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Abstract

We investigate the linear instability and nonlinear stability for some convection

models, and present results and details of their computation in each case. The con-

vection models we consider are: convection in a variable gravity field with magnetic

field effect; magnetic effect on instability and nonlinear stability in a reacting fluid;

magnetic effect on instability and nonlinear stability of double diffusive convection

in a reacting fluid; Poiseuille flow in a porous medium with slip boundary conditions.

The structural stability for these convection models is studied. A priori bounds

are derived. With the aid of these a priori bounds we are able to demonstrate

continuous dependence of solutions on some coefficients. We further show that the

solution depends continuously on a change in the coefficients.

Chebyshev collection, p order finite element, finite difference, high order finite

difference methods are also developed for the evaluation of eigenvalues and eigen-

functions inherent in stability analysis in fluid and porous media, drawing on the

experience of the implementation of the well established techniques in the previous

work (cf. Drazin and Reid [46], Fox [53], Ng and Reid [132–134]) and Orszag [140]).

These generate sparse matrices, where the standard homogeneous boundary condi-

tions for both porous and fluid media problems are contained within the method.

When the difference between the linear (which predicts instability) and nonlinear

(which predicts stability) thresholds is very large, the validity of the linear instability

threshold to capture the onset of the instability is unclear. Thus, we develop a three

dimensional simulation to test the validity of these thresholds. To achieve this we



iv

transform the problem into a velocity-vorticity formulation and utilise second order

finite difference schemes. We use both implicit and explicit schemes to enforce the

free divergence equation.
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Chapter 1

Introduction

The concept of stability in the mathematical study of a physical system has had a

long and fruitful history. Real situations show that for the practical use of many

technical systems stability properties can be a decisive criterion. Some examples

where stability properties are important could be: engineering structures (bridges,

plates, shells structures under pressure loading or unloading by flowing fluids), vehi-

cles moving at high speed, truck-trailer combinations, railway trains, hydrodynamics

problems.

Over the past decades, engineers have approached many of their stability prob-

lems using a linearised stability analysis. In addition, if a linear stability analysis

does not seem to be sufficient, numerical simulations are employed. Such a numeri-

cal simulation allows one to check whether a linearised analysis provides practically

useful results or not. However, contrary to the widespread belief that linearised

stability analysis together with numerical simulation are a general method of treat-

ing stability problems, it has been proved that this is not the case. There exists

a large number of problems where a linearised analysis does not give much infor-

mation about the behaviour of the nonlinear system at all and, hence, a numerical

simulation would be very costly without yielding much insight into the qualitative

To clarify the concept of stability in the context of a system of partial differential

equations, we begin with a simple illustrative example. Suppose u is a solution of

the nonlinear diffusion equation with a linear source term and subject to boundary

1



Chapter 1. Introduction 2

and initial conditions as follows, (cf. Straughan [196])

∂u

∂t
+ u

∂u

∂x
=
∂2u

∂x2
+ au, x ∈ (0, 1), t > 0,

u(0, t) = u(1, t) = 0,

u(x, 0) = u0(x). (1.0.1)

Here t and x are time and spatial point respectively, and a is some real, positive

constant. Clearly u = 0, is a solution to equation (1.0.1), which is referred to as

a stationary solution as none of the variables have time (t in the context of the

example) dependence. It is the stability of this solution which we investigate by

introducing a perturbation (i.e. disturbance) to it. If all the perturbations decay to

zero as time progresses then the solution is said to be stable. Conversely if just a

single disturbance grows in amplitude with time, then the solution is unstable. Let

w be a perturbation to the solution u ≡ 0, i.e. u = u+ w, such that

∂w

∂t
+ w

∂w

∂x
=
∂2w

∂x2
+ aw. (1.0.2)

To discuss linearised instability we retain only the terms in (1.0.2) which are linear in

w. As this is now a linear equation we may introduce exponential time dependence

in w such that w(x, t) = eσtz(x), for some, potentially complex, growth rate σ. This

yields the equation

σz =
d2z

dx2
+ az. (1.0.3)

By imposing the boundary conditions, (z = 0, x = 0, 1), it is possible to find

z(x) = C sin(kx), where k = nπ, n = ±1,±2, ....

for any constant C. Substituting this into (1.0.3) yields

σ = −k2 + a, where k2 = n2π2, n = ±1,±2, ....

The growth rate σ can now be used to assess whether the zero solution is unstable.

Therefore, σ ∈ R and σ < 0 ⇐⇒ a < k2 ⇐⇒ a < k2min = π2. So for a < π2 we

say there is linear stability. On the other hand if a > π2 then σ > 0 for n = 1 and

there is linear instability. Hence a = π2 is the linear instability-stability boundary.
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In general the locus which separates instability and stability is known as the neutral

stability curve. The neutral stability curve represents a marginal state between

stability and instability. This marginal state exhibits one of two kinds of motion,

stationary σ ∈ R or oscillatory σ ∈ C. If the motion is stationary, perturbations

grow (or are damped) aperiodically whereas if it is oscillatory they grow (or are

damped) periodically. If instability sets in as stationary motion the principle of

exchange of stabilities is said to hold. On the other hand if instability sets in as

oscillatory motion then the system is said to be subject to overstability. One of the

aims of this thesis is to generate neutral stability curves and investigate their state.

It is important to note, however, that this linear analysis approach assumes that

the perturbation is small and so neglects terms of quadratic and higher order. Hence,

if a system of partial differential equations contains nonlinear elements, these terms

must be discarded to proceed. It has been proved that linear analysis often provides

little information on the behaviour of the nonlinear system (see Straughan [196]),

so in such cases only instability can be deduced from the linear thresholds, as any

potential growth in the nonlinear terms is not considered.

To obtain sufficient conditions for stability with respect to arbitrary disturbances

the full nonlinear equations must be considered. In order to establish the nonlinear

stability of the steady solution, it is sufficient to show that all perturbations vanish

rapidly as t → ∞. For this is sufficient to prove that any relevant perturbation

vanishes exponentially. One suitable way to demonstrate this is the energy method.

A fuller account of the energy method and its applications on a various problems

may be found in Straughan [196]. Nonlinear energy analysis, which is conducted

throughout the thesis, is of particular importance as energy methods are creating

much interest, see e.g. Kaiser and Mulone [93], Delgado et al. [41], and also because

they delimit the parameter region of possible subcritical instability (the region be-

tween the linear instability and nonlinear stability thresholds).

Multiplying (1.0.1)1 by u and integrating over (0, 1) yields

1

2

∫ 1

0

∂u2

∂t
dx =

∫ 1

0

u
∂u2

∂x2
dx+ a

∫ 1

0

u2dx.
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It is possible to use the boundary conditions to derive that∫ 1

0

u
∂u2

∂x2
dx = [u

∂u

∂x
]10 −

∫ 1

0

(
∂u

∂x
)2dx = −∥ux∥2,

and ∫ 1

0

u2
∂u

∂x
dx =

1

3
[u3]10 = 0,

where ux = du/dx and ∥·∥ denotes the norm on L2(0, 1) (where L2(0, 1) is the space

of square integrable functions on (0, 1)), i.e.,

∥u∥2 =
∫ 1

0

u2dx.

Defining an energy E(t) by

E(t) =
1

2
∥u∥2,

we have the inequality

dE

dt
= −∥ux∥2 + a∥u∥2 = −a∥ux∥2

(
1

a
− ∥u∥2

∥ux∥2

)

≤ −a∥ux∥2
(
1

a
−max

H

∥u∥2

∥ux∥2

)
, (1.0.4)

where H is the space of admissible functions,

H = {u ∈ C2(0, 1) ∩ C([0, 1]) : u = 0, x = 0, 1},

and Cm(0, 1) is the space of m continuously differentiable functions on (0, 1), 0 ≤

m ≤ ∞. Suppose now that RE is defined by

1

RE

= max
H

∥u∥2

∥ux∥2

then (1.0.4) becomes
dE

dt
≤ −a∥ux∥2

(
1

a
− 1

RE

)
Using the Poincare’s inequality (i.e. ∥ux∥2 ≥ π2∥u∥2, see Appendix A.l for further

details), and assuming c = 1/a− 1/RE it can be deduced that

dE

dt
≤ −acπ2∥u∥2 = −2acπ2E,

or, equivalently
d

dt
(e2acπ

2tE) ≤ 0,
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which leads to

E(t) ≤ e−2acπ2tE(0).

Recall that E(t) = 1
2
∥u∥2; therefore if c > 0

∥u∥2 ≤ e−2acπ2t∥u0∥2 −→ 0 as t −→ ∞,

Hence it has been shown that provided a < RE, ∥u∥ −→ 0 at least exponentially as

t −→ ∞, and so the zero solution to (1.0.1) is stable.

To find RE let I1 = ∥u∥2, I2 = ∥ux∥2 and recall that

1

RE

= max
H

I1
I2

Suppose u is a maximising solution and consider solutions of the form u+ ϵη where

ϵ is some constant and η is an arbitrary C2(0, 1) function such that η(0) = η(1) = 0.

Clearly the maximum occurs at ϵ = 0 so,[
d

dϵ

(
I1
I2

)]
ϵ=0

=

[
1

I2

dI1
dϵ

− I1
I22

dI2
dϵ

]
ϵ=0

= δI1

[
1

I2

]
ϵ=0

− δI2
RE

[
1

I2

]
ϵ=0

= 0,

where δ stands for the derivative with respect to ϵ evaluated at ϵ = 0. Hence it can

be deduced that

REδI1 − δI2 = 0. (1.0.5)

where

δI1 =

[
d

dϵ

∫ 1

0

(u+ ϵη)2dx

]
ϵ=0

= 2

∫ 1

0

uηdx,

δI2 =

[
d

dϵ

∫ 1

0

(ux + ϵηx)
2dx

]
ϵ=0

= 2

∫ 1

0

uxηxdx,

Therefore (1.5) yields ∫ 1

0

(ηREu− uxηx)dx = 0.

which can be integrated by parts to give∫ 1

0

η(REu+ uxx)dx = 0.

Apart from the continuity and boundary conditions it must satisfy, η is arbitrary

hence it can be concluded that,

d2u

dx2
+REu = 0, u(0) = u(1) = 0. (1.0.6)
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This is known as the Euler-Lagrange equation for the example at hand. It yields an

eigenvalue problem for RE.

The general solution of (1.0.6) is given by

u = A sin(
√
RE x) +B cos(

√
RE x),

where A,B are constants. The boundary condition u(0) = 0 implies that B = 0,

hence

u = A sin(
√
RE x).

For a non arbitrary solution suppose A ̸= 0, then u(1) = 0 implies that√
RE = nπ, where n = ±1,±2, ....

i.e. RE = π2, 4π2, 9π2, ....

Recall that stability requires a < RE. The minimum value of RE is π2 so as expected,

a < π2, is the stability bound of the zero solution to (1.0.1).

In general it is found that the energy method yields some critical threshold below

which everything is stable and a linear instability analysis some bounds above which

everything is unstable. In the example above the energy method and normal mode

analysis yield the same critical instability-stability boundary. This is due to the fact

that the differential equation under consideration (1.0.1)1 is linear. If nonlinearities

are introduced then in general it is found that a nonlinear stability analysis will yield

a different critical threshold to one obtained by a linear analysis. A linear analysis

assumes that any perturbation is small and so neglects terms of quadratic order and

higher, hence discrepancy between linear instability and nonlinear stability results

can occur. One of the aims of this thesis, and energy theory in general, is to try and

optimise the two thresholds to be as close together as possible and so reduce the

possibility of subcritical instabilities which may occur below the linear instability

bound and above the nonlinear stability threshold. Many techniques have been used

to do this and the theory applied to a range of important physical problems. There

are many references in the literature and significant advancement has been made in

the last 50 years. For reference we mention some recent papers and the citations

therein namely, Basurto and Lombardo [18] and Lombardo et al. [111, 112]. Many
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more references and a thorough discussion of the energy method and its subtleties

can be found in Straughan [196].

Conventionally, stability calculations involve determining eigenvalues and eigen-

functions, with few of the associated eigenvalue problems solvable analytically. Two

powerful existing techniques for finding eigenvalues and eigenfunctions numerically

are the compound matrix (cf. Drazin and Reid [46] and Ng and Reid [132–134])

and the Chebyshev tau method (cf. Fox [53] and Orszag [140]). These numerical

methods are used in the linear and nonlinear analyses to yield generalised eigenvalue

problems of the form,

Ax = σBx

where A and B are matrices and x is some vector, all of which depend upon the

system under consideration. The compound matrix method, which belongs to the

family of shooting techniques, performs competently for stiff differential equation-

s, with the specific purpose of reducing rounding error, as explored in Greenberg

and Marletta [68], Straughan and Walker [201], see also the references therein. The

Chebyshev tau technique is a spectral method. This method calculates as many

eigenvalues as required as opposed to just one at a time as is done in the compound

matrix method. Straughan and Walker [201] applied these two techniques to lin-

ear and nonlinear stability problems for convection in porous media. Their paper

provides an excellent summary of the two aforementioned methods. They com-

pare the techniques and highlight the advantages and disadvantages of both when

investigating stability problems.

These established methods, although useful, produce a variety of computation-

al and storage problems, as highlighted in each instance of their utilisation in the

thesis. The main difficulties with spectral methods are how to apply the boundary

conditions which involve derivatives of order higher than one and significant round-

ing errors in the computational results. One of the techniques which was used to

avoid these difficulties was to choose the spaces of test and trial functions such that

these spaces satisfy the boundary conditions [64, 65]. One of the aims of Chapter 2

is to apply the Chebyshev tau method to solve the problem of convection in a vari-

able gravity field with magnetic field effect with free-free and fixed-fixed boundary
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conditions. We also consider the finite difference and the high order finite difference

to solve our problem which are very flexible numerical methods. We believe that

the comparison between these methods is very important where we discuss this in

some detail.

In Chapter 3, we study the problem of convective movement of a reacting solute

in a viscous incompressible fluid occupying a plane layer and subjected to a vertical

magnetic field. The thresholds for linear instability are found and compared to those

derived by a global nonlinear energy stability analysis. The finite difference method

has been applied to get the numerical results of this problem. We show the effect of

magnetic field and the chemical reaction on the critical Rayleigh number.

Double-diffusive convection takes place in a wide variety of technological appli-

cation (e.g. solar ponds, crystallization and solidification processes, nuclear engi-

neering) and in other scientific branches (e.g. geology, oceanography, astrophysics).

One of the fundamental problems of double-diffusive convection is the stability of a

statically stable horizontal fluid layer, stratified by two buoyancy components with

different molecular diffusivities (e.g. heat and salt) which make opposite contribu-

tions to the overall vertical density distribution. In such systems, motion can arise

even when the basic state density distribution is gravitationally stable.

In any realistic double-diffusive system the temperature or concentration gradient

can cause considerable spatial variations of the physical properties of the fluid which,

in turn, vary the gradient itself. In Chapter 4, we study the problem of double-

diffusive convection in a reacting fluid and magnetic field effect based internal heat

source. A linear instability analysis and nonlinear stability analysis are performed

and using the finite element method of p order we get the corresponding numerical

results. The numerical results are presented for fixed-fixed and free-free boundary

conditions.

The classical hydrodynamic problem of stability of Poiseuille flow in a channel

is a major one in fluid dynamics, see e.g. Joseph [92], Chapter 3, Straughan [195],

Chapter 8. As these texts point out there are major problems in trying to develop a

meaningful nonlinear energy stability theory for such flows since the nonlinear energy

stability threshold is inevitably far away from the linear instability one. Additionally,
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Chapter 1. Introduction 9

the eigenvalue problems associated with this class of flows are numerically very

difficult, see e.g. Dongarra et al. [43]. The focus of attention in Chapter 5 is on the

problem of Poiseuille flow in a channel which is filled with a porous medium saturated

with a linear viscous fluid. In particular, we analyse the effect of slip boundary

conditions on the onset of instability. Due to numerous applications in micro-electro-

mechanical-systems (MEMS) and other microfluidic devices, we consider such a

study to be essential. We accurately analyse when instability will commence and

determine the critical Reynolds number as a function of the slip coefficient.

In Chapter 6, we apply the second order finite difference method, the high order

finite difference scheme, p order finite element method, the Chebyshev collocation

method-1 and method-2 and Chebyshev tau technique to solve the eigenvalue sys-

tems of standard thermal convection with free-free, slip-slip, and fixed-slip boundary

conditions. Rayleigh [163] showed that, in the case of free-free boundary conditions,

we may obtain a analytical result for Rayleigh number Racrit = 27π4/4 (see also

Chandrasekhar [32] and Drazin and Reid [46]), thus, we select free-free boundary

conditions to check the accuracy of numerical methods. However, slip-slip, and fixed-

slip boundary conditions have been selected to check the flexibility of the numerical

methods in dealing with these boundary conditions.

Within the context of fluid flow in porous media, or simply within the theory

of fluid flow, there has been substantial recent interest in deriving stability esti-

mates where changes in coefficients are allowed, or even the model (the equations

themselves) changes. This type of stability has earned the name structural stability,

and is different from continuous dependence on the initial data. Structural stabil-

ity is the focus of attention in, for example, Ames and Payne [1–4], Franchi and

Straughan [54–57], Lin and Payne [106–110], Payne and Song [144–146], Payne and

Straughan [149–151], Payne et al. [143], and also occupies attention in the books of

Bellomo and Preziosi [19], Ames and Straughan [5] and Straughan [197]. Structural

stability questions are fundamental in that one wishes to know whether a small

change in a coefficient in an equation, or in the boundary data, or in the equations

themselves, will induce a dramatic change in the solution. Thus structural stabil-

ity constitutes a class of stability problems every bit as important as continuous
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dependence on the initial data.

In Chapters 7, 8 and 9 we deal with obtaining stability estimates for solutions

to some convection problems where changes in coefficients are allowed, or even the

equations themselves change. Such stability estimates are fundamental to analysing

whether a small change in a coefficient or other data leads to a drastic change in

the solution. Chapters 7 and 8 continue the investigation of continuous dependence

properties of models which were introduced in Chapters 3 and 4 when these models

include porous media and fluid, respectively. For porous media case, we concentrate

on a Brinkman model. For both models, we establish the continuous dependence on

changes in the chemical reaction K1 coefficient, and on changes in the coefficient of

the magnetic term σ. Chapter 9 is devoted to studying the influence of the magnetic

and the gravity vector coefficients on the double diffusive convective flow in a porous

medium using the Darcy model.

The purpose of Chapter 10 is to study the effect of a heat source on the solution

to the equations for an incompressible heat conducting viscous fluid. When the

difference between the linear and nonlinear thresholds is very large, the comparison

between these thresholds is very interesting and useful. Thus we repeat the stability

analysis of Straughan [194] to select new situations which have very big subcritical

region. Then, we develop a three dimensional simulation for the problem. To do

this, firstly, we transform the problem to velocity- vorticity formulation, then we

use second order finite difference schemes. We use implicit and explicit schemes to

enforce the free divergence equation. The size of the box is evaluated according

to the normal modes representation. Moreover, we adopt the periodic boundary

conditions for velocity, temperature, and concentration in the x, y dimensions.

Chapter 11 contains some concluding remarks on the results and implications of

the thesis, with suggestions on the development of future work.
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Chapter 2

Convection in a variable gravity

field with magnetic field effect

2.1 Introduction

In this chapter, we wish to analyse a model of convective instability created by a top

heavy layer of fluid containing a solute or pollutant. Applications include environ-

mental (atmospheric) physics where a polluted atmosphere at the Earth’s surface

is helped by convection overturning the air and mixing. Other applications concern

studies involving a salt concentration in a fluid. The topic of pollution/contaminant

spread in a shallow atmosphere, in a shallow layer of water, or in soils, is one of

much current research interest with application to many environmental/geophysical

concerns of modern life, cf. Franchi and Straughan [58] and the references therein.

The fundamental concept behind Magnetohydrodynamics (MHD) is that mag-

netic fields can induce currents in a moving conductive fluid, which in turn creates

forces on the fluid and also changes the magnetic field itself. The set of equations

which describe MHD are a combination of the Navier-Stokes equations of fluid dy-

namics and Maxwell’s equations of electromagnetism. The MHD applies to many

conductive fluid and plasma flows encountered in nature and in industrial applica-

tions ( [179], [52] and the references therein). For instance, MHD equations would

be relevant for the atmosphere of the sun, the influence of the solar wind on the

Earth’s atmosphere, nuclear fusion, and for the simulation of plasma thrusters for

11
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active flow control in aerodynamics.

It is likely to be important to consider variable gravity effects in the large scale

convection of atmospheres, see Pradhan and Samal [155]. The addition of viscosity

will provide a more realistic situation. It could be argued that one should further in-

clude compressibility, but we prefer to treat at this stage the incompressible model as

the results will certainly be more transparent; the mathematical complexities intro-

duced by compressibility even with a constant gravity field are highly nontrivial, cf.

Spiegel [191] and Padula [141]. However, it is necessary to include non-Boussinesq

(penetrative) effects to describe a convective atmosphere (Veronis [220]).

The analogous problem which consider the effect of the magnetic field on the

onset of thermal instability in fluids has received considerable attention, cf., Galdi

and Straughan [61], Galdi [60], Sunil et al. [205], Sunil et al. [207], Sunil and Mahajan

[209], Sunil et al. [208], Dragomirescu and Georgescu [44,62], Straughan [193], Zebib

[229], Zakaria [228], Chertovskih et al. [34], Lee and Chun [104], Ghasemi et al. [63],

Ashouri et al. [7], Varshney and Baig [219], Landeau and Aubert [99] and Umavathi

and Malashetty [218].

Convectional hydrodynamic stability theory is mainly concerned with the de-

termination of critical values of Rayleigh number, demarcating a region of stability

from that of instability. To do this, we apply a quasi-static approximation as in

Galdi and Straughan [61]. This still allows a full analysis of the effect of the mag-

netic field but avoids mathematical complication associated with the complete set

of equations for magneto hydrodynamic, cf., Rionero [169], Galdi [60], Rionero and

Mulone [177], Chandrasekhar [32], Roberts [179], Landau et al. [100]. Nevertheless,

the model we develop is still highly nonlinear and very non-trivial.

Orszag in [140], introduced the earlier numerical study to the Orr-Sommerfeld

problem. He solved this problem by using a direct (tau) spectral method. The

other important papers was introduced by Dongarra et al. [43] and Straughan and

Walker [201]. In [43] they analyze the Orr-Sommerfeld equation supplied with ho-

mogeneous boundary conditions which contain derivative up to the first order. S-
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traughan and Walker in [201] solved other hydrodynamic stability problems using

Chebyshev tau and compound matrix methods. Hill and Straughan in [86] apply

high accuracy Legendre spectral element method for solving second order as well as

higher order (especially fourth order) differential eigenvalue problems. Gheorghiu

and Pop in [65], built up a Chebyshev tau method in order to solve a hydrodynam-

ic stability problem connected with the Marangoni-Plateau-Gibbs convection. The

eigenvalue problem was a non-standard one, i.e., two out of the four boundary con-

ditions attached to the OrrSommerfeld equation contained derivatives of order two

and three. In [64] Gheorghiu and Dragomirescu used Weighted residuals Galerkin

method, Weighted residuals Petrov-Galerkin method and the Chebyshev collocation

method to solve the linear hydrodynamic stability problem of a convective flow in

varying gravity field.

In this Chapter, the problem of convection in a variable gravity field with mag-

netic field effect is studied by using methods of linear instability theory and nonlinear

energy theory. Three numerical methods have been applied to get the numerical re-

sults of our problem, namely Chebyshev tau, finite difference FD and High order

finite difference HFD. The plan of the chapter is as follows. In the next section we

develop the basic equations. Then, both linear instability and unconditional nonlin-

ear stability results are derived in Section 2.3 and 2.4, respectively. The numerical

techniques are described with details in Section 2.5. In the final section, we present

the numerical results which have been computed using the Chebyshev tau, finite

differences and high order finite differences.

The results in this chapter are also presented in the manuscript Harfash [72].

2.2 Governing Equations

We suppose the fluid is contained in the plane layer {z ∈ (0, d)} × R2, and is

incompressible, although a Boussinesq approximation is employed in the buoyancy

term in the momentum equation. The momentum equation for a fluid containing a

solute and with an imposed magnetic field is then
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ρ(vi, t + vj vi,j) = −p, i + µ∆vi − ραckig(z)(c− c∞) + j×B, (2.2.1)

where ρ,v, p, c are the constant density, velocity field, pressure, and concentration of

solute. Additionally, αc is the salt expansion coefficient, µ is the dynamic viscosity,

g(z) = 1 + εh(z) is gravity field, c∞ is a reference concentration, k = (0, 0, 1), j is

the current, and B is the magnetic induction field. Throughout, we use standard

indicial notation and the Einstein summation convention so that e.g. vi, t = ∂vi/∂t,

and p,i = ∂p/∂xi, vj vi,j ≡ (v.∇)v, and ∆ is the Laplacian. The balance of mass

equation is

vi,i = 0. (2.2.2)

The equation governing the evaluation of the solute concentration is, cf., Straughan

[196], p.239,

ct + vi c, i = D̂∆c. (2.2.3)

Here c(x, t) is the solute concentration, D̂ is the the solute diffusion coefficient. To

make the convective overturning instability problem tractable we employ the quasi-

static MHD approximation of Galdi and Straughan [61]. This assume that the

electrical field E is always derivable from a potential, i.e. Ei = −ϕ,i. The magnetic

and electrical fields, E, H, satisfy Maxwell’s equations, cf. Roberts [179], Fabrizio

and Morro [52], so that

curlH = j, curlE = −∂B
∂t
, div B = 0, div j = 0 (2.2.4)

where j is the current and B = µ̂H is the magnetic induction. Then, from (2.2.4)2

it follows that ∂Bi/∂t = 0 and so Bi is a function of the spatial variable xj only.

Galdi and Straughan [61] take B = B0 k where k = (0, 0, 1), the convection layer

being R2 ×{z ∈ (0, d)}. The current is given by j = σ(−E+ v×B), where σ is the

electrical conductivity and v is the fluid velocity, and then (2.2.4)4 shows that

σ(−∆ϕ+B · ∇ × v − v · ∇ ×B) = 0. (2.2.5)

It is now assumed that w3 = 0, where w is the vorticity, w = curlv. Then since

B = B0 k, we have B · ∇ × v ≡ 0. From equation (2.2.4)1 and the expression for j,

curlB =
1

η
(−∇ϕ+ v ×B), (2.2.6)
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where η(= 1/µ̂σ) is the resistivity. We let η → ∞ (which is equivalent to letting

the magnetic Prandtl number Pm = ν/η → 0) and then from (2.2.6) we see that

curlB = 0. Therefore, the term v · ∇ ×B = 0 in (2.2.5) and that equation reduces

to ∆ϕ = 0. Since we suppose ϕ decays sufficiently rapidly at infinite we must have

ϕ ≡ 0 and then we arrive to j = σ(v ×B) with B = B0 k. Thus we have

j×B = σ(v ×B0 k)×B0 k. (2.2.7)

Now, substitute (2.2.7) in (2.2.1), thus, we find the equations for our model are

vi,t + vjvi,j = −1

ρ
p, i + ν∆vi − αcg(z)(c− c∞)ki +

B2
0σ1
ρ

[(v × k)× k]i. (2.2.8)

vi,i = 0, (2.2.9)

c,t + vi c, i = D̂∆c. (2.2.10)

The model now consists of the six partial differential equations (2.2.8), (2.2.9) and

(2.2.10) and the following boundary conditions are assumed to hold,

vi = 0, at z = 0, d; c = cU , at z = d; c = cL, at z = 0, (2.2.11)

where cU , cL are constant with cU > cL. Let us now consider the basic steady state

solution (v̄i, p̄, c̄) of the system, where, as there is no fluid flow, v̄i ≡ 0. Utilizing

the boundary conditions and assuming that the basic steady state solutions are

functions of z only

c̄ = βz + cL, (2.2.12)

where β = (cU −cL)/d. The steady pressure p̄ may then be found from (2.2.8) which

reduces to

−1

ρ
p̄, i − g(z)αc(c̄− c∞)ki = 0. (2.2.13)

To study the stability of (2.2.8), (2.2.9) and (2.2.10) we introduce a perturbation

(ui, π, ϕ) to the steady state solution (v̄i, p̄, c̄), where

vi = v̄i + ui, p = p̄+ π, c = c̄+ ϕ.
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2.3. Linear instability 16

Using (2.2.12), (2.2.13) the perturbed system is

ui, t + uj ui,j = −1

ρ
π, i + ν∆ui − g(z)αcϕki +

B2
0σ1
ρ

[(u× k)× k]i,

ϕt + ui ϕ, i = −βw + D̂∆ϕ,

where ui is solenoidal, i.e. ui, i = 0.

We now introduce non-dimensionalised variable with scaling of

x = x∗d, t = t∗
d2

ν
, u = Uu∗, ϕ = T ♯ϕ∗, π = Pπ∗, U =

ν

d
, P =

ρ ν2

d2
,

T ♯ = U

√
ν β

D̂αc

, R =

√
αc d4 β

D̂ ν
, M = B0d

√
σ1
ρ ν

, Ps =
ν

D̂
.

Here Ps is the Prandtl number and R is the Rayleigh number. With this scaling

the non-dimensional form of becomes (we are usually omit all stars even through

the non-dimensionless form is understood)

ui, t + uj ui,j = −π, i +∆ui − kiRg(z)ϕ+M2[(u× k)× k]i,

ui,i = 0,

Ps (ϕt + ui ϕ, i) = −Rw +∆ϕ.

(2.2.14)

The spatial domain is now {(x, y) ∈ R2} × {z ∈ (0, 1)}. The perturbed boundary

conditions are given by

ui = 0, ϕ = 0, on z = 0, 1, (2.2.15)

and ui, ϕ, π satisfy a plane tiling form in the (x, y)-plane, Chandrasekhar [32], S-

traughan [196].

2.3 Linear instability

Before discussing nonlinear energy stability of a solution to (2.2.14) we briefly digress

into linearized instability theory. The governing equations are obtained from (2.2.14)

by omitting the nonlinear terms. The resulting linearized equations possess solutions

of the type

ui(x, t) = ui(x)e
σt, ϕ(x, t) = ϕ(x)eσt, π(x, t) = π(x)eσt,
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2.3. Linear instability 17

where σ is the growth rate and a complex constant. So that ui(x), ϕ(x), π(x) satisfy

−π, i +∆ui − kiRg(z)ϕ+M2[(u× k)× k]i = σui, (2.3.16)

−Rw +∆ϕ = σPs ϕ. (2.3.17)

Taking the double curl of (2.3.16), using the third component, (and the fact that u

is solenoidal) we have

∆2w −Rg(z)∆∗ϕ−M2D2w = σ∆w, (2.3.18)

where ∆∗ = ∂2/∂x2 + ∂2/∂y2, D = d/dz. We now introduce normal modes of the

form w = W (z)f(x, y), and ϕ = Φ(z)f(x, y) where f(x, y) is a plan-form which tiles

the plane (x, y) with

∆∗f = −a2f. (2.3.19)

The plan-forms represent the horizontal shape of the convection cells formed at the

onset of instability. These cells from a regular horizontal pattern tiling the (x, y)

plane, where the wavenumber a (see [32]) is a measure of the width of the convection

cell. Using (2.3.19), and applying the normal mode representations to (2.3.17) and

(2.3.18) we find

(D2 − a2)2W + a2Rg(z)Φ−M2D2W = σ(D2 − a2)W, (2.3.20)

(D2 − a2)Φ−RW = σPsΦ, (2.3.21)

where the boundary conditions become

Φ = W = DW = 0, z = 0, 1, for fixed boundaries, (2.3.22)

and

Φ = W = D2W = 0, z = 0, 1, for free boundaries. (2.3.23)

System (2.3.20)-(2.3.21) and (2.3.22) or (2.3.23) is solved using the Chebyshev

tau, finite difference (FD) and high order finite difference (HFD) methods. Detailed

numerical techniques and results are reported in sections 5 and 6, respectively. We

have solved system (2.3.20)-(2.3.21) and (2.3.22) or (2.3.23) for eigenvalues σj by

using the QZ algorithm from Matlab routines. Once the eigenvalues σj are found
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2.4. Nonlinear energy stability theory 18

we use the secant method to locate where σR
j , σj = σR

j + σI
j being the real and

imaginary parts of eigenvalue σj. The value of R which makes σR
1 = 0, σR

1 being the

largest eigenvalue, is the critical value of R for a2 fixed. We then use golden section

search to minimize over a2 and find the critical value of R2 for linear instability.

2.4 Nonlinear energy stability theory

Linearized instability theory certainly shows where instability occurs. It does not,

however, a priori yield any information on stability, nor does it necessarily predict

the smallest instability threshold. To clarify this concept, we begin with a simple

illustrative example. Consider the following systems

ẋ = αy − x3,

ẏ = −αx− y3,
(2.4.24)

ẋ = αy + x3,

ẏ = −αx+ y3.
(2.4.25)

Note that, for both system, the linearization is simply a harmonic oscillator with

eigenvalues ±iα. The exact solution of nonlinear system (2.4.24) may be found by

separating variables:

x2(t) + y2(t) ≤ x20(t) + y20(t)

1 + 2t(x20(t) + y20)
.

Therefor, x2(t) + y2(t) → 0 as t → ∞ and thus we deduce that the solution is

asymptotically stable. However, the solution of nonlinear system (2.4.25) lead to

x2(t) + y2(t) ≥ x20(t) + y20(t)

1− 2t(x20(t) + y20)
,

and thus system (2.4.25) is unstable as t→ ∞.

It is possible that nonlinear terms will make a system become unstable long be-

fore the threshold predicted by linear theory is reached. Such instabilities are called

subcritical. If we have a threshold below which we know all nonlinear perturba-

tions decay, in a precise mathematical way, then this will yield a nonlinear stability

boundary. When this threshold is relatively close to the analogous threshold of
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2.4. Nonlinear energy stability theory 19

linear theory we may have some confidence that the linear results are actually pre-

dicting the physical picture correctly. Nonlinear energy stability theory is discussed

in detail in the book by [196].

We now develop an unconditional (i.e. for all initial data) nonlinear energy

stability theory for system (2.2.14). The numerical results for the nonlinear stability

threshold turn out to be relatively close to those for the linear instability boundary,

and hence they are practically useful. The numerical results are discussed in detail

in section 6.

Let V be a period cell for a disturbance to (2.2.14), and let ∥·∥ and (·, ·) be the norm

and inner product on L2(V ). We derive energy identities by multiplying (2.2.14)1

by ui and integrating over V , and (2.2.14)2 by ϕ and integrating over V , to find

1

2

d

dt
∥u∥2 = −∥∇u∥2 −R(g ϕ, w)−M2[∥u∥2 − ∥w∥2], (2.4.26)

Ps

2

d

dt
∥ϕ∥2 = −R(ϕ,w)− ∥∇ϕ∥2. (2.4.27)

Letting λ be positive parameter to be selected at our discretion, we multiply (2.4.27).

Adding this equation to (2.4.26) yields

d

dt
(
1

2
∥u∥2 + λPs

2
∥ϕ∥2) = −R((g + λ)ϕ,w)− λ∥∇ϕ∥2 − ∥∇u∥2 −M2(∥u∥2 + ∥v∥2),

where u is explicitly written as u = (u, v, w). Define

E(t) =
1

2
∥u∥2 + λPs

2
∥ϕ∥2,

D = λ∥∇ϕ∥2 + ∥∇u∥2 +M2(∥u∥2 + ∥v∥2),

I = −R((g + λ)ϕ,w).

Adopting these definitions for (2.4.28) we find

dE

dt
= I − D.

Thus we have

dE

dt
≤ −D(1− 1

RE

),
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2.4. Nonlinear energy stability theory 20

where 1/RE = maxH(I/D) and H is the space of admissible functions, namely

H = {ui, ϕ ∈ C2(0, 1) : ϕ = w = Dw = 0, z = 0, 1}.

For fixed surface and the same space for free surface with D2w = 0 instead of

Dw = 0. If RE > 1, then with λ1 being the constant in poincare’s inequality for u

and ϕ we have D ≥ cE, where c = min{2λ1, 2λ1Ps −1}. Hence

dE

dt
≤ −cE(RE − 1

RE

).

Thus, letting γ = c(RE − 1)/RE and integrating we have

E(t) ≤ E(0)eγt.

If RE > 1, then as t → ∞, E(t) tends to zero at least exponentially, so we have

shown the decay of ϕ and u. Now that the global stability has been established

we must study the maximisation problem 1/RE = maxH(I/D) together with the

condition RE > 1. To solve the maximisation problem we study the Euler Lagrange

equations. The Euler Lagrange equations are found from

REδI − δD = 0. (2.4.28)

let χ and ψ be arbitrary, fixed C2(0, 1) functions which satisfy the boundary condi-

tions. We now consider neighbouring function ui = ui + ϵη(xj) and ϕ = ϕ+ ϵψ(xj),

Hence

δD =
d

dϵ
[∥∇u+ ϵ∇η∥2 +M2∥u+ ϵη∥2 −M2∥w + ϵη3∥2 + λ∥∇ϕ+ ϵ∇ψ∥2]ϵ=0

= ⟨−2∆ui + 2M2ui − 2M2kiw, ηi⟩+ ⟨−2λ∆ϕ, ψ⟩,

and

δI =
d

dϵ
[−R⟨(g + λ)ϕ+ ϵψ, w + ϵη3⟩]ϵ=0

= ⟨−(g + λ)Rki ϕ, ηi⟩+ ⟨−(g + λ)Rw,ψ⟩.

Thus, the Euler Lagrange equations which arise from the variational problem 1/RE =

maxH(I/D) can be written as:

−(g + λ)Rkiϕ− 2M2ui + 2∆ui + 2kiM
2w = −π,i, (2.4.29)
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−(g + λ)Rw + 2λ∆ϕ = 0, (2.4.30)

where π is a Lagrange multiplier. To remove the Lagrange multiplier we take the

third component of the double curl of (2.4.29), and introducing the normal mode

representation and notation as presented in section 3, thus system (2.4.29)-(2.4.30)

then becomes

(D2 − a2)2W −M2D2W = −(g + λ)
a2

2
RΦ, (2.4.31)

(D2 − a2)Φ =
(g + λ)

2λ
RW, (2.4.32)

where the boundary conditions become

Φ = W = DW = 0, z = 0, 1, for fixed boundaries, (2.4.33)

and

Φ = W = D2W = 0, z = 0, 1, for free boundaries. (2.4.34)

We can now determine the critical Rayleigh RaE for fixed a2 and λ. Then, we employ

golden section search to minimize in a2 and then maximize in λ to determine RaE

for nonlinear energy stability,

RaE = max
λ

min
a2

R2(a2, λ). (2.4.35)

where for all R2 < RaE we have stability.

2.5 Numerical methods

In this section we will discuss the numerical treatment which we used in this chapter

to solve systems (2.3.20)-(2.3.21) and (2.4.31)-(2.4.32). The numerical results are

presented for the gravity field g(z) = 1−εz, while the numerical routine is applicable

to a wide variety of other fields. Three methods are used to solve these systems,

thus we will introduce these methods as follows, respectively:

2.5.1 Chebyshev tau

For free surface, we introduce new function A = (D2−a2)W . Therefore, the systems

(2.3.20)-(2.3.21) and (2.4.31)-(2.4.32) become as follows

(D2 − a2)W = A, (2.5.36)
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(D2 − a2)A−M2a2W −M2A+ a2RgΦ = σA, (2.5.37)

(D2 − a2)Φ−Rw = σPsΦ, (2.5.38)

(D2 − a2)W = A, (2.5.39)

(D2 − a2)A−M2a2W −M2A = −(g + λ)
a2

2
RΦ, (2.5.40)

(D2 − a2)Φ =
(g + λ)

2λ
RW, (2.5.41)

and the boundary conditions will be

Φ = W = A = 0, at z = 0, 1. (2.5.42)

To employ the Chebyshev tau technique, system (2.5.53)-(2.5.55) and (2.5.63)-

(2.5.65) are converted to the Chebyshev domain (−1, 1), and then W,A and Φ are

written as a finite series of Chebyshev polynomials

W =
N+2∑
k=0

WkTk(z), A =
N+2∑
k=0

AkTk(z), Φ =
N+2∑
k=0

ΦkTk(z).

The weighted inner product of each equation is taken with some Tk and the

orthogonality of the Chebyshev polynomial is utilised to form the generalised eigen-

value problem
4D2 − a2I −I O

−M2a2I 4D2 − (M2 + a2)I a2RF1

−RI O 4D2 − a2I

Q = σ


O O O

O I O

O O Ps I

Q,

for linear problem and for nonlinear is
4D2 − a2I −I O

−M2a2I 4D2 − (M2 + a2)I O

O O 4D2 − a2I

Q =
R

2


O O O

O O −a2F2
1
λ
F2 O O

 Q,

where Q =
(
Ŵ , Â, Φ̂,

)T

, Ŵ = (W0, ...,WN+2)
T , Â = (A0, ..., AN+2)

T , Φ̂ =

(Φ0, ...,ΦN+2)
T , D2 is the Chebyshev representation of d2/dz2 and F1 = (1−ε/2)I−

(ε/2)Z, F2 = (1+λ− ε/2)I − (ε/2)Z, I is the identity matrix and Z is the matrix

representation of z, for more details see [43]. Using the boundary conditions and the

fact that Tn(±1) = (±1)n we remove the last two rows of each (N+2)×(N+2) block

June 19, 2014



2.5. Numerical methods 23

and replace these rows by the discrete form of the boundary conditions (2.5.42). Al-

so, we can adopt another technique to apply the boundary conditions where we

can find the values of WN+1,WN+2, AN+1, AN+2,ΦN+1 and ΦN+2 from the bound-

ary conditions then we substitute these values in the system and thus we remove

the last two rows. The new system have the order (N + 1) × (N + 1) instead of

(N + 3)× (N + 3) ( see [43,201] for more clarification).

The conversion of the degree of the derivative from fourth to second, in order

avoid the use of the fourth derivatives which will generate aD4 matrix. InD4 matrix,

if we use a large number of Chebyshev functions, an instability in the calculation of

the eigenvalues will be generated [43].

Firstly, let C = (D − a)W, A = (D + a)C, thus A = (D2 − a2)w. Hence, the

systems (2.3.20)-(2.3.21) and (2.4.31)-(2.4.32) can be written respectively,

(D − a)W = C,

(D + a)C = A,

(D2 − a2)A−m2a2W −M2A+ a2RΦ = σ(D2 − a2)W,

(D2 − a2)Φ−Rw = σPsΦ,

(2.5.43)

(D − a)W = C,

(D + a)C = A,

(D2 − a2)A−m2a2W −M2A = −(1 + λ)
a2

2
RΦ,

(D2 − a2)Φ =
(1 + λ)

2λ
RW,

(2.5.44)

with boundary conditions C = W = Φ = 0 and DC = A on z = 0, 1. The system

(2.5.43) and (2.5.44) is transformed onto the Chebyshev domain (−1, 1) and the

solutions W,C,A and Φ are expanded as Chebyshev polynomials so that

W =
N+2∑
k=0

WkTk(z), C =
N+2∑
k=0

CkTk(z), A =
N+2∑
k=0

AkTk(z), Φ =
N+2∑
k=0

ΦkTk(z).

Taking the weighted inner product with Ti, and defining D and D2 to be the
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Chebyshev representation of d/dz and d2/dz2, the eigenvalue problem now becomes
2D − aI −I O O

O 2D + aI −I O

−M2a2 O 4D2 − (M2 + a2)I a2RF1

−RI O O 4D2 − a2I

Q

= R


O O O O

O O O O

4D2 − a2I O O O

O O O Ps I

Q,

for linear problem and for nonlinear is
2D − aI −I O O

O 2D + aI −I O

−M2a2 O 4D2 − (M2 + a2)I O

O O O 4D2 − a2I

Q

=
R

2


O O O O

O O O O

O O O −a2F2
1
λ
F2 O O O

Q,

whereQ =
(
Ŵ , Ĉ Â, Φ̂,

)T

, Ŵ = (W0, ...,WN+2)
T , Ĉ = (C0, ..., CN+2)

T , Â =

(A0, ..., AN+2)
T , Φ̂ = (Φ0, ...,ΦN+2)

T , D2 is the Chebyshev representation of d2/dz2

and F1 = (1 − ε/2)I − (ε/2)Z, F2 = (1 + λ − ε/2)I − (ε/2)Z, I is the identity

matrix and Z is the matrix representation of z

Using the boundary conditions and the fact that Tn(±1) = (±1)n and T ′
n(±1) =

(±1)n−1n2 we can find WN+1,WN+2, CN+1, CN+2,ΦN+1 and ΦN+2, then we can re-

move the N + 1 and N + 2 rows and columns. To find AN+1, AN+2 we will use

the condition 2dC/dz = A. This condition allow to us to evaluate AN+1 and AN+2

because CN+1 and CN+2 known as functions of {Ci}Ni=1, thus

AN+1 = −
N−1∑
i=0

i even

Ai +
N∑
i=1
i odd

(i2 − (N + 2)2)Ci,
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AN+2 = −
N∑
i=1
i odd

Ai +
N−1∑
i=0

i even

(i2 − (N + 1)2)Ci.

Then we use QZ algorithm to solve these systems. Also, a golden section search

method and secant method was employed to find the critical Rayleigh numbers.

2.5.2 Finite Difference Scheme

Standard Finite Difference

The standard second and fourth order central difference operators at grid point i

can be written as:

δ2ui =
ui+1 − 2ui + ui−1

h2
,

δ4ui =
ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2

h4
.

(2.5.45)

The second and the fourth order derivatives for the function u at grid point i can

be approximated by a second order accuracy as

d2u

dz2

∣∣∣∣
i

= δ2ui −
h2

12

d4u

dz4
+O(h4),

d4u

dz4

∣∣∣∣
i

= δ4ui −
h2

6

d6u

dz6
+O(h4).

(2.5.46)

By using these finite difference approximations, (2.3.22) and (2.4.31)-(2.4.32) can

be discretized at a given grid point i respectively as,

δ4zWi − (M2 + 2a2)δ2zWi + a4Wi + a2RgiΦi = σ(δ2 − a2)Wi, (2.5.47)

δ2zΦi − a2Φi −RWi = σPsΦi, (2.5.48)

and

δ4zWi − (M2 + 2a2)δ2zWi + a4Wi = −a
2

2
(gi + λ)RΦi, (2.5.49)

δ2zΦi − a2Φi =
(gi + λ)

2λ
RWi. (2.5.50)

The boundary conditions DzW = 0 at z = 0, 1 are approximated using finite d-

ifference technique as W−1 = W1 and WN+1 = WN−1. In the same scheme the

boundary condition D2
zW = 0 at z = 0, 1 has the approximation W−1 = −W1
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and WN+1 = −WN−1. In this manner, equations (2.5.47), (2.5.48) and the fixed

boundary conditions lead to the finite difference equations

Wi+2

h4
− (

4

h4
+
2a2 +M2

h2
)Wi+1+(

6

h4
+
2(2a2 +M2)

h2
+a4)Wi− (

4

h4
+
2a2 +M2

h2
)Wi−1

+
Wi−2

h4
+Ra2 giΦi = σ[

Wi+1

h2
− (

2

h2
+ a2)Wi +

Wi−1

h2
], (2.5.51)

i = 2, ..., N − 2,

Φi+1

h2
− (

2

h2
+ a2)Φi +

Φi−1

h2
−RWi = σPs Φi, (2.5.52)

i = 1, ..., N − 1,

W3

h4
− (

4

h4
+

2a2 +M2

h2
)W2 + (

7

h4
+

2(2a2 +M2)

h2
+ a4)W1 +Ra2g1Φ1

= σ[
W2

h2
− (

2

h2
+ a2)W1], (2.5.53)

which is the equation obtained from (2.5.47) with i = 1, and

(
7

h4
+

2(2a2 +M2)

h2
+ a4)WN−1 − (

4

h4
+

2a2 +M2

h2
)WN−2 +

WN−3

h4
+Ra2gN−1ΦN−1

= σ[−(
2

h2
+ a2)WN−1 +

WN−2

h2
], (2.5.54)

which arises from (2.5.47) with i = N − 1.

For free surface, the same equations still work and there two differences, where

the third term in (2.5.53) and and the first term in (2.5.54) are equal to (5/h4 +

2(2a2+M2)/h2+a4)W1. Similarly, equations (2.5.49), (2.5.50) and the fixed bound-

ary conditions produce to the following finite difference equations

Wi+2

h4
− (

4

h4
+
2a2 +M2

h2
)Wi+1+(

6

h4
+
2(2a2 +M2)

h2
+a4)Wi− (

4

h4
+
2a2 +M2

h2
)Wi−1

+
Wi−2

h4
= −Ra

2

2
(gi + λ)Φi, (2.5.55)

i = 2, ..., N − 2,

Φi+1

h2
− (

2

h2
+ a2)Φi +

Φi−1

h2
=

R

2λ
(gi + λ)Wi, (2.5.56)

i = 1, ..., N − 1,

W3

h4
−(

4

h4
+
2a2 +M2

h2
)W2+(

7

h4
+
2(2a2 +M2)

h2
+a4)W1 = −Ra

2

2
(g1+λ)Φ1, (2.5.57)
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which is the equation obtained from (2.5.49) with i = 1, and

(
7

h4
+

2(2a2 +M2)

h2
+ a4)WN−1 − (

4

h4
+

2a2 +M2

h2
)WN−2 +

WN−3

h4

= −Ra
2

2
(gN−1 + λ)ΦN−1, (2.5.58)

which arises from (2.5.49) with i = N − 1.

Equation (2.5.55)-(2.5.58) still the same with free surface with two differences

in the terms, where the third term in (2.5.57) and and the first term in (2.5.58) are

equal to (5/h4 + 2(2a2 +M2)/h2 + a4)W1.

High Order Finite Difference

The main idea of the high order finite difference scheme is to find the values of

truncation errors from the original differential equation and substitute these values

in the finite difference formula. In this scheme we can reduce the order of truncation

errors. In our system we can easily find the value of D6W and D4Φ as follows

D6W = (2a2−M2+σ)D4W−(a4+σa2)D2W−a2R(gD2Φ+g′DΦ+g′′ Φ), (2.5.59)

D4Φ = (a2 + σPs )D2Φ +RD2W, (2.5.60)

where the first derivative DΦ can be approximate at grid point i as follows. Let

δui =
ui+1 − ui−1

2h
. (2.5.61)

Then the approximate value of the first derivative can written as

du

dz

∣∣∣∣
i

= δui −
h2

6

d3u

dz3
+O(h4), (2.5.62)

If we substitute the values of D6W and D4Φ in (2.5.46) for W and Φ, and then

approximate D2W,D4W and D2Φ by using standard second order finite difference

we have the following fourth order finite difference formula

d2W

dz2

∣∣∣∣
i

= δ2Wi −
h2

12
δ4z(Wi +O(h2)) +O(h4), (2.5.63)

d2Φ

dz2

∣∣∣∣
i

= δ2Φi−
h2

12
{(a2+σPs )(δ2Φi+O(h

2))+R(δ2Wi+O(h
2))}+O(h4), (2.5.64)
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d4W

dz4

∣∣∣∣
i

= δ4Wi −
h2

6
{(2a2 −M2 + σ)(δ4Wi +O(h2))− (a4 + σa2)(δ2Wi +O(h2))

−a2R(gi(δ2Φi +O(h2)) + g′i(δΦi +O(h2)) + g′′i Φi)}+O(h4). (2.5.65)

It is clear that the overall truncation error will be of O(h4). Using (2.5.63)-(2.5.65)

finite difference approximations, (2.3.20)-(2.3.21) can be approximated at a grid

point i respectively as,

r2 δ
4Wi + r1 δ

2Wi + a4Wi + a2RgiΦi + a2R
h2

6
(giδ

2Φi + 2g′iδΦi + g′′i Φi)

= σ[
h2

12
δ4Wi + r4δ

2Wi − a2Wi], (2.5.66)

−R(1 + ∆z2

12
δ2)Wi + r3 δ

2
zΦi − a2Φi = σPs (1 +

∆z2

12
δ2)Φi, (2.5.67)

where r1 = (h2/6) a4 −M2 − 2a2, r2 = 1− (h2/12) (M2 + 2a2), r3 = 1− (h2/12) a2

and r4 = 1− (h2/6) a2. The boundary conditions under high order finite difference

approximated still the same standard scheme for fixed and free surfaces. Thus, for

fixed boundary condition, (2.5.66) and (2.5.67) produce the following high order

finite difference equations

r2
h4
Wi+2 + (−4r2

h4
+
r1
h2

)Wi+1 + (
6r2
h4

− 2r1
h2

+ a4)Wi + (−4r2
h4

+
r1
h2

)Wi−1 +
r2
h4
Wi−2

+Ra2 [(
1

6
− h

6
g′i)Φi−1 + (gi +

h2

6
g′′i −

1

3
)Φi + (

1

6
+
h

6
g′i)Φi+1]

= σ[
Wi−2

12h2
+ (

r4
h2

− 4

12h2
)Wi−1 + (

1

2h2
− 2r4

h2
− a2)Wi + (

r4
h2

− 4

12h2
)Wi+1 +

Wi+2

12h2
],

(2.5.68)

i = 2, ..., N − 2,

R [
−1

12
Wi−1 −

5

6
Wi −

1

12
Wi+1] + r3

Φi−1

h2
− (

2r3
h2

+ a2)Φi + r3
Φi+1

h2

= σPs [
1

12
Φi−1 +

5

6
Φi +

1

12
Φi+1], (2.5.69)

i = 1, ..., N − 1,

r2
h4
W3+(−4r2

h4
+
r1
h2

)W2+(
7r2
h4

− 2r1
h2

+a4)W1+Ra
2 [(g1+

h2

6
g′′1−

1

3
)Φ1+(

1

6
+
h

6
g′1)Φ2]

= σ[(
7

12h2
− 2r4

h2
− a2)W1 + (

r4
h2

− 4

12h2
)W2 +

W3

12h2
], (2.5.70)

which is the equation obtained from (2.5.66) with i = 1, and

(
7r2
h4

− 2r1
h2

+ a4)WN−1 + (−4r2
h4

+
r1
h2

)WN−2 +
r2
h4
WN−3
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+Ra2 [(
1

6
− h

6
g′N−1)ΦN−2 + (gN−1 +

h2

6
g′′N−1 −

1

3
)ΦN−1]

= σ[
WN−3

12h2
+ (

r4
h2

− 4

12h2
)WN−2 + (

7

12h2
− 2r4

h2
− a2)WN−1], (2.5.71)

which arises from (2.5.66) with i = N − 1.

For free surface, (2.5.68) and (2.5.69) still the same, while (2.5.70) and (2.5.71)

should be replaced by the following equations

r2
h4
W3+(−4r2

h4
+
r1
h2

)W2+(
5r2
h4

− 2r1
h2

+a4)W1+Ra
2 [(g1+

h2

6
g′′1−

1

3
)Φ1+(

1

6
+
h

6
g′1)Φ2]

= σ[(
5

12h2
− 2r4

h2
− a2)W1 + (

r4
h2

− 4

12h2
)W2 +

W3

12h2
], (2.5.72)

(
5r2
h4

− 2r1
h2

+ a4)WN−1 + (−4r2
h4

+
r1
h2

)WN−2 +
r2
h4
WN−3

+Ra2 [(
1

6
− h

6
g′N−1)ΦN−2 + (gN−1 +

h2

6
g′′N−1 −

1

3
)ΦN−1]

= σ[
WN−3

12h2
+ (

r4
h2

− 4

12h2
)WN−2 + (

5

12h2
− 2r4

h2
− a2)WN−1]. (2.5.73)

Generally, the finite difference and high order finite difference schemes produce

a generalized matrix eigenvalue problem of form

AQ = σ BQ, (2.5.74)

for the linear case and for the nonlinear case it takes the form

AQ = RBQ, (2.5.75)

where Q is the eigenfunction vector, the Matrices A and B have different values

according to each case and R, σ represent the eigenvalues of our problem.

2.6 Results and conclusions

In this section we present the numerical results for the linear instability and the

nonlinear energy theory. Figures [2.1, 2.2] and Tables [2.1, 2.2, 2.3, 2.4] give the

critical Rayleigh number Ra against M2 for different values of ε utilising the three

numerical methods: FD, HFD and Chebyshev tau. For the FD and HFD techniques
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convergence to 4 decimal places is achieved with h = 0.005 and h = 0.01, respective-

ly. For the Chebyshev tau method, convergence to 8 decimal places is achieved with

20 Chebyshev polynomials. As the results are not distinguishable visually, Figures

[2.1, 2.2] show the results from the Chebshev method only.

To investigate the possibility of a very widely varying gravity field (one which

even changes sign) we choose ε to vary from 0 to 1.5 . Such fields are of interest in

laboratory experiments in areas of crystal growth and other applications, although

a plane layer would not be the geometry studied. Nevertheless, our results may help

us to understand such situations.

Tables [2.1, 2.2, 2.3, 2.4] give the critical Rayleigh numbers for linear instability

and nonlinear energy stability for ε = 0, 0.3, 0.6 and 0 ≤ M2 ≤ 100. In Figures

[2.1, 2.2] we present the critical Rayleigh numbers for linear instability and nonlinear

energy stability for ε = 0.9, 1.2, 1.5 and 0 ≤ M2 ≤ 100. When M2 is small, it

should be observed that the nonlinear Ra values are very close to the linear ones.

Thus, the linear theory predicts the onset of convection accurately. However, the

difference between the critical Rayleigh numbers for linear instability and nonlinear

energy stability increases with increasing M2 values, although, even for M2 = 100,

the two thresholds are comparable. Figures [2.1, 2.2] demonstrate that Ra increases

with increasing M2 which shows the stabilizing effect of the magnetic field. In

addition, it should be observed that the effect of ε on the linear and nonlinear

stability pictures has a similar behaviour to the effect of M2.

It is very important to make a comparison between the accuracy of the three

numerical methods, with the crucial measurement here being the exact solution. As

a tractable exact solution is not achievable for our problem we turn out attention to

the solution of linear system for two free boundaries i.e. we will solve analytically

system (2.3.20)-(2.3.21) with respect to the boundary conditions (2.3.23) with ε = 0

i.e. g(z) = 1. It is relatively straightforward to show that the solution which yields

the smallest Rayleigh number has a z−dependence like sin πz. Ra then satisfies

Ra =
(π2 + a2)

a2
[(π2 + a2)2 + π2M2]. (2.6.76)
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The critical wavenumber is found by minimizing Ra in a2 subject to

2a6 + 3π2a4 − (π6 + π4M2) = 0. (2.6.77)

The critical value a2crit can be evaluated by using the Newton-Raphson iteration

method as follows:

a2i+1 = a2i −
(2a6i + 3π2a4i − (π6 + π4M2))

(6a4i + 6π2a2i )
. (2.6.78)

Thus the critical Rayleigh number is found by utilising a2crit from (2.6.78) in (2.6.76).

Of course equations (2.6.78) and (2.6.76) provide semi exact results due to the use

of the Newton-Raphson method to evaluate a2crit, but these results have a very small

error and they can give a very good comparison between our numerical results and

the exact results. In the case of g(z) = 1, the system is symmetric and hence the

critical Rayleigh number for linear theory is equal to the nonlinear one, thus, it is

enough to solve the linear system to find the linear and nonlinear threshold. In Ta-

ble 2.5, we report the absolute error of critical Rayleigh numbers for the FD, HFD

and Chebyshev tau methods with various values of h and number of polynomials.

It is very clear from Table 2.5 that the Chebyshev tau method has highly accuracy

compared with the FD, HFD methods. Moreover, for FD and HFD methods, the

absolute error increases with increasing the value of M , but for the Chebyshev tau

method (when the number of polynomials is greater than or equal to 15) the ab-

solute error does not increase. However, for Chebyshev tau with a high number of

polynomials, the accuracy has an oscillated behaviour where the absolute error in-

creases or decreases with an increasing the number of polynomials. This behaviour is

very common when studying the hydrodynamic stability problems. As the number

of polynomials increases, theoretically, the accuracy of the Chebyshev tau method

should increase, however, as the number of polynomials increases, the computer cal-

culations increase and thus the computer’s error will be higher. Since hydrodynamic

stability problems require the repeated solving of an eigenvalue system to locate the

critical Rayleigh number, we expect the computer’s error to make the absolute error

higher than the theoretical one. This behaviour is very clear in Table 2.5, where

the absolute error of FD and HFD methods is higher than the truncation error of

these methods. The accuracy of the numerical methods increases with increasing
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Figure 2.1: Critical Rayleigh number Ra against M2 with ε = 0.9, 1.2, 1.5 for two free

surfaces. Linear instability and nonlinear stability curves as in in caption.

the value of h and the number of polynomials until it arrive to the peak, then the

behaviour of the accuracy become more oscillated due to the computer’s error. In

Figure 2.3, the absolute error of critical Rayleigh numbers are shown for FD and

HFD methods with various values of h. Generally, the accuracy of the finite differ-

ence schemes corresponds with the value of h, where the accuracy increases with a

decreasing value of h. However we can not take the value of h less than 0.005 for two

reasons. Firstly, with h = 0.005 and after imposing the boundary conditions, the

order of the eigenvalue matrices will be 399×399, thus according to the computers’s

ability, this is an optimal choice. Secondly, we do not believe that small values h

can give us more accurate results as the computations have to increase rapidly, and

this is very important spatially when we solve nonlinear stability problems.

One of the key reasons to apply different numerical methods is to make a com-

parison between these methods and to conclude which is the best method in solving

hydrodynamic stability problems. The advantage of Chebyshev tau method is that

June 19, 2014



2.6. Results and conclusions 33

0 20 40 60 80 100
2000

4000

6000

8000

10000

12000

14000

R
a

M2

 Linear & 
 Nonlinear & 
Linear & 
 Nonlinear & 
 Linear & 
 Nonlinear & 

Figure 2.2: Critical Rayleigh number Ra against M2 with ε = 0.9, 1.2, 1.5 for two fixed

surfaces. Linear instability and nonlinear stability curves as in caption.
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Figure 2.3: Comparison of the absolute error of critical Rayleigh numbers for FD and

HFD methods with various values of h.
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Che - tau FD HFD

M2 Linear Nonlinear Linear Nonlinear Linear Nonlinear

0 773.42255 773.12190 773.38012 773.02645 773.40841 773.09008

5 936.96280 936.57778 936.91563 936.46215 936.94708 936.53924

10 1085.71852 1085.25445 1085.66681 1085.12047 1085.70128 1085.20979

15 1224.98893 1224.44930 1224.93285 1224.29814 1224.97023 1224.39892

20 1357.49108 1356.87844 1357.43080 1356.71093 1357.47098 1356.82260

25 1484.84113 1484.15744 1484.77678 1483.97421 1484.81968 1484.09636

30 1608.09412 1607.34095 1608.02583 1607.14251 1608.07135 1607.27480

35 1727.98449 1727.16314 1727.91236 1726.94990 1727.96045 1727.09206

40 1845.04823 1844.15979 1844.97234 1843.93212 1845.02293 1844.08390

45 1959.69091 1958.73633 1959.61135 1958.49451 1959.66439 1958.65572

50 2072.22838 2071.20847 2072.14521 2070.95277 2072.20066 2071.12324

55 2182.91238 2181.82786 2182.82566 2181.55850 2182.88348 2181.73807

60 2291.94750 2290.79901 2291.85729 2290.51620 2291.91743 2290.70474

65 2399.50273 2398.29084 2399.40908 2397.99476 2399.47152 2398.19215

70 2505.71961 2504.44483 2505.62256 2504.13564 2505.68726 2504.34177

75 2610.71811 2609.38091 2610.61771 2609.05877 2610.68464 2609.27353

80 2714.60102 2713.20182 2714.49730 2712.86686 2714.56644 2713.09017

85 2817.45719 2815.99639 2817.35020 2815.64874 2817.42153 2815.88050

90 2919.36409 2917.84204 2919.25386 2917.48182 2919.32735 2917.72197

95 3020.38974 3018.80677 3020.27630 3018.43408 3020.35193 3018.68254

100 3120.59427 3118.95069 3120.47764 3118.56563 3120.55539 3118.82233

Table 2.1: Comparison of the linear and nonlinear numerical values of

critical Rayleigh for two free surfaces ε = 0.3.
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Che - tau FD HFD

M2 Linear Nonlinear Linear Nonlinear Linear Nonlinear

0 2008.65597 2007.94493 2008.26128 2007.69704 2008.52440 2007.86230

5 2150.61174 2149.83285 2150.18904 2149.56744 2150.47084 2149.74438

10 2288.50673 2287.66095 2288.05538 2287.37852 2288.35628 2287.56681

15 2422.92042 2422.00859 2422.43989 2421.70957 2422.76024 2421.90892

20 2554.30520 2553.32805 2553.79505 2553.01282 2554.13515 2553.22297

25 2683.02251 2681.98068 2682.48233 2681.64957 2682.84245 2681.87031

30 2809.36667 2808.26074 2808.80269 2807.91404 2809.17868 2808.14517

35 2933.58124 2932.41172 2932.98769 2932.04969 2933.38339 2932.29104

40 3055.87052 3054.63789 3055.24715 3054.26077 3055.66273 3054.51218

45 3176.40795 3175.11262 3175.75450 3174.72063 3176.19013 3174.98196

50 3295.34224 3293.98462 3294.65850 3293.57796 3295.11433 3293.84907

55 3412.80211 3411.38255 3412.08785 3410.96140 3412.56402 3411.24217

60 3528.89984 3527.41868 3528.15483 3526.98319 3528.65150 3527.27352

65 3643.73408 3642.19162 3642.95811 3641.74196 3643.47542 3642.04173

70 3757.39206 3755.78859 3756.58290 3755.32491 3757.12234 3755.63403

75 3869.95139 3868.28717 3869.11062 3867.80961 3869.67113 3868.12798

80 3981.48144 3979.75673 3980.60887 3979.26540 3981.19058 3979.59295

85 4092.04457 4090.25959 4091.13997 4089.75461 4091.74303 4090.09126

90 4201.69702 4199.85199 4200.76022 4199.33349 4201.38475 4199.67916

95 4310.48978 4308.58491 4309.52056 4308.05299 4310.16671 4308.40760

100 4418.46923 4416.50471 4417.46741 4415.95946 4418.13529 4416.32296

Table 2.2: Comparison of the linear and nonlinear numerical values of

critical Rayleigh for two fixed surfaces ε = 0.3.
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Che - tau FD HFD

M2 Linear Nonlinear Linear Nonlinear Linear Nonlinear

0 938.44198 936.30507 938.39033 936.18948 938.42477 936.26654

5 1136.65775 1133.92450 1136.60029 1133.78451 1136.63860 1133.87784

10 1316.91449 1313.62323 1316.85144 1313.46105 1316.89347 1313.56917

15 1485.64942 1481.82538 1485.58101 1481.64243 1485.62661 1481.76440

20 1646.16328 1641.82480 1646.08971 1641.62210 1646.13875 1641.75723

25 1800.41943 1795.58066 1800.34087 1795.35899 1800.39324 1795.50677

30 1949.69957 1944.37188 1949.61616 1944.13183 1949.67177 1944.29186

35 2094.89591 2089.08867 2094.80778 2088.83076 2094.86653 2089.00270

40 2236.65953 2230.38066 2236.56678 2230.10531 2236.62862 2230.28888

45 2375.48311 2368.73940 2375.38583 2368.44696 2375.45068 2368.64192

50 2511.75027 2504.54762 2511.64856 2504.23842 2511.71636 2504.44455

55 2645.76680 2638.11041 2645.66073 2637.78472 2645.73144 2638.00184

60 2777.78119 2769.67566 2777.67082 2769.33372 2777.74440 2769.56168

65 2907.99867 2899.44813 2907.88408 2899.09017 2907.96048 2899.32881

70 3036.59115 3027.59931 3036.47238 3027.22553 3036.55156 3027.47472

75 3163.70433 3154.27456 3163.58144 3153.88514 3163.66337 3154.14475

80 3289.46303 3279.59839 3289.33606 3279.19350 3289.42071 3279.46343

85 3413.97515 3403.67846 3413.84415 3403.25825 3413.93148 3403.53839

90 3537.33476 3526.60860 3537.19978 3526.17321 3537.28977 3526.46347

95 3659.62446 3648.47121 3659.48552 3648.02078 3659.57814 3648.32107

100 3780.91724 3769.33912 3780.77440 3768.87377 3780.86963 3769.18400

Table 2.3: Comparison of the linear and nonlinear numerical values of

critical Rayleigh for two free surfaces ε = 0.6.
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Che - tau FD HFD

M2 Linear Nonlinear Linear Nonlinear Linear Nonlinear

0 2436.26100 2431.21594 2435.78182 2430.91579 2436.10127 2431.11589

5 2608.25091 2602.72688 2607.73842 2602.40556 2608.08008 2602.61978

10 2775.30778 2769.31185 2774.76137 2768.96996 2775.12564 2769.19789

15 2938.13573 2931.67399 2937.55940 2931.31206 2937.94362 2931.55335

20 3097.28444 3090.36224 3096.67233 3089.98072 3097.08040 3090.23507

25 3253.19308 3245.81514 3252.54490 3245.41443 3252.97702 3245.68157

30 3406.21925 3398.38980 3405.53474 3397.97025 3405.99108 3398.24995

35 3556.65886 3548.38170 3555.93774 3547.94362 3556.41849 3548.23567

40 3704.76014 3696.03870 3704.00218 3695.58240 3704.50749 3695.88660

45 3850.73378 3841.57119 3849.93872 3841.09693 3850.46876 3841.41310

50 3994.76047 3985.15960 3993.92809 3984.66761 3994.48301 3984.99560

55 4136.99657 4126.96005 4136.12662 4126.45055 4136.70659 4126.79022

60 4277.57847 4267.10874 4276.67073 4266.58193 4277.27589 4266.93314

65 4416.62602 4405.72532 4415.68025 4405.18140 4416.31076 4405.54401

70 4554.24517 4542.91560 4553.26115 4542.35475 4553.91717 4542.72865

75 4690.53019 4678.77370 4689.50770 4678.19607 4690.18936 4678.58116

80 4825.56535 4813.38376 4824.50426 4812.78952 4825.21166 4813.18568

85 4959.42638 4946.82140 4958.32641 4946.21068 4959.05972 4946.61783

90 5092.18160 5079.15484 5091.04256 5078.52778 5091.80192 5078.94582

95 5223.89294 5210.44591 5222.71461 5209.80264 5223.50017 5210.23148

100 5354.61672 5340.75084 5353.39890 5340.09149 5354.21078 5340.53106

Table 2.4: Comparison of the linear and nonlinear numerical values of

critical Rayleigh for two fixed surfaces ε = 0.6.

June 19, 2014



2.6. Results and conclusions 39

FD HFD Che-tau

h No. of polynomials

M2 0.02 0.01 0.005 0.02 0.01 0.005 10 15 20

0 0.432 0.036 0.018 0.012 0.009 0.005 3.6E-07 7.9E-10 5.8E-10

5 0.481 0.040 0.020 0.013 0.010 0.005 4.0E-07 7.9E-10 1.0E-09

10 0.527 0.044 0.022 0.015 0.011 0.005 4.4E-07 1.1E-10 4.6E-10

15 0.571 0.048 0.024 0.016 0.012 0.006 4.8E-07 1.6E-10 6.5E-10

20 0.614 0.051 0.026 0.017 0.013 0.006 5.2E-07 5.7E-09 3.0E-08

25 0.655 0.055 0.027 0.018 0.014 0.007 5.5E-07 4.4E-10 9.5E-09

30 0.696 0.058 0.029 0.019 0.014 0.007 5.8E-07 5.8E-10 1.8E-10

35 0.735 0.061 0.031 0.020 0.015 0.008 6.2E-07 2.4E-10 7.1E-10

40 0.773 0.064 0.032 0.021 0.016 0.008 6.5E-07 3.0E-10 2.2E-10

45 0.810 0.068 0.034 0.023 0.017 0.008 6.8E-07 8.7E-10 6.4E-10

50 0.847 0.071 0.035 0.024 0.018 0.009 7.1E-07 2.5E-09 2.6E-09

55 0.883 0.074 0.037 0.025 0.018 0.009 7.4E-07 2.0E-10 4.1E-10

60 0.919 0.077 0.038 0.026 0.019 0.010 7.7E-07 9.6E-10 9.5E-10

65 0.954 0.079 0.040 0.026 0.020 0.010 8.0E-07 9.0E-11 2.9E-10

70 0.988 0.082 0.041 0.027 0.021 0.010 8.1E-07 1.7E-08 9.7E-10

75 1.022 0.085 0.043 0.028 0.021 0.011 8.6E-07 2.0E-10 5.2E-10

80 1.056 0.088 0.044 0.029 0.022 0.011 8.9E-07 8.0E-11 2.0E-08

85 1.089 0.091 0.045 0.030 0.023 0.011 9.2E-07 9.5E-10 1.2E-09

90 1.122 0.094 0.047 0.031 0.023 0.012 9.4E-07 2.9E-10 3.2E-09

95 1.155 0.096 0.048 0.032 0.024 0.012 9.7E-07 1.1E-10 4.0E-09

100 1.187 0.099 0.049 0.033 0.025 0.012 1.0E-06 2.5E-10 5.0E-08

Table 2.5: Comparison of the absolute error of critical Rayleigh num-

bers for FD, HFD and Che-tau methods with various values of h and

number of polynomials.
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it can achieve the required accuracy using a small number of polynomials, and thus

we can get very accurate results with very short run time. However, the FD method

need a large number of divisions to reach the required accuracy, whilst the HFD

method can reach to the desired accuracy by using less number of divisions. The

FD method required h = 0.005 to achieve a good accuracy and convergence results,

while we use h = 0.01 for the HFD method. For the Chebyshev tau method, 15

polynomials is enough to obtain a very good accuracy for two free boundaries, while,

to arrive to the highest accuracy for two fixed boundaries, we use 20 polynomials.

Generally, the run time of Chebyshev tau method is very short compare with FD

and HFD.

On the other hand, the Chebyshev tau method is not easy to apply, where it

requires a great effort to solve any system of equations. Concerning the problems

of variable coefficients, the Chebyshev tau method is complicated to implement, as

this method depends on writing all functions in the system of equations in the form

of Chebyshev polynomials, which can present difficulties when using, for example,

triangular and hyperbolic functions. In addition, the main disadvantages of this

method is that it needs a new numerical treatment when we change the boundary

conditions, where each type of boundary conditions requires different and special

treatment. Also, Chebyshev tau method is unstable in equations which have high

order derivative, where the values of a matrix increase significantly with increasing

the order of derivatives.

In summary, although the Chebyshev tau method requires a great effort to set

up the numerical scheme, it only requires a small number of polynomials to achieve

an excellent level of accuracy and convergence. This point is very important as our

numerical calculations required considerable calculation time (in some cases more

than ten hours). Although the FD and HFD methods are very flexible methods,

hydrodynamic stability problems need a method which can achieve an accurate

solution within a short time period due to the requirement of repeated calculations.

The FD and HFD lack this property and we see from the results that the FD method

requires h = 0.005 to achieve a very good accuracy and convergence results, while

we use h = 0.01 for HFD method.
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Chapter 3

Magnetic effect on instability and

nonlinear stability in a reacting

fluid

3.1 Introduction

The convective instability created by a top heavy layer of fluid containing a solute is

one with many applications in atmospheric physics, oceanography, and in pollution

where the solute can cover a city and linger for long periods of time. A model for

such behaviour was developed by Franchi and Straughan [58] and they completed a

detailed instability analysis of their highly nonlinear model.

In a separate development Hayat and Nawaz [80] studied stagnation point flow in

a rotating frame for a fluid containing a reacting solute with a superimposed magnet-

ic field acting. Since convection in chemically reacting fluids has been a topic of much

recent interest, cf., Malashetty and Biradar [120], Rahman and Al-Lawatia [157],

and electro-magnetic field effects on such processes have likewise attracted much

attention, cf., Eltayeb et al. [49, 50], Kaloni and Mahajan [94], Maehlmann and

Papageorgiou [116], Nanjundappa et al. [130], Reddy et al. [164], Shivakumara et

al. [187,188], Sunil et al. [212], we deem it of great relevance to develop and analyse

stability in detail for the solute instability problem of Franchi and Straughan [58],

41
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but allowing for chemical reactions and an imposed magnetic field as in the work

of Hayat and Nawaz [80]. We should point out that thermal convection interacting

with other effects is a very hot current research topic, cf., Bera and Khalili [20],

Bera et al. [21], Chen et al. [35], Yang et al. [226], Kumar et al. [97, 98], Papani-

colaou et al. [142], Saravanan and Sivakumar [184], Saravanan and Brindha [183],

Shivakumara et al. [185,186].

To study the effect of a magnetic field we employ a quasi-static approximation

as in Galdi and Straughan [61]. This still allows a full analysis of the effect of the

magnetic field but avoids mathematical complications associated with the complete

set of equations for magnetohydrodynamics, cf., Rionero [169], Galdi [60], Rionero

and Mulone [177], Chandrasekhar [32], Roberts [179], Landau et al. [100]. Never-

theless, the model we develop is still highly nonlinear and very non-trivial.

The layout of this chapter is as follows. In the next section we present the basic

model for convective motion in a fluid layer with a dissolved reacting fluid and a

vertically imposed magnetic field. In Section 3.3 we analyse linear instability of

the basic motion and Section 3.4 compliments this with a global nonlinear energy

stability analysis. Since the stability analyses involve eigenvalue problems with

non-constant coefficients these problems must be solved numerically and a suitable

numerical method is described in the penultimate section. Finally, in section 6 we

give detailed results and conclusions from our model.

The results in this chapter were published in the article Harfash and Straughan

[73].

3.2 Basic Equations

We suppose the fluid is contained in the plane layer {z ∈ (0, d)} × R2, and is

incompressible, although a Boussinesq approximation is employed in the buoyancy

term in the momentum equation. The momentum equation for a fluid containing a

solute and with an imposed magnetic field is then
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ρ(vi, t + vj vi,j) = −p, i + µ∆vi − ραckig(c− c∞) + j×B, (3.2.1)

where ρ,v, p, c are the constant density, velocity field, pressure, and concentration of

solute. Additionally, αc is the salt expansion coefficient, µ is the dynamic viscosity,

g is gravity, c∞ is a reference concentration, k = (0, 0, 1), j is the current, and B

is the magnetic induction field. Throughout, we use standard indicial notation and

the Einstein summation convention so that e.g. vi, t = ∂vi/∂t, and p,i = ∂p/∂xi,

vj vi,j ≡ (v.∇)v, and ∆ is the Laplacian. The balance of mass equation is

vi,i = 0 (3.2.2)

The equation governing the evaluation of the solute concentration is, cf., Hayat and

Nawaz [80],

c,t + vi c, i = D∆c−K1(c− c∞). (3.2.3)

Here c(x, t) is the solute concentration, D is the the solute diffusion coefficient, and

K1 is the chemical reaction rate, the chemical reaction being represented by the

term K1(c− c∞).

To make the convective overturning instability problem tractable we employ

the quasi-static MHD approximation of Galdi and Straughan [61] which has been

explained in Chapter 2. According to this approximation we have

j×B = σ1(v ×B0)×B0, (3.2.4)

where σ1 is the electrical conductivity and B0 = (0, 0, B0) is a magnetic field with

only the vertical component. We now employ (3.2.4) in (3.2.1) and further replace

c − c∞ by c, (we can always rescale equations (3.2.1) and (3.2.3) to achieve this).

Thus, we find the equations for our model are

vi,t + vjvi,j = −1

ρ
p, i + ν∆vi − kigαcc+

σ1
ρ
[(v ×B0)×B0]i,

vi,i = 0,

c ,t + vi c, i = D∆c−K1c.

(3.2.5)
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The boundary conditions to be satisfied are no-slip at the boundaries z = 0 and

z = d with the concentrations fixed there. Thus,

vi = 0, at z = 0, d; c = cU , at z = d; c = cL, at z = 0, (3.2.6)

where cU , cL are constants with cU > cL.

We then find there is a steady solution (v̄i, c̄, p̄) whose stability we wish to ex-

amine, and this is

v̄i ≡ 0,

c̄ = [
cU − cL cosh(A1d)

sinh(A1d)
] sinh(A1z) + cL cosh(A1z), (3.2.7)

where p̄ may then be found from (3.2.5), and where A1 is given by

A2
1 =

K1

D
. (3.2.8)

Next, we drive perturbation equations to this steady state. Hence, put vi =

v̄i + ui, c = c̄+ ϕ, p = p̄+ π, and employ the scales

τ =
d2

ν
, U =

ν

d
, P =

ρ νU

d
, L = d,

where τ, U, L, P are time, velocity, length, and pressure scales. Define ξ = A1d =

(
√
K1/D)d, and pick the concentration scale C♯ as

C♯ = U

√
ν∆C

Dαcgd

where ∆C = cU − cL > 0. Furthermore, define the salt Rayleigh number R2 as

R2 =
αc g d

3 ∆C

D ν
, (3.2.9)

and the salt Prandtl number as Ps = ν/D. We also need the non-dimensional num-

bers η and M where

η =
cL

cU − cL
and M2 =

B2
0d

2σ1
ρ ν

(3.2.10)

and further introduce the function f(z; ξ, η) by

f(z; ξ, η) =
ξ

sinh(ξ)
{1 + η(1− cosh(ξ))} cosh(ξz) + ξη sinh(ξz). (3.2.11)
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Then, one may show the non-dimensional perturbation equations which arise

from (3.2.5) are

ui, t + uj ui,j = −π, i +∆ui −Rϕki −M2[(k× (u× k)]i,

ui, i = 0,

Ps(ϕ ,t + ui ϕ, i) = ∆ϕ− ξ2ϕ−Rf(z; ξ, η)w,

(3.2.12)

where w = u3, and now the spatial domain is R2 × {z ∈ (0, 1)}.

The boundary conditions to be satisfied are

ui = 0, ϕ = 0, on z = 0, 1, (3.2.13)

and ui, ϕ, π satisfy a plane tiling form in the (x, y)-plane, cf., Chandrasekhar [32],

Straughan [196].

Remark 3.2.1 We observe that as ξ → 0, f → 1, the chemical reaction term disap-

pears and we recover the concentration analogue of the thermal convection problem

studied in Galdi and Straughan [61], pp. 216-217. However, the presence of the

f(z) term destroys the symmetry of the linear operator in (3.2.12) and considerably

complicates the linear instability / nonlinear stability analysis.

3.3 Linear instability

To obtain the threshold for linear instability where we know convection occurs we ne-

glect the nonlinear terms uj ui,j and ui ϕ, i in equations (3.2.12)1 and (3.2.12)3. Then,

due to linearity we may seek solutions like ui(x, t) = ui(x)e
σt, ϕ(x, t) = ϕ(x)eσt and

π(x, t) = π(x)eσt, where σ is a complex constant. This leads to the system

σui = −π, i +∆ui −Rϕki +M2[(u× k)× k]i,

ui, i = 0,

Ps σϕ = ∆ϕ− ξ2ϕ−Rfw.

(3.3.14)

To proceed further we then take curlcurl of (3.3.14)1, and retain the third component

of the resulting equation, namely
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σ∆w = ∆2w −R∆∗ϕ−M2D2w, (3.3.15)

where ∆∗ = ∂2/∂x2 + ∂2/∂y2 and D = ∂/∂z.

Next,due to the periodicity of the solution in the (x, y) variables we may write

w and ϕ as

w = W (z)h(x, y) and ϕ = Φ(z)h(x, y),

where h is a plane-tiling planform so that

∆∗h = −a2h, (3.3.16)

where a is the wavenumber. Such planforms are discussed in detail in Chan-

drasekhar [32], p.43-52 and Straughan [196], p.51. With D now denoting D = d/dz

equations (3.3.15) and (3.3.14)3 reduce to

(D2 − a2)2W +R a2Φ−M2D2W = σ(D2 − a2)W,

(D2 − a2)Φ− ξ2Φ−Rf(z; ξ, η)W = σPsΦ.
(3.3.17)

The boundary conditions we employ herein are those appropriate to two fixed sur-

faces and so

W = DW = 0 and Φ = 0, on z = 0, 1. (3.3.18)

System (3.3.17) and (3.3.18) represents an eigenvalue problem for the eigenvalues σ

with parameters a,M, ξ, η, Ps and R. Numerical results are presented in section 6

and the numerical method employed is described in section 3.5.

3.4 Nonlinear stability

The linear instability boundary yields a Rayleigh number threshold such that once

Ra = R2 exceeds this threshold convective instability certainly occurs. However, in

general, linear theory yields no information on whether a solution with a Rayleigh

number below this is definitely stable, cf., Straughan [196]. In fact, it is possible for a

solution to become unstable with a Rayleigh number well below the linear instability

threshold. Such instabilities are sub-critical instabilities and we here wish to employ
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a nonlinear energy stability technique to yield a threshold for global nonlinear sta-

bility. Fortunately, the nonlinear threshold determined herein is relatively close to

the linear instability one and this is important since it demonstrates that the linear

instability analysis is correctly capturing the physics of the onset of convection. The

energy method for nonlinear stability is attracting a lot of attention, cf., Capone

et al. [24–27], Hill and Carr [83], Saravanan and Brindha [183], Sunil et al. [209,214].

To develop a nonlinear energy stability analysis, let V be a period cell for the

disturbance solution in equations (3.2.12). Let ∥ · ∥ and (·, ·) be the norm and inner

product on the Hilbert space L2(V ). We multiply equation (3.2.12)1 by ui and

integrate over V. After some integrations by parts, use of the boundary conditions

(3.2.13), and employing equation (3.2.12)2 we derive the identity

1

2

d

dt
∥u∥2 = −∥∇u∥2 −R(w, ϕ)−M2(∥u∥2 − ∥w∥2). (3.4.19)

Next, multiply equation (3.2.12)3 by ϕ and integrate over V , to see that after further

integrations by parts and use of (3.2.13) and (3.2.12)2, we obtain

Ps

2

d

dt
∥ϕ∥2 = −R(fw, ϕ)− ξ2∥ϕ∥2 − ∥∇ϕ∥2. (3.4.20)

The idea is to now add (3.4.19)+ λ (3.4.20) for a positive parameter λ which we

later select optimally. This leads to the energy equation

dE

dt
= I − D, (3.4.21)

where E, I and D are defined by

E(t) =
1

2
∥u∥2 + λPs

2
∥ϕ∥2,

I = −R(w, ϕ[1 + λf ]),

D = ∥∇u∥2 + λ∥∇ϕ∥2 + λξ2∥ϕ∥2 +M2(∥u∥2 + ∥v∥2), (3.4.22)

where u is explicitly written as u = (u, v, w). Define now

1

RE

= max
H

I
D
, (3.4.23)
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where H is the set of admissible functions defining I and D. This set is restricted

to divergence free functions due to equation (3.2.12)2. To impose this restriction we

use a Lagrange multiplier and add the term −
∫
Ω
ζui,i to I so that now

I = −R(w, ϕ[1 + λf ])− (ζ, ui,i).

where ζ is a lagrange multiplier. Then from (3.4.21) we find

dE

dt
≤ D(

1

RE

− 1) (3.4.24)

If RE > 1, then with λ1 being the constant in Poincare’s inequality for u and ϕ, we

have

D ≥ cE,

where c = min{2λ1, 2(λ1 + ξ2)P−1
s }, and from (3.4.24) we may show

dE

dt
≤ −c(RE − 1)

RE

E. (3.4.25)

Exponential decay of E(t) follows from (3.4.25) and then RE defined by (3.4.23)

represents a global (for all initial data) nonlinear stability threshold.

The equations which satisfy the condition (3.4.23) are the Euler-Lagrange equa-

tions and in order to find these we must first derive δI and δD. To do this we vary

the perturbation variables u and ϕ, by arbitrary functions χ and ψ, respectively.

This method is described in detail in Chapter 1. The Euler-Lagrange equations

which arise from (3.4.23) are:

2∆ui −RE ki (1 + λf)ϕ− 2M2(ui − kiw) = ζ,i,

ui,i = 0,

2λ∆ϕ− 2λξ2ϕ−RE(1 + λf)w = 0,

(3.4.26)

This system is solved subject to boundary conditions (3.2.13) by numerical means

and we determine

max
λ

RE,

as our global nonlinear stability bound. Brief details are provided in section 3.5 and

detailed numerical output is contained in section 3.6.
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3.5 Numerical technique

To solve system (3.3.17) and (3.3.18) we expand the operator in (3.3.17)1, and solve

the system as

D4W − (2a2 +M2)D2W + a4W +R a2Φ = σ(D2 − a2)W,

(D2 − a2)Φ− ξ2Φ−Rf(z; ξ, η)W = σPsΦ.
(3.5.27)

The above system is discretized using finite differences. To do this note that the

spatial domain is z ∈ (0, 1) and divide (0, 1) into N equal subintervals of length

h = 1/N . Let Wi denote the value of W at z = ih and then we recall the standard

second and fourth order differentiation operators are

δ2Wi =
Wi+1 − 2Wi +Wi−1

h2
,

δ4Wi =
Wi+2 − 4Wi+1 + 6Wi − 4Wi−1 +Wi−2

h4
.

(3.5.28)

By expanding W (ih±h) and W (ih± 2h) in Taylor series we obtain approximations

to the second and fourth order derivatives as

D2W (ih) = δ2Wi −
h2

12
D4Wi +O(h4),

D4W (ih) = δ4Wi −
h2

6
D6Wi +O(h4).

(3.5.29)

The second and fourth order derivatives in (3.5.27)are replaced by (3.5.28) and

(3.5.29) to O(h2) accuracy, i.e. we solve

δ4Wi − (M2 + 2a2)δ2Wi + a4Wi + a2RΦi = σ(δ2Wi − a2Wi),

δ2Φi − (a2 + ξ2)Φi −Rf(ih; ξ, η)Wi = σPs Φi.
(3.5.30)

The boundary conditions for (3.5.30) are

W = 0, DW = 0, Φ = 0, z = 0, 1. (3.5.31)

Hence, we are here concentrating on the realistic case of two fixed surfaces. Condi-

tions (3.5.31) are equivalent to

W0 = WN = 0, Φ0 = ΦN = 0, (3.5.32)

and for DW we use a central difference and the fictitious points z = −ih, z = 1+ ih,

to employ W−1 and WN+1 to see that W−1 = W1 and WN+1 = WN−1 to order
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O(h2) accuracy. The latter representations are employed in (3.5.29) with i = 1

and i = N − 1 to remove W−1 and WN+1 when utilizing (3.5.28). In this manner,

equations (3.5.29)and the boundary conditions lead to the finite difference equations

Wi+2

h4
−(

4

h4
+
2a2 +M2

h2
)Wi+1+(

6

h4
+
2(2a2 +M2)

h2
+a4)Wi−(

4

h4
+
2a2 +M2

h2
)Wi−1,

+
Wi−2

h4
+Ra2Φi = σ[

Wi+1

h2
− (

2

h2
+ a2)Wi +

Wi−1

h2
], (3.5.33)

i = 2, ..., N − 2,

Φi+1

h2
− (

2

h2
+ a2 + ξ2)Φi +

Φi−1

h2
−Rf(ih; ξ, η)Wi = σPs Φi, (3.5.34)

i = 1, ..., N − 1,

W3

h4
− (

4

h4
+

2a2 +M2

h2
)W2 + (

7

h4
+

2(2a2 +M2)

h2
+ a4)W1 +Ra2Φ1,

= σ[
W2

h2
− (

2

h2
+ a2)W1], (3.5.35)

which is the equation obtained from (3.5.29)1 with i = 1, and

(
7

h4
+

2(2a2 +M2)

h2
+ a4)WN−1 − (

4

h4
+

2a2 +M2

h2
)WN−2 +

WN−3

h4
+Ra2ΦN−1,

= σ[−(
2

h2
+ a2)WN−1 +

WN−2

h2
], (3.5.36)

which arises from (3.5.29)1 with i = N − 1.

Equations (3.5.33)-(3.5.36) yield a generalized matrix eigenvalue problem of form

Ax = σB x, (3.5.37)

where x = (W1, ...,WN−1,Φ1, ...,ΦN−1)
T and A and B are (2N−2)× (2N−2) block

structured matrices of form

A =

 A1 A2

A3 A4

 , B =

 B1 O

O B2

 ,

where A1 is a pentadiagonal matrix, A4 is tridiagonal, A2 and A3 are diagonal ma-

trices with entries a2R and −Rf(ih), respectively. The matrices in B are such that

B1 is tridiagonal while B1 is diagonal.
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We have solved system (3.5.37) for eigenvalues σj by using LU decomposition

using our own code and by the QZ algorithm from Matlab routines. Excellent

agreement was found with both methods. Once the eigenvalues σj are found we use

the secant method to locate where σR
j , σj = σR

j + σI
j being the real and imaginary

parts of eigenvalue σj. The value of R which makes σR
1 = 0, σR

1 being the largest

eigenvalue, is the critical value of R for a2 fixed. We then use golden section search

to minimize over a2 and find the critical value of R2 for linear instability. Numerical

results are reported in section 3.6. We have checked convergence and found that

convergence to 10 decimal places is achieved with h = 0.01. In all of our calculations

we found that σI
1 = 0 at criticality and so the onset of instability is by stationary

convection.

Remark 3.5.1 We have chosen to employ a finite difference method to solve (3.3.17)

and (3.3.18) rather than Chebyshev tau or compound matrices, such as in Dongar-

ra et al. [43], Straughan and Walker [201–203]. This is largely due to the ease in

implementation with the function f(z). Also, the finite difference method leads to

B non-singular in (3.5.37) and so we may employ LU decomposition, unlike the

D2 and D methods of Dongarra et al. [43] which necessarily have B singular and

so necessitate use of the QZ algorithm. The banded nature of A and B would also

lead naturally to solution by an Arnoldi technique. In addition, we found no occur-

rence of spurious eigenvalues as frequently arises with the Chebyshev tau method,

cf., Dongarra et al. [43].

To solve the energy eigenvalue problem (3.4.26) we remove the ζ term by taking

curlcurl of (3.4.26)1 to arrive at the system

2∆2w − 2M2w,zz −RE (1 + λf)∆∗ϕ = 0,

2λ∆ϕ− 2λξ2ϕ−RE(1 + λf)w = 0.
(3.5.38)

Again, the representations w =W (z)h(x, y) and ϕ = Φ(z)h(x, y) are introduced

and we solve (3.5.38) as

2(D2 − a2)2W − 2M2D2W = −a2RE(1 + λf)Φ,

2λ(D2 − a2)Φ− 2λξ2Φ = RE(1 + λf)W,
(3.5.39)
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together with boundary conditions (3.3.18). Now, however, the eigenvalue is RE.

We again use finite differences to solve for the smallest eigenvalue RE for fixed a2

and λ. Then, we employ golden section search to minimize in a2 and then maximize

in λ to determine the critical Rayleigh number for nonlinear energy stability,

Rcrit
aE

= max
λ>0

min
a2

R2
E(a

2;λ).

Numerical results are reported in section 3.6 and compared to those of linear

instability theory.

3.6 Results and conclusions

In this section we report on numerical solution of the linear instability system

(3.3.17), (3.3.18), and on the nonlinear energy stability system (3.4.26), (3.3.18).

Figures [3.1, 3.2] show the effect of increasing magnetic field M2 on the crit-

ical Rayleigh number for various values of ξ and η. It is very noteworthy that

the nonlinear stability curves are close to those of linear theory. This shows that

possible sub-critical instabilities may only arise in a very small range of Rayleigh

numbers, and it also demonstrates that linear instability theory is correctly captur-

ing the physics of the onset of convection. Figures [3.1, 3.2] demonstrate that Ra

increases with increasingM2 which shows the stabilizing effect of the magnetic field.

Figure 3.3 shows how increasing ξ corresponds, in general, to greater stabiliza-

tion. Figures 3.4, 3.5 show the same effect but for larger magnetic field strength. All

these Figures demonstrate quantitatively the stabilizing effect of the chemical reac-

tion. Again, it is very noticeable that the nonlinear energy stability curves are close

to those of linear instability. This is reinforcing the fact that the linear curves are

a true representation that the physics of the onset of convection is being correctly

reflected. The gap between the curves represents the small band where sub-critical

bifurcation may possibly occur.
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Figure 3.6 again shows the stabilizing effect of increasing ξ, at least for ξ ≥ 3.

The decrease in Ra in Figure 3.3 when η = 4 and in Figure 3.6 (where again η = 4), is

to be expected due to the definition of η in (3.2.10). For example, η = 4 corresponds

to cU = 5cL/4. If we take η = 6 this corresponds to cU = 7cL/6. The coefficient

of cL decreases as η increases and this means that the destabilizing effect due to

heavier fluid above is lessening.
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Figure 3.1: Critical Rayleigh number Ra against M2, with ξ = 2 for η = 0, 2, 4. Linear

instability and nonlinear stability curves as in caption.
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Figure 3.2: Critical Rayleigh number Ra against M2, with ξ = 6 for η = 0, 2, 4. Linear

instability and nonlinear stability curves as in caption.
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Figure 3.3: Critical Rayleigh number Raagainst ξ, with M2 = 1 for η = 0, 2, 4. Linear

instability and nonlinear stability curves as in caption.
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Figure 3.4: Critical Rayleigh number Raagainst ξ, with M2 = 6 for η = 0. Linear

instability curve together with nonlinear stability one.
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Figure 3.5: Critical Rayleigh number Raagainst ξ, with M2 = 6 for η = 2. Linear

instability curve together with nonlinear stability one.
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Figure 3.6: Critical Rayleigh number Raagainst ξ, with M2 = 6 for η = 4. Linear

instability curve together with nonlinear stability one.
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Chapter 4

Magnetic effect on instability and

nonlinear stability of double

diffusive convection in a reacting

fluid

4.1 Introduction

The problem of double diffusive convection in fluid and porous media has attracted

considerable interest during the last 50 years. This is because of its wide range of

applications, for instance modeling geothermal reservoirs [36, 70, 180]. Bioremedia-

tion, where micro-organisms are introduced to change the chemical composition of

contaminants is a very topical area, cf. Celia et al. [30], Chen et al. [33], Suchome-

l et al. [204]. Contaminant movement or pollution transport is a further area of

multi-component, flow in porous media which is of much interest in environmen-

tal engineering, cf. Curran and Allen [40], Ewing and Weekes [51], Franchi and

Straughan [58]. Other very important and topical areas of double diffusive occur in

oil reservoir simulation, e.g. Ludvigsen et al. [114], and salinization in desert-like

areas, Gilman and Bear [67]. Solar ponds are a particulary promising means of har-

nessing energy from the Sun by preventing convective overturning in thermohaline

system by salting from below, cf., Leblanca et al. [103] and Nie et al. [135].
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Recently, double diffusive convection in a viscous flow has been extensively in-

vestigated, both theoretically and experimentally [59,115,117,159,206,211,215,216].

Moreover, convection in chemically reacting fluids has been a topic of much recent

interest, cf., Malashetty and Biradar [120], Rahman and Al-Lawatia [157]. Also,

Magnetoconvection (convection in the presence of a magnetic field) on such process-

es has been intensively studied by many authors, cf., Eltayeb et al. [49, 50], Kaloni

and Mahajan [94], Maehlmann and Papageorgiou [116], Nanjundappa et al. [130],

Reddy et al. [164], Shivakumara et al. [187, 188], Sunil et al. [212]. Thus, we deem

it of great relevance to develop and analyse stability in detail for the double diffu-

sive convection problem of Joseph [91], but allowing for chemical reactions and an

imposed magnetic field.

The two important articles on the nonlinear energy stability of double diffusive

convection problem was presented by Joseph [91] and Mulone [129]. A detailed

review of problems related to this problem can be found in the book by Straugh-

an [196]. A comprehensive review of the literature concerning double diffusive nat-

ural convection in a fluid-saturated porous medium may be found in the book by

Nield and Bejan [138]. Useful review articles on double diffusive convection in porous

media include those by Mojtabi and Charrier-Mojtabi [127] and Mamou [124].

Baines and Gill [11] introduced a detailed linear stability theory for problem of

convection with temperature and salt fields in a fluid and the similar situation in

porous medium was studied by Nield [136]. Rudraiah et al. [182] have used nonlinear

perturbation theory to study the onset of double diffusive convection in a horizontal

porous layer. The linear stability analysis of the thermosolutal convection is carried

out by Poulikakos [154] using the Darcy-Brinkman model. The double diffusive

convection in porous media in the presence of cross-diffusion effects is analyzed

by Rudraiah and Malashetty [181]. Malashetty et al. [121] have studied the double

diffusive convection in a fluid-saturated rotating porous layer when the fluid and solid

phases are not in local thermal equilibrium, using both linear and nonlinear stability
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analyses. Sunil and Mahajan [210] have derived a rigorous nonlinear stability result

by introducing a suitable generalized energy functional for a magnetized ferrofluid

layer heated and saluted from below with magnetic field-dependent(MFD) viscosity,

for stress-free boundaries. Sunil et al. [213] have derived a nonlinear stability result

for a double-diffusive magnetized ferrofluid layer rotating about a vertical axis for

stress-free boundaries via generalized energy method.

The outline of this chapter is as follows. We begin by formulating a governing

model for double diffusive convection with a dissolved reacting fluid and a vertically

imposed magnetic field. We then find an instability bound for the linearized system

and a global stability bound for the nonlinear system. Finally we introduce the nu-

merical method used to solve our system, then we present and discuss the numerical

results.

The results in this chapter have been published in the article Harfash [74].

4.2 Basic Equations

We suppose the fluid is contained in the plane layer {z ∈ (0, d)} × R2, and is

incompressible, although a Boussinesq approximation is employed in the buoyancy

term in the momentum equation. The z direction is denoted by the vector k with

i, j, k being the standard Cartesian basis. Gravity acts in the negative z direction

and we assume that the density ρ is constant, everywhere except the body force.

Then, the Navier-Stokes equation for the fluid motion are

ρ(vi, t + vj vi,j) = −p, i + µ∆vi + ρkig(αT − αcc) + j×B, (4.2.1)

where ρ,v, p, c are the constant density, velocity field, pressure, and concentration

of solute. Additionally, α and αc are the thermal and salt expansion coefficients

respectively, µ is the dynamic viscosity, g is gravity, k = (0, 0, 1), j is the current,

andB is the magnetic induction field. Throughout, we use standard indicial notation

and the Einstein summation convention so that e.g. vi, t = ∂vi/∂t, and p,i = ∂p/∂xi,

vj vi,j ≡ (v.∇)v, and ∆ is the Laplacian. The balance of mass equation is

vi,i = 0. (4.2.2)
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The heat equation governing the temperature field is defined as

T,t + vi T, i = K∆T, (4.2.3)

where T is the temperature field and K is the thermal diffusivity.

The equation governing the evaluation of the solute concentration is, cf., Hayat

and Nawaz [80],

c,t + vi c, i = D∆c−K1c. (4.2.4)

Here c(x, t) is the solute concentration, D is the the solute diffusion coefficient, and

K1 is the chemical reaction rate.

Now, according to the quasi-static MHD approximation of Galdi and Straughan

[61], we have

j×B = σ1(v ×B0)×B0, (4.2.5)

where σ1 is the electrical conductivity and B0 = (0, 0, B0) is a magnetic field with

only the vertical component. We now employ (4.2.5) in (4.2.1). Thus, we find the

equations for our model are

vi,t + vjvi,j = −1

ρ
p, i + ν∆vi + gki(αT − αcc) +

B2
0σ1
ρ

[(v × k)× k]i, (4.2.6)

vi,i = 0, (4.2.7)

T,t + vi T, i = K∆T, (4.2.8)

c,t + vi c, i = D∆c−K1c, (4.2.9)

where ν = µ/ρ. The model now consists of the six partial differential equations

(4.2.6)-(4.2.9), on the boundaries z = 0, d and the following boundary conditions

are assumed to hold,

vi = 0, at z = 0, d; c = cU , T = TU , at z = d; c = cL, T = TL, at z = 0,

(4.2.10)

where cU , cL, TU , TL are constant.
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Under these boundary conditions, our system admits the stationary solution

whose stability we investigate, namely,

v̄i ≡ 0,

dc̄

dz
= −∆C

d
f(
z

d
; ξ, η),

T̄ = −H1βz + TL,

dp̄

dz
= −ρgαcc̄− ρgαT̄ ,

(4.2.11)

where

f(
z

d
; ξ, η) =

ξ

sinh(ξ)
{H2 − η(1− cosh(ξ))} cosh(ξ

z

d
)− ξη sinh(ξ

z

d
),

ξ = A1d, A
2
1 =

K1

D
, ∆C = |cL − cU |, ∆T = |TL − TU |, η =

cL
∆C

, β =
∆T

d
,

H1 = sign(TL − TU), H2 = sign(cL − cU).

To study the stability of (4.2.5)-(4.2.9), we introduce a perturbation (ui, π, ϕ, θ) to

the steady state solution (v̄i, p̄, c̄, T̄ ), by

vi = v̄i + ui, p = p̄+ π, c = c̄+ ϕ, T = T̄ + θ.

Using (4.2.11), the nonlinear perturbation equations have the form

ui, t + uj ui,j = −1

ρ
π, i + ν∆ui + gki(αθ − αcϕ) +

B2
0σ1
ρ

[(u× k)× k]i,

θt + ui θ, i = H1βw +K∆θ,

ϕt + ui ϕ, i =
∆C

d
f(
z

d
; ξ, η)w +D∆ϕ−K1ϕ,

(4.2.12)

where ui is solenoidal, i.e. ui, i = 0.

These equations are conveniently non-dimensionalised with the variables

x = x∗d, t = t∗
d2

ν
, u = Uu∗, θ = T ♯

θθ
∗, ϕ = T ♯

ϕϕ
∗, π = Pπ∗,

U =
ν

d
, P =

ρ ν2

d2
, T ♯

ϕ = U

√
ν∆C

Dαcgd
, Rc =

√
αc g d3∆C

D ν
, T ♯

θ = U

√
ν β

Kαg
,

Rt =

√
βα g d4

K ν
, M = B0d

√
σ

ρ ν
, Ps =

ν

D
, Pr =

ν

K
.
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Here Ps and Pr is the Prandtl numbers and Rc and Rt is the Rayleigh numbers.

Equations (4.2.12) in non-dimensional form (dropping stars) become,

ui, t + uj ui,j = −π, i +∆ui + ki(Rtθ −Rcϕ) +M2[(u× k)× k]i,

Pr(θt + ui θ, i) = H1Rtw +∆θ,

Ps(ϕt + ui ϕ, i) = Rcf(z; ξ, η)w +∆ϕ− ξ2ϕ.

(4.2.13)

The spatial domain is now {(x, y) ∈ R2} × {z ∈ (0, 1)}. These equations are to be

solved together with the boundary conditions

ϕ = θ = ui = 0, on z = 0, 1, (4.2.14)

together with the fact that the (x, y) behaviour of ui, θ, ϕ, π satisfies a plane tiling

periodic pattern, Chandrasekhar [32], Straughan [196]. In this study, we will discuss

three cases:

1. TL > TU , cL > cU , i.e. heating below and salting below, H1 = +1 and H2 =

+1.

2. TL < TU , cL > cU , i.e. heating above and salting below, H1 = −1 and H2 =

+1.

3. TL > TU , cL < cU , i.e. heating below and salting above, H1 = +1 and H2 =

−1.

It should be point out that when ξ → 0 and thus f(z) → H2 and if the layer is

salty above and heated below, then both are destabilizing, and the linearized sys-

tem is symmetric, therefore, the linear and the nonlinear boundaries coincide and

no sub-critical instabilities can occur. However, if the layer is salted below, which

is a stabilizing effect, while the layer is heated from below, which is a destabilizing

effect, thus, there are two physical effects are competing against each other. Due

to this competition, it means that the linear theory of instability does not always

capture the physics of instability completely and sub-critical instabilities may arise

before the linear threshold is reached. Due to the possibility of sub-critical instabil-

ities occurring, it is very important to obtain nonlinear stability thresholds which
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guarantee bounds below which convective overturning will not occur.

4.3 Linear instability

Linear instability results for stationary convection are obtained via the application

of standard procedures to the linearized version of (4.2.13). To find the critical

Rayleigh number of linear theory, we neglect the nonlinear terms in (4.2.13) and

assume a temporal growth rate like eσt, thus we obtain the linearised system

− π, i +∆ui + ki(Rtθ −Rcϕ) +M2[(u× k)× k]i = σui,

H1Rtw +∆θ = σPrθ,

Rcf(z; ξ, η)w +∆ϕ− ξ2ϕ = σPsϕ.

(4.3.15)

To eliminate the pressure in (4.3.15)1, we take the curlcurl of both sides. Then,

setting i = 3 we obtain

∆2w + (Rt∆
∗θ −Rc∆

∗ϕ)−M2D2w = σ∆w, (4.3.16)

where ∆∗ is the horizontal Laplacian ∆∗ = ∂2/∂x2 + ∂2/∂y2, D = d/dz.

Assuming a normal mode representation for w, θ and ϕ of the form w =W (z)h(x, y),

θ = Θ(z)h(x, y) and ϕ = Φ(z)h(x, y) where h(x, y) is some horizontal plan form

satisfying

∆∗h = −a2h. (4.3.17)

The plan-forms represent the horizontal shape of the convection cells formed at the

onset of instability. These cells from a regular horizontal pattern tiling the (x, y)

plane, where the wavenumber a see [32]) is a measure of the width of the convection

cell. Using (4.3.17), and applying the normal mode representations to (4.3.15)2,

(4.3.15)3 and (4.3.16) we find

(D2 − a2)2W − a2(RtΘ−RcΦ)−M2D2W = σ(D2 − a2)W,

(D2 − a2)Θ +H1RtW = σPrΘ,

(D2 − a2)Φ− ξ2Φ +Rcf(z; ξ, η)W = σPsΦ,

(4.3.18)
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where the boundary conditions become

Θ = Φ = W = DW = 0, z = 0, 1, (4.3.19)

for fixed surface and

Θ = Φ = W = D2W = 0, z = 0, 1, (4.3.20)

for free surface. System (4.3.18) and (4.3.19) or (4.3.20) is solved using the finite

difference (FD) method. Detailed numerical results are reported in section 6. We

can now determine the critical Rayleigh number given RaL = mina2 R
2
t (a

2), such

that σ(Rt) = 0 where for all R2 > RaL we have instability. In section 6 we will in-

troduce specific details about the algorithm which we use in evaluation the Rayleigh

numbers.

Although the linear analysis has been completed numerically, it is possible to

use analytic methods to provide a general idea about the stationary and oscillatory

neutral lines. In the linear instability analysis, the values of Prandtl numbers play a

crucial role in determine where the linear curve is an oscillatory curve or stationary

curve. Thus, it is useful to obtain an analytic solution for the problem. Before

we start with analytic analysis we suppose that M2 = 0, η = 0 and ξ → 0, thus

f(z) → 1. Now, we can discuss the analytic analysis because the function f(z) are

removed . Note that without this assumptions it is impossible to establish the ana-

lytic solution, and we can get this solution just for two free boundaries i.e. we will

solve analytically system (4.3.18) with respect to the boundary conditions (4.3.20).

Moreover, according to our numerical results, we note that case 2 is always stable

and in case 3, we found that σ ∈ R. Thus, we discuss just case 1, i.e. H1 = +1 and

H2 = +1. Now, according to the above assumptions, our system can be simplified

to the following form

σ(D2 − a2)W = (D2 − a2)2W − a2(RtΘ−RcΦ),

σPrΘ = (D2 − a2)Θ +RtW,

σPsΦ = (D2 − a2)Φ +RcW.

(4.3.21)
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Hence, letting L1 = (D2−a2)−σPr and L2 = (D2−a2)−σPs, Thus, from (4.3.18)2

and (4.3.18)3 we have

L1Θ = (D2 − a2)Θ− σPrΘ = −RtW, (4.3.22)

and

L2Φ = (D2 − a2)Φ− σPrΦ = −RcW. (4.3.23)

Now, re-applying L1 and L2 to (4.3.18)1 to get

σL1L2(D
2 − a2)W = L1L2(D

2 − a2)2W + a2R2
tL2(W )− a2R2

cL1(W ). (4.3.24)

After make simple calculation we have

σ(D2 − a2 − σPs)(D
2 − a2 − σPr)(D

2 − a2)W

= (D2 − a2 − σPs)(D
2 − a2 − σPr)(D

2 − a2)2W

+a2R2
t (D

2 − a2 − σPs)W − a2R2
c(D

2 − a2 − σPr)W. (4.3.25)

Because of the boundary conditionsW = 0, D2W = 0 on z = 0, 1 (non-dimensional

boundaries), thenW can be expanded as a sine series of terms like sin(nπz). In fact,

we can show n = 1 yields the lowest instability boundary. Then, with Λ = π2 + a2,

a being a wavenumber, from system (4.3.25) we derive

−σΛ3 − σ2(Pr + Ps)Λ
2 − σ3ΛPr Ps

= Λ4 + σ(Pr + Ps)Λ
3 + σ2Λ2Pr Ps + a2(R2

c −R2
t )Λ + a2(Pr R

2
c − PsR

2
t )σ. (4.3.26)

The stationary convection curve (σ = 0) is then given by

R2
t =

Λ3

a2
+R2

c . (4.3.27)

Then we minimize (4.3.27) with respect to a2 thus we have a2c = π2/2. Substituting

this a2 value into (4.3.27) we can evaluate

RaL =
27

4
π4 +R2

c . (4.3.28)

For the general case (4.3.26) we put (σ = σr + iσi) and the instability boundary is

found when σr = 0. Thus, we follow the method of Chandrasekhar [32], P.114, and
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put σ = iσi in (4.3.26). Taking real and imaginary parts of the resulting equation

and then eliminating σ2
i we derive the equation for overstability,

R2
t =

Λ3

a2
(1− PsP2)

(1− PsP1)
+R2

c

(1− PrP1)

(1− PsP1)
, (4.3.29)

where P1 = ((Pr + Ps)/PrPs) + 1 and P2 = Pr + Ps + 1. Now we minimize (4.3.29)

with respect to a2 we find that a2c = π2/2 and

RaL =
27π4

4

(1− PsP2)

(1− PsP1)
+R2

c

(1− PrP1)

(1− PsP1)
. (4.3.30)

4.4 Nonlinear energy stability theory

Linear instability analysis provides a boundary for which all R2 greater than the

critical Rayleigh number in instability, where no assumptions can be made about

stability when R2 is below this boundary, as the solution may become unstable before

the threshold predicted by the linear theory is reached. A nonlinear energy analysis

produces stability boundaries with our aim being to show that these thresholds are

close enough to those of linear theory, so that we can conclude that linear instability

theory effectively captures the physics of the onset of convection.

Let V be a period cell for a disturbance to (4.2.13), and let ∥·∥ and (·, ·) be the norm

and inner product on L2(V ). We derive energy identities by multiplying (4.2.13)1

by ui and integrating over V , and (4.2.13)2 by ϕ and integrating over V , to find

1

2

d

dt
∥u∥2 = −∥∇u∥2 +Rt(w, θ)−Rc(w, ϕ)−M2[∥u∥2 − ∥w∥2], (4.4.31)

Pr

2

d

dt
∥θ∥2 = H1Rt(w, θ)− ∥∇θ∥2, (4.4.32)

Ps

2

d

dt
∥ϕ∥2 = Rc(f(z)w, ϕ)− ξ2∥ϕ∥2 − ∥∇ϕ∥2. (4.4.33)

We introduce positive parameters λ1 and λ2, and define

E(t) =
1

2
∥u∥2 + λ1Pr

2
∥θ∥2 + λ2Ps

2
∥ϕ∥2,

D = λ2ξ
2∥ϕ∥2 + λ1∥∇θ∥2 + λ2∥∇ϕ∥2 + ∥∇u∥2 +M2[∥u∥2 + ∥v∥2],

I = Rt(w, θ)−Rc(w, ϕ) +H1λ1Rt(w, θ) + λ2Rc(f(z)w, ϕ),

(4.4.34)
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where u is explicitly written as u = (u, v, w). From (4.4.31),(4.4.32) and (4.4.34)

we derive

dE

dt
= I − D,

dE

dt
≤ −D(1− 1

RE

),

where 1/RE = maxH(I/D) and H is the space of admissible functions, namely

H = {ui, θ, ϕ ∈ C2(0, 1) : θ = ϕ = w = Dw = 0, z = 0, 1.}

For fixed surface and the same space for free surface with D2w = 0 instead of

Dw = 0. If RE > 1 then with χ1 being the constant in poincare’s inequality, it

follows that D > cE where c = min{2χ1, 2(χ1+ξ
2)P−1

s , 2χ1P
−1
r },. Hence it follows

that

dE

dt
≤ −cE(RE − 1

RE

).

Thus, letting ϵ = c(RE − 1)/RE we have E(t) ≤ E(0)e−ϵt which tends to 0 as

t → ∞, so we have shown the decay of ϕ, θ and u. We now turn our attention

to the maximisation problem 1/RE = maxH(I/D) with RE > 1. We do this for

the threshold case RE = 1 which yield the sharpest stability boundary.To solve the

maximisation problem we study the Euler Lagrange equations. The Euler Lagrange

equations are found from

REδI − δD = 0. (4.4.35)

let χ, ϑ and ψ be arbitrary, fixed C2(0, 1) functions which satisfy the boundary

conditions. We now consider neighbouring function ui = ui+ εη(xj), θ = θ+ εϑ(xj)

and ϕ = ϕ+ εψ(xj), Hence

δD =
d

dε
[∥∇u+ ε∇η∥2 +M2∥u+ εη∥2 −M2∥w + εη3∥2 + λ1∥∇θ + ε∇ϑ∥2

+λ2∥∇ϕ+ ε∇ψ∥2 + λ2ξ
2∥ϕ+ εψ∥2]ε=0

= ⟨−2∆ui + 2M2ui − 2kiM
2w, ηi⟩+ ⟨−2λ1∆θ, ϑ⟩+ ⟨2λξ2ϕ− 2λ2∆ϕ, ψ⟩,
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and

δI =
d

dε
[Rt⟨w + ϵη3, θ + ϵϑ⟩+H1λ1Rt⟨w + ϵη3, θ + ϵϑ⟩

−Rc⟨w + ϵη3, ϕ+ ϵψ⟩+ λ2Rc⟨f(z)(w + ϵη3), ϕ+ ϵψ⟩]ε=0

= ⟨−Rc ki ϕ+ λ2Rc ki f(z)ϕ+Rt ki θ +H1λ1Rt ki θ, ηi⟩

+⟨Rtw +H1λ1Rtw, ϑ⟩+ ⟨−Rcw + λ2Rcf(z)w,ψ⟩.

Thus, the Euler lagrange equations which arise from the variational problem 1/RE =

maxH(I/D) can write as:

−Rt ki θ −H1λ1Rt ki θ +Rc ki ϕ− λ2Rc ki f(z)ϕ− 2∆ui + 2M2ui − 2kiM
2w = −π,i,

Rtw +H1λ1Rtw + 2λ1∆θ = 0,

−Rcw + λ2Rcf(z)w − 2λ2ξ
2ϕ+ 2λ2∆ϕ = 0,

(4.4.36)

where π is a lagrange multiplier. To remove the lagrange multiplier we Take the

third component of the double curl of (4.4.36)1, and introducing the normal mode

representation and notation as presented in section 3, thus (4.4.36) then becomes

(D2 − a2)2W −M2D2W + (1− λ2f(z))
a2

2
RcΦ =

a2Rt

2
(1 +H1λ1)Θ,

(D2 − a2)Θ = −Rt

2
(
1

λ1
+H1)W,

(D2 − a2)Φ− ξ2Φ− Rc

2λ2
(1− λ2f(z))W = 0.

(4.4.37)

We can now determine the critical Rayleigh number given by

RaE = max
λ1 λ2

min
a2

R2
t (a

2, λ),

where for all R2
t < RaE we have stability.

4.5 Numerical method

In this section we will discuss the finite element method which is used to solve sys-

tems (4.3.18) and (4.4.37). We shall explain how the linear system have been solved

and then the solution of the nonlinear system follows directly using the same argu-

ment. Firstly, we introduce a new variable A = D2W , Therefore, system (4.3.18)
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become as follows

D2W = A,

D2A− (2a2 +M2)A+ a4W − a2(RtΘ−RcΦ) = σ(A− a2W ),

(D2 − a2)Θ +H1RtW = σPrΘ,

(D2 − a2)Φ− ξ2Φ +RcfW = σPsΦ.

(4.5.38)

For free surface the boundary conditions will be W = A = Θ = Φ = 0, while

for fixed surface the situation require careful treatment and we shall deal with this

treatment after introducing the finite element approximation.

Firstly, we divided the period 0 ≤ x ≤ 1 into n elements, each element e having

p+1 nodes n1, n2, ..., np+1. In term of its p+1 nodal values, the variablesW,A,Θ,Φ

may be uniquely interpolated as a polynomial of p+1 order, the interpolation being

given by

W e = N eδeW , Ae = N eδeA, Θe = N eδeΘ, Φe = N eδeΦ, (4.5.39)

where δeW = {Wn1 ,Wn2 , ...,Wnp+1}, δeA = {An1 , An2 , ..., Anp+1}, δeΘ = {Θn1 ,Θn2 , ...,Θnp+1}

and δeΦ = {Φn1 ,Φn2 , ...,Φnp+1}, and the shape function matrix is

N e = [Np
n1
, Np

n2
, ..., Np

np+1
].

Therefore the over-all finite element approximation is given by

W =
n∑

e=1

W e, A =
n∑

e=1

Ae, Θ =
n∑

e=1

Θe, Φ =
n∑

e=1

Φe. (4.5.40)

The variational formulations of (4.5.38) is

Minimize IW [W ] =

∫ 1

0

(−(DW )2 − 2AW )dx,

(4.5.41)

Minimize IA[A] =

∫ 1

0

(−(DA)2−(2a2+M2)A2+2a4WA−2a2(RtΘA−RcΦA)

−σ(A2 − 2a2WA)dx, (4.5.42)

Minimize IΘ[Θ] =

∫ 1

0

(−(DΘ)2 − a2Θ2 + 2H1RtWΘ− σPrΘ
2)dx,

(4.5.43)

Minimize IΦ[Φ] =

∫ 1

0

(−(Dϕ)2−(a2+ξ2)Φ2+2RcfWΦ−σPsΦ
2)dx. (4.5.44)
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Substitution of (4.5.40) into variational formulations (4.5.41)-(4.5.44) gives

IW [W ] =
n∑

e=1

∫
e

(−(DW e)2 − 2AeW e)dx =
n∑

e=1

IeW ,

(4.5.45)

IA[A] =
n∑

e=1

∫
e

(−(DAe)2− (2a2+M2)(Ae)2+2a4W eAe− 2a2(RtΘ
eA−RcΦ

eA)

−σ((Ae)2 − 2a2W eAe)dx =
n∑

e=1

IeA, (4.5.46)

IΘ[Θ] =
n∑

e=1

∫
e

(−(DΘe)2−a2(Θe)2+2H1RtW
eΘe−σPr(Θ

e)2)dx =
n∑

e=1

Ieθ , (4.5.47)

IΦ[Φ] =
n∑

e=1

∫
e

(−(Dϕe)2 − (a2 + ξ2)(Φe)2 + 2RcfW
eΦe − σPs(Φ

e)2)dx =
n∑

e=1

Ieϕ,

(4.5.48)

here, we use the fact that the functions W e, Ae, θe, ϕe are equivalent to zero outside

the element e. Using (4.5.45), (4.5.46), (4.5.47) and (4.5.48) we obtain

IW [W ] = IW (W1,W2, ...,Wm),

IA[A] = IA(A1, A2, ..., Am),

IΘ[Θ] = IΘ(Θ1,Θ2, ...,Θm),

IΦ[Φ] = IΦ(Φ1,Φ2, ...,Φm),

where m is the number of all nodes in all elements. Then using the Rayleigh-Ritz

procedure to minimize IW [W ], IA[A], IΘ[Θ], IΦ[Φ], with respect to the variational

parameters Wi, Ai,Θi,Φi respectively, gives

∂IW
∂Wi

=
n∑

e=1

∂IeW
∂Wi

= 0, i = 1, ...,m, (4.5.49)

∂IA
∂Ai

=
n∑

e=1

∂IeA
∂Ai

= 0, i = 1, ...,m, (4.5.50)

∂IΘ
∂Θi

=
n∑

e=1

∂IeΘ
∂Θi

= 0, i = 1, ...,m, (4.5.51)

∂IΦ
∂Φi

=
n∑

e=1

∂IeΦ
∂Φi

= 0, i = 1, ...,m. (4.5.52)
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Using (4.5.39), (4.5.49), (4.5.50), (4.5.51) and (4.5.52), we have

∂IeW
∂Wni

= −2

∫
e

dNp
ni

dz

dN e

dz
δeWdx− 2

∫
e

Np
ni
N eδeAdx = 0, (4.5.53)

∂IeA
∂Ani

= 2a4
∫
e

Np
ni
N eδeWdx− 2

∫
e

(
dNp

ni

dz

dN e

dz
+ (2a2 +M2)Np

ni
N e)δeAdx

−2a2Rt

∫
e

Np
ni
N eδeΘdx+2a2Rc

∫
e

Np
ni
N eδeΦdx−2σ

∫
e

[Np
ni
N eδeA−2a2Np

ni
N eδeW ]dx = 0,

(4.5.54)
∂IeΘ
∂Θni

= −2

∫
e

(
dNp

ni

dz

dN e

dz
+ a2Np

ni
N e)δeΘdx

+2H1Rt

∫
e

Np
ni
N eδeWdx− 2Prσ

∫
e

Np
ni
N eδeΘdx = 0, (4.5.55)

∂IeΦ
∂Φni

= −2

∫
e

[
dNp

ni

dz

dN e

dz
+ (a2 + ξ2)Np

ni
N e]δeΦdx

+2Rc

∫
e

fNp
ni
N eδeWdx− 2Psσ

∫
e

Np
ni
N eδeΦdx = 0. (4.5.56)

Then, the matrix representation for the system of equation of element e take the

form
−De

2 −F e
1 O O

a4F e
1 −De

2 − (2a2 +M2)F e
1 −a2RtF

e
1 a2RcF

e
1

H1RtF
e
1 O −De

2 − a2F e
1 O

RcF
e
2 O O −De

2 − (a2 + ξ2)F e
1




δeW

δeA

δeΘ

δeΦ



= σ


O O O O

−a2F e
1 F e

1 O O

O O PrF
e
1 O

O O O PsF
e
1




δeW

δeA

δeΘ

δeΦ

 , (4.5.57)

where

Oij = 0, De
2 ij =

∫ 1

−1

dNp
ni

dz

dNp
nj

dz
dz, F e

1 ij =

∫ 1

−1

Np
ni
Np

nj
dz,

F e
2 ij =

∫ 1

−1

f(z)Np
ni
Np

nj
dz, i = 1, ...p+ 1, j = 1, ...p+ 1.

The above integral can be evaluated by applying the classical finite element nodal
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basis functions in one dimension on the standard element Ωst = (−1, 1). The stan-

dard shape functions are defined by the set of Lagrange polynomials

Np
ni
(ζ) =

np+1∏
j=n1, j ̸=i

ζ − ζj
ζi − ζj

, (4.5.58)

where ζ = 2/h(z − zm), h is the length of element and zm is the mid-point. Thus

these integrations take the form:

De
2 ij =

2

h

∫ 1

−1

dNp
ni

dζ

dNp
nj

dζ
dζ,

F e
1 ij =

h

2

∫ 1

−1

Np
ni
Np

nj
dζ,

F e
2 ij =

h

2

∫ 1

−1

f(
h

2
ζ + zm)N

p
ni
Np

nj
dζ,

i = 1, ...p+ 1, j = 1, ...p+ 1.

All these integrals were calculated analytically using Matlab routines. Finally, we

assemble the systems of all elements e = 1, ..., n to get the main system which have

the form

Ax = σBx, (4.5.59)

where x = (W1, ...,Wm, A1, ..., Am,Θ1, ...,Θ2,Φ1, ...,Φm)
T .

For free surface boundary conditions, we imposing the boundary conditions easily

by removing W1,Wm, A1, Am, Θ1,Θ2,Φ1,Φm from the system and thus we remove

the rows and columns of order 1,m,m+1, 2m, 2m+1, 3m, 3m+1 and 4m. However,

for fixed boundary conditions, we change the conditions DW = 0 at z = 0, 1, to

another conditions related with new function A. To do this, let the first element is

[0, a] and the last element is [b, 1]. Firstly, we integrate (4.5.38)1 for first and the

last elements and use the boundary conditions, to arrive to the following conditions

DW 1(a) =

∫ a

0

A1dx, (4.5.60)

−DW n(b) =

∫ 1

b

Andx, (4.5.61)
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where 1, n refer to the first and the last element. Next, we transform equations

(4.5.60) and (4.5.61) to the local coordinate ζ and use (4.5.39) to obtain

2

h

dN(1)

dζ
δ1W =

h

2

∫ 1

−1

N(ζ)δ1Adζ, (4.5.62)

−2

h

dN(−1)

dζ
δnW =

h

2

∫ 1

−1

N(ζ)δnAdζ. (4.5.63)

Now, let di = dNi(1)/dζ, ei =
∫ 1

−1
Ni(ζ)dζ, and fi = dNi(−1)/dζ. In addition,

suppose that the nodes for the first element and for the last element have the order

1, 2, ..., p + 1 and m − p,m − p + 1, ...,m, respectively. Then, (4.5.62) and (4.5.64)

lead to the following computational conditions

A1 =
4

h2e1
[d2W2 + ...+ dp+1Wp+1]−

1

e1
[e2A2 + ...+ ep+1Ap+1], (4.5.64)

Am = − 4

h2ep+1

[f1Wm−p + f2Wm−p+1 + ...+ fpWm−1]−
1

ep+1

[e1Am−p + ...+ epAm−1].

(4.5.65)

Now, we substitute the values of A1 and Am in (4.5.59) thus the columns of order

m + 1 and 2m will be zeros. Now, we can remove the rows and columns of order

1,m,m+ 1, 2m, 2m+ 1, 3m, 3m+ 1 and 4m.

4.6 Results and conclusions

In this section we report our numerical solution of the linear instability and the

nonlinear energy theory. Firstly, we have checked convergence and found that con-

vergence to 8 decimal places is achieved with 2 elements and each element have 10

nodes for two free-free boundary conditions, while for fixed-fixed boundary condi-

tions the convergence to 8 decimal places can be achieved using 3 elements and each

element have 11 nodes. It should be point out that we use the finite element method

to solve our problem because it is very flexible especially for problems which have

variable coefficients and give very accurate result. Moreover, the finite element has

a fast convergence to the required results.

We found that when the layer is heated above and salty below system (4.2.13) is

always stable. For the case of the layer is salty above and heated below i.e. H1 = +1
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and H2 = −1, the spectrum σ is found numerically to be always real. In the case

of the layer is salty below and heated below i.e. H1 = +1 and H2 = +1, the linear

analysis stability is more difficult because it include an oscillatory convection. We

found that the values of wave numbers for oscillatory convection are very close to

the values of wave numbers for stationary convection, thus the computations of

the critical Rayleigh numbers will be difficult especially in the period around the

intersection points.

For the case of the layer is salty below and heated below, we present in Figures

4.1 and 4.2 the critical Rayleigh number Ra against R2
c for fixed-fixed and free-free

boundary conditions, respectively, for M2 = 0 and η = 0 ξ = 10−10, 1, 2, 3. The pic-

ture of nonlinear energy bound with the linear curves in these figures is a classical

picture for double diffusive convection. These Figures show the effect of increasing

ξ on oscillatory and steady convection, where as ξ increase, the switching of convec-

tion from steady to oscillatory will be late. Figure 4.3 present the critical Rayleigh

number Ra against Rc but with different values ξ, η,M2, where the new values are

ξ = 1, η = 1 and M2 = 30, 60, 90. Figure 4.3 demonstrates that Ra increases with

increasing M2 which shows the stabilizing effect of the magnetic field. In addition,

figures 4.1, 4.2 and 4.3 show that the subcritical instability regions become bigger

with increasing Rc, and this is to be expected for classical double diffusive con-

vection. Also, figures 4.1, 4.2 and 4.3 show that the switching of convection from

steady to oscillatory for free-free boundary conditions occurs before the switching

for fixed-fixed boundary conditions. Thus the switching do not occurs in the same

point, and this is very important because many researchers make an analytic test

to their system with free-free boundary conditions to see where the switching occurs.

Again, for the case of the layer is salty below and heated below, figures 4.4

and 4.5 present the critical Rayleigh number Ra against M2 with ξ = η = 1, for

fixed-fixed and free-free boundary conditions. As we mention above, the switch-

ing of convection occurs for the free-free boundary conditions before the fixed-fixed

boundary conditions according to the Rc values, thus, for fixed-fixed boundary con-

ditions we select Rc = 30, 35, 40, 45, while for free-free boundary conditions we select
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Rc = 25, 30, 35, 40. It is very clear the stabilizing effect of the magnetic field where

the values of Ra increases with increasing M2. The distance between the energy

and linear bound increases with increasing Rc, thus with large values of Rc we have

wide subcritical regions. Note that as Rc increases the nonlinearity of the linear

curves decreases. The very important point in these figures is that the oscillato-

ry convection appears before the stationary convection. This happen because we

have two competitive effects, the magnetic field effect M2 which have stabilizing

effect and Rc effect which have destabilizing effect. Thus, when the the values of

M2 are small such that the destabilizing effect of Rc is stronger than the stabiliz-

ing effect of M2, we expected that the convection will be oscillatory and as M2

increase the convection will be very close to the stationary. For example, in figure

4.4 when Rc = 30 the switching of convection from oscillatory to stationary occurs

in the period M2 ∈ (20, 25), while with Rc = 45 the switching appear in the period

M2 ∈ (225, 230).

In figure 4.6 and 4.7 we plot the critical Rayleigh number Ra against M2 and

R for η = 2, 4, 6 and fixed-fixed and free-free boundary conditions. We select the

values of parameters such that oscillatory convection do not occurs for the case

H1 = H2 = +1. This is because we wish to make a comparison between the two

cases H1 = H2 = +1 and H1 = +1, H2 = −1. Figures 4.6 and 4.7 a, b present

Ra against M2 with ξ = 2 and Rc = 15, while Figures 4.6 and 4.7 c, d present Ra

against Rc with ξ = 2 and M2 = 50. Again, for both cases it is clear the stabilizing

effect of M2 and destabilizing effect of η and Rc. Also, we note that the system for

the case of the layer is salty above and heated below is more stable than the case of

the layer is salty below and heated below.

Finally, figure 4.8 present critical Rayleigh number Ra against ξ for M2 = 50,

Rc = 15, H1 = H2 = +1 and η = 2, 4, 6 for fixed-fixed boundary conditions. Again,

We select Pr = Ps = 1, such that oscillatory convection do not occurs. We note

that how increasing ξ corresponds, in general, to destabilizing. The linear critical

Rayleigh numbers always decrease with increasing ξ. The nonlinear critical Rayleigh

number start with Ra = 2801.657676 for all η, then in the period 0 < ξ < 4, the
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value of Ra decrease with decreasing ξ. Next, for ξ > 4, the value of Ra increase

with increasing ξ until they arrive to the starting value Ra = 2801.657676 for large

value of ξ. It is very clear that this decreasing and increasing has a different values

according to the values of η.

Finally, we should mention that in this study the stability analyses on this prob-

lem have yield regions of potential subcritical instabilities where the linear instability

and nonlinear stability thresholds do not coincide. However, recently, an operative

technique have been applied to yield a sharp conditional nonlinear stability in sub-

critical instabilities regions, for more details see [82,84].

June 19, 2014



4.6. Results and conclusions 77

0 500 1000 1500 2000 2500 3000 3500

1500

2000

2500

3000

3500

4000

4500

5000

5500

R
a

R2
c

 Linear stationary
 Linear overstability 
 Nonlinear

(a)

0 500 1000 1500 2000 2500 3000 3500

1500

2000

2500

3000

3500

4000

4500

5000

R
a

R2
c

 Linear stationary
 Linear overstability 
 Nonlinear

(b)

0 500 1000 1500 2000 2500 3000 3500

1500

2000

2500

3000

3500

4000

4500

R
a

R2
c

 Linear stationary
 Linear overstability 
 Nonlinear

(c)

0 500 1000 1500 2000 2500 3000 3500

1400

1750

2100

2450

2800

3150

3500

R
a

R2
c

 Linear stationary
 Linear overstability 
 Nonlinear

(d)

Figure 4.1: Critical Rayleigh number Ra against R with M2 = 0, η = 0 and H1 = H2 =

+1, for fixed-fixed boundary conditions. (a) ξ = 10−10. (b) ξ = 1. (c) ξ = 2. (d) ξ = 3.

Linear instability and nonlinear stability curves as in caption.
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Figure 4.2: Critical Rayleigh number Ra against R with M2 = 0, η = 0 and H1 = H2 =

+1, for free-free boundary conditions. (a) ξ = 10−10. (b) ξ = 1. (c) ξ = 2. (d) ξ = 3.

Linear instability and nonlinear stability curves as in caption.
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Figure 4.3: Critical Rayleigh number Ra against R with ξ = 1, η = 1 and H1 = H2 = +1.

(a) M2 = 30. (b) M2 = 60. (c) M2 = 90. (d) M2 = 30. (e) M2 = 60. (f) M2 = 90.

Linear instability and nonlinear stability curves as in caption. a, b, c represent the results

of fixed-fixed boundary conditions and d, e, f for free-free boundary conditions
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Figure 4.4: Critical Rayleigh number Ra against M2 with ξ = 1, η = 1 and H1 = H2 =

+1, for fixed-fixed boundary conditions. (a) Rc = 30. (b) Rc = 35. (c) Rc = 40. (d)

Rc = 45. Linear instability and nonlinear stability curves as in caption.
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Figure 4.5: Critical Rayleigh number Ra against M2 with ξ = 1, η = 1 and H1 = H2 =

+1, for free-free boundary conditions. (a) Rc = 25. (b) Rc = 30. (c) Rc = 35. (d) Rc = 40.

Linear instability and nonlinear stability curves as in caption.
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Figure 4.6: Critical Rayleigh number Ra for η = 2, 4, 6 for fixed-fixed boundary condi-

tions. (a) Ra against M2 with ξ = 2, Rc = 15,H1 = H2 = +1. (b) Ra against M2 with

ξ = 2, Rc = 15,H1 = +1,H2 = −1. (c) Ra against R with ξ = 2,M2 = 50, H1 = H2 = +1.

(d) Ra against R with ξ = 2,M2 = 50,H1 = +1,H2 = −1. Linear instability curve

together with nonlinear stability one.
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Figure 4.7: Critical Rayleigh number Ra for η = 2, 4, 6 for free-free boundary conditions.

(a) Ra against M2 with ξ = 2, Rc = 15,H1 = H2 = +1. (b) Ra against M2 with ξ =

2, Rc = 15,H1 = +1,H2 = −1. (c) Ra against R with ξ = 2,M2 = 50,H1 = H2 = +1. (d)

Ra against R with ξ = 2,M2 = 50,H1 = +1, H2 = −1. Linear instability curve together

with nonlinear stability one.
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Figure 4.8: Critical Rayleigh number Ra against ξ for M2 = 50, Rc = 15, H1 = H2 = +1

and η = 2, 4, 6 for fixed-fixed boundary conditions. Linear instability curve together with

nonlinear stability one.
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Chapter 5

Instability in Poiseuille flow in a

porous medium with slip

boundary conditions

5.1 Introduction

There is increasing interest in micro-electro-mechanical-systems (MEMS), and flow

in microfluidic channels due to their applications in the electronics and related

industries. In particular, at nanoscales there is increasing evidence that bound-

ary conditions of slip type are needed rather than those of no-slip, cf. Badur et

al. [10], Cercignani [31], Duan [48], Duan & Muzychka [47], Lauga et al. [101], Mori-

ni et al. [128], Priezjev [156], Rahman et al. [158], Shojaeian & Shojaeian [189],

Stebel [192], Yong & Zhang [227], Zhang et al. [230], Zhang et al. [231]. An especial-

ly important application of microscale flow involving slip boundary conditions is to

flow in porous metallic foams. Lefebvre et al. [105] give many industrial examples of

this and provide a thorough review of the state of the art. The goal of this article is

to provide a critical analysis of instability of flow in a channel occupied by a sparse

porous medium when the boundary conditions are those of slip type.

The instability problem of flow in a channel occupied by a linearly viscous fluid,

and subject to slip boundary conditions, has an interesting history. Chu [38] and

Chu [37] report that increasing slip length in the slip boundary condition has the ef-
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fect of decreasing the critical Reynolds number for the commencement of instability.

However, Lauga & Cossu [102] and Spille et al. [190] report precisely the opposite.

Namely, increasing the slip length has a stabilizing effect, thereby increasing the

critical Reynolds number at which instability begins, according to linear theory.

Webber [223] used a highly accurate Chebyshev tau method to analyse this insta-

bility problem and his results are in agreement with those of Lauga & Cossu [102]

and Spille et al. [190].

The topic of instability of parallel shear flows in a channel and the associated nu-

merical methods to accurately determine the instability thresholds is one of immense

interest in the applied mathematics and engineering literature, cf. Avila et al. [8],

Bandyopadhyay et al. [12], Bassom et al. [17], Dongarra et al. [43], Dragomirescu &

Gheorghiu [45], Gheorghiu & Dragomirescu [64], Gheorghiu & Rommes [66], Hibino

et al. [81], Khoshnood & Jalali [95], Malik & Hooper [122], Massa & Jha [125]. The

difficulty with this class of problem is that the mathematical operators which arise

in the instability analysis are non-symmetric and the resulting eigenfunctions are

close to being linearly dependent. This makes finding an accurate numerical solution

a challenging problem. This difficulty persists in the problem tackled here and we

address the issue carefully.

The problem of instability of channel flow in a porous medium of Brinkman

type with no-slip boundary conditions is itself of recent origin. Nield [137] initiated

this study and this work is described in Straughan [197], pp. 234–236, where the

correct equations are derived. Hill & Straughan [87] perform an accurate analysis

of instability of flow in a fluid saturated channel of porous medium. Their results

largely confirm the findings of Nield [137]. It should be stressed that these papers

consider only no-slip boundary conditions. The conditions of slip at the boundary,

which are believed to be highly relevant in microfluidic situations, are (we believe)

analysed for the first time in this article.

The results in this chapter were published in the article Straughan and Harfash

[199].
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5.2 Basic equations

The equations for Poiseuille flow in a Brinkman porous material are derived in

Nield [137] and in Straughan [197], p. 234. With vi being the velocity field, p the

pressure, R being the Reynolds number, andM2 a non-dimensional Darcy (friction)

coefficient the governing equations are

R

(
∂vi
∂t

+ vj
∂vi
∂xj

)
= − ∂p

∂xi
+∆vi −M2vi,

∂vi
∂xi

= 0,

(5.2.1)

where standard indicial notation is employed, a free index taking values 1,2 or 3,

and a repeated index summing from 1 to 3, ∆ is the Laplacian, and equations (5.2.1)

hold in the domain {(x, y) ∈ R2} × {z ∈ (−1, 1)} × {t > 0}.

Slip boundary conditions have been suggested for a long time starting with the

early work of Navier [131] and Maxwell [126]. They are the subject of intense recent

work, especially in microfluidic and nanofluidic situations, as witnessed by Badur

et al. [10], Duan [48], Duan & Muzychka [47], Lauga & Cossu [102], Morini et

al. [128], Priezjev [156], Yong & Zhang [227], Zhang et al. [230], Zhang et al. [231],

and many references including historical ones are given in these articles. A lucid

historical account of the origin of slip boundary conditions in also given in chapter

1 of Webber [223]. The specific boundary conditions which solutions to equations

(5.2.1) satisfy are, cf. Webber [223], chapter 3,

N0
∂v1
∂z

= v1, N0
∂v2
∂z

= v2, v3 = 0, on z = −1,

N0
∂v1
∂z

= −v1, N0
∂v2
∂z

= −v2, v3 = 0, on z = +1,

(5.2.2)

where N0 is a dimensionless parameter which measures the slip length. We assume

that in equations (5.2.2) the slip on the lower boundary is the same as that on the

upper boundary, for mathematical simplicity, since we are interested in the effect

of the terms N0 and M on the critical instability value of the Reynolds number R.

One could easily generalize this work to allow for different slip coefficients on the

upper and lower boundaries.

The basic solution whose stability we are interested in is one where the fluid is
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driven along the channel in the x−direction by a constant pressure gradient of form

−∂p̄
∂x

= K2 > 0,

where an overbar denotes the basic state. The basic velocity field corresponding to

this pressure gradient has form v̄ = (U(z), 0, 0). Then one finds U must satisfy the

boundary value problem

−K2 = U ′′ −M2U, −1 < z < 1, (5.2.3)

subject to boundary conditions

N0U
′ + U = 0, z = 1,

N0U
′ − U = 0, z = −1.

(5.2.4)

If in our non-dimensionalization we pick K2 so that K2 =M2 coshM/(coshM − 1)

then U is found to be

U(z) =
coshM

coshM − 1

(
1− coshMz

N0M sinhM + coshM

)
. (5.2.5)

Note that when N0 = 0, U reduces to

U =
coshM − coshMz

coshM − 1
,

in agreement with the basic solution employed by Nield [137] and by Hill & Straugh-

an [87].

We now wish to investigate the stability of solution (5.2.5) and so let u = (u, v, w)

be a perturbation to v̄ with corresponding pressure perturbation π. The perturba-

tion equations are derived in detail in Straughan [197], p. 235, and he shows that

after linearization and assuming spatial and time dependence like exp(iαx+iβy−ict)

then one may show that w(z) satisfies the equation

(D2 − a2)2w −M2(D2 − a2)w = iaR(U − c)(D2 − a2)w − iaRU ′′w, (5.2.6)

where D = d/dz, a2 = α2 + β2, and z ∈ (−1, 1). The boundary conditions which w

must satisfy are derived from the conditions N0u,z = ±u, z = ∓1, N0v,z = ±v, z =

∓1, and the incompressibility condition u,x + v,y + w,z = 0, are

w = 0; N0w,zz = ±w,z; on z = ∓1. (5.2.7)
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In terms of the D notation these boundary conditions are

N0D
2w = Dw, on z = −1; N0D

2w = −Dw, on z = 1;

w = 0 on z = ±1.
(5.2.8)

In the next section we briefly describe the numerical methods employed to solve

equation (5.2.6) together with (5.2.8).

5.3 Numerical techniques

5.3.1 Chebyshev collocation method

Since solving (5.2.6) and (5.2.8) is a difficult numerical problem, we adopt the Cheby-

shev collocation method to solve the eigenvalue systems. We apply two variations

of the Chebyshev collocation method in order to incorporate the boundary condi-

tions, and also two methods provide an independent check. Firstly we introduce the

function B = Dw, and then equation (5.2.6) may be written as the system

Dw −B = 0,

D3B − (2a2 +M2)DB + (a4 + a2M2)w + iaRU ′′w

= iaR(U − c)(DB − a2w).

(5.3.9)

The boundary conditions (5.2.8) now become

w = 0, z = ±1,

N0DB +B = 0, z = 1,

N0DB −B = 0, z = −1.

(5.3.10)

Method 1.

Here we expand w and B as (truncated) series in trial functions θn, ϕn, so that

w =
N∑

n=1

wnθn(z), B =
N∑

n=1

Bnϕn(z), (5.3.11)

where θn, ϕn are defined by

θn(z) = (1− z2)T2n−2(z),

ϕn(z) =
[
1− z2 +

2N0

1 +N0(2n− 1)2

]
T2n−1(z),

(5.3.12)
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and Tn(z) are the Chebyshev polynomials of the first kind, cf. Dongarra et al. [43],

which is defined by:

T0(z) = 1, T1(z) = z

Tn+1(z)− 2zTn(z) + Tn−1(z) = 0, −1 ≤ z ≤ 1

or

Tn(z) = cos(n arccos(z)), −1 ≤ z ≤ 1

The reason for the choice of the basis functions θn and ϕn is that in this way

the functions w and B satisfy the boundary conditions (5.3.10). The next step is to

substitute expressions (5.3.11) into equations (5.3.9) and (5.3.10), and then require

that equations (5.3.9) and (5.3.10) be satisfied at N collocation points z1, . . . , zN ,

where zi are defined by zi = cos ([i− 1]/[2N − 1]π), i = 1, . . . , N. This results in a

2N × 2N system of algebraic equations in the coefficients w1, . . . , wN , B1, . . . , BN : Dθ −Iϕ

Aθ Aϕ

X = c

 O O

ia3RIθ −iaRDϕ

X,

where X = (w1, ..., wN , B1, ..., BN), O is the zeros matrix, Aθ(n1, n2) = (a4+a2M2+

iaRU ′′(zn1) + ia3RU(zn1))Iθ(n1, n2), Aϕ(n1, n2) = Dϕ3(n1, n2) − (2a2 + M2 +

iaRU(zn1))Dϕ(n1, n2), Iθ(n1, n2) = θn2(zn1), Iϕ(n1, n2) = ϕn2(zn1), Dθ(n1, n2) =

θ′n2
(zn1), Dϕ(n1, n2) = ϕ′

n2
(zn1), Dϕ3(n1, n2) = ϕ′′′

n2
(zn1), n1, n2 = 1, ..., N .

This matrix eigenvalue system is solved by using the QZ algorithm, cf. Dongarra

et al. [43].

Method 2.

In order to implement the second technique we approximate the solutions to equa-

tions (5.3.9) and (5.3.10) as truncated series of Chebyshev polynomials as follows,

w =
N∑

n=0

wnTn(z), B =
N∑

n=0

BnTn(z). (5.3.13)

These expressions are employed in equations (5.3.9) and (5.3.10) and then the result-

ing equations are evaluated at Gauss-Lobatto points yi defined by yi = cos(πi/[N −
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3]), i = 0, . . . , N−2. This leads to 2N−2 algebraic equations for 2N +2 unknowns

w0, . . . , wN , B0, . . . , BN . The remaining 4 equations are furnished by the boundary

conditions (5.3.10) which become

N∑
n=0

wn = 0,
N∑

n=0

(−1)nwn = 0,

N∑
n=0

(N0n
2 + 1)Bn = 0,

N∑
n=0

[
(−1)n+1N0n

2 − 1
]
Bn = 0,

(5.3.14)

and these equations are added as rows to the matrices generated above to yield a

(2N + 2) × (2N + 2) matrix eigenvalue equation. Then, we obtain the generalised

eigenvalue problem:



D −I

BC1 0...0

BC2 0...0

A1 A2

0...0 BC3

0...0 BC4


X = c



O O

0...0 0...0

0...0 0...0

ia3RI −iaRD

0...0 0...0

0...0 0...0


X,

where X = (w0, ..., wN , B0, ..., BN), O is the zeros matrix, A1(n1, n2) = (a4 +

a2M2+ iaRU ′′(yn1)+ ia
3RU(yn1))I(n1, n2), A2(n1, n2) = D3(n1, n2)− (2a2+M2+

iaRU(yn1))D(n1, n2) I(n1, n2) = Tn2(yn1), D(n1, n2) = T ′
n2
(yn1), D

3(n1, n2) =

T ′′′
n2
(yn1), n1 = 0, ..., N − 2, n2 = 0, ..., N.

This is solved by the QZ algorithm.

5.3.2 Finite element method

As an additional check we have also employed a finite element method to solve

equations (5.2.6) and (5.2.8). This consists of introducing another variable A = D2w

and writing equation (5.2.6) as a system of two equations involving A = D2w and

(5.2.6) written in terms of A and w as follows

D2w = A, (5.3.15)

D2A−(2a2+M2)A+(a4+a2M2)w+ iaRU ′′w− iaRU(A−a2w) = −iaRc(A−a2w),

(5.3.16)
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w = 0, at z = ∓1,

N0A−Dw = 0, at z = −1,

N0A+Dw = 0, at z = 1.

(5.3.17)

Firstly, we divided the period −1 ≤ x ≤ 1 into n elements, each element e having

p+1 nodes n1, n2, ..., np+1. In term of its p+1 nodal values, the variables w,A may

be uniquely interpolated as a polynomial of p+1 order, the interpolation being given

by

we = N eδew, Ae = N eδeA, (5.3.18)

where δew = {wn1 , wn2 , ..., wnp+1}, δeA = {An1 , An2 , ..., Anp+1} , and the shape function

matrix is

N e = [Np
n1
, Np

n2
, ..., Np

np+1
].

Therefore the over-all finite element approximation is given by

w =
n∑

e=1

we, A =
n∑

e=1

Ae, (5.3.19)

The variational formulations of (5.3.15) and (5.3.16) are

Minimize Iw[w] =

∫ 1

0

(−(Dw)2 − 2Aw)dx, (5.3.20)

Minimize IA[A] =

∫ 1

0

(−(DA)2 − (2a2 +M2)A2 + 2(a4 + a2M2)wA

+2iaRU ′′wA− iaRUA2 + 2iRUa3wA+ iaRcA2 − 2iRca3wA)dx, (5.3.21)

Substitution of (5.3.19) into variational formulations (5.3.20) and (5.3.21) gives

Iw[w] =
n∑

e=1

∫
e

(−(Dwe)2 − 2Aewe)dx =
n∑

e=1

Iew, (5.3.22)

IA[A] =
n∑

e=1

∫
e

(−(DAe)2 − (2a2 +M2)(Ae)2 + 2(a4 + a2M2)weAe

+2iaRU ′′weAe− iaRU(Ae)2+2iRUa3weAe+ iaRc(Ae)2−2iRca3weAe)dx =
n∑

e=1

IeA,

(5.3.23)
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here, we use the fact that the functions we, Ae are equivalent to zero outside the

element e. Using (5.3.22) and (5.3.23) we obtain

Iw[w] = Iw(w1, w2, ..., wm),

IA[A] = IA(A1, A2, ..., Am),

where m is the number of all nodes in all elements. Then using the Rayleigh-Ritz

procedure to minimize Iw[w], IA[A], with respect to the variational parameters wi, Ai

respectively, gives

∂Iw
∂wi

=
n∑

e=1

∂Iew
∂wi

= 0, i = 1, ...,m, (5.3.24)

∂IA
∂Ai

=
n∑

e=1

∂IeA
∂Ai

= 0, i = 1, ...,m, (5.3.25)

Then matrix representation for the system of equations at the element e take

the form −De
2 −F e

1

(a4 + a2M2)F e
1 + iaRF e

3 + ia3RF e
2 −De

2 − (2a2 +M2)F e
1 − iaRF e

2

 δew

δeA



= c

 O O

iRa3F e
1 −iaRF e

1

 δew

δeA

 , (5.3.26)

where Oij = 0, De
2 ij =

∫ 1

−1

dNp
ni

dz

dNp
nj

dz
dz, F e

1 ij =
∫ 1

−1
Np

ni
Np

nj
dz,

F e
2 ij =

∫ 1

−1
U(z)Np

ni
Np

nj
dz, F e

3 ij =
∫ 1

−1
U ′′(z)Np

ni
Np

nj
dz, i, j = 1, ...p+ 1.

The above integrals can be evaluated by applying the classical finite element

nodal basis functions in one dimension on the standard element Ωst = (−1, 1). The

standard shape functions are defined by the set of Lagrange polynomials

Np
ni
(ζ) =

np+1∏
j=n1, j ̸=i

ζ − ζj
ζi − ζj

, (5.3.27)

where ζ = 2/h(z − zm), h is the length of element and zm is the mid-point. Thus

these integrations take the form:

De
2 ij =

2

h

∫ 1

−1

dNp
ni

dζ

dNp
nj

dζ
dζ,
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F e
1 ij =

h

2

∫ 1

−1

Np
ni
Np

nj
dζ

F e
2 ij =

h

2

∫ 1

−1

U(
h

2
ζ + zm)N

p
ni
Np

nj
dζ,

F e
3 ij =

h

2

∫ 1

−1

U ′′(
h

2
ζ + zm)N

p
ni
Np

nj
dζ,

i = 1, ...p+ 1, j = 1, ...p+ 1.

All these integrals were calculated analytically using Matlab routines. Finally, we

assemble the systems of all elements e = 1, ..., n to get the main system which have

the form

B1x = σB2x, (5.3.28)

where x = (w1, ..., wm, A1, ..., Am)
T .

For slip-slip boundary conditions, firstly, we transform these condition to the

local coordinate ζ. Thus these boundary condition take the form

w = 0, at ζ = −1, 1,

N0A− 2

h
Dw = 0, at ζ = −1,

N0A+
2

h
Dw = 0, at ζ = 1.

(5.3.29)

Now we can impose the boundary conditions (5.3.29)1 by removing the rows and

columns of order 1 and m, while we can apply the boundary conditions (5.3.29)2,3

by substituting ζ = −1 in (5.3.29)2 and ζ = 1 in (5.3.29)3 and then use (5.3.19) to

arrive to the following final equations

A1 =
2

N0he1
[d2w2 + ...+ dp+1wp+1]−

1

e1
[e2A2 + ...+ ep+1Ap+1], (5.3.30)

Am = − 2

N0hgp+1

[f1wm−p + f2wm−p+1 + ...+ fpwm−1]−
1

gp+1

[g1Am−p + ...+ gpAm−1].

(5.3.31)

where di = dNi(−1)/dζ, ei = Ni(−1), gi = Ni(1) and fi = dNi(1)/dζ.

Now, we substitute the values of A1 and Am in (5.3.28) thus the columns of order

m + 1 and 2m will be zeros and thus we can remove the m + 1 and 2m rows and
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columns.

We have found the finite element method to be more unstable numerically than

either of the two collocation methods reported above. However, we include in ta-

ble 5.1 numerical results to compare the performance of the collocation and finite

element methods. We report this for N0 = 0, 0.001, 0.002, 0.003; however, we have

computed for several other N0 values and the trend is always the same. All methods

require more care asM increases and also as N0 increases, both of which correspond

to increasing critical Rayleigh number. The values reported in table 5.1 give the

number of polynomials and elements required to achieve the same level of accuracy

for all three methods. From tables 5.1, 5.2, 5.3, 5.4 we see that as M increases

the number of Chebyshev polynomials increases for both collocation methods 1 and

2. For the finite element method both the polynomial order of the element and

the number of elements must strongly increase as M increases and, indeed, for M

greater than 5 we found it impossible to obtain satisfactory results, whereas the

collocation methods still worked.

5.4 Numerical results and conclusions

The numerical results reported are based on the leading eigenvalue of the system

(5.3.9) and (5.3.10). By this we mean that when one employs the time representation

in w and B of form e−ict with c = cr + ici then this results in w and B having terms

of form exp(−icrt). exp(cit). The eigenvalues are found such that the largest value of

ci is ci = 0 and then the result is minimized over the wavenumber a. The resulting

R value is then the critical Reynolds number with corresponding wavenumber. The

value ci = 0 is chosen because this is the threshold at which the solution becomes

unstable according to linearized theory. For, if ci > 0 then w and B grow rapidly

like exp (cit) and the solution is unstable.

In figures 5.1 we display the critical Reynolds numbers at which instability begins

as a function of the slip coefficient, N0. These graphs are given for values of M

ranging from 0 to 10. The graphs are interpreted as follows. For example, when

June 19, 2014



5.4. Numerical results and conclusions 96

M = 0 consider the lowest curve in figure 5.11 . For values of RE and N0 lying below

this curve the solution is linearly stable, i.e. all eigenvalues in this range are such

that ci < 0. If RE and N0 correspond to a value which is above theM = 0 curve then

at least one eigenvalue has ci > 0 and the solution is growing exponentially and is

unstable. A similar interpretation holds for the other curves whenM = 0.5, 1, 2, etc.

We observe that asM increases for a fixed N0 the critical Reynolds number increases

substantially, in agreement with the results of Hill & Straughan [87]. In addition, for

fixedM we witness that increasing N0 leads to a strong stabilizing effect. This effect

is particularly pronounced as M also increases. Thus, the increasing slip length and

increasing Darcy term both combine to strongly increase the threshold at which

instability commences. Thus, for a microfluidic channel filled with a porous metallic

foam, we may expect a much greater instability threshold than in a clean channel.

Figures 5.1 quantify this effect so once sufficiently accurate values of N0 and M are

known for a particular material, we may accurately determine when instability will

commence (according to linearized instability theory).

Figures 5.2 display the corresponding critical wavenumber curves against N0 for

fixed M , M varying over the range M = 0 to M = 10. Again the curves are

interpreted as those for RE, i.e. above a curve we have instability, below linear

stability. Increasing N0 leads to decreasing critical a and this means the periodic

cells of the w solution become larger in the x and y directions. The critical a values

as a function of M , for fixed N0 decrease as M increases from 0, but then this effect

reverses in the range M = 2 to 3, and with M greater than this acrit increases

leading to smaller periodic cells in the x, y directions.

Finally we include in figures 5.3, critical values of cr as a function of N0 for

various M . This indicates how oscillatory the solution is in time at the start of

instability, as N0 and M vary.

The spectrum which is plotted in Figures 5.4, 5.5 and 5.6, is similar to that

found in Poiseuille flow in a porous medium with no-slip boundary conditions by

Hill and Straughan [87], the eigenvalues displaying a Y shape in the (cr, ci) diagram.

As M increase, the eigenvalues at the intersection of the three lines in the Y be-

come more numerically unstable, and as M increases this effect is very pronounced.
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The spectrum of (5.3.9) and (5.3.10) behaves very like that of the Orr-Sommerfeld

problem for classical Poiseuille flow. For example, for higher Reynolds numbers we

witnessed mode crossing of eigenvalues. For example, for M = 0,0.5,1.0, the first

and second eigenvalues interchange places for R between 80822 and 80828, 86852

and 86854, and 106618 and 106620, respectively, with the previous first eigenvalue

moving down the list as R increases. This behaviour is very similar to that observed

by Dongarra et al. [43]. Moreover, the spectrum is very sensitive and care must be

taken with the number of polynomials used in the numerical approximation, and

in the arithmetical precision used in the calculation (those presented here are all in

64 bit arithmetic). For different values of N0, the spectrum for M = 1, 5 and 10

at the critical values are shown in Figures 5.4, 5.5 and 5.6, respectively. Since U is

an even function of z, the proper solution of eigenvalue system (5.3.9) and (5.3.10)

falls into two non-combining groups of even and odd solutions. However, Cheby-

shev collection method 1 produce the approximate eigenvalues with even modes for

plane Poiseuille flow, while the Chebyshev collection method 2 give the approximate

eigenvalues with even and odd modes.

The values presented here will be useful for any experiment or any device in

which pressure gradient driven flow in a micro-channel is needed, especially when

that channel is filled with a porous material for which a Brinkman system is suitable.

Such a porous material is we believe, one of porous metallic foam type.
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Che-C-1 Che-C-2 FEM

M n. of pol. Ra n. of pol. Ra n. of N. n. of E. Ra

0 30 5772.22 50 5772.22 14 20 5771.92

0.5 30 6710.37 60 6710.36 16 25 6710.01

1 35 10033.15 60 10033.15 18 30 10032.63

2 40 28663.46 70 28663.48 24 35 28661.98

3 45 65266.01 90 65265.98 30 40 65262.56

4 55 112555.67 110 112555.47 36 45 112549.58

5 60 164298.23 120 164298.36 42 50 164289.76

6.03 65 219727.26 130 219726.34 UN

7.64 75 308610.10 150 308610.86 UN

10 85 440224.15 170 440220.18 UN

Table 5.1: Critical Rayleigh numbers with varyingM , N0 = 0. Che-C-1

denotes collocation method-1, Che-C-2 denotes collocation method-2,

and FEM signifies finite element method. The notation no. polys.

denotes number of Chebyshev polynomials used, N is the order of the

polynomial in the finite element, and E signifies the number of finite

elements employed. UN denotes the method is numerically unstable.
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Che-C-1 Che-C-2 FEM

M n. of pol. Ra n. of pol. Ra n. of N. n. of E. Ra

0 30 5769.99 50 5769.99 14 20 5769.68

0.5 30 6713.21 60 6713.19 16 25 6712.84

1 35 10059.17 60 10059.17 18 30 10058.65

2 40 28933.72 70 28933.74 24 35 28932.24

3 45 66530.99 90 66530.96 30 40 66527.54

4 55 116278.33 110 116278.13 36 45 116272.24

5 60 172615.47 120 172615.60 42 50 172607.00

6.03 65 235714.86 130 235713.93 UN

7.64 75 344379.92 150 344380.68 UN

10 85 528034.63 170 528030.66 UN

Table 5.2: Critical Rayleigh numbers with varying M , N0 = 0.001.

Che-C-1 denotes collocation method-1, Che-C-2 denotes collocation

method-2, and FEM signifies finite element method. The notation no.

polys. denotes number of Chebyshev polynomials used, N is the order

of the polynomial in the finite element, and E signifies the number

of finite elements employed. UN denotes the method is numerically

unstable.
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Che-C-1 Che-C-2 FEM

M n. of pol. Ra n. of pol. Ra n. of N. n. of E. Ra

0 30 5795.26 50 5795.26 14 20 5794.96

0.5 30 6751.96 60 6751.95 16 25 6751.60

1 35 10158.12 60 10158.12 18 30 10157.60

2 40 29668.13 70 29668.15 24 35 29666.65

3 45 69913.72 90 69913.69 30 40 69910.27

4 55 126294.04 110 126293.84 36 45 126287.95

5 60 195251.94 120 195252.07 42 50 195243.47

6.03 65 280053.24 130 280052.32 UN

7.64 75 448165.57 150 448166.33 UN

10 85 810199.46 170 810195.48 UN

Table 5.3: Critical Rayleigh numbers with varying M , N0 = 0.002.

Che-C-1 denotes collocation method-1, Che-C-2 denotes collocation

method-2, and FEM signifies finite element method. The notation no.

polys. denotes number of Chebyshev polynomials used, N is the order

of the polynomial in the finite element, and E signifies the number

of finite elements employed. UN denotes the method is numerically

unstable.
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Che-C-1 Che-C-2 FEM

M n. of pol. Ra n. of pol. Ra n. of N. n. of E. Ra

0 30 5845.03 50 5845.03 14 20 5844.73

0.5 30 6822.69 60 6822.68 16 25 6822.33

1 35 10321.94 60 10321.94 18 30 10321.42

2 40 30817.51 70 30817.53 24 35 30816.03

3 45 75255.54 90 75255.51 30 40 75252.09

4 55 142553.57 110 142553.37 36 45 142547.48

5 60 233567.17 120 233567.30 42 50 233558.70

6.03 65 359501.74 130 359500.81 UN

7.64 75 657199.37 150 657200.13 UN

10 85 1530026.58 170 1530022.61 UN

Table 5.4: Critical Rayleigh numbers with varying M , N0 = 0.003.

Che-C-1 denotes collocation method-1, Che-C-2 denotes collocation

method-2, and FEM signifies finite element method. The notation no.

polys. denotes number of Chebyshev polynomials used, N is the order

of the polynomial in the finite element, and E signifies the number

of finite elements employed. UN denotes the method is numerically

unstable.
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Figure 5.1: Critical Reynolds number ReL against N0. The values of M are as indicated

in the figures.
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Figure 5.4: Spectral of growth rate c = cr+ ici at critical values with M = 1 (a) N0 = 0,

(b) N0 = 0.002. (c) N0 = 0.01. (d) N0 = 0.02.
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Figure 5.5: Spectral of growth rate c = cr+ ici at critical values with M = 5 (a) N0 = 0.

(b) N0 = 0.001. (c) N0 = 0.002. (d) N0 = 0.005.
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Figure 5.6: Spectral of growth rate c = cr+ ici at critical values with M = 10 (a) N0 = 0.

(b) N0 = 0.001. (c) N0 = 0.002. (d) N0 = 0.0025.
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Chapter 6

Numerical methods for solving

some hydrodynamic stability

problems

6.1 Introduction

The purpose of this chapter is to describe six very efficient numerical methods for

solving a representative example of the stability problem of standard thermal con-

vection in a thin fluid layer. The techniques referred to are the second order finite

difference method, the high order finite difference scheme, p order finite elemen-

t method, the Chebyshev collocation method-1 and method-2 and Chebyshev tau

technique. Free-free, slip-slip, and fixed-slip boundary conditions are included.

The results in this chapter are also presented in the manuscript Harfash [75].

6.2 The effect of boundary conditions on convec-

tive instability

Let x = (x, y, z) denote Cartesian coordinates in R3. We consider a fluid contained in

the region Ω ⊂ R3, which is the infinite layer defined by Ω = (−∞,∞)×(−∞,∞)×

([0, d]. The behaviour of this fluid is described by the Boussinesq equations (6.2.1)-
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(6.2.3), which comprise the Navier-Stokes equations and an energy balance equation:

ρ(vi, t + vj vi,j) = −p, i + µ∆vi − ρkig[1− α(T − Tm)], (6.2.1)

vi,i = 0, (6.2.2)

Tt + vi T, i = κ∆T, (6.2.3)

where v = (u, v, w), p and T are velocity field, pressure, and temperature, respective-

ly. Additionally, α is the thermal expansion coefficient, µ is the dynamic viscosity, g

is the acceleration due to gravity, ρ is the density at the reference temperature Tm,

κ is the thermometric conductivity and k = (0, 0, 1). Throughout, we use standard

indicial notation and the Einstein summation convention so that e.g. vi, t = ∂vi/∂t,

p,i = ∂p/∂xi, vj vi,j ≡ (v.∇)v, and ∆ is the Laplacian.

Ω is bounded above by the plane z = d and below by the plane z = 0. The

temperature at the upper and lower surfaces is kept constant

T |z=0 = TL, T |z=d = TU , (6.2.4)

for constants TL > TU , and thus the layer is heated from below.

Navier [131] proposed a linear boundary condition relating v to the shear rate,

which has become standard in the study of boundary slip problems. Letting the

surface ∂Ω have unit normal n(x) directed out of the fluid, and t(x) be any of the

vectors tangent to ∂Ω at x ∈ ∂Ω, this boundary condition can be expressed as

vini|∂Ω = Vini, |∂Ω (6.2.5)

viti|∂Ω = (Vi − λ ϵij nj) ti, |∂Ω (6.2.6)

where ϵ = ϵ(v) is the shear strain tensor, and Vi = Vi(∂Ω) is the ith component

of the local surface velocity. The model is essentially to set the component of v

normal to ∂Ω to be zero, thus imposing a condition of zero flux across the surface,

while setting the two tangential components of v proportional to the corresponding

components of shear stress. We denote the constant of proportionality λ ≥ 0, which

has the dimension of length, and it can be seen that λ = 0 in (6.2.5) and (6.2.6)

recovers the no-slip boundary condition.
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We now apply the boundary conditions (6.2.5)-(6.2.6) to the Boussinesq model.

Since the fluid is confined to Ω, from (6.2.5) we impose,

w = 0, at z = 0, d, (6.2.7)

and we note that since there is no variation of w in the surfaces ∂ΩL and ∂ΩU , we

must have

w,x = w,y = 0, at z = 0, d. (6.2.8)

Let λL be the slip length associated with the fluid-solid interface at ∂ΩL, and define

λU similarly. Then, from (6.2.6) we have

u− λL u,z = 0, v − λL v,z = 0, at z = 0, (6.2.9)

u− λU u,z = 0, v − λU v,z = 0, at z = d. (6.2.10)

We note that these boundary conditions allow the zero solution v = 0, which

represents a fluid at rest. Let us now consider the basic steady state solution (v̄, p̄, T̄ )

of the system, where, as there is no fluid flow, v̄ ≡ 0. Utilizing the boundary

conditions and assuming that the basic steady state solutions are functions of z

only

T̄ = −βz + TL, (6.2.11)

where β = (TL − TU)/d. The steady pressure p̄ may then be found from (6.2.1)

which reduces to

−1

ρ
p̄, i − kig[1− α(T − Tm)] = 0. (6.2.12)

To study the stability of (6.2.1)-(6.2.3), we introduce a perturbation (u, π, θ) to the

steady state solution (v̄, p̄, T̄ ), where

vi = v̄i + ui, p = p̄+ π, T = T̄ + θ.

Using (6.2.11), (6.2.12) the perturbed system is

ui, t + uj ui,j = −1

ρ
π, i + ν∆ui + gαkiθ, (6.2.13)

θt + ui θ, i = βw + κ∆θ, (6.2.14)
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where ui is solenoidal, i.e. ui, i = 0 and ν = µ/ρ.

We now introduce non-dimensionalised variable with scaling of

x = x∗d, t = t∗
d2

ν
, u = Uu∗, θ = T ♯θ∗, π = Pπ∗, U =

ν

d
, P =

ρ ν2

d2
,

T ♯ = U

√
ν β

καg
, R =

√
αg d4 β

κ ν
, Pr =

ν

κ
.

Here Pr is the Prandtl number and Ra = R2 is the Rayleigh number. With this

scaling the non-dimensional form of (6.2.13)-(6.2.14) becomes (omitting the stars

for case of notation)

ui, t + uj ui,j = −π, i +∆ui + kiRθ, (6.2.15)

ui,i = 0, (6.2.16)

Pr(θt + ui θ, i) = Rw +∆θ. (6.2.17)

The spatial domain is now {(x, y) ∈ R2} × {z ∈ (0, 1)}. The perturbed boundary

conditions are given by

u− λL u,z = 0, v − λL v,z = 0, at z = 0, (6.2.18)

u− λU u,z = 0, v − λU v,z = 0, at z = 1, (6.2.19)

θ = 0, on z = 0, 1. (6.2.20)

We have reduced the problem of finding conditions for the onset of convection in our

fluid layer to that of investigating the stability of the basic steady state solutions

with respect to perturbations u, π, θ as defined above. In this way we aim to find,

for fixed λL and λU , the critical Rayleigh number R2
crit(λL, λU) such that solutions

to (2.20)-(2.22) decay over time for R < Rcrit and grow for R > Rcrit, regardless of

the initial data .

We do this by showing that there exists RL such that thermal instability will

occur for R > RL, and RE such that R < RE guarantees stability of the the basic

steady state solutions. It has been shown that RE = RL = Rcrit for system (6.2.15)-

(6.2.17) for no-slip boundary conditions (see Joseph [89, 90]) and for slip boundary

conditions (see Webber [222]), thus, it is enough to solve the linear system to find
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the linear and nonlinear threshold and hence we can solve the system with solutions

of the form of single Fourier modes.

The linearised equations are obtained from (6.2.15)-(6.2.17) by omitting a non-

linear terms. The resulting linearized equations possess solutions of type

ui(x, t) = ui(x)e
σt, θ(x, t) = θ(x)eσt, π(x, t) = π(x)eσt,

where σ is the growth rate and a complex constant. ui(x), ϕ(x), π(x) then satisfy

−π, i +∆ui + kiRθ = σui, (6.2.21)

Rw +∆θ = σPr θ. (6.2.22)

Taking the double curl of (6.2.21), using the third component, (and the fact that u

is solenoidal) we have

∆2w +R∆∗θ = σ∆w, (6.2.23)

where ∆∗ = ∂2/∂x2 + ∂2/∂y2, D = d/dz. We now introduce normal modes of the

form w = W (z)f(x, y), and θ = Θ(z)f(x, y) where f(x, y) is a plan-form which tiles

the plane (x, y) with

∆∗f = −a2f. (6.2.24)

The plan-forms represent the horizontal shape of the convection cells formed at the

onset of instability. These cells from a regular horizontal pattern tiling the (x, y)

plane, where the wavenumber a (see [32] and [196]) is a measure of the width of the

convection cell. Using (6.2.24), and applying the normal mode representations to

(6.2.22) and (6.2.23) we find

(D2 − a2)2W − a2RΘ = σ(D2 − a2)W, (6.2.25)

(D2 − a2)Θ +RW = σPrΘ, (6.2.26)

where D = d/dz, and z ∈ (0, 1). It is easy to show that σ ∈ R, and therefore the

principle of ”exchange of stabilities”applies to the linearized system, and thus it is

enough to solve system (6.2.25)-(6.2.26) with σ = 0 i.e we shall solve the following

system

(D2 − a2)2W = a2RΘ, (6.2.27)
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(D2 − a2)Θ = −RW. (6.2.28)

The boundary conditions which w must satisfy are derived from the conditions

(6.2.18) and (6.2.19) and the incompressibility condition u,x + v,y + w,z = 0, are

w(0) = w(1) = 0, λLw
′′(0)− w′(0) = 0, λUw

′′(1) + w′(1) = 0, (6.2.29)

and the boundary conditions for Θ are

Θ(0) = Θ(1) = 0. (6.2.30)

Equations (6.2.27) and (6.2.28) are the classic stability equations for the Bénard

problem. We note that in the limit λU → 0 we obtain from (6.2.29) the no-slip

boundary condition at z = 1, while for λU → ∞ we recover the free boundary

condition (and similarly for λL at z = 0). In the next section, six numerical methods

are used to solve this system (6.2.27) and (6.2.28).

6.3 Numerical methods for the eigenvalue system

6.3.1 Chebyshev tau

Equation (6.2.27) has a fourth order derivative. Dongarra et al. [43] show that high

order differentiation matrices, for instance in this case the D4 matrix, can introduce

significant round off errors. Therefore we use what is described in the literature as

a D2 method, and make the substitution. Letting λU and λL → ∞, then we obtain

from (6.2.29) the free boundary condition at z = 0 and z = 1. We introduce new

function A = (D2−a2)W . Rewriting equations (6.2.27) and (6.2.28) in terms of the

new variable A, we require to solve

(D2 − a2)W = A, (6.3.31)

(D2 − a2)A = a2RΘ, (6.3.32)

(D2 − a2)Θ = −RW, (6.3.33)

with boundary conditions

Θ = W = A = 0, at z = 0, 1. (6.3.34)
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To employ the Chebyshev tau technique, system (6.3.31)-(6.3.34) is converted to

the Chebyshev domain (−1, 1), and then W,A and Φ are written as a finite series

of Chebyshev polynomials

W =
N+2∑
k=0

WkTk(z), A =
N+2∑
k=0

AkTk(z), Θ =
N+2∑
k=0

ΘkTk(z).

The weighted inner product of each equation is taken with some Tk and the

orthogonality of the Chebyshev polynomial is utilised to form the generalised eigen-

value problem
4D2 − a2I −I O

O 4D2 − a2I O

O O 4D2 − a2I

Q = R


O O O

O O a2I

−I O O

Q,

where Q =
(
Ŵ , Â, Φ̂,

)T

, Ŵ = (W0, ...,WN+2)
T , Â = (A0, ..., AN+2)

T , Θ̂ =

(Θ0, ...,ΘN+2)
T , D2 is the Chebyshev representation of D2, and I is the identity

matrix. Using the boundary conditions and the fact that Tn(±1) = (±1)n we

remove the last two rows of each (N +2)× (N +2) block and replace these rows by

the discrete form of the boundary conditions (6.3.34) which have the form

BC1 :
N∑

n=0

Wn = 0, (6.3.35)

BC2 :
N∑

n=0

(−1)nWn = 0, (6.3.36)

BC3 :
N∑

n=0

An = 0, (6.3.37)

BC4 :
N∑

n=0

(−1)nAn = 0, (6.3.38)

BC5 :
N∑

n=0

ϕn = 0, (6.3.39)

BC6 :
N∑

n=0

(−1)nϕn = 0. (6.3.40)
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Then, the final eigenvalue system has the following form

4D2 − a2I −I O

BC1 0...0 0...0

BC2 0...0 0...0

O 4D2 − a2I O

0...0 BC3 0...0

0...0 BC4 0...0

O O 4D2 − a2I

0...0 0...0 BC5

0...0 0...0 BC6



Q = R



O O O

0...0 0...0 0...0

0...0 0...0 0...0

O O a2I

0...0 0...0 0...0

0...0 0...0 0...0

−I O O

0...0 0...0 0...0

0...0 0...0 0...0



Q.

(6.3.41)

We solve this eigenvalue system by passing the above matrices to the Matlab’s

QZ subroutine. For an initial value of the wave number a, we obtain a spectrum of

eigenvalues then we select the smallest eigenvalue Rm such that the fluid is stable

for all R < Rm. We then repeat for other values of a, so that we may build the

neutral curve of Ra = R2
m against a, along which the fluid is neutrally stable. By

iterating over a we are thus able to obtain the critical Rayleigh number Racrit as

the minimum value on this curve, which occurs at wavenumber acrit.

Also, we can adopt another technique to apply the boundary conditions where we

can find the values ofWN+1,WN+2, AN+1, AN+2,ΦN+1 and ΦN+2 from the boundary

conditions then we substitute these values in the system and thus we remove the last

two rows. The new system have the order (N+1)×(N+1) instead of (N+3)×(N+3)

.

However, if λU and λL are fixed finite numbers, and thus our boundary condi-

tions are slip-slip. The solution of (6.3.31)-(6.3.33) with slip-slip boundary condi-

tions produces the same eigenvalue system to (6.3.41). The boundary conditions

BC1, BC2, BC5, BC6 still the same as in (6.3.41), while the changes will be in the

BC3, BC4 which have the following new forms:

BC3 :
N∑

n=0

2N0An +
N∑

n=0

n2Wn = 0, (6.3.42)
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BC4 :
N∑

n=0

2N0(−1)nAn +
N∑

n=0

(−1)n+1n2Wn = 0, (6.3.43)

Finally, letting λU → 0 and λL a fixed finite numbers, i.e. we have fixed-slip

boundary conditions. We introduce new function Ψ = DW , then system (6.2.27)

and (6.2.28) can written in the following form:

DW −Ψ = 0, (6.3.44)

D3Ψ− 2a2DA+ a4W − a2RΘ = 0, (6.3.45)

(D2 − a2)Φ +RW = 0, (6.3.46)

hence, the boundary conditions have the form

W = ϕ = 0, z = 0, 1, (6.3.47)

N0DΨ+Ψ = 0, z = 1, (6.3.48)

Ψ = 0, z = 0, (6.3.49)

then, we can apply the same procedure which are used for free-free and slip-slip

boundary conditions to produce the eigenvalue system.

6.3.2 Finite difference scheme

Standard finite difference

The standard second and fourth order central difference operators at grid point i

can be written as:

δ2ui =
ui+1 − 2ui + ui−1

h2
,

δ4ui =
ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2

h4
.

(6.3.50)

The second and the fourth order derivatives for the function u at grid point i can

be approximated by a second order accuracy as

d2u

dz2

∣∣∣∣
i

= δ2ui −
h2

12

d4u

dz4
+O(h4),

d4u

dz4

∣∣∣∣
i

= δ4ui −
h2

6

d6u

dz6
+O(h4).

(6.3.51)
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By using these finite difference approximations, (6.2.27) and (6.2.28) can be dis-

cretized at a given grid point i respectively as,

δ4zWi − 2a2δ2zWi + a4Wi − a2RΘi = 0, (6.3.52)

δ2zΘi − a2Θi +RWi = 0, (6.3.53)

The boundary conditions D2
zW = 0 at z = 0, 1 are approximated using finite

difference technique asW−1 = −W1 andWN+1 = −WN−1. In this manner, equations

(6.3.52) and (6.3.53) and the fixed boundary conditions lead to the finite difference

equations

Wi+2

h4
− (

4

h4
+

2a2

h2
)Wi+1 + (

6

h4
+

4a2

h2
+ a4)Wi − (

4

h4
+

2a2

h2
)Wi−1

+
Wi−2

h4
−Ra2 Θi = 0, (6.3.54)

i = 2, ..., N − 2,

Θi+1

h2
− (

2

h2
+ a2)Θi +

Θi−1

h2
+RWi = 0, (6.3.55)

i = 1, ..., N − 1,

W3

h4
− (

4

h4
+

2a2

h2
)W2 + (

5

h4
+

4a2

h2
+ a4)W1 +Ra2Φ1 = 0, (6.3.56)

which is the equation obtained from (6.3.52) with i = 1, and

(
5

h4
+

4a2

h2
+ a4)WN−1 − (

4

h4
+

2a2

h2
)WN−2 +

WN−3

h4
+Ra2ΦN−1 = 0, (6.3.57)

which arises from (6.3.52) with i = N − 1.

For slip-slip boundary conditions, we adapt equations (6.3.56) and (6.3.57). At

i = 1, we substitute W0 = 0 and W−1 = −(N0/h2 − 1/2h)/(N0/h2 + 1/2h)W1 in

(6.3.54) to get the equivalent equation to (6.3.56). At i = N , we substitute WN = 0

WN+1 = −(N0/h2 − 1/2h)/(N0/h2 + 1/2h)WN−1 in (6.3.54) to get the equivalent

equation to (6.3.57). For fixed-slip boundary conditions, At i = N , we substitute

WN = 0 WN+1 = WN−1 in (6.3.54) to get the equivalent equation to (6.3.57). At

i = 1 the equation still the same with slip-slip boundary conditions.
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High order finite difference

The main idea of the high order finite difference scheme is to find the values of

truncation errors from the original differential equation and substitute these values

in the finite difference formula. In this scheme we can reduce the order of truncation

errors. In our system we can easily find the value of D6W and D4Θ as follows

D6W = (2a2 −M2)D4W − a4D2W + a2RD2Θ, (6.3.58)

D4Θ = a2D2Φ−RD2W, (6.3.59)

Substituting the values ofD6W andD4Θ in (6.3.51), and then approximateD2W,D4W

and D2Θ by using standard second order finite difference we have the following

fourth order finite difference formula

d2W

dz2

∣∣∣∣
i

= δ2Wi −
h2

12
δ4z(Wi +O(h2)) +O(h4), (6.3.60)

d2Θ

dz2

∣∣∣∣
i

= δ2Θi −
h2

12
{a2(δ2Φi +O(h2))−R(δ2Wi +O(h2))}+O(h4), (6.3.61)

d4W

dz4

∣∣∣∣
i

= δ4Wi−
h2

6
{2a2(δ4Wi+O(h

2))−a4(δ2Wi+O(h
2))+a2R(δ2Θi+O(h

2))+O(h4).

(6.3.62)

It is clear that the overall truncation error will be of O(h4). Using (6.3.60)-(6.3.62)

finite difference approximations, (6.2.27) and (6.2.28) can be approximated at a grid

point i respectively as,

r2 δ
4Wi + r1 δ

2Wi + a4Wi − a2R(1 +
h2

6
δ2)Θi = 0, (6.3.63)

R(1 +
∆z2

12
δ2)Wi + r3 δ

2
zΘi − a2Φi = 0, (6.3.64)

where r1 = (h2/6) a4 − 2a2, r2 = 1 − (h2/6) a2, r3 = 1 − (h2/12) a2 and r4 =

1− (h2/6) a2. Thus, for free-free boundary conditions, (6.3.63) and (6.3.64) produce

the following high order finite difference equations

r2
h4
Wi+2 + (−4r2

h4
+
r1
h2

)Wi+1 + (
6r2
h4

− 2r1
h2

+ a4)Wi + (−4r2
h4

+
r1
h2

)Wi−1 +
r2
h4
Wi−2

−Ra2 [1
6
Θi−1 +

2

3
Θi +

1

6
Θi+1] = 0, (6.3.65)
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i = 2, ..., N − 2,

−R [
−1

12
Wi−1 −

5

6
Wi −

1

12
Wi+1] + r3

Θi−1

h2
− (

2r3
h2

+ a2)Θi + r3
Θi+1

h2
= 0, (6.3.66)

i = 1, ..., N − 1,

r2
h4
W3 + (−4r2

h4
+
r1
h2

)W2 + (
5r2
h4

− 2r1
h2

+ a4)W1 −Ra2 [
2

3
Θ1 +

1

6
Θ2] = 0, (6.3.67)

which is the equation obtained from (6.3.63) with i = 1, and

(
5r2
h4

− 2r1
h2

+a4)WN−1+(−4r2
h4

+
r1
h2

)WN−2+
r2
h4
WN−3−Ra2 [

1

6
ΘN−2+

2

3
ΘN−1] = 0,

(6.3.68)

which arises from (6.3.63) with i = N − 1.

For slip-slip boundary conditions, we change the equations (6.3.67) and (6.3.68)

by new equations. At i = 1, we substitute W0 = 0 and W−1 = −(N0/h2 −

1/2h)/(N0/h2 + 1/2h)W1 in (6.3.65) to get the equivalent equation to (6.3.67).

At i = N , we substitute WN = 0 WN+1 = −(N0/h2 − 1/2h)/(N0/h2 + 1/2h)WN−1

in (6.3.65) to get the equivalent equation to (6.3.68). For fixed-slip boundary con-

ditions, At i = N , we substitute WN = 0 WN+1 = WN−1 in (6.3.65) to get the

equivalent equation to (6.3.68) . At i = 1, the equation is still the same with

slip-slip boundary conditions.

Generally, the finite difference and high order finite difference schemes produce

a generalized matrix eigenvalue problem of form

ΛΣ = RΞΣ, (6.3.69)

where Σ is the eigenfunction vector, the Matrices Λ and Ξ have different values

according to each case and R represent the eigenvalues of our problem.

6.3.3 Finite element method

In this section we will discuss the finite element method which is used to solve

systems (6.2.27) and (6.2.28). Firstly, we introduce a new variable Υ = D2W ,

Therefore, system (6.2.27) and (6.2.28) become as follows

D2W = Υ,
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D2Υ− 2a2Υ+ a4W − a2RΘ = 0, (D2 − a2)Θ +RW = 0, (6.3.70)

with free-free boundary conditions

W = Υ = Θ = 0, at z = 0, 1, (6.3.71)

or with slip-slip boundary conditions

W = Θ = 0, at z = 0, 1,

λLΥ−DW = 0, at z = 0,

λUΥ+DW = 0, at z = 1,

(6.3.72)

or with fixed-slip boundary conditions

W = Θ = 0, at z = 0, 1,

DW = 0, at z = 0,

λUΥ+DW = 0, at z = 1,

(6.3.73)

Firstly, we divided the period 0 ≤ x ≤ 1 into n elements, each element e having

p+ 1 nodes n1, n2, ..., np+1. In term of its p+ 1 nodal values, the variables W,Υ,Θ

may be uniquely interpolated as a polynomial of p+1 order, the interpolation being

given by

W e = N eδeW , Υe = N eδeΥ, Θe = N eδeΘ, (6.3.74)

where δeW = {Wn1 , ...,Wnp+1}, δeΥ = {Υn1 , ...,Υnp+1} and δeΘ = {Θn1 , ...,Θnp+1}, and

the shape function matrix is

N e = [Np
n1
, ..., Np

np+1
].

Therefore the over-all finite element approximation is given by

W =
n∑

e=1

W e, Υ =
n∑

e=1

Υe, Θ =
n∑

e=1

Θe, (6.3.75)

The variational formulations of (6.3.70) is

Minimize IW [W ] =

∫ 1

0

(−(DW )2 − 2ΥW )dx, (6.3.76)

Minimize IΥ[Υ] =

∫ 1

0

(−(DΥ)2 − 2a2Υ2 + 2a4WΥ− 2a2RΘΥ))dx, (6.3.77)
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Minimize IΘ[Θ] =

∫ 1

0

(−(DΘ)2 − a2Φ2 + 2RWΘ)dx. (6.3.78)

Substitution of (6.3.75) into variational formulations (6.3.76)-(6.3.78) gives

IW [W ] =
n∑

e=1

∫
e

(−(DW e)2 − 2ΥeW e)dx =
n∑

e=1

IeW , (6.3.79)

IΥ[Υ] =
n∑

e=1

∫
e

(−(DΥe)2 − 2a2(Υe)2 + 2a4W eΥe − 2a2RΘeΥ)dx =
n∑

e=1

IeΥ, (6.3.80)

IΘ[Θ] =
n∑

e=1

∫
e

(−(DΘe)2 − a2(Θe)2 + 2RfW eΘe)dx =
n∑

e=1

IeΘ, (6.3.81)

here, we use the fact that the functions W e,Υe,Θe are equivalent to zero outside

the element e. Using (6.3.79)- (6.3.81), we obtain

IW [W ] = IW (W1, ...,Wm),

IΥ[Υ] = IΥ(Υ1, ...,Υm),

IΘ[Θ] = IΘ(Θ1, ...,Θm),

where m is the number of all nodes in all elements. Then using the Rayleigh-Ritz

procedure to minimize IW [W ], IΥ[Υ], IΘ[Θ], with respect to the variational parame-

ters Wi,Υi,Θi respectively, gives

∂IW
∂Wi

=
n∑

e=1

∂IeW
∂Wi

= 0, i = 1, ...,m, (6.3.82)

∂IΥ
∂Υi

=
n∑

e=1

∂IeΥ
∂Υi

= 0, i = 1, ...,m, (6.3.83)

∂IΘ
∂Θi

=
n∑

e=1

∂IeΘ
∂Θi

= 0, i = 1, ...,m. (6.3.84)

Hence, we arrive to following formula

∂IeW
∂Wni

= −2

∫
e

dNp
ni

dz

dN e

dz
δeWdx− 2

∫
e

Np
ni
N eδeΥdx = 0, (6.3.85)

∂IeΥ
∂Υni

= 2a4
∫
e

Np
ni
N eδeWdx− 2

∫
e

(
dNp

ni

dz

dN e

dz
+ 2a2Np

ni
N e)δeΥdx
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−2a2R

∫
e

Np
ni
N eδeΘdx = 0, (6.3.86)

∂IeΘ
∂Θni

= −2

∫
e

[
dNp

ni

dz

dN e

dz
+ a2Np

ni
N e]δeΘdx+ 2R

∫
e

Np
ni
N eδeWdx = 0. (6.3.87)

Then, the matrix representation for the system of equation of element e take the

form 
−De

2 −F e
1 O

a4F e
1 −De

2 − 2a2F e
1 O

O O −De
2 − a2F e

1




δeW

δeΥ

δeΘ



= R


O O O

O O a2 F e
1

−F e
1 O O




δeW

δeΥ

δeΘ

 , (6.3.88)

where

Oij = 0, De
2 ij =

∫ 1

−1

dNp
ni

dz

dNp
nj

dz
dz, F e

1 ij =

∫ 1

−1

Np
ni
Np

nj
dz, i = 1, ...p+1, j = 1, ...p+1.

The above integral can be evaluated by applying the classical finite element nodal

basis functions in one dimension on the standard element Ωst = (−1, 1). The stan-

dard shape functions are defined by the set of Lagrange polynomials

Np
ni
(ζ) =

np+1∏
j=n1, j ̸=i

ζ − ζj
ζi − ζj

, (6.3.89)

where ζ = 2/h(z − zm), h is the length of element and zm is the mid-point. Thus

these integrations take the form:

De
2 ij =

2

h

∫ 1

−1

dNp
ni

dζ

dNp
nj

dζ
dζ,

F e
1 ij =

h

2

∫ 1

−1

Np
ni
Np

nj
dζ

i = 1, ...p+ 1, j = 1, ...p+ 1.
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The integral were calculated analytically using Matlab routines. Finally, we

assemble the systems of all elements e = 1, ..., n to get the main system which has

the form

ΛΣ = RΞΣ, (6.3.90)

where Σ = (W1, ...,Wm,Υ1, ...,Υm,Θ1, ...,Θm)
T .

For free surface boundary conditions, we can impose the boundary conditions easily

by removingW1,Wm, Υ1,Υm, Θ1,Θm from the system and thus we remove the rows

and columns of order 1,m,m+ 1, 2m, 2m+ 1 and 3m.

For slip-slip boundary conditions, firstly, we transform these condition to the

local coordinate ζ and thus these boundary condition take the form

W = Θ = 0, at ζ = −1, 1,

λLΥ− 2

h
DW = 0, at ζ = −1,

λUΥ+
2

h
DW = 0, at ζ = 1.

(6.3.91)

Now we can impose the boundary conditions (6.3.91)1 by removing the rows and

columns of order 1,m, 3m+1 and 3m, while we can apply the boundary conditions

(6.3.91)2,3 by substituting ζ = −1 in (6.3.91)2 and ζ = 1 in (6.3.91)3 and then use

(6.3.70) to arrive to the following final equations

Υ1 =
2

λLhe1
[d2W2 + ...+ dp+1Wp+1]−

1

e1
[e2Υ2 + ...+ ep+1Υp+1], (6.3.92)

Υm = − 2

λUhgp+1

[f1Wm−p+f2Wm−p+1+ ...+fpWm−1]−
1

gp+1

[g1Υm−p+ ...+gpΥm−1],

(6.3.93)

where di = dNi(−1)/dζ, ei = Ni(−1), gi = Ni(1) and fi = dNi(1)/dζ.

Now, we substitute the values of A1 and Am in (6.3.90) thus the columns of order

m + 1 and 2m will be zeros and thus we can remove the m + 1 and 2m rows and

columns.

However, for fixed-slip boundary conditions, we change the conditions DW = 0

at z = 0, to another conditions related with function Υ. To do this, let the first

element is [0, a], then, we integrate (6.3.70)1 for first element and use the boundary
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condition W = 0 at z = 0, to arrive to the following conditions

DW 1(a) =

∫ a

0

Υ1dx, (6.3.94)

where 1 refer to the first element. Next, to make (6.3.94) are useful in our compu-

tational, we transform this condition to the local coordinate ζ and use (6.3.74) to

obtain
2

h

dN(1)

dζ
δ1W =

h

2

∫ 1

−1

N(ζ)δ1Adζ. (6.3.95)

Now, let τi = dNi(1)/dζ and ξi =
∫ 1

−1
Ni(ζ)dζ. In addition, suppose that the

nodes for the first element and for the last element have the order 1, 2, ..., p + 1

and m − p,m − p + 1, ...,m, respectively. Then, (6.3.95) leads to the following

computational conditions

Υ1 =
4

h2ξ1
[τ2W2 + ...+ τp+1Wp+1]−

1

ξ1
[ξ2Υ2 + ...+ ξp+1Υp+1]. (6.3.96)

Now, we substitute the value of Υ1 from (6.3.96) and the value of Υm from (6.3.93)

in (6.3.90) thus the columns of order m + 1 and 2m will be zeros. Now, we can

remove the rows and columns of order 1,m,m+ 1, 2m, 2m+ 1 and 3m.

6.3.4 Chebyshev collocation methods

In this section, we use the Chebyshev collocation method to solve the eigenvalue

system (6.2.27) and (6.2.28). We apply two techniques of Chebyshev collocation

method to impose the boundary conditions.

Method 1.

For free-free boundary conditions, we use the same transformation which have been

used in the finite element method, to arrive

D2W = Φ,

D2Φ− 2a2Φ + a4W − a2RΘ = 0,

(D2 − a2)Θ +RW = 0,

(6.3.97)
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with the same boundary conditions (6.3.71). In the first technique, we choose the

trial functions such that these functions satisfy the boundary conditions as follows:

W =
N∑

n=1

Wnθn(z), (6.3.98)

Φ =
N∑

n=1

Φnθn(z), (6.3.99)

Θ =
N∑

n=1

Θnθn(z), (6.3.100)

where

θn(z) = (1− z2)T2n−2(z). (6.3.101)

Here Tn(z) is the nth-degree of Chebyshev polynomial of the first kind, which is

defined by

T0(z) = 1, T1(z) = z,

Tn+1(z)− 2zTn(z) + Tn−1(z) = 0, −1 ≤ z ≤ 1,

or

Tn(z) = cos(n arccos(z)), −1 ≤ z ≤ 1,

It is clear that w,Φ and Θ satisfies the boundary conditions (6.3.71). Now, Substi-

tuting (6.3.98)-(6.3.100) into (6.3.97), and requiring that (6.3.97) be satisfied at N

collocation points z1, ..., zN , where

zi = cos(
i− 1

2N − 1
π), i = 1, ..., N, (6.3.102)

we obtain 2N algebraic equations for 2N unknowns w1, ..., wN , A1, ..., AN , ϕ1, ..., ϕN :


4D2 −I O

a4I 4D2 − 2a2I O

O O 4D2 − a2I

X = R


O O O

O O a2RI

−RI O O

X,

where X = (w1, ..., wN ,Φ1, ...,ΦN ,Θ1, ...,ΘN), O is the zeros matrix, I(n1, n2) =

θn2(zn1), D
2(n1, n2) = θ′′n2

(zn1), n1 = 1, ..., N , n2 = 1, ..., N .
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Now, to deal with the solution of (6.2.27) and (6.2.28) with slip-slip boundary

conditions and λL = λU = λ. Firstly, we introduce a new function ϑ = Dw, then

our system can written in the following form:

Dw − ϑ = 0, (6.3.103)

D3ϑ− 2a2Dϑ+ a4W − a2RΘ = 0, . (6.3.104)

(D2 − a2)Θ +RW = 0, (6.3.105)

Then, according to this transform, the boundary condition have the form

W = Θ = 0, at z = 0, 1, (6.3.106)

λDϑ+ ϑ = 0, z = 1, (6.3.107)

λDϑ− ϑ = 0, z = 0. (6.3.108)

We choose the trial functions such that these functions satisfy the boundary condi-

tions as follows:

W =
N∑

n=1

Wnθn(z), (6.3.109)

ϑ =
N∑

n=1

ϑnψn(z), (6.3.110)

where

θn(z) = (1− z2)T2n−2(z), (6.3.111)

ψn(z) = (1− z2 +
2λ

1 + λ(2n− 1)2
)T2n−1(z). (6.3.112)

It is clear that W and ϑ satisfy the boundary conditions (6.3.106)-(6.3.108). Now

we can apply the same procedure which are used for free-free boundary conditions.

For fixed-slip boundary conditions, we are unable to solve the problem because it

is not easy to suggest a functions which satisfy two different boundary conditions.

However, if λL ̸= λU , it is not easy to find a trail functions such that these functions

satisfy the boundary conditions.
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6.3.5 Method 2.

For free-free boundary conditions we adopt the modified system (6.3.97). We expand

the solutions of the governing stability equations (6.3.97) as truncated series of

Chebyshev polynomials

W =
N∑

n=0

wnTn(z), Φ =
N∑

n=0

ΦnTn(z), Θ =
N∑

n=0

ΘnTn(z), (6.3.113)

then, we insert (6.3.113) into the equations (6.3.97), and then substitute the Gauss-

Labatto points which are defined by

yi = cos(
πi

N − 3
), i = 0, ..., N − 2. (6.3.114)

Thus, we obtain 3N − 3 algebraic equations for 3N + 3 unknowns W0, ...,WN ,

Φ0, ...,ΦN , Θ0, ...,ΘN . Now, we can add six rows using the boundary conditions

(6.3.71) as follows

BC1 :
N∑

n=0

Wn = 0, (6.3.115)

BC2 :
N∑

n=0

(−1)nWn = 0, (6.3.116)

BC3 :
N∑

n=0

Φn = 0, (6.3.117)

BC4 :
N∑

n=0

(−1)nΦn = 0, (6.3.118)

BC5 :
N∑

n=0

Θn = 0, (6.3.119)

BC6 :
N∑

n=0

(−1)nΘn = 0. (6.3.120)
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Then, we obtain the generalised eigenvalue problem

4D2 −I O

BC1 0...0 0...0

BC2 0...0 0...0

a4I 4D2 − 2a2I O

0...0 BC3 0...0

0...0 BC4 0...0

O O 4D2 − a2I

0...0 0...0 BC5

0...0 0...0 BC6



X = R



O O O

0...0 0...0 0...0

0...0 0...0 0...0

O O a2RI

0...0 0...0 0...0

0...0 0...0 0...0

−RI O O

0...0 0...0 0...0

0...0 0...0 0...0



X,

whereX = (W0, ...,WN ,Φ0, ...,ΦN ,Θ0, ...,ΘN), O is the zeros matrix, I(n1, n2) =

Tn2(zn1), D2(n1, n2) = T ′′
n2
(zn1), n1 = 0, ..., N − 2, n2 = 0, ..., N .

However, for numerical solutions of (6.2.27) and (6.2.28) with slip-slip boundary

conditions, we adopt system (6.3.103)-(6.3.105) with boundary conditions (6.3.106)-

(6.3.108) but with general values of λU , λL i.e. λU ̸= λL. Then, we apply the same

procedure which are used for free-free boundary conditions to arrive to the following

eigenvalue problem system

2D −I O

BC1 0...0 0...0

BC2 0...0 0...0

a4I 8D3 − 4a2D O

0...0 BC3 0...0

0...0 BC4 0...0

O O 4D2 − a2I

0...0 0...0 BC5

0...0 0...0 BC6



X = R



O O O

0...0 0...0 0...0

0...0 0...0 0...0

O O a2RI

0...0 0...0 0...0

0...0 0...0 0...0

−RI O O

0...0 0...0 0...0

0...0 0...0 0...0



X,

where X = (W0, ...,WN , ϑ0, ..., ϑN ,Θ0, ...,ΘN), O is the zeros matrix, I(n1, n2) =

Tn2(zn1), D(n1, n2) = Tn2(zn1), D
3(n1, n2) = T ′′′

n2
(zn1) , n1 = 0, ..., N − 2, n2 =

0, ..., N . The boundary conditions BC1, BC2, BC5, BC6 have the same form of
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the free-free boundary conditions, while BC3 and BC4 have different form which is

related with slip boundary conditions and these written in the following form:

BC3 :
N∑

n=0

(2λUn
2 + 1)ϑn = 0, (6.3.121)

BC4 :
N∑

n=0

(2(−1)n+1λLn
2 − 1)ϑn = 0. (6.3.122)

For fixed-slip boundary conditions, the system have the same form of slip-slip

with λL = 0. This show the flexibility of this method, and thus, we believe that this

method is more flexible than the other numerical methods. Moreover, this method

is very accurate and not need to difficult numerical treatments.

6.4 Numerical results and conclusions

In this section we report our numerical results of (6.2.27) and (6.2.28) with free-

free, slip-slip and fixed-slip boundary conditions. It is very important to make a

comparison between the accuracy of the methods with the crucial measurement

being the exact solution. As we mention in the introduction, Rayleigh [163] showed

that, in the case of free-free boundary conditions, we may obtain the analytical

result of the Rayleigh number Racrit = 27π4/4 and a2crit = π2/2. Thus, we compute

the absolute error of the critical Rayleigh and the wavenumbers from the relation:

ea = |aexact − anumer|, eR = |Rexact −Rnumer|

where ea, eR, aexact, anumer, Rexact and Rnumer are the absolute error of wavenum-

ber, the absolute error of critical Rayleigh number, the exact value of wavenumber,

the numerical value of wavenumber, the exact value of the critical Rayleigh number

and the numerical value of the critical Rayleigh number, respectively. We report

the absolute error of the critical Rayleigh and the wavenumbers for the numerical

methods with free-free boundary conditions in Tables 6.1-6.6.

In Table 6.1, the absolute errors of the wavenumber which are produce from the

finite element method are introduced. The table demonstrates that the absolute

error of the wavenumbers does not change when increasing the number of nodes
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and number elements, where, in general, the values of absolute error 9.15 × 10−6

or very close to this value can be seen. When the number of elements are 2, 3, 4

and the number of nodes is 4, the accuracy is less than normal i.e. the accuracy

is less than 9.15 × 10−6 which is very much to be expected as the approximation

in these situations is of a low order. However, with a high number of elements

and nodes, the accuracy values oscillate where the absolute error is less or greater

than the normal value. Furthermore, this behaviour is to be expected in studying

hydrodynamic stability problems. As the number of nodes and element increase,

theoretically, the accuracy of the finite element method should increase. However,

as the number of nodes and elements increase, the computer calculations increase

and thus computer error will be greater. Since hydrodynamic stability problems

require solving the eigenvalue system many times in order to achieve the critical

Rayleigh number which corresponds to the critical wavenumber, computer error is

expected to make the absolute error greater than the theoretical one. This behaviour

is very clear in Table 6.6, where the absolute error is higher than the truncation error

of FD and HFD methods. For both the absolute error of the critical Rayleigh and

wave numbers, the accuracy increases with a higher number of nodes and elements

until it reaches a peak, at which point the behaviour of the accuracy oscillates.

Similar behaviour of the absolute error of the wavenumber can be found in the

Chebyshev tau, Chebyshev collection 1 and 2 schemes (see Tables 6.3, 6.4 and 6.5).

However, the accuracy of the wave number for standard and high order finite dif-

ference methods is less than in the Chebyshev methods and finite element methods.

Generally, the accuracy of the finite difference schemes corresponds with the value

of h, where accuracy increases as the value of h decreases. However, the value of

h cannot be taken as less than 0.01 for two reasons. First, with h = 0.01 and af-

ter imposing the boundary conditions, the order of the eigenvalue matrices will be

199 × 199, and thus, according to the computers ability, this is an optimal choice.

Secondly, it is difficult to believe that low h values can provide more accurate results

as the computations have to increase rapidly, which is very important spatially when

the nonlinear stability problems are solved.

Table 6.2 presents the absolute errors of the Rayleigh number generated from
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the finite element method. Unlike the behaviour of the wavenumber, whereby the

required accuracy with a low number of elements and nodes can be achieved, the

accuracy of the Rayleigh numbers require a greater number of elements and nodes.

Additionally, the absolute errors of the Rayleigh number are less than the absolute

errors of the wavenumber. Similar to the wave numbers accuracy, the accuracy of

the Rayleigh number increases with an increased number of nodes and elements up

to the normal absolute error which is 2×10−10. At this point the accuracy behaviour

oscillates more. Table 6.2 shows that the required accuracy can be achieved with

2 elements and 8 nodes and this choice is the best according to the computer run

time. In other words, using this choice the best accuracy with the smallest eigenvalue

matrices can be achieved. This means that the order of eigenvalue matrices will be

30 × 30. Now, from the results of the other numerical methods in Tables 6.3, 6.4

and 6.5, it can be seen the following observations

• The Chebyshev tau method can achieve the required accuracy using at least 11

Chebyshev polynomials, thus the order of eigenvalue matrices will be 26× 26

after adding the two rows of boundary conditions.

• The Chebyshev collection method 1 can achieve the required accuracy using 6

Chebyshev polynomials. Thus the order of the eigenvalue matrices will be 16×

16 after adding the two rows of boundary conditions. Here we should mention

that the Chebyshev collection method 1 achieves the required accuracy with

a smaller number of Chebyshev polynomials because it uses only the even

polynomials - i.e. this method uses the polynomials T0, T2, .... So when the

required accuracy with 6 Chebyshev polynomials is reached , this signifies

that it uses the polynomials of order 0, 2, 4, 6, 8, 10. This is a very significant

advantage of this method, achieving a high level of accuracy with low numbers

of polynomials.

• The Chebyshev collection method 2 can achieve the required accuracy using 10

Chebyshev polynomials. Thus the order of eigenvalue matrices will be 24× 24

after adding the two rows of boundary conditions.

Here, it is very important to mention that these numerical methods reach a
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high level of accuracy with these numbers of polynomials, nodes and elements for

free-free boundary conditions. However, there is a need to increase these numbers

when dealing with other kinds of boundary conditions. Accordingly, the results of

numerical methods are reported in Tables 6.7 and 6.8 for slip-slip and fixed-slip

boundary conditions with selected numbers of polynomials, nodes and elements and

h. The convergence has been checked and with the result that 8 decimal places for

slip-slip and fixed-slip boundary conditions is achieved using 20, 10 and 20 Cheby-

shev polynomials for Chebyshev tau, Chebyshev collection method 1 and Chebyshev

collection method 2, respectively, while for the finite element method the conver-

gence to 8 decimal places required at least 3 elements and 10 nodes. Additionally,

the required convergence was satisfied with h = 0.001, h = 0.01 for FD and HFD,

respectively. Therefore, the numerical results in Tables 6.7 and 6.8 are reported

according to these choices.

One of the important reasons for applying different numerical methods for solving

the system (6.2.27) and (6.2.28) is to make a comparison between these methods so

that a conclusion can be reached regarding which of these methods is the best in

solving hydrodynamic stability problems. The advantage in using the Chebyshev

Tau method is that it can achieve the required accuracy using a small number of

polynomials, allowing the achievement of highly accurate results with a short run

time. On the other hand, the Chebyshev tau method is not easy to apply, as a

considerable effort to solve any system of equations is required. With regard to

problems of variable coefficients, the Chebyshev tau method presents complications

in finding the solution because this method depends on the writing of all functions in

the system of the equation in the form of Chebyshev polynomial series, which proves

difficult when functions such as triangular and hyperbolic functions are present.

The FD method need a large number of divisions to reach the required accuracy,

while the HFD method can reach to the desired accuracy by using less number of

divisions. We see from the results that the FD method require h = 0.001 to achieve

a very good accuracy and convergence results, while we use h = 0.01 for HFD

method. However, the FD and HFD methods leads to non-singular matrices in the

eigenvalue systems and so we may employ LU decomposition, unlike the other nu-
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merical methods which necessarily have singular matrices in the eigenvalue systems

and so necessitate use of the QZ algorithm. The banded nature of matrices in the

eigenvalue systems would also lead naturally to solution by an Arnoldi technique.

In addition, we found no occurrence of spurious eigenvalues as frequently arise with

the Chebyshev methods, cf., Dongarra et al. [43].

We believe that the finite element method is one of the best choices in solving

the hydrodynamic stability problems as it is a flexible method and it can give very

accurate results. However, the disadvantage of this method is that the required run

time is longer than the Chebyshev numerical methods. Thus, using this method

for linear theory problem is recommended. Moreover, it could be a suitable choice

for nonlinear problems but with no more than two maximised parameters. The

Chebyshev collection method 1 is an inflexible method where if the boundary condi-

tions are not symmetric it becomes impossible to find trial functions satisfying the

boundary conditions. However, this method has the highest accuracy between the

numerical methods and requires a smaller number of polynomials to achieve excel-

lent accuracy and convergence. This point is of great value because our numerical

calculations require great computational time, with a run time in some cases of more

than ten hours.

Finally, the Chebyshev collection method 2 is the most flexible method among the

other numerical methods and can achieve high accuracy using a reasonable number

of Chebyshev polynomials. Usually, we used this method in my work because of the

highly accurate results within a short time. The author strongly recommends this

method for use in solving hydrodynamic stability problems.
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No. of nodes

No. elements 4 5 6 7 8 9 10

2 6.8E-04 9.2E-06 9.2E-06 9.2E-06 9.2E-06 9.2E-06 9.2E-06

3 6.7E-05 9.2E-06 9.2E-06 9.2E-06 9.2E-06 9.2E-06 7.0E-06

4 1.9E-05 9.2E-06 9.2E-06 9.2E-06 9.2E-06 9.2E-06 9.2E-06

5 9.2E-06 9.2E-06 9.2E-06 9.2E-06 9.2E-06 9.2E-06 9.2E-06

6 9.2E-06 9.2E-06 9.2E-06 9.2E-06 9.2E-06 7.0E-06 9.2E-06

7 9.2E-06 9.2E-06 9.2E-06 9.2E-06 9.2E-06 7.0E-06 9.2E-06

8 9.2E-06 9.2E-06 9.2E-06 9.2E-06 9.2E-06 9.2E-06 7.0E-06

9 9.2E-06 9.2E-06 9.2E-06 9.2E-06 9.2E-06 7.9E-06 8.3E-06

10 9.2E-06 9.2E-06 9.2E-06 9.2E-06 7.0E-06 7.3E-06 2.7E-05

11 9.2E-06 9.2E-06 9.2E-06 4.6E-06 7.0E-06 9.2E-06 1.4E-05

12 9.2E-06 9.2E-06 9.2E-06 9.2E-06 9.2E-06 8.9E-07 7.7E-05

13 9.2E-06 9.2E-06 9.2E-06 9.2E-06 9.2E-06 9.2E-06 2.0E-05

14 9.2E-06 9.2E-06 9.2E-06 9.2E-06 6.8E-06 1.6E-05 6.1E-05

15 9.2E-06 9.2E-06 9.2E-06 9.2E-06 9.2E-06 3.5E-05 9.2E-06

16 9.2E-06 9.2E-06 9.2E-06 9.2E-06 1.1E-05 3.3E-05 6.1E-06

17 9.2E-06 8.1E-07 9.2E-06 9.2E-06 4.0E-06 3.5E-05 3.2E-06

18 9.2E-06 9.2E-06 9.2E-06 9.2E-06 9.2E-06 3.0E-06 2.9E-05

19 9.2E-06 9.2E-06 9.2E-06 9.2E-06 2.8E-05 6.6E-06 6.2E-06

20 9.2E-06 8.1E-07 8.1E-07 7.0E-06 1.5E-05 4.6E-05 7.5E-05

Table 6.1: Comparison of the absolute error of wavenumbers for finite

elements method.
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No. of nodes

No. elements 4 5 6 7 8 9 10

2 1.8E-01 1.8E-03 1.1E-05 5.0E-08 8.5E-10 5.2E-10 8.2E-10

3 1.7E-02 7.3E-05 2.0E-07 1.1E-09 6.7E-10 2.3E-10 4.9E-08

4 3.0E-03 7.4E-06 1.2E-08 7.4E-10 9.5E-10 5.1E-10 9.9E-08

5 7.9E-04 1.2E-06 1.9E-09 6.7E-10 4.0E-10 1.5E-09 1.2E-07

6 2.7E-04 2.9E-07 8.9E-10 3.1E-10 3.0E-08 5.1E-08 1.2E-07

7 1.1E-04 8.6E-08 4.4E-10 2.8E-10 3.5E-08 5.3E-08 1.3E-07

8 4.8E-05 3.0E-08 7.6E-10 9.5E-10 4.0E-08 6.0E-08 1.1E-07

9 2.4E-05 1.2E-08 6.7E-10 4.4E-10 4.0E-08 5.3E-08 1.1E-07

10 1.2E-05 5.6E-09 7.8E-10 7.4E-10 4.6E-08 5.8E-08 9.2E-08

11 7.1E-06 2.7E-09 1.4E-09 3.2E-10 4.8E-08 6.6E-08 9.4E-08

12 4.2E-06 1.3E-09 6.7E-10 6.1E-08 5.0E-08 7.4E-08 6.0E-08

13 2.6E-06 7.6E-10 5.7E-10 6.0E-08 5.0E-08 8.2E-08 1.0E-07

14 1.7E-06 8.4E-10 5.4E-10 6.0E-08 5.5E-08 8.2E-08 7.6E-08

15 1.1E-06 8.6E-10 4.8E-10 6.1E-08 5.0E-08 6.1E-08 1.1E-07

16 7.5E-07 5.2E-10 5.1E-08 5.7E-08 5.1E-08 6.1E-08 1.1E-07

17 5.2E-07 3.3E-10 5.0E-08 6.0E-08 6.9E-08 5.5E-08 8.0E-08

18 3.7E-07 2.3E-10 5.3E-08 5.8E-08 5.0E-08 9.3E-08 1.3E-07

19 2.7E-07 5.6E-10 5.2E-08 5.6E-08 5.2E-08 5.3E-08 8.7E-08

20 2.0E-07 2.0E-10 5.2E-08 5.8E-08 5.7E-08 8.0E-08 1.8E-07

Table 6.2: Comparison of the absolute error of critical Rayleigh numbers

for finite elements method.
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No. of pol. Ra a2c No. of pol. Ra a2c

4 9.67E-01 3.63E-03 27 5.08E-10 3.16E-06

5 3.06E-03 6.97E-06 28 1.12E-09 8.11E-07

6 1.10E-02 6.97E-06 29 1.13E-09 1.31E-05

7 2.14E-05 9.15E-06 30 1.31E-09 9.15E-06

8 7.69E-05 9.15E-06 31 4.91E-09 2.53E-05

9 5.89E-08 9.15E-06 32 1.66E-08 4.25E-05

10 3.63E-07 9.15E-06 33 7.98E-11 9.15E-06

11 8.51E-10 9.15E-06 34 2.49E-07 9.15E-06

12 1.86E-09 9.15E-06 35 4.30E-11 1.30E-05

13 8.50E-10 9.15E-06 36 8.36E-08 2.53E-05

14 7.62E-10 9.15E-06 37 7.58E-09 3.52E-05

15 2.72E-11 8.11E-07 38 5.63E-09 2.55E-05

16 6.03E-10 9.15E-06 39 1.85E-09 1.62E-05

17 5.68E-11 9.15E-06 40 4.05E-10 3.00E-06

18 6.80E-10 9.15E-06 41 7.75E-09 9.15E-06

19 2.29E-11 3.00E-06 42 2.69E-09 1.31E-05

20 7.69E-10 9.15E-06 43 1.21E-08 3.87E-07

21 1.09E-09 9.15E-06 44 3.04E-09 9.88E-06

22 7.22E-10 9.15E-06 45 5.46E-09 2.19E-05

23 7.55E-08 9.15E-06 46 4.44E-09 2.93E-05

24 3.61E-10 9.15E-06 47 3.77E-11 1.94E-05

25 2.98E-10 8.11E-07 48 1.34E-06 3.16E-06

26 6.42E-10 9.15E-06 49 6.41E-09 9.15E-06

Table 6.3: Comparison of the absolute error of critical Rayleigh numbers

and wavenumbers for Chebyshev tau method.
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No. of pol. Ra a2c No. of pol. Ra a2c

4 1.34E-05 9.15E-06 27 7.47E-10 9.15E-06

5 9.05E-08 9.15E-06 28 7.53E-10 9.15E-06

6 6.07E-10 9.15E-06 29 7.54E-10 9.15E-06

7 7.55E-10 9.15E-06 30 7.54E-10 9.15E-06

8 7.47E-10 9.15E-06 31 7.55E-10 9.15E-06

9 7.52E-10 9.15E-06 32 7.43E-10 9.15E-06

10 7.50E-10 9.15E-06 33 7.44E-10 9.15E-06

11 7.47E-10 9.15E-06 34 7.41E-10 9.15E-06

12 7.51E-10 9.15E-06 35 7.52E-10 9.15E-06

13 7.49E-10 9.15E-06 36 7.48E-10 9.15E-06

14 7.45E-10 9.15E-06 37 7.51E-10 9.15E-06

15 7.48E-10 9.15E-06 38 7.39E-10 9.15E-06

16 7.49E-10 9.15E-06 39 7.44E-10 9.15E-06

17 7.54E-10 9.15E-06 40 7.46E-10 9.15E-06

18 7.48E-10 9.15E-06 41 7.54E-10 9.15E-06

19 7.50E-10 9.15E-06 42 7.52E-10 9.15E-06

20 7.51E-10 9.15E-06 43 7.33E-10 9.15E-06

21 7.50E-10 9.15E-06 44 7.58E-10 9.15E-06

22 7.51E-10 9.15E-06 45 7.43E-10 9.15E-06

23 7.48E-10 9.15E-06 46 7.41E-10 9.15E-06

24 7.35E-10 9.15E-06 47 7.39E-10 9.15E-06

25 7.54E-10 9.15E-06 48 7.38E-10 9.15E-06

26 7.40E-10 9.15E-06 49 7.66E-10 9.15E-06

Table 6.4: Comparison of the absolute error of critical Rayleigh numbers

and wavenumbers for Chebyshev collocation method-1.
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No. of pol. Ra a2c No. of pol. Ra a2c

4 6.01E-01 2.25E-03 27 3.29E-08 8.12E-06

5 1.05E-01 3.93E-04 28 3.60E-09 3.58E-05

6 1.24E-03 6.97E-06 29 7.40E-08 1.21E-05

7 1.34E-05 9.15E-06 30 2.64E-08 9.15E-06

8 1.86E-07 9.15E-06 31 8.88E-10 3.05E-05

9 9.08E-08 9.15E-06 32 1.98E-08 1.66E-05

10 5.38E-10 8.11E-07 33 4.88E-08 9.15E-06

11 5.37E-10 9.15E-06 34 3.64E-08 4.59E-05

12 9.52E-10 9.15E-06 35 5.54E-08 6.76E-06

13 1.34E-09 3.00E-06 36 2.69E-08 9.40E-07

14 2.21E-10 4.62E-06 37 1.43E-08 4.27E-06

15 2.07E-09 9.15E-06 38 3.26E-08 2.44E-06

16 1.77E-09 9.15E-06 39 8.74E-08 4.22E-05

17 5.56E-09 8.11E-07 40 8.69E-09 3.86E-05

18 2.03E-09 9.15E-06 41 8.36E-08 6.21E-05

19 4.12E-09 4.41E-06 42 7.79E-08 9.40E-05

20 8.86E-09 3.00E-06 43 3.98E-08 8.25E-05

21 2.83E-09 1.85E-05 44 1.47E-07 2.99E-05

22 5.20E-09 1.91E-05 45 1.78E-07 2.69E-05

23 3.47E-09 3.31E-05 46 6.07E-08 4.93E-05

24 7.38E-09 1.93E-05 47 1.89E-07 5.37E-05

25 2.93E-08 2.23E-06 48 3.95E-08 1.04E-04

26 2.86E-09 3.52E-05 49 3.05E-08 6.33E-05

Table 6.5: Comparison of the absolute error of critical Rayleigh numbers

and wavenumbers for Chebyshev collocation method-2.
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FD HFD

h Ra a2c Ra a2c

0.5 2.70E+00 1.01E-02 1.20E+00 8.99E-03

0.4 1.73E+00 6.50E-03 7.69E-01 5.74E-03

0.2 4.32E-01 1.61E-03 1.92E-01 1.39E-03

0.1 1.08E-02 5.30E-04 4.81E-03 2.80E-04

0.01 2.82E-03 2.99E-05 1.32E-04 1.75E-05

Table 6.6: Comparison of the absolute error of critical Rayleigh num-

bers and wavenumbers for finite differences (FD) and high order finite

differences (HFD) methods.

λ FEM Che-tau Che-C-1 Che-C-2 FD HFD

1.E-05 1707.6026 1707.6810 1707.7071 1707.6525 1706.3158 1707.2809

1.E-04 1706.6700 1707.0793 1707.2157 1706.6702 1705.3357 1706.3364

1.E-03 1696.9550 1700.9850 1702.3283 1696.9550 1695.6419 1696.6268

1.E-02 1609.4775 1644.3853 1656.0212 1609.4774 1608.3469 1609.1948

1.E-01 1186.0566 1313.4363 1355.8963 1186.0566 1185.5812 1185.9377

1 761.2043 822.7658 843.2863 761.2042 761.0558 761.1671

10 669.1816 677.6847 680.5191 669.1816 669.0695 669.1536

1.E+02 658.6940 659.5783 659.8730 658.6939 658.5854 658.6668

1.E+03 657.6298 657.7186 657.7482 657.6298 657.5216 657.6027

1.E+04 657.5232 657.5321 657.5351 657.5232 657.4151 657.4962

1.E+05 657.5125 657.5134 657.5137 657.5125 657.4044 657.4855

Table 6.7: The critical Rayleigh and wavenumbers for symmetric-slip

case for a selection of λ values. These numbers are evaluated by using

finite element, Chebyshev tau, Chebyshev collocation-1, Chebyshev

collocation-2, finite difference and fourth order finite difference.
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λU FEM Che-tau Che-C-2 FD HFD

1.E-05 1707.6557 1707.6943 1707.7071 1706.3704 1707.0130

1.E-04 1707.2157 1707.2158 1707.2159 1705.8802 1706.5479

1.E-03 1702.3478 1702.3478 1702.3478 1701.0229 1701.6854

1.E-02 1657.7442 1657.7442 1657.7442 1656.5143 1657.1292

1.E-01 1422.7335 1422.7335 1422.7335 1421.9144 1422.3239

1 1163.5803 1163.5803 1163.5803 1163.0497 1163.3150

10 1107.6329 1107.6329 1107.6329 1107.1443 1107.3886

1.E+02 1101.3557 1101.3558 1101.3558 1100.8714 1101.1136

1.E+03 1100.7203 1100.7203 1100.7203 1100.2364 1100.4783

1.E+04 1100.6567 1100.6567 1100.6567 1100.1728 1100.4147

1.E+05 1100.6503 1100.6503 1100.6503 1100.1664 1100.4084

Table 6.8: The critical Rayleigh and wavenumbers for fixed-slip case for

a selection of λU values. These numbers are evaluated by using finite

element, Chebyshev tau, Chebyshev collocation-2, finite difference and

fourth order finite difference.

June 19, 2014



Chapter 7

Structural stability for convection

models in a reacting porous

medium with magnetic field effect

7.1 Introduction

Structural stability is the study of stability of the model itself. The classical defi-

nition of stability involves continuous dependence of the solution on changes in the

initial data. However, it is increasingly being realised that continuous dependence

on changes in the coefficients, in the model, in boundary data, or even in the par-

tial differential equations themselves, is very important. This aspect of continuous

dependence, or stability, is what we refer to as structural stability. Hirsch and S-

male [88] were prominent in introducing the ideas of structural stability. In this

chapter we focus on the structural stability in the context of the convection models

of porous media. It is extremely important, because if a small change in the equa-

tions, or a coefficient in an equation, causes a major change in the solution it may

well say something about how accurate the model is as a vehicle to describe flow in

porous media.

Early articles dealing with structural stability questions in porous flows are those

of Ames and Payne [2], Franchi and Straughan [54, 57], and Payne and Straugh-

an [149–151] investigates in some detail the continuous dependence of the solution
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on changes in the initial-time geometry. Payne and Straughan [152] establish con-

tinuous dependence on the coefficients of Forchheimer and of Brinkman, and also

investigate how the solution to the Brinkman equations converges to that of the

Darcy equations as the Brinkman coefficient tends to zero.

There has also been considerable recent interest in questions of structural sta-

bility in porous media. Straughan [196] explains a system of equations to describe

the double diffusive convective flow in a porous medium using the Brinkman model.

In [200] Straughan and Hutter established continuous dependence of the solution

on the Soret coefficient. Lin and Payne [108] further extended the work of [200].

They investigate the structural stability of the Brinkman equations modeling on the

gravity vector coefficients and Brinkman coefficient. Then in [109] they established

the structural stability of the Brinkman equations on the Soret coefficient when the

boundary conditions are nonhomogeneous Dirichlet type. Continuous dependence

of the solution of the Darcy equations on the Soret coefficient is established by Lin

and Payne in [110]. Harfash in [78], proves that the solution depends continuously

on changes in the magnetic and the gravity vector coefficients for Darcy model. For

details of the Darcy model see e.g. Rionero [172]. Straughan in chapter 2 in his

book [197] introduces a very important review of the studies on structural stability.

In Chapter 3, we consider the convection of a reacting solute in a viscous incom-

pressible fluid occupying a horizontal plane layer subject to a vertical magnetic field,

while in Chapter 4, we study the double-diffusive convection in a reacting fluid in the

presence of a magnetic field. This study continues the investigation of continuous

dependence properties of models which introduced in Chapter 3 and 4 when these

models include porous media. We concentrate on a Brinkman porous medium, cf.

Rionero and Vergori [178].

Convection in a porous medium is a highly active subject of research due to

the immense variety of applications such as bio-remediation, geothermal reservoir

systems, contaminant movement in soil, solid matrix heat exchangers, solar pow-

er converters and oil extraction. These and many other examples are described in

Nield and Bejan [138], and specific references may be found on pages 238, 239 of

Straughan [196]. An example of the novel use of porous medium, drawn from these
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references, is in heat transfer mechanisms through the use of porous foams and heat

pipes, see e.g. Amili and Yortsos [6]. Cimatti [39] studied the flow of an incom-

pressible fluid in a porous medium represented by an open and bounded subset of

R3 with a regular boundary consisting of two disjoint surfaces. A linear and non-

linear stability analyses of the motionless state of thermosolutal second-order fluid

in porous Bénard layer is investigated by Xu and Yang [225] via Lyapunov direct

method on the basis of Brinkman’s modification of the Darcy’s model. Capone et

al [23] studied a linear and nonlinear stability analyses of vertical throughflow in a

fluid layer, where the density is quadratic in temperature.

The first model which is studied in this study is the problem of convection with

a dissolved reacting porous medium layer and a vertically imposed magnetic field

vi = −p, i + υ∆vi + gic+ j×B, (7.1.1)

vi,i = 0, (7.1.2)

c,t + vi c, i = D∆c−K1c, (7.1.3)

vi = 0,
∂c

∂n
= 0, on ∂Ω, (7.1.4)

c(x, 0) = f1(x), in Ω, (7.1.5)

where v is the velocity vector, c is the concentration field, p is pressure field, D is

the diffusion coefficient, gi is the gravity vector, B is the magnetic induction field, j

is the current and K1 is the chemical reaction rate. This system hold on a bounded

spatial domain Ω in R3 with boundary ∂Ω sufficiently smooth to allow applications

of the divergence theorem. Standard indication notation is employed with ∆ denot-

ing the Laplacian. The function f1 is assumed to be smooth function. In general,

the magnetic induction field B has a separate evolution equation for its determina-

tion, cf. Rionero [165–168, 170, 171]. However, in certain situations one can avoid

direct use of this equation and employ a quasi-static magnetohydrodynamics MHD

approximation. This leads to a particular form for the term j × B, and this is ex-

plained in detail at the end of this section.
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The second model which is studied in this study is the problem of double diffusive

convection with a dissolved reacting porous medium layer and a vertically imposed

magnetic field

vi = −p, i + υ∆vi + hiT + gic+ j×B, (7.1.6)

vi,i = 0, (7.1.7)

T,t + vi T, i = K∆T, (7.1.8)

c,t + vi c, i = D∆c−K1c, (7.1.9)

vi = 0,
∂c

∂n
= 0,

∂T

∂n
= 0, on ∂Ω, (7.1.10)

c(x, 0) = f1(x), T (x, 0) = f2(x), in Ω, (7.1.11)

where v is the velocity vector, c is the concentration field, T is the temperature

field, p is pressure field, D is the diffusion coefficient, B is the magnetic induction

field, j is the current, K1 is the chemical reaction rate and K is the thermal dif-

fusivity. This system hold on a bounded spatial domain Ω in R3 with boundary

∂Ω sufficiently smooth to allow applications of the divergence theorem. Again, we

employ the quasi-static magnetohydrodynamics approximation for the term j ×B,

as discussed below. The functions f1 and f2 are assumed to be smooth functions. In

(7.1.6) we have employed a Boussinesq approximation in the sense that the density

is linear in T and c so that the gravity term may be written as

−kig(αT − αcc)

where α and αc are the thermal and salt expansion coefficients respectively, and g is

gravity, cf. Straughan [196] page 102. Then gi = gkiαc and hi = −gkiα are gravity

coefficients, where ki = (0, 0, 1).

Research exploring double-diffusive convection in a fluid-saturated porous layer

has been an active area for many years, making this work considerably relevant to

the wider literature. These phenomena of combined heat and mass transfer appear

in numerous physical problems such as contaminant transport in spreading of pollu-

tants. Comprehensive reviews of the literature concerning double-diffusive natural

convection in a fluid-saturated porous medium can be found in the review article
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by Trevisan and Bejan [217], in the book of Nield and Bejan [138], and in chapter

14 of the book by Straughan [196]. Recent novel contributions include Mahidji-

ba et al. [119] for a vertical porous medium enclosure, Mahidjiba et al. [118] for

mixed boundary conditions, and Guo and Kaloni [71] with the introduction of the

Brinkman effect. In particular there are very interesting recent studies of stability in

double diffusive convection by Rionero [173] and by Capone et al. [29]. Furthermore,

the more technical problem of stability in a triply diffusive convection situation is

anaysed in detail by Rionero [174–176] and by Capone and de luca [28]. The latter

class of problem is one where we may fruitfully apply the techniques of this chapter

to study continuous dependence on the various parameters which arise.

Now, according to the quasi-static MHD approximation of Galdi and Straughan

[61], we have

j×B = σ(v ×B0)×B0,

where σ is the electrical conductivity and B0 = (0, 0, B0) is a magnetic field with

only the vertical component. This obviates the need to employ the full MHD equa-

tions which also involve an equation for the evaluation of the magnetic field, H, cf.

Rionero [165–168, 170, 171] and Rionero and Mulone [177]. Then, equation (7.1.1)

reduces to

vi = −p, i + υ∆vi + gic+ σ[(v ×B0)×B0]i, (7.1.12)

and equation (7.1.6) reduces to

vi = −p, i + υ∆vi + hiT + gic+ σ[(v ×B0)×B0]i. (7.1.13)

Throughout the chapter, ∥.∥ and (, ) denote the norm and inner product on

L2(Ω) and ∥.∥∞ denotes the norm on L∞(Ω). In addition, without loss of generality,

the gravity vectors are assumed constant and the models are scaled so that

|h|, |g| ≤ 1. (7.1.14)

The goal of this chapter is to establish continuous dependence on changes in the

chemical reaction K1 coefficient, and on changes in the coefficient of the magnetic
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term σ. The plan of the chapter is as follows. In Section 7.2 we study the continuous

dependence for the model of convective motion in a porous medium layer with a

dissolved reacting porous medium layer. In Section 7.3 we investigate the continuous

dependence for the model of double diffusive convection with a dissolved reacting

porous medium layer.

The results in this chapter were published in the article Harfash [76].

7.2 Continuous dependence for the first model

In this section we consider a solution to equations (7.1.12) and (7.1.2)-(7.1.5). In

the beginning we shall prove bounds for our solution.

Lemma 7.2.1 If c(x, 0) ∈ L∞(Ω), then

∥c(x, t)∥∞ ≤ c∞, (7.2.15)

where c∞ = ∥c(x, 0)∥∞.

Proof : Multiply (7.1.3) by cp−1 for p > 1 (where we assume the concentration

is scaled to be non-negative, otherwise p is chosen as an even integer). Thus,

d

dt

∫
Ω

cpdx = −p(p− 1)

∫
Ω

cp−2|∇c|2dx−K1p

∫
Ω

cpdx. (7.2.16)

We may integrate this and drop non-positive terms on the right to deduce

{
∫
Ω

cpdx}1/p ≤ {
∫
Ω

cp0dx}1/p. (7.2.17)

Let now p→ ∞ in (7.2.17) to find the desired result. 2

Lemma 7.2.2

∥v∥ ≤ ∥c∥.

Proof : Multiply (7.1.12) by vi, we have

∥v∥2 = −υ∥∇v∥2 + g(w, c)− σB2
0(∥v∥2 − ∥w∥2),

where w and g are the third component of velocity and gravity vectors, respectively.

Next, by using the Cauchy-Schwarz inequality, the Poincarés inequality and then

droping non-positive terms on the right, we deduce the required result. 2
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7.2.1 Continuous dependence on σ

Now, to investigate continuous dependence on σ, we let (vi1, c1, p1) and (vi2, c2, p2) be

solutions to (7.1.12) and (7.1.2)-(7.1.5) for the same boundary-initial-value problems

for different electrical conductivity coefficients σ1 and σ2. Define the difference

variables and constant as

ui = vi1 − vi2, ϕ = c1 − c2, π = p1 − p2, σ = σ1 − σ2, (7.2.18)

and then from (7.1.12) and (7.1.2)-(7.1.5), (ui, ϕ, π) is found to satisfy the partial

differential equations

ui = −π, i + υ∆ui + giϕ+ σb20[(v1 × k)× k]i + σ2b
2
0[(u× k)× k]i, (7.2.19)

ui,i = 0, (7.2.20)

ϕ,t + v1i ϕ, i + ui c2,i = D∆ϕ−K1ϕ, (7.2.21)

where k = (0, 0, 1). The boundary and initial conditions are as follows

ui = 0,
∂ϕ

∂n
= 0, on ∂Ω, (7.2.22)

ϕ(x , 0) = 0, in Ω. (7.2.23)

The proof of continuous dependence commences by multiplying (7.2.19) by ui

and integrating over Ω to find also with the aid of (7.2.15), Lemma 7.2.2 and the

Cauchy-Schwarz inequality,

∥u∥2 ≤ ∥ϕ∥∥u∥+ 2σb20c1∞∥u∥, (7.2.24)

where c 1∞ = ∥c1(x, 0)∥∞. We next use arithmetic-geometric mean inequality on the

first and the second term on the right of (7.2.24) to find

∥u∥2 ≤ 2∥ϕ∥2 + 8σ2b40c
2
1∞. (7.2.25)

Next, multiply (7.2.21) by ϕ and integrate over Ω to obtain

1

2

d

dt
∥ϕ∥2 = (uic2, ϕ,i)−D∥∇ϕ∥2 −K1∥ϕ∥2. (7.2.26)
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Using the Cauchy-Schwarz inequality, arithmetic-geometric mean inequality and

(7.2.15) we have
d

dt
∥ϕ∥2 ≤ c 22∞

2D
∥u∥2, (7.2.27)

where c 2∞ = ∥c2(x, 0)∥∞. Substituting (7.2.25) in (7.2.27)

d

dt
∥ϕ∥2 ≤ c 22∞

D
[∥ϕ∥2 + 4σ2b40c

2
1∞]. (7.2.28)

After integration (7.2.28), we arrive at the continuous dependence inequality

∥ϕ∥2 ≤ 4σ2b40c
2
1∞[exp(c22∞t/D)− 1]. (7.2.29)

If we use inequality (7.2.25), we find

∥u∥2 ≤ 8σ2b40c
2
1∞ exp(c22∞t/D).

7.2.2 Continuous dependence on K1

We commence with a study of continuous dependence on the coefficient K1. There-

fore, let (vi1, c1, p1) and (vi2, c2, p2) be solutions to equations (7.1.12) and (7.1.2)-

(7.1.5) for the same boundary conditions (7.1.4) and the same initial data function

c(x, 0) in (7.1.5) , but for different chemical reaction coefficient K11 and K12. Define

the difference variables ui, ϕ and π and constant K1 by

ui = vi1 − vi2, ϕ = c1 − c2, π = p1 − p2, K1 = K11 −K12, (7.2.30)

and then we find that (ui, ϕ, π) satisfy the boundary-initial value problem

ui = −π, i + υ∆ui + giϕ+ σb20[(u× k)× k]i, (7.2.31)

ui,i = 0, (7.2.32)

ϕ,t + v1i ϕ, i + ui c2,i = D∆c−K11ϕ−K1c2. (7.2.33)

in Ω× (0,∞), and

ui = 0,
∂ϕ

∂n
= 0, on ∂Ω, (7.2.34)

ϕ(x , 0) = 0, in Ω. (7.2.35)
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To establish continuous dependence on K1, we then multiply (7.2.31) by ui and

integrate over Ω to find, with the aid of the Cauchy-Schwarz inequality and after

dropping a non-positive term on the right, that we may establish

∥u∥ ≤ ∥ϕ∥. (7.2.36)

Next, multiply (7.2.33) by ϕ and integrate over Ω to obtain

1

2

d

dt
∥ϕ∥2 = (uic2, ϕ,i)−D∥∇ϕ∥2 −K11∥ϕ∥2 −K1(ϕ, c2). (7.2.37)

We then use (7.2.15), the CauchySchwarz and arithmetic-geometric mean inequali-

ties, and then drop a non-positive term on the right to see that

d

dt
∥ϕ∥2 ≤ c 22∞

2D
∥u∥2 + 2K1c 2∞∥ϕ∥2. (7.2.38)

Substituting (7.2.36) in (7.2.38) and then using the arithmetic-geometric mean in-

equality to obtain
d

dt
∥ϕ∥2 ≤ c 22∞

D
∥ϕ∥2 + 2DK2

1 . (7.2.39)

Upon integration of (7.2.39), we arrive at the continuous dependence inequality

∥ϕ∥2 ≤ 2
D2K2

1

c22∞
[exp(c22∞t/D)− 1], (7.2.40)

Due to (7.2.36), clearly ∥u∥2 satisfies the same bound (7.2.40) as ∥ϕ∥2.

7.3 Continuous dependence for the second model

In this section we consider a solution to equations (7.1.13) and (7.1.7)-(7.1.11).

Firstly, we need to get some bounds for our solution.

Lemma 7.3.1 If T (x, 0) ∈ L∞(Ω), then

∥T (x, t)∥∞ ≤ T∞, (7.3.41)

where T∞ = ∥T (x, 0)∥∞.

Proof : The proof of this lemma can be achieved by using the same argument

which is used in the proof of lemma 7.2.1. 2
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Lemma 7.3.2

∥v∥ ≤ ∥c∥+ ∥T∥.

Proof : The proof of this lemma is very similar to the proof of Lemma 7.2.2,

and follows directly after multiplying (7.1.13) by vi and use the Cauchy-Schwarz

inequality. 2

7.3.1 Continuous dependence on σ

To study continuous dependence on the coefficient σ in equations (7.1.13) and

(7.1.7)-(7.1.11), we let (vi1, T1, c1, p1) and (vi2, T2, c2, p2) be solutions to these equa-

tions for the same boundary and initial data, but for different electrical conductivity

of the fluid σ1 and σ2. Define the difference variables and constant as

ui = vi1−vi2, θ = T1−T2, ϕ = c1−c2, π = p1−p2, σ = σ1−σ2, (7.3.42)

and then from (7.1.13) and (7.1.7)-(7.1.11), (ui, θ, ϕ, π) is found to satisfy the partial

differential equations

ui = −π, i + υ∆ui + hiθ + giϕ+ σb20[(v1 × k)× k]i + σ2b
2
0[(u× k)× k]i, (7.3.43)

ui,i = 0, (7.3.44)

θ,t + v1i θ, i + ui T2,i = K∆θ. (7.3.45)

ϕ,t + v1i ϕ, i + ui c2,i = D∆ϕ−K1ϕ, (7.3.46)

and the boundary and initial conditions

ui = 0,
∂θ

∂n
= 0,

∂ϕ

∂n
= 0, on ∂Ω, (7.3.47)

θ(x , 0) = 0, ϕ(x , 0) = 0, in Ω. (7.3.48)

From multiplication of (7.3.43) by ui, integration over Ω and use (7.2.15), (7.3.41),

Lemma 7.3.2 and the Cauchy-Schwarz inequality, one finds

∥u∥2 ≤ ∥θ∥∥u∥+ ∥ϕ∥∥u∥+ 2σb20∥v1∥∥u∥

Therefore, we arrive at

∥u∥2 ≤ 4∥θ∥2 + 4∥ϕ∥2 + 16σ2b40(∥c1∥+ ∥T1∥)2
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≤ 4∥θ∥2 + 4∥ϕ∥2 + 32σ2b40(∥c1∥2 + ∥T1∥2)

≤ 4∥θ∥2 + 4∥ϕ∥2 + 32|Ω|σ2b40(c
2
1∞ + T 2

1∞), (7.3.49)

where T 1∞ = ∥T1(x, 0)∥∞. Next, multiply (7.3.45) by θ and (7.3.46) by ϕ and

integrate over Ω, using (7.2.15), (7.3.41) and arithmetic-geometric mean inequality

to obtain
d

dt
∥θ∥2 ≤ T 2

2∞
2K

∥u∥2, (7.3.50)

d

dt
∥ϕ∥2 ≤ c22∞

2D
∥u∥2, (7.3.51)

where T 2∞ = ∥T2(x, 0)∥∞.

Let b1 = (T 2
2∞/K) + (c22∞/D) and b2 = 16|Ω|σ2b40(c

2
1∞ + T 2

1∞). We add (7.3.50) and

(7.3.51) and then substitute (7.3.49) to find

d

dt
(∥θ∥2 + ∥ϕ∥2) ≤ b1[2(∥θ∥2 + ∥ϕ∥2) + b2]. (7.3.52)

This expression is easily integrated to yield

∥θ∥2 ≤ b2
2
[exp(2b1t/D)− 1]. (7.3.53)

∥ϕ∥2 ≤ b2
2
[exp(2b1t/D)− 1]. (7.3.54)

From (7.3.49), (7.3.53) and (7.3.54), one may establishes the continuous dependence

of ui on σ.

7.3.2 Continuous dependence on K1

To study continuous dependence of the solution to (7.1.13) and (7.1.7)-(7.1.11) upon

changes in K1 we let (vi1, T1, c1, p1) and (vi2, T2, c2, p2) be solutions to equations

(7.1.13) and (7.1.7)-(7.1.11) for the boundary conditions (7.1.10) and the same initial

data function c(x, 0) and T (x, 0) in (7.1.11), but for chemical reaction coefficientK11

and K12. Define the difference variables ui, ϕ and π and constant K1 by

ui = vi1 − vi2, θ = T1 − T2, ϕ = c1 − c2, π = p1 − p2, K1 = K11 −K12.

(7.3.55)

The difference of the two solutions (ui, θ, ϕ, π) then satisfies

ui = −π, i + υ∆ui + giϕ+ σb20[(u× k)× k]i, (7.3.56)
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ui,i = 0, (7.3.57)

θ,t + v1i θ, i + ui T2,i = K∆θ. (7.3.58)

c,t + v1i ϕ, i + ui c2,i = D∆c−K11ϕ−K1c2, (7.3.59)

in Ω× (0,∞), with the boundary and initial conditions

ui = 0,
∂θ

∂n
= 0,

∂ϕ

∂n
= 0, on ∂Ω, (7.3.60)

θ(x , 0) = 0, ϕ(x , 0) = 0, in Ω. (7.3.61)

Multiplying (7.3.53) by ui and integrating over Ω to find after discarding the non-

positive term on the right also with the aid of the Cauchy-Schwarz and arithmetic-

geometric inequalities,

∥u∥2 ≤ 2(∥θ∥2 + ∥ϕ∥2). (7.3.62)

Next, multiply (7.3.58) by θ and (7.3.59) by ϕ and integrate over Ω, respectively,

and then use (7.2.15), (7.3.41) and arithmetic-geometric mean inequality to obtain

d

dt
∥θ∥2 ≤ T 2

2∞
2K

∥u∥2. (7.3.63)

d

dt
∥ϕ∥2 ≤ c22∞

2D
∥u∥2 + c 22∞

2D
∥ϕ∥2 + 2DK2

1 . (7.3.64)

Let b1 has the same value in last section and b3 = (T 2
2∞/K)+ (3c22∞/2D). Summing

(7.3.63) and (7.3.64) and then using (7.3.62), we get

d

dt
(∥θ∥2 + ∥ϕ∥2) ≤ b3(∥θ∥2 + ∥ϕ∥2) + 2DK2

1 . (7.3.65)

Upon integration of (7.3.65), we arrive at the continuous dependence on K1 inequal-

ity

∥θ∥2 ≤ 2DK2
1

b3
[exp(b3t)− 1]. (7.3.66)

∥ϕ∥2 ≤ 2DK2
1

b3
[exp(b3t)− 1]. (7.3.67)

A similar continuous dependence estimate for ui may then be established with the

help of (7.3.62).
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Chapter 8

Structural stability for two

convection models in a reacting

fluid with magnetic field effect

8.1 Introduction

There has been much recent interest in obtaining stability estimates for solutions to

physical problems in partial differential equations where changes in coefficients are

allowed, or even the equations themselves change. This type of stability, which is

often called structural stability to distinguish it from continuous dependence on the

initial data, is studied for example in Ames and Payne [1–4], Franchi and Straugh-

an [54–57], Lin and Payne [106–110], Payne and Song [144–146], and Payne and S-

traughan [147–151], Payne et al. [143], Straughan and Hutter [200], Harfash [76,78],

and also occupies attention in the books of Bellomo and Preziosi [19], Ames and

Straughan [5] and Straughan [197]. Such stability estimates are fundamental to

analysing whether a small change in a coefficient or other data leads to a drastic

change in the solution. A concrete example of structural stability, and in partic-

ular continuous dependence on modelling, is provided in the paper by Payne and

Straughan [147], where it is shown how a solution to the Stokes equation for slow

viscous flow approximates that to the Navier-Stokes equations. Thus, questions of

continuous dependence on the model itself are fundamental and in many ways are

153



8.1. Introduction 154

as important as a study of stability itself.

This chapter continues the investigation of continuous dependence properties of

models which are introduced in Chapter 3 and 4. The first model which is studied

in this study is the problem of convection with a dissolved reacting fluid layer and

a vertically imposed magnetic field

vi,t + vjvi,j = −p, i + υ∆vi + gic+ j×B, (8.1.1)

vi,i = 0, (8.1.2)

c,t + vi c, i = D∆c−K1c, (8.1.3)

vi = 0,
∂c

∂n
= 0, on ∂Ω, (8.1.4)

vi(x, 0) = ψi(x), c(x, 0) = f1(x), in Ω, (8.1.5)

where v is the velocity vector, c is the concentration field, p is pressure field, D is

the diffusion coefficient, gi is the gravity vector, B is the magnetic induction field, j

is the current and K1 is the chemical reaction rate. This system hold on a bounded

spatial domain Ω in R3 with boundary ∂Ω sufficiently smooth to allow applications

of the divergence theorem. Standard indication notation is employed with ∆ denot-

ing the Laplacian. The functions ψi and f1 are assumed to be smooth functions.

The second model which is studied in this study is the problem of double diffusive

convection with a dissolved reacting fluid layer and a vertically imposed magnetic

field,

vi,t + vjvi,j = −p, i + υ∆vi + hiT + gic+ j×B, (8.1.6)

vi,i = 0, (8.1.7)

T,t + vi T, i = K∆T, (8.1.8)

c,t + vi c, i = D∆c−K1c, (8.1.9)

vi = 0,
∂c

∂n
= 0,

∂T

∂n
= 0, on ∂Ω, (8.1.10)

vi(x, 0) = ψi(x), c(x, 0) = f1(x), T (x, 0) = f2(x), in Ω,

(8.1.11)
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where v is the velocity vector, c is the concentration field, T is the temperature

field, p is pressure field, D is the diffusion coefficient, B is the magnetic induction

field, j is the current, K1 is the chemical reaction rate and K is the thermal diffu-

sivity. This system hold on a bounded spatial domain Ω in R3 with boundary ∂Ω

sufficiently smooth to allow applications of the divergence theorem. The functions

ψi, f1 and f2 are assumed to be smooth functions.

Now, according to the quasi-static MHD approximation of Galdi and Straughan

[61], we have

j×B = σ(v ×B0)×B0,

where σ is the electrical conductivity and B0 = (0, 0, B0) is a magnetic field with

only the vertical component.

In Both models, we establish that the solution depends continuously on change

in the chemical reaction and magnetic coefficients. The plan of this chapter is as

follows. In Section 8.2 we study the continuous dependence for the model of convec-

tive motion with a dissolved reacting fluid layer. In Section 8.3 we investigate the

continuous dependence for the model of double diffusive convection with a dissolved

reacting fluid layer.

The results in this chapter were published in the article Harfash [77].

8.2 Continuous dependence for the first model

Lemma 8.2.1 If c(x, 0) and T (x, 0) ∈ L∞(Ω), then

∥c(x, t)∥∞ ≤ c∞, (8.2.12)

∥T (x, t)∥∞ ≤ T∞, (8.2.13)

where c∞ = ∥c(x, 0)∥∞, T∞ = ∥T (x, 0)∥∞.

Proof : Multiply (8.1.3) by cp−1 for p > 1 (where we assume the concentration

is scaled to be non-negative, otherwise p is chosen as an even integer). Thus,

d

dt

∫
Ω

cpdx = −p(p− 1)

∫
Ω

cp−2|∇c|2dx−K1p

∫
Ω

cpdx. (8.2.14)
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We may integrate this and drop non-positive terms on the right to deduce

{
∫
Ω

cpdx}1/p ≤ {
∫
Ω

cp0dx}1/p. (8.2.15)

Let now p→ ∞ in (8.2.15) to find the desired result. Similar argument can be used

to prove (8.2.13). 2

Lemma 8.2.2 If c(x, 0) ∈ L2(Ω), then

∥c(x, t)∥2 ≤ cl, (8.2.16)

where cl = ∥c(x, 0)∥2.

Proof : Multiply (8.1.3) by c and integrating over Ω. we have

d

dt
∥c∥2 = −2D∥∇c∥2 − 2K1∥c∥2.

We may integrate this and drop non-positive terms on the right to deduce

∥c(x, t)∥2 ≤ ∥c(x, 0)∥2.

2

Lemma 8.2.3 If vi(x, 0) ∈ L2(Ω), then

∥v(x, t)∥2 ≤ vl, (8.2.17)

where vl = (cl + ∥v(x, 0)∥2)eT .

Proof : Multiply (8.1.1) by vi and integrating over Ω. By using the Cauchy-

Schwarz inequality, arithmetic-geometric mean inequality and and drop a non-

positive term on the right, we have

1

2

d

dt
∥v∥2 ≤

∫
Ω

givic dx ≤ ∥v∥∥c∥ ≤ 1

2
∥v∥2 + cl

2
.

We may integrate this, we get

∥v∥2 ≤ cl(e
t − 1) + et∥v(x, 0)∥2

≤ (cl + ∥v(x, 0)∥2)et ≤ (cl + ∥v(x, 0)∥2)eT .

2
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Lemma 8.2.4 If vi(x, 0) ∈ L2(Ω) and c(x, 0) ∈ L2(Ω), then

∫
Ω

vi,jvi,j dx ≤ 1

υ
[v

1/2
l (

∫
Ω

vi,tvi,t dx)
1/2 + (vlcl)

1/2]. (8.2.18)

Proof : Multiply (8.1.1) by vi and integrating over Ω and drop a non-positive

term on the right, we have∫
Ω

vi,tvi dx ≤ −υ
∫
Ω

vi,jvi,j dx+

∫
Ω

givic dx.

Hence, employing (8.2.16) and (8.2.17) in the above inquality, we find, with use of

the Cauchy-Schwarz inequality,∫
Ω

vi,jvi,j dx ≤ 1

υ
[−

∫
Ω

vi,tvi dx+

∫
Ω

givic dx]

≤ 1

υ
[(

∫
Ω

vi,tvi,t dx)
1/2(

∫
Ω

vivi dx)
1/2 + (

∫
Ω

vivi dx)
1/2(

∫
Ω

c2 dx)1/2]

≤ 1

υ
[v

1/2
l (

∫
Ω

vi,tvi,t dx)
1/2 + (vlcl)

1/2].

2

We now derive an a priori bound for vi,t. Here we have two different values for

the bound of vi,t. This is because we split the proof into two parts depending on

the availability of the Sobolev inequalities. For the two dimensions case, we have

the following inequality [196]:∫
Ω

v4 dx ≤ (

∫
Ω

v2 dx)(

∫
Ω

v,i v,i dx), (8.2.19)

while in three dimensions, we cannot use the above inequality, thus we will use the

following inequality [196]:∫
Ω

v4 dx ≤ β(

∫
Ω

v2 dx)1/2(

∫
Ω

v,i v,i dx)
3/2, (8.2.20)

Lemma 8.2.5 For two dimensions, if vi,t(x, 0) ∈ L2(Ω) and c,t(x, 0) ∈ L2(Ω), then∫
Ω

vi,tvi,t dx ≤ vtl(t), (8.2.21)

where

vtl(t) = (
R2

√
Φ(0)

R1

√
Φ(0)(e−R2t − 1) +R2e−R2t

)2,
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Φ = Φv+Φc, Φv =

∫
Ω

vi,tvi,t dx Φc =

∫
Ω

c,tc,t dx, R1 =
v
1/2
l

2υ2
, R2 =

v
1/2
l c

1/2
l

2υ2
+
c 2∞
2D

+1

.

Proof :

Φc,t = 2

∫
Ω

c,tc,tt dx = 2

∫
Ω

c,t[−vi c, i +D∆c−K1c],t dx

= 2D

∫
Ω

c,t∆c,t dx− 2K1

∫
Ω

c,tc,t dx− 2

∫
Ω

c,tvi,tc,i dx− 2

∫
Ω

c,tvic,it dx

≤ −2D

∫
Ω

c,itc,it dx+ 2

∫
Ω

c,itvi,tc dx = −2D

∫
Ω

c,itc,it dx+ 2c∞

∫
Ω

c,itvi,t dx

≤ −2D

∫
Ω

c,itc,it dx+ 2c∞(

∫
Ω

c,itc,it dx)
1/2(

∫
Ω

vi,tvi,t dx)
1/2

≤ −2D

∫
Ω

c,itc,it dx+ 2D

∫
Ω

c,itc,it dx+
c2∞
2D

∫
Ω

vi,tvi,t dx.

Thus we have,
d

dt
Φc ≤

c2∞
2D

Φv. (8.2.22)

Next, we will perform the same work for Φv,t,

Φv,t = 2

∫
Ω

vi,tvi,tt dx = 2

∫
Ω

vi,t[−vjvi,j − p, i + υ∆vi + gic+ σb20(kiw − vi)],t dx

= −2υ

∫
Ω

vi,jtvi,jt dx−2

∫
Ω

vi,tvj,tvi,j dx+2

∫
Ω

givi,tct dx+2σb20

∫
Ω

(kiw,tvi,t−vi,tvi,t) dx

≤ −2υ

∫
Ω

vi,jtvi,jt dx− 2

∫
Ω

vi,tvj,tvi,j dx+ 2

∫
Ω

givi,tct dx

≤ −2υ

∫
Ω

vi,jtvi,jt dx+ 2(

∫
Ω

vi,j vi,j dx)
1/2(

∫
Ω

(vi,tvi,t)
2 dx)1/2 + Φv + Φc.

where k = (0, 0, 1).

Now, the arithmetic-geometric mean inequality is used on the right-hand side to-

gether with the Sobolev inequality (8.2.19) and (8.2.18) to find

Φv,t ≤ −2υ

∫
Ω

vi,jtvi,jt dx+2(

∫
Ω

vi,j vi,j dx)
1/2(

∫
Ω

vi,tvi,t dx)
1/2(

∫
Ω

vi,jtvi,jt dx)
1/2+Φv+Φc

≤ 1

2υ
Φv

∫
Ω

vi,jvi,j dx+ Φv + Φc ≤
1

2υ2
Φv[v

1/2
l Φ1/2

v + (vlcl)
1/2] + Φv + Φc . (8.2.23)

Now, summing (8.2.22) and (8.2.23), we have

d

dt
(Φv + Φc) ≤ R1Φ

3/2
v +R2Φv + Φc
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≤ R1Φv(Φv+Φc)
1/2+R2(Φv+Φc) ≤ R1Φv(Φv+Φc)

1/2+R1Φc(Φv+Φc)
1/2+R2(Φv+Φc)

d

dt
(Φv + Φc) ≤ R1(Φv + Φc)

3/2 +R2(Φv + Φc) . (8.2.24)

Integrating (8.2.24), we find the desired result (8.2.21) for the two dimensions case.

2

Lemma 8.2.6 For three dimensions, if vi,t(x, 0) ∈ L2(Ω) and c,t(x, 0) ∈ L2(Ω),

then ∫
Ω

vi,tvi,t dx ≤ vtl(t), (8.2.25)

where

vtl(t) =
R4Φ(0)

R3Φ(0)(e−R4t − 1) +R4e−R4t

Φ = Φv + Φc, R3 =
27vlβ

4

64υ5
, R4 =

27vlclβ
4

64υ5
+
c 2∞
2D

+ 1.

It is clear that for three dimensions the bound (8.2.25) valid just for t < 1
R4

ln(1 +

R4

R3Φ(0)
), thus we have conditional continuous dependence in this case.

Proof : Using similar technique which is used for two dimensions case we have

d

dt
Φc ≤

c2∞
2D

Φv, (8.2.26)

and

Φv,t ≤ −2υ

∫
Ω

vi,jtvi,jt dx+ 2(

∫
Ω

vi,j vi,j dx)
1/2(

∫
Ω

(vi,tvi,t)
2 dx)1/2 + Φv + Φc.

Next, using the Sobolev inequalities (8.2.20), Young’s inequality and (8.2.18) we

derive

Φv,t ≤ −2υ

∫
Ω

vi,jtvi,jt dx+2β(

∫
Ω

vi,j vi,j dx)
1/2(

∫
Ω

vi,tvi,t dx)
1/4(

∫
Ω

vi,jtvi,jt dx)
3/4+Φv+Φc

≤ 27β4

128υ3
Φv(

∫
Ω

vi,jvi,j dx)
2 + Φv + Φc

≤ 27β4

128υ5
Φv[v

1/2
l Φ1/2

v + (vlcl)
1/2]2 + Φv + Φc

≤ 27β4

64υ5
Φv[vlΦv + vlcl] + Φv + Φc . (8.2.27)
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Now, summing (8.2.26) and (8.2.27), we have

d

dt
(Φv + Φc) ≤ R3Φ

2
v +R4Φv + Φc

≤ R3(Φ
2
v + 2ΦvΦc + Φ2

v) +R4(Φv + Φc).

Thus, we deduce

d

dt
(Φv + Φc) ≤ R3(Φv + Φc)

2 +R4(Φv + Φc) . (8.2.28)

Upon integration of (8.2.28), we find the desired result (8.2.25) for the three dimen-

sions case.

2

8.2.1 Continuous dependence on σ

This section is devoted to establishing continuous dependence of the solution on σ.

Let (vi1, c1, p1) and (vi2, c2, p2) be two solutions of (8.1.1)-(8.1.3) with the same data

(8.1.4), (8.1.5), but with different electrical conductivity of the fluid σ1 and σ2. Now

set

ui = vi1 − vi2, ϕ = c1 − c2, π = p1 − p2, σ = σ1 − σ2. (8.2.29)

The difference of the two solutions (ui, ϕ, π) then satisfies

ui,t+v1jui,j+ujv2i,j = −π, i+υ∆ui+giϕ+σb20[(v1×k)×k]i+σ2b20[(u×k)×k]i, (8.2.30)

ui,i = 0, (8.2.31)

ϕ,t + v1i ϕ, i + ui c2,i = D∆ϕ−K1ϕ, (8.2.32)

with the boundary and initial conditions

ui = 0,
∂ϕ

∂n
= 0, on ∂Ω, (8.2.33)

θ(x , 0) = 0, ui(x , 0) = 0, in Ω. (8.2.34)

The proof of continuous dependence commences by multiplying (8.2.30) by ui and

integrating over Ω to find,

d

dt
∥u∥2 = 2

∫
Ω

uiui,t dx
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= 2

∫
Ω

ui[−v1jui,j − ujv2i,j − π, i + υ∆ui + giϕ+ σb20(kiw1 − v1i) + σ2b
2
0(kiw− ui)] dx

≤ −2υ

∫
Ω

ui,jui,j dx− 2

∫
Ω

uiujv2i,j dx+ 2

∫
Ω

giuiϕ dx+ 2σb20

∫
Ω

(kiw1ui − v1iui) dx

≤ −2υ

∫
Ω

ui,jui,j dx+2(

∫
Ω

v2i,jv2i,j dx)
1/2(

∫
Ω

(uiui)
2 dx)1/2+2(

∫
Ω

uiui dx)
1/2(

∫
Ω

ϕϕ dx)1/2

+4σb20v
1/2
l1 (

∫
Ω

uiui dx)
1/2,

where vl1 = (cl1+ ∥v1(x, 0)∥2)eT , cl1 = ∥c1(x, 0)∥2 and w,w1 is the third component

of the velocities ui, vi1, respectively . By using the Sobolev inequality (8.2.20),

arithmetic-geometric mean inequality and (8.2.18) we obtain

d

dt
∥u∥2 ≤ −2υ

∫
Ω

ui,jui,j dx+ 2β(

∫
Ω

v2i,jv2i,j dx)
1/2(

∫
Ω

uiui dx)
1/4(

∫
Ω

ui,jui,j dx)
3/4

+

∫
Ω

uiui dx+

∫
Ω

ϕϕ dx+ σ2b40vl1 +

∫
Ω

uiui dx

≤ 27β4

128υ3
∥u∥2(

∫
Ω

v2i,jv2i,j dx)
2 + 2∥u∥2 + ∥ϕ∥2 + σ2b40vl1

≤ 27β4

128υ5
∥u∥2[v1/2l2 vlt2(t)

1/2 + (vl2cl2)
1/2]2 + 2∥u∥2 + ∥ϕ∥2 + σ2b40vl1

≤ 27β4

64υ5
∥u∥2[vl2vlt2(t) + vl2cl2] + 2∥u∥2 + ∥ϕ∥2 + σ2b40vl1, (8.2.35)

where vl2 = (cl2 + ∥v2(x, 0)∥2)eT , cl2 = ∥c2(x, 0)∥2, the value vtl1(t) is equal to the

value of vtl(t) which is defined in Lemma 8.2.5 and 8.2.6 at the solution (vi2, c2, p2).

Next, multiply (8.2.32) by ϕ and integrate over Ω and using the Cauchy-Schwarz

inequality, arithmetic-geometric mean inequality and (8.2.12) we have

d

dt
∥ϕ∥2 ≤ c 22∞

2D
∥u∥2. (8.2.36)

Let R5(t) = 27β4

64υ5 [vl2vlt2(t) + vl2cl2] +
c 2
2∞
2D

+ 2, and R6(t) =
∫
R5(t)dt. Summing

(8.2.35) and (8.2.35), we get

d

dt
(∥u∥2 + ∥ϕ∥2) ≤ R5(t)(∥u∥2 + ∥ϕ∥2) + σ2b40vl1. (8.2.37)

Integrating (8.2.37) we obtain the continuous dependence inequality on σ

∥u∥2 + ∥ϕ∥2 ≤ σ2b40vl1

∫ t

0

eR6(t)−R6(s)ds. (8.2.38)
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8.2.2 Continuous dependence on K1

In this section we demonstrate briefly how to establish a continuous dependence

result for the chemical reaction rate K1 in (8.1.1)-(8.1.3). Let (vi1, c1, p1) and

(vi2, c2, p2) be two solutions of problem (8.1.1)-(8.1.3) for different chemical reac-

tion coefficients K11 and K12, respectively. Then, as previously, (ui, ϕ, π) will solve

the problem

ui,t + v1jui,j + ujv2i,j = −π, i + υ∆ui + giϕ+ σb20[(u× k)× k]i, (8.2.39)

ui,i = 0, (8.2.40)

ϕ,t + v1i ϕ, i + ui c2,i = D∆c−K11ϕ−K1c2, (8.2.41)

subject to conditions

ui = 0,
∂ϕ

∂n
= 0, on ∂Ω, (8.2.42)

θ(x , 0) = 0, ui(x , 0) = 0, in Ω. (8.2.43)

Multiplying by ui and integrating by parts over Ω, we find

d

dt
∥u∥2 = 2

∫
Ω

uiui,t dx

= 2

∫
Ω

ui[−v1jui,j − ujv2i,j − π, i + υ∆ui + giϕ+ σb20(kiw − ui)] dx

= −2υ

∫
Ω

ui,jui,j dx− 2

∫
Ω

uiujv2i,j dx+ 2

∫
Ω

giuiϕ dx+ 2σb20

∫
Ω

(kiw.ui − uiui) dx

≤ −2υ

∫
Ω

ui,jui,j dx+2(

∫
Ω

v2i,jv2i,j dx)
1/2(

∫
Ω

(uiui)
2 dx)1/2+2(

∫
Ω

uiui dx)
1/2(

∫
Ω

ϕ2 dx)1/2.

By using the Sobolev inequality (8.2.20), Young’s inequality and (8.2.18) we get

d

dt
∥u∥2 ≤ −2υ

∫
Ω

ui,jui,j dx+ 2β(

∫
Ω

v2i,jv2i,j dx)
1/2(

∫
Ω

uiui dx)
1/4(

∫
Ω

ui,jui,j dx)
3/4

+

∫
Ω

uiui dx+

∫
Ω

ϕ2 dx

≤ 27β4

128υ3
∥u∥2(

∫
Ω

v2i,jv2i,j dx)
2 + ∥u∥2 + ∥ϕ∥2

≤ 27β4

128υ5
∥u∥2[v1/2l2 vlt2(t)

1/2 + (vl2cl2)
1/2]2 + ∥u∥2 + ∥ϕ∥2
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≤ 27β4

64υ5
∥u∥2[vl2vlt2(t) + vl2cl2] + ∥u∥2 + ∥ϕ∥2. (8.2.44)

Next, multiply (8.2.41) by ϕ and integrate over Ω to obtain

1

2

d

dt
∥ϕ∥2 = (uic2, ϕ,i)−D∥∇ϕ∥2 −K11∥ϕ∥2 −K1(ϕ, c2). (8.2.45)

Next, the CauchySchwarz and arithmetic-geometric mean inequalities are employed

and then drop a non-positive term on the right to see that

d

dt
∥ϕ∥2 ≤ c 22∞

2D
∥u∥2 + c 22∞

2D
∥ϕ∥2 + 2DK2

1 . (8.2.46)

Let R7(t) = (27β4/64υ5)[vl2vlt2(t) + vl2cl2] + (c 22∞/2D) + 1, and R8(t) =
∫
R7(t)dt.

Summing (8.2.44) and (8.2.46), we get

d

dt
(∥u∥2 + ∥ϕ∥2) ≤ R7(t)(∥u∥2 + ∥ϕ∥2) + 2DK2

1 . (8.2.47)

An integration yields

∥u∥2 + ∥ϕ∥2 ≤ 2DK2
1

∫ t

0

eR8(t)−R8(s)dt, (8.2.48)

which is the desired continuous dependence result, thus the continuous dependence

for ui and ϕ follows from (8.2.48).

8.3 Continuous dependence for the second model

Lemma 8.3.1 If T (x, 0) ∈ L2(Ω), then

∥T (x, t)∥2 ≤ Tl, (8.3.49)

where Tl = ∥T (x, 0)∥2.

Proof : The proof of this lemma follow directly using the same argument in

lemma 8.2.2. 2

Lemma 8.3.2 If vi(x, 0) ∈ L2(Ω), then

∥v(x, t)∥2 ≤ vl, (8.3.50)

where vl = (2cl + 2Tl + ∥v(x, 0)∥2)eT .
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Proof : The first step involves multiplying (8.1.6) by vi and integrating over Ω.

By using the Cauchy-Schwarz inequality, arithmetic-geometric mean inequality and

and drop a non-positive term on the right, we have

1

2

d

dt
∥v∥2 =

∫
Ω

givic dx+

∫
Ω

hiviT dx ≤ ∥v∥∥c∥+ ∥v∥∥T∥

≤ 1

2
∥v∥2 + cl + Tl.

We may integrate this, we get

∥v∥2 ≤ (2cl + 2Tl)(e
t − 1) + et∥v(x, 0)∥2

≤ (2cl + 2Tl + ∥v(x, 0)∥2)et ≤ (2cl + 2Tl + ∥v(x, 0)∥2)eT .

2

Lemma 8.3.3 If vi(x, 0) ∈ L2(Ω) and c(x, 0) ∈ L2(Ω), then

∫
Ω

vi,jvi,j dx ≤ 1

υ
[v

1/2
l (

∫
Ω

vi,tvi,t dx)
1/2 + (vlcl)

1/2 + (vlTl)
1/2]. (8.3.51)

Proof : Multiply (8.1.6) by vi and integrating over Ω and drop a non-positive

term on the right, we have∫
Ω

vi,tvi dx ≤ −υ
∫
Ω

vi,jvi,j dx+

∫
Ω

givic dx+

∫
Ω

hiviT dx.

Hence, use (8.2.16), (8.3.49), (8.3.50) in this inquality together with the Cauchy-

Schwarz inequality to arrive at∫
Ω

vi,jvi,j dx ≤ 1

υ
[−

∫
Ω

vi,tvi dx+

∫
Ω

givic dx+

∫
Ω

hiviT dx]

≤ 1

υ
[(

∫
Ω

vi,tvi,t dx)
1/2(

∫
Ω

vivi dx)
1/2 + (

∫
Ω

vivi dx)
1/2(

∫
Ω

c2 dx)1/2

+(

∫
Ω

vivi dx)
1/2(

∫
Ω

T 2 dx)1/2]

≤ 1

υ
[v

1/2
l (

∫
Ω

vi,tvi,t dx)
1/2 + (vlcl)

1/2 + (vlTl)
1/2].

2
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Lemma 8.3.4 For two dimensions, if vi,t(x, 0) ∈ L2(Ω) and c,t(x, 0) ∈ L2(Ω), then∫
Ω

vi,tvi,t dx ≤ vtl(t), (8.3.52)

where

vtl(t) = (
I2
√

Φ(0)

I1
√
Φ(0)(e−I2t − 1) + I2e−I2t

)2

Φ = Φv + Φc + ΦT , Φv =

∫
Ω

vi,tvi,t dx, ΦT =

∫
Ω

T,tT,t dx, Φc =

∫
Ω

c,tc,t dx,

I1 =
v
1/2
l

2υ2
, I2 =

(vlcl)
1/2 + (vlTl)

1/2

2υ2
+
T 2

∞
2K

+
c 2∞
2D

+ 2.

Proof : Firstly, observe that

Φc,t = 2

∫
Ω

c,tc,tt dx = 2

∫
Ω

c,t[−vi c, i +D∆c−K1c],t dx

= 2D

∫
Ω

c,t∆c,t dx− 2K1

∫
Ω

c,tc,t dx− 2

∫
Ω

c,tvi,tc,i dx− 2

∫
Ω

c,tvic,it dx

≤ −2D

∫
Ω

c,itc,it dx+ 2

∫
Ω

c,itvi,tc dx = −2D

∫
Ω

c,itc,it dx+ 2c∞

∫
Ω

c,itvi,t dx

≤ −2D

∫
Ω

c,itc,it dx+ 2c∞(

∫
Ω

c,itc,it dx)
1/2(

∫
Ω

vi,tvi,t dx)
1/2

≤ −2D

∫
Ω

c,itc,it dx+ 2D

∫
Ω

c,itc,it dx+
c2∞
2D

∫
Ω

vi,tvi,t dx,

thus we have,
d

dt
Φc ≤

c2∞
2D

Φv. (8.3.53)

Similar argument can be apply for ΦT , to obtain

d

dt
ΦT ≤ T 2

∞
2K

Φv (8.3.54)

Next, we will preform similar work for Φv,t,

Φv,t = 2

∫
Ω

vi,tvi,tt dx = 2

∫
Ω

vi,t[−vjvi,j − p, i + υ∆vi + gic+ hiT + σb20(kiw− vi)],t dx

= −2υ

∫
Ω

vi,jtvi,jt dx− 2

∫
Ω

vi,tvj,tvi,j dx+ 2

∫
Ω

givi,tct dx

+2

∫
Ω

hivi,tTt dx+ 2σb20

∫
Ω

(kiwtvi,t − vi,tvi,t) dx
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≤ −2υ

∫
Ω

vi,jtvi,jt dx− 2

∫
Ω

vi,tvj,tvi,j dx+ 2

∫
Ω

givi,tct dx+ 2

∫
Ω

hivi,tTt dx

≤ −2υ

∫
Ω

vi,jtvi,jt dx+ 2(

∫
Ω

vi,j vi,j dx)
1/2(

∫
Ω

(vi,tvi,t)
2 dx)1/2 + 2Φv + Φc + ΦT .

Now, we use the Sobolev inequality (8.2.19), arithmetic-geometric mean inequality

and (8.3.51), we have

Φv,t ≤ −2υ

∫
Ω

vi,jtvi,jt dx+ 2(

∫
Ω

vi,j vi,j dx)
1/2(

∫
Ω

vi,tvi,t dx)
1/2(

∫
Ω

vi,jtvi,jt dx)
1/2

+2Φv + Φc + ΦT

≤ 1

2υ
Φv

∫
Ω

vi,jvi,j dx+ 2Φv + Φc + ΦT

≤ 1

2υ2
Φv[v

1/2
l Φ1/2

v + (vlcl)
1/2 + (vlTl)

1/2] + 2Φv + Φc + ΦT . (8.3.55)

Now, summing (8.3.53), (8.3.54) and (8.3.55), we have

d

dt
(Φv + Φc + ΦT ) ≤ I1Φ

3/2
v + I2Φv + Φc + ΦT

≤ I1Φv(Φv + Φc + ΦT )
1/2 + I2(Φv + Φc + ΦT )

≤ I1Φv(Φv + Φc + ΦT )
1/2 + I1Φc(Φv + Φc + ΦT )

1/2

+I1ΦT (Φv + Φc + ΦT )
1/2 + I2(Φv + Φc + ΦT )

d

dt
(Φv + Φc + ΦT ) ≤ I1(Φv + Φc + ΦT )

3/2 + I2(Φv + Φc + ΦT ). (8.3.56)

Upon integration of (8.3.56), we find the desired result (8.3.52) for the two dimen-

sions case.

2

Lemma 8.3.5 For three dimensions, if vi,t(x, 0) ∈ L2(Ω) and c,t(x, 0) ∈ L2(Ω),

then ∫
Ω

vi,tvi,t dx ≤ vtl(t), (8.3.57)

where

vtl(t) =
I4Φ(0)

I3Φ(0)(e−I4t − 1) + I4e−I4t

Φ = Φv + Φc + ΦT , Φv =

∫
Ω

vi,tvi,t dx, ΦT =

∫
Ω

T,tT,t dx, Φc =

∫
Ω

c,tc,t dx,
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I3 =
27vlβ

4

64υ5
, I4 =

27β4(vlcl + vlTl)

32υ5
+
T 2

∞
2K

+
c 2∞
2D

+ 2.

It is clear that for three dimensions the bound (8.3.57) valid just for t < 1
I4
ln(1 +

I4
I3Φ(0)

), thus we have conditional continuous dependence in this case.

Proof : Similar argument can be apply for three dimensions case, to obtain

d

dt
Φc ≤

c2∞
2D

Φv, (8.3.58)

d

dt
ΦT ≤ T 2

∞
2K

Φv, (8.3.59)

and

Φv,t ≤ −2υ

∫
Ω

vi,jtvi,jt dx+ 2(

∫
Ω

vi,j vi,j dx)
1/2(

∫
Ω

(vi,tvi,t)
2 dx)1/2 + 2Φv + Φc + ΦT .

Next, using the Sobolev inequality (8.2.20), Young’s inequality and (8.3.51) we

get

Φv,t ≤ −2υ

∫
Ω

vi,jtvi,jt dx+ 2β(

∫
Ω

vi,j dx)
1/2(

∫
Ω

vi,tvi,t dx)
1/4(

∫
Ω

vi,jtvi,jt dx)
3/4

+2Φv + Φc + ΦT

≤ 27β4

128υ3
Φv(

∫
Ω

vi,jvi,j dx)
2 + 2Φv + Φc + ΦT

≤ 27β4

128υ5
Φv[v

1/2
l Φ1/2

v + (vlcl)
1/2 ++(vlTl)

1/2]2 + 2Φv + Φc + ΦT

≤ 27β4

64υ5
Φv[vlΦv + 2(vlcl + vlTl)] + 2Φv + Φc + ΦT . (8.3.60)

Now, summing (8.3.58), (8.3.59) and (8.3.60), we obtain

d

dt
(Φv + Φc + ΦT ) ≤ I3Φ

2
v + I4Φv + Φc + ΦT

d

dt
(Φv + Φc + ΦT ) ≤ I3(Φv + Φc + ΦT )

2 + I4(Φv + Φc + ΦT ). (8.3.61)

Upon integration of (8.3.61), we find the desired result (8.3.57) for the three dimen-

sions case.

2
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8.3.1 Continuous dependence on σ

In this section, we establish continuous dependence on the electrical conductivity

coefficient σ. To do this, let (vi1, T1, c1, p1) and (vi2, T2, c2, p2) be solutions of (8.1.6)-

(8.1.9) with the same boundary and initial conditions, but with different electrical

conductivity coefficients σ1 and σ2. Now, we define

ui = vi1−vi2, θ = T1−T2, ϕ = c1−c2, π = p1−p2, σ = σ1−σ2, (8.3.62)

Then, (ui, θ, ϕ, π) is a solution of the problem

ui,t+v1jui,j+ujv2i,j = −π, i+υ∆ui+hiθ+giϕ+σb20[(v1×k)×k]i+σ2b20[(u×k)×k]i,

(8.3.63)

ui,i = 0, (8.3.64)

θ,t + v1i θ, i + ui T2,i = K∆θ, (8.3.65)

ϕ,t + v1i ϕ, i + ui c2,i = D∆ϕ−K1ϕ, (8.3.66)

subject to the boundary and initial conditions

ui = 0,
∂θ

∂n
= 0,

∂ϕ

∂n
= 0, on ∂Ω, (8.3.67)

θ(x , 0) = 0, ϕ(x , 0) = 0, ui(x , 0) = 0, in Ω. (8.3.68)

The proof of continuous dependence commences by multiplying (8.3.63) by ui and

integrating over Ω to find,

d

dt
∥u∥2 = 2

∫
Ω

uiui,t dx

= 2

∫
Ω

ui[−v1jui,j−ujv2i,j−π, i+υ∆ui+giϕ+hiθ+σb20(kiw1−v1i)+σ2b20(kiw−ui)] dx

≤ −2υ

∫
Ω

ui,jui,j dx− 2

∫
Ω

uiujv2i,j dx+ 2

∫
Ω

giuiϕ dx+ 2

∫
Ω

hiuiθ dx

+2σb20

∫
Ω

(kiw1ui − v1iui) dx

≤ −2υ

∫
Ω

ui,jui,j dx+ 2(

∫
Ω

v2i,jv2i,j dx)
1/2(

∫
Ω

(uiui)
2 dx)1/2

+2(

∫
Ω

uiui dx)
1/2(

∫
Ω

ϕ2 dx)1/2+2(

∫
Ω

uiui dx)
1/2(

∫
Ω

θ2 dx)1/2+4σb20v
1/2
l1 (

∫
Ω

uiui dx)
1/2,
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where vl1 = (2cl1+2Tl1+∥v(x, 0)∥2)eT , cl1 = ∥c1(x, 0)∥2, Tl1 = ∥T1(x, 0)∥2. By using

the Sobolev inequality (8.2.20), arithmetic-geometric mean inequality and (8.3.51),

we obtain

d

dt
∥u∥2 ≤ −2υ

∫
Ω

ui,jui,j dx+ 2β(

∫
Ω

v2i,jv2i,j dx)
1/2(

∫
Ω

uiui dx)
1/4(

∫
Ω

ui,jui,j dx)
3/4

+3

∫
Ω

uiui dx+

∫
Ω

ϕ2 dx+

∫
Ω

θ2 dx+ σ2b40vl1

≤ 27β4

128υ3
∥u∥2(

∫
Ω

v2i,jv2i,j dx)
2 + 3∥u∥2 + ∥ϕ∥2 + ∥θ∥2 + σ2b40vl1

≤ 27β4

128υ5
∥u∥2[v1/2l2 vlt2(t)

1/2+(vl2cl2)
1/2+(vl2Tl2)

1/2]2+3∥u∥2+∥ϕ∥2+∥θ∥2+σ2b40vl1

≤ 27β4

64υ5
∥u∥2[vl2vlt2(t) + vl2cl2 + vl2Tl2] + 3∥u∥2 + ∥ϕ∥2 + ∥θ∥2 + σ2b40vl1, (8.3.69)

where vl2 = (2cl2 + 2Tl2 + ∥v2(x, 0)∥2)eT , cl2 = ∥c2(x, 0)∥2, Tl2 = ∥T2(x, 0)∥2, the

value vtl1(t) is equal to the value of vtl(t) which is defined in Lemma 8.3.4 and 8.3.5

at the solution (vi2, T2, c2, p2).

Next, multiply (8.3.65) and (8.3.66) by θ and ϕ, respectively, and integrate over Ω

and using the Cauchy-Schwarz inequality, arithmetic-geometric mean inequality we

have
d

dt
∥ϕ∥2 ≤ c 22∞

2D
∥u∥2. (8.3.70)

d

dt
∥θ∥2 ≤ T 2

2∞
2K

∥u∥2. (8.3.71)

Let I5(t) = (27β4/64υ5)[vl2vlt2(t) + vl2cl2 + vl2Tl2] + (c 22∞/2D) + (T 2
2∞/2K) + 3, and

I6(t) =
∫
I5(t)dt. Summing (8.3.69), (8.3.70) and (8.3.71), we get

d

dt
(∥u∥2 + ∥ϕ∥2 + ∥θ∥2) ≤ I5(t)(∥u∥2 + ∥ϕ∥2 + ∥θ∥2) + σ2b40vl1. (8.3.72)

Upon integration of (8.3.72), we arrive at the continuous dependence on σ inequality

∥u∥2 + ∥ϕ∥2 + ∥θ∥2 ≤ σ2b40vl1

∫ t

0

eI6(t)−I6(s)ds. (8.3.73)

Thus, (8.3.73) establishes the continuous dependence on the coefficient σ.
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8.3.2 Continuous dependence on K1

In this section we show that the solution of the problem (8.1.6)-(8.1.9) depend-

s continuously on the coefficient K1. Let us consider two solution (vi1, T1, c1, p1)

and (vi2, T2, c2, p2) of (8.1.6)-(8.1.9) and have the same initial and boundary data

corresponding to two different nonzero values K11 and K12. Set

ui = vi1 − vi2, θ = T1 − T2, ϕ = c1 − c2, π = p1 − p2, K1 = K11 −K12,

(8.3.74)

so that (ui, θ, ϕ, π) is a solution of the problem

ui = −π, i + υ∆ui + giϕ+ σb20[(u× k)× k]i, (8.3.75)

ui,i = 0, (8.3.76)

θt + v1i θ, i + ui T2,i = K∆θ, (8.3.77)

ϕt + v1i ϕ, i + ui c2,i = D∆c−K11ϕ−K1c2, (8.3.78)

in Ω× (0,∞), and

ui = 0,
∂θ

∂n
= 0,

∂ϕ

∂n
= 0, on ∂Ω, (8.3.79)

θ(x , 0) = 0, ϕ(x , 0) = 0, ui(x , 0) = 0, in Ω. (8.3.80)

The proof of continuous dependence commences by multiplying (8.3.75) by ui and

integrating over Ω to find ,

d

dt
∥u∥2 = 2

∫
Ω

uiui,t dx

= 2

∫
Ω

ui[−v1jui,j − ujv2i,j − π, i + υ∆ui + giϕ+ hiθ + σb20(kiw − ui)] dx

= −2υ

∫
Ω

ui,jui,j dx−2

∫
Ω

uiujv2i,j dx+2

∫
Ω

giuiϕ dx+2

∫
Ω

hiuiθ dx+2σb20

∫
Ω

(kiw.ui−uiui) dx

≤ −2υ

∫
Ω

ui,jui,j dx+2(

∫
Ω

v2i,jv2i,j dx)
1/2(

∫
Ω

(uiui)
2 dx)1/2+2(

∫
Ω

uiui dx)
1/2(

∫
Ω

ϕ2 dx)1/2

+2(

∫
Ω

uiui dx)
1/2(

∫
Ω

θ2, dx)1/2.

By using the Sobolev inequality (8.2.20), Young’s inequality and (8.3.51) we have

d

dt
∥u∥2 ≤ −2υ

∫
Ω

ui,jui,j dx+ 2β(

∫
Ω

v2i,jv2i,j dx)
1/2(

∫
Ω

uiui dx)
1/4(

∫
Ω

ui,jui,j dx)
3/4
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+2

∫
Ω

uiui dx+

∫
Ω

ϕ2 dx+

∫
Ω

θ2 dx

≤ 27β4

128υ3
∥u∥2(

∫
Ω

v2i,jv2i,j dx)
2 + 2∥u∥2 + ∥ϕ∥2 + ∥θ∥2

≤ 27β4

128υ5
∥u∥2[v1/2l2 vlt2(t)

1/2 + (vl2cl2)
1/2 + (vl2Tl2)

1/2]2 + 2∥u∥2 + ∥ϕ∥2 + ∥θ∥2

≤ 27β4

64υ5
∥u∥2[vl2vlt2(t) + 2(vl2cl2 + vl2Tl2)] + 2∥u∥2 + ∥ϕ∥2 + ∥θ∥2. (8.3.81)

Next, multiply (8.3.77) by θ and (8.3.78) by ϕ and integrate over Ω, respectively,

and arithmetic-geometric mean inequality to obtain

d

dt
∥θ∥2 ≤ T 2

2∞
2K

∥u∥2. (8.3.82)

Similarly, by multiplying (8.3.78) by ϕ and integrate over Ω and using the Cauchy-

Schwarz inequality, arithmetic-geometric mean inequality and drop a non-positive

terms on the right, we have

d

dt
∥ϕ∥2 ≤ c 22∞

2D
∥u∥2 + c 22∞

2D
∥ϕ∥2 + 2DK2

1 . (8.3.83)

Let I7(t) = (27β4/64υ5)[vl2vlt2(t) + 2(vl2cl2 + vl2Tl2)] + (c 22∞/2D) + (T 2
2∞/2K) + 2,

and I8(t) =
∫
I7(t)dt. Summing (8.3.81), (8.3.82), and (8.3.83), we get

d

dt
(∥u∥2 + ∥ϕ∥2 + ∥θ∥2) ≤ I7(t)(∥u∥2 + ∥ϕ∥2) + 2DK2

1 . (8.3.84)

An integration of (8.3.84) leads to

∥u∥2 + ∥ϕ∥2 + ∥θ∥2 ≤ 2DK2
1

∫ t

0

eI8(t)−I8(s)ds. (8.3.85)

We thus conclude that the nonzero solutions of double diffusive convection problem

depend continuously on the effective chemical reaction coefficient.
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Chapter 9

Continuous dependence on the

coefficients for double diffusive

convection in Darcy flow with

Magnetic field effect

9.1 Introduction

Straughan [196] explains a system of equations to describe the double diffusive con-

vective flow in a porous medium using the Brinkman model. In [200] Straughan

and Hutter established continuous dependence of the solution on the Soret coeffi-

cient. Lin and Payne [108] further extended the work of [200]. They investigate

the structural stability of the Brinkman equations modeling on the gravity vector

coefficients and Brinkman coefficient. Then in [109] they established the structural

stability of the Brinkman equations on the Soret coefficient which describes the flow

of a fluid containing a solute. In [200] the boundary conditions are nonhomogeneous

Dirichlet type while in [109] they employ homogeneous Neumann ones. Thus the

Sobolev inequalities which are used in [200] are not available for functions satisfying

homogeneous Neumann boundary conditions. However, if the viscosity contribution

to the flow is negligible and this term is neglected, then the Brinkman equations

reduce to the Darcy equations. Continuous dependence of the solution of the Darcy
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equations on the Soret coefficient is established by Lin and Payne in [110].

This chapter is devoted to studying the influence of the magnetic and the gravity

vector coefficients on the Darcy equations. The governing equations for Darcy flow

with magnetic field effect in a region Ω for time t > 0 may be written as

vi = −p,i + giT + hiC + σ[(v ×B0)×B0]i,

T,t + viT,i = ∆T,

C,t + viC,i = ∆C + γ∆T,

vi,i = 0,

(9.1.1)

where vi, T, C and p represent velocity, temperature, salt concentration and pres-

sure fields, respectively, gi and hi are the gravity vector terms arising in the density

equation of state. Standard indicial notation is used throughout, ∆ is the Laplacian

operator, γ is the Soret coefficient and B0 = (0, 0, B0) is a magnetic field with only

the vertical component. In deriving (9.1.1) we take a particular magnetic field, as

in e.g. Galdi and Straughan [61]

We assume that Ω is a bounded, simply connected domain with boundary ∂Ω of

bounded curvature. (For convex domains, we in fact require less smoothness of the

boundary.) Associated with (9.1.1) we impose the boundary conditions

vi.ni = 0; T = f1; C = f2, on ∂Ω× t > 0, (9.1.2)

for prescribed functions f1 and f2. We also impose initial conditions

T (x, 0) = T0(x); C(x, 0) = C0(x); in Ω, (9.1.3)

for prescribed functions T0 and C0.

The plan of the chapter is as follows. In the next section we derive a priori

bounds which are very useful in the next sections. In Section 9.3 we study continuous

dependence of a solution to the Darcy equations on the magnetic coefficient σ. In

section 9.4 we derive continuous dependence on the gravity vector coefficients gi and

hi for (9.1.1)-(9.1.3).

The results in this chapter were published in the article Harfash [78].
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9.2 A priori bounds

In this section, we derive bounds for various norms of vi, T and C in terms of data.

These bounds will be used in the next sections in the continuous dependence proof.

Before we commence the analysis it is opportune to present some useful bounds

which are easy to prove.

[(v ×B0)×B0]i = B2
0(kiw − vi), (9.2.4)∫

Ω

vi(kiw − vi)dx ≤ 0, (9.2.5)

2

∫
Ω

vi,j(vi,j − vj,i)dx =

∫
Ω

(vi,j − vj,i)(vi,j − vj,i)dx, (9.2.6)

where k = (0, 0, 1) and w = v3. Now suppose that η is the third component of

the vector ∇× (∇× (gT )), where g = (g1, g2, g3), then we have

η = −∇(g3
∂T

∂x
, g3

∂T

∂y
,−g1

∂T

∂x
− g2

∂T

∂y
). (9.2.7)

Then from (9.2.7) we construct the following form∫
Ω

ηwdx = −
∫
Ω

w∇(g3
∂T

∂x
, g3

∂T

∂y
,−g1

∂T

∂x
− g2

∂T

∂y
)dx. (9.2.8)

Now, by using the Cauchy-Schwarz inequality and the arithmetic-geometric mean

inequality, we have∫
Ω

ηwdx =

∫
Ω

∇w · (g3
∂T

∂x
, g3

∂T

∂y
,−g1

∂T

∂x
− g2

∂T

∂y
)dx

≤ 1

2α1

∫
Ω

w,iw,idx+
α1

2

∫
Ω

|g3
∂T

∂x
, g3

∂T

∂y
,−g1

∂T

∂x
− g2

∂T

∂y
|2dx

≤ 1

2α1

∫
Ω

w,iw,idx+
α1

2

∫
Ω

[(g3
∂T

∂x
)2 + (g3

∂T

∂y
)2 + (g1

∂T

∂x
+ g2

∂T

∂y
)2]dx

≤ 1

2α1

∫
Ω

w,iw,idx+
g2α1

2

∫
Ω

[(
∂T

∂x
)2 + (

∂T

∂y
)2 + (

∂T

∂x
+
∂T

∂y
)2]dx

≤ 1

2α1

∫
Ω

w,iw,idx+
3g2α1

2

∫
Ω

[(
∂T

∂x
)2 + (

∂T

∂y
)2]dx

≤ 1

2α1

∫
Ω

w,iw,idx+
3g2α1

2

∫
Ω

T,i T,idx, (9.2.9)

where g2 = max gi gi. Later, we apply (9.2.9) for different functions and we use

different values for α1. Now, we look at norms of ∥v∥2.
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9.2.1 A bound for v

To find a bound for
∫
Ω
vividx, we multiply (9.1.1)1 by vi and use (9.2.5), the Cauchy-

Schwarz inequality and the arithmetic-geometric mean inequality, then we have∫
Ω

vivi dx ≤ g∥v∥∥T∥+ h∥v∥∥C∥

≤ g2∥T∥2 + h2∥C∥2 + 1

2
∥v∥2.

Thus, we have

∥v∥2 ≤ 2g2∥T∥2 + 2h2∥C∥2, (9.2.10)

where h2 = maxhi hi.

9.2.2 A bound for T

Now, the next step is to find bounds for ∥T∥2, ∥C∥2, ∥∇T∥2 and ∥∇C∥2. To this

end we introduce the harmonic function, ψ, which adopts the same boundary values

as T , so define

∆ψ = 0, in Ω× t > 0,

ψ(x, t) = f1, on ∂Ω.
(9.2.11)

We then form the identity∫ t

0

∫
Ω

(T − ψ)(T,t + viT,i −∆T )dxdη = 0. (9.2.12)

Next, we perform several integrations in (9.2.12) and use the boundary values and

properties of ψ to see that,

1

2
∥T∥2 − 1

2
∥T0∥2 +

∫
Ω

T0ψ0dx−
∫
Ω

Tψdx+

∫ t

0

∫
Ω

Tψ,η dxdη −
∫ t

0

∫
Ω

T,iviψ dxdη

+

∫ t

0

∫
Ω

T,iT,idxdη −
∫ t

0

∫
∂Ω

f1
∂ψ

∂n
dAdη = 0. (9.2.13)

Let f1m be the maximum value of f1 on ∂Ω× [0, τ) (f1m is taken to be positive) and

then since ψ is harmonic we know by the maximum principle that ψ ≤ f1m. Up-

on employing the Cauchy-Schwarz inequality, arithmetic-geometric mean inequality

June 19, 2014



9.2. A priori bounds 176

and (9.2.10), we can drive a bound for the cubic term of (9.2.13)∫ t

0

∫
Ω

T,iviψ dxdη ≤ f1m(

∫ t

0

∫
Ω

vividxdη)
1/2(

∫ t

0

∫
Ω

T,iT,idxdη)
1/2

≤ f 2
1m

2

∫ t

0

∫
Ω

vividxdη +
1

2

∫ t

0

∫
Ω

T,iT,idxdη

≤ f 2
1m(g

2

∫ t

0

∫
Ω

T 2dxdη + h2
∫ t

0

∫
Ω

C2dxdη) +
1

2

∫ t

0

∫
Ω

T,iT,idxdη. (9.2.14)

By use of the Cauchy-Schwartz inequality one finds∫ t

0

∫
∂Ω

f1
∂ψ

∂n
dAdη = (

∫ t

0

∫
∂Ω

f 2
1dAdη)

1/2(

∫ t

0

∫
∂Ω

(
∂ψ

∂n
)2dAdη)1/2,

and from the arithmetic-geometric mean inequality it follows that∫
Ω

T0ψ0dx ≤ 1

2

∫
Ω

ψ2
0dx+

1

2

∫
Ω

T 2
0 dx,∫

Ω

Tψdx ≤
∫
Ω

ψ2dx+
1

4

∫
Ω

T 2dx,∫ t

0

∫
Ω

Tψ,η dxdη ≤ 1

2

∫ t

0

∫
Ω

ψ2
,η dxdη +

1

2

∫ t

0

∫
Ω

T 2dxdη.

We next employ these estimates together with (9.2.14) in (9.2.13) to arrive at

1

4
∥T∥2 + 1

2

∫ t

0

∥∇T∥2dx ≤ ∥T0∥2 + ∥ψ∥2 + 1

2
∥ψ0∥2 +

1

2

∫ t

0

∥ψ,η∥2dx

+(

∫ t

0

∫
∂Ω

f 2
1dAdη)

1/2(

∫ t

0

∫
∂Ω

(
∂ψ

∂n
)2dAdη)1/2+(

1

2
+f 2

1mg
2)

∫ t

0

∥T∥2dx+f 2
1mh

2

∫ t

0

∥C∥2dx.

(9.2.15)

Now, using well-known inequalities (see for example [153]) we have

∥ψ∥2 + 1

2
∥ψ0∥2 ≤

3

2
c3

∫
∂Ω

f 2
1dA+

3

2
c4

∫
∂Ω

|gradsf1|2dA, (9.2.16)

∫ t

0

∥ψ,η∥2dx ≤ c5

∫ t

0

∫
∂Ω

f 2
1,τdAdτ + c6

∫ t

0

∫
∂Ω

|gradsf1,τ |2dAdτ, (9.2.17)∫ t

0

∫
∂Ω

(
∂ψ

∂n
)2dAdη ≤ c2

∫ t

0

∫
∂Ω

|gradsf1|2dAdτ, (9.2.18)

where grads denotes the surface gradient on ∂Ω.

Setting

D1(t) = 4∥T0∥2 + 6c3

∫
∂Ω

f 2
1dA+ 6c4

∫
∂Ω

|gradsf1|2dA+ 2c5

∫ t

0

∫
∂Ω

f 2
1,τdAdτ
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+2c6

∫ t

0

∫
∂Ω

|gradsf1,τ |2dAdτ +4c
1/2
2 (

∫ t

0

∫
∂Ω

f 2
1dAdη)

1/2(

∫ t

0

∫
∂Ω

|gradsf1|2dAdη)1/2,

and substituting (9.2.16)-(9.2.18) in (9.2.15) we arrive at the following result

∥T∥2 + 2

∫ t

0

∥∇T∥2dx ≤ D1(t) + (2 + 4f 2
1mg

2)

∫ t

0

∥T∥2dx+ 4f 2
1mh

2

∫ t

0

∥C∥2dx.

(9.2.19)

9.2.3 A bound for C

Now, we introduce another harmonic function, φ, which has the same boundary

values as C, so define

∆φ = 0, in Ω× t > 0,

φ(x, t) = f2, on ∂Ω.
(9.2.20)

Let f2m be the maximum value of f2 on ∂Ω×[0, τ), and by using the similar argument

to prove (9.2.19) we can establish

∥C∥2 + 2

∫ t

0

∥∇C∥2dx ≤ D2(t) + (2 + 8f 2
2mg

2)

∫ t

0

∥C∥2dx+ 8f 2
2mh

2

∫ t

0

∥C∥2dx

+4γ2
∫ t

0

∥∇T∥2dx, (9.2.21)

where

D2(t) = 4∥C0∥2 + 6c3

∫
∂Ω

f 2
2dA+ 6c4

∫
∂Ω

|gradsf2|2dA+ 2c5

∫ t

0

∫
∂Ω

f 2
2,τdAdτ

+2c6

∫ t

0

∫
∂Ω

|gradsf2,τ |2dAdτ + 4c
1/2
2 (

∫ t

0

∫
∂Ω

f 2
2dAdη)

1/2(

∫ t

0

∫
∂Ω

|gradsf2|2dAdη)1/2

+4c
1/2
2 σ1(

∫ t

0

∫
∂Ω

f 2
1dAdη)

1/2(

∫ t

0

∫
∂Ω

|gradsf2|2dAdη)1/2.

We now let Γ be a constant such that Γ > 2γ21 and then form Γ (9.2.19)+(9.2.21).

In this way we obtain

Γ∥T∥2 + (2Γ− 4γ2)

∫ t

0

∥∇T∥2dx+ ∥C∥2 + 2

∫ t

0

∥∇C∥2dx ≤ ΓD1(t) +D2(t)

+[Γ(2+4f 2
1mg

2)+8f 2
2mh

2]

∫ t

0

∥T∥2dx+(4Γf 2
1mh

2+2+8f 2
2mg

2)

∫ t

0

∥C∥2dx. (9.2.22)

Define now K as

K = max{2 + 4f 2
1mg

2 + Γ−18f 2
2mh

2, 4Γf 2
1mh

2 + 2 + 8f 2
2mg

2},
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then from (9.2.22) one derives

Γ∥T∥2 + ∥C∥2 ≤ ΓD1(t) +D2(t) +K[Γ

∫ t

0

∥T∥2dx+
∫ t

0

∥C∥2dx]. (9.2.23)

Setting D3(t) = eKτ
∫ t

0
[ΓD1(η) +D2(η)]dη and after integrating (9.2.23), we have

Γ

∫ t

0

∥T∥2dx+
∫ t

0

∥C∥2dx ≤ D3(t). (9.2.24)

By using Gronwall’s inequality on (9.2.23) we can derive another priori bound,

Γ∥T∥2 + ∥C∥2 ≤ D4(t), (9.2.25)

where

D4(t) = ΓD1(t) +D2(t) +KD3(t).

9.2.4 Bounds for ∇T,∇C

Finally, to establish the bound for ∥∇T∥2 and ∥∇C∥2, we substitute the bound

(9.2.24) in (9.2.22) to obtain the following results∫ t

0

∥∇T∥2dx ≤ D4(t)

2
. (9.2.26)∫ t

0

∥∇C∥2dx ≤ D4(t)

(2Γ− 4γ2)
. (9.2.27)

9.2.5 A bounds for ∇w

To find a bound for ∥∇w∥ where w = v3, take the double curl of (9.1.1)1, using the

third component, (and the fact that v is solenoidal) to find

−∆w = −∇(g3
∂T

∂x
, g3

∂T

∂y
,−g1

∂T

∂x
− g2

∂T

∂y
)

−∇(h3
∂C

∂x
, h3

∂C

∂y
,−h1

∂C

∂x
− h2

∂C

∂y
) + σB2

0D
2w, (9.2.28)

where D = d/dz. Multiplying (9.2.28) by w and integrating over Ω, and then using

the similar argument which is used to prove (9.2.9) with α1 = 2 we have∫
Ω

w,iw,i dx ≤ 1

2

∫
Ω

w,iw,i dx+3g2
∫
Ω

T,i T,i dx+3h2
∫
Ω

C,iC,i dx−σB2
0

∫
Ω

w,3w,3 dx.

(9.2.29)

Dropping a negative term involving σ, finally, we obtain

∥∇w∥2 ≤ 6g2∥∇T∥2 + 6h2∥∇C∥2. (9.2.30)
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9.2.6 A bounds for ∇v

We shall also require a bound for the Dirichlet integral of v. We start with the fact

∥∇v∥2 =
∫
Ω

vi,j(vi,j − vj,i)dx+

∫
Ω

vi,jvj,idx. (9.2.31)

Now, we find a bound for the last term in the right hand side of (9.2.31) as follows∫
Ω

vi,jvj,idx =

∮
∂Ω

vi,jvjnidS =

∮
∂Ω

(vini)j vjdS −
∮
∂Ω

vi vj ni,j dS. (9.2.32)

Note that
∮
∂Ω
(vini)j vjdS contain the product of a tangential vector and a normal

vector, thus its value equal to zero . Moreover, if Ω is convex it follows that since vi

is a tangential vector on ∂Ω , hence
∮
∂Ω
vi vj ni,j dS ≥ 0. Thus we conclude that∫

Ω

vi,jvj,idx ≤ 0, (9.2.33)

while for nonconvex Ω with boundary of bounded curvature∫
Ω

vi,jvj,idx ≤ κ0

∮
∂Ω

|v|2dS, (9.2.34)

where κ0 depends on the Gaussian curvature of ∂Ω (see Weatherburn [221], p. 86).

Next, if we use a trace inequality∮
∂Ω

|v|2dS ≤ κ1

∫
Ω

|v|2dx+ κ2

∫
Ω

|∇v|2dx, (9.2.35)

where the constant κ2 may be small. It follows then that whether Ω is convex or

nonconvex we have after inserting (9.2.35) into (9.2.34) and the result into (9.2.31),

having chosen k2 sufficiently small, we have

∥∇v∥2 ≤M [

∫
Ω

vi,j(vi,j − vj,i)dx+ ∥v∥2], (9.2.36)

whereM is a computable constant. From this point on we shall use the symbolM to

denote a computable constant, and in the different inequalities where it occurs it will

in general have different values. To find a bound for the first term of (9.2.36), we use

(9.2.4), (9.2.30), the arithmetic-geometric mean inequality and the Cauchy-Schwarz

inequality, to arrive at∫
Ω

vi,j(vi,j − vj,i)dx =

∫
Ω

vi,j[−p,i j + giT,j + hiC,j + σB2
0(kiw,j − vi,j)]dx
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−
∫
Ω

vi,j[−p,i j + gjT,i + hjC,i + σB2
0(kjw,i − vj,i)]dx

=

∫
Ω

vi,j[giT,j + hiC,j]−
∫
Ω

vi,j[gjT,i + hjC,i]dx− σB2
0

∫
Ω

vi,j[vi,j − vj,i]dx

+σB2
0

∫
Ω

vi,j[kiw,j − kjw,i]dx

=

∫
Ω

[giT,j(vi,j−vj,i)+hiC,j(vi,j−vj,i)]dx−σB2
0

∫
Ω

vi,j[vi,j−vj,i]dx−σB2
0

∫
Ω

kjw,i[vi,j−vj,i]dx

≤ 2g2∥∇C∥2 + 2h2∥∇T∥2 + 1

4

∫
Ω

(vi,j − vj,i)
2dx+

σB2
0

2

∫
Ω

w,iw,idx

≤ 2g2∥∇C∥2 + 2h2∥∇T∥2 + 1

2

∫
Ω

vi,j(vi,j − vj,i)dx+ 3σB2
0 [g

2∥∇T∥2 + h2∥∇C∥2].

(9.2.37)

Therefore, we arrive to the following bound∫
Ω

vi,j(vi,j − vj,i)dx ≤ 4g2∥∇C∥2 + 4h2∥∇T∥2 + 6σB2
0 [g

2∥∇T∥2 + h2∥∇C∥2]

≤M [∥∇C∥2 + ∥∇T∥2]. (9.2.38)

Thus, it follows directly from (9.2.10), (9.2.36) and (9.2.38) the inequality

∥∇v∥2 ≤M [∥C∥2 + ∥T∥2 + ∥∇C∥2 + ∥∇T∥2]. (9.2.39)

9.3 Continuous dependence on the coefficient σ

In this section, we establish continuous dependence on the magnetic field coefficient.

To do this, let (vi, T, C, P ) and (v∗i , T
∗, C∗, P ∗) be solutions of (9.1.1)-(9.1.3) with

the same boundary and initial conditions, but with different magnetic coefficients

σ1 and σ2. Now, we define

ui = vi − v∗i , θ = T − T ∗, ϕ = C − C∗, π = p− p∗, σ = σ1 − σ2.

Then, (ui, θ, ϕ, π) is a solution of the problem

ui = −π,i + giθ + hiϕ+ σ[(v∗ ×B0)×B0]i + σ1[(u×B0)×B0]i,

θ,t + viθ,i + uiT
∗
,i = ∆θ,

ϕ,t + viϕ,i + uiC
∗
,i = ∆ϕ+ γ∆θ,

ui,i = 0,

(9.3.40)
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in Ω× t > 0, together with the boundary and initial conditions,

ui.ni = 0; θ = 0; ϕ = 0, on ∂Ω× t > 0, (9.3.41)

θ(x, 0) = 0; ϕ(x, 0) = 0; in Ω. (9.3.42)

Theorem 9.3.1 The solution (vi, T, C, P ) to the boundary-initial value problem

(9.1.1)-(9.1.3) depends continuously on change in the magnetic coefficient σ, as

shown explicitly in inequality (9.3.71) which derives a relation of the form

α∥T − T ∗∥+ ∥C − C∗∥ ≤ L1σ
2

where α is a computable constant and L1 is likewise an a priori constant. Here

(T,C) and (T ∗, C∗) are two solutions to (9.1.1)-(9.1.3) for different σ values σ1 and

σ2. Further the velocity field v depends continuously on σ in the manner

∥v − v∗∥ ≤ L2σ
2

where L2 is also an a priori constant. Precise details of these statements are contin-

ued in inequalities (9.3.46) and (9.3.71).

Proof : Multiplying (9.3.40)1 by ui, and integrating over Ω, with aid of the

Cauchy-Schwarz inequality and (9.2.28), we obtain

∥u∥2 ≤ g∥θ∥∥u∥+ h∥ϕ∥∥u∥+ σB2
0

∫
Ω

ui(kiw
∗ − v∗i )dx+ σ1B

2
0

∫
Ω

ui(kiw − ui)dx,

(9.3.43)

where w = u3, w
∗ = u∗3. From (9.2.5) we see that∫

Ω

ui(kiw − ui)dx ≤ 0. (9.3.44)

In addition, applying the Cauchy-Schwarz inequality we obtain

σB2
0

∫
Ω

ui(kiw
∗ − v∗i )dx ≤ σB2

0 [∥u∥∥w∗∥+ ∥u∥∥v∗∥

≤ 2σB2
0∥u∥∥v∗∥. (9.3.45)

Now, substituting (9.3.45) into (9.3.43) and then using the arithmetic-geometric

mean inequality and (9.2.10), we have

∥u∥2 ≤ 4g2∥θ∥2 + 4h2∥ϕ∥2 + 8σ2B4
0∥v∗∥2 + 2σ1B

2
0

∫
Ω

ui(kiw − ui)dx
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≤ 4g2∥θ∥2 + 4h2∥ϕ∥2 + 8σ2B4
0 [2g

2∥T∥2 + 2h2∥C∥2]

≤M [∥θ∥2 + ∥ϕ∥2 + σ2(∥T∥2 + ∥C∥2)], (9.3.46)

where we have dropped a negative term involving σ1. To find a bound for ∥∇w∥

where w = u3, take the double curl of (9.3.40)1, use the third component and use

(9.3.40)4, to drive

−∆w = −∇(g3
∂θ

∂x
, g3

∂θ

∂y
,−g1

∂θ

∂x
− g2

∂θ

∂y
)

−∇(h3
∂ϕ

∂x
, h3

∂ϕ

∂y
,−h1

∂ϕ

∂x
− h2

∂ϕ

∂y
) + σB2

0D
2w∗ + σ1B

2
0D

2w. (9.3.47)

Multiplying (9.3.47) by wi and use the similar argument which is used to prove

(9.2.9) with α1 = 2 we have∫
Ω

w,iw,i dx ≤ 1

2

∫
Ω

w,iw,i dx+ g2
∫
Ω

θ,i θ,i dx+ h2
∫
Ω

ϕ,i ϕ,i dx

−σ1B2
0

∫
Ω

w,3w,3 dx− σB2
0

∫
Ω

w∗
,3w,3 dx. (9.3.48)

Now, applying the Cauchy-Schwarz inequality and the arithmetic-geometric mean

inequality to the last term, we have

1

2

∫
Ω

w,iw,i dx ≤ g2
∫
Ω

θ,i θ,i dx+ h2
∫
Ω

ϕ,i ϕ,i dx+
σ2B2

0

4σ1

∫
Ω

w∗
,3w

∗
,3 dx

≤ g2
∫
Ω

θ,i θ,i dx+ h2
∫
Ω

ϕ,i ϕ,i dx+
σ2B2

0

4σ1

∫
Ω

w∗
,iw

∗
,i dx. (9.3.49)

Now, using the bound (9.2.30), we obtain

∥∇w∥2 ≤ 2g2∥∇θ∥2 + 2h2∥∇ϕ∥2 + 3σ2B2
0

σ1
[g2∥∇T∥2 + h2∥∇C∥2]

≤M [∥∇θ∥2 + ∥∇ϕ∥2 + σ2(∥∇T∥2 + ∥∇C∥2)]. (9.3.50)

Next, using the similar argument which is used in the proof of (9.2.36), we find

∥∇u∥2 ≤M [

∫
Ω

ui,j(ui,j − uj,i)dx+ ∥u∥2]. (9.3.51)

Now, our aim is to find a bound to the first term of (9.3.51), and to this end from

(9.3.40),we form∫
Ω

ui,j(ui,j−uj,i)dx =

∫
Ω

ui,j[−π,i j+giθ,j+hiϕ,j+σB
2
0(kiw

∗
,j−v∗i,j)+σ1B2

0(kiw,j−ui,j)]dx
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−
∫
Ω

ui,j[−π,i j + gjθ,i + hjϕ,i + σB2
0(kjw

∗
,i − v∗j,i) + σ1B

2
0(kjw,i − uj,i)]dx

=

∫
Ω

ui,j[giθ,j − gjθ,i] +

∫
Ω

ui,j[hiϕ,j − hjϕ,i]

+σ1B
2
0

∫
Ω

ui,j[(kiw,j − ui,j)− (kjw,i − uj,i)]dx

+σB2
0

∫
Ω

ui,j[(kiw
∗
,j − v∗i,j)− (kjw

∗
,i − v∗j,i)]dx. (9.3.52)

Now, we shall deal with each term of (9.3.52). Firstly, Using (9.2.6), the Cauchy-

Schwarz inequality and the arithmetic-geometric mean inequality we have∫
Ω

ui,j[giθ,j − gjθ,i] =

∫
Ω

gjθ,i(ui,j − uj,i)dx

≤ 4g2
∫
Ω

θ,i θ,idx+
1

16

∫
Ω

(ui,j−uj,i)(ui,j−uj,i)dx = 4g2∥∇θ∥+ 1

8

∫
Ω

ui,j(ui,j−uj,i)dx.

(9.3.53)

Similarly,∫
Ω

ui,j[hiϕ,j − hjϕ,i] ≤ 4h2∥∇ϕ∥+ 1

8

∫
Ω

ui,j(ui,j − uj,i)dx. (9.3.54)

Again, using the Cauchy-Schwarz inequality, the arithmetic-geometric mean inequal-

ity and (9.3.50)

σ1B
2
0

∫
Ω

ui,j[(kiw,j − ui,j)− (kjw,i − uj,i)]dx

= −σ1B2
0

∫
Ω

ui,j(ui,j − uj,i)dx+ σ1B
2
0

∫
Ω

ui,j(kiw,j − kjw,i)dx

= −σ1B2
0

∫
Ω

ui,j(ui,j − uj,i)dx+ σ1B
2
0

∫
Ω

kjw,i(ui,j − uj,i)dx

≤ σ1B
2
0

2

∫
Ω

w,iw,idx

≤M [∥∇θ∥2 + ∥∇ϕ∥2 + σ2(∥∇T∥2 + ∥∇C∥2)]. (9.3.55)

Applying the Cauchy-Schwarz inequality, the arithmetic-geometric mean inequality,

(9.2.30) and (9.2.38), we have

σB2
0

∫
Ω

ui,j[(kiw
∗
,j − v∗i,j)− (kjw

∗
,i − v∗j,i)]dx

= −σB2
0

∫
Ω

ui,j(v
∗
i,j − v∗j,i)dx+ σB2

0

∫
Ω

ui,j(kiw
∗
,j − kjw

∗
,i)dx
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= −σB
2
0

2

∫
Ω

(ui,j − uj,i)(v
∗
i,j − v∗j,i)dx− σB2

0

∫
Ω

kjw
∗
,i(ui,j − uj,i)dx

≤ 3

16

∫
Ω

ui,j(ui,j − uj,i)dx+ 2σ2B4
0

∫
Ω

v∗i,j(v
∗
i,j − v∗j,i)dx+ 4σ2B4

0

∫
Ω

w∗
,iw

∗
,idx

≤ 3

16

∫
Ω

ui,j(ui,j − uj,i)dx+ σ2M [∥C∥2 + ∥T∥2 + ∥∇C∥2 + ∥∇T∥2]. (9.3.56)

Substituting (9.3.53), (9.3.54), (9.3.55) and (9.3.56) into (9.3.52), we arrive at∫
Ω

ui,j(ui,j − uj,i)dx ≤M [∥∇ϕ∥2 + ∥∇θ∥2 + σ2(∥C∥2 + ∥T∥2 + ∥∇C∥2 + ∥∇T∥2)].

(9.3.57)

Now, substituting (9.3.57) into (9.3.51) and then using (9.3.46), we have

∥∇u∥2 ≤M [∥∇ϕ∥2 + ∥∇θ∥2 + σ2(∥C∥2 + ∥T∥2 + ∥∇C∥2 + ∥∇T∥2)]. (9.3.58)

here we have used the relation

∥χ∥2 ≤ λ1∥∇χ∥2, (9.3.59)

where λ1 is the first eigenvalue of

∆χ+ λ1χ = 0, in Ω,

χ = 0, on ∂Ω.

Lower bounds for λ1 are well known (see, e.g. Bandle [13]).

Next, we will find a bound for ∥θ∥2 and ∥ϕ∥2.

d

dt
(α∥θ∥2 + ∥ϕ∥2) = 2

∫
Ω

(αθθt + ϕϕt)dx

= 2

∫
Ω

αθ(∆θ − viθ,i − uiT
∗
,i)dx+ 2

∫
Ω

ϕ(∆ϕ− viϕ,i − uiC
∗
,i + γ∆θ)dx

= −2α∥∇θ∥2 − 2∥∇ϕ∥2 + 2α

∫
Ω

θ,iuiT
∗dx+ 2

∫
Ω

ϕ,iuiC
∗dx− 2γ

∫
Ω

θ,iϕ,idx

≤ −(2α− γ2

α1

− α

α3

)∥∇θ∥2 − (2− α1 −
1

α4

)∥∇ϕ∥2 + αα3∥u∥24∥T∥24 + α4∥u∥24∥C∥24.

(9.3.60)

Now, we choose the constant as follows

α = γ2, α1 = 1, α2 =
1

4
, α3 = 2, α4 = 4. (9.3.61)
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Thus, we have

d

dt
(α∥θ∥2 + ∥ϕ∥2) ≤ −1

2
(∥∇θ∥2 + ∥∇ϕ∥2) + ∥u∥24(2γ2∥T∥24 + 4∥C∥24). (9.3.62)

Now, we use the bounds of ∥u∥24, ∥T∥24 and ∥C∥24 which were derived in [110] in the

forms

∥u∥24 ≤M [(1 +
δ

4
)∥u∥2 + 3

4
δ−1/3∥∇u∥2], (9.3.63)

∥T∥24 ≤ D5(t), (9.3.64)

∥C∥24 ≤ D6(t). (9.3.65)

Substituting these bound into (9.3.62) and removing the non positive terms, we

obtain

d

dt
(α∥θ∥2 + ∥ϕ∥2) ≤M [(1 +

δ

4
)(∥θ∥2 + ∥ϕ∥2 + σ2(∥T∥2 + ∥C∥2))

+
3

4
δ−1/3(∥∇ϕ∥2 + ∥∇θ∥2 + σ2(∥C∥2 + ∥T∥2 + ∥∇C∥2 + ∥∇T∥2))]

×[2γ2D5(t) + 4D6(t)]. (9.3.66)

Since the constant δ is at our disposal then providedD5(t) andD6(t) are bounded

we may choose δ so large that the first term on the right dominates the other term

involving ∥∇ϕ∥2 + ∥∇θ∥2 + σ2(∥C∥2 + ∥T∥2 + ∥∇C∥2 + ∥∇T∥2). We are then left

with
d

dt
(α∥θ∥2 + ∥ϕ∥2) ≤M [α∥θ∥2 + ∥ϕ∥2 + σ2(∥T∥2 + ∥C∥2)]

×[2γ2D5(t) + 4D6(t)]. (9.3.67)

Setting

D7(t) = 2γ2D5(t) + 4D6(t), (9.3.68)

and

D8(t) = D7(t)× [∥T∥2 + ∥C∥2], (9.3.69)

then, we have from (9.3.67)

d

dt
[(α∥θ∥2 + ∥ϕ∥2)e−M

∫ t
0 D7(ϱ)dϱ] ≤Mσ2D8(t)e

−M
∫ t
0 D7(ϱ)dϱ. (9.3.70)

Upon integration, we further obtain

α∥θ∥2 + ∥ϕ∥2 ≤Mσ2

∫ t

0

D8(ϱ)e
−M

∫ t
ϱ D7(η)dηdϱ, (9.3.71)

which is the desired continuous dependence result. The continuous dependence for

ui follows directly from (9.3.46). 2
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9.4 Continuous dependence on the coefficients gi

and hi

We have develop an analysis that establishes continuous dependence of the solution

on changes in the gravity vectors gi and hi in equations (9.1.1)1. To do this, let

(vi, T, C, P ) and (v∗i , T
∗, C∗, P ∗) be solutions of (9.1.1)-(9.1.3) with the same bound-

ary and initial conditions, but with different (gi, hi) and (g∗i , h
∗
i ). Now, we define

ui = vi − v∗i , θ = T − T ∗, ϕ = C − C∗, π = p− p∗, µi = gi − g∗i , ζi = hi − h∗i .

Then, (ui, θ, ϕ, π) is a solution of the problem

ui = −π,i + µiT
∗ + giθ + ζiC

∗ + hiϕ+ σ[(u×B0)×B0]i,

θ,t + viθ,i + uiT
∗
,i = ∆θ,

ϕ,t + viϕ,i + uiC
∗
,i = ∆ϕ+ γ∆θ,

ui,i = 0,

(9.4.72)

in Ω× t > 0, together with the boundary and initial conditions,

ui.ni = 0; θ = 0; ϕ = 0, on ∂Ω× t > 0, (9.4.73)

θ(x, 0) = 0; ϕ(x, 0) = 0; in Ω. (9.4.74)

Theorem 9.4.1 The solution (vi, T, C, P ) to the boundary-initial value problem

(9.1.1)-(9.1.3) depends continuously on change in the gravity vectors gi and hi, as

shown explicitly in inequality (9.4.81) which derives a relation of the form

α∥T − T ∗∥+ ∥C − C∗∥ ≤ L3 µ
2 + L4 ζ

2

where α is a computable constant and L3, L4 are likewise a priori constants. Further

the velocity field v depends continuously on gi and hi in the manner

∥v − v∗∥ ≤ L5 µ
2 + L6 ζ

2

where L5, L6 are a priori constants. The terms µ and ζ are the differences in the

gravity coefficients gi and hi, respectively. Precise details of these statements are

continued in inequalities (9.4.75) and (9.4.81).
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Proof : Using the similar argument of the last section, we have

∥u∥2 ≤M [∥ϕ∥2 + ∥θ∥2 + µ2∥T∥2 + ζ2∥C∥2], (9.4.75)

and

∥∇u∥2 ≤M [∥∇ϕ∥2 + ∥∇θ∥2 + µ2(∥∇T∥2 + ∥T∥2) + ζ2(∥∇C∥2 + ∥C∥2)]. (9.4.76)

where ζ = max ζiζi and µ = maxµiµi.

Now, (9.3.62) still valid and again we shall use the bounds of ∥u∥24, ∥T∥24 and ∥C∥24
which were derived in [110]. Substituting (9.4.75) and (9.4.76) into (9.3.62) and use

(9.3.63)-(9.3.65) and (9.3.68), we arrive after removing the non positive terms in

(9.3.62) to the following bound estimate

d

dt
(α∥θ∥2 + ∥ϕ∥2) ≤M [(1 +

δ

4
)(∥ϕ∥2 + ∥θ∥2 + µ2∥T∥2 + ζ2∥C∥2)

+
3

4
δ−1/3(∥∇ϕ∥2+∥∇θ∥2+µ2(∥∇T∥2+∥T∥2)+ζ2(∥∇C∥2+∥C∥2))]×D7(t). (9.4.77)

Similarly, if we choose δ so large such that the first term on the right dominates

the other term involving ∥∇ϕ∥2 + ∥∇θ∥2 + µ2(∥∇T∥2 + ∥T∥2) + ζ2(∥∇C∥2 + ∥C∥2)

and Since D7(t) are bounded, Thus, we have

d

dt
(α∥θ∥2 + ∥ϕ∥2) ≤M [α∥θ∥2 + ∥ϕ∥2 + µ2∥T∥2 + ζ2∥C∥2]×D7(t). (9.4.78)

Setting

D9(t) = D7(t)× ∥T∥2,

D10(t) = D7(t)× ∥C∥2, (9.4.79)

then, we have from (9.4.78)

d

dt
[(α∥θ∥2 + ∥ϕ∥2)e−M

∫ t
0 D7(ϱ)dϱ] ≤M [µ2D9(t) + ζ2D10(t)]e

−M
∫ t
0 D7(ϱ)dϱ. (9.4.80)

Upon integration, we further obtain

α∥θ∥2 + ∥ϕ∥2 ≤Mσ2

∫ t

0

[µ2D9(ϱ) + ζ2D10(ϱ)]e
−M

∫ t
ϱ D7(η)dηdϱ, (9.4.81)

which is the desired continuous dependence result. The continuous dependence for

ui follows directly from (9.4.75). 2
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Chapter 10

Three dimensional simulation for

the problem of a layer of

non-Boussinesq fluid heated

internally with prescribed heat

flux on the lower boundary and

constant temperature upper

surface

10.1 Introduction

The Rayleigh-Bénard problem is the major section for the problem of the onset of

convection in a horizontal fluid layer uniformly heated from below. Rayleigh [163]

provided an analysis on the assumption that the convection was induced by buoyancy

effects. Rayleigh introduced an approximation to the basic equations of motion that

he ascribed to Boussinesq [22]. However, Joseph [92] found that the approximation

had been earlier applied by Oberbeck [139]. The parameter whose value determines
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the onset of convection is called the Rayleigh number. Joseph [92] noticed that this

parameter appeared in a study by Lorenz [113], who also used the approximation

employed by Oberbeck.

The Oberbeck-Boussinesq approximation is the basis of most of the contem-

porary studies on natural or mixed convection flows. In the Oberbeck-Boussinesq

approximation, all fluid properties such as viscosity and density can be taken as

constants except that a buoyancy term proportional to a density difference is re-

tained in the momentum equation. Thus, the fluid is taken as quasi-incompressible,

the divergence of the velocity is approximated by zero in the continuity equation,

and the term involving the product of the pressure and the divergence of the ve-

locity is neglected in the thermal energy equation; see, for example, Section 8 of

Chandrasekhar [32]. Several Oberbeck-Boussinesq approximations have been ap-

plied on the full Navier-Stokes equations. It is generally used in the framework of

the natural convection problems such as the Rayleigh-Bénard configuration, and

provides a simplified set of equations which is much more tractable for both nu-

merical and analytical purposes, since all the acoustic scales have been eliminated.

Rayleigh [163] employed the simplified thermal energy equation and he ascribed it to

Boussinesq [22]. In [161], Rajagopal et al. intend to provide a rigorous derivation of

the Oberbeck-Boussinesq approximation in the framework of a full thermodynamical

theory of the Navier-Stokes equations. Hills and Roberts [85] provided important

idea to adapt a new method of treating the constraint of mechanical incompress-

ibility. Recently, the Oberbeck-Boussinesq approximation have been developed in-

tensely by Rajagopal [160], Rajagopal et al. [162], Barletta [14] and Barletta and

Nield [15,16].

Straughan [194] obtained quantitative non-linear stability estimates which guar-

antee nonlinear stability for the problem of penetrative convection in a plane layer

with a nonuniform heat source, and a constant temperature upper surface, while

the lower surface is subject to a prescribed heat flux. In addition to the non-linear

results which establish a critical Rayleigh number below which convection cannot

occur, Straughan [194] calculated the linear value above which convection occurs.

In this chapter we study the problem of penetrative convection in a plane layer with
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a nonuniform heat source, and a constant temperature upper surface, while the low-

er surface is subject to a prescribed heat flux. Especially, the accuracy of linear

instability and nonlinear stability thresholds are tested using a three dimensions

simulation. Regions of possible very large subcritical instabilities, i.e. where agree-

ment between the linear instability thresholds and nonlinear stability thresholds is

poor, are studied by solving for the full three-dimensional system. The results indi-

cate that linear theory is very accurate in predicting the onset of convective motion,

and thus, regions of stability.

In the next Section we present the governing equations of motion and derive the

associated perturbation equations and then in section 10.3, we introduce the linear

and nonlinear analysis of our system. In section 10.4, we transform our system to

velocity-vorticity formulation. Section 10.5 is devoted to a study of numerical solu-

tion of the problem in three dimensions. The results of our numerical investigation

are then compiled and discussed in the final Section of the paper.

The results in this chapter were published in the article Harfash [79].

10.2 Governing equations

Consider then a layer of heat-conducting viscous fluid with a quadratic equation of

state, occupying the horizontal layer z ∈ (0, d) with the lower boundary z = 0 heated

by radiation and with the temperature scale selected so that the temperature at

z = d remains a constant, Tu. By assuming the validity of the Oberbeck-Boussinesq

approximation, the following local balance equations hold:

vi, t + vj vi,j = − 1

ρm
p, i + ν∆vi − gki[1− α(T − Tm)

2], (10.2.1)

vi,i = 0, (10.2.2)

T,t + vi T, i = κ∆T +Q, (10.2.3)

where v, p, T, v, g, α, and κ are respectively velocity, pressure, temperature, viscosity,

gravity, a thermal expansion coefficient, and thermal diffusivity, k = (0, 0, 1), and

standard indicial notation is employed. These equations are defined on the spatial
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region R2 × [0, d]. Here, we have to mention that the effects of pressure work are

not taken into account in the energy balance. The boundary conditions are

v = 0, at z = 0, d, T = Tu, at z = d,
∂T

∂z
= γ, at z = 0.

(10.2.4)

We here consider the heat supply function as Q = Q0(e
z/d − 1), where Q0 and γ are

constants. The steady solution (v, T ) corresponding to boundary conditions (10.2.4)

is

v = 0, T = Tu − γ(d− z) +
Q0d

2

κ
(e− 3

2
− e

z
d +

z

d
+

z2

2d2
),

the hydrostatic pressure being determined from the momentum equation.

To investigate the stability of these solutions, we introduce perturbations (u, θ, π)

by

vi = vi + ui, T = T + θ, p = p+ π.

Then, the perturbation equations are nondimensionalized according to the scales

(stars denote dimensionless quantities)

t = t∗
d2

ν
, U =

ν

d
, x = x∗d, θ = θ∗T ♯, δ =

κ(Tm − Tu)

Q0d2
,

P r =
ν

κ
, T ♯ = U

√
ν

αgdκ
, R2 =

Q2
0d

7gα

κ3ν
, γ̂ =

κγ

Q0d
.

Here Pr is the Prandtl number and R2 is a Rayleigh number. The dimensionless

perturbation equations are (after omitting all stars)

ui, t + uj ui,j = −π, i + ∆ui + 2Rf1(z)θki + Prkiθ
2, (10.2.5)

ui,i = 0, (10.2.6)

Pr(θ,t + ui θ, i) = −Rf2(z)w +∆θ, (10.2.7)

where w = u3, f1(z) = γ̂(z−1)− δ+ e− 3
2
− ez + z+ 1

2
z2, and f2(z) = 1+ z+ γ̂− ez.

Equations (10.2.5)-(10.2.7) hold on R2× [0, 1] and the boundary conditions adopted

are

u = v = w = 0, (10.2.8)

θ = 0, at z = 1, (10.2.9)

∂θ

∂z
= 0, at z = 0, (10.2.10)

u, θ, π have a periodic structure in x, y. (10.2.11)
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10.3 Linear and nonlinear energy stability theo-

ries

Linear instability results for stationary convection are obtained via the application

of standard procedures to the linearized version of Eqs. (10.2.5)-(10.2.7). Straughan

[194] found the critical Rayleigh number of linear theory by determining the lowest

eigenvalue of the system

(D2 − a2)2W = 2f1(z)Ra
2Θ, (10.3.12)

(D2 − a2)Θ = Rf2(z)W, (10.3.13)

on z ∈ (0, 1). Here D = d/dz , w = Wei(mx+ny), θ = Θei(mx+ny) and a2 = m2 +n2 is

a horizontal wavenumber. These equations are subject to the boundary conditions

W = DW = Θ = 0, at z = 0, 1. (10.3.14)

We solve the eigenvalue system (10.3.12) and (10.3.14) for σ numerically using the

Chebyshev collocation method-1.

Straughan [194] presented a nonlinear energy stability analysis for arbitrary ini-

tial perturbations. They employed a weight in the temperature part of the energy

in order to eliminate the nonlinearities that are introduced through the equation

of state and thereby obtained stability results that were not amplitude dependent.

Their eigenvalue problem of nonlinear theory is

2(D2 − a2)2W = −REM(z)a2Θ, (10.3.15)

2λ̂(D2 − a2)Θ− 4DΘ = REM(z)W, (10.3.16)

where M(z) = −f1(z) + λ̂
2
f2(z) , λ̂ = λ − 2z and λ is a parameter to be chosen.

Then the lowest eigenvalue RE(a
2;λ) can be found from

RaE = max
λ>2

min
a2

R2
E(a

2;λ).

For more detail about derivation of these system, see Straughan [194]. To achieve

this, we have used again the Chebyshev collocation method-1. In our use of the

Chebyshev collocation method, we used between 20 and 30 polynomials. Usually 25
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was found to be sufficient but convergence was checked by varying the number of

polynomials and by examining the convergence of the associated eigenvector (which

yields the approximate associated eigenfunction).

10.4 Velocity-vorticity formulation

The mathematical formulations that are commonly used to simulate three-dimensional

incompressible viscous flows include the primitive variables [96] (velocity-pressure),

vorticity-vector potential [9, 123] and vorticity-velocity [42] formulations. As indi-

cated in an overview of these formulations by Gresho [69], each formulation has

its own advantages as well as shortcomings with respect to the others. Both the

vorticity-vector potential formulations and the vorticity-velocity approach have a

distinct advantage over the velocity-pressure formulation in that the pressure need

not be calculated explicitly.

In this paper, we present an efficient, stable, and accurate finite difference

schemes in the vorticity-vector potential formulation for computing the dynamics of

viscous incompressible fluids. The emphasis is on three dimensions and nonstaggered

grids. We introduce a second-order accurate method based on the vorticity-vector

potential formulation on the nonstaggered grid whose performance on uniform grids

is comparable with the finite scheme. We will pay special attention to how accu-

rately the divergence-free conditions for vorticity, velocity, and vector potential are

satisfied. We will derive the three-dimensional analog of the local vorticity boundary

conditions.

By using the curl operator to Equation (10.2.5), one gets the following dimen-

sionless form of the vorticity transport equation:

ω,t + (v · ∇)ω = (ω · ∇)v + ∆ω + 2R∇× F (z)θk+ Pr∇× kθ2, (10.4.17)

where the vorticity vector ω = (ξ1, ξ2, ξ3) is defined as

ω = ∇× v. (10.4.18)

To calculate velocity from vorticity, it is convenient to introduce a vector potential

ψ = (ψ1, ψ2, ψ3), which may be looked upon as the three-dimensional counterpart
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of a two-dimensional stream function. The vector potential are defined by

v = ∇× ψ. (10.4.19)

It easy to show the existence of such a vector potential for a solenoidal vector field

(∇ · v = 0). Such a vector potential can be required to be solenoidal, i.e.,

∇ · ψ = 0. (10.4.20)

Substituting Eq. (10.4.19) in Eq. (10.4.18) and using Eq. (10.4.20) yields

∇2ψ = −ω. (10.4.21)

The set of equations (10.2.7), (10.4.17), (10.4.19) and (10.4.21) with appropriate

boundary conditions were found to be a convenient form for numerical computations.

The boundary conditions for the vector potential are given below

∂ψ1

∂x
= ψ2 = ψ3 = 0, at x = 0, 1, (10.4.22)

ψ1 =
∂ψ2

∂y
= ψ3 = 0, at y = 0, 1, (10.4.23)

ψ1 = ψ2 =
∂ψ3

∂z
= 0, at z = 0, 1, (10.4.24)

The boundary conditions on vorticity follow directly and may expressed as

ξ1 = 0, ξ2 = −∂w
∂x

, ξ3 =
∂v

∂x
, at x = 0, 1, (10.4.25)

ξ1 =
∂w

∂y
, ξ2 = 0, ξ3 = −∂u

∂y
, at y = 0, 1, (10.4.26)

ξ1 = −∂v
∂z
, ξ2 =

∂u

∂z
, ξ3 = 0, at z = 0, 1. (10.4.27)

10.5 Numerical schemes

The first step in the numerical computational is to give an initial values for the vortic-

ity vectors ξn1ijk, ξ
n
2ijk, ξ

n
3ijk, i, j, k = 0, 1, ...,m. Next, the Poisson equations (10.4.21)

are discretized in space using an implicit scheme as follows

(δ2x + δ2y + δ2z)ψ
n+1
1ijk = −ξn1ijk, (10.5.28)
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(δ2x + δ2y + δ2z)ψ
n+1
2ijk = −ξn2ijk, (10.5.29)

(δ2x + δ2y + δ2z)ψ
n+1
3ijk = −ξn3ijk. (10.5.30)

where δ2x, δ
2
y , δ

2
z are the second-order central difference operators, which are define as

δ2xϕ =
ϕi+1jk − 2ϕijk + ϕi−1jk

(∆x)2
,

δ2yϕ =
ϕijk+1 − 2ϕijk + ϕij−1k

(∆y)2
,

δ2zϕ =
ϕijk+1 − 2ϕijk + ϕijk−1

(∆z)2
.

We used the Gauss-Seidel iteration method to evaluate ψn+1
1ijk , ψ

n+1
2ijk , ψ

n+1
3ijk , i, j, k =

1, ...,m−1 from Eqs. (10.5.28), (10.5.29), (10.5.30), respectively. The next step is to

discretize Eqs.(10.4.22)-(10.4.24) to evaluate the ψn+1
10jk, ψ

n+1
1mjk, ψ

n+1
2i0k , ψ

n+1
2imk, ψ

n+1
3ij0 , ψ

n+1
3ijm,

i, j, k = 0, ...,m i.e. we used Eqs.(10.4.22)-(10.4.24) to evaluate the potential vectors

at the boundary. Now, the velocity vector can be calculated explicitly by using a

second order finite difference scheme to Eq.(10.4.19) as follows:

un+1
ijk = δyψ

n+1
3ijk − δzψ

n+1
2ijk , (10.5.31)

vn+1
ijk = δzψ

n+1
1ijk − δxψ

n+1
3ijk , (10.5.32)

un+1
ijk = δxψ

n+1
2ijk − δyψ

n+1
1ijk , (10.5.33)

i, j, k = 1, ...,m− 1,

where δx, δy, δz are the first-order central difference operators, which are define as

δxϕ =
ϕi+1jk − ϕi−1jk

2∆x
,

δyϕ =
ϕij+1k − ϕij−1k

2∆y
,

δzϕ =
ϕijk+1 − ϕijk−1

2∆z
.

The vorticity transport equations (10.4.17) are discretized in time using the explicit

scheme. The discretized form of the vorticity transport equations (10.4.17) for the

three vorticity components and energy equation (10.2.7) can be written as

ξn+1
1ijk − ξn1ijk

∆t
+ unijkδxξ

n
1ijk + vnijkδyξ

n
1ijk + wn

ijkδzξ
n
1ijk
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= ξn1ijkδxu
n
ijk+ξ

n
2ijkδyu

n
ijk+ξ

n
3ijkδzu

n
ijk+(δ2x+δ

2
y+δ

2
z)ξ

n
1ijk+2Rf1kδyθ

n
ijk+2Prθnijkδyθ

n
ijk,

(10.5.34)

ξn+1
2ijk − ξn2ijk

∆t
+ unijkδxξ

n
2ijk + vnijkδyξ

n
2ijk + wn

ijkδzξ
n
2ijk

= ξn1ijkδxv
n
ijk+ξ

n
2ijkδyv

n
ijk+ξ

n
3ijkδzv

n
ijk+(δ2x+δ

2
y+δ

2
z)ξ

n
2ijk−2Rf1kδxθ

n
ijk−2Prθnijkδxθ

n
ijk,

(10.5.35)
ξn+1
3ijk − ξn3ijk

∆t
+ unijkδxξ

n
3ijk + vnijkδyξ

n
3ijk + wn

ijkδzξ
n
3ijk

= ξn1ijkδxw
n
ijk + ξn2ijkδyw

n
ijk + ξn3ijkδzw

n
ijk + (δ2x + δ2y + δ2z)ξ

n
2ijk, (10.5.36)

Pr(
θn+1
ijk − θnijk

∆t
+unijkδxθ

n
ijk+ v

n
ijkδyθ

n
ijk+w

n
ijkδzθ

n
ijk) = −Rf2kwn

ijk+(δ2x+ δ
2
y + δ

2
z)θ

n
ijk,

(10.5.37)

i, j, k = 1, ...,m− 1,

The temperature on the boundary can be compute explicitly using Eqs. (10.2.10)

- (10.2.11). However, a second order implicit technique has been used to evaluated

the vorticity vector at the boundary form Eqs.(10.4.25)-(10.4.27).

10.6 Results and conclusions

In this section, RaL, is the critical Rayleigh number for linear instability and RaE

similarly denotes the global nonlinear stability threshold. The corresponding critical

wavenumbers of the linear instability will be denoted by a2L. In Table 10.1, we

present the results of numerical results of linear instability and nonlinear stability

analyses. The dimensions of the box, which are calculated according to the critical

wavenumber, are shown in Table 10.1. In this table Lx and Ly are box dimensions

in the x and y directions, respectively, while, the box dimension in z direction is

always equal 1. we select a solution so that these two values are similar to avoid

any possible stabilisation effect from of walls.

As we mention in section 2, we assume that the perturbation fields (u, θ, π) are

periodic in the x and y direction and denote by Ω = [0, 2π/ax] × [0, 2π/ay] × [0, 1]

the periodicity cell, where ax and ay are the wavenumbers in the x and y directions,

respectively. ax and ay are evaluated according to the critical wavenumbers a2L where
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a2L = a2x+a
2
y, then we computed Lx = 2π/ax and Ly = 2π/ay. The values of Lx and

Ly in Table 10.1 may be rearranged to yield the number of possible solutions for

each value of the critical wavenumber. However, we select a solution so that these

two values are similar to avoid any possible stabilisation effect from of walls.

For numerical solutions of the three dimensional problem, we used ∆t = 5×10−5

and ∆x = ∆y = ∆z = 0.02. The convergence criteria has been selected to make

sure that the solutions arrive at an steady state. The convergence criteria is

φ = max
i,j,k

{|ξn+1
1 ijk − ξn1 ijk|, |ξn+1

2 ijk − ξn2 ijk|, |ξn+1
3 ijk − ξn3 ijk|, |θn+1

ijk − θnijk|},

and we select φ = 10−6. The program will continue computing the results of the

temperature, velocity, vorticity and potential vector for new time levels until the

results satisfy the convergence criteria, otherwise, we stop the program after 80000

time levels, i.e at the time τ = 4.

To solve eqs. (10.5.28)- (10.5.30) using Gauss-Seidel iteration method, in the first

time level we give an initial values to potential vector and we denote ψ1,k
1 ijk, ψ

1,k
2 ijk,

ψ1,k
3 ijk. Then using these initial values we compute new values which we denote by

ψ1,k+1
1 ijk , ψ1,k+1

2 ijk , ψ1,k+1
3 ijk and then we use these values to evaluated new values and the

program will continue in this process until satisfying the convergence criteria which

is

η = max
i,j,k

{|ψ1,k+1
1 ijk − ψ1,k

1 ijk|, |ψ
1,k+1
2 ijk − ψ1,k

2 ijk|, |ψ
1,k+1
3 ijk − ψ1,k

3 ijk|} < 10−5.

In the next time levels, the values of ψ1 ijk, ψ2 ijk, ψ3 ijk in the time level n will be

the initial values to the next time level.

In order to display the numerical results clearly, the temperature, velocity and

vorticity contours are plotting in Figures 10.1 and 10.2 at z = 0.5, τ = 4, δ = −1,

γ̂ = 0.3 and R2 = 155000, with mesh size of 71 × 71 × 51. In these Figures, the

temperature and velocity contours are presented at the time level τ = 4 as as it is

impossible to arrive at any steady state. Figure 10.1 shows the contours of u, v, w,

and θ at z = 0.5 in (a), (b), (c) and (d) respectively. The contours of ξ1, ξ2 and ξ3

at z = 0.5 are presented in Figure 10.2 in (a), (b) and (c), respectively.

In Table 10.2- 10.8, we show the summery of the numerical results where we

introduce the maximum and minimum values of temperature, velocity, vorticity and
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γ̂ RaL a2L RaE a2E Lx Ly

0.28 114766.015 35.003 59632.100 16.818 1.5 1.5

0.29 133165.864 37.399 64280.001 16.625 1.5 1.4

0.3 154816.654 39.981 68802.297 16.446 1.4 1.4

0.31 180365.749 42.764 73174.607 16.282 1.6 1.2

0.32 210613.017 45.767 77376.734 16.132 1.7 1.1

0.34 289395.588 52.556 85204.774 15.868 1.4 1.1

0.36 402309.378 60.608 92178.900 15.642 1.2 1.1

Table 10.1: Critical Rayleigh and wavenumbers RaL, RaE, a
2
L, a

2
E at

δ = −1.

potential vectors. In Table 10.2, we select δ = −1, γ̂ = 0.28, then according to the

stability analysis we have RaL = 114766.015, RaE = 59632.1. It clear there is big

difference between the critical Rayleigh numbers of linear and nonlinear theories.

From Table 10.2, for R2 = 107000, we can see that the values of temperature, ve-

locity, vorticity and potential vectors satisfy the convergence criteria at τ = 1.94845

while for R2 = 111000, the program need τ = 2.5697 to arrive at the steady stat

solutions. However, for R2 = 116000, we can see that the solutions can not arrive

at any steady state and the program stopes at τ = 4. For R2 = 116000, we let the

program work to long time to see the behaviors of the solution for a long time and

to see if it is possible that the solutions could arrive at any steady state. We see that

the values of velocities increased at τ = 8, then the values decreased at τ = 12 and

the velocities continue in this oscillation. Here, according to the numerical results,

the linear instability threshold is the actual threshold, i.e. the solutions arrive to

the basic steady state before the linear instability threshold. However, the results

of Tables 10.3-10.8 explain that the stability behavior is absolutely similar to the

stability behavior of Table 10.2, as we found that the linear instability threshold is

the actual threshold.
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R2 = 107000 R2 = 111000 R2 = 116000

τ = 1.94845 τ = 2.5697 τ = 4

Max Min Max Min Max Min

u 1.99E-04 -1.99E-04 2.78E-04 -2.78E-04 0.01647 -0.01646

v 2.00E-04 -1.99E-04 2.78E-04 -2.78E-04 0.01648 -0.01646

w 4.10E-04 -1.00E-04 5.73E-04 -1.40E-04 0.03394 -0.00823

ξ1 4.48E-03 -4.47E-03 6.29E-03 -6.27E-03 0.37587 -0.37562

ξ2 4.47E-03 -4.48E-03 6.27E-03 -6.28E-03 0.37563 -0.37586

ξ3 1.91E-04 -1.92E-04 2.53E-04 -2.53E-04 0.01340 -0.01340

ψ1 3.56E-05 -3.57E-05 4.95E-05 -4.95E-05 0.00291 -0.00291

ψ2 3.57E-05 -3.56E-05 4.95E-05 -4.95E-05 0.00291 -0.00291

ψ3 3.15E-07 -3.15E-07 4.07E-07 -4.08E-07 0.00002 -0.00002

θ 1.77E-04 -3.70E-05 2.47E-04 -5.10E-05 0.01467 -0.00302

Table 10.2: Summary of numerical results for δ = −1, γ̂ = 0.28, RaL =

114766.015, RaE = 59632.1, Lx = 1.5 and Ly = 1.5.
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R2 = 125000 R2 = 131000 R2 = 136000

τ = 1.8639 τ = 3.5053 τ = 4

Max Min Max Min Max Min

u 1.83E-04 -1.82E-04 3.94E-04 -3.93E-04 0.06589 -0.06585

v 1.71E-04 -1.71E-04 3.67E-04 -3.66E-04 0.06115 -0.06113

w 3.64E-04 -8.89E-05 7.83E-04 -1.91E-04 0.13067 -0.03204

ξ1 3.98E-03 -3.98E-03 8.63E-03 -8.62E-03 1.45141 -1.45118

ξ2 4.22E-03 -4.23E-03 9.18E-03 -9.20E-03 1.55105 -1.55163

ξ3 2.61E-04 -2.62E-04 5.23E-04 -5.24E-04 0.08371 -0.08374

ψ1 2.96E-05 -2.97E-05 6.32E-05 -6.33E-05 0.01050 -0.01051

ψ2 3.18E-05 -3.17E-05 6.81E-05 -6.79E-05 0.01133 -0.01133

ψ3 4.24E-07 -4.27E-07 8.24E-07 -8.28E-07 0.00013 -0.00013

θ 1.57E-04 -3.27E-05 3.39E-04 -6.92E-05 0.05672 -0.01166

Table 10.3: Summary of numerical results for δ = −1, γ̂ = 0.29, RaL =

133165.864, RaE = 64280.001, Lx = 1.5 and Ly = 1.4.
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R2 = 145000 R2 = 150000 R2 = 155000

τ = 1.85045 τ = 2.64285 τ = 4

Max Min Max Min Max Min

u 1.75E-04 -1.75E-04 2.68E-04 -2.68E-04 0.00205 -0.00205

v 1.75E-04 -1.75E-04 2.68E-04 -2.68E-04 0.00205 -0.00205

w 3.59E-04 -8.62E-05 5.52E-04 -1.32E-04 0.00423 -0.00101

ξ1 4.19E-03 -4.19E-03 6.48E-03 -6.47E-03 0.04992 -0.04990

ξ2 4.19E-03 -4.19E-03 6.47E-03 -6.48E-03 0.04990 -0.04992

ξ3 1.78E-04 -1.78E-04 2.56E-04 -2.56E-04 0.00183 -0.00183

ψ1 2.95E-05 -2.96E-05 4.51E-05 -4.52E-05 0.00034 -0.00034

ψ2 2.96E-05 -2.95E-05 4.52E-05 -4.51E-05 0.00034 -0.00034

ψ3 2.58E-07 -2.58E-07 3.66E-07 -3.66E-07 2.57E-06 -2.57E-06

θ 1.56E-04 -3.26E-05 2.40E-04 -4.95E-05 0.00184 -0.00038

Table 10.4: Summary of numerical results for δ = −1, γ̂ = 0.3, RaL =

154816.654, RaE = 68802.297, Lx = 1.4 and Ly = 1.4.
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R2 = 169000 R2 = 179000 R2 = 183000

τ = 1.79825 τ = 3.76835 τ = 4

Max Min Max Min Max Min

u 1.69E-04 -1.70E-04 4.00E-04 -4.24E-04 0.06425 -0.07184

v 1.18E-04 -1.18E-04 2.83E-04 -2.83E-04 0.04586 -0.04586

w 2.96E-04 -9.81E-05 7.14E-04 -2.77E-04 0.11717 -0.04979

ξ1 3.04E-03 -3.04E-03 7.36E-03 -7.36E-03 1.20230 -1.20229

ξ2 4.20E-03 -4.18E-03 1.07E-02 -1.01E-02 1.80962 -1.62091

ξ3 4.74E-04 -4.71E-04 1.16E-03 -1.15E-03 0.18827 -0.18816

ψ1 1.93E-05 -1.93E-05 4.60E-05 -4.60E-05 0.00741 -0.00741

ψ2 2.77E-05 -2.79E-05 6.50E-05 -6.90E-05 0.01043 -0.01169

ψ3 7.09E-07 -7.05E-07 1.68E-06 -1.67E-06 0.00028 -0.00028

θ 1.28E-04 -3.94E-05 3.08E-04 -1.11E-04 0.05069 -0.02055

Table 10.5: Summary of numerical results for δ = −1, γ̂ = 0.31, RaL =

180365.749, RaE = 73174.607, Lx = 1.6 and Ly = 1.2.
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R2 = 197000 R2 = 206000 R2 = 216000

τ = 1.55835 τ = 3.0146 τ = 4

Max Min Max Min Max Min

u 1.56E-04 -1.70E-04 3.64E-04 -5.09E-04 3.96811 -5.99826

v 8.74E-05 -8.74E-05 2.30E-04 -2.30E-04 3.72197 -3.72072

w 2.56E-04 -1.44E-04 6.74E-04 -5.30E-04 4.57103 -10.88875

ξ1 2.42E-03 -2.42E-03 6.42E-03 -6.42E-03 93.56001 -93.53506

ξ2 4.40E-03 -4.07E-03 1.32E-02 -9.68E-03 149.12978 -107.62974

ξ3 6.22E-04 -6.19E-04 1.77E-03 -1.77E-03 17.70996 -17.73222

ψ1 1.39E-05 -1.39E-05 3.66E-05 -3.66E-05 0.64347 -0.64367

ψ2 2.46E-05 -2.69E-05 5.67E-05 -8.05E-05 0.64702 -0.99582

ψ3 8.37E-07 -8.33E-07 2.39E-06 -2.38E-06 0.02736 -0.02739

θ 1.09E-04 -5.94E-05 2.89E-04 -2.22E-04 1.93564 -3.88420

Table 10.6: Summary of numerical results for δ = −1, γ̂ = 0.32, RaL =

210613.017, RaE = 77376.734, Lx = 1.7 and Ly = 1.1.
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R2 = 272000 R2 = 282000 R2 = 291000

τ = 1.67595 τ = 2.7606 τ = 4

Max Min Max Min Max Min

u 1.33E-04 -1.33E-04 2.40E-04 -2.40E-04 0.03775 -0.03912

v 9.98E-05 -9.96E-05 1.79E-04 -1.79E-04 0.02802 -0.02801

w 2.51E-04 -7.33E-05 4.54E-04 -1.34E-04 0.07173 -0.02343

ξ1 2.93E-03 -2.93E-03 5.30E-03 -5.29E-03 0.83860 -0.83848

ξ2 3.75E-03 -3.76E-03 6.86E-03 -6.83E-03 1.12349 -1.07741

ξ3 3.90E-04 -3.91E-04 6.89E-04 -6.89E-04 0.10748 -0.10737

ψ1 1.54E-05 -1.54E-05 2.75E-05 -2.75E-05 0.00431 -0.00431

ψ2 2.04E-05 -2.04E-05 3.67E-05 -3.67E-05 0.00577 -0.00598

ψ3 4.71E-07 -4.72E-07 8.15E-07 -8.13E-07 0.00013 -0.00013

θ 1.06E-04 -2.77E-05 1.92E-04 -5.14E-05 0.03026 -0.00886

Table 10.7: Summary of numerical results for δ = −1, γ̂ = 0.34, RaL =

289395.588, RaE = 85204.774, Lx = 1.4 and Ly = 1.1.
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R2 = 379000 R2 = 395000 R2 = 404000

τ = 1.69925 τ = 3.8083 τ = 4

Max Min Max Min Max Min

u 1.19E-04 -1.18E-04 3.14E-04 -3.13E-04 0.12174 -0.12169

v 1.08E-04 -1.08E-04 2.85E-04 -2.85E-04 0.11014 -0.11013

w 2.52E-04 -6.04E-05 6.67E-04 -1.60E-04 0.25815 -0.06217

ξ1 3.44E-03 -3.44E-03 9.18E-03 -9.18E-03 3.58302 -3.58280

ξ2 3.72E-03 -3.73E-03 9.96E-03 -9.98E-03 3.90202 -3.90308

ξ3 2.29E-04 -2.31E-04 5.76E-04 -5.79E-04 0.21958 -0.21970

ψ1 1.62E-05 -1.63E-05 4.27E-05 -4.28E-05 0.01651 -0.01651

ψ2 1.79E-05 -1.78E-05 4.71E-05 -4.69E-05 0.01822 -0.01821

ψ3 2.36E-07 -2.39E-07 5.78E-07 -5.82E-07 0.00022 -0.00022

θ 1.04E-04 -2.23E-05 2.75E-04 -5.82E-05 0.10657 -0.02240

Table 10.8: Summary of numerical results for δ = −1, γ̂ = 0.36, RaL =

402309.378, RaE = 92178.900, Lx = 1.2 and Ly = 1.1.
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Figure 10.1: The contours map at z = 0.5. τ = 4, δ = −1, γ̂ = 0.3, R2 = 155000,

Lx = 1.4, Ly = 1.4, ∆t = 5× 10−5,∆x = ∆y = ∆z = 0.02. (a) u, (b) v, (c) w, (d) θ.
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Figure 10.2: The contours map at z = 0.5, τ = 4, δ = −1, γ̂ = 0.3, R2 = 155000,

Lx = 1.4, Ly = 1.4, ∆t = 5× 10−5,∆x = ∆y = ∆z = 0.02. (a) ξ1, (b) ξ2, (c) ξ3.
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Figure 10.3: The required time to arrive at steady state versus R at δ = −1 a. γ̂ = 0.28,

b. γ̂ = 0.29, c. γ̂ = 0.3, d. γ̂ = 0.31 e. γ̂ = 0.32, f. γ̂ = 0.34.
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Conclusions

The main aims of this thesis have been to investigate convection in fluid and porous

media, and to develop efficient numerical methods to improve on the more commonly

used techniques for these types of problems. Linear instability and nonlinear stability

analyses have been employed to assess critical thresholds for the onset and type

of convection involved, where a variety of numerical methods have been utilised

including those developed in the thesis.

In Chapter 2, the problem of convection in a variable gravity field with magnetic

field effect is studied by using methods of linear instability theory and nonlinear

energy theory. Three numerical methods have been applied to get the numerical

results of our problem, namely Chebyshev tau, finite difference (FD) and High order

finite difference (HFD). One of the key reasons to apply different numerical methods

is to see the advantages and disadvantages of each method when it is used to find the

solution of linear and nonlinear problems. The advantage of Chebyshev tau method

is that it can achieve the required accuracy using a small number of polynomials.

However, the (FD) method need a large number of divisions to reach the required

accuracy, whilst the (HFD) method can reach to the desired accuracy by using

fewer divisions. However, in the problems of variable coefficients, the Chebyshev

tau method is complicated to implement as this method depends on writing all

functions in the system of equations in the form of Chebyshev polynomials, which

could be very difficult in some cases.

Chapter 3 analyses the problem of convective movement of a reacting solute in
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a viscous incompressible fluid occupying a plane layer and subjected to a vertical

magnetic field. The results show the stabilizing effect of increasing the magnetic

field and the chemical reaction on the critical Rayleigh number. We have chosen

to employ a finite difference method to solve the eigenvalue system rather than

Chebyshev tau or compound matrices, such as in Dongarra et al. [43], Straughan

and Walker [201–203]. This is largely due to the finite difference method leading

to matrices of the eigenvalue system that are non-singular and so we may employ

LU decomposition, unlike the D2 and D methods of Dongarra et al. [43] which

necessarily have singular matrices and so necessitate use of the QZ algorithm. In

addition, we found no occurrence of spurious eigenvalues which frequently arises

with the Chebyshev tau method, cf., Dongarra et al. [43].

In Chapter 4, we study the problem of double-diffusive convection in a reacting

fluid and magnetic field effect based internal heat source. We found that when the

layer is heated above and salted below, the system is always stable. For the case

where the layer is salted above and heated below, the spectrum σ is always real.

However, when the layer is salted and heated from below, the spectrum σ has a

complex value and the linear analysis stability is difficult because it includes an

oscillatory convection. We found that the values of wave numbers for oscillatory

convection are very close to the values of wave numbers for stationary convection,

thus the computations of the critical Rayleigh numbers was especially difficult in the

period around the intersection points. The results demonstrate the stabilizing effect

of the magnetic field and the chemical reaction on the double-diffusive convection

problem.

Further work could assess the practicality of developing numerical techniques for

evaluating the eigenvalues. Now, we are developing the Newton-Raphson technique

instead of the Secant method to evaluate the eigenvalues.

The problem of Poiseuille flow in a channel which is filled with a porous medium

saturated with a linear viscous fluid has been studied in Chapter 5. We analyse

when instability will commence and determine the critical Reynolds number as a

function of the slip coefficient. For this problem, a referee has raised the interesting

question as to how accurate we expect the linear instability results to be compared
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to a nonlinear theory. This is one of the major problems in Poiseuille flow theory

even in a clean fluid with no-slip boundary conditions, see e.g. Straughan [195],

Chapter 8. Linear instability results guarantee that the solution will be unstable

for a Rayleigh number which exceeds the linear threshold. It does not guarantee

stability if the Rayleigh number is below this. One can sometimes calculate nonlinear

energy stability thresholds which will guarantee nonlinear stability if the Rayleigh

number is below this threshold although they say nothing about instability. We

can calculate nonlinear energy stability thresholds for the problem considered here,

just as was done in a porous medium with no-slip boundary conditions by Hill &

Straughan [87], and as was done for a clear fluid with slip boundary conditions by

Webber & Straughan [222]; the latter results are also carefully reported in Chapter

3 of Webber [223]. However, for the present problem the nonlinear energy stability

thresholds which do guarantee the solution is stable, are well below those of linear

theory. This is one area where nonlinear energy stability theory is not so useful.

Such scenarios are not unknown in other areas of fluid mechanics, cf. Straughan

[198], where exactly the same discrepancy is found between the linear instability

boundaries and the global nonlinear stability thresholds. This does mean that there

is a potential area between the two boundaries in which sub-critical instabilities

may arise. In future, we intend, to compute a full three-dimensional simulation

to calculate if and when sub-critical instabilities may arise. For many convection

problems, ongoing computations do suggest there is a region of sub-critical instability

below the linear instability threshold, but well above the nonlinear energy stability

boundary.

In Chapter 6, we solve the stability problem of standard thermal convection in

a thin fluid layer with free-free, slip-slip, and fixed-slip boundary conditions. We

use different numerical methods to check their flexibility and accuracy where we

use the following numerical methods: the second order finite difference method, the

high order finite difference scheme, p order finite element method, the Chebyshev

collocation method-1 and method-2 and Chebyshev tau technique. In conclusion,

we believe that the finite difference and finite element methods are very flexible

methods and we can apply them to solve any problem easily. However, the accuracy
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of these methods is fewer than the accuracy of the Chebyshev methods. However,

Chebyshev tau and Chebyshev collocation-1 are very accurate methods but not

flexible. Thus, we strongly recommend the use of Chebyshev collocation method-2

as we found that this method was very accurate and flexible.

The purpose of following three chapters was to derive a priori continuous depen-

dence estimates for some fundamental models. Chapter 7 deals with two fundamen-

tal models for convection in a reacting porous medium with magnetic field effect.

We demonstrate that the solution depends continuously on changes in the chemical

reaction and the electrical conductivity coefficients. We use Chapter 8 to deal with

two fundamental models for convection in a reacting fluid and porous medium with

magnetic field effect. We demonstrate that the solution depends continuously on

changes in the chemical reaction and the electrical conductivity coefficients. The

continuous dependence is unconditional in two-dimensions but conditional in three-

dimensions. Finally, in Chapter 9, the Darcy model is used to describe the double

diffusive flow of a fluid containing a solute. An a priori result is established where-

by we show the solution depends continuously on changes in the magnetic and the

gravity vector coefficients.

The problem of a layer of non-Boussinesq fluid heated internally (non-uniformly),

with prescribed heat flux on the lower boundary and constant temperature on the

upper surface has been studied in Chapter 10. The validity of both the linear

instability and global nonlinear energy stability thresholds are tested using three

dimensional simulation. Our results show that the linear threshold accurately pre-

dicts the onset of instability in the basic steady state. However, the required time

to arrive at the steady state increases significantly as the Rayleigh number tends to

the linear threshold. Numerically, we find that the convection has three different

patterns. The first picture, where R2 is less than RaL, is that the temperature,

velocity, vorticity and potential perturbations vanish, sending the solution back to

the steady state, before the linear thresholds are reached. The second picture, where

R2 is close to RaL, is that solutions can tend to a steady state which is different to

the basic steady state. In the third picture, where R2 > RaL, the solution does not

arrive at any steady state and oscillate.
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Although this thesis has concentrated on convection problems, the new methods

presented can be adapted to many other classes of stability problem in Continuum

Mechanics. For example, stability in fluid and porous media with a different gov-

erning law such as that of viscoelastic flows, and stability problems in elasticity or

thermoelasticity.
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[165] S. Rionero (1967), Sulla stabilità asintotica in media in magnetoidrodinamic,

Annali di Matematica Pura ed Applicata 76, 75-92.
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