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Abstract

We study the symmetry and dynamics of M5-branes as well as chiral p-forms in this

thesis. In the first part, we propose a model describing the gauge sector of multiple

M5-branes. The model has modified six-dimensional Lorentz symmetry and its

double dimensional reduction gives 5D Yang-Mills theory with higher derivative

corrections. The non-abelian self-dual string solutions to this model are presented.

In the second part of the thesis, we propose an alternative new action for the single

M5-brane. The six-dimentional worldvolume space is covariantly split into 3+3.

The relation of the new action to the conventional PST action as well as to the M2-

brane action are studied. Finally, we briefly discuss the attempt to formulate the

M5-brane action in a 2+4 splitting of worldvolume space and some duality properties

and issues of chiral p-form actions.
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Chapter 1

Introduction

In this thesis, we study a fundamental building block of M-theory called M5-branes.

They are non-perturbative extended objects propagating in eleven dimensional space-

time. In particular, we will be dealing with a mathematical object — a self-dual

2-form gauge field living on the worldvolume of M5-branes. To this end, we will

revisit the technique to write down a Lorentz covariant chiral p-form action, the

Pasti-Sorokin-Tonin (PST) formulation, and apply this formalism on the M5-brane.

The goal of physicists is to find out the ultimate fundamental rules governing

the world we are living in. Usually, the way people look at this world changes

with the degree of understanding we have about the nature. Scientists need to

develop new ideas and tackle with novel mathematical objects as they progress. We

will eventually introduce the M5-brane and self-dual 2-form toward the end of this

chapter.

Particles to Strings : Roughly speaking, we would like to answer the following

two fundamental questions :

1. What are/is the elementary1 degree(s) of freedom which constitute(s) every-

thing in this world?

1 What are elementary may depend on the regime of validity of a theory. For example, S-duality,

which will be introduced later, exchanges fundamental excitations with solitonic excitations of a

theory.

2



Chapter 1. Introduction 3

2. What are/is the interaction(s) between the elementary objects?

The Standard Model (SM) is the most successful theory so far, that has a more than

reasonable agreement with experiments, to describe the interactions between the

subatomic particles. The fundamental degrees of freedom in the SM are ‘particles’,

including quarks and leptons that make up the matter, gauge bosons that mediate

the interactions, and the famous Higgs boson that gives rise the masses to various

particles. However, the SM is obviously incomplete as it describes only three of four

discovered interactions; electromagnetism, weak and strong forces. The gravitational

force is missing.

Interestingly, in the process to understand hadron dynamics, there is a failed

attempt called the ‘dual model’. It was not successful in the point of view of QCD

as the consistency requires extra dimensions and the spectrum contains a massless

spin 2 particle. In particular, in the generalisation of Veneziano’s 4-point functions

to higher multi-point ones, it was found that the factorisation could be described

conveniently in terms of a set of harmonic oscillators [4] :

[aMm , a
N
n ] = mηMNδm+n, aM†n = aM−n, aMn |0〉 = 0 ∀n > 0, (1.0.1)

where ηMN = diag(−,+,+,+)MN 2, m,n are integers and [ , ] denotes the commuta-

tion relation. In hindsight, these oscillator modes may be regarded naturally as the

excitation modes of a one dimensional string. After more and more understanding

of the properties of the dual model geometrically in terms of strings, it was realised

that it is more appealing to promote the dual model as a fundamental string theory

describing all known particles and interactions. The very unwanted massless spin 2

particle in the spectrum is then regarded as the graviton mediating the gravitational

force.

Unlike the quantum field theory of particles, the consistency conditions in string

theory are so strong that there are no free parameters, unlike in the SM. The only

dimensionful parameter is the Regge slope α′ which is related to the string tension

2 The model was proposed to live in 4D at that time. The interesting story of the growth of

dual model to string theory may be found in [5].
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and string length by TS1 = 1/(2πα′) and α′ = l2s . This string length also sets up an

energy scale 1/ls. Strings exhibit particle behaviour if their energy is much less than

1/ls. The number of space-time dimension is also fixed by consistency. Moreover,

the interaction of the string is dynamically generated by the background, there are

no coupling constants that can be tuned by hand. Another advantage of string

theory is that the ultra high energy behaviour of point particles in quantum field

theory is nicely regulated, i.e. it is UV finite in string theory. The heuristic reason

for this is that, the definite point-like interactions in Feynman diagrams are smeared

out up to the string length scale by the corresponding stringy world-sheet diagram.

Another important ingredient to unification and to provide good control of quan-

tum corrections is supersymmetry. Supersymmetry is a symmetry relating states

of different spin statistics, it transforms a boson to a fermion, and vice versa. It is

also a natural way to evade the Coleman-Mandula theorem [6] which states that the

requirement of nontrivial S-matrix only allows for a trivial combination of space-

time and internal symmetries, under some reasonable assumptions. However, the

graded supersymmetry algebra allows for supercharges that transform under Lorentz

group nontrivially, such that states with different spins/helicities are combined into

a supermultiplet which transform into each other with the action of supercharges.

The consideration of supersymmetry also makes the introduction of higher dimen-

sions natural. When the supersymmetry is made local, it is necessary to include

gravity and the resulting theories are called supergravity theories. The eleven di-

mensional supergravity turns out to be the low energy limit of M-theory, which will

be introduced later, and one of the ingredients of M-theory, the M5-brane, has a six

dimensional superconformal field theory living on its worldvolume. The largest num-

ber of dimensions for supergravity is eleven, while the superconformal field theory

can only exist up to six dimensions [7].

There are in total five consistent superstring theories despite the consistency

conditions strongly constraining the theories. Nevertheless, built on the results ob-

tained in the early nineties, an eleven dimensional fundamental theory, which is

called M-theory nowadays, was proposed in [8]. In this framework, the five super-

string theories as well as eleven dimensional supergravity are unified as different lim-
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its of the moduli space of the M-theory [9,10]. Consideration of eleven dimensional

supergravity suggests that there are M2-branes which couple to the background 3-

form gauge field electrically as well as M5-branes which couple to the gauge field

magnetically. These M2- and M5-branes are regarded as the fundamental degrees

of freedom in M-theory although it might be possible that the M2- and M5- branes

are just emergent objects. There are also other proposals to define M-theory as a

matrix model [11].

The M5-branes worldvolume theory is described by the six dimensional supercon-

formal field theory with (2,0) supersymmetry, in the low energy limit and the limit of

decoupling of background gravity, when the renormalisation group flow is driven to

the conformal infrared fixed point. Supercharges in six dimension can carry different

chiralities, (2,0) means that the supersymmetry is generated by two charges with

the same chirality. The only supermultiplet that contains no gravity is the tensor

multiplet, which contains a chiral 2-form, five real scalars and symplectic Majorana

spinors. The chiral 2-form is defined as a 2-form whose 3-form field strength is

self-dual under the Hodge duality with respect to the six dimensional metric. This

self-duality condition is required by the supersymmetry. The five scalars are nat-

urally interpreted as the the transverse target space coordinates of the M5-branes.

The chiral 2-form living on the worldvolume can couple to the boundary of the M2-

branes ending on the M5-branes. The one-dimensional boundaries of M2-branes on

the M5-branes are called self-dual strings, they appear to be the soliton solutions

of the M5-brane worldvolume theory. The self-duality condition obscures the action

formulation. Also, whenever there are multiple M5-branes on top of each other, the

gauge symmetry is expected to be non-abelianized. It is widely believed that there

is no action formulation for the non-abelian (2,0) field theory [12]. However, there

indeed exists action formulations, at least for the single M5-brane case [13, 14]. We

will propose an alternative action for the single M5-brane, and also put forward a

simple non-abelian model to describe the bosonic gauge sector of the multiple M5

branes in this thesis.

The organisation of the thesis is as follows. Chapter 1 includes the general

background introduction and the basics needed to understand the following chap-
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ters of the thesis. The remainder of the thesis is divided into two parts; the first

part contains the proposal of a non-abelian self-duality condition in Chapter 2 and

the self-dual string solutions to it in Chapter 3, the second part describes the con-

struction of a novel alternative single M5-brane action by splitting the worldvolume

directions into 3+3 in Chapter 4, and the surprising result of the so-called 2+4

formulation in Chapter 5. The thesis is concluded in Chapter 6.

1.1 String theory

In the remaining part of Chapter 1, we review the general basics and background

needed to understand the rest of the thesis. The reader may find more details in any

standard textbooks, such as [15–19], and review articles [9, 10, 20–22] and original

literature in the references therein.

1.1.1 Bosonic strings

The (perturbative) string theory describes one-dimensional extended objects, strings,

propagating in a D-dimensional target space-time. These strings sweep out in

time two-dimensional world-sheets. The dynamics of strings are described by the

Polyakov action

S = − 1

4πα′

∫
d2σ
√−γγmn∂mXM∂nX

NGMN(X), (1.1.2)

where GMN is the target space metric, XM , M,N = 0, 1, · · · , (D− 1) are the target

space coordinates, γmn are auxiliary fields on the world-sheet, and σm = (τ, σ)m,

m,n = 0, 1 parametrize the world-surface. The parameter α′ is related to the string

tension and string length as TS1 = 1/(2πα′), α′ = l2s respectively. If one integrates

out the auxiliary fields γmn, one obtains the Nambu-Goto action

SNG = −TS1

∫
d2σ
√
− det (∂mXM∂nXNGMN), (1.1.3)

whose geometrical meaning is manifest. The Nambu-Goto action is the product of

the area of the world-sheet with the string tension. It is convenient to work with

the Polyakov action as it is quadratic in X. The Polyakov action enjoys the two-

dimensional reparametrisation invariance as well as the Weyl symmetry, which is a



1.1. String theory 7

rescaling of the auxiliary field. The dynamics is described by the field equation of

XM , while the field equation of γmn imposes constraints. To proceed, it is clever

to choose a convenient gauge after the variation of the action, for example, one can

choose γmn = eφ(σ)ηmn where ηmn = diag(−1, 1) by making use the reparametrisation

symmetry. For simplicity, let us consider the target space to be Minkowskian with

GMN = ηMN = diag(−1, 1, · · · , 1). In this gauge, the field equation and boundary

condition for X are

∂m∂
mXM(σ) = 0, (1.1.4)

∂XM

∂σ
δXM

∣∣∣∣σ=π

σ=σ0

= 0, (1.1.5)

where the two ends of strings are at σ0 and π. Different ways to realise the bound-

ary condition will result in different topologies for the strings. An obvious way to

satisfy the boundary condition is to impose periodicity. In this case, we can choose

XM(τ, σ) = XM(τ, σ+2π) and σ0 = −π; this is known as the closed string. Alterna-

tively, one can consider strings with open ends at σ = σ0 = 0 and σ = π. One may

impose ∂XM/∂σ = 0 at separated ends, known as Neumann boundary conditions.

Finally, one may require δXM = 0 at both ends, known as Dirichlet boundary condi-

tion. The last case is equivalent to ∂XM/∂τ = 0 at the ends. Actually, for the case

of open strings, one can have different choices of boundary conditions for different

directions M , and for the two ends at σ = σ0 and σ = π. The choice of Dirichlet

boundary conditions freezes the motion of the end points in certain directions. This

effectively defines a sub-manifold in the target space. The ends of strings satisfying

Dirichlet boundary conditions actually attach to higher dimensional extended ob-

jects called D-branes. They are non-perturbative objects in string theory, which we

will describe later.

The field equation of XM is a wave equation. The solution to the field equation

satisfying the boundary conditions can be written as

XM(τ, σ) = xM +
√

2α′aM0 τ + i

√
α′

2

∑
n6=0

1

n

(
aMn e

−in(τ+σ) + aMn e
−in(τ−σ)

)
(1.1.6)

for Neumann open string boundary conditions, while for Dirichlet open string bound-
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ary conditions the solution reads

XM(τ, σ) = cM1 +
1

π
(cM2 − cM1 )σ + i

√
α′

2

∑
n6=0

1

n
aMn
(
e−in(τ+σ) − e−in(τ−σ)

)
, (1.1.7)

where the two ends of the open string are fixed at XM(τ, 0) = cM1 and XM(τ, π) =

cM2 . For closed strings, the solution reads

XM(τ, σ) = XM
L (τ + σ) +XM

R (τ − σ), (1.1.8)

where

XM
L (τ + σ) =

1

2
xM + α′

pM

2
(τ + σ) + i

√
α′

2

∑
n6=0

aMn
n
e−in(τ+σ), (1.1.9)

and XM
R can be obtained by the replacement σ→ − σ, aMn →āMn via XM

L . These

Fourier coefficients aMn , ā
M
n turn out to be the appropriate phase space variables

to quantise the strings. Upon quantisation, the aMn satisfy exactly the algebra of

(1.0.1) in the dual model. We now see that the infinite oscillators introduced in the

dual model are naturally interpreted as the vibration modes of strings. If dealing

with closed strings, one would have the other copy of algebra with the replacement

aMn →āMn in (1.0.1), and we have [aMn , ā
N
m] = 0.

The M = N = 0 of (1.0.1) give negative norm states. This is unacceptable as

one would lose the probability interpretation of quantum mechanics. However, one

should also consider the physical conditions required by the appropriate quantum

mechanical version of constraints which are imposed classically by the vanishing

of field equations of the auxiliary field γmn.3 Appropriate implementation of the

constraints shows that there will be no negative norm states in D 6 26. Other

consistency conditions of the theory would fix the critical dimension of space-time

to be 26.

The algebra (1.0.1) generates a spectrum containing an infinite tower of states,

with arbitrarily high spins and masses. However, in many cases, we are often in-

terested in the low energy limit of the theory, in which only the massless states are

3 We implicitly use the old covariant quantisation here. One can alternatively use the light-cone

quantisation to solve the constraints.
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accessible. For the open string with Neumann boundary conditions, the spectrum

contains a tachyon and a massless 1-form gauge field and higher states. This may

be seen by the mass formula M2
k = (k− 1)/α′, where k = 0, 1, 2, · · · . For the closed

string, we have, besides the tachyon, a massless scalar (dilaton), an anti-symmetric

rank 2 tensor gauge field, a graviton, and massive states. For the closed string, the

mass formula is M2
n = 4

α′ (N − 1) = 4
α′ (N̄ − 1), where N = N̄ = 0, 1, 2, · · · .

For the closed strings, one may impose the symmetry σ↔− σ (hence aMn ↔āMn ),

so that one obtains “unoriented strings”. In this case, the anti-symmetric 2-form

gauge field drops from the massless spectrum. For superstrings, the symmetry under

σ↔− σ can only be applied alone on the IIB theory but not on IIA, as it will be

discussed later that IIB is chiral but IIA is non-chiral. The existence of tachyons

indicates the instability of the vacuum, however, we will see that they are absent in

the case of superstrings.

1.1.2 Superstrings

The bosonic string theory can be made supersymmetric in the physical (target)

space-time. There are two popular ways to achieve this. It turns out one can ei-

ther embed a supersymmetric world-sheet into a bosonic target space, known as

Ramond-Neveu-Schwarz (RNS) formulation; or embed a bosonic world-sheet into a

target superspace, known as Green-Schwarz(GS) formulation. We will briefly review

the RNS formalism in this subsection. The GS formulation requires additional tech-

nical complication and it is known to be hard to quantise strings Lorentz covariantly

in GS formulation. Nevertheless, it turns out GS formalism can be straightforwardly

generalised to describe D-branes, and we will come to this later. There are other for-

malisms for superstrings, for example, super-embedding and pure spinor formalisms.

We will briefly describe the idea of the super-embedding formalism in Section 1.3.5.

The pure spinor formalism allows one to quantise the superstring covariantly and

allows one to compute scattering amplitudes more efficiently [23–25]. However, the

pure spinor formalism is beyond the scope of this thesis.

We add in XM(σ) its fermionic partner χMα (σ) and an auxiliary field FM to form

a (1,1) supermultiplet in 2d, where α = 1, 2 is the Spin(2) index. The action which
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enjoys the rigid supersymmetry is∫
d2σ

(
−1

2
∂mX

M∂mXN − i

2
χ̄M��∂χN +

1

2
FMFN

)
ηMN , (1.1.10)

where χ̄ ≡ χTC, χM can be written as a column vector (χM+ χM− )T , γm = (iσ2, σ1)m,

C = −γ0 and σ1, σ2, σ3 are Pauli matrices. Two Majorana-Weyl spinors with dif-

ferent chirality χM± form a Majorana spinor χM . This action can be extended to

couple to 2d supergravity for which the vielbein eam and gravitino ψmα are added,

a = 0, 1 is tangent space index. By a clever choice of the gauge, the dynamical field

equations become

∂m∂
mXM = 0, ��∂χM = 0, (1.1.11)

and the boundary terms are(
χM− δχ−M − χM+ δχ+M

)∣∣π
σ0

= 0, (1.1.12)

in addition to the bosonic ones (1.1.5).

R, NS sectors :

The vanishing of the boundary term (1.1.12) turns out to be subtle. Different

boundary conditions lead to different sectors of superstrings that give space-time

fermions or bosons.

Open string : For open strings, we take σ0 = 0. As spinors satisfy first order

differential equations, the general ansatz to realise (1.1.12) turns out to be

χM+ (τ, 0) = χM− (τ, 0), χM+ (τ, π) = sχM− (τ, π), (1.1.13)

where s = ±. One can freely choose the phase of the spinors at σ = 0, but then the

sign s for the other end σ = π becomes physical. The choice s = 1 is called Ramond

sector (R) and the choice s = −1 is the Neveu-Schwarz sector (NS). A useful trick

to realise the boundary condition and Fourier expansion is to extend the domain of

definition by

XM(σ) =

X
M(σ) 0 6 σ < π

XM(−σ) − π 6 σ < 0

,ΨM(σ) =
1

α′

χ
M
+ (σ) 0 6 σ < π

χM− (−σ) − π 6 σ < 0

,

(1.1.14)
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then we have

(R) : ΨM(π) = ΨM(−π), (NS) : ΨM(π) = −ΨM(−π), (1.1.15)

so that we have the mode expansions

(R) : ΨM =
∑
n∈Z

dMn e
−inσ+

, (NS) : ΨM =
∑
r∈Z+ 1

2

bMr e
−irσ+

, (1.1.16)

where σ± ≡ τ ± σ.

Closed string : We take σ0 = −π. σ = −π and σ = π are at the same point.

This means, as spinors, χM± can be either periodic or anti-periodic for + and −
independently,

(R) : χM± (π) = χM± (−π), (NS) : χM± (π) = −χM± (−π). (1.1.17)

Combining the choices for left (+) and right (−) chiral parts, we then have four

different sectors : (NS,NS), (NS,R), (R,NS) and (R,R). The Fourier expansion

is then

(R) : χM+ =
√
α′
∑
n∈Z

dMn e
−inσ+

, (NS) : χM+ =
√
α′
∑
r∈Z+ 1

2

bMr e
−inσ+

, (1.1.18)

where the expansion of χM− can be obtained from the above by the substitution

σ+→σ−, dMn →d̄Mn , bMr →b̄Mr .

Quantisation :

Open strings : Besides (1.0.1), we now also have the algebra

(R) :
{
dMn , d

N
m

}
= δn+mη

MN , (NS) :
{
bMr , b

N
s

}
= δr+sη

MN . (1.1.19)

For the NS sector, we have a tachyon, a massless 1-form gauge field and massive

bosons. For the R sector, notice that the zero modes form a Clifford algebra of

space-time (up to a rescaling) {
dM0 , d

N
0

}
= ηMN . (1.1.20)

Quantum mechanically, states need to realise the representation of, in particular,

this zero mode algebra. This means the space-time fermions are secretly encoded in
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the choice of Ramond boundary conditions for the RNS formulation. The spectrum

then contains a massless Majorana spinor and massive spinors.

For both sectors, we have a no-ghost theorem saying that there are no negative

norm states if D 6 10. Other consistency conditions fix the critical dimension to be

D = 10 for superstrings.

GSO projection : To have a supersymmetric theory, a necessary condition is

that the on-shell degrees of freedom between bosons and fermions must be matched.

This is not the case for the raw superstring spectrum we just presented. However,

the Gliozzi-Scherk-Olive (GSO) projection allows us to project out some unwanted

states and finally construct the space-time supersymmetry of strings. This is like a

refinement of the theory by a Z2 grading. The projector is

(−)F =

(−)
∑∞
r=1/2 b

†
r·br−1 (NS)

Γ11(−)
∑∞
n=1 d

†
n·dn (R),

(1.1.21)

where Γ11 ≡ (
√

2)10d0
0 · · · d9

0. The inclusion of Γ11 is needed for the match of degrees

of freedom. There is another copy (−)F̄ for the closed strings, with the oscillators

replaced by their bar-ed partners.

For open strings, the projection condition is (−)F = 1 for all states. The GSO

projection kills the tachyon states and states at every second level in the NS sector.

In the R sector, the projection would select a certain chirality for the Majorana

fermions. Amazingly, the resulting theory turns out to be space-time supersymmet-

ric.

For closed strings, there are two choices of projection conditions,

IIB : (−)F = (−)F̄ = 1 (1.1.22)

for all sectors, and

IIA :
(

(−)F , (−)F̄
)

=



(1,−1) (NS,R)

(1, 1) (R,NS)

(1, 1) (NS,NS)

(1,−1) (R,R).

(1.1.23)
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The massless field content for the two choices turn out to coincide with that of

IIA and IIB supergravity in D = 10. IIA and IIB supergravity are the unique 10d

theories with maximal 32 supercharges. In fact, the low energy limit of type IIA and

IIB superstrings, or the point particle limit α′→0, are just IIA and IIB supergravity

respectively. IIA has 10d (1,1) supersymmetry, while IIB is chiral (0,2). Let us

mention that both theories have the same field content in the NS-NS sector, dilaton

Φ, anti-symmetric 2-form (Kalb-Ramond field) B2 and the graviton GMN .

Before ending this subsection, let us discuss a bit more about the (R,R) sector

of closed strings. The bosonic states in this sector carry two spinor indices so they

can be expanded in terms of the complete basis of Clifford algebra. If we apply the

IIB projector condition on the expansion, we will see that the spectrum contains

1-form, 3-form and 5-form fields F1, F3 and F5, where F5 = ∗F5, where ∗ denotes the

Hodge duality. The physical conditions will further justify that these form fields are

field strengths and satisfy second order field equations. However, we see that the

5-form field strength satisfies the first order self-duality equation. As they are all

massless, they will survive in the low energy limit and hence the IIB supergravity

involves a self-dual 5-form. The self-duality of the 5-form field strength makes the

action formulation difficult, as the action principle usually gives a second order field

equation but the self-duality equation is of first order. Usually, for many purposes,

it suffices to impose the self-duality equations “by hand”. However, we will see later

that there is some trick allowing us to have an action formulation for the self-dual

field strength. For IIA, the GSO projection gives the spectrum with field strength

F2, F4. These differential form fields are usually called RR gauge fields and will

be sourced by non-perturbative extended objects called D-branes introduced in the

next section.

So far, we have been considering the string theories in a trivial background, i.e.

in the eleven dimensional Minkowski space. Actually strings can be embedded in

a nontrivial target background, for example, one can consider bosonic strings in a

curved target space (with curvature R) with nontrivial dilaton Φ and Kalb-Ramond
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2-form BMN ,

S = − 1

4πα′

∫
d2σ
√−γ

[
(γmn + εmn)∂mX

M∂nX
N (GMN +BMN) + α′ΦR

]
.

(1.1.24)

The Weyl invariance at the quantum level would require the background fields to

satisfy certain differential equations. One of the solutions is the Minkowski vacuum

: BMN = 0, Φ = Φ0 is a constant, and GMN = ηMN . In general, assuming Φ has the

vacuum expectation value (vev) 〈Φ〉 = Φ0, the last term in the action then gives a

topological invariant,

− α′

4πα′
〈Φ〉

∫
Σ

d2σ
√−γR = Φ0(2− 2g) = Φ0χ, (1.1.25)

where g is the genus of the world-sheet and χ is the Euler characteristic. We thus

realise that when we calculate amplitudes and sum over topologically inequivalent

world-sheets in genus expansion, eΦ0 serves as a coupling constant. Thus, the string

interaction is determined dynamically from the background, rather than being spec-

ified by hand for the theory.

Moreover, there are also background gauge fields in the RR sector, we will see

later that these RR fields could couple to D-branes worldvolume naturally.

1.2 D-branes

As something open strings can end on

D-branes are non-perturbative, dynamical objects in string theory. It was mentioned

previously that Dirichlet boundary conditions of the open string effectively define

a sub-manifold of target space-time. Actually, the directions on which the ends of

the open string can freely move compose the worldvolume space of the D-branes. A

Dp-brane is a D-brane which has a (p + 1)-dimensional worldvolume space. Fields

living on the worldvolume of D-branes can be determined by the quantisation of

open strings. The tension of a Dp-brane can be calculated by a 1-loop open string

amplitude [26] to be

TDp =
1

(2π)pgsl
p+1
s

. (1.2.26)
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The inverse proportionality to the coupling constant gs suggests that D-branes are

non-perturbative objects, and the factor of lp+1
s gives the correct dimension for the

tension.

Consider the cases that both ends of the bosonic open string satisfy the same type

of boundary conditions. If both ends σ = 0, π satisfy Neumann boundary condition

in the direction M , we say M is of N−N type, if both ends satisfy Dirichlet boundary

condition in the direction N , we say N is of D−D type. For a given coordinate XM ,

it is allowed to have N−D or D−N boundary conditions on the end points, however,

we ignore these possibilities here for simplicity. Thus, we only consider bosonic open

strings ending on parallel D-branes (or on the same D-brane). The quantisation of

open strings leads to the following wave functional

Ψ =

(
φ(xM) +

∑
M∈N−N

aM−1AM(xN) +
∑

M∈D−D

aM−1ΦM(xN) + · · ·
)
|0〉, (1.2.27)

where xM are the centre of mass coordinates in the N−N directions which can be

identified as the coordinates of the D-branes upon the choice of static gauge, |0〉 is

the vacuum state and the · · · denotes higher modes. φ is a tachyon, AM is a vector

field, while ΦM are scalar fields. Assuming M = 0, 1, · · · , p are the N−N directions,

the Lorentz symmetry of the target space is then broken as SO(1, D−1)→SO(1, p)×
SO(D − p − 1). The factor SO(1, p) is identified as the Lorentz symmetry of the

branes while SO(D − p − 1) becomes an internal global symmetry. Consider the

case of two parallel D-branes located at xM1 and xM2 for M = p+ 1, · · · , D− 1. The

mass squared of the open string is given by

− 1

α′
+

1

4π2α′2

∑
M,N∈D−D

(xM2 − xM1 )ηMN(xN2 − xN1 ) + · · · , (1.2.28)

where · · · denotes the contribution of oscillator modes. If we have a single D-brane,

or the D-branes are on top of each other, xM2 = xM1 and thus the second term

vanishes. For the AM and ΦM states, the contribution to the mass-squared from the

oscillator modes also vanish. Hence, we have a massless vector field and scalar fields

living on the worldvolume of D-branes. The scalar fields can be identified as the

Goldstone modes associated with the broken target space translational symmetry.

For the case of superstrings, the tachyon will be GSO projected out and both AM
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and ΦM will be preserved. When considering supersymmetry, there are (p − 1) +

(10 − p − 1) = 8 on-shell bosonic and (32/2) /2 = 8 fermionic degrees of freedom

respectively. The presence of the D-brane breaks half of space-time supersymmetries,

this accounts for the first factor of 2. The second factor of 2 counts the fermionic

degrees of freedom on-shell.

Considering N parallel D-branes. There are N2 ways labelled by [ij], called

Chan-Paton factors, for open strings to connecting these parallel D-branes, with

i, j = 1, · · · , N . Notice that [ij] is considered to be inequivalent to [ji] as we are

interested in oriented strings. The [ij] string has the σ = 0 end attached to the brane

i while the [ji] string starts from the brane j. We have seen above that such [ij]

strings are massive if i 6= j, and these [ii] strings contain a vector gauge field, actually

they are abelian U(1) gauge fields. Moreover, one can also consider the limit where

the D-branes are on top of each other. In this limit, all the states [ij] are massless,

so that they are all relevant states in the low energy. This enhancement of number

of massless states also suggests the enhancement of the gauge symmetry from U(1)N

to U(N). The centre of mass factor U(1) of U(N) is sometimes irrelevant in many

discussions so that one takes the gauge group SU(N). The non-abelianisation of

the gauge symmetry for the coincident branes is expected to be a generic feature in

both string theory and M-theory, though we don’t have such a picture in terms of

open strings in M-theory.

as solitonic solutions of supergravity

The low energy effective theories of IIA and IIB superstring theories are type IIA

and IIB supergravity respectively. The bosonic parts of their actions are given by

SIIA =
1

2κ2
10

∫
d10x
√−g

[
e−2φ

(
R + 4|∇φ|2 − 1

12
H2

3

)
+

1

2
dC3∧dC3∧B2 −

1

2

∑
n=2,4

1

n!
F 2
n

]
, (1.2.29)

SIIB =
1

2κ2
10

∫
d10x
√−g

[
e−2φ

(
R + 4|∇φ|2 − 1

12
H2

3

)
−1

2
C3∧H3∧F3 −

1

2

∑
n=1,3

F 2
n −

1

4
F 2

5

]
, (1.2.30)
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where R is the Ricci scalar with respect to the string frame metric gMN , H3 is the

field strength of the Kalb-Ramond gauge field B2, and F2 = dC1, F4 = dC3+C1∧H3,

F1 = dC0, F3 = dC2 − C0dB2, F5 = dC4 − 1
2
H3∧C2 + 1

2
B2∧dC2. κ10 is related to

10-dimensional Newton’s constant and string length by 2κ2
10 = 16πG10 = (2π)7g2

2l
8
s .

The Chern-Simons term and terms containing RR field strength can be written

as having an overall factor e−2φ in front by field redefinition. If one does this, it is

clear from the overall factor e−2φ of the Lagrangians that IIA and IIB supergravity

are tree level approximation of IIA and IIB superstrings. The factor 1/4 (instead

of 1/2) for the F 2
5 term accounts for the self-duality property of F5. However, SIIB

is a pseudo action in the sense that the self-duality condition F5 = ∗F5 is imposed

by hand. This means that the self-duality condition F5 = ∗F5 cannot be derived

by varying the action SIIB with respect to C4. Instead, one would normally impose

F5 = ∗F5, say, on the supersymmetry algebra, consistently with its second order

field equation derived by varying SIIB with respect to C4.

D-branes are 1/2-BPS (Bogomol’nyi–Prasad–Sommerfield) objects that preserve

one-half of the supersymmetries of the space-time. When the supercharges carry

not only the spinor indices but also additional indices, such supersymmetries are

said to be extended. For example, the supercharges would look like Qi
α, where α is

a spinor index and i labels the amount of supersymmetries. Typically, theories with

extended supersymmetries and Majorana supercharges have superalgebras like this4

{
Qi
α, Q

j
β

}
= −2δij

(
ΓMC−1

)
αβ
PM + Zij

αβ, (1.2.31)

where ΓM is the gamma matrix, C is the charge conjugation matrix, PM is the

momentum generator, Zij
αβ is called the central charge and M is the space-time

index. In the rest frame of a massive particle, it can be shown that the expectation

value of the operator Q2, satisfies

〈Q2〉 ∝
(
m+

z

2

)
c, (1.2.32)

4 Sometimes a supersymmetric theory which is not extended has also such forms of superalgebra

schematically, for example, the M-theory superalgebra [27,28]. The discussion of properties of BPS

states applies regardless of whether supercharges are Majorana spinors.
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where Q ≡ ε̄αi Q
i
α, m is the mass of the particle and z is defined by zε̄iα ≡ ε̄βjZ

ij
βα and

c is a positive number. Therefore, one would have

m >
|z|
2
, (1.2.33)

where the inequality is saturated only when Q annihilates the state, that is, only

when the state preserves some of the supersymmetries. The above inequality is

called BPS bound. BPS states saturate the BPS bound, and they correspond to the

representation of the short multiplet in the superalgebra. When the state saturates

the BPS bound, the representation of the superalgebra effectively looks like the

massless case and the representation becomes smaller because one has less raising

and lowering operators formed by pairs of supercharges. BPS states are usually

stable against quantum corrections and allow one to do extrapolation from weak to

strong coupling of a given theory.

D-branes are solitonic solutions of IIA and IIB supergravity equations of motion,

however, it is usually easier to obtain the solutions by solving the Killing spinor

equation,

δεΨ = 0, (1.2.34)

where δΨ is the supersymmetry transformation of fermions in the theory. The reason

is that, we are interested in the classical solutions in the bosonic background. For

these solutions preserving some supersymmetries, there exists Killing spinors ε such

that δεΨ = 0. These transformations that vanish for the given BPS solution are those

which are preserved by the states. Usually, the Killing spinor is in a form of certain

function multiplying a constant spinor ε0 that satisfies certain projection conditions,

such as Γ01···pε0 = 1, where Γ01···p denotes the product of Gamma matrices. For

example, if one solves the Killing spinor equation of eleven dimensional supergravity

0 = δεψM = DMε+
1

288
ΓM

NPQRFNPQRε−
1

36
ΓPQRFMPQRε, (1.2.35)

one could find the M5- and M2-branes solutions. For each case, the supersymmetry

variation vanishes when ε is some specific function times a constant spinor ε0, which

satisfies Γ012ε0 = ε0 for M2-branes and Γ012345ε0 = ε0 for M5-branes.
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The maximum number of dimensions allowed for supergravity is eleven. The

eleven dimensional supergravity action [29] is

S11 =
1

2κ2
11

∫
d11x
√−g

(
R− 1

2× 4!
F 2

4 +
1

6
F4∧F4∧C3

)
, (1.2.36)

where F4 is the field strength of the C3 gauge field and 2κ2
11 = 16πG11 = (2πlp)

9/(2π).

The solitonic solutions in 11d supergravity contain the M2- and M5- branes which

have electrical and magnetical coupling to C3 respectively. One can show that the

dimensional reduction of 11d supergravity on a circle results in the type IIA super-

gravity. The explicit relation between eleven dimensional and IIA supergravity is

ds2
11 = e−2Φ/3ds2

IIA + e4Φ/3 (R11dψ + Cµdx
µ)2 , F̃4 = F4 +H3∧dx10, (1.2.37)

where Φ is dilaton, Cµ is RR 1-form gauge field, F4 is the RR 4-form field strength,

H3 is the field strength of Kalb-Ramond field, and F̃4 is the 4-form field strength of

3-form gauge field in 11d supergravity. R11 is the radius of the compactified circle in

the direction x10. The connection between eleven dimensional supergravity and IIA

supergravity has a deep relation with the duality between M-theory and type IIA

superstring theory. Here we don’t present the explicit brane solutions, interested

readers may find them in the nice review [30].

In 10d supergravity theories, there are also solitonic solutions representing the

fundamental strings and their magnetic dual, NS 5-branes. Unlike the D-branes,

open strings cannot end on NS 5-branes. The tension of the NS 5-brane is given as

TNS5 =
2π

g2
s l

6
s

, (1.2.38)

where the 1/g2
s dependence suggests that the NS 5-brane is non-perturbative and is

a closed string soliton.

Brane effective action

The low energy effective action of the string theory with the D-branes present can

be written as

S ≈ SSUGRA + SDp , (1.2.39)
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where SSUGRA is the supergravity action discussed just above and SDp is the world-

volume action of the D-brane. Here we first consider the single D-brane case. We

have also implicitly considered the probe brane limit. This is an approximation that

the presence of the D-brane has no back reaction on the background geometry.

The action SDp can be formulated in terms of the Green-Schwarz formulation,

in which we embed the bosonic worldvolume of the D-brane into a generic super

target space. Thus the resulting theory has manifest space-time supersymmetry.

To proceed, we accompany the bosonic coordinates XM with the Grassmann odd

coordinates θα, so that we have ZM = (XM , θα), M = 0, 1, · · · , D − 1 and α =

1, 2, · · · , 32 in D-dimensional target space. The target space indices are denoted

with underlines. The super target space geometry is described by the tangent space

supervielbeins EA(Z) = dZMEA
M(Z) and Eα(Z) = dZMEα

M(Z).

As the D-brane is a 1/2-BPS object which breaks half of space-time supersymme-

tries, there should be only 16 supercharges active in the worldvolume. However, the

Green-Schwarz formulation naturally uses spinors that have 32 components. The

way out for this puzzle is κ-symmetry. There is a local fermionic gauge symmetry

on the worldvolume, called κ-symmetry, which allows one to gauge away one half of

redundant Grassmann odd degrees of freedom. The transformation law is given by

δκZ
MEA

M = 0, δκZ
MEα

M = (1 + Γ̄)κ, δκA1 = P∗iκB2, (1.2.40)

where P∗ denotes the pull-back to the worldvolume, B2 is the Kalb-Ramond field,

A1 is the worldvolume gauge field whose field strength is F2 = dA1, κ is a local

parameter and Γ̄ is a rank 16 matrix whose explicit form depends on the specific

theory, and it satisfies Γ̄2 = 1, trΓ̄ = 0.

The form of the single D-brane effective action is (in string frame)

SDp = −TDp
∫
dp+1σ e−φ

√
− det(g + F) + µDp

∫
Mp+1

(∑
n

Cne
F

√
Â(RT )

Â(RN)

)
p+1

,

(1.2.41)

where Fµν = 2πα′Fµν − EAµ ECνBAC, ECν = ∂νZ
MECM, µ, ν = 0, 1, · · · , p are world-

volume indices, gµν = EA
µE

B
ν ηAB, and Cr is the background RR gauge r-form field

pull-back to worldvolume and φ is the dilaton. RT and RN are curvature 2-forms

of tangent and normal bundles of the D-brane worldvolume, Â is the Dirac A-roof
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genus. The square root factor in the Wess-Zumino terms denote the gravitational

interactions, which we will often ignore in the following discussions. The first term

is called the Dirac-Born-Infeld (DBI) term and the second term is called the Wess-

Zumino (WZ) term. The WZ term is presented with a succinct formal notation that

only terms of (p + 1)-form are kept to be integrated over the (p + 1)-dimensional

manifoldMp+1. The exponential is a formal Taylor expansion with exterior product

implicitly understood. Notice that the DBI term contains NS-NS fields while the

WZ term involves RR fields. The κ-symmetry of SDp would impose the condition

that the tension is equal to the charge

TDp = µDp . (1.2.42)

This is expected as the D-brane is a stable BPS object, so that the force from the

Kalb-Ramond field cancels exactly the force from the RR gauge fields. Also, the

κ-symmetry puts the background supergravity on-shell. The variation of the action

under κ-symmetry takes the form

δκSDp ∝ (1− Γ̄)(1 + Γ̄)κ, (1.2.43)

so that the variation vanishes because of Γ̄2 = 1. More technical details in proving

the invariance of D-brane actions under κ-symmetry can be found in [31] for single

D-branes in 10d Minkowski space.

We have seen that when D-branes are coincident, the gauge symmetry gets non-

abelianized. Thus, we expect the effective action for multiple D-branes to be the

non-abelian DBI action. However, it is difficult to write down a non-abelian DBI

action. The main difficulty is that the gauge fields are now matrices and their

products are non-commutative, and thus the order of fields in a product of the

determinant expansion of the DBI action matters. Usually, it is the symmetrised

trace that defines the effective action [32]. Nevertheless, if one keeps only quadratic

terms in field strength, the theory is just the super Yang-Mills (SYM) action. For

example, the low energy effective action for N D4 branes is given by the SU(N)

SYM action.

The effective action of type IIA NS 5-brane is given first in [33] in 2000. The

late discovery of the effective action may be owing to the fact that the worldvolume
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theory of IIA NS 5-brane is described by the (2,0) tensor multiplet.

gauge-fixing of κ-symmetry :

To demonstrate how the gauge-fixing of the κ-symmetry results in a supersymmetric

worldvolume theory, let us consider a simple generic case with a flat target space.

The κ-symmetry transformation is

δκθ =
1

2
(1 + Γ̄)κ, (1.2.44)

while, in the bosonic background, the supersymmetry transformation is

δεθ = ε. (1.2.45)

Let us define the projection matrices P± = 1
2
(1± Γ̄), we thus have

δκ (P−θ) = 0, δκ (P+θ) = P+κ; δε (P−θ) = P−ε, δε (P+θ) = P+ε. (1.2.46)

One can then consistently impose the gauge-fixing condition

(1 + Γ̄)θ = 0. (1.2.47)

This condition is preserved under supersymmetry transformations by a compensat-

ing κ-symmetry with κ = −ε. Therefore, only P−θ is left and its supersymmetry

transformation is

δε(P−θ) = P−ε, (1.2.48)

and the condition to preserve the worldvolume supersymmetry is then δε(P−θ) = 0,

or in the form of the projection condition

Γε = ε. (1.2.49)

intersections and branes ending on branes

There are certain allowed configurations for D-branes that preserve some amount of

supersymmetry. Here, we consider the cases of branes ending on branes orthogonally.

For example, the following is a generic configuration for two intersecting branes,

(p+ 1) q1 q2 d

(p+ q1)-brane
︷ ︸︸ ︷
e · · · e ︷ ︸︸ ︷

e · · · e
︷ ︸︸ ︷
− · · ·−

︷ ︸︸ ︷
− · · ·−

(p+ q2)-brane e · · · e − · · ·− e . . . e − · · ·−
(1.2.50)



1.2. D-branes 23

where the symbol e denotes the directions the brane extends, while − denotes the

directions transverse to the brane. q1-, q2-dimensional subspaces contain relative

transverse directions, and the d-dimensional subspace contains the overall transverse

directions. It turns out that it is the orientations of the branes that determine the

amount of supersymmetry preserved. For the generic case of (1.2.50), if q1 + q2 = 0

mod 4, the configuration preserves one quarter of the supersymmetry, i.e. has 8

supercharges. Actually, branes only intersect when they are at the same place

of the overall transverse subspace, however, we still refer to configurations given

by (1.2.50) as intersecting branes although they may be separated in the overall

transverse space.

Let us briefly explain how the above conclusion is achieved. For simplicity, let

us turn off the nontrivial worldvolume fields, then the projection conditions for the

two branes take the form

Γ(1)ε = ε, Γ(2)ε = ε (1.2.51)

respectively, where Γ(1),Γ(2) would be just products of gamma matrices. Thus, we

have either [
Γ(1),Γ(2)

]
= 0, or

{
Γ(1),Γ(2)

}
= 0. (1.2.52)

If the former relation is satisfied, 8 supercharges are preserved, while if the latter re-

lation is satisfied, all supersymmetries are broken. It happens that if q1+q2 = 0 (mod

4), one would have
[
Γ(1),Γ(2)

]
= 0. The above rule can be generalised easily for more

than two sets of intersecting branes. For example, for the configuration contain-

ing three sets of orthogonally intersecting M5-branes which extend along directions

(X0, X1, X2, X3, X4, X5), (X0, X1, X2, X3, X6, X7) and (X0, X1, X2, X3, X8, X9),

there are three projection gamma matrices Γ(1) = Γ012345, Γ(2) = Γ012367 and Γ(3) =

Γ012389, and the projection conditions are

Γ012345ε = ε, Γ012367ε = ε, Γ012389ε = ε. (1.2.53)

It is straightforward to check that the above three projection conditions are indepen-

dent and compatible so that such a configuration will preserve 1/8 of supersymmetry.

In this example, the number of relative transverse directions among any pair of M5-
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branes are four. It is also obvious that these gamma matrices commute with each

other.

Branes can also end on branes. The locus is a co-dimension one object, for ex-

ample, p-brane may end on another D-brane with a (p−1)-dimensional intersection.

This (p−1)-dimensional objects on the worldvolume of the D-brane being ended on

must have its charge carried away by an appropriate worldvolume gauge field. For

example, D1 can end on D3, D1’s charge is carried away by the worldvolume vector

gauge field on the D3.

Consider the case with N D3-branes extended along X0, X1, X2, X3 and k D1-

branes extended along X4 and ending on the D3-branes. Obviously, we have p = 0

and q1 = 3, q2 = 1, so that the configuration preserves 8 supersymmetries. For the

case of N = 1 = k, the end point of the D1-brane appears as a Dirac monopole on

the D3. Another interesting case is N = 2, k = 1. In this case, on the worldvolume of

the D3-branes, the D1 end point appears as a ’t Hooft-Polyakov monopole. ’t Hooft-

Polyakov monopole solution is a solitonic solution in the SU(2) SYM, described by a

non-abelian gauge field and a scalar field in the adjoint representation. The profile

of the scalar field, in particular, the asymptotic vev of the scalar field represents

the separation of the two D3-branes. The SU(2) symmetry is intact at the core

but spontaneously broken to U(1) at infinity. The singularity of the abelian Dirac

monopole is smeared out by the non-abelian symmetry to be smooth in the ’t Hooft-

Polyakov solution. From the point of view of the D1-brane, the monopole solution

is described by the Nahm equation [34]. The Nahm transformation allows one to

switch between the D1 and D3 descriptions of the monopoles.

The allowed configurations of branes ending on branes can also be obtained by

dualities which will be introduced later. For example, we know that by definition

the open strings can end on D3-branes, by performing an S-duality, one would find

immediately that D1 can end on D3. By further performing T-dualities, one would

find that D2 can end on D4, where the charges of the string-like objects on the D4

worldvolume are carried away by the dual of the worldvolume vector gauge field on

the D4.
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1.3 Dualities and introduction of M-theory

In this section, we describe the T and S dualities of string theory, then we will give

a very basic introduction of M-theory and its ingredients that we will be interested

in.

1.3.1 T and S dualities :

T duality is an exact symmetry of the string theory perturbatively, order by order

in the loop expansion. In particular, IIA and IIB superstring theories are equivalent

to each other via T duality. Let us compactify the space-time on a circle with radius

R in the XM direction, the mass-squared of closed string states is given by

mass2 =

(
k

R

)2

+

(
wR

α′

)2

+ (oscillator modes), (1.3.54)

where the first term is the Kaluza-Klein(KK) momenta and the second term is

contributed from the winding modes. It is clear that the mass-squared is invariant

under the exchange of KK and winding modes, i.e. k↔w, provided we also consider

the interchange of the radii R/
√
α′↔
√
α′/R. In other words, one cannot distinguish

the theory compactified on a circle with radius R, or on a circle with the dual radius

R̃ = α′/R.

One can define the dual coordinates such that the T duality transforms the

coordinates of the original space-time to

X̃M(τ, σ) = XM
L (σ+)−XM

R (σ−), χ̃+(σ+) = χM+ (σ+), χ̃M− (σ−) = −χM− (σ−).

(1.3.55)

Notice that there are sign flips for the right-moving modes. This shows that the

T duality amounts to exchanging IIA and IIB superstring theories, as chiralities of

right-moving Ramond states are changed.

As for the open strings, (1.3.55) implies that T duality swaps Dirichlet and Neu-

mann boundary conditions. Thus, if one T dualizes along a longitudinal direction

of a Dp-brane, one obtains a D(p−1)-brane localised at the dual coordinate; if one

T dualizes along a transverse direction of a Dp-brane, one obtains a D(p+1)-brane

extending along that transverse direction. One can also compactify the string theory

on a torus T n. In this case, the duality symmetry is generalised to be O(n, n;Z).
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S duality is a weak-strong duality, i.e. it maps a perturbative theory to its

non-perturbative counterpart. This kind of duality was first observed on the gauge

symmetry, say, in N = 4 SYM in 4d, the following complex coupling constant

transforms as a modular parameter under SL(2,Z) duality transformations

τ =
θ

2π
+ i

4π

g2
YM

, (1.3.56)

where θ is the theta angle of the topological term in the action, and gYM is the

Yang-Mills coupling constant. The SL(2,Z) transformations are generated by τ→−
1/τ and τ→τ + 1, in which τ→− 1/τ is equivalent to the electromagnetic duality

transformation.

It was also observed that there exists SL(2,R) symmetry in type IIB supergravity.

This symmetry is reduced to SL(2,Z) for the IIB superstring theory by stringy and

quantum effects. The identifications of gauge theory parameters and string theory

ones are given by

C0 =
θ

2π
, gs =

g2
YM

4π
= eΦ, (1.3.57)

where Φ is the dilaton field and C0 is the axion field. The SL(2, R)→SL(2, Z) may

be understood as the Dirac-Nepomechie-Teitelboim quantisation condition [35–37]

of the (p, q) strings, where p, q are coprime. (p, q) strings are bound states composed

of fundamental strings (F1) which are charged under Kalb-Ramond field B2, and

D1 strings which are charged under the Ramond-Ramond field C2. The F1 strings

are denoted as (1, 0) while D1 strings are denoted as (0, 1).

In particular, the D3-brane in the IIB superstring theory carries a charge that

sources the Ramond-Ramond gauge field C4 which is a SL(2, Z) singlet. This means

that the D3-brane action should be invariant under SL(2, Z) duality. Also, it means

that these (p, q) strings can end on the D3-branes, since the configuration of (p, q)

strings on the D3-branes can be obtained via S duality from (1,0) strings on the

D3-branes which is an allowed configuration by definition. The D3-brane action in

Minkowski background with dilaton Φ and axion C0 present is given as

SD3 =

∫
d4σ
√
− det(ηµν + e−Φ/2Fµν) +

i

8
εµνρσC0FµνFρσ, (1.3.58)

where the worldvolume induced metric is considered to be flat for simplicity. In

[32], this D3-brane action was shown to be invariant under the SL(2, Z) duality, in
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particular, it is invariant under the electromagnetic duality transformation provided

we also transform τ→− 1/τ with τ = C0 + ie−Φ. Notice that the above D3-brane

action is written in the Einstein frame, as S-duality is only manifest when IIB string

theory is in Einstein frame. Notice also that the 2-form field strength Fµν is not

extended, and C4 and C2 terms in the Wess-Zumino terms are omitted for simplicity.

This action can actually be obtained by performing the dimensional reduction of the

M5-brane action [13] on a torus [38, 39]. Notice also that the low energy limit of

the worldvolume theory for multiple D3-branes is N = 4 super-Yang-Mills theory.

N = 4 SYM is not only invariant under S duality but also superconformal, and it

is useful as a toy model both physically and mathematically.

For the recent development and point of view on dualities of string and M theory,

see, for example, [40].

1.3.2 M theory and string theories

There are three more consistent superstring theories in additional to the type IIA

and IIB theories that we have discussed. They are type I, heterotic SO(32) and

heterotic E8×E8. Closed strings in type I superstring theory can be obtained from

type IIB theory by imposing the symmetry σ→− σ, so that closed strings in type

I are un-oriented. To be consistent, open strings in type I superstring theory are

un-oriented as well, and therefore fundamental strings in type I do not carry Kalb-

Ramond charge. As a result of gauging the symmetry σ→− σ, the supersymmetry

of type I string theory is N = 1. The heterotic superstring theories are a hybrid

combination of bosonic strings for the left movers and superstrings for the right

movers. Specific gauge groups are required for the theory to be consistent. For

example, the superconformal anomaly in type I superstring vanishes only if the

gauge group is SO(32) and heterotic superstring theories must have gauge groups

SO(32) or E8×E8 to have vanishing anomaly. Moreover, both heterotic superstring

theories have N = 1 as well. These superstrings theories are known to be connected

by a web of duality relations [41]. For example, the T duality relates type IIA and

IIB theories, as well as the two heterotic theories, and S duality maps type I theory

to heterotic SO(32), while type IIB is self-dual with respect to the S duality. Based
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on these, a mother theory which has the low energy limit as the 11d supergravity and

realises the five superstring theories as the different limits on its moduli space was

proposed in [8]. This 11d fundamental theory is coined “M theory”, whose complete

quantum formulation is still unknown. However, the existence of M theory is quite

promising as it is supported by various nontrivial examples. The relations between

M theory and superstrings and 11d supergravity is summarised in figure 1.1. We

review some relations between M theory and string theories in the following that

will be relevant to us.

M

IIA IIB

11d SUGRA type I

SO(32) HeteroticE8 × E8 Heterotic

S

T

S1/Z2

S1

low energy

T

S

orientifolding

Figure 1.1: Five superstring theories and 11d supergravity (SUGRA) theory are

realised as different limits in the moduli space of M theory. The theories are related

by T-duality (denoted by T) and S-duality (denoted by S). IIA and heterotic E8×E8

theories are M theory on the circle or segment respectively. Although it is not shown

in this diagram, it is also known that M-theory on K3 is dual to SO(32) Heterotic

string theory on T 3.

M theory type IIA duality

M theory is the strong coupling limit of type IIA superstring theory. This means,

at strong coupling limit, an additional dimension is opened up. In other words, IIA
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theory is equivalent to M theory on a circle of radius

R11 = lsgs. (1.3.59)

This also explains why type IIA supergravity can be obtained from the 11d super-

gravity by dimensional reduction on a circle, as we have seen in (1.2.37). It also

implies that there is no natural parameter on which we can do perturbation theory

in 11d. In this duality relation, the D0-branes spectrum is identified as the Kaluza-

Klein excitations of the massless supergravity multiplet for M theory on a circle. The

D0-branes have mass (in string frame) 1/(lsgs), while the Kaluza-Klein momenta are

given by p11 = N/R11, where N is an integer. Notice that both the D0-brane states

and the Kaluza-Klein modes are BPS supermultiplets. By using (1.3.59), we see

that the masses of the D0-brane and lowest KK mode can be identified.

Though the microscopic degrees of freedom in M theory are not clear a priori,

there are two type of objects in M theory, M2-branes and M5-branes, whose tensions

are given by

TM2 =
2π

(2πlp)3
, TM5 =

2π

(2πlp)6
(1.3.60)

respectively. The fundamental string in type IIA theory can be obtained as the M2

brane on a circle R11, while compactification of the M5 brane on a circle gives the

D4-brane. Recall that the D-brane tension is given by (1.2.26) and that the tension

of the fundamental string is TF1 = 1/(2πl2s). One can easily check that

TF1 = 2πR11TM2, TD4 = 2πR11TM5, (1.3.61)

by using the relation (1.3.59) and

lp = g1/3
s ls, (1.3.62)

which can be read off from (1.2.37). In particular, the D4-brane action can be

obtained from the M5-brane action dimensionally reduced on a circle [13, 42]. On

the other hand, if we compactify M theory on a circle that is transverse both to the

M2- and M5- branes, the resulting objects in type IIA theory are D2-branes and

NS 5-branes. One can also verify the relation between tensions by using lp = g
1/3
s ls,

recalling the NS 5-brane tension is given by (1.2.38). While D0-branes are KK
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modes along X11 circle, D6-branes are KK monopoles described by the Taub-NUT

metric [43]. In particular, the 11d supergravity solution which reduces to a D6-

brane in type IIA superstring theory is given by a geometric background which is

a tensor product of (6 + 1)-dimensional Minkowski space-time with the Taub-NUT

space. Unlike other objects in IIA, the D8 brane has no simple relation with M

theory branes. The D8-brane is the domain wall in 10d, the existence of D8-branes

is predicted by T duality. Actually, the D8-brane is related to the M9-brane solution

in massive 11d supergravity [44].

M theory on a torus is equivalent to type IIB superstring theory on a circle. This

can be understood by the type IIA M-theory duality on a circle and T duality on

another circle. One can directly verify this by matching the spectrum of zero modes

of the BPS (p, q) strings with the KK excitations and winding modes of M2-branes,

with the identification of the modular parameter of the torus, τM , and the complex

coupling constant τ = C0 + ie−Φ. This identification of τ with the geometric proper-

ties of the M theory compactification τM is exactly what is needed to obtain the D3

brane action from the M5 action [38, 39]. In this way, the nonperturbative SL(2,Z)

duality of type IIB string theory is realised as the action of the large diffeomorphism

of the torus on which M theory is compactified.

M2- and M5-branes

The low energy limit of M theory is 11d supergravity, whose field content contains

the 3-form gauge field C3, graviton and fermions. The M2- and M5-branes are

nonperturbative objects propagating in the 11d supergravity background. In the

case of string theory, field contents of the nonperturbative D-branes can be read

off from the quantisation spectrum of open strings. For M theory, there is no sim-

ilar way to understand the field contents of M2- and M5-branes. However, one

may view the fields on the M2- or M5-branes as the Goldstone/Goldstino modes

for the broken background symmetries. For example, on the M2-brane, there are

8 scalars and 8 (on-shell) fermionic degrees of freedom which are associated with

broken translational symmetry in the transverse directions and broken supersym-

metry of the background respectively. For the M5-brane, there are a chiral 2-form
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gauge field and 5 scalars as well as two symplectic Majorana spinors. The chiral

2-form has a 3-form field strength which is self-dual with respect to the 6d world-

volume metric, therefore, it has 3 on-shell degrees of freedom. By choosing relevant

gauge parameters appropriately for the broken background gauge fields, the Gold-

stone mode analysis for M2- and M5-branes are carried out in [45]. In particular,

the normalisability condition in the transverse directions (finite energy condition)

requires that only self-duality modes of the 2-form survives. The existence of the

chiral 2-form gauge field may also be understood from IIA M-theory duality as fol-

lows. The configuration of fundamental strings ending on the D4-branes is uplifted

to be M2-branes ending on M5-branes. However, to realise the configuration of M2

ending on M5, there must be a gauge field carrying away the charges of the string

like object on the intersection, and it is the chiral 2-form which does the job. The

string-like object on the M5 worldvolume as the ending locus of the M2-branes is

called a self-dual string [46]. We will study non-abelian self-dual string solutions [47]

for our proposed multiple five branes model in chapter 3.

These M2- and M5-branes can also be realised as the solitonic solutions of the

11d supergravity. The thermodynamics for these solutions can be studied. Inter-

estingly, the entropies of the multiple M2- and M5-branes scale as N3/2 and N3

respectively for N coincident branes. This is different from the case of D-branes in

string theory. For the D-branes, the entropy for N coincident D-branes scales as N2.

This can be understood as the degrees of freedom of the U(N) non-abelian gauge

group for the Chan-Paton factor. The worldvolume field theories for coincident M2-

and M5-branes are highly nontrivial, as the symmetry group is expected to be non-

abelianized if there are multiple branes on top of each other. Moreover, the world-

volume theories are expected to be strongly interacting, as M2- and M5-branes can

be viewed as the strong coupling limits of D2- and D4-branes through IIA M-theory

duality. There are already non-abelian theories for multiple M2-branes [48–52] that

can produce the N3/2 entropy behaviour [53]. However, it is fair to say that the

non-abelian structure for multiple M5 branes is still an open question, though there

are quite a few models on the market [54–64]. Nevertheless, we will try to propose an

interesting model describing the gauge sector of multiple five branes [54] in chapter
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2.

1.3.3 M2-branes

In this section, we review the action for a single M2-brane [65,66] as well as models

for multiple parallel M2-branes [48–52] that will be relevant for us.

While string theory predicts the existence of maximally supersymmetric Yang-

Mills theories [67, 68], M-theory postulates the existence of strongly coupled 3d

and 6d maximally supersymmetric conformal field theories [69–71], which are the

worldvolume field theories of M2- and M5-branes respectively in the decoupling limit

of gravity.

In the simple case of a single M2-brane, the action is given by

SM2 = −TM2

∫
d3σ
√
− det gµν + TM2

∫
C3, (1.3.63)

where gµν = EA
µE

B
ν ηAB, EAν = ∂νZ

MEAM, C3 = 1
3!
εµνρEAµ E

B
ν E
C
ρCABC, and µ, ν =

0, 1, 2. The convention is essentially the same as in the section describing the D-

brane action (1.2.41). There is no gauge field on the worldvolume, but 8 scalars and

8 (on-shell) fermionic degrees of freedom. The charge is fixed by kappa-symmetry

to be equal to the tension. This means that the M2-brane is a BPS object. By

semi-classically dualizing one of the scalar fields and dimensionally reducing one

of the transverse directions, one can connect the above M2-brane action with the

D2-brane action [9].

In the case of multiple M2 branes, two Lagrangians are constructed recently.

A 3d maximally supersymmetric Chern-Simons-matter model was proposed [48–

51], called Bagger-Lambert-Gustavsson (BLG) model. The discovery of the BLG

model is remarkable because it is the first example of a maximally supersymmetric

Lagrangian that is not of super-Yang-Mills type. There is a 1-form gauge field in

the theory, however, it is not dynamical but purely topological described by Chern-

Simons terms. This gauge field does not fit in the same representation of the gauge

group as other fields, though they are related by supersymmetry.

Required by, among others, the conformal symmetry, one may deduce the fol-
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lowing supersymmetry transformation rules :

δXI
a = iε̄ΓIΨa

δΨa = DµX
I
aΓµΓIε− 1

3!
XI
bX

J
c X

K
d f

bcd
aΓ

IJKε (1.3.64)

δÃµ
b
a = iε̄ΓµΓIX

I
cΨdf

cdb
a,

where DµX
I
d = ∂µX

I
d − ÃµcdXI

c , and f bcda = f [bcd]
a is some coupling constant that

will be related to a novel algebraic system. The supersymmetry algebra closes on-

shell if we require the following “fundamental identity”

f [abc
gf

d]hg
e = 0, (1.3.65)

which is a generalisation of the Jacobi identity f [bc
df

a]d
e = 0 satisfied by the struc-

ture constants of usual Lie algebras,
[
T a, T b

]
= fabcT

c, where T a are generators

of some Lie algebra. Thus, we see that M2-branes, in particular, the conformal

symmetry ask for a notion of Lie 3-algebra,

[
T a, T b, T c

]
= fabcdT

d, (1.3.66)

where fabcd is by definition totally anti-symmetric for the upper indices. To define

a Lagrangian, we would like to introduce an inner product on the Lie 3-algebra

〈T a, T b〉 = hab, (1.3.67)

which can be used to move indices up or down. In particular, the invariance of the

inner product under gauge transformations requires fabcd = hdefabce = f [abcd]. The

Lagrangian for BLG model is given by

L = −1

2
DµX

aIDµXI
a +

i

2
Ψ̄aΓµDµΨa +

i

4
Ψ̄ΓIJX

I
cX

J
d Ψaf

abcd − V + LCS, (1.3.68)

where

V =
1

12
XI
aX

J
b X

K
c X

I
eX

J
fX

K
g f

abcdf efgd (1.3.69)

is the Bagger-Lambert sextic potential, and

LCS =
1

2
εµνλ

(
fabcdAµab∂νAλcd +

2

3
f cdagf

efgbAµabAνcdAλef

)
, (1.3.70)
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with the gauge field Aµab related to the physical gauge field Ãµ
a
b via Ãµ

b
a =

Aµcdf
cdb

a. The gauge transformation of a generic field X is defined as

δA,B(X) = [A,B,X] , (1.3.71)

where A,B are elements of the Lie 3-algebra. If we require the map δA,B to be a

derivation,

δA,B ([X, Y, Z]) = [δA,B(X), Y, Z] + [X, δA,B(Y ), Z] + [X, Y, δA,B(Z)] , (1.3.72)

the triple product (1.3.66) is then required to satisfy the fundamental identity,[
T a, T b,

[
T c, T d, T e

]]
=
[[
T a, T b, T c

]
, T d, T e

]
+
[
T c,
[
T a, T b, T d

]
, T e
]
+
[
T c, T d,

[
T a, T b, T e

]]
,

(1.3.73)

which is equivalent to (1.3.65). By closing the supersymmetry algebra explicitly,

one may find the equations of motion, and then construct a Lagrangian. The result-

ing theory has 16 supersymmetries and enjoys SO(8) R-symmetry and conformal

symmetry.

However, if one insists to have a positive definite metric and a finite dimensional

representation, the fundamental identity is so strong that the only allowed nontrivial

Lie 3-algebra is the so-called A4 algebra with

fabcd =
2π

k
εabcd, (1.3.74)

where a, b, c, d = 1, 2, 3, 4 and k is the level of the Chern-Simons term that will be

quantised if one requires the path integral to be invariant under large gauge trans-

formations. The BLG model is characterised by the choice of the Lie 3-algebra, how-

ever, we see that some reasonable assumptions fix the algebra to be A4. By analysing

the moduli space carefully using the sextic Bagger-Lambert potential (1.3.69), it was

found in [72,73] that the BLG model can at best describe two M2-branes. In partic-

ular, at Chern-Simons level k = 1 and k = 2, the classical moduli space was shown

to coincide with the infrared limit of SO(4) and SO(5) super-Yang-Mills theory, and

this means BLG model describes two M2-branes in the background of the orbifold

R8/Z2, without and with discrete torsion respectively. Actually, there could be

some relaxations on the assumptions for the 3-algebra. For example, indefinite met-

rics may make sense physically. Here, we are interested in another possibility, i.e.
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infinite dimensional representations. In [74, 75], the Nambu-Poisson bracket, which

is locally defined as {
f 1, f 2, f 3

}
NP

= εabc
∂f 1

∂ya
∂f 2

∂yb
∂f 3

∂yc
, (1.3.75)

is used for the BLG model, where a, b, c = 1, 2, 3 and f 1, f 2, f 3 are three func-

tions of ya. The Nambu-Poisson bracket is a natural generalisation of the familiar

Poisson bracket and it is associated with a three dimensional internal manifold N3

parametrized by the coordinates ya. With the infinite dimensional basis χa(y),

a = 1, 2, 3, · · · , one can write{
χa, χb, χc

}
NP

= fabcdχ
d. (1.3.76)

The Nambu-Poisson bracket also satisfies the fundamental identity. Moreover, one

can also define a metric

〈f, g〉 =

∫
N3

d3y f(y)g(y). (1.3.77)

If N3 is not trivially R3, in principle we need to cover N3 with patches, and there are

therefore gauge transformations connecting different patches. These gauge transfor-

mations y′a = fa(y) must satisfy {
f 1, f 2, f 3

}
= 1 (1.3.78)

in order to keep the Nambu-Poisson bracket. This means that the gauge transforma-

tions in the BLG model with Nambu-Poisson bracket are volume-preserving diffeo-

morphisms. This particular BLG model describes an infinite number of M2-branes,

as the Nambu-Poisson bracket is an infinite dimensional representation. What is

interesting in [74–76] is that they view the internal manifold N3 as a sub-manifold

of the worldvolume of a single M5-brane. Thus, the infinite M2-branes dissolve and

form a single M5-brane through an M-theory uplifted Myers effect [77]. The result-

ing single M5-brane model is coined NP-M5 theory. However, this description is

only good in the limit of strong C3 background gauge field [78, 79]. Nevertheless,

this NP-M5 model will play an important role in motivating our work in chapter 4.

To describe an arbitrary number of M2-branes, one needs to look for less restric-

tive conditions on the Lie 3-algebra. It turns out that the correct route is to look
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for less (manifest) supersymmetries. This is what is done in the Aharony-Bergman-

Jafferis-Maldacena (ABJM) model [52]. It is a 3d Chern-Simons-Matter theory with

N = 6 supersymmetries and SO(6) R-symmetry. The symmetry group is a product

group U(N)× U(N) with N arbitrary. The moduli space turns out to be

(C4/Zk)
N

SN
, (1.3.79)

where SN is the symmetric group acting on N objects, Zk is the cyclic group and k

is the Chern-Simons level. The analysis of the moduli space shows that the ABJM

theory describes an arbitrary number N of M2 branes probing the orbifold C4/Zk
of the transverse space. When N = 2, one can show that the ABJM model is

equivalent to the BLG model with A4 Lie 3-algebra.

1.3.4 M5-branes

The worldvolume field theory of M5 branes predicted by M theory is likely to be the

first example of a well-defined quantum field theory with a dimension higher than

four. The worldvolume theory is given by the so-called (2,0) superconformal field

theory in 6d (or simply (2,0) theory) whose field content includes a chiral 2-form, 5

scalars and 8 on-shell fermionic degrees of freedom. The theory is highly nontrivial

as the nonabelian symmetry structure is unclear and the dynamics of self-duality

conditions is difficult to deal with, especially at the action level. In particular, there

are no-go theorems [80–82] saying that there is no nontrivial deformation of abelian

chiral 2-form gauge theory if locality of the action and the transformation laws are

assumed. Also, it is widely believed that there is no Lagrangian formulation for (2,0)

theory. However, several models have been proposed to approach the final goal of

complete (2,0) theory. The model which will be introduced in chapter 2 evades

the no-go theorem by abandoning the locality condition. People have also tried to

start from the five dimensional theory with (2,0) compactified on a circle [57, 59].

In [54,58,63,64], they try to construct the (2,0) theory from the less supersymmetric

(1,0) theories. There are also proposals based on the higher gauge theories and

twistor approaches [60–62]. The conjecture that the (2,0) theory on a circle with a

finite radius is equivalent to 5d super-Yang-Mills [55,56] enables various calculations
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and already has some nontrivial checks.

Nevertheless, even in the abelian case which corresponds to a single M5-brane,

the complete formulation of a supersymmetric self-interacting worldvolume theory

is already nontrivial. The field equations were first derived by the super-embedding

formulation [83, 84]. It was later realised that they can also be derived from action

principles [13,14]. It was then found that these descriptions of the M5-brane are all

equivalent [85, 86].

Moreover, according to Schwarz’s “highly effective action” conjectured in [87],

such actions might capture some non-abelian information, though they used to be

thought of as low energy effective actions. In the next section, we will review the

formulation for abelian (2,0) theory that will be relevant for our work in chapter 4

and 5.

1.3.5 Single M5 brane

Super-embedding description

Unlike the RNS or Green-Schwarz formulations for which only the worldsheet or

the target space supersymmetries respectively are manifest, the super-embedding

approach embeds a supersymmetric worldsheet into a supersymmetric target space

[88]. It turns out that the super-embedding formulation can also be applied to

higher dimensional branes. Moreover, the consistency condition is so strong that

usually it determines the equations of motion, and this is the case for the M5-brane.

Consider the embedding of the superspace M into the target superspace M . M

and M are parametrized by the coordinates zM = (xM , θα) and ZM = (XM ,Θα)

respectively, where θ and Θ are Grassmann odd coordinates. The geometries of M

and M are described by the frame vector fields EA = EMA ∂M and EA = EMA ∂M

respectively. Obviously, EA can be expanded in terms of EA, so that EA = EAAEA.

The consistency condition is simply that the Grassmann odd part of the tangent

space of M should lie in the Grassmann odd tangent space of M , in other words, it

is

Eα
A = 0. (1.3.80)
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The consistency condition in the super-embedding of the M5-brane gives the non-

linear self-duality equations packed in a succinct algebraic form

1

4
Hµνρ = m−1λ

µ hλνρ, (1.3.81)

where H3 = dB2 is the field strength of the chiral 2-form and h3 = ∗h3 satisfying the

linear self-duality condition may be viewed as auxiliary fields. m−1 is the inverse

matrix of mµ
λ = δµ

λ − 2kµ
λ, where kµ

λ = hµνρh
λνρ, µ, ν, λ, ρ = 0, 1, · · · , 5. It

is possible to eliminate h3 and obtain the nonlinear self-duality equation in the

following form [89]

∗H3 =
∂K
∂H3

, (1.3.82)

with

K = 2

√
1 +

1

12
H2 +

1

288
(H2)2 − 1

96
HµνρHνρλHλτσHτσµ. (1.3.83)

However, it turns out that one can only construct a pseudo-action for this form of

self-duality condition [89]. It is interesting that the covariant self-duality equation

(1.3.82) can be rewritten in a non-manifestly covariant way,

Hâb̂ = − ∂L

∂H̃âb̂

, (1.3.84)

with

L =

√
det(δb̂â + iH̃â

b̂) =

√
1 +

1

2
trH̃2 +

1

8

(
trH̃2

)2

− 1

4
trH̃4, (1.3.85)

where Hâb̂ = Hâb̂5, H̃âb̂ = H̃âb̂5 and H̃3 = ∗H3, and this form of nonlinear self-duality

equation has an action principle [90]. Actually, it is possible to rewrite the covariant

equation (1.3.82) in another closed form, and such a form also admits a Lagrangian

description, as we will present in chapter 4. Notice that â, b̂ = 0, 1, 2, 3, 4 so that the

Lorentz symmetry is superficially lost. However, (1.3.84) is actually fully covariant.

Moreover, the action leading to (1.3.84) can even be made manifestly covariant by

introducing an additional auxiliary field [91]. We will present a simplest example

illustrating how the action principle works for a chiral 2-form in 6d now.
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Action formulation for chiral p-forms

The idea for the Lagrangian formulation of chiral p-forms is to sacrifice manifest

Lorentz symmetry [90, 92–94]. Consider the following free 2-form action in 6d

Minkowski space-time

S =
1

2

∫
d6x H̃ âb̂5(Hâb̂5 − H̃âb̂5), (1.3.86)

with â, b̂ = 0, 1, 2, 3, 4 and H̃ denotes the Hodge dual of the field strength H3 = dB2.

One may worry that this quadratic action also leads to a 2nd order field equation

and hence it is still difficult to get the 1st order self-duality equation H3 = ∗H3.

However, the punchline is that the 2nd order field equation will be equivalent to the

1st order self-duality conditions.

The field equations of Bâ5 is trivially vanishing, but the field equation of Bâb̂

gives

εâb̂ĉd̂ê5∂ĉ

(
Hd̂ê5 − H̃d̂ê5

)
= 0, (1.3.87)

which has the general solution (in topologically trivial space-time)

Hd̂ê5 − H̃d̂ê5 = ∂d̂Φê − ∂êΦd̂, (1.3.88)

for some arbitrary parameters Φê. The trivial equation of motion for Bâ5 reflects

the fact that the action enjoys the following gauge symmetry

δφBâ5 = φâ, δφBâb̂ = 0, (1.3.89)

where φâ are arbitrary gauge parameters. In fact, components Bâ5 show up in the

action only through total derivative terms. By appropriately gauge fixing (1.3.89),

we see that (1.3.88) is equivalent to the self-duality conditions

Hâb̂5 = H̃âb̂5. (1.3.90)

As a special direction ∂5 is singled out, the action (1.3.86) has only manifest SO(1,4)

Lorentz symmetry of the full SO(1, 5) group. It is not clear if the action (1.3.86)

could be invariant under the coset SO(1, 5)/SO(1, 4) of the full Lorentz symmetry.

Nevertheless, the action enjoys the following modified Lorentz symmetry SO(1, 5)/SO(1, 4)

δBâb̂ =
[
(λ · x)∂5 − x5(λ · ∂)

]
Bâb̂ − (x · λ)(Hâb̂5 − H̃âb̂5), (1.3.91)
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where λâ = λâ5 is the infinitesimal Lorentz parameter and (λ · x) = λĉxĉ, (λ · ∂) =

λĉ∂ĉ. Notice that we have implicitly worked in the gauge Bâ5 = 0, so that we require

δBâ5 = 0. Notice also that the second term vanishes if self-duality conditions are

imposed, thus the transformation law is the same as the standard one on-shell.

The action (1.3.86) can be coupled to gravity [93, 95]. In the curved space, the

Lagrangian becomes

L =
1

4
H̃5âb̂H5âb̂ +

1

8
εâb̂ĉ5x̂ŷH̃

5âb̂H̃5x̂ŷ g
5ĉ

g55
− 1

4
√−g H̃

5âb̂H̃5ĉd̂ 1

g55
gâĉgb̂d̂, (1.3.92)

where the action is given by S = 2
∫
d6xL, and the H̃5mn is now defined without

any metric,

H̃5m̂n̂ ≡ 1

3!
ε5m̂n̂p̂q̂r̂Hp̂q̂r̂. (1.3.93)

The action enjoys the following modified diffeomorphism

δBâb̂ = −ξ ∂I
∂H̃ âb̂5

, (1.3.94)

where I is the sum of the last two terms of the Lagrangian

I ≡ 1

8
εâb̂ĉ5x̂ŷH̃

5âb̂H̃5x̂ŷ g
5ĉ

g55
− 1

4
√−g H̃

5âb̂H̃5ĉd̂ 1

g55
gâĉgb̂d̂. (1.3.95)

The diffeomorphism transformation of the metric is the standard one (µ, ν = 0, 1, · · · , 5)

:

δgµν = (Lξg)µν = ξ∂5gµν + ∂µξ g5ν + ∂νξ gµ5, (1.3.96)

as a Lie derivative along the vector ξ = ξ5∂5 ≡ ξ∂5.

The action can be made manifestly covariant at the price of introducing an

auxiliary scalar field a(x)5 [96–98], this is known as Pasti-Sorokin-Tonin (PST) for-

mulation. The resulting action is

S =
1

2

∫
d6x H̃µνρ(Hµνλ − H̃µνλ)

∂ρa∂
λa

(∂a)2
, (1.3.97)

5One may instead introduce a closed auxiliary 1-form v, with dv = 0 and replace ∂µa in the

Lagrangian with vµ. This form of Lagrangian with auxiliary v may resolve the worry that a(x)

may not be well-defined in some topologically nontrivial space, e.g. if (1.3.97) were compactified

on a circle, v is well-defined but a is not as a is now multi-valued.



1.3. Dualities and introduction of M-theory 41

where (∂a)2 = ∂ρa∂
ρa, µ, ν, λ, ρ = 0, 1, · · · , 5. The auxiliary field forms a projection

matrix through the combination Pµ
ν = ∂µa∂

νa/(∂a)2. The action (1.3.97) enjoys,

apart from the tensor gauge symmetry δB2 = dΛ1, the following two gauge symme-

tries

δBµν = 2∂[µaφν](x), δa(x) = 0, (1.3.98)

δa = ϕ(x), δBµν =
ϕ(x)√
(∂a)2

(
Hµν − H̃µν

)
, (1.3.99)

where

Hµν = Hµνρ
∂ρa√
(∂a)2

, H̃µν = H̃µνρ
∂ρa√
(∂a)2

. (1.3.100)

(1.3.98) and (1.3.99) are called PST1 and PST2 gauge symmetry respectively. The

PST1 gauge symmetry allows us to gauge fix the field equations to obtain the first

order self-duality equations, while the PST2 gauge symmetry is responsible for the

covariance of the action, and allows one to gauge fix the auxiliary field. For exam-

ple, if one gauge fixes a(x) = x5, one reduces the covariant PST action (1.3.97) to

the non-manifestly covariant ones (1.3.86) or (1.3.92) depending on whether one is

interested in flat or curved spaces. To get the modified Lorentz or diffeomorphism

transformations, one considers a compensating PST2 gauge transformation to pre-

serve the gauge choice a = x5, the PST2 transformation combined with standard

Lorentz or diffeomorphism transformations then give (1.3.91) or (1.3.94). The co-

variantisation is useful as it simplifies the construction of the consistent couplings

to gravity and other fields significantly.

With the advent of the BLG model and in particular the construction of the

NP-M5 action, it was realised that one can sacrifice the manifest Lorentz symme-

try in different ways. For example, it was shown in [99] that one can construct

manifestly SO(1, D′−1)×SO(D′′) Lorentz symmetric chiral p-form Lagrangians in

(D′ +D′′)-dimensional Minkowski spaces. We call such theories as D′ +D′′ formu-

lations, for example, (1.3.86) is of 1+5 formulation in Minkowski space. The PST

covariantisation technique can be applied, in particular, to the 3+3 case as shown

in [76]. In this case, one needs to introduce a triplet of auxiliary scalar fields, as(x),

s = 1, 2, 3, transforming in the internal GL(3, R) group. The explicit form of the
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Lagrangian will be given in chapter 4.

Nonlinearisation and the M5-brane action

The free theories (1.3.92) or (1.3.97) can be nonlinearized [90] to obtain the actions

describing the single M5-brane propagating in a trivial 11d space-time background

[14], or even in a generic 11d supergravity background [13].

Here, we present the manifestly covariant version of the nonlinear action [90]

S = +2

∫
M6

d6x

[√
− det(gµν + iH̃µν) +

√−g
4(∂a)2

∂λaH̃
λµνHµνρ∂

ρa

]
(1.3.101)

with

H̃ρµν ≡ 1

6
√−g ε

ρµνλστHλστ , H̃µν ≡
∂ρa√
(∂a)2

H̃ρµν , g = det gµν , (1.3.102)

where

ε0···5 = −ε0···5 = 1 .

To promote this 6d action to be the M5-brane action propagating in a generic 11d

supergravity background, one needs to work in the target superspace and more

importantly, prove the existence of the kappa symmetry. The details of the proof

are a bit technical but the way kappa symmetry works is in a similar way to the

D-brane case (1.2.43). We refer the readers interested in completing the proof to

the references [14, 100,101].
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Chapter 2

A proposal for the gauge sector of

multiple M5-branes

In this chapter, we propose a model describing the gauge sector of multiple M-theory

five branes. In particular, we will generalise the action of Perry and Schwarz [90] to

a nonabelian one that gives rise to a nonabelian self-duality equation as its equation

of motion. A gauge vector field which is auxiliary and non-propagating is intro-

duced. The nonabelian action has a modified six dimensional Lorentz symmetry.

Moreover, the double dimensional reduction of the nonabelian action produces the

five dimensional super-Yang-Mills action plus some higher derivative corrections.

2.1 Introduction

The low energy theory of N coincident M5-branes is given by an interacting (2,0)

superconformal theory in 6 dimensions [69, 102–104]. For a single M5-brane, the

low energy theory is known [13,14,83–85,90,91,98,105]. So far very little is known

about this theory for N > 1. There are a number of difficulties associated with this

theory. First, the structure of (2,0) supersymmetry constrains the 2-form potential

to have self-dual field strength. This makes it difficult to write down a Lorentz

invariant action. This problem was solved in [13, 14, 85, 90, 91, 98] where an action

principle was constructed with the self-duality equation obtained as the equation of

motion. For the non-abelian case, there is an additional problem that an appropriate

44
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generalization of the tensor gauge symmetry was not known. In particular, there are

no-go theorems [79–82,106–109] which state that there is no nontrivial deformation

of the Abelian 2-form gauge theory if locality of the action and the transformation

laws are assumed. The no-go theorems suggest an important direction to go is to

give up locality.

Since M2-branes can end on M5-branes, one may wonder what one may learn

by considering the intersecting M2-M5 branes system. In [110] and [111], a system

of open N M2-branes described by the open ABJM theory [52] is considered. The

gauge non-invariance of the boundary Chern-Simons action was shown [110] to imply

the existence of a Kac-Moody current algebra on the worldsheet of multiple self-

dual strings.1 It was conjectured [58] that the Kac-Moody symmetry induces a

U(N) × U(N) gauge symmetry in the theory of N coincident M5-branes. The

precise nature of this gauge symmetry in the theory of M5-branes is however not

known due to our little understanding of the self-dual strings. Motivated by this,

in [58] a set of U(N) × U(N) gauge bosons was introduced and a version of non-

abelian generalization of the tensor gauge symmetry of 2-form gauge potentials

was constructed. This formulation has the advantage of having manifest Lorentz

symmetry fully.

Generally, the non-abelian tensor gauge symmetry is linearly represented if the

U(N) × U(N) gauge bosons are treated as independent fields. On the other hand,

the (2,0) supersymmetry of M5-branes implies that no extra degrees of freedom is

allowed and so these fields must be taken as auxiliary. This turns out to be very

difficult for one of the auxiliary fields. So in this chapter we will consider a gauge

fixed approach by given up manifest 6d Lorentz symmetry.

As a first step towards understanding the theory of multiple M5-branes, we

will focus on the chiral tensor gauge fields in this chapter. Our action consists

of a non-abelian generalization of the action of Perry and Schwarz [90] plus an

additional term which sets the Yang-Mills gauge fields to become auxiliary. We

emphasize that the action of Perry-Schwarz (PS) is of the same type as the action

1 The ABJM theory with boundaries is also considered in [112], where boundary conditions

instead of additional degrees of freedom are introduced.
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originally introduced by Henneaux and Teitelboim (HT) [93] see also [113] for a

recent discussion. The difference is that a time direction was separated from the

rest in HT action as they were interested in a Hamiltonian description, while in the

PS action a space direction was separated from the (5+1) dimensional spacetime,

making it particularly suitable for discussing dimensional reduction of the system 2.

Since we will be interested in dimensional reduction of our action, so we will follow

[90] in this chapter. As in Perry-Schwarz’s construction, a direction x5 is singled

out and specially treated, so our theory is only manifestly 5d Lorentz invariant.

Nevertheless, we manage to establish the existence of an additional non-manifest

6d Lorentz symmetry, generalizing the result of the abelian case [90,93]. Moreover,

on dimensional reduction on a circle, our action gives rise directly to the standard

5d Yang-Mills theory plus higher order corrections. Based on these properties,

we propose that our action describes the gauge sector of a system of coincident

M5-branes in flat space. The tensor gauge symmetry in our action turns out to

be abelian, but highly nonlinear and nonlocal. In fact whether the tensor gauge

symmetry is abelian or non-abelian is not constrained by any physical requirement

we know of. The abelian nature of the tensor gauge symmetry is thus a prediction

of our construction. The construction of a non-abelian tensor gauge symmetry is

still an interesting mathematical question, but from our construction it seems not

necessary for the non-covariant description of multiple M5-branes.

The plan of this chapter is as follows. In section 2.2, we review the construction

of Perry and Schwarz [90]. In section 2.3, we present our construction of the action

for non-abelian 2-form fields and establish the properties of self-duality, 6d Lorentz

symmetry and dimensional reduction to 5d Yang-Mills action. Section 2.4 contains

some further discussions. In particular we comment on the inclusion of fermions

and scalar fields and supersymmetry in the discussion section. For completeness, an

appendix reviewing the counting of the number of propagating degrees of freedom

for the 5d Chern-Simons theory is included in the end of this chapter.

Recent related works on the subject includes: [55, 56] which proposed a funda-

2The covariant Pasti-Sorokin-Tonin (PST) formulation [13,85,91,98] unifies both since one can

gauge fix the auxiliary scalar to arrive at these different formulations.
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mental definition of multiple M5-branes in terms of 5d supersymmetric Yang-Mills

theory; [114] which constructed a non-abelian version of (2,0) supersymmetric equa-

tion of motion using Lie 3-algebra; [57] which constructed a compactified theory

of non-abelian 2-form gauge potentials with a self-dual field strength; [64] which

proposed a more general framework than [58] in utilizing a 3-form gauge potentials

in addition to the 1-form gauge potentials; [74–76,115–119] which studied the form

of quantum geometry of M5-branes in a C-field background; [120] on amplitudes

of multiple M5-branes theory; [121, 122] on the N3 entropy counting of M5-branes;

as well as other issues concerning multiple M5-branes [61, 123–128]. For a review

on older results on M5-branes and superconformal theory in 6-dimensions, we sug-

gest [21, 129].

2.2 Abelian Action of Perry-Schwarz

Let us start by reviewing the construction [90,93] of an action for a self-dual tensor

in 6-dimensions. A key feature of their construction is that a certain direction, x0

in [93] or x5 in [90], has to be singled out and so the formulation has only manifestly

5d rotational invariance or 5d Lorentz invariance. Nevertheless these theories do

possess the full Lorentz symmetry. The existence of this modified Lorentz symmetry

is a remarkable feature of these constructions.

We will be interested in the Lagrangian formulation of the chiral tensor gauge

fields on multiple M5-branes and its dimensional reduction. Therefore let us follow

the construction of Perry-Schwarz [90] in the following. Let us denote the 5d and 6d

coordinates by xµ = (x0, x1, · · · , x4) and xM = (xµ, x5). We adopt the convention

ηMN = (−+ + + ++) for the metric and

ε01234 = −ε01234 = 1, ε012345 = −ε012345 = 1 (2.2.1)

for the antisymmetric tensors. The Hodge dual of a 3-form GMNP is defined by

G̃MNP := −1

6
εMNPQRS G

QRS. (2.2.2)

Note the minus sign in our definition of the Hodge dual follows from our convention

of the antisymmetric tensor (2.2.1) which says that the 6d orientation is specified
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by dx0dx1 · · · dx5. The abelian field strength is given by

HMNP = ∂MBNP + ∂NBPM + ∂PBMN := ∂[MBNP ] (2.2.3)

and the self-duality equation reads

H̃MNP = HMNP . (2.2.4)

In the Perry-Schwarz formulation, the self-dual tensor gauge field is represented

by a 5× 5 antisymmetric tensor field Bµν . The action reads

S0(B) =
1

2

∫
d6x

(
−H̃µνH̃µν + H̃µν∂5Bµν

)
(2.2.5)

where

H̃µν :=
1

6
εµνρλσHρλσ, Hµνρ = −1

2
εµνρλσH̃λσ. (2.2.6)

The action has the second order equation of motion

εµνρλσ∂ρ(H̃λσ − ∂5Bλσ) = 0 (2.2.7)

which has the general solution

H̃λσ − ∂5Bλσ = Φλσ (2.2.8)

for some function Φλσ such that ∂[µΦλσ] = 0. It is easy to check that the action

(2.2.5) is invariant 3 under the gauge symmetry

δBµν = Σµν (2.2.9)

for arbitrary Σµν such that ∂[µΣνλ] = 0, or equivalently

δBµν = ∂µϕν − ∂νϕµ, for arbitrary ϕµ. (2.2.10)

This is the tensor gauge symmetry of the model. An appropriate gauge fixing of

this symmetry allows one to reduce the general solution (2.2.8) to the special form

H̃µν = ∂5Bµν . (2.2.11)

3 This is under the usual assumption that fields, in this case Hµνλ, vanishes at infinity |xµ| =∞.
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This is the self-duality equation in this theory.

Let us digress a bit to give a pedagogical and explicit counting of the degrees

of freedom in the Perry-Schwarz theory. The Perry-Schwarz theory initially has

the equation of motion (2.2.7). Using the gauge symmetry (2.2.10) one can fix

the equation of motion to the linear form (2.2.11). Doing so we are left with a

x5-independent residual symmetry. Now ∂µBµν is x5 independent as a result of

(2.2.11). Using the residual symmetry, one can fix it to be zero

∂µBµν = 0. (2.2.12)

Differentiating (2.2.11) with respect to x5 and use (2.2.12), we obtain that Bµν

is massless as expected, 2Bµν = 0. Now (2.2.12) gives 4 independent conditions

on the 10 components of Bµν . Using the self-duality condition, we have in total

(10− 4)/2 = 3 degrees of freedom.

The action is manifestly 5d Lorentz invariant. Nevertheless the action is indeed

invariant under an additional Lorentz transformation mixing the µ directions with

the 5 direction. The proposed modified Lorentz transformation is

δBµν = (Λ · x)H̃µν − x5(Λ · ∂)Bµν , (2.2.13)

where Λµ = Λ5µ denote the corresponding infinitesimal transformation parameters.

One can check that

[δΛ1 , δΛ2 ]Bµν = δ
(5d)
Λαβ

Bµν + ∂µϕν − ∂νϕµ (2.2.14)

gives, apart from terms that vanish on-shell (2.2.11), the expected 5d Lorentz trans-

formation

δ
(5d)
Λαβ

Bµν = Λµ
λBλν − Λν

λBλµ + xλΛ
λα∂αBµν (2.2.15)

plus the gauge transformation (2.2.10). The parameters are

Λµν = Λ1µΛ2ν − Λ1νΛ2µ, ϕν = xαΛαλBν
λ. (2.2.16)

Therefore the modified Lorentz transformation (2.2.13) does give rise to the desired

6d Lorentz group.

A couple of remarks follow concerning the Perry-Schwarz construction.
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1. We note that in the proof [90] of the invariance of the action (2.2.5) under the

Lorentz transformation (2.2.13), various total derivatives terms in the variation

of the action were dropped under the natural assumption that

∂λBµν → 0 as |xM | → ∞ . (2.2.17)

Under the same assumption, the self-duality equation of motion (2.2.11) holds

since Hµνλ → 0 at infinity.

2. The Perry-Schwarz theory is based on the set of fields Bµν which nevertheless

is 6d Lorentz invariant. That it is possible to support the Lorentz symmetry

without introducing the components Bµ5 is entirely due to the existence of the

gauge symmetry (2.2.10) in the theory. In the manifestly Lorentz covariant

formulation of PST [13, 85, 91, 98], the field Bµν is extended to BMN . In

addition an auxiliary scalar field a is introduced with new gauge symmetries

that allow one to choose the gauge Bµ5 = 0 and a = x5. In this gauge, the

Perry-Schwarz action is obtained.

3. One may also combine the modified Lorentz transformation (2.2.13) with the

gauge transformation (2.2.10) with a parameter ϕµ = −x5BµκΛ
κ and obtain

an equivalent form of the modified Lorentz transformation

δBµν = (Λ · x)H̃µν − x5ΛκHκµν , (2.2.18)

which is written entirely in terms of the field strength. It is instructive to

show explicitly how the modified Lorentz symmetry works. The variation of

the action can be written as

2δS0 =

∫
εµνρλσ

[(
(Λ · x)H̃µν︸ ︷︷ ︸

1

−x5ΛκHκµν︸ ︷︷ ︸
2

)(
∂ρH̃λσ︸ ︷︷ ︸

a

− ∂ρ∂5Bλσ︸ ︷︷ ︸
b

)]
. (2.2.19)

The contributions are, respectively,

(1a) = −1

2

∫
(εµνρλσΛρH̃µνH̃αβ) + tot. , (2.2.20)

(2b) = −
∫

(εµνλαβx5H̃αβ∂5H̃µνΛλ) =
1

2

∫
(εµνρλσΛρH̃µνH̃αβ) + tot. ,(2.2.21)

(1b) = −2

∫
(Λ · x)(H̃µν∂5H̃

µν) = tot. , (2.2.22)

(2a) =

∫
2x5Λκ (Hκµν∂ρH

µνρ) =

∫
2x5Λκ (

1

3
Hρµν∂[κHρµν]) + tot. , (2.2.23)
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where tot. stands for total derivative terms and we have used

∂[κHρµν] = ∂κHρµν − ∂[ρHµν]κ (2.2.24)

in simplifying (2a). We see that (1a) cancels (2b). The term (2a) is zero due

to the vanishing Bianchi identity ∂[κHρµν] = 0, thus the variation vanishes up

to total derivative terms.

2.3 Action for Non-Abelian Self-Dual Two-Form

on M5-Branes

For simplicity, we will construct a theory of the 2-form potential without scalars

and fermions. Supersymmetry is important and will be considered separately. For

the gauge part, motivated by the construction of [58], we consider the addition of a

set of 1-form gauge fields AaM for a gauge group G. The gauge group G is arbitrary

for now. However, as the model will be applied to M5-branes and dimensionally

reduced to get D4-branes, G will be taken to be U(N) later.

2.3.1 Non-Abelian action

Following the above discussion, we will give up manifest 6d Lorentz symmetry and

represent the self-dual tensor gauge field by a 5 × 5 antisymmetric field Bµν in the

adjoint. Since there is no room for extra degrees of freedom in the (2,0) tensor

multiplets of M5-branes, therefore the gauge fields AM must be determined in terms

of the tensor gauge fields. It turns out we need to take the Yang-Mills gauge field

to be a 5-dimensional field living in the 5d space xµ, i.e. Aµ = Aµ(xλ) 4. Let us

introduce the following non-abelian generalization of the Perry-Schwarz action

S0 =
1

2

∫
d6x tr

(
−H̃µνH̃µν + H̃µν∂5Bµν

)
, (2.3.25)

4 We note that a 5-dimensional gauge field was also employed in [57]. However our construction

differs from theirs in essential ways: a compactified spacetime was considered in [57] and the gauge

field was taken to be the zero mode of the tensor gauge field B
(0)
µ5 . In our construction, we do not

compactify the spacetime and Aµ is given by an integrated expression (2.3.36) on shell. We thank

Pei-Ming Ho for a discussion on this point
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where

Hµνλ = DµBνλ +DνBλµ +DλBµν (2.3.26)

and

H̃µν =
1

6
εµνρλσHρλσ (2.3.27)

is the Hodge dual of Hµνλ. Hµνλ obeys the modified Bianchi identity

D[µHνλρ] =
3

2
[F[µν , Bλρ]]. (2.3.28)

The action S0 is invariant under the Yang-Mills gauge symmetry

δAµ = ∂µΛ + [Aµ,Λ], for arbitrary Λ = Λ(xλ), (2.3.29)

δBµν = [Bµν ,Λ], δHµνλ = [Hµνλ,Λ] (2.3.30)

and the following “tensor gauge symmetry” 5:

δTAµ = 0, (2.3.32)

δTBµν = Σµν , for arbitrary Σµν(x
M) such that D[λΣµν] = 0. (2.3.33)

It is [δT (1) , δT (2) ] = 0 and so the tensor gauge symmetry is abelian. Like the abelian

case, we will consider field configurations with vanishing covariant derivatives at

infinity:

DλBµν , ∂5Bµν → 0 as |xM | → ∞. (2.3.34)

It follows that Hµνλ vanishes at infinity also.

An important observation is that the condition for the vanishing of field strength

at infinity:

Hµνλ → 0, at x5 → ±∞ (2.3.35)

is equivalent to the Bianchi identity of the gauge field Aµ if Fµν is identified with

the boundary value of Bµν , e.g. Fµν = Bµν(x5 = ∞). With the anticipation of the

5 Or equivalently

δTBµν = DµΛν −DνΛµ for arbitrary Λµ(xM ) such that [F[µν , Λλ]] = 0. (2.3.31)
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self-duality equation of motion (2.3.51) in our theory, we will consider a different

constraint

Fµν = c

∫
dx5 H̃µν , (2.3.36)

where the constant c will be fixed by the quantisation condition of the self-dual

strings solution of the theory. With the constraint (2.3.36), there is no new local

degrees of freedom carried by Aµ
6 7. We will implement (2.3.36) in the action by

introducing a 5-dimensional auxiliary field Eµν(x
µ) and add the action

SE =

∫
d5x tr

(
(Fµν − c

∫
dx5 H̃µν)E

µν

)
. (2.3.37)

The boundary condition of Eµν will be taken as the trivial one

Eµν → 0 as |xλ| → ∞. (2.3.38)

Eµν transforms under Yang-Mills and tensor gauge transformation as

δEµν = [Eµν ,Λ], δTEµν = 0 (2.3.39)

and so SE is invariant under both transformations. The action is also invariant

under the gauge symmetry

δEµν = αµν (2.3.40)

for arbitrary α(xλ) such that

D[µανλ] = 0, Dµαµλ = 0, and α→ 0 as |xλ| → ∞. (2.3.41)

All in all, we propose the following action for a non-abelian theory of self-dual

tensor

S = S0 + SE. (2.3.42)

6 As the constraint (2.3.36) constrains the field strength Fµν (but not Aµ) by the tensor gauge

field, the Wilson loops are actually allowed when the topology involves non-contractible cycles.

Therefore, Aµ do carry new degrees of freedom albeit nonlocal ones. It will be interesting to

further study this implication. The author thanks David Berman for pointing this out.
7One may be tempted to use a Chern-Simons action to enforce the gauge field to be auxiliary.

However unlike the 3-dimensional case where a Chern-Simons gauge field is auxiliary and contains

no local degrees of freedom, pure Chern-Simons gauge field in 5-dimension contains local degrees

of freedom [130–132]. In the appendix 2.A, we review this argument as well as the extension for

Chern-Simons coupled to a conserved source.
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The action S is Yang-Mills gauge invariant and tensor gauge invariant. It is also

invariant under the gauge symmetry (2.3.40) of Eµν . Five dimensional Lorentz

symmetry is manifest. We will show below this action leads to a self-duality equation

of motion. We will also demonstrate the existence of a non-manifest 6d Lorentz

symmetry in our theory and the connection to 5d Yang-Mills theory of multiple

D4-branes through dimensional reduction on a circle. The form of the constraint

(2.3.36) is inspired by the analysis of this reduction.

2.3.2 Properties

Self-duality

The equation of motion of Eµν gives the constraint

Fµν = c

∫
dx5 H̃µν . (2.3.43)

This has to satisfy the Bianchi identity

εµνρλσDρFλσ = 0. (2.3.44)

For Bµν , we have

δS0 =
1

2

∫
εµνρλσδBµνDρ(H̃λσ − ∂5Bλσ) (2.3.45)

and hence the equation of motion

εµνρλσDρ(H̃λσ − ∂5Bλσ + cEλσ) = 0, (2.3.46)

Integrating it over x5, we get

D[ρEλσ] = 0. (2.3.47)

In fact
∫
dx5 ε

µνρλσDρ(H̃λσ−∂5Bλσ) = 0 where we have used (2.3.43) and the Bianchi

identity of Fµν , and we have assumed that Hµνλ vanishes at x5 = ±∞. Our claim

follows from the fact that Eλσ is independent of x5. As a result, the equation (2.3.46)

reads

εµνρλσDρ(H̃λσ − ∂5Bλσ) = 0 (2.3.48)

and has the general solution

H̃λσ − ∂5Bλσ = Φλσ, (2.3.49)
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where

D[λΦµν] = 0. (2.3.50)

Therefore with an appropriate fixing of the gauge symmetry (2.3.33), one can always

reduce the second order equation (2.3.49) to the first order form

H̃µν = ∂5Bµν . (2.3.51)

This is the form of the self-duality equation in our theory.

The equation (2.3.51) implies that on-shell, Fµν is simply given in terms of the

boundary values of Bµν :

Fµν = c (Bµν(x5 =∞)−Bµν(x5 = −∞)) , (2.3.52)

and Bianchi identity is satisfied since the field strength vanishes at infinity. Finally,

the equation of motion for Aµ gives

DµEµν −
c

4

∫
dx5 εν

αβγδ[Bαβ, Eγδ] = −1

2

∫
dx5 εν

αβγδ[Bαβ, ∂5Bγδ −
1

2
H̃γδ] := Jν .

(2.3.53)

We note that as a result of the self-duality equation of motion (2.3.51), the “current”

is covariantly conserved DλJ
λ = 0 . Of course (2.3.53) is consistent with this.

Summarizing, the equations of motion in our theory are the auxiliary equation for

Aµ (2.3.36), the self-duality equation (2.3.51) and the equations (2.3.47) and (2.3.53)

for Eµν . Note that on eliminating Aµ using (2.3.36), the self-duality equation (2.3.51)

is self-interacting and is completely independent of Eµν .

The counting of the degrees of freedom in our theory goes as follows. The

equation of motion (2.3.43) says Aµ is auxiliary and is determined entirely in terms

of H̃µν . Using this, the action S can be written as a nonlocal action in terms of

expansion in powers of Bµν . At the quadratic level, the action is simply given

by dimG copies of the Perry-Schwarz action, plus the action SE. For small field

strengths, we can take the higher order terms as small corrections and we can count

the degrees of freedom using the linearized theory. In this limit, Aµ = 0 and the

tensor gauge symmetry and the self-duality equation of motion are precisely those

of the original Perry-Schwarz theory. Thus we obtain 3× dimG degrees of freedom
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in Bµν . As for Eµν , the linearized equations of motion are

∂[µEνλ] = 0, ∂µEµν = 0, (2.3.54)

and there is the gauge symmetry (2.3.40) with the parameters αµν satisfying, in this

case,

∂[µανλ] = 0, ∂µαµν = 0. (2.3.55)

Since Eµν and αµν also satisfy the same (vanishing) boundary condition at infinity,

so we can use the gauge symmetry to remove the Eµν field completely. This is

compatible with the fact Eµν was introduced as an auxiliary field to implement the

constraint (2.3.36). All in all, our theory contains 3 × dimG degrees of freedom as

required by (2,0) supersymmetry

We remark that when Bµν is diagonal with distinct diagonal elements such that

the gauge group is broken down to U(1)r (r is the rank of the gauge group), our

action reduces to a sum of r copies of the abelian Perry-Schwarz theory and describes

the gauge sector of r separated M5-branes. More generally, once the scalar and

fermion fields are included in the theory, one can have a system of lumps of coincident

M5-branes, BPS or non-BPS relative to each other; and as usual, the pattern of

symmetry breaking as well as the interacting dynamics of M5-branes can be studied.

In particular, in the subsequent chapter, we will activate one of the scalar fields to

look for the BPS solution of self-dual strings.

Lorentz symmetry

Our action is manifestly 5d Lorentz invariant. It is straightforward to check that

it is not invariant under the modified Lorentz transformation (2.2.13) or (2.2.18).

Indeed, considering the natural generalisation,

δBµν = (Λ · x)H̃µν − x5ΛκHκµν , (2.3.56)

δAµ = 0. (2.3.57)

The calculation in the non-abelian case becomes

2δS0 =

∫
εµνρλσ

[(
(Λ · x)H̃µν︸ ︷︷ ︸

1

−x5ΛκHκµν︸ ︷︷ ︸
2

)(
DρH̃λσ︸ ︷︷ ︸

a

−Dρ∂5Bλσ︸ ︷︷ ︸
b

)]
, (2.3.58)
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with

(1a) = −1

2

∫
tr (εµνρλσΛρH̃µνH̃αβ) + tot. , (2.3.59)

(2b) = −
∫

tr (εµνλαβx5H̃αβ∂5H̃µνΛλ) =
1

2

∫
tr (εµνρλσΛρH̃µνH̃αβ) + tot. ,(2.3.60)

(1b) = −2

∫
(Λ · x)tr(H̃µν∂5H̃

µν) = tot. , (2.3.61)

(2a) =

∫
2x5Λκ tr (HκµνDρH

µνρ) =

∫
2x5Λκ tr (

1

3
HρµνD[κHρµν]) + tot. , (2.3.62)

where tot. stands for total derivative terms and we have used

D[κHρµν] = DκHρµν −D[ρHµν]κ (2.3.63)

in simplifying (2a).

In the abelian case, the term (2a) is zero due to the vanishing Bianchi identity

∂[κHρµν] = 0. This is not so for the non-abelian case and so S0 is not invariant under

(2.3.56). It is also straightforward to see that S0 is also not invariant under

δBµν = (Λ · x)H̃µν − x5(Λ ·D)Bµν . (2.3.64)

Let us proceed by further modifying the Lorentz transformation. We observe

that the equation (2.3.45) for the variation of S0 under a general variation of δBµν

can be rewritten as

δS0 =

∫
d6x tr

[
∆BµνH̃µν

]
, (2.3.65)

where

∆Bµν := ∂5(δBµν)− 1

2
εµναβγDα(δBβγ). (2.3.66)

It is interesting to note that

∆Bµν = −δ(H̃µν − ∂5Bµν), (2.3.67)

which is just the variation of the self-duality equation of motion.

Taking δBµν now as the 5-µ Lorentz transformation, it is clear that the action

will be invariant if the variation satisfies ∆Bµν = 0. This is a sufficient condition,

but not necessary. In fact ∆Bµν 6= 0 for the abelian case (2.2.18), nevertheless S0 is

invariant. So let us consider a general transformation of the form

δBµν = (Λ · x)H̃µν − λx5ΛκHκµν + Λκφµνκ := δ(1)Bµν + δ(2)Bµν , (2.3.68)
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where λ is a constant and φµνκ = −φνµκ is a quantity to be determined by demanding

S0 to be invariant. We have denoted the first two variation terms by δ(1)Bµν and the

third term by δ(2)Bµν . By redefining φµνκ with an appropriate shift, one can bring

λ to any value one wants. This freedom will turn out to be convenient.

The variation of S0 under δ(1)Bµν is

δ(1)S0 =

∫ [
λ

2
x5ε

µναβγDαHβγκΛ
κ +

λ− 1

4
ΛρH̃αβε

ραβµν

]
H̃µν . (2.3.69)

For λ = 1, the result in the appendix is recovered. For the moment, let us keep λ

arbitrary. Since (2.3.69) is of the form of (2.3.65), therefore it can be cancelled with

δ(2)Bµν if φµνκ satisfies

∂5φµνκ−
1

2
εµν

αβγDαφβγκ = −λ
2
x5ε

µναβγDαHβγκ−
λ− 1

4
H̃αβεκαβµν := Jµνκ. (2.3.70)

In addition, we impose the boundary condition

φµνκ vanishes as |x5| → ∞. (2.3.71)

A solution can always be written down using the Green function technique for general

Jµνκ. Let Gab
µν,µ′ν′(x, y) be the Green function which satisfies

∂5G
abµ′ν′

µν −
1

2
εµν

αβγ(D(y)
α )acG

cbµ′ν′

βγ = δµ
′ν′

µν δabδ(6)(x− y) (2.3.72)

and the boundary condition

Gabµ′ν′

µν (x, y) = 0, |x5| → ∞. (2.3.73)

Here x = (xM) and (Dα)ac = ∂αδ
a
c + (Ãα)ac where (Ãα)ac := fabcAbα. Then

φaµνκ =

∫
dy Gabµ′ν′

µν (x, y)J bµ′ν′κ(y) (2.3.74)

satisfies both (2.3.70) and (2.3.71). As a result, if also

δAµ = 0, (2.3.75)

then S0 is invariant. So far this works for any λ.

Next let us examine the action SE. It follows from (2.3.68) that

δH̃µν = ∂5φµνκΛ
κ +

Λ · x
2

εµν
αβγDαH̃βγ +

λ+ 1

4
εµν

αβγΛαH̃βγ, (2.3.76)
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where we have used the differential equation (2.3.70). Therefore SE is invariant if

we take λ = −1 and if Eµν transforms as

δEµν =
1

2
εµν

αβγDα((Λ · x)Eβγ). (2.3.77)

All in all, our action is invariant under the transformation (2.3.68), (2.3.75) and

(2.3.77).

In general the Lorentz invariance of the action implies that the equations of mo-

tion (i.e. (2.3.36), (2.3.48) (2.3.47) and (2.3.53)) are automatically Lorentz invariant,

up to terms vanishes on shell and terms that can be interpreted as any other symme-

try transformations of the theory. However since the self-duality equation (2.3.51)

is obtained by a gauge fixing, it is not guaranteed to be Lorentz invariant. In fact,

the transformation (2.3.68) implies that

δ(H̃µν − ∂5Bµν) =
Λ · x

2
εµν

αβγDαH̃βγ − (Λ · x)∂5H̃µν − ∂5(x5HµνκΛ
κ). (2.3.78)

This gives in (2.3.65) δS0 = 0 as expected. Using the self-duality equation (2.3.51),

the first and second term of (2.3.78) actually cancel and so

δ(H̃µν − ∂5Bµν) = −∂5(x5HµνκΛ
κ) + EOM, (2.3.79)

where EOM denotes terms vanish when the equation of motion (2.3.51) is used. One

can rewrite this further by using the equation of motion and obtains

δ(H̃µν − ∂5Bµν) =
1

2
εµνκ

αβΛκ(H̃αβ + 2x5∂5H̃αβ) + x5ΛκDκH̃µν +D[µϕν] + EOM,

(2.3.80)

where ϕν = x5H̃νκΛ
κ. Now the first and second term on the RHS of (2.3.80) respec-

tively gives zero when substituted into (2.3.65) and so they corresponds to symmetry

transformations of the action S0
8. For the abelian case, the third term corresponds

to the symmetry transformation δBµν = ∂[µαν] of Bµν and since SE decouples from

the theory, so we obtain that the self-duality equation is Lorentz invariant up to

terms vanishes on shell and terms that correspond to a symmetry transformation of

8More specifically, the symmetry transformations are given by δBµν = φµνκΛκ where φµνκ is

given by (2.3.74) with Jµνκ specified by the first and second term of the RHS of (2.3.80) respectively.
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the theory. However the above analysis breaks down in the non-abelian case and so

we conclude that the self-duality equation of motion is not Lorentz invariant. We

emphasize that the loss of Lorentz invariance in (2.3.51) is simply because it is a

gauge fixed equation of motion. This is not surprising. For example, Yang-Mills

equation of motion in the Coulomb gauge is not Lorentz invariant. The use of the

self-duality equation is important for obtaining the correct counting on the degrees

of freedom in the theory. However the use of the ungauge-fixed version (2.3.48) may

be useful for some other purposes, for example, supersymmetry.

If we compute the algebra of commutator [δ(Λ
(1)
µ ), δ(Λ

(2)
µ )] for the physical field

Bµν , we get the standard 5d Lorentz transformation plus an additional transfor-

mation. This additional transformation is quite complicated but is a symmetry

of the action since we know already the action is invariant under the 5d Lorentz

transformation and is invariant under [δ(Λ
(1)
µ ), δ(Λ

(2)
µ )]. Therefore we can interpret

(2.3.68) as a modified Lorentz symmetry. Note that the form of the transformation

laws (2.3.75) and (2.3.77) are quite non-standard but they are compatible with the

auxiliary nature of these fields.

We note that as φµνκ is determined explicitly as an integrated expression over

the Green function, the transformation (2.3.68) is non-local in the fields. It is now

clear that the different choices of λ simply correspond to different non-local form of

the transformation (2.3.68). What we have shown is that one can make the action

invariant by using a transformation law that has a nonlocal piece that is based on a

local part with the particular choice of λ = −1. For the abelian case, we know the

Lorentz transformation (2.2.18) is locally represented in terms of Aµ and Bµν ; and

corresponds to λ = 1 and φµνκ = 0. Let us demonstrate that this is equivalent to

having λ = −1 and a nontrivial φµνκ as determined above. To see this, the equation

(2.3.70) reduces in the abelian case to

∂5φµνκ −
1

2
εµν

αβγ∂αφβγκ = x5∂κH̃µν −Hµνκ. (2.3.81)

Let us put φµνκ = −2x5Hµνκ + ϕµνκ and so

∂5ϕµνκ −
1

2
εµν

αβγ∂αϕβγκ = −1

2
εµνκ

αβ(H̃αβ + 2x5∂5H̃αβ)− x5∂kH̃µν . (2.3.82)

Now the right hand side of this equation when substituted into (2.3.65) actually
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leaves S0 invariant. Therefore as explained above, ϕµνκ represents a symmetry and

we recover (2.2.18) up to a symmetry transformation.

The Lorentz symmetry we proposed is nonlocal and is quite different from the

usual representation of a symmetry in terms of local fields, but it seems this is what

is needed for multiple M5-branes 9. In fact, nonlocal symmetry is not uncommon in

string theory. For example, the spacetime Lorentz symmetry in the light cone gauge

string theory is nonlocal in the worldsheet coordinate [133]. There the nonlocality

arises since a Lorentz transformation will generally bring one out of the lightcone

gauge and so a worldsheet reparametrization (turns out to be nonlocal) is needed

in order to restore the gauge condition. For us, we are in a formulation without

the B5µ fields. Since a standard 5-µ Lorentz transformation will turn Bµν to B5µ,

we suspect that the reason of having a modified Lorentz symmetry is similarly

due to a compensating gauge transformation in a covariant formulation. In the

abelian (free) case, the modification is not so drastic and the modified Lorentz

transformation is still local. But this is not the case for the non-abelian case as

we found here. To check our suspicion, it is needed to construct the covariantized

theory. It is remarkable that for the abelian case, PST [13, 85, 91, 98] were able to

provide a Lorentz covariant formulation by introducing additional auxiliary fields

(scalar field a and the B5µ components). It will be very interesting to covariantize

our construction by following a similar construction of PST and it is possible that

the employment of additional auxiliary fields would allow for a local representation

of the Lorentz symmetry.

Reduction to D4-Branes

Let us consider a compactification of x5 on a circle of radius R. The dimensional

reduced action reads

S =
2πR

2

∫
d5x tr

(
−H̃2

µν + (Fµν − 2πRcH̃µν)E
µν
)

(2.3.83)

9We thank Pei-Ming Ho and Yutaka Matsuo for emphasizing the nonlocal nature of our proposed

Lorentz transformation and for a discussion on this point.
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This form of action has been considered in [58] as a dual formulation of 5-dimensional

Yang-Mills theory. In fact, if we integrate out Eµν , we obtain the expected relation

Fµν = 2πRcH̃µν . (2.3.84)

Eliminate H̃µν using the constraint, we obtain the standard 5d Yang-Mills action

SYM = − 1

4πRc2

∫
d5x tr F 2

µν . (2.3.85)

This is however not the complete answer. In fact if we look at the path integral and

integrate out E first, we obtain∫
[DA][DB][DE]e−S =

∫
[DA][DB]e−SYM δ(Fµν − 2πRcH̃µν) =

∫
[DA]e−SYM−S

′
,

(2.3.86)

where S ′ = S ′(A) is a measure contribution obtained from integrating out the delta

functional constraint and then rewritten in terms of Aµ. The direct determination

of S ′ is nontrivial but it has to satisfy a consistency condition: the condition

DµF
µν = −πRc

2
εναβγδ[Fαβ, Bγδ] (2.3.87)

which follows from (2.3.84) should be obtained as an equation of motion in the 5d

theory. As a result, S ′ has to satisfy

δS ′

δAν
=

1

2c
εναβγδ[Fαβ, Bγδ] (2.3.88)

with Bµν understood to be a function of Aµ obtained by solving the duality relation

(2.3.84).

The 5d theory is thus given by the action S5d = SYM + S ′. The action SYM

corresponds to the expected form of the Yang-Mills coupling

g2
YM = πRc2 (2.3.89)

and the gauge group in our construction is to be

G = U(N) (2.3.90)

for a system of N M5-branes. The reproduction of the 5d Yang-Mills action gives

further support that our construction gives a description of the gauge sector of a
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system of multiple M5-branes. The action S ′ describes a correction term to the Yang-

Mills theory which appears to be of high derivative in nature since [F,B] ∼ DDB

and B is of the order of F from (2.3.84)). In the abelian case, Perry and Schwarz

has also constructed the nonlinear five-brane action that gives the U(1) DBI action

of D4-brane upon dimensional reduction. It would be interesting to work out S ′ in

more details and see whether it captures the non-abelian DBI action [32, 134, 135]

in some way.

We remark that the necessity of non-locality in the M5-branes action has also

been argued by Witten [12]. He observed that conformal invariance of the M5-

branes theory implies that upon double dimensional reduction to five dimensions,

the 5 dimensional action should be proportional to

1

R

∫
d5x. (2.3.91)

On the other hand, one should get∫
d6x = 2πR

∫
d5x (2.3.92)

as a result of integrating over the x5 direction for a standard reduction of a local

action, In our analysis above, we see that both R-dependence are correct and the

trick to arrive from (2.3.91) to (2.3.92) is due to the simple R dependence in the

constraint (2.3.84).

In principle one could consider compactification in the other spacelike directions

and one should get the same 5d YM action. However this is already non-trivial for

the Perry-Schwarz action [90] (or the Henneaux-Teitelboim action [93]) and implies

the existence of a symmetry of the D4-branes action which involves a non-local

field redefinition. For a single M5-brane, this symmetry can be made explicit in

a covariant PST-like formulation in which both, the vector field Aµ and the two-

form field Bµν are present and related to each other, on the mass-shell, by the

duality condition which follows from the action. See for example [136] for the case

of the duality-symmetric formulation of D = 11 supergravity with A3 and A6 gauge

fields. The construction is completely generic and can be extended immediately to

arbitrary D dimensional spacetime any pair of duality related fields of rank p and
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(D − p − 2) whose field strengths are dual to each other on the mass shell 10. It

would be interesting to extend this construction to the non-abelian case.

2.4 Discussions

In this chapter, we have constructed a theory of non-abelian tensor fields with the

properties that:

1. the action admits a self-duality equation of motion,

2. the action has manifest 5d Lorentz symmetry and a modified 6d Lorentz sym-

metry,

3. on dimensional reduction, the action gives the 5d Yang-Mills action plus cer-

tain higher derivative corrections.

Based on these properties, we propose our action to be the bosonic theory describing

the gauge sector of coincident M5-branes in flat space. A special feature of our

construction is that the tensor gauge symmetry is abelian although the theory is

still fully interacting. This is an interesting difference between the self-interaction

of Yang-Mills gauge fields and the self-interaction of 2-form gauge fields in our

construction. It remains to be seen whether this is still the case in the Lorentz

covariant formulation of the theory.

We note that conformal symmetry rules out the possibility of a Yang-Mills action,

but a 5d Chern-Simons action is allowed for the gauge field Aµ:

SCS =
k

24π2

∫
d5x εµ1···µ5tr

(
Aµ1∂µ2Aµ3∂µ4Aµ5 +

3

2
Aµ1Aµ2Aµ3∂µ4Aµ5

+
3

5
Aµ1Aµ2Aµ3Aµ4Aµ5

)
. (2.4.93)

However, the inclusion of a 5d Chern-Simons action is not enough to render the

gauge field Aµ auxiliary, as a 5d Chern-Simons action allows the vector gauge field

to carry propagating degrees of freedom. The counting of the number of propagating

10We thank Dmitri Sorokin for explaining this to us.
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degrees of freedom for a 5d Chern-Simons gauge field is reviewed in the appendix

2.A.

Our construction is in principle only a low energy effective description for a

system of coincident M5-branes. If one is lucky, the (2,0) supersymmetric completion

may give a well-defined quantum theory as in the case of BLG [49–51] and ABJM

theories [52] for multiple M2-branes and the N = 4 SYM theory for multiple D3-

branes. This is another strong reason to construct the supersymmetric completion.

To construct the supersymmetric theory, one needs to include scalar fields and

fermions in the adjoint of U(N). For (2,0) supersymmetry, all these fields are sitting

in the tensor multiplet. Since there is no Yang-Mills multiplet in (2,0) supersym-

metry, the Yang-Mills gauge field must be a supersymmetric singlet. This is rather

difficult to implement. On the other hand, it is possible that only a fraction of the

(2,0) supersymmetry, i.e. (1,0) supersymmetry, is visible in the classical action of

multiple M5-branes, and full supersymmetry can be seen only nonperturbatively as

in the ABJM theory [52]. With respect to (1,0) supersymmetry, the (2,0) tensor

multiplet is simply the sum of a (1,0) tensor multiplet and a (1,0) hyper-multiplet.

Moreover, one should employ a (1,0) Yang-Mills multiplet as an auxiliary multi-

plet. The recent results of (1,0) superconformal theories [64] should be useful in this

regard.

However even before one enters into the details, a simple observation already

indicates that the supersymmetric theory is going to be highly nontrivial. In six di-

mensions, scalar field has dimension 2. Conformal invariance plus locality imply that

the potential term V for the scalar fields has to be cubic. However a nonvanishing

cubic potential has no ground state and this is not compatible with supersymmetry.

This means the potential term, if nonvanishing, will need to be nonlocal. For exam-

ple, potential of the schematic form V ∼ φ4/|φ| or V ∼
∫
dx5

∫
dx5 φ

4 could avoid

the problem of not having a ground state. It is amusing that the later form of the

potential has a close resemblance with the scalar interaction term in [114] 11 if one

exchanges Cµ ∼ δ5
µ

∫
dx5, both of which are of dimension -1. However, the above

11We thank Neil Lambert for pointing out this resemblance.
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discussion is based on the canonical dimension of the scalar field, as the theory is

strongly interacting, the mass dimensions of scalars might be anomalous.

It would be interesting to understand the connection between our description and

the proposed SYM description of M5-branes [55,56]. In particular an understanding

of how a non-abelian 2-form gauge field would arise in the Yang-Mills description is

needed. Incidentally, based on a fluctuation analysis of D1-branes around a large RR

3-form flux background, a matrix model description for M5-branes in a background

C-field was suggested in [118] and there is the same question of how to extract a

B-field from the matrix variables. This problem may be compared with the problem

of extracting the spacetime fields and their dynamics, particularly the gravity field,

from the matrix model [11, 137]. See for example [138–141]. Lessons drawn from

those analysis may be useful here.

Our theory is based on fields in the adjoint of U(N), i.e. taking N2 values.

Naively this is different from the N3 counting from entropy argument [142]. To

understand the counting, it will be important to understand the dynamics of the

theory properly. See for example [121, 122] for some recent interesting analysis

performed on the 5d SYM theory and a class of 6d SCFT in the Coulomb phase.



Appendix

2.A Counting of degrees of freedom for Chern-

Simons theory

We will start with a review of the counting of degrees of freedom for pure Chern-

Simons theory performed in [130, 131]. Then we extend the analysis to the case

where the Chern-Simons theory is coupled to a covariantly conserved current. The

details of the counting is not important for our results. They are included here for

completeness.

2.A.1 Pure Non-Abelian Chern-Simons theory

Consider the five dimensional (dimension D = 2n + 1, n = 2 here) Chern-Simons

action

SCS =

∫
M

LCS, with dLCS = gabcF
a ∧ F b ∧ F c (2.1.94)

where gabc is the symmetric invariant tensor of the gauge group and a = 1, · · · ,N
with N being the dimension of the gauge group. The equation of motion

gaa1a2F
a1
µ1µ2

F a2
µ3µ4

εµ1µ2µ3µ4λ = 0 (2.1.95)

can be decomposed intoka ≡ gaa1a2F
a1
i1i2
F a2
i3i4
εi1i2i3i4 = 0,

kia ≡ 4gaa1a2F
a1
i1i2
F a2

0i3
εi1i2i3i = 0,

(2.1.96)

where µ = (0, i) and i = 1, · · · , 2n. Introduce the ”2nN × 2nN matrix” Ωij
ab ≡

4εiji1i2gabcF
c
i1i2

((b, j) as a collective index), we can rewrite the equations of motion

67
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in the compact form: ka = Ωij
abF

b
ij = 0

Ωij
abF

b
0j = 0

(2.1.97)

A simple identity

δi[kg
abcεj`mnF b

j`F
c
mn] = 0, ⇒ Ωij

abF
b
kj = δikka (2.1.98)

shows that on the constraint surface ka = 0, (vk)
b
j ≡ F b

kj gives 2n null vectors to Ωij
ab.

The non-invertibility of Ω is due to the existence of symmetry. In this case, the 2n

null vectors F b
kj generates the spatial diffeomorphism. In fact under diffeomorphism

δxµ = ηµ of spacetime, the Chern-Simons theory is invariant with δηA
a
µ = LηAaµ, or

the improved diffeomorphism

δηA
a
µ = −ενF a

µν . (2.1.99)

In general, the rank of Ω depends on the properties of the invariant tensor gabc,

and the phase space location of the system. For example, at F a
µν = 0, Ωij

ab = 0 and

has zero rank. In [130,131], a generic condition on gabc was introduced. gabc is said

to be generic if there exists solution F a
ij on the surface ka = 0 such that:

(a) The matrix F b
kj ((b, j) as row and k as column index) has the maximum rank

2n such that ξkF b
kj = 0 implies ξk = 0, i.e. the 2n null vectors (vk)

b
j ≡ F b

kj of

Ωij
ab are linearly independent.

(b) The matrix Ωij
ab has maximum rank compatible with (a), i.e. Ωij

ab has no other

null vectors except (vk)
b
j and so has rank 2nN − 2n

We remark that the presence of the null vectors of Ω on the surface ka = 0 is due

to the presence of spatial diffeomorphism δxi = ηi, i = 1, 2, 3, 4. (under generic

condition assumption, temporal diffeomorphism is not independent). If there were

no such diffeomorphism, we would not expect the existence of such null vectors.

Now the equation of motion (2.1.97) together with the generic condition implies

F b
0j = NkF b

kj for arbitrary 2n fields Nk, or

Ȧai = DiA
a
0 +NkF a

ki (2.1.100)

Since (2.1.100) is invariant under
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(a) Standard gauge transformation (N dimensional) :

δAai = −Diλ
a, δλA

a
0 = −λ̇a − [λ,A0]a, δλN

k = 0 (2.1.101)

(b) Spatial diffeomorphism (2n dimensional) :

δξA
a
i = −ξjF a

ij, δξA
a
0 = −ξjF a

0j, δξN
k = ξ̇k + [ξ,N ]k (2.1.102)

where [ξ,N ]k is the Lie bracket of the vectors ξ and N ,

we can use the above symmetries to go to the the time gauge

A0 = 0, Nk = 0. (2.1.103)

In this case, the equation of motion is equivalent to

ka = 0, Aai = time independent. (2.1.104)

In addition to the N constraints ka = 0, the 2nN functions Aai (xi) are subjected to

the residual symmetry of the time gauge, these are N time-independent gauge sym-

metry (2.1.101) as well as the 2n time-independent spatial diffeomorphism (2.1.102),

therefore the number of arbitrary functions in the solution to the equation of motion

of Lagrange formulation is 2nN −N −(N +2n) = 2(nN −N −n). The local degrees

of freedom is simply the half of it, therefore

no. of local degrees of freedom of pure CS = nN −N − n (2.1.105)

with n > 1. In 5d, this would be N − 2. We remark that the above analysis holds

only for the non-abelian case. For the counting of local degrees of freedom in the

abelian case, see [130,131].

2.A.2 Chern-Simons theory coupled to conserved current

For the case that the Chern-Simons theory is coupled to a conserved current Jλ

(DλJ
λ = 0):

S =

∫
d5x tr AµJµ + SCS, (2.1.106)
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the equation of motion of Aλ is

gaa1a2F
a1
µνF

a2
λσε

µνλσρ = c′Jaρ (2.1.107)

where c′ is some constant. In terms of the matrix Ωij
ab ≡ εiji1i2gabcF

c
i1i2

, the equation

of motion can be written as Ωij
abF

b
ij = c′Ja0

4Ωij
abF

b
0j = c′Jai

(2.1.108)

Generically, Jai 6= 0, this means that (2.1.98) can no longer be used to reduce the

rank of Ω, so we have full rank 2nN for Ω generically, i.e. Ω is invertible.

Now in the gauge Aa0 = 0, the second line of the equation of motion (2.1.108)

simply provides a first order partial differential equation in time:

∂0A
b
j = c′(Ω−1)abjiJ

a
i . (2.1.109)

As for the first equation of motion of (2.1.108), it is indeed time-independent since

∂0(Ωij
abF

b
ij − c′Ja0 ) =

(
2gabc∂0F

b
k`F

c
ijε

ijk` − c′∂0J
a
0

)
= Dk[4gabcF

b
ijF

c
0`ε

ijk`]− c′DiJ
a
i = c′DkJ

a
k − c′DkJ

a
k = 0 (2.1.110)

As a result, (2.1.108) simply provides a constraint on the initial values Abj(xi, t = 0).

Therefore, in the time gauge, Abj(xi, t) are determined by (2.1.109) up to the initial

conditions Abj(xi, t = 0). Both the time-independent gauge transformation and the

time-independent constraints (2.1.108) remove N independent initial conditions, so

we have local degrees of freedom

1

2
(2nN −N −N ) = (n− 1)N (2.1.111)

In 5d, it’s N .



Chapter 3

Non-abelian self-dual string

solution

Having introduced the proposed model for the gauge sector of multiple M5-branes

in chapter 2, we study their (BPS) self-dual string solutions in this chapter. We

will find the solutions both in the uncompactified and compactified space-times.

These self-dual string solutions are supported by Wu-Yang and ’t-Hooft-Polyakov

monopole solutions.

3.1 Introduction

The low energy theory of N coincident M5-branes is given by an interacting (2,0)

superconformal theory in 6 dimensions [69,102–104]. On the M5-brane worldvolume

there are self-dual strings. For a single M5-brane, the low energy theory is known

[13, 14, 83–85, 90, 91, 98, 105]. The self-dual string soliton has also been constructed

[46,90]. Much less is known about the theory of multiple M5-branes, as well as the

properties of multiple self-dual strings.

Recently, a theory of non-abelian chiral 2-form in 6-dimensions was constructed

[54]. The construction was motivated by the analysis in [58, 110] and a set of 5d

Yang-Mills gauge fields was introduced in order to incorporate non-trivial interac-

tions among the 2-form potential. The theory admits a self-duality equation on the

field strength as the equation of motion. It has a modified 6d Lorentz symmetry.

71
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On dimensional reduction on a circle, the action gives the standard 5d Yang-Mills

action plus higher order corrections. Based on these properties, it was proposed that

the theory describes the gauge sector of multiple M5-branes in flat space. An im-

portant feature of this theory is that the self-interaction of the two-form gauge field

is mediated by a set of five-dimensional Yang-Mills gauge field Aµ, µ = 0, 1, 2, 3, 4).

The Yang-Mills gauge field is auxiliary and is constrained non-trivially to be given

in terms of the non-abelian tensor gauge field and does not contain any propagating

degrees of freedom. In the Abelian case, the 1-form gauge field is free and simply

decouple. See also [114], [55, 56], [57], [118], [120], [121, 122, 143], [58, 64, 144–146],

for some other more relevant recent developments.

In this chapter we give a further support of this proposal by constructing the

non-abelian self-dual strings to the equation of motion of the non-abelian theory [54].

For simplicity, let us consider 1/2-BPS states, and so consider a SU(2) gauge group

which corresponds to a system of two M5-branes. A crucial observation in our

construction is that the Perry-Schwarz solution is supported by a Dirac monopole

Aa, (a = 0, 1, 2, 3). As the solution is translational invariant along the direction

(say x4) of the string, this gauge field can be thought of as a five dimensional one

with A4 = 0 and be interpreted as the auxiliary 1-form gauge fields in the theory

of [54]. This interpretation suggests that the non-abelian self-dual string solution

may be constructed by taking the auxiliary Yang-Mills gauge field to be given by

a non-abelian monopole. Quite remarkably this is indeed correct and we are able

to construct a self-dual string solution both for uncompactified six dimensions as

well as with one dimension compactified. Our solution is obtained by replacing the

Dirac monopole in the Perry-Schwarz string, in the uncompactified case to the non-

abelian Wu-Yang monopole; and in the compactified case to the ’t Hooft-Polyakov

monopole.

The plan of this chapter is as follows. In section 3.2, after reviewing the original

Perry-Schwarz self-dual string solution, we present a new abelian self-dual string

solution which is orientated in a different direction. The existence of the latter

solution is guaranteed by the Lorentz symmetry of the Perry-Schwarz theory. Then

we solve the non-abelian equation of motion of [54] and obtain an exact solution
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describing a string. We then discuss how this solution can be lifted as a solution

of the (2,0) supersymmetric theory. The resulting solution describes a non-abelian

string with self-dual charges. In section 3.3, we consider the compactified case and

construct the corresponding self-dual string solution. Finally it is concluded with

some further comments and discussions in section 3.4.

3.2 Non-Abelian Self-Dual String Solution: Un-

compactified Case

In this section, we construct a self-dual string solution that satisfies both (2.3.51)

and (2.3.52). As mentioned above, a direct observation on the constraint (2.3.52)

shows that the solution cannot be aligned in the x5 direction since this would imply

Fµν = 0 which is trivial. This does not imply the non-existence of a string solution

in other directions, because the self-duality equation (2.3.51) has only 5d Lorentz

symmetry as it’s a gauge fixed equation of motion [54]. Therefore, as a preparation

to constructing the more general non-abelian self-dual string solution, we will first

construct an abelian self-dual string solution aligning in the x4 direction and we will

start by reviewing the original abelian self-dual string solution of Perry and Schwarz.

3.2.1 Self-dual string solution in the Perry-Schwarz Theory

In [90], a nonlinear theory of chiral 2-form gauge field which results in the Born-

Infeld action for a U(1) gauge field when reduced to 5 dimensions was constructed.

The Perry-Schwarz non-linear field equation is given by

H̃µν =
(1− y1)Hµν5 +Hµρ5H

ρσ5Hσν5√
1− y1 + 1

2
y2

1 − y2

, (3.2.1)

where

y1 := −1

2
Hµν5H

µν5, y2 :=
1

4
Hµν5H

νρ5Hρσ5H
σµ5. (3.2.2)

As they demonstrated, the equation of motion (3.2.1) admits a solution describing a

self-dual string soliton with finite tension aligning in the direction x5. Since (3.2.1) is

(non-manifest) 6d Lorentz covariant, it means there must also exist self-dual string
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solution aligned in other directions. In the following, we review their construction in

section 3.2.1. Then we construct new self-dual string solution aligned in a different

direction in section 3.2.1.

Self-dual string in the x5 direction

The ansatz Perry and Schwarz considered for their self-dual string solution is

B = α(ρ)dtdx5 +
β

8
(±1− cos θ̃)dφ̃dψ̃, (3.2.3)

where the 6d metric is

ds2 = −dt2 + (dx5)2 + dρ2 + ρ2dΩ2
3, (3.2.4)

with the three-sphere given in Euler coordinates

dΩ2
3 =

1

4
[(dψ̃ + cos θ̃dφ̃)2 + (dθ̃2 + sin2 θ̃dφ̃2)], (3.2.5)

where 0 ≤ θ̃ ≤ π, 0 ≤ φ̃ ≤ 2π, 0 ≤ ψ̃ ≤ 4π. For this ansatz, it is y1 = α′ 2, y2 = α′ 4/2

and the non-linear field equation (3.2.1) reads

α′(ρ) =
β√

β2 + ρ6
. (3.2.6)

This can be solved easily in terms of a hyper-geometric function. The solution is

regular everywhere where α ∼ ρ as ρ → 0, while α ∼ − β
2ρ2

+ const. as ρ → ∞.

Note that the same ansatz also solves the linear self-duality equation, where in this

case we have,

α′(ρ) =
β

ρ3
(3.2.7)

and the solution is singular at ρ = 0. In other words, the non-linear terms in the

field equation has smoothen out the singularity at ρ = 0.

The magnetic charge P and electric charge Q per unit length of the string are

given by

P =

∫
S3

H, Q =

∫
S3

∗H, (3.2.8)

where ∗ denotes the Hodge dual operation and S3 is a three sphere surrounding the

string. It is straightforward to obtain that

P = 2π2β, and Q = 2π2ρ3α′(ρ)|ρ→∞ = 2π2β, (3.2.9)
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hence the string is self-dual. This holds for both the nonlinear and the linear cases.

Note that our answer is 1/8 of those in [90] as we have introduced the factor of 1/4

into the metric (3.2.5) in order to reproduce the correct volume 2π2 for a unit three

sphere.

The charge quantization condition [147,148]

PQ′ +Q′P ∈ 2πZ (3.2.10)

for the self-dual string gives

β = ±n
√

1

4π3
, (3.2.11)

i.e.

P = Q = ±n√π, (3.2.12)

where n is a positive integer. Note that the charge quantization condition we used

is different from the Dirac-Teitelboim-Nepomechie charge quantization condition

[35–37] Perry and Schwarz used. The condition (3.2.10) is obtained with a self-

dual string probing another self-dual string and the positive sign in the charge

quantization condition is appropriate for dyonic branes in D = 4k + 2 spacetime

dimensions [147,148].

Perry and Schwarz have also computed the tension of their string solution. Since

the solution is static, the energy can be identified with the Lagrangian and the

energy per unit length is found to be

T = c̃β4/3, (3.2.13)

where c̃ is a numerical coefficient. We remark that for the self-dual string solution

of the linearized theory, the tension is

T = 0 (3.2.14)

since obviously the action vanishes on-shell. Since the charges and tension are well

defined, it appears that the singularity at ρ = 0 is not harmful.

We also remark that the Perry-Schwarz self-dual string solution is non-BPS as

there is no other matter field turned on to cancel the tensor field force. In the lit-

erature, there is also the 1/2 BPS self-dual string of Howe, Lambert and West [46].
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In fact the Perry-Schwarz self-duality equation of motion can be embedded in the

fully supersymmetric five-brane equation of motion of [83, 84] by setting all the

matter fields to zero and hence the Perry-Schwarz self-dual string solution can be

lifted to be a solution of the full five-brane equation of motion, albeit a nonsuper-

symmetric one. Unlike the nonlinear Perry-Schwarz self-dual string solution, the

Howe-Lambert-West self-dual string solution is singular at the location of the string.

In fact B ∼ 1/ρ2 near the string, which is exactly as in linearized Perry-Schwarz

self-dual string solution.

Self-dual string soliton in the x4 direction

The Perry-Schwarz solution is translationally invariant along x5. One may want to

generalize this solution directly and construct a non-Abelian self-dual string solu-

tion which is translationally invariant along x5 but this is not possible. As reviewed

above, the gauge field strength in the non-abelian theory is given on-shell by the

boundary value of B-field as (2.3.52) Therefore, if the non-Abelian solution is trans-

lationally invariant along x5, then Fµν = 0 which is trivial.

To get a non-trivial solution, we need to base our construction on Perry-Schwarz

solitons which are translationally invariant along other direction, say x4. Such a

solution can be easily obtained by rotating the original Perry-Schwarz solution as

Perry and Schwarz has proved that their theory and the non-linear equation (3.2.1)

respect Lorentz symmetry. Therefore, a simple Lorentz transformation which swap

(x4, x5) → (−x5, x4) can be applied on the original Perry-Schwarz solution (the

minus sign is needed to preserve the orientation of spacetime) to obtain the desired

solution.

To facilitate the discussion, it is more convenient to use the spherical polar

coordinates which is related to the Euler coordinates by the change of coordinates

θ̃ = 2θ, φ̃ = ψ − φ, ψ̃ = ψ + φ. (3.2.15)

With this coordinates, the three-sphere metric is given by

dΩ2
3 = dθ2 + sin2 θdφ2 + cos2 θdψ2 (3.2.16)
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with the ranges 0 ≤ θ ≤ π/2, 0 ≤ φ, ψ ≤ 2π, and the Perry-Schwarz ansatz (3.2.3)

becomes

B = α(ρ)dtdx5 + β

(
1

4
± 1

4
− 1

2
cos2 θ

)
dφdψ. (3.2.17)

Next change to Cartesian coordinates

x = ρ sin θ cosφ, y = ρ sin θ sinφ, z = ρ cos θ cosψ, w = ρ cos θ sinψ, (3.2.18)

where we have denoted (x1, x2, x3, x4) = (x, y, z, w). The metric becomes

ds2 = −dt2 + dx2 + dy2 + dz2 + dw2 + d(x5)2, (3.2.19)

and the Perry-Schwarz ansatz reads

B = α(ρ)dtdx5 + β

1
4
± 1

4
− 1

2
w2+z2

ρ2

(x2 + y2)(z2 + w2)
(xzdydw − xwdydz − yzdxdw + ywdxdz).

(3.2.20)

Keeping the orientation, we swap (x4, x5)→ (−x5, x4) and obtain our ansatz for

a string solution along the x4 direction,

B = α(ρ)dtdw − β
1
4
± 1

4
− 1

2
(x5)2+z2

ρ2

(x2 + y2)(z2 + (x5)2)
(xzdydx5 − xx5dydz − yzdxdx5 + yx5dxdz)

(3.2.21)

where now

ρ =
√

(x5)2 + r2, r :=
√
x2 + y2 + z2. (3.2.22)

It follows that

H =
α′

ρ
dtdw

(
xdx+ydy+zdz+x5dx5

)
+
β

ρ4

(
x5dxdydz−xdydzdx5+zdydxdx5−ydzdxdx5

)
,

(3.2.23)

∗H =
α′

ρ

(
x5dxdydz−xdydzdx5+zdydxdx5−ydzdxdx5

)
+
β

ρ4
dtdw

(
xdx+ydy+zdz+x5dx5

)
,

(3.2.24)

and

y1 =
(α′)2(x5)2

ρ2
− β2r2

ρ8
, y2 =

β4r4

2ρ16
+

(α′)4(x5)4

2ρ4
. (3.2.25)

Then the field equation (3.2.1) gives

β

ρ4
x5dtdw+

α′

ρ
(−xdydz+zdydx−ydzdx) =

α′x5

ρ
Gdtdw+

1

G

β

ρ4
(−xdydz+zdydx−ydzdx),

(3.2.26)
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where

G =

√
1 + β2r2ρ−8

1− α′2(x5)2ρ−2
. (3.2.27)

The equation (3.2.26) is equivalent to

α′ =
β√

β2 + ρ6
, (3.2.28)

which is the same equation as before. As a consistency check, we integrate over the

S3 transverses to x4 and obtain the same charges

P = Q = 2π2β. (3.2.29)

For the linearized case, α′ = β/ρ3.

Self-dual string soliton in the x4 direction in the Bµ5 = 0 gauge

The potential BMN in the solution (3.2.20) or (3.2.21) does not satisfy the condition

Bµ5 = 0 as needed in [54, 90]. However this is not a problem as they are indeed

gauge equivalent to one which does. Instead of giving the gauge transformation, it

is more instructive to construct directly the linearized self-dual string soliton in the

x4 direction in this gauge.

The starting point is (3.2.23) with α′ = β/ρ3. Our strategy is to integrate the

self-duality equation of motion

Hµν5 = ∂5Bµν (3.2.30)

to get Bµν . Then we use Bµν to compute the whole HMNP and check its consistency

with our ansatz. The components of H are

Htwi =
βxi

ρ4
, Hijk =

εijkβx
5

ρ4
, (3.2.31)

Htw5 =
βx5

ρ4
, Hij5 = −εijkβx

k

ρ4
. (3.2.32)

Integrating (3.2.32), we get the following components of Bµν :

Bij = −1

2

βεijkxk
r3

(
x5r

ρ2
+ tan−1(x5/r)

)
, Btw = − β

2ρ2
, (3.2.33)



3.2. Non-Abelian Self-Dual String Solution: Uncompactified Case 79

In principle, x5 independent constants of integration can be added but we will not

need them. It is now easy to check a consistent solution is obtained by setting all

the other independent components of Bµν to be zero.

Two remarks are in order:

1. We remark that if we apply the condition (2.3.43) to the Perry-Schwarz self-

dual string solution, we obtain

Fij = −cβπ
2

εijkxk
r3

, Ftw = 0 (3.2.34)

for the auxiliary gauge field. Certainly this U(1) field decouples and play no

role in the abelian case. However it is interesting to note that this is precisely

the field strength of a Dirac monopole in the (x, y, z) subspace! The presence

of a Dirac monopole was already apparent in the original solution of [90].

Here, we reveal that the same monopole configuration also appears as the

auxiliary gauge field. It turns out the use of a non-abelian monopole in place

of the Dirac monopole is precisely what is needed to construct the non-abelian

self-dual string solution.

2. The solution in the form (3.2.33) will be our basis for the construction of

the non-abelian self-dual string in the next subsection. We remark that it

is also quite interesting that this form of the solution provides a link be-

tween linearized Perry-Schwarz self-dual string and Howe-Lambert-West self-

dual string [46]. To explain this, let us first give a brief review on the key

construction of Howe-Lambert-West self-dual string. In the (2,0) supersym-

metric theory, there are two non-linearly related 3-forms which are called H

and h. The 3-form H is exact but not necessarily self-dual while the 3-form h

is self-dual but not necessarily exact. When constructing self-dual string, one

of the scalar fields is also turned on. The equation of motion is non-linear.

However, with an appropriate ansatz, it is possible to impose a BPS condition

which eventually gives a linear differential relation between H and the scalar

field. Writing in our notation, the BPS equations of motion read

Htwi = ∂iφ, Htw5 = ∂5φ, (3.2.35)
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Hijk = εijk∂5φ, Hij5 = −εijk∂kφ, (3.2.36)

where we have rescaled the scalar to absorb an inessential numerical factor.

These conditions ensure the self-duality of H. Furthermore, they agree pre-

cisely with the Perry-Schwarz’s equations of motion (3.2.30) if one identifies

Btw = φ. In other words, the linearized Perry-Schwarz self-dual string solu-

tion could be lifted to a 1/2 BPS solution in the (2,0) supersymmetric theory

by adding a scalar field that satisfies the ‘BPS’ condition (3.2.36) (due to

self-duality, the condition (3.2.35) is not needed).

3.2.2 Non-abelian Wu-Yang string solution

Now we are ready for the non-abelian case. As noted above of the roles played by the

Dirac monopole in the abelian Perry-Schwarz solution, it is natural to consider the

non-abelian generalizations of the Dirac monopole in the construction of the non-

abelian self-dual strings. Here we have two candidates: the Wu-Yang monopole and

the ’t Hooft-Polyakov monopole where the latter involves a Higgs scalar field while

the former does not. See, for example, [149] for a review of these solutions. We

will use these non-abelian configurations to construct non-abelian self-dual string

solutions for both the uncompactified case (where the Wu-Yang solution will be

used) and compactified case (where the ’t Hooft-Polyakov monopole will be used).

Let us first briefly review the non-abelian Wu-Yang monopole. Without loss of

generality, we will consider SU(2) gauge group with Hermitian generators T a = σa

2

satisfying

[T a, T b] = iεabcT c, a, b, c = 1, 2, 3. (3.2.37)

This corresponds to the relative gauge symmetry of a system of two five-branes.

Our convention for the Lie algebra valued fields are: Fµν = iF a
µνT

a, Aµ = iAaµT
a

and F a
µν = ∂µA

a
ν − ∂νAaµ − εabcAbµAcν .

The non-abelian Wu-Yang monopole is given by

Aai = −εaik
xk
r2
, F a

ij = εijm
xmxa
r4

, (3.2.38)
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where i, j = 1, 2, 3 and Note that the field strength for the Wu-Yang solution is

related to the field strength F
(Dirac)
ij = εijmxm/r

3 of the Dirac monopole by a simple

relation:

F a
ij = F

(Dirac)
ij

xa

r
. (3.2.39)

In fact by performing a (singular) gauge transformation

U = eiσ3ϕ/2eiσ2θ/2e−iσ3ϕ/2, (3.2.40)

one can go to an Abelian gauge where only the 3rd component of the gauge field

survives. In this gauge

Aai = δa3 A
(Dirac)
i . (3.2.41)

Despite its close connection with the Dirac monopole, the Wu-Yang solution is not

a monopole since it does not source the non-abelian magnetic field. In fact the color

magnetic charge vanishes ∫
S2

F a = 0. (3.2.42)

Nevertheless the Wu-Yang solution is a useful prototype for constructing a non-

abelian monopole and we will follow the common practice of the literature to refer

to it as the Wu-Yang monopole. In particular, a magnetic charge can be defined if

there is also in presence a Higgs scalar field as in the ’t Hooft-Polyakov monopole.

Inspired by the relation (3.2.39) of the Wu-Yang solution, we will try to solve

the non-abelian self-duality equation (2.3.51) by adopting the following ansatz for

the field strength,

Ha
µνλ = H

(PS)
µνλ

xa

r
(3.2.43)

Here r =
√
x2 + y2 + z2 and

H(PS) :=
β

ρ4

[
dtdw(xdx + ydy + zdz + x5dx5) (3.2.44)

+ x5dxdydz − zdxdydx5 − ydzdxdx5 − xdydzdx5
]

is the field strength for the linearized Perry-Schwarz solution in the x4 direction

(3.2.23). The self-duality of (3.2.43) follows immediately from the self-duality of the

Perry-Schwarz solution. For the moment, we will allow β to be a free parameter.
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Our strategy is again to integrate Hµν5 = ∂5Bµν to get Bµν . Then we obtain Fµν

and Aµ from the boundary value of Bµν . Finally, we use Bµν and Aµ to compute

the whole HMNP and check its consistency with our ansatz. Now the components

of our ansatz are:

Ha
twi =

βxixa

rρ4
, Ha

ijk =
εijkβx

5xa

rρ4
, (3.2.45)

Ha
tw5 =

βx5xa

rρ4
, Ha

ij5 = −εijkβx
kxa

rρ4
. (3.2.46)

Integrating (3.2.46), we get the following components of Bµν :

Ba
µν = B(PS)

µν

xa

r
, µν = ij or tw, (3.2.47)

where B
(PS)
ij , B

(PS)
tw are the B-field components (3.2.33) for the Perry-Schwarz solu-

tion. In principle, x5 independent constants of integration can be added but we will

not need them.

A consistent solution can be obtained by setting all the other independent com-

ponents of Bµν to be zero. To see this, let us compute Fµν from (2.3.52). It is

remarkable that

F a
ij = −cβπ

2

εijmxmxa
r4

, F a
tw = 0, (3.2.48)

which is precisely the form (3.2.38) of the Wu-Yang monopole if we take

cβ = − 2

π
. (3.2.49)

As a result, the non-vanishing component of the gauge field is given by

Aai = −εaik
xk
r2
. (3.2.50)

So far we have used only the field strength components Hij5, Htw5 of (3.2.46). How-

ever since Dµ(xaT a/r) = 0 for the Wu-Yang gauge field, therefore (3.2.45) is repro-

duced immediately and (3.2.43) is indeed satisfied.

Like the Wu-Yang monopole, the color magnetic charge of our Wu-Yang string

solution vanishes. This is not a problem as we should not forget about the scalar

fields as our ultimate aim is to construct the non-abelian self-dual string solution

in the multiple M5-branes theory and so the inclusion of scalar fields is natural
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from the point of view of (2,0) supersymmetry. Although we do not have the full

(2,0) supersymmetric theory, one can argue that the self-duality equation of motion

(2.3.51) is not modified by the presence of the scalar fields. This can be seen by a

simple dimensional analysis since the dimension of a canonically normalized scalar

field is two, and there is no local polynomial term one can write down which is

consistent with conformal symmetry. That the self-duality equation is not modified

by the scalar fields is also the case in the other proposed constructions [56,64,144].

As for the scalar field, first it is clear that due to R-symmetry, the self-interacting

potential vanishes if there is only one scalar field turned on. As a result, the equation

of motion of the scalar field is

D2
Mφ = 0. (3.2.51)

This is the general situation but for special cases, for example when a BPS condition

is satisfied, the second order equation could be reduced to a first order equation. A

reasonable form of the BPS equation is the non-abelian generalization of the BPS

equation (3.2.35), (3.2.36)

Hijk = εijk∂5φ, Hij5 = −εijkDkφ. (3.2.52)

We conjecture that (3.2.52) is indeed a BPS equation of the non-abelian (2,0) the-

ory since first of all it implies the equation of motion (3.2.51). Moreover (3.2.52)

would follow immediately from the supersymmetry transformation (Γ012345ε = ε,

Γ012345ψ = −ψ)

δψ = (ΓMΓIDMφ
I +

1

3!2
ΓMNPHMNP )ε (3.2.53)

(which is the most natural non-abelian generalization of the abelian (2,0) supersym-

metry transformation) and the 1/2 BPS condition

Γ046ε = −ε, (3.2.54)

together with the condition that φ6 := φ = φ(xa), a = 1, 2, 3, 5. Let us emphasise

that we do not have supersymmetry in our model of Chapter 2. The supersymmetry

transformation proposed above is just conjectural.

We note that (3.2.52) is compatible with the self-duality equation if the scalar
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Figure 3.1: An M2 brane ending on a system of two parallel M5-branes separated

by a distance.

field is equal to the Btw component:

φa = Ba
tw = − β

2ρ2

xa

r
, (3.2.55)

or more generally,

φa = −
(
u+

β

2ρ2

)
xa

r
, (3.2.56)

where u is a constant and we will choose it to be of the same sign as β so that

|φ| is never zero. To see the physical meaning of this solution, let us consider the

transverse distance |φ| defined by |φ|2 = φaφa. This gives

|φ| = |u+
β

2ρ2
|. (3.2.57)

This describes an M5-brane with a spike at ρ = 0 and level off to u as ρ → ∞.
Hence the physical interpretation of our self-dual string is that two M5-branes are

separating by a distance u and with an M2-brane ending on them (see figure 1).

With this interpretation, there is a symmetry breaking and one can identify a U(1)

B-field at the large distance ρ:

Bµν ≡ φ̂aBa
µν = ±B(PS)

µν (3.2.58)
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where φ̂a := φa/|φ| and the + (−) sign in the second equation above corresponds to

the case c > 0 (c < 0). Since the field configuration approaches that of the abelian

self-dual string at large distance, we immediately obtain the charges

P = Q = −2π2|β| = −4π

|c| . (3.2.59)

and charge quantization determines that

β = ∓n
√

1

4π3
, c = ±4

√
π

n
(3.2.60)

and P = Q = −n√π. We require that the theory should admit solution with the

minimal unit of charge and so the possible values of the constant c in the non-abelian

action (??) is:

c = ±4
√
π (3.2.61)

and the charges of our solution are P = Q = −√π.

Just as in the abelian case, the action for the gauge fields vanish on shell. There-

fore the string gets its tension solely from the scalar field. In general, the kinetic

term of scalar field is proportional to

tr(DMφD
Mφ). (3.2.62)

Since the scalar field satisfies

DMφ→ 0, ρ→∞, (3.2.63)

we see that at large distance ρ → ∞ from the string, the kinetic term vanishes.

However the singularity at the origin leads to an infinite tension. This is the same

as the Howe-Lambert-West self-dual string solution [46].

3.3 Non-Abelian Self-Dual String Solution: Com-

pactified Case

In this section, we consider the theory with x5 compactified on a circle with radius

R and construct the self-dual string solution. The constraint that the gauge field

has to satisfy is now (3.3.64),

Fµν = 2πRcH̃(0)
µν , (3.3.64)
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Without loss of generality, let us assume that the string aligns in the w = x4

direction.

In the compactified theory, the field strength can be expanded in terms of Fourier

modes,

HMNP =
∑
n

einx
5/RH

(n)
MNP (r). (3.3.65)

The gauge field Bµν can be then obtained by integrating over the equation of motion

Hµν5 = ∂5Bµν . It is

Bµν =
x5

2πRc
Fµν(r) +

∞∑
n=−∞

einx
5/RB(n)

µν (r), (3.3.66)

where we have used the boundary condition (3.3.64) to determine the first term and

B
(0)
µν (r) is an integration constant. The higher modes B

(n6=0)
µν are given by:

H
(n6=0)
µν5 (r) =

in

R
B(n6=0)
µν (r). (3.3.67)

Notice that the first term on the right hand side has no contribution to Hµνλ because

of Bianchi identity and hence

H
(n)
µνλ = D[λB

(n)
µν] (3.3.68)

for all n.

Let us consider an ansatz with the only nonzero components of gauge potential

being Btw and Bij. The self-duality condition reads

Hijk = εijkHtw5, Htwk = −1

2
εijkHij5, (3.3.69)

or, written in terms of modes,

D[iB
(0)
jk] = εijk

Ftw
2πRc

, DkB
(0)
tw = − fk

2πRc
(3.3.70)

Dkb
(n)
k =

in

R
B

(n)
tw , DkB

(n)
tw = −b(n)

k

in

R
, n 6= 0, (3.3.71)

where we have denoted

fk(r) :=
1

2
εijkFij and b

(n)
k (r) :=

1

2
εijkB

(n)
ij for n 6= 0. (3.3.72)
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Notice that the 2nd equation of (3.3.70) takes exactly the same form as the BPS

equation for the ’t Hooft-Polyakov magnetic monopole if we identify −2πRcB
(0)
tw as

the scalar field there. Indeed in the BPS limit, the equation of motion for the ’t

Hooft-Polyakov monopole reads

1

2
εijkFij = Dkφ, (3.3.73)

where φ is an adjoint Higgs scalar field. The solution is given by

Aai = −εaik
xk

r2
(1− kv(r)), φa =

vxa

r
hv(r), (3.3.74)

where

kv(r) :=
vr

sinh(vr)
, hv(r) := coth(vr)− 1

vr
. (3.3.75)

Asymptotically r →∞, we have

Aai → −εaik
xk

r2
, φa → |v|x

a

r
:= φ∞, (3.3.76)

which coincides with Wu-Yang monopole. Note that the gauge symmetry is broken

at infinity to U(1), the little group of φ∞. This may be identified as the elec-

tromagnetic gauge group and one could use this to define the magnetic monopole

charge [150,151]. The electromagnetic field strength can be defined as

Fij = F a
ij

φa

|v| = εijk
xk

r3
, for large r. (3.3.77)

The magnetic charge is given by p =
∫
S2 F = 4π, which corresponds to a magnetic

monopole of unit charge. Note that at the core r → 0, we have

Ai → 0, φ→ 0 (3.3.78)

and hence the SU(2) symmetry is unbroken at the monopole core.

The resemblance of our equation with the BPS equation of the ’t Hooft-Polyakov

monopole motivates us to take for Aµ the same ansatz as in the ’t Hooft-Polyakov

monopole,

Aai = −εaik
xk

r2
(1− kv(r)), (3.3.79)

This implies Ftw = 0 and hence the 1st equation of (3.3.70) can be solved with

B
(0)
ij = c0Fij, (3.3.80)
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where c0 is an arbitrary constant. On the other hand, (3.3.71) gives

DkDkB
(n6=0)
tw =

n2

R2
B

(n6=0)
tw . (3.3.81)

For zero mode, we have DkDkB
(0)
tw = 0, combine them together we can write

DkDkB
(n)
tw =

n2

R2
B

(n)
tw . (3.3.82)

We take the ansatz for B
(n)
tw as

B
(n) a
tw = an(r)

vxa

r
(3.3.83)

then the equation (3.3.82) is equivalent to

∂r(r
2∂ran(r))

r2
− 2kv(r)

2

r2
an(r) =

n2

R2
an(r). (3.3.84)

The well-behaved physical solution is

a0 = α0hv(r), (3.3.85)

an6=0(r) = αn
e−|n|r/R

vr

(
1 +

vR

|n| coth(vr)

)
, (3.3.86)

where αn are arbitrary constants. Here we have dropped the independent solutions

which are exponentially increasing at large distance and hence not physical. As a

result, we obtain for the gauge fields

Ba
tw = −hv(r)

2πRc

vxa

r
+
∑
n6=0

αne
inx5/R e

−|n|r/R

vr

(
1 +

vR

|n| coth(vr)

)
vxa

r
, (3.3.87)

Ba
ij =

x5

2πRc
F a
ij(r) + c0F

a
ij(r) +

∑
n6=0

einx
5/RB

a (n)
ij (r). (3.3.88)

where

b
(n) a
k = −v3 R

in
(ra′n − kv(r)an)

xkxa

r
− δak

vR

in
ankv(r)

1

r
, n 6= 0. (3.3.89)

The proportionality factor for a0 is determined by recalling that −2πRcB
(0)
tw is the

scalar of the ’t Hooft-Polyakov monopole, while αn6=0 are left undetermined. Physi-

cally this corresponds to different excitations over the fundamental solution with all
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αn6=0 = 0. Note that there is a “winding mode” in Bij, while there is no such mode

in Btw because Ftw = 0. Although this has no effect classically, we expect that this is

observable quantum mechanically like the Berry phase. See, for example, [152–154]

for a discussion of Berry phase associated with branes in string theory.

Next let us include a (2,0) scalar field φ. As above we assume that it satisfies

the BPS equation (3.2.36), then the BPS equation is satisfied automatically if we

identify φ(0) = B
(0)
tw . As a result, we have

φ(0) a = −u
(

coth(vr)− 1

vr

)
xa

r
. (3.3.90)

where

u :=
v

2πRc
(3.3.91)

set the scale of the vev of φ(0) at large r since we can say φ(0) → − |v|
2πRc

xaT a/r as

r → ∞. In addition, one can define a U(1) projection onto φ(0). This allows us to

define the charges

P = Q =

∫
S1×S2

Haφ̂a

= ∓
∫
dx5dSk

1

2
εijk

(
1

2πRc
F a
ij

xa

r
+ (KK)

)
= −4π

|c| ,

(3.3.92)

where the − (+) sign in the second equation above corresponds to the case c > 0

(c < 0); and the term (KK) stands for the KK modes and their contribution to

the charges is zero. Substituting (3.2.61), we find that the solution is self-dual and

carries the charges P = Q = −√π. Physically one can identified this self-dual string

with the uncompactified one obtained in the previous section and so they carry the

same charges.

The scalar profile of (3.3.90) is plotted in figure 3.1, for two compactification

radius R = 1 and R = 4 and a fixed vev u = −0.5. One may compare our

results to the scalar profile in [155]. In this work, a modified Nahm’s equation

for the scalar field was conjectured. However unlike the ordinary Nahm’s equation

where one can obtain the non-abelian Yang-Mills gauge field at the same time, it

is not clear how one might obtain the corresponding non-abelian tensor gauge field
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from the modified Nahm’s equation and the proposal still needed to be completed.

Nevertheless, qualitatively their scalar profile is similar to ours.

2 4 6 8 10
r

0.1

0.2

0.3

0.4

0.5

ΦH0L

Figure 3.1: Scalar Profile. The red curve corresponds to R = 4 and the blue one

to R = 1.

3.4 Discussions

In this chapter we have constructed the non-abelian string solutions of the non-

abelian 5-brane theory constructed in [54], for both uncompactified and compact-

ified spacetime. The string solution in non-compact spacetime is supported by a

non-abelian Wu-Yang monopole, while the string solution in compact spacetime is

supported by a non-abelian ’t Hooft-Polyakov monopole. We showed how these so-

lutions can be embedded in the (2,0) supersymmetric theory by including a single

scalar field obeying a first order BPS equation. Although we don’t have the full

(2,0) supersymmetric construction yet, we argued that it is the correct BPS equa-

tion of the (2,0) theory since it solves the equation of motion, and moreover it can

be derived from the most natural form of the supersymmetry transformation law in

the non-abelian (2,0) theory. These string solutions carry self-dual charges and have

infinite tension arising from the scalar profile which corresponds to having a M2-

brane spike on the M5-branes system. These properties are consistent with what one

expects for the non-abelian self-dual strings living on a system of two M5-branes.

Hence the results we obtained provide further support that the non-abelian theory

constructed in [54] describes the gauge sector of a system of multiple M5-branes.

Needless to say, it is of utmost importance to obtain the supersymmetric completion
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of the bosonic theory [54]. This is under investigation.

We have constructed a non-abelian self-dual string solution with unit charge. In

the M-theory picture, it is possible to have non-abelian self-dual strings with higher

charges. It would also be interesting to explore the possible loop space or twistor

interpretation [62, 156, 157] of our self-dual string solution. In [158], the solution

found in section 3.2.2 is generalised for arbitrary number N5 of five-branes and arbi-

trary N2 units of self-dual charges. The solution of section 3.2.2 corresponds to the

case of N5 = 2 and N2 = 1. The generalisation constructed in [158] is based on the

generalized non-abelian Wu-Yang monopole [149,159,160]. Remarkably, the radius–

transverse relation describing the M2-branes spike in [158], in particular its N2, N5

dependence, agrees with the one in the supergravity description of [161,162]. Subse-

quently, a solution supported by the Yang-Mills instantons are found in [163], which

corresponds to the M-wave propagating on the worldvolume of multiple M5-branes.

Their result therefore provides further evidences that the non-abelian theory [54]

does give a description for a system of multiple M5-branes. A more detailed further

analysis of the nonlinear self-duality equations (2.3.51) and constraints (2.3.43) can

be found in [164].

It is also hoped that the self-dual string solution constructed here could provide

further insights into the understanding of the N3 entropy growth of the multiple

M5-branes system [142]. Recent progress on this problem has been achieved in

[121, 122, 143]. It will be interesting to count the number of degrees of freedom by

Goldstone mode analysis of our solution, and then compare the result with [165],

where the number of degrees of freedom was counted by using anomaly cancellation.

As advocated in [110, 118], just as in the D-branes case where the Lie bracket

which define the gauge symmetries for multiple D-branes captures the noncommu-

tative geometry of a single D-brane in the presence of a large NSNS B-field, it is

possible that the gauge symmetry for multiple M5-branes could also capture the

structure of the quantum geometry of a single M5-branes in the presence of a large

C-field. Given the dynamical evidence we presented in this chapter, we believe that

the non-abelian tensor gauge theory of [54] does describe the gauge sector of multi-

ple M5-branes. It is thus interesting to try to understand how the gauge symmetry
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of the non-abelian theory [54] could describe the quantum Nambu geometry derived

in [118] for a M5-brane in a large C-field. An encouraging sign is that both are

described in terms of an ordinary commutator.
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Chapter 4

The M5-brane action revisited

In this chapter, we move our focus to the single M5-brane case, and consider its

action formulation describing the nonlinear self-interaction. In particular, we con-

struct an alternative form of the M5–brane action in which the six–dimensional

worldvolume is subject to a covariant split into 3+3 directions by a triplet of auxil-

iary fields.

4.1 Introduction

The construction of duality–symmetric actions has been an active topic of research

since the 1970’s [166, 167]. It has recently seen a revival of interest in relation with

the discussion of possible finiteness of N = 8, D = 4 supergravity [168–175], and

in connection with attempts of making progress in understanding the non–Abelian

(2,0) 6d superconformal gauge theory [71] on the worldvolume of N coincident M5–

branes [47, 54–57, 59, 60, 62, 114, 124, 158, 163, 176–184]. For a single M5–brane the

complete set of equations of motion was derived in [83] and considered in detail in [84]

using the superembedding approach put forward in [185] (see [186] and e.g. [88,187]

for review and a detailed list of references). A complete M5–brane action was

constructed in [13, 14] as a result of a step–by–step generalization [90, 91, 94, 95, 98]

of a self–dual action for a free chiral 2–form gauge field [92, 93]. It was then shown

that the non–linear self–duality relation [86] and the complete set of the equations

of motion [85] derived from the M5–brane action are equivalent to the manifestly

94
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covariant equations obtained from superembedding.

It is well known that to lift the duality symmetry to the level of the action

one should deal with the issue of space–time covariance of the theory. In the non–

manifestly SO(1, 5) Lorentz–invariant construction of the 6d chiral 2–form action

by Henneaux and Teitelboim [92, 93] only an SO(5) or SO(1, 4) [90] subgroup of

SO(1, 5) is manifest. The construction can be made space–time covariant (diffeo-

morphism invariant) by introducing into the action a normalized gradient of an

auxiliary scalar field a(x) [96,97], [98]. The manifestly covariant formulation signif-

icantly simplifies the construction of the consistent couplings of the self-dual field

action to gravity and other fields, and its non–linear deformations. Different gauge

fixings of the value of a(x) using an associated local symmetry (or its dualiza-

tion [188]) results in different non–covariant forms of the self–dual action. On the

other hand, the self-duality equations obtained from the action can be cast into the

manifestly covariant form which does not contain the auxiliary field a(x), thus the

latter completely disappears on the mass–shell without imposing any gauge fixing

condition.

With the advent of the Bagger–Lambert–Gustavsson (BLG) model [48, 49, 51],

an alternative construction of a 5–brane action based on the BLG action with the

gauge symmetry of volume preserving diffeomorphisms was put forward in [74, 75]

(see [78,189] for a review and references and [126,190] for a related work). The space–

time and duality symmetries of this construction were analyzed in detail in [76,119].

The equivalence of this model to the M5–brane description of [13, 14] is still to be

proved, though some steps have already been undertaken in [76, 191] and various

checks via comparison of classical solutions on the both sides have been carried out

(see [78] and references therein).

The relation between the two actions is not obvious, first, since the original non–

linear M5–brane action is of a Dirac–Born–Infeld type whose chiral 2–form gauge

field transforms under the usual Abelian gauge transformations, while the action

of [74] is a polynomial of up to six order in the fields and has a Nambu–Poisson 3–

algebra structure associated with an un–conventional gauge invariance under volume

preserving diffeomorphisms. In [74, 75] it was conjectured that the Nambu–Poisson
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(NP) M5–brane model is related to the conventional description of the M5–brane in

a constant C3–field background through a transformation analogous to the Seiberg–

Witten map [192]. Such a map between the fields and gauge transformations of the

two models was constructed in [78], however the relation between the two actions

still remains to be established. The second reason which hampers the resolution

of this issue is that in the NP M5–brane model the manifest SO(1, 5) 6d Lorentz

symmetry is naturally broken by the presence of multiple M2–branes and the C3–

field to SO(1, 2) × SO(3), which corresponds to a 3 + 3 = 6 “splitting” of the six

dimensions of the M5–brane worldvolume. In the original M5–brane action, as we

mentioned above, the six dimensions split into 1+5. In [76] it was shown that, even

when reduced to the second order in the fields, the two duality–symmetric actions

are not equivalent off the mass shell, though both produce the same self-duality

equation for the 2–form gauge field.

The M5–brane case exemplified the fact that the Lagrangian description of the

self–dual fields and duality–symmetric fields in general is not unique (see also [193,

194]), and various free (quadratic) duality–symmetric actions in D dimensions with

different splittings of D = p+ q + r + ... corresponding to various ways of breaking

manifest space–time symmetry have been constructed [99, 195]. These different

off–shell formulations may be useful for studying issues of the quantization of the

self-dual fields in topologically non–trivial backgrounds [104,193,194,196–199].

As far as the M5–brane is concerned, it is advisable for a better understanding

of the relation between the original M5–brane descriptions and the NP 5–brane,

to see whether the quadratic self–dual action of [75] with “3+3 splitting” can be

extended to a full non–linear action which is invariant under the conventional gauge

transformations of the gauge field and which would produce the same equations

of motion as the ones obtained from the superembedding [83] and the action of

[13,14,85]. This is the main goal of this chapter.

Our strategy to achieve this goal is as follows1. We will start with the covariant

form [76] of the quadratic self–dual action of [75] for a 2–form chiral gauge field in

1For analogous procedures of getting manifestly duality–symmetric non–linear actions see e.g.

[90, 169,172].
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six–dimensions. In addition to the conventional invariance under the gauge transfor-

mations of the chiral field, the covariant action possesses two more local symmetries.

One of them ensures that the auxiliary fields, which make the action covariant, are

non–dynamical and another one guarantees that the self–duality condition on the

field strength of the chiral field is the general solution of its equations of motion.

We will add to this quadratic action a generic non–linear function of components

of the chiral field strength and derive conditions on the form of this function im-

posed by the two local symmetries. It is known that the conditions obtained in this

way may have more than one solution (see e.g. [90, 169, 172, 200, 201]), so to single

out the solution which describes the M5–brane we will look for the one which is

equivalent to the non–linear self–duality relation of the superembedding approach.

More concretely, we will check that the non–linearly self–dual field strength of the

superembedding formulation satisfies the condition imposed on the non–linear part

of the self–dual action and, as a result, will derive an explicit form of the M5–brane

action in which the 6d diffeomorphism invariance is subject to “3+3 splitting”.

As is known from an extensive literature (see e.g. [169–172, 174, 201] and refer-

ences therein), in general, the functionals of gauge–field strengths which determine

non–linear self–duality conditions are constructed order–by–order as perturbative

series expansions in powers of the field strength and in general their explicit form

is unknown except for the Born–Infeld–type actions and few other examples (see

e.g. [175, 202]). Our construction is a new example of an explicit (closed) form

of the non–linearly self–dual action which differs from the canonical form of the

Born–Infeld–type actions by additional terms and factors.

This chapter is organized as follows. In Section 4.2 we introduce main nota-

tion and conventions. In Section 4.3 we review the original action and present the

structure of the novel action for the M5–brane. The derivation of the new action is

explained in Section 4.4. In the subsection 4.4.2, we also give details of the check of

the form of the new M5–brane action by comparing the self–duality relations which

follow from the action with those obtained in the superembedding description of

the M5–brane. In Section 4.5 we show that on–shell values of the two actions are

equal and in Section 4.6 briefly discuss the dimensional reduction of the novel M5–
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brane action to that of the M2–brane. In Section 4.7, we show that putting our new

nonlinear chiral 2-form action on a torus gives rise to the Schwarz-Sen type duality

symmetric 4d theory [94]. The results are summarized in the Conclusion, where we

also discuss open issues and possible directions of further research.

4.2 Notation and Conventions

The 6d and the D = 11 Minkowski metrics have the almost plus signature, xµ

(µ = 0, 1, · · · , 5) stand for the worldvolume coordinates of the M5–brane which

carries the chiral gauge field B2(x) = 1
2
dxµdxνBνµ(x). The D = 11 bulk super-

space is parametrized by ZM = (XM , θ), where XM are eleven bosonic coordinates

and θ are 32 real fermionic coordinates. The geometry of the D = 11 supergrav-

ity are described by tangent–space vector supervielbeins EA(Z) = dZMEM
A(Z)

(A = 0, 1, · · · 10) and Majorana–spinor supervielbeins Eα(Z) = dZMEM
α(Z) (α =

1, · · · 32).

The vector supervielbein satisfies the following essential torsion constraint, which

is required for proving the kappa–symmetry of the M5–brane action,

TA = DEA = dEA + EBΩB
A = −iEαΓAαβE

β , (4.2.1)

where ΩB
A(Z) is the one–form spin connection in D = 11, ΓAαβ = ΓAβα are real

symmetric gamma–matrices and the external differential acts from the right.

The induced metric on the M5–brane worldvolume is constructed with the pull–

backs of the vector supervielbeins EA(Z)

gµν(x) = EA
µE

B
ν ηAB, EA

µ = ∂µZ
NEN

A(Z(x)). (4.2.2)

The M5–brane couples to the D = 11 supergravity 3–form gauge superfield

C3(Z) = 1
3!
dZM1dZM2dZM3CM3M2M1 and its C6(Z) dual, their field strengths are

constrained as follows

dC3 = − i
2
EAEBEαEβ(ΓBA)αβ +

1

4!
EAEBECEDF

(4)
DCBA(Z) ,

dC6 − C3dC3 =
2i

5!
EA1 · · ·EA5EαEβ(ΓA5···A1)αβ +

1

7!
EA1 · · ·EA7F

(7)
A7···A1

(Z), (4.2.3)

F (7)A1···A7 =
1

4!
εA1···A11F

(4)
A8···A11

, ε0...10 = −ε0...10 = 1.
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The generalized field strengths of B2(x) which appears in the M5–brane action is

H3 = dB2 + C3 , (4.2.4)

where C3(Z(x)) is the pullback on the M5–brane worldvolume of the 3–form gauge

field.

4.3 M5-brane actions

We start by briefly reviewing the original form of the M5–brane action and then

will present our main result, namely, the alternative worldvolume action for the

M5–brane in a generic D = 11 supergravity background.

4.3.1 Original M5–brane action

In this case to ensure the 6d worldvolume covariance of the M5–brane action one

uses a normalized gradient of the auxiliary scalar field a(x) which can be chosen to

be time–like or space–like, e.g.

vµ(x) =
∂µa√

∂νa gνλ(x) ∂λa
, vµv

µ = 1 (4.3.1)

Both choices are equivalent since in the action ∂µa appears only in the projector of

rank one

Pµ
ν(x) =

∂µa∂
νa

(∂a)2
, PP = P, (∂a)2 ≡ ∂νa g

νλ ∂λa = ∂νa ∂
νa . (4.3.2)

This projector singles out one worldvolume direction from the six, i.e. makes the

1+5 covariant splitting of the 6d worldvolume directions.

The M5–brane action in a generic D = 11 supergravity superbackground con-

structed in [13,14,91] has the following form:

S = +2

∫
M6

d6x

[√
− det(gµν + iH̃µν) +

√−g
4(∂a)2

∂λaH̃
λµνHµνρ∂

ρa

]
−
∫
M6

(C6 +H3 ∧ C3) , (4.3.3)

with

H̃ρµν ≡ 1

6
√−g ε

ρµνλστHλστ , H̃µν ≡
∂ρa√
(∂a)2

H̃ρµν , g = det gµν , (4.3.4)
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where

ε0···5 = −ε0···5 = 1 .

In addition to the conventional abelian gauge symmetry for the chiral 2-form,

the action (4.3.3) has also the following two local gauge symmetries :

δBµν = 2∂[µaΦν](x), δa(x) = 0, (4.3.5)

as well as

δa = ϕ(x), δBµν =
ϕ(x)√
(∂a)2

(Hµν − Vµν), (4.3.6)

where

Vµν(H̃) ≡ −2
δ
√

det(δνµ + iH̃µ
ν)

δH̃µν

, Hµν ≡ Hµνρ
∂ρa(x)√

(∂a)2
, (4.3.7)

with ϕ(x) and Φµ(x) being arbitrary local functions on the woldvolume. The first

symmetry (4.3.5) ensures that the equation of motion of B2 reduces to the non–linear

self–duality condition

Hµν = Vµν(H̃) , (4.3.8)

while the second symmetry (4.3.6) is responsible for the auxiliary nature of the scalar

field a(x) and the 6d covariance of the action.

The action (4.3.3) is also invariant under the local fermionic kappa–symmetry

transformations with the parameter κα(x) which act on the pullbacks of the target–

space supervilebeins and the B2 field strength as follows

iκE
α ≡ δκZ

MEα
M =

1

2
(1 + Γ̄)αβκ

β, iκE
A ≡ δκZ

MEA
M = 0. (4.3.9)

δgµν = −4iEα
(µ(Γν))αβ iκE

β, δH(3) = iκdC
(3), δκa(x) = 0 ,

where (1 + Γ̄)/2 is the projector of rank 16 with Γ̄ having the following form√
det(δνµ + iH̃µ

ν) Γ̄ = γ(6) − 1

2
ΓµνλPµ

ρH̃νλρ −
1

16
√−g ε

µ1···µ6H̃µ1µ2λH̃µ3µ4ρP
λρΓµ5µ6 ,

Γ̄2 = 1 , trΓ̄ = 0, (4.3.10)

where

Γµ = Eµ
AΓA , γ(6) =

1

6!
√−g ε

µ1···µ6Γµ1···µ6 . (4.3.11)
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4.3.2 New M5–brane action

For this case, to ensure worldvolume covariance of the construction, instead of the

single scalar field we need to introduce a triplet of auxiliary scalar fields as(x) with

the index (s = 1, 2, 3) labeling a 3-dimensional representation of GL(3) which is an

internal global symmetry of the action. The partial derivatives of the scalars are

used to construct the projector matrices [76]

Pµ
ν = ∂µa

rY −1
rs ∂

νas, Πµ
ν = δνµ − Pµν , Πµ

ν ∂νa = 0 (4.3.12)

with Y −1
rs being the inverse matrix of

Y rs ≡ ∂λa
r∂ρa

sgλρ. (4.3.13)

The projectors identically satisfy the following differential condition

Π[ρ
λΠκ]

µDλP
ν
µ = 0 = Π[ρ

λΠκ]
µDλΠ

ν
µ (4.3.14)

where Dµ is the worldvolume covariant derivative with respect to the induced metric

gµν .

Note that the projectors (4.3.12) have rank 3 and thus effectively split the 6d

directions into 3+3 ones orthogonal to each other.

The new M5–brane action coupled to a curved superbackground has the following

form

S =

∫
M6

d6x

[
−
√−g

6
(G̃µνρGµνρ + 3F̃ µνρFµνρ) + 2LM5(F,G)

]
−
∫
M6

(C6 +H ∧ C3) ,

(4.3.15)

where

LM5 = − 1

36(1 +G2)
εµ1µ2µ3µ4µ5µ6Gµ1µ2µ3Fµ4νλFµ5

λκFµ6κ
ν

+
1

1 +G2

√
− det

(
gµν +

1

2
(F +G)µρσ(F +G)νρσ

)
) (4.3.16)

and Fµνρ and Gµνρ are components of the field strength Hµνρ projected as follows

Fµνρ ≡ HτσλP
τ
µΠσ

νΠλ
ρ , Gµνρ ≡ HτσλΠ

τ
µΠσ

νΠλ
ρ , G2 ≡ 1

6
HµνρΠ

µ
τΠν

σΠρ
λH

τσλ, (4.3.17)

F̃µνρ ≡ H̃τσλP
τ
µΠσ

νΠλ
ρ , G̃µνρ ≡ H̃τσλΠ

τ
µΠσ

νΠλ
ρ , . (4.3.18)
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The action enjoys the following two local gauge symmetries analogous to eqs.

(4.3.5) and (4.3.6). The first one is

δBµν = P ρ
µP

σ
ν Φρσ(x), δas = 0, (4.3.19)

where Φρσ(x) are arbitrary parameters. Note that in view of the conditions (4.3.14)

it follows that the projected field strengths (4.3.17), and hence LM5(G,F ), are in-

variant under this symmetry

δΦGµνρ = δΦFµνρ = 0, (4.3.20)

while their dual (4.3.18) are not.

The second symmetry ensures the triplet of the scalar fields as(x) to be auxiliary

δas = ϕs(x), δBµν =
1

2
ϕrY −1

rs ∂
ρas εµνρτσλ

(√−gF̃ τσλ − ∂LM5

∂Fτσλ

)
, (4.3.21)

where ϕs(x) are local parameters2.

This symmetry allows one to gauge fix as(x) to coincide with three world–sheet

coordinates, e.g. xa (a = 0, 1, 2) or xi (i = 3, 4, 5), thus getting a non–covariant but

non–manifestly worldsheet diffeomorphism invariant M5–brane action. For instance,

let us impose the gauge fixing condition

as = δsa x
a , (4.3.22)

identifying as with xa. Then the following combination of the worldvolume diffeo-

morphism δxµ = ξµ(x) and the local symmetry (4.3.21) leaves this gauge condition

intact

δas(x) = ξµ(x)∂µa
s + ϕs(x) = ξs(x) + ϕs(x) = 0, → ϕs(x) = −ξs(x).

2In what follows we will use a normalization of the functional derivative, denoted by ∂L(F )
∂Fµν...

,

which differs from the one defined in (4.3.7). Namely, by definition the variation of a p–form Fµ1···µp

and the corresponding functional derivatives are defined as follows δFµ1···µp = δFν1···νp
δFµ1···µp
δFν1···νp

=

δFν1···νp
1
p!

∂Fµ1···µp
∂Fν1···νp

. So that

∂L
∂Fν1···νp

≡ p! δL
δFν1···νp

.
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Under the local transformation combined of the 6d diffeomorphism δxµ = ξµ(x) and

the local variation (4.3.21) with ϕa(x) = −ξa(x) the gauge field Bµν transforms as

follows

∆ξµBµν = δξµBµν −
1

2
ξa(x) εaµντσλ

(√−gF̃ τσλ − ∂LM5

∂Fτσλ

)
,

while the other M5–brane fields XM(x) and θα(x) being transformed in the conven-

tional way as worldvolume scalars. In the gauge (4.3.22) the action (4.3.15), (4.3.16)

is non–manifestly invariant under the modified worldvolume diffeomorphisms of the

above form.

Upon tedious computations we have checked that the action is invariant under

the kappa–symmetry transformations (4.3.9) but with a Γ̄ projector which has the

following form

1

1 +G2

√
det

(
δνµ +

1

2
(F +G)µρσ(F +G)νρσ

)
Γ̄ =

= γ(6) +
1

6
γ(6)(3F +G)µνρΓµνρ +

1

2(1 +G2)
γ(6)F µντF ρλ

τΓµνρλ

+
1

6(1 +G2)
γ(6)Γµνρ

(
3(FFG)µνρ + (FFF )µνρ

)
, (4.3.23)

where

(FFG)µνρ ≡ Fµ
τσFνσλGρ

λ
τ , (FFF )µνρ ≡ Fµ

τσFνσλFρ
λ
τ . (4.3.24)

Note that the term multiplying Γ̄ on the left hand side of (4.3.23) is equal (mod-

ulo
√
− det gµν) to the last term of the non–linear part (4.3.16) of the M5–brane

Lagrangian.

Finally, the non–linear self–duality condition which is obtained from action

(4.3.15) as the consequence of the equations of motion of B2 (see eq. (4.4.7) of

the next Section) has the following form

G̃µνρ =
1√−g

(
∂LM5

∂G

)µνρ
, F̃ [µνρ] =

1√−g

(
∂LM5

∂F

)[µνρ]

. (4.3.25)

As we will show, this self–duality condition is related to eq. (4.3.8) via the manifestly

covariant self–duality relation which comes from the superembedding approach [83].
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4.4 Derivation and check of the new M5–brane

action

To get the new M5–brane action (4.3.15) we start from the covariant form [76] of

the quadratic action [75] for the 6d chiral field. It is obtained from (4.3.15) by

truncating the latter to the second order in the chiral field strength H3
3

S =
1

6

∫
d6x

√
− det gµν (H − H̃)µνρ(Πλ

µΠκ
νΠτ

ρ + 3Πλ
µΠκ

νPτ
ρ)Hλκτ

≡ 1

6

∫
d6x

√
− det gµν [(G− G̃)µνρG

µνρ + 3(F − F̃ )µνρF
µνρ] , (4.4.1)

The action is invariant under the symmetry (4.3.19) and under the linearized coun-

terpart of (4.3.21)

δas = ϕs(x), δBµν =
1

2
ϕsY −1

sr ∂
ρar εµνρτσλ

√−g
(
F̃ τσλ − F τσλ

)
. (4.4.2)

The quadratic action leads to the equation of motion

∂ρ

(√−g(G− G̃)µνρ + 3
√−g(F − F̃ )[µνρ]

)
= 0, (4.4.3)

which has the general solution

√−g(G− G̃)µνρ + 3
√−g(F − F̃ )[µνρ] =

1

2
εµνρτσλ∂τ

[√−gΦ̃ηξP
η
σP

ξ
λ

]
, (4.4.4)

for some arbitrary integration constant Φ̃ηξ. This integration constant can be com-

pensated by a gauge transformation of the equation of motion under (4.3.19) with

gauge parameter −Φ̃ξη. Hence, in view of the definition of the projected components

of the field strength (4.3.17), the solution of the dynamical equation is equivalent to

the self-duality conditions

(G− G̃)µνρ = 0, (F − F̃ )[µνρ] = 0. (4.4.5)

We are now looking for a non–linear generalization of the action (4.4.1) which

would respect the both symmetries (4.3.19) and (4.3.21). Note that the second

3For simplicity, but without loss of generality, we consider (for a moment) the pullbacks of the

11D gauge fields be zero.
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symmetry should be deformed by the non–linear terms, since the form of its trans-

formation is associated with the form of the non–linear self–duality condition. In

the case of the M5–brane these are (4.3.6)–(4.3.8), and (4.3.21) and (4.3.25).

Since the field strength components Fµνρ and Gµνρ are invariant under the trans-

formations (4.3.19) (see eqs. (4.3.20)), while their dual (4.3.18) are not, the non–

linear terms in the action should only depend on F and G. So the general form of

the non–linear action which respects the symmetry (4.3.19) is obtained by replacing

the quadratic terms FF and GG in (4.4.1) by an arbitrary function L(F,G)

S =

∫
M6

d6x

(
−
√−g

6
(G̃µνρGµνρ + 3F̃ µνρFµνρ) + 2L(F,G)

)
. (4.4.6)

The variation of this action with respect to the gauge potential B2 produces the

equations of motion

∂ρ

[(
∂L
∂G

)µνρ
−√−gG̃µνρ + 3

(
∂L
∂F

)[µνρ]

− 3
√−gF̃ [µνρ]

]
= 0. (4.4.7)

In view of (4.3.20) and the fact that L only depends on F and G, we can integrate

the above equation of motion with the help of the symmetry (4.3.19) along the same

lines as in free theory. The integration produces the non–linear self–duality relations

G̃µνρ =
1√−g

(
∂L
∂G

)µνρ
, F̃ [µνρ] =

1√−g

(
∂L
∂F

)[µνρ]

. (4.4.8)

We should now find conditions on the form of L(F,G) imposed by the requirement

that the action is invariant under

δas = ϕs(x), δBµν =
1

2
ϕsY −1

sr ∂
ρar εµνρτσλ

(√−gF̃ τσλ − ∂L
∂Fτσλ

)
. (4.4.9)

Upon somewhat lengthy calculations using, in particular, the properties of the pro-

jectors (4.3.12)–(4.3.14) and the form of their variation under (4.4.9)

δϕPµν = 2Πρ(µ∂
ρϕrY −1

rs ∂ν)a
s (4.4.10)

we get the following condition on L(F,G)

∂µ

[
Y −1
rs ∂

νas
(√−g(∂L

∂G

)µτσ
Fντσ −

√−gGµτσ

(
∂L
∂F

)
ντσ

−g
2
εντσλξηF

λξηF τσµ − 1

2
εντσλξη

(
∂L
∂F

)λξη (
∂L
∂F

)τσµ)]
= 0.(4.4.11)
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This condition is analogous to those found in other instances of models with non–

linear (twisted) self–duality, e.g in D = 6 [90] and D = 4 [169,172]. It is well known

that these conditions may have different solutions leading to different non–linear

generalizations of quadratic duality–symmetric actions (see e.g. [90, 169, 172, 200,

201]). We are interested in a particular solution of the above equation, i.e. in the

form of L(F,G) which describes the M5–brane. To find this form we assume that, as

in the case of the self–duality condition (4.3.8) obtained from the original M5–brane

action, also the self–duality conditions (4.3.25) (or (4.4.8)) should be equivalent

to the self–duality conditions appearing in the superembedding formulation of the

M5–brane [83]. Exploring these conditions we shall derive the form (4.3.16) of the

non–linear M5–brane Lagrangian.

4.4.1 Non–linear self–duality of the M5–brane in the su-

perembedding approach

In the superembedding description of the M5–brane [83,84] the field strength H3 of

the chiral field B2 is expressed in terms of a self–dual tensor h3 = ∗h3 as follows4

1

4
Hµνρ = m−1λ

µ hλνρ ,
1

4
H̃µ1ν1ρ1 =

1

6
εµ1ν1ρ1µνρm−1λ

µ hλνρ = Q−1mµ1λhλ
ν1ρ1

(4.4.12)

where m−1λ
µ is the inverse matrix of

mµ
λ = δµ

λ − 2kµ
λ , m−1λ

µ = Q−1(2δµ
λ −mµ

λ), kµ
λ = hµνρh

λνρ (4.4.13)

and

Q = 1− 2

3
tr k2 . (4.4.14)

As was shown in [86], by splitting the indices in eqs. (4.4.12) into 1+5 and expressing

components of h3 in terms of H̃µν5 one gets the duality relation (4.3.8)5.

4Our normalization of the field strength differs from that in [86] by the factor of 1
4 in front of

H3.
5This splitting is amount to projecting the tensor fields along the direction of ∂µa and orthogonal

to it.
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We shall now carry out a similar procedure, but splitting the 6d indices into

3+3, and upon a somewhat lengthy algebra will arrive at the self–duality condition

in the form of (4.3.25), thus getting the non–linear function LM5(F,G) (4.3.16)

which enters the M5–brane action (4.3.15).

The 3+3 splitting can be performed with the use of the projectors (4.3.12), but

for computational purposes we have found it more convenient to pass to a local

tangent–space frame using 6d vielbeins emµ (emµ ηmne
n
ν = gµν) and to write the 3+3

tangent space indices explicitly. So the three directions singled out by the projector

Pm
n ≡ eµmPµ

νenν , which we assume to contain the time direction, will be labeled by

the indices a, b, c, and the three spacial directions singled out by Πm
n ≡ eµmΠµ

νenν

will be labeled by i, j, k:

Pm
n → δba , Πm

n → δji , a, b, c = 0, 1, 2; i, j, k = 3, 4, 5 , (4.4.15)

while the 6d Levi–Civita tensor splits as follows

εµνρλτκ ⇒ εabcεijk, ε012 = −ε012 = 1, ε345 = 1 . (4.4.16)

We are now ready to split the indices of H3 and h3 in (4.4.12).

3+3 splitting

As h3 is self–dual, we pick its 10 independent components in the local Lorentz frame

as follows

hija, hijk (4.4.17)

and define6

fka ≡
1

2
εijkhija, g ≡ 1

6
εijkhijk. (4.4.18)

In view of the self–duality

hmnp =
1

3!
εmnpl1l2l3hl1l2l3 , (4.4.19)

we have

hjab = −εabcf jc , habc = gεabc, (4.4.20)

6One should not confuse the field g(x) with the determinant of the induced metric gµν .
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or

fic =
1

2
εabchi

ab g = −1

6
εabch

abc. (4.4.21)

The corresponding components of H3 are defined as

F k
a ≡

1

2
εijkHija, G ≡ 1

6
εijkHijk. (4.4.22)

The duals of F and G are

F̃ic ≡
1

2
εabcHi

ab, G̃ ≡ −1

6
εabcH

abc. (4.4.23)

Note that the tensors (4.4.22) and (4.4.23) are counterparts of (4.3.17) and (4.3.18)

in the local Lorentz frame (4.4.15).

Our final goal is to write F̃ , G̃ in terms of F,G using the relations (4.4.12). To

this end, using (4.4.12) we first find the expressions for F,G, F̃ and G̃ in terms of g

and fai

1

4
F a
i = Q−1

(
f(1 + 4g2 − 4trf 2) + 8f 3 − 8gf−1 det f

)a
i

= Q−1 ∂

∂f ia

(
1

2
(g2 + trf 2)− 1

16
Q

)
, (4.4.24)

1

4
G = Q−1

(
g + 4g3 + 4gtrf 2 − 8 det f

)
= Q−1 ∂

∂g

(
1

2
(g2 + trf 2)− 1

16
Q

)
, (4.4.25)

and

1

4
F̃ a
i = Q−1

(
f(1− 4g2 + 4trf 2)− 8f 3 + 8gf−1 det f

)a
i

= Q−1 ∂

∂f ia

(
1

2
(g2 + trf 2) +

1

16
Q

)
, (4.4.26)

1

4
G̃ = Q−1

(
g − 4g3 − 4gtrf 2 + 8 det f

)
= Q−1 ∂

∂g

(
1

2
(g2 + trf 2) +

1

16
Q

)
, (4.4.27)

where

Q = 1− 16g4 + 16(trf 2)2 − 32g2trf 2 − 32trf 4 + 128 g det f, (4.4.28)

trf 2 ≡ fai f
b
j δ
ijηab , det f ≡ 1

6
εijkε

abcf iaf
j
b f

k
c , (f−1)ai det f ≡ 1

2
εijkε

abcf jb f
k
c .

(4.4.29)
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The M5–brane action in terms of G and F i
a

For the fields (4.4.22) and (4.4.23) the M5–brane action (4.3.15) takes the following

form

S3+3 = −
∫
d6x

(√
− det gµν(F

i
aF̃

a
i +GG̃)− 2LM5

)
−
∫
M6

(C6 +H ∧ C3) ,(4.4.30)

where the term LM5 is

LM5 =
√
− det gµν

G detF

1 +G2
+

√
det
(
δji (1 +G2) + F a

i F
j
a

)
1 +G2

 , (4.4.31)

and the non–linear self–duality relations (4.3.25) become

G̃ =
1√

− det gµν

∂LM5

∂G
, F̃ a

i =
1√

− det gµν

∂LM5

∂F i
a

. (4.4.32)

Self–duality relations in particular cases

To guess the form (4.4.31) of the function LM5 in the M5-brane action we first con-

sidered a number of simple cases.

f = 0 case

The relations (4.4.24)-(4.4.28) reduce to

Fi
a = F̃i

a = 0 , Q = 1− 16g4,

1

4
G =

g + 4g3

1− 16g4
=

g

1− 4g2
, (4.4.33)

1

4
G̃ =

g − 4g3

1− 16g4
=

g

1 + 4g2
. (4.4.34)

We now solve eq. (4.4.33) for g

g =
±
√

1 +G2 − 1

2G
. (4.4.35)

Since, due to (4.4.33), in the linear approximation G/4 = g, we should pick up only

the solution with the upper sign. Substituting this solution into (4.4.34) we get the

relation between G̃ and G

G̃ =
G√

1 +G2
=
∂
√

1 +G2

∂G
. (4.4.36)



4.4. Derivation and check of the new M5–brane action 110

We see that eq. (4.4.36) is exactly the same as (4.4.32) when in (4.4.31) we put

F a
i = 0 = Fµνρ. This demonstrates how the (square root of) factor 1 + G2 appears

in the function LM5(F,G) (4.3.16) or (4.4.31) of the M5–brane action (4.3.15).

g = det f = 0 case

Now the relations (4.4.24)–(4.4.28) reduce to

G = G̃ = 0 , Q = 1 + 16(trf 2)2 − 32trf 4,

1

4
F a
i = Q−1

(
f(1− 4trf 2) + 8f 3

)a
i

= Q−1 ∂

∂f ia

(
1

2
trf 2 − 1

16
Q

)
, (4.4.37)

1

4
F̃ a
i = Q−1

(
f(1 + 4trf 2)− 8f 3

)a
i

= Q−1 ∂

∂f ia

(
1

2
trf 2 +

1

16
Q

)
, (4.4.38)

Let us simplify things even further by considering a solution of the non–linear self–

duality equation such that the only non–zero components of fai are f 1
i . Then the

above equations further reduce to

G = G̃ = 0 , Q = 1− 16(f 2)2, f 2 ≡ f 1
i f

1
i ,

1

4
F 1
i = Q−1

(
1 + 4f 2

)
f 1
i =

f 1
i

1− 4f 2
, (4.4.39)

1

4
F̃ 1
i =

f 1
i

1 + 4f 2
, (4.4.40)

From these equations we find that

1− 4f 2 = −2(1∓
√

1 + F 2)

F 2
, 1 + 4f 2 =

2
√

1 + F 2

F 2
(
√

1 + F 2 ∓ 1) ,

f 1
i =

F 1
i

2F 2
(±
√

1 + F 2 − 1).

Since, due to (4.4.39), in the linear approximation F a
i /4 = fai , in the above relation

we should pick the upper sign and upon substituting it into (4.4.38) we get the

duality relation

F̃ 1
i =

F 1
i√

1 + F 2
=
∂
√

1 + F 2

∂F i
1

. (4.4.41)

We see that this relation coincides with (4.4.32) for G = 0 and F a
i having only the

non–zero components F 1
i .
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Self–dual string soliton (g 6= 0, det f = 0 case)

Let us now consider a more complicated particular case of a string soliton solution

of [90]. A similar consideration is applicable to the BPS self–dual string of [46]. For

the string aligned along the x2–coordinate, in terms of fields (4.4.22) and (4.4.23)

the string soliton solution of [90] has the following form:

G = −βx
1

ρ4
, F k

1 = −βx
k

ρ4
, (4.4.42)

G̃ = −α
′x1

ρ
, F̃ k

1 = −α
′xk

ρ
. (4.4.43)

where k = 3, 4, 5, ρ :=
√
x2

1 + x2
3 + x2

4 + x2
5, β is a constant and

α′(ρ) =
β√

β2 + ρ6
. (4.4.44)

In this form the string soliton solution was considered in [47]. It naturally splits the

6d worldvolume into 3+3 directions.

The form (4.4.42) of G and F suggests that in (4.4.24) and (4.4.25) g 6= 0 and

the non–zero components of fai are f 1
i . So the equations (4.4.24)–(4.4.28) reduce to

Q = 1− 16(g2 + f 2)2. (4.4.45)

1

4
F 1
i =

f 1
i

1− 4(g2 + f 2)
,

1

4
G =

g

1− 4(g2 + f 2)
, (4.4.46)

and
1

4
F̃ 1
i =

f 1
i

1 + 4(g2 + f 2)
,

1

4
G̃ =

g

1 + 4(g2 + f 2)
. (4.4.47)

Carrying out the same analysis as in the previous examples, from (4.4.45)–(4.4.47)

we get the duality relations

F̃ 1
i =

F 1
i√

1 +G2 + F 2
=
∂
√

1 +G2 + F 2

∂F i
1

, G̃ =
G√

1 +G2 + F 2
=
∂
√

1 +G2 + F 2

∂G
(4.4.48)

which are again a particular case of (4.4.32). One can then guess that in the mani-

festly covariant formulation the expression under the square root combines into the

determinant of the matrix formed by the bilinear combinations of Gµνρ and Fµνρ as

in eq. (4.3.16) or (4.4.31).
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To see that this is indeed so and that (4.4.31) should also contain the term

G detF let us consider the case in which G = 0 while F a
i is (otherwise) generic.

G = 0 case

We have

G = 0 =
(
g + 4g3 + 4gtrf 2 − 8 det f

)
, (4.4.49)

1

4
G̃ = 2Q−1g , (4.4.50)

Q = 1− 16g4 + 16(trf 2)2 − 32g2trf 2 − 32trf 4 + 128g det f

= 1 + 16g2 + 16(trf 2)2 + 48g4 + 32g2trf 2 − 32trf 4, (4.4.51)

1

4
F a
i = Q−1

(
f(1 + 4g2 − 4trf 2) + 8f 3 − 8gf−1 det f

)a
i

(4.4.52)

and

1

4
F̃ a
i = Q−1

(
f(1− 4g2 + 4trf 2)− 8f 3 + 8gf−1 det f

)a
i
. (4.4.53)

Now, the direct computation of detF using (4.4.52) and (4.4.49) gives (see also eq.

(4.4.70) of the Section 4.4.2)

detF = 8Q−1g . (4.4.54)

Comparing this equation with (4.4.50) we get

G̃ = detF , (4.4.55)

which is exactly the relation that we get by varying the term (4.4.31) of the M5-

brane action (4.3.15) or (4.4.30) with respect to G and setting G = 0 afterwards.

This explains the appearance of the term G detF in the M5–brane action.

On the other hand, upon expressing the right–hand side of (4.4.53) in terms of

F a
i and performing somewhat lengthy computations using Mathematica one gets the

duality relation for F̃ which coincides with eq. (4.4.32) evaluated at G = 0.

Finally, by a direct check using Mathematica one can verify that also in the

generic case the components F , F̃ , G and G̃ of the field strength H3 determined
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by the superembedding relations (4.4.24)–(4.4.28) satisfy the non–linear duality re-

lations (4.4.32) which follow from the M5–brane action (4.3.15). Main steps of the

calculation will be described in the subsequent subsection 4.4.2.

The last point that one should check is that the function (4.3.16) satisfies eq.

(4.4.11) which insures the invariance of the M5–brane action under the local trans-

formations (4.3.21). The direct calculation shows that this is indeed so. Actually,

(4.3.16) satisfies even stronger relation, namely, it makes to vanish the expression

under the derivative in (4.4.11).

4.4.2 Exact check of the M5–brane action non–linear self–

duality from superembedding

To check the form of (4.3.16) (or, equivalently, (4.4.31)), using the superembedding

relations (4.4.24)–(4.4.27) we should verify that

G̃(f, g) = 4Q−1 (g − 4g3 − 4gtrf 2 + 8 det f) = 1√
− det gµν

∂LM5

∂G

(
F (f, g), G(f, g)

)
,(4.4.56)

and

F̃ (f, g) = 4Q−1 (f(1− 4g2 + 4trf 2)− 8f 3 + 8gf−1 det f)

= 1√
− det gµν

∂LM5

∂F

(
F (f, g), G(f, g)

)
. (4.4.57)

To verify the above relations, on their right hand sides we should take G– and F–

derivatives of LM5 in the form (4.4.31), substitute into the results the expressions

(4.4.24) and (4.4.25) for F and G in terms of f and g, and to see that they coincide

with the left hand sides of (4.4.56) and (4.4.57), i.e. with G̃ and F̃ expressed in

terms of f and g. In particular, we will need to express tr(F 2), tr(F 4) and det(F )

in terms of f and g.

The algebra is very involved but it is manageable systematically by Mathematica.

To this end we used NCAlgebra package [203] which is found in http://math.ucsd.edu/∼ncalg/.

Matrix Notation

To use Mathematica we should properly define the matrices we deal with. Let Fa
i

be the components of the matrix F , ηab or ηab be the components of the matrix η
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and δij or δij be the component of the matrix δ. It will be clear from the context

whether the indices of η and δ are up or down. To simplify the notation, we drop δ

from all the matrix expressions.

For example, Fa
jδjkF

k
bη
bcFc

i is denoted as FδF TηF or just FF TηF. This ex-

pression is what in previous sections we simply referred to as F 3.

The inverse matrix F−1 has the components (F−1)i
a. We will, actually, encounter

the adjugate matrix adj(F ) and the cofactor matrix co(F ) ≡ adj(F )T more often

than F−1 and (F−1)T . The definition of adj(F ) is

adj(F )i
a ≡ (F−1)i

a detF =
1

2
εijkε

abcFb
jFc

k, (4.4.58)

where

detF ≡ 1

6
εijkε

abcFa
iFb

jFc
k. (4.4.59)

In the matrix form, the equation (4.4.24) reads

F = 4Q−1
(
f(1 + 4g2 − 4tr(fTηf)) + 8ffTηf − 8g η co(f)

)
(4.4.60)

its transpose is given by

F T = 4Q−1
(
fT (1 + 4g2 − 4tr(fTηf)) + 8fTηffT − 8g adj(f) η

)
. (4.4.61)

and

Q = 1− 16g4 + 128g det(f)− 32g2tr(fTηf) + 16(tr(fTηf))2 − 32tr(fTηffTηf).

(4.4.62)

We are ready to discuss the computation of the expressions tr(F 2) ≡ trF TηF ,

tr(F 4) ≡ trF TηFF TηF and det(F ) in terms of f and g.

Outline of computation

To compute F TηF, the following identities are useful to simplify the results:

η2 = 1, (4.4.63)

fadj(f) = adj(f)f = det f, fT co(f) = co(f)fT = det f, (4.4.64)
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adj(f)ηco(f) = −(fTηf)−1 det(fTηf) = −adj(fTηf)

= −(fTηf)2 + tr(fTηf)fTηf − 1

2
[(tr(fTηf))2 − tr((fTηf)2)],

(4.4.65)

where in the last equality we used the Cayley–Hamilton formula for 3× 3 matrices.

We also need the Cayley-Hamilton formula of the form

(fTηf)3 = tr(fTηf)(fTηf)2−1

2
[(tr(fTηf))2−tr((fTηf)2)]fTηf−(det f)2. (4.4.66)

Using these formulas one can see that each term in the expression for F TηF is

proportional to either

1, or fTηf, or (fTηf)2. (4.4.67)

Therefore,

tr(F 2)

16Q−2
=tr

(
f 2
)

+
(
−48g det(f) + 16tr

(
f 4
)

+ 8g2tr
(
f 2
)
− 8

(
trf 2

)2
)

+
(
64g det(f)tr

(
f 2
)
− 192g3 det(f)− 192(det f)2 + 96g2tr

(
f 4
)

+ 16g4tr
(
f 2
)

−64g2
(
trf 2

)2 − 16
(
trf 2

)3
+ 32tr

(
f 2
)

tr
(
f 4
))
,

(4.4.68)

where tr(f 2) and tr(f 4) are shorthand for tr(fTηf) and tr((fTηf)2).

We compute tr(F 4) and tr(F 6) ≡ tr((F TηF )3) using the same method. We

finally trade tr(F 6) with detF using the Cayley–Hamilton formula

detF =

√
−1

6
(tr(F 2)3 − 3tr(F 4)tr(F 2) + 2tr(F 6)) (4.4.69)

The explicit expression for detF in terms of f and g looks as follows

1

64
Q3 det(F ) = det(f) + 12g2 det(f) + 48g4 det(f) + 64g6 det(f) + 192g det(f)2

+1280g3 det(f)2 − 512 det(f)3 − 4 det(f)tr(f 2)− 96g2 det(f)tr(f 2)

−320g4 det(f)tr(f 2) + 256g det(f)2tr(f 2) + 4g(trf 2)2 + 32g3(trf 2)2

+64g5(trf 2)2 + 16 det(f)(trf 2)2 + 320g2 det(f)(trf 2)2 − 64 det(f)(trf 2)3

+64g(trf 2)4 − 4gtr(f 4)− 32g3tr(f 4)− 64g5tr(f 4)− 32 det(f)tr(f 4)

−640g2 det(f)tr(f 4) + 128 det(f)tr(f 2)tr(f 4)− 192g (trf 2)2tr(f 4)

+128g(trf 4)2, (4.4.70)
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We can now compute the expression in terms of f and g of the term in (4.4.31)

containing the square root√
1− det(F 2)

(1 +G2)2 + (G2 + tr (F 2)) +
1

2

(
(trF 2)2 − tr (F 4)

)
1 +G2

= Q−3(1 +G2)−1

√√√√( 12∑
n=0

an(f)gn

)2

, (4.4.71)

where the argument of the square root in the last line, which turns out to form a

perfect square, is a polynomial in g with coefficients an(f) depending on tr(f 2), tr(f 4)

and det(f). The form of these coefficients is rather cumbersome, and we do not give

it here. Using the above expressions we can then check that (4.4.56) indeed holds.

We now pass to the check of (4.4.57). In the matrix form it reads

F̃ = 4Q−1
(
f(1− 4g2 + 4trf 2)− 8ffTηf + 8g η co(f)

)
=

1√
− det gµν

η
∂LM5

∂F T
.

(4.4.72)

This is a matrix equation, and we need to compute F , FF TηF , and η co(F ). To

do this, we proceed as above and compute F , FF TηF and FF TηFF TηF and then

trade FF TηFF TηF with ηco(F ) using the relation

ηco(F ) = −
(
FF TηFF TηF + 1

2
F ((trF 2)2 − tr(F 4))− tr(F 2)FF TηF

)
detF

. (4.4.73)

In the final result, the matrices F , FF TηF and η co(F ) are expressed in terms of

g, f , ffTηf , and η co(f). We can then substitute these into ∂LM5/(
√
−detgµν∂F )

which is given by

1√
−detgµν

η
∂LM5

∂F T
=
Gηco(F )

(1 +G2)
+

−det(F ) η co(F )

(1+G2)2
+

(F tr(F 2)−FFT ηF)
1+G2 + F√

1− det (F 2)

(1+G2)2
+ (G2 + tr (F 2)) + 1

2

((trF 2)2−tr(F 4))
1+G2

,

(4.4.74)

and check that eq. (4.4.57) does hold.

4.5 Comparison of the two M5–brane actions

As was discussed in [76] duality symmetric actions corresponding to different split-

tings of space–time differ from each other by terms that vanish on–shell, i.e. when
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(an appropriate part of) the self–duality relations is satisfied. In [76] this was dis-

cussed for the free chiral 2–form in 6d.

We shall now confront the two M5–brane actions (4.3.3) and (4.3.15) by compar-

ing their values for the 3-form field strength satisfying the non–linear self–duality

equation. As we have seen, the non–linear self–duality relations that follow from

these actions are similar and are equivalent to the self–duality condition that follows

from the superembedding formulation. Therefore, to compute the on–shell values of

the M5–brane actions we will substitute into them the expressions of the components

of H3 and H̃3 in terms of the components of the self–dual tensor h3.

In the case of the novel action these are eqs. (4.4.24)–(4.4.27). Substituting

them into the action (4.3.15) (or (4.4.30)) and using Mathematica we find that the

on–shell value of the self–dual M5–brane action is

Son-shell
M5 = 4

∫
d6x
√
− det gµν Q

−1 −
∫
M6

(C6 +H ∧ C3) . (4.5.1)

Notice that the Lagrangian of this action is the functional of Q(h) defined in (4.4.14).

We thus see that the on–shell action is manifestly 6d covariant and does not depend

on the auxiliary fields ar(x) (4.3.12).

To compute the corresponding on–shell value of the original M5–brane action

(4.3.3) we perform the 1+5 splitting of the duality relations (4.4.12) which take the

following form

H̃âb̂5 = 4Q−1
(

(1− 2trf
2
)f + 8f

3
)
âb̂5
, Hâb̂5 = 4Q−1

(
(1 + 2trf

2
)f − 8f

3
)
âb̂5
,

where f âb̂ = hâb̂5 and â, b̂ = 0, 1, 2, 3, 4. Upon substituting the above expressions

into the action (4.3.3) we find that its value is again given by eq. (4.5.1). Thus the

two forms of the M5–brane action give rise to the same equations of motion and

their on–shell values are equal and are given by the superembedding scalar function

Q(h). For the self–dual string soliton considered in Section 4.4.1, the value of the

action determines the tension of the string, as was discussed in [90].

An interesting open problem that may have important consequences for the issue

of quantization of the self–dual fields is the understanding of the off–shell relationship

between the different self–dual actions.
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4.6 Relation to M2–branes

The new form of the M5–brane action can be useful for studying its relation to

the Nambu–Poisson description of the M5–brane in a constant C3 field which is

originated from the 3d BLG model with the gauge group of volume preserving

diffeomoprhisms [74, 75]. The BLG model invariant under the volume preserving

diffeomorphisms describes a condensate of M2–branes which via a Myers effect may

grow into an M5–brane. In [74, 75] it was conjectured that the Nambu–Poisson

M5–brane model is related to the conventional description of the M5–brane in a

constant C–field background through a transformation analogous to the Seiberg–

Witten map [192]. Such a map between the fields and gauge transformations of the

two models was constructed in [78], however the relation between the two actions

still remains to be established. We leave the study of this issue for future and will

only show that in a flat background without C–field the worldvolume dimensional

reduction of the bosonic M5–brane action (4.3.15) (or (4.4.30)) directly results in

the membrane action. To this end we fix the 6d worldvolume diffeomorphisms by

imposing the static gauge

xµ = Xµ, XI(xµ) I = 6, 7, 8, 9, 10

where XI(x) are five physical scalar fields corresponding to the target–space di-

rections transversal to the M5–brane worldvolume. We perform the dimensional

reduction of three worldvolume directions xi (i = 3, 4, 5) assuming that the scalar

fields XI and the chiral tensor field Bµν only depend on the three un–compactified

coordinates xa and not on xi. Then the induced worldvolume metric takes the form

gµν = (ηab + ∂aX
I∂bX

I , δij) , gai = 0 . (4.6.2)

We use the local gauge symmetry (4.3.21) to fix the values of the three auxiliary

scalars ar(x) in such a way that the projectors (4.3.12) take the form

Pµ
ν = δaµδ

ν
a , Πµ

ν = δiµδ
ν
i . (4.6.3)
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Then the components Gµνρ (4.3.17) of the gauge field strength vanish and Fµνρ

reduce to

Faij = ∂aBij ⇒ F i
a =

1

2
εijkFajk = ∂aX̃

i , (4.6.4)

where the dualized components of the gauge field Bij(x
a),

X̃ i ≡ 1

2
εijkBjk

play the role of the additional three scalar fluctuations of the membrane associated

with D = 11 target–space directions orthogonal to the membrane worldvolume.

Indeed, upon dimensional reduction the M5 brane action (4.4.30) becomes

SM2 =

∫
d3x

√
− det(ηab + ∂aXI∂bXI + ∂aX̃ i∂bX̃ i) , (4.6.5)

which is the action for a membrane in flat D = 11 space–time in the static gauge.

4.7 to get 4d 1+3 duality symmetric action

In this section, we present another consistency check that the dimensional reduction

of our action (4.3.15) on a torus7 gives the 1+3 duality-symmetric action of Schwarz

and Sen type (1+3 Schwarz-Sen action) [94].

In the work [38], the author shows that the dimensional reduction of the 6d PST

nonlinear action (4.3.3) on a torus gives either the self-dual DBI action (1.3.58) or

the 1+3 Schwarz-Sen type action [94] depending on how we gauge fix the auxiliary

field a(x). Let us notice that, in [204, 205], a complete comparison for PST M5-

brane action on a torus and the D3-brane action on a circle is done. Here, after

reviewing [38], we follow the lines of Berman and show that the same 1+3 Schwarz-

Sen type action can be obtained from our new action (4.3.15). This may be served

as another consistency check of our new 3+3 action.

7For simplicity, we don’t consider the action as embedded in a generic 11d supergravity back-

ground, but just view it as a 6d nonlinear theory for a chiral 2-form. That is, we are just interested

in the resulting 4d theory when we put the 6d nonlinear 3+3 chiral 2-form theory on a torus. For

the complete analysis of the supersymmetric PST M5-brane action on a torus and the D3-brane

on a circle, see [204,205].



4.7. to get 4d 1+3 duality symmetric action 120

4.7.1 review of PST (1+5) to self-dual DBI (0+4) and Schwarz-

Sen (1+3)

Consider the compactification of the 6d space as M6→M4 ⊕ T2,

metric : g = η ⊕ π, (4.7.6)

gauge potential : Baȧ = AIa(x
b)γIȧ(x

ḃ), (4.7.7)

where η and π denote the metric of the resulting 4d space and the torus respectively,

xa, a, b = 0, 1, 2, 38, are coordinates on the 4d space and xȧ, ȧ, ḃ = 4, 5 are coordinates

on the torus. γI are canonical 1-forms associated with nontrivial homology one cycles

on the torus, they form basis of H1(T 2, Z) and satisfy dγI = d ∗2γI = 0, with ∗2

being the Hodge dual on the torus. The explicit form of the γI will be given soon

later. The reduction of the field strength is therefore,

Habȧ = F I
ab(x

c)γIȧ(x
ḃ), (4.7.8)

other components are zero.

to self-dual DBI action

Let us align da in the direction of the torus, or

∂ȧa = γIȧ, for I = 1 or 2, (4.7.9)

say, I = 2 for definiteness. Recall that the PST action has the gauge symmetry

(4.3.5), which reduces to δBaȧ = −ψa∂ȧa = −ψaγ2ȧ in the dimensional reduction.

This observation tells us that the A2
a component of the reduced gauge field (4.7.7)

can be gauged away, if we choose ψa = A2
a. Therefore, we are left with a 4d covariant

gauge field Aa ≡ A1
a.

The homology H1(T 2, Z) basis can be chosen to satisfy

γI ∧ ∗2γJ =
MIJ

V Ω, γI ∧ γJ =
LIJ
V Ω, (4.7.10)

8Let us emphasise that the a, b indices in this subsection run from 0 to 3. Don’t be confused

with the convention of the splitting in (4.4.15).
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where Ω =
√
πd2x is the volume form on the torus, V =

∫
T 2 Ω is the volume, and

MIJ and LIJ are period and intersection matrices defined as

M =

∫
T2

γI∧ ∗2γJ =
1

τ2

 1 τ1

τ1 |τ |2

 , L =

∫
T 2

 γ1 ∧ γ1 γ1 ∧ γ2

γ2 ∧ γ1 γ2 ∧ γ2

 =

 0 1

−1 0

 .

(4.7.11)

The τ ≡ τ1 + iτ2 is the complex structure of the torus. Performing the reduction

on the action (4.3.3) (with trivial background) we will get nothing but the DBI

action of the D3-brane (1.3.58) after some trivial field redefinition with the complex

structure of the torus being identified with the dilaton and axion, τ = C0 + ie−Φ.

to Schwarz-Sen type 1+3 action

Instead of aligning da in the torus, one can choose da to lie in the direction of the

4d space. In this way, the manifest 4d covariance will be broken and we will see that

the resulting theory corresponds to the Schwarz-Sen type 1+3 action.

If da is chosen to be dx0, H̃µν (µ, ν = 0, 1, · · · , 5) appearing in the determi-

nant has only nonzero components H̃aȧ, the matrix being taken the determinant is

therefore not block diagonal. However, it can be calculated by

det(gµν + iH̃µν) = det g

(
1 +

1

2
trH̃2 +

1

8
(trH̃2)2 − 1

4
trH̃4

)
, (4.7.12)

where trH̃2 = H̃µνH̃νµ and trH̃4 = H̃µνH̃νρH̃
ρσH̃σµ. The resulting action is :

S =

∫
M4

d4x
√
−η′
√
P +

1

2

3∑
a=1

(
E1
aB

2a − E2
aB

1a
)
, (4.7.13)

where η′ab =
√
Vηab, and

P ≡ −(1+(B·B)IJ)MIJ+
1

2

[
(B·B)IJMIJ

]2−1

2
(B·B)IL(B·B)JKMIJMKL, (4.7.14)

with (B · B)IJ ≡ ∑3
a=1 B

I
aB

Ja. This is precisely a nonlinear generalisation of the

1+3 duality symmetric action constructed by Schwarz and Sen [94].

If instead, we choose da to be space-like, say da = dx1, then we will still get the

Schwarz-Sen type theory but with electric fields showing up in (4.7.14).
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4.7.2 new (3+3) action to Schwarz-Sen type (1+3)

In this subsection, we again use the index convention :

ȧ, ḃ, ċ = 4, 5

a, b, c = 0, 1, 2, 3︸ ︷︷ ︸
=i,j,k

, (4.7.15)

with the 3+3 splitting being

α, β, γ = 0, 4, 5, i, j, k = 1, 2, 3, (4.7.16)

We also follow Berman’s reduction ansatz [38] :

g = η ⊕ π, Baȧ = AIaγIȧ, (Bab = Bȧḃ = 0), (4.7.17)

where η is now chosen as the Minkowski metric for simplicity.

The nonzero components of the gauge potential are

Bαi 6= 0, B0α 6= 0, (α 6= 0). (4.7.18)

This simplifies the action a lot, for example, Hijk = 3∂[kBij] = 0, so that G2 = 0 in

the 3+3 action. The nonzero components of the field strengths are :

Hαij = ∂i(A
I
jγIα)− ∂j(AIi γIα) = F I

ijγIα, (α 6= 0), (4.7.19)

H0βk = ∂0Bβk + ∂kB0β = F I
k0γIβ, (β 6= 0). (4.7.20)

Hence, the quadratic piece reduces as

−1

2

√−gH̃αijHαij, (α 6= 0)

= −1

2

2

2!
εαijβ0kHβ0kHαij = −1

2
εαβεijkF I

0kγIβF
J
ijγJα

= −√πEI
kB

Jk ε̃αβγJαγIβ = −√πEI
kB

Jk 1

V εJI , (4.7.21)

where ε12 = ε12 = 1, F I
0k = EI

k , 1
2
εijkF J

ij = BJk. Therefore, after integration, we have

∫
M4

(E1
kB

2k − E2
kB

1k). (4.7.22)
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For the determinant part, the 2LM5 in this ansatz becomes (µ, ν, ρ, σ = 0, 1, · · · , 5)

2

√
− det

(
gµν +

1

2
FµρσFνρσ

)
. (4.7.23)

We can expand the determinant according to

det(1 + F 2) = 1 + trF 2 +
1

2

(
(trF 2)2 − tr(F 4)

)
+ detF 2, (4.7.24)

where F is the matrix Fiα defined as Fiα = εijkHjkα and it becomes BI
i γIα with

α 6= 0 by the ansatz. Since one column vanishes in the matrix BI
i γIα ≡ (BIγI)iα,

the determinant detF 2 simply vanishes and hence there will be no order 6 term on

the expansion of det(1 + F 2). For the 2nd order and 4th order terms :

trF 2 = FiαF
iα = BI

i γIαB
JiγαJ = (B ·B)IJMIJ

1

V , (4.7.25)

1

2
(trF 2)2 =

1

2

(
(B ·B)IJMIJ

1

V

)2

, (4.7.26)

−1

2
trF 4 = −1

2
FiαF

αjFjβF
βi = −1

2
BI
i γIαB

JiγαJB
K
j γKβB

LiγβL

= −1

2
(B ·B)IL(B ·B)JKMIJMKL

1

V2
. (4.7.27)

The 1/V area factors will be absorbed after rescaling the 4D metric : ηab→η′ab =

1√
V η

ab. Putting everything together, we therefore reproduced the nonlinear duality

symmetric action (4.7.13).

Another ansatz

We may try another possible 1+3 splitting :

ȧ, ḃ = 4, 5

a, b = 0, 1, 2, 3, (4.7.28)

with the 3+3 splitting being

α, β, γ = 0, 1, 2, i, j, k = 3, 4, 5. (4.7.29)

In this case, the G2 variable in 3+3 also vanishes :

H345 = ∂4B53 + ∂5B34 = −∂4(AI3γI5) + ∂5(AI3γI4) = AI3(∂5γI4− ∂4γI5) = 0, (4.7.30)
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since dγI = 0. Performing the dimensional reduction in almost the same lines as the

previous steps, one recovers the action (4.7.13), but with the electric field appearing

in determinant expansion. This is not surprising as the ansatz (4.7.15) selects out a

temporal special direction x0 while the ansatz (4.7.28) selects out a spatial direction

x3, from the 4d point of view.

4.8 Conclusion

Using the non–linear self–duality equation for the 3–form gauge field strength arising

in the superembedding description of the M5–brane we have derived a novel form

of the kappa–symmetric M5–brane action with a covariant 3+3 splitting of its 6d

worldvolume.

The value of this action on the mass–shell of the non–linear self–dual gauge

field coincides with the on–shell value of the original M5–brane action expressed in

terms of the 6d scalar function Q of the self–dual chiral field h3 appearing in the

superembedding description of the M5–brane. It would be interesting and important

to better understand the off–shell relation between the two actions.

Having at hand the M5–brane action in the form (4.3.15), (4.3.16) one can repeat

the steps of [191] towards understanding the link of this action to the Nambu–Poisson

5–brane of [74, 75] by restricting the worldvolume pullback of the 11D gauge field

C3 to be constant and by partial gauge fixing local symmetries of (4.3.15), (4.3.16)

to a group of 3d volume preserving diffeomorphisms. The Seiberg–Witten–like map

constructed in [78] may be required to relate the fields of the two models. It would

be also of interest to relate our construction to a noncommutative M5–brane of [206].

The novel form of the action is also naturally suitable for studying the effective

theory of the M5–brane wrapping a 3d compact Riemann–manifold.

As another direction of study, one may try, using the superembedding form of

the self–duality relation, to construct an M5–brane action in the form which exhibits

2+4 splitting of the 6d worldvolume which may be useful for studying M5–branes

wrapping 2d and 4d manifolds, and M5–brane istantons wrapping 4d divisors of

Calabi–Yau 4–folds in M3 × CY4 compactifications of M–theory as discussed e.g.
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in [207–212].



Chapter 5

6≈ 2 + 4

In this chapter we briefly summarise an ongoing project which will be reported

elsewhere soon [213].

Having realised that the M5-brane action can be formulated by covariant split-

tings of worldvolume space into 1+5 and 3+3 directions, it is natural to ask if it

is possible to derive the “interpolation”, i.e. 2+4, and hopefully to gain some new

insights into M-theory. In this chapter, we explore this possibility and present some

open questions.

5.1 Introduction & summary of the results

Recently, an alternative M5-brane action in a generic eleven-dimensional supergrav-

ity background was constructed in [3] with the aim of better understanding the

connection of the original M5-brane action [13,14] to the 5-brane proposal of [74,75]

based on the three-dimensional Bagger-Lambert-Gustavsson model [48,49,51] with

the gauge symmetry of a 3d volume preserving diffeomorphism. In [3] it was shown

that the field equations derived from the new action are equivalent to the ones de-

duced from the superembedding approach [83, 84] and hence to the equations of

motion which follow from the original action [85].

The difference between the two M5-brane actions is that in the original action

of [13, 14] the 6-dimensional M5-brane worldvolume gets split into 1+5 directions

and the manifest 6d space-time invariance is maintained by the presence of a single

126
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auxiliary scalar field, while in the action of [3] the 6d worldvolume is effectively split

into 3+3 directions and the manifest 6d space-time invariance is maintained by the

introduction of a triplet of auxiliary scalar fields [76].

Different formulations of the theory may allow one to gain different insights into

its structure. The action of [214], for instance, in addition to its relation to the

BLG model, can also be useful for studying M2-M5 bound states discussed e.g.

in [215,216].

The Lagrangian formulation of self-dual or duality-symmetric fields is essentially

not unique, which is related to different possible ways of tackling the issue of (non-

manifest) space-time invariance of the duality-symmetric actions (see e.g. [75,90,92–

94,166,167,188,193]). Various possible ways of constructing actions which produce

the (self)-duality relations as (a consequence of) equations of motion by effectively

splitting d-dimensional space-time into p- and q-dimensional subspaces, with d =

p + q, were explored for free theories and without the coupling to 6d gravity in

[99,195]. The actions with different space-time splitting are generically inequivalent

off-shell, as was shown for the 6 = 1+5 and 6 = 3+3 cases in [76,214]. Different off-

shell inequivalent formulations may be useful for studying the dynamics of duality-

symmetric fields in topologically non-trivial backgrounds [193, 217–219] and their

quantization [104,193,196–199,220].

The above reasoning has motivated us to complete the list of different Lagrangian

formulations of the M5-brane by constructing its action with an effective 2+4 split-

ting of the 6d worldvolume. Another motivation is that this form of the action for

the Abelian N = (2, 0) d = 6 theory provides us with an appropriate off–shell start-

ing point for its topological twisting considered recently in [221, 222]. However, we

will show that the effective 2+4 splitting of the 6d space brings generic difficulties

in coupling the theories (both free and nonlinear ones) to 6d gravity, and hence we

are not able to construct the M5-brane action in a 2+4 splitting at this moment.

Nevertheless, we are able to deform the free non-covariant 2+4 theory [99] to a

nonlinear one as well as obtaining the supersymmetric extension of [99], without

coupling to 6d gravity for both cases though. As the nonlinear theory we discovered

cannot be coupled to 6d gravity, one cannot embed the theory in 11d target space
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generically. In other words, the best we can do for the potential M5-brane action

with 2+4 splitting of worldvolume space is to construct an M5-brane action in a

trivial 11d target space-time and with all its transverse fluctuations frozen.

The strategy we used to deform the free 2+4 action is to follow the same lines

as that of the 3+3 action [214]. As is well known, the non-linear generalization of a

self-dual system is not unique. With the aim to apply the resulting 2+4 theory to

the M5-brane, we shall look for such a form of the action that produces the same

non-linear self-duality equations as those of the superembedding description of the

M5-brane.

In comparison with its previous counterparts, the 2+4 Lagrangian formulation of

the M5-brane has several new features, complications and difficulties. Namely, some

of the gauge symmetries of the action become semi-local1. A semi-local symmetry

is a symmetry with parameters that are not totally arbitrary local functions but

constrained. For these semi-local symmetries to be gauge symmetries, the time

direction of the d = 2 + 4 worldvolume should be in the two-dimensional subspace,

thus breaking 6d space-time democracy, though the action does possess a (modified)

6d worldvolume invariance. In other words, to split 6d one can choose any 2d

subspace of Lorentz signature. The structure of the nonlinear action with 2+4

splitting is much more complicated in comparison with a Born-Infeld-like structures

of the actions of [13, 14] and [214]. A defining function of components of the chiral

tensor field strength which enters the action should satisfy an algebraic equation of

sextic order which can only be solved perturbatively.

To at least make the idea clear about the new features of the 2+4 formulation,

let us conclude this chapter with a review of free 2+4 theory in flat 6d space in the

next section.

1Semi-local symmetries have previously appeared also in other formulations of duality-

symmetric fields in different dimensions (see e.g. [188,223,224]) and topologically non-trivial back-

grounds [217–219].
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5.2 Linear theory with non-manifest 6d Lorentz-

invariance

We will review the non-manifestly 6d Lorentz invariant quadratic chiral 2-form action

in 6d Minkowski space.

5.2.1 review of free theory

In this section we review the derivation of the self-duality condition for the 6d chiral

2-form gauge potential B2 with field strength H3 = dB2,

Hµνρ =
1

6
εµνρλ1λ2λ3 H

λ1λ2λ3 = H̃µνρ (5.2.1)

from a 6d Lagrangian with a 2+4 splitting of six-dimensional tensor indices [99].

ε012345 = −ε012345 = 1.

Let us perform the following 2+4 splitting of Hµνρ

Hµνρ = (Habj, Hijk, Haij), a, b, c, · · · = 0, 5; i, j, k, · · · = 1, 2, 3, 4. (5.2.2)

Then, the Hodge-dual field-strength H̃µνρ splits as follows

εµ1···µ6 ⇒ εabijkl = εabεijkl, (5.2.3)

H̃abi =
1

3!
εabεijklH

jkl, H̃aij =
1

2
εabεijklH

bkl, H̃ijk =
1

2
εijklεabH

abl, (5.2.4)

The quadratic action which produces (5.2.1) has the following form [99]

S = −
∫
d6x

(
1

2
H̃abiH

abi +
1

4
HaijH

aij +
1

6
HijkH

ijk

)
. (5.2.5)

The action has the local gauge symmetry

δBab = Ωab(x
µ), (5.2.6)

where Ωab(x
µ) are arbitrary functions. In addition, we found that the action is also

invariant under the following semi-local transformations

δBai = Φai(x
b, xj) (5.2.7)
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whose parameters Φai are restricted to satisfy the anti-self-duality condition

∂[iΦk]a = −1

2
εabεikjl∂jΦbl, so that ∂k∂

[kΦi]a = 0, (5.2.8)

i.e. Φai obey the differential equation in the four-dimensional subspace parametrized

by the coordinates xi.

We should check that, though being semi-local, the transformations (5.2.7) form

a genuine gauge symmetry which will allow us to get rid of redundant degrees of

freedom 2.

A semi-local symmetry is a fully-fledged gauge symmetry if its associated Noether

charge vanishes (at least) on the mass shell [225]. The conserved Noether current

associated with (5.2.7) is

jµ = δµj (Hjai − H̃jai)Φai, µ = 0, 1, · · · , 5. (5.2.9)

It is clear from the structure of (5.2.9) that the Noether charge Q =
∫
d5x j0 is

identically zero off-shell, if the temporal direction is in the 2d subspace of the ‘2+4’

split six-dimentional space. Therefore, in this formulation we lose the freedom to

place the time direction in the 4d subspace. This makes the 2+4 splitting different

from the 1+5 and 3+3 splittings of the previous formulations of the 6d chiral 2-form

action.

The field equations which one obtains by varying (5.2.5) are

∂k

(
−H̃aki +Haki

)
= 0, (5.2.10)

∂k

(
−H̃ ijk + 2H ijk

)
+ ∂aH

aij = 0. (5.2.11)

Equation (5.2.10) has the general solution

−H̃aik +Haik = εabεikjl∂jΦ̃bl, (5.2.12)

where Φ̃bl satisfy the condition (5.2.8), as the left-hand-side of the above equation

is anti-self-dual. Hence, we can obtain the self-duality equation

Haij = H̃aij, (5.2.13)

2The presence of this semi-local gauge symmetry is effectively translated into the choice of

appropriate boundary conditions for integration functions considered in [99].
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by fixing the semi-local gauge symmetry (5.2.7) appropriately. Substituting (5.2.13)

into (5.2.11), and using the Bianchi identity, we get

∂k

(
−H̃ ijk +H ijk

)
= 0, (5.2.14)

which has the general solution

−H̃ijk +Hijk =
1

2
εabεijkl∂

lΩ̃ab, (5.2.15)

where Ω̃ab are arbitrary functions which can be put to zero with the use of the local

gauge transformations (5.2.6). We thus arrive at another set of self-duality equations

Hijk = H̃ijk. (5.2.16)

Eqs. (5.2.13) and (5.2.16) together are equivalent to (5.2.1).

The action (5.2.5) is manifestly invariant under an SO(1, 1) × SO(4) subgroup

of the Lorentz group. However, it is less obvious that the action also enjoys the

modified Lorentz symmetry with parameters λaj ≡ λaj (λa
i ≡ λia) associated with

the coset transformations SO(1, 5)/[SO(1, 1) × SO(4)]. For simplicity, we present

the modified part of the SO(1, 5) Lorentz symmetry in the gauge Bab = 0

δBai = δ1Bai + δ2Bai, δBij = δ1Bij + δ2Bij, (5.2.17)

with

δ1Bai = λjaBji + λbj(xb∂
j − xj∂b)Bai,

δ1Bij = −λbiBbj + λbjBbi + λbk(xb∂
k − xk∂b)Bij, (5.2.18)

being the standard Lorentz transformation and3

δ2Bai = λbjx
j(H − H̃)bai, δ2Bij =

1

2
λbkx

k(H − H̃)bij (5.2.21)

3There is the freedom to add

δ3Bai = λjbx
b(H − H̃)aij (5.2.19)

to the transformation rules. One may check that the Lagrangian is invariant up to a total derivative

term

δ3S =
1

2

∫
d6x∂k(λjbx

bHaijHaik), (5.2.20)

under δ3.
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vanish on the mass shell. Thus, the modified SO(1, 5) Lorentz symmetry reduces to

the standard one when the field strength of the 2-form B2 is self-dual.

Thus, even for the free theory without coupling to 6d gravity, the 2+4 formulation

is already special compared to its counter parts formulations of 1+5 and 3+3. One

of the new feature is the appearance of semi-local symmetry. In order for this semi-

local symmetry to be a genuine gauge symmetry, it is required to put the temporal

direction in the two dimensional subspace of the 2+4 splitting. Moreover, one would

find it difficult to follow [93,95] to couple the free 2+4 theory to 6d gravity like what

we reviewed in (1.3.92) for 1+5 formulation. Equivalently, one would find that the

PST covariantisation [96,97], [98] of the free theory 2+4 formulation is reluctant to

be completed. Nevertheless, it is interesting that the nonlinear deformation of the

free 2+4 formulation is possible and the nonlinear self-duality equation in a form of

2+4 splitting is already encoded in the super-embedding algebraic formula. Physical

reasons why 2+4 formulation is so special are under investigation and we hope to

report the progress or to resolve the issue elsewhere.



Chapter 6

Conclusions

In this thesis, we have studied various aspects of the action formulations for chiral

2-forms and their applications to M-theory five-brane(s).

In Part II, we proposed a simple model [1] in Chapter 2 to describe the bosonic

gauge sector of the multiple M5-branes as a generalisation of the Perry-Schwarz [90]

abelian theory. The double dimensional reduction of the model leads to five dimen-

sional super-Yang-Mills theory with higher derivative corrections. Moreover, the

action enjoys a modified Lorentz symmetry. In Chapter 3, we presented supporting

evidence for our model by constructing explicitly the non-abelian self-dual string

solutions [2] to the equations proposed in [1]. These non-abelian self-dual string so-

lutions are supported by the monopole solutions of Wu-Yang and ’t Hooft-Polyakov.

These solutions can be viewed as a non-abelian generalisation of the Perry-Schwarz

abelian string soliton, which is supported by the Dirac monopole.

In Part III of the thesis, we have successfully rewritten the known single M5-brane

action [13] in a form in Chapter 4 which reveals different aspects of the M-theory

branes. The worldvolume space of our new action is subject to a covariant splitting

into 3+3 directions by a triplet of ancillary scalars. The dimensional reductions as

well as the relation to the original M5-brane action were also studied. The new

theory [3] shares the same on-shell value of the action with the old one [13]. The

dimensional reduction on T 3 gives the single membrane action while the reduction

on the torus T 2 gives the duality-symmetric action of Schwarz and Sen. Finally,

in Chapter 5 we summarised the attempt to write the M5-brane action in a 2+4

133
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splitting of worldvolume space and mentioned various new features and difficulties

of the action formulation for the chiral 2-form in terms of 2+4 splitting.

We have approached the M-theory five branes by exploring their possible action

formulations in terms of the techniques developed for chiral p-forms put forward

in [90, 93] and [76, 98, 172, 226, 227]. Chiral p-forms are important objects as they

show up in fundamental theories like M-theory and string theory. The low energy

effective theory of the M5-branes in the decoupling limit of gravity, the so-called

(2,0) theory, may also be a Holy Grail for future theoretical physics. In particular,

the (2,0) theory demands a creative breakthrough to uncover its mysterious phases.

In this thesis, we tried to move forward a little bit towards the understanding of

single and multiple M5-branes by the conventional action principle.
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