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Abstract: Over the last 20 years, cluster algebras have been widely studied, with

numerous links to different areas of mathematics and physics. These algebras have

a cluster structure given by successively mutating seeds, which can be thought of as

living on some graph or tree. In this way one can use various combinatorial tools

to discover more about these cluster structures and the cluster algebras themselves.

This thesis considers some of the combinatorics at play here.

Mutation-finite quivers have been classified, with links to triangulations of

surfaces and semi-simple Lie algebras, while comparatively little is known about

mutation-infinite quivers. We introduce a classification of the minimal types of these

mutation-infinite quivers before studying their properties. We show that these min-

imal mutation-infinite quivers admit a maximal green sequence and that the cluster

algebras which they generate are equal to their related upper cluster algebras.

Automorphisms of skew-symmetric cluster algebras are known to be linked to

automorphisms of their exchange graphs. In the final chapter we discuss how this idea

can be extended to skew-symmetrizable cluster algebras by using the symmetrizing

weights to add markings to the exchange graphs. This opens possible opportunities

to study orbifold mapping class groups using combinatoric graph theory.
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We observe a fragment of the process, the trembling of a single

string in a symphonic orchestra of supergiants, and on top of that

we know — we only know, without comprehending — that at the

same time, above us and beneath us, in the plunging deep, beyond

the limits of sight and imagination there are multiple, millionfold

simultaneous transformations connected to one another like the

notes of musical counterpoint.

— from Solaris by Stanislaw Lem
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Chapter 1

Introduction

Around 20 years ago, Fomin and Zelevinsky introduced a new framework by which to

study dual canonical bases and total positivity in certain semi-simple groups. This

framework gives the backbone of what we now call cluster algebras, and their ideas

have resonated throughout all manner of mathematics and physics.

The main component in the construction of a cluster algebra is the process of

mutation, which gives a way of locally changing a mathematical object to give a new

similar object. Different objects in various different mathematical frameworks have

been shown to be related by processes similar to mutation, and so the broad topic

of cluster algebras has become of interest to many mathematicians.

The simplest object which can be mutated is typically a matrix or a quiver.

While these objects themselves may be simple, quivers have been used to encode

information about much more complicated objects in different fields. The study of

mutations of quivers can then be translated back into this original field, where the

cluster algebra structure gives new ways of computing and analysing the original

objects.

One such use of quivers in this thesis is to encode the triangulations of surfaces

and here mutation between two quivers is the same as flipping an edge in their cor-

responding triangulations. Surface triangulations and the transformations between

them encode information about the surface itself, and this information is in turn en-
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coded into the cluster structure. As such, we can use the algebra and combinatorial

properties of the arising cluster structure to study the geometry of the underlying

surface. Recent work in this direction has given new perspectives on the mapping

class groups of surfaces and possibly certain orbifolds, whereby some presentations

of these groups can be computed in a combinatorial way.

The cluster structure of a given cluster algebra can be visualised in an exchange

graph, which is typically some quotient of an n-regular tree. These graphs contain

information about their algebra, and so provide a purely combinatorial approach to

computing certain properties of the algebra. When the algebra arises from other

areas of mathematics, then these links provide new and exciting approaches to

studying these areas combinatorially which have perhaps not been known before.

A cluster algebra is generated by a number of cluster variables, but the number

of these generators is typically infinite, and each has to be constructed individually

using mutations. An effort has been made to provide a simpler description of these

cluster algebras by providing an upper bound for each algebra. These upper cluster

algebras are easier to study and contain the original cluster algebra, but in general

it is not known whether the algebras are equal. In some cases, for example acyclic

cluster algebras, they have been shown to be equal while for others, like cluster

algebras arising from once-punctured closed surfaces, they are not.

One possible link between the two is given by maximal green sequences of the

quiver which generates the cluster algebra. For mutation-finite quivers it has been

shown that a quiver admits a maximal green sequence if and only if its cluster algebra

is equal to its upper cluster algebra. These maximal green sequences are also related

to paths within scattering diagrams which cross walls in particular ways, to certain

paths in exchange graphs, and to particular reflections of c-vectors.

Quivers have been used for a long time in the representation theory of algebras, so

it is perhaps not surprising that the theory of cluster algebras was quickly translated

into the language of representation theory. Cluster categories have been constructed

whereby the quivers, clusters and seeds are encoded as sums of objects in the category
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and mutation is a well defined operation replacing a single summand of an object

with the only other possible object which preserves certain properties. Many of

the well known results about cluster algebras have been proved first in the cluster

category and translated back into the language of cluster algebras. This thesis will

not discuss this categorification, but there is a wealth of literature on the subject

and many of the references cited in this thesis use these techniques.

This thesis starts with an introduction to cluster algebras and a detailed back-

ground view of their construction in Chapter 2. This includes an overview of the

required definitions of quivers, seeds, mutations, cluster algebras and exchange

graphs, before providing a glimpse of some particular examples of cluster algebras

which have links to reflection groups and to surfaces.

The quivers which generate these surface and reflection group cluster algebras

are mutation-finite, that is only a finite number of quivers can be obtained through

successive mutations. Such quivers are rare and in general most quivers are mutation-

infinite, admitting an infinite number of quivers through continued mutations. A full

classification of all mutation-finite quivers includes these surface quivers and only a

small number of other exceptional types.

The first main set of results in this thesis relate to minimal mutation-infinite

quivers, from which an infinite number of quivers can be constructed through muta-

tions, but where any subquiver only admits finitely many. Chapter 3 introduces the

classification of these quivers through a number of moves constructed from sequences

of mutations, while Appendix A includes a discussion on the computations used to

find them, and a list of all the moves which determine the classification.

Once we know of certain classes of quivers, and in particular have lists of all

the quivers appearing in the classes, it is natural to ask which properties they may

have. In Chapter 4 we consider whether minimal mutation-infinite quivers admit

maximal green sequences and prove that they all do, and also discuss what the quiver

exchange graphs of these quivers look like. These quivers generate certain cluster

algebras and we show that these cluster algebras are equal to their upper cluster
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algebras, strengthening the possible link between maximal green sequences and the

equality of the cluster algebra and its upper cluster algebra.

An area which has only fairly recently been studied is that of the possible maps

between cluster algebras which preserve their cluster structure. Some progress has

been made on these cluster algebra quasi-homomorphisms in recent years and was

initiated by the study of automorphisms of cluster algebras. Such an automorphism

maps a cluster algebra to itself, while preserving how mutations link the various

clusters in the cluster structure.

The cluster automorphisms of certain cluster algebras have been shown to coincide

with the graph automorphisms of the algebra’s exchange graph. In Chapter 5

we discuss these links as well as other ways of considering cluster automorphisms.

The main results in that chapter extend these ideas to skew-symmetrizable cluster

algebras, which are typically less well studied. As exchange graph automorphisms

can be computed combinatorially from the structure of the graph, these links provide

a possible means to find automorphism groups of anything which contains a cluster

algebra structure.



Chapter 2

Cluster algebras

Fix an ambient field F = K(x1, . . . , xn) to be the field of rational functions over a

field K in n variables. Any element f ∈ F in this field is then of the form

f =
P (x1, . . . , xn)
Q(x1, . . . , xn)

for some polynomials P and Q with coefficients in K. Cluster algebras of rank n

are certain subalgebras of this ambient field with an additional cluster structure.

The generators of the algebra are computed using the combinatorial procedure of

mutation which provides this cluster structure and leads to many applications in

different areas of mathematics and physics.

This chapter aims to cover all the basic definitions and ideas behind the study of

cluster algebras, as well as some possible generalisations and different view points

on the topic. In all of the following n refers to the rank of the cluster algebra, unless

noted otherwise.

We start by defining mutation on quivers in Section 2.1 before adding variables

and defining cluster algberas in Section 2.2. In Section 2.3 we define an algebra’s

exchange graph, before moving on to look at some of the applications of cluster

algebras in Section 2.4 and Section 2.5. The links between reflection groups in

Section 2.4 leads to the classification of all finite type cluster algebras, while the

surface algebras given in Section 2.5 are linked to the mutation-finite classification.
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Figure 2.1: Example of a loop (left) and 2-cycle (right), which we
assume do not appear in any quiver considered in this
thesis.

2.1 Quivers and mutation

The study of cluster algebras revolves around the combinatorial cluster structure

which has been shown to appear throughout mathematics and physics. The main

component of this structure is the idea of mutations, which we first introduce on

quivers before generalising to include variables, functions and seeds. Fomin and

Zelevinsky first studied mutations of skew-symmetrizable matrices in their first

cluster algebra paper [FZ02], and it is well-known that these mutations can be

stated equivalently for quivers, as we do here.

Definition 2.1.1. A quiver Q is an oriented (multi-)graph with a set of vertices

denoted Q0 and a set of arrows Q1. In all the following we assume that a quiver has

no loops (arrows starting and ending at the same vertex) and no 2-cycles (a pair of

differently oriented arrows between two vertices, as shown in Figure 2.1).

Definition 2.1.2. Given a quiver Q with vertices labelled {1, . . . , n} then quiver

mutation in the k-th vertex, µk, gives a new quiver µk(Q) = Q′ from Q by the

following three step process, as shown in Figure 2.2:

1. For any path i→ k → j of length 2 with midpoint k, add an arrow i→ j.

2. Reverse all arrows adjacent to k.

3. Remove a maximal collection of 2-cycles should any be created.

While not immediately obvious from the definition, mutation is an involution

so µk

(
µk(Q)

)
= Q for any quiver. We can use mutations to define an equivalence

relation, which then gives equivalence classes and a number of mutation properties

of quivers.
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1.

2.

3.

µ

Figure 2.2: Example of quiver mutation at the circled vertex. Each
step given in Definition 2.1.2 is shown separately.

Definition 2.1.3. Two quivers P and Q are mutation equivalent if there is a

sequence of mutations taking P to Q.

Definition 2.1.4. The mutation class S(Q) of a quiver Q is the equivalence class

under this relation.

The mutation class is therefore a collection of quivers which can all be obtained

from an initial quiver by successive mutations.

Definition 2.1.5. A quiver is mutation-finite if its mutation class contains only

finitely many quivers, otherwise it is mutation-infinite.

A source (respectively sink) is a vertex of a quiver which is the destination (resp.

source) of no arrows. Mutation at a sink or source will only change the orientations

of arrows adjacent to the vertex, and will not change the underlying graph.

Definition 2.1.6. An induced subquiver of a quiver Q is a subgraph constructed

by removing a collection of vertices from Q.

The restrictions on the definition of a quiver ensure that quivers are in one-to-one

correspondence with skew-symmetric matrices (a matrix A such that AT = −A).
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Figure 2.3: Two examples of constructing a skew-symmetric matrix
from a given quiver.

Given a quiver Q with n vertices labelled {1, . . . , n}, its matrix B = (bi,j) has n

rows and columns, and bi,j is the number of arrows from the vertex i to the vertex j

minus the number of arrows from j to i, as illustrated in Figure 2.3.

In the case of these matrices, subquivers correspond to principal submatrices,

constructed by simultaneously removing rows and columns.

2.1.1 Generalising quivers

Although it is easier to visualise cluster algebras in terms of quivers, the correspond-

ence with matrices gives an easier way to compute mutations. It also gives the first

way of generalising these ideas by studying skew-symmetrizable matrices as well as

skew-symmetric matrices.

Definition 2.1.7. A matrix B is skew-symmetrizable if there exists an integer

valued, positive diagonal matrix D such that BD is skew-symmetric. The diagonal

matrix with smallest positive diagonal entries is called the symmetrizing matrix

of B.

Definition 2.1.8. Given a skew-symmetrizable matrix B = (bi,j) then matrix
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0 −2 0 1

1 0 −1 0









Figure 2.4: Two examples of constructing a diagram from a given
skew-symmetrizable matrix.

mutation in the k-th direction gives a new matrix B′ =
(
b′i,j
)

where

b′i,j =





−bi,j if i = k or j = k,

bi,j + |bi,k|bk,j+bi,k|bk,j|
2

otherwise.

When the skew-symmetrizable matrix is actually skew-symmetric, then this

definition of mutation coincides with the definition of quiver mutation as defined

above.

A skew-symmetric matrix uniquely defines a quiver, so we would like to construct

a similar graph for a given skew-symmetrizable matrix.

Definition 2.1.9. Given a skew-symmetrizable n×nmatrixB = (bi,j), its associated

diagram is a weighted directed graph with vertices labelled 1, . . . , n and an arrow

between i→ j with weight −bi,jbj,i when bi,j > 0, as shown in Figure 2.4.

In this way we can construct a weighted graph for any skew-symmetrizable matrix,

however it is not true that any weighted graph can give such a skew-symmetrizable

matrix. In order for such a matrix to exist, the product of weights in every chordless

cycle in the diagram must be a perfect square. For example the weighted graph in

Figure 2.5 does not have any skew-symmetrizable matrix representative.
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4

3

Figure 2.5: An example of a weighted graph which cannot be rep-
resented as a skew-symmetrizable matrix. Note that
any cycle containing the weight 3 will not give a perfect
square product of weights.
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2

1

4

2

2
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Figure 2.6: A diagram corresponding to multiple different skew-
symmetrizable matrix representatives.

As the weights in the diagram are products of the two values in the matrix, a given

diagram could admit multiple different skew-symmetrizable matrix representatives,

as illustrated in Figure 2.6.

This requirement to have squares in each cycle provides a way to mutate the

diagram without knowing the actual matrix representation of the diagram. This

mutation then coincides with the matrix mutation given above.

Definition 2.1.10. Given a diagram R, then diagram mutation in the k-th vertex

gives a new diagram µk(R) = R′ constructed from R as shown in Figure 2.7. For

any path i → k → j of length 2 through k, the edge i − j will change, as will the

direction of all arrows adjacent to k.

A diagram does not contain all the information present in its skew-symmetrizable

matrix, as the edge labels do not describe how the values in the matrix appear. A

different way to construct a quiver-like object from a skew-symmetrizable matrix

which preserves all this information is to use valued quivers; these introduce edge

weights or vertex weights depending on the type used.



2.1. Quivers and mutation 11

k

a b

c

k

a b

d

µk

±
√

c ±
√

d =

√
ab

Figure 2.7: Local mutation of a diagram in vertex k. The value of
d is uniquely determined by the formula, and either of
c or d could be zero. The sign of

√
c (and of

√
d) is

positive if the cycle is oriented, otherwise it is negative.

Definition 2.1.11. A (pair weighted) valued quiver representing a given skew-

symmetrizable matrix B = (bi,j) is a quiver with an arrow i→ j when bi,j > 0 with

weight (−bj,i, bi,j), on the left in Figure 2.8.

Definition 2.1.12 ([FG09, Sec. 1.2], [LFZ16, Sec. 1]). A (vertex weighted) valued

quiver representing a given skew-symmetrizable matrix B = (bi,j) with symmetriz-

ing matrix D = (di) is a quiver with

bi,j gcd(di, dj)
dj

=
−bj,i gcd(di, dj)

di

arrows j → i when bi,j > 0 and each vertex i has the weight di attached to it, as

shown in Figure 2.8.

The initial skew-symmetrizable matrix of either type of valued quiver can easily

be constructed from the quiver. Each quiver can also be mutated in such a way that

this mutation coincides with its corresponding matrix mutation, see for example

[LFZ16, Sec. 1] for vertex weighted quiver mutation.

2.1.2 The global mutation group

In all the above, we have used labels on the vertices of the quivers and diagrams

to construct their matrices. A typical mutation class will contain many isomorphic

quivers, distinguished only by this labelling. In some cases it is useful to consider all

isomorphic quivers separately, though this is often more computationally expensive

and usually does not lead to any additional information than when considering
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1
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Figure 2.8: The two types of valued quiver representing a skew-
symmetrizable matrix. On the left is the pair weighted
valued quiver, where the edge weights are given as pairs
(−bj,i, bi,j) and on the right is the vertex weighted quiver,
where the vertex weights are given in bold.

classes of isomorphic quivers.

We introduce the idea of labelled and unlabelled mutation classes, following King

and Pressland [KP16], to enable us to specify whether we are considering individual

quivers or classes of isomorphic quivers.

Definition 2.1.13. A labelled quiver is a quiver with a specific choice of labels

on its vertices.

A quiver isomorphism is a permutation of the labels on the vertices, so a per-

mutation σ acts on a labelled quiver Q by taking the i-th vertex to the σ(i)-th vertex

in Q · σ = Qσ.

Above we defined mutations using the labelling of vertices, however the process

is exactly the same if the labels are removed. Without labels the idea of having a

mutation µk is problematic as there is no label k, so we need to distinguish between

global mutations µi on labelled quivers and local mutations µ on unlabelled quivers.

Once we add variables in Section 2.2 then these local mutations will be indexed by

the variables corresponding to the mutated vertex.

When considering labelled quivers, the mutations µi can be thought of as belong-

ing to a group, along with permutations, which act on quivers with Q · µk = µk(Q)

and Q · σ = Qσ.

Definition 2.1.14 ([KP16, Sec. 1]). The global mutation group of rank n is the
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group

Mn =
〈
µ1, . . . , µn

∣∣∣ µ2
i = 1

〉
⋊ Sym(n)

where the µi are mutations and µiσ = σµσ(i) for σ ∈ Sym(n).

The labelled mutation class S0(Q) of a labelled quiver Q is the orbit of Q under

the action of Mn, and the unlabelled mutation class S(Q) is given by the quotient

by the symmetric group action. This definition of mutation class coincides with the

definition given above, as any two quivers in the same orbit of Mn are mutation-

equivalent.

2.2 Variables, clusters and seeds

The mutations of quivers and matrices yields a number of interesting results, includ-

ing the classification of mutation-finite matrices by Felikson, Shapiro and Tumarkin

in [FST12c] discussed in Section 2.5 as well as the classification of minimal mutation-

infinite quivers given in Chapter 3. However most work on cluster algebras includes

the study of rational functions which also change under mutations and generate the

cluster algebra itself.

To be precise, we start by considering labelled clusters and labelled seeds, though

typically cluster algebra papers only study their unlabelled counterparts.

Definition 2.2.1. An n-tuple x = (β1, . . . , βn) of rational functions in F is a

labelled cluster if the elements are all algebraically independent in F .

Definition 2.2.2. A labelled seed is a pair (x, B) where x = (β1, . . . , βn) is a

labelled cluster and B = (bi,j) is a n× n skew-symmetrizable matrix.

The matrix B is usually referred to as the exchange matrix and the rational

functions βi appearing in a cluster are referred to as cluster variables.

Definition 2.2.3. Let (x, B) be a labelled seed in F and k ∈ {1, . . . , n} then seed

mutation in the k-th direction constructs a new seed (x′, B′) from (x, B) where
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(

β1, β1β3+β4
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, β3, β4
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µ1 µ2

Figure 2.9: An example of mutating one seed in two different direc-
tions, following Definition 2.2.3.

x′ = (β′1, . . . , β
′
n) is given by

β′i =





βi if i 6= k,
∏

bj,i>0
β

bj,i
j

+
∏

bj,i<0
β

−bj,i
j

βi
if i = k,

and B′ is given by the k-th mutation of B as defined above. An example of such a

mutation on a seed is shown in Figure 2.9.

In a labelled seed the cluster and matrix have a natural order which can be

permuted to give other labelled seed. As such, a permutation σ ∈ Sym(n) acts on a

labelled seed in a natural way permuting the rows and columns of B and taking the

i-th cluster variable to the σ(i)-th cluster variable. In this way (x, B) is permuted by

σ to (xσ, Bσ) where xσ =
(
βσ−1(1), . . . , βσ−1(n)

)
and Bσ =

(
bσ

i,j

)
, bσ

i,j = bσ−1(i),σ−1(j).

Using these mutations and permutations, the global mutation group, which acts
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on quivers as discussed earlier, can also act on labelled seeds.

Definition 2.2.4. An (unlabelled) seed (respectively cluster) is the orbit of a

labelled seed (resp. cluster) under the symmetric group Sym(n).

The global mutations µk on a labelled seed are given in terms of the vertex label

k, however in the unlabelled case the vertices no longer have such a label and so these

mutations need to be denoted in another way. Each variable in the seed’s cluster can

be thought of as being attached to a vertex of the quiver, as such this variable can

be used to distinguish the different local mutations of an unlabelled seed. In this

way the mutation of a seed (x, B) at the vertex corresponding to variable βk ∈ x is

denoted µβk,x.

Definition 2.2.5. The labelled mutation class, S0(x, B), of a given labelled seed

(x, B) is its orbit under the action of the global mutation group. The corresponding

(unlabelled) mutation class S(x, B) is the quotient by the symmetric group action.

Definition 2.2.6. The cluster algebra A
(
S0(x, B)

)
with initial seed (x, B) is the

subalgebra of F generated by all cluster variables appearing in labelled seeds in

S0(x, B).

As the cluster variables in S(x, B) are the same as those in S0(x, B), the algebra

generated by the mutation class is the same as the one generated by the labelled

mutation class.

One of the nice properties that cluster algebras have is the Laurent phenomenon.

Theorem 2.2.7 (Laurent Phenomenon [FZ02, Thm. 3.1]). Every cluster variable

in a cluster algebra A generated from an initial cluster x = (β1 · · · , βn) is a Laurent

polynomial in these initial cluster variables.

This phenomenon is surprising as the mutation exchange relations often involve

division by polynomials in the variables, however it turns out that such a division

will always factor out and leave a monomial as the denominator in the initial cluster

variables.
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The proof of the Laurent phenomenon follows the so called Caterpillar Lemma,

which can actually be applied in a more general setting than cluster algebras. The

algebras which satisfy the constraints of the Caterpillar Lemma are called Laurent

phenomenon algebras, as introduced by Lam and Pylyavskyy in [LP16].

Theorem 2.2.8 (Positivity conjecture). The coefficients in each of the Laurent

polynomials are non-negative.

This conjecture of Fomin and Zelevinsky was proved separately for a number of

classes of cluster algebras, for example it has been proved for acyclic cluster algeb-

ras [KQ14], surface [MSW11] and orbifold [FST12a] cluster algebras, before being

proved more generally for skew-symmetric [LS15] and skew-symmetrizable [GHKK14]

cluster algebras.

Definition 2.2.9. If the mutation class of a seed (x, B) contains infinitely many

cluster variables then the seed and its cluster algebra are of infinite type, otherwise

they are of finite type.

The finite type cluster algebras were classified by Fomin and Zelevinsky in [FZ03],

and this classification will be outlined in Section 2.4.

2.3 Exchange graphs

Exchange graphs were introduced by Fomin and Zelevinsky in [FZ02], and the

graphs were used in the classification of all finite-type cluster algebras in [FZ03].

These algebras are the only ones where the corresponding exchange graph is finite.

Exchange graphs are studied further in Section 5.3 which includes examples and

figures.

Definition 2.3.1. The exchange graph E(S) of a mutation class S is a graph

with a vertex for each seed and an edge between two seeds if and only if there is a

single local mutation µ such that µ(u) = v.
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An initial seed can be used to construct its entire mutation class, and so it also

gives its entire exchange graph as well as its cluster algebra. It is therefore convenient

to denote the exchange graph as E(x, B) instead of E
(
S(x, B)

)
.

In Section 2.1 we considered the properties of quiver mutation classes, without

any clusters, variables or seeds. The idea of an exchange graph can be applied in this

case as well, and in fact this quiver exchange graph can be useful to study alongside

the seed exchange graph.

Definition 2.3.2. The quiver exchange graph of an unlabelled quiver Q (or

equivalently of its mutation class) is a graph with a vertex for each unlabelled quiver

mutation-equivalent to Q, and an edge between quivers P and P ′ if there is a local

mutation µ such that µ(P ) = P ′.

These graphs encode the combinatorial information inherent in the cluster struc-

ture of the mutation class, and so provide a combinatorial approach to study this

structure without explicitly using the algebra or any additional data used to create

the algebra. We will see later that this idea can be used for example to combin-

atorially construct mapping classes for surfaces without relying on any additional

information about the surface.

2.4 Reflections and Dynkin diagrams

Reflections can be studied in any vector space with an inner product, and in the

following we give various results in terms of a general real vector space. However it

is usual to consider them as reflections of some geometric space, such as Euclidean

space or hyperbolic space. A good introductory text, on which the following is based,

is Humphrey’s book [Hum90].

Reflections are linear maps which fix a hyperplane in the vector space, and

interchanges the two half spaces either side of the hyperplane. Such a reflection is

uniquely determined by this hyperplane, which in turn is uniquely determined by a

vector normal to it.



18 Cluster algebras

We consider a vector space V with an inner product 〈·, ·〉. Given some non-

zero vector α ∈ V , with 〈α, α〉 6= 0, there is an associated hyperplane Hα =

{v ∈ V | 〈v, α〉 = 0} orthogonal to α and this defines a unique reflection sα fixing

Hα given by

sα(u) = u− 2
〈u, α〉
〈α, α〉α.

Note that if u ∈ Hα then 〈u, α〉 = 0 so u is fixed, and that if u = α then sα(α) =

α− 2α = −α as expected. Also it is evident that a reflection is an involution, with

s2
α = 1.

If α and β are two non-zero vectors in V with associated hyperplanes Hα, Hβ

and reflections sα and sβ, then the relation between the reflections can be given in

terms of the dihedral angle between the hyperplanes.

Proposition 2.4.1. If the dihedral angle between Hα and Hβ in V is π
k

then the

reflections sα and sβ satisfy the relation (sαsβ)k = 1.

The dihedral angle between the hyperplanes is determined by α and β themselves,

so the value k is usually denoted m(α, β). Any group generated by reflections

sα1 , sα2 , . . . will therefore have relations s2
αi

= 1 for all i and
(
sαi
sαj

)m(αi,αj)
= 1 for

all i 6= j.

A generalisation of reflection groups are Coxeter groups which have the following

presentation:

Definition 2.4.2. A group with presentation

〈
r1, r2, . . .

∣∣∣ (rirj)
ki,j

〉

where ki,i = 1 and ki,j ≥ 2 for i 6= j is a Coxeter group. An infinite value for ki,j

signifies no relation between ri and rj.

The finite Coxeter groups were classified in [Cox34] using Coxeter diagrams,

which are graphs encoding the generators and relations in the group. Each such

group with relations given by ki,j ∈ {1, 2, 3, 4, 6} is generated by a crystallographic

root system, which contains roots of at most two lengths. A graph similar to a
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Coxeter diagram can be used to represent this root system, where directed edges are

used to encode the lengths of the roots. These graphs are called Dynkin diagrams

and a list of all such Dynkin diagrams is given in Figure 2.10. These root systems

also arise from simple Lie algebras, and so the Dynkin diagrams classify these simple

Lie algebras, as shown by Dynkin [Dyn46].

2.4.1 Finite type cluster algebra classification

Fomin and Zelevinsky classified all finite type cluster algebras, those generated by a

finite number of cluster variables, using these Dynkin diagrams and their associated

Cartan matrices.

Theorem 2.4.3 ([FZ03, Thm. 1.5]). A cluster algebra A is of finite type if and only

if it can be generated by a skew-symmetrizable matrix given by an orientation of one

of the Dynkin diagrams.

The skew-symmetric cluster algebras of finite type are therefore the ones gen-

erated by orientations of the simply-laced Dynkin diagrams of type An, Dn and

En. As each of these diagrams is acyclic, all orientations are mutation-equivalent as

shown by Caldero and Keller [CK06, Cor. 4], and so there is a single cluster algebra

for each Dynkin diagram. The non-simply-laced Dynkin diagrams correspond to

skew-symmetrizable cluster algebras.

Theorem 2.4.4 ([FZ03, Thm. 1.9]). Let A be a Cartan matrix of finite type, A be

a cluster algebra related to A, and Ψ≥−1 the almost positive roots in the root system

associated with A. Then there is a bijection between Ψ≥−1 and the cluster variables

in A.

This bijection can be used to give an example of the Laurent Phenomenon

(Theorem 2.2.7) and was used by Fomin and Zelevinsky to prove the positivity

conjecture for the finite type cluster algebras (see [FZ03, Thm. 1.10]).
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n

n

n

n − 2

An (n ≥ 1):

Bn (n ≥ 2):

Cn (n ≥ 2):

Dn (n ≥ 4):

E6:

E7:

E8:

F4:

G2:

Figure 2.10: A list of all Dynkin diagrams.
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2.5 Surface cluster algebras

The finite type cluster algebras were classified in terms of the Dynkin diagrams

linked to crystallographic root systems. Another class of cluster algebras which have

a concrete realisation contains the cluster algebras arising from triangulations of

surfaces.

Fomin, Shapiro and Thurston introduced this approach to study the geometry

and triangulations of surfaces using cluster algebras in [FST08] and more recent

work by Felikson, Shapiro and Tumarkin [FST12a] extends these ideas to include 2

dimensional orbifolds. This section closely follows the notation and ideas from these

papers.

A surface with marked points is a pair (S,M) where S is a connected orient-

able 2-dimensional Riemann surface with (possibly empty) boundary ∂S and M is a

finite set of distinct marked points in the closure of S, such that for each boundary

component C of S there is at least one marked point lying on C, i.e. M ∩ C 6= ∅.

Any marked points in the interior of S are called punctures.

Definition 2.5.1. An arc in a surface with marked points (S,M) is an isotopy class

of curves γ in the surface S such that:

• The endpoints of γ lie in M;

• The curve γ has no self-intersections except possibly at its endpoints;

• The curve γ only intersects M and ∂S at its endpoints;

• The curve is not contractible into M or onto the boundary ∂S.

Two arcs are compatible if there exist curves in their isotopy classes which do

not intersect except possibly at their endpoints.

Definition 2.5.2. An ideal triangulation of (S,M) is a maximal collection of

pairwise compatible arcs in (S,M).

In order to ensure that the surface admits a hyperbolic structure, and so have

triangulations where arcs cut the surface into ideal triangles, we will exclude:
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Figure 2.11: A self-folded triangle.

Flip interior

edge

Figure 2.12: Flipping the interior arc of a triangulation.

• A sphere with one or two punctures.

• An unpunctured or once-punctured monogon.

• An unpunctured digon.

• An unpunctured triangle.

This definition of a triangulation allows self-folded ideal triangles where two of

the edges are identified, such as that in Figure 2.11.

2.5.1 Cluster structures from triangulations

The number of edges in any triangulation of the same surface with marked points is

a constant, and can be explicitly given in terms of the genus, number of boundary

components, punctures and marked points (see e.g. [FST08, Prop. 2.10]).

Definition 2.5.3. A flip in a triangulation removes a single arc from the triangula-

tion and replaces it with the unique different arc compatible with all other arcs in

the triangulation.

All arcs except for the folded edges in self-folded triangles can be flipped in this

way, and stylistically these flips look like the one shown in Figure 2.12.

Each ideal triangulation T of a given surface (S,M) can be associated to a

skew-symmetric matrix B = B(T ), its adjacency matrix. The construction of
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this matrix is given in [FST08, Sec. 4] and extends the standard construction of a

triangulation’s adjacency matrix given in [FG07] and [GSV05].

Proposition 2.5.4. Given an ideal triangulation T , with associated adjacency mat-

rix B(T ), then if T ′ is the triangulation obtained by flipping the arc corresponding

to vertex k in B(T ), then B(T ′) = µk

(
B(T )

)
.

It is a well known result that any ideal triangulation of a surface (S,M) can

be obtained from any other by a sequence of triangle flips, proved by Hatcher

in [Hat91]. In this way, we can consider the ideal triangulations of a surface (S,M)

to have a cluster structure. Each triangulation corresponds to a matrix which can

be mutated to give new triangulations, and the mutation class of the triangulation

(or equivalently its matrix) depends only on (S,M) and not on the choice of the

initial triangulation.

2.5.2 Adding taggings

For a triangulation without any self-folded triangles, these triangle flips give a cluster

structure where the flips correspond to mutations. However in cluster algebras, a

quiver can be mutated at any vertex therefore these folded edges which cannot

be flipped pose a problem when translating the theory of surface triangulations

to that of cluster algebras. Fomin, Shapiro and Thurston introduce a tagging to

the triangulations in [FST08, Sec. 7] which removes these self-folded triangles and

ensures that all arcs can be flipped.

Definition 2.5.5. A tagged arc of (S,M) is an arc where each endpoint is tagged

as either ‘plain’ or ‘notched’ (⊲⊳) such that:

• The arc does not cut out a once-punctured monogon;

• Any endpoint on ∂S is marked plain;

• Both ends of a loop are tagged the same way.

Definition 2.5.6. Two distinct tagged arcs α and β are then compatible if the

following are true:
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⊲⊳

Figure 2.13: Converting a self-folded triangle to tagged arcs.

• The untagged arcs of α and β are compatible;

• If the untagged arcs are not the same and α and β share an endpoint, then

the marking at that endpoint must be the same;

• If the untagged arcs are the same, then the marking at only one of the endpoints

must be the same for α and β.

Definition 2.5.7. As before, a tagged triangulation of (S,M) is a maximal

collection of pairwise compatible tagged arcs.

Any untagged triangulation of (S,M) can be converted to a tagged triangulation

by replacing any outside arc of a self-folded triangle with a tagged arc as shown

in Figure 2.13. These tagged triangulations allow every arc to be flipped which,

together with the following well known result, shows that the set of all tagged

triangulations of a surface with marked points has a cluster structure.

Theorem 2.5.8 ([FST08, Prop. 7.10]). Any two tagged triangulations of a given

surface with marked points (except for once-punctured closed surfaces) can be obtained

from each other through a sequence of flips.

In the case of a once-punctured closed surface all arc ends are either notched or

plain, and flips will not change these taggings.

Not only do these tagged triangulations have a cluster structure, we can explicitly

construct a cluster algebra where mutations correspond to triangle flips. The quiver

associated to a given triangulation is constructed with a vertex for each tagged arc,

and arrows inside each triangle following the orientation of the surface, as shown

in Figure 2.14.
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As a quiver corresponds to a skew-symmetric matrix, its triangulation is associ-

ated to this matrix, which is called its adjacency matrix.

Proposition 2.5.9. Given a tagged triangulation T of (S,M) with associated quiver

Q, and T ′ another triangulation obtained from T by flipping the k-th edge. Then the

associated quiver to T ′ is the same as the k-th mutation of Q.

2.5.3 Extending to orbifolds

We can extend the above ideas of triangulations of surfaces to include certain ex-

amples of orbifolds, as studied by Felikson, Shapiro and Tumarkin in [FST12a].

Definition 2.5.10. An orbifold O = (S,M,Q) is a surface with marked points

and an additional collection of orbifold points Q, with M ∩Q = ∅. All orbifold

points are in the interior of S, whereas the marked points can lie on the boundary

and in the interior of S as before.

In addition to the arcs on the surface, a triangulation of an orbifold can contain

arcs with an endpoint at one of the orbifold points.

Definition 2.5.11. A pending arc is an arc (considered up to isotopy) with one

endpoint in Q and the other in M.

Two pending arcs γ and γ′ are compatible if their orbifold endpoints are distinct,

and the arcs do not intersect.

As for surfaces, triangulations of an orbifold are maximal collections of compatible

arcs, which are defined in the same way with the exception that if an arc cuts out a

monogon, then the monogon must contain at least 2 orbifold points, or one marked

point and that the triangulation could contain a digon with one orbifold point.

A triangulation of an orbifold will not give a quiver, but can be associated to

a diagram in a similar way. Arrows between pending and non-pending arcs get a

weight of 2, while arrows between two pending arcs get a weight of 4. Given such

a triangulation, the arcs can be flipped in exactly the same way as for surfaces by
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Figure 2.14: Constructing quivers from triangulations of a heptagon,
torus and punctured hexagon. Note that the boundary
arcs in the hexagon and heptagon do not correspond
to vertices in the quiver, while the identification of
opposite edges in the torus leads to double arrows
in its quiver. The puncture in the bottom figure is
depicted as a cross.
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replacing a given arc (pending or not) with the unique other arc compatible with the

rest of the triangulation. These flips will coincide with mutations of the associated

diagrams.

A diagram could be associated to a number of different matrices, while we would

like to associate a single matrix to any given orbifold and to do this we add weights

to the orbifold points.

Definition 2.5.12. A weighted orbifold Ow is an orbifold where each orbifold

point is assigned a weight of either 2 or 1/2.

A skew-symmetrizable matrix can then be associated to each triangulation of

a weighted orbifold by glueing the matrix blocks shown in Table 3.4 in [FST12a],

where an orbifold point of weight 2 is shown as a circle, and an orbifold point of

weight 1/2 is shown as a cross.

Alternatively a vertex weighted valued quiver can be constructed from the trian-

gulation of a weighted orbifold. The underlying (unweighted) quiver is the same as

for a surface triangulation, and the weights on the vertices are computed from the

weights of the orbifold points.

All vertices corresponding to non-pending arcs have the same weight w, which

depends on the weights of the orbifold points; if all orbifold points have a weight of

2, then w = 1, otherwise w = 2. Then the weight c = dw of a vertex in the diagram

corresponding to a pending arc is the weight d of the orbifold point adjacent to the

pending arc mutliplied by the common weight w.

The weights of orbifold points are either 1/2 or 2, so the only possible vertex

weights are 1, 2 and 4, furthermore vertex weights of 4 are only present if the orbifold

point weights are not all 2. Such a valued quiver defines a skew-symmetrizable matrix,

and the vertex weights correspond to the corresponding entries in its symmetrizing

matrix.

There are two choices of weight for each orbifold point in a given orbifold, how-

ever Felikson, Shapiro and Tumarkin [FST12a, Rem. 4.18] show that the matrices

obtained from two different weightings of the same orbifold are mutation-equivalent
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if both have the same number of orbifold points weighted 2 (or equivalently the same

number weighted 1/2).

2.5.4 Mutation-finite classification

Any orbifold or surface with marked points has only a finite number of triangulations,

and so the mutation class of any matrix arising from these triangulations must contain

only a finite number of matrices. This was the initial step towards the classification

of all mutation finite matrices and the natural question was whether there were any

other mutation finite matrices which do not arise from triangulations.

This question was answered in the skew-symmetric case by Felikson, Shapiro and

Tumarkin in [FST12c] who showed that there are other classes of mutation finite

quivers, however there are not many:

Theorem 2.5.13 ([FST12c, Thm. 6.1]). Any mutation-finite skew-symmetric matrix

is either the adjacency matrix of a surface triangulation or mutation equivalent to

one of the 11 exceptional types: E6, E7, E8, Ẽ6, Ẽ7, Ẽ8, E(1,1)
6 , E(1,1)

7 , E(1,1)
8 , X6 or

X7, shown in Figure 2.15.

Clearly all quivers giving finite type cluster algebras must be mutation-finite.

These were shown to correspond to orientations of the simply-laced Dynkin diagrams,

and so these must fit into the classification above. The type An quivers correspond

to triangulations of polygons, while Dn quivers arise from triangulations of once

punctured polygons. The affine Dynkin diagrams also play a role in the mutation-

finite classification, as Ãn quivers come from triangulations of annuli and D̃n from

twice punctured polygons. The X6 and X7 quivers were first shown to be mutation-

finite by Derksen and Owen in [DO08], while the extended Dynkin quivers were

more widely known.

Once the result was known for skew-symmetric matrices a natural extension is

to look at skew-symmetrizable matrices, for which a similar result holds.
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Figure 2.16: The exceptional types of mutation-finite diagrams.

Theorem 2.5.14 ([FST12b, Thm. 5.13]). Any mutation-finite skew-symmetrizable

matrix, which is not skew-symmetric, is either the adjacency matrix of an orbifold

triangulation or mutation equivalent to one of the 7 exceptional types: G̃2, F4, F̃4,

G
(∗,+)
2 , G(∗,∗)

2 , F (∗,+)
4 or F (∗,∗)

4 , shown in Figure 2.16.

Both these results use the idea of decomposing quivers and diagrams into small

building blocks which can be glued together, mirroring the idea of glueing triangula-

tions together to construct a surface. Each block encodes a feature of the surface or

orbifold, such as a triangle in the triangulation, a puncture or an orbifold point.



Chapter 3

Minimal mutation-infinite quivers

The work in this chapter has been published in [Law17].

3.1 Introduction

In [Sev07] Seven classified all minimal 2-infinite diagrams, the majority of which

are mutation-equivalent to extended Dynkin diagrams or one of a small number of

exceptional cases. The work by Seven on minimal 2-infinite diagrams inspired the

study of minimal mutation-infinite quivers and this chapter builds on work done

by Felikson, Shapiro and Tumarkin in [FST12c, Sec. 7] proving a number of useful

results about minimal mutation-infinite quivers.

Minimal mutation-infinite quivers are those which belong to an infinite mutation

class, but any subquiver belongs to a finite mutation class. Simply-laced diagrams

from hyperbolic Coxeter simplices of finite volume have the property that any subdia-

gram is a Dynkin or affine Dynkin diagram and so any mutation-infinite orientation

of such a diagram is minimal mutation-infinite. The motivating question behind this

study is whether the family of minimal mutation-infinite quivers from orientations of

hyperbolic Coxeter simplex diagrams contains all minimal mutation-infinite quivers.

In this chapter we classify all minimal mutation-infinite quivers, with classes

represented by orientations of hyperbolic Coxeter simplex diagrams as well as some

exceptional representatives. The classification is defined in terms of moves, which are
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specific sequences of mutations. In general, mutation does not preserve the property

of a quiver being minimal mutation-infinite, however the moves are constructed in

such a way that they do.

Theorem 3.5.1. Any minimal mutation-infinite quiver with at most 9 vertices can

be transformed through sink-source mutations and at most 5 moves to either an

orientation of a hyperbolic Coxeter diagram, a double arrow quiver or an exceptional

quiver.

Theorem 3.5.2. Any minimal mutation-infinite quiver can be transformed through

sink-source mutations and at most 10 moves to one of an orientation of a hyperbolic

Coxeter diagram, a double arrow quiver or an exceptional quiver.

The results of this chapter give a procedure to check whether any given quiver

is mutation-infinite without having to compute any part of its mutation class. This

procedure follows from the fact that any mutation-infinite quiver must contain a

minimal mutation-infinite induced subquiver.

In Section 3.2 we recall the properties arising from mutation-equivalence of

quivers, introduce minimal mutation-infinite quivers and highlight the interest behind

their study. In Section 3.3 we recall the relations between quivers, diagrams and

Coxeter simplices, as well as constructing quivers from orientations of certain Coxeter

diagrams given by these simplices. Some examples of these quivers give minimal

mutation-infinite quivers.

Section 3.5 introduces a classification of all minimal mutation-infinite quivers

given by a number of elementary moves defined in Section 3.4 and listed in Ap-

pendix A.2. These moves allow minimal mutation-infinite quivers to be transformed

to other minimal mutation-infinite quivers and so admit a classification of such

quivers.

This classification involved a large computational effort to find all minimal

mutation-infinite quivers. Appendix A.1 details the procedures used in this com-

putation. Details about implementations of these procedures and the complete
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Figure 3.1: The partial ordering on some examples of quivers.

lists of minimal mutation-infinite quivers can be found on the author’s website

https://www.jwlawson.co.uk/maths/mmi.

3.2 Minimal mutation-infinite quivers

Recall that two quivers P and Q are mutation-equivalent if there exists a sequence

of mutations taking P to Q. The mutation-class of a quiver is the equivalence

class under this equivalence relation. A quiver is mutation-finite if it belongs to a

mutation-class of finite size, otherwise the quiver is mutation-infinite.

All mutation-finite quivers have been classified by Felikson, Shapiro and Tu-

markin in their paper [FST12c] as either a quiver arising from an orientation of a

triangulation of a surface or a quiver in one of 11 exceptional mutation-classes.

3.2.1 Partial ordering on quivers

A partial ordering can be put on all quivers given by inclusion of induced subquivers.

Definition 3.2.1. Given two quivers P and Q, then P < Q if P can be obtained

by removing vertices (and all arrows adjacent to each removed vertex) from Q.

Equivalently, if BP and BQ are the exchange matrices of P and Q respectively, then

P < Q if BP is a submatrix of BQ up to simultaneously permuting the rows and

columns of BP . If P < Q then P is an induced subquiver of Q.

https://www.jwlawson.co.uk/maths/mmi
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Q P

µui
(Q) µui

(P )

remove {vj}

remove {vj}

Figure 3.2: Commutative diagram showing mutations and vertex
removal.

For brevity it is convenient to omit the word induced and write subquiver to

mean induced subquiver. Denote the vertices of Q as u1, . . . , um, v1, . . . , vn and let P

be the subquiver of Q obtained by removing vertices v1, . . . , vn. Then any mutation

at ui commutes with removing these vertices {vj} shown in Figure 3.2, giving the

following proposition.

Proposition 3.2.2. A quiver which contains some mutation-infinite quiver as a

subquiver is necessarily mutation-infinite. Equivalently any subquiver of a mutation-

finite quiver is mutation-finite.

Proposition 3.2.2 shows that there are minimal mutation-infinite quivers with

respect to the above partial ordering. Equivalently these minimal mutation-infinite

quivers could be defined as follows:

Definition 3.2.3. A minimal mutation-infinite quiver is a mutation-infinite

quiver for which every subquiver is mutation-finite.

3.2.2 Properties of minimal mutation-infinite quivers

In their paper on the classification of mutation-finite quivers Felikson, Shapiro and

Tumarkin prove a useful fact about minimal mutation-infinite quivers.

Theorem 3.2.4 ([FST12c, Lem. 7.3]). Any minimal mutation-infinite quiver con-

tains at most 10 vertices. Equivalently, any mutation-infinite quiver of size greater

than 10 must contain a mutation-infinite subquiver.

An important restriction of the minimal mutation-infinite property of quivers

is that it is not preserved by mutation. An example of a mutation which does not
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Figure 3.3: The left quiver is minimal mutation-infinite. Mutation
at the central vertex yields the central quiver however
this is not minimal mutation-infinite. Removing the
central vertex gives the right quiver, which is also min-
imal mutation-infinite.

preserve the minimal mutation-infinite property of a quiver is given in Figure 3.3.

However there are some specific mutations which do preserve this property, of which

sink-source mutations are an example.

Recall a sink is a vertex in a quiver such that all adjacent arrows are directed

into that vertex, whereas a source is a vertex such that all adjacent arrows are

directed away from the vertex. Sink-source mutation is mutation at either a sink

or a source.

Proposition 3.2.5. Sink-source mutations of a quiver preserve whether it is minimal

mutation-infinite or not.

Proof. A mutation at a sink (resp. source) reverses the direction of all arrows adjacent

to it, so the vertex becomes a source (sink).

Let P be a minimal mutation-infinite quiver, and Q a quiver obtained from P

by a sink-source mutation at a vertex v. The quiver Q is mutation-equivalent to

P , so is mutation-infinite. The subquiver of Q obtained by removing the mutated

vertex v is precisely the same as the subquiver of P constructed by removing v. Any

other subquiver of Q is a single sink-source mutation away from the corresponding

subquiver of P . Every subquiver of P is mutation-finite, so every subquiver of Q is

also mutation-finite, hence Q is minimal mutation-infinite.

Remark 3.2.6. Any two orientations of an unoriented graph without cycles are

mutation equivalent through a series of sink-source mutations by a result of [CK06],

therefore if one orientation is minimal mutation-infinite then all other orientations

are too. However an unoriented graph with cycles could have different orientations



36 Minimal mutation-infinite quivers

Figure 3.4: An example of different orientations of the same graph,
the left quiver is mutation-finite, while the right quiver
is minimal mutation-infinite.

such that one is minimal mutation-infinite and another is not. Moreover different

orientations of the same graph may differ in whether they are mutation-finite, see

Figure 3.4 for an example.

The following well known fact limits the possible quivers which could be minimal

mutation-infinite.

Proposition 3.2.7. If Q is a mutation-finite quiver with at least 3 vertices then the

number of arrows between any two vertices of Q is at most 2.

A comprehensive proof of this fact can be found in Derksen and Owen’s paper

introducing previously unknown mutation-finite quivers [DO08, Sec. 3]. This is

equivalent to stating that any quiver with 3 or more arrows between any two vertices

is necessarily mutation-infinite.

Every subquiver of a minimal mutation-infinite quiver is mutation-finite and so

each subquiver has at most 2 arrows between any two vertices. Therefore the minimal

mutation-infinite quiver itself has at most 2 arrows between any two vertices.

Proposition 3.2.8. Any mutation-infinite quiver with exactly 3 vertices is minimal

mutation-infinite.

Proof. All quivers with only 2 vertices are mutation-finite, as mutation at either

vertex just reverses the direction of the arrows. Hence the mutation-class contains

just these two quivers.

3.3 Coxeter simplices

It is known that hyperbolic Coxeter simplices of finite volume exist up to dimension

9 and so admit diagrams with up to 10 vertices. In the following section we explore
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the links between these diagrams and the minimal mutation-infinite quivers which

also exist with up to 10 vertices, as stated in Theorem 3.2.4.

An n-dimensional Coxeter simplex is considered in one of three spaces: spherical,

Euclidean and hyperbolic. As a simplex they are the convex hull of n+ 1 points and

so have n+ 1 facets.

Definition 3.3.1. A simplex is a Coxeter simplex if the hyperplanes which make

up the faces have dihedral angles all submultiples of π. In the case of hyperbolic

Coxeter simplices we allow the case where the planes meet at the boundary and so

have dihedral angle 0.

Given a Coxeter simplex we denote the hyperplanes by Hi and the angle between

hyperplanes Hi and Hj by π
kij

.

Definition 3.3.2. The Coxeter diagram associated to a Coxeter simplex is an

unoriented graph with a vertex i for each hyperplane Hi and a weighted edge between

vertices i and j when kij > 3 with weight kij. We add an unweighted edge between

i and j when kij = 3, and if the angle between two hyperplanes Hi and Hj is π
2

then

no edge is put between i and j.

In the hyperbolic case, where two hyperplanes meet at the boundary, then the

edge is given weight ∞.

The Coxeter group associated to a given Coxeter diagram is constructed from

the following representation, where each generator si represents reflection in the

hyperplane Hi,
〈
si

∣∣∣ s2
i = 1 = (sisj)

kij

〉
.

3.3.1 Simply-laced Coxeter simplex diagrams in different

spaces

Definition 3.3.3. Simply-laced Coxeter diagrams are those where kij ∈ {2, 3} for

all i and j.
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This is equivalent to only allowing angles of π
2

and π
3

in the Coxeter simplex.

Simply-laced Coxeter diagrams only contain edges with no weights, and so a quiver

can be constructed from the diagram by choosing an orientation for each edge.

Coxeter simplices can be considered over spherical, Euclidean or hyperbolic space.

In each case the quivers obtained by choosing an orientation for the simply-laced

Coxeter diagrams have different properties. The following are well known results

about the spherical and Euclidean cases.

Remark 3.3.4. In [Cox34], Coxeter classified simply-laced spherical Coxeter simplex

diagrams as Dynkin diagrams of type A, D and E. Orientations of these diagrams

are mutation-finite quivers and give finite-type cluster algebras, as shown in Fomin

and Zelevinsky’s classification of finite-type cluster algebras [FZ03].

Similarly, simply-laced Euclidean Coxeter simplex diagrams are affine Dynkin

diagrams of type Ã, D̃ and Ẽ, and orientations of these diagrams are mutation-finite

but give infinite-type cluster algebras.

It is known that the hyperbolic Coxeter simplex diagrams satisfy the following

property.

Remark 3.3.5. Any subdiagram of a simply-laced hyperbolic Coxeter simplex

diagram is either a Dynkin or an affine Dynkin diagram.

This follows from e.g. Theorems 3.1 and 3.2 of Vinberg’s paper [Vin85] concerning

the reflection groups generated by the reflections in n hyperplanes of an n dimensional

hyperbolic Coxeter simplex.

3.3.2 A family of minimal mutation-infinite quivers

Given a simply-laced hyperbolic Coxeter simplex diagram, as shown e.g. in [Vin93,

Tables 3 and 4], construct a quiver by choosing an orientation on each edge. From

Remark 3.3.5, any subquiver of this quiver will be an orientation of either a Dynkin

diagram or an affine Dynkin diagram and so Remark 3.3.4 shows that any subquiver

is mutation-finite.
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Figure 3.5: Mutation-finite orientations of hyperbolic Coxeter sim-
plex diagrams.

Figure 3.6: Orientations of tree-like hyperbolic Coxeter simplex dia-
grams of size 6, 7 and 8.

Using the classification of mutation-finite quivers given in [FST12c], it can be seen

that almost all orientations of hyperbolic Coxeter simplex diagrams are mutation-

infinite. The quivers shown in Figure 3.5 are mutation-finite orientations of hyper-

bolic Coxeter simplex diagrams, and these together with their opposite quivers are

the only mutation-finite orientations.

It follows from Remarks 3.3.4 and 3.3.5 that all mutation-infinite orientations of

hyperbolic Coxeter simplex diagrams are in fact minimal mutation-infinite quivers.

This then raises the question of whether all minimal mutation-infinite quivers can

be given in this form or not.

Proposition 3.3.6. There exist minimal mutation-infinite quivers which are not

orientations of a hyperbolic Coxeter simplex diagram for all sizes of quiver from 5

to 10.

Proof. To prove this it suffices to give an example of such a quiver for each size. The

construction of this quiver for size 6 ≤ k ≤ 10 is as follows:

Take the tree-like hyperbolic Coxeter simplex diagram of size k and orient it in

such a way that all arrows point the same way as illustrated in Figure 3.6. This
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Figure 3.7: Minimal mutation-infinite quivers not orientations of
hyperbolic Coxeter simplex diagrams.

Figure 3.8: The quiver on the left is an orientation of a hyperbolic
Coxeter simplex diagram. Mutation at the trivalent ver-
tex yields the quiver on the right which is also minimal
mutation-infinite.

quiver Q is minimal mutation-infinite as shown above, and contains as a subquiver

the orientation of the A3 Dynkin diagram on the far left of each quiver as shown in

the figure. Mutating at the centre vertex of this A3 creates an oriented triangle in

the resulting quiver P , giving the quivers in Figure 3.7 which are not orientations of

hyperbolic Coxeter simplex diagrams.

The resulting quiver is mutation-equivalent to the orientation of a hyperbolic

Coxeter simplex, so is mutation-infinite. Each subquiver obtained by removing

vertex n from P is either the same as the subquiver obtained by removing n from

Q, or a single mutation away from it. Hence as Q is minimal mutation-infinite, all

such subquivers are mutation-finite and so P is also minimal mutation-infinite.

The only minimal mutation-infinite quivers with 5 vertices are of the form shown

in Figure 3.8. Mutation of an orientation of a hyperbolic Coxeter simplex diagram

gives such a quiver, and all subquivers are mutation-equivalent to subquivers of the

initial quiver so the resulting quiver is again minimal mutation-infinite.
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3.4 Minimal mutation-infinite quiver moves

The orientations of hyperbolic Coxeter simplex diagrams give a family of minimal

mutation-infinite quivers, however Proposition 3.3.6 shows the existence of other

minimal mutation-infinite quivers. This section discusses the approach taken to

classify all such quivers.

Many examples of minimal mutation-infinite quivers are only a small number of

mutations away from an orientation of a hyperbolic Coxeter diagram. As discussed in

Subsection 3.2.2 mutations do not in general preserve the minimal mutation-infinite

property of a quiver, however it can be proved that specific mutations, where a

vertex is surrounded by a particular subquiver, do indeed preserve this property.

An example of such a mutation was used in the proof of Proposition 3.3.6. These

particular mutations which preserve the minimal mutation-infinite property can be

considered as moves among all minimal mutation-infinite quivers.

As mutation acts by changing the quiver locally around the mutated vertex, while

leaving arrows further from the vertex fixed, these moves can be defined in terms of

the subquivers which change under the mutations. In this way applying the move is

equivalent to replacing some subquiver with a different subquiver.

The minimal mutation-infinite preserving mutations often depend on some re-

striction of how the vertices in the subquivers are connected in the whole quiver

outside the subquiver. This data then needs to be encoded in the moves along with

the subquivers.

Definition 3.4.1. When referred to in a move, a line is a line of vertices such that

one end point is connected to the move subquiver. A line of length zero consisting

of just a single vertex is also considered valid.

3.4.1 A move example

Figure 3.9 gives an example of one such move. The move is applied to a quiver

by mutating at the central vertex. The circles labelled X and Y denote connected
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X Y

X Y

If X or Y

is a line

Figure 3.9: An example of a minimal mutation-infinite move.

Figure 3.10: The move in Figure 3.9 applies to the first quiver, but
does not apply to the others. The second quiver does
not contain either subquiver, while the third does, but
neither component is a line with an endpoint in the
subquiver.

components of the quiver fixed by the move. The vertex on the boundary of X is

considered to be contained in X. In this case the move requires that one of the com-

ponents be a line (or just the single vertex) for the move to apply. Figure 3.10 shows

some examples of quivers for which this move is applicable or not and Figure 3.11

shows how it acts on the first quiver in Figure 3.10.

Proposition 3.4.2. The image of a minimal mutation-infinite quiver under the

move in Figure 3.9 is minimal mutation-infinite.

Proof. Let P be the initial quiver and Q its image under the move. Denote the

vertex at which mutation occurs during the move as w.

The move is equivalent to mutation at w hence Q is in the same mutation class

as P . P is mutation-infinite so Q is also mutation-infinite.

Any subquiver Q′ of Q, obtained by removing a vertex v in either X or Y , will

contain w. Mutating at w will yield a quiver µ(Q′) that is equal to one obtained

X

Y

X

Y

Figure 3.11: An example of how the move in Figure 3.9 changes a
quiver. Note that Y consists of a single vertex, and so
can be thought of as a line of length zero.
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by removing the corresponding vertex v from P . As P is minimal mutation-infinite,

such a subquiver of P is necessarily mutation-finite, hence µ(Q′) is mutation-finite

and so Q′ is also mutation-finite.

Removing w gives a subquiver Q′ of Q which is not mutation-equivalent to a

subquiver of P . Instead the extra condition that either X or Y is a line ensures that

this quiver is a subquiver of P by removing the vertex at the end of that line, and

so is mutation-finite. For example consider the quivers in Figure 3.11, removing w

from Q gives a quiver which is the same as one obtained by removing the vertex in

Y from P .

Hence Q is minimal mutation-infinite.

The proofs for all moves are similar to this. The moves are always constructed

from sequences of mutations, so the image is mutation-infinite and the quivers

obtained by removing vertices outside those vertices which are mutated by the move

can always be mutated back to a subquiver of the initial quiver. The challenge is

determining whether a quiver obtained by removing a vertex at which one of the

mutations took place is mutation-equivalent to a subquiver of the initial quiver.

Proposition 3.4.3. The move given by reversing the move in Figure 3.9 is a valid

move.

Proof. As discussed above, it suffices to show that removing the vertex at which the

mutation occurs yields a mutation-finite quiver. Denote the initial quiver as P , the

image Q and the mutated vertex w.

Removing w from Q gives a quiver R which is the disjoint union of X and Y ,

therefore R is mutation-finite if and only if both X and Y are.

Both X and Y are contained in P , so are subquivers of P and hence are mutation-

finite. Therefore R is also mutation-finite, so Q is minimal mutation-infinite.

Appendix A.2 contains a list of all moves necessary to classify minimal mutation-

infinite quivers. The moves required to classify all minimal mutation-infinite quivers

up to size 9 only have requirements that certain components are lines or are connected
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X

Y

X

Y

minimal

mutation

infinite

mutation

finite

X

Y

minimal

mutation

infinite

Figure 3.12: Example of a size 10 move with added constraints

to other components by lines. For the size 10 quivers, stricter conditions are required

as some moves require that a certain quiver constructed from the components is

mutation-finite. These moves are of the form




A is minimal mutation-infinite

and

B is mutation-finite




⇐⇒





C is minimal mutation-infinite

and

D is mutation-finite




,

where A and C are rank 10 quivers, B is a subquiver of C and D is a subquiver of A.

If A is minimal mutation-infinite then as a subquiver D is mutation-finite, however

this is not sufficient to show that C is minimal mutation-infinite, as there is no way

to determine from A whether B, a subquiver of C, is mutation-finite. If B is given to

be mutation-finite then the move applies and so C is minimal mutation-infinite. On

the other hand if C is minimal mutation-infinite then as a subquiver B is mutation-

finite, but D cannot be shown to be mutation-finite just by considering C. The B

and D quivers constructed in such a way are always of a smaller size and so the

results for smaller size quivers can be applied. These moves are still involutions as,

after applying the move once, the conditions are automatically satisfied to apply the

same move in reverse.

Figure 3.12 gives an example of one such move for size 10 quivers. In one direction

the move applies without any additional constraints, but in the other direction the

move requires that a certain quiver constructed from quiver components is mutation-

finite.
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Rank 4:

Rank 5:

Rank 6:

Rank 7:

Rank 8:

Rank 9:

Rank 10:

Table 3.1: Representatives: Orientations of hyperbolic Coxeter sim-
plex diagrams
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Table 3.2: Representatives: Double arrow quivers

Table 3.3: Representatives: Exceptional quivers
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3.5 Classifying minimal mutation-infinite quivers

Define an equivalence relation where two quivers are equivalent if one quiver can be

obtained from the other through a sequence of moves. Then these moves together

with the list of representatives (see Tables 3.1, 3.2 and 3.3) classify minimal mutation-

infinite quivers.

Hyperbolic Coxeter simplex diagrams give a family of minimal mutation-infinite

quivers, and so orientations of these diagrams are some of the representatives of the

classes. Caldero and Keller proved that any two acyclic orientations of a diagram,

belonging to the same mutation class, are mutation-equivalent through a sequence of

sink-source mutations in [CK06, Cor. 4]. This means that if two acyclic orientations

of a given hyperbolic Coxeter simplex diagram cannot be obtained from one another

through sink-source mutations then these quivers will belong to distinct move-classes.

Many minimal mutation-infinite quivers can be transformed into one of the

hyperbolic Coxeter diagrams, however there are some which can not. Therefore the

classification contains hyperbolic Coxeter classes and some exceptional classes. A

particular case of these exceptional cases arises from those minimal mutation-infinite

quivers which contain a double arrow between two vertices. There are two such

classes for quivers of size 6 and one class for each size between 7 and 10.

The result places a bound on the number of moves required to transform any

minimal mutation-infinite quiver to one of the class representatives. Diagrams of the

representatives can be found in Tables 3.1, 3.2 and 3.3. This statement can then be

reversed to give a construction of all possible minimal mutation-infinite quivers from

these representatives. The procedure to do this would be progressively applying the

moves to the set of all quivers computed so far. As the number of moves is bounded

this procedure will stop and at that point all minimal mutation-infinite quivers will

have been computed.

Theorem 3.5.1. Any minimal mutation-infinite quiver with at most 9 vertices can

be transformed through sink-source mutations and at most 5 moves to one of an
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orientation of a hyperbolic Coxeter diagram, a double arrow quiver or an exceptional

quiver (see Tables 3.1–3.3).

As discussed in Section 3.4 above the moves required for quivers of size 10 have

more constraints and are more complicated than those for smaller quivers. As such

this result needs to be restated when considering these larger quivers.

Theorem 3.5.2. Any minimal mutation-infinite quiver can be transformed through

sink-source mutations and at most 10 moves to one of an orientation of a hyperbolic

Coxeter diagram, a double arrow quiver or an exceptional quiver (see Tables 3.1–3.3).

Appendix A.1 discusses the computations used to verify this result and find all

minimal mutation-infinite quivers. There are in total 18,799 such quivers (excluding

those with 3 vertices) which are orientations of 574 different graphs. Pictures of all

minimal mutation-infinite quivers organised into their move-classes can be found on

the author’s website: https://www.jwlawson.co.uk/maths/mmi/quivers.

3.5.1 A deterministic mutation-infinite check using

minimal mutation-infinite quivers

Any mutation-infinite quiver must contain some minimal mutation-infinite quiver as

a subquiver. Hence given a list of all the minimal mutation-infinite quivers there is

an algorithm to check whether a given quiver is mutation-infinite without having to

compute any part of its mutation class.

Let Q be a possibly mutation-infinite quiver and {Pi}i∈I be all minimal mutation-

infinite quivers indexed by I. For each i ∈ I if Pi is a subquiver of Q then Q is

mutation-infinite, otherwise continue to the next i. If no minimal mutation-infinite

quiver is in fact a subquiver of Q then Q is mutation-finite.

https://www.jwlawson.co.uk/maths/mmi/quivers


Chapter 4

Properties of minimal

mutation-infinite quivers

In the previous chapter we showed a classification of all minimal mutation-infinite

quivers — those with mutation-finite subquivers but which are mutation-infinite

themselves. In this chapter we consider a number of properties of these quivers and

the cluster algebras generated by them.

We will show that these minimal mutation-infinite quivers admit a maximal green

sequence and that the cluster algebra generated from such a quiver is equal to its

upper cluster algebra. We also consider the mutation classes of these quivers, and

whether the quivers in these mutation classes which have maximal green sequences

form a connected component in the exchange graph.

The research in this chapter was done in collaboration with Matthew Mills, Uni-

versity of Nebraska-Lincoln and is contained in [LM16]. The majority of the chapter

is based on joint work unless otherwise noted. The computations in Section 4.5

were completed by the author, building on results and ideas proposed by Mills. The

computations in the proof of Theorem 4.6.2, that these quivers are Louise, were the

work of Mills but included here for completeness.
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4.1 Introduction

All mutation-infinite quivers of rank 3 are minimal mutation-infinite, and have been

studied extensively [ABBS08; BBH11; LLM15; Mul15; Sev14] so here we primarily

focus on minimal mutation-infinite quivers of rank at least 4.

Maximal green sequences are also an aspect of cluster algebras which have been

widely studied, with links to scattering diagrams [BHIT15] as well as to BPS states

of some quantum field theories [ACC+13]. Mills determined which mutation-finite

quivers admit a maximal green sequence in [Mil16]. In this chapter we will show

that every minimal mutation-infinite quiver has a maximal green sequence.

Theorem 4.5.5. Suppose Q is a minimal mutation-infinite quiver of rank at least

4. Then Q has a maximal green sequence.

Each cluster algebra has an associated upper cluster algebra, introduced by

Berenstein, Fomin and Zelevinsky [BFZ05], which naturally contains its cluster

algebra, but in general it is not known when the upper cluster algebra is equal to the

cluster algebra. One result of [BFZ05] was to show that if a quiver was acyclic and

coprime then these two algebras are equal. Muller later showed that the coprime

assumption was not necessary and that the result held more generally if a quiver is

locally acyclic [Mul14]. Muller and Speyer went on to identify a stronger property

of quivers, called the Louise property, that implies local acyclicity as well as many

other very nice properties about the cluster algebra [MS16]. We show that minimal

mutation-infinite quivers also have this property.

Theorem 4.6.2. If Q is a minimal mutation-infinite quiver of rank at least 4, then

the quiver is Louise and its cluster algebra is locally-acyclic.

By showing that all minimal mutation-infinite quivers are Louise it follows that

the cluster algebra generated by any such quiver is equal to its upper cluster algebra.

Corollary 4.6.3. If Q is a minimal mutation-infinite quiver of rank at least 4, then

the cluster algebra A(Q) is equal to its upper cluster algebra.
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Such a result would not be especially interesting if the minimal mutation-infinite

quivers of the same rank generate the same cluster algebra, so we determine which

mutation classes these quivers belong to. The different move-classes given by the

classification of minimal mutation-infinite quivers in Chapter 3 groups together

certain mutation-equivalent quivers and we show that most of these groups belong

to different mutation classes.

Theorems 4.4.5 and 4.4.16. With one exception, the move-classes of minimal

mutation-infinite quivers with hyperbolic Coxeter simplex representatives or with

double arrow representatives all belong to distinct mutation classes.

As each move-class belongs to a unique mutation class, and each quiver in the

move-class has a maximal green sequence, we explore which other quivers in the

mutation class admit a maximal green sequence. In the rank 3 case we show that

the number of such quivers is bounded.

Theorem 4.7.2. For any rank 3 quiver there are at most 6 quivers (up to relabelling

of the vertices) in its mutation class that admit a maximal green sequence.

One way to visualise the mutation class is by considering the quiver exchange

graph, and we use this construction to prove that in the rank 4 case those quivers

which have maximal green sequences, and are obtained from mutating a minimal

mutation-infinite quiver a small number of times, form a connected subgraph in the

exchange graph.

Theorem 4.7.10. Let Q be a minimal mutation-infinite quiver of rank 4. Then

the subgraph Ψ of the quiver exchange graph E containing all quivers with maximal

green sequences is a proper subgraph of E and the connected component Ψ̂ of Ψ that

contains Q is finite and contains the entire move-class of Q.

This raises a number of questions related to the arrangement of quivers with

maximal green sequences in infinite quiver exchange graphs. In general it is not

currently known whether the subgraph of quivers with maximal green sequences is
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connected, nor whether there are a finite number of quivers with maximal green

sequences in a given mutation class.

In Sections 4.3 and 4.2 we remind the reader of the basic definitions of maximal

green sequences, cluster algebras and upper cluster algebras, along with a number

of known results on these topics which are used throughout the chapter. Section 4.4

contains some results on the mutation classes of these quivers. In Section 4.5 we

show the existence of a maximal green sequence for all minimal mutation-infinite

quivers and in Section 4.6 show that their cluster algebra is equal to its upper cluster

algebra. In Section 4.7 we discuss which quivers in the mutation class of rank 3 and

rank 4 minimal mutation-infinite quivers have maximal green sequences, and finally

in Section 4.8 we present a number of conjectures and questions which build on this

work.

4.2 Cluster Algebras and Upper Cluster

Algebras

In Chapter 2 we defined a cluster algebra for a quiver where every vertex can be

mutated. We now introduce additional vertices which are frozen and cannot be

mutated, variables are assigned to these vertices in the same way as to the non-

frozen vertices and these frozen variables contribute to the exchange relations in

mutation.

Definition 4.2.1. An ice quiver (Q,F ) is a quiver Q with a subset of the vertices

F ⊂ Q0 which are frozen, and so cannot be mutated. Typically an ice quiver will

not contain any arrows between frozen vertices.

Mutation at a mutable (non-frozen) vertex is given in just the same way as before,

though any arrows introduced between frozen vertices are removed.

If a quiver has m vertices, of which n are unfrozen, then the ambient field

containing the cluster variables is F = Q(x1, . . . , xn, xn+1, . . . , xm)
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A seed Σ = (x̃, Q̃) is a pair where x̃ = {β1, . . . , βn, βn+1, . . . , βm} is an m-tuple

of elements of F that form a free generating set with βk = xk for n + 1 ≤ k ≤ m,

and Q̃ is an ice quiver with n mutable vertices and m− n frozen vertices.

For a seed (x̃, Q̃) and a specified index 1 ≤ k ≤ n, define the seed mutation of

(x̃, Q̃) at k, denoted µk(x̃, Q̃), to be a new seed (x̃′, Q̃′) where Q̃′ is the quiver µk(Q̃)

defined in Definition 2.1.2 and x̃′ = {β′1, . . . , β′m} with

β′j =





β−1
k


 ∏

i←k∈Q′

βi +
∏

i→k∈Q′

βi


 if j = k;

βj otherwise.

Note that seed mutation is an involution, so mutating (x̃′, Q̃′) at k will return to

our original seed (x̃, Q̃).

Two seeds Σ1 and Σ2 are said to be mutation-equivalent or in the same

mutation class if Σ2 can be obtained by a sequence of mutations from Σ1. This is

obviously an equivalence relation.

In a given seed (x̃, Q̃), we call the subset x = {β1, . . . , βn} the cluster of the seed

and each element of a cluster the cluster variables. This emphasizes the different

roles played by βi (i ≤ n) and βi (i > n), where those βi with i > n are linked to

coefficients of the cluster algebra and are not changed by mutation. We denote

ZP = Z[x±1
n+1, . . . , x

±1
m ].

In the following, we shall only study cluster algebras of geometric type:

Definition 4.2.2. Given a seed (x̃, Q̃), the cluster algebra A(x̃, Q̃) of geometric

type is the subring of F generated over ZP by all cluster variables appearing in all

seeds that are mutation-equivalent to (x̃, Q̃). The seed (x̃, Q̃) is called the initial

seed of A(x̃, Q̃).

It follows from the definition that any seed in the same mutation class will

generate the same cluster algebra up to isomorphism.
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Definition 4.2.3. Given a cluster algebra A, the upper cluster algebra U is

defined as

U =
⋂

x={β1,...,βn}

ZP[β±1
1 , . . . , β±1

n ]

where x runs over all clusters of A.

By the Laurent Phenomenon [FZ02, Thm. 3.1] there is a natural containment

A ⊆ U .

If a quiver Q is mutation-equivalent to an acyclic quiver we say that Q is

mutation-acyclic. We say that the cluster algebra A(x̃, Q̃) is acyclic if Q is

mutation-acyclic; otherwise we say that the cluster algebra is non-acyclic.

Theorem 4.2.4 ([BFZ05; Mul14]). If A is an acyclic cluster algebra, then A = U .

4.2.1 Locally acyclic cluster algebras and the Louise

property

Muller expanded this result to locally acyclic cluster algebras, which are those that

can be covered by finitely many acyclic cluster localizations. We refer the reader

to the paper [Mul13] for a full definition, but instead we recall a sufficient property,

called the Louise property, which implies local acyclicity of the cluster algebra as

well as many other nice properties.

Definition 4.2.5 ([Mul13, Sec. 5.1]). If Q is an ice quiver, a bi-infinite path is a

sequence of mutable vertices (ik)k∈Z such that there is at least one arrow ik → ik+1

in the quiver for all k.

Definition 4.2.6. Let (Q,F ) be an ice quiver. We define i → j ∈ Q1 to be

a separating edge of Q if i and j are mutable and there is no bi-infinite path

through the edge i→ j.

Definition 4.2.7 ([MS16, Def. 2.3]). Let V ⊂ Q0 and let Q[V ] denote the induced

subquiver of Q with vertex set V . The Louise property is then defined recursively.

We say that a quiver satisfies the Louise property, or is Louise, if either
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1. Q has no edges,

2. or there exists Q′ ∈ S(Q) that has a separating edge i → j, such that the

quivers Q′[Q′0 \ {i}], Q′[Q′0 \ {j}], and Q′[Q′0 \ {i, j}] are Louise.

A cluster algebra is Louise if it is generated by a Louise quiver.

In particular any acyclic quiver has the Louise property.

Theorem 4.2.8 ([MS16, Prop. 2.6]). If a cluster algebra is Louise, then it is locally

acyclic.

Theorem 4.2.9 ([Mul14, Thm. 2]). If A is locally acyclic, then A = U .

4.3 Maximal green sequences

Maximal green sequences were first studied by Keller in [Kel11b]. These are sequences

of mutations which satisfy certain combinatorial constraints and have applications

in polylogarithm identities and other topics. In the following we use the conventions

established by Brüstle, Dupont and Pérotin in [BDP14].

Definition 4.3.1 ([BDP14, Def. 2.4]). The framed quiver associated with a quiver

Q is the ice quiver (Q̂, Q′0) such that:

Q′0 = {i′ | i ∈ Q0}, Q̂0 = Q0 ⊔Q′0,

Q̂1 = Q1 ⊔ {i→ i′ | i ∈ Q0}.

Since the frozen vertices Q′0 of the framed quiver (Q̂, Q′0) are so natural we will

simplify the notation and just write Q̂. Now we discuss what is meant by red and

green vertices.

Definition 4.3.2 ([BDP14, Def. 2.5]). Let R ∈ S(Q̂) be a quiver in the mutation

class of Q̂. A mutable vertex i ∈ R0 is called green if

{j′ ∈ Q′0 | ∃ j′ → i ∈ R1} = ∅.
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It is called red if

{j′ ∈ Q′0 | ∃ j′ ← i ∈ R1} = ∅.

While it is not clear from the definition that every mutable vertex in R0 must be

either red or green, this was shown to be true for quivers in [DWZ10] and was also

shown to be true in a more general setting in [GHKK14].

Theorem 4.3.3 ([DWZ10; GHKK14]). Let R ∈ S(Q̂). Then every mutable vertex

in R0 is either red or green.

Definition 4.3.4 ([BDP14, Def. 2.8], [Kel11b, Sec. 5.14]). A green sequence for

Q is a sequence of vertices i = (i1, . . . , il) of Q such that i1 is green in Q̂ and for

any 2 ≤ k ≤ l, the vertex ik is green in µik−1
◦ · · · ◦ µi1(Q̂). A green sequence i is

maximal if every mutable vertex in µil
◦ · · · ◦ µi1(Q̂) is red.

In [BDP14], Brüstle, Dupont and Pérotin showed that a maximal green sequence

preserves the quiver:

Lemma 4.3.5 ([BDP14, Prop. 2.10]). If i is a maximal green sequence for a quiver

Q then µi(Q) is isomorphic to Q.

Therefore there is some permutation σ on the vertices of the quiver which maps

µi(Q) to Q. This permutation is referred to as the permutation induced by i.

4.3.1 Existence of maximal green sequences

A number of results have been proved determining when quivers can admit a maximal

green sequence.

Lemma 4.3.6 ([BDP14, Prop. 2.5]). A quiver Q has a maximal green sequence if

and only if its opposite quiver Qop has a maximal green sequence.

We call a quiver Q acyclic if there are no oriented cycles in Q. Any such quiver

contains at least one source vertex, which is not the target of any arrows.
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Theorem 4.3.7 ([BDP14, Lem. 2.20]). If a quiver is acyclic, then it has a maximal

green sequence. In particular, a maximal green sequence can always be found by

repeatedly mutating at sources.

In [Mul15], Muller uses the relationship between maximal green sequences and

paths in scattering diagrams to study green sequences of induced subquivers.

Theorem 4.3.8 ([Mul15, Thm. 1.4.1]). If Q admits a maximal green sequence, then

any induced subquiver has a maximal green sequence.

Using this one can prove a quiver does not admit a maximal green sequence

by finding an induced subquiver which does not admit a maximal green sequence.

However there are examples of quivers which do not have a maximal green sequence

whereas every induced subquiver does.

At the same time, Muller shows that the existence of maximal green sequences

is not an invariant under mutation [Mul15, Sec. 2], so one quiver in a mutation

class could admit a maximal green sequence while another might not. Mills shows

in [Mil16] that in the case of mutation-finite quivers this does not occur, and in fact

only very specific mutation classes of quivers do not admit maximal green sequences.

Theorem 4.3.9 ([Mil16, Thm. 3]). Let Q be a mutation-finite quiver, then Q has

no maximal green sequence if and only if Q arises from a triangulation of a once-

punctured closed surface or is one of the two quivers in the mutation class of X7.

In [BHIT15], Brüstle, Hermes, Igusa and Todorov build a series of results showing

how c-vectors and c-matrices change as mutations are applied along a maximal green

sequence. These results allow the authors to construct a maximal green sequence for

any quiver which appears as an intermediary of the initial maximal green sequence.

Theorem 4.3.10 (Rotation Lemma [BHIT15, Thm. 3]). If i = (i1, i2, . . . , iℓ) is a

maximal green sequence of a quiver Q with induced permutation σ, then the sequence

(i2, . . . , iℓ, σ−1(i1)) is a maximal green sequence for the quiver µi1(Q) with the same

induced permutation σ.
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A maximal green sequence is a cycle in the quiver exchange graph, and the

rotation lemma shows that this cycle always gives a maximal green sequence for any

quiver appearing in that cycle. The statement above rotates in only one direction,

however this direction can be reversed:

Theorem 4.3.11 (Reverse Rotation Lemma). If i = (i1, i2, . . . , iℓ−1, iℓ) is a max-

imal green sequence of a quiver Q with induced permutation σ, then the sequence

(σ(iℓ), i1, i2, . . . , iℓ−1) is a maximal green sequence for the quiver µσ(iℓ)(Q) with the

same induced permutation σ.

Proof. Applying the rotation lemma ℓ−1 times gives that
(
iℓ, σ

−1(i1), . . . , σ−1(iℓ−1)
)

is a maximal green sequence for µiℓ−1
· · ·µi2µi1(Q). As σ is the induced permutation

for i, we have σ
(
µi(Q)

)
= Q, so µi(Q) = µiℓ

µiℓ−1
· · ·µi1(Q) = σ−1(Q) and therefore

µiℓ−1
· · ·µi1(Q) = µiℓ

(
σ−1(Q)

)
= σ−1

(
µσ(iℓ)(Q)

)
.

Hence
(
iℓ, σ

−1(i1), . . . , σ−1(iℓ−1)
)

is a maximal green sequence for σ−1
(
µσ(iℓ)(Q)

)

and by applying σ to both the sequence of vertices and to the quiver, we get that
(
σ(iℓ), i1, i2, . . . , iℓ−1

)
is a maximal green sequence for µσ(iℓ)(Q).

4.3.2 Direct sums of quivers

Garver and Musiker showed in [GM14] that if a quiver Q can be written as a direct

sum of quivers, where each summand has a maximal green sequence, then Q has a

maximal green sequence itself. Throughout this subsection we assume that (Q,F )

and (Q′, F ′) are finite ice quivers with vertices labelled Q0 \ F = {1, . . . , N1} and

Q′0 \ F ′ = {N1 + 1, . . . , N1 +N2}.

Definition 4.3.12 ([GM14, Def. 3.1]). Let (a1, . . . , ak) denote a k-tuple of elements

from Q0 \ F and (b1, . . . , bk) denote a k-tuple of elements from Q′0 \ F ′. Then for

any ice quivers (R,F ) ∈ S
(
(Q,F )

)
and (R′, F ′) ∈ S

(
(Q′, F ′)

)
we define the direct

sum of (R,F ) and (R′, F ′), denoted (R,F ) ⊕(b1,...,bk)
(a1,...,ak) (R′, F ′), to be the ice quiver
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C

1

2

3

k − 1

k

Figure 4.1: The decomposition of a quiver Q into a k-cycle, with ver-
tices 1, . . . k, and an induced subquiver C, as described
in Theorem 4.3.14.

with vertices
(
(R,F )⊕(b1,...,bk)

(a1,...,ak) (R′, F ′)
)

0
= R0 ⊔R′0

and edges

(
(R,F )⊕(b1,...,bk)

(a1,...,ak) (R′, F ′)
)

1
= (R,F )1 ⊔ (R′, F ′)1 ⊔ {ai → bi | i = 1, . . . , k}.

We say that (R,F )⊕(b1,...,bk)
(a1,...,ak) (R′, F ′) is a t-colored direct sum if t = #{ distinct

elements of {a1, . . . , ak}} and there does not exist i and j such that

#{ai → bj} ≥ 2.

Theorem 4.3.13 ([GM14, Thm. 3.12]). Let Q = Q′⊕(b1,...,bk)
(a1,...,ak)Q

′′ be a t-colored direct

sum of quivers. If (i1, . . . , ir) is a maximal green sequences for Q′ and (j1, . . . , js)

is a maximal green sequence for Q′′, then (i1, . . . , ir, j1, . . . , js) is a maximal green

sequence for Q.

4.3.3 Quivers ending with k-cycles

Direct sums give a method to construct maximal green sequences by decomposing

a quiver into disjoint induced subquivers. Another approach involves considering

oriented k-cycles appearing in the quiver.

Theorem 4.3.14. Let Q be a quiver containing an oriented k-cycle with vertices

labelled 1, . . . , k, where each vertex 1, . . . , k − 1 is only adjacent to two arrows, one

from the vertex preceding it in the cycle and one to the next vertex in the cycle,
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as shown in Figure 4.1. Let C = Q[Q0 \ {1, . . . , k − 1}] be the induced subquiver

obtained by removing the vertices in the k-cycle, excluding vertex k. Then Q has a

maximal green sequence if and only if C has a maximal green sequence.

In particular, if Q contains a 3-cycle in this form, such that if iC is a maximal

green sequence for C, then (2, iC , 1, 2) is a maximal green sequence for Q.

Proof. Clearly if the subquiver C does not admit a maximal green sequence then

by Theorem 4.3.8 the full quiver Q cannot either, so assume that C does admit a

maximal green sequence.

The mutated quiver Q′ = µ2 ◦ µ3 ◦ · · · ◦ µk−1(Q) can be decomposed into the

direct sum of C and a quiver of type Ak−1:

Q′ = C ⊕2
k (1← 2→ 3→ · · · → k − 1).

The sequence (1, . . . , k − 1, 1, k − 1, k − 2, . . . , 3) is a maximal green sequence for

this type Ak−1 quiver with induced permutation σA = ( (k − 1) (k − 2) · · · 2 1 )

which shifts the index of each vertex down one, modulo k − 1. By assumption C

has maximal green sequence iC with induced permutation σC , so Theorem 4.3.13

shows that (iC , 1, . . . , k − 1, 1, k − 1, . . . , 3) is a maximal green sequence for Q′ with

induced permutation σ = σC ◦ σA. As 1, . . . k − 1 are not in the vertex set of C, its

restriction σ
∣∣∣
1,...,k−1

= σA so by the reverse rotation lemma, Theorem 4.3.11,

(k − 1, . . . , 2, iC , 1, 2, . . . , k − 1)

is a maximal green sequence for µk−1 . . . µ2(µ2 . . . µk−1(Q)) = Q.

In the case when k = 3 then the maximal green sequence is (2, iC , 1, 2) as

claimed.

To allow us to easily refer to quivers of the form required in Theorem 4.3.14 and

illustrated in Figure 4.1 we say such quivers end in a k-cycle.
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4.4 On the mutation class of minimal

mutation-infinite quivers

Minimal mutation-infinite quivers were first studied by Felikson, Shapiro and Tumar-

kin in [FST12c, Sec. 7], where such quivers were shown to exist only up to rank 10.

All such quivers were later classified in [Law17] into a number of move-classes, each

of which has a distinguished representative as either an orientation of a hyperbolic

Coxeter simplex diagram, a double arrow quiver or one of the exceptional quivers.

Definition 4.4.1 ([Law17, Sec. 4]). A minimal mutation-infinite move is a

sequence of mutations of a minimal mutation-infinite quiver which preserves the

property of being minimal mutation-infinite. As such the image of any minimal

mutation-infinite quiver under a move is another minimal mutation-infinite quiver.

These moves then classify all minimal mutation-infinite quivers under the equi-

valence relation where two minimal mutation-infinite quivers are move-equivalent if

there is a sequence of moves taking one quiver to the other.

Definition 4.4.2. A move-class of a minimal mutation-infinite quiver is the equi-

valence class under this relation containing that quiver.

All minimal mutation-infinite quivers belong to one of 47 move-classes, which

have representatives given in Figures 3.1, 3.2 and 3.3 as described in Section 3.5

and [Law17, Sec. 5].

In this section we show which move-classes are mutation-acyclic and which are

not mutation-acyclic. We also use this information together with another mutation

invariant to show that many of the move-classes generate distinct mutation classes.

4.4.1 Hyperbolic Coxeter simplex representatives

We now determine if distinct move-classes of minimal mutation-infinite quivers with

hyperbolic Coxeter representatives belong to the same mutation class.
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Recall that for a rank n quiver Q we associate an n×n matrix BQ = (bij), where

bij = 0 if i = j and otherwise bij is the number of edges i → j ∈ Q1. Note that if

i→ j ∈ Q1 then bji < 0.

It was shown in [BFZ05, Lem. 3.2] that for a quiver Q the rank of the matrix BQ

is preserved by mutation and hence is an invariant of the mutation class of Q. We

use the rank of the matrix BQ and the number of acyclic quivers in the mutation

class to distinguish the mutation classes of minimal mutation-infinite quivers.

Theorem 4.4.3 ([CK06, Cor. 4]). The set of acyclic quivers form a connected

subgraph of the exchange graph. Furthermore, if Q is an acyclic quiver, then every

acyclic quiver in S(Q) can be obtained from Q by a sequence of sink/source mutations.

Corollary 4.4.4. There are finitely many acyclic quivers in any mutation class.

Proof. Clearly a sink/source mutation preserves the underlying graph of a quiver

and there are only finitely many orientations of this graph. Therefore the number

of these orientations that are acyclic is also finite.

Theorem 4.4.5. Mutating the sixth rank 4 quiver in Table 3.1 at the top vertex

yields the first rank 4 quiver, so both of their move-classes are in the same mutation

class. For the rest of the move-classes of minimal mutation-infinite quivers that

are represented by an orientation of a hyperbolic Coxeter simplex diagram, each

move-class determines a distinct mutation class.

Proof. The result follows from comparing the B-matrix rank, quiver rank, and

number of acyclic seeds in the mutation class. The values of these statistics are given

in Table B.1 and Table B.2 in Appendix B.1. The fourth rank 4 quiver is shown to

be not mutation-acyclic in Theorem 4.4.11.

4.4.2 Admissible quasi-Cartan companion matrices

While all but one of the Coxeter simplex move-classes are mutation-acyclic, the

double arrow move-classes are not, and therefore these move-classes cannot belong
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to the same mutation classes as those of the Coxeter simplex representatives. The

proof that a quiver is not mutation-acyclic relies heavily on the idea of admissible

quasi-Cartan companions introduced by Seven in [Sev11] building on work by Barot,

Geiss and Zelevinsky [BGZ06].

Definition 4.4.6 ([BGZ06, Sec. 1]). Let B = (bi,j) be a skew-symmetric matrix

representing a quiver Q of rank n. A quasi-Cartan companion of Q is a symmetric

matrix A = (ai,j) such that ai,i = 2 for i = 1, . . . , n and |ai,j| = |bi,j| for i 6= j.

Definition 4.4.7 ([Sev15, Sec. 1]). A cycle Z in a quiver Q is an induced subquiver

of Q whose vertices can be labelled by elements of Z/kZ so that the only edges

appearing in Z are {i, i+ 1} for i ∈ Z/kZ.

Definition 4.4.8 ([Sev11, Def. 2.10]). A quasi-Cartan companion A = (ai,j) of a

quiver Q is admissible if for any cycle Z in Q, if Z is an oriented (respectively,

non-oriented) cycle then there are an odd (resp., even) number of edges {i, j} in Z

such that ai,j > 0.

A quasi-Cartan companion of a quiver can be thought of as assigning signs

(either + or −) to the edges of a quiver, determined by whether ai,j > 0 or < 0.

This labelling of the edges is admissible if the number of +’s in an oriented (resp.,

non-oriented) cycle is odd (even).

Lemma 4.4.9 ([Sev11, Thm. 2.11]). If A and A′ are two admissible quasi-Cartan

companions of a quiver Q, then they can be obtained from one another by a sequence

of simultaneous sign changes in rows and columns.

As a row and column in the matrix corresponds to a vertex in the quiver, this

simultaneous sign change at row and column k is equivalent to flipping the signs on

all edges in the quiver adjacent to vertex k.

Theorem 4.4.10 ([Sev15, Thm. 1.2]). If Q is a mutation-acyclic quiver, then Q

has an admissible quasi-Cartan companion.
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Figure 4.2: Minimal mutation-infinite representative not mutation-
equivalent to any acyclic quiver.

We are now ready to show that the fourth rank 4 minimal mutation-infinite

quiver, shown in Figure 4.2, is not mutation-acyclic.

Theorem 4.4.11. The minimal-mutation infinite quiver Q depicted in Figure 4.2

does not have any admissible quasi-Cartan companion, and is hence not mutation-

acyclic.

Remark 4.4.12. This quiver was known to not have any admissible quasi-Cartan

companion by Seven, and used as an example of such a quiver in [Sev15], however

he does not provide a proof of this, so we include one here.

Proof. Assume the edges and vertices of Q are labelled as in Figure 4.2, and that

the quiver has an admissible quasi-Cartan companion. We now use Lemma 4.4.9 to

canonically label the edges of Q, up to flipping the signs at vertices.

The triangle (2, 3, 4) in Q is oriented, so must have an odd number of edges

labelled +, in particular it must have at least one +. By flipping vertices 3 and 4 we

can ensure that the label of f is +. Then, either b and c are both + or are both −,

and by flipping 2 we can choose them to be +. So far we have a, b and c are all +

and we have fixed or flipped vertices 1, 2 and 5.

Now the two non-oriented triangles (1, 2, 4) and (1, 2, 3) require an even number

of +’s, while they each already have at least one. Hence either d and e are both +

and a is − or d and e are both − and a is +. By flipping 1 we can choose the former.

We have now fixed or flipped all vertices and have assigned the only possible labels

to all the edges, up to flipping the signs at vertices.
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34
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Figure 4.3: Quiver which does not have an admissible quasi-Cartan
companion. The vertices are labelled 1, . . . , 5 and the
edges a, . . . , h. Non-oriented cycles are shaded gray.

However we now have a non-oriented cycle (1, 3, 4) which contains three +’s,

which gives a contradiction as a non-oriented cycle must have an even number of

positive edges in an admissible companion. Hence Q cannot admit an admissible

quasi-Cartan companion and so by Theorem 4.4.10 cannot be mutation-acyclic.

4.4.3 Double arrow minimal mutation-infinite quivers

We use a similar approach to show that the move-classes with double arrow rep-

resentatives are not mutation-acyclic. It then follows that the mutation classes of

double arrow representatives are distinct from the mutation classes of the minimal

mutation-infinite quivers with hyperbolic Coxeter representatives.

Lemma 4.4.13 ([BMR08, Cor. 5.3]). If Q is mutation-acyclic, then any induced

subquiver of Q is also mutation-acyclic.

Lemma 4.4.14. The quiver Q depicted in Figure 4.3 does not have any admissible

quasi-Cartan companion, and is hence not mutation-acyclic.

Proof. This proof proceeds as for Theorem 4.4.11. As before, assume the edges and

vertices of Q are labelled as in Figure 4.3, and that the quiver has an admissible

quasi-Cartan companion.

The triangle (1, 5, 2) in Q is oriented, so must have an odd number of edges

labelled +, in particular it must have at least one +. By flipping vertices 1 and 2,
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as in Lemma 4.4.9, we can ensure that the label of a is +. Then, either b and c are

both + or are both −, and by flipping 5 we can choose them to be +.

Now the two non-oriented triangles (1, 4, 5) and (2, 3, 5) require an even number

of +’s, while they each already have at least one. Hence one of d or f is + and the

other is −, and the same for e and g. By flipping 4 and 3 we can choose that f and

g are + while d and e are −. This leaves the oriented triangle (3, 5, 4) with two +’s,

but it requires an odd number of positives, so h must also be +. We have now fixed

or flipped all vertices and have assigned the only possible labels to all the edges, up

to flipping the signs at vertices.

However the oriented cycle (1, 2, 3, 4) now contains two +’s and two −’s, which

gives a contradiction as any oriented cycle must have an odd number of positive

edges in an admissible companion. Hence Q cannot admit an admissible quasi-Cartan

companion and so by Theorem 4.4.10 cannot be mutation-acyclic.

Lemma 4.4.15. Each double arrow representative is mutation-equivalent to a quiver

containing the quiver depicted in Figure 4.3 as an induced subquiver. Hence each

double arrow move-class is not mutation-acyclic.

Proof. Figure 4.4 shows a mutation sequence for each of the double arrow repres-

entatives which results in a quiver containing the quiver shown in Figure 4.3 as an

induced subquiver. Lemma 4.4.14 shows that this subquiver is not mutation-acyclic,

so by Lemma 4.4.13 each full quiver cannot be mutation-acyclic. Hence each double

arrow representative is mutation-equivalent to a quiver which is not mutation-acyclic,

so are themselves not mutation-acyclic.

Theorem 4.4.16. With the single exception given in Theorem 4.4.5 the move-

classes of minimal mutation-infinite quivers with hyperbolic Coxeter simplex diagram

representatives or double arrow representatives all belong to distinct mutation classes.

Proof. Theorem 4.4.5 shows that all Coxeter simplex move-classes of rank greater

than 4 belong to distinct mutation classes, and these mutation classes contain acyclic



4.4. On the mutation class of minimal mutation-infinite quivers 67

3

5

6

4

21

4

5

6

3

2

1

5

6

7

3

4

21

6

7

8

53

4

21

7

8

9

653

4

21

8

9

10

7653

4

21

8

94

2 10

1

7653

7

84

2 9

1

653

6

74

2 8

1

53

5

64

2 7

1

3

4

53

1 6

2

3

54

2 6
1

(3, 4, 5, 6)

(4, 3, 5, 6)

(3, 5, 4, 6, 7)

(3, 5, 6, 4, 7, 8)

(3, 5, 6, 7,

4, 8, 9)

(3, 5, 6, 7, 8,

4, 9, 10)

Figure 4.4: Mutation sequences for each double arrow representat-
ive shown in Table 3.2. The resulting quiver contains
the quiver shown in Figure 4.3 which is not mutation-
acyclic, so each double arrow representative is itself not
mutation-acyclic.
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Figure 4.5: Quiver which does not have an admissible quasi-Cartan
companion. The vertices are labelled 1, . . . , 5 and the
edges a, . . . , h. The non-oriented cycle is shaded gray.

quivers. The double arrow representatives all have rank > 4 and Lemma 4.4.15 shows

that all the double arrow move-classes are not mutation-acyclic, and therefore belong

to different mutation classes to any of the Coxeter simplex classes. Furthermore, all

of the double arrow move-classes have a different number of vertices except for the

two move-classes of rank 6. However, as shown in Table B.3 in Appendix B.1 these

move-classes have different B-matrix rank so they cannot be mutation equivalent.

4.4.4 Exceptional minimal mutation-infinite quivers

We now repeat the argument used for double arrow move-classes to the show that the

mutation classes of the minimal mutation-infinite quivers are not mutation-acyclic.

This allows us to distinguish the exceptional type classes from the classes whose

representative is an orientation of a hyperbolic Coxeter diagram, but it does nothing

to distinguish them from the double arrow representatives. We were unable to find an

invariant that differentiates the mutation-classes of the double arrow representatives

and the exceptional representatives. We were also unable to distinguish some of the

exceptional move-classes from other exceptional move-classes of the same rank.

Lemma 4.4.17. The quiver Q depicted in Figure 4.5 does not have any admissible

quasi-Cartan companion, and is hence not mutation-acyclic.

Proof. The proof proceeds in the same way as Theorem 4.4.11. Again, assume the

edges and vertices of Q are labelled as in Figure 4.5, and that the quiver has an
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admissible quasi-Cartan companion.

The triangle (2, 3, 5) in Q is non-oriented, so must have an even number of edges

labelled +, in particular it must have either one + or three +’s. By flipping or fixing

vertices 2, 3, and 5, as in Lemma 4.4.9, we can ensure that all of the labels c, e, and

g are −.

The oriented triangles (1, 2, 5) and (3, 4, 5) each require an odd number of +’s,

while they each already have one −. Hence one of a or b is + and the other is −,

and the same for h and f . By flipping 1 and 4 we can choose that a and h are +

while b and f are −. This leaves the oriented triangle (1, 4, 5) with d labelled by a +

since it requires an odd number of positives. In this way we have assigned the only

possible labels to all the edges, up to flipping the signs at vertices.

However we now have a non-oriented cycle (1, 2, 3, 4) which contains three +’s and

one −, which gives a contradiction as a non-oriented cycle must have an odd number

of positive edges in an admissible companion. Hence Q cannot admit an admissible

quasi-Cartan companion and so by Theorem 4.4.10 cannot be mutation-acyclic.

Lemma 4.4.18. Each exceptional representative is mutation-equivalent to a quiver

containing the quiver depicted in Figure 4.5 as an induced subquiver. Hence each

exceptional move-class is not mutation-acyclic.

Proof. The proof is identical to that of Lemma 4.4.15 with Lemma 4.4.17 in place

of Lemma 4.4.14 and Figures 4.6 and 4.7 in place of Figure 4.4.

4.5 Maximal green sequences for minimal

mutation-infinite quivers

Building on [Mil16] we consider when minimal mutation-infinite quivers have max-

imal green sequences.



70 Properties of minimal mutation-infinite quivers

3

5

6

7

4

2
1

53

6

7

8

4

21

63 5

7

8

9

4

21

73 5 6

8

10

9

4

21

3

5

6

7

8

4

21

4 5

62

3

1

8

7

4 7

106

7

1

95

3

2

4 7

85

6

1

93

2

4 6

73

5

1

82

4 5

62

3

1

7

(2, 3, 7)

(2, 3, 5, 2, 8)

(2, 3, 5, 6,

2, 3, 9)

(2, 3, 5, 6, 7,

2, 3, 5, 9)

(2, 3, 7, 8)

Figure 4.6: Mutation sequences for the first 5 exceptional repres-
entatives shown in Table 3.3. The other 5 are shown
in Figure 4.7. The resulting quiver contains the quiver
shown in Figure 4.5 which is not mutation-acyclic, so
each exceptional representative is itself not mutation-
acyclic.
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4.5.1 Rank 3 quivers

If Q is an acyclic rank 3 quiver then it has a maximal green sequence by Theorem 4.3.7

so we only consider those quivers which are oriented 3-cycles. Let Qa,b,c denote such

a quiver with vertices 1, 2, and 3 and a edges 1 → 2, b edges 2 → 3 and c edges

3→ 1.

Theorem 4.5.1 ([Mul15; Sev14]). If a, b and c ≥ 2, then the quiver Qa,b,c does not

admit a maximal green sequence.

Theorem 4.5.2. If any of a, b or c are equal to 1, then Qa,b,c has a maximal green

sequence.

Proof. Without loss of generality assume that a = 1. If b > c then (2, 1, 3, 2) is

a maximal green sequence for Q1,b,c. If c > b then (2, 3, 1, 2) is a maximal green

sequence for Q1,b,c. If c = b then either mutation sequence is a maximal green

sequence for Q1,b,c.

All mutation-infinite quivers of rank 3 are minimal mutation-infinite, so by the

above not all such quivers admit a maximal green sequence. In Section 4.7 we show

that all of the quivers in the mutation class of a mutation-infinite quiver of rank 3

that admit a maximal green sequence form a finite connected subgraph of the quiver

exchange graph.

4.5.2 Higher rank quivers

There are an infinite number of rank 3 minimal mutation-infinite quivers, some of

which have maximal green sequences and some do not. In contrast, only a finite

number of higher rank minimal mutation-infinite quivers exist and we will show that

all such quivers do in fact admit a maximal green sequence.

Lemma 4.5.3. Let Q be a minimal mutation-infinite quiver. Then Q does not

contain a subquiver that arises from a triangulation of a once-punctured closed surface,

or one that is in the mutation class of X7.



4.5. Maximal green sequences for minimal mutation-infinite quivers 73

Figure 4.8: The quiver X7 is on the left and the other quiver in its
mutation class is on the right.

Proof. The mutation class of the X7 quiver consists of two quivers, one contains

three double arrows while the other contains six vertices which are each the source

of two arrows and the target of two arrows. See Figure 4.8.

Ladkani shows in [Lad11, Prop. 3.6.] that for any quiver arising from a triangula-

tion of a once-punctured surface without boundary each vertex is the source of two

arrows and the target of two arrows. In the genus 1 surface case we get the Markov

quiver with 3 vertices. In the case of the genus 2 surface each quiver has 9 such

vertices.

The only minimal mutation-infinite quivers containing any double edges are the

double arrow representatives, which each contain a single double edge. It can also be

seen through an exhaustive search that no minimal mutation-infinite quiver contains

more than 5 vertices which are each adjacent to 4 or more arrows. Hence no minimal

mutation-infinite quivers contain subquivers from once-punctured surfaces or from

X7.

Corollary 4.5.4. Let Q be a minimal mutation-infinite quiver. Every induced

subquiver of Q has a maximal green sequence.

Proof. Follows from Theorem 4.3.9 and Lemma 4.5.3.

Theorem 4.5.5. Suppose Q is a minimal mutation-infinite quiver of rank at least

4. Then Q has a maximal green sequence.

Proof. Let Q be a minimal mutation-infinite quiver which is the t-colored direct sum

of two induced subquivers of Q. Then by Theorem 4.3.13 and Corollary 4.5.4 the

quiver Q has a maximal green sequence.
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Figure 4.9: Minimal mutation-infinite quivers that cannot be writ-
ten as a t-colored direct sum and do not end in a 3-cycle.

In particular, if a minimal mutation-infinite quiver contains either a sink or a

source then it has a maximal green sequence. Similarly if it can be decomposed into

two disjoint induced subquivers joined by a single arrow then it has a maximal green

sequence.

There are only 42 minimal mutation-infinite quivers which cannot be written as

a t-colored direct sum1. Of these, 35 end in a 3-cycle and so admit a maximal green

sequence by Theorem 4.3.14 and Corollary 4.5.4.

This leaves 7 minimal mutation infinite quivers which cannot be written as a

direct sum or end in a 3-cycle. Six of these 7 quivers have a similar structure and we

will call these quivers Θn for n = 4, 5, 6, 7, 8, 9. A picture of this family of quivers is

given on the left of Figure 4.9. For a suitable n, the quiver Θn has a maximal green

sequence (2, 3, . . . , n, 1, 2). The final quiver, appearing on the right of Figure 4.9,

has a maximal green sequence (3, 1, 2, 5, 6, 4, 3).

4.6 A=U for minimal mutation-infinite quivers

For completeness we recall the result about the rank 3 quivers.

Theorem 4.6.1. [LLM15, Thm. 1.3] Let A be a rank 3 cluster algebra. The cluster

algebra A is equal to its upper cluster algebra if and only if it is acyclic.

1Images of which can be found at https://www.jwlawson.co.uk/maths/mmi/quivers/

non-direct-sum/

https://www.jwlawson.co.uk/maths/mmi/quivers/non-direct-sum/
https://www.jwlawson.co.uk/maths/mmi/quivers/non-direct-sum/
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In the case of higher rank minimal mutation-infinite quivers we show that they

are all Louise and it follows that the cluster algebra that they generate is equal to

its upper cluster algebra.

Theorem 4.6.2. If Q is a minimal mutation-infinite quiver of rank at least 4, then

Q is Louise.

Proof. All minimal mutation-infinite quiver representatives arising as an orientation

of a hyperbolic Coxeter simplex diagram are acyclic apart from two orientations of

the fully connected rank 4 quiver, shown as the fifth and sixth quivers in Table 3.1.

The sixth quiver is mutation-equivalent to an acyclic quiver by mutating at the top

vertex.

All quivers belonging to a given move-class are mutation-equivalent and hence

every minimal mutation-infinite quiver in a Coxeter diagram move-class (exclud-

ing the single class considered below) is mutation-equivalent to an acyclic quiver.

Therefore the cluster algebra is acyclic and hence Louise.

The remaining case for the hyperbolic Coxeter representatives is the move-class

of the fifth rank 4 quiver in Table 3.1. We will show that it is locally acyclic so

the claim follows from Theorem 4.2.9. Consider the representative quiver R given

in Figure 4.2. Two vertices of the quiver labelled i and j. The edge 1 → 2 is a

separating edge. The quivers R[R0 \ {2}] and R[R0 \ {1, 2}] are acyclic and hence

Louise. Mutating the quiver R[R0 \{1}] at j produces an acyclic quiver, which again

shows that it is Louise. Therefore the quiver R is Louise.

The proof for minimal mutation-infinite quivers with move-class either of double

arrow type or exceptional type is identical to the argument given above with the

following choice of vertices for 1 and 2. In the case of the double arrow representatives

we take 2 to be the vertex opposite the double arrow and 1 to be an adjacent vertex

that is not incident to the double arrow. Similarly, for the exceptional representatives

we take 2 to be the leftmost vertex of the 3-cycle and 1 to be an adjacent vertex

that is not a part of the 3-cycle.
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Corollary 4.6.3. If Q is a minimal mutation-infinite quiver of rank at least 4, then

the cluster algebra A(Q) is equal to its upper cluster algebra.

Proof. Follows from Theorem 4.2.9 and Theorem 4.6.2.

4.7 Quivers in the mutation class with maximal

green sequences

Muller showed in [Mul15] that in general the existence of a maximal green sequence is

not mutation-invariant. This motivates the question of which quivers in a mutation

class have a maximal green sequence.

Recall that the (unlabelled) quiver exchange graph E(Q) of a quiver Q is the

graph constructed with a vertex for each quiver in the mutation class of Q and an

edge between two vertices if there is a single mutation between the two corresponding

quivers. Let Ψ(Q) denote the (possibly empty) subgraph of the quiver exchange

graph E(Q) consisting of the quivers that have a maximal green sequence. Rephrasing

Theorem 4.3.9 we have the following result.

Theorem 4.7.1. Let Q be a mutation-finite quiver. Either the graph Ψ(Q) = E(Q)

or Ψ(Q) is empty.

Although there are infinitely many rank 3 quivers they only produce finitely

many different exchange graphs.

Theorem 4.7.2. Let Q be a rank 3 quiver. If Q is mutation-acyclic, then Ψ(Q)

is one of the 7 graphs in Figures 4.11 and 4.12, otherwise, Ψ(Q) is empty. It then

follows that the number of quivers in the mutation class of Q is bounded and in

particular |Ψ(Q)| ≤ 6.

Proof. If Q is not mutation-acyclic then by [BBH11, Thm. 1.2] its entire mutation

class consists of quivers of the form Qa,b,c with a, b, c ≥ 2. Therefore by Theorem 4.5.1

no quiver in the mutation class has a maximal green sequence and we may conclude

that Ψ(Q) is empty.
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a

b

(a) Linear type.

b

c
a

(b) Triangular type.

Figure 4.10: The two types of (connected) acyclic rank 3 quivers
which give different exchange graphs, for a, b, c ∈ Z>0.

If Q is mutation-acyclic then its mutation class must contain an acyclic quiver R

in Figure 4.10 for some a, b, c ∈ Z>0. Clearly Ψ(Q) = Ψ(R) so we may proceed by

showing that Ψ(R) is one of the exchange graphs in Figures 4.11 and 4.12. Every

vertex of E(R) that is not displayed in one of these figures corresponds to a quiver

Qi,j,k for some i, j, k ≥ 2. Indeed, it is easy to check that for any one step mutation

that does not appear in these graphs the resulting quiver is of the claimed form. To

see the claim for a longer mutation sequence, suppose that we mutate a quiver in

Ψ(R) at vertex v to obtain the quiver Qi,j,k 6∈ Ψ(R). Then according to Lemma 2.4

in [ABBS08] if we mutate at ℓ ∈ (Qi,j,k)0 \ {v} we have

µℓ(Qi,j,k) = Qi′,j′,k′

with i′ ≥ i, j′ ≥ j, and k′ ≥ k. Therefore any mutation sequence of length two yields

a quiver without a maximal green sequence. Iterating this argument we see for any

mutation sequence that moves along E(R) outside of the region Ψ(R) we will always

obtain a quiver that is a 3-cycle which does not have a maximal green sequence since

the number of edges will all be greater than or equal to 2.

Suppose R is of the linear type in Figure 4.10a, then there are four possibilities

for Ψ(R), which are determined by the values of a and b. The four cases are:

1. b > a = 1;

2. b = a = 1;

3. b > a > 1;

4. b = a > 1,
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Figure 4.11: Subgraphs of the quiver exchange graphs showing only
those quivers with maximal green sequences for the
quiver appearing in Figure 4.10a.
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with corresponding graphs Ψ(R) shown in Figure 4.11.

If R is of the triangular type in Figure 4.10b we again have four cases to consider:

1. b = a = 1, c > 1;

2. b, c > 1, a = 1;

3. c = b = a = 1;

4. a, b, c > 1,

with corresponding graphs shown in Figure 4.12. Note that Figure 4.11d and Fig-

ure 4.12d give isomorphic graphs for Ψ(R). Hence, there are 7 possibilities for a

mutation-acyclic rank 3 quiver. The largest such graph has 6 vertices.

We now prove a result similar to Theorem 4.7.1 for rank 4 minimal mutation-

infinite quivers. When constructing Ψ from E we can use Theorem 4.3.8 and The-

orem 4.5.1 to remove several vertices from E . However, this approach is not sufficient

to eliminate all quivers that do not admit a maximal green sequence. To handle this

we introduce the notion of a good mutation sequence, which is a slight generalization

of a maximal green sequence, to show that other quivers appearing in the mutation

class S(Q) do not have a maximal green sequence.

Definition 4.7.3. A vertex k of a quiver Q is called a good vertex if both:

1. The vertex k is not the head of a multiple edge;

2. The quiver µk(Q) does not contain an induced subquiver that does not admit

a maximal green sequence.

A mutation sequence is called a good sequence if at every step of the mutation

sequence we mutate at a good vertex.

As mentioned above, all maximal green sequences are good sequences.

Lemma 4.7.4. Let Q be a quiver. If R ∈ S(Q) does not have a maximal green

sequence then there is no maximal green sequence for Q that passes through R.



80 Properties of minimal mutation-infinite quivers

c
+

1

c + 1

c c

c
+

1

cc

c

(a) a = b = 1; c > 1

2

(b) a = b = c = 1

b
+

cb

c

b
+

c

c

b

c

b

c

b

(c) a = 1; b, c > 1

a

c

b

a

c

b

a

c

b

(d) a, b, c > 1

Figure 4.12: Subgraphs of the quiver exchange graphs showing only
those quivers with maximal green sequences for the
quiver appearing in Figure 4.10b.



4.7. Quivers in the mutation class with maximal green sequences 81

1 3

2

4

a

c

b

Figure 4.13: The rank 4 quiver Ra,b,c for b, c ≥ 2 and a ≤ c − 2.
This quiver has only one good vertex, labelled 3.

Proof. If there was such a maximal green sequence then by Theorem 4.3.10 R would

have a maximal green sequence which contradicts our assumption.

Lemma 4.7.5 ([BHIT15, Thm. 4]). A maximal green sequence never mutates at

the head of a multiple edge.

Corollary 4.7.6. A maximal green sequence is a good sequence.

Proof. This is a direct result of Theorem 4.3.8, Lemma 4.7.4, and Lemma 4.7.5.

To obtain our result for rank 4 minimal mutation-infinite quivers it is sufficient

to show that a particular family of quivers do not have a maximal green sequence.

Let Q be a quiver. The opposite quiver Qop is the quiver obtained from Q by

reversing all of the edges of Q.

Lemma 4.7.7. Let Ra,b,c denote the rank 4 quiver given in Figure 4.13 with b, c ≥ 2

and a ≤ c− 2. The only good vertex of Ra,b,c is vertex 3 and the only good vertex of

(Ra,b,c)op is vertex 2. That is the only good vertex is the sink in the induced subquiver

consisting of the vertices 1,2, and 3.

Proof. If we mutate at vertex 1, then µ1(Ra,b,c)[{2, 3, 4}] ≃ Q2,c−a,b which does not

have a maximal green sequence by Theorem 4.5.1 so vertex 1 is not a good vertex.

The vertices 2 and 4 are not good vertices since they are heads of multiple arrows

as b, c ≥ 2.
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Corollary 4.7.8. Assume c− a ≥ 2 and |c− b− a| > 0.

1. If c > b ≥ 2 and i is a good sequence for Ra,b,c of length k we have

µi(Ra,b,c) =





Ra,b+n(c−b−a),c+n(c−b−a) if k = 2n,

(Rc−b,c+n(c−b−a),b+(n+1)(c−b−a))op if k = 2n+ 1.

2. If b > c ≥ 2 and i is a good sequence for (Ra,b,c)op of length k we have

µi((Ra,b,c)op) =





(Ra,b+n(b+a−c),c+n(b+a−c))op if k = 2n,

(Rb−c,c+(n+1)(b+a−c),b+n(b+a−c))op if k = 2n+ 1.

Proof. We only prove the case when c > b ≥ 2 as the other case is analogous.

Assume c > b ≥ 2. By Lemma 4.7.7 a good sequence must begin by mutating

at 3. Now since c > b we have µ3(Ra,b,c) ≃ (Rc−b,c−a,c)op. By assumption c− a ≥ 2

so by Lemma 4.7.7 a good sequence must mutate at the sink in µ3(Ra,b,c)[{1, 2, 3}],

which is vertex 1. Continuing our good sequence by mutating at vertex 1 we see

that

µ1µ3(Ra,b,c) ≃ Ra,c−a,2c−b−a.

Note that 2c − b − a > c − a ≥ 2, and c − b − a > 0 so 2c − b − a > c and

2c− b− 2a > c− a ≥ 2. That is, if we set a∗ = a, b∗ = c− a = b+ (c− b− a) and

c∗ = 2c − b − a = c + (c − b − a) we see that c∗ − a∗ ≥ 2, c∗ − b∗ − a∗ > 0, and

c∗ > b∗ ≥ 2, so all of our hypotheses from the statement of the corollary are again

satisfied.

Repeating the argument above we know at each mutation step we have exactly

one choice of vertex to mutate at for our mutation sequence to be a good sequence.

Continuing this process we see that if i is a good sequence of length k, then we

obtain the formula given in the statement of the result.

Lemma 4.7.9. The quivers Ra,b,c and (Ra,b,c)op have no maximal green sequence

when

(a, b, c) ∈ {(0, 2, 3), (1, 4, 3), (0, 3, 5), (2, 5, 4), (1, 2, 4)}.
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Proof. For all three triples with c > b ≥ 2, namely {(0, 2, 3), (0, 3, 5), (1, 2, 4)} we

have c − a > 2 and c − b − a > 0 so Corollary 4.7.8(1) applies. If i is a maximal

green sequence for Ra,b,c it is also a good sequence. However, if i is a maximal

green sequence then by Lemma 4.3.5 we have µi(Ra,b,c) = Ra,b,c, which contradicts

Corollary 4.7.8. Therefore Ra,b,c has no maximal green sequence. By Lemma 4.3.6

the opposite quivers (Ra,b,c)op do not have a maximal green sequence.

We may apply an identical argument using Corollary 4.7.8(2) and Corollary 4.7.6

to the quivers (Ra,b,c)op for {(1, 4, 3), (2, 5, 4)} to show that they don’t have a maximal

green sequence. Then again we may apply Lemma 4.3.6 to see that the quivers Ra,b,c

do not have a maximal green sequence.

Theorem 4.7.10. Let Q be a minimal mutation-infinite quiver of rank 4. Then Ψ

is a proper subgraph of E and the connected component Ψ̂ of Ψ that contains Q is

finite and contains the entire move-class of Q.

Proof. For any minimal mutation-finite quiver Q it is easy to see that there exists a

quiver R in its mutation class that contains a rank 3 subquiver without a maximal

green sequence. Therefore by Theorem 4.3.8 R does not have a maximal green

sequence so Ψ 6= E .

The rest of the claim is verified via direct calculation. For each move-class

representative of a rank 4 minimal-mutation infinite quiver given in Table 3.1 we

compute its unlabelled exchange graph. For each new vertex added to the graph we

test if the associated quiver has a maximal green sequence. In each case we obtain

a component of E that has two types of quivers on its boundary:

1. Those containing a rank 3 subquiver of the form Qa,b,c with a, b, c ≥ 2;

2. The quivers Ra,b,c and (Ra,b,c)op for one of the triples (a, b, c) considered in

Lemma 4.7.9.

In the first case these quivers do not have a maximal green sequence by Theorem 4.3.8

and Theorem 4.5.1. The other two quivers do not have a maximal green sequence

by Lemma 4.7.9.
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Upon inspection we see that the entire move class of the representative is con-

tained in this component.

Example 4.7.11. Let Q be the 4th rank 4 quiver given in Table 3.1. In Figure 4.14

we give Ψ̂(Q) together with the vertices of E(Q) that are adjacent to vertices of

Ψ̂(Q) to illustrate the boundedness of Ψ̂(Q). The graph Ψ̂(Q) consists of the solid

black quivers, while the light gray quivers do not have maximal green sequences and

are not a part of Ψ̂(Q).

4.8 Other questions and conjectures

It is likely that an identical phenomenon occurs for higher rank minimal mutation-

infinite quivers and that it can be shown using techniques similar to the ones presen-

ted here. It is straightforward to compute a candidate component for Ψ̂. The issue

is that there are many more quivers that bound this region and it is a long process

to show that they do not have maximal green sequences. Already in the case of the

first rank 7 mutation class with a hyperbolic Coxeter representative, there are at

least 1200 quivers to check that do not posses a rank 3 subquiver without a maximal

green sequence.

Conjecture 4.8.1. The results of Theorem 4.7.10 hold for all minimal mutation-

infinite quivers.

We also believe that in these cases Ψ̂ = Ψ. However we are unable to prove this.

This would immediately follow from an affirmative answer to the following question.

Question 4.8.2. Is the graph Ψ a connected subgraph of E?

In light of Theorem 4.3.13 we also think that it would be interesting to explore

the relationship between Ψ(Q) and Ψ(Q′) for two quivers Q and Q′ and that of the

graph Ψ(Q⊕Q′).

Conjecture 4.8.3. Suppose that Q and Q′ are two quivers such that Ψ(Q) and

Ψ(Q′) are finite and non-empty, then Ψ(Q⊕Q′) is finite and non-empty.
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Figure 4.14: A subgraph of the exchange graph of the 4th quiver
Q in Table 3.1 containing Ψ̂(Q), as described in Ex-
ample 4.7.11.
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One goal of this approach would be to answer the following question.

Question 4.8.4. For any quiver Q, are there finitely many quivers in S(Q) that

have a maximal green sequence?



Chapter 5

Cluster automorphisms and the

marked exchange graph of

skew-symmetrizable cluster

algebras

The previous chapter looked at the exchange graphs of quivers, and considered how

quivers with maximal green sequences appear within these graphs. More generally

a cluster algebra has an associated exchange graph and in this chapter we study

the combinatorics of these exchange graphs and show how they encode information

about the underlying quivers, cluster algebra and automorphisms preserving the

cluster structure.

The work in this chapter was published in [Law16].

5.1 Introduction

Cluster automorphisms were introduced by Assem, Schiffler and Shramchenko in

their paper [ASS12] for cluster algebras generated from quivers, as automorphisms of

the cluster algebra taking clusters to clusters and acting as either the identity or the
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opposite function on quivers. These ideas were extended to cluster algebras generated

from certain skew-symmetrizable matrices by Chang and Zhu in [CZ16a]. The group

of cluster automorphisms of a cluster algebra arising from the triangulation of a

surface was shown to be isomorphic to the mapping class group of this surface by

Brüstle and Qiu in [BQ15].

In their paper on labelled seeds and global mutations [KP16], King and Press-

land showed that cluster automorphisms arise naturally when mutation classes are

considered as orbits of labelled seeds under the action of a global mutation group

Mn. The group of cluster automorphisms is a subgroup of the automorphisms of

these mutation classes, AutMn
, which commute with this group action, and in fact

for mutation-finite quivers these groups are isomorphic. We use the links between

automorphisms of the exchange graph and the labelled exchange graph to prove that

this group AutMn
is isomorphic to the group of exchange graph automorphisms:

Theorem 5.3.11. For any labelled mutation class S0 with corresponding mutation

class S = S0/Sym(n) and exchange graph E(S)

AutMn
(S0) ∼= Aut E(S).

Therefore for mutation-finite quivers, such as those from triangulations of a

surface, exchange graph automorphisms are cluster automorphisms.

Corollary 5.1.1. For a cluster algebra A constructed from a mutation-finite quiver

with exchange graph EA
Aut EA ∼= AutA.

This result was proved in a different way by Chang and Zhu in [CZ15] who also

proved an extension of this to skew-symmetrizable matrices of type Bn and Cn for

n ≥ 3. However for other skew-symmetrizable matrices it is not true that exchange

graph automorphisms are cluster automorphisms. It can be shown that the group

of cluster automorphisms is isomorphic to a subgroup of the group of exchange

graph automorphisms but in general there exist graph automorphisms which do not

correspond to cluster automorphisms.
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In order to generalise these results we introduce a marking on the exchange

graph in such a way that any automorphism which fixes these markings does in fact

correspond to a cluster automorphism.

Theorem 5.5.19. If A is a cluster algebra with initial seed (x, B), where B is a

mutation-finite skew-symmetrizable matrix, and ÊA is its marked exchange graph

then

AutA = Aut ÊA.

Therefore the cluster automorphisms of a cluster algebra generated by mutation-

finite skew-symmetrizable matrices can be studied using just the combinatorial

properties of its marked exchange graph.

A skew-symmetrizable matrix associated to a good orbifold with order 2 orbifold

points can be unfolded to a skew-symmetric matrix associated to a surface which

covers the orbifold. In this case we show that automorphisms of the marked exchange

graph induce automorphisms of the unfolded exchange graph.

Theorem 5.6.4. Given a skew-symmetrizable matrix B which unfolds to a matrix

Q, with corresponding marked exchange graphs Ê(B) and E(Q) = Ê(Q),

Aut Ê(B) →֒ Aut E(Q).

We finish the chapter with a conjecture generalising a result of Brüstle and Qiu

linking the tagged mapping class group of a surface with the cluster automorphisms

of the corresponding surface cluster algebra.

Conjecture 5.1.1. For a cluster algebra A arising from the triangulation of an

orbifold O

MCG⊲⊳(O) ∼= Aut+A.

The structure of the chapter is as follows: Section 5.2 gives basic definitions of

cluster algebras and mutations while Section 5.3 looks at the exchange graph of

a cluster algebra and includes proofs linking graph automorphisms and mutation
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class automorphisms. Section 5.4 recalls the definition of cluster automorphisms and

various known results linking these to mutation class automorphisms and exchange

graph automorphisms. The section ends by explaining how a maximal green sequence

of an acyclic quiver can be used to construct a cluster automorphism.

In Section 5.5 we introduce the marked exchange graph which enables us to

extend these results to cluster algebras from skew-symmetrizable matrices. We show

that graph automorphisms fixing the marking are in one-to-one correspondence with

cluster automorphisms.

In Section 5.6 we consider unfoldings of skew-symmetrizable matrices and show

how the cluster automorphisms of a skew-symmetrizable cluster algebra induce

cluster automorphisms of its unfolded cluster algebra. Section 5.7 looks at these

ideas when the skew-symmetrizable cluster algebra is constructed from an orbifold

and its unfolding gives a surface cluster algebra.

5.2 Mutations

Throughout this chapter we assume that all quivers and diagrams are connected.

The results can be easily extended to disconnected diagrams, however care must

be taken as different connected components could have their arrows reversed while

other components do not, so the idea of an opposite diagram is less clear.

Let F = C(x1, . . . , xn). Recall the basic definitions set out in Chapter 2: A

cluster is a set of algebraically independent elements of F , while a labelled cluster

is a cluster with some ordering of its elements. The individual elements in a cluster

are called cluster variables.

A labelled seed is a pair (x, B) where B is a skew-symmetrizable matrix and x

is a labelled cluster. Each cluster variable in the cluster can be thought of as being

attached to one of the matrix rows, or equivalently attached to one of the vertices

of the corresponding quiver or diagram. A seed is a class of labelled seeds which

differ only by permutations.
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x = (β1, β2, β3)
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3
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0 2 1
−1 0 1
−1 −3 0




xσ = (β2, β3, β1)

Figure 5.1: Example of a permutation σ = (132) acting on a seed
(x, B) to give (x, B) · σ = (xσ, Bσ).

Throughout this chapter we assume that the matrix in a seed is uniquely determ-

ined by its cluster. This has been proved for all cluster algebras of geometric type

or generated from a non-degenerate matrix by Gekhtman, Shapiro and Vainshtein

in [GSV08]. In this case denote the matrix for a given cluster x by B(x).

It is sometimes convenient to consider the local mutation µβ,x of a seed (x, B)

corresponding to the mutation at the vertex associated to the cluster variable β ∈ x.

These local mutations act as functions on seeds, whereas global mutations act on

labelled seeds.

Permutations act on a labelled seed (x, B), x = (β1, . . . , βn), B = (bi,j) in

the expected way taking the i-th vertex to the σ(i)-th vertex and the i-th cluster

variable to the σ(i)-th cluster variable. Therefore (x, B) · σ = (xσ, Bσ) where

xσ =
(
βσ−1(1), . . . , βσ−1(n)

)
and Bσ =

(
bσ

i,j

)
, bσ

i,j = bσ−1(i),σ−1(j).

Example 5.2.1. Given a 3 vertex seed (x, B) as in Figure 5.1 and permutation

σ = (132) then σ maps the first vertex and cluster variable to the third, second

to first and third to second. Therefore βσ
1 = β2 = βσ−1(1), βσ

2 = β3 and βσ
3 = β1.

Similarly Bσ
1,2 = 2 = B2,3 = Bσ−1(1),σ−1(2) and Bσ

3,2 = −3 = B1,3.

Definition 5.2.2 ([KP16, Sec. 1]). The global mutation group for seeds of rank

n is given by

Mn =
〈
µ1, . . . , µn

∣∣∣ µ2
i = 1

〉
⋊ Sym(n)

where the µi are mutations and µiσ = σµσ(i) for σ ∈ Sym(n).
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The labelled mutation class S0 of a labelled seed (x, B) is the orbit of (x, B)

under the action of Mn. The quotient by the symmetric group action gives the

mutation class

S = S0
/

Sym(n) .

Two seeds in the same mutation class are said to be mutation-equivalent.

Definition 5.2.3. The cluster algebra A(S) is the subalgebra of F generated by

all cluster variables occurring in the seeds in S.

A cluster algebra is said to be of finite type if there are a finite number of

generating cluster variables in the mutation class, otherwise it is of infinite type.

If there are a finite number of distinct matrices in the seeds of S, then the cluster

algebra and all the matrices are said to be mutation-finite or of finite mutation

type, otherwise it is mutation-infinite or of infinite mutation type.

Definition 5.2.4 ([KP16, Sec. 2]). The automorphism group AutMn
(S0) of the

mutation class is the group of bijections φ : S0 → S0 which commute with the action

of Mn, so for all s ∈ S0, g ∈Mn and φ ∈ AutMn
(S0)

φ(s · g) = φ(s) · g.

5.3 Exchange graphs

Fomin and Zelevinsky in [FZ02] developed the idea of the exchange graph of a

cluster algebra to better visualise the relations in a mutation class. These were also

an important tool in their classification of finite type cluster algebras in [FZ03].

Definition 5.3.1. The exchange graph E(S) of a mutation class S is constructed

with vertices for each seed in S and an edge between two seeds u and v if and only

if there is a single local mutation µ such that µ(u) = v.

The labelled exchange graph ∆(S0) of a labelled mutation class S0 is con-

structed with a vertex for each labelled seed in S0 and an edge labelled i between

two labelled seeds u and v if and only if u · µi = v (and conversely v · µi = u).
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Figure 5.2: Labelled exchange graph for the mutation class of type
A2.
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Figure 5.3: Exchange graph for the mutation class of type A2.
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Figure 5.4: Labelled exchange graph for the mutation class of type
B2.

Example 5.3.2 (A2). The exchange graph for the cluster algebra of type A2 is

the well known pentagon, as seen in Figure 5.3. The labelled exchange graph is a

decagon shown in Figure 5.2, with the permutation acting by taking a seed to its

antipodal seed.

Example 5.3.3 (B2). The exchange graph for a cluster algebra of type B2 is a

hexagon, as shown in Figure 5.5. The labelled exchange graph however is the disjoint

union of two hexagons as shown in Figure 5.4. The permutation interchanging the

cluster variables in a labelled seed gives another labelled seed which cannot be

obtained from the first though just mutations, so any labelled seed has a permuted

counterpart in the other connected component.
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Figure 5.5: Exchange graph for the mutation class of type B2.

Definition 5.3.4. The exchange graph automorphism group Aut E(S) is the

group of permutations σ of the vertex set of the exchange graph such that there is

an edge between two vertices u and v if and only if there is an edge between σ(u)

and σ(v).

The labelled exchange graph automorphisms in Aut ∆(S0) must also pre-

serve the labelling of the edges.

Theorem 5.3.5. For a labelled mutation class S0 with quotient S and corresponding

exchange graphs ∆(S0) and E(S), then

Aut E(S) →֒ Aut ∆(S0).

Proof. To show this we construct a unique φ∆ ∈ Aut ∆(S0) for each φ ∈ Aut E(S).

Let x(v) denote the cluster of a seed v.

Choose a seed u in ∆(S0), then for each i ∈ {1, . . . , n} there is a vertex vi = u ·µi

with a corresponding edge u−vi labelled i in the labelled exchange graph. The cluster

x(u) = (β1, . . . , βi, . . . , βn) then differs from the cluster x(vi) = (β1, . . . , β
′
i, . . . , βn)

in just the i-th cluster variable.

Under the quotient by the symmetric group action the labelled seed u gets

mapped to a seed [u] and in the exchange graph E(S) there are edges [u]− [vi] for

each i ∈ {1, . . . , n}. Each unordered cluster x[vi] differs from the unordered cluster

x[u] in a single variable, just as the corresponding labelled clusters do.

The exchange graph automorphism φ maps [u] to some seed φ[u] and preserves all

edges in the graph, so φ[u] is connected to φ[vi] for each i. Therefore each φ[vi] is a
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Figure 5.6: Commutative diagram of the various maps involved in
Example 5.3.6.

single mutation from φ[u], and so the unordered cluster x(φ[u]) = [γ1, . . . , γki
, . . . , γn]

differs from x(φ[vi]) = [γ1, . . . , γ
′
ki
, . . . , γn] in a single cluster variable.

Set the image φ∆(u) to be the seed defined by the labelled cluster x
(
φ∆(u)

)
=

(γk1 , γk2 , . . . , γkn
), obtained by choosing an order of the cluster x(φ[u]) such that the

i-th variable of x
(
φ∆(vi)

)
is the corresponding γ′ki

, while all other variables are the

same as for φ∆(u). This ensures that the edge between φ∆(u) and φ∆(vi) is labelled i.

Repeat this procedure with initial seed vi to get the ordering of the seeds connected

to φ∆(vi).

Continuing this construction for all seeds in ∆(S0) constructs images under φ∆

for all seeds in the labelled exchange graph. For any two seeds s, t connected by an

edge labelled k in ∆(S0) this construction ensures that the images φ∆(s) and φ∆(t)

are also connected by an edge labelled k, and so φ∆ is indeed an automorphism of

the labelled exchange graph.

Example 5.3.6. Consider the automorphism φ of the B2 exchange graph E shown

in Figure 5.5 given by a clockwise rotation by angle π
3
. This automorphism pulls

back to an automorphism φ∆ of the labelled exchange graph ∆ shown in Figure 5.4.

To determine the automorphism φ∆, choose an initial labelled seed u = (x, B)

where x = (x, y). The automorphism φ maps the corresponding cluster [x, y] to

[1+y2

x
, y] and the mutation µ1 takes (x, y) to (x, y) ·µ1 =

(
1+y2

x
, y
)
, whose correspond-
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ing cluster [1+y2

x
, y] is mapped to [1+y2

x
, 1+x+y2

xy
] by φ, as shown in Figure 5.6.

Denote by φ∆ ∈ Aut ∆ the automorphism which corresponds to φ ∈ Aut E and

denote the quotient by the symmetric group action as π : S0 → S. Then φ∆(u)

is a labelled seed in S0 such that π
(
φ∆(u) · µ1

)
= φ(π(u · µ1)). Hence the cluster

variable which differs between [1+y2

x
, y] and [1+y2

x
, 1+x+y2

xy
] needs to appear in the first

position of the labelled cluster of φ∆(u) and so

φ∆(x) =

(
y,

1 + y2

x

)
.

This shows that the rotation of E actually corresponds to an automorphism of ∆

which interchanges the two components of the graph (see Figure 5.4) as well as

rotating each component.

Note that this automorphism takes the diagram D = 2 to its opposite Dop,

however the matrix B = ( 0 1
−2 0 ) is not taken to −B, but rather to −BT .

Example 5.3.7. Consider the exchange graph E of the mutation class of type A2

shown in Figure 5.3, with the labelled exchange graph ∆ in Figure 5.2. An order 5

clockwise 2π
5

rotation φ of E is an exchange graph automorphism and so induces an

automorphism φ∆ of ∆.

The cluster x = [x, y] maps to φ(x) = [1+y

x
, y], so the labelled cluster x̂ = (x, y)

would be mapped to either
(

1+y

x
, y
)

or
(
y, 1+y

x

)
. To determine which, consider the

labelled clusters adjacent to (x, y):

(x, y) · µ1 =
(1 + y

x
, y
)

;

(x, y) · µ2 =

(
x,

1 + x

y

)
.

The cluster [ 1+y

x
, y] is mapped to [1+y

x
, 1+x+y

xy
] so we need to choose an ordering for

φ∆(x̂) such that φ∆(x̂) · µ1 corresponds to the same ordering of [1+y

x
, 1+x+y

xy
]. These

two clusters φ(x) = [1+y

x
, y] and [1+y

x
, 1+x+y

xy
] differ by replacing y with 1+x+y

xy
, while

µ1 changes the cluster variable in the first position, therefore the required ordering
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is

φ∆(x̂) =
(
y,

1 + y

x

)
and φ∆(x̂) · µ1 =

(
1 + x+ y

xy
,
1 + y

x

)
.

This shows that φ induces the automorphism of ∆ given by clockwise 6π
5

rotation,

which again has order 5.

Remark 5.3.8. It is not true in general that Aut ∆(S0) ∼= Aut E(S), as ∆(S0) can

have a number of connected components which are identified under the quotient by

the symmetric group action. Any automorphism which changes a single connected

component while fixing all others would therefore not project down to an automorph-

ism of E(S). For example, in the case of the cluster algebra of type B2, the labelled

exchange graph automorphism given by rotating the top hexagon in Figure 5.4 while

fixing the bottom hexagon would not give any valid exchange graph automorphism.

Given φ ∈ Aut E(S) then φ∆ ∈ Aut ∆(S0) is constructed in such a way that for

π : S0 → S the quotient by the symmetric group action, u ∈ S0 a labelled seed and

µk a single global mutation,

φ(π(u)) = π
(
φ∆(u)

)
,

φ(π(u · µk)) = π
(
φ∆(u) · µk

)
.

Proposition 5.3.9. The inclusion Aut E(S) →֒ Aut ∆(S0) is a homomorphism, that

is (ψφ)∆ = ψ∆φ∆ for any exchange graph automorphisms ψ, φ ∈ Aut E(S).

Proof. Choose a labelled seed u ∈ S0 then

π
(
(ψφ)∆(u)

)
= (ψφ)(π(u)) = ψ(φ(π(u))) = ψ

(
π
(
φ∆(u)

))
= π

(
ψ∆
(
φ∆(u)

))
.

This shows that the labelled seeds (ψφ)∆(u) and ψ∆φ∆(u) are the same up to

permutation, however for any k ∈ {1, . . . , n}

π
(
(ψφ)∆(u) · µk

)
= (ψφ)(π(u · µk)) = ψ(φ(π(u · µk))) = ψ

(
π
(
φ∆(u) · µk

))

= π
(
ψ∆
(
φ∆(u) · µk

))
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so after mutation in the k-th vertex (ψφ)∆(u) and ψ∆φ∆(u) are the still same up

to permutation. The only way that the k-th mutation affects two labelled seeds in

the same way is if the labelled seeds are in fact equal and not permutations of one

another, so

(ψφ)∆(u) = ψ∆φ∆(u) for any u ∈ S0

and therefore (ψφ)∆ = ψ∆φ∆.

Proposition 5.3.10. Let φ ∈ Aut E(S) with pullback φ∆ ∈ Aut ∆(S0), then for any

labelled seed u and any permutation σ

φ∆(u · σ) = φ∆(u) · σ.

Therefore although it looks like the construction of φ∆ from φ depends on the

initial choice of ordering of u, any other ordering just gives a permutation of φ∆.

Proof. In ∆(S0) there are edges u− vi for each mutation µi, applying σ gives edges

u · σ − vi · σ for each µσ(i). When projected x(φ[u]) = x(φ[u · σ]) and x(φ[vi]) =

x(φ[vi · σ]) for each i.

The clusters x(φ[u]) = [a, . . . , ki, . . . ] and x(φ[vi]) = [a, . . . , k′i, . . . ] differ in a

single cluster variable ki to k′i. In the construction of φ∆(u) we specified an ordering

ρu on x(φ[u]) such that the i-th variable ρu(x(φ[u]))i = ki for each i. To construct

φ∆(u ·σ) we need an ordering ρu·σ such that the σ(i)-th variable ρu·σ(x(φ[u]))σ(i) = ki

so that the position of the variable which changes matches the label on the edge

in ∆. Therefore x(φ∆(u · σ)) = ρu·σ(x(φ[u])) = σ(ρu(x(φ[u]))) = σ(x(φ∆(u))) =

x(φ∆(u) · σ).

So far in this section we have proved a number of properties of automorphisms of

the exchange graph of a cluster algebra. In the remainder of this chapter we use these

results to compare these exchange graph automorphisms to other automorphisms

related to the cluster algebra.
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Theorem 5.3.11. For a labelled mutation class S0 with corresponding mutation

class S = S0/Sym(n) and exchange graph E(S)

AutMn
(S0) ∼= Aut E(S).

Proof. Let φ ∈ AutMn
(S0) and let ψ be the transformation of E(S) given by ψ([u]) =

[φ(u)]. The automorphism φ commutes with permutations so the choice of order of u

does not matter, because for any other choice of order u′ there is some permutation

σ such that u′ = u · σ and then [φ(u′)] = [φ(u · σ)] = [φ(u) · σ] = [φ(u)].

For any two seeds u and v = u ·µ related by a single mutation µ there is an edge

[u]− [v] in E(S). Then ψ([v]) = ψ([u ·µ]) = [φ(u ·µ)] = [φ(u) ·µ] = µ̃[φ(u)] = µ̃ψ([u])

where µ̃ is the single local mutation on [u] corresponding to the global mutation µ

on u. Hence there is an edge ψ[u]−ψ[v] in E(S), so ψ ∈ Aut E(S) and AutMn
(S0) ⊂

Aut E(S).

To show the converse, let ψ ∈ Aut E(S) which pulls back to ψ∆ ∈ Aut ∆(S0) by

Theorem 5.3.5. Let φ : S0 → S0 be the map given by u 7→ ψ∆(u). Any element

of Mn can be written as a product of mutations and permutations, so to prove

φ ∈ AutMn
(S0) it suffices to show that φ commutes with any permutation and any

mutation.

Let σ be a permutation, then by Proposition 5.3.10

φ(σu) = ψ∆(σu) = σψ∆(u) = σφ(u).

Let u and v = u · µ be two labelled seeds related by a single mutation, then ψ∆

is an automorphism of ∆(S0), so

φ(u · µ) = ψ∆(u · µ) = ψ∆(u) · µ = φ(u) · µ.

5.4 Cluster automorphisms

Cluster automorphisms were first introduced by Assem, Schiffler and Shramchenko

in [ASS12]. In their paper the authors computed some particular examples of
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automorphism groups and drew links between automorphisms of the cluster algebra

of a surface and the mapping class group of that surface. This correspondence was

later proved by Brüstle and Qiu in [BQ15] for all surfaces except a select few, as

discussed in Section 5.7.

Definition 5.4.1 ([ASS12]). A K-automorphism f is a cluster automorphism of

A(S) if there exists a seed (x, B) in S such that

1. f(x) is a cluster.

2. for every x ∈ x we have f(µx,x(x)) = µf(x),f(x)(f(x)).

Cluster automorphisms were originally only defined for skew-symmetric matrices

and hence quivers, but the same definitions and some results can be applied to skew-

symmetrizable matrices as well. The cluster automorphism groups in this setting

were first studied by Chang and Zhu in [CZ15] and [CZ16a]. Recall that throughout

this chapter we assume that the cluster x of a seed uniquely determines the seed’s

matrix, and in this case the matrix is denoted B(x).

Lemma 5.4.2 ([ASS12, Lem. 2.3],[CZ15, Lem. 2.9]). If f is an F-automorphism,

then f is a cluster automorphism if and only if there exists a seed (x, B) such that

f(x) is a cluster and B(f(x)) = B or −B.

The definition of a cluster automorphism only requires that there exists a single

seed such that the image is a seed and the automorphism is compatible with muta-

tions of that seed, however the compatibility with mutations allows these properties

to be extended to all seeds in the cluster algebra.

Proposition 5.4.3 ([ASS12, Prop. 2.4]). Let f be a cluster automorphism of a

cluster algebra A, then f satisfies the conditions in Definition 5.4.1 and Lemma 5.4.2

for every seed in A.

This therefore gives two ways of thinking of cluster automorphisms as either

automorphisms taking clusters to clusters which are compatible with mutations or

as automorphisms which fix exchange matrices (up to multiplication by -1).
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Definition 5.4.4. A cluster automorphism which fixes exchange matrices is called

a direct cluster automorphism, whereas those which send an exchange matrix B to

−B are called inverse cluster automorphisms.

Cluster automorphisms form a group, so let AutA denote the group of all cluster

automorphisms of A, and Aut+A be the subgroup of direct cluster automorphisms.

Proposition 5.4.5 ([ASS12, Lem. 2.9, Thm. 2.11]). Let A be a cluster algebra

generated by an exchange matrix B. If B is mutation-equivalent to −B then Aut+A

is a normal subgroup of AutA with index 2, otherwise Aut+A = AutA.

Cluster automorphisms arise naturally in the labelled seed and global mutation

setting introduced by King and Pressland, with the following correspondence:

Theorem 5.4.6 ([KP16, Cor. 6.3]). If S is the mutation class of a seed (x, Q) where

Q is a skew-symmetric mutation-finite matrix then

AutMn
(S0) ∼= AutA(S).

Combining Theorem 5.4.6 with Theorem 5.3.11 gives the following:

Corollary 5.4.7. For a cluster algebra A constructed from a mutation-finite quiver

with exchange graph EA
Aut EA ∼= AutA.

Chang and Zhu provide an alternative proof of this in [CZ15] and extend the

result to certain finite type skew-symmetrizable matrices:

Theorem 5.4.8 ([CZ15, Thm. 3.7]). If S is the mutation class of a seed (x, B)

where B is a skew-symmetrizable matrix of Dynkin type Bn or Cn for n ≥ 3 then

AutA(S) = Aut EA(S).

Remark 5.4.9. Maximal green sequences, discussed in Section 4.3, are sequences

of mutations which fix a quiver and as such they induce a cluster automorphism.
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1 2 1 2 1 2

1 2 1 2 1 2

1 2

2

1 2

Figure 5.7: The two maximal green sequences of the quiver of type
A2 starting with its framed quiver. The top green se-
quence is µ1 · µ2 and the bottom is µ2 · µ1 · µ2. The two
resulting quivers are both isomorphic to the coframed
quiver of the quiver of typeA2. Green vertices are shown
as circles, red vertices as crosses and frozen vertices as
plusses.

Example 5.4.10. The quiver of type A2 has two maximal green sequences given

by µ1 · µ2 and µ2 · µ1 · µ2 as illustrated in Figure 5.7.

If the initial labelled seed is (Q,x) with cluster x = (x, y), then the resulting

cluster after these green sequences induces a cluster automorphism as shown below.

The sequence µ2 · µ1 · µ2 does not give the same quiver, but after the permutation

(12) it does:

(
Q, (x, y)

)
· µ1 · µ2 =

(
Q,

(
1 + y

x
,
1 + x+ y

xy

))
=
(
Q, (x, y)

)
· µ2 · µ1 · µ2 · (12).

These both give the same cluster automorphism x 7→ 1+y

x
and y 7→ 1+x+y

xy
.

5.5 Generalising automorphisms to the

skew-symmetrizable case

Theorems 5.4.6 and 5.4.8 show that cluster automorphisms are linked to the auto-

morphisms of the exchange graph for mutation-finite skew-symmetric matrices as

well as a specific family of skew-symmetrizable matrices. However, in general the
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exchange graph automorphism group for any mutation-finite skew-symmetrizable

matrix is larger than the cluster automorphism group.

An example of this would be the exchange graph automorphism of the muta-

tion class of B2 considered in Example 5.3.6. This graph automorphism does not

correspond to a cluster automorphism as the initial matrix B is sent to −BT 6= ±B.

In this section we aim to generalise the results of the previous section to the skew-

symmetrizable case. To do this we introduce additional structure on the exchange

graph, which defines a marked exchange graph. This extra structure ensures that any

graph automorphism fixing this structure corresponds to a cluster automorphism.

In this way the study of cluster automorphisms can be reduced to the combinatorial

study of graph automorphisms.

5.5.1 Marked exchange graph

Let B be a skew-symmetrizable matrix, with symmetrizing matrix D. If µi is

any mutation, then D is also the symmetrizing matrix for B · µi. Similarly for

any permutation σ the permuted matrix D · σ = diag(dσ
i ) = diag

(
dσ−1(i)

)
is the

symmetrizing matrix for B · σ = Bσ.

Definition 5.5.1. The marked labelled exchange graph of a mutation class

generated by u = (x, B) where B is a skew-symmetrizable matrix with symmetrizing

matrix D = diag(di) is the labelled exchange graph with an additional marking on

each edge. Each edge corresponds to a global mutation µi for some i, so mark that

edge with the symmetrizing entry di.

If a permutation σ acts on u to give a labelled seed in a different component of

∆(S0), then mark the i-th edges with dσ
i , where D · σ = diag(dσ

i ).

In the exchange graph E each edge no longer corresponds to a global mutation

µi, but rather to a local mutation µβ,x at a specific cluster variable β in a cluster x.

For a permutation σ and permuted seed (x, B) ·σ = (xσ, Bσ), then the edge µσ(i)

adjacent to this seed corresponds to the local mutation µβσ
σ(i)

,[xσ ] = µβi,[x] as βσ
σ(i) =



5.5. Generalising automorphisms to the skew-symmetrizable case 105

βσ−1(σ(i)) = βi and [xσ] = [x]. This edge µσ(i) is marked with dσ
σ(i) = dσ−1(σ(i)) = di

and hence in the quotient the edge µβi,x has a consistent marking, so the following

is well-defined.

Definition 5.5.2. Let Ê(S) be the marked exchange graph of a mutation class

S given by taking the quotient of the marked labelled exchange graph with respect

to the symmetric group action.

Alternatively let B be a skew-symmetrizable matrix, with symmetrizing matrix

D and let R be the diagram corresponding to B so each row in B represents a

vertex in R. Each diagonal entry in D can be thought of as being attached to that

row’s vertex of R, and the edge in Ê representing mutation in that vertex should be

marked with this diagonal entry.

Example 5.5.3 (B3). The marked exchange graph of the cluster algebra of type B3

is shown in Figure 5.8. The cluster variables are not written out in full, rather only

the denominators are shown with a bar above except for the initial cluster variables

x1, x2 and x3 which are shown with a bar underneath. Each vertex is adjacent to

two dotted edges and one dashed edge.

Choosing a matrix in the mutation class, the symmetrizing matrix is diag(2, 1, 1):



0 2 0
−1 0 1
0 −1 0







2 0 0
0 1 0
0 0 1


 =




0 2 0
−2 0 1
0 −1 0


.

The dotted edges correspond to mutations in the vertices with symmetrizing entry 1,

while the dashed edge corresponds to the mutation in the vertex with symmetrizing

entry 2.

In this case, any automorphism of the unmarked exchange graph sends dashed

edges to dashed edges, so automatically preserves the markings and hence Aut E =

Aut Ê .

Example 5.5.4 (B2). The marked exchange graph of the cluster algebra of type B2

is shown in Figure 5.9, where dotted edges correspond to mutations in vertices with
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Figure 5.8: Marked exchange graph of type B3. Dotted edges cor-
respond to a symmetrizing entry of 1, while dashed
edges correspond to 2. Only denominators are shown in
the cluster variables with a bar above each, unless the
cluster variable is one of x1, x2 or x3 where the variable
is shown with a bar underneath.
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Figure 5.9: Marked exchange graph for cluster algebra of type B2.
Dotted edges correspond to mutations in a vertex with
symmetrizer 1 while dashed edges correspond to sym-
metrizer 2.

symmetrizer 1 and dashed edges correspond to symmetrizer 2. The initial matrix

for the cluster [x, y] was chosen to be ( 0 1
−2 0 ) with symmetrizing matrix diag(1, 2).

The automorphism considered in Example 5.3.6, given by a rotation of angle π
3
,

does not fix the markings in the graph, so is not an automorphism of the marked

graph.

Remark 5.5.5. For any skew-symmetric matrix the symmetrizing matrix is the

identity, so all markings would be the same and EA = ÊA.

Remark 5.5.6. For a cluster algebra of Dynkin type Bn or Cn, for n ≥ 3, the

marking on the exchange graph does not limit the number of automorphisms, so

Aut EA = Aut ÊA. This follows from Theorem 3.7 in Chang and Zhu’s paper [CZ15]

linking exchange graph automorphisms and cluster automorphisms.

5.5.2 Geodesic loops

Definition 5.5.7 ([CZ16b, Def. 2.25]). Let E be an exchange graph of a seed

u = (x,B) with vertices labelled (vi)i∈{1,...,n}. For a subset of vertices {vk} the

frozenisation of u with respect to {vk} is the mutation class constructed by freezing

all vertices in {vk}.

It is often more convenient to consider the cofrozenisation of u with respect to

{vk}, denoted u\{vk}, which is constructed by freezing all vertices in u except those
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in {vk}. This is then a frozenisation of u with respect to {vi} − {vk}.

Definition 5.5.8 ([FZ03, Sec. 2]). A geodesic loop L = La,b
u is the exchange graph

of a cofrozenisation u\{a, b} which leaves only two vertices a and b unfrozen. A loop

is then either a polygon with 4, 5, 6 or 8 sides or an infinite line, which embeds into

the exchange graph of the mutation class of u.

The distance between a geodesic loop L and any vertex v in E is the (possibly

zero) minimum number of edges in E between v and any vertex in L.

The length of a geodesic loop Len(L) ∈ {4, 5, 6, 8,∞} is the number of edges in

the loop.

Geodesic loops as subgraphs of a larger exchange graph give rise to the following

sets, which encode the information about a given seed represented by a vertex of

the exchange graph. The following construction is a slight notational variation of

the one given by Chang and Zhu in Definition 3.1 of [CZ15].

Definition 5.5.9. Let u be a seed of rank n in an exchange graph, then define N0(u)

to be the set of
(

n

2

)
numbers given by the length of all geodesic loops distance 0

from u. Similarly define N1(u) to be the set of n
(

n−1
2

)
numbers given by the lengths

of all geodesic loops distance 1 from u.

Remark 5.5.10. An exchange graph automorphism φ ∈ Aut E induces an auto-

morphism φ∆ ∈ Aut ∆ and in this way φ induces a map φv which takes cluster

variables in a seed u to variables in φ(u).

A geodesic loop La,b
u in an exchange graph E must get mapped to another geodesic

loop of the same length by any exchange graph automorphism, however it is not clear

that the image of La,b
u will be generated by the cofrozenisation φ(u)\{φv(a), φv(b)}

rather than another cofrozenisation with two different unfrozen vertices in u. The

following Lemma explains that this must always be the case.

Lemma 5.5.11. Let u be a seed in a cluster algebra A and φ ∈ Aut EA. For any

two vertices a and b the geodesic loop La,b
u is isomorphic to its image Lφv(a),φv(b)

φ(u) .
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Proof. Choose some ordering on u so that the vertices a = vi and b = vj are indexed

by i and j respectively, then the length of the geodesic loop specifies a relation

u = u · µiµjµi · · · .

For example if the loop has length 6, then u = u · (µiµj)
3, whereas if the length

is 5 then u = u · µiµjµiµjµi.

The exchange graph automorphism φ corresponds to some φMn
∈ AutMn

which

commutes with the action of Mn. Hence

φMn
(u) = φMn

(u · µiµj · · · ) = φMn
(u) · µiµj · · ·

so the geodesic loop Lφv(a),φv(b)
φ(u) has the same length as the geodesic loop La,b

u , and

hence the two loops are isomorphic.

Exchange graph automorphisms preserve the combinatorial structure around a

seed. As these automorphisms are compatible with mutations the above result could

be extended to the exchange graphs of cofrozenisations with any number of unfrozen

vertices.

Lemma 5.5.12. If φ ∈ Aut E is an exchange graph automorphism, with u a seed

and v = φ(u) its image, then N0(u) = N0(v) and N1(u) = N1(v).

Lemma 5.5.13. Given a mutation-finite diagram with at least 3 vertices, the ex-

change graph of a frozenisation leaving just two vertices unfrozen determines the

weight on the arrow between the two unfrozen vertices.

Proof. The exchange graph of the frozenisation leaving just two vertices a and b

unfrozen is a geodesic loop La,b with length Len(L) ∈ {4, 5, 6, 8,∞}.

If Len(L) = 4 then the vertices have no arrow between them, while if Len(L) = 5

there is a single unweighted arrow. If Len(L) = 6 then there is an arrow weighted 2

and Len(L) = 8 shows there is an arrow weighted 3.

The highest edge weight in a mutation-finite diagram (with more than 2 vertices)

is 4, so Len(L) =∞ implies that there is an arrow weighted 4.
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Remark 5.5.14. For any 2-vertex diagram B, an edge weight of 4 or more will

always give Len(L) = ∞, so the exchange graph cannot determine this weight.

However the only diagrams mutation-equivalent to B are B and Bop, so all diagrams

in the same mutation class have the same edge weight.

5.5.3 Exchange graph automorphism effects on diagrams

and matrices

Lemma 5.5.15. An exchange graph automorphism φ ∈ Aut E takes a seed u = (x,B)

to another seed v = φ(u) = (x′, B′) where the unoriented diagram of B′ is the same

as the unoriented diagram of B.

Proof. Fix any two vertices u0 and u1 in u. Under φv these vertices are mapped to

corresponding vertices φv(u0) = v0 and φv(u1) = v1 in v.

The weight on (or absence of) the arrow between u0 and u1 determines the

exchange graph Eu of the cofrozenisation u\{u0, u1}. By Lemma 5.5.11, Eu is iso-

morphic to the exchange graph Ev of the cofrozenisation v\{v0, v1}. Hence this ex-

change graph determines the arrow between v0 and v1 by Lemmas 5.5.12 and 5.5.13,

which necessarily must be the same as that between u0 and u1.

This shows that the unoriented diagrams of two seeds related by an exchange

graph automorphism must be the same. To see how exchange graphs automorphisms

affect the orientations of the arrows we need to consider frozenisations with three

unfrozen vertices.

Lemma 5.5.16. For any seed u = (x,B) with 3 vertices in an exchange graph of a

mutation-finite skew-symmetrizable diagram, the diagram of B is determined by the

sets N0(u) and N1(u), up to reversing all arrows.

Proof. The unoriented diagram of B is determined by N0(u) = {ni}, where each

ni ∈ {4, 5, 6, 8,∞} determines a weighted arrow, or absence of arrow, between two

vertices.
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The orientation of B (up to reversing all arrows) is given by N1(u) as shown in

Tables 5.1, 5.2 and 5.3, where all mutation-finite 3-vertex diagrams are illustrated

along with their defining sets N0 and N1. Hence the pair (N0, N1) defines a unique

diagram, up to reversing all arrows.

In the case N0(u) = {4, 4,∞} the diagram is of the form:

k

where the weight satisfies k ≥ 4 and so the diagram is not uniquely determined.

However if k > 4 then the resulting diagram will never appear as a subdiagram of

any larger mutation-finite diagram. This is precisely the setup used in the proofs

below and so N0(u) = {4, 4,∞} is always assumed to correspond to a diagram of

the form:

4

Proposition 5.5.17. Let φ ∈ Aut E be an exchange graph automorphism and

u = (x, B) a seed where B is a mutation-finite skew-symmetrizable matrix with

corresponding connected diagram R. In the image φ(u) = (x′, B′), the diagram R′

corresponding to the matrix B′ is either R or Rop.

Proof. Choose any 3 vertices a, b, c in u, then by Lemma 5.5.11 there is an isomorph-

ism E(u\{a, b, c}) ∼= E(φ(u)\{φ(a), φ(b), φ(c)}) and N0(u) = N0(φ(u)), N1(u) =

N1(φ(u)). Therefore by Lemma 5.5.16 the subdiagram S of R consisting just of the

arrows between a, b and c is the same as the subdiagram S ′ of R′ consisting of the

arrows between φ(a), φ(b) and φ(c), up to reversing all arrows.

Choose a fourth vertex d and consider the 3-vertex subdiagram Sa on the vertex

set {b, c, d}. By the same reasoning as above the image S ′a = φ(Sa) must be the

same, but possibly with all arrows reversed. However both S ′ and S ′a share the edge

between vertices φ(b) and φ(c), so if S ′ = Sop then S ′a = Sop
a whereas if S ′ = S then

S ′a = Sa.
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Diagram N0 N1

{4, 4, 5} {4, 4, 5}

2

{4, 4, 6} {4, 4, 6}

3

{4, 4, 8} {4, 4, 8}

4

{4, 4, ∞} {4, 4, ∞}

{4, 4, 4} {4, 4, 4}

Table 5.1: Disconnected 3-vertex diagrams determined by values of
N0.

Diagram N0 N1

{4, 5, 5} {5, 5, 5}

{4, 5, 5} {4, 5, 5}

{5, 5, 5} {4, 4, 4}

{5, 5, 5} {5, 5, ∞}

4

{5, 5, ∞} {5, 5, 5}

Table 5.2: Connected skew-symmetric 3-vertex diagrams determ-
ined by values of N0 and N1.
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Diagram N0 N1

3 {4, 5, 8} {5, 8, 8}
3 {4, 5, 8} {4, 5, 8}

3 3

{5, 8, 8} {4, 4, ∞}

3 3

4

{8, 8, ∞} {5, 8, 8}

2 {4, 5, 6} {5, 6, 6}

2 {4, 5, 6} {4, 5, 6}

2 2

{5, 6, 6} {4, 4, 5}

2 2

{4, 6, 6} {4, 6, ∞}

2 2

{4, 6, 6} {4, 6, 6}

2 2

4

{6, 6, ∞} {4, 6, 6}

Table 5.3: Connected skew-symmetrizable 3-vertex diagrams de-
termined by values of N0 and N1.
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As R is connected, by successively choosing different vertices, the whole diagram

R′ must either be the same as R or Rop.

This shows that any exchange graph automorphism takes clusters to clusters

and a diagram to itself or its opposite. However this is not enough to show that

these automorphisms are cluster automorphisms, as this requires the matrix B of

the diagram to be sent to ±B. For this we require the markings on the exchange

graph.

Proposition 5.5.18. Given a marked exchange graph automorphism φ ∈ Aut Ê and

a seed u = (x,B) with image φ(u) = (x′, B′), then the matrix B′ = B or −B.

Proof. Let R be the diagram associated to B, and let R′ be the diagram associated to

B′. Let DB be the symmetrizing matrix for B, each vertex vk in u has a symmetrizing

multiplier, which marked exchange graph automorphisms preserve, so each vertex

φv(vk) in φ(u) has the same symmetrizing multiplier as vk and DB = DB′ .

By Proposition 5.5.17, R′ is the same as R or Rop with symmetrizing matrix

DB′ = DB which defines the skew-symmetrizable matrix B′ = B or −B.

These results ensure that a marked exchange graph automorphism fixes matrices

in seeds and so correspond to cluster automorphisms. In this way we generalise

Corollary 5.4.7 to all mutation-finite skew-symmetrizable matrices.

Theorem 5.5.19. If S is a mutation class generated by an initial seed (x, B), where

B is a mutation-finite skew-symmetrizable matrix, with cluster algebra A = A(S)

and marked exchange graph ÊA then

AutA = Aut ÊA.

Proof. A cluster automorphism f ∈ AutA satisfies the following properties:

• f(x) is a cluster

• f is compatible with mutations

• B(f(x)) ∼= B or −B
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for all seeds (x,B) in the mutation class S. Such an automorphism induces an

automorphism of the exchange graph, and as f sends a matrix B to ±B it also fixes

the symmetrizing matrix so fixes the marking on the exchange graph. Therefore

f ∈ Aut ÊA and AutA ⊂ Aut ÊA.

To show that Aut ÊA ⊂ AutA let (x, B) be a labelled seed, with mutation class

S0 and quotient S. If φ ∈ Aut Ê(S) ⊂ Aut E(S), then by Theorem 5.3.5 this pulls

back to an automorphism φ∆ ∈ Aut ∆(S0). Then the image φ∆(x) = (y1, . . . , yn)

where x = (x1, . . . , xn) gives an automorphism f : C(x1, . . . , xn) → C(x1, . . . , xn)

defined by f(xi) = yi.

This f then corresponds to φ, so f(x) is a cluster and it remains to show that

B(f(x)) = ±B = ±B(x), however this follows from Proposition 5.5.18 so f ∈

AutA.

5.6 Unfoldings

Many skew-symmetrizable matrices B have unfoldings to skew-symmetric matrices

C, which extend to seeds, where a given seed in S(B) unfolds to a seed in S(C).

The corresponding exchange graphs are related, with the marked exchange graph

Ê(B) embedding into the exchange graph E(C) provided edges marked in certain

ways split into multiple edges.

Definition 5.6.1 ([FST12b, Sec. 4]). Given a skew-symmetrizable n × n matrix

B = (bi,j) with symmetrizing matrix D = diag(di), let m =
∑n

j=1 dj and partition

the set {1, . . . ,m} into n disjoint consecutive index sets Ei such that |Ej| = dj for

all j.

Construct a skew-symmetric m×m matrix C where:

1. The sum of entries in each column of each Ei × Ej block equals bi,j;

2. If bi,j > 0 then all entries in the Ei × Ej block are non-negative;

3. All entries in each Ei × Ei block are zero.
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Given i ∈ {1, . . . , n} and any j, k ∈ Ei the corresponding mutations µj and µk

commute. The i-th composite mutation µ̃i of C is given by

µ̃i =
∏

j∈Ei

µj.

The matrix C is the unfolding of B if the matrix C ′ = C ·(µ̃k1µ̃k2 · · · µ̃kr
) satisfies

the conditions 1 and 2 above with respect to the matrix B′ = B · (µk1µk2 · · ·µkr
) for

any sequence of mutations µki
with corresponding composite mutations µ̃ki

.

A labelled seed ([βi], B), with skew-symmetrizable matrix B, unfolds in the same

way to ([γi], C) where C is the unfolding of B. The j-th row in B corresponds to

the cluster variable βj and this row unfolds to dj rows in C, hence βj unfolds to dj

cluster variables {γj1 , . . . , γjdj
}.

Remark 5.6.2. A diagram has a finite number of distinct matrix representations,

each of which may give different unfoldings, or may not admit any unfolding. Almost

all mutation-finite matrices have an unfolding.

Definition 5.6.3. Given a permutation σ ∈ Sym(n) of the initial seed, construct

the composite permutation σ̃ ∈ Sym(m) to be the permutation given by:

{1, . . . , m}

{σ̃−1(1), . . . , σ̃−1(m)} E
σ

−1(1), E
σ

−1(2), . . . , E
σ

−1(n)

E1, E2, . . . , En

σ̃

Theorem 5.6.4. Given a skew-symmetrizable matrix B which unfolds to a matrix

C, with corresponding marked exchange graphs Ê(B) and E(C) = Ê(C), then

Aut Ê(B) →֒ Aut E(C).

Proof. Choose an initial n×n labelled seed u = ([βi], B) which unfolds to the m×m

labelled seed ([γi], C) with index sets Ek for k = 1, . . . , n and βi  {γj}j∈Ei
.

Let φ ∈ Aut Ê(B) be an exchange graph automorphism, then φ corresponds to

both a cluster automorphism f ∈ AutAB of the cluster algebra AB, constructed

from the initial seed u, and to a mutation class automorphism φM ∈ AutMn
S0(B).
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This mutation class automorphism in turn corresponds to an element of Mn, so there

is a sequence of r mutations µki
and a permutation σ such that

φM(u) = u · (µk1µk2 · · ·µkr
σ).

All such automorphisms are constructed to have the same action on the initial seed

u, so

φ(u) =
([

sβi

]
,±B

)
= ([f(βi)],±B) = φM(u) = u · (µk1µk2 · · ·µkr

σ).

In the unfolding, each mutation µki
corresponds to the composite mutation µ̃ki

and the permutation σ corresponds to the composite permutation σ̃, so the following

commutes:

([γi], C) ([γi], C) · (µ̃k1
· · · µ̃kr

σ̃)

([βi], B) ([βi], B) · (µk1
· · · µkr

σ) =
(
[sβi], ±B

)

= ([sγi], ±C)

φ

unfold unfold

The automorphism φ corresponds to a cluster automorphism, so the matrix of the

image of u is ±B. The seed φ(u) =
([

sβi

]
,±B

)
unfolds to ([sγi],±C) and hence

(µ̃k1 · · · µ̃kr
σ̃) ∈Mm acts on ([γi], C) to give a seed with the same matrix up to sign,

so corresponds to a cluster automorphism of the cluster algebra constructed with

([γi], C) as the initial seed, and hence to an automorphism of the exchange graph

E(C).

Corollary 5.6.5. By Theorem 5.5.19 the marked exchange graph automorphisms

correspond to cluster automorphisms, so for a skew-symmetrizable matrix B which

unfolds to C and with corresponding cluster algebras AB and AC, Theorem 5.6.4

implies

AutAB →֒ AutAC .

Example 5.6.6. The matrix B representing the Dynkin diagram of type B2

B =

(
0 1
−2 0

)
unfolds to C =




0 1 1
−1 0 0
−1 0 0


,
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Figure 5.10: Exchange graph of the mutation class of type A3. The
dotted and dashed edges show how the marked ex-
change graph of type B2 shown in Figure 5.9 unfolds.
A dashed edge in Figure 5.9 corresponds to the compos-
ite mutation denoted by a consecutive pair of dashed
edges in this figure.
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the matrix representing a quiver of Dynkin type A3. The symmetrizing matrix of

B is given by D = diag(1, 2) so the B2 marked exchange graph shown in Figure 5.9

embeds into the exchange graph of type A3 shown in Figure 5.10. The dashed

edges in Figure 5.9 correspond to the pairs of dashed edges representing composite

mutations in Figure 5.10. Dotted edges in Figure 5.9 correspond to single dotted

edges in Figure 5.10.

The seed ([x, y], B) unfolds to the seed ([a, b, c], C) and the cluster variables of

these two seeds are related with

x a, y  {b, c}

as the symmetrizing matrix diag(1, 2) ensures that y unfolds to two cluster variables.

The automorphism φ ∈ Aut Ê(B2) given by rotation by 2π
3

takes the seed [x, y]

to
[

1+y2

x
, 1+x+y2

xy

]
and corresponds to the cluster automorphism f ∈ AutA(B2) given

by

f(x) =
1 + y2

x
, f(y) =

1 + x+ y2

xy
.

This automorphism induces an automorphism of the exchange graph of A3 given

by a rotation along the embedded Ê(B2) fixing the seeds with cyclic quivers and

takes [a, b, c] to
[

1+bc
a
, 1+a+bc

ab
, 1+a+bc

ac

]
which corresponds to the cluster automorphism

g ∈ AutA(A3) given by

g(a) =
1 + bc

a
, g(b) =

1 + a+ bc

ab
, g(c) =

1 + a+ bc

ac
.

However the automorphism could also correspond to the cluster automorphism

g̃ ∈ AutA(A3) where

g̃(a) = g(a), g̃(b) =
1 + a+ bc

ac
, g̃(c) =

1 + a+ bc

ab
.

There is a single non-identity E(A3) exchange graph automorphism which fixes

the embedded Ê(B2), given by a reflection in the circle of the embedded subgraph

and interchanging the two seeds with cyclic quivers. This then corresponds to the
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cluster automorphism h ∈ AutA(A3) given by

h(a) = a, h(b) = c, h(c) = b

such that g̃ = g ◦ h = h ◦ g.

Theorem 5.6.4 shows that cluster automorphisms of AB commute with unfolding

the seeds, so a direct cluster automorphism φ ∈ AutAB preserves the exchange

matrix B, which when unfolded to ψ ∈ AutAC must also preserve the exchange

matrix C and so is also a direct cluster automorphism.

Corollary 5.6.7. Aut+AB →֒ Aut+AC.

5.7 Mapping class groups

In their paper introducing cluster automorphisms [ASS12] Assem, Schiffler and

Shramchenko introduced the tagged mapping class group for surfaces with punctures.

This group has been shown to coincide with the group of direct cluster automorphisms

of the surface’s corresponding cluster algebra.

Definition 5.7.1. Given a surface with marked points (S,M) the mapping class

group of the surface is given by

MCG(S,M) = Homeo+(S,M)
/

Homeo0(S,M) .

Here Homeo+(S,M) is the group of orientation-preserving homeomorphisms from

S to itself which sends the set M to itself, but does not necessarily fix M nor the

boundary of S pointwise, and Homeo0(S,M) is the subgroup of homeomorphisms

which are isotopic to the identity such that the isotopy fixes M pointwise.

The cluster structure given by triangulations of a surface with marked points was

first studied by Fomin, Shapiro and Thurston in [FST08], where they show that flips

of arcs in a triangulation coincide with mutations. However such a triangulation

could contain self-folded triangles, and therefore arcs that cannot be flipped; to get
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around this problem, the authors introduced taggings on the arcs. A tagged arc is

an arc which does not cut out a once-punctured monogon, where the endpoints are

tagged either plain or notched, such that any endpoints on ∂S are tagged plain

and if the endpoints of an arc coincide then they must be tagged the same.

Two tagged arcs are compatible if either their underlying arcs are the same

and then at least one endpoint must be tagged in the same way, or the underlying

arcs are not equal but are compatible. In this case, if they share an endpoint, the

arcs must be tagged in the same way at that endpoint. A tagged triangulation is

a maximal collection of compatible tagged arcs and a tagged flip is then defined in

the same way as for triangulations, where a tagged arc is replaced with the unique

other compatible tagged arc and these flips again correspond to mutations. See

Section 2.5, [FST08, Sec. 7] or [ASS12, Sec. 4] for more details.

Definition 5.7.2. The tagged mapping class group of a surface (S,M) with

p punctures is the semidirect product of the standard mapping class group of the

surface with Z
p
2,

MCG⊲⊳(S,M) = Z
p
2 ⋊ MCG(S,M),

where the elements of MCG(S,M) act as diffeomorphisms on the surface and ele-

ments of Zp
2 switch or preserve the tags on the tagged triangulation at each puncture.

Theorem 5.7.3 ([ASS12, Thm. 4.11]). Let (S,M) be a surface with p punctures,

with corresponding cluster algebra A, then

1. MCG(S) is isomorphic to a subgroup of Aut+A.

2. If p ≥ 2 or ∂S 6= ∅ then MCG⊲⊳(S) is isomorphic to a subgroup of Aut+A.

They showed that for discs and annuli without punctures as well as for certain

discs with 1 or 2 punctures then the tagged mapping class group is isomorphic to

the group of direct cluster automorphisms of the corresponding cluster algebra. The

authors conjectured that this would be the case for almost all surfaces with marked

points. Brüstle and Qiu proved that this conjecture is true in [BQ15]:
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Theorem 5.7.4 ([BQ15, Thm. 4.7]). Let (S,M) be a surface with marked points

which is not

1. a once-punctured disc with 2 or 4 marked points on the boundary

2. a twice-punctured disc with 2 marked points on the boundary

then

MCG⊲⊳(S,M) = Aut+A.

Theorem 5.7.3 shows that MCG⊲⊳(S,M) →֒ Aut+A, so the proof of Theorem 5.7.4

needs to show that this injection is surjective. This follows from the result below

proved by Bridgeland and Smith:

Proposition 5.7.5 ([BS15, Prop. 8.5]). Suppose (S,M) is a surface which is not

one of:

1. a sphere with ≤ 5 marked points;

2. an unpunctured disc with ≤ 3 marked points on the boundary;

3. a disc with a single puncture and one marked point on the boundary;

4. a once-punctured disc with 2 or 4 marked points on the boundary;

5. a twice-punctured disc with 2 marked points on the boundary,

then two tagged triangulations of (S,M) differ by an element of MCG⊲⊳(S,M) if and

only if the associated quivers are isomorphic.

5.7.1 Unfoldings and covering maps

Diagrams correspond to triangulations of orbifolds in the same way that quivers

correspond to triangulations of surfaces, as discussed in Subsection 2.5.3. A covering

of the orbifold by a surface corresponds to an unfolding of the diagram to a quiver,

in such a way that composite mutations of the quiver correspond to triangle flips in

the triangulation of the surface, as discussed in [FST12a].

In their paper on the growth rate of cluster algebras, Felikson, Shapiro, Thomas

and Tumarkin [FSTT14] defined the mapping class group of a cluster algebra
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2
1
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2

Figure 5.11: Triangulation of an orbifold (left) with associated dia-
gram (right). The interior orbifold point is shown as
a cross. The associated diagram is also shown with
dotted arrows inside the triangulation.

MCG(A) to be the elements of Mn which fix the initial exchange matrix up to

a quotient by those elements of Mn which fix the initial seed. Elements of this group

would then fix the initial exchange matrix and map the initial cluster to some other

cluster in the mutation class, and hence would induce a direct cluster automorphism.

Fix a marked orbifold O with m punctures. In [FSTT14, Remark 4.15] the cluster

mapping class group is argued to either contain the orbifold’s mapping class group as

a proper normal subgroup with quotient MCG(A)/MCG(O) ∼= Zm
2 (when m > 1, or

when m = 1 and the boundary non-empty) or be isomorphic to the orbifold mapping

class group (when m = 0, or when m = 1 and the boundary is empty).

The additional Z2 for each interior marked point corresponds to the additional

taggings in the definition of MCG⊲⊳(O) and so suggests that the following would be

true:

Conjecture 5.7.6. For a cluster algebra A arising from the triangulation of an

orbifold O

MCG⊲⊳(O) ∼= Aut+A.

Example 5.7.7. Consider the orbifoldO constructed from the disc with four marked

points on the boundary and a single orbifold point in the interior, as shown in

Figure 5.11.

This orbifold has no punctures, so the tagged mapping class group is equal to the

mapping class group. Any element of the mapping class group must fix the orbifold
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point and permute the four boundary marked points. The only such permutations are

rotations around the boundary, as any reflection would not preserve the orientation,

hence the mapping class group is isomorphic to Z4 generated by a rotation by angle

π
2
.

This orbifold corresponds to the cluster algebra of Dynkin type B3, which can be

generated by the diagram in Figure 5.11. The cluster automorphism group of AB3

is the dihedral group with 8 elements:

AutAB3
∼= D4 = Z4 ⋊ Z2,

where Z4 is generated by the automorphism given by the action of µ1µ2µ3 on the

initial cluster and Z2 by µ1µ3. This can be seen as the automorphisms of the marked

exchange graph shown in Figure 5.8 where the 4 squares are permuted while fixing

the markings.

The direct cluster automorphisms are those in the subgroup Z4 of the cluster

automorphism group, and so

Aut+AB3
∼= Z4

∼= MCG(O) = MCG⊲⊳(O).
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Minimal mutation-infinite quiver

supplementary material

A.1 Computing minimal mutation-infinite

quivers

The quiver classification involved a large computational effort to find all minimal

mutation-infinite quivers. This section details the procedures used in this compu-

tation. Details about implementations of these procedures can be found on the

author’s website: https://www.jwlawson.co.uk/maths/mmi/.

A.1.1 Finding the size of a mutation-class

An important computation in all the following algorithms is determining whether a

given quiver is mutation-finite or mutation-infinite. There is a fast approximation

which can prove a quiver is mutation-infinite and a slower procedure which proves a

quiver is mutation-finite.

Fast approximation to check whether a quiver is mutation-infinite

Proposition 3.2.7 states that any mutation-finite quiver has at most 2 arrows between

any two vertices. This gives a procedure that can prove that a quiver is mutation-

https://www.jwlawson.co.uk/maths/mmi/


126 Minimal mutation-infinite quiver supplementary material

Input: Q Quiver to check
Data: M Number of mutations to perform
Data: k Counter initially 0
Result: Whether Q is mutation-infinite, or probably mutation-finite

while k < M do

if Q contains 3 or more arrows between 2 vertices then
return Q is mutation-infinite

Choose a random vertex
Mutate Q at this vertex
Increment k

return Q is probably mutation-finite

Algorithm A.1.1: Fast approximation whether a quiver is mutation-infinite

infinite, but which cannot prove that a quiver is mutation-finite. This procedure

was used in computations by Felikson, Shapiro and Tumarkin in their classification

of skew-symmetric mutation-finite quivers [FST12c] and Shapiro’s comments on the

procedure can be found on his website: https://www.math.msu.edu/~mshapiro/

FiniteMutation.html.

The procedure, given in Algorithm A.1.1, checks whether the quiver contains 3 or

more arrows between any two vertices, if it does then the quiver is mutation-infinite.

Otherwise, pick a vertex at random and mutate the quiver at this vertex and repeat

with this new quiver.

For mutation-finite quivers this process would never terminate without the bound

on the number of mutations, and it is possible that for mutation-infinite quivers

the randomly chosen mutations never generate an edge with more than 2 arrows.

Therefore this is only an approximation and a maximum number of mutations

should be attempted before stopping. If no quiver was found with more than 2

arrows between two vertices then, provided the number of mutations was high, the

quiver is probably mutation-finite.

Computing a full finite mutation-class

While the above procedure can show a quiver is probably mutation-finite, we require

a procedure that can definitively prove it. To do this we compute the whole mutation-

https://www.math.msu.edu/~mshapiro/FiniteMutation.html
https://www.math.msu.edu/~mshapiro/FiniteMutation.html
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Input: Q Quiver
Data: L Queue of quivers to mutate
Data: A List of all quivers found in the mutation class so far
Data: MP For each quiver P , a map taking a vertex in P to the quiver

obtained by mutating P at that vertex (if the mutation has been
computed)

Result: A List of all quivers in the mutation class

Add Q to L
while L is not empty do

Remove quiver P from the top of queue L
for i = 1 to (Number of vertices) do

if MP has a quiver at vertex i then

Continue to next vertex
else

Let P ′ be the mutation of P at i
if P ′ ∈ A then

Update MP ′ so vertex i points to P
else

Create MP ′ with vertex i pointing to P
Add P ′ to A
Add P ′ to L

Update MP so vertex i points to P ′

return A

Algorithm A.1.2: Compute mutation-class of a mutation-finite quiver

class of the quiver, and in doing so either obtain a finite number of quivers in the

class, or find a quiver which proves the class is mutation-infinite.

The algorithm to find the mutation-class of a mutation-finite quiver calculates

the whole exchange graph from the initial quiver. First compute all mutations of this

quiver, then for each of these quivers compute all of their mutations and continue

until no further quivers are computed. By keeping track of which mutations link

two quivers, only those mutations which are not known need to be computed. A

simplified implementation is given in Algorithm A.1.2 with the assumption that the

initial quiver is mutation-finite, if not then this algorithm would not terminate.
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Input: Q Quiver
Data: L Queue of quivers to mutate
Data: A List of all quivers found in the mutation class so far
Data: MP For each quiver P , a map taking a vertex in P to the quiver

obtained by mutating P at that vertex (if the mutation has been
computed)

Result: Whether Q is mutation-infinite or not

Add Q to L
while L is not empty do

Remove quiver P from the top of queue L
for i = 1 to (Number of vertices) do

if MP has a quiver at vertex i then

Continue to next vertex
else

Let P ′ be the mutation of P at i
if P ′ ∈ A then

Update MP ′ so vertex i points to P
else

if P ′ has more than 3 arrows between 2 vertices then
return Q is mutation-infinite

Create MP ′ with vertex i pointing to P
Add P ′ to A
Add P ′ to L

Update MP so vertex i points to P ′

return Q is mutation-finite

Algorithm A.1.3: Determine whether a quiver is mutation-infinite or not

Slower mutation-finite check

The above algorithm will only terminate if the initial quiver is mutation-finite. In the

case of a mutation-infinite quiver, the mutation-class is infinite, so the computation

will continue indefinitely. The algorithm can be adapted to terminate for mutation-

infinite quivers using the result in Proposition 3.2.7.

Once a new quiver is computed which has not yet been found, check whether

it contains three or more arrows between any two vertices. If it does then the

mutation-class is known to be infinite, so the procedure can be terminated. See

Algorithm A.1.3.

There are only a finite number of ways to draw a graphs with a fixed number of

vertices and up to 2 arrows between any two vertices. Hence in an infinite mutation-
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class there will eventually be a quiver with 3 or more arrows between two vertices

and therefore the procedure will always terminate.

The two procedures to compute whether a quiver is mutation-finite can be com-

bined to provide a faster run time in the majority of cases. By first using the fast

approximation, most mutation-infinite quivers will be identified as mutation-infinite

and any quivers which are not then get passed to the slower check to confirm whether

they are mutation-finite.

A.1.2 Computing quivers

The above algorithms give procedures to tell whether a given quiver is mutation-

finite or mutation-infinite. By iterating through a range of quivers these checks can

be used to find all quivers which satisfy certain properties.

Computing all mutation-finite quivers

Proposition 3.2.2 states that all subquivers of a mutation-finite quiver are again

mutation-finite. This fact is used to build up mutation-finite quivers of a certain

size n by adding vertices to the mutation-finite quivers with n − 1 vertices. All 2

vertex quivers are mutation-finite, so with these as a starting point we can recursively

compute all mutation-finite quivers of size n, using the procedure in Algorithm A.1.4.

By Proposition 3.2.7 any mutation-finite quiver contains at most 2 arrows between

any two vertices, so when adding a vertex to the quivers of size n − 1 it suffices

to only add either 0, 1 or 2 between the new vertex and any others. Adding more

arrows would immediately yield a mutation-infinite quiver.

Computing all minimal mutation-infinite quivers

Any subquiver of a minimal mutation-infinite quiver is a mutation-finite quiver.

Therefore to construct these quivers of a certain size n start with all mutation-finite

quivers of size n− 1 and extend the quiver by adding another vertex in all possible

ways with either 0, 1 or 2 arrows between the new vertex and any other vertices.
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Input: n Size of quiver to output
Data: A List of mutation-finite quivers
Result: A list of all mutation-finite quivers of size n

Function Finite(size n)

if n = 2 then

Let A = {· → ·, ·⇒ ·}
return A

foreach Quiver Q in Finite(n− 1) do

foreach Extension of Q to possibly mutation-finite quiver Q′ do

if Q′ is mutation-finite then

Add Q′ to A

return A

Algorithm A.1.4: Compute all mutation-finite quivers of size n

The quivers obtained in this way could then be minimal mutation-infinite and so

this needs to be verified.

For a given quiver to be minimal mutation-infinite it must satisfy two conditions,

namely that it is mutation-infinite and that every subquiver is mutation-finite. Both

of these conditions can be checked using the above procedures.

A.1.3 Checking number of moves

Theorem 3.5.2 states the maximum number of moves required to transform any

minimal mutation-infinite quiver to one of the class representatives. To compute this

number each minimal mutation-infinite quiver is checked in turn to find the minimal

number of moves needed to transform that quiver to its class representative.

This minimal number of moves can be found by applying all applicable moves

to the initial quiver and storing the number of moves taken to reach each quiver

obtained in this way. We can ensure that the number of moves used to obtain a class

representative is minimal by always choosing the next quiver used in the process to

be the one obtained through the fewest number of moves.
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A.2 List of moves

This section lists all moves required to transform any minimal mutation-infinite

quiver to one of the representatives. Any listed move should also be considered along

with the move where all arrows are reversed.

Where a move has the requirement that one of the components is a line this

requires that the component is a line with one of its endpoints adjacent to the move

subquiver.

A.2.1 Moves for quivers of size 5

X X

If X is

a line

A.2.2 Additional moves for quivers of size 6

X Y

X Y

If X or Y

is a line

X X

A.2.3 Additional moves for quivers of size 7

X Y X
Y

X

Y

X

Y

If Y is

a line

X X

X

Y X

YIf Y is

a line
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A.2.4 Additional moves for quivers of size 8

X

YZ

X

YZ

If X and Y

are lines

W

XY

Z

W

XY

Z

X

Y

Z

Y

X

Z

If X,Y and Z

are all lines

X Y

Z

X Y

Z

A.2.5 Additional moves for quivers of size 9

X

Y

Z

X

Y

Z

If Z is

a line

X

Y

X

Y

If X and Y

are lines

X

Y

X

Y

If X and Y

are lines

X Y

X Y

If X and Y

are lines

X

XIf X is

a line

X

Y

X

Y

If X and Y

are lines

X

Y

X

Y

If X and Y

are lines
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Y

X

X

Y

If X and Y

are lines

X

Y

X

Y

If X and Y

are lines

X

Y

X
Y

If X and Y

are lines

X

Y

X

Y

If X and Y

are lines

A.2.6 Additional moves for quivers of size 10

X
X

X X

X

X

If X is

a line

X

Y

X

Y

X X

If X is

a line

X

Y

X Y

X

X

If X is

a line
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X

X

X

Y

X

Y

minimal

mutation

infinite

mutation

finite

X

Y

minimal

mutation

infinite

minimal

mutation

infinite

mutation

finite

minimal

mutation

infinite

mutation

finite

X

X

minimal

mutation

infinite

mutation

finite

X

X

minimal

mutation

infinite

mutation

finite

X

X

minimal

mutation

infinite

mutation

finite

X

minimal

mutation

infinite

X

X

minimal

mutation

infinite

mutation

finite

X

X

minimal

mutation

infinite

mutation

finite
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X

Y

X

Y

minimal

mutation

infinite

mutation

finite

X

Y

X

Y

minimal

mutation

infinite

mutation

finite

X

Y

X
Y

minimal

mutation

infinite

mutation

finite

X Y
minimal

mutation

infinite

X
Y

X Y

minimal

mutation

infinite

mutation

finite

X Y

minimal

mutation

infinite

X

Y

X Y

minimal

mutation

infinite

mutation

finite

X Y

X

Y

minimal

mutation

infinite

mutation

finite
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Properties of minimal

mutation-infinite quivers

supplementary material

B.1 Tables of move-class invariants

We provide tables of mutation invariants for the different move-classes of the minimal

mutation infinite-quivers. We label the move-classes first by the rank of the quivers

and then with a subscript referring to the order in which their representative appears

in Table 3.1, Table 3.2, and Table 3.3. The starred values are conjectural. It is a well-

known fact that the determinant of the matrix BQ is also invariant under mutation,

but this invariant does not give us any new information about the mutation-classes

so it is omitted.
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Move-class rank(BQ) Acyclic quivers Non-acyclic in Ψ̂(Q)

41 4 6 14
42 2 4 12
43 4 2 13
44 4 1 5
45 4 0 17
46 4 6 14
51 4 8 80∗

52 4 10 55∗

53 4 5 101∗

54 2 5 25∗

Table B.1: Rank 4 and 5 hyperbolic Coxeter simplex move-classes.

Move-class rank(BQ) Acyclic quivers

61 4 16
62 2 6
63 6 10
64 6 20
71 6 48
72 6 12
73 6 30
74 6 28
81 8 80
82 6 96
83 8 14
84 8 42
85 8 70
91 8 219
92 8 151
93 8 16
94 8 55
95 8 95
96 8 76
101 10 225
102 8 138

Table B.2: Higher rank hyperbolic Coxeter simplex move-classes.
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Move-class rank(BQ)

65 6
66 4
75 6
86 8
97 8
103 10

Table B.3: Double arrow move-classes.

Move-class rank(BQ)

76 6
87 6
88 8
98 8
99 8
910 8
104 10
105 10
106 8
107 10

Table B.4: Exceptional move-classes.
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