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Mean curvature flow with a Neumann boundary

condition in flat spaces

Abstract

In this thesis I study mean curvature flow in both Euclidean and Minkowski

space with a Neumann boundary condition.

In Minkowski space I show that for a convex timelike cone boundary condition,

with compatible spacelike initial data, mean curvature flow with a perpendicular

Neumann boundary condition exists for all time. Furthermore, by a blowdown

argument I show convergence as t → ∞ to a homothetically expanding hyperbolic

hyperplane.

I also study the case of graphs over convex domains in Minkowski space. I obtain

long time existence for spacelike initial graphs which are taken by mean curvature

flow with a Neumann boundary condition to a constant function as t→∞.

In Euclidean space I consider boundary manifolds that are rotational tori where

I write t for the unit vector field in the direction of the rotation. If the initial

manifold M0 is compatible with the boundary condition, and at no point has t as a

tangent vector, then mean curvature flow with a perpendicular Neumann boundary

condition exists for all time and converges to a flat cross-section of the boundary

torus. I also discuss other constant angle boundary conditions.
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Chapter 0

Introduction

Geometric flows have been of great interest in recent years, successfully proving

many new results in differential geometry and topology. Mean Curvature Flow

(MCF) is one such flow, and I begin this introduction with a qualitative description

of the simplest incarnation of this, namely the curve shortening flow. In the curve

shortening flow, we start with a smooth embedded curve in the plane γ0 : S1 → R2,

and look for a 1–parameter family of curves γ : S1 × [0, T ]→ R2 such thatγ(θ, 0) = γ0(θ) ∀θ ∈ S1

∂γ
∂t

= −κν ∀(θ, t) ∈ S1 × [0, T ]

where ν is a normal to the embedded curve and κ is the curvature on the curve with

respect to ν. We refer to the interval [0, T ] as the time interval, and imagine that

the curve is deformed over time.

For example, suppose that γ0 is a circle of radius r0. Then under the effect of

curve shortening flow, easy calculations (see Section 1.2.2 for similar calculations)

show that this circle will remain a circle but its radius will become smaller and

smaller until at time T =
r2
0

2
the circle will become a point. Indeed, it turns out that

this behaviour is true of all smooth initial curves bounding convex regions: If we

flow such a curve then the flow exists for some finite T , and at time T the solution

will have shrunk down to a single point p.

So far so good, but we want to understand exactly how the curve becomes a

point. We will do this by blowing up the solution by dilations around the point p.

1
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At each time t we dilate about the point p by some factor λ(t) so that the area

enclosed by the dilated curve is equal to 1. We also define a new time variable,

s = −1
2

log( 1
λ(t)

). This new time interval is increasing with respect to t and has the

property that when t → T then s → ∞. We write the dilated curve as γ̃(θ, s). It

was shown by Gage and Hamilton [7] that for convex initial data this renormalised

flow γ̂ converges to a round circle as s → ∞. A vital element of geometric flows is

analysing the singularities that occur.

We describe the surprising work of Grayson [10]. He showed that for any initial

embedded curve γ0 the renormalised curve shortening flow would become convex

before it became singular. This implies that any embedded initial curve acting

under renormalised curve shortening flow will converge to a circle, regardless of its

initial convexity.

Figure 0.1: Curve shortening flow makes any initial closed embedded curve convex

after finite time and then converges to a circle as s→∞

This beautiful result clearly demonstrates that flows can have very desirable

properties. A very general initial curve is taken to a very special one via analysis of

singularities.

I now briefly digress, to mention a related flow proposed by Hamilton [12]: The

incredibly successful Ricci flow. In this the metric on a Riemannian manifold (Mn, g)
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is deformed by the equation

∂

∂t
gij = −2Ricij .

Study of this evolution has been an extremely productive area of mathematics, and

this introduction cannot do it justice. I mention only the most famous

result: Perelman’s [23][24] careful analysis of possible singularities of the Ricci flow

in dimension n = 3, which completed Hamilton’s program proving the Poincaré

conjecture and Thurston’s geometrisation conjecture.

Returning to the main theme, we apply the heat flow equation to the position vec-

tor (see Section 1.2) to get mean curvature flow. Suppose we have an initial manifold

parametrised by F0 : Mn → Rn+1 in (n+ 1)-dimensional Euclidean space, then this

flow is defined by the one parameter family of embeddings F : Mn × [0, T )→ Rn+1

with the properties F(θ, 0) = F0(θ) ∀θ ∈ S1

∂F
∂t

= −Hν ∀(θ, t) ∈ S1 × [0, T ]

where H is the induced mean curvature and ν is the normal. In 1984 Huisken [13]

showed that any initially convex hypersurface in (n+1)–dimensional Euclidean space

will shrink to a point, and if we parabolically renormalise by dilatations about the

singularity (similarly to the curve shortening flow) to hold the area of the flowing

manifold constant then the renormalised flow will converge to a sphere. We remark

here that Grayson’s result does not hold in higher dimensions – much more com-

plicated singularities may occur. A beautiful theory of such singularities has been

built up, still with many open questions, I mention here the work of Sinestrari and

Huisken [16] [17] in which 2–convex initial manifolds are topologically classified.

I will not give a proper overview of this fascinating subject now, but mention a

recent global application of mean curvature flow. This is Guilfoyle and Klingenberg’s

[11] cunning proof of the Carathéodory conjecture. This conjecture states that any

C2 orientable closed strictly convex sphere M2 in R3 must have at least two umbilic

points, that is two points at which the second fundamental form has equal eigenval-

ues. Though this conjecture is simple to state it evaded proof or contradiction for

many years. Guilfoyle and Klingenberg’s method was to move the problem into the
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space of oriented geodesics in R3, that is the semi–Riemannian manifold (TS2,G),

by identifying p ∈ M2 with the geodesic going through p in the direction of the

normal to M2. They then proved

• For any M2 which has only one umbilic, there exists a small deformation of

this manifold such that the deformed manifold will not admit a holomorphic

curve in TS2 with M2 as a boundary condition

• Any convex M2 is the boundary condition for a holomorphic curve in TS2.

and so the existence of a closed convex manifold with only one umbilic leads to

a contradiction. The proof of the second part of this is achieved by flowing a 2-

dimensional disc with boundary in TS2 by mean curvature flow. (TS2,G) is a 4-

dimensional manifold which has signature (2, 2), and so at the boundary 2 boundary

conditions are required. This gives sufficient flexibility that, by choosing carefully

one Neumann and one Dirichlet boundary condition, it is possible to impose asymp-

totic holomorphicity on the flowing manifold. The flow exists for all time, and in

place of analysing a singularity, the question becomes one of what happens as time

t → ∞ (a recurring theme in ambient spaces of nonpositive metric). Guilfoyle and

Klingenberg showed that there exists a sequence ti → ∞ such that on this subse-

quence of times the flowing disc converges to a holomorphic curve with the right

properties, giving the second bullet point.

It is clear that mean curvature flow in semi–Riemannian spaces have applications

to other problems, and also is an interesting subject in its own right. In codimension

one although the Dirichlet problem and the entire problem has been studied (by

Ecker, see [3]), to the authors knowledge until this thesis nothing has been done on

the Neumann problem. I give some initial results on this.

At some point in a thesis every person must ask themselves the following:

0.1 What have I done?

Before going into this I will briefly describe what the Neumann boundary condition

is (following Stahl [26]), see Section 1.2.3 for a full definition. We let Σ be a hyper-
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surface in the ambient space (which will be Euclidean or Minkowski space), which

will be referred to as the boundary manifold. We will be flowing another manifold

with boundary, M , by mean curvature flow. At the boundary we impose two con-

ditions: Firstly we require that the boundary of M , that is ∂M is contained within

Σ. Secondly we require that the normal to the flowing manifold and the normal to

Σ are held at some constant angle, generally π
2
.

There are two main results in this thesis:

The first is concerned with mean curvature flow in Minkowski space Rn+1
1 . Here

I choose a boundary manifold to be a cone of timelike vectors, and flow a disc with

boundary inside this cone with a perpendicular Neumann boundary condition. In

this setting if we assume the boundary cone to be convex, then a solution to mean

curvature flow exists for all time, and moves “upwards” away from the origin. If

we renormalise to hold the area of the flowing disc to be constant then in fact

the solution converges to a hyperbolic hyperplane solution (see Example 1.2.5), the

Minkowski equivalent of the homothetic sphere solution. I therefore describe this as

a Minkowski–Neumann equivalent of [13]. This material is contained in Chapter 3.

The second main result is on mean curvature flow with a Neumann boundary

condition in Euclidean space Rn+1. We take the boundary manifold to be any

smooth torus of rotation and again flow a disc inside the torus with a perpendicular

Neumann boundary condition. We start with any manifold M0 which satisfies the

boundary condition and whose normal ν0 is nowhere perpendicular to the rotational

vector field inside the torus. By modifying the Stampaccia iteration method in [14]

I have shown that under mean curvature flow with a Neumann boundary condition

any such M0 will converge to a flat sheet perpendicular to the rotational vector field.

This material is contained in Chapter 5, also see Figure 0.2.

Additional results are contained in Chapter 4 where I considered graphical mean

curvature flow in Rn+1
1 , and showed that mean curvature flow inside a convex cylinder

with a perpendicular boundary condition exists for all time and converges to a

constant solution. Also in this Chapter there is a brief discussion on integral methods

in Minkowski space.

Also in Chapter 5 I give a sufficient condition on boundary manifolds to get long
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time existence of mean curvature flow with constant angle boundary conditions for

the boundary angle close to π
2
. This is in the form of a rough gradient estimate and

was motivation for looking at the torus problem.

In Chapters 1 and 2 I give some supporting material for these results. In

Chapter 1 I first give some background semi–Riemannian geometry before defin-

ing mean curvature with a Neumann boundary condition in Minkowski space. I also

calculate many of the evolution equations needed in Chapters 3 and 4. In Chapter 2

I give a review of some of the standard quasilinear existence theory needed.
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Chapter 1

Semi–Riemannian geometry and

mean curvature flow

This Chapter sets out some of the basics of semi-Riemannian geometry, before in-

troducing mean curvature flow with a Neumann boundary condition in Minkowski

space.

I include the following brief section on semi–Riemannian geometry to remove

any questions regarding signs in any derived equations. For further information see

[22].

In Section 1.2 we define mean curvature flow with a Neumann boundary con-

dition, and derive many of the evolution equations necessary for later chapters.

Though the evolution equations are stated in [5], few explicit calculations are in-

cluded. Therefore, I give the full details here.

1.1 Semi–Riemannian geometry

I will be working on manifolds contained in Minkowski space, some spacelike some

of indefinite metric. As the signs of the various geometric quantities will be vital

in calculations, care must be taken in derivations to ensure that signs arising from

the spacelikeness or timelikeness of vectors are correct. Also since no consistent

standard is agreed upon in the literature on choices of signs in the definitions of

curvature tensors and other geometrical objects, to avoid confusion I will give the

8



1.1. Semi–Riemannian geometry 9

definitions of these quantities and briefly derive the main results I will need later.

The main reference for the standard semi-Riemannian geometry I will be using here

will be [22] although I use different sign conventions to fit in with the conventions

adopted in papers on mean curvature flow.

1.1.1 Semi–Riemannian manifolds

Definition 1.1.1. Let (Mn, s) be a semi-Riemannian manifold, which for the

purposes of this thesis we will define to be a smooth manifold Mn endowed with

a nondegenerate smooth scalar product s (sometimes called a semi-Riemannian

metric). For V ∈ TpMn we say

• V is spacelike if s(V, V ) > 0

• V is lightlike if s(V, V ) = 0

• V is timelike if s(V, V ) < 0

Additionally, we will describe the tangent space at a point p of a manifold as space-

like if ∀V ∈ TpMn, V is spacelike. If all tangent spaces of a manifold M are spacelike

then we will call M a spacelike manifold. We note that by the nondegeneracy of

the metric spacelikeness of a manifold is equivalent to spacelikeness of the tangent

space at any one point p. We say that a manifold is indefinite if the tangent space

contains both spacelike and timelike vectors.

Remark 1.1.2. A submanifold of a semi-Riemannian manifold is not necessarily

semi-Riemannian. If s is nondegenerate when restricted to the tangent space of

a submanifold M̃ ⊂ M then we say that M̃ is a semi-Riemannian submanifold of

M . The notions of spacelikeness and indefiniteness, now apply to semi-Riemannian

submanifolds.

Remark 1.1.3. A spacelike submanifold is also a Riemannian manifold .

We will say that V ∈ TpM is a unit vector if |s(V, V )| = 1. Note that this allows

timelike unit vectors of length −1 .

An example of such structures is the ambient space I will be using, Minkowski

space.
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Example 1.1.4. We define n-dimensional Minkowski space to be Rn+1
1 , that is Rn+1

equipped with the indefinite metric 〈·, ·〉 where

〈x,y〉 = x1y1 + . . .+ xnyn − xn+1yn+1 .

Identically to Riemannian manifolds, we may define the Levi-Civita connection

as the unique connection which is torsion free and compatible with the metric. We

may also use this to define an induced connection on semi-Riemannian submanifolds,

which again will be the Levi-Civita connection on the submanifold with respect to

the induced metric. As is usual in a coordinate system we define the Christoffel

symbols of the connection by writing

∇ ∂

∂xi

∂

∂xj
= Γkij

∂

∂xk
(1.1)

and we may calculate

Γkij = gkr
(
∂gri
∂xj

+
∂grj
∂xi
− ∂gij
∂xk

)
(1.2)

where gij = s
(
∂
∂xi
, ∂
∂xj

)
and gij is the inverse of this matrix.

We define X(M) to be the set of smooth vector fields on a manifold M , X∗(M)

to be the set of smooth covector fields and F(M) = {f : M → R|f smooth} to be

the set of smooth real valued functions on M .

1.1.2 Tensor fields

Let

A : X∗(M)r × X(M)s → F(M)

then A is a tensor field of type (r, s) if it is F(M)-multilinear. We will denote the

set of all tensors of type (r, s) to be Trs(M) and we will use the convention that

T0
0(M) = F(M). Although we will not go through all the properties of tensors here,

we will mention a few definitions. All that is stated here is standard, and may be

found in more detail in [22, Chapter 2].

Often tensors will be written in coordinate form. For A ∈ Trs(M) then in the

basis { ∂
∂x1 , . . . ,

∂
∂xn
} and corresponding cobasis {dx1, . . . , dxn} we will write

Aj1,...,jri1,...,is
= A(dxj1 , . . . , dxjr ,

∂

∂xi1
, . . . ,

∂

∂xis
) .
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We can define the contraction of A over a, b locally by

Ca
bA

j1,...,jr
i1,...,is

= A
j1,...,ja−1,k,ja+1,...,jr
i1,...,ib−1,k,ib+1,...,is

where for the rest of this section we are using summation convention on repeated

indices. This contraction is again tensorial. We may change the type of tensors

using the metric – for a (r, s+ 1)–tensor we may define a (r + 1, s)–tensor by

Aj1,...,jr,ki1,...,is
= Aj1,...,jri1,...,is,p

gpk .

We will define tensor derivatives firstly for covariant tensors (that is tensors of

type (0, s)):

(∇ZT )(X1, X2, . . . , Xs)

:= Z(T (X1, X2, . . . , Xs))− T (∇ZX1, X2, . . . , Xs)

− T (X1,∇ZX2, . . . , Xs)− . . .− T (X1, X2, . . . ,∇ZXs) .

Remark 1.1.5. This may be considered a (0, s+ 1)-tensor, since this is also tensorial

in Y .

By considering elements of X∗(M) as a (0, 1) tensor then we see we have defined

a covariant derivative on covector fields. Specifically for X = Xidx
i ∈ X∗(M) then

for any ∂
∂xi
, ∂
∂xq
∈ X(M)

(∇ ∂
∂xq
X)(

∂

∂xi
) =

∂Xi

∂xq
−X(∇ ∂

∂xq

∂

∂xi
)

=
∂Xi

∂xq
−XkΓ

k
qi .

We hence have a covariant derivative on X∗(M) defined by ∇ ∂

∂xi
dxj = −Γjqidx

q with

the usual multiplication formula: For f ∈ F(M), X ∈ X∗(M), Y ∈ X(M) then

∇Y fX = Y (f)X + f∇YX.

We may therefore extend the definition of tensor derivatives to tensors of type

(r, s) using the same familiar formula (above) to get a (r, s+ 1)–tensor.

Lemma 1.1.6 (Tensor Product Rule). For A ∈ T2
0(M) and A ∈ T0

2(M) then let

C ∈ T1
1 be defined by Ci

j = AikBkj then

(∇pC)ij = (∇pA)ikBkj + Air(∇pB)rj
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Proof. This is just a question of doing the calculation.

(∇pC)ji =
∂

∂xp
(AikBkj) + ΓipqA

qrBrj − ΓsjpA
iuBus

=

(
∂Air

∂xp
+ ΓipqA

qr

)
Brj + Aik

(
∂Bkj

∂xp
− ΓsjpBks

)
= (∇pA)irBrj − ΓvpwA

wiBvj + Aik(∇pB)kj + AilΓrplBrj

= (∇pA)irBrj + Aik(∇pB)kj .

An analogous statements can be made for tensors C ∈ Tr+q−1
q+s (M) made from

A ∈ Trs(M) and B ∈ Tpq(M). The proof is identical.

If we are on a spacelike manifold we may turn Trs into an inner product space in

a natural way by extending the metric. For A,B ∈ TrS we define〈
Ai1,...,irj1,...js

, Bi1,...,ir
j1,...js

〉
= Ai1,...,irj1,...js

Bk1,...,kr
l1,...ls

gi1,k1 . . . gir,krg
j1,l1 . . . gjn,ln .

Note that we have the Cauchy–Schwarz inequality for this inner product. This is

often used to estimate otherwise complicated expressions. As a simple example let

A ∈ T0
2(M) and X, Y ∈ X(M):

A(X, Y ) = AijX
iY j

= AijgacgbdX
aY bgcigdj

=
〈
Aij, gaigbjX

aY b
〉

≤ |A|
√
gaigbjXaY bgelgfhXeY fglighj

= |A|
√
|X|2|Y |2

= |A||X||Y | .

If we are working on a indefinite manifold although we may define a scalar product

as above this is not generally useful since in applications we will usually need the

Cauchy–Schwarz inequality.

1.1.3 Curvature

Now we will briefly deal with both intrinsic and extrinsic curvatures. Firstly, for

intrinsic curvature: Let M be a semi-Riemannian manifold with scalar product 〈·, ·〉
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and Levi-Civita connection ∇.

For X, Y ∈ X(M) we define the Lie bracket, [X, Y ] ∈ X(M), at p ∈M by

[X, Y ](p)f = (XY − Y X)(p)f

for all f ∈ F(M). As usual we have that this is zero if X and Y are coordinate

directions.

We define

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z .

This is tensorial, and we now define the Riemann curvature tensor on a M is defined

by

R(X, Y, Z, V ) = 〈R(X, Y )Z, V 〉 .

Now for extrinsic curvature. For the rest of this section let (M, 〈−,−〉) be a

semi-Riemannian manifold and (M, g) a semi-Riemmannian submanifold. We will

denote the Levi-Civita connection on these manifolds by ∇ and ∇ respectively. A

quantity on M denoted f will be denoted f for the equivalent quantity on M .

We define for X, Y ∈ X(M) the shape operator to be

II(X, Y ) =
(
∇XY

)⊥
.

This is symmetric and tensorial on M . We define the related notion of second

fundamental form in the direction of some vector field ν normal to M by

Aν(X, Y ) = −〈II(X, Y ), ν〉 =
〈
∇Xν, Y

〉
(1.3)

where the equality comes from the compatibility of the Levi-Civita connection and

applying X to the identity 〈Y, ν〉 = 0. In the case of orientable hypersurfaces we

will drop the subscript on the second fundamental form since the choice of normal

will either be clear or not matter. We will often write

hij = A

(
∂

∂xi
,
∂

∂xj

)
.

On hypersurfaces locally parametrised by F with ν locally defined it will also be

useful to derive the Weingarten relations. Suppose that ν is a timelike unit normal,

then from equations (1.2) and (1.3) we see

∂2F

∂xi∂xj
= Γkij

∂F

∂xk
+ hijν (1.4)
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whereas for a spacelike unit normal µ we have that

∂2F

∂xi∂xj
= Γkij

∂F

∂xk
− hijµ . (1.5)

1.1.4 Curvature identities

We now want relations between intrinsic and extrinsic curvatures. I will state these

first in semi-Riemannian generality but also as a corollary I will include the state-

ment I will actually use, that of the special case of a spacelike hypersurface with a

timelike unit normal.

Proposition 1.1.7 (Gauss Lemma). For X, Y, Z, V ∈ TpM then

〈R(X, Y )Z, V 〉 =
〈
R(X, Y )Z, V

〉
+ 〈II(Y, Z), II(X, V )〉 − 〈II(X,Z), II(Y, V )〉 .

Proof. Without loss of generality we consider this locally and take X = ∂
∂xX

,

Y = ∂
∂xY

, . . . which implies that all the Lie brackets are zero. From the above

we have ∇VW = ∇VW + II(V,W ). Using this we calculate:

〈
∇X∇YZ, V

〉
=
〈
∇X∇YZ, V

〉
+
〈
∇X(II(Y, Z)), V

〉
=
〈
∇X∇YZ, V

〉
+X 〈II(Y, Z), V 〉 −

〈
II(Y, Z),∇XV

〉
= 〈∇X∇YZ, V 〉 −

〈
II(Y, Z),∇XV

〉
= 〈∇X∇YZ, V 〉 − 〈II(Y, Z), II(X, V )〉

where we used the compatibility of the connection, that 〈II(Y, Z), V 〉 = 0 and that

V ∈ TpM . Since R(X, Y )Z = ∇X∇YZ − ∇Y∇ZZ, we use the difference of the

above with itself with Y and X switched to give the Proposition.

Corollary 1.1.8. On a hypersurface with a timelike unit normal ν then since

II(X, Y ) = A(X, Y )ν the above may be written

R(X, Y, Z, V ) = R(X, Y, Z, V ) + A(X,Z)A(Y, V )− A(Y, Z)A(X, V ) .

If M is Minkowski space then

Rxyzv = hxzhyv − hyzhxv .
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At any point p ∈ M we may write TpM = TpM ⊕ Np. In an identical way

to the construction of the tangent bundle we may now construct the normal vector

bundle NM . A section of this bundle is a normal vector field, and we write the set

of normal vector fields on M by X⊥(M).

We define the normal connection ∇⊥ : X(M)× X⊥(M)→ X⊥(M) as follows

∇⊥XY =
(
∇XY

)⊥
where X ∈ X(M) and Y ∈ X⊥(M). As usual for a tensor field (that is a F(M)-linear

mapping) T : X(M)× X(M)→ X⊥(M) we may define tensor derivatives by

(∇ZT )(X, Y ) := ∇⊥ZT (X, Y )− T (∇ZX, Y )− T (X,∇ZY ) .

As usual this is also a tensor field.

Proposition 1.1.9 (Codazzi Equation). If X, Y, Z ∈ TpM then(
R(X, Y )Z

)⊥
= (∇X II)(Y, Z)− (∇Y II)(X,Z)

Proof. Similarly to the proof of the Gauss Lemma we again assume

[X, Y ] = [Y, Z] = [Z,X] = 0 and consider(
∇X∇YZ

)⊥
=
(
∇X II(Y, Z) +∇X∇YZ

)⊥
= ∇⊥X(II(Y, Z)) + II(X,∇YZ)

= (∇X II)(Y, Z) + II(∇XY, Z) + II(Y,∇XZ) + II(X,∇YZ) .

But now as before by using the above identity with switched X and Y we calculate(
R(X, Y )Z

)⊥
=
(
∇X∇YZ

)⊥ − (∇Y∇XZ
)⊥

= (∇X II)(Y, Z)− (∇Y II)(X,Z) .

If we are in codimension 1 we note that

∇XA(Y, Z) = X(A(Y, Z))− A(∇XY, Z)− A(Y,∇XZ)

= −
〈
∇X II(Y, Z)− II(∇XY, Z)− II(Y,∇XZ), ν

〉
−
〈
II(Y, Z),∇Xν

〉
= −〈(∇X II)(Y, Z), ν〉

since
〈
∇Xν, ν

〉
= 0.
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Corollary 1.1.10. If we are in codimension 1 with a timelike unit normal ν then〈
R(X, Y )Z, ν

〉
= (∇YA)(X,Z)− (∇XA)(Y, Z)

and on a hypersurface in Minkowski space we have

(∇XA)(Y, Z) = (∇YA)(X,Z) = (∇ZA)(X, Y ) .

1.1.5 Derivative interchange and Simon’s identity

We will need the following useful identity.

Proposition 1.1.11 (Derivative Interchange). Let T : X(M) × X(M) → F(M),

then

(∇X∇Y T )(A,B)− (∇Y∇XT )(A,B) = −T (R(X, Y )A,B)− T (A,R(X, Y )B) .

Proof. As usual without loss of generality assume that 0 = [X, Y ] = [X,A] = . . .

and calculate

(∇X∇Y T )(A,B)

= X ((∇Y T )(A,B))− (∇∇XY T )(A,B)− (∇Y T )(∇XA,B)

− (∇Y T )(A,∇XB)

= XY (T (A,B))−X(T (∇YA,B)−X(T (A,∇YB))

− (∇∇XY T )(A,B)− (∇Y T )(∇XA,B)− (∇Y T )(A,∇XB)

= XY (T (A,B))− (∇XT )(∇YA,B)− T (∇X∇YA,B)− T (∇YA,∇XB)

− (∇XT )(A,∇YB)− T (∇XA,∇YB)− T (A,∇X∇YB)

− (∇∇XY T )(A,B)− (∇Y T )(∇XA,B)− (∇Y T )(A,∇XB) .

Hence, using that 0 = [X, Y ] = ∇XY −∇YX we get the formula

(∇X∇Y T )(A,B)− (∇Y∇XT )(A,B)

= [X, Y ](T (A,B))− T (∇X∇YA−∇Y∇XA,B)

− T (A,∇X∇YB −∇Y∇XB)−∇∇XY−∇YXT (A,B)

= −T (R(X, Y )A,B)− T (A,R(X, Y )B) .
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Remark 1.1.12. The above proof holds for arbitrary covariant tensors: Let

T : X(M)× . . .× X(M)︸ ︷︷ ︸
n times

→ F(M) then

∇X∇Y T (A1, . . . , An)−∇Y∇XT (A1, . . . , An)

= −T (R(X, Y )A1, A2, . . . , An)− . . .− T (A1, . . . , An−1, R(X, Y )An) .

Corollary 1.1.13. For a spacelike hypersurface in Minkoski space we have

∇x∇yTab −∇y∇xTab

= −Rxyaig
ijTjb −Rxybkg

klTla

= hyahxig
ijTjb + hybhxkg

klTla − hxahypgpqTqb − hxbhysgstTta

The following will be useful when deriving evolution equations

Proposition 1.1.14 (Simon’s Identity). For a spacelike hypersurface of Minkowski

space then

∆hab = ∇a∇bH + hab‖A‖2 −Hhakgklhlb .

Proof. We see that

∇i∇jhab = ∇i∇ahjb

= ∇a∇ihjb + hajhicg
cdhdb + habhieg

efhfj

− hijhakgklhlb − hibhapgpqhqj

= ∇a∇bhij + hajhicg
cdhdb + habhieg

efhfj

− hijhakgklhlb − hibhapgpqhqj

where we used the Codazzi equation on the first and third lines, and the interchange

formula on the second. Taking a metric contraction over i and j we have

∆hab = gij∇a∇bhij + hab‖A‖2 −Hhakgklhlb

= ∇a∇bH + hab‖A‖2 −Hhakgklhlb

since tensor derivatives of the metric are zero.
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1.2 Mean curvature flow

In this section I will define mean curvature flow, and the Neumann boundary con-

ditions I will be using.

1.2.1 Mean curvature flow without boundary

Let Mn be a smooth n-dimensional orientable manifold and for m > n let (N, g) be

a m-dimensional manifold with a (semi-)Riemannian metric g. N will be referred

to as the ambient space. Suppose we are given an immersion F0 : Mn → N . Then

a family of immersions F : Mn × [0, T )→ N satisfies mean curvature flow ifF(x, 0) = F0(x) ∀x ∈Mn

dF
dt

(x, t) = ∆gF(x, t) ∀(x, t) ∈Mn × [0, T )

(1.6)

where the ∆g is the trace of the second derivative with respect to g, the metric

induced on Mn by g at time t. We define Ft(·) = F(·, t) and Mt to be the immersion

of Mn at time t defined by Ft.

Remark 1.2.1. A useful property of this flow is that it is invariant under isometries

of the ambient space N in that if G0 = P (F0) where P is some isometry of A, then

flowing both by equation (1.6) we have Gt = P (Ft).

The above is the most general definition, indicating relations between the heat

flow equation and mean curvature flow. In the introduction we tacitly used that in

(n+ 1)-dimensional Euclidean space ∆gF = −Hν. For most of this thesis we will be

considering spacelike hypersurfaces in Minkowski space and we will need a similar

identity. In this case recalling the Weingarten relations (equation (1.4)) we calculate:

∆gF = gij
(

∂2F

∂xi∂xj
− Γkij

∂F

∂xk

)
= gijhijν

= Hν

where H and ν are the mean curvature and unit normal of Mt respectively.



1.2. Mean curvature flow 19

Remark 1.2.2. The vector Hν in Minkowski space (−Hν in Euclidean space) is

called the mean curvature vector and is invariant under choice of ν: Changing the

sign of the ν changes the sign of the second fundamental form and hence H.

Also note that the signature of the metric on the flowing manifold is important.

If we want parabolicity of equation (1.6) – a desirable property, allowing the appli-

cation of the existence theory in Chapter 2 – we will require spacelikeness of the

initial manifold F0. For further details of this see Section 3.1 and Remark 4.0.5. If

not, we will get a hyperbolic equation or worse, and even short time existence of a

solution is not guaranteed.

1.2.2 Special solutions in Minkowski space

Although we are very rarely going to be able to solve the above system explicitly,

it is useful to get an idea of what’s going on by considering special solutions which

are solvable by assuming some kind of symmetry.

For example we may choose to consider rotationally symmetric spacelike mani-

folds. All such manifolds in Minkowski space may be written as graphs, and so we

may write the mean curvature flow equations as a graph u : Rn × [0, T ) → R. We

will show in Appendix B that for a graph we have

du

dt
= H

√
1− |Du|2 = Diju

(
δij +

DiuDju

1− |Du|2

)
.

Specifying that u = u(r) is a function of r =
√
x2

1 + . . . x2
n then we have

∂r

∂xi
=
xi
r
,

∂2r

∂xi∂xj
=
δij
r
− xixj

r3

Diu = u′
∂r

∂xi
, Diju = u′′

∂r

∂xi

∂r

∂xj
+ u′

∂2r

∂xi∂xj
.

So for such a radial function

Hv =

[
u′′
xixj
r2

+
u′

r

(
δij −

xixj
r2

)](
δij +

(u′)2xixj
r2(1− (u′)2)

)
= u′′

(
1 +

(u′)2

1− (u′)2

)
+

(n− 1)u′

r

=
u′′

1− (u′)2
+

(n− 1)u′

r
.

Now we may construct various examples.
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Example 1.2.3 (The Hyperplane). Any non-degenerate hyperplane (i.e. the metric

restricted to the hyperplane is non degenerate) has H = 0, and hence we have that

this solution will remain stationary under mean curvature flow.

This is an example of a maximal surface, the Minkoski equivalent of a minimal

surface defined by H = 0. We may also write down a non-planar rotational maximal

surface.

Example 1.2.4 (A Maximal Surface in R3
1). The hypersurface defined by

u = sinh−1(r) is a maximal surface in R3
1 for r > 0. It is easy to verify this by

simply substituting u into the equation above. Note that at 0 the surface is tangent

to the light cone.

Figure 1.1: A maximal surface of revolution in R3
1

The next is a non-stationary example.

Example 1.2.5 (The Hyperbolic Hyperplane). Let

YR = {x ∈ Rn+1
1 | 〈x, x〉 = −R2, xn+1 > 0} .

Then YR is a spacelike hypersurface, which is isometric to hyperbolic space of con-

stant negative gauss curvatureK = −1
Rn

. This is an analogy of the sphere in Euclidean

space, and has similar properties:

• YR is invariant (as a set) under isometries of Rn+1
1 that preserve the half of the

light cone with xn > 0: Isometries preserve 〈·, ·〉 and therefore YR is mapped
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Figure 1.2: The Hyperbolic plane (blue) sits inside the light cone (red)

to YR. Indeed if M is a hypersurface contained in the upper half space defined

by {x ∈ Rn+1
1 : xn+1 > 0} that is invariant under these isometries then it is a

union of such YR.

• The position vector is normal to the surface: Suppose F is a parametrisation of

YR. Then by definition 〈F,F〉 = −R2 and so by differentiating in any tangent

direction we see
〈
∂F
∂xi
,F
〉

= 0.

• YR is totally umbilic: Since the normal ν = F
R

then for X, Y ∈ TFYR we have

A(X, Y ) = 1
R

〈
∇XF, Y

〉
= 1

R
〈X, Y 〉.

Using Remark 1.2.1, if mean curvature flow is initially invariant under a set of

isometries then it remains so. Therefore if we flow YR0 we know that the flow must

remain a hyperbolic hyperplane but with varying “radii”. Using that H = n
R

we get

the differential equation

dR

dt
=
n

R
, R(0) = R0 .

Hence dR2

dt
= 2n and R(t) =

√
R2

0 + 2nt and YR(t) is a solution to (1.6) for N = Rn+1
1 .
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This shows that a hyperbolic hyperplane starting “near” the light cone moves away

in the xn+1 direction towards infinity, existing for all time. This is the Minkowski

equivalent of the sphere solution in Euclidean space.

Figure 1.3: Under the flow the Hyperbolic hyperplane exists for all time, expanding

by dilations.

This is an example of a homothetic solution to mean curvature flow, that is, a

solution that remains the same up to dilations. For spacelike homothetic solutions

of codimension 1 we have

F(x, t) = λ(t)F0(τ(x, t))

where τ : Mn × [0, T ) → Mn is at each time some diffeomorphism. We can

immediately see that

H(x, t) =
H0(τ(x, t))

λ(t)
, ν(x, t) = ν0(τ(x, t)) .
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Hence

dF

dt
=
H0(τ(x, t))ν0(τ(x, t))

λ(t)
= λ′(t)F0(τ(x, t)) + λ(t)

∂F0

∂xi

∣∣∣∣
τ(x,t)

dτ i

dt

∣∣∣∣
(x,t)

.

Taking inner products with ν0(τ(x, t)) then

−H0 = λ′(t)λ(t) 〈F0, ν0〉 .

Since only λ has time dependence, then we see λ(t) =
√
C1 + C2t. We therefore

see that manifolds which move homothetically under mean curvature flow may be

characterised by one of

H = 〈F, ν〉 (1.7)

H = −〈F, ν〉 . (1.8)

where solutions to equation (1.7) will shrink towards the origin while solutions to

equation (1.8) will expand away, as in the above. In Euclidean space such solutions

are extremely important. Huisken [15] used his monotonicity formula to show that

any Type I singularity of mean curvature flow in Rn+1 under renormalisation will

converge to a homothetic solution. The monotonicity formula has been considered

in Minkowski space by Thorpe [28].

Example 1.2.6 (A Translating Solution in R2
1). We may find the equivalent of the

“grim reaper” solution in the plane. Choosing n = 1 we look for a solution that

remains the same but moves upwards with speed 1 and has mirror symmetry. Hence

such a solution must satisfy

1 = Hv =
u′′

1− (u′)2
=
(
tanh−1(u′)

)′
.

Choosing u′(0) = 0 and solving explicitly we have u′(r) = tanh(r) and so

u(r, t) = log(cosh(r)) + t .

We therefore have a translating solution tangent to the light cone at infinity and

with mean curvature that increases exponentially as r →∞.



1.2. Mean curvature flow 24

Figure 1.4: The Grim Reaper solution in R2
1

Example 1.2.7 (General Rotationally Symmetric Translating Solutions). In [19]

Huai-Yu Jian has studied the equation

1 =
u′′

1− (u′)2
+

(n− 1)u′

r

to give that there exists exactly one such rotationally symmetric solution in all

dimensions. This solution is smooth, spacelike and convex.

1.2.3 Mean curvature flow with a Neumann boundary con-

dition

For a graph, a Neumann boundary condition is control of the derivative of the graph

in some outwards direction at the boundary. The graph only has this derivative

specified, but the height of the graph at the boundary is allowed to be any function.

We wish to get a similar notion but for some smooth n–dimensional topological

manifold Mn with boundary ∂Mn. Let Σ be a smooth embedded manifold in Rn+1
1

with an outward pointing unit normal, µ. This will be called the boundary manifold.

The Neumann condition corresponding to the graphical case now becomes that the
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boundary of Mn must be contained within Σ and free to move within Σ, but 〈ν, µ〉

is specified.

More precisely, suppose we are given an initial spacelike embedding

F0 : Mn → Rn+1
1 where we specify that F0(∂M) ⊂ Σ with the extra compatibility

condition 〈ν0, µ〉 (x) = 0, where as usual ν0 is the normal to M0 = F0(Mn).

Definition 1.2.8. Let F : Mn × [0, T ]→ Rn+1
1 be such that

dF
dt

= H = Hν ∀(x, t) ∈Mn × [0, T ]

F(x, 0) = F0(x) ∀x ∈Mn

F(x, t) ⊂ Σ ∀(x, t) ∈ ∂Mn × [0, T ]

〈ν, µ〉 (x, t) = 0 ∀(x, t) ∈ ∂Mn × [0, T ]

(1.9)

then F moves by Mean Curvature Flow with a perpendicular Neumann boundary

condition Σ (here ν(x, t) is the normal to F at time t.)

Remark 1.2.9. When in Minkowski space with this boundary condition Σ must be an

indefinite manifold, since the flowing manifold is spacelike the boundary condition

implies that µ has positive length.

1.2.4 Notation

It is clear that geometric properties on several different manifolds will be required.

The following notation will be used throughout: A bar will imply quantities on the

ambient space Rn+1
1 , for example ∆,∇, . . . and so on; no extra markings ∆,∇, . . .

will be geometric quantities on Mt the flowing surface at time t and for any other

manifold Z ∆Z ,∇Z , . . . will be the Laplacian, covariant derivatives, . . . on Z.

We will adopt summation convention on repeated indices, and the summation

will always be from 1 to n unless otherwise specified.

1.2.5 Evolution of curvature and metric

I end this chapter by deriving the evolution equations for curvature on the interior

of the flowing manifolds. Many of the results of this section are written down in [5]



1.2. Mean curvature flow 26

and [3], although few explicit calculations are given. I write them here and remark

only that they are unremarkable, and very similar to the calculations in [13], for

example.

Proposition 1.2.10. On the interior of the flowing manifold we have

dν

dt
= ∇H .

Proof. This is almost exactly the same as the Euclidean case proved in [13]:〈
dν

dt
,
∂F

∂xi

〉
= −

〈
ν,

∂

∂xi

dF

dt

〉
= −

〈
ν,

∂

∂xi
(Hν)

〉
= −

〈
ν,
∂H

∂xi
ν

〉
=
∂H

∂xi
.

Proposition 1.2.11. On the interior of Mn we have

dgij
dt

= 2Hhij .

Proof. We see

dgij
dt

=
d

dt

〈
∂F

∂xi
,
∂F

∂xj

〉
=

〈
∂(Hν)

∂xi
,
∂F

∂xj

〉
+

〈
∂F

∂xi
,
∂(Hν)

∂xj

〉
= H

(〈
∂ν

∂xi
,
∂F

∂xj

〉
+

〈
∂F

∂xi
,
∂ν

∂xj

〉)
= 2Hhij .

Corollary 1.2.12. For the inverse of the metric we have

dgij

dt
= −2Hhij .
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Proof. Since gikgkj = δij then dgik

dt
gkj + gil

dglj
dt

= 0 and so

dgip

dt
= −gildglj

dt
gjp .

Substituting Proposition 1.2.11 into this gives the corollary.

We will need to make estimates on the curvature, and so we calculate the

following.

Proposition 1.2.13. On the interior of the flowing manifold(
d

dt
−∆

)
hij = 2Hhjlg

lmhmi − hij|A|2 .

Proof. Using equation (1.4) and Proposition 1.2.10 and the definition of the second

fundamental form (equation (1.3)) we see

dhij
dt

= − d

dt

〈
∂2F

∂xi∂xj
, ν

〉
= −

〈
∂2(Hν)

∂xi∂xj
, ν

〉
−
〈

∂2F

∂xi∂xj
,∇H

〉
= −

〈
∂

∂xi

(
∂H

∂xj
ν +Hhjlg

lm ∂F

∂xm

)
, ν

〉
− Γkij

∂H

∂xk

= −
〈(

∂2H

∂xj∂xi
ν +Hhjlg

lm ∂2F

∂xm∂xi

)
, ν

〉
− Γkij

∂H

∂xk

=
∂2H

∂xj∂xi
− Γkij

∂H

∂xk
+Hhjlg

lmhmi

= ∇i∇jH +Hhjlg
lmhmi .

We may now use Simon’s identity, that is Proposition 1.1.14, to get

dhij
dt

= ∆hij + 2Hhjlg
lmhmi − hij|A|2

completing the proof.

Corollary 1.2.14. On the interior of Mn we have(
d

dt
−∆

)
H = −H|A|2 (1.10)(

d

dt
−∆

)
|A|2 = −2|A|4 − 2|∇A|2 . (1.11)
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Proof. For the first, we see using the proof of Proposition 1.2.13 and Corollary 1.2.12

that

dH

dt
=
dgijhij
dt

= gij
(
∇i∇jH +Hhjlg

lmhmi
)
− 2Hhijhij

= ∆H −H|A|2 .

For the second

d|A|2

dt
=
dgijhjkg

klhli
dt

= 2gij
(
∆hjk + 2Hhklg

lmhmj − hjk|A|2
)
gklhli − 4Hhijhjkg

klhli

= 2hkj∆hjk − 2|A|4 .

Because the compatibility of the metric implies ∇g = 0 we now use the Tensor

Product Rule (Lemma 1.1.6) to conclude

∆|A|2 = gij∇2
ij

(
gabhbcg

cdhda
)

= 2gijgabgcd(hda(∇2
ijh)bc + (∇jh)bc(∇ih)da)

= 2hab(∆h)ab + 2|∇A|2 .

Substituting gives equation (1.11).

We now wish to derive corresponding results for higher derivatives of A. Gener-

ally the precise form of the equations are not needed so we will use the convention

adopted by Huisken in [13]: For any two tensors S and T we write S ? T in place

of any linear combination of S and T , possibly with metric contractions. This will

be used as a shorthand for terms of lower order in an evolution equation. We will

use ∇mA to be the mth tensorial derivative of the second fundamental form where

we will use the convention ∇0A = A.

Lemma 1.2.15. The Christoffel symbols evolve by

dΓkij
dt

= gkr
[
(∇ ∂

∂xi
Hh)rj + (∇ ∂

∂xj
Hh)ri − (∇ ∂

∂xr
Hh)ij

]
.
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Proof. This is simply an exercise in cancellation: Using Proposition 1.2.11 and

Corollary 1.2.12 then

dΓkij
dt

=
d

dt

(
gkr

2

(
∂

∂xi
grj +

∂

∂xj
grj −

∂

∂xr
gij

))
= gkr

[
∂

∂xi
(Hhrj) +

∂

∂xj
(Hhri)−

∂

∂xr
(Hhij)

]
− 2HhkrgrpΓ

p
ij

= gkr
[
(∇ ∂

∂xi
Hh)rj + ΓpirHhpj + ΓqijHhqr + (∇ ∂

∂xj
Hh)ri + ΓsjrHhsi

+ ΓujiHhur − (∇ ∂
∂xr
Hh)ij − ΓvriHhvj − ΓwrjHhwi

]
− 2HhkrgrpΓ

p
ij

= gkr
[
(∇ ∂

∂xi
Hh)rj + (∇ ∂

∂xj
Hh)ri − (∇ ∂

∂xr
Hh)ij

]
.

Thus using tensor product rule
dΓkij
dt

= A ?∇A.

Proposition 1.2.16. For m ≥ 1 then on the interior of M the following holds(
d

dt
−∆

)
|∇mA|2 = −2|∇m+1A|2 +

∑
a,b,c≥0

a+b+c=m

∇aA ?∇bA ?∇cA ?∇mA .

Proof. Throughout this proof we will write ∇i in place of ∇ ∂

∂xi
, and all covariant

derivatives of tensors are tensor derivatives as defined in Section 1.1.2, that is,

∇iTjk = (∇ ∂

∂xi
T )( ∂

∂xj
, ∂
∂xk

) . Firstly, we will make some observations. For a tensor

T of any type (although here we will use a (0, r) tensor) then using that
dgij
dt

= A?A

(Proposition 1.2.11) then

d

dt
|T |2 =

d

dt

(
Ti1i2,...irTj1j2,...jrg

i1j1 . . . girjr
)

= 2
dTi1i2,...ir

dt
Tj1j2,...jrg

i1j1 . . . girjr + A ? A ? T ? T

= 2

〈
Ti1i2,...ir ,

dTi1i2,...ir
dt

〉
+ A ? A ? T ? T . (1.12)

Furthermore using Proposition 1.2.15

d

dt
∇jTi1...ir =

d

dt

(
∂Ti1...ir
∂xj

− Γk1
ji1
Tk1i2,...ir − . . .− ΓkrjirTi1,...ir−1kr

)
= ∇j

dTi1...ir
dt

+ A ?∇A ? T . (1.13)
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Now using this repeatedly for T ∈ T0
2(M) then

d

dt
∇k1 . . .∇kmTab = ∇k1

d∇k2 . . .∇kmTab
dt

+ A ?∇A ?∇m−1T

= ∇k1∇k2

d∇k3 . . .∇kmTab
dt

+∇k1(A ?∇A ?∇m−2T )

+ A ?∇A ?∇m−1T

= ∇k1∇k2

d∇k3 . . .∇kmTab
dt

+∇A ?∇A ?∇m−2T

+ A ?∇2A∇m−2T + A ?∇A ?∇m−1T

...
...

...
...

= ∇k1 . . .∇km

dTab
dt

+
∑

a,c≥0, b≥1
a+b+c=m

∇aA ?∇bA ?∇cT . (1.14)

We also need to calculate for T ∈ T0
2(M)

∆|∇mT |2 = gij∇i∇j 〈∇k1 . . .∇kmTab,∇k1 . . .∇kmTab〉

= 2gij∇i 〈∇j∇k1 . . .∇kmTab,∇k1 . . .∇kmTab〉

= 2 〈∇l∇k1 . . .∇kmTab,∇l∇k1 . . .∇kmTab〉

+ 2gij 〈∇i∇j∇k1 . . .∇kmTab,∇k1 . . .∇kmTab〉 . (1.15)

We have from Corollary 1.1.13 and Remark 1.1.12 that ∇i∇jT −∇j∇iT = A?A?T ,

which we now use repeatedly along with the product rule:

∇j∇k1 . . .∇ksTab (1.16)

= ∇k1∇j∇k2 . . .∇ksTab + A ? A ?∇s−1T

= ∇k1∇k2∇j∇k3 . . .∇ksTab +∇k1(A ? A ?∇s−2T ) + A ? A ?∇s−1T

= ∇k1∇k2∇j∇k3 . . .∇ksTab + A ?∇A ?∇s−2T + A ? A ?∇s−1T

...
...

...
...

= ∇k1∇k2∇k3 . . .∇ks∇jTab +
∑
a,b,c≥0

a+b+c=s−1

∇aA ?∇bA ?∇cT . (1.17)

We are now in a position to show the theorem. We will consider first m = 1 to give

the idea of the proof before moving on to higher order cases. Using equations (1.12)
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and (1.13) and Proposition 1.2.13 we have

d|∇A|2

dt
= 2

〈
∇A, d∇A

dt

〉
+ A ? A ?∇A ?∇A

= 2

〈
∇A,∇dA

dt

〉
+ A ? A ?∇A ?∇A

= 2
〈
∇khij,∇k

(
∆hij + 2Hhjlg

lmhmi − hij|A|2
)〉

+ A ? A ?∇A ?∇A

= 2gab 〈∇khij,∇k∇a∇bhij〉+ A ? A ?∇A ?∇A .

But now using equations (1.15) and (1.17) we see

∆|∇A|2 = 2|∇2A|2 + 2gab 〈∇a∇b∇khij,∇khij〉

= 2|∇2A|2 + 2gab 〈∇a∇k∇bhij + A ? A ?∇A,∇khij〉

= 2|∇2A|2 + 2gab 〈∇a∇k∇bhij,∇khij〉+ A ? A ?∇A ?∇A

= 2|∇2A|2 + 2gab 〈∇k∇a∇bhij,∇khij〉+ A ? A ?∇A ?∇A .

Putting all this together gives as claimed(
d

dt
−∆

)
|∇A|2 = −2|∇2A|2 + A ? A ?∇A ?∇A .

So far so good. Now we come to the general case. The calculations here are

effectively the same, although more protracted. From equations (1.12) and (1.14)

and Proposition 1.2.13 we have as before

d|∇mA|2

dt
= 2

〈
∇i1 . . .∇imhab,

d

dt
∇i1 . . .∇imhab

〉
+ A ? A ?∇mA ?∇mA

= 2

〈
∇i1 . .∇imhab,∇i1 . .∇im

dhab
dt

〉
+

∑
a,b,c≥0

a+b+c=m

∇aA ?∇bA ?∇cA ?∇mA

= 2
〈
∇i1 . . .∇imhab,∇i1 . . .∇im

(
∆hab + 2Hhilg

luhuj − hij|A|2
)〉

+
∑
a,b,c≥0

a+b+c=m

∇aA ?∇bA ?∇cA ?∇mA

= 2gcd 〈∇i1 . . .∇imhab,∇i1 . . .∇im∇c∇dhab〉

+
∑
a,b,c≥0

a+b+c=m

∇aA ?∇bA ?∇cA ?∇mA .

As previously, we deal with the first term using the Laplacian and equation (1.15)

∆|∇mA|2 = 2|∇m+1A|2 + 2gcd 〈∇c∇d∇i1 . . .∇imhab,∇i1 . . .∇imhab〉 .
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But by equation (1.17)〈
∇c∇d∇i1 . . .∇imhab,∇i1 . . .∇imhab

〉
= 〈∇c∇i1 . . .∇im∇dhab,∇i1 . . .∇imhab〉

+

〈
∇c

 ∑
a,b,c≥0

a+b+c=m−1

∇aA ?∇bA ?∇cA

 ,∇i1 . . .∇imhab

〉

= 〈∇c∇i1 . . .∇im∇dhab,∇i1 . . .∇imhab〉+
∑
a,b,c≥0

a+b+c=m

∇aA ?∇bA ?∇cA ?∇mA

= 〈∇i1 . . .∇im∇c∇dhab,∇i1 . . .∇imhab〉+
∑
a,b,c≥0

a+b+c=m

∇aA ?∇bA ?∇cA ?∇mA .

Putting all of this together(
d

dt
−∆

)
|∇mA|2 = −2|∇m+1A|2 +

∑
a,b,c≥0

a+b+c=m

∇aA ?∇bA ?∇cA ?∇mA .

1.2.6 Maximum principle

I include a maximum principle:

Lemma 1.2.17 (Weak Maximum Principle). Let Mn be a compact smooth manifold

with boundary and let F : Mn× [0, T )→ R be a function twice differentiable in space

and once in time. Let gij(x, t) be a metric on Mn which varies over time. Suppose

F has the following properties:

1. At a stationary point (i.e. ∇F = 0) we have(
d

dt
−∆

)
F (x, t) ≤ 0 ∀(x, t) ∈Mn × [0, T ) .

2. On the boundary if µ is an outward pointing unit normal then

∇µF ≤ 0 ∀(x, t) ∈ ∂M × [0, T ) .

Here ∆ is the Laplace–Beltrami operator and ∇ is the Levi-Civita connection. Then

F ≤ max

{
sup
x∈Mn

F (x, 0), 0

}
.
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Proof. This is similar to the proof of [26, Lemma 3.1]. We will consider positive

maxima of f = e−αtF for α > 0. At a positive interior maximum of f we have

∇f = 0 and ∇2f ≤ 0 and so ∆f ≤ 0 . Substituting into the evolution equation we

have that at a maximum
df

dt
≤ −αf < 0 .

We therefore have that f is decreasing at any interior maximum point.

Suppose we have a non-decreasing maximum of f at (p, t) ∈ ∂Mn × [0, T ), and

we have that at this point ∇µf ≤ 0. If ∇µf < 0 at this point then no boundary

maximum is allowed. Hence we have that at (p, t), ∇µF = 0. We consider f at

time t in local coordinates, chosen so that the preimage of a neighbourhood of p is

a neighbourhood of 0 ∈ {x ∈ Rn|xn ≥ 0} so that the direction µ is −en. Therefore

in these coordinates −Df · en = 0. Since f is positive at 0 and
(
d
dt
−∆

)
f ≤ −αf ,

there exists a neighbourhood 0 ∈ U ⊂ {x ∈ Rn|xn ≥ 0} such that
(
d
dt
−∆

)
f ≤ 0.

Using this we see f satisfies

0 ≤ df

dt
≤ gij(x)Dijf − gij(x)Γkij(x)Dkf .

But now we may apply the elliptic Hopf Lemma (see for example [9, Lemma 3.4])

to get that DF · en < 0, a contradiction. Therefore a positive maximum of f at the

boundary cannot be increasing.

Therefore we have

F (x, t) ≤ eαt max{ sup
x∈M0

F, 0} .

Now sending α→ 0 we have the estimate.

Corollary 1.2.18 (Which will also be referred to as Weak Maximum Principle).

Under the assumptions of the above Lemma we in fact have that

F ≤ sup
x∈Mn

F (x, 0) .

Proof. Set K = sup
x∈Mn

F (x, 0) and set j = K+1+F . Since the operator above always

contains derivatives, we may apply Lemma 1.2.17 to j and so we are done.

Corollary 1.2.19 (Again Weak Maximum Principle). Suppose Mn, gij,∇ and ∆

are as in Lemma 1.2.17, but this time F has the properties:
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1. At a stationary point (i.e. ∇F = 0) we have(
d

dt
−∆

)
F (x, t) ≥ 0 ∀(x, t) ∈Mn × [0, T ) .

2. On the boundary if µ is an outward pointing unit normal then

∇µF ≥ 0 ∀(x, t) ∈ ∂M × [0, T ) .

Then F ≥ inf
x∈Mn

F (x, 0).

Proof. Apply Corollary 1.2.18 to l = −F .

We will find the following relations useful:

Proposition 1.2.20 (Product and chain rules for the heat operator). Let f, g :

Mn × [0, T )→ R and let ψ : R→ R be twice differentiable then(
d

dt
−∆

)
f · g = f

(
d

dt
−∆

)
g + g

(
d

dt
−∆

)
f − 2 〈∇f,∇g〉(

d

dt
−∆

)
ψ(f) =

dψ

dx
(f)

(
d

dt
−∆

)
f − d2ψ

dx2
(f)|∇g|2 .

Proof. This is simply a matter of calculus. We see

∆f · g = gij
(
∂2fg

∂xi∂xj
− Γkij

∂fg

∂xk

)
= gij

(
g

∂2f

∂xi∂xj
− gΓkij

∂f

∂xk
+ 2

∂f

∂xi
∂g

∂xj
+ f

∂2g

∂xi∂xj
− fΓkij

∂g

∂xk

)
= g∆f + 2 〈∇f,∇g〉+ f∆g

and the first result follows.

Similarly for the second

∆ψ(f) = gij
(
∂2ψ(f)

∂xi∂xj
− Γkij

∂ψ(f)

∂xk

)
= gij

(
dψ

dx
(f)

∂2f

∂xi∂xj
− Γkij

dψ

dx
(f)

∂f

∂xk
+
d2ψ

dx2
(f)

∂f

∂xi
∂f

∂xj

)
=
dψ

dx
(f)∆f +

d2ψ

dx2
(f)|∇f |2

and again the result follows.



Chapter 2

Quasilinear existence theory

In this chapter I will deal with existence of solutions to Partial Differential Equations

(PDEs) of quasilinear type with a Neumann boundary condition. This material is

standard and what we write here is based on selected sections of [20] rewritten with

minor alterations to better suit our purposes. It would be nice to prove existence

from first principles. Unfortunately since existence theory is, by necessity, fairly

lengthy to avoid simply copying out entire chapters we will assume results on linear

PDEs and here concentrate on selected results bridging the gap from this to the

quasilinear theory.

Let Ω ⊂ Rn be a domain with a smooth boundary ∂Ω and outward pointing unit

normal γ. By crossing with a time interval we define our parabolic domain to be

ΩT = Ω× [0, T ) ⊂ Rn+1. We will write in capitals X = (x, t), Y = (y, s) to indicate

elements of the parabolic domain as opposed to x, y, elements of the domain Ω. For

such X and Y we define the parabolic distance

|X − Y |P = max{|x− y|, |t− s|
1
2} ,

and the parabolic cylinder

Q(X,R) = {Y ∈ Rn × R|s < t, |Y −X|P < R} .

For the rest of the chapter we will drop the subscript on the parabolic distance –

the difference between this and the absolute value will always be clear from context.

The parabolic boundary PΩT is the subset of all points in X ∈ ΩT such that for all

35
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R, Q(X,R) contains points not in ΩT . For the ΩT we have chosen this boundary

may be split into three parts: The bottom, the corner and the side where

B(ΩT ) = Ω× {0}, C(ΩT ) = ∂Ω× {0}, S(ΩT ) = ∂Ω× (0, T ) .

Now I shall define the set of operators with which we are concerned:

Definition 2.0.21. A quasilinear operator P is defined by

Pu = −ut + aij(X, u,Du)Diju+ a(X, u,Du)

and we say P is parabolic in some subset S ⊂ Ω× R× Rn if for (X, z, p) ∈ S

λ(X, z, p)|η|2 ≤ aij(X, z, p)ηiηj ≤ Λ(X, z, p)|η|2

for some λ > 0. If in addition to this we have Λ
λ

uniformly bounded on S then P is

uniformly parabolic on S.

We will assume from now on that aij(X, z, p) and a(X, z, p) are smooth in each

of their coefficients.

Our boundary operator will be

Mu = Du · ζ = 0

for some ζ such that ζ · γ > Cγ > 0. We search for solutions u of the following
Pu = 0 ∀X ∈ ΩT

Mu = 0 ∀X ∈ S(ΩT )

u = u0 ∀X ∈ B(ΩT ) ∪ C(ΩT )

(2.1)

where we additionally assume that on C(ΩT ) the initial data u0 also satisfies

Mu0 = 0.

The method of proof for existence of a solution for all time is as follows:

1. Proof of existence for some short time.

2. Given short time existence, under the assumption |u|δ is bounded∗ where

2 > δ > 1 proof of existence for all time.

3. Proof that given bounds on |Du| and u we have a bound on |u|δ for some

2 > δ > 1.

∗See next section for the definition of this norm
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2.1 Hölder norms

For convenience of the reader we now define the parabolic Hölder norm. For

α ∈ (0, 1] a function f : ΩT → R we say f is Hölder continuous at X0 with exponent

α if:

[f ]α,X0 = sup
X∈ΩT−X0

|f(X)− f(X0)|
|X −X0|α

is finite. If

[f ]α,ΩT = sup
X0∈ΩT

[f ]α,X0

is finite then f is uniformly Hölder continuous in ΩT .

Differentiability of a function implies it is Lipschitz and so the above applies

with α = 1. Therefore we may think of the α is as a fractional differentiability. We

now use this to produce the parabolic Hölder norm – a norm suitably weighted to

imitate the “one time derivative to two space derivatives” in parabolic equations.

First we get the equivalent of the above. For β ∈ (0, 2] define

〈f〉β;X0 = sup

{
|f(x0, t)− f(X0)|
|t− t0|

β
2

: (x0, t) ∈ ΩT −X0

}

and as previously

〈f〉β;Ω = sup
X0∈Ω
〈f〉β;X0 .

We define for a = k + α for α ∈ (0, 1] and β a multi index

{f}a;ΩT =
∑

|β|+2j=k−1

{Dβ
xD

j
tf}α+1

[f ]a;ΩT =
∑

|β|+2j=k−1

[Dβ
xD

j
tf ]α

|f |a;ΩT =
∑

|β|+2j≤k−1

sup|Dβ
xD

j
tf |+ [f ]α + 〈f〉α .

We may quickly see that | − |a defines a norm on Ha(ΩT ) = {f : |f |a < ∞} and

under this Ha(ΩT ) is a Banach space. We will also use the elliptic Hölder norms on

functions ψ : Ω → R, that is functions on a domain without the “time” direction.

Rather than rewriting the above, we in fact define |ψ|a = |ψ̃|a where ψ̃ : ΩT → R is

the function equal to ψ at t = 0, and constant in time.
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2.2 Short time existence

To show short time existence we will need the following fixed point theorem:

Theorem 2.2.1 (Schauder Fixed Point Theorem). Let Z be a compact convex subset

of a Banach space. Let J be a continuous map of Z into itself. Then J has a fixed

point.

Also we will need the following linear existence theorem.

Theorem 2.2.2 ([20], Theorem 5.18). Given a linear operator

Lu = aij(X)Diju+ bi(X)Diu+ c(X)− ut

and the boundary condition

M̃u = β ·Du+ β0u

and suppose ∂Ω ∈ H2+α and also

• aijηiηj ≥ λ|η|2, T = aii ≤ Λ

• |aij|α ≤ A, |bi|α ≤ B, |c|α ≤ c1

• β · γ ≥ χ > 0, |βj|1+α ≤ B1χ

then for all f ∈ Hα and ψ ∈ H1+α for initial data u0 ∈ H2+α(Ω) with Mu0 = ψ on

C(ΩT ) there exists a unique solution u ∈ H2+α to Lu = f in Ω× [0, T ] and Mu = ψ

on ∂Ω× [0, T ], and further there exists a constant C1(A,B, c1, n, α,B1, β, χ, α, λ,Ω)

such that

|u|2+α ≤ C1(|f |α + |ψ|1+α + |u0|2+α)

Proof. The necessary estimates and existence arguments that lead to this theorem

are contained in the greater part of the first five chapters of [20].

We are now in a position to give a short time existence theorem – the one

given here is a modification of [20][Theorem 8.2] which deals with the Dirichlet

boundary condition. Here we show the important estimates by hand rather than

via an interpolation inequality.
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Theorem 2.2.3. Let P and M be as above such that P is uniformly parabolic and

u0 ∈ H2+α(Ω) such that Mu0 = 0 on ∂Ω then there exists an ε > 0 such that a

solution to equation (2.1) exists on Ωε.

Proof. The idea here is to show that for ε small enough we may make estimates

to apply Theorem 2.2.1 to a particular map so that the resulting fixed point is the

required solution. Let θ ∈ (1, 2) we define M0 = 1 + |u0|θ and let

Z = {v ∈ Hθ(Ωε)| |v|θ < M0} .

We now define by map J : Z → Hθ by Jv = u if
−ut + aij(X, v,Dv)Diju+ a(X, v,Dv) = 0 for X ∈ Ωε

Mu = 0 for X ∈ S(Ωε)

u(·, 0) = u0(·) on B(Ωε) ∪ C(Ωε) ,

that is J is the “inverse” of a linear parabolic operator. We note here that if Jũ = ũ

then ũ satisfies equation (2.1). We know that for each v, Jv exists due to Theorem

2.2.2 and furthermore we know that

|u|2+α ≤ C(|v|θ) ≤ C(M0) (2.2)

and so certainly u ∈ Hθ. To apply the Schauder fixed point theorem though, we

need u ∈ Z.

We consider |u− u0|θ and wish to show this is bounded by some constant times

ε to a positive power. Writing θ = 1 + α and f = u− u0 then

|f |1+α =
n∑
i=1

sup |Dif |+
n∑
i=1

[Dif ]α + sup |f |+ 〈f〉1+α .

We may deal with the first and third terms respectively by using that 〈Diu〉1+α

and sup |ut| are summands in the definition of |u|2+α and are therefore bounded by

C(M0) by (2.2). Since f(·, 0) = 0 then |Dif | ≤ C(M0)ε
1+α

2 and |f | ≤ C(M0)ε.

Similarly for the final term again using |ut| ≤ C(M0) and hence

〈f〉1+α = sup
s 6=t

|f(x, t)− f(x, s)|
|t− s| 1+α

2

≤ C(M0)
|t− s|
|t− s| 1+α

2

= C(M0)ε
1−α

2 .
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Finally using the same trick this time using {Diu}1+α < C(M0), we estimate

[Dif ]α = sup
X,Y ∈Ωε
X 6=Y

|Dif(X)−Dif(Y )|(
max{|x− y|, |t− s| 12}

)α ≤ C(M0)|t− s|
2−α

2 ≤ C(M0)ε
2−α

2 ,

and so assuming ε < 1 we have |f |θ < 2(n + 1)C(M0)ε
1−α

2 . Therefore setting ε

sufficiently small we have |u|θ ≤ |u0|θ+2(n+1)C(M0)ε
1−α

2 < M0. Therefore J maps

Z into Z and we may apply the Schauder fixed point theorem.

2.3 Long time existence

We now give a condition for quasilinear PDEs to last for all time. This is a modified

version of [20][Theorem 8.3].

Theorem 2.3.1. Suppose we have short time existence (i.e. Theorem 2.2.3) to equa-

tion (2.1) and know that for all time a solution exists there are constants δ ∈ (1, 2)

and Cδ > 0 such that

|u|δ ≤ Cδ

then a solution exists for all time.

Proof. Suppose that a solution to (2.1) exists for some maximal open time interval

[0, T ) where T is finite.

Assuming first the linear boundary condition, we know that a solution of equation

(2.1) is also a solution of a linear operator: Let

Lv = aij(X, u,Du)Dijv + a(X, u,Du) .

then u satisfies Lu = 0 in ΩT , Mu = 0 on S(ΩT ) and u(·, 0) = u0(·) on

B(ΩT ) ∪ C(ΩT ). Now writing δ = 1 + α, by our bound on |u|δ we have a bound

on |aij(X, u,Du)|α and |a(X, u,Du)|α depending on Cδ. Therefore by the Schauder

estimate in Theorem 2.2.2 we have the uniform estimate

|u|2+α ≤ C1(Cδ)|u0|2+α = C2 (2.3)

for t ∈ [0, T ).
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We now take a sequence of times ti → T , and define ũi(·) = u(·, ti). Due

to the bound we have equicontinuity of the ũi and therefore there exists a sub-

sequence, which by abuse of notation we shall also write ũi, such that the ũi →

ũ uniformly as i → ∞. Furthermore by (2.3) we have equicontinuity of Djũi,

Djkũi and ũi,t and therefore may assume (taking further subsequences and abuse)

Djũi → Djũ, Djkũi → Djkũ and ũi,t → ũt uniformly where we define ũt here to

be aij(X, ũ,Dũ)Dijũ + a(X, ũ,Dũ). Therefore using ũ we extend u to the interval

[0, T ]. The bound on |u|δ still holds by the C2 convergence of ũi to ũ, and so by the

continuity of P and M we have that u is a solution of (2.1) on [0, T ]. We now see

that in fact ũ is C2+α:

Suppose we are given x, y ∈ Ω, and write D2u as shorthand for any partic-

ular Djku. Using the uniform convergence of the second derivatives we choose t

sufficiently close to T that |D2ũ(·)−D2u(·, t)| < ε < |x− y|. Then

|D2u(x)−D2u(x)|
|x− y|α

≤ |D
2u(x, t)−D2u(y, t)|+ 2ε

max{|x− y|, |T − t| 12}
α ≤ 2 + C2

due to the bound on [D2u]α for t < T . Taking suprema we have that |ũ|2+α < 2+C2.

We may now apply our short time existence Theorem to equation (2.1) but with

u0 = ũ and get a solution û in Ωε. But now we define

w(x, t) :=

u(x, t) for (x, t) ∈ Ω× [0, T ]

û(x, t− T ) for (x, t) ∈ Ω× (T, T + ε)

.

Since ut(·, s) converges ût(0) as s → T , w is twice differentiable in space and once

differentiable in time and satisfies Pw = 0 and Mw = 0. Furthermore by strong

maximum principle it is the unique solution Lw = 0 implying that by Theorem 2.2.2

that it is in fact w ∈ H2+α(ΩT+ε). This contradicts the definition of T .

2.4 Further remarks

I have not yet said anything about part 3 of the proof of existence of a solution:

Given an upper bound on u and |Du| can we get an estimate on [Diu]α? The

answer is under very general conditions, yes. To prove this here I would end up
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rewriting most of Chapter 12 of [20], and therefore I simply cite [20, Theorem 12.3]

for estimates on the interior of the domain and [20, Theorem 12.10] for estimates at

the boundary. The proofs of these Theorems rest upon showing that Diu is a weak

supersolution of certain linear PDEs and then using either Harnack estimates or the

theory of strong solutions.

Another issue I have not mentioned is that of uniqueness. In the cases of equa-

tions as in Chapter 4 and 5 we have that in the operator Pu, aij(X, u,Du) and

a(X, u,Du) do not depend upon u. In these cases we may get uniqueness from a

parabolic comparison principle similar to [20, Theorem 9.2], although here we must

use Neumann boundary conditions. To get around this we may use a proof almost

identical to that in [9, Theorem 9.2].



Chapter 3

Spacelike mean curvature flow

inside timelike cones

In this Chapter we will be concerned with equation (1.9), where the boundary

manifold Σ is chosen to be a timelike cone – a cone in Minkowski space with its

apex at 0 with the property that each position vector is timelike (see section 3.2 for

full details). We will be flowing a manifold which is topologically an n-ball, that

is, Mn = Bn, which will be flowed by its mean curvature within the interior of the

cone. We recall we wish to find F : Mn × [0, T ]→ Rn+1
1 such that

dF
dt

= H = Hν ∀(x, t) ∈Mn × [0, T ]

F(·, 0) = F0(·)

F(x, t) ⊂ Σ ∀(x, t) ∈ ∂Mn × [0, T ]

〈ν, µ〉 (x, t) = 0 ∀(x, t) ∈ ∂Mn × [0, T ]

(3.1)

where F0 : Mn → Rn+1
1 is an initial spacelike embedding which satisfies the boundary

condition.

Remark 3.0.1. Under these conditions we note that we have a special solution to

mean curvature flow: In Example 1.2.5 we saw homothetically expanding hyperbolic

hyperplanes as examples of mean curvature flow. In fact, such solutions satisfy

the boundary condition described above. A hyperbolic hyperplane is normal to its

position vector, while for any cone Σ centred at the origin the position vector is in the

tangent space, that is p ∈ TpΣ. Therefore the normal of any hyperbolic hyperplane

43
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Figure 3.1: The flowing manifold sits inside the boundary manifold, Σ, which in

turn sits inside the light cone (again in red)

is contained in the tangent space of Σ and the boundary condition 〈ν, µ〉 = 0 is

automatically satisfied.

Therefore I make the following definition:

Definition 3.0.2. Define the expanding hyperbolic hyperplane inside the cone Gk

to be the solution to (3.1), starting with the section of hyperbolic plane of initial

“radius” k inside the cone Σ. That is at time t = 0, 〈Gk,Gk〉 = −k2 with (Gk)n+1 >

0. We saw in Example 1.2.5 that

−〈Gk,Gk〉 = k2 + 2nt .

In this chapter we will begin by proving the following long time existence result:

Theorem 3.0.3. Let Σ be a convex cone. Given that M0 is initially spacelike then

a solution to equation (3.1) exists for all time. Furthermore this solution stays

between two homothetic solutions GC0 and GC1 where C0 an C1 are the minimum

and maximum values of
√
−〈F,F〉 at time t = 0. Mean convexity is preserved by

the flow (i.e. if H > 0 initially then it will remain so for all time).
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Due to the comparison with the solution GC0 in the above, we know that in

solutions to equation (3.1), xn+1 → ∞. Therefore for further convergence results

we need a suitable notion of renormalisation. To this end we define M̂ to be the

blowdown of M , where M̂ is M renormalised by dilations so that M̂ has constant

unit area. By defining convergence “at infinity” to be the convergence of M̂ , we get

the following:

Theorem 3.0.4. Any initially spacelike solution of equation (3.1) with a convex cone

boundary condition under renormalisation will converge to a homothetic solution

in the C1 norm. Further, there exists an increasing sequence of ti such that M̂ti

converge to the solution on the interior of M in the C∞ topology.

3.1 A reparametrisation

For simplicity we may reparametrise the above system as a graph over a topological

disc D ⊂ Bn
1 (0) defined by the intersection of the interior of Σ with the hyper-

plane perpendicular to en+1 and intersecting (0, . . . , 0, 1). We may then describe

a spacelike manifold M inside Σ as follows: At a point x ∈ D, if we take the

ray from 0 through x then the ray will intersect M only once. If p is that point

of intersection then let u(x) =
√
−〈p,p〉. The graph u now parametrises M by

F(x) = u(x) x+en+1√
1−|x|2

. Standard calculations give geometric quantities (see Proposi-

tion A.0.17), for example:

gij =
u2

1− |x|2

(
δij +

xixj
1− |x|2

)
−DiuDju

and

ν =
(1− |x|2)Du+ ux + (Du · x(1− |x|2) + u)en+1

(1− |x|2)v

where v is a gradient-like function

v =

√
u2

1− |x|2
+ (Du.x)2 − |Du|2 .

Similarly we see that a solution to MCF is equivalent to a solution to the following
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parabolic quasilinear PDE: For u : D × [0, T )→ R then
du
dt

=
vH
√

1−|x|2
u

= gijDiju+ n+1
u
− 1

v2

(
u

1−|x|2 + 2Du.x
)
∀x ∈ D

u(x, 0) = u0(x) ∀x ∈ D

Du · (γ − γ · xx) = 0 ∀x ∈ ∂D

(3.2)

where

gij =
1− |x|2

u2

(
δij +

1

v2

[(
|Du|2 − u2

1− |x|2

)
xixj

+DiuDju−Du.x (xiDju+ xjDiu)

])
is the inverse of the metric and γ is the outward pointing unit normal to D. These

calculations though standard are fairly lengthy, and so are not included here – for

those who are interested they are written up in full: See Appendix A for 11 pages

of differentiation and linear algebra.

Long-term existence is equivalent to uniform parabolicity of the above equation

and C1 bounds on u (see Chapter 2). By calculating eigenvalues of the metric gij

(see Proposition A.0.18) we see that uniform parabolicity is equivalent bounding

max
{

1
v2 ,

1
u2 , u

2
}

from above.

In fact uniform parabolicity is stronger than the gradient estimate: Suppose we

have uniform parabolicity. Then v2 > C > 0 and so

u2

1− |x|2
− C > |Du|2 − (Du.x)2 > |Du|2(1− |x|2)

by Cauchy – Schwarz. Therefore

|Du|2 < u2

(1− |x|2)2
< C̃

which gives the gradient estimate. Hence for existence on an interval [0, T ] we need

only find an upper bound on 1
v2 and upper and lower bounds on u2 on that interval.

3.2 The boundary manifold

Here I will define more rigorously the boundary manifold Σ and state formulae for

its curvature. Let S̃ : Sn → B1(0) ⊂ Rn be a smooth embedding of a sphere into
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the open unit ball centred at the origin with outward unit normal n. Then we may

define a boundary cone ΣS̃ (later the subscript will be dropped) by embedding Rn

into Rn+1
1 at height 1 and then defining ΣS̃ to be the set of all rays going through

the origin and some point (S̃(x), 1). More explicitly we may give a parametrisation

S : (0,∞)× Sn → Rn+1
1 of ΣS̃ by

(l, x) 7→ lS̃(x) + len+1

Now we may calculate all quantities needed. For example, we may see that in these

coordinates

AΣ

(
·, ∂
∂l

)
= 0 , AΣ

(
∂

∂xi
,
∂

∂xj

)
=

lAS̃
(
∂
∂xi
, ∂
∂xj

)√
1−

〈
S̃,n

〉2
.

Therefore, for an orthonormal set of vectors el, e1, . . . , en−1 ∈ TpΣ obtained by

picking orthonormal coordinates on S̃ and renormalising,

AΣ(ei, ej) =
AS̃(ei, ej)

l

√
1−

〈
S̃,n

〉2
. (3.3)

Hence we can see that, as we would expect, weak convexity of Σ – that is

AΣ(·, ·) ≥ 0 – is equivalent to convexity of the embedding S̃, the second funda-

mental form has a zero eigenvector along the timelike rays from the origin and the

second fundamental form decreases linearly as you move up the cone.

3.3 Evolution equations

We need the evolution of a few more quantities to those in Section 1.2.5 which we

will derive here by straightforward calculation. I define the following:

F 2 = −〈F,F〉 > 0

S = −〈F, ν〉 > F > 0 .

We may think of these as in some sense C0 and C1 measures of how far our flowing

manifold is from a homotheic solution Gk.
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Lemma 3.3.1. Under MCF we have(
d

dt
−∆

)
F 2 = 2n .

Proof. We see
dF 2

dt
= −2

〈
dF

dt
,F

〉
= −2H 〈ν,F〉 = 2HS

and further

∆F 2 = −2gij
(〈

∂2F

∂xi∂xj
− Γkij

∂F

∂xk
,F

〉
+

〈
∂F

∂xi
,
∂F

∂xj

〉)
= −2gij (hij 〈ν,F〉+ gij)

= 2HS − 2n .

So we are done.

Lemma 3.3.2. On the interior of the flowing manifold we have(
d

dt
−∆

)
S = 2H − S|A|2

Proof. Using Lemma 1.2.10 we get

dS

dt
= −

〈
dF

dt
, ν

〉
−
〈

F,
dν

dt

〉
= −H 〈ν, ν〉 −

〈
F>,∇H

〉
= H −

〈
F>,∇H

〉
and

∆S = −gij
(
∂

∂xi

[
A

(
F>,

∂

∂xj

)]
− A

(
F>,∇ ∂

∂xi

∂

∂xj

))
= −gij

(
∇ ∂

∂xi
A

(
F>,

∂

∂xj

)
+ A

(
∇ ∂

∂xi
F>,

∂

∂xj

))
= −∇F>H − gijA

(
∇ ∂

∂xi
F>,

∂

∂xj

)
.

Now we calculate

gijA

(
∇ ∂

∂xi
F>,

∂

∂xj

)
= gijA

([
∇ ∂

∂xi
(F− Sν)

]>
,
∂

∂xj

)
= gijA

([
∂F

∂xi
− ∂S

∂xi
ν − S ∂ν

∂xi

]>
,
∂

∂xj

)

= gijA

(
∂

∂xi
,
∂

∂xj

)
− SgijA

(
∂

∂xj
, hikg

kl ∂

∂xl

)
= H − S|A|2
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which shows

∆S = −∇F>H −H + S|A|2 .

Hence(
d

dt
−∆

)
S = H −

〈
F>,∇H

〉
+∇F>H +H − S|A|2 = 2H − S|A|2 .

3.4 Boundary derivatives

To apply Hopf maximum principle we also need to consider derivatives of functions

at the boundary in the direction of µ, the normal to Σ. As in the case of Stahl

[25] these identities come from derivatives of the boundary condition. We first

demonstrate the following simple result.

Lemma 3.4.1. For p ∈ ∂Mn × [0, T ) we have

〈
∇F 2, µ

〉
= 0

Proof. We know that ∇F 2 = (∇F 2)>. Furthermore we have that ∇F 2 ∈ TpΣ and

so we have

〈
µ,∇F 2

〉
=
〈
µ,∇F 2 +

〈
ν,∇F 2

〉
ν
〉

=
〈
µ,∇F 2

〉
= 0 .

Now we take spatial derivatives of the boundary condition:

Lemma 3.4.2. For W ∈ TpMt ∩ TpΣ then

A(µ,W ) = −AΣ(ν,W ) .
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Proof. For such a W

0 = W 〈ν, µ〉Rn+1
1

=
〈
∇Wν, µ

〉
+
〈
ν,∇Wµ

〉
=
〈
∇Wν, µ

〉
+
〈
ν,∇Wµ

〉
= A(W,µ) + AΣ(ν,W ) .

For our gradient estimate we also need

Lemma 3.4.3. For p ∈ ∂Mn × [0, T ) we have

〈∇S, µ〉 = −AΣ(F>, ν) .

Proof. Look:

∇S =
∂S

∂xi
gij

∂

∂xj

= −
(〈

∂F

∂xi
, ν

〉
+

〈
F,

∂ν

∂xi

〉)
gij

∂

∂xj

= −A
(

F>,
∂

∂xi

)
gij

∂

∂xj
.

Since
〈
F>, µ

〉
= 0 we may apply Lemma 3.4.2 to give

〈∇S, µ〉 = −A(F>, µ)

= AΣ(F>, ν) .

Corollary 3.4.4. At a point p as above

〈∇S, µ〉 = −SAΣ(ν, ν) .

Proof. We know that the second fundamental form of Σ has a zero eigenvector in

the direction F, and so we may calculate

AΣ(F>, ν) = AΣ(F− Sν, ν)

= AΣ(F, ν)− SAΣ(ν, ν)

= −SAΣ(ν, ν) .
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Now differentiating the boundary condition with respect to time:

Lemma 3.4.5. For p ∈ ∂Mn × [0, T ) we have

〈∇H,µ〉 = −HAΣ(ν, ν) .

Proof. Using Lemma 1.2.10

0 =
d

dt

〈
ν, µ|F

〉
Rn+1

1

= 〈∇H,µ〉+ 〈ν,Dµ(Hν)〉Rn+1
1

= 〈∇H,µ〉+HAΣ(ν, ν) .

Remark 3.4.6. We note that if Σ is convex then the normal derivatives of both H

and S at the boundary are negative.

On the other hand regardless of the boundary we are able to get

Corollary 3.4.7. For p ∈ ∂Mn × [0, T ) we have〈
∇H
S
, µ

〉
= 0 .

3.5 Gradient estimate

We now obtain a gradient estimate, that is to say, a lower bound on v. Note that

in the graphical notation of equation (3.2)

S =
u2

v
√

1− |x|2
.

Hence it is sufficient to find a suitable upper bound on S and a lower bound on

u2 = F 2. We will need an assumption:

Assumption 3.5.1. We will assume from here on that Σ is convex.

We will also need the weak maximum principle of Corollaries 1.2.18 and 1.2.19.

Using Lemmas 3.3.1 and 3.4.1, we see we can immediately apply the above to

both F 2 − 2nt and 2nt− F 2 to give

C1(M0) ≤ F 2 − 2nt ≤ C2(M0) . (3.4)
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This may be interpreted as if our manifold lies between two copies of a hyperbolic

solution GC1 and GC2 initially, then it will do so for all time. It also gives the

required bounds on u, and further ensures that M0 stays away from the singularity

of Σ for all the time a solution exists.

Now using equation (1.10) and Lemma 3.3.2 we consider the evolution of H
S

:

dH
S

dt
=

1

S

dH

dt
− H

S2

dS

dt

=
1

S
∆H − H|A|2

S
− H

S2
∆S − 2

H2

S2
+
H|A|2

S

= −2

(
H

S

)2

+ ∆
H

S
− 2

〈
∇S
S
,∇H

S

〉
.

So at a point where ∇H
S

= 0 we have(
d

dt
−∆

)
H

S
= −2

(
H

S

)2

.

Hence from this, Lemma 3.4.7 and the weak maximum principle we immediately get

H

S
≤ C3(M0)

In fact, we can do better. At a stationary point of H
S

(C + 2nt) we get(
d

dt
−∆

)
H

S
(C + 2nt) =

H

S

(
2n− 2(C + 2nt)

H

S

)
.

Hence given that H > 0 on M0 and again applying weak maximum principle we

have for C3, C4 > 0
C3

C + 2nt
≤ H

S
≤ C4

C + 2nt

or for Ĉ3, Ĉ4 > 0

Ĉ3 ≤
H

S
F 2 ≤ Ĉ4 . (3.5)

If H ≥ 0 on M0 then the constant C3 is zero. This estimate implies preservation of

weak or strict mean convexity since

H ≥ C4
S

C + 2nt
≥ 0 .

If we neglect the assumption of initial mean convexity, estimate (3.5) still holds,

although Ĉ3 ≤ −n.
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Until now we have not used our assumption, and this is the point at which it

comes in, in the form of a sign of the boundary derivative on H (and later S). Using

equation 1.10 we get that on the interior of M(
d

dt
−∆

)
H2 = −2H2|A|2 − 2|∇H|2 ,

and from Lemma 3.4.5 and our assumption, ∇µH = −2H2A(ν, ν) ≤ 0. By the weak

maximum principle we therefore have

H2 < C5 .

Now using Lemmas 3.3.1, 3.3.2, 3.4.1 and 3.4.3 we calculate for f = S −
√
C5

n
F 2

that (
d

dt
−∆

)
f = 2H − 2

√
C5 − S|A|2 ≤ −S|A|2 ≤ 0

and

〈∇f, µ〉 = 〈∇S, µ〉 ≤ 0 .

Again applying the weak maximum principle we see

S ≤ C6(M0) +

√
C5

n
F 2

and hence we get

v >
F 2√

1− |x|2
(
C6 +

√
C5

n
F 2
) > 0 .

We have the estimates required, and give the following summary:

Theorem 3.5.2. Given that M0 is spacelike, a solution to equation (3.1) exists for

all time. Mean convexity is preserved by the flow and if the solution is initially

bounded by GC1 and GC2, it will remain so for all time.

Proof. From the above bounds we see that for any finite time interval [0, T ] we

have uniform parabolicity, and therefore existence of a smooth solution from the

standard results on quasilinear PDEs in Chapter 2. Therefore we have existence of

a solution on the interval [0,∞), since otherwise we would have non existence at a

finite t < T = t+ 1. Therefore long time existence is proved.
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3.6 Improvements to estimates

We expect our solution to move towards an expanding hyperbolic hyperplane Gk,

but if this is so, easy calculations imply that the estimates from the previous section

are not optimal. We currently have that F ≤ S ≤ C6 + C7F
2 while on a special

solution S = F . Also we only have C3√
C+2nt

≤ H ≤
√
C5 while on a special solution

we know H = n
F

. However our ratio of H to S, estimate (3.5), is of the right order.

To improve our estimates we consider

|∇F 2|2

F 2
= 4
|F>|2

F 2
=

4

F 2
〈F − Sν, F − Sν〉 = 4

S2 − F 2

F 2
.

Note that this quantity is invariant under scaling and is zero on our special solution.

We wish to show that this will in fact asymptote to zero. We calculate(
d

dt
−∆

)
(S2 − F 2) = 2S

(
d

dt
−∆

)
S − 2|∇S|2 −

(
d

dt
−∆

)
F 2

= 4SH − 2S2|A|2 − 2|∇S|2 − 2n .

and so for J = S2−F 2

F 2 we have(
d

dt
−∆

)
J =

1

F 2

(
d

dt
−∆

)
(S2 − F 2) +

2

F 4

〈
∇F 2,∇(S2 − F 2)

〉
+ (S2 − F 2)

(
− 1

F 4

(
d

dt
−∆

)
F 2 − 2

|∇F 2|2

F 6

)
=

1

F 2

[
4SH − 2S2|A|2 − 2|∇S|2 − 2n

− 2nJ − 8J2 +
2

F 2

〈
∇F 2,∇(S2 − F 2)

〉 ]
.

Since |A|2 ≥ H2

n2 we estimate

4SH − 2S2|A|2 ≤ 4SH − 2

n2
S2H2 ≤ 2n2 − 2

n2

(
SH − n2

)2 ≤ 2n2 .

By Cauchy–Schwarz and Young’s inequalities we also see

1

F 2

〈
∇F 2,∇(S2 − F 2)

〉
− |∇S|2 ≤ 2

S

F

|∇F 2|
F
|∇S| − |∇F

2|2

F 2
− |∇S|2

≤ S2

F 2

|∇F 2|2

F 2
− |∇F

2|2

F 2

= 4J2 .
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Applying these estimates to the evolution equation for J we have(
d

dt
−∆

)
J ≤ 2n

F 2
[n− 1− J ]

which implies since the boundary derivative of J is 〈∇J, µ〉 = 2 S
F 2 〈∇S, µ〉 < 0 that J

is bounded by the maximum of its initial value and n− 1. But we need convergence

as t→∞ and so for C ≥ C2 (see equation (3.4)) we consider(
d

dt
−∆

)
J log(C + 2nt)

= log(C + 2nt)

(
d

dt
−∆

)
J +

2nJ

C + 2nt

≤ 2n log(C + 2nt)

F 2
[n− 1− J ] +

2nJ

C + 2nt

≤ 2n log(C + 2nt)

F 2

[
n− 1−

(
1− 1

log(C + 2nt)

)
J

]
and by choosing C sufficiently large such that, for example C > max{e2, C2} then

we have the following:

Proposition 3.6.1. There exists constants CS, DS, D̃S > 0 depending only on n

and M0 such that

|∇F 2|2

F 2
≤ 4

CS
log(DS + 2nt)

≤ 4
CS

log(D̃S + F 2)

or equivalently

S2

F 2
≤ 1 +

CS
log(DS + 2nt)

≤ 1 +
CS

log(D̃S + F 2)

Now the estimate (3.5) implies the following:

Corollary 3.6.2. There exist constants CH
1 and CH

2 > 0 such that

CH
1 ≤ HF ≤ CH

2

Where CH
1 is positive if M0 is initially mean convex.

Remark 3.6.3. Although we may not use this to say anything more about exactly

what H tends towards we may say what the average of H will be asymptotically

if we assume that that H is initially positive. From the proof of Lemma 3.3.1 we
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have that ∆F 2 = 2HS−2n and therefore we see using Lemma 3.4.1 and Divergence

Theorem that ∫
M

HSdµ = n

∫
M

dµ .

Therefore since H > 0 we may estimate

n ≤
∫
M
HFdµ∫
M
dµ

≤ n

√
1 +

CS
log(DS + 2nt)

which asymptotically corresponds to what we would expect on our special solution.

3.7 Interior curvature estimates

Estimates on |A|2 on the entirety of M are difficult. It is true that as in [25] we

are able to get estimates on ∇µhij at the boundary by differentiating twice in space

and using the estimates already mentioned in Section 3.4. However, these give a

mixture of Dirichlet and Neumann conditions for hij, which are unpleasant even

in the simplest situation of the cone having the cross-section of a round sphere.

Instead we obtain some interior estimates on |A|2 and its derivatives. Note that on

the homothetic solution we know that |A|2 = n
F 2 , and we search for estimates of a

similar order.

We use an argument similar to Ecker’s interior estimates in [3], with the

difference that here we also want suitable renormalisation. The main issue becomes

the question of a cutoff function. To construct this, first suppose K : Rn+1
1 → R

and define K : Mn × [0, T )→ R by K(x, t) = K(F(x, t)).

Lemma 3.7.1. On the flowing manifold(
d

dt
−∆

)
K = −∇ν∇νK

∣∣
F
−∆K

∣∣
F
.

Proof. First
d

dt
K =

〈
∇K,

dF

dt

〉
= H∇νK .

We also calculate

∆K = gij
(〈
∇K, ∂2F

∂xi∂xj
− Γkij

∂F

∂xk

〉
+∇ ∂F

∂xi
∇ ∂F

∂xj
K

)
= H∇νK + gij∇ ∂F

∂xi
∇ ∂F

∂xj
K
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using the Weingarten relations, equation (1.4). But now by considering locally in a

suitable orthonormal coordinate system and noting the sign of ν we see

∆K = H∇νK + ∆K +∇ν∇νK

which gives us the Lemma.

Now we stipulate an additional condition on K, namely that ∇FK = 0. That

is, the cutoff function is defined on a hyperbolic plane and remains constant on rays

from the origin. As in Example 1.2.5 we define Yλ = {x| 〈x,x〉 = −λ2, xn+1 > 0},

that is Yλ is a spacelike embedding of the hyperbolic plane of “radius” λ.

Corollary 3.7.2. Under the condition ∇FK = 0 we have at p ∈M(
d

dt
−∆

)
K ≤ |∇YF 2

K|YF (p)

(
S2

F 2
− 1

)
−∆YFK(p)

= |∇Y1
2
K|Y1

(p

F

) S2

F 2 − 1

F 2
− 1

F 2
∆Y1K

(p

F

)
≤ C̃K
F 2

.

Proof. Since YF is perpendicular to F and ∆ K has no contribution from the F

direction we immediately have ∆K = ∆YFK. Similarly we have

|∇ν∇νK
∣∣
F
| = |∇

ν− 〈ν,F〉
F2 F
∇
ν− 〈ν,F〉

F2 F
K
∣∣
F
|

= |∇YF
ν+ S

F2 F
∇YF
ν+ S

F2 F
K
∣∣
F
|

≤ |∇YF 2
K|YF

(
S2

F 2
− 1

)
by Cauchy–Schwarz, giving the first inequality.

The second is using the scaling of K on YF . This allows us to estimate over Y1

rather that YF where F may vary from point to point. This inequality is simply from

properties of dilations and the constancy of K on rays from 0: Keeping a function

constant but dilating the manifold by λ while keeping K the same we get that gij

becomes λ2gij, g
ij becomes λ−2gij, Γkij remains Γkij and so on. This gives the stated

formula.

The third of these comes from estimating second derivatives of K on Y1 and

Proposition 3.6.1.
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The final two conditions we wish K to have in addition to that of the above

Corollary are:

• 0 ≤ K ≤ C where K restricted to Y1 has compact support and

• |∇
Y1K|2
K

≤ CK for some CK > 0.

The question of whether such a function exists is easily solved. For example, if

we take the Poincaré model of hyperbolic space (which is isometric to Y1) we could

take K to be the radial function K(r) = (1 − Er2)3
+. Then we calculate in this

metric
|∇PoinK|2

K
=

(
dK
dr

)2
(1− r2)2

4K
= 9E2r2(1− Er2)+(1− Er2)

which is clearly bounded (depending on E) on the unit ball. Furthermore this

function is zero outside a hyperbolic ball and bounded by 1, and by changing E we

may choose the radius of the hyperbolic ball which is supp(K).

For K satisfying the above we know

|∇K|2 = |∇K|2 +
〈
∇K, ν

〉2 ≤ |∇K|2 +

〈
∇YFK, ν − S

F 2
F

〉2

≤ S2

F 2
|∇K|2 ≤ C|∇K|2 ≤ C̃S|∇Y1K|2

F 2

for C̃S = 1 + CS
logDS

> 0 where we used the Cauchy–Schwarz inequality on the

hyperbolic plane and Proposition 3.6.1. Therefore, for such a function we have that

at a maximum of fK, that is f∇K +K∇f = 0 then(
d

dt
−∆

)
fK ≤ fC̃K

F 2
+K

(
d

dt
−∆

)
f − 2 〈∇K,∇f〉

≤ fC̃K
F 2

+ C̃Sf
|∇Y1K|2

F 2K
+K

(
d

dt
−∆

)
f

≤ fĈK
F 2

+K

(
d

dt
−∆

)
f . (3.6)

Now that we have a suitable cutoff function we are ready to get some estimates:

Lemma 3.7.3. Let L ⊂ Rn+1
1 be such that if x ∈ L then λx ∈ L ∀λ ∈ R, and so

that Y1 ∩ L is a compact set of minimum hyperbolic distance d > 0 from Σ with a

smooth boundary. Then on Mt ∩ L

|A|2 ≤ CA
F 2
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where the constant CA > 0 depends on d, the second derivatives of the boundary of

Y1 ∩ L, n and M0.

Proof. Since we have suitable cutoff functions (if necessary just using the radial one

with sufficiently large E) then the proof comes down to suitable evolution equations.

We calculate using equation (1.11) that for f0 = |A|2(D + 2nt):(
d

dt
−∆

)
f0 = 2n|A|2 − 2(D + 2nt)(|A|4 + |∇A|2)

≤ 2nf0

D + 2nt
− 2f 2

0

D + 2nt
.

Now applying equation (3.6) we have by choosing D large enough(
d

dt
−∆

)
Kf0 ≤

f0

F 2

[
ĈK + 2nK −Bf0K

]
for some B > 0 depending on C1 and C2 (see equation (3.4)). Therefore since K = 0

at the boundary we have the Lemma.

Lemma 3.7.4. For L as in the previous Lemma we have that for all m ≥ 1 there

exists a constant CA,m depending on m,n, L, d,M0 and the second derivatives of the

boundary of Y1 ∩ L such that

|∇mA|2 ≤ CA,m
F 2

Proof. The proof is by induction. Writing J1 = |A|2(D+ 2nt) +E < CA +E where

E > 0 is a constant yet to be chosen, we define

f1 = (D + 2nt)|∇A|2J1 .

Using Proposition 1.2.16, the Cauchy Schwarz inequality and the above Lemma,
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writing Cn for any positive constant depending only on n and M0 then(
d

dt
−∆

)
f1 ≤ (D + 2nt)

[
2n

D + 2nt
|∇A|2J1 + J1

(
−2|∇2A|2 + Cn|A|2|∇A|2

)
+ |∇A|2

(
2n|A|2 − 2(D + 2nt)(|A|4 + |∇A|2)

)
− 2(D + 2nt)

〈
∇|∇A|2,∇|A|2

〉 ]
≤ (D + 2nt)

[
− 2J1|∇2A|2 − 2(D + 2nt)|∇A|4

+
Cn(E + 1)

D + 2nt
|∇A|2 + 8(D + 2nt)|∇2A||∇A|2|A|

]
≤ (D + 2nt)

[
− 2J1

(
|∇2A| − 2

(D + 2nt)

J1

|∇A|2|A|
)2

+
4|∇A|4|A|2(D + 2nt)2

(|A|2(D + 2nt) + E)2
− 2(D + 2nt)|∇A|4

+
Cn(E + 1)

D + 2nt
|∇A|2

]
≤ (D + 2nt)

[
Cn
E2
|∇A|4(D + 2nt)− 2(D + 2nt)|∇A|4

+
Cn(E + 1)

D + 2nt
|∇A|2

]
.

We now choose E sufficiently large that the coefficient Cn
E2 ≤ 1

2
and therefore(

d

dt
−∆

)
f1 ≤ (D + 2nt)

[
−3

2
(D + 2nt)|∇A|4 +

Cn
D + 2nt

|∇A|2
]

≤ Cnf1

D + 2nt
− δ1f

2
1

for some δ1 > 0, where here again we used the bound on J1. Substituting into

equation (3.6) we see: (
d

dt
−∆

)
f1K ≤ f1

(
Cn
F 2
− δ1Kf1

)
Now we assume the Lemma holds for up to m− 1. We define

Jm = |∇m−1A|2(D + 2nt) + E < Cn + E

and set fm = (D + 2nt)|∇mA|2Jm. Exactly as with f1 we calculate, using the
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inductive hypothesis,(
d

dt
−∆

)
fm

≤ (D + 2nt)

[
− 2Jm|∇m+1A|2 + Cn(1 + E)

(
|∇mA|2

D + 2nt
+

|∇mA|
(D + 2nt)

3
2

)

+ |∇mA|2
(

Cn
(D + 2nt)2

− 2|∇mA|2
)

+ 8(D + 2nt)|∇m+1A||∇mA|2|∇m−1A|
]

≤ (D + 2nt)

[
Cn
E2
|∇mA|4(D + 2nt)− 2|∇mA|4

+ Cn(1 + E)

(
|∇mA|2

D + 2nt
+

|∇mA|
(D + 2nt)

3
2

)]
.

Again choosing E sufficiently large and using our bounds on Jm to get(
d

dt
−∆

)
fm ≤ −2δmf

2
m + Cn

fm +
√
fm

D + 2nt
.

for some δm > 0 and so by equation (3.6)(
d

dt
−∆

)
Kfm ≤ fm

(
Cn

D + 2nt
− δmKfm

)
+K

(
Cn
√
fm − δmf 2

m

)
.

For fm larger that some constant P (depending only on n and M0) the second

bracket is negative, while the first becomes negative if Kfm becomes large. Hence

at every point on the support of K where fm > P , Kfm can have no increasing

maxima, and therefore Kfm is bounded. Therefore we have an interior bound on

|∇mA|2
F 2 .

3.8 Convergence and renormalisation

The purpose of this section is to define the shape of the solution as t→∞. For this

some notion of blowdown will be needed.

Definition 3.8.1. If F : Mn × [0,∞) → Rn+1
1 satisfies equation (3.1) then let

F̂ = ψ(t)F where ψ(t) is some factor such that the area of F̂(M) is 1. For any

geometric quantity f on F we will denote the same quantity f̂ on F̂

If G : Mn × [0,∞) → Rn+1
1 then F → G as t → ∞ in C0, C1, . . . if F̂ → Ĝ as

t→∞ in C0, C1, . . . .
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Remark 3.8.2. It is usual (as in [13]) to renormalise time. Indeed we may do so here

by defining s =
∫ t

0
ψ(r)2dr. We then obtain

dF̂

ds
=
dF̂

dt

dt

ds
= ψ−2

(
ψHν − ψ−1 1

n

∫
M
H2dµ∫
M
dµ

F

)
= Ĥν +

F̂

n

∫
M̂

Ĥ2dµ̂ .

In actual fact Lemma 3.8.3 will show that s ≥ C log(t) and hence we need not make

a distinction between s→∞ and t→∞.

We now estimate the quantity ψ.

Lemma 3.8.3. There exist constants CY , C̃Y > 0 such that

CY
F
≤ ψ(t) ≤ CY

√
1 + CS

log(D̃S+F 2)

F
≤ C̃Y

F
.

Proof. Let Y be a parametrisation of Y1. Then any spacelike manifold contained

within the lightcone may be written as Z = u(x)Y(x). Hence we get the following

induced metric:

gZij =

〈
u
∂Y

∂xi
+DiuY, u

∂Y

∂xj
+DjuY

〉
= u2gYij −DiuDju .

We see that

gZij

(
gjkY +

Daug
aj
Y Dbug

bk
Y

u2 − |∇Y u|2

)

= u2δki +DiuDpug
pk

(
u2

u2 − |∇Y u|2
− 1− |∇Y u|2

u2 − |∇Y u|2

)
= u2δki .

Therefore

gijZ =
1

u2

(
gijY +

Daug
ai
Y Dbug

bj
Y

u2 − |∇Y u|2

)
.

We calculate for Aji = 1
u2 g

Z
iag

aj
Y = δji −

DiuDaug
aj
Y

u2 that there are n− 1 eigenvectors of

eigenvalue 1 while the remaining eigenvector is in the direction Daug
ai
Y and we see

Ajig
ia
Y Dau = Daug

aj
Y

(
1− |∇

Y u|2

u2

)
and therefore calculate

det gZij = (u2)n det(Aji ) det(gYij ) = (u2)n−1(u2 − |∇Y u|2) det(gYij ) .
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But now we calculate on our manifold:

|∇u2|2 = 4u2Diug
ij
ZDju

= 4

(
|∇Y u|2 +

|∇Y u|4

u2 − |∇Y u|2

)
=

4u2|∇Y u|2

u2 − |∇Y u|2

this gives

|∇Y u|2 =
u2|∇u2|2

4u2 + |∇u2|2
.

We may write the area of the manifold as the integral over the interior of Σ inter-

sected with Y1. We call this set B. Therefore∫
Z

dµ =

∫
B

un
√

1− |∇
Y u|2
u2

dµY1 =

∫
B

un

√
1− |∇u2|2

4u2 + |∇u2|2
dµY1

=

∫
B

un

√
4u2

4u2 + |∇u2|2
dµY1 =

∫
B

un
√

1

1 + |∇u2|2
4u2

dµY1 .

Applying this to our flowing manifold, then we have u = F and so using Proposition

3.6.1 and equation (3.4) we see for t large enough

C
− 1
n

Y F n

√
1

1 + CS
log(D̃S+F 2)

≤
∫
M

dµ ≤ C
− 1
n

Y F n

where CY =
(∫

B
dµY1

)−n
. Noting that

∫
λM

dµ = λn
∫
M
dµ which implies

ψ =
(∫

M
dµ
)− 1

n we have the Lemma.

Theorem 3.8.4. Any initially spacelike solution of equation (3.1) with a convex

cone boundary condition will converge as time tends towards infinity to some GR∞

in the C1 norm. Furthermore, on any interior set uniformly away from the boundary

there exists an increasing sequence of ti →∞ such that M̂ti converge to the solution

on the interior in the C∞ topology.

Proof. Under Dλ, a dilation by a factor λ, we have Dλ(F 2) = λ2F 2, DλS = λS, and

so on. Hence from equation (3.4), Proposition 3.6.1, Corollary 3.6.2 and the above

estimates on the dilation factor then we get

Ĉ1 ≤ F̂ 2 ≤ Ĉ2

0 ≤ |∇F̂ 2|2 ≤ ĈS
log(D̃S+F 2)

ĈH
1 ≤ Ĥ ≤ ĈH

2
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where Ĉ1, Ĉ2, ĈS, Ĉ
H
2 > 0 and ĈH

1 > 0 if CH
1 > 0 and all of these constants depend

only on n and M0. The first of these is boundedness of the renormalised hyper-

surface, the second implies that in fact we have C1 convergence to a hypersurface

with |∇F 2| = 0. Therefore these estimates imply C1 convergence of M̂ to YR, the

hyperbolic hyperplane of radius

R∞ =

(∫
B

dµY1

)− 1
n

where B is as in the above Lemma.

By Lemmas 3.7.3 and 3.7.4 we have that for L as in Lemma 3.7.3, then for all

time on Mt ∩ L
max

{
ĈH1
n
, 0
}2

≤ |Â|2 ≤ ĈA

0 ≤ |∇mÂ|2 ≤ ĈA,m

where the constant depends on the boundary of L and how far L is from Σ.

We can now use Arzelá–Ascoli and a diagonal argument to complete the theorem:

Let Uj be an open interior set of Y1 such that the boundary is of at most hyper-

bolic distance 2−(j+k) from the Σ and at least 2−(j+k)−1 such that the boundary of

Uj is C∞. We note Uj ⊂ Uj+1 and choose k sufficiently large that U1 6= ∅. We define

Li = {ξx|x ∈ Ui, ξ > 0} and we now construct for a 2 parameter set of sequences

t
(a,b)
i with the properties:

1. ti →∞ as i→∞

2. |∇bÂ|2
∣∣
La∩M

t
(a,b)
i

converges to the corresponding value on YR (that is 0 for b > 0

and n
R2 for b = 0) as i→∞ and

3. If we write @ for “is a subsequence with respect to i of” then the following

diagram holds

f
(a+1,b+1)
i @ f

(a+1,b)
i

u u

f
(a,b+1)
i @ f

(a,b)
i .

First, by Arzelá–Ascoli and the equicontinuity of ĥab
∣∣
t

on L1 (which comes from

the bound on |∇Â|2) we know there exists an increasing sequence of t
(1,1)
i , such that

ĥab
∣∣
t
(1,1)
i

uniformly converges to a C0 function on L1. Furthermore, this function
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must be 1
R
gYRij since otherwise integrating would contradict the C1 convergence to

YR∞ .

We proceed by induction. Suppose that a m×m “square” of inclusions is defined

such that conditions 1–3 above are all satisfied. The most restricted subsequence so

far will be t
(m,m)
i .

Also by Arzelá–Ascoli we may take a subsequence t
(m+1,1)
i @ t

(m,m)
i such that hab

converges uniformly on Lm+1. Now taking a subsequence of this, t
(m+1,2)
i we have

convergence of ∇chab on Lm+1 ∩Mt
(m+1,2)
i

. We may continue along this “row” up to

the convergence of ∇mA under the subsequence t
(m+1,m)
i . Note that condition 3 of

the above will automatically be satisfied by these sequences, by our choice of initial

sequence.

f
(m+1,m)
i @ . . . @ f

(m+1,1)
i

u u

f
(m,m)
i @ . . . @ f

(m,1)
i

u u
...

. . .
...

u u

f
(1,m)
i @ . . . @ f

(1,1)
i .

Next we deal with the column. Again we start with a subsequence of the most

restricted subsequence, that is, we choose t
(1,m+1)
i @ t

(m+1,m)
i such that ∇m+1A

converges to zero on L1. Taking t
(2,m+1)
i @ t

(1,m+1)
i and so on, we define up to

t
(m+1,m+1)
i . The condition 3 is automatically satisfied and so the construction is

complete by induction and repeated use of Arzelá Ascoli.

Now by abuse of notation, choose ti = t
(i,i)
i then as i→∞, ti →∞ and M̂ti → YR

in Cp for all p.



Chapter 4

Graphs in Minkowski space

In this chapter we deal with graphical mean curvature flow in Minkowski space with

a Neumann boundary condition. This gives that the boundary manifold Σ is a

cylinder.

This work came about as an attempt to take the graphical results on mean curva-

ture flow with a Neumann boundary condition from Euclidean space into Minkowski

space. In an ideal world it would be nice to imitate the integral methods of Huisken

in [14] and apply Stampaccia iteration. Indeed this is the method I initially followed.

Alas, due to issues at the boundary (see Section 4.3) it became necessary to impose

weak convexity on the domain. Given this condition, these methods yielded the first

proof of the gradient estimate I give here. In actual fact this assumption means that

there is a much simpler maximum principle argument which gives the same result.

This is the second proof of the gradient estimate.

Let Ω be a compact domain in Rn with the Euclidean metric considered as a

subspace of Minkowski space with the induced metric. For example in coordinates

as in Example 1.1.4 we may take Ω ⊂ span{e1, . . . , en}. Let ∂Ω be C2,α and define

Σ = {(x, y) ∈ Rn+1
1 |x ∈ ∂Ω, y ∈ R} to be the cylinder over Ω. We will define γ

to be the outward pointing normal to ∂Ω so that µ = (γ1, . . . , γn, 0) is the outward

unit normal to Σ.

As in the previous chapter we let Mn = Bn, and wish to consider solutions to

equation (1.9) with the Σ specified above and β = 0. Again we will require that our

initial embedding F0 : Mn → Rn+1
1 is spacelike.

66
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The spacelikeness condition implies we are able to consider F0 as a graph

u0 : Ω→ R initially with the derivative bound |Du0| < 1. Using notation similar to

[8] and [14], we define

v =
√

1− |Du|2

a(q) =
q√

1− |q|2

aij =
∂ai

∂qj
=

δij√
1− |q|2

+
qiqj

(1− |q|2)
3
2

.

We will always take a = a(Du) and aij = aij(Du), that is q = Du in the above.

The function v is called the gradient function (equivalent functions are commonly

used in Euclidean space, see for example [4]). Using these quantities we may rewrite

equation (1.9) in graphical coordinates as follows:
du
dt

(x, t) = vDi (a
i) (x, t) ∀(x, t) ∈ Ω× [0, T ]

u(x, 0) = u0(x) ∀x ∈ Ω

γiai(x, t) = 0 = Diuγ
i ∀(x, t) ∈ ∂Ω× [0, T ] .

(4.1)

The derivation of this is contained in Appendix B. While we will not do these

standard computations here, we state that

ν = aiei +
1

v
en+1, gij = vaij and H = Di(a

i) .

Remark 4.0.5. The uniform parabolicity of equation (4.1) is equivalent to the bound

|Du| < 1 which is in turn equivalent to spacelikeness. Therefore if we have such an

estimate on [0, T ] for bounded u we have both uniform parabolicity of the above and

a gradient estimate and may apply the quasi linear existence theory of Chapter 2

to get existence of a smooth solution.

We will show the following:

Theorem 4.0.6. A smooth solution to equation (4.1) exists for all time and con-

verges to a constant solution u = C as t→∞.

4.1 A gradient estimate

We will need an equation for the evolution of the gradient, v.
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Lemma 4.1.1. If we consider v as a function over Ω then

∂v

∂t
= −aiDi(Hv) (4.2)

= −HaiDiv + vDj(a
jkDkv) + vajkDkrua

rtDtju . (4.3)

Proof. By definition of v we have

∂v

∂t
= −

Di(
du
dt

)Diu√
1− |Du|2

= −aiDi(Hv) .

The second equality comes from expressing H as Di(a
i) and interchanging

derivatives:

−aiDi(Hv) = −HaiDiv − vaiDi(Dja
j)

= −HaiDiv − vaiDj(a
jkDkiu) .

But

Dj(a
jkDkv) = −Dj(a

jkDkrua
r) = −aiDj(a

jkDkiu)− ajkDkrua
rtDtju

hence
∂v

∂t
= −HaiDiv + vDj(a

jkDkv) + vajkDkrua
rtDtju .

A vital question is what happens at the boundary, answered by the following

boundary Lemma:

Lemma 4.1.2. Suppose Ω is convex then we have that for all x ∈ ∂Ω that

γiaikDkv ≥ 0 .

Proof. This proof is based on [8, Lemma 1.2], where here we additionally use that

convexity of the domain implies that the second fundamental form with of ∂Ω with

respect to γ is positive definite. At a point x ∈ ∂Ω via a linear orthogonal trans-

formation in Rn we may take γ(x) to be en. We want to differentiate the boundary

condition

aiγi = 0 .



4.1. A gradient estimate 69

Locally we may consider the boundary as a graph ω : Rn−1 → R. We know for

j = 1, . . . , n− 1 that at the point x

0 = Dj(a
iγi) = Dkjua

ikγi + aiDjγ
i .

Furthermore, by the boundary condition we know that at x, an = 0 and so

0 = ajDj(a
iγi)

= ajDjkua
kiγi + aiDjγ

iaj

= −Dkva
ikγi + aiDjγ

iaj .

The Lemma is reduced to the question of a sign on aiDjγ
iaj. Again using that

an = 0 at x, we see that we only need consider aαDβγ
αaβ where Greek indices imply

summations up to n− 1. Using the graph ω we calculate

γ =
1√

1 + |Dω|2
(−Dαωeα + en)

so

Dαγ
β =

−Dαβω√
1 + |Dω|2

+
DαωDβηωDηω

(1 + |Dω|2)
3
2

= hΣ
αηg

ηβ
Σ .

At our point x, Dω = 0 from choice of coordinates and hence at this point gηβΣ = δηβ

and so by convexity aαDβγ
αaβ ≥ 0, and the Lemma holds at x. Since x was an

arbitrary point this is true on all the boundary.

We will need the following Lemma on the time derivatives of certain Lp norms:

Proposition 4.1.3. Let Mn be a compact n-dimensional manifold with boundary

and let F : Mn × [0, T ) → Rn+1
1 be a smoothly varying family of smooth space-

like embeddings. Suppose g : Mn × [0, T ) → R is a positive function differentiable

in time and continuous in space and p > 0 is a constant. Set gk = (g − k)+

and G(t) = sup
x∈Mn

g(x, t). Suppose that there exists an ε > 0 such that for all

k ∈ ((G(t)− ε)+, G(t))
d

dt

(∫
Mn

gpkdµ

)
≤ 0 (4.4)

then G(t) is non increasing for all t ∈ (0, T ).
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Proof. Suppose not. Then at some time τ > 0 there exists a δ and an 0 < ε̃ < ε
4

such that

G(τ + δ) = G(τ) + ε̃

and for t ∈ (τ, τ+δ), G(t) ∈ (G(τ), G(τ+δ)) (we know that G is continuous). Since

Mn is compact then there exists an x ∈ Mn such that g(x, τ + δ) = G(τ + δ). We

will show that g cannot be continuous in space at (x, τ + δ).

Set

X =

{
x ∈Mn : g(x, τ + δ) > G(τ) +

ε̃

2

}
.

Figure 4.1: A picture of an impossible situation: Here we see the set up for the

contradiction. The set X is shown in thick red.

Due to our choice of ε̃ we have that equation (4.4) holds for all

(k, t) ∈ (G(τ)− ε
2
, G(τ))× (τ, τ + δ). Hence for k in this region we may integrate:∫

Ω

gpkdµ

∣∣∣∣
t=τ

≥
∫

Ω

gpkdµ

∣∣∣∣
t=τ+δ

≥
(
G(τ) +

ε̃

2
− k
)p

µ
∣∣
t=τ+δ

(X) .

Hence since G(τ) > k we have the estimate∫
Ω

gpkdµ

∣∣∣∣
t=τ

≥
(
ε̃

2

)p
µ
∣∣
t=τ+δ

(X) .
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The righthand side of this does not depend on k, while the left hand side tends

towards 0 as k → G(τ). Hence X is of measure zero with respect to µ at time τ + δ

and so cannot contain any open sets, implying g is not continuous in space.

We may now use this to give the following.

Proposition 4.1.4. Gradient Estimate Given spacelike u0 over a compact convex

domain Ω then for all the time a solution exists the gradient is bounded from below

by its initial minimum.

Proof. The above is equivalent (see e.g. [20]) to finding a bound such that |Du| < 1

for all time. We define

w = log

(
1

v

)
= −log(v)

and

wk = max{0, w − k} .

We wish to bound w from above. To this end, defining A(k) = {x ∈ Ω|wk(x) > 0}

then

d

dt

∫
Ω

w2
kdHn =

d

dt

∫
Ω

w2
kvdx

= 2

∫
Ω

wk
dw

dt
vdx+

∫
Ω

w2
k

dv

dt
dx

= −2

∫
Ω

wk
dv

dt
dx+

∫
Ω

w2
k

dv

dt
dx

= −2

∫
Ω

wk(−HaiDiv + vDj(a
jpDpv) + vajqDqrua

rtDtju)dx

−
∫

Ω

w2
ka

iDi(Hv)dx

= 2

∫
Ω

wkHa
iDivdx− 2

∫
A(k)

wkvDj(a
jpDpv)dx

− 2

∫
Ω

wkva
jqDqrua

rtDtjudx−
∫
A(k)

w2
ka

iDi(Hv)dx .

Now using Divergence Theorem on the second and fourth terms (and using the
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boundary condition) then

d

dt

∫
Ω

w2
kdHn = 2

∫
Ω

wkHa
iDivdx+ 2

∫
A(k)

Dj(wkv)ajpDpvdx

− 2

∫
∂Ω∩A(k)

γjajlDlvwkvdHn−1 − 2

∫
Ω

wkva
jsDsrua

rtDtjudx

+

∫
A(k)

Di(w
2
ka

i)Hvdx

= 2

∫
Ω

wkHa
iDivdx− 2

∫
A(k)

Djva
jpDpvdx+ 2

∫
Ω

wkDjva
jpDpvdx

− 2

∫
∂Ω

γjajlDlvwkvdx− 2

∫
Ω

wkva
jsDsrua

rtDtjudx

− 2

∫
Ω

wkHa
iDivdx+

∫
Ω

w2
kH

2vdx

=

∫
Ω

w2
kH

2vdx+ 2

∫
Ω

wk
|∇v|2

v
dx− 2

∫
∂Ω

γjajlDlvwkvdx

− 2

∫
A(k)

|∇v|2

v
dx− 2

∫
Ω

wkv|A|2dx .

But now using Lemma 4.1.2, that is γjajkDkv > 0, and the inequality H2

n2 ≤ |A|2

then

d

dt

∫
Ω

w2
kdHn ≤

∫
Ω

wk(wk −
2

n2
)H2vdx+ 2

∫
A(k)

(wk − 1)
|∇v|2

v
dx .

Hence if wk ≤ 2
n2

d

dt

∫
Ω

w2
kdHn ≤ 0 .

Now we can apply Proposition 4.1.3 (with ε = 1
n2 ) to give that W (t) = sup

x∈Ω
w(x, t) is

nonincreasing, which is to say that the gradient is bounded by its initial value.

4.2 Gradient estimate via maximum principle

The above estimate is also attainable using a maximum principle method. Here we

use such a method to find an upper bound on Y = 1
v
. The evolution equation of Y

on the flowing manifold was calculated in [3], namely(
d

dt
−∆

)
Y = −|A|2Y . (4.5)
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As usual we need a boundary derivative and since

∂

∂xi
(−〈en+1, ν〉) = −

〈
∇ν, eTn+1

〉
−
〈
ν,∇en+1

〉
= −A(eTn+1,

∂

∂xi
)

we get

∇γY = −A(eTn+1, γ) .

As in Lemma 3.4.2 at a point p ∈ ∂M we differentiate the boundary condition in

direction W ∈ Tp∂M to get

0 = 〈∇Wν, γ〉+ 〈ν,∇Wγ〉 = A(W, γ) + AΣ(W, ν) .

We see

∇γY = AΣ(eTn+1, ν) = AΣ(en+1 − Y ν, ν) = −Y AΣ(ν, ν) ≤ 0 (4.6)

where we used that en+1 is a zero eigenvector of AΣ(·, ·) and the convexity of the

boundary manifold. Applying maximum principle (Lemma 1.2.17) immediately

gives the an alternative proof of Proposition 4.1.4.

4.3 Boundary issues on more general domains

The original proof was an attempt at getting gradient estimates on more general

domains, as in [14]. This method doesn’t work here for reasons of the ambient

space: The lengths of projected vectors have to be estimated using Y = 1
v
, and it is

necessary to project at the boundary. We consider the boundary integral from the

proof of Theorem 4.1.4 and using equation (4.6)

−
∫
∂Ω

2wkDjva
jlγlvdHn−1 = −

∫
∂M

2wk
∇γv

v
dµ∂M = −

∫
∂M

2wkA
Σ(ν, ν)dµ∂M

where we used that v is the volume element of the boundary due to the boundary

condition. We must estimate this from above. Using that en+1 is an eigen vector of

AΣ(·, ·), we estimate AΣ(ν, ν)
∣∣∣
x∈∂M

≥ f(x)|ν − 1
v
en+1|2 = f(x)1−v2

v2 . Therefore we

must estimate

−
∫
∂Ω

wkA
Σ(ν, ν)vdHn−1 ≤ C

∫
∂Ω

wk
1− v2

v
dHn−1 = C

∫
∂Ω

wke
wk+k − vwkdHn−1 .
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Figure 4.2: On the holly leaf domain

Ω ⊂ R2 we consider u with Du = 0 on

the blue regions while Du may be large

elsewhere

This estimate is a good one, for exam-

ple for n = 2 in the domain pictured

supposing |Du| = 0 at the boundary

on the portions marked in blue we have

equality in this estimate for C = 1.

From here we must estimate this

on the interior using some Lemma

similar to [8, Lemma 1.4]. The above

boundary integral makes this extremely

difficult – estimating into the interior

using methods like the mentioned

Lemma would give terms like∫
Ω
wke

wk+kdµ – a term that is of expo-

nentially larger order than anything we

can get from the evolution of wk. This

anecdotal evidence suggests that to get

gradient estimates we must use either conditions on the boundary such as convexity,

or further conditions on the initial manifold to get around this problems.

The issue here is exactly one of the geometry of the ambient space: In

Euclidean space we may estimate AΣ(ν, ν) < C while here, due to the fact that

the projection of a vector can be longer than the original vector we must estimate

AΣ(ν, ν) < C
v2 which is too large. I suspect this estimate will always be a problem

when using integral methods to get gradient estimates with boundary manifolds of

indefinite metric.

4.4 Long time existence and convergence

I include the proof of a result from analysis which we will need.

Lemma 4.4.1. Suppose Ω is compact and f : Ω× [0,∞)→ R is a C1 function such
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that there exists constants C,C > 0 so that |Df |(x, t) < C and∫ ∞
0

∫
Ω

|Df |2 +

(
df

dt

)2

dx dt ≤ C (4.7)

then f(·, t) tends uniformly towards fΩ(t), the average of f over Ω at each time, as

t→∞.

Proof. Suppose not. Then there exists an ε > 0 a sequence t̂j such that

(f − fΩ)|t̂j > ε. Without loss of generality we may assume that t̂j+1 − t̂j > 1.

I now claim there is a sequence ti ∈ [t̂i, t̂i + 1] such that
∫

Ω
|Df |2dx|ti → 0.

For otherwise there exists a subsequence t̂j(i) such that for all t ∈ [t̂j(i), t̂j(i) + 1],∫
Ω
|Df |2dx|t > ε. But then we have∫ ∞

0

∫
Ω

|Df |2dx dt ≥
∞∑
i=1

∫ t̂j(i)+1

t̂j(i)

∫
Ω

|Df |2dx dt ≥
∞∑
i=1

ε

contradicting (4.7).

By the Poincaré inequality (see [21, Lemma 1.65], for example) for some C > 0

depending on Ω, ∫
Ω

(fΩ − f)2dx|ti ≤ C

∫
Ω

|Df |2dx|ti → 0 .

Hence we have that f(·, ti) → fΩ(ti), firstly almost everywhere, but then by the

bound on space derivatives, uniformly. We now see(∫
Ω

f(·, t̂i)− f(·, ti)dx
)2

≤

(∫ t̂i+1

t̂i

∫
Ω

∣∣∣∣dfdt
∣∣∣∣ dx dt

)2

≤ |Ω|
∫ t̂i+1

t̂i

∫
Ω

(
df

dt

)2

dx dt

by the Hölder inequality. Again by summing over i to avoid contradicting (4.7) we

have that this integral tend to 0 as i→∞. Hence we have that f(·, t̂i)→ f(·, ti), first

almost everywhere, then as before uniformly which in turn implies that

f(·, t̂i) → fΩ(ti) uniformly. Therefore fΩ(t̂i) → fΩ(ti) and so f(·, t̂i) → fΩ(t̂i), a

contradiction. We conclude there exists no such t̂i.

We will now address the question of convergence.

Theorem 4.4.2. Equation (4.1) has a smooth solution for all time converging to a

flat solution u = c for some constant c.
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Proof. This is a very similar argument to in [14]. We already have bounds on

the gradient of u. A C0 bound on u is rapidly obtained by quasi-linear comparison

principle (proof of this almost identical to [9, Theorem 9.2]) with the maximal surface

solutions û = c where c is some constant. By standard quasi-linear existence theory

(again see Chapter 2) we have a smooth solution to equations 4.1 with T =∞. By

Divergence Theorem and Lemma 4.1.1

d

dt

∫
Ω

vdx = −
∫

Ω

aiDi(Hv)dx

=

∫
Ω

H2vdx .

Hence since v ≤ 1, we have∫ T

0

∫
Ω

|du
dt
|2dxdt =

∫ T

0

∫
Ω

H2v2dxdt

≤
∫ T

0

∫
Ω

H2vdxdt

=

∫
Ω

vdx

∣∣∣∣
t=T

−
∫

Ω

vdx

∣∣∣∣
t=0

≤
∫

Ω

vdx

∣∣∣∣
t=T

≤ C1

where C1 is a constant depending on the gradient estimate and |Ω|. Again using the

gradient estimate we calculate the following:

d

dt

∫
Ω

u2vdx = 2

∫
Ω

uHv2dx−
∫

Ω

u2alDl(Hv)dx

= 2

∫
Ω

uHv2dx+

∫
Ω

u2H2vdx+

∫
Ω

2uHvaiDiudx

= 2

∫
Ω

Hudx+

∫
Ω

u2H2vdx

= 2

∫
Ω

Di(a
i)udx+

∫
Ω

u2H2vdx

=

∫
Ω

u2H2vdx− 2

∫
Ω

|Du|2

v
dx

where we used Divergence Theorem on the first and fourth lines. Integrating with
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time and using our C0 bound on u we have∫ T

0

∫
Ω

|Du|2

v
dxdt ≤

∫ T

0

∫
Ω

u2H2vdx+

∫
Ω

u2vdx

∣∣∣∣
t=0

≤ C2

∫ T

0

∫
Ω

H2vdxdt+

∫
Ω

u2vdx

∣∣∣∣
t=0

≤ C2

∫
Ω

vdx

∣∣∣∣
t=T

+

∫
Ω

u2vdx

∣∣∣∣
t=0

≤ C3 .

Since none of the constants above depend on T we deduce for some Ĉ > 0,∫ ∞
0

∫
Ω

|Du|2 + |du
dt
|2dxdt < Ĉ .

Therefore, by Lemma 4.4.1 u converges uniformly to some constant C(t) = uΩ(t),

possibly varying in time. Since by the comparison principle, inf
x∈Ω

u(x, t) is nonde-

creasing and sup
x∈Ω

u(x, t) is nonincreasing, we in fact see that C(t) must converge

uniformly to a constant function c and we are done.



Chapter 5

The constant prescribed boundary

angle problem for mean curvature

flow

In this chapter I will give some results on mean curvature flow in Euclidean space,

although this time the boundary condition is not necessarily perpendicular: The

angle between ν and µ will be specified to be some constant to close to π
2
.

Let Mn be a smooth manifold with boundary ∂M . We look for

F : Mn × [0, T ]→ Rn+1 such that

F(0, x) = F0(x) x ∈Mn〈
dF
dt
, ν
〉

= −H x ∈Mn × [0, T )

F(x, t) ⊂ Σ ∀x ∈ ∂Mn × [0, T ]

〈ν, µ〉 (x, t) = −β x ∈ ∂Mn × [0, T )

(5.1)

where 1 > β ≥ 0 is a constant. We have two choices to make – the choice of Σ and

the choice of the initial manifold.

Remark 5.0.3. The inequality β ≥ 0 is not a condition – suppose we want nega-

tive β, then by simply flipping the normal ν then we have a boundary condition

with positive β. This change of sign on ν does not affect the rest of the evolution

equations.
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Remark 5.0.4. In this definition we use reparametrised mean curvature flow: Since

the boundary angle is now no longer perpendicular at the boundary the manifold

may be flowing in or out of Σ which in the usual form would require dynamics on

the boundary of the domain Mn. In fact by the usual methods (see [26, Section

2]) we may also consider this as mean curvature flow proper on the interior, but we

must bear in mind that at the boundary we need to make some provisions for the

flow out of the manifold (see proof of Lemma 5.1.10).

Although some study has been done on the case β = 0 by Huisken [14], Stahl

[25] [26] and Buckland [2], less is known for non-perpendicular angles, we refer to

Altchuler and Wu [1] and Freire [6]. In [2] [6] [25] [26], the authors are concerned

with singularities that occur after some finite time. In this chapter we will be looking

for situations closer to [14] and [1] where long time existence is obtained. In these

papers graphs within cylindrical boundaries are considered: In [14], β = 0 over a

general domain, and long time existence was shown along with convergence to a

flat plane. In [1] the results are restricted to n = 2 but β is a function over the

boundary of the domain and this time we have convergence to translating solutions.

We will be looking for situations which locally look like diffeomorphic cylinders, and

our goal is suitable gradient estimates and possible criteria for long time existence.

Let E be a vector field on Rn+1 which is smooth away from a finite set of

singularities. We choose Σ to be a smooth hypersurface made up of integral curves

of E, such that Σ divides Rn+1 into an interior and an exterior, with the property

that any hypersurface S with normal parallel to E contained in the interior of Σ is

compact. We shall also assume that S is diffeomorphically a disc. Then our initial

condition on M0 is being graphical with respect to E, that is 〈ν, E〉 > 0 on all of

M0. We will show that for suitable vector fields E, the graph property is preserved

indicating possible long time existence.

Remark 5.0.5. It is clear that there must be conditions on the vector field E. The

graph property is a gradient estimate, and leads to long time existence. As a counter

example we may take any manifold that will lead to a singularity by mean curvature

flow, take a vector field perpendicular to it and extend. This is initially a graph,

but we cannot hope to get the above estimate.
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We choose assumptions on E to allow gradient estimates. Our assumptions will

be conditions to give “nice” evolution equations (Assumption 5.1.3) and bound-

ary conditions (Assumption 5.1.7). These assumptions indicate a set of interesting

boundary problems. One which had not been studied until now was a general ro-

tational torus, which is explored in Section 5.4. We modify the iteration argument

of Huisken [14] to give both long time existence and convergence in this case (see

Theorem 5.4.15).

We extend µ, the unit normal outwards pointing vector field on Σ, to the interior

of Σ by defining it be −∇φ(d) where d is the minimum distance to the boundary

function where φ : R→ R. We choose

φ(x) =


x x ∈ [0, ε]

smooth, monotonic x ∈ (0, 10ε]

0 x > 10ε

such that φ is smooth everywhere. By choosing ε small enough we have that µ is

extended smoothly to the interior of Σ. We note that the extension has been chosen

so that ∇µµ = 0 at Σ.

Definition 5.0.6. For any vector X ∈ TpRn+1 then if p ∈M

X> = X − 〈X, ν〉 ν

while if p ∈ Σ

XΣ = X − 〈X,µ〉µ .

Remark 5.0.7. Unfortunately it is standard to use µ both as the outward unit normal

to Σ and as the volume measure on the manifold. Although it will always be

completely clear from context we will write the volume measure on Mt as µ̌ to make

a distinction. The volume measures on the boundary ∂Mt will be written µ̌∂ and

the Lebesgue measure on a portion of Rn will be written dx.

5.1 Evolution equations and boundary derivatives

We have the following well known evolution equations:
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Lemma 5.1.1. On the interior of a manifold moving by mean curvature flow the

following hold

dν

dt
= ∇H (5.2)

dgij
dt

= −2Hhij (5.3)(
d

dt
−∆

)
H = H|A|2 (5.4)

Proof. See for example [13]

It will be useful to have the following:

Lemma 5.1.2. For a smooth vector field Z in Rn+1, on the flowing manifold we

have (
d

dt
−∆

)
〈Z, ν〉 = 〈Z, ν〉 |A|2 − 2gij

〈
∇iν,∇jZ

〉
− gij

〈
∇2

ijZ, ν
〉

.

Proof. First we calculate the time derivative:

d 〈Z, ν〉
dt

= 〈∇H,Z〉 −H
〈
ν,∇νZ

〉
.

As usual we will use the Laplacian to get rid of the highest order terms. We calculate

∆ 〈ν, Z〉 = gij
〈
∇i(∇jν)−∇∇i ∂

∂xj
ν, Z

〉
+ 2gij

〈
∇iν,∇jZ

〉
+ gij

〈
ν,∇i(∇jZ)−∇∇i ∂

∂xj
Z
〉

.

For the first of these terms, take a orthonormal basis {f1, . . . , fn} at a point

p ∈M . We extend this to give orthogonal geodesic coordinates at p. We calculate

that at p,

gij
〈
∇i(∇jν)−∇∇i ∂

∂xj
ν, Z

〉
= gij 〈fj(fiν), Z〉

= gij
〈
fj(hilg

lkfk), Z
〉

= gij∇jhilg
lk 〈fk, Z〉 − gijhilglk 〈hjkν, Z〉

= ∇Z>H − 〈ν, Z〉 |A|2

where we used the Weingarten and Codazzi equations. Since this does not depend

on the coordinate system this holds for all p ∈M .
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For the final term in the Laplacian we have

gij
〈
ν,∇i(∇jZ)−∇∇i ∂

∂xj
Z
〉

= gij
(〈

ν,∇i(∇jZ)−∇∇i ∂

∂xj
Z
〉

+

〈
∇i

∂

∂xj
, ν

〉〈
ν,∇νZ

〉)
= gij

〈
∇2

ijZ, ν
〉
−H

〈
ν,∇νZ

〉
.

Putting these identities together gives the lemma.

We wish to show that the property W = 〈E, ν〉 > 0 is preserved. To do this

we will consider Q = −log(W ), or V = 1
W

= eQ and we will require that these

quantities have suitable evolution equations. This becomes a condition on E. From

the above we see that(
d

dt
−∆

)
Q = − 1

W

(
d

dt
−∆

)
W − |∇W |

2

W 2

= −|A|2 +
1

W

[
2gij

〈
∇iν,∇jE

〉
+ gij

〈
∇2

ijE, ν
〉]
− |∇W |

2

W 2

and therefore I stipulate the following:

Assumption 5.1.3. From now on we require that E may be shown to satisfy

2gij
〈
∇iν,∇jE

〉
+ gij

〈
∇2

ijE, ν
〉
≤ CE

1 W +
〈
XE,∇W

〉
for some CE

1 and bounded vector field XE.

For such vector fields by Young’s inequality we have that(
d

dt
−∆

)
Q ≤ CQ − |A|2 −

1

2
|∇Q|2 . (5.5)

We note that in the case that E = en+1 then V is exactly v, the well known

gradient function as used in for example [4].

We will also need an identity originally derived by Stahl for perpendicular bound-

ary equations in [25]. This comes about by differentiating the boundary conditions

once in space, and exactly the same proof applies for constant angle boundary con-

ditions.

Lemma 5.1.4 (Stahl). For at a boundary point p ∈ ∂M and X ∈ TpM ∩ TpΣ we

have

AΣ(X, νΣ) + A(X,µ>) = 0
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Proof. See [25, Proposition 2.2]

To get an estimate on the gradient and apply a Hopf maximum principle we

will require the derivative of the gradient at the boundary. We note that at the

boundary since νΣ = ν + βµ = ν(1− β2) + βµ> that

ν =
1

1− β2

(
νΣ − βµ>

)
, µ =

1

1− β2

(
µ> − βνΣ

)
.

Lemma 5.1.5. At the boundary

∇µ>W =
〈
ν,∇µ>E

〉
− AΣ(νΣ, E) +

W

1− β2

[
βA(µ>, µ>) + AΣ(νΣ, νΣ)

]
.

Proof. We have

∇µ>W =
〈
∇µ>ν, E

〉
+
〈
ν,∇µ>E

〉
= A(µ>, E>) +

〈
ν,∇µ>E

〉
.

For the first term, using that E ∈ TpΣ and Lemma 5.1.4

A(µ>, E>) = A(µ>, E −Wν)

= A(µ>, E − W

1− β2
νΣ +

Wβ

1− β2
µ>)

= −AΣ(νΣ, E − W

1− β2
νΣ) +

Wβ

1− β2
A(µ>, µ>)

= −AΣ(νΣ, E) +
W

1− β2
AΣ(νΣ, νΣ) +

Wβ

1− β2
A(µ>, µ>) .

Corollary 5.1.6. On ∂M ,

∇µ>Q =
1

W

[
AΣ(νΣ, E)−

〈
ν,∇µ>E

〉]
− 1

1− β2
AΣ(νΣ, νΣ)− β

1− β2
A(µ>, µ>) .

The (potentially) largest term here comes from the square bracket, and suitable

bounding of this becomes a boundary assumption on the vector field E.

Assumption 5.1.7. Henceforth, we will assume that at the boundary E has the

property that

AΣ(νΣ, E)−
〈
ν,∇µ>E

〉
< CE

2 W .
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In practice the the first term of this will be fulfilled by assuming that E is an

eigenvector of AΣ(·, ·). The second is more restrictive, see the examples later (Section

5.3). Given that the above is fulfilled then

∇µ>Q = CE
2 −

1

1− β2
AΣ(νΣ, νΣ)− β

1− β2
A(µ>, µ>) . (5.6)

We must now find a way of estimating A(µ>, µ>) at the boundary. The solution to

this problem that we shall pursue is to use another gradient-like quantity namely

the extension of the boundary condition to the interior of the manifold, I = 〈ν, µ〉.

Lemma 5.1.8. At the boundary we have

∇µ>I = A(µ>, µ>) + βAΣ(νΣ, νΣ) .

Proof. Using properties of the extension of µ,

∇µ>I =
〈
∇µ>ν, µ

〉
+
〈
ν,∇µ>µ

〉
= A(µ>, µ>) + β

〈
ν,∇νΣµ

〉
= A(µ>, µ>) + βAΣ(νΣ, νΣ) .

We also need the evolution equation of I.

Lemma 5.1.9. On the interior of M we may estimate(
d

dt
−∆

)
I ≤ I|A|2 + Cµ(|A|+ 1)

where Cµ depends only on n and the first and second derivatives of Σ.

Proof. We have from Lemma 5.1.2 that(
d

dt
−∆

)
I = I|A|2 − 2gij

〈
∇iν,∇jµ

〉
− gij

〈
ν,∇2

ijµ
〉

.

The Lemma immediately follows by applying Cauchy–Schwarz, and using that the

first and second derivatives of µ are bounded.

Similarly to [25, Proposition 2.1] we use the time derivative of the boundary

condition to calculate derivatives of H at the boundary.
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Lemma 5.1.10. At the boundary we have:

∇µ>
H

W
= ∇µ>HV =

H

W 2

[
AΣ(E, νΣ)−

〈
ν,∇µ>E

〉]
and

∇µ>H =
H

1− β2

[
βA(µ>, µ>) + AΣ(νΣ, νΣ)

]
.

Proof. Let γ(t) = F(p(t)) be the position of ∂Mt at time t on some particular

integral curve of E in Σ. We calculate

dγ

dt
=

d

dt
F(p(t))

=
dF

dt

∣∣
p(t)

+
∂F

∂xi
dpi

dt

= −Hν +
∂F

∂xi
dpi

dt
.

We note that ∂F
∂xi

dpi

dt
∈ TpMt and that the constraint that γ is on an integral curve

implies

−Hν +
∂F

∂xi
dpi

dt
= λ(t)E ,

that is, dγ
dt

is the unique projection of −Hν into the direction E by vectors in the

tangent space (we are assuming that M is graphical with respect to E). This implies

that
∂F

∂xi
dpi

dt
= −H

W
E> = −H

W
(E −Wν)

and so dγ
dt

= −H
W
E. Now using this and Lemma 5.1.1 then

d

dt
ν(p(t), t) =

∂ν

∂xi
dpi

dt
+∇H

∣∣
p(t)

= −H
W
A(E>,

∂

∂xi
)gij

∂

∂xj
+∇H

∣∣
p(t)

.

Similarly

d

dt
µ(γ(t)) = −H

W
∇Eµ

and so

0 =
d

dt
〈ν, µ〉 = ∇µ>H −

H

W
A(E>, µ>)− H

W
AΣ(E, νΣ) .

The first identity comes from the fact that from Lemma 5.1.5

∇µ>W = A(E>, µ>) +
〈
ν,∇µ>E

〉
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and hence

∇µ>H −
H

W
∇µ>W =

H

W

[
AΣ(E, νΣ)−

〈
ν,∇µ>E

〉]
.

Therefore

∇µ>
H

W
=
∇µ>H

W
−
H∇µ>W

W 2
=

H

W 2

[
AΣ(E, νΣ)−

〈
ν,∇µ>E

〉]
.

Demonstrating the second identity is similar to the proof of Lemma 5.1.5:

∇µ>H =
H

W

[
A(E>, µ>) + AΣ(E, νΣ)

]
=
H

W

[
A(E − W

1− β2
νΣ +

Wβ

1− β2
µ>, µ>)

+ AΣ(E − W

1− β2
νΣ, νΣ) +

W

1− β2
AΣ(νΣ, νΣ)

]
=

H

1− β2

[
βA(µ>, µ>) + AΣ(νΣ, νΣ)

]
where we used Lemma 5.1.4 on the second line.

5.2 Estimates via the maximum principle

We are now ready to prove our gradient estimate.

Proposition 5.2.1 (Gradient estimate on convex domains). Under the assumptions

that Σ is convex, CE
2 ≤ 0 and β <

√
5−1
2

then while the flowing manifold stays away

from all singularities of E,

Q ≤ sup
x∈M

Q(x, 0) +
|β|

1− β2
+ Cβ,Σt .

Proof. We consider the function P = Q+ β
1−β2 I. This has been chosen to get rid of

unpleasant boundary terms: We see that under the above assumptions

∇µ>P = ∇µ>Q+
β

1− β2
∇µ>I

≤ 1

1− β2

[
−βA(µ>, µ>)− AΣ(νΣ, νΣ) + βA(µ>, µ>) + β2AΣ(νΣ, νΣ)

]
= −AΣ(νΣ, νΣ)

≤ 0 .
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On the interior for some C̃P > 0 we have(
d

dt
−∆

)
P =

(
d

dt
−∆

)
Q+

β

1− β2

(
d

dt
−∆

)
I

≤ C̃P (1 + |A|)−
(

1− β

1− β2
I

)
|A|2 − 1

2
|∇Q|2 .

Due to our choice of β we have that since |I| < 1, there exists an ε(β) > 0 such that

1− β
1−β2 I > 2ε, and therefore by Young’s inequality(

d

dt
−∆

)
P ≤ CQ − ε|A|2 −

1

2
|∇Q|2 .

We also estimate with respect to |∇P |. Again using Young’s inequality we see that

|∇I|2 =

∣∣∣∣A(µ>,
∂

∂xi
)gij

∂

∂xj
+
〈
∇ ∂

∂xl
µ, ν
〉
gkl

∂

∂xl

∣∣∣∣2 ≤ |A|2 + CI ,

and therefore we see that for some ĈP , δ > 0(
d

dt
−∆

)
P ≤ ĈP − δ|∇P |2 .

Now for a constant U > 0,(
d

dt
−∆

)
(P − Ut) =

(
d

dt
−∆

)
P − U

≤ ĈP − U − δ|∇P |2 ,

and so by letting U ≥ ĈP then we have the Proposition.

In fact with a little more work we may remove two of the conditions from the

above Proposition. First we define a set of functions on ψD : Rn+1 → R such

that 1 ≤ ψD ≤ 2 inside Σ, with the property that at the boundary ψ = 1 and

∇ψD = ∇µψD µ = −Dµ. Such functions are easily constructed using the minimum

distance function.

Lemma 5.2.2. On the interior of M we have(
d

dt
−∆

)
ψD = −gij∇2

∂
∂xi

, ∂

∂xj
ψD ≤ CD .

Proof. As usual
dψD
dt

= −H 〈∇ψD, ν〉



5.2. Estimates via the maximum principle 88

and

∆ψD = gij
(
∂

∂xi

〈
∇ψD,

∂

∂xj

〉
−
〈
∇ψD,∇ ∂

∂xi

∂

∂xj

〉)
= gij

(〈
∇ ∂

∂xi
∇ψD,

∂

∂xj

〉
− hij 〈∇ψD, ν〉

)
= gij∇2

∂
∂xi

, ∂

∂xj
ψD −H 〈∇ψD, ν〉

and we are done.

We now put this to work:

Proposition 5.2.3. If β <
√

5−1
2

then while the flowing manifold stays away from

all singularities of E,

Q ≤ sup
x∈M

Q(x, 0) +
|β|

1− β2
+ Cβ,Σt .

Proof. As in the proof of Lemma 5.2.1 we have(
d

dt
−∆

)
P ≤ ĈP − δ|∇P |2, ∇µ>P = CE

2 − AΣ(νΣ, νΣ) ≤ CΣ,E .

Choosing D ≥ CΣ,E

1−β2 we calculate(
d

dt
−∆

)
(P + ψD) ≤ CV + CD

We also have

∇µ>(P + ψD) = ∇µ>P −D
〈
µ, µ>

〉
≤ CΣ −D(1− β2) ≤ 0 .

Hence as previously by removing a large enough multiple of time again gives the

Proposition.

Lemma 5.2.4 (Preservation of mean convexity). Suppose that β <
√

5−1
2

, AΣ(·, ·) is

either bounded or positive definite and initially H > CH > 0. Then for all the time

a solution exists H > e[C
Σ,β
1 −CΣ,β

2 t] where CΣ,β
1 , CΣ,β

2 > 0 depend on Σ and β.

Proof. This is almost identical to the previous Lemma. We see from Lemmas 5.1.8

and 5.1.10 that for l = logH − β
1−β2 I that at the boundary

∇µ>l =
1

1− β2

[
βA(µ>, µ>) + AΣ(νΣ, νΣ)− βA(µ>, µ>)− β2AΣ(νΣ, νΣ)

]
= AΣ(νΣ, νΣ) .



5.3. Examples 89

In the interior from Lemmas 5.1.1 and 5.1.9 and using our bound on β as before

then (
d

dt
−∆

)
l ≥ |A|2 +

|∇H|2

H2
− β

1− β2
I|A|2 − Cµ(|A|+ 1)

≥ ε|A|2 − Cµ(|A|+ 1)

≥ −C1

where C1 > 0 depends on β and the extension of µ. For convex boundary we now

apply maximum principle to l + C1t to give the Lemma.

For non convex boundary we again use ψD where D is sufficiently large that

D(1 − β2) ≥
∣∣AΣ(νΣ, νΣ)

∣∣. Therefore l̃ = l − ψD has a good boundary derivative

and
(
d
dt
−∆

)
l̃ ≥ −C2. Then

(
d
dt
−∆

)
l̃ + C2t ≥ 0 and we are done.

Remark 5.2.5. The above proof does not require either of Assumptions 5.1.3 or 5.1.7.

The only place that the graph property is used is in the derivation of the gradient

of H at the boundary – we need the integral curve of E at the boundary to not be

in the tangent space of the flowing manifold.

5.3 Examples

A natural question is how common are vector fields E that may be shown to satisfy

Assumptions 5.1.3 and 5.1.7? Here I give three examples of situations in which these

conditions hold.

5.3.1 Cylinders

Example 5.3.1. Let E = en+1, the constant upwards pointing unit vector. In this

case Σ becomes cylinders over domains Ω ⊂ Rn where ∂Ω is smooth.

Proof. In this case the interior assumption (Assumption 5.1.3) is readily satisfied:

We note that since this is a vector field that does not change in space we have

∇XE = 0 for all X ∈ TpRn+1. Therefore both terms disappear to give CE
1 = 0 and

XE = 0.
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Similarly at the boundary Assumption 5.1.7 we have
〈
ν,∇µ>E

〉
= 0. We note

that the second fundamental form of any cylinder of this kind has a zero eigenvector

in the direction E, and therefore the term AΣ(νΣ, E) = 0.

This first example is already well studied by Huisken [14] and Altschuler and Wu

[1].

The results of the previous section generalise the long time existence result of

Altschuler and Wu to dimensions n ≥ 3 (and to more general domains in n = 2),

but only with constant angle β ≤
√

5−1
2

. Sadly for convergence we need a stronger

estimate than those given: Altschuler and Wu’s strong maximum principle argument

(for example), requires a limit solution to the sequence of graphs ui = u(x, t + i).

We would need a gradient estimate that is constant in time to be able to apply the

Arzela–Ascoli Theorem here.

5.3.2 Cones

Example 5.3.2. E = p, the position vector. This implies Σ is a cones in Rn+1. The

Assumptions are satisfied for some short time T if we specify H,W > 0 initially.

Proof. In this case we have ∇XE = X and ∇2
E = ∇YX −∇∇YXE = 0.

For the boundary assumption as in the previous Example we use that on a cone

the second fundamental form has a zero eigenvector in the E direction. Therefore

AΣ(νΣ, E)−
〈
ν,∇µ>E

〉
= −

〈
ν, µ>

〉
= 0 .

Applying this in Assumption 5.1.3 we have

2gij
〈
∇iν,∇jE

〉
+ gij

〈
∇2

ijE, ν
〉

= 2H .

To show the assumption we need a little more work. Lemma 5.1.2 gives us(
d

dt
−∆

)
W = W |A|2 − 2H .

We specify the condition that initially H > 0, and so by Lemma 5.2.4 this will



5.3. Examples 91

remain true for as long as a solution exists. Therefore we may calculate(
d

dt
−∆

)
W

H
=
W

H
|A|2 − 2− W

H
|A|2 − 2W

|∇H|2

H3
+

2

H2
〈∇W,∇H〉

= −2 + 2

〈
∇H
H

,
H∇W −W∇H

H2

〉
= −2 + 2

〈
∇ logH,∇W

H

〉
.

At the boundary we have from Lemma 5.1.10

∇µ>
W

H
= −W

2

H2
∇µ>

H

W
= 0 .

and so by considering the evolution of W
H

+ 2t we see

H <
W

C − 2t
.

The finite time under which this holds is not surprising. For example if we have

β = 0 then we have a special solution – the homothetically shrinking sphere centred

at the point of the cone. By Stahl’s comparison theorem [26, Theorem 4.1], this acts

as a comparison solution for all solutions with β = 0. Therefore since the sphere

solution shrinks to a point at the singularity of Σ and E then we do not expect long

time existence.

This case has been considered for β = 0 in the special case of the cone being a

flat plane Rn by Stahl [25] where it was shown that an initially convex hypersurface

shrinks to a round sphere at some point p ∈ Rn.

5.3.3 Tori

At a point p = (p1, . . . , pn+1) ∈ Rn+1 we define

r =
√
p2
n + p2

n+1, r =
1

r
(0, . . . , 0, pn, pn+1), t =

1

r
(0, . . . , 0,−pn+1, pn) .

Example 5.3.3. Let E = rt then Assumptions 5.1.3 and 5.1.7 hold and Σ is a torus

made from an embedding of Sn−1 into span{e1, . . . , en} then rotated in the en, en+1

plane.
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Proof. We see that by standard calculations

∇r = r,

∇Xr = 〈X, t〉∇tr = 〈X, t〉 1

r
t

∇Xt = 〈X, t〉∇tt = −〈X, t〉 1

r
r .

and so ∇XE = ∇X(rt) = 〈X, r〉 t− 〈X, t〉 r. Further we have

∇2

Y XE = ∇Y (〈X, r〉 t− 〈X, t〉 r)−∇∇YXE

=
〈
X,∇Y r

〉
t + 〈X, r〉∇Y t−

〈
X,∇Y t

〉
r− 〈X, t〉∇Y r

=
〈Y, t〉
r

[〈X, t〉 t− 〈X, r〉 r + 〈X, r〉 r− 〈X, t〉 t]

= 0 .

For Assumption 5.1.3 we see that

2gij
〈
∇iν,∇jE

〉
+ gij

〈
∇2

ijE, ν
〉

= 2gij
〈
∇iν,

〈
∂F

∂xj
, r

〉
t−

〈
∂F

∂xj
, t

〉
r

〉
= 2

(
A(r>, t>)− A(t>, r>)

)
= 0 .

For the boundary assumption, Assumption 5.1.7, we need some facts about the

second fundamental form for such boundary manifolds Σ. Let J : Sn−1 → Rn be

smooth such that 〈J, en〉 > 0. Then set

G = J− 〈J, en〉 en + 〈J, en〉 [cos θen + sin θen+1] ,

which is a parametrisation of a general Σ of this kind. If νJ is the normal to J in

Rn then the normal to G in Rn+1 is

µ = νG = νJ −
〈
νJ , en

〉
en +

〈
νJ , en

〉
[cos θen + sin θen+1] .

We may easily see that

∂2G

∂xi∂θ
=

〈
∂J

∂xi
, en

〉
[− sin θen + cos θen+1] ,
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which is perpendicular to νG. Therefore we know that the direction ∂G
∂θ

= E is an

eigenvector of AΣ(·, ·). We also calculate the curvature in the direction E: Since

∂2G

∂2θ
= −〈J, en〉 [cos θen + sin θen+1]

we have

AΣ(E,E) = −
〈
νG,

∂2G

∂2θ

〉
=
〈
νJ , en

〉
〈J, en〉 =

〈
νG, r

〉
r = 〈µ, r〉 r .

Using this we see that

AΣ(νΣ, E)−
〈
ν,∇µ>E

〉
=
〈ν, E〉
r2

AΣ(E,E)−
〈
ν,
〈
µ>, r

〉
t−

〈
µ>, t

〉
r
〉

=
W

r
〈µ, r〉 − W

r
〈µ, r〉 − β 〈ν, r〉 〈ν, t〉+ β 〈ν, t〉 〈ν, r〉

= 0 (5.7)

and so the Assumption is satisfied.

To the authors knowledge this situation is not yet studied.

Proposition 5.2.3 gives long time existence for β <
√

5−1
2

and if β > 0 then

Lemma 5.2.4 gives preservation of mean convexity. In fact for β = 0 this is not a

useful condition: For a vector field X ∈ X(Rn+1) then on M

div(X>) = gij
〈
∇ ∂

∂xi
X, ∂

∂xj

〉
−H 〈ν,X〉. Applying this to the vector field E = rt

we have

0 = −
∫
∂M

r
〈
µ, t>

〉
dµ̌ = −

∫
M

div(E>)dµ̌ =

∫
M

HWdµ̌

since at the boundary t> and µ are perpendicular for β = 0. We therefore see

that either H = 0 or H is both positive and negative on M . Therefore (weak)

mean convexity here implies a minimal surface, which does not make a good initial

condition.

Remark 5.3.4. We have a special solution to this flow for β = 0: Any flat hyperplane

going through 0 and perpendicular to t satisfies the boundary conditions and is a

stationary solution to equation (5.1).

Regardless of β we may get relations between H and W . This is similar to the

relations obtained between H and S in Chapter 3. We have
(
d
dt
−∆

)
W = W |A|2
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and so(
d

dt
−∆

)
H2

W 2
= 2

H2

W 2
|A|2 − 2

|∇H|2

W 2
− 2

H2

W 2
|A|2 − 6

H2|∇W |2

W 4
+ 8

H

W 3
〈∇H,∇W 〉

=

[
−2
|∇H|2

W 2
+ 2

1

W 2

〈
∇H, H

W
∇W

〉]
+

[
6
H

W 4
〈W∇H,∇W 〉 − 6

H2|∇W |2

W 4

]
.

At a positive stationary point of H2

W 2 we have H∇W = W∇H, and therefore both

of the brackets disappear. From equation (5.7) and Lemma 5.1.10 we see that

∇µ>
H2

W 2 = 0 and we may apply maximum principle to give H2 ≤ CW 2 for some

C > 0. Since |W | ≤ 1 we therefore have a bound on |H|.

The torus situation is clearly very interesting, and we go into more details with

β = 0 in the next section.

5.4 Gradient estimate via integral methods for

tori

We now look for better gradient estimates via integral methods in the case of tori

for β = 0. We will see that the Stampaccia iteration method used by Huisken in [14]

may be modified to apply to this case. This will lead to a gradient estimate uniform

in time which will be enough to show convergence as in Chapter 4. Before going

into this we look at a bound on the region in which Mt may move using maximum

principles:

We may get estimates on the region in which Mt is contained.

Lemma 5.4.1. Let u be the angle around the torus, taken from some arbitrary point.

Then (
d

dt
−∆

)
u =

2

r

〈
r>,∇u

〉
= − 2

r2
〈ν, t〉 〈ν, r〉 .

Proof. Using cylindrical coordinates on Rn+1 we see that

∇u =
t

r

and from this we may calculate the evolution equation of u. We see that

du

dt
= −H

r
〈ν, t〉
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and

∆u = gij
(
∂

∂xi

〈
t

r
,
∂

∂xj

〉
−
〈

t

r
,∇ ∂

∂xi

∂

∂xj

〉)
= gij

(〈
−
〈

r,
∂

∂xi

〉
t

r2
−
〈
∂

∂xi
, t

〉
r

r2
,
∂

∂xj

〉
+

〈
t

r
,∇ ∂

∂xi

∂

∂xj

〉
−
〈

t

r
,∇ ∂

∂xi

∂

∂xj

〉)
= − 2

r2

〈
r>, t>

〉
−H

〈
t

r
, ν

〉
.

Therefore (
d

dt
−∆

)
u =

2

r2

〈
r>, t>

〉
=

2

r

〈
r>,∇u

〉
.

At a stationary point we have ∇u = 1
r
t> = 0 and therefore at such a point(

d
dt
−∆

)
u = 0. At the boundary, again using that t> and µ are perpendicular

we have ∇µu = 0 and so we may apply maximum principle and we get that u is

bounded above and below by its initial values. Therefore, Mt may not twist itself

around the torus any more than it is initially twisted. We note that it does not

matter if the initial manifold goes around by more than 2π.

Remark 5.4.2. It will also be useful to bear in mind for future estimates that we are

assuming that, simply by the bounds imposed in space by the boundary torus that

for some r0 and r1 we know 0 < r0 < r < r1.

5.4.1 Integral lemmas

As is standard in proofs via integral estimates in mean curvature flow we will require

the Michael–Simon Sobolev inequality [18]. While this holds in much more general

situations, we will only require M to be smooth embedded n-dimensional manifolds

in Rn+1.

Lemma 5.4.3 (The Michael–Simon–Sobolev inequality). There exists a constant

CS > 0 depending only on n such that for any function f ∈ C1(M) such that f has

compact support, we have(∫
M

|f |
n
n−1dµ̌

)n−1
n

≤ CS

∫
M

|∇f |+ |H||f |dµ̌
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Since we will require such an inequality not just on functions of compact closure,

but functions that may be non-zero at the boundary ∂M . We give a proof which is

in essence [8, Lemma 1.1], although no longer graphical:

Lemma 5.4.4. For any compact manifold M with boundary ∂M and for any func-

tion f ∈ C1(M) we have(∫
M

|f |
n
n−1dµ̌

)n−1
n

≤ CS

[∫
M

|∇f |+ |H||f |dµ̌+

∫
∂M

|f |dµ̌∂
]

where the constant CS depends only on n.

Proof. Set d : D → R to be the minimum distance inside the manifold to the

boundary function. This is smooth close enough to the boundary. We define for k

large enough η̃k = min{1, kd}, and let ηk be a C1 smoothing of this – the specifics of

this smoothing do not matter in the following so long as it is close in the C1 norm

to η̃k, and we shall estimate one with the other. Set fk = ηkf , and we consider the

sequence fi for i ∈ N. Since µ({x|f(x) 6= fi})→ 0 as i→∞ we also have that(∫
M

|fi|
n
n−1dµ̌

)n−1
n

→
(∫

M

|f |
n
n−1dµ̌

)n−1
n

,

∫
M

|H||fi|dµ̌→
∫
M

|H||f |dµ̌ .

For the remaining term:∫
M

|∇fi|dµ̌ ≤
∫
M

|∇f |ηidµ̌+

∫
M

|f ||Dηk|dµ̌

The first of the above may be estimated as the other terms. For the final term

we choose a special parametrisation of the collar, some neighbourhood of ∂M . We

parametrise so that F : ∂M × [0, ε] → Rn+1 where F(·, s) is a parametrisation of

the level set {x ∈ M |d(x) = s}. Therefore ∂
∂xn

= ∂
∂s

= ∇d and therefore the metric

induced by F has gin = δin at the boundary. Therefore for k large enough∫
M

|f ||Dηk|dµ̌ ≤
∫
{x∈M |d(x)≤ 1

k
}
k|f |dµ̌

= k

∫ 1
k

0

∫
∂Mn

|f |
√

det(gij(x, s))dxds

→
∫
∂Mn

|f |
√

det(gij(x, 0))dx

as k →∞. Due to the properties of gij we have the Lemma.
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We will also need the following, which is based on [8, Lemma 1.4]:

Lemma 5.4.5. For M a compact manifold with boundary, then for all f ∈ W 1,∞(M)

we have ∫
∂M

|f |dµ̌∂ ≤ CΣ

∫
M

|∇f |+ (|H|+ 1)|f |dµ̌

where the constant CΣ > 0 depends only on Σ.

Proof. This is essentially just divergence theorem. We now use d, the minimum

distance to Σ and note that at Σ, ∇ d = −µ. We take a smooth function φ : R→ R

such that φ′(0) = −1 and φ(x) = 0 for x > R where R is less than the minimum

focal distance of Σ. We define φ = φ(d) – a smooth function on Rn+1. Then from

the proof of Lemma 5.2.2 we know

∆φ ≤ Ĉφ −H
〈
∇φ, ν

〉
.

Therefore ∫
∂M

fdµ̌∂ =

∫
M

div(f∇φ)dµ̌

=

∫
M

〈
∇f,∇φ

〉
+ f∆φdµ̌

≤ Cφ

∫
M

|∇f |+ f(|H|+ 1)dµ̌ .

Corollary 5.4.6. For all f ∈ C1(M) there exists a constant CS depending on n

and Σ such that(∫
M

|f |
n
n−1dµ̌

)n−1
n

≤ CS

∫
M

|∇f |+ (|H|+ 1)|f |dµ̌

We will need the following:

Lemma 5.4.7. Suppose f : Mn× [0, T )→ R is once differentiable in time such that

df
dt
, f ∈ L1(Mt). Then the following holds for t > 0 and β = 0:

d

dt

∫
Mt

fdµ̌ =

∫
Mt

df

dt
−H2fdµ̌
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Proof. This is the opposite case to Remark 5.0.4: If β = 0 then the manifold does

not flow out through the boundary. Specifically we know that in the parametrisation

defined by F, ∫
Mt

fdµ̌ =

∫
Mn

f
√

det(gij(x, t))dx .

Since the boundary of Mn does not change with time we only need the derivative

of the volume form. Using the well known determinant derivative formula we have

using Lemma 5.1.1

d
√

det(gij)

dt
=

ddet(gij)

dt

2
√

det(gij)
=

1

2
√

det(gij)

[
−2Hgijhij det(gij)

]
= −H2

√
det(gij)

and therefore we have the Lemma.

Corollary 5.4.8. For β = 0, the area of M satisfies

|Mt| =
∫
Mt

dµ̌ ≤ |M0| .

Proof. We immediately see

d

dt

∫
M

dµ̌ = −
∫
M

H2dµ̌ ≤ 0 .

We will also need the following iteration Lemma from [27, Lemma 4.1 i)]:

Lemma 5.4.9. Suppose φ : (k0,∞)→ R is a non–negative non–increasing function

such that for all h > k ≥ k0 then

φ(h) ≤ C

(h− k)α
(φ(k))β

where C, α and β are positive constants. Then if β > 1 then φ(k0 + d) = 0 for

dα = C[φ(k0)]β−12α
β
β−1 .

Proof (Translation from the French). We consider the sequence ks = k0 + d − d
2s

.

Then ks+1 = k0 + d− d
2s+1 = ks + d

2s
− d

2s+1 = ks + d
2s+1 . From the assumption on φ

we know

φ(ks+1) =
C2α(s+1)

dα
(φ(ks))

β .
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We show by induction that φ(ks) ≤ φ(k0)
2−sµ

where µ = α
1−β . This is clearly true for

s = 0. Suppose this is true up to s. Then

φ(ks+1) ≤ C2α(s+1)

dα
(φ(ks))

β ≤ C2α(s+1)

dα

(
φ(k0)

2−sµ

)β
=
C2α(s+1+ β

1−β s)(φ(k0))β

C[φ(k0)]β−12α
β
β−1

= 2α(s+1)(1+ β
1−β )φ(k0) =

φ(k0)

2−(s+1)µ
.

Therefore we see that φ(k0 + d) = 0 as required.

5.4.2 The iteration argument

To prove this we will again consider Q = log V . We recall(
d

dt
−∆

)
Q ≤ −|A|2 − |∇Q|2 on the interior of Mt, |∇>µQ| ≤ CΣ on ∂Mt .

We now define Qk = (Q− k)+ and A(k) = {x ∈M |Qk > 0} . Note that Qp
k is p− 1

times differentiable everywhere and may be assumed to be smooth inside A(k). We

define

‖A(k)‖ =

∫ T

0

∫
A(k)

dµ̌ dt

and we look for estimates on this quantity. We show the following:

Proposition 5.4.10 (Partial Gradient Estimate). For all t ∈ [0, T ] we get the

following gradient estimate inside tori:

Q ≤ k + C‖A(k)‖
1

4(n+1)

where C > 0 depends on Σ and M0 and k > k1 > sup
M0

Q.

This partial gradient estimate will follow from applying Lemma 5.4.9 with

φ(k) = ‖A(k)‖, showing that for some d, ‖A(d)‖ = 0. Then, to complete the

gradient bound we will need a final estimate on ‖A(k)‖, see Section 5.4.3. First

though to prove the Proposition we will need an estimate on Lp norms of Qk:

Lemma 5.4.11. We may estimate for all k > k1 and even p that∫ T

0

∫
M

Qp
kdµ̌ dt ≤ CQ(p)‖A(k)‖

where CQ > 0 depends on the power p.
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Proof. Using Lemma (5.4.1) we have that(
d

dt
−∆

)
eλu = λeλu

[
− 2

r2
〈ν, t〉 〈ν, r〉 − λ|∇u|2

]
≤ λeλu

[
W

r3
Cu

1 − λ(1− W 2

r2
)

]
for Cu

1 > 0. At the boundary this function has zero derivative in the µ direction.

On A(k), W < e−k. Given a k0 large enough we may choose λ > 0 large enough

such that on A(k) for k > k0 we estimate(
d

dt
−∆

)
eλu ≤ −Cu

2 |∇u|2

≤ −3Cu
3

where we used our bounds on u. Writing Cn for any bounded positive constant

depending only on M0, p, Σ and n we calculate for p > 2 and k > k0:(
d

dt
−∆

)
eλuQp

k ≤ −C
u
2 |∇u|2Q

p
k − pe

λuQp−1
k |∇Q|

2

− eλup(p− 1)Qp−2
k |∇Q|

2 − 4pQp−1
k

〈
∇Q,∇eλu

〉
≤ Qp−2

k [−Cu
2Q

2
k|∇u|2 − peλuQk|∇Q|2

− eλup(p− 1)|∇Q|2 + CnpQk|∇Q||∇u|]

≤ Qp−2
k

[
CnQk − Cu

2Q
2
k|∇u|2 − CnQk|∇Q|2 − Cn|∇Q|2

]
≤ CnQ

p−2
k − 2Cu

3Q
p
k − CnQ

p−1
k |∇Q|

2 − CnQp−2
k |∇Q|

2

where we used Young’s inequality of the form ab = εa2

2
+ b2

2ε
repeatedly. We may now

use Lemma 5.4.7 and divergence Theorem to see that

d

dt

∫
M

eλuQp
kdµ̌ ≤

∫
M

(
d

dt
−∆

)
eλuQp

k −H
2eλuQp

kdµ̌

+

∫
∂M

pCnCΣQ
p−1
k dµ̌∂

Estimating as above and using Lemma 5.4.5,

d

dt

∫
M

eλuQp
kdµ̌

≤
∫
M

(
d

dt
−∆

)
eλuQp

k −H
2eλuQp

k + CnQ
p−1
k + CnQ

p−2
k |∇Q|dµ̌

≤
∫
M

Qp−2
k

[
Cn − 2Cu

3Q
2
k − CnQk|∇Q|2 − Cn|∇Q|2 + CnQk + Cn|∇Q|

]
dµ̌

≤
∫
M

Qp−2
k

[
Cn − Cu

3Q
2
k

]
dµ̌ .
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Hence choosing k > k1 = max{k0, sup
M0

Q+ 1} we may integrate to get

∫ T

0

∫
A(k)

Qp
kdµ̌ dt ≤ C̃

∫ T

0

∫
A(k)

Qp−2
k dµ̌ dt .

We also in fact want the above to hold for p = 2. We see that

d

dt

∫
M

eλuQ2
kdµ̌ =

∫
M

2eλuQk

(
λQk

du

dt
+
dQ

dt

)
−H2eλuQ2

kdµ̌

=

∫
A(k)

deλuQ2
k

dt
−H2eλuQ2

kdµ̌ .

On the open set A(k) = {x ∈ M |Q(x) > k} we know that u2Q2
k is smooth we may

write

d

dt

∫
M

eλuQ2
kdµ̌ =

∫
A(k)

∆eλuQ2
k +

(
d

dt
−∆

)
eλuQ2

k −H2eλuQ2
kdµ̌

where ∆eλuQp
k is calculated only inside A(k). We now wish to apply the Divergence

Theorem as before: ∫
A(k)

∆eλuQ2
kdµ̌ =

∫
A(k)

div(∇(eλuQ2
k))dµ̌

But since∇(eλuQ2
k) = λeλuQ2

k∇u+2eλuQk∇Q is a smooth vector field on the interior

and continuous up to the boundary of A(k) we may still apply divergence theorem

(if necessary by estimating A(k) from the interior and taking the limit – continuity

them implies the limits are the same). Furthermore we have that away from ∂M

this vector field is 0 and so we do not get extra terms:∫
A(k)

∆eλuQ2
kdµ̌ =

∫
∂M∩A(k)

〈2uQk∇(uQk), µ〉 dµ̌

and from here the rest of the above proof holds.

We may therefore estimate for p even and k > k1∫ T

0

∫
M

Qp
kdµ̌ dt ≤ CQ(p)‖A(k)‖ .

We are now in a position to show the gradient bound.
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Proof of Proposition 5.4.10. We may calculate(
d

dt
−∆

)
Qp
k ≤ pQp−1

k

(
d

dt
−∆

)
Q− p(p− 1)Qp−2

k |∇Q|
2

≤ −pQp−2
k

(
Qk|∇Q|2 + (p− 1)|∇Q|2

)
.

Using Cn as in Lemma 5.4.11 we see using the bound on |H|:

d

dt

∫
M

Qp
kdµ̌ ≤

∫
M

(
d

dt
−∆

)
Qp
k −H

2Qp
kdµ̌+ pCΣ

∫
∂M

Qp−1
k dµ̌∂

≤
∫
M

(
d

dt
−∆

)
Qp
k −H

2Qp
k

+ Cn
[
(1 + |H|)Qp−1

k + (p− 1)Qp−2
k |∇Q|

]
dµ̌

≤
∫
M

Qp−2
k

[
− pQk|∇Q|2 − p(p− 1)|∇Q|2 −H2Q2

k

+ CnQk + Cn|∇Q|
]
dµ̌

≤
∫
M

Qp−2
k

[
CnQ

2
k + Cn

]
dµ̌−

∫
M

pQp−1
k |∇Q|+ (|H|+ 1)Qp

kdµ̌

≤ C2

∫
M

Qp−2
k +Qp

k dµ̌− C1

[∫
M

Q
np
n−1

k dµ̌

]n−1
n

.

where on the last line we used Corollary 5.4.6 with f = Qp
k. Integrating with respect

to time we have:

sup
t∈[0,T ]

∫
M

Qp
kdµ̌+ C1

∫ T

0

[∫
M

Q
np
n−1

k dµ̌

]n−1
n

dt ≤ C2

∫ T

0

∫
M

Qp−2
k +Qp

kdµ̌ dt . (5.8)

We now deal with the left hand side of this by the standard methods: By Young’s

inequality of the form ab = ac

c
+ bd

d
where 1 = 1

c
+ 1

d
we see

sup
t∈[0,T ]

∫
M

Qp
kdµ̌+ C1

∫ T

0

[∫
M

Q
np
n−1

k dµ̌

]n−1
n

dt

≥ Cn

(
sup
t∈[0,T ]

∫
M

Qp
kdµ̌

) 1
c
(∫ T

0

[∫
M

Q
np
n−1

k dµ̌

]n−1
n

dt

) 1
d

≥ Cn

(∫ T

0

[∫
M

Qp
kdµ̌

] d
c
[∫

M

Q
np
n−1

k dµ̌

]n−1
n

dt

) 1
d

.

Set q = n
n−1

then we now use Hölder’s inequality and a careful choice of d. We
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choose d = n+1
n

which implies c = n+ 1. Then∫
M

fddµ̌ =

∫
M

fd−1fdµ̌

≤
[∫

M

f
q(d−1)
q−1 dµ̌

]1− 1
q
[∫

M

f qdµ̌

] 1
q

=

[∫
M

fdµ̌

] 1
n
[∫

M

f qdµ̌

] 1
q

=

[∫
M

fdµ̌

] d
c
[∫

M

f qdµ̌

] 1
q

and so

sup
t∈[0,T ]

∫
M

Qp
kdµ̌+ C1

∫ T

0

[∫
M

Q
np
n−1

k dµ̌

]n−1
n

dt ≥ Cn

(∫ T

0

∫
M

Qpd
k dµ̌ dt

) 1
d

.

Putting this, equation (5.8) and Lemma 5.4.11 together and choosing p to be even

we see (∫ T

0

∫
M

Qpd
k dµ̌ dt

) 1
d

≤ Cn

∫ T

0

∫
M

Qp−2
k +Qp

kdµ̌ dt

≤ C3‖A(k)‖ .

The Hölder inequality now implies(∫ T

0

∫
M

Qpd
k dµ̌ dt

) 1
d

≥
∫ T

0

∫
M
Qp
kdµ̌ dt

‖A(k)‖1− 1
d

to give

|h− k|p‖A(h)‖ ≤
∫ T

0

∫
M

Qp
kdµ̌ dt ≤ C3‖A(k)‖2− 1

d

where h > k. The first inequality comes from estimating the middle term not over

all of M but only over A(h) ⊂ A(k). Since 2 − 1
d

= 1 + 1
n+1

> 1 then applying

Lemma 5.4.9 with φ(k) = ‖A(k)‖ we see that ‖A(k)‖ = 0 for k = k1 +D where

Dp = C32
2d−1
d−1 ‖A(k1)‖

d−1
d

and so choosing say, p = 4, the Proposition is proved.
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Remark 5.4.12. The above proof will hold with other vector fields E with evolution

equation (5.5), on the condition that the “graph height” function, the equivalent

of u is bounded above and below and has a suitable evolution equation. Here an

example of “suitable” would be, for some constant Cu,(
d

dt
−∆

)
u ≤ CuW .

For such evolutions the above holds.

5.4.3 The final estimate

In [14], it was possible to get an estimate on the ‖A(k)‖ simply using the equivalent

of the function u. Unfortunately the evolution of u in the case of the tori can be

both positive and negative and so the same proof doesn’t hold. Instead we use the

function r to estimate away the new terms in the evolution of u.

Lemma 5.4.13. The function r evolves by(
d

dt
−∆

)
r = −|t

>|2

r
.

Proof. Similarly to Lemma 5.4.1 we have dr
dt

= −H 〈r, ν〉 and calculate

∆r = gij
(
∂

∂xi

〈
r,

∂

∂xj

〉
−
〈

r,∇ ∂

∂xi

∂

∂xj

〉)
= gij

(〈
1

r

〈
∂

∂xi
, t

〉
t,

∂

∂xj

〉
+

〈
r,∇ ∂

∂xi

∂

∂xj
−∇ ∂

∂xi

∂

∂xj

〉)
= −H 〈ν, r〉+

1

r
|t>|2 .

We now show that ‖A(k)‖ is bounded for k large enough.

Proposition 5.4.14. There exists a k2 > 0 such that for all k > k2 there exists a

constant C depending only on M0,Σ and n such that

‖A(k)‖ ≤ C
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Proof. We consider the function f = u2r2. We will calculate the derivative of the

integral of this quantity over the manifold. First though we will need the evolution

equation:(
d

dt
−∆

)
f = r2

[
4u

r
〈∇r,∇u〉 − 2|∇u|2

]
+ u2

[
−2|t>|2 − 2|r>|2

]
− 8ur 〈∇r,∇u〉 .

At the boundary we have ∇µf = u2∇µr
2. We estimate the integral over the

boundary of this using divergence theorem:∫
∂M

∇µfdµ̌∂ =

∫
∂M

u2∇µr
2dµ̌∂ =

∫
M

div(u2∇r2)dµ̌ =

∫
M

〈
∇u2,∇r2

〉
+ u2∆r2dµ̌

=

∫
M

4ur 〈∇u,∇r〉+ u2
[
−2rH 〈ν, r〉+ 2|t>|2 + 2|r>|2

]
dµ̌ .

Therefore, by Divergence Theorem,

d

dt

∫
M

fdµ̌ =

∫
M

(
d

dt
−∆

)
f −H2fdµ̌+

∫
∂M

∇µfdµ̌

=

∫
M

4ru 〈∇r,∇u〉 − 2r2|∇u|2 − 2u2|t>|2 − 2u2|r>|2 − 8ru 〈∇r,∇u〉

+ 4ur 〈∇u,∇r〉 − 2u2rH 〈ν, r〉+ 2u2|t>|2 + 2u2|r>|2 −H2fdµ̌

=

∫
M

−2r2|∇u|2 − 2u2rH 〈ν, r〉 −H2fdµ̌ .

We note that 〈ν, r〉2 + 〈ν, t〉2 ≤ |ν|2 = 1 and so 〈ν, r〉2 ≤ 1 − 〈ν, t〉2 = |t>|2. Since

|∇u|2 = |t>|2
r2 , using Young’s inequality we see

d

dt

∫
M

fdµ̌ ≤
∫
M

−2|t>|2 + 2(u2r|H|)(| 〈ν, r〉 |)−H2fdµ̌

≤
∫
M

−|t>|2 + u4r2H2dµ̌

≤
∫
M

−|t>|2 + C1H
2dµ̌ .

for some C1 > 0 by the boundedness of r and u. We have that

d

dt

∫
M

dµ̌ = −
∫
M

H2dµ̌

and so integrating we have for any time interval [0, T )∫ T

0

∫
M

H2dµ̌ dt ≤ |M0| = CH . (5.9)
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Similarly we have∫ T

0

∫
M

|t>|2dµ̌ dt ≤ C1

∫ T

0

∫
M

H2dµ̌ dt+

∫
M

u2r2dµ̌
∣∣∣
t=0
≤ C1CH + C2 = C3

for some constant C2 > 0 depending on the bounds on u2, r2 and |M0|. On the

region A(k), − logW ≥ k and so 〈ν, t〉 ≤ 1
r
e−k. Choosing k2 large enough that

〈ν, t〉 ≤ 1√
2

then

‖A(k)‖ =

∫ T

0

∫
A(k)

dµ̌dt ≤
∫ T

0

∫
A(k)

2|t>|2dµ̌ dt = 2

∫ T

0

∫
M

|t>|2dµ̌ dt ≤ 2C3 .

(5.10)

This completes the gradient estimate. We may now prove the following:

Theorem 5.4.15. Suppose Σ is a torus of rotation and β = 0. Then for any initial

disc M0 satisfying the boundary condition which nowhere contains the vector field t

in its tangent space, a solution to equation (5.1) with initial data M0 exists for all

time and converges uniformly to a flat cross-section of the torus.

Proof. We take Ω to be a cross-section of the torus Σ and rewrite the manifold as a

graph over the cross-section, parametrising a point in Mt by rotating it back around

to hit Ω, the graph function being minus the angle by which we need to rotate. This

is exactly the function u. Standard calculations (see Appendix C) imply that for

both uniform parabolicity and a gradient estimate we need to bound the function

v = 1
〈t,ν〉 = r

W
. Fortunately Propositions 5.4.10 and 5.4.14 give a constant upper

bound on this,

v =
r

W
≤ CW

and so we have existence for all time.

For convergence we consider integrals of the derivatives of the graph over Ω. We

have du
dt

= −Hv
r

= −H
W

. Therefore using Appendix C∫ T

0

∫
Ω

(
du

dt

)2

dx dt =

∫ T

0

∫
M

H2

rW
dµ̌ dt ≤ C1

∫ T

0

∫
M

H2dµ̌ dt ≤ C2

where C1, C2 > 0 are constants and we used equation (5.9).
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We see that in coordinates |t>|2 = 1 − 〈ν, t〉2 = v2−1
v2 = r2|Du|2

v2 . Therefore using

the gradient estimate again∫ T

0

∫
Ω

|Du|2dx dt ≤ C3

∫ T

0

∫
Ω

r2|Du|2

v2

1

v
dx dt = C3

∫ T

0

∫
M

|t>|2dµ̌ dt ≤ C4

for constants C3, C4 > 0 where we used equation (5.10).

Therefore there exists a constant C > 0 such that∫ ∞
0

∫
Ω

(
du

dt

)2

+ |Du|2dx dt ≤ C

and so we may apply Lemma 4.4.1. Therefore as in the proof of Theorem 4.4.2 (this

time using that by maximum principle sup
x∈Mt

u is non increasing and inf
x∈Mt

u is non

decreasing), Mt converges uniformly to some cross-section.



Appendix A

Graphical coordinates inside the

cone

We consider an isometric embedding of

Rn ⊂ Rn+1 at height 1 on the en+1 axis, defining

the origin of Rn to be the point p such that

|p|2 = −1. Choose a domain contained in

D ⊂ B(1) ⊂ Rn to be a smooth embedding

with a smooth boundary ∂D (B(1) here is the

open unit ball in Rn). We define the outward

unit normal to D to be γ. Our boundary man-

ifold Σ can now be constructed as the union

of all rays from the origin going through ∂Ω.

By this construction we have that any spacelike

manifold contained within Σ may be written as a graph u : D → R+, and an explicit

parametrisation of M is given by F : D → Rn+1
1 where

F(x) =
u(x)(x + en+1)√

1− |x|2

We note that this parametrisation has been chosen so that |F|2 = −u2. We see

∂F

∂xi
=

[
Diu(x)√
1− |x|2

+
xiu(x)

(1− |x|2)
3
2

]
(x + en+1) +

u(x)√
1− |x|2

ei

=
1√

1− |x|2

[(
Diu+

xiu

1− |x|2

)
(x + en+1) + uei

]
.

108
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We may calculate gij:

gij =
1

1− |x|2

[
(|x|2 − 1)

(
Diu+

xiu

1− |x|2

)(
Dju+

xju

1− |x|2

)
+ uxj

(
Diu+

xiu

1− |x|2

)
+ uxi

(
Dju+

xju

1− |x|2

)
+ u2δij

]
=

1

1− |x|2

[
(|x|2 − 1)DiuDju+

u2xixj
1− |x|2

+ u2δij

]
=

u2

1− |x|2

(
δij +

xixj
1− |x|2

)
−DiuDju .

We define

V = Du+
u

1− |x|2
(x + en+1) + (Du · x)en+1

and note that〈
V,

∂F

∂xi

〉
=

1√
1− |x|2

[
Du · x

(
Diu+

xiu

1− |x|2

)
+ uDiu− u

(
Diu+

xiu

1− |x|2

)
+

u2xi
1− |x|2

−Du · x
(
Diu+

xiu

1− |x|2

)]
= 0 .

Since this is a normal vector we know that M is spacelike if |V |2 < 0. We see this

is equivalent to

|V|2 = |Du|2 +Du · x
(

2
u

1− |x|2
− 2

u

1− |x|2

)
− u2

1− |x|2
− (Du · x)2

= |Du|2 − u2

1− |x|2
− (Du · x)2

≤ 0 .

We therefore see that on a spacelike hypersurface while V is non–zero it is in the

upwards direction (with respect to en+1): For in the (n+ 1)th direction we have

u

1− |x|2
+Du · x ≥ u

1− |x|2
− |Du|

by Cauchy–Schwarz. This is positive since spacelikeness implies u2

1−|x|2 ≥ |Du|
2 and

so
u

1− |x|2
≥ u√

1− |x|2
≥ |Du| ,
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where the first inequality comes from 1√
1−|x|2

≥ 1. Furthermore we see that in fact

that V 6= 0, for if it were then Du = − u
1−|x|2 x and in this case the en+1 coordinate

would be
u

1− |x|2
+Du · x =

u(1− |x|2)

1− |x|2
= u > 0 ,

a contradiction. Hence the upwards pointing unit normal is

ν =
V√
−|V|2

=
Du+ u

1−|x|2 (x + en+1) + (Du · x)en+1√
u2

1−|x|2 + (Du · x)2 − |Du|2
.

We also define

v =

√
u2

1− |x|2
+ (Du · x)2 − |Du|2

to be a gradient–like function. This quantity will move towards zero as the normal

moves towards the light cone, and therefore this can be viewed as a measure of

spacelikeness.

We also need the second fundamental form. We have

∂2F

∂xi∂xj
=

∂

∂xj

(
1√

1− |x|2

[(
Diu+

xiu

1− |x|2

)
(x + en+1) + uei

])

=
xj

1− |x|2
∂F

∂xi
+

1√
1− |x|2

∂

∂xj

[(
Diu+

xiu

1− |x|2

)
(x + en+1) + uei

]
=

xj
1− |x|2

∂F

∂xi

+
1√

1− |x|2

[(
Diju+

δiju+ xiDju

1− |x|2
+

2xixju

(1− |x|2)2

)
(x + en+1)

+

(
Diu+

xiu

1− |x|2

)
ej +Djuei

]
=

xj
1− |x|2

∂F

∂xi
+

xi
1− |x|2

∂F

∂xj

+
1√

1− |x|2

[(
Diju+

δiju

1− |x|2
+

xixju

(1− |x|2)2

)
(x + en+1)

+Diuej +Djuei

]
=

xj
1− |x|2

∂F

∂xi
+

xi
1− |x|2

∂F

∂xj

+
1√

1− |x|2

[(
Diju+

1

u
(gij +DiuDju)

)
(x + en+1) +Diuej +Djuei

]
.
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Therefore

hij = −
〈

∂2F

∂xi∂xj
, ν

〉
=

−1

v
√

1− |x|2

〈(
Diju+

1

u
(gij +DiuDju)

)
(x + en+1) +Diuej +Djuei,

Du+
u

1− |x|2
(x + en+1) + (Du · x)en+1

〉
=

−1

v
√

1− |x|2

[
− u

(
Diju+

1

u
(gij +DiuDju)

)
+ 2DiuDju

+
u

1− |x|2
(Diuxj +Djuxi)

]
=

1

v
√

1− |x|2

[
uDiju+ gij −DiuDju−

u

1− |x|2
(Diuxj +Djuxi)

]
.

We will need the trace of the above and so will need the inverse of gij.

Claim A.0.16. In the above graphical coordinates

gij =
1− |x|2

u2

(
δij +

1

v2

[(
|Du|2 − u2

1− |x|2

)
xixj

+DiuDju−Du · x(xjDiu+ xiDju)

])
.

Proof. We will spare the reader the original calculation of the above, but simply

show that gijgjk = δik. Let

Aij =

[(
|Du|2 − u2

1− |x|2

)
xixj +DiuDju−Du · x(xjDiu+ xiDju)

]
and we recall

gij =
u2

1− |x|2

(
δij +

xixj
1− |x|2

)
−DiuDju

v2 =
u2

1− |x|2
+ (Du · x)2 − |Du|2 .
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We see

Aij
(
δjk +

xjxk
1− |x|2

−DjuDku
1− |x|2

u2

)
= xixk

[(
|Du|2 − u2

1− |x|2

)(
1 +

|x|2

1− |x|2

)
− (Du · x)2

1− |x|2

]
+ xiDku

[
−
(
|Du|2 − u2

1− |x|2

)
Du · x1− |x|2

u2

−Du · x+ |Du|2Du · x1− |x|2

u2

]
+Diuxk

[
Du · x
1− |x|2

−Du · x
(

1 +
|x|2

1− |x|2

)]
+DiuDku

[
1− |Du|2 1− |x|2

u2
+ (Du · x)2 1− |x|2

u2

]
=
−v2

1− |x|2
xixk +

1− |x|2

u2
v2DiuDku .

Therefore we may calculate

gijgjk =

[
δij +

1

v2
Aij
](

δjk +
xjxk

1− |x|2
−DjuDku

1− |x|2

u2

)
=

(
δik +

xixk
1− |x|2

−DiuDku
1− |x|2

u2

)
− 1

1− |x|2
xixk +

1− |x|2

u2
DiuDku

= δik .

We now have the necessary quantities to work out the equations for

non-parametric mean curvature flow. Non-parametric mean curvature flow is defined

by 〈
dF

dt
, ν

〉
= −H ,

that is, the movement in the normal direction is as in parametric mean curvature

flow, but the manifold is allowed to move in tangent directions over time. We see

that 〈
dF

dt
, ν

〉
=

1

v

〈
∂u
∂t

(x + en+1)√
1− |x|2

,Du+
u

1− |x|2
(x + en+1) + (Du · x)en+1

〉

=
∂u
∂t

v
√

1− |x|2
(Du · x− u−Du · x)

=
−u∂u

∂t

v
√

1− |x|2
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and

H = gijhij

=
gij

v
√

1− |x|2

[
uDiju+ gij −DiuDju−

u

1− |x|2
(Diuxj +Djuxi)

]
=
ugijDiju+ n

v
√

1− |x|2
− gij

v
√

1− |x|2

(
DiuDju+

u

1− |x|2
(Diuxj +Djuxi)

)
.

Now using Aij as above, that is

Aij =

[(
|Du|2 − u2

1− |x|2

)
xixj +DiuDju−Du · x(xjDiu+ xiDju)

]
then

Aij
(
DiuDju+

u

1− |x|2
(Diuxj +Djuxi)

)
=

(
|Du|2 − u2

1− |x|2

)
(Du · x)2 + |Du|4 − 2(Du · x)2|Du|2

+
2uDu · x
1− |x|2

[(
|Du|2 − u2

1− |x|2

)
|x|2 + |Du|2 − |x|2|Du|2 − (Du · x)2

]
=

(
|Du|2 − u2

1− |x|2

)
(Du · x)2 − v2|Du|2 +

u2

1− |x|2
|Du|2 − (Du · x)2|Du|2

− 2uDu · x|x|2

1− |x|2
v2 +

2uDu · x
1− |x|2

[
(1− |x|2)|Du|2 + (|x|2 − 1)(Du · x)2

]
= v2

(
−|Du|2 − 2uDu · x|x|2

1− |x|2

)
− u2(Du · x)2

1− |x|2
+

u2

1− |x|2
|Du|2

+ 2uDu · x|Du|2 − 2u(Du · x)3

= v2

(
−|Du|2 − 2uDu · x|x|2

1− |x|2
− u2

1− |x|2
− 2uDu · x

)
+

u4

(1− |x|2)2
+

2u3Du · x
1− |x|2

.

Therefore setting

f =
u2

1− |x|2
+ 2uDu · x =

1− |x|2

u2

(
u4

(1− |x|2)2
+

2u3Du · x
1− |x|2

)
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then

H =
ugijDiju+ n

v
√

1− |x|2
−
√

1− |x|2
vu2

(
|Du|2 +

2uDu · x
1− |x|2

− |Du|2 − 2uDu · x|x|2

1− |x|2

− u2

1− |x|2
− 2uDu · x+

u2f

(1− |x|2)v2

)
=
ugijDiju+ n+ 1

v
√

1− |x|2
− f

v3
√

1− |x|2

=
ugijDiju+ n+ 1

v
√

1− |x|2
−

u2

1−|x|2 + 2uDu · x

v3
√

1− |x|2
.

So on the interior of D we have that

∂u

∂t
= gijDiju+

n+ 1

u
− f

uv2

= gijDiju+
n+ 1

u
−

u
1−|x|2 + 2Du · x

v2
.

We also require the boundary condition in graphical coordinates, and therefore

need to calculate µ, the outwards pointing normal to Σ in terms of γ, the outwards

pointing normal to D. Fortunately by the construction of Σ, µ is constant on

rays from the origin; consequentially we only need calculate µ in terms of γ on

∂D ⊂ Rn+1
1 . At a point x ∈ ∂D we see that the position vector W = x + en+1, as

one of the rays making up Σ, is in TxΣ. We see that

〈W, γ + γ · xen+1〉 = 0

and since en+1 ⊥ ∂D then this must be in the direction of the outwards pointing

normal. Therefore

µ =
γ + γ · xen+1√

1− (γ · x)2
.

The condition 〈ν, µ〉 = 0 becomes

〈ν, µ〉 =
1

v
√

1− (γ · x)2

〈
Du+

u

1− |x|2
(x + en+1) + (Du · x)en+1, γ + γ · xen+1

〉
=

1

v
√

1− (γ · x)2
(Du · γ −Du · xγ · x)

= 0 .

Hence our boundary condition is

Du · (γ − γ · xx) = 0
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where we note that since |x| ≤ Q < 1 then by Cauchy–Schwarz C = γ − γ.xx is a

bounded outward pointing vector field with the property 1 +Q2 ≤ |C| ≤ 1−Q2.

Putting all of this together we see that if our initial manifold may be written in

this parametrisation as u0 then u : D × [0, T )→ R+ satisfies non-parametric mean

curvature flow with a perpendicular boundary condition if
∂u
∂t

= gijDiju+ n+1
u
−

u
1−|x|2

+2Du·x
v2 ∀(x, t) ∈ D × [0, T )

u(x, 0) = u0(x) ∀x ∈ D

Du · (γ − γ.xx) = 0 ∀(x, t) ∈ ∂D × [0, T )

(A.1)

We now summarise the results so far:

Proposition A.0.17. Under the parametrisation defined above we may express

geometric quantities on the manifold in terms of u, explicitly

gij =
u2

1− |x|2

(
δij +

xixj
1− |x|2

)
−DiuDju

ν =
1

v

(
Du+

u

1− |x|2
(x + en+1) + (Du · x)en+1

)
gij =

1− |x|2

u2

(
δij +

1

v2

[(
|Du|2 − u2

1− |x|2

)
xixj+

DiuDju−Du · x(xjDiu+ xiDju)

])
hij =

1

v
√

1− |x|2

[
uDiju+ gij −DiuDju−

u

1− |x|2
(Diuxj +Djuxi)

]

H =
ugijDiju+ n+ 1

v
√

1− |x|2
−

u2

1−|x|2 + 2uDu · x

v3
√

1− |x|2

where

v =

√
u2

1− |x|2
+ (Du · x)2 − |Du|2 .

We also see that non-parametric mean curvature flow with a perpendicular boundary

condition becomes a PDE on u : D × [0, T )→ R+, specifically u must satisfy
∂u
∂t

= gijDiju+ n+1
u
−

u
1−|x|2

+2Du·x
v2 ∀(x, t) ∈ D × [0, T )

u(x, 0) = u0(x) ∀x ∈ D

Du · (γ − γ.xx) = 0 ∀(x, t) ∈ ∂D × [0, T )

.
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Naturally we will wish to calculate when the equation (A.1) is parabolic so as

to be able to apply parabolic existence theory. We look to bound the greatest and

least eigenvalues of gij below from infinity and above zero respectively. Clearly since

this is the inverse of the metric, if our manifold if the tangent space of our flowing

manifold hits or goes beyond the light cone then we have no hope: At this point

the metric will have a zero or negative eigenvector, removing any chance of positive

definiteness of gij. This is the reason for stipulating that the initial manifold is

spacelike.

As spacelikeness is clearly an issue to the parabolicity of this PDE we expect

that parabolicity will depend in some way on v, our estimate of how close ν is to

the light cone. The following comes as no surprise.

Proposition A.0.18. For spacelike M the eigenvalues λ̃ of gij are bounded by

C1

u2
≤ λ̃ ≤ C2 max

{
1

u2
,

1

v2

}
where C1 and C2 depend only on ∂D.

Proof. We wish to bound the eigenvalues of gij but looking at the formula for this

(i.e. Claim A.0.16) would rather not do so directly. We instead choose to bound the

eigenvalues of gij and use that if λ is an eigenvalue of gij then λ−1 is an eigenvalue

of gij. Set

Bij =
1− |x|2

u2
gij = δij +

xixj
1− |x|2

− (1− |x|2)DiuDju

u2
.

We firstly note that Bij − δij is degenerate for n > 2: The image of Bij − δij is

spanned by x and Du and so in fact the rank is at most 2. Therefore Bij has

n− dim(span{x,Du}) eigenvectors perpendicular to x and Du of eigenvalue 1. We

now deal with the remaining eigenvalues.

Suppose first dim(span{x,Du}) = 2. The remaining eigenvectors must be writ-

ten aDu+bx, and so the problem reduces down to solving the 2×2 matrix eigenvalue

problem 1− |Du|
2(1−|x|2)
u2

Du.x
1−|x|2

−Du.x(1−|x|2)
u2

1
1−|x|2

a
b

 = λ

a
b

 .
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The determinant of the above matrix is

1

u2
det

 u2

1−|x|2 − |Du|
2 Du.x

−Du.x 1

 =
v2

u2
.

The eigenvalues are then the solutions to

λ2 −
(

1− |Du|
2(1− |x|2)

u2
+

1

1− |x|2

)
λ+

v2

u2
= 0 .

Using the Cauchy–Schwarz inequality we have

v2

1− |x|2
=

u2

1−|x|2 + (Du.x)2 − |Du|2

1− |x|2

≤ u2

(1− |x|2)2
+

(|x|2 − 1)|Du|2

1− |x|2

=
u2

(1− |x|2)2
− |Du|2

and so the trace is bounded by

T =

(
1− |Du|

2(1− |x|2)

u2
+

1

1− |x|2

)
≥ 1 +

v2

u2
≥ 0

where we are using weak spacelikeness for the last inequality. Since the square root

in a concave function we know

√
C2 + x ≤ |C|+ x

2|C|

and so using these two estimates

λ− =
T −

√
T 2 − 4 v

2

u2

2
≥ v2

Tu2
≥ v2

2u2

where we estimated T ≤ 2. Similarly

λ+ =
T +

√
T 2 − 4 v

2

u2

2
≤ T − v2

u2T
≤ 2 .

In the case dim(span{x,Du}) = 1 we have one of three possibilities

1. Du is an eigenvector and x = 0. This implies

1 ≤ λ = 1− |Du|
2

u2
=
v2

u2

from the definition of v.
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2. x is an eigenvector and Du = 0. Here we have

λ = 1 +
|x|

1− |x|2
=

1

1− |x|2

which clearly bounded above and below, the upward bound depending on ∂D.

3. Du = ηx is an eigenvector and in this case

λ = 1 +
|x|2

1− |x|2
− ηDu · x(1− |x|2)

u2
=

1

1− |x|2
− η2|x|2(1− |x|2)

u2
.

We note that here v2 = u2

1−|x|2 − η
2|x|2(1− |x|2) and so

λ =
v2

u2
.

In the final case dim(span{x,Du}) = 0, clearly 0 = x = Dx and so Bij = δij

and we are done.

Since given that λ is an eigenvector of Bij then λ̃ = 1−|x|2
u2λ

is an eigenvalue of gij

then we see that either

1− |x|2

2u2
≤ λ̃ ≤ max

{
2

1− |x|2

v2
,
1− |x|2

u2

}
.

Hence positive definiteness of gij is equivalent to a bound from below on v and a

bound from above and below on u2.



Appendix B

Graphical coordinates in

Minkowski space

Given (n+ 1)–dimensional Minkowski space parametrised as in Example 1.1.4 then

we have an isometrically embedded copy of n-dimensional Euclidean space,

Rn = span{e1, . . . , en}. We consider a spacelike manifold M which is a graph over

Rn – that is M is parametrised by F : Rn → Rn+1
1 by

F(x) = x + u(x)en+1

where u : Rn → R. Writing ∂u
∂xi

= Diu then

∂F

∂xi
= ei +Diuen+1 and gij =

〈
∂F

∂xi
,
∂F

∂xj

〉
= δij −DiuDju .

Claim B.0.19. The inverse of the metric is

gjk = δjk +
DjuDku

1− |Du|2
.

Proof. This is easily verified:

gijg
jk = (δij −DiuDju)

(
δjk +

DjuDku

1− |Du|2

)
= δik +

DiuDku

1− |Du|2
−
(
DiuDku+

|Du|2DjuDku

1− |Du|2

)
= δik +

DiuDku

1− |Du|2
− DiuDku

1− |Du|2

= δik .

119



Chapter B. Graphical coordinates in Minkowski space 120

We define v =
√

1− |Du|2and we see that the upwards pointing unit normal is

ν =
1

v
(Du+ en+1)

since 〈Du+ en+1, Du+ en+1〉 = |Du|2 − 1 and
〈
∂F
∂xi
, ν
〉

= 0. Similarly we calculate

hij = −〈ν,DijF 〉 = −〈ν,Dijuen+1〉 =
Diju

v
.

As in Chapter 4 we define

a(q) =
q√

1− |q|2
∣∣∣
p=Du

and aij =
∂ai

∂qj

∣∣∣
p=Du

=
δij√

1− |q|2
+

qiqj

(1− |q|2)
3
2

∣∣∣
p=Du

.

We therefore see that

H =

(
δjk
v

+
DjuDku

v3

)
Diju = aijDiju = Di

(
ai
)

= Di

(
Diu√

1− |Du|2

)
.

For reparametrised mean curvature flow we require

−H =

〈
dF

dt
, ν

〉
= −

du
dt

v
.

We therefore have that on the interior of a flowing manifold

du

dt
= Hv = vDi(a

i) =
√

1− |Du|2Di

(
Diu

1− |Du|2

)
=

(
δij +

DiuDju

1− |Du|2

)
Diju .

If we have a cylinder boundary (as in Chapter 4) we have 〈ν, γ〉 = 0 then we require

0 = 〈γ, ν〉 =
1

v
〈γ,Du+ en+1〉 =

Du · γ
v

.

In Chapter 4 we are interested in the parabolicity of this, and therefore we

need to know when the coefficient matrix of the second derivatives is positive def-

inite. This matrix is exactly gij =
(
δij +

DiuDju

1−|Du|2

)
but here I calculate the eigen-

values of this matrix’s slightly simpler inverse gij = δij − DiuDju instead. Since

gij − δij = −DiuDju has determinant zero and rank 1, we see that all but one of

the eigenvalues is 1. We see that

gijDju = Diu
(
1− |Du|2

)
and therefore the remaining eigenvector is Du with eigenvalue v2 < 1. Therefore

uniform parabolicity is equivalent to a bound v > C > 0 for C some constant.



Appendix C

Graphical coordinates within tori

in Rn+1

Again this Appendix contains simple geometric calculations, this time in Euclidean

space with Σ a torus. The results here are unsurprising, particularly given the pre-

vious two Appendices. Let Ω ⊂ Rn−1 × R+ be a compact domain with smooth

boundary ∂Ω – this will be the cross section of the torus. Let u : Ω → R.

Then writing x = (x1, . . . , xn) = (y, r) = (y1, . . . , yn−1, r) ∈ Rn−1 × R+ we define

F : Ω→ Rn+1 by

F(x) = y + r(cos(u)en + sin(u)en+1) .

The function F takes Ω and wraps it around the inside of the torus by angle u(x).

We also define

r = cos(u)en + sin(u)en+1, t = − sin(u)en + cos(u)en+1 .

We calculate
∂F

∂yα
= eα + r

∂u

∂yα
t and

∂F

∂r
= r + r

∂u

∂r
t .

For the duration of this Appendix let Greek α, β, . . . imply indices in the range

{1, . . . , n− 1}, then

gαβ = δαβ + r2 ∂u

∂yα
∂u

∂yβ
, gαr = r2 ∂u

∂yα
∂u

∂r
, grr = 1 + r2

(
∂u

∂r

)2

and so in summary letting r be the nth direction, and writing Diu = ∂u
∂xi

then

gij = δij + r2DiuDju .
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We now see that

gij = δij −
r2DiuDju

1 + r2|Du|2

since

(
δij + r2DiuDju

)(
δjk −

r2DjuDku

1 + r2|Du|2

)
= δik + r2DiuDku

[
1− 1

1 + r2|Du|2
− r2|Du|2

1 + r2|Du|2

]
= δik .

As in the previous Appendix we may quickly calculate that gij has n−1 eigenvalues

equal to 1 and the remaining eigenvector, Du, has eigen value 1+r2|Du|2. Therefore

we have √
det(gij) =

√
1 + r2|Du|2 = v .

We easily see that the unit normal to the graph is

ν =
−r(Dαueα +Drur) + t

v
,

because for example

v

〈
∂F

∂yβ
, ν

〉
=

〈
eβ + r

∂u

∂yβ
t, vν

〉
= −rDβu+ rDβu = 0 .

Since
∂2F

∂yα∂yβ
= rDαβut− rDαuDβur

∂2F

∂yα∂r
=
(
Dαu+ rD2

αru
)
t− rDαuDrur

∂2F

∂2r
=
(
2Dru+ rD2

rru
)
t− r(Dru)2r

so in summary

∂2F

∂xi∂xj
=
(
rD2

iju+ δniDju+ δnjDiu
)

t− rDiuDjur .

The second fundamental form may now be calculated

−vhij =

〈
t− r(Dαueα +Drur),

∂2F

∂xi∂xj

〉
= rD2

iju+ δniDju+ δnjDiu+ r2DruDiuDju .
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Therefore

−Hv = −gijhijv = gij
(
rD2

iju+ δniDju+ δnjDiu+ r2DruDiuDju
)

= rgijD2
iju+

(
δij −

r2DiuDju

1 + r2|Du|2

)(
δniDju+ δnjDiu+ r2DruDiuDju

)
= rgijD2

iju+ 2Dru+ r2Dru|Du|2 −
r2Dru|Du|2

v2

(
2 + r2|Du|2

)
= rgijD2

iju+Dru+ r2Dru|Du|2 +Dru

(
1− r2|Du|2

v2

)
− r2Dru|Du|2

= rgijD2
iju+Dru

(
1 +

1

v2

)
.

For reparametrised mean curvature flow we have

−H =

〈
∂F

∂t
, ν

〉
= 〈rDtut, ν〉 =

rDtu

v
.

Therefore on the interior of the graph mean curvature flow is equivalent to

Dtu = gijDiju+
Dru

r

(
1 +

1

v2

)
.

In these coordinates µ = γ + γn(r − en), where γ = (γ1, . . . , γn) is the outwards

pointing unit normal to ∂Ω. Then the boundary condition becomes

0 = 〈ν, µ〉 =
1

v
(−rDαuγ

α +Druγ
n) =

Du · γ
v

.

We see that uniform parabolicity is equivalent to the gradient estimate

v < C <∞. To get uniform parabolicity we therefore wish to bound the volume

element from above, that is

v =
1

〈t, ν〉
,

and since v =
√

1 + r2|Du|2 this estimate also supplies a gradient estimate.
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[21] Jan Malý and William P. Ziemer. Fine Regularity of Solutions Elliptic Partial

Differential Equations. American Mathematical Society, 1997.

[22] Barrett O’Neill. Semi–Riemannian Geometry With Applications to Relativity.

Academic Press, 1983.

[23] Grisha Perelman. The entropy formula for the ricci flow and its geometric

applications. Arχiv preprint, 2008. http://arxiv.org/abs/math.DG/0211159.

[24] Grisha Perelman. Ricci flow with surgery on three-manifolds. Arχiv preprint,

2008. http://arxiv.org/abs/math.DG/0303109.

[25] Axel Stahl. Convergence of solutions to the mean curvature flow with a Neu-

mann boundary condition. Calculus of Variations and Partial Differential

Equations, 4:421–441, 1996.

[26] Axel Stahl. Regularity estimates for solutions to the mean curvature flow with

a Neumann boundary condition. Calculus of Variations and Partial Differential

Equations, 4:385–407, 1996.

[27] G. Stampacchia. Equations elliptiques au second ordre à coéfficients discontin-
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