estimated response

variance based on the formulae proposed in Section 4.2 for GLMwRE.

In the sequence we have source codes of the functions to compute the likelihood

ratio test, lr.test, in Section A.2, the Wald test, wald.test, in Section A.3, the

Rao test, rao.test, in Section A.4 and the gradient test, gradient.test, in Section

A.5, respectively.

Finally, we have the function print.test in Section A.6 that automatically works

on the background and it is responsible for the standard output of the four test

functions in R.

All the functions use R object resultant of fitted models using either alldist or

allvc from package npmlreg (Einbeck et al., 2014).

A.1 Function to estimate the response variance

We present in this Section the code to estimate the response variance. This function

has two arguments, m which corresponds to the model fitted by alldist or allvc

and exact either be TRUE or FALSE which indicates if the estimation is using the

analytic or the EM approximation. This is only valid for GQ models which means

that for NPML models the exact=FALSE by default. Comments indicated after #

on the code describe which piece computes in R.
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1 respvar = function(m,exact=TRUE){

2 # extract the ' phi ' estimate according to the distribution.

3 phi = switch(m$family$family ,

4 gaussian = m$sdev$sdev^-2,

5 Gamma = m$shape$shape ,

6 inverse.gaussian = m$shape$shape ,

7 poisson = 1,

8 binomial = 1

9 )

10

11 # if 'm ' is a GQ model and ' exact=TRUE ' the function will

12 # compute the response otherwise will estimate using

13 # the last EM results.

14 if(class(m)=="glmmGQ"&exact==TRUE){

15 # extract some quantities from the fitted model.

16 p = length(m$coefficients) # no. of coefficients

17 N = length(m$y) # stacked sample size

18 K = length(m$masses) # number of mass points

19 n = N/K # sample size 'n '

20 X = model.matrix(m)[1:n,-p] # model matrix

21 beta = coef(m)[-p] # estim. fixed effects

22 sigma = m$rsdev # estimated ' sigma '

23 eta = as.numeric(X%*%beta) # estimated ' eta '

24

25 # Here we have we have the response variance formulae

26 # implementation for each combination of response distribution

27 # and link function.

28 respvar = switch(m$family$family ,

29 gaussian = switch(m$family$link ,

30 identity = phi^-1 + sigma^2,

31 log = phi^-1 + exp(2*eta+sigma ^2)*(exp(sigma ^2) -1),

32 inverse = phi^-1 + eta^-4*sigma ^2+8*eta^-

33 6*sigma ^4+15*eta^-8*sigma^6

34 ),

35 Gamma = switch(m$family$link ,

36 inverse = phi^-1*(eta^-2+3*eta^-4*sigma ^2)+

37 eta^-4*sigma ^2+8*eta^-6*sigma ^4+
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38 15*eta^-8*sigma^6,

39 identity = (phi^ -1+1)*sigma ^2 + phi^-1*eta^2,

40 log = exp(2*eta+sigma ^2)*((phi^-1+1)*exp(sigma ^2) -1)

41 ),

42 inverse.gaussian = switch(m$family$link ,

43 "1/mu^2" = phi^-1*(eta^-(3/2)+(15/8)*eta^-(7/2)*sigma ^2)+

44 (1/4)*eta^-3*sigma ^2+(1/2)*eta^-5*sigma ^4+

45 (375/256)*eta^-7*eta^6,

46 inverse = phi^-1*(eta^-3+6*eta^-5*sigma ^2)+

47 eta^-4*sigma ^2+8*eta^-6*sigma ^4+

48 15*eta^-8*sigma^6,

49 identity = phi^-1*(eta ^3+3*eta*sigma ^2)+sigma^2,

50 log = phi^-1*exp(3*eta+9*sigma^2/2)+

51 exp(2*(eta+sigma ^2))-

52 exp(2*eta+sigma^2/2)

53 ),

54 poisson = switch(m$family$link ,

55 log = exp(eta+.5*sigma ^2)+exp(2*(eta+sigma ^2))-

56 exp(2*eta+sigma ^2),

57 identity = eta+sigma^2,

58 sqrt = eta ^2+4*eta^2*sigma ^2+ sigma ^2+2*sigma^4

59 ),

60 binomial = switch(m$family$link ,

61 logit = exp(eta)/(exp(eta)+1)-exp(eta)^2/(exp(eta)+1)^2-

62 (exp(eta)^2-exp(eta))*sigma ^2/(2*exp(eta)+1)^3+

63 (exp(eta)^3-exp(eta)^2)*sigma^2/(exp(eta)+1)^4-

64 (exp(eta)^2-exp(eta))^2*sigma^4/

65 (4*exp(eta)+1)^6,

66 probit = pnorm(eta)-eta*sigma ^2*dnorm(eta)/2-

67 pnorm(eta)^2+ eta*sigma^2*dnorm(eta)*pnorm(eta)-

68 eta^2*sigma^4*dnorm(eta)^2/4,

69 cauchit = 1/4-pi^-2*(atan(eta)-eta*sigma^2/(eta ^2+1) ^2)^2,

70 log = exp(eta+sigma^2/2)-exp(2*eta+sigma ^2),

71 cloglog = exp(-exp(eta))-exp(-2*exp(eta))+

72 (exp(2*eta)-exp(eta))*sigma ^2/(2*exp(exp(eta)))-

73 (exp(2*eta)-exp(eta))*sigma ^2/exp(2*exp(eta))-

74 (exp(4*eta)-2*exp(3*eta)+exp(2*eta))*sigma^4/
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75 (4*exp(2*exp(eta)))

76 )

77 )

78 } else{ # last EM response variance

79 K = length(m$masses) # no. of masses

80 mu.est = m$family$linkinv(m$linear.predictors) # est. ' mu '

81 V.est = m$family$variance(mu.est) # est. var. fun.

82 w = as.vector(m$post.prob) # posterior prob

.

83

84 # ' E[Var(y|z) ] '

85 evz = (phi^-1)*apply(w*matrix(V.est ,byrow=FALSE ,nc=K),1,sum)

86 # ' Var[E(y|z) ] '

87 vmuz = apply(w*matrix(mu.est^2,byrow=FALSE ,nc=K) ,1,sum)-

88 m$fitted.values ^2

89

90 respvar = drop(evz + vmuz) # E[Var(y|z)] + Var[E(y|z)]

91 }

92 return(respvar) # the final result.

93 }

A.2 Likelihood ratio test

The function lr.test computes the likelihood ratio test for GLMwRE and takes

the arguments listed below.

fit.null the model fitted using either alldist or allvc under null hypothesis.

subset.formula this is the subset part of the linear predictor under alternative

hypothesis which does not include the null hypothesis linear predictor. This

should be informed as R formula.

null.values the values of β0
1 as a vector.

sign.level the significance level which by default is 0.05.

More information is described embedded in the code as comments after #.
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1 lr.test <- function(fit.null ,

2 subset.formula ,

3 null.values = 0,

4 sign.level = .05){

5 # data name

6 dname <- fit.null$call$data

7 # The full formula under alternative hypothesis

8 frml <- update(fit.null$formula ,

9 formula(paste("~.+",subset.formula [-1])))

10 # fit the model under alternative hypothesis

11 fit.alt <- update(fit.null ,frml ,plot.opt=0,verbose=FALSE)

12 # some R code tricks to partition later the model matrix X

13 cnmX <- attr(fit.alt$coefficients ,"names")

14 cnmXnull <- attr(fit.null$coefficients ,"names")

15 vrtst <- cnmX[!cnmX%in%cnmXnull]

16 if(length(null.values)==1&length(vrtst) >1){

17 null.values <- rep(null.values ,length(vrtst))

18 }

19 attr(null.values , "names") <- vrtst

20 # the full model matrix

21 X <- model.matrix(fit.alt)

22 # the partition of the model matrix that interests us

23 X1 <- cbind(X[,vrtst ])

24

25 if(any(null.values!=0)){

26 fit.null <- update(fit.null ,

27 offset=X1[1: nrow(fit.null$data),]%*%null.

values ,

28 plot.opt=0,verbose=FALSE)

29 }

30

31 estimate <- fit.alt$coefficients[vrtst]

32 # the test statistic value

33 slr <- drop(fit.null$disparity - fit.alt$disparity)

34 names(slr) <- "statistic"

35 df <- length(vrtst)

36 names(df) <- "parameter"
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37 pval <- pchisq(slr , df=df, lower=FALSE)

38 mthd <- list("Likelihood ratio test for GLMwRE",

39 "\n",

40 paste("null model:",

41 deparse(fit.null$formula)),

42 paste("alt. model:", deparse(frml)))

43

44 rval <- list("statistic" = slr , "parameter" = df,

45 "p.value" = pval , null.values = null.values ,

46 estimate = estimate , method = mthd ,

47 data.name = dname)

48

49 class(rval) <- "GLMwRE.test"

50 return(rval)

51 }

A.3 Wald test

The wald.test function computes the Wald test for GLMwRE and takes the argu-

ments listed below.

fit.null the model fitted using either alldist or allvc under null hypothesis.

subset.formula this is the subset part of the linear predictor under alternative

hypothesis which does not include the null hypothesis linear predictor. This

should be informed as R formula.

null.values the values of β0
1 as a vector.

sign.level the significance level which by default is 0.05.

analytic.var if TRUE (default) the function will estimate the Fisher information

using the analytic formulae for variance or by the last EM approximation if

FALSE.

More information is described embedded in the code as comments after #.
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1 wald.test <- function(fit.null ,

2 subset.formula ,

3 null.values = 0,

4 sign.level = .05,

5 analytic.var = TRUE){

6

7 #

8

9 # function respvar: Estimates the response variance

10 source("respvar.R")

11 match.fun(respvar)

12 k <- length(fit.null$masses)

13 dname <- fit.null$call$data

14 frml <- update(fit.null$formula ,

15 formula(paste("~.+",subset.formula [-1])))

16 fit.alt <- update(fit.null ,frml ,plot.opt=0,verbose=FALSE)

17 X <- model.matrix(fit.alt)

18 cnmX <- attr(X,"dimnames")[[2]]

19 cnmXnull <- attr(fit.null$coefficients ,"names")

20 vrtst <- cnmX[!cnmX%in%cnmXnull]

21 msstst <- grep("MASS",vrtst)

22

23 if((class(fit.null)=="glmmNPML")&(length(msstst) >0)){

24 vrtst <- vrtst[-msstst]

25 }

26 if(length(null.values)==1&length(vrtst) >1){

27 null.values <- rep(null.values ,length(vrtst))

28 }

29 attr(null.values , "names") <- vrtst

30

31 # partitions of the model matrix

32 X1 <- cbind(X[,vrtst])

33 X2 <- cbind(X[,cnmX%in%cnmXnull ])

34

35 if(any(null.values!=0)){

36 fit.null <- update(fit.null ,

37 offset=X1[1: nrow(fit.null$data),]%*%null.
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values ,

38 plot.opt=0,verbose=FALSE)

39 }

40

41 fit.alt.glm <- fit.alt$lastglm

42 class(fit.alt.glm) = "glm"

43

44 # estimated quantities under alternative model

45 mu.alt <- fit.alt.glm$fitted.values

46 eta.alt <- fit.alt.glm$family$linkfun(mu.alt)

47 V.alt <- fit.alt.glm$family$variance(mu.alt)

48 dmu.alt <- fit.alt.glm$family$mu.eta(eta.alt)

49 phi.alt <- switch(fit.alt$family$family ,

50 gaussian = fit.alt$sdev$sdev^-2,

51 Gamma = fit.alt$shape$shape ,

52 inverse.gaussian = fit.alt$shape$shape ,

53 poisson = 1,

54 binomial = 1)

55 omg.alt <- as.vector(fit.alt$post.prob)

56 dik.alt <- phi.alt*dmu.alt*omg.alt/V.alt

57 Dm.alt <- Diagonal(length(dik.alt),dik.alt)

58 estimate <- fit.alt$coefficients[vrtst]

59 # response variance estimation

60 vy.alt <- respvar(m=fit.alt , exact=analytic.var)

61 if(length(vy.alt)==1){

62 vy.alt <- rep(vy.alt , length(fit.alt$fitted.values))

63 }

64 # partitioned Fisher information

65 if(class(fit.alt) == "glmmGQ"){

66 Upsln.alt <- kronecker(Matrix(1, ncol=k, nrow=k),

67 Diagonal(length(vy.alt),vy.alt))

68 }

69 else{

70 if(class(fit.alt) == "glmmNPML"){

71 Upsln.alt <- Diagonal(length(vy.alt)*k,rep(vy.alt ,k))

72 }else{

73 stop("the object ' fit.alt ' should be either ' glmmGQ ' or '
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glmmNPML '. ")

74 }

75 }

76 Psi.alt <- Dm.alt%*%Upsln.alt%*%Dm.alt

77

78 # inverse of the partitioned Fisher information

79 invtX2PsiX2.alt <- solve(t(X2)%*%Psi.alt%*%X2)

80 C.alt <- invtX2PsiX2.alt%*%t(X2)%*%Psi.alt%*%X1

81 R.alt = X1 - X2%*%C.alt

82 tRPsiR.alt = t(R.alt)%*%Psi.alt%*%R.alt

83

84 # test statistic , df and p-value

85 sw <- drop(t(estimate -null.values)%*%tRPsiR.alt%*%(

estimate -null.values))

86 names(sw) <- "statistic"

87 df <- length(vrtst)

88 names(df) <- "parameter"

89 pval <- pchisq(sw, df=df, lower=FALSE)

90

91 mthd <- list(paste("Wald test for GLMwRE",

92 ifelse(analytic.var ,

93 "(by analytic variance)",

94 "(by EM variance estimate)")),

95 "\n",

96 paste("null model:",

97 deparse(fit.null$formula)),

98 paste("alt. model:", deparse(frml)))

99

100 rval <- list("statistic" = sw, "parameter" = df,

101 "p.value" = pval , null.values = null.values ,

102 method = mthd , data.name = dname)

103

104 class(rval) <- "GLMwRE.test"

105 return(rval)

106

107 }

May 30, 2018



A.4. Rao test 141

A.4 Rao test

The rao.test function computes the Rao test for GLMwRE and takes the argu-

ments listed below.

fit.null the model fitted using either alldist or allvc under null hypothesis.

subset.formula this is the subset part of the linear predictor under alternative

hypothesis which does not include the null hypothesis linear predictor. This

should be informed as R formula.

null.values the values of β0
1 as a vector.

sign.level the significance level which by default is 0.05.

analytic.var if TRUE (default) the function will estimate the Fisher information

using the analytic formulae for variance or by the last EM approximation if

FALSE.

More information is described embedded in the code as comments after #.

1 rao.test <- function(fit.null ,

2 subset.formula ,

3 null.values = 0,

4 sign.level = .05,

5 analytic.var = TRUE){

6

7 #

8

9 # function respvar: Estimates the response variance

10 source("respvar.R")

11 match.fun(respvar)

12 k <- length(fit.null$masses)

13 dname <- fit.null$call$data

14 frml <- update(fit.null$formula ,

15 formula(paste("~.+",subset.formula [-1])))

16 X <- model.matrix(frml ,data=npmlreg ::: expand(fit.null$data ,k))

17 if(class(fit.null)=="glmmNPML"){

18 X <- X[,-1]
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19 }

20 cnmX <- attr(X,"dimnames")[[2]]

21 cnmXnull <- attr(fit.null$coefficients ,"names")

22 X <- cbind(X,model.matrix(fit.null)[,!cnmXnull%in%cnmX])

23 vrtst <- cnmX[!cnmX%in%cnmXnull]

24 if(!is.integer(grep("MASS",vrtst))){

25 vrtst <- vrtst[-grep("MASS",vrtst)]

26 }

27 if(length(null.values)==1&length(vrtst) >1){

28 null.values <- rep(null.values ,length(vrtst))

29 }

30 attr(null.values , "names") <- vrtst

31

32 # partitions of the model matrix

33 X1 <- cbind(X[,vrtst])

34 X2 <- cbind(X[,cnmX%in%cnmXnull ])

35

36 if(any(null.values!=0)){

37 fit.null <- update(fit.null ,

38 offset=X1[1: nrow(fit.null$data),]%*%null.

values ,

39 plot.opt=0,verbose=FALSE)

40 }

41 fit.null.glm <- fit.null$lastglm

42 class(fit.null.glm) = "glm"

43

44 # estimated model quantities under null hypothesis

45 mu.null <- fit.null.glm$fitted.values

46 eta.null <- fit.null.glm$family$linkfun(mu.null)

47 V.null <- fit.null.glm$family$variance(mu.null)

48 dmu.null <- fit.null.glm$family$mu.eta(eta.null)

49 phi.null <- switch(fit.null$family$family ,

50 gaussian = fit.null$sdev$sdev^-2,

51 Gamma = fit.null$shape$shape ,

52 inverse.gaussian = fit.null$shape$shape ,

53 poisson = 1,

54 binomial = 1)
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55 omg.null <- as.vector(fit.null$post.prob)

56 dik.null <- phi.null*dmu.null*omg.null/V.null

57 Dm.null <- Diagonal(length(dik.null),dik.null)

58 # score vector under null hypothesis

59 scr.null <- t(X1)%*%Dm.null%*%residuals(fit.null.glm ,"response")

60 # response variance under null hypothesis

61 vy.null <- respvar(m=fit.null , exact=analytic.var)

62 if(length(vy.null)==1){

63 vy.null <- rep(vy.null , length(fit.null$fitted.values))

64 }

65 # partitioned Fisher information

66 if(class(fit.null) == "glmmGQ"){

67 Upsln.null <- kronecker(Matrix(1, ncol=k, nrow=k),

68 Diagonal(length(vy.null),vy.null))

69 }

70 else{

71 if(class(fit.null) == "glmmNPML"){

72 Upsln.null <- Diagonal(length(vy.null)*k,rep(vy.null ,k))

73 }else{

74 stop("the object ' fit.null ' should be either ' glmmGQ ' or '

glmmNPML '. ")

75 }

76 }

77 Psi.null <- Dm.null%*%Upsln.null%*%Dm.null

78 invtX2PsiX2.null <- solve(t(X2)%*%Psi.null%*%X2)

79 C.null <- invtX2PsiX2.null%*%t(X2)%*%Psi.null%*%X1

80 R.null <- X1 - X2%*%C.null

81 invtRPsiR.null <- solve(t(R.null)%*%Psi.null%*%R.null)

82

83 # test statistic , df and p-value

84 sr <- drop(t(scr.null)%*%invtRPsiR.null%*%scr.null)

85 names(sr) <- "statistic"

86 df <- length(vrtst)

87 names(df) <- "parameter"

88 pval <- pchisq(sr, df=df, lower=FALSE)

89 mthd <- list(paste("Rao test for GLMwRE",

90 ifelse(analytic.var ,
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91 "(by analytic variance)",

92 "(by EM variance estimate)")),

93 "\n",

94 paste("null model:",

95 deparse(fit.null$formula)),

96 paste("alt. model:", deparse(frml)))

97

98 rval <- list("statistic" = sr, "parameter" = df,

99 "p.value" = pval , null.values = null.values ,

100 method = mthd , data.name = dname)

101 class(rval) <- "GLMwRE.test"

102 return(rval)

103

104 }

A.5 Gradient test

The gradient.test function computes the gradient test for GLMwRE and takes

the arguments listed below.

fit.null the model fitted using either alldist or allvc under null hypothesis.

subset.formula this is the subset part of the linear predictor under alternative

hypothesis which does not include the null hypothesis linear predictor. This

should be informed as R formula.

null.values the values of β0
1 as a vector.

sign.level the significance level which by default is 0.05.

More information is described embedded in the code as comments after #.

1 gradient.test <- function(fit.null ,

2 subset.formula ,

3 null.values = 0,

4 sign.level = .05){

5 #

6 dname <- fit.null$call$data

May 30, 2018



A.5. Gradient test 145

7 frml <- update(fit.null$formula ,

8 formula(paste("~.+",subset.formula [-1])))

9 fit.alt <- update(fit.null ,frml ,plot.opt=0,verbose=FALSE)

10 X <- model.matrix(fit.alt)

11 cnmX <- attr(X,"dimnames")[[2]]

12 cnmXnull <- attr(fit.null$coefficients ,"names")

13 vrtst <- cnmX[!cnmX%in%cnmXnull]

14 msstst <- grep("MASS",vrtst)

15 if((class(fit.null)=="glmmNPML")&(length(msstst) >0)){

16 vrtst <- vrtst[-msstst]

17 }

18 if(length(null.values)==1&length(vrtst) >1){

19 null.values <- rep(null.values ,length(vrtst))

20 }

21 attr(null.values , "names") <- vrtst

22 X1 <- cbind(X[,vrtst ])

23

24 if(any(null.values!=0)){

25 fit.null <- update(fit.null ,

26 offset=X1[1: nrow(fit.null$data),]%*%null.

values ,

27 plot.opt=0,verbose=FALSE)

28 }

29

30 fit.null.glm <- fit.null$lastglm

31 class(fit.null.glm) = "glm"

32

33 # model quantities under null hypothesis

34 mu.null <- fit.null.glm$fitted.values

35 eta.null <- fit.null.glm$family$linkfun(mu.null)

36 V.null <- fit.null.glm$family$variance(mu.null)

37 dmu.null <- fit.null.glm$family$mu.eta(eta.null)

38 phi.null <- switch(fit.null$family$family ,

39 gaussian = fit.null$sdev$sdev^-2,

40 Gamma = fit.null$shape$shape ,

41 inverse.gaussian = fit.null$shape$shape ,

42 poisson = 1,
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43 binomial = 1)

44 omg.null <- as.vector(fit.null$post.prob)

45 dik.null <- phi.null*dmu.null*omg.null/V.null

46 Dm.null <- Diagonal(length(dik.null),dik.null)

47 # score vector under null hypothesis

48 scr.null <- t(X1)%*%Dm.null%*%residuals(fit.null.glm ,"response")

49 estimate <- fit.alt$coefficients[vrtst]

50 # test statistic , df and p-value

51 st <- drop(t(scr.null)%*%(estimate - null.values))

52 names(st) <- "statistic"

53 df <- length(vrtst)

54 names(df) <- "parameter"

55 pval <- pchisq(st, df=df, lower=FALSE)

56 mthd <- list("Gradient test for GLMwRE",

57 "\n",

58 paste("null model:",

59 deparse(fit.null$formula)),

60 paste("alt. model:", deparse(frml)))

61

62 rval <- list("statistic" = st, "parameter" = df,

63 "p.value" = pval , null.values = null.values ,

64 estimate = estimate , method = mthd ,

65 data.name = dname)

66 class(rval) <- "GLMwRE.test"

67 return(rval)

68

69 }

A.6 Tests output

This function works “behind the curtain” to ensure a standard and user friendly

output for the four test functions. It is not necessary to run it as it does automatically

together with any of lr.test, wald.test, rao.test and gradient.test.

1 print.GLMwRE.test <- function(x, digits = getOption("digits"),

prefix = "\t", ...)

2 {
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3 cat("\n")

4 cat(strwrap(x$method , prefix = prefix), sep = "\n")

5 cat("\n")

6 out <- character ()

7 if(!is.null(x$statistic))

8 out <- c(out , paste(names(x$statistic), "=",

9 format(signif(x$statistic , max(1L, digits -

2L)))))

10 if(!is.null(x$parameter))

11 out <- c(out , paste(names(x$parameter), "=",

12 format(signif(x$parameter , max(1L, digits -

2L)))))

13 if(!is.null(x$p.value)) {

14 fp1 <- format.pval(x$p.value , digits = max(1L, digits - 3L))

15 out <- c(out , paste("p-value",

16 if(substr(fp1 , 1L, 1L) == "<") fp1 else

paste("=",fp1)))

17 }

18 cat(strwrap(paste(out , collapse = ", ")), sep = "\n")

19 cat("\n")

20 invisible(x)

21 }
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Appendix B

Variance estimation

In this Appendix we show the variance estimation formulae obtained for GQ models

in Section 4.2 of Chapter 4.

B.1 Gaussian quadrature case

Supose a generalised linear model with linear predictor

ηi = x>i β + σzi for i in 1, . . . , n,

where zi has standard normal distribution. As a result, for i in 1, . . . , n, we have

148



B.1. Gaussian quadrature case 149

E[zi] = 0

E[z2
i ] = 1

E[z3
i ] = 0

E[z4
i ] = 3

E[z5
i ] = 0

E[z6
i ] = 15

E[z7
i ] = 0

E[z8
i ] = 105

E[z9
i ] = 0

E[z10
i ] = 945

Var[zi] = 1

Var[z2
i ] = E[z4

i ]− E2[z2
i ] = 3− 1 = 2

Var[z3
i ] = E[z6

i ]−��
��*

0
E2[z3

i ] = 15

Var[z4
i ] = E[z8

i ]− E2[z4
i ] = 105− 92 = 96

Var[z5
i ] = E[z10

i ]−��
��*

0
E2[z5

i ] = 945

Cov[zi, z
2
i ] =��

��*0
E[z3

i ]−��
�*0

E[zi]��
��*1

E[z2
i ] = 0

Cov[zi, z
3
i ] = E[z4

i ]−��
�*0

E[zi]��
��*0

E[z3
i ] = 3

Cov[zi, z
4
i ] =��

��*0
E[z5

i ]−��
�*0

E[zi]��
��*3

E[z4
i ] = 0

Cov[zi, z
5
i ] = E[z6

i ]−��
�*0

E[zi]��
��*0

E[z5
i ] = 15

Cov[z2
i , z

3
i ] =��

��*0
E[z5

i ]−��
��*1

E[z2
i ]��

��*0
E[z3

i ] = 0

Cov[z2
i , z

4
i ] = E[z6

i ]− E[z2
i ]E[z4

i ] = 15− 3 = 12

Cov[z2
i , z

5
i ] =��

��*0
E[z7

i ]−��
��*1

E[z2
i ]��

��*0
E[z5

i ] = 0

Cov[z3
i , z

4
i ] =��

��*0
E[z7

i ]−��
��*0

E[z3
i ]��

��*3
E[z4

i ] = 0

Cov[z3
i , z

5
i ] = E[z8

i ]−��
��*0

E[z3
i ]��

��*0
E[z5

i ] = 0

Cov[z4
i , z

5
i ] =��

��*0
E[z9

i ]−��
��*3

E[z4
i ]��

��*0
E[z5

i ] = 0

The response yi has mean E[yi] = E[E[yi|zi]] = E[µ(zi)] = µi and variance

Var(yi) = E[Var[yi|zi]] + Var[E[yi|zi]]

= E[φ−1V (µ(zi))] + Var[µ(zi)] for i in 1, . . . , n,

where V (µ) is the variance function and φ−1 the dispersion parameter.

B.1.1 Gaussian response

Variance function: V (µ) = 1

Identity link

• Link function: g(µ) = µ = η

• Inverse of the link function: g−1(η) = η = µ

May 30, 2018



B.1. Gaussian quadrature case 150

Var(yi) = E[φ−1V (µ(zi))] + Var[µ(zi)]

= E[φ−1] + Var[x>i β + σzi]

= φ−1 + σ2
��

��:1Var[zi]

= φ−1 + σ2, for i in 1, . . . , n.

Log link

• Link function: g(µ) = log(µ) = η

• Inverse of the link function: g−1(η) = exp(η) = µ

Var(yi) = E[φ−1V (µ(zi))] + Var[µ(zi)]

= E[φ−1] + Var[exp{x>i β + σzi}]

= φ−1 + E[(exp{x>i β + σzi})2]− E2[exp{x>i β + σzi}]

= φ−1 + exp{2(x>i β)}E[exp{2σzi}]− (exp{x>i β}E[exp{σzi}])2

= φ−1 + exp{2(x>i β)}MZ(2σ)− (exp{x>i β}MZ(σ))2

= φ−1 + exp{2(x>i β)} exp{���
2

4σ2/�2} − (exp{x>i β} exp{σ2/2})2

= φ−1 + exp{2(x>i β + σ2)} − exp{2(x>i β) + σ2}

= φ−1 + exp{2(x>i β) + σ2}(exp{σ2} − 1), for i in 1, . . . , n.

Inverse link

• Link function: g(µ) = 1/µ = η

• Inverse of the link function: g−1(η) = 1/η = µ

Var(yi) = E[φ−1V (µ(zi))] + Var[µ(zi)]

= E[φ−1] + Var[(x>i β + σzi)−1],

By Taylor expansion around 0, we have

1
x>i β + σzi

≈ 1
x>i β

− σzi

(x>i β)2 + σ2z2
i

(x>i β)3 −
σ3z3

i

(x>i β)4

May 30, 2018



B.1. Gaussian quadrature case 151

Thus,

Var
[

1
x>i β + σzi

]
≈ Var

[
1
x>i β

− σzi

(x>i β)2 + σ2z2
i

(x>i β)3 −
σ3z3

i

(x>i β)4

]

= σ2

(x>i β)4 Var[zi] + σ4

(x>i β)6 Var[z2
i ] + σ6

(x>i β)8 Var[z3
i ]−

− 2σ3

(x>i β)5��
��

��:0
Cov[zi, z

2
i ] + 2σ4

(x>i β)6 Cov[zi, z
3
i ]−

− 2σ5

(x>i β)7��
���

�:0
Cov[z2

i , z
3
i ]

= σ2

(x>i β)4 + 2σ4

(x>i β)6 + 15σ6

(x>i β)8 + 6σ4

(x>i β)6

= σ2

(x>i β)4 + 8σ4

(x>i β)6 + 15σ6

(x>i β)8 .

Therefore

Var(yi) ≈ φ−1 + σ2

(x>i β)4 + 8σ4

(x>i β)6 + 15σ6

(x>i β)8 for i in 1, . . . , n.

B.1.2 Gamma response

Variance function: V (µ) = µ2

Identity link

• Link function: g(µ) = µ = η

• Inverse of the link function: g−1(η) = η = µ

Var(yi) = E[φ−1V (µ(zi))] + Var[µ(zi)]

= E[φ−1(x>i β + σzi)2] + Var[x>i β + σzi]

= φ−1[(x>i β)2 + 2(x>i β)σ��
�*0

E[zi] + σ2
��

��*1
E[z2

i ]] + σ2
���

�:1Var[zi]

= (φ−1 + 1)σ2 + φ−1(x>i β)2, for i in 1, . . . , n.

Log link

• Link function: g(µ) = log(µ) = η

• Inverse of the link function: g−1(η) = exp(η) = µ
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Var(yi) = E[φ−1V (µ(zi))] + Var[µ(zi)]

= E[φ−1(exp{x>i β + σzi})2] + Var[exp{x>i β + σzi}]

= (φ−1 + 1)E[(exp{x>i β + σzi})2]− E2[exp{x>i β + σzi}]

= (φ−1 + 1) exp{2(x>i β)}E[exp{2σzi}]− (exp{x>i β}E[exp{σzi}])2

= (φ−1 + 1) exp{2(x>i β)}MZ(2σ)− (exp{x>i β}MZ(σ))2

= (φ−1 + 1) exp{2(x>i β)} exp{���
2

4σ2/�2} − (exp{x>i β} exp{σ2/2})2

= (φ−1 + 1) exp{2(x>i β + σ2)} − exp{2(x>i β) + σ2}

= exp{2(x>i β) + σ2}[(φ−1 + 1) exp{σ2} − 1], for i in 1, . . . , n.

Inverse link

• Link function: g(µ) = 1/µ = η

• Inverse of the link function: g−1(η) = 1/η = µ

Var(yi) = E[φ−1V (µ(zi))] + Var[µ(zi)]

= E[φ−1(x>i β + σzi)−2] + Var[(x>i β + σzi)−1],

By Taylor expansion around 0, we have

1
x>i β + σzi

≈ 1
x>i β

− σzi

(x>i β)2 + σ2z2
i

(x>i β)3 −
σ3z3

i

(x>i β)4 ,

and (
1

x>i β + σzi

)2

≈ 1
(x>i β)2 −

2σzi

(x>i β)3 + 3σ2z2
i

(x>i β)4 −
4σ3z3

i

(x>i β)5 .

Thus

E
( 1
x>i β + σzi

)2
 ≈ E

[
1

(x>i β)2 −
2σzi

(x>i β)3 + 3σ2z2
i

(x>i β)4 −
4σ3z3

i

(x>i β)5

]

= 1
(x>i β)2 −

2σ��
�* 0

E[zi]
(x>i β)3 + 3σ2E[z2

i ]
(x>i β)4 −

4σ3
�
��
�* 0

E[z3
i ]

(x>i β)5

= 1
(x>i β)2 + 3σ2

(x>i β)4 .
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and, similarly to Gaussian response with inverse link

Var
[

1
x>i β + σzi

]
≈ Var

[
1
x>i β

− σzi

(x>i β)2 + σ2z2
i

(x>i β)3 −
σ3z3

i

(x>i β)4

]

= σ2

(x>i β)4 + 8σ4

(x>i β)6 + 15σ6

(x>i β)8 .

Therefore

Var(yi) ≈ φ−1
[

1
(x>i β)2 + 3σ2

(x>i β)4

]
+

+ σ2

(x>i β)4 + 8σ4

(x>i β)6 + 15σ6

(x>i β)8 , for i in 1, . . . , n.

B.1.3 Poisson response

Variance function: V (µ) = µ

Dispersion parameter: φ−1 = 1

Log link

• Link function: g(µ) = log(µ) = η

• Inverse of the link function: g−1(η) = exp(η) = µ

Var(yi) = E[φ−1V (µ(zi))] + Var[µ(zi)]

= E[(exp{x>i β + σzi})] + Var[exp{x>i β + σzi}]

= (exp{x>i β})E[(exp{σzi})] + (exp{x>i β})2Var[exp{σzi}]

= (exp{x>i β})MZ(σ) + (exp{x>i β})2{E[(exp{σzi})2] + E2[exp{σzi}]}

= (exp{x>i β}) exp{σ2/2}+ (exp{x>i β})2[MZ(2σ) + M2
Z(σ)]

= (exp{x>i β}) exp{σ2/2}+ (exp{x>i β})2(exp{2σ2}+ exp{σ2})

= (exp{x>i β}) exp{σ2/2}+ (exp{x>i β})2 exp{σ2}(exp{σ2}+ 1)

= (exp{x>i β}) exp{σ2/2}[1 + (exp{x>i β}) exp{σ2/2}(exp{σ2}+ 1)]

for i in 1, . . . , n.

Identity link

• Link function: g(µ) = µ = η

May 30, 2018



B.1. Gaussian quadrature case 154

• Inverse of the link function: g−1(η) = η = µ

Var(yi) = E[φ−1V (µ(zi))] + Var[µ(zi)]

= E[x>i β + σzi] + Var[x>i β + σzi]

= x>i β + σ��
�*0

E[zi] + σ2
���

�:1Var[zi]

= x>i β + σ2 for i in 1, . . . , n.

Square root link

• Link function: g(µ) = √µ = η

• Inverse of the link function: g−1(η) = η2 = µ

Var(yi) = E[φ−1V (µ(zi))] + Var[µ(zi)]

= E[(x>i β + σzi)2] + Var[(x>i β + σzi)2]

= E[((x>i β)2 + 2(x>i β)σzi + σ2z2
i )]+

+ Var[((x>i β)2 + 2(x>i β)σzi + σ2z2
i )]

= (x>i β)2 + 2(x>i β)σ��
�*0

E[zi] + σ2
�
��
�*1

E[z2
i ]+

+ 4(x>i β)2σ2
���

�:1Var[zi] + σ4Var[z2
i ] + 4(x>i β)σ3Cov[z,z

2
i ]

= (x>i β)2 + σ2 + 4(x>i β)2σ2 + σ4(E[z4
i ]− E2[z2

i ])+

+ 4(x>i β)σ3(��
��*0

E[z3
i ]−��

�*0
E[zi]��

��*1
E[z2

i ])

= (x>i β)2 + 4(x>i β)2σ2 + σ2 + σ4(3− 1)

= (x>i β)2 + 4(x>i β)2σ2 + σ2 + 2σ4, for i in 1, . . . , n.

B.1.4 Binomial response

Variance function: V (µ) = µ(1− µ)

Dispersion parameter: φ−1 = 1

Logit link

• Link function: g(µ) = log
(

µ

1− µ

)
= η

• Inverse of the link function: g−1(η) = exp(η)
exp(η) + 1 = µ
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Var(yi) = E[φ−1V (µ(zi))] + Var[µ(zi)]

= E[µ(zi)− µ(zi)2] + E[µ(zi)2]− E2[µ(zi)]

= E[µ(zi)]−����
�E[µ(zi)2] +����

�E[µ(zi)2]− E2[µ(zi)]

= E
[

exp{x>i β + σzi}
exp{x>i β + σzi}+ 1

]
− E2

[
exp{x>i β + σzi}

exp{x>i β + σzi}+ 1

]
.

By Taylor expansion around 0, we have

exp{x>i β + σzi}
exp{x>i β + σzi}+ 1 ≈

exp{x>i β}
exp{x>i β}+ 1 + exp{x>i β}σzi

(exp{x>i β}+ 1)2−

− [(exp{x>i β})2 − exp{x>i β}]σ2z2
i

2(exp{x>i β}+ 1)3 +

+ [(exp{x>i β})3 − 4(exp{x>i β})2 + exp{x>i β}]σ3z3
i

6(exp{x>i β}+ 1)4 .

Thus,

E
[

exp{x>i β + σzi}
exp{x>i β + σzi}+ 1

]
≈ E

[
exp{x>i β}

exp{x>i β}+ 1 + exp{x>i β}σzi

(exp{x>i β}+ 1)2−

− [(exp{x>i β})2 − exp{x>i β}]σ2z2
i

2(exp{x>i β}+ 1)3 +

+[(exp{x>i β})3 − 4(exp{x>i β})2 + exp{x>i β}]σ3z3
i

6(exp{x>i β}+ 1)4

]

= exp{x>i β}
exp{x>i β}+ 1 + exp{x>i β}σ��

�* 0
E[zi]

(exp{x>i β}+ 1)2−

− [(exp{x>i β})2 − exp{x>i β}]σ2E[z2
i ]

2(exp{x>i β}+ 1)3 +

+ [(exp{x>i β})3 − 4(exp{x>i β})2 + exp{x>i β}]σ3
�
��
�* 0

E[z3
i ]

6(exp{x>i β}+ 1)4

= exp{x>i β}
exp{x>i β}+ 1 −

[(exp{x>i β})2 − exp{x>i β}]σ2

2(exp{x>i β}+ 1)3 .
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Therefore

Var(yi) ≈
exp{x>i β}

exp{x>i β}+ 1 −
[(exp{x>i β})2 − exp{x>i β}]σ2

2(exp{x>i β}+ 1)3 −

−
[

exp{x>i β}
exp{x>i β}+ 1 −

[(exp{x>i β})2 − exp{x>i β}]σ2

2(exp{x>i β}+ 1)3

]2

= exp{x>i β}
exp{x>i β}+ 1 −

[(exp{x>i β})2 − exp{x>i β}]σ2

2(exp{x>i β}+ 1)3 −

−
[

(exp{x>i β})2

(exp{x>i β}+ 1)2 −
[(exp{x>i β})3 − (exp{x>i β})2]σ2

(exp{x>i β}+ 1)4 +

+[(exp{x>i β})2 − exp{x>i β}]2σ4

4(exp{x>i β}+ 1)6

]

= exp{x>i β}
exp{x>i β}+ 1 −

(exp{x>i β})2

(exp{x>i β}+ 1)2 −
[(exp{x>i β})2 − exp{x>i β}]σ2

2(exp{x>i β}+ 1)3 +

+ [(exp{x>i β})3 − (exp{x>i β})2]σ2

(exp{x>i β}+ 1)4 −

− [(exp{x>i β})2 − exp{x>i β}]2σ4

4(exp{x>i β}+ 1)6 , for i in 1, . . . , n.

Probit link

• Link function: g(µ) = Φ−1(µ) = η

• Inverse of the link function: g−1(η) = Φ(η) = µ

Var(yi) = E[φ−1V (µ(zi))] + Var[µ(zi)]

= E[µ(zi)− µ(zi)2] + E[µ(zi)2]− E2[µ(zi)]

= E[µ(zi)]−����
�E[µ(zi)2] +����

�E[µ(zi)2]− E2[µ(zi)]

= E[Φ(x>i β + σzi)]− E2[Φ(x>i β + σzi)].

By Taylor expansion around 0, we have

Φ(x>i β + σzi) ≈ Φ(x>i β) + σφ(x>i β)zi −
(x>i β)σ2φ(x>i β)z2

i

2 +

+ [(x>i β)2 + 1]σ3φ(x>i β)z3
i

6 ,
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where φ( · ) is the standard normal density. Thus,

E[Φ(x>i β + σzi)] ≈ E
[
Φ(x>i β) + σφ(x>i β)zi −

(x>i β)σ2φ(x>i β)z2
i

2 +

+[(x>i β)2 + 1]σ3φ(x>i β)z3
i

6

]

= Φ(x>i β) + σφ(x>i β)��
�*0

E[zi]−
(x>i β)σ2φ(x>i β)��

��* 1
E[z2

i ]
2 +

+ [(x>i β)2 + 1]σ3φ(x>i β)��
��* 0

E[z3
i ]

6

= Φ(x>i β)− (x>i β)σ2φ(x>i β)
2 ,

and

E2[Φ(x>i β + σzi)] ≈
[
Φ(x>i β)− (x>i β)σ2φ(x>i β)

2

]2

= Φ2(x>i β)− �2
(x>i β)σ2φ(x>i β)Φ(x>i β)

�2
+ (x>i β)2σ4φ2(x>i β)

4

= Φ2(x>i β)− (x>i β)σ2
φ(x>i β)Φ(x>i β) + (x>i β)2σ4φ2(x>i β)

4

Therefore,

Var(yi) ≈ Φ(x>i β)− (x>i β)σ2φ(x>i β)
2 − Φ2(x>i β) + (x>i β)σ2

φ(x>i β)Φ(x>i β)−

− (x>i β)2σ4φ2(x>i β)
4 , for i in 1, . . . , n.

Cauchit link

• Link function: g(µ) = tan
[
π
(
µ− 1

2

)]
= η

• Inverse of the link function: g−1(η) = 1
π

arctan(η) + 1
2 = µ
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Var(yi) = E[φ−1V (µ(zi))] + Var[µ(zi)]

= E[µ(zi)− µ(zi)2] + E[µ(zi)2]− E2[µ(zi)]

= E[µ(zi)]−����
�E[µ(zi)2] +����

�E[µ(zi)2]− E2[µ(zi)]

= E
[ 1
π

arctan(x>i β + σzi) + 1
2

]
− E2

[ 1
π

arctan(x>i β + σzi) + 1
2

]
= 1
π

E[arctan(x>i β + σzi)] + 1
2 −

( 1
π

E[arctan(x>i β + σzi)] + 1
2

)2

=
(((

((((
(((

(((1
π

E[arctan(x>i β + σzi)] + 1
2−

−
( 1
π2 E2[arctan(x>i β + σzi)] +

(((
((((

(((
(((1

π
E[arctan(x>i β + σzi)] + 1

4

)
= 1

4 −
1
π2 E2[arctan(x>i β + σzi)].

By Taylor expansion around 0, we have

arctan(x>i β + σzi) ≈ arctan(x>i β) + σzi

(x>i β)2 + 1 −
(x>i β)σ2z2

i

[(x>i β)2 + 1]2 +

+ [3(x>i β)2 − 1]σ3z3
i

3[(x>i β)2 + 1]3 .

Thus,

E[arctan(x>i β + σzi)] ≈ E
[
arctan(x>i β) + σzi

(x>i β)2 + 1 −
(x>i β)σ2z2

i

[(x>i β)2 + 1]2 +

+[3(x>i β)2 − 1]σ3z3
i

3[(x>i β)2 + 1]3

]

= arctan(x>i β) + σ��
�* 0

E[zi]
(x>i β)2 + 1 −

(x>i β)σ2
��

��* 1
E[z2

i ]
[(x>i β)2 + 1]2 +

+ [3(x>i β)2 − 1]σ3
��

��* 0
E[z3

i ]
3[(x>i β)2 + 1]3

= arctan(x>i β)− (x>i β)σ2

[(x>i β)2 + 1]2 .

Therefore,

Var(yi) ≈
1
4 −

1
π2

{
arctan(x>i β)− (x>i β)σ2

[(x>i β)2 + 1]2

}2

, for i in 1, . . . , n.

Log link

• Link function: g(µ) = log(µ) = η
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• Inverse of the link function: g−1(η) = exp{η} = µ

Var(yi) = E[φ−1V (µ(zi))] + Var[µ(zi)]

= E[µ(zi)− µ(zi)2] + E[µ(zi)2]− E2[µ(zi)]

= E[µ(zi)]−����
�E[µ(zi)2] +����

�E[µ(zi)2]− E2[µ(zi)]

= E[exp{x>i β + σzi}]− E2[exp{x>i β + σzi}]

= exp{x>i β}E[exp{σzi}]− exp{2(x>i β)}E2[exp{σzi}]

= exp{x>i β}MZ(σ)− exp{2(x>i β)}M2
Z(σ)

= exp{x>i β} exp
{
σ2

2

}
− exp{2(x>i β)} exp{σ2}

= exp
{
x>i β + σ2

2

}
− exp{2(x>i β) + σ2}, for i in 1, . . . , n.

Complementary log-log link

• Link function: g(µ) = log(− log(1− µ)) = η

• Inverse of the link function: g−1(η) = 1− exp{− exp{η}} = µ

Var(yi) = E[φ−1V (µ(zi))] + Var[µ(zi)]

= E[µ(zi)− µ(zi)2] + E[µ(zi)2]− E2[µ(zi)]

= E[µ(zi)]−����
�E[µ(zi)2] +����

�E[µ(zi)2]− E2[µ(zi)]

= E[1− exp{− exp{x>i β + σzi}}]− E2[1− exp{− exp{x>i β + σzi}}]

= �1−
(((

((((
(((

((((
(

E[exp{− exp{x>i β + σzi}}]−

��−1 + �2E[exp{− exp{x>i β + σzi}}]− E2[exp{− exp{x>i β + σzi}}]

= E[exp{− exp{x>i β + σzi}}]− E2[exp{− exp{x>i β + σzi}}]

By Taylor expansion around 0, we have

exp{− exp{x>i β + σzi}} ≈ exp{− exp{x>i β}} − exp{x>i β − exp{x>i β}}σzi+

+ [exp{2(x>i β)} − exp{x>i β}]σ2z2
i

2 exp{exp{x>i β}}
−

− [exp{3(x>i β)} − 3 exp{2(x>i β)}+ exp{x>i β}]σ3z3
i

6 exp{exp{x>i β}}
.

Thus,

May 30, 2018



B.1. Gaussian quadrature case 160

E[exp{− exp{x>i β + σzi}}] ≈ E
[
exp{− exp{x>i β}} − exp{x>i β − exp{x>i β}}σzi +

+ [exp{2(x>i β)} − exp{x>i β}]σ2z2
i

2 exp{exp{x>i β}}
−

− [exp{3(x>i β)} − 3 exp{2(x>i β)}+ exp{x>i β}]σ3z3
i

6 exp{exp{x>i β}}

]

= exp{− exp{x>i β}} − exp{x>i β − exp{x>i β}}σ��
�*0

E[zi]+

+ [exp{2(x>i β)} − exp{x>i β}]σ2
��

��* 1
E[z2

i ]
2 exp{exp{x>i β}}

−

− [exp{3(x>i β)} − 3 exp{2(x>i β)}+ exp{x>i β}]σ3
��

��* 0
E[z3

i ]
6 exp{exp{x>i β}}

= exp{− exp{x>i β}}+ [exp{2(x>i β)} − exp{x>i β}]σ2

2 exp{exp{x>i β}}
.

Therefore,

Var(yi) ≈ exp{− exp{x>i β}}+ [exp{2(x>i β)} − exp{x>i β}]σ2

2 exp{exp{x>i β}}
−

−
[
exp{− exp{x>i β}}+ [exp{2(x>i β)} − exp{x>i β}]σ2

2 exp{exp{x>i β}}

]2

= exp{− exp{x>i β}}+ [exp{2(x>i β)} − exp{x>i β}]σ2

2 exp{exp{x>i β}}
−

− exp{−2 exp{x>i β}} −
[exp{2(x>i β)} − exp{x>i β}]σ2

exp{2 exp{x>i β}}
−

− [exp{4(x>i β)} − 2 exp{3(x>i β)}+ exp{2(x>i β)}]σ4

4 exp{2 exp{x>i β}}
,

for i in 1, . . . , n.

B.1.5 Inverse gaussian response

Variance function: V (µ) = µ3

1/µ2 link

• Link function: g(µ) = 1
µ2 = η

• Inverse of the link function: g−1(η) = 1
η1/2 = µ
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Var(yi) = E[φ−1V (µ(zi))] + Var[µ(zi)]

= E[φ−1(x>i β + σzi)−3/2] + Var[(x>i β + σzi)−1/2].

By Taylor expansion around 0, we have

(
1

x>i β + σzi

)1/2

≈

√
x>i β

x>i β
− σzi

2(x>i β)
√
x>i β

+ 3σ2z2
i

8(x>i β)2
√
x>i β

−

5σ3z3
i

16(x>i β)3
√
x>i β

,

and

(
1

x>i β + σzi

)3/2

≈ 1
(x>i β)

√
x>i β

− 3σzi

2(x>i β)2
√
x>i β

+ 15σ2z2
i

8(x>i β)3
√
x>i β

−

− 35σ3z3
i

16(x>i β)4
√
x>i β

.

Thus

Var
( 1
x>i β + σzi

)1/2
 ≈ Var


√
x>i β

x>i β
− σzi

2(x>i β)
√
x>i β

+ 3σ2z2
i

8(x>i β)2
√
x>i β

−

− 5σ3z3
i

16(x>i β)3
√
x>i β


= σ2Var[zi]

4(x>i β)3 + 9σ4Var[z2
i ]

64(x>i β)5 + 25σ6Var[z3
i ]

256(x>i β)7 −

− 3σ3Cov[zi, z
2
i ]

8(x>i β)4 + 5σ4Cov[z,z
3
i ]

16(x>i β)5 − 15σ5Cov[z2
i , z

3
i ]

64(x>i β)6

= σ2

4(x>i β)3 + σ4

2(x>i β)5 + 375σ6

256(x>i β)7 .
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Moreover

E
( 1
x>i β + σzi

)3/2
 ≈ E

 1
(x>i β)

√
x>i β

− 3σzi

2(x>i β)2
√
x>i β

+

+ 15σ2z2
i

8(x>i β)3
√
x>i β

− 35σ3z3
i

16(x>i β)4
√
x>i β



= 1
(x>i β)

√
x>i β

− 3σ��
�* 0

E[zi]
2(x>i β)2

√
x>i β

+ 15σ2
��

��* 1
E[z2

i ]
8(x>i β)3

√
x>i β

−

− 35σ3
��

��* 0
E[z3

i ]
16(x>i β)4

√
x>i β

= 1
(x>i β)

√
x>i β

+ 15σ2

8(x>i β)3
√
x>i β

.

Therefore

Var(yi) ≈ φ−1

 1
(x>i β)

√
x>i β

+ 15σ2

8(x>i β)3
√
x>i β

+

+ σ2

4(x>i β)3 + σ4

2(x>i β)5 + 375σ6

256(x>i β)7 , for i in 1, . . . , n.

Inverse link

• Link function: g(µ) = 1/µ = η

• Inverse of the link function: g−1(η) = 1/η = µ

Var(yi) = E[φ−1V (µ(zi))] + Var[µ(zi)]

= E[φ−1(x>i β + σzi)−3] + Var[(x>i β + σzi)−1],

By Taylor expansion around 0, we have

1
x>i β + σzi

≈ 1
x>i β

− σzi

(x>i β)2 + σ2z2
i

(x>i β)3 −
σ3z3

i

(x>i β)4 ,

and (
1

x>i β + σzi

)3

≈ 1
(x>i β)3 −

3σzi

(x>i β)4 + 6σ2z2
i

(x>i β)5 −
10σ3z3

i

(x>i β)6 .
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Thus

E
( 1
x>i β + σzi

)3
 ≈ E

[
1

(x>i β)3 −
3σzi

(x>i β)4 + 6σ2z2
i

(x>i β)5 −
10σ3z3

i

(x>i β)6

]

= 1
(x>i β)3 −

3σ��
�* 0

E[zi]
(x>i β)4 + 6σ2

�
��
�* 1

E[z2
i ]

(x>i β)5 −
10σ3

�
��
�* 0

E[z3
i ]

(x>i β)6

= 1
(x>i β)3 + 6σ2

(x>i β)5 .

and, similarly to Gaussian response with inverse link

Var
[

1
x>i β + σzi

]
≈ Var

[
1
x>i β

− σzi

(x>i β)2 + σ2z2
i

(x>i β)3 −
σ3z3

i

(x>i β)4

]

= σ2

(x>i β)4 + 8σ4

(x>i β)6 + 15σ6

(x>i β)8 .

Therefore

Var(yi) ≈ φ−1
[

1
(x>i β)3 + 6σ2

(x>i β)5

]
+

+ σ2

(x>i β)4 + 8σ4

(x>i β)6 + 15σ6

(x>i β)8 , for i in 1, . . . , n.

Identity link

• Link function: g(µ) = µ = η

• Inverse of the link function: g−1(η) = η = µ

Var(yi) = E[φ−1V (µ(zi))] + Var[µ(zi)]

= φ−1E[(x>i β + σzi)3] + Var[x>i β + σzi]

= φ−1[(x>i β)3 + 3(x>i β)2σ��
�*0

E[zi] + 3(x>i β)σ2
��

��*1
E[z2

i ] + σ3
��

��*0
E[z3

i ]]+

+ σ2
���

�:1Var[zi]

= φ−1[(x>i β)3 + 3(x>i β)σ2] + σ2, for i in 1, . . . , n.

Log link

• Link function: g(µ) = log(µ) = η

• Inverse of the link function: g−1(η) = exp{η} = µ
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Var(yi) = E[φ−1V (µ(zi))] + Var[µ(zi)]

= φ−1E[(exp{x>i β + σzi})3] + Var[exp{x>i β + σzi}]

= φ−1E[(exp{x>i β + σzi})3] + E[(exp{x>i β + σzi})2]−

− E2[exp{x>i β + σzi}]

= φ−1E[exp{3(x>i β + σzi)}] + E[exp{2(x>i β + σzi)}]−

− (E[exp{x>i β + σzi}])2

= φ−1 exp{3(x>i β)}E[exp{3σzi}] + exp{2(x>i β)}E[exp{2σzi}]−

− exp{2(x>i β)}E2[exp{σzi}]

= φ−1 exp{3(x>i β)}MZ(3σ) + exp{2(x>i β)}[MZ(2σ)−M2
Z(σ)]

= φ−1 exp{3(x>i β)} exp
{

9σ2

2

}
+

+ exp{2(x>i β)}

exp

�
��
2

4σ2

�2

− exp
{
σ2

2

}
= φ−1 exp

{
3(x>i β) + 9σ2

2

}
+ exp{2(x>i β + σ2)}−

− exp
{

2(x>i β) + σ2

2

}
, for i in 1, . . . , n.
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