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Abstract

We investigate various models of thermal convection in a fluid saturated porous

medium of both Darcy and Brinkman types. The linear instability and global (un-

conditional) nonlinear stability thresholds are analysed. Analytical solutions and

numerical solutions are obtained by employing the D2 Chebyshev tau and com-

pound matrix techniques, and we investigate the effect that the inertia term and

other physical parameters have on the stability of the system. The thesis is split

into two parts. In Part I we consider a coupled model of thermal convection in a

fluid saturated porous material and theories of viscous fluid motion which allows

heat to travel as a wave. This is discussed in the first three chapters.

In Chapter 2 the instability mechanism is investigated in complete detail and

it is shown that stationary convection is likely to prevail under normal terrestrial

conditions, but if the thermal relaxation time is sufficiently large there is a possible

parameter range which allows for oscillatory convection. However, the presence of

the Guyer-Krumhansl terms has the effect of damping the oscillatory convection and

returning the instability mechanism to one of stationary convection.

In Chapter 3 the constitutive equation for the heat flux is governed by a couple of

the Guyer-Krumhansl equations and the Cattaneo-Fox law. In particular, we study

the effects of the Guyer-Krumhansl terms on oscillatory convection. It is found

that for a certain range of the Guyer-Krumhansl coefficient stationary convection

occurs while changing the range results in oscillatory convection. Numerical results

quantify this effect.
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The thermal instability in a Brinkman porous medium incorporating fluid inertia

for both free–free and fixed–fixed boundaries is considered in Chapter 4. We have

incorporated the Cattaneo–Christov theory in the constitutive equation for the heat

flux. For fixed surfaces, the results are generated by using the D2 Chebyshev tau

method. The results reveal that employing the Cattaneo–Christov theory has a

pronounced effect in determining the convection instability threshold.

Part II concerns the effect of an anisotropic permeability on thermal instability

in the modelling problems of thermal convection of Darcy type with and without

the inclusion of an inertia term, which represented the last three chapters.

In Chapter 5 we allow a non-zero inertia term and also allow the permeability to

be an anisotropic tensor. For particular numerical results we consider the case when

the vertical component of the permeability tensor is variable. Linear instability re-

sults are calculated numerically and it is proved that the nonlinear energy stability

bound is the same as the linear one. We perform the linear instability and nonlinear

stability analysis, in the case where the inertial term vanishes, to investigate the

effect of anisotropy with rotation on the stability thresholds in Chapter 6, showing

that the nonlinear critical Rayleigh numbers coincide with those of the linear analy-

sis. The results reveal that the inclusion of the inertial term for this model can play

an important role on the onset of convection in Chapter 7.
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Chapter 1

Introduction

Thermal convection in porous media is a subject which has immense application.

For instance, in geophysics, in star evolution, in crystal growth, and many other

areas, see e.g. the accounts in the books by Straughan [115,116,121] and Nield and

Bejan [84]. It is a topic which has a long history but due to its importance in real life

applications it is still attracting much interest from prominent writers, see e.g. Nield

and Kuznetsov [82, 83], Nield and Barletta [80], Rionero [92, 94, 95], Agarwal and

Bhadauria [1], Bagchi and Kulacki [3], Bera and Khalili [4], Bera et al. [5], Capone

et al. [7–10], Carotenuto and Minale [14], Chen et al. [20], Diaz and Brevdo [30],

Kaloni and Mahajan [56], Kumar et al. [58, 59], Kuznetsov and Nield [63], Lee et

al. [67], Malashetty and Biradar [72, 73], Nanjundappa et al. [79], Saravanan and

Sivakumar [101], Shivakumara et al. [104–107], Simitev [108], Straughan [116], Sunil

et al. [124], Usha et al. [127], Yang et at. [139], and the references therein.

The main aims of this thesis are to investigate the stability of thermal convection

in a fluid saturated porous material of both Darcy and Brinkman types. To achieve

this goal, the linear instability and nonlinear analysis are performed to study the

changes in the behaviour of the onset of thermal convection in a fluid saturated

porous medium due to the effects various parameters on heat transfer. The work

in this thesis is divided into two parts. In the first part, Chapters 2, 3, and 4, we

turn our attention to the Cattaneo theories, see Straughan [121], for the heat flux

to study the effect of thermal waves (second sound) on the stability threshold via

1



1.1. Notation, definition and useful inequalities 2

linear instability analysis. We employ a linear analysis since this yields meaningful

Rayleigh number threshold. The hyperbolic nature of the equations, leading to

second sound has to date prevented useful analyses by nonlinear stability methods.

The second part, Chapters 5, 6, and 7, deal with the thermal convection in a fluid

saturated Darcy porous medium when the permeability is anisotropic. In particular,

the effects of anisotropic permeability with and without inclusion the fluid inertia

term. Both linear and nonlinear stability analyses are employed. The nonlinear work

is very important since it shows the linear work is correctly capturing the physics

of the onset thermal convection. cf. Rionero [96–98], Hill and Malashetty [51], and

Lombardo et al. [68].

In the next Section, we introduce standard notation and some useful inequalities

that are used through the thesis and then in Section 1.2, we illustrate the basic

concept of stability theory in porous media.

1.1 Notation, definition and useful inequalities

In this Section, we introduce standard indicial notation with the Einstein summa-

tion convection for the repeated indices, which is used throughout the thesis. The

standard vector is denoted by bold type. For example, for q(x) = (q1, q2, q3) with

x = (x1, x2, x3), or for q(x) a scalar function of x, we have

qx ≡ ∂q

∂x
≡ q,x, qi,t ≡ ∂qi

∂t
, div q ≡ qi,i ≡ ∂qi

∂xi

≡
3∑

i=1

∂qi

∂xi

,

qjqi,j ≡ qj
∂qi

∂xj

≡
3∑

j=1

qj
∂qi

∂xj

, i = 1, 2 or 3.

The material derivative of a function q is given by

q̇i ≡ ∂qi

∂t
+ vj

∂qi

∂xj

,

where v is the velocity of the moving body at point x.

Throughout the thesis we deal with a convection cell which is periodic in the

(x, y) plane. Thus, suppose z ∈ (0, 1) and Γ denotes the cell shape in the horizontal,

(x, y), direction. Then the period cell V is denoted by Γ× {z ∈ (0, 1)}.
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The norm and the inner product on L2(V ), where V is a periodic cell are denoted,

respectively, by ‖·‖, (·, ·). For example, for two functions f and g we define

‖f‖2 =

∫

V

f 2dV,

and

(f, g) =

∫

V

fgdV.

The Kronecker delta δij and the three dimensional Levi–Civita function εijk are

defined by

δij =





1 if i = j,

0 if i 6= j,

εijk =





1 if ijk = 123, 312, or 231,

−1 if ijk = 132, 321, or 213,

0 if i = j or j = k or k = i,

In addition, we present some useful inequalities which are used in the energy stability

theory as follows

1. The Cauchy–Schwarz inequality

(f, g) ≤ ‖f‖ ‖g‖ .

2. The arithmetic–geometric mean inequality

For a, b ∈ R, with a constant weight α > 0. Then

ab ≤ 1

2α
a2 +

α

2
b2.

3. The Young’s inequality

For a, b ∈ R, and p, q ≥ 1 such that 1/p + 1/q = 1. Then

ab ≤ |a|p
p

+
|b|q
q

.

4. The Poincaré inequality

Let V be a three dimensional cell. Assume for simplicity V has dimensions

0 ≤ x < 2a1, 0 ≤ y < 2a2, and 0 < z < 1, and assume u is a function periodic



1.2. Stability theory in porous media 4

in x, y, of period 2a1, 2a2, respectively, and u = 0 on z = 0, 1. Then the

Poincaré inequality may be written as follows

〈uiui〉 ≤ 1

π2
〈ui,jui,j〉 ,

where 〈·〉 denotes integration over V . Alternatively this may be written as

‖u‖2 ≤ 1

π2
‖∇u‖2 .

1.2 Stability theory in porous media

Before proceeding to the body of the thesis and discussing the stability of the sys-

tem of the thermal convection in porous media problems in some details we briefly

clarify the linear instability and nonlinear stability theories used to find the stabil-

ity threshold. For purposes of illustration, we provide an example of the Bénard

problem for the Brinkman model, see Straughan [116].

Let us consider a layer of saturated porous material bounded by two horizontal

planes z = 0 and z = d. We assume the porous medium occupies the three dimen-

sional region {(x, y) ∈ R2}×{z ∈ (0, d)}. The fluid is assumed to be incompressible.

The Boussinesq approximation is adopted and so we write the density as

ρ(T ) = ρ0 [1− α (T − TL)] ,

where T is temperature, ρ0 is the density at TL, and α is the thermal expansion

coefficient. The governing system of equations incorporating fluid inertia for thermal

convection according to the Brinkman model are as follows

âvi,t = − p,i − µ

K
vi + λ̂∆vi − kigρ(T ),

vi,i = 0,

T,t + viT,i = κ∆T,

(1.2.1)

where v, p, µ, g, and â are, respectively, velocity field, pressure, dynamic viscosity,

gravity, and inertia coefficient. Additionally, K is the permeability, λ̂ is referred to

as an equivalent viscosity, and k = (0, 0, 1). The boundary conditions are

vi = 0 , z = 0, d , (1.2.2)

T = TL, z = 0; T = TU , z = d, (1.2.3)
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where TL, TU are constants with TL > TU .

From the boundary conditions (1.2.2), the basic conduction solution, which is mo-

tionless, to (1.2.1) is v = 0. Assuming that T = T (z), and substituting these values

into equations (1.2.1) yields

p,i = − gρ0 [1− α (T − TL)] ki, (1.2.4)

∆T = 0. (1.2.5)

In fact T is a function of z only, then we may write (1.2.5) as

d2T

dz2
= 0. (1.2.6)

Upon integration (1.2.6) as a linear function and using the boundary conditions

(1.2.2), we get

T = −βz + TL, (1.2.7)

where

β =
TL − TU

d
.

Then, substituting equation (1.2.7) into equation (1.2.4) to obtain

p,i = − gkiρ0 [1 + αβz] .

An integration yields

p̄ = − gkixiρ0

[
1 +

1

2
αkjxj

]
,

then for ki = δi3, we see that

p = p0 − gρ0z − 1

2
αβgρ0z

2, (1.2.8)

where p0 is the pressure at z = 0.

To study the stability of the steady conduction solutions
(
v̄, T̄ , p̄

)
we introduce

a perturbation (ui, ϑ, π) of the form

vi = v̄i + ui, T = T̄ + ϑ, p = p̄ + π.

The nonlinear perturbation equations arising from (1.2.1) are

âui,t = −π,i − µ

K
ui + λ̂∆ui + kigρ0αϑ,

ui,i = 0,

ϑ,t + uiϑ,i = βw + κ∆ϑ,

(1.2.9)
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where w = u3. We then introduce the non-dimensionalisations

xi = dx∗i , ui =
κ

d
u∗i , t =

d2

κ
t∗, π =

µκ

K
π∗,

a0 =
âK

µ
, λ = Kλ̂/d2µ, ϑ =

√
βµκ

Kρ0αg
ϑ∗,

and the Rayleigh number Ra = R2 is defined as

R2 =
d2ρ0gαβK

µκ
.

The non-dimensional perturbation equations arising from (1.2.9) are (dropping ∗’s)

a0ui,t = − π,i − ui + λ∆ui + Rϑki,

ui,i = 0,

ϑ,t + uiϑ,i = Rw + ∆ϑ.

(1.2.10)

The corresponding boundary conditions are

ui = 0, ϑ = 0 , z = 0, 1 , (1.2.11)

and ui, ϑ, π satisfy a plane tiling periodicity in the x, y directions, we refer the

reader to Chandrasekhar [19, p.43], and Straughan [115, p. 51].

1.3 Linear instability analysis

To find threshold for linear instability we first remove the nonlinear term of (1.2.10),

and assume a time dependence like ui = ui (x) eσt, ϑ = ϑ (x) eσt, π = π (x) eσt, σ is

a general eigenvalue. Upon substituting into equation (1.2.10) and removing of the

exponential parts we arrive at the system

σa0ui = − π,i − ui + λ∆ui + Rϑki,

ui,i = 0,

σϑ = Rw + ∆ϑ.

(1.3.1)

In general σ = σr + iσ1, σr, σ1 ∈ R. If in a system the growth rate σ ∈ R it said

that the exchange of stabilities hold automatically. When σ1 6= 0 implies σr < 0,

we say that the principle of exchange of stabilities holds and so the convection
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mechanism commence as stationary convection. Whereas if σ = iσ1 with σ1 6= 0,

the convection mechanism sets in as oscillatory convection. When σ > 0 the solution

grows exponentially in time and is unstable. Thus when exchange of stabilities holds

we solve the linearised system for the smallest value of R2 and it sufficient to consider

the system for σ = 0.

Accordingly, we now multiply (1.3.1)1 by u∗i (the complex conjugate of ui), (1.3.1)3

by ϑ∗(the complex conjugate of ϑ) and integrate over V to obtain

σa0 ‖u‖2 = − ‖u‖2 − λ ‖∇u‖2 + R(ϑ,w∗), (1.3.2)

σ ‖ϑ‖2 = −‖∇ϑ‖2 + R(w, ϑ∗). (1.3.3)

Next, add (1.3.2) to (1.3.3) to find

σ(a0 ‖u‖2 + ‖ϑ‖2) = −‖u‖2 − λ ‖∇u‖2 − ‖∇ϑ‖2 + R[(ϑ,w∗) + (w, ϑ∗)]. (1.3.4)

The imaginary part of the foregoing equation yields

σ1(a0 ‖u‖2 + ‖ϑ‖2) = 0.

Thus, σ1 = 0 and so σ ∈ R. Therefore, the principle of exchange of stabilities holds

and it is sufficient to set σ = 0 into equation (1.3.1) to find instability boundary.

The system (1.3.1) may be reduced to

π,i = − ui + λ∆ui + Rϑki,

ui,i = 0,

0 = Rw + ∆ϑ.

(1.3.5)

We now take curl curl of equation (1.3.5)1 and retain the third component to obtain

∆w = λ∆2w + R ∆
∗ ϑ,

0 = Rw + ∆ϑ,
(1.3.6)

where ∆∗ = ∂2/∂x2 + ∂2/∂y2 is the horizontal Laplacian operator.

Assuming a normal mode representation of w and ϑ of the form

w = W (z)f(x, y), ϑ = Θ(z)f(x, y),
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where f(x, y) is a planform which tiles the plan (x, y) with ∆∗ f = −a2f , where a is

the horizontal wave number, see Straughan [115]. Upon applying the normal mode

representation to equation (1.3.6), one arrives at

(
D2 − a2

)
W = λ

(
D2 − a2

)2
W − a2RΘ,

0 = RW +
(
D2 − a2

)
Θ,

(1.3.7)

where D = d/dz. The corresponding boundary conditions are

W = Θ = 0, at z = 0, 1. (1.3.8)

To solve this system we need two more conditions with respect to which we consider

solutions of system for either fixed surfaces or free surfaces. If either one is fixed

then the system would have to be solved numerically by using efficient techniques,

namely the compound matrix method, and the D2 Chebyshev tau method. In

case we consider two stress free surfaces we need further boundary conditions. To

illustrate, we begin by imposing the following boundary condition

D2W = 0, at z = 0, 1. (1.3.9)

Next, we eliminate the variable Θ from equation (1.3.7) to have sixth order ordinary

differential equation

λ
(
D2 − a2

)3
W − (

D2 − a2
)2

W + a2R2W = 0, (1.3.10)

and from equations (1.3.7), (1.3.8), and (1.3.9) we find

W = D2W = D4W = 0, at z = 0, 1.

Applying these boundary conditions to equation (1.3.10) yield

D6W = 0, at z = 0, 1.

By further differentiation of (1.3.10), an even number of times with respect to z,

and this may be repeated to deduce

D(2n)W = 0, at z = 0, 1, for n = 0, 1, . . . . (1.3.11)
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From this it follows that W (z) is taken as sin nπz, for n ∈ N. Hence equation

(1.3.10) leads to

R2 =
λ (n2π2 + a2)

3
+ (n2π2 + a2)

2

a2
. (1.3.12)

To find the lowest value of R, we minimise the Rayleigh number R2 = R2(n2, a2).

Hence, the minimum occurs when n = 1. By calculating dR2/da2 we then obtain

a2
c =

− (λπ2 + 1) + (λπ2 + 1)
√

1 + 8π2λ/ (λπ2 + 1)

4λ
.

When λ → 0 and then a2
c = π2, R2

c = 4π2 we recover the result for Darcy model.

Also as λ →∞, a2
c =

π2

2
and R2

c =
27π2

4
as in the fluid case.

It is noteworthy that the linear instability theory only provides a boundary for in-

stability, i.e. for which all Rayleigh number R greater than the critical Rayleigh num-

ber result in instability, but it yields no information on stability when the Rayleigh

number below this boundary. The solution of the nonlinear system possibly becomes

unstable before the stability boundary for values R < Rc, therefore subcritical sta-

bility may arise. However, nonlinear methods must be performed [113].

1.4 Nonlinear stability analysis

To investigate the possibility of obtaining global nonlinear instability, we multiply

(1.2.10)1 by ui and (1.2.10)3 by ϑ, and integrate the results over V using (1.2.11) to

obtain

a0

2

d

dt
‖u‖2 = − ‖u‖2 − λ ‖∇u‖2 + R(ϑ,w), (1.4.1)

1

2

d

dt
‖ϑ‖2 = − ‖∇ϑ‖2 + R (ϑ,w) . (1.4.2)

We introduce a positive coupling parameter ξ̂. Upon addition of (1.4.1) and ξ̂(1.4.2)

one finds
dE

dt
= RI −D, (1.4.3)
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where

E(t) = 1
2
(a0 ‖u‖2 + ξ̂ ‖ϑ‖2), (1.4.4)

I = (1 + ξ̂) (ϑ,w) , (1.4.5)

D = ‖u‖2 + λ ‖∇u‖2 + ξ̂ ‖∇ϑ‖2 . (1.4.6)

To proceed from (1.4.3), define RE by

1

RE

= max
H

I

D
, (1.4.7)

where H = {u
i
, ϑ|ui ∈ H1(V ), ϑ ∈ H1(V ), ui,i = 0, ui, ϑ are periodic in x, y}, is the

space of admissible functions. It now follows from (1.4.3) that (cf. Straughan [113])

dE

dt
≤ −D

(
1− R

RE

)
. (1.4.8)

Thus, provided R < RE, put ĉ =

(
1− R

RE

)
> 0, and from the Poincaré inequality

D ≥ π2λ ‖u‖2 + ξ̂π2 ‖ϑ‖2 .

Hence, from (1.4.8) where λ = a0,

dE

dt
≤ −2π2ĉE(t).

By integration and rearranging

E(t) ≤ e−2π2ĉtE(0).

Thus, one deduces exponential decay of E(t) and hence global nonlinear stability fol-

lows provided RE > R. To complete the analysis we derive the Euler–Lagrange equa-

tions for (1.4.7). To this end, we rescale ϑ to

√
ξ̂ϑ and put g(ξ̂) =

(
1 + ξ̂

)
/2

√
ξ̂.

Then the maximum problem (1.4.7) is

1

RE

= max
H

g(ξ̂) (ϑ,w)

‖u‖2 + λ ‖∇u‖2 + ‖∇ϑ‖2 .

The Euler-Lagrange equations arising from (1.4.7) are determined from

REδI − δD = 0. (1.4.9)
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This can be calculated by using calculus of variations technique, we refer the reader

to Courant and Hilbert [27].

Let consider the solution of the form u
i
+ εhi and ϑ + εη where ε is constant,

and hi, η arbitrary functions which satisfy the boundary conditions hi = η = 0 on

∂V . Hence

δI =
d

dε

∫

V

(
g(ξ̂)(ϑ + εη)(w + εh3)− 2π(ui,i + εhi,i)

)
dV

∣∣∣∣∣∣
ε=0

,

=

∫

V

(
g(ξ̂) (η(w + εh3) + h3(ϑ + εη))− 2hi,iπ

)
dV

∣∣∣∣∣∣
ε=0

,

and

δD =
d

dε

∫

V

(
(ui + εhi)

2 + λ(∇(ui + εhi))
2 + (∇(ϑ + εη))2

)
dV

∣∣∣∣∣∣
ε=0

,

=

∫

V

(2hi(ui + εhi) + 2λ (∇(ui + εhi)∇hi) + 2 (∇(ϑ + εη)∇η)) dV

∣∣∣∣∣∣
ε=0

,

where the constraint ui,i = 0 is included and π is now a Lagrange multiplier. After

some integrations by parts, one finds

δI =

∫

V

(
g(ξ̂) (ηw + h3ϑ)− 2hiπ,i

)
dV,

δD =

∫

V

(2uihi − 2λ∆uihi − 2η∆ϑ)dV.

Since hi and η were chosen arbitrary functions, hence from equation (1.4.9) we must

have

RE
g(ξ̂)

2
ϑki − ui + λ∆ui = π,i,

ui,i = 0,

RE
g(ξ̂)

2
w + ∆ϑ = 0.

(1.4.10)

The idea is now to use the parametric differentiation method to find the optimal

value of ξ̂ which maximises RE. Thus put g(ξ̂)/2 = ζ, and let (R1
E, u1

i , ϑ
1, π1)

be a solution to the eigenvalue problem arising from equation (1.4.10) on V for

ξ̂ = ξ̂1 > 0, and likewise let (R2
E, u2

i , ϑ
2, π2) be a solution for ξ̂ = ξ̂2 > 0, ξ̂1 6= ξ̂2.
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Now multiply equations (1.4.10)1 by u1
i holding for ξ̂ = ξ̂2, (1.4.10)1 by u2

i holding

for ξ̂ = ξ̂1, (1.4.10)3 by ϑ1 holding for ξ̂ = ξ̂2, and (1.4.10)3 by ϑ2 holding for ξ̂ = ξ̂1.

After integration over V we find

R2
Eζ2 (ϑ2, w1)− (u2

i , u
1
i )− λ (∇u2

i ,∇u1
i ) = 0, (1.4.11)

R1
Eζ1 (ϑ1, w2)− (u1

i , u
2
i )− λ (∇u1

i ,∇u2
i ) = 0, (1.4.12)

R2
Eζ2 (w2, ϑ1)− (∇ϑ2,∇ϑ1) = 0, (1.4.13)

R1
Eζ1 (w1, ϑ2)− (∇ϑ1,∇ϑ2) = 0. (1.4.14)

Next, combine (1.4.11) - (1.4.12) + (1.4.13) - (1.4.14) to obtain

(
R2

Eζ2 −R1
Eζ1

) [(
w1, ϑ2

)
+

(
w2, ϑ1

)]
= 0.

Now, we write (R2
Eζ2 −R1

Eζ1) = (R2
Eζ2 −R2

Eζ1) + (R2
Eζ1 −R1

Eζ1), and recall ξ̂1 6=
ξ̂2, divide by ξ̂2 − ξ̂1 6= 0. Thus we have

[
R2

E (ζ2 − ζ1)

ξ̂2 − ξ̂1
+

ζ1 (R2
E −R1

E)

ξ̂2 − ξ̂1

] [(
w1, ϑ2

)
+

(
w2, ϑ1

)]
= 0.

Take the limit ξ̂2 → ξ̂1, this leads to
[
RE

∂ζ

∂ξ̂
+ ζ

∂RE

∂ξ̂

]
(w, ϑ) = 0. (1.4.15)

Here R1
E, ζ1, w1, and ϑ1 are replaced by RE, ζ, w, and ϑ.

Then we multiply equations (1.4.10)1 by ui, (1.4.10)3 by ϑ, add the result and

integrate by parts to obtain

RE

(
g(ξ̂)

)
(w, ϑ) = ‖u‖2 + λ ‖∇u‖2 + ‖∇ϑ‖2

By substituting into the equation (1.4.15) for (w, ϑ), one may deduces
[
‖u‖2 + λ ‖∇u‖2 + ‖∇ϑ‖2

g(ξ̂)RE

][
RE

∂g(ξ̂)

∂ξ̂
+ g(ξ̂)

∂RE

∂ξ̂

]
= 0. (1.4.16)

The maximum value of RE satisfies ∂RE/∂ξ̂ = 0 , and so ∂g/∂ξ̂ = 0 gives the best

value of ξ̂. Thus the optimal value of ξ̂ is ξ̂ = 1, with ξ̂ = 1 equation (1.4.10)

becomes

REϑki − ui + λ∆ui = π,i,

ui,i = 0,

REw + ∆ϑ = 0.

(1.4.17)



1.4. Nonlinear stability analysis 13

These equations (1.4.17) are the same as equations (1.3.5). This means that for

all initial data the linear instability boundary coincides with the nonlinear stability

one, therefore no subcritical instability may arise.

We now commence with the new results obtained in this thesis. In Part I,

Chapters 2–4, we concentrate on convection problems in porous media, taking into

account second sound, i.e. thermal waves. Part II, Chapters 5–7, concentrates on

thermal convection in anisotropic porous media.



Part I. Thermal convection with

Cattaneo theories

The propagation of thermal waves (second sound) is of particular importance to the

field continuum mechanics, see e.g., Straughan [121, chap. 9]. The investigation of

the effect of thermal wave on the onset of convection instability by generalising the

Fourier law for heat conduction was initiated by Straughan and Franchi [110]. Some

other investigations are due to Lebon and Cloot [65], Franchi and Straughan [38],

and Vadasz et al. [134].

Recently, Straughan [117–120], adapted an objective derivative for the heat flux

to study thermal convection in a fluid and in fluid saturated Darcy porous media.

In this Part we investigate the effect of thermal waves on the onset convection

instability in a fluid saturated porous medium. In particular, we present the case

of employing an objective derivative, namely, the Cattaneo-Fox and the Cattaneo-

Christov derivatives for the heat flux (see Appendix A.1). Also, we present the linear

instability theory to establish the instability boundary for a horizontal layer of both

Darcy and Brinkman porous material saturated with an incompressible Newtonian

fluid.

The layout of this Part is as follows. In Chapter 2 we develop a theory for

thermal convection in a fluid saturated porous material when the temperature may

propagate as a thermal wave. In particular, we are interested in the mechanism of

thermal oscillation and so allow for Guyer-Krumhansl effects but employ a heat flux

equation developed by Christov and by Morro. We show that the inclusion Guyer-

Krumhansl terms have a pronounced effect on the convection mechanism. The work

in this chapter has been published in Haddad and Straughan [45].

14



In Chapter 3 we investigate a model of the coupled Guyer-Krumhansl equation

with the Cattaneo-Fox law for the temperature and heat flux fields (see Appendix

A.2) to study thermal convection in a fluid saturated Darcy porous material. By

performing the linear instability analysis we find a range of the Guyer-Krumhansl

values which allow transition from oscillatory convection to stationary convection

with narrower cells. The work in this chapter has been published in Haddad [46]

Chapter 4 is devoted to the study the thermal instability in a saturated porous

material of Brinkman type. We describe the linear instability analysis to find the

lowest instability boundary for two free surfaces. For two fixed surfaces , the D2

Chebyshev tau method (see Appendix B) is used to solve the eigenvalue problem

which arises in linear instability analysis. We discuss the effects of the presence

of the Brinkman term, inertia term, and other parameters on the onset of thermal

instability. The work in this chapter has been published in Haddad [47]

15



Chapter 2

Porous convection and thermal

oscillations

Recently it has been suggested that the phenomenon of “heat waves” or “second

sound” may radically alter predictions for convection in porous body and this may

have a profound effect on star formation and stellar evolution, see Herrera and

Falcón [49], Falcón [35], Straughan [117, 120], and the account in Section 9.2.2 of

the book by Straughan [121]. At the same time, phonon oscillations are believed to

be a key ingredient in assisting heat transport by a temperature wave procedure, as

witnessed in the recent work of Cimmelli et al. [26], Jou et al. [54], Jou et al. [55],

Sellitto et al. [102, 103], see also the work of Cimmelli et al. [25]. To incorporate

phonon oscillations the cited articles employ a heat flux equation which originates

from work of Guyer and Krumhansl [42–44].

The objective of this Chapter is to develop and analyse a model for thermal

convection in a fluid saturated porous medium when the heat flux satisfies an equa-

tion of Guyer - Krumhansl type. In order to achieve this we employ Christov’s [21]

derivative for the heat flux, a rigorous thermodynamical basis for which has been

presented by Morro [77,78] who also includes Guyer-Krumhansl terms. We take this

opportunity to point out that the Christov formulation has been employed in acous-

tic wave analysis by Straughan [119], and analytical properties of the solution to the

Christov-Morro equations are presented by Ciarletta and Straughan [23], Ciarletta

et al. [24], and by Tibullo and Zampoli [125].

16
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In the next section, we present the appropriate equations for thermal convection

in a fluid saturated porous material.

2.1 Basic equations

The fluid velocity in the porous medium satisfies a Darcy law of form, cf. Vadasz

[131], Straughan [114],

âvi,t = −p,i − µ

K
vi + kigρ0αT, (2.1.1)

vi,i = 0, (2.1.2)

where v is the velocity field, p is the pressure, T is temperature, â is an inertia

coefficient, µ is the dynamic viscosity, K is the permeability, k = (0, 0, 1), g is

gravity, α is the thermal expansion coefficient of the fluid, and ρ0 is the constant

density assuming the Boussinesq approximation has been employed to derive (2.1.1).

To complete the system of equations requires a suitable balance law for the

temperature field. To this end we derive an energy balance equation together with

the Christov [21], Morro [77, 78] equations for the heat flux. The procedure is as

in Straughan [117, 120] or Straughan [121], Chapter 8, where we write separate

equations for the fluid part of the porous medium by

(ρocp)f (T,t + ViT,i) = −Qi,i, (2.1.3)

τf (Qi,t + VjQi,j −QjVi,j) = −Qi − κfT,i + (ξ1)f∆Qi + (ξ2)fQk,ki, (2.1.4)

and for solid part by

(ρoc)sT,t = −Qi,i, (2.1.5)

τsQi,t = −Qi − κsT,i + (ξ1)s∆Qi + (ξ2)sQk,ki, (2.1.6)

where Qi denotes the heat flux, cp is the specific heat at constant pressure in the

fluid, c refers to the specific heat in the porous medium, κ the thermal diffusivity.

Here τ being relaxation times, and ξ1 and ξ2 are Guyer-Krumhansl terms derived

by Morro [77, 78], f refers to fluid and s denotes the solid skeleton of the porous

medium.
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To derive equations for the porous medium as a combined unit, we multiply

equations governing fluid part (2.1.3), and (2.1.4) by ϕ and equations governing

solid part (2.1.5), and (2.1.6) by (1− ϕ) and combine them suitably so that

(ρoc)mT,t + (ρocp)fviT,i = −Qi,i, (2.1.7)

τQi,t + τf (vjQi,j −Qjvi,j) = −Qi − kmT,i + (ξ1)m∆Qi + (ξ2)mQk,ki, (2.1.8)

where Vi is the fluid velocity averaged over the fluid phase so that with ϕ being

porosity, vi = ϕVi is the average of the fluid velocity over the fluid and solid phases,

and τ = ϕτf + (1− ϕ)τs, m refers to the porous medium where the coefficients km,

(ρoc)m, (ξ1)m, and (ξ2)m are given by

km = κs(1− ϕ) + κfϕ,

(ρoc)m = ϕ(ρ0cp)f + (ρ0c)s(1− ϕ),

(ξ1)m = ϕ(ξ1)f + (ξ1)s(1− ϕ),

(ξ2)m = ϕ(ξ2)f + (ξ2)s(1− ϕ).

We divide equation (2.1.7) by (ρ0cp)f and redefine Qi to be Qi/ (ρ0cp)f . Further,

denote by

M =
(ρ0cp)f

(ρ0c)m

, κ =
km

(ρ0cp)f

,

and for simplicity call (ξ1)m and (ξ2)m simply ξ1, ξ2. Then equations (2.1.7) and

(2.1.8) become

1

M
T,t + viT,i = −Qi,i, (2.1.9)

τQi,t + τf (vjQi,j −Qjvi,j) = −Qi − κT,i + ξ1∆Qi + ξ2Qk,ki. (2.1.10)

We suppose the fluid saturated porous medium satisfies equations (2.1.1), (2.1.2),

(2.1.9), and (2.1.10), and occupies the spatial domain Ω = {(x, y) ∈ R2}×{z ∈ (0, d)},
and let n is the unit outward so that n = (0, 0, 1) on z = d and n = (0, 0,−1) on

z = 0. The boundary conditions are

vini = 0 , at z = 0, d ,

T = TL, z = 0; T = TU , z = d,
(2.1.11)
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where TL, TU are constants with TL > TU . In addition the heat flux satisfies

εijknjQk = 0, z = 0, d , (2.1.12)

cf. Straughan [121], p. 193. System (2.1.1), (2.1.2), (2.1.9), (2.1.10), and (2.1.11),

(2.1.12) possesses the steady conduction solution

v̄i ≡ 0, T̄ = −βz + TL, Q̄ = (0, 0, κβ),

p̄ = p0 − gρ0z − 1

2
αβgρ0z

2,
(2.1.13)

where

β =
TL − TU

d
.

To investigate the stability of this solution, we introduce perturbations to v̄i, T̄ , Q̄i

by putting

vi = v̄i + ui, T = T̄ + ϑ, Qi = Q̄i + qi

and we derive equations for the perturbations (ui, ϑ, qi, π) where π is the pressure

perturbation. The perturbation equations are non-dimensionalised with the scalings

(see [117,120,121]),

x = dx∗, u =
µd

ρ0K
u∗, q = κU

√
βµ

Kρ0αgκ
q∗,

t =
Kρ0

µ
t∗, π =

µUd

K
π∗, ϑ = dU

√
βµ

κρ0αgK
ϑ∗,

where U is a velocity scale, although additionally we here require non-dimensional

equivalents of â, ξ1 and ξ2 by scalings

â = ρ0a
∗, ξ1 = dξ∗1 , ξ2 = dξ∗2 .

In terms of the Prandtl number Pr = µ/ρ0κ and the key non-dimensional numbers

R =

√
αgd2βKρ0

µκ
, Da =

K

d2
, Sg =

τµ

ρ0d2
, τ̂ =

τf

τ

we derive a non-dimensional set of equations for the perturbation variables (ui, ϑ, qi, π) .

In the above R =
√

Ra where Ra is the Rayleigh number, Da is the Darcy num-

ber, Sg is a parameter introduced in Papanicolaou et al. [85], and τ̂ is a relative

relaxation time.
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The non-dimensional perturbation equations are (omitting the stars)

Aui,t = −π,i + Rkiϑ− ui, (2.1.14)

ui,i = 0, (2.1.15)

Pr

Da
(

1

M
ϑ,t + uiϑ,i) = Rw − qi,i, (2.1.16)

Sg

Da
qi,t +

τ̂Sg

Da
(ujqi,j − qjui,j) = −qi − ϑ,i +

τ̂SgR

Pr
ui,z

+λ1∆qi + λ2qj,ji, (2.1.17)

where w = u3 and A, λ1, λ2 are non-dimensional equivalents of â, ξ1 and ξ2. Equa-

tions (2.1.14)-(2.1.17) hold on {(x, y) ∈ R2}×{z ∈ (0, 1)}×{t > 0} and the bound-

ary conditions are

uini = 0 , ϑ = 0 , εijknjqk = 0 , z = 0, 1 , (2.1.18)

with {ui, ϑ, qi, π} satisfying a plane tiling periodicity in (x, y) .

2.2 Linear instability

We now take the divergence of equations (2.1.17), put Q = qi,i, and then analyse

the linear system

Aui,t + ui = − π,i + Rkiϑ,

ui,i = 0,

P r

MDa
ϑ,t = Rw −Q,

Sg

Da
Q,t = −Q−∆ϑ + λ∆Q ,

(2.2.1)

where we have put λ = λ1 + λ2. It is convenient to define P1 and P2 by

P1 =
Pr

MDa
, P2 =

Sg

Da
, (2.2.2)

and then remove the π term by take curl curl to equation (2.2.1)1. We then seek a

time dependence like eσt, i.e. we put

w = w (x) eσt, ϑ = ϑ (x) eσt, Q = Q (x) eσt ,
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and from equations (2.2.1) we have to solve the system

(σA + 1) ∆w = R ∆
∗ ϑ,

σP1ϑ = Rw −Q,

σP2Q = −Q−∆ϑ + λ∆Q ,

(2.2.3)

where ∆∗ = ∂2/∂x2 + ∂2/∂y2.

To analyse equations (2.2.3) we use standard methods, cf. Chandrasekhar [19].

Firstly we set σ = 0 to derive the stationary convection boundary. The foregoing

equations lead to

∆w = R ∆
∗ ϑ,

Rw = Q,

Q− λ∆Q = −∆ϑ .

(2.2.4)

Upon eliminating ϑ and Q from equation (2.2.4), we have a fourth order ordinary

differential equation of the form

∆2w + R2
∆
∗(w − λ∆w) = 0. (2.2.5)

We introduce single mode solution to equation (2.2.5) to be w = W (z)f(x, y) where

f is a plane tiling function satisfying ∆∗ f = −a2f . The Laplace operator ∆ =

D2 − a2, where D = d/dz and a is a wavenumber, c.f Chandrasekhar [19], and

Straughan [116].

Applying the normal mode to the equation (2.2.5) one may show

R2 =
Λ2

n

a2 [1 + λΛn]
,

where Λn = n2π2 + a2. Then one shows ∂R2/∂n2 > 0, so we may consider

R2 =
Λ2

a2 (1 + λΛ)
,

where Λ denotes Λ1. Now minimizing in a2 yields the stationary convection bound-

ary as

R2
sc =

4π2

(1 + λπ2)2
, (2.2.6)

together with the critical wave number ac as given by

a2
c =

π2(1 + λπ2)

(1− λπ2)
. (2.2.7)
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Clearly, equation (2.2.7) requires that λ < 1/π2. Henceforth we assume the non-

dimensional Guyer-Krumhansl coefficient λ satisfies this restriction, so that

λ <
1

π2
w 0.101321183. (2.2.8)

To investigate oscillatory convection we follow the Chandrasekhar [19] procedure

and put σ = iσ1 in (2.2.3), where σ1 ∈ R. This leads to the simulations equations

σ2
1 [−P1P2Λ− AP1Λ (1 + λΛ)] + Λ2 = R2a2 (1 + λΛ) ,

σ2
1 [AP1P2Λ]− [

AΛ2 + ΛP1 (1 + λΛ)
]

= −P2a
2R2.

(2.2.9)

These equations in turn yield

R2 = C3
Λ3

a2
+ C2

Λ2

a2
+ C1

Λ

a2
, (2.2.10)

and

σ2
1 =

Λ

P1P2

− AΛ (1 + λΛ)

P1P
2
2

− (1 + λΛ)2

P 2
2

, (2.2.11)

where the coefficients C1, · · · , C3 are given by,

C1 =
AP1

P 2
2

+
P1

P2

, (2.2.12)

C2 =
A2

P 2
2

+
2λAP1

P 2
2

+
λP1

P2

, (2.2.13)

C3 =
λA2

P 2
2

+
λ2AP1

P 2
2

. (2.2.14)

The oscillatory convection Rayleigh number R2
osc is found by minimizing R2 in

(2.2.10) over a2 , but simultaneously requiring σ2
1 > 0 in (2.2.11). We have not

seen how to do the minimization in (2.2.10) by analytical means and do so numer-

ically by using Maple(TM) 1. It is straightforward to show d2R2/db2 > 0 where

b = a2 and so since R2 is convex in a2 the minimum found is unique and so yields

the true oscillatory convection minimum. We observe that from (2.2.11) σ2
1 cannot

be positive for all wave numbers and thus the situation is very different from the

Cattaneo-Christov case studied by Straughan [117] where λ = 0 and no Guyer-

Krumhansl terms are present. In fact in the numerical results section we see that

1Maple is a trademark of Waterloo Maple Inc
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the Guyer-Krumhansl terms play an important role in determining the convection

instability threshold.

Remark.

For the zero inertia case, A = 0, equation (2.2.10) may be minimized analytically.

For, then

R2 =
P1

P2

(
λ

Λ2

a2
+

Λ

a2

)
,

and so the critical wave number and oscillatory convection Rayleigh number are

given by

a2
c =

π√
λ

(
1 + λπ2

)1/2
,

R2
osc =

P1

P2

(
2π
√

λ
√

1 + λπ2 + 1 + 2λπ2
)

.

In this case σ2
1 is found to be

σ2
1 =

Λ

P1P2

− (1 + λΛ)2

P 2
2

,

and using the critical value of a2
c , we can easily find σ2

1 at criticality. This clearly

confirms σ2
1 cannot be positive for all wave numbers in the zero inertia case, and

indeed, shows oscillatory convection will not occur unless P2 is sufficiently large.

2.3 Numerical results

In terrestrial situations we do expect stationary convection will be the dominant

mechanism of instability. To see this we note that Straughan [121] , p. 253, reports

values of τ in the range (10−13s, 10−11s) and this will yield a P2 value relatively

small as compared to P1. From equations (2.2.10) and (2.2.11) we do not expect to

witness oscillatory convection in this situation. Nevertheless, Herrera and Falcón [49]

do suggest that oscillatory convection may be dominant in certain binary system

stars. This is further developed for white-dwarf and neutron stars by Falcón [35].

Therefore, we believe there is reason to analyse our model for P2 values which are

much larger than those believed witnessed in mundane situations.

We report only numerical findings when oscillatory convection is dominant. We

select P1 = 6 and choose P2 = 2.8, 4 and 10 to see the variation. Due to restriction
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(2.2.8) on λ we concentrate on values of λ ∈ [0, 0.09]. From Figure 2.1 we see

that when P1 = 6, P2 = 10, oscillatory convection is always dominant in that the

instability curve always lies below the stationary convection one for A values 0, 0.5, 1

and 2, at least for the chosen range of λ.

In Figure 2.2 we again see oscillatory convection is present. However, for a fixed

value of A, eg. A = 1, we see that oscillatory convection is occuring for λ < λc and

when λ > λc we shall witness stationary convection. (The value λc is the value of

λ where convection switches from oscillatory to stationary.) The same behaviour

is also seen for other values of A. For example, when A = 1, λc = 0.060144 as

seen in Table 2.1, the transition from oscillatory to stationary convection occurs

when Ra = 15.5454. At the transition point the wavenumber changes abruptly, e.g.

when A = 1 we see from Table 2.1 that the oscillatory convection wavenumber is

aosc = 3.12266 whereas the stationary convection wavenumber is asta = 6.221. This

means the cells change from wider to narrower cells as λ increases through λc (for

fixed depth).

Table 2.1: Transition values of Ra vs. λ, for P1 = 6 , P2 = 4.

A Ra asta aosc λ

0.0 . . . . . . . . . . . .

0.3 10.802 14.621 3.42257 0.09238

0.5 12.032 9.736 3.2991 0.08221

0.7 13.368 7.7625 3.21014 0.072801

1. 15.5454 6.221 3.12266 0.060144

1.3 17.8999 5.33535 3.07392 0.0491503

1.5 19.5509 4.9216 3.05745 0.04266

1.7 21.256 4.5945 3.05107 0.03676

2. 23.894 4.2134 3.05712 0.02892

2.5 28.4351 3.76198 3.1021 0.0180646
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Figure 2.1: Critical values of Ra vs. λ for P1 = 6 , P2 = 10. The upmost curve is for

stationary convection. The other curves are for oscillatory convection, the lowest

being when A = 0 , increasing to A = 2.
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Figure 2.2: Critical values of Ra vs. λ for P1 = 6 , P2 = 4. The upmost curve is for

stationary convection. The other curves are for oscillatory convection, the lowest

being when A = 0 , increasing to A = 2.5.

The transition to stationary convection is very noticeable and this is where the

effect of the Guyer-Krumhansl terms are playing a major role. The transition values
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for P1 = 6 , P2 = 4 are shown in figure 2.3.
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Figure 2.3: Transition values of Ra (RaT
) vs. λ for P1 = 6 , P2 = 4.

Similar findings for P1 = 6 , P2 = 2.8 are given in Figures 2.4 and 2.5 and Table

2.2. In Figures 2.2 and 2.4 the oscillatory convection curves all are in agreement

with the restriction σ2
1 > 0. In fact, this restriction does break down but only when

the Rayleigh number is larger than that on the appropriate stationary convection

curve.

Table 2.2: Transition values of Ra vs. λ, for P1 = 6 , P2 = 2.8.

A Ra asta aosc λ

0.0 11.317 11.803 3.8053 0.08792

0.3 13.762 7.388 3.48698 0.07029

0.5 15.628 6.18 3.36244 0.05972

0.7 17.652 5.409 3.28131 0.050203

1. 20.9341 4.6503 3.21605 0.03782

1.3 24.4454 4.14736 3.19922 0.0274391

1.5 26.8766 3.8961 3.20874 0.0214774

1.7 29.355 3.69058 3.2328 0.016179

2. 33.12 3.4446 3.295 0.009304
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Figure 2.4: Critical values of Ra vs. λ for P1 = 6 , P2 = 2.8. The upmost curve is

for stationary convection. The other curves are for oscillatory convection, the lowest

being when A = 0 , increasing to A = 2.
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Figure 2.5: Transition values of Ra (RaT
) vs. λ for P1 = 6 , P2 = 2.8.

2.4 Further remarks

1. To check the eigenvalue results from (2.2.3) by a numerical method does not

appear to be a trivial matter. The problem is that (2.2.3)2 is essentially an

identity, whereas (2.2.3)3 contains both ∆ϑ and ∆Q. To overcome this, we
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introduce the new variable α = ϑ− λQ , and rewriting the equation (2.2.3) in

the form

∆w + a2R(α + λQ) = − Aσ∆w,

∆α + Q = − σP2Q,

α− ϑ + λQ = 0,

Q−Rw = − σP1(α + λQ).

(2.4.1)

To solve equation (2.4.1) by the D2 Chebyshev tau numerical method, cf.

Dongarra et al. [31], with details in Appendix B, we substitute χ = ∆w and

assume that

w = W (ẑ)f(x, y), χ = χ(ẑ)f(x, y),

ϑ = Θ(ẑ)f(x, y), Q = Q(ẑ)f(x, y), α = α(ẑ)f(x, y).

The domain of equation (2.4.1) is transformed from (0, 1) to the Chebyshev

domain (−1, 1) by setting ẑ = 2z − 1, also the functions W,χ, Θ, Q, α are

expanded as series of Chebyshev polynomials. Thus for some N odd

W (ẑ) =
N∑

n=0

WnTn(ẑ), χ(ẑ) =
N∑

n=0

χnTn(ẑ)

Θ(ẑ) =
N∑

n=0

ΘnTn(ẑ), Q(ẑ) =
N∑

n=0

QnTn(ẑ), α(ẑ) =
N∑

n=0

αnTn(ẑ).

Hence, we may write equation (2.4.1) in the form (omitting hat)

(
4D2 − a2

)
W − χ = 0

(
4D2 − a2

)
α + Q = − σP2Q

χ + a2Rα + λa2RQ = − σAχ

α−Θ + λQ = 0

−RW + Q = − σP1(α + λQ)

(2.4.2)

Next we recall the boundary conditions and use the relation

Tn(±1) = (±1)n
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The appropriate boundary conditions become

W0 + W2 + · · ·+ WN−1 = 0

W1 + W3 + · · ·+ WN = 0
(2.4.3)

With an analogous expression for αn.

The eigenvalue problem (2.4.2) can be written as the generalized eigenvalue

problem of the form Ax = σBx, where

x = (W0, . . . , WN , α0, . . . , αN , χ0, . . . , χN , Θ0, . . . , ΘN , Q0, . . . , QN)

is the 5(N + 1) vector of unknown coefficients, and the matrices 5(N + 1) ×
5(N + 1) are given by

A =




4(D2 − a2)I 0 −I 0 0

BC1 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0
BC2 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

0 4(D2 − a2)I 0 0 I

0 · · · 0 BC3 0 · · · 0 0 · · · 0 0 · · · 0
0 · · · 0 BC4 0 · · · 0 0 · · · 0 0 · · · 0

0 a2RI I 0 λa2RI

0 −I 0 I −λI

−RI 0 0 0 I




,

B =




0 0 0 0 0

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

0 0 0 0 −P2I

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

0 0 −AI 0 0

0 0 0 0 0

0 −P1I 0 0 −λP1I




,

Where BC1, BC2 and BC3, BC4 refer to the boundary conditions (2.4.3) on
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W and αn, respectively. The matrix system is solved by the QZ algorithm cf.

Moler et al. [76], which is available in the NAG routine F02BJF . We find

satisfactory numerical results are achieved.

2. Due to the nonlinearities present in equations (2.1.16) and (2.1.17) we cannot

be sure that linear theory is correctly capturing the analysis of the onset

of convection. One way of sometimes checking whether this is to employ a

suitable nonlinear energy stability method. If we let V be a period cell for

the perturbation in (2.1.14)-(2.1.17) and let ‖.‖ and (., .) denote the norm and

inner product on L2 (V ) then from equations (2.1.14)-(2.1.17) we may derive

the following energy identities by multiplying (2.1.14) by ui, (2.1.16) by ϑ, and

(2.1.17) by qi. After integrating over V we see that

d

dt

A

2
‖u‖2 = R(ϑ,w)− ‖u‖2 , (2.4.4)

d

dt

Pr

2MDa
‖ϑ‖2 = R(w, ϑ)− (qi,i, ϑ) , (2.4.5)

d

dt

Sg

2Da
‖q‖2 = −‖q‖2 − (ϑ,i, qi) +

SgRτ̂

Pr
(ui,z, qi)

−λ1

∫

V

(qi,j − qj,i)qi,jdV

−(λ1 + λ2) ‖qi,i‖2 − τ̂Sg

Da

∫

V

qiqjui,jdV, (2.4.6)

cf. the calculations in Straughan [121], pp. 194–195. After integration by

parts we may add (2.4.5) and (2.4.6) and remove the terms −(qi,i, ϑ)−(ϑ,i, qi).

We may also integrate by parts on the third term on the right of (2.4.6) to

obtain a term involving −(ui, qi,z) and we may rewrite the last term in (2.4.6)

in terms of
∫
V

qi,jqjuidV and
∫
V

qiqj,juidV . The Guyer-Krumhansl terms in λ1

and λ2 will help us to control the derivatives of q terms.

However, it is difficult to see how to obtain unconditional nonlinear stabil-

ity with the presence of the cubic nonlinear terms. Perhaps an even greater

problem arises due to the (w, ϑ) terms. While there is dissipation in (2.4.4)

to control the velocity terms there is no temperature dissipation in (2.4.4)-

(2.4.6)and so it does not appear possible to control the (w, ϑ) terms.
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At present we do not see how to overcome the above problems by an energy

technique. Whether more sophisticated energy methods, such as those recently

developed by Rionero [92–95,97] , will help remains to be seen.



Chapter 3

Thermal convection in a

Cattaneo-Fox porous material

with Guyer-Krumhansl effects

As was mentioned in the previous chapter, it is believed that the physical mechanism

of heat propagation as a temperature wave (second sound) is by phonon oscillations.

Phonon oscillations undoubtedly are the subject of many recent investigations and

have mundane applications in convection in a porous body. However, recently the

work of Jou et al. [55], confirms that phonon oscillations play an important role in

the propagation of temperature waves in nanowires.

Straughan [117] argues that heat wave effects on thermal convection in porous

media may be important in some classes of real life problem. He notes that a key

way of introducing finite temperature wave motion has been to use the Cattaneo

law [17] for the heat flux. In thermal convection, the inclusion of the Cattaneo

law was investigated by Straughan and Franchi [110], and later work followed by

Lebon and Cloot [65]. Further important work using Cattaneo theory in the wave

propagation is by Franchi [37]. This has also been considered further, see Puri and

Jordan cf. [87,88], and work of Christov and Jordan [22]. The generalization of the

Cattaneo law (see Appendix A.2) which accounts for space correlation is the well

known Guyer-Krumhansl equation [42–44]. For more detail we may refer to the

book of Straughan [121]. The object of this Chapter is to investigate the effect of

32
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the Guyer-Krumhansl terms on the stability thresholds employing a Cattaneo-Fox

derivative for the heat flux, rather than a Cattaneo-Christov derivative as employed

in the previous chapter. The linear instability analysis is performed to find the

range of the Guyer-Krumhansl values for the stationary instability threshold. This

is discussed in detail throughout this chapter.

3.1 Basic equations

The flow in the porous medium is assumed to be governed by Darcy’s law, as pre-

sented in Chapter 2, cf. Vadasz [131], Straughan [114],

âvi,t = −p,i − µ

K
vi + kigρ0αT, (3.1.1)

vi,i = 0, (3.1.2)

where v is the velocity field, p is the pressure, T is temperature, â is an inertia

coefficient, µ is the dynamic viscosity, K is the permeability, k = (0, 0, 1), g is

gravity, α is the thermal expansion coefficient of the fluid, and ρ0 is the constant

density assuming the Boussinesq approximation has been employed to derive (3.1.1).

The procedure to derive an energy balance equation and the heat flux in the

context of the Cattaneo law may be found in the books by Straughan [121], p. 238,

or Straughan [117]. In this chapter we specifically wish to consider the Cattaneo-

Fox derivative rather than the Cattaneo-Christov derivative used in Chapter 2, cf.

Haddad and Straughan [45]. The equation of energy balance and the constitutive

equation of the heat flux using the Cattaneo-Fox derivative are established by using

the same procedure as in Chapter 2, and these may be written as

1

M
T,t + viT,i = −Qi,i, (3.1.3)

τQi,t + τf (vjQi,j − 1
2
Qjvi,j + 1

2
Qjvj,i) =

−Qi − κT,i + ξ1∆Qi + ξ2Qk,ki. (3.1.4)

Here vi = ϕVi (vi is the average of the fluid velocity over the fluid and solid phases),

where Vi is the fluid velocity averaged over the fluid phase. ϕ is the porosity, Qi is

the heat flux, and ξ1 and ξ2 are Guyer-Krumhansl terms, cf. Morro [77, 78]. The
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coefficients M and κ are given by

M =
(ρ0cp)f

(ρ0c)m

, κ =
km

(ρ0cp)f

.

Again, we let s represent the solid skeleton of the porous medium, f represent the

fluid, and m refers to the porous medium. The quantities km, (ρ0c)m, and τ are

defined by

km = κfϕ + (1− ϕ)κs ,

(ρ0c)m = ϕ(ρ0cp)f + (1− ϕ)(ρ0c)s ,

τ = ϕτf + (1− ϕ)τs ,

where c, cp, κ, are the specific heat of solid in the porous medium, the specific heat

at constant pressure in the fluid, and thermal diffusivity. The coefficients τf and τs

are the relaxation times for the fluid and solid in the porous body.

We suppose the fluid saturated porous medium satisfies equations (3.1.1)-(3.1.4)

and occupies the spatial domain Ω = {(x, y) ∈ R2} × {z ∈ (0, d)}, and let n be the

unit outward so that n = (0, 0, 1) on z = d and n = (0, 0,−1) on z = 0. The

boundary conditions are

vini = 0 , at z = 0, d ,

T = TL, z = 0; T = TU , z = d,
(3.1.5)

where TL, TU are constants with TL > TU . In addition the heat flux satisfies

εijknjQk = 0, z = 0, d . (3.1.6)

A steady conduction solution of system (3.1.1)-(3.1.4) in the domain Ω and satisfying

boundary condition (3.1.5)-(3.1.6), is given by

v̄i ≡ 0, T̄ = −βz + TL, Q̄ = (0, 0, κβ)

p̄ = p0 − gρ0z − 1

2
αβgρ0z

2,
(3.1.7)

where

β =
TL − TU

d
.
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To analyse the stability of (3.1.7), we perturb the steady conduction solution in

such a way that

vi = v̄i + ui, T = T̄ + ϑ, Qi = Q̄i + qi, p = p̄ + π.

By substituting the perturbations(ui, ϑ, qi, π) into equations (3.1.1)-(3.1.4), we ob-

tain the system of perturbation equations

âui,t = − π,i − µ

K
ui + kigρ0αϑ,

ui,i = 0,

1

M
ϑ,t + uiϑ,i = − qi,i + βw,

τqi,t + τf (ujqi,j − 1

2
qjui,j +

1

2
qjuj,i) + τf (

1

2
βκw,i − 1

2
βκui,z)

= − qi − κϑ,i + ξ1∆qi + ξ2qk,ki .

(3.1.8)

We now introduce the non-dimensional scalings for the perturbations (ui, ϑ, qi, π) ,

x = dx∗, u =
µd

ρ0K
u∗, q = κU

√
βµ

Kρ0αgκ
q∗,

t =
Kρ0

µ
t∗, π =

µUd

K
π∗, ϑ = dU

√
βµ

Kρ0αgκ
ϑ∗,

where U is a velocity scale, although additionally we here require non-dimensional

equivalents of â, ξ1 and ξ2 by scalings

â = ρ0a
∗, ξ1 = dξ∗1 , ξ2 = dξ∗2 .

We require the Prandtl number Pr = µ/ρ0κ and the key non-dimensional numbers

R =

√
αgd2βKρ0

µκ
, Da =

K

d2
, Sg =

τµ

ρ0d2
, τ̂ =

τf

τ
,

where R =
√

Ra is the square root of the Rayleigh number, Da is the Darcy num-

ber, Sg is the Straughan number, see Papanicolaou et al. [85], and τ̂ is a relative

relaxation time.

By substituting the above variables into equations (3.1.8), we obtain the nonlin-



3.2. Linear instability 36

ear non-dimensional perturbation equations (omitting the stars)

Aui,t = − π,i + Rkiϑ− ui, (3.1.9)

ui,i = 0, (3.1.10)

Pr

Da
(

1

M
ϑ,t + uiϑ,i) = Rw − qi,i, (3.1.11)

Sg

Da
qi,t +

τ̂Sg

Da

(
ujqi,j − 1

2
qjui,j +

1

2
qjuj,i

)
= − qi − ϑ,i (3.1.12)

+
τ̂SgR

2Pr
(ui,z − w,i) + λ1∆qi + λ2qj,ji,

where w = u3 and A , λ1 , λ2 are non-dimensional equivalents of â, ξ1 and ξ2.

Equations (3.1.9)-(3.1.12) hold on {Ω× t > 0} and the boundary conditions are

uini = 0 , ϑ = 0 , εijknjqk = 0 , z = 0, 1 , (3.1.13)

with {ui, ϑ, qi, π} satisfying a plane tiling periodicity in (x, y) .

3.2 Linear instability

We begin the linear instability analysis by removing the nonlinear terms of equations

(3.1.11) and (3.1.12), take the divergence of equation (3.1.12), and then analyse the

linear system.

The linear system arising from equations (3.1.9)-(3.1.12) is

Aui,t + ui = − π,i + Rkiϑ,

ui,i = 0,

P r

MDa
ϑ,t = Rw −Q,

Sg

Da
Q,t = −Q−∆ϑ− τ̂SgR

2Pr
∆w + λ∆Q .

(3.2.1)

Here Q = qi,i, and λ = λ1 + λ2. It is convenient to define P1 and P2 by

P1 =
Pr

MDa
, P2 =

Sg

Da
, (3.2.2)

and then take curl curl of equation (3.2.1)1 to remove π. We then assume a temporal

growth rate like eσt, i.e. we write

w = w (x) eσt, ϑ = ϑ (x) eσt, Q = Q (x) eσt .



3.2. Linear instability 37

Upon substituting into equation (3.2.1) and setting M = 1, and τ̂ = 1, we have to

solve the system

(σA + 1) ∆w = R ∆
∗ ϑ,

σP1ϑ = Rw −Q,

P2

2P1

R∆w + ∆ϑ = − (σP2 − λ∆ + 1)Q ,

(3.2.3)

where ∆∗ = ∂2/∂x2 + ∂2/∂y2 is the horizontal Laplacian operator.

3.2.1 Stationary convection

The standard methods to analyse equation (3.2.3) follows the work of Chandrasekhar

[19]. To derive the stationary convection instability threshold we substitute σ = 0

into equation (3.2.3). Then replace P2/2P1 = P , and the governing system can be

reduced to

∆w = R ∆
∗ ϑ,

Rw = Q,

(1− λ∆)Q = −∆ϑ− PR∆w .

(3.2.4)

After eliminating the variables ϑ, and Q, equation (3.2.4) can be written as

∆2w = −R2
∆
∗(∆w(P − λ) + w). (3.2.5)

We now employ a normal mode representation w of the form w = W (z)f(x, y),

where f is the horizontal plan form which satisfy ∆∗ f = −a2f , a being a wave

number. Also W is written as a series of terms of sin nπz, for n ∈ N which satisfies

the boundary conditions (3.1.13).

Upon substituting in equation (3.2.5), we have

R2 =
Λ2

n

a2 [1 + ΓΛn]
,

where Λn = n2π2 + a2, and Γ = λ− P . Then one may consider two cases.

Case I: when λ ≥ P , ie. Γ ≥ 0.

Case II: when λ < P , ie. Γ < 0.
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In case II we may argue that, for any a2 > 0, ∃N such that, ∀n > N , n2π2+a2 >
1

|Γ| .
Therefore, R2 < 0 for n > N . This suggests instability for heating from above, which

is unphysical.

Hence, we only consider Γ > 0. We wish to minimize the Rayleigh number

R2 = R2(a2, n2). Then one shows ∂R2/∂n2 > 0. Therefore we select n = 1 to obtain

the lowest instability boundary. Then we have

R2 =
Λ2

a2 [1 + ΓΛ]
,

where Λ refers to Λ1. Then differentiating R2 with respect to a2 yields the stationary

convection boundary as

R2
sc =

4π2

(1 + Γπ2)2
, (3.2.6)

and the corresponding critical wave number ac is given by

a2
c =

π2(1 + Γπ2)

(1− Γπ2)
. (3.2.7)

We observe that equation (3.2.7) is satisfied provided that Γ < 1/π2.

We know Γ = λ − P ≥ 0. Hence since Γ also satisfied Γ < 1/π2 we find that λ

must be restricted so that

P ≤ λ <
1

π2
+ P. (3.2.8)

3.2.2 Oscillatory convection

Again, we follow Chandrasekhar’s [19] procedure. To study oscillatory convection

put σ = iσ1 in equation (3.2.3), where σ1 ∈ R. The real and imaginary parts of

equation (3.2.3) yield

σ2
1(−2PP 2

1 Λ− AP1Λ(1 + λΛ)) + Λ2 = a2R2(1 + λΛ− PΛ),

and

σ2
1(2APP 2

1 Λ)− (AΛ2 + ΛP1(1 + λΛ)) = − 2PP1a
2R2.

Hence, we may solve for σ2
1 and R2 to find

σ2
1 =

−1

2P 2P 2
1 (2P1 + AΛ)

[(λ− P )(A + λP1)Λ
2

+(2λP1 − 3PP1 + A)Λ + P1], (3.2.9)
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and

R2 =
β3Λ

3

(B1Λ + B)a2
+

β2Λ
2

(B1Λ + B)a2
+

β1Λ

(B1Λ + B)a2
. (3.2.10)

Here the coefficients β3, β2, β1 are defined by

β3 = λA(
A

2PP1

+
λ

2P
),

β2 =
A2

2PP1

+
λA

P
+ λP1,

β1 =
A

P
+ P1,

(3.2.11)

where

B = 2P1P , B1 = AP.

It is worthy to observe that from equation (3.2.9) oscillatory convection occurs

when σ2
1 > 0. Numerical techniques are used to find R2

osc by minimizing R2 in

equation (3.2.10) over a2, as presented in the numerical results section.

3.3 Numerical results

The numerical findings in this section are performed with P1 = 6 and P2 = 0.6, 12, 21,

and P2 = 60. We are interested in the Guyer-Krumhansl term effects on the neutral

stability curve. Due to the restriction condition (3.2.8), the range of the Guyer-

Krumhansl values λ which may be allowed for computed critical wave number and

critical Rayleigh number are shown in Table 3.1. However, we must remember that

σ2
1 as given by equation (3.2.9) must also be positive, i.e. σ2

1 > 0. To achieve this one

find λ must be further restricted as shown in Table 3.2. We perform computations

only in this range of values.

To explain the meaning of Figure 3.1, let us take an example A = 0.01. Then,

the solution is linearly stable for Ra underneath the line with the circles on when

0.05 ≤ λ ≤ 0.051491 as shown in Table 3.3. When Ra is above the line with

the circles on and 0.05 ≤ λ ≤ 0.051491 instability is by oscillatory convection,

whereas once λ exceeds the transition value λc = 0.051491 instability is by stationary

convection. (The value λc is the value of λ where convection switches from oscillatory

to stationary). A similar interpretation holds for the curves where A = 0.02, and
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Table 3.1: The ranges of the Guyer-Krumhansl coefficient, for stationary convection

instability threshold.

P2 P λ range

0.6 0.05 0.05 ≤ λ < 0.1513212

12 1.00 1.00 ≤ λ < 1.1013212

21 1.75 1.75 ≤ λ < 1.8513212

60 5.00 5.00 ≤ λ < 5.1013212

Table 3.2: The ranges of the Guyer-Krumhansl coefficient which give σ2
1 > 0

A P2 = 0.6 P2 = 12 P2 = 21 P2 = 60

0.01 0.05 ≤ λ ≤ 0.0531 1 ≤ λ ≤ 1.0411 1.75 ≤ λ ≤ 1.79475 5 ≤ λ ≤ 5.04842

0.02 0.05 ≤ λ ≤ 0.0526 1 ≤ λ ≤ 1.0410 1.75 ≤ λ ≤ 1.79468 5 ≤ λ ≤ 5.04839

0.03 0.05 ≤ λ ≤ 0.0521 1 ≤ λ ≤ 1.0409 1.75 ≤ λ ≤ 1.79461 5 ≤ λ ≤ 5.04836

0.04 0.05 ≤ λ ≤ 0.0516 1 ≤ λ ≤ 1.0407 1.75 ≤ λ ≤ 1.79453 5 ≤ λ ≤ 5.04834

1.0 . . . . . . 1 ≤ λ ≤ 1.0302 1.75 ≤ λ ≤ 1.78755 5 ≤ λ ≤ 5.04550

2.0 . . . . . . 1 ≤ λ ≤ 1.0212 1.75 ≤ λ ≤ 1.78108 5 ≤ λ ≤ 5.04263

3.0 . . . . . . 1 ≤ λ ≤ 1.0139 1.75 ≤ λ ≤ 1.77544 5 ≤ λ ≤ 5.03990

6.0 . . . . . . . . . . . . 1.75 ≤ λ ≤ 1.76230 5 ≤ λ ≤ 5.03257

11. . . . . . . . . . . . . . . . . . . 5 ≤ λ ≤ 5.02265

Table 3.3: Transition values of Ra vs. λ, for P1 = 6 , P2 = 0.6.

A Ra asta aosc λ

0.01 38.340 3.1882 4.12068 0.051491

0.02 38.765 3.1705 4.12517 0.05093

0.03 39.1916 3.1531 4.12942 0.0503701

0.04 . . . . . . . . . . . . . . . . . . . . . . . .

A = 0.03. When A = 0.04 the stationary curve lies below the oscillatory curve. In

interpreting Figure 3.1, it must be realized that σ2
1 > 0 for oscillatory convection

and so λ is restricted as in Table 3.2.
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Figure 3.1: Critical Rayleigh number Ra as function of λ, with λ restricted as in

table 3.1. Here P1 = 6, P2 = 0.6. The solid curve is for stationary convection. The

other curves are for oscillatory convection, for A = 0.01 increasing to A = 0.04.

In Table 3.4, P2 is increased to P2 = 12. Here we find the transition value of

Ra for A = 0.01 is almost the same for A ∈ [0.01, 0.04], therefore we illustrate

the oscillatory convection curves for A = 0.01, 1, 2, and A = 3 in Figure 3.2. The

oscillatory convection dominates when λ < λc and convection is by stationary when

λ > λc. For A ≥ 6, σ2
1 < 0 as shown in Table 3.2.

Table 3.4: Transition values of Ra vs. λ, for P1 = 6 , P2 = 12.

A Ra asta aosc λ

0.01 21.4705 4.55864 3.21481 1.03607

0.02 21.491 4.5538 3.21372 1.03598

0.03 21.5290 4.5490 3.21294 1.03588

0.04 21.558 4.5443 3.21201 1.03579

1.0 24.5105 4.13981 3.17994 1.02727

2.0 27.6663 3.82589 3.17600 1.01971

3.0 30.8460 3.58510 3.17711 1.01330
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Figure 3.2: Critical Rayleigh number Ra as function of λ, with λ restricted as in

table 3.2. Here P1 = 6, P2 = 12. The solid curve is for stationary convection. The

other curves are for oscillatory convection, for A = 0.01 increasing to A = 3. The

curve for A = 0.01 is effectively the same for A ∈ [0.01, 0.04].

It is worth pointing out that the range of the Guyer-Krumhansl values λ for

which stationary or oscillatory convection occurs depends on the value of P2. As P2

increases, the value of λ likewise increases. However, when P2 increase to P2 = 21,

the stationary convection instability threshold occurs when 1.75 ≤ λ < 1.8513212

as shown in Table 3.1. Also, the range of the Guyer-Krumhansl values for A ∈
[0.01, 6] which relate to existence of oscillatory convection are shown in Table 3.2.

Figure 3.3 shows that when A ∈ [0.01, 6], the onset of convection is more likely

to be via oscillatory convection. We also observe that at the transition value λc,

the oscillatory wave number at which Ra occurs is smaller than stationary wave

number. For example, when A = 0.01, λc = 1.78841 we witness transition from

oscillatory to stationary convection when Ra = 20.7574, the oscillatory wave number

aosc = 3.18465, whereas the stationary wave number asta = 4.682. This means that

the convection cells change from wider to narrower cells at a transition value λc as

seen in Table 3.5.
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Figure 3.3: Critical Rayleigh number Ra as function of λ, with λ restricted as in

table 3.2. Here P1 = 6, P2 = 21. The solid curve is for stationary convection. The

other curves are for oscillatory convection, for A = 0.01 increasing to A = 6. The

curve for A = 0.01 is effectively the same for A ∈ [0.01, 0.04].

Table 3.5: Transition values of Ra vs. λ, for P1 = 6 , P2 = 21.

A Ra asta aosc λc

0.01 20.7574 4.682 3.18465 1.78841

0.02 20.7744 4.67894 3.18402 1.78835

0.03 20.7913 4.67587 3.18355 1.78830

0.04 20.8083 4.67280 3.18292 1.78824

1.0 22.519 4.3969 3.16244 1.78283

2.0 24.3432 4.1593 3.15864 1.77771

3.0 26.1784 3.9623 3.15816 1.77310

6.0 31.711 3.52903 3.16085 1.76173

To illustrate the effect of the Guyer-Krumhansl term λ on the oscillatory con-

vection more, we select P2 = 60, see Figure 3.4, with corresponding transition Ra,

asta, aosc, and λc values given in Table 3.6. However, in this case, we find that the

oscillatory convection occurs when A ∈ [0.01, 11]. We observe that increasing P2



3.3. Numerical results 44

had the effect of decreasing the value of Ra. This behaviour is due to the increase

in the value of λ, 5 ≤ λ < 5.1013212 as shown in Table 3.1.
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Figure 3.4: Critical Rayleigh number Ra as function of λ, with λ restricted as in

table 3.2. Here P1 = 6, P2 = 60. The solid curve is for stationary convection. The

other curves are for oscillatory convection, for A = 0.01 increasing to A = 11. The

curve for A = 0.01 is effectively the same for A ∈ [0.01, 0.04].

Table 3.6: Transition values of Ra vs. λ, for P1 = 6 , P2 = 60.

A Ra asta aosc λc

0.01 20.1053 4.80618 3.15706 5.04066

0.02 20.1113 4.80499 3.15690 5.04064

0.03 20.1170 4.8038 3.15658 5.04062

0.04 20.123 4.8026 3.15642 5.0406

1.0 20.7304 4.68693 3.14849 5.03850

2.0 21.377 4.5740 3.14659 5.03637

3.0 22.028 4.4700 3.14579 5.03432

6.0 23.9828 4.20251 3.14563 5.02868

11.0 27.247 3.86247 3.14659 5.02064



Chapter 4

Thermal instability in Brinkman

porous media with

Cattaneo-Christov heat flux

This chapter follows on from the two previous chapters, which investigated thermal

convection of an incompressible fluid in a saturated porous medium with low porosity

and for low rates of flow which are described by Darcy’s model for conservation of

momentum.

To investigate convection in a porous medium when the porosity of a porous

medium becomes sufficiently large, the Brinkman model is employed as a balance of

linear momentum. This model has been devised by Brinkman [6], who found there

was a relationship between the permeability and the porosity of a porous medium.

A number of writers have employed the Brinkman model to investigate convection

in porous media, namely, Rudraiah et al. [99], Vasseur et al. [135], and Vasseur and

Robillard [136]. Recently the Brinkman equation has been considered by Rees [90],

Hill and Straughan [50], Malashetty et al. [75], Wang and Tan [140], Shivakumara

et al. [104], Kelliher et al. [57], Dhananjay et al. [29], and the account in the book

by Straughan [116].

The underlying motives of this chapter are to investigate the behaviour of the

onset of thermal convection in a fluid saturated porous media, when the Cattaneo-

Christov theory for heat flux is involved. Here we revisit Straughan’s work [117] but

45
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this time in the context of the Brinkman model, for the case of rigid-rigid and free-

free boundary conditions which have been studied by Straughan [115, p. 74] and

Kuznetsov and Nield [61]. From the mathematical point of view, Rayleigh [69] argues

that to ease the numerical difficulties in solving the mathematical modelling in the

case of fixed surfaces, one may impose an appropriate choice of boundary conditions.

In order to achieve this, it would be instructive to consider two free surfaces. We then

solve our system numerically and consider inertia and the Brinkman term. To this

end, basic equations and appropriate steady-state solutions are presented in Section

4.1. In Section 4.2, we describe the linear instability analysis. For free surfaces, the

lowest instability boundary and oscillatory convection are given in Section 4.3 and

4.4 respectively. In Section 4.5, we consider the numerical method for fixed surfaces.

The D2 Chebyshev tau method is used. In the final section, 4.6, numerical results

are presented.

4.1 Basic equations

We begin our study of thermal convection in a porous medium by considering a

porous medium bounded by two horizontal infinite surfaces saturated with incom-

pressible Newtonian fluid. The fluid velocity satisfies the Brinkman equation cf.

Nield and Bejan [84] and Straughan [116],

âvi,t = −p,i + kigρ0αT − µ

K
vi + λ̂∆vi, (4.1.1)

vi,i = 0, (4.1.2)

where vi is the pore averaged velocity, p is the pressure of the fluid, T is temperature,

â is an inertia coefficient, ρ0 is the constant density, µ is the dynamic viscosity, K is

the permeability, λ̂ referred to as an equivalent viscosity, k = (0, 0, 1), g is gravity,

and α is the thermal expansion coefficient of the fluid, the Boussinesq approximation

is assumed to be valid.

An averaged equation for porous medium and the constitutive equation of the

heat flux when the Cattaneo-Christov heat flux model coupled to an energy balance
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equation has been derived in [121] or [120]

1

M
T,t + viT,i = −Qi,i, (4.1.3)

τQi,t + τf (vjQi,j −Qjvi,j) = −Qi − κT,i. (4.1.4)

where Qi is the heat flux. We have introduced vi = ϕVi is the pore averaged fluid

velocity, where Vi is the actual velocity of the fluid in the pores. ϕ is the porosity.

The coefficients M and κ are given by

M =
(ρ0cp)f

(ρ0c)m

, κ =
km

(ρ0cp)f

,

where

km = κs(1− ϕ) + κfϕ ,

(ρ0c)m = ϕ(ρ0cp)f + (ρ0c)s(1− ϕ) ,

τ = ϕτf + (1− ϕ)τs .

Here m, s, c referring to the porous medium, solid skeleton of the porous medium,

and specific heat in the porous medium. The thermal diffusivity is denoted by κ.

The coefficients τf and τs are the relaxation times for the fluid and solid in the

porous medium. Further, cp is the specific heat at constant pressure in the fluid and

f represent the fluid.

Let us now consider a fluid saturated porous medium that satisfies equations

(4.1.1)-(4.1.4) occupying the spatial domain Ω = {(x, y) ∈ R2} × {z ∈ (0, d)}, and

let n is the unit outward so that n = (0, 0, 1) on z = d and n = (0, 0,−1) on z = 0.

The appropriate boundary conditions are

vi = 0 , at z = 0, d , (4.1.5)

T = TL, z = 0; T = TU , z = d, (4.1.6)

where TL, TU are constants with TL > TU . In addition the heat flux satisfies

εijknjQk = 0, at z = 0, d . (4.1.7)
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We seek in the instability of the conduction solution of the system (4.1.1)-(4.1.4)

in the domain Ω and satisfying the boundary conditions (4.1.5)-(4.1.7), given by cf.

Straughan [121, p. 193].

v̄i ≡ 0, T̄ = −βz + TL, Q̄ = (0, 0, κβ)

p̄ = p0 − gρ0z − 1

2
αβgρ0z

2,
(4.1.8)

where

β =
TL − TU

d
.

In order to investigate the instability of the classic steady-state solutions (4.1.8),

we begin by introducing perturbation (ui, ϑ, qi, π) to the solutions (4.1.8) in such a

way that

vi = v̄i + ui, T = T̄ + ϑ,

Q̄i = Q̄i + qi, p̄ = p̄ + π.

The perturbation equations arising from equations (4.1.1)-(4.1.4),are

âui,t = −π,i + kigρ0αϑ− µ

K
ui + λ̂∆ui,

ui,i = 0,

1

M
ϑ,t + uiϑ,i = −qi,i + βw,

τqi,t + τf (−βκui,z + ujqi,j − qjui,j) = −qi − κϑ,i .

(4.1.9)

To non-dimensionalise the equation (4.1.9). We define the non-dimensional quanti-

ties by

x = dx∗, u =
µd

ρ0K
u∗, q = κU

√
βµ

Kρ0αgκ
q∗,

t =
Kρ0

µ
t∗, π =

µUd

K
π∗, ϑ = dU

√
βµ

Kρ0αgκ
ϑ∗,

where U is a velocity scale, we also introduce the Prandtl number Pr = µ/ρ0κ and

the key non-dimensional numbers

R =

√
αgd2βKρ0

µκ
, Da =

K

d2
, Sg =

τµ

ρ0d2
, τ̂ =

τf

τ
,
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where R =
√

Ra is the square root of the Rayleigh number, Da is the Darcy num-

ber, Sg is the Straughan number, see Papanicolaou et al. [85], and τ̂ is a relative

relaxation time.

Upon substituting the above variables into equations (4.1.9), we obtain the nonlinear

non-dimensional perturbation equations (omitting the stars)

Aui,t = −π,i + Rkiϑ− ui + λ∆ui, (4.1.10)

ui,i = 0, (4.1.11)

Pr

Da
(

1

M
ϑ,t + uiϑ,i) = Rw − qi,i, (4.1.12)

Sg

Da
qi,t +

τ̂Sg

Da
(ujqi,j − qjui,j) = −qi − ϑ,i +

τ̂SgR

Pr
ui,z, (4.1.13)

where λ = Kλ̂/d2µ, and A is non-dimensional equivalents of â. Equations (4.1.10)-

(4.1.13) hold on {Ω× t > 0} and the boundary conditions are

ui = 0 , ϑ = 0 , εijknjqk = 0 , z = 0, 1 , (4.1.14)

with {ui, ϑ, qi, π} satisfying a plane tiling periodicity in (x, y) .

4.2 Linear instability

Here we study the linear instability analysis. To this end we first remove the

non-linear terms of equations (4.1.12) and (4.1.13), then follow Straughan [118]

by putting Q = qi,i to analyse the linear system.

Aui,t + ui = − π,i + Rkiϑ + λ∆ui,

ui,i = 0,

P r

MDa
ϑ,t = Rw −Q,

Sg

Da
Q,t = −Q−∆ϑ .

(4.2.1)

It is convenient to define P1 and P2 by

P1 =
Pr

MDa
, P2 =

Sg

Da
. (4.2.2)
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Next, we perform the curl curl of equation (4.2.1)1 to remove the pressure term,

retaining only the third component and therefore we seek for solutions of the form

w = w (x) eσt, ϑ = ϑ (x) eσt, Q = Q (x) eσt .

By substituting into equation (4.2.1) and removal of exponential parts, setting M =

1, we have to solve the system

− λ∆2w + (σA + 1) ∆w = R ∆
∗ ϑ,

σP1ϑ = Rw −Q,

σP2Q = −∆ϑ−Q ,

(4.2.3)

where ∆∗ = ∂2/∂x2 + ∂2/∂y2 is the horizontal Laplacian operator.

4.3 Free surfaces

To illustrate what is happening and gives the exact result of system (4.2.3), we here

consider the case of the stress–free surfaces.

Let us now consider the case when instability sets in as stationary convection.

We refer the reader to Chandrasekhar’s book [19]. To this end, we put σ = 0 into

the equation (4.2.3), which yields the following system

− λ∆2w + ∆w = R ∆
∗ ϑ,

Rw = Q,

∆ϑ = −Q .

(4.3.1)

We recall that Rw = Q = −∆ϑ, therefore equation (4.3.1) can be written as

−λ∆3w + ∆2w = −R2
∆
∗ w. (4.3.2)

Assume normal mode representation w of the form

w = W (z)f(x, y), (4.3.3)

where f is the horizontal plan form which satisfies ∆∗ f = −a2f , D = d/dz, a is

a wave number, and ∆ = D2 − a2. For two free bounded surfaces, allow to be
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composed of sin nπz, for n ∈ N. Hence for w = wzz = 0 and applying equation

(4.3.3) into equation (4.3.2), we obtain

R2 =
λΛ3

n + Λ2
n

a2
, (4.3.4)

where Λn = n2π2+a2. Minimization over n yields n = 1. In addition we can find the

critical wave number ac by (4.3.4) minimizing over a2 which minimizes the Rayleigh

number.

It now follows from equation (4.3.4)

2λa4 + (1 + λπ2)a2 − (λπ2 + 1)π2 = 0. (4.3.5)

Which leads to

a2
c =

−(1 + λπ2) +
√

(1 + λπ2)((1 + λπ2) + 8λπ2)

4λ
. (4.3.6)

Consequently, the stationary convection boundary

R2
sc =

(
3λπ2 − 1 +

√
(1 + λπ2)(1 + 9λπ2)

)2

16λ
(√

(1 + λπ2)(1 + 9λπ2)− (1 + λπ2)
)

×
[
3(λπ2 + 1) +

√
(1 + λπ2)(1 + 9λπ2)

]
. (4.3.7)

In equation (4.3.5) that when λ → 0, we turn to the Darcy porous problem [117]

a2
c = π2 , R2

sc = 4π2,

whereas we recover the fluid model for two free surfaces [118] as λ →∞

a2
c =

π2

2
, R2

sc =
27π4

4
.

Numerical results obtained for stationary convection are reported in Section 4.6.

4.4 Oscillatory convection for two free surfaces

In this Section we consider oscillatory convection for two free surfaces following the

Chandrasekhar [19] method, and put σ = iσ1, σ1 ∈ R into equation (4.2.3). By

equating real and imaginary parts, we may have the equations

σ2
1 =

1

P1P2

(
Λ− P1

P2

− AΛ

P2(1 + λΛ)

)
, (4.4.1)
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and

R2 =
β3Λ

3 + β2Λ
2 + β1Λ

a2(B1Λ + B2)
, (4.4.2)

where

β3 = λ2P1,

β2 =
λAP1

P2

+
A2

P2

+ 2λP1,

β1 =
P1A

P2

+ P1,

B1 = λP2,

B2 = P2.

(4.4.3)

It should be noted that oscillatory convection requires σ2
1 > 0. For λ = 0 and

A = 1, we have Straughan’s work in the Darcy model [117], and equations (4.4.2)

and (4.4.3) consistent with that found by Straughan [118] when λ = 1 and A = 1,

see also Straughan [121, p. 235].

Indeed, numerical techniques are used to find R2
osc by minimizing R2 in equation

(4.4.2) over a2. Numerical results are approximated to three decimal places. How-

ever, the values of P2 selected are such that σ2
1 > 0 so oscillatory convection will be

possible. This is explained in details in the Section 4.6.

4.5 Numerical method; fixed surfaces

In this section, the D2 Chebyshev tau method (see Appendix B) will be used to

solve equation (4.2.3), subject to the boundary conditions

w = wz = ϑ = 0, at z = 0. (4.5.1)

This method is described in more detail in Dongarra et al. [31] and Straughan [116].

To this end, we first write (4.2.3)1 as a system of second order equations by setting

χ = ∆w, resetting the domain from (0, 1) to (−1, 1), selecting ẑ = 2z − 1. We then

write (omitting the hat)

w = W (z)f(x, y), χ = χ(z)f(x, y),

ϑ = Θ(z)f(x, y), Q = Q(z)f(x, y).
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Note that

D =
d

dz
= 2

d

dẑ
and ∆ = 4D2 − a2.

Thus equation (4.2.3) may be written in the form

∆W − χ = 0,

(λ∆− 1)χ− a2RΘ = σAχ,

∆Θ + Q = − σP2Q,

−Rw + Q = − σP1Θ.

(4.5.2)

We now write W, χ, Θ, Q in the form of a series of Chebyshev polynomials. Trun-

cating each sum, we have

W (z) =
N∑

n=0

WnTn(z), χ(z) =
N∑

n=0

χnTn(z),

Θ(z) =
N∑

n=0

ΘnTn(z), Q(z) =
N∑

n=0

QnTn(z).

Recalling the boundary conditions (4.5.1), where the relations Tn(±1) = (±1)n, T ′
n(±1) =

(±1)n−1n2 are used, then

BC1 : W0 + W2 + W4 + · · ·+ WN−1 = 0,

BC2 : W1 + W3 + W5 + · · ·+ WN = 0,

BC3 : W1 + 32W3 + 52W5 + · · ·+ N2WN = 0,

BC4 : 4W2 + 42W4 + · · ·+ (N − 1)2WN−1 = 0,

BC5 : Θ0 + Θ2 + Θ4 + · · ·ΘN−1 = 0,

BC6 : Θ1 + Θ3 + Θ5 + · · ·ΘN = 0.

Letting x = (W0, · · · ,WN , χ0, · · · , χN , Θ0, · · · , ΘN , Q0, · · · , QN), equation (4.5.2)

can be written in the matrix form

Ax = σBx,
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where A and B are (N + 1)× (N + 1) matrix given by

A =




∆ −I 0 0

BC1 0 · · · 0 0 · · · 0 0 · · · 0
BC2 0 · · · 0 0 · · · 0 0 · · · 0

0 λ∆− I −a2RI 0

BC3 0 · · · 0 0 · · · 0 0 · · · 0
BC4 0 · · · 0 0 · · · 0 0 · · · 0

0 0 ∆ I

0 · · · 0 0 · · · 0 BC5 0 · · · 0
0 · · · 0 0 · · · 0 BC6 0 · · · 0
−RI 0 0 I




,

B =




0 0 0 0

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

0 AI 0 0

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

0 0 0 −P2I

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

0 0 −P1I 0




.

We solved the above matrix system by using the QZ algorithm. Numerical results

are approximated to three decimal, as presented in the next section.

4.6 Numerical results

4.6.1 Free surfaces

We report our findings for critical Rayleigh numbers Ra, wave numbers ac, and the

eigenvalues σ1 in Tables 4.1– 4.3, respectively, with λ = 0.5, 1, 2, for fixed value

of P1 = 6, A = 1, 2, 4, and for various values of P2 starting from the minimum



4.6. Numerical results 55

value which relates to existence of oscillatory convection. Oscillatory convection

corresponds to σ1 6= 0, also the critical Rayleigh number Ra plotted against P2 in

the Figures 4.1–4.3.

From equation (4.3.4), the stationary convection boundary was found to be de-

pendent on the Brinkman term λ but not on the inertia term A , while from equation

(4.4.2), the oscillatory convection depends on the Brinkman term λ, inertia A, and

the quantity P2. However, as shown in Figures 4.1–4.3, the onset of thermal in-

stability strongly depends on λ and A. One can see the increase in the Brinkman

term λ leads to convection occuring more easily. It is also observed that the onset

of convection is more likely to be via oscillatory convection, when λ increases with

the decreasing of the inertia term A

Figure 4.1: Critical values of Ra vs. P2 for two free surfaces, with P1 = 6 , and

λ = 0.5. The solid curve is for stationary convection. The dotted curves are for

oscillatory convection, for A = 1, 2, 4.

To illustrate how the Brinkman term λ, the inertia term A, and beyond the

quantity P2 effect the onset of thermal instability, let us take an example. From

Table 4.1 λ = 0.5, in case A = 1, it was found that the oscillatory convection was

possible when P2 ≥ 0.33 and the transition of instability from stationary convection

to oscillatory convection is for P2 in the interval P2 ∈ [0.43, 0.44]. Note that the wave
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number became significantly higher at the transition, which leads to cells becoming

narrower.

Figure 4.2: Critical values of Ra vs. P2 for two free surfaces, with P1 = 6 , and

λ = 1. The solid curve is for stationary convection. The dotted curves are for

oscillatory convection, for A = 1, 2, 4.

Figure 4.3: Two free surfaces. Critical values of Ra vs. P2, with P1 = 6 , and λ = 2.

The solid curve is for stationary convection. The dotted curves are for oscillatory

convection, for A = 1, 2, 4.



4.6. Numerical results 57

From Figures 4.1–4.3 (and from Tables 4.1– 4.3) we observe that as A increases

from A = 1 to A = 2 and then A = 4 the convection cells continue to become

narrower, and the oscillatory convection boundary decreases below the stationary

convection boundary which remains at a constant value (a different constant value

for each A). It may be observed that for A = 2, the transition is in the interval P2 ∈
[0.5, 0.525], whereas when A = 4, the transition is in the interval P2 ∈ [0.65, 0.7].

A similar interpretations for λ = 1 and λ = 2 are given in Table 4.2 and Table 4.3

respectively.

It is evident that, once λ increases with decrease of A, for example, when λ

increases to λ = 2 in case A = 1, the stationary mode, however, changes earlier to

the oscillatory mode in the interval P2 ∈ [0.38, 0.383] as seen in Table 4.3.
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Table 4.1: Two free surfaces. Critical values of Rayleigh number Ra, wave number

ac vs. P2, for P1 = 6, λ = 0.5.

A = 1 A = 2 A = 4

P2 ac Ra σ1 ac Ra σ1 ac Ra σ1

0.33–100 2.289 372.722 0 2.289 372.722 0 2.289 372.722 0

0.33 3.729 523.796 ±0.034 . . . . . . . . . . . . . . . . . .

0.3383 3.720 507.994 ±0.506 . . . . . . . . . . . . . . . . . .

0.343 3.7157 499.446 ±0.624 . . . . . . . . . . . . . . . . . .

0.3634 3.695 465.336 ±0.943 4.109 609.427 ±0.041 . . . . . . . . .

0.372 3.687 452.265 ±1.032 4.095 590.063 ±0.478 . . . . . . . . .

0.378 3.681 443.557 ±1.086 4.086 577.208 ±0.612 . . . . . . . . .

0.38 3.680 440.726 ±1.102 4.083 573.036 ±0.649 . . . . . . . . .

0.383 3.677 436.544 ±1.126 4.078 566.881 ±0.699 . . . . . . . . .

0.385 3.675 433.798 ±1.141 4.075 562.845 ±0.730 . . . . . . . . .

0.388 3.673 429.741 ±1.163 4.070 556.888 ±0.773 . . . . . . . . .

0.39 3.671 427.077 ±1.176 4.067 552.981 ±0.799 . . . . . . . . .

0.4 3.663 414.221 ±1.239 4.053 534.177 ±0.913 . . . . . . . . .

0.401 3.662 412.976 ±1.244 4.051 532.361 ±0.923 . . . . . . . . .

0.4013 3.662 412.604 ±1.246 4.051 531.728 ±0.926 . . . . . . . . .

0.40135 3.662 412.542 ±1.246 4.051 531.728 ±0.927 . . . . . . . . .

0.403 3.661 410.509 ±1.255 4.049 528.763 ±0.943 . . . . . . . . .

0.41 3.655 402.092 ±1.292 4.039 516.516 ±1.005 . . . . . . . . .

0.417 3.650 394.003 ±1.324 4.029 504.780 ±1.059 4.758 803.622 ±0.143

0.425 3.644 385.135 ±1.357 4.019 491.957 ±1.114 4.741 780.229 ±0.444

0.43 3.640 379.787 ±1.376 4.012 484.244 ±1.144 4.731 766.196 ±0.548

0.44 3.634 369.511 ±1.411 3.9997 469.469 ±1.199 4.710 739.401 ±0.702

0.45 3.627 359.761 ±1.440 3.988 455.507 ±1.246 4.690 714.182 ±0.817

0.455 3.624 355.070 ±1.454 3.982 448.811 ±1.267 4.680 702.124 ±0.865

0.5 3.597 317.665 ±1.542 3.933 395.895 ±1.405 4.599 607.727 ±1.153

0.525 3.584 300.027 ±1.572 3.909 371.261 ±1.454 4.558 564.366 ±1.248

0.54 3.577 290.334 ±1.586 3.895 357.814 ±1.478 4.535 540.866 ±1.293

0.6 3.551 257.003 ±1.618 3.847 312.099 ±1.537 4.450 461.962 ±1.413

0.65 3.533 234.472 ±1.625 3.812 281.691 ±1.559 4.389 410.406 ±1.467

0.7 3.517 215.517 ±1.622 3.781 256.441 ±1.567 4.335 368.234 ±1.496

1. 3.454 144.778 ±1.526 3.654 165.276 ±1.502 4.099 221.892 ±1.485

4. 3.333 33.469 ±0.890 3.392 34.813 ±0.889 3.548 38.678 ±0.893

10 3.307 13.165 ±0.578 3.332 13.383 ±0.577 3.400 14.017 ±0.579
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Table 4.2: Two free surfaces. Critical values of Rayleigh number Ra, wave number

ac vs. P2, for P1 = 6, λ = 1.

A = 1 A = 2 A = 4

P2 ac Ra σ1 ac Ra σ1 ac Ra σ1

0.319–100 2.257 701.689 0 2.257 701.689 0 2.257 701.689 0

0.319 3.457 908.511 ±0.094 . . . . . . . . . . . . . . . . . .

0.321 3.456 902.078 ±0.273 . . . . . . . . . . . . . . . . . .

0.323 3.455 895.734 ±0.372 . . . . . . . . . . . . . . . . . .

0.33 3.450 874.203 ±0.592 . . . . . . . . . . . . . . . . . .

0.3383 3.445 849.957 ±0.761 3.679 987.722 ±0.015 . . . . . . . . .

0.343 3.442 836.805 ±0.836 3.674 970.952 ±0.371 . . . . . . . . .

0.3634 3.431 784.079 ±1.071 3.653 904.069 ±0.808 . . . . . . . . .

0.372 3.426 763.764 ±1.142 3.644 878.453 ±0.914 4.081 1160.673 ±0.123

0.378 3.423 750.195 ±1.185 3.638 861.391 ±0.977 4.071 1135.157 ±0.406

0.38 3.422 745.777 ±1.199 3.637 855.845 ±0.996 4.068 1126.877 ±0.461

0.383 3.421 739.245 ±1.218 3.634 847.652 ±1.023 4.063 1114.663 ±0.532

0.385 3.420 734.953 ±1.231 3.632 842.274 ±1.0398 4.060 1106.653 ±0.573

0.388 3.418 728.607 ±1.248 3.629 834.328 ±1.064 4.055 1094.833 ±0.628

0.39 3.417 724.435 ±1.260 3.628 829.111 ±1.080 4.052 1087.080 ±0.661

0.4 3.413 704.267 ±1.312 3.619 803.938 ±1.150 4.037 1049.776 ±0.799

0.401 3.412 702.310 ±1.316 3.618 801.501 ±1.156 4.035 1046.174 ±0.811

0.4013 3.412 701.726 ±1.318 3.618 800.773 ±1.158 4.035 1045.098 ±0.814

0.40135 3.412 701.628 ±1.318 3.618 800.652 ±1.159 4.035 1044.919 ±0.815

0.403 3.412 698.430 ±1.326 3.616 796.671 ±1.1689 4.032 1039.038 ±0.833

0.41 3.409 685.177 ±1.356 3.611 780.197 ±1.209 4.022 1014.747 ±0.905

0.417 3.406 672.412 ±1.383 3.605 764.366 ±1.246 4.012 991.477 ±0.967

0.425 3.402 658.387 ±1.411 3.599 747.018 ±1.283 4.001 966.055 ±1.028

0.43 3.400 649.911 ±1.427 3.595 736.556 ±1.304 3.994 950.766 ±1.062

0.44 3.397 633.591 ±1.456 3.588 716.459 ±1.341 3.981 921.487 ±1.123

0.45 3.393 618.062 ±1.481 3.581 697.395 ±1.374 3.968 893.824 ±1.175

0.455 3.391 610.576 ±1.493 3.577 688.227 ±1.389 3.962 880.560 ±1.198

0.5 3.377 550.501 ±1.566 3.549 615.156 ±1.487 3.911 775.799 ±1.350

0.525 3.370 521.931 ±1.591 3.535 580.733 ±1.522 3.885 727.070 ±1.404

0.54 3.366 506.158 ±1.602 3.528 561.823 ±1.537 3.871 700.482 ±1.429

0.6 3.352 451.518 ±1.626 3.500 496.851 ±1.575 3.819 610.168 ±1.496

0.65 3.342 414.206 ±1.628 3.481 452.982 ±1.586 3.782 550.162 ±1.522

0.7 3.334 382.560 ±1.622 3.464 416.108 ±1.586 3.750 500.386 ±1.533

1. 3.300 262.138 ±1.517 3.396 278.806 ±1.499 3.614 321.136 ±1.477

4. 3.239 63.027 ±0.881 3.265 64.098 ±0.879 3.265 64.098 ±0.868

10 3.227 25.008 ±0.571 3.237 25.180 ±0.571 3.265 25.634 ±0.571



4.6. Numerical results 60

Table 4.3: Two free surfaces. Critical values of Rayleigh number Ra, wave number

ac vs. P2, for P1 = 6, λ = 2.

A = 1 A = 2 A = 4

P2 ac Ra σ1 ac Ra σ1 ac Ra σ1

0.312–100 2.240 1359.315 0 2.240 1359.315 0 2.240 1359.315 0

0.312 3.306 1685.793 ±0.029 . . . . . . . . . . . . . . . . . .

0.319 3.303 1646.077 ±0.480 . . . . . . . . . . . . . . . . . .

0.321 3.302 1635.069 ±0.541 . . . . . . . . . . . . . . . . . .

0.323 3.302 1624.206 ±0.594 3.426 1758.158 ±0.047 . . . . . . . . .

0.33 3.299 1587.292 ±0.743 3.421 1715.748 ±0.466 . . . . . . . . .

0.3383 3.296 1545.629 ±0.876 3.416 1667.997 ±0.671 . . . . . . . . .

0.343 3.295 1522.988 ±0.938 3.413 1642.098 ±0.756 3.653 1913.926 ±0.087

0.3634 3.289 1431.909 ±1.140 3.401 1538.288 ±1.013 3.631 1781.484 ±0.729

0.372 3.286 1396.683 ±1.203 3.396 1498.300 ±1.090 3.623 1730.772 ±0.847

0.378 3.285 1373.112 ±1.2415 3.393 1471.593 ±1.136 3.617 1697.000 ±0.915

0.38 3.284 1365.430 ±1.253 3.392 1462.899 ±1.150 3.615 1686.022 ±0.936

0.383 3.284 1354.066 ±1.271 3.391 1450.044 ±1.171 3.612 1669.808 ±0.965

0.385 3.283 1346.594 ±1.282 3.3898 1441.598 ±1.18398 3.610 1659.163 ±0.984

0.388 3.282 1335.538 ±1.298 3.388 1429.109 ±1.203 3.607 1643.439 ±1.010

0.39 3.282 1328.268 ±1.308 3.387 1420.900 ±1.215 3.606 1633.114 ±1.027

0.4 3.280 1293.068 ±1.355 3.383 1381.215 ±1.2697 3.597 1583.303 ±1.102

0.401 3.279 1289.650 ±1.359 3.382 1377.367 ±1.275 3.596 1578.482 ±1.108

0.4013 3.279 1288.628 ±1.360 3.382 1376.216 ±1.276 3.596 1577.041 ±1.110

0.40135 3.279 1288.458 ±1.360 3.382 1376.025 ±1.276 3.595 1576.802 ±1.1108

0.403 3.279 1282.868 ±1.367 3.381 1369.733 ±1.285 3.594 1568.925 ±1.122

0.41 3.277 1259.679 ±1.395 3.378 1343.6595 ±1.317 3.588 1536.332 ±1.165

0.417 3.276 1237.310 ±1.419 3.375 1318.548 ±1.345 3.582 1505.018 ±1.203

0.425 3.274 1212.696 ±1.445 3.372 1290.961 ±1.375 3.576 1470.703 ±1.242

0.43 3.273 1197.802 ±1.459 3.3697 1274.291 ±1.392 3.572 1450.012 ±1.264

0.44 3.271 1169.081 ±1.485 3.366 1242.195 ±1.422 3.564 1410.271 ±1.304

0.45 3.269 1141.702 ±1.508 3.362 1211.658 ±1.449 3.557 1372.579 ±1.339

0.455 3.268 1128.485 ±1.518 3.360 1196.9401 ±1.461 3.554 1354.454 ±1.355

0.5 3.260 1021.977 ±1.584 3.345 1078.848 ±1.539 3.525 1210.043 ±1.458

0.525 3.257 971.041 ±1.605 3.338 1022.706 ±1.566 3.510 1142.044 ±1.495

0.54 3.255 942.8397 ±1.615 3.334 991.718 ±1.578 3.502 1104.699 ±1.512

0.6 3.247 844.683 ±1.633 3.319 884.398 ±1.604 3.474 976.441 ±1.553

0.65 3.242 777.229 ±1.633 3.309 811.143 ±1.608 3.454 889.892 ±1.566

0.7 3.238 719.736 ±1.625 3.301 749.034 ±1.603 3.437 817.179 ±1.567

1. 3.221 498.404 ±1.514 3.266 512.8697 ±1.503 3.366 546.757 ±1.486

4. 3.191 122.217 ±0.876 3.203 123.134 ±0.875 3.2299 125.314 ±0.874

10 3.185 48.695 ±0.568 3.189 48.842 ±0.568 3.201 49.193 ±0.567
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4.6.2 Fixed surfaces

In this section, we display our numerical results in Tables 4.4–4.6, respectively, with

λ = 0.5, 1, 2 for varying value of P2, and for fixed value of P1 = 6. These results

are obtained by using using D2 Chebyshev tau method coupled with QZ algorithm.

The critical Rayleigh numbers and the critical wave numbers for the oscillatory mode

correspond to σ1 6= 0. Figures 4.4–4.6 represent the critical Rayleigh numbers Ra

against the quantity P2.

In Figure 4.4–4.6, we display the effects of the Brinkman term λ, with inertia

term A on thermal instability Ra. For A = 1 and A = 4, once λ increased will

advance the oscillatory convection and the transition from stationary to oscillatory

mode will occur earlier at small value of P2.

Figure 4.4: Two fixed surfaces. Critical values of Ra vs. P2 , with P1 = 6 , and

λ = 0.5. The solid curve is for stationary convection. The dotted curves are for

oscillatory convection, for A = 1, 4.
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Figure 4.5: Two fixed surfaces. Critical values of Ra vs. P2, with P1 = 6 , and

λ = 1. The solid curve is for stationary convection. The dotted curves are for

oscillatory convection, for A = 1, 4.

Figure 4.6: Two fixed surfaces. Critical values of Ra vs. P2, with P1 = 6 , and

λ = 2. The solid curve is for stationary convection. The dotted curves are for

oscillatory convection, for A = 1, 4.
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Tables 4.4–4.6 demonstrate the effects of the Brinkman term λ increasing from

λ = 0.5 to λ = 2 with inertia term A on the dominant mode of instability and the

transition within the interval P2.

Table 4.6 confirms the effects of increase λ to λ = 2, the transition from station-

ary to oscillatory mode occurs at smaller value of P2. For example, when A = 1

the transition is for P2 in the interval P2 ∈ [0.25703, 0.25704] and the cells become

narrower due to the intense increasing of the critical wave number at the transition

from stationary to oscillatory convection.
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Table 4.4: Two fixed surfaces. Critical values of Rayleigh number Ra, wave number

ac vs. P2, for P1 = 6, λ = 0.5.

A = 1 A = 4

P2 ac Ra σ1 ac Ra σ1

0.255–0.48 3.07 808.958 0 3.07 808.958 0

0.255 4.9 966.540 ±1.728 . . . . . . . . .

0.2568 4.89 958.594 ±1.743 . . . . . . . . .

0.25702 4.89 957.631 ±1.747 . . . . . . . . .

0.25703 4.89 957.588 ±1.747 . . . . . . . . .

0.25704 4.89 957.543 ±1.747 . . . . . . . . .

0.264 4.89 928.046 ±1.859 . . . . . . . . .

0.2676 4.89 913.476 ±1.910 . . . . . . . . .

0.2688 4.89 908.719 ±1.926 . . . . . . . . .

0.27 4.88 904.010 ±1.927 . . . . . . . . .

0.272 4.88 896.266 ±1.952 . . . . . . . . .

0.285 4.87 848.939 ±2.078 . . . . . . . . .

0.288 4.87 838.705 ±2.105 . . . . . . . . .

0.29 4.87 832.016 ±2.122 . . . . . . . . .

0.292 4.87 825.431 ±2.138 . . . . . . . . .

0.2972 4.87 808.780 ±2.178 . . . . . . . . .

0.31 4.86 770.473 ±2.250 . . . . . . . . .

0.34 4.84 693.313 ±2.360 5.31 1208.491 ±0.999

0.342 4.84 688.707 ±2.365 5.3 1197.939 ±1.024

0.345 4.84 681.910 ±2.375 5.3 1182.415 ±1.091

0.36 4.84 649.818 ±2.413 5.28 1109.888 ±1.323

0.365 4.83 639.773 ±2.414 5.27 1087.450 ±1.377

0.384 4.83 604.245 ±2.445 5.24 1009.133 ±1.55

0.398 4.82 580.465 ±2.4534 5.23 957.639 ±1.660

0.41 4.82 561.508 ±2.463 5.21 917.134 ±1.723

0.4473 4.81 509.696 ±2.468 5.17 808.983 ±1.875

0.4474 4.81 509.570 ±2.470 5.17 808.725 ±1.875

0.48 4. 8 471.491 ±2.457 5.14 731.730 ±1.956

1.2 4.73 177.179 ±1.902 4.88 219.363 ±1.816

1.8 4.71 116.433 ±1.610 4.82 135.249 ±1.567

2.8 4.7 74.076 ±1.321 4.77 81.874 ±1.300

4 4.69 51.562 ±1.117 4.74 55.389 ±1.106

10 4.69 20.461 ±0.720 4.71 21.075 ±0.717
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Table 4.5: Two fixed surfaces. Critical values of Rayleigh number Ra, wave number

ac vs. P2, for P1 = 6, λ = 1.

A = 1 A = 4

P2 ac Ra σ1 ac Ra σ1

0.255–0.31 3.1 1663.124 0 3.1 1663.124 0

0.31–0.41 . . . . . . . . . 3.1 1663.124 0

0.255 4.83 1769.049 ±2.122 5.14 2431.432 ±0.767

0.2568 4.83 1755.612 ±2.143 5.13 2408.837 ±0.829

0.25702 4.83 1753.983 ±2.145 5.13 2406.102 ±0.841

0.25703 4.83 1753.909 ±2.145 5.13 2405.978 ±0.841

0.25704 4.83 1753.835 ±2.145 5.13 2405.854 ±0.842

0.264 4.83 1703.834 ±2.217 5.12 2322.264 ±1.104

0.2676 4.83 1679.068 ±2.250 5.12 2281.134 ±1.220

0.2688 4.83 1670.972 ±2.261 5.12 2267.728 ±1.255

0.27 4.83 1662.953 ±2.271 5.12 2254.469 ±1.289

0.272 4.83 1649.756 ±2.287 5.11 2232.692 ±1.321

0.285 4.83 1568.812 ±2.377 5.1 2100.265 ±1.581

0.288 4.82 1551.243 ±2.3833 5.09 2071.788 ±1.616

0.29 4.82 1539.746 ±2.394 5.09 2053.203 ±1.649

0.292 4.82 1528.419 ±2.405 5.09 2034.931 ±1.680

0.2972 4.82 1499.729 ±2.431 5.08 1988.836 ±1.739

0.31 4.81 1433.480 ±2.473 5.07 1883.277 ±1.878

0.34 4.81 1298.927 ±2.552 5.04 1673.544 ±2.083

0.342 4.81 1290.847 ±2.556 5.04 1661.132 ±2.095

0.345 4.81 1278.914 ±2.561 5.04 1642.840 ±2.112

0.36 4.8 1222.399 ±2.572 5.03 1556.866 ±2.176

0.365 4.8 1204.652 ±2.577 5.02 1530.092 ±2.188

0.384 4.8 1141.657 ±2.5901 5.01 1435.925 ±2.244

0.398 4.8 1099.292 ±2.594 5.0 1373.372 ±2.273

0.41 4.8 1065.399 ±2.588 4.99 1323.786 ±2.291

0.4473 4.79 972.206 ±2.578 4.97 1189.569 ±2.329

0.4474 4.79 971.978 ±2.578 4.97 1189.244 ±2.329

0.48 4.8 902.947 ±2.553 4.96 1091.881 ±2.344

1.2 4.75 351.355 ±1.931 4.82 381.383 ±1.889

1.8 4.74 232.807 ±1.628 4.79 246.382 ±1.607

2.8 4.74 149.01 ±1.335 4.77 154.628 ±1.324

4 4.74 104.062 ±1.130 4.76 106.817 ±1.124

10 4.73 41.488 ±0.725 4.74 41.929 ±0.724
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Table 4.6: Two fixed surfaces. Critical values of Rayleigh number Ra, wave number

ac vs. P2, for P1 = 6, λ = 2,

A = 1 A = 4

P2 ac Ra σ1 ac Ra σ1

0.255–0.31 3.1 3371.034 0 3.1 3371.034 0

0.31–0.345 . . . . . . . . . 3.1 3371.034 0

0.255 4.8 3398.990 ±2.295 4.96 3939.830 ±1.848

0.2568 4.8 3374.232 ±2.311 4.96 3907.569 ±1.878

0.25702 4.8 3371.231 ±2.313 4.96 3903.661 ±1.881

0.25703 4.8 3371.095 ±2.313 4.96 3903.484 ±1.881

0.25704 4.8 3370.958 ±2.313 4.96 3903.306 ±1.882

0.264 4.8 3278.704 ±2.371 4.95 3783.539 ±1.968

0.2676 4.8 3232.940 ±2.397 4.95 3724.361 ±2.014

0.2688 4.8 3217.968 ±2.406 4.95 3705.048 ±2.029

0.27 4.8 3203.134 ±2.414 4.95 3685.923 ±2.043

0.272 4.8 3178.713 ±2.427 4.95 3654.474 ±2.066

0.285 4.8 3028.622 ±2.499 4.94 3462.227 ±2.171

0.288 4.8 2995.978 ±2.512 4.94 3420.651 ±2.205

0.29 4.8 2974.598 ±2.516 4.94 3393.475 ±2.220

0.292 4.79 2953.529 ±2.519 4.94 3366.721 ±2.235

0.2972 4.79 2900.112 ±2.539 4.93 3299.055 ±2.260

0.31 4.79 2776.506 ±2.579 4.93 3143.371 ±2.335

0.34 4.79 2524.352 ±2.637 4.91 2829.461 ±2.434

0.342 4.79 2509.161 ±2.639 4.91 2810.909 ±2.439

0.345 4.79 2486.715 ±2.642 4.91 2783.264 ±2.448

0.36 4.79 2380.249 ±2.654 4.9 2652.719 ±2.473

0.365 4.79 2346.759 ±2.657 4.9 2611.841 ±2.482

0.384 4.78 2227.655 ±2.654 4.89 2467.280 ±2.501

0.398 4.78 2147.354 ±2.653 4.89 2370.490 ±2.514

0.41 4.78 2082.995 ±2.6498 4.88 2293.319 ±2.514

0.4473 4.78 1905.489 ±2.630 4.87 2082.327 ±2.514

0.4474 4.78 1905.054 ±2.630 4.87 2081.813 ±2.514

0.48 4.78 1773.039 ±2.604 4.87 1926.687 ±2.507

1.2 4.76 700.833 ±1.946 4.8 725.523 ±1.927

1.8 4.76 466.038 ±1.639 4.78 477.022 ±1.627

2.8 4.76 299.063 ±1.342 4.77 303.605 ±1.336

4 4.76 209.146 ±1.136 4.77 211.372 ±1.132

10 4.75 83.549 ±0.728 4.76 83.905 ±0.728



Part II. Thermal convection with

anisotropic permeability

There has been much recent interest in the study of thermal convection in porous

media due to the great importance of many applications in engineering and geo-

physics, see e.g. Nield and Bejan [84], Straughan [116, 121], and references therein.

However, many materials, possess a pronounced anisotropy in permeability, or in

thermal diffusivity. Thus, the effect of anisotropy on thermal convection in porous

media is currently a subject receiving a particular interest. To this end, this part

draws attention to the modelling of thermal convection problems which allow to the

permeability to be an anisotropic tensor.

Thermal convection in anisotropic porous media has been investigated by many

researchers. For example, Castinel and Combarnous [16], investigated the Rayleigh-

Benard instability in porous media with anisotropic permeability. Later, Epherre

[32] considered convection in a porous medium with anisotropy in the thermal dif-

fusivity. Other publications, such as Kvernold and Tyvand [64], and Tyvand [126],

were concerned with the effects of anisotropy with respect to permeability and ther-

mal diffusivity, at the onset of thermal convection. Storesletten [109] considered

natural convection in a horizontal fluid saturated porous layer with anisotropic ther-

mal diffusivity, whereas the permeability was isotropic. Straughan and Walker [111]

developed linear and nonlinear energy stability analysis for penetrative convection

in anisotropic porous media with permeability transversely isotropic with respect to

an inclined axis. Subsequently, Payne et al. [86] studied structural stability for the

problem of penetrative convection in anisotropic porous media which arises out of

Straughan and Walker the work of [111]. The onset of convection in an inclined
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anisotropic porous layer has been considered also by Rees and Postelnicu [91].

The layout of this Part is as follows. In Chapter 5 we consider a model for

thermal convection in a saturated porous material of the Darcy type incorporating

fluid inertia. We investigate how the changes in the vertical direction of permeability

tensor affect the stability of the system. The optimal results are achieved, by using

an energy method, that the nonlinear critical Rayleigh numbers coincide with those

of the linear analysis. Analogous unconditional stability results are also derived

when we ignore the inertia term and the layer of a saturated porous medium is

rotating about an axis orthogonal to the planes bounding the layer in Chapter 6.

The work in these chapters, respectively, has been published in Haddad [48] and

submitted for publication. The influence of the inclusion of the inertia term on the

onset of thermal convection is considered for this model in Chapter 7.
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Chapter 5

Thermal convection in a Darcy

porous medium with anisotropic

spatially varying permeability

In this chapter, we analyse the effect of anisotropic permeability at the onset of

convection in porous Darcy media incorporating fluid inertia. We focus our attention

on the case of a permeability tensor K = diag {Kq, Kq, K⊥(z)}, i.e. the case in

which the permeability varies in the vertical direction, while the thermal diffusivity

is constant. Our aim is to analyse the linear instability and the nonlinear stability

to obtain conditions for global nonlinear stability, we show that the growth rate σ

is real and as a result the convection is by stationary convection.

It is worth mentioning that the effects of anisotropy, of both permeability and

thermal diffusivity, have raised much interest recently. See for example Carr and de

Putter [15], who introduced an internal heat sink model which allowed for penetra-

tive convection in a porous medium with horizontal isotropic permeability, Capone

et al. [7, 9], studied the effect of anisotropic constant thermal diffusivity and the

variable permeability in the vertical direction for problems of convection and pen-

etrative convection in a Darcy porous medium. The same authors, in [9], and [11]

analysed the effect of variable diffusivity and variable permeability in the vertical

direction.

The chapter is organized as follows. In the Section 5.1 we present the equations
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for thermal convection in a fluid saturated anisotropic porous medium, and we

present also the non-dimensionalised perturbation equations. The linear stability

and the non-linear stability problems are the subject of Section 5.2 and Section 5.3

respectively. In section 5.4 we employ both the compound matrix method and the

D2 Chebyshev tau method (see Appendix B) to solve the eigenvalue problem. In

the Section 5.5 numerical results are reported.

5.1 Governing equations

We consider a layer of porous media heated from below and bounded by two hor-

izontal planes z = 0 and z = d. Further, we suppose the fluid saturated porous

medium occupying the three dimensional layer {(x, y) ∈ R2}× {z ∈ (0, d)}. We are

interested in the situation in which the permeability is an anisotropic tensor Kij.

The governing equations incorporating fluid inertia and adopting the Boussineq ap-

proximation for thermal convection in an anisotropic porous medium of Darcy type

may be found in Straughan [116], and are

âKijvj,t = −Kijp,j − µvi + Kijkjgρ0αT (5.1.1)

vi,i = 0, (5.1.2)

T,t + viT,i = κ∆T, (5.1.3)

where v is the velocity field, p is the pressure, T is temperature, â is an inertia

coefficient, µ is the dynamic viscosity, κ is the thermal diffusivity, g is gravity,

k = (0, 0, 1), α is the thermal expansion coefficient of the fluid, and ρ0 is the constant

density coefficient.

In this chapter we are particulary interested in the case in which the vertical per-

meability depends on the depth z, isotropic constant permeability in the horizontal

directions. In this case the permeability tensor has the form

Kij = diag {Kq, Kq, K⊥(z)} ,

where Kq is a positive constant, and K⊥(z) = 1/m0h(z). Here m0 > 0, h(z) > h0 >

0 is a linear or an exponential function.
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We assume that the fluid is saturated by a Darcy porous medium and we add

the boundary conditions

n · v = 0 , at z = 0, d ,

T = TL, z = 0; T = TU , z = d,
(5.1.4)

where TL, TU are constants with TL > TU , and n is the unit outward normal to the

boundary, so n = (0, 0, 1) on z = d and n = (0, 0,−1) on z = 0.

The steady solution whose stability is under investigation is

v̄i ≡ 0, T̄ = −βz + TL,

p̄ = p0 − gρ0z − 1

2
αβgρ0z

2,
(5.1.5)

with p0 is the pressure at the surface z = 0, β = (TL − TU)/d .

To study stability and linear instability we introduce perturbations (ui, ϑ, π) to

the solutions (5.1.5) in such a way that

vi = v̄i + ui, T = T̄ + ϑ, p = p̄ + π.

The nonlinear perturbation equations arising from equations (5.1.1)-(5.1.3), are

âKijuj,t = −Kijπ,j − µui + Kijkjgρ0αϑ,

ui,i = 0,

ϑ,t + uiϑ,i = βw + κ∆ϑ,

(5.1.6)

where w = u3. We introduce an inverse permeability tensor Mij which satisfies

MijKjk = δik.

Then Mij = m0mij, with mij = diag {ξ, ξ, h(z)}, ξ = 1/m0Kq.

In terms of the inverse permeability tensor Mij, equations (5.1.6) are equivalent

to

âui,t = − π,i − µm0mijuj + kigρ0αϑ,

ui,i = 0,

ϑ,t + uiϑ,i = βw + κ∆ϑ.

(5.1.7)
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To non-dimensionalise equations (5.1.7). We define the non-dimensional quanti-

ties by

xi = dx∗i , ui = Uu∗i , t = T t∗, π = Pπ∗, ϑ = T#ϑ∗,

where the inertia, time, velocity, pressure, and temperature scales are chosen as

a0 =
âκ

m0µd2
, T =

d2

κ
, U =

κ

d
,

P = m0dµU, T# = U

√
m0d2βµ

κρ0gα
.

The Rayleigh number R =
√

Ra is introduced as

R =

√
d2ρ0gαβ

m0µκ
.

Omitting all stars, the nonlinear non-dimensional perturbation equations are

a0ui,t = − π,i −mijuj + Rkiϑ,

ui,i = 0,

ϑ,t + uiϑ,i = Rw + ∆ϑ,

(5.1.8)

where

h(z) = 1− qz, or h(z) = eqz, q > 0 (5.1.9)

and the corresponding boundary conditions are given by

niui = ϑ = 0, at z = 0, 1, (5.1.10)

with {ui, ϑ, π} satisfying a plane tiling periodicity in (x, y).

5.2 Linearized instability and the principle of ex-

change of stabilities

In order to study the linear instability, we first linearize equations (5.1.8), then

follow Chandrasekhar [19] by imposing a temporal growth rate like eσt for solutions

of the form

u (x, t) = u (x) eσt, ϑ (x, t) = ϑ (x) eσt, π (x, t) = π (x) eσt.
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The linearized equations arising from (5.1.8) are

a0σui = − π,i −mijuj + Rkiϑ,

ui,i = 0

σϑ,t = Rw + ∆ϑ,

(5.2.1)

In general σ is a complex number. We now show that σ ∈ R, and so the strong

principle of exchange of stabilities holds. To this end, let V be a period cell for

the solution (ui, ϑ, π), and let u∗i , ϑ∗ be the complex conjugate of ui, ϑ respectively.

Multiplying equation (5.2.1)1 by u∗i and equation (5.2.1)3 by ϑ∗ and integrate over

the periodic cell V to obtain

σa0 ‖u‖2 = − (mijuj, u
∗
i ) + R(ϑ,w∗), (5.2.2)

σ ‖ϑ‖2 = R(w, ϑ∗)− ‖∇ϑ‖2 , (5.2.3)

where (., .) and ‖.‖ denote the inner product and norm on the complex Hilbert space

L2(V ).

After addition of equations (5.2.2) and (5.2.3), we obtain

σ(a0 ‖u‖2 + ‖ϑ‖2) = −(mijuj, u
∗
i )− ‖∇ϑ‖2 + R[(ϑ,w∗) + (w, ϑ∗)]. (5.2.4)

Since σ = σr + iσi, equating the imaginary part of equation (5.2.4) yields

σi(a0 ‖u‖2 + ‖ϑ‖2) = 0.

Hence, σi = 0 and so σ ∈ R which implies that the linearized equations (5.2.1)

satisfy the strong principle of exchange of stabilities. Therefore, convection sets in

as stationary convection (and it is sufficient to take σ = 0 in equations (5.2.1)).

After removing π by taking curl curl of equation (5.2.1)1, we have the system to

determine the marginal region

ξw,zz + h(z) ∆
∗ w −R ∆

∗ ϑ = − σa0∆w,

Rw + ∆ϑ = σϑ,
(5.2.5)

where ∆∗ = ∂2/∂x2 + ∂2/∂y2 is the horizontal Laplacian operator.

The associated boundary conditions are

w = 0, ϑ = 0, at z = 0, 1.

In Section 5.4 we will apply the D2 Chebyshev tau method and the compound matrix

method to compute eigenvalues.



5.3. Nonlinear stability analysis 74

5.3 Nonlinear stability analysis

In this section, nonlinear energy stability analysis is examined to give a threshold in

which the system is stable. To this end, we return to the nonlinear non–dimensional

perturbation equations (5.1.8) with boundary conditions (5.1.10). We multiply equa-

tion (5.1.8)1 by ui and equation (5.1.8)3 by ϑ and integrate each over V to find

a0

2

d

dt
‖u‖2 = − (mijuj, ui) + R (ϑ,w) , (5.3.1)

1

2

d

dt
‖ϑ‖2 = − ‖∇ϑ‖2 + R (ϑ,w) . (5.3.2)

Let λ > 0 be a parameter to be chosen. We form λ(5.3.1) + (5.3.2), and then we

derive an energy identity of form

dE

dt
= RI −D, (5.3.3)

where

E(t) =
1

2
(λa0 ‖u‖2 + ‖ϑ‖2), (5.3.4)

I = (1 + λ) (ϑ,w) , (5.3.5)

D = λ (mijuj, ui) + ‖∇ϑ‖2 . (5.3.6)

Define RE by
1

RE

= max
H

I

D
, (5.3.7)

where H is the space of admissible functions given by

H = {u
i
, ϑ|ui ∈ L2(V ), ϑ ∈ H1(V ), ui,i = 0, ui, ϑ are periodic in x, y}.

From (5.3.3) provided R < RE, one can show

dE

dt
≤ −D

(
RE −R

RE

)
. (5.3.8)

Since mij = diag {ξ, ξ, h(z)}, and ξ > 0, h(z) > h0 > 0, it follows that mij is positive

definite. Hence

(mijuj, ui) ≥ ξ0 ‖u‖2 where ξ0 = min {ξ, h0} ,
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and since by Poincaré inequality on D

D ≥ λξ0 ‖u‖2 + π2 ‖ϑ‖2 ,

it follows that D ≥ µ̂E(t), where µ̂ = min {2π2, 2ξ0/a0}.

Put c = (RE −R)/RE > 0, then from inequality (5.3.8), if R < RE,

dE

dt
≤ −cµ̂E(t),

which implies

E(t) ≤ E(0)e−cµ̂t.

Thus E(t) tends to 0 as t → ∞. Therefore ‖ϑ(t)‖ → 0 and ‖u(t)‖ → 0. Hence

global nonlinear stability of the conduction solution is satisfied provided R < RE.

We now aim to solve the maximisation problem (5.3.7). We do this by deriv-

ing the Euler–Lagrange equations and maximising in the coupling parameter λ to

determine the nonlinear stability threshold RE (see Section (1.4)). The maximum

problem (5.3.7) is
1

RE

= max
H

(1 + λ)(ϑ,w)

λ(mijuj, ui) + ‖∇ϑ‖2 .

It is convenient to put ûi =
√

λui, then the foregoing equation becomes (dropping

the hat)
1

RE

= max
H

g(λ)(ϑ,w)

(mijuj, ui) + ‖∇ϑ‖2 ,

where

g(λ) =
1 + λ√

λ
.

The Euler-Lagrange equations for this maximum are derived by using the calculus

of variations technique as follows.

Let ĥi, η be arbitrary, fixed C2(0, 1) functions which satisfy the boundary con-

ditions ĥi(0) = ĥi(1) = 0, η(0) = η(1) = 0.

We now consider solution of the form u
i
+ εĥi and ϑ+ εη where ε is a constant. The

maximum occurs at ε = 0, so

d

dε

(
I

D

)∣∣∣∣
ε=0

=
1

D

(
dI

dε
− I

D

dD

dε

)∣∣∣∣
ε=0

,

=
1

D

(
dI

dε
− 1

RE

dD

dε

)∣∣∣∣
ε=0

.
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This yields

RE
dI

dε

∣∣∣∣
ε=0

− dD

dε

∣∣∣∣
ε=0

= 0. (5.3.9)

Here we include the constraint ui,i = 0 by way of a Lagrange multiplier 2π(x),

dI

dε

∣∣∣∣
ε=0

=
d

dε

∫

V

(
g(λ)(ϑ + εη)(w + εĥ3)− 2π(ui,i + εĥi,i)

)
dV

∣∣∣∣∣∣
ε=0

,

=

∫

V

(
g(λ)

(
η(w + εĥ3) + ĥ3(ϑ + εη)

)
− 2ĥi,iπ

)
dV

∣∣∣∣∣∣
ε=0

,

and

dD

dε

∣∣∣∣
ε=0

=
d

dε

∫

V

(
mij(uj + εĥj)(ui + εĥi) + (∇(ϑ + εη))2

)
dV

∣∣∣∣∣∣
ε=0

,

=

∫

V

(
mij

(
ĥj(ui + εĥi) + ĥi(uj + εĥj)

)
+ 2 (∇(ϑ + εη)∇η)

)
dV

∣∣∣∣∣∣
ε=0

.

Further, after some integrations by parts and using the boundary conditions, we

have
dI

dε

∣∣∣∣
ε=0

=

∫

V

(
g(λ)

(
ηw + ĥ3ϑ

)
− 2ĥiπ,i

)
dV,

dD

dε

∣∣∣∣
ε=0

=

∫

V

(
2mijujĥj − η∆ϑ

)
dV.

Since ĥi and η were chosen arbitrary functions, hence from equation (5.3.9) we must

have

RE
g(λ)

2
ϑki −mijuj = π,i,

ui,i = 0,

RE
g(λ)

2
w + ∆ϑ = 0.

(5.3.10)

We now wish to investigate the optimal value of λ which maximise RE. For this

one now uses the parametric differentiation method. Thus let g(λ)/2 = ζ, and let

(R1
E, u1

i , ϑ
1, π1) be a solution to the eigenvalue problem arising from equation (5.3.10)

on V for λ = λ1 > 0, and likewise let (R2
E, u2

i , ϑ
2, π2) be a solution for λ = λ2 > 0,

λ1 6= λ2.
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Now multiply equation (5.3.10)1 by u1
i holding for λ = λ2. Likewise, multiply

(5.3.10)1 by u2
i holding for λ = λ1 and then integrate over V to find

R2
Eζ2 (ϑ2, w1)− (

miju
2
j , u

1
i

)
= 0, (5.3.11)

R1
Eζ1 (ϑ1, w2)− (

miju
1
j , u

2
i

)
= 0. (5.3.12)

Similarly, multiply equation (5.3.10)3 by ϑ1 holding for λ = λ2 and by ϑ2 holding

for λ = λ1, after integration over V we have

R2
Eζ2 (w2, ϑ1)− (∇ϑ2,∇ϑ1) = 0, (5.3.13)

R1
Eζ1 (w1, ϑ2)− (∇ϑ1,∇ϑ2) = 0. (5.3.14)

Next, combine (5.3.11) - (5.3.12) + (5.3.13) - (5.3.14) to obtain

(
R2

Eζ2 −R1
Eζ1

) [(
w1, ϑ2

)
+

(
w2, ϑ1

)]
= 0.

Now, we write (R2
Eζ2 −R1

Eζ1) = (R2
Eζ2 −R2

Eζ1) + (R2
Eζ1 −R1

Eζ1), and recall λ1 6=
λ2, divide by λ2 − λ1 6= 0. Thus we have

[
R2

E (ζ2 − ζ1)

λ2 − λ1
+

ζ1 (R2
E −R1

E)

λ2 − λ1

] [(
w1, ϑ2

)
+

(
w2, ϑ1

)]
= 0.

Take the limit λ2 → λ1, this leads to

[
RE

∂ζ

∂λ
+ ζ

∂RE

∂λ

]
(w, ϑ) = 0. (5.3.15)

Here R1
E, ζ1, w1, and ϑ1 are replaced by RE, ζ, w, and ϑ.

Then by multiplying equation (5.3.10)1 by ui and equation (5.3.10)3 by ϑ and

integrating over V . It follows that

ζRE (ϑ,w) = (mijuj, ui) , ζRE (w, ϑ) = ‖∇ϑ‖2 . (5.3.16)

After adding these equations and substituting into the equation (5.3.15) and recall-

ing g(λ) = 2ζ, one may deduce

[
‖∇ϑ‖2 + (mijuj, ui)

gRE

] [
g
∂RE

∂λ
+ RE

∂g

∂λ

]
= 0. (5.3.17)

The maximum value of RE satisfies ∂RE/∂λ = 0 , and so ∂g/∂λ = 0 gives the best

value of λ. Thus the optimal value of λ is λ = 1.
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Upon substituting λ = 1 into equations (5.3.10), we arrive at the eigenvalue

problem

REϑki −mijuj = π,i,

ui,i = 0,

REw + ∆ϑ = 0.

(5.3.18)

These equations (5.3.18) are exactly the same as those of linear instability theory

arising from equations (5.2.1) with σ = 0. Thus, we have an optimum result that the

critical Rayleigh number for global nonlinear stability R2
E is exactly the same as the

critical Rayleigh number of linear theory R2
L. Therefore, no subcritical instabilities

can arise. Indeed this is due to the fact that the operator attached to the linear

theory is symmetric, see Straughan [115], and Falsaperla et al. [36]

The numerical results, which employ the D2 Chebyshev tau method and the

compound matrix method as the eigenvalue solver, confirm that the stationary con-

vection is the dominate mode.

5.4 Numerical methods

In this Section, we seek to solve system (5.3.18), or equivalently system (5.2.1) for

the lowest eigenvalue RE = RL. To do this we take curl curl of equation (5.3.18)1,

this leads to equations (5.2.5) with R = RE and σ = 0 as presented in section 5.2.

Therefore, we consider in turn equations (5.2.5) for R.

Assuming a normal mode with the representations for w, and ϑ of the form

ϑ = Θ(z)f(x, y), w = W (z)f(x, y),

where f satisfied ∆∗ f = −a2f , a is being the wave number. Hence, equation (5.2.5)

can be written as
(

D2 − h(z)

ξ
a2

)
W +

R

ξ
a2Θ = − σ(D2 − a2)W,

(D2 − a2)Θ + RW = σΘ,

(5.4.1)

where D = d/dz. In the numerical program we actually take σ = 0. This system is
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solved numerically subject to the boundary conditions

W = Θ = 0, at z = 0, 1 (5.4.2)

5.4.1 The D2 Chebyshev tau method

In this section, we present D2 Chebyshev tau method to solve system (5.4.1)-(5.4.2)

for the eigenvalue σ with R given, cf. Dongarra et al. [31]. To this end, we begin by

resetting the domain from (0, 1) to (−1, 1), selecting ẑ = 2z − 1.

By introducing the function χ in such way that χ = (4D2 − a2)W , we may alterna-

tively write equations (5.4.1) in the form (omitting the hat)

(4D2 − a2)W − χ = 0,

(4D2 − a2)Θ + RW = σΘ,

χ +

(
a2 − H(z)

ξ
a2

)
W +

R

ξ
a2Θ = −σχ,

(5.4.3)

where H(z) = h((z + 1)/2) and now z ∈ (−1, 1).

Next, we write W , Θ, χ in the form of a series of Chebyshev polynomials,

truncating each sum, we have

W (z) =
N∑

n=0

WnTn(z), χ(z) =
N∑

n=0

χnTn(z), Θ(z) =
N∑

n=0

ΘnTn(z).

Recalling the boundary conditions (5.4.2), where the relation Tn(±1) = (±1)n is

used, then

BC1 : W0 + W2 + W4 + · · ·+ WN−1 = 0,

BC2 : W1 + W3 + W5 + · · ·+ WN = 0,

BC3 : Θ0 + Θ2 + Θ4 + · · ·ΘN−1 = 0,

BC6 : Θ1 + Θ3 + Θ5 + · · ·ΘN = 0.

In this way we find the D2 Chebyshev tau method requires solution of the (N +1)×
(N + 1) matrix equation

Ax = σBx, (5.4.4)
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where x = (W0, · · · ,WN , Θ0, · · · , ΘN , · · · , χ0, · · · , χN), and A and B are given by

A =




4D2 − a2I 0 −I

BC1 0 · · · 0 0 · · · 0
BC2 0 · · · 0 0 · · · 0
RI 4D2 − a2I 0

0 · · · 0 BC3 0 · · · 0
0 · · · 0 BC4 0 · · · 0

(I − H(z)

ξ
)a2 R

ξ
a2I I




,

B =




0 0 0

0 · · · 0 0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0 0 · · · 0

0 I 0

0 · · · 0 0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0 0 · · · 0

0 0 −I




.

The eigenvalues of the generalised eigenvalue problem (5.4.4) are found efficiently

using the QZ algorithm.

5.4.2 The compound matrix method

To solve equations (5.4.1) with σ = 0 by the compound matrix method, cf. Straughan

[112], we let U(z) = (W,W ′, Θ, Θ′)T , and then suppose U1(z) and U2(z) are inde-

pendent solutions of (5.4.1) with values at z = 0 of U1(0) = (0, 1, 0, 0)T , and

U2(0) = (0, 0, 0, 1)T . The two initial value problems thereby obtained are then inte-

grated numerically between 0 and 1, and the solution found by writing it as a linear

combination of the two solution so obtained, say U(z) = αU1 + βU2. Then the

correct boundary conditions W = Θ = 0 at z = 1 are imposed which require

det


 W1 W2

Θ1 Θ2


 = 0.
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The variables y1, · · · , y6 are formed from 2× 2 minors of the 4× 2 solution matrix

whose columns are U1(z) and U2(z). Thus

y1 = W1W
′
2 −W2W

′
1, y2 = W1Θ2 −W2Θ1,

y3 = W1Θ
′
2 −W2Θ

′
1, y4 = W ′

1Θ2 −W ′
2Θ1,

y5 = W ′
1Θ

′
2 −W ′

2Θ
′
1, y6 = Θ1Θ

′
2 −Θ2Θ

′
1.

Differentiation the variables y1, . . . , y6 and using equations (5.4.1) with σ = 0, we

arrive at the differential equations for the compound matrix variables

y′1 = −R

ξ
a2y2, y′2 = y3 + y4,

y′3 = a2y2 + y5, y′4 =
a2

ξ
h(z)y2 + y5,

y′5 = Ry1 +
a2

ξ
h(z)y3 + a2y4 − R

ξ
a2y6,

y′6 = Ry2.

This system was integrated numerically subject to the initial conditions y5(0) = 1,

and the final condition y2(1) = 0. The eigenvalue R was varied until these conditions

were satisfied to some predefined accuracy. Keeping a2 > 0 fixed, a golden section

search was employed to numerically find

Ra = min
a2

R2(a2). (5.4.5)

The numerical results are explained in detail in the next section.

5.5 Numerical results and discussion

As stated in section 5.4, the eigenvalue problem has been solved by using the com-

pound matrix method and D2 Chebyshev tau method. The two sets of results

concur perfectly. To achieve the precision used in the tables, we have chosen to

display the results obtained via D2 Chebyshev tau method. In the present analysis,

Tables 5.1 and 5.2 display the numerical results for critical Rayleigh number Ra and

wave number ac, respectively, with the functions h(z) = 1− qz, and h(z) = eqz, for

varying value of ξ, and q = 0, 0.2, 0.5. We also include two Figures representing the
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critical Rayleigh numbers Ra against the quantity of q, for ξ = 0.25 increasing to

ξ = 1.5.

The results shown in Tables 5.1 and 5.2 demonstrate that, for a fixed value of

q, the the critical Rayleigh numbers Ra increases with increasing the anisotropy

parameter ξ. This means the system becomes more stable as ξ increases. It is also

observed that the anisotropy parameter leads to some very interesting behaviour,

in that as ξ increases the wave number becomes considerably larger, which leads to

cells becoming narrower.

Table 5.1: Critical values of Rayleigh number Ra, and wave number ac vs. ξ, with

h(z) = 1− qz, for q = 0, 0.2, 0.5.

q = 0 q = 0.2 q = 0.5

ξ ac Ra ac Ra ac Ra

0.25 2.221 22.207 2.281 20.713 2.387 18.417

0.5 2.642 28.762 2.712 27.059 2.839 24.425

0.75 2.924 34.366 3.002 32.502 3.142 29.609

1.0 3.14 39.478 3.230 37.479 3.38 34.367

1.25 3.322 44.276 3.41 42.156 3.576 38.852

1.5 3.477 48.850 3.57 46.621 3.736 43.143

It is expected that when ξ = 1, q = 0, and then ac = π2, Ra = 4π2, which is

the Darcy result cf. Straughan [115]. We may also consider different values of q as

shown in Figures 5.1 and 5.2.

In Figure 5.1, it is evident that for h(z) = 1 − qz, the effects of increasing

q destabilize the system. This indicates that the thermal convection occurs more

easily. However, it appears that, for large values of the anisotropy parameter ξ the

system becomes more stable when q is smaller. The opposite behaviour is seen when

h(z) = eqz as shown in Figure 5.2.
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Figure 5.1: Critical Rayleigh number Ra as function of q, with h(z) = 1 − qz. For

ξ = 0.25 increasing to ξ = 1.5.
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Figure 5.2: Critical Rayleigh number Ra as function of q, with h(z) = ez. For

ξ = 0.25 increasing to ξ = 1.5.
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Table 5.2: Critical values of Rayleigh number Ra, and wave number ac vs. ξ, with

f(z) = eqz, for q = 0, 0.2, 0.5.

q = 0 q = 0.2 q = 0.5

ξ ac Ra ac Ra ac Ra

0.25 2.221 22.207 2.167 23.753 2.091 26.334

0.5 2.642 28.762 2.577 30.520 2.485 33.451

0.75 2.924 34.366 2.852 36.287 2.749 39.484

1.0 3.14 39.478 3.064 41.536 2.953 44.956

1.25 3.322 44.276 3.240 46.453 3.122 50.071

1.5 3.477 48.850 3.391 51.136 3.267 54.931



Chapter 6

Thermal convection in a rotating

anisotropic fluid saturated Darcy

porous medium

Having already studied the effect of permeability anisotropy on the onset of convec-

tion in a Darcy porous medium incorporating fluid inertia as presented in Chapter 5

we are now going to estimate what could be the result when we take into account

the rotation of a layer of saturated porous medium about an axis orthogonal to the

planes bounding the layer.

Thermal convection in a rotating porous medium is an active topic of research

since it has many applications including geophysics, chemical engineering, and food

processing, see e.g. Vadasz [129], Nield and Bejan [84], and references therein. In-

deed, thermal convection involving the rotating of the layer of saturated porous

medium is a subject receiving attention and being studied extensively by many re-

searchers. For instance, Vadasz [128–131]. In particular, he investigated the effect

of the coriolis force on thermal convection when the Darcy model is extended in-

cluding the time-derivative term in the momentum equation [131]. A comprehensive

review of thermal convection in a rotating porous medium are given by Vadasz [132].

Vadasz and Govender [133] also considered the influence of gravity and centrifugal

forces on the onset of convection in a rotating porous layer. Straughan [114] pre-

sented an analysis of the nonlinear stability problem for convection in a rotating

85
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porous medium. He showed that the global nonlinear stability boundary is exactly

the same as the linear instability when the inertia is absent.

It is important to note that the above mentioned studies assumed that the fluid

saturated body is an isotropic porous medium. However, the effect of anisotropy

combined with the rotation effect on thermal instability has been the contribution

of Alex and Patil [2], who investigated thermal instability subject to the centrifugal

acceleration and the anisotropy effect as in the case of both Darcy and Brinkman

rotating porous media. Govender [40], considered the Vadasz paper 1994, but in-

cluded the anisotropy effects for both permeability and thermal diffusivity. Later,

Malashetty and Swamy [70], also performed linear instability and weakly nonlinear

theory to investigate the anisotropy effects on the onset of convection in a rotating

porous medium. They found that by increasing an anisotropy parameter for both

permeability and thermal diffusivity leads to advance oscillatory convection. The

same authors, in [71] employed the linear instability to investigate the effect both of

the thermal modulation and the rotation on the onset of the stationary convection

boundary. Govender and Vadasz [41] also deal with the effect that thermal diffusiv-

ity and permeability anisotropy have on the thermal convection in a rotating porous

medium with a thermal non-equilibrium model.

Recently, Vanishree and Siddheshwar [137] performed linear instability for an

anisotropic porous medium with a temperature dependent viscosity. They found

that the onset of convection in a rotating porous medium is qualitatively similar

to that in a non-rotating one. Additionally, the linear instability and nonlinear

stability in an anisotropic porous medium were analysed by Kumar and Bhadauria

[60] who considered a viscoelastic fluid in a rotating anisotropic porous medium,

Saravanan and Brindha [100] deal with the onset of centrifugal convection in the

Brinkman model, and Gaikwad and Begum [39] considered the onset of double-

diffusive reaction convection in an anisotropic porous medium.

In this Chapter we consider the system of equations which is essentially the

same as that given in Vadasz [131], but we allow for the symmetric permeability

tensor to be anisotropic. In particular, we consider the permeability as discussed in

chapter 5 where it varies in the vertical direction, but now we consider the vertical



6.1. Governing equations 87

direction with constant permeability rather than variable permeability. The goal of

this chapter is to investigate the effect of anisotropy with rotation on the stability

thresholds using linear instability and nonlinear stability methods. Here we will

ignore the inertia term in the momentum equation. More precisely, when the values

of Vadasz number tend to be large [131]. We show that the critical Rayleigh number

of the linear theory is the same as the critical Rayleigh number of the nonlinear

theory. We observe that energy methods are very much in vogue in the current

hydrodynamical stability literature, cf. Capone and Rionero [13], Hill and Carr

[52, 53], Capone et al. [10, 11], and Capone and De Luca [12]. The next chapter

investigate including the inertia term in detail.

6.1 Governing equations

As in Chapter 5 we consider a layer of porous media heated from below and bounded

by two horizontal planes z = 0 and z = d, with gravity acting in the vertical direction

of z-axis. We assume an incompressible Newtonian fluid is contained the layer and

occupies the spatial domain {(x, y) ∈ R2} × {z ∈ (0, d)}. Further, we suppose that

the layer rotates about z-axis.

The governing equations incorporating fluid inertia for thermal convection in an

anisotropic rotating porous media of Darcy type may be written as, cf. Malashetty,

and Swamy [70],

a0vj,t = − p,j − µMijvi + gρ0αTkj − 2

ϕ
(Ω× v)j (6.1.1)

vi,i = 0, (6.1.2)

T,t + viT,i = κ∆T, (6.1.3)

Here v, t, p, T are velocity field, time, pressure, and temperature respectively, and µ,

κ, g, α, ρ0, ϕ are dynamic viscosity, thermal diffusivity, gravity, thermal expansion

coefficient of the fluid, constant density coefficient, and porosity respectively, and Ω

is the angular velocity vector with k = (0, 0, 1), a0 = â/ϕ is an inertia coefficient, â

is constant and ϕ is porosity.
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The permeability tensor is assumed to be of the form

Mij = diag {1/kx, 1/kx, 1/kz} ,

where kx, kz is a constant. The boundary conditions for the problem are

n · v = 0 , at z = 0, d ,

T = TL, z = 0; T = TU , z = d,
(6.1.4)

where TL, TU are constants with TL > TU , and n is the unit outward normal to the

boundary, so n = (0, 0, 1) at z = d and n = (0, 0,−1) at z = 0.

Again, when no motion occurs and the temperature gradient is constant through-

out the layer, the basic steady state solution (v̄, p̄, T̄ ) of the system has the same

solution as in Chapter 5. This is given by

v̄i ≡ 0, T̄ = −βz + TL,

p̄ = p0 − gρ0z − 1

2
αβgρ0z

2,
(6.1.5)

with p0 is the pressure at the surface z = 0, β = (TL − TU)/d .

Letting vi = v̄i + ui, T = T̄ + ϑ, p = p̄ + π, the nonlinear perturbation equations

arising from equations (6.1.1)-(6.1.3), are

a0uj,t = − π,j − µMijui + kjgρ0αϑ− 2

ϕ
(Ω× u)j,

ui,i = 0,

ϑ,t + uiϑ,i = βw + κ∆ϑ,

(6.1.6)

where w = u3.

The perturbation equations are non-dimensionalised with the non-dimensionalisation

scalings as follows

xi = dx∗i , ui = Uu∗i , t = T t∗, π = Pπ∗, ϑ = T#ϑ∗,

U =
κ

d
, T =

d2

κ
, P =

dµU

kx

, T# = U

√
d2βµ

κρ0gαkx

,
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Va =
ϕPr

âDa
, R =

√
d2ρ0gαβkx

µκ
, T̃ =

2Ωkx

µϕ
,

where Ra = R2 is the Rayleigh number, Ta = T̃ 2 is the Taylor number, V a is the

Vadasz number, and Pr is the Prandtl number, with Da = kx/d
2 being the Darcy

number.

Omitting all stars, the nonlinear non-dimensional perturbation equations are

1

Va

ui,t = − π,i + Rkiϑ− T̃ (k× u)i −mijuj,

ui,i = 0,

ϑ,t + uiϑ,i = Rw + ∆ϑ.

(6.1.7)

Here mij = diag {1, 1, ξ}, where ξ = kx/kz is the anisotropy parameter.

The corresponding boundary conditions are

niui = ϑ = 0 , at z = 0, 1, (6.1.8)

with {ui, ϑ, π} satisfying a plane tiling periodicity in (x, y).

6.2 The principle of exchange of stabilities ignor-

ing inertia term

As stated in the Vadasz paper [131] the values of Vadasz for many porous media

applications in a real life are large. To this end, we let V a → ∞ in the equation

(6.1.7) to be

− π,i + Rkiϑ− T̃ (k× u)i −mijuj = 0,

ui,i = 0,

ϑ,t + uiϑ,i = Rw + ∆ϑ.

(6.2.1)

We now take curl of equation (6.2.1)1 and curl curl of the same equation to find

R(ϑ,yδi1 − ϑ,xδi2) + T̃
∂ui

∂z
− εijkmkquq,j = 0, (6.2.2)

and

mir∆ur −mjrur,ji + T̃
∂ωi

∂z
= R(ki ∆

∗ ϑ− ϑ,xzδi1 − ϑ,yzδi2), (6.2.3)
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where ∆∗ = ∂2/∂x2 + ∂2/∂y2 is the horizontal Laplacian operator, and ωi is the

vorticity.

Upon taking the third component of the foregoing equations, we obtain

m3r∆ur −mjrur,j3 + T̃ ω3,z = R ∆
∗ ϑ,

T̃w,z − ε3jkmkquq,j = 0,

ϑ,t + wϑ,z = Rw + ∆ϑ.

(6.2.4)

We now consider the linearised equations of (6.2.4) by removing the nonlinear term

of equation (6.2.4)3, and therefore we seek for solutions of the form

u (x, t) = u (x) eσt, ϑ (x, t) = ϑ (x) eσt.

By substituting into equations (6.2.4) and removal of exponential parts, we have to

solve the system

m3r∆ur −mjrur,j3 + T̃ ω3,z = R ∆
∗ ϑ,

T̃w,z − ε3jkmkquq,j = 0,

σϑ = Rw + ∆ϑ.

(6.2.5)

The corresponding boundary conditions are

w = ϑ = 0 , at z = 0, 1. (6.2.6)

In order to show that σ ∈ R, and so the principle of exchange of stabilities holds,

we consider a three dimensional period cell V for solution to equation (6.2.5) and

assume momentarily that σ, ui, and ϑ are complex. Then multiply equation (6.2.5)1

by w∗ (the complex conjugate of w) and integrate over V to obtain
∫

V

(m3r∆ur −mjrur,j3)w
∗dV +

∫

V

T̃ ω3,zw
∗dV =

∫

V

R ∆
∗ ϑw∗dV, (6.2.7)

since mij = diag {1, 1, ξ}, so one may rewrite the first term in (6.2.7) as shown below

m3r∆ur −mjrur,j3 = m33∆u3 −m11u1,13 −m22u2,23 −m33u3,33

= ξ(u3,11 + u3,22 + u3,33)− u1,13 − u2,23 − ξu3,33

= ξ(u3,11 + u3,22)− (u1,1 + u2,2),3 .

Recalling u1,1 + u2,2 = −u3,3, we have

m3r∆ur −mjrur,j3 = ξ ∆
∗ w + w,zz. (6.2.8)
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Making use of equation (6.2.5)2

T̃w,z = ε3jkmkquq,j

= ε321m11u1,2 + ε312m22u2,1 (6.2.9)

= −u,y + v,x.

Furthermore, we now make use of vorticity equation

ωi = ∇× ui = εijkuk,j ≡ (w,y − v,z, u,z − w,x, v,x − u,y) , (6.2.10)

and so

ω3 = v,x − u,y. (6.2.11)

Then we form the combination of equation (6.2.9) and equation (6.2.11) to find

ω3 = T̃w,z. (6.2.12)

After differentiating equation (6.2.12) with respect to z and expressing w,zz = ∆w−
∆∗ w, we employ the results and equation (6.2.8) into equation (6.2.7) to obtain

∫

V

(
1 + T̃ 2

)
∆ww∗dV −

∫

V

(
1− ξ + T̃ 2

)
∆
∗ ww∗dV =

∫

V

R ∆
∗ ϑw∗dV,

and hence we arrive at

−
(
1 + T̃ 2

)
‖∇w‖2 +

(
1− ξ + T̃ 2

)
‖∇∗ w‖2 = −R(∇∗ w,∇∗ ϑ), (6.2.13)

where ∇∗ ≡ (∂/∂x, ∂/∂y, 0), (., .) and ‖.‖ denote the inner product and norm on

the complex Hilbert space L2(V ).

By applying the horizontal Laplacian operator ∆∗ to equation (6.2.5)3, multi-

plying by ϑ∗ (the complex conjugate of ϑ)and again integrating, we find

σ ‖∇∗ ϑ‖2 = R(∇∗ w,∇∗ ϑ) + ‖∇∗∇ϑ‖2 . (6.2.14)

Next, addition of equations (6.2.13) and (6.2.14). It follows that

σ ‖∇∗ ϑ‖2 =
(
1 + T̃ 2

)
‖∇w‖2 −

(
1− ξ + T̃ 2

)
‖∇∗ w‖2 + ‖∇∗∇ϑ‖2 . (6.2.15)
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Since σ = σr + iσi, equating the imaginary part of equation (6.2.15) yields

σi ‖∇∗ ϑ‖2 = 0.

Thus, σi = 0 and so σ ∈ R which implies that the linearized equations (6.2.5)

satisfy the strong principle of exchange of stabilities. As such the instability set in

as stationary convection.

6.3 Linear instability analysis

In this section, we seek to find the critical Rayleigh number of linear theory follows

the work of Chandrasekhar [19]. To this end, we set σ = 0 into equation (6.2.5).

We further employ equation (6.2.8), and the governing system can be reduced to

ξ ∆
∗ w + w,zz + T̃ ω3,z = R ∆

∗ ϑ,

ω3,z − T̃w,zz = 0,

Rw + ∆ϑ = 0,

(6.3.1)

where differentiating equation (6.2.12) with respect to z has been employed.

We now eliminate ω3,z from equations (6.3.1)1 and (6.3.1)2, therefore system

(6.3.1) can be written as follows

ξ ∆
∗ w +

(
1 + T̃ 2

)
w,zz = R ∆

∗ ϑ,

Rw + ∆ϑ = 0.
(6.3.2)

To proceed we assume a normal mode representation for w, and ϑ of the form

w = W (z)f(x, y), ϑ = Θ(z)f(x, y),

where f(x, y) is the horizontal planform which satisfies ∆∗ f = −a2f , a being a wave

number. With D = d/dz, we arrive at the following system

(
(1 + T̃ 2)D2 − ξa2

)
W = − a2RΘ,

(
D2 − a2

)
Θ = −RW.

(6.3.3)
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The corresponding boundary conditions are

W = Θ = 0, at z = 0, 1. (6.3.4)

The variable Θ is eliminated from equation (6.3.3) to yield the fourth order differ-

ential equation

[
(1 + T̃ 2)(D2 − a2)D2 − ξa2(D2 − a2)

]
W = a2R2W. (6.3.5)

In view of the boundary conditions (6.3.4) and from equation (6.3.3), one obtains

D2W = 0, at z = 0, 1.

Applying these boundary conditions to equation (6.3.5), it turns out that

D4W = 0, at z = 0, 1. (6.3.6)

Further differentiation of equation (6.3.5) yields

D(2n)W = 0, at z = 0, 1, for n = 0, 1, 2, ...

Thus, we may select W = sin nπz, for n ∈ N. Upon substituting in equation (6.3.5),

we have [
(1 + T̃ 2)(n2π2 + a2)n2π2 + ξa2(n2π2 + a2)

]
= a2R2,

which leads to

R2
L =

(
1 + T̃ 2

)
π2n2Λn

a2
+ ξΛn,

(6.3.7)

where Λn = n2π2 + a2. Minimizing over n yields n = 1. Then differentiating R2

with respect to a2 yields the stationary convection boundary

R2
L(sc) = π2

(√
ξ +

√
1 + T̃ 2

)2

, (6.3.8)

and the corresponding critical wave number ac is given by

a2
L(c) = π2

√
1 + T̃ 2

ξ
. (6.3.9)

It is worth observing that as T̃ 2 = 0, and ξ = 1, we recover the result for Darcy

porous problem [115]

a2
L(c) = π2 , R2

L(sc) = 4π2.
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6.4 Nonlinear stability analysis

In this section, we commence deriving further boundary conditions which will be

used to continue with the nonlinear stability analysis. To obtain these we observe

from equation (6.2.2) and equation (6.2.10),

ω1 = (1− ξ) w,y + T̃ u,z + Rϑ,y, ω2 = (ξ − 1) w,x + T̃ v,z −Rϑ,x. (6.4.1)

One may then deduce from the boundary conditions (6.2.6),

ω1 = T̃ u,z, , ω2 = T̃ v,z, z = 0, 1. (6.4.2)

In addition, from equation (6.2.10),we also find at the boundaries

ω1 = − v,z, ω2 = u,z, z = 0, 1. (6.4.3)

One may then deduce from equations (6.4.2) and (6.4.3),

u,z = v,z = 0, at z = 0, 1, (6.4.4)

and hence

ω1 = ω2 = 0, at z = 0, 1, (6.4.5)

and again we find from equation (6.2.10) and equation (6.2.12) that

T̃w,zz = v,xz − u,yz. (6.4.6)

It follows from (6.4.4) that

w,zz = 0, at z = 0, 1. (6.4.7)

Since w ≡ ϑ ≡ 0 at z = 0, 1, we obtain from equation (6.2.5)3

ϑ,zz = 0, at z = 0, 1. (6.4.8)

Then differentiating equation (6.2.1)3 an even numbers of times with respect to z,

we find

ϑ
(2n)
,t +

2n∑
s=0

(
2n

s

)
u

(s)
i ϑ

(2n−s)
,i = Rw(2n) + ∆ϑ(2n),
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where we have used the General Leibniz Rule.

Further, we may rewrite the foregoing equation as shown below,

ϑ
(2n)
,t +

2n∑
s=0

(
2n

s

) [
u(s)ϑ(2n−s)

,x + v(s)ϑ(2n−s)
,y + w(s)ϑ(2n−s+1)

]
= Rw(2n)+∆

∗ ϑ(2n)+ϑ(2n+2).

Now, setting n = 1, we have

ϑ
(2)
,t +

2∑
s=0

(
2

s

) [
u(s)ϑ(2−s)

,x + v(s)ϑ(2−s)
,y + w(s)ϑ(3−s)

]
= Rw(2) + ∆

∗ ϑ(2) + ϑ(4).

(6.4.9)

Thus, employing (6.2.6), (6.4.4), (6.4.7), and (6.4.8) yields

ϑ(4) = 0, at z = 0, 1. (6.4.10)

We next differentiate equation (6.4.1), an even numbers of times with respect to z,

to find

ω1,zz = T̃ u,zzz, ω2,zz = T̃ v,zzz, at z = 0, 1. (6.4.11)

In addition, we also differentiate equation (6.4.3), an even number of times with

respect to z, we have

ω1,zz = − v,zzz, ω2,zz = u,zzz, at z = 0, 1. (6.4.12)

Therefore, from (6.4.11) and (6.4.12), we obtain

u,zzz = 0, v,zzz = 0, at z = 0, 1. (6.4.13)

By further differentiation of (6.4.6), an even number of times with respect to z, we

find

w(4) = 0 at z = 0, 1. (6.4.14)

The above process may be repeated to derive the general boundary conditions

w(2n) = 0, ϑ(2n) = 0, at z = 0, 1, for n ∈ N, (6.4.15)

which hold for the solution of the nonlinear problem.

We aim now to study nonlinear energy stability and find a stability threshold.

Again, we let V be a period cell for a disturbance to (6.2.1), and let ‖.‖ and (., .)
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be the norm and inner product on L2(V ). The energy identities are derived by

multiplying the vertical component of equation (6.2.3) by w, upon use of (6.2.8)

and (6.2.12) with i = 3, and also use some integrations by parts, with the aid of

boundary conditions one may show

ξ ‖∇∗ w‖2 +
(
1 + T̃ 2

)
‖w,z‖2 = R (∇∗ ϑ,∇∗ w) . (6.4.16)

Next, multiply (6.2.1)3 by ϑ and integrate over V to find

1

2

d

dt
‖ϑ‖2 = R (w, ϑ)− ‖∇ϑ‖2 . (6.4.17)

By adding λ (6.4.16) to (6.4.17), for λ > 0 a parameter to be chosen, thus we may

derive an energy identity of form

dE

dt
= RI −D, (6.4.18)

where

E(t) =
1

2
‖ϑ‖2 , (6.4.19)

I = (w, ϑ) + λ (∇∗ ϑ,∇∗ w) , (6.4.20)

D = ‖∇ϑ‖2 + λ
(
ξ ‖∇∗ w‖2 +

(
1 + T̃ 2

)
‖w,z‖2

)
. (6.4.21)

Define RE by
1

RE

= max
H

I

D
, (6.4.22)

where H is the space of admissible functions given by

H = {u
i
, ϑ|ui ∈ L2(V ), ϑ ∈ H1(V ), ui,i = 0, ui, ϑ are periodic in x, y}.

Therefore, from equation (6.4.18) we deduce

dE

dt
≤ −D

(
RE −R

RE

)
. (6.4.23)

Then, from the Poincaré’s inequality on D we have

D ≥ π2 ‖ϑ‖2 .
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Provided R < RE, put c = 1−R/RE > 0 and then from (6.4.23) we have

dE

dt
≤ −2π2cE(t).

This yields

E(t) ≤ E(0)e−2π2ct.

Thus E(t) tends to 0 as t → ∞ at least exponentially. Therefore ‖ϑ(t)‖ → 0 at

least exponentially.

To obtain decay of u, we multiply equation (6.2.1) by ui and integrate over V

to obtain

(mijuj, ui) = R (ϑ,w) . (6.4.24)

We may observe that

(mijuj, ui) ≥ µ̂ ‖u‖2 ,

where

µ̂ = min {1, ξ} .

From (6.4.24) it now follows that

µ̂ ‖u‖2 ≤ R (ϑ,w) ,

and then with use of the arithmetic geometric mean inequality, one shows

µ̂ ‖u‖2 ≤ R

2α̂
‖ϑ‖2 +

Rα̂

2
‖w‖2

≤ R

2α̂
‖ϑ‖2 +

Rα̂

2
‖u‖2 ,

for α̂ > 0 to be chosen.

If we now pick α̂ = µ̂/R, then we show

0 < ‖u‖2 ≤ R2

µ̂2
‖ϑ‖2 ,

which implies ‖u‖2 must also decay at least exponentially. Hence, the global non-

linear stability criterion is determined by (6.4.22).

To determine RE we have to derive the Euler-Lagrange equations and maximising

in the coupling parameter λ. To do this we must find the stationary point of I/D, we

use the calculus of variations technique (see Section (1.4)). From a similar procedure
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to that leading to (1.4.10), the Euler-Lagrange equations arising from (6.4.22) are

determined from

REδI − δD = 0. (6.4.25)

For all hi ∈ H, and η ∈ H. We have that

δD =
d

dε

∫

V

[
(∇ (ϑ + ηε))2 + λξ (∇∗ (w + h3ε))

2 + λ
(
1 + T̃ 2

)
(w,z + h3,zε)

2
]
dV

∣∣∣∣∣∣
ε=0

,

=

∫

V

[
2∇ (ϑ + ηε)∇η + 2λξ∇∗ (w + h3ε)∇∗ h3 + 2λ

(
1 + T̃ 2

)
(w,z + h3,zε) h3,z

]
dV

∣∣∣∣∣∣
ε=0

,

and

δI =
d

dε

∫

V

[(w + εh3) (ϑ + εη) + λ∇∗ (ϑ + ηε)∇∗ (w + h3ε)− (ui,i + εhi,i) π(x)] dV

∣∣∣∣∣∣
ε=0

,

=

∫

V

[(w + εh3) η + h3 (ϑ + εη) + λ∇∗ (ϑ + ηε)∇∗ h3 +∇∗ (w + h3ε)∇∗ η − hi,iπ(x)] dV

∣∣∣∣∣∣
ε=0

,

where we have included the constraint ui,i = 0 by way of a Lagrange multiplier

2π(x), and ε is a positive constant.

Further, after some integrations by parts and using the boundary conditions we

find that

δD =

∫

V

[
−2η∆ϑ + 2λh3

(
−ξ ∆

∗ w −
(
1 + T̃ 2

)
w,zz

)]
dV,

δI =

∫

V

[η (w − λ ∆
∗ w) + hi (δi3 (ϑ− λ ∆

∗ ϑ)− π,i)]dV.

Since hi and η were chosen arbitrary functions, hence from equation (6.4.25) we

obtain the Euler-Lagrange equations

REki (ϑ− λ ∆∗ ϑ) + 2λki

(
ξ ∆∗ w +

(
1 + T̃ 2

)
w,zz

)
= π,i, (6.4.26)

RE (w − λ ∆∗ w) + 2∆ϑ = 0, (6.4.27)

where π(x) is a Lagrange multiplier. We now eliminate π by performing taking curl

curl of equation (6.4.26)1, and then consider the third component of the resulting
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equation. To do this, we look at each terms of (6.4.26)1 and simplify as follows,

for the first term let Â = ki (1− λ ∆∗) ϑ, then we have

curl(Â)i = εijkÂk,j

= εijk (δk3 (1− λ ∆
∗) ϑ,j)

= εij3 (1− λ ∆
∗) ϑ,j

= δi1 (1− λ ∆
∗) ϑ,y − δi2 (1− λ ∆

∗) ϑ,x,

and

curlcurl(Â)i = curl [δi1 (1− λ ∆
∗) ϑ,y − δi2 (1− λ ∆

∗) ϑ,x]i

= εijk [(1− λ ∆
∗) (δk1ϑ,y − δk2ϑ,x)],j

= (1− λ ∆
∗) (εij1ϑ,yj − εij2ϑ,xj)

= (1− λ ∆
∗) (δi2ϑ,yz − δi1ϑ,xz − δi3 ∆

∗ ϑ) . (6.4.28)

For the second term we put B̂ = ki

(
ξ ∆∗ w +

(
1 + T̃ 2

)
w,zz

)
to find

curl(B̂)i = εijkB̂k,j

= εijk

(
δk3

(
ξ ∆

∗ w +
(
1 + T̃ 2

)
w,zz

)
,j

)

= εij3

(
ξ ∆

∗ w,j +
(
1 + T̃ 2

)
w,zzj

)

= δi1

(
ξ ∆

∗ w,y +
(
1 + T̃ 2

)
w,zzy

)
− δi2

(
ξ ∆

∗ w,x +
(
1 + T̃ 2

)
w,zzx

)
,

and

curlcurl(B̂)i =

εijkδk1

(
ξ ∆

∗ w,y +
(
1 + T̃ 2

)
w,zzy

)
,j
− εijkδk2

(
ξ ∆

∗ w,x +
(
1 + T̃ 2

)
w,zzx

)
,j

= εij1

(
ξ ∆

∗ w,yj +
(
1 + T̃ 2

)
w,zzyj

)
− εij2

(
ξ ∆

∗ w,xj +
(
1 + T̃ 2

)
w,zzxj

)

= δi1

(
ξ ∆

∗ w,xz +
(
1 + T̃ 2

)
w,zzzx

)
+ δi2

(
ξ ∆

∗ w,yz +
(
1 + T̃ 2

)
w,zzzy

)

− δi3 ∆
∗
(
ξ ∆

∗ w +
(
1 + T̃ 2

)
w,zz

)
.

(6.4.29)

Now, taking i = 3 in (6.4.28) and (6.4.29), we arrive at

RE (λ ∆∗−1) ∆∗ ϑ− 2λ ∆∗
(
ξ ∆∗ w +

(
1 + T̃ 2

)
w,zz

)
= 0, (6.4.30)

RE (w − λ ∆∗ w) + 2∆ϑ = 0. (6.4.31)
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We again use a normal mode representation, as for the linear stability analysis,

ϑ = Θ(z)f(x, y), w = W (z)f(x, y). This leave us to solve the eigenvalue problem

RE

(
1 + λa2

)
Θ + 2λ

[(
1 + T̃ 2

)
D2 − ξa2

]
W = 0

RE

(
1 + λa2

)
W + 2

(
D2 − a2

)
Θ = 0.

(6.4.32)

This system would have to be solved for RE subject to the boundary conditions

(6.3.4). Further, we observe that W and Θ satisfy the boundary conditions

W (2n) = 0, Θ(2n) = 0, at z = 0, 1, for n ∈ N. (6.4.33)

By eliminating Θ we obtain a forth order equation in W ,

4λ
(
1 + T̃ 2

) (
D2 − a2

)
D2W − 4λξa2

(
D2 − a2

)
W = R2

E

(
1 + λa2

)2
W. (6.4.34)

Hence, W (z) may be written in the form

W = sin nπz, n = 1, 2, · · · .

After some calculations, following the method in section 6.3, one may find

R2
E = 4λ

π2n2
(
1 + T̃ 2

)
(π2n2 + a2) + ξa2 (π2n2 + a2)

(1 + λa2)2 . (6.4.35)

For any fixed wave number a2 the minimum with respect to n2 of R2
E (a2, n2) is

obtained for n = 1. Then

R2
E = 4λ

π2
(
1 + T̃ 2

)
(π2 + a2) + ξa2 (π2 + a2)

(1 + λa2)2 . (6.4.36)

Let us now select λ = 1/a2, and then

R2
E =

π2 (π2 + a2)
(
1 + T̃ 2

)

a2
+ ξ

(
π2 + a2

)
.

(6.4.37)

This is exactly the same equation (6.3.7) for linear instability problem. This is, in

a sense, the best possible threshold for the onset of linear unconditional stability.

Thus, the minimum of R2
E with respect to a2 is identical to the minimum of R2

L with

respect to a2, and hence no subcritical instabilities can arise. Although this result

is undoubtedly due to the fact that the operator attached to the linear theory is

symmetric in this case, cf. Straughan [115], and Falsaperla et al. [36].
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6.5 Numerical results

The aim of this Chapter was to investigate how the inclusion of the Taylor number

T̃ 2 effects the thermal instability threshold in an anisotropic porous medium. The

results of different values of the anisotropy parameter ξ and the Taylor number T̃ 2

are presented in Tables 6.1 and 6.2, and are presented graphically in Figures 6.1 and

6.2.

Table 6.1 and Figure 6.1 present the values of R2
L(sc) = Rc, the critical Rayleigh

number for both the onset of linear instability and for the nonlinear stability. This

shows that the effect of increasing the Taylor number T̃ 2 always results in an increase

in the critical Rayleigh number Rc, so that rotation stabilize the system. Further-

more, the effect of increasing the anisotropy parameter ξ is seen also to increase the

critical Rayleigh number Rc. This means when the rate of rotation, and ξ increases,

the stability becomes more pronounced. For example, for ξ = 3 and T̃ 2 = 5 we see

from Table 6.1 that the critical Rayleigh number is Rc = 172.573, whereas when

ξ = 10 and T̃ 2 = 25 the critical Rayleigh number is Rc = 673.591.

Table 6.2 and Figure 6.2 present the values of aL(c) = ac, the critical wave

number for both the onset of linear instability and for the nonlinear stability. It

can be observed that for a fixed values of the anisotropy parameter ξ, the effect of

increasing the Taylor number T̃ 2 is to increase the wave number. For example, for

ξ = 3 and T̃ 2 = 5 we see from Table 6.2 that the critical wave number is ac = 3.736,

whereas when T̃ 2 = 25 for the same anisotropy parameter ξ = 3 the critical wave

number is ac = 5.390. It is also observed that increasing the anisotropy parameter

ξ had the effect of decreasing the value of wave number. However, as soon as the

value of the Taylor number T̃ 2 increases one can observe the critical wave number

also increases which corresponds to the narrow convection cells.
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Table 6.1: Critical values of Rayleigh number Rc, vs. ξ, for T̃ 2 = 5, 10, 15, 20, 25.

Rc

ξ T̃ 2 = 5 T̃ 2 = 10 T̃ 2 = 15 T̃ 2 = 20 T̃ 2 = 25

1. 117.438 183.903 246.740 307.588 367.130

2. 147.335 220.890 289.315 354.926 418.690

3. 172.573 251.568 324.280 393.546 460.550

4. 195.398 278.979 355.306 427.653 497.389

5. 216.682 304.304 383.815 458.876 531.019

6. 236.871 328.145 410.535 488.051 562.370

7. 256.230 350.864 435.901 515.674 591.993

8. 274.932 372.693 460.194 542.068 620.249

9. 293.097 393.795 483.611 567.457 647.388

10. 310.813 414.288 506.293 592.006 673.591
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Figure 6.1: Critical Rayleigh number Rc as function of ξ, for T̃ 2 = 5 increasing to

T̃ 2 = 25.
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Table 6.2: Critical values of wave number ac, vs. ξ, for T̃ 2 = 5, 10, 15, 20, 25.

ac

ξ T̃ 2 = 5 T̃ 2 = 10 T̃ 2 = 15 T̃ 2 = 20 T̃ 2 = 25

1. 4.917 5.721 6.283 6.725 7.094

2. 4.135 4.811 5.284 5.655 5.965

3. 3.736 4.347 4.774 5.110 5.390

4. 3.477 4.046 4.443 4.755 5.016

5. 3.288 3.826 4.202 4.497 4.744

6. 3.142 3.656 4.015 4.297 4.533

7. 3.023 3.517 3.863 4.135 4.361

8. 2.924 3.402 3.736 3.999 4.218

9. 2.839 3.303 3.628 3.883 4.096

10. 2.765 3.217 3.533 3.782 3.989
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Figure 6.2: Critical wave number ac as function of ξ, for T̃ 2 = 5 increasing to

T̃ 2 = 25.



Chapter 7

Rotating anisotropic fluid

saturated Darcy porous medium

with inertia

In the previous Chapter we investigated the combined effects of the Taylor number

and the anisotropy parameter on the stability threshold for the thermal convection

problem of Darcy model. Our analysis, by using the energy method, emphasized

that the subcritical instabilities are not possible when the inertia term is neglected.

In this Chapter we will employ the linear instability method to find instability

boundaries for our previous problem in Chapter 6, but this time we are interested

in the effect of inclusion of the inertia term in the momentum equation on the onset

of convection.

It is noteworthy that the paper of Vadasz [131] has concerned with how the

presence of fluid inertia term in the momentum equation influences the onset of

thermal convection in a fluid saturated porous medium of Darcy type. In particu-

lar, he found the onset of convection may be by oscillatory when the inertia term is

considered. Recently, the work of Capone and Rionero [13] confirms that the inertia

term plays an important role on the onset of convection instability in a rotating

porous media. They revisited the Vadasz paper [131] and they found that, by using

an auxiliary method, new behaviours for the Rayleigh number stability thresholds

104
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which are complementary to the Vadasz results. Further recent interesting work on

the effect of the inclusion of the inertia term, is also due to Straughan [123], who

incorporated such an anisotropic inertia term in Darcy’s equation to study the on-

set of thermosolutal convection in a microfludic porous medium. His results reveals

that including an anisotropic inertia has a significant role in the thermal instability

threshold.

In this Chapter we will work with the complete system (6.1.1)-(6.1.3) which

includes inertia, considered in Chapter 6. To this end, the fully nonlinear non–

dimensional perturbation equations and the linear instability analysis are repre-

sented in Section 7.1. In Sections 7.1.1 and 7.1.2, we study, respectively, the sta-

tionary convection and the oscillatory convection. Section 7.2 is devoted to the

numerical results.

It is found that the inertia term has no effect on the stationary convection instability

boundary.

7.1 Governing equations and linear instability anal-

ysis

To study the linear instability analysis, once more we consider the fully nonlinear

nondimensional system for the perturbation equations for the velocity, ui, pressure,

π, and temperature, ϑ, of (6.1.7),

1

Va

ui,t = − π,i + Rkiϑ− T̃ (k× u)i −mijuj,

ui,i = 0,

ϑ,t + uiϑ,i = Rw + ∆ϑ,

(7.1.1)

and with the corresponding boundary conditions,

niui = ϑ = 0, z = 0, 1. (7.1.2)

Here the square root of the Rayleigh number, R, the square root of the Taylor num-

ber, T̃ , and the Vadasz number, Va, are the nondimensional variables as defined in
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Chapter 6. Again mij = diag {1, 1, ξ}, where ξ is the anisotropy parameter as given

in Chapter 6.

To proceed with the linear instability, we follow the same procedure to that using

in the Chapter 6, by performing taking the curl of equation (7.1.1)1 and curl curl

of the same equation. After taking the third component we arrive at the system of

the form

− Va
−1∆w,t = −R ∆

∗ ϑ + T̃ ω3,z + m3r∆ur −mjrur,j3,

V −1
a ω3,t = T̃w,z − ε3jkmkquq,j,

ϑ,t + wϑ,z = Rw + ∆ϑ.

(7.1.3)

Applying equations (6.2.8), (6.2.9), and (6.2.11) in Chapter 6 to (7.1.3), we have

− V −1
a ∆w,t = −R ∆

∗ ϑ + T̃ ω3,z + ξ ∆
∗ w + w,zz,

V −1
a ω3,t = T̃w,z − ω3,

ϑ,t + wϑ,z = Rw + ∆ϑ.

(7.1.4)

We now consider the linearised equations of (7.1.4) by removing the nonlinear term

of equation (7.1.4)3. We then assume a temporal growth rate like eσt, i.e. we write

w = w (x) eσt, ϑ = ϑ (x) eσt, ω3 = ω3 (x) eσt .

Upon substituting into equation (7.1.4), we have to solve the system

− V −1
a σ∆w = −R ∆

∗ ϑ + T̃ ω3,z + ξ ∆
∗ w + w,zz,

V −1
a σω3 = T̃w,z − ω3,

σϑ = Rw + ∆ϑ.

(7.1.5)

After eliminating the variable ω3 from equations (7.1.5)1 and (7.1.5)2, and then

assuming a normal mode with the representation for w, and ϑ of the form w =

W (z)f(x, y), and ϑ = Θ(z)f(x, y) where f(x, y) is the horizontal planform which

satisfies ∆∗ f = −a2f , a being a wave number. The system (7.1.5) can be written

as

−σV −1
a (1 + σV −1

a ) (D2 − a2) W −
(
T̃ 2 + (1 + σV −1

a )
)

D2W =

−a2ξ (1 + σV −1
a ) W + a2R (1 + σV −1

a ) Θ, (7.1.6)

(D2 − a2) Θ = σΘ−RW, (7.1.7)
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where D = d/dz. This system is solved subject to the boundary conditions

W = Θ = 0, at z = 0, 1. (7.1.8)

7.1.1 Stationary convection

In this section, we consider the case when instability sets in as stationary convection.

Again we use the standard method to analyse equations (7.1.6), and (7.1.7) follows

the work of Chandrasekhar [19]. To this end, we put σ = 0 into equations (7.1.6),

and (7.1.7). Then we eliminate the variable W to obtain a single equation in Θ

(
D2 − ξa2

) (
D2 − a2

)
Θ + T̃ 2D2

(
D2 − a2

)
Θ = a2R2Θ. (7.1.9)

We now apply the boundary conditions (7.1.8) into equation (7.1.7) to deduce

D2Θ = 0, at z = 0, 1.

Then from (7.1.9) we have (
1 + T̃ 2

)
D4Θ = 0.

Since T̃ 2 ≥ 0. This leads to the further boundary condition

D4Θ = 0, at z = 0, 1.

By differentiating equation (7.1.9), an even number of times with respect to z. Then

employing the foregoing boundary condition to find

D6Θ = 0, at z = 0, 1.

Further differentiation of equation (7.1.9) yields

D(2n)Θ = 0, at z = 0, 1, for n = 0, 1, 2, ... (7.1.10)

Thus, we may select Θ = sin nπz, for n ∈ N. Upon substituting in equation (7.1.9)

we have, with Λn = n2π2 + a2,

R2
sta =

(
1 + T̃ 2

)
π2n2Λn

a2
+ ξΛn.

(7.1.11)

This equation is exactly the same equation (6.3.7) in Chapter 6 of linear instability

method. It follows straightaway from equation (7.1.11), that the stationary con-

vection for the case of presence inertia term occurs for the same critical Rayleigh

number R2
L(sc) (6.3.8) and the same critical wave number a2

L(c) (6.3.9).
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7.1.2 Oscillatory convection

The aim of this section is to consider the instability by oscillatory convection. To this

end, we put σ = iσ1, σ1 ∈ R into equations (7.1.6), and (7.1.7). After eliminating

the variable W , the real and imaginary parts yield

σ2
1

[
−V −1

a (D2 − a2) + V −2
a (D2 − a2)

2 − V −1
a (D2 − ξa2)

]
Θ =

−a2R2Θ + (D2 − ξa2) (D2 − a2) Θ + T̃ 2D2 (D2 − a2) Θ

and

−σ2
1V

−2
a

(
D2 − a2

)
Θ = V a−1 (D2 − a2)

2
Θ + V −1

a (D2 − ξa2) (D2 − a2) Θ

− (D2 − ξa2) Θ− T̃ 2D2Θ− V −1
a a2R2Θ.

On considering the boundary condition (7.1.10), allow Θ to be composed of sin nπz,

for n ∈ N, we may solve for σ1 and R2 to find

σ2
1 =

π2V 2
a T̃ 2 (Λ− Va)

Λ2 + Vaβ
− V 2

a , (7.1.12)

and

R2
os =

(Λ + β)

a2

[
π2V 2

a T̃ 2

Λ2 + Vaβ
+ Λ + Va

]
. (7.1.13)

Here β = π2 + ξa2, and Λ = n2π2 + a2. Minimization over n yields n = 1. The

critical Rayleigh number R2
osc and the corresponding critical wave number a2

osc are

obtained by minimising R2
os in equation (7.1.13) over a2. Setting ∂2R/∂a2 = 0, we

may arrive at the following equation.

Ba12 + 2χBa10 + (Bχ2 + 2αξ) a8 +
(
2αχ (ξ − 1)− 2BV 2

a π2T̃ 2
)

a6

+
(
Bα2 − V 2

a π2T̃ 2 (Bχ + 6π2)− 2α (χ2 + 2α)
)

a4

−4χ
(
α2 + π4V 2

a T̃ 2
)

a2 − 2α
(
α2 + π4V 2

a T̃ 2
)

= 0, (7.1.14)

where

B = 1 + ξ, α = π2
(
π2 + Va

)
, χ = 2π2 + Vaξ.

Equation (7.1.14) is solved numerically by using the Maple(TM) 1 which gives the

critical wave number a2
osc. The oscillatory convection Rayleigh number R2

osc is then

1Maple is a trademark of Waterloo Maple Inc.
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determined by substituting a2
osc into equation (7.1.13), but simultaneously requiring

σ2
1 > 0 in equation (7.1.12). It is evident that σ2

1 cannot be positive for all wave

number unless the Taylor number T̃ 2 and the Vadasz number Va are satisfying the

following conditions

T̃ 2 >
(Λ2 + Vaβ)

π2 (Λ− Va)
, and Va < Λ. (7.1.15)

Numerical results obtained for the stationary convection and the oscillatory convec-

tion are reported in the next section.

7.2 Numerical results

In this section we describe how the inclusion of the inertia term A together with

the Taylor number T̃ 2 and the anisotropy parameter ξ effects the onset of thermal

convection. In Table 7.1 we present the results of the linear instability analysis

for the critical Rayleigh number Ra, the stationary wave number asta, and the

oscillatory wave number aosc. We also represent the critical Rayleigh number Ra as

a function of ξ for different values of Vadasz number γ = Va/π
2 and T̃ 2 = 5, 10, 25,

and 120. The values of the anisotropy parameter ξ and the Vadasz number Va are

selected so that the condition (7.1.15) is taken into account. It is noteworthy that

the stationary convection, see equation (6.3.8) depends on the Taylor number T̃ 2

and the anisotropy parameter ξ. However, as show in Figures 7.1–7.4 increasing T̃ 2

as well as ξ increases the stationary convection boundary Rsc.

Figure 7.1 shows when the small value of the Taylor number T̃ 2 = 5 and the

Vadasz number γ = 0.3, 0.5, and 0.7 the stationary convection is dominant when the

values of ξ below a transition value ξc (ξ < ξc), and the convection is by oscillatory

when ξ > ξc. As γ increases the onset of convection is more likely to be by stationary

convection. For example, for γ = 0.3, ξc = 0.0204, the transition from the stationary

mode to the oscillatory mode occurs when Ra = 66.331, whereas when γ = 0.7,

ξc = 0.3589, the transition occurs when Ra = 91.726 as seen in Table 7.1.

In Figure 7.2, T̃ 2 is increased to T̃ 2 = 10. Here we observe that an increase in the

value of ξ advances the oscillatory convection for ξ < ξc. However, as γ increases

the transition from the oscillatory convection to the stationary convection occurs
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sooner. For example, when γ = 0.8, ξc = 8.8911 as seen in Table 7.1, the convection

switchs to the stationary convection when Ra = 391.527, whereas when γ = 1.5,

ξc = 1.6773, the transition occurs when Ra = 209.908.
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Figure 7.1: Critical values of Ra vs. ξ for T̃ 2 = 5. The solid curve is for stationary

convection. The other curves are for oscillatory convection, for γ = 0.3, 0.5, 0.7.
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Figure 7.2: Critical values of Ra vs. ξ for T̃ 2 = 10. The solid curve is for stationary

convection. The other curves are for oscillatory convection, for γ = 0.8, 1., 1.3, 1.5.

Figure 7.3 confirms the effect of increasing the Taylor number T̃ 2 on the onset of
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the convection. We find that when T̃ 2 is further increased to T̃ 2 = 25, the instability

is by oscillatory convection rather than stationary convection. We also find that the

critical Rayleigh numbers Ra are greater in the case of T̃ 2 = 25 than the case of

T̃ 2 = 10 (see Table 7.1). For example, for fixed value of γ = 1.5 in case T̃ 2 = 10,

the critical Rayleigh number Ra = 209.9084 at ξc = 1.6773, whereas when T̃ 2 = 25,

the critical Rayleigh number Ra = 642.276 at ξ=8.8088.

The effects of increasing the anisotropy parameter ξ are shown in Figure 7.4.

It is interesting to mention that, by increasing T̃ 2 from T̃ 2 = 25 to T̃ 2 = 120, one

needs large values of the anisotropy parameter for instability, and so as a result,

an increasing value of Ra. Therefore, an increase in the anisotropy parameter ξ in

the vertical direction with an increase in the Taylor number T̃ 2 has the effect of

stabilizing the system. This is also due to the influence of the Vadasz number γ.

Since π2γ = Va and the inertia coefficient is V −1
a , this means increasing inertia is a

destabilizing effect.

It is worth pointing out that if the Vadasz number γ ≤ 1, the oscillatory wave

number is smaller than the stationary wave number, which means the cells become

narrower when the convection changes from the oscillatory convection to the sta-

tionary convection. For γ > 1 the situation reverses and cells become wider.
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Figure 7.3: Critical values of Ra vs. ξ for T̃ 2 = 25. The solid curve is

for stationary convection. The other curves are for oscillatory convection, for

γ = 1.5, 1.7, 1.75, 2, 2.5.
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Figure 7.4: Critical values of Ra vs. ξ for T̃ 2 = 120. The solid curve is for stationary

convection. The other curves are for oscillatory convection, for γ = 2.5, 2.7, 2.9, 3.1.
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Table 7.1: Transition values of Ra vs. ξ, for T̃ 2 = 5, 10, 25, 120.

γ T̃ 2 ξ Ra asta aosc

0.3 5 0.0204 66.331 13.005 4.108

0.5 5 0.0941 74.981 8.877 4.337

0.7 5 0.3589 91.726 6.353 4.411

0.8 10 8.8911 391.527 3.3133 3.1986

1. 10 5.1704 308.459 3.7942 3.7837

1.3 10 2.5975 239.714 4.5067 4.5947

1.5 10 1.6773 209.908 5.0274 5.1029

1.5 25 8.8088 642.276 4.1178 4.5256

1.7 25 6.8702 588.233 4.3818 4.9387

1.75 25 6.4868 576.981 4.4451 5.0835

2. 25 4.9771 530.280 4.7495 5.5180

2.5 25 3.1699 467.094 5.3166 6.3948

2.5 120 21.8230 2423.940 4.8208 6.0447

2.7 120 19.2491 2336.840 4.9744 6.3545

2.9 120 17.1573 2262.950 5.1196 6.6532

3.1 120 15.4289 2199.39 5.2573 6.9420



Chapter 8

Conclusions and further work

The present work was designed to investigate thermal convection in a fluid saturated

porous medium. Throughout the thesis we used the Darcy and Brinkman models to

describe the flow in a porous material. The linear instability and nonlinear stability

analyses were employed to determine the critical thresholds as well as examine the

effects of the various physical parameters for the onset of thermal convection. The

D2 Chebyshev tau and the compound matrix techniques were implemented to solve

the eigenvalue problems.

In Chapter 2 the Cattaneo-Christov law for the heat flux was proposed to study

a model for thermal convection in a porous medium when the Guyer-Krumhansl

equation was employed to describe the evolution of the heat flux. The energy balance

equation and the Christov-Morro equation for the heat flux was derived. We found

precise conditions for the Guyer-Krumhansl term, λ < 1
π2 w 0.101321183, in which

the stationary convection will occur. The results of the linear instability theory

showed that, for a chosen value of the inertia term A, the convection mechanism

commences as oscillatory convection when the parameter P2 is sufficiently large. As

P2 became smaller the convection mechanism switches to the stationary convection

at transition value λc with narrower cells. These results indicate that the presence

of Guyer-Krumhansl terms has a significant effect on the convection mechanism.

Satisfactory numerical results were achieved by using D2 Chebyshev tau method.

A similar model to that of Chapter 2 was investigated in Chapter 3 but here an

alternative Cattaneo type theory for the heat flux was presented. The linear insta-

114
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bility thresholds show that employing the Cattaneo-Fox law together with inclusion

of the Guyer-Krumhansl terms for the heat flux lead to an a very interesting effect

in the propagation heat mechanism. In particular, herein we showed that depending

on the range of the Guyer-Krumhansl values λ, the instability convection can be sta-

tionary or oscillatory. It was found that the oscillatory convection depends strongly

on the parameter P2, Guyer-Krumhansl term λ, and inertia term A. As expected

inclusion of the Guyer-Krumhansl term and once P2 increase, the onset of convec-

tion is always by oscillatory. Also we note that the oscillatory wave numbers at the

transition values λc are larger than that of stationary unless P2 is large enough, and

λ is likewise large. These results indicate the effect of the Guyer-Krumhansl term

when the Cattaneo-Fox law for the heat flux is used.

In Chapter 4 the porous medium was assumed to have a large porosity and for

this purpose we used Brinkman model to describe the flow in a porous medium.

The employing of the Cattaneo-Christov theory effects on the thermal instability

threshold was investigated. We have derived analytically the convection instability

threshold for stationary and oscillatory convection in the case of free surfaces, while

for the fixed surfaces the resulting eigenvalue problem was solved numerically by

using the D2 Chebyshev tau technique. It was showed that by introducing the

Cattaneo-Christov theory in the institutive equation for heat flux which plays an

important role in the thermal instability threshold. Through investigation we found

that the stationary convection depends on λ only, whereas oscillatory convection

depends on λ, A, and P2. In general, the onset of convection is by stationary

convection for small value of P2. As P2 increase the convection mechanism switches

from the stationary convection to the oscillatory convection with narrower cells. The

effects of increasing P2 were seen to destabilize the system. This indicates that the

thermal convection occurs more easily. Whilst increasing the value of λ as well as

decreasing the value of A it was observed that the transition from the stationary

mode to the oscillatory mode occurred sooner. It may be argued from the results

that the critical Rayleigh numbers Ra and the critical wave numbers ac are greater

in the case of fixed-fixed boundaries than in the case of the free-free boundaries when

all values of λ and A are considered. Also we observed that in the transition from
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the stationary to the oscillatory convection in the case of fixed-fixed boundaries the

value of P2 is always smaller than in the free-free boundaries.

Chapter 5 presented the problem of a fluid saturated anisotropic porous Darcy

medium. The analysis was restricted to the situation when the permeability varied

in the vertical direction. It was found that the global nonlinear stability threshold

was achieved. In sense that, the optimum results was obtained. The numerical

solution was carried out via the D2 Chebyshev tau method and the compound matrix

method. It may be argued from the results that, in general, the effect of increasing

the anisotropy parameter ξ, for a fixed value of q is to increase the critical Rayleigh

number and the critical wave number. Thus, the anisotropic parameter was seen to

have a profound impact on the stability regions.

Finally, in Chapters 6 and 7 we explained how the Taylor number due to the rota-

tion effects the onset of thermal convection in an anisotropic Darcy porous medium.

We allowed to the Vadasz number, Va, to be infinite in Chapter 6. Our analysis

showed that the effect of rotation is to enhance the stability of the system. Also,

these results are reinforcing the fact that the linear instability analysis is accurately

capturing the physics of the onset of convection. Inclusion of the inertia term was

established in Chapter 7, the effect of inertia (Vadasz number) Va, Taylor number

T̃ 2, and the anisotropy parameter ξ was investigated. Increasing the value of Taylor

number leads to the onset of convection is by oscillatory convection for large value of

the anisotropy parameter provided that T̃ 2 > (Λ2 + Vaβ) /π2 (Λ− Va) , and Va <

Λ. As γ increases the convection mechanism switches from the oscillatory convection

to the stationary convection (normally with narrower cells). These results indicate

the effect of incorporating rotation in an anisotropic porous medium.

In future work we plan to investigate instability for the case of thermal convection

in a rotating porous medium when the inertia coefficient is anisotropic. Straughan

[123] has studied this effect in double diffusive convection but in the non-rotating

case. He argues that there are several instances in real life where the inertia itself

may be anisotropic.

Another class of the problem we plan to study is thermal convection under

condition of local thermal non-equilibrium. This is when the solid skeleton of the
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porous media and the saturating fluid have different temperatures. This topic has

been creating much attention in the recent research literature, see e.g. Straughan

[122], Celli et al. [18], Rees [89], Nield and Kuznetsov [81], Malashetty and Swamy

[74], and Kuznetsov and Nield [62].
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dans une couche poreuse anisotrope. C. R. hebd. Seánc. Acad. Sci. Paris,
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poreuse anisotrope. Rev. Geń. Thermique., 168:94S950, 1975.

[33] G. Evans. Practical Numerical Integration. Wiley, Chichester, 1993.

[34] N. Fox. Low temperature effects and generalized thermoelasticity. J. Inst.

Maths. Applics., 5:373–386, 1969.

[35] N. Falcón. Compact star cooling by means of heat

waves. RevMexAA (Serie de Conferencias), 2001. See also,

http://adsabs.harvard.edu/full/2001RMxAC..11..41F.

[36] P. Falsaperla, A. Giacobbe, and G. Mulone. Does Symmetry of the Operator

of a Dynamical System Help Stability?. Acta Appl. Math., 122:239-253, 2012.

[37] F. Franchi. Wave propagation in heat conducting dielectric solids with thermal

relaxation and temperature dependent electric permittivity. Riv. Mat. Univ.

Parma, 11:443–461, 1985.

[38] F. Franchi and B. Straughan. Thermal convection at low temperature. J. Non–

Equilib. Thermodyn., 19:368–374, 1994.



Bibliography 122

[39] S.N. Gaikwad and I. Begum. Onset of Double-Diffusive Reaction-Convection

in an Anisotropic Rotating Porous Layer. Transp. Porous Media, 98:239-257,

2013.

[40] S. Govender. On the Effect of Anisotropy on the Stability of Convection in

Rotating Porous Media. Transp. Porous Media, 64:413-422, 2006.

[41] S. Govender and P. Vadasz. The effect of mechanical and thermal anisotropy

on the stability of gravity driven convection in rotating porous media in the

presence of thermal non-equilibrium. Transp. Porous Media, 69:55-56, 2007.

[42] R. Guyer and J. Krumhansl. Dispersion relation for second sound in solids.

Phys. Review, 133:1411–1417, 1964.

[43] R. Guyer and J. Krumhansl. Solution of the linearized Boltzmann phonon

equation. Phys. Review, 148:766–778, 1966.

[44] R. Guyer and J. Krumhansl. Thermal conductivity, second sound, and phonon

hydrodynamic phenomena in nonmetallic crystals. Phys. Review, 148:778–788,

1966.

[45] S.A.M. Haddad and B. Straughan. Porous convection and thermal oscillations.

Ricerche mat., 61:307–320, 2012.

[46] S.A.M. Haddad. Thermal Convection in a Cattaneo-Fox Porous Material with

Guyer-Krumhansl Effects. Transp. Porous Med., 100:363-375, 2013.

[47] S.A.M. Haddad. Thermal instability in Brinkman porous media with

Cattaneo-Christov heat flux. Int. J. Heat Mass Transfer, 68:659-668, 2014.

[48] S.A.M. Haddad. Thermal convection in a Darcy porous medium with

anisotropic spatially varying permeability. Acta Applicandae Mathematicae,

doi:10.1007/s10440-014-9908-x.

[49] L. Herrera and N. Falcón. Heat waves and thermohaline instability in a fluid.

Physics Letters A, 201:33–37, 1995.



Bibliography 123

[50] A.A. Hill and B. Straughan. Global stability for thermal convection in a fluid

overlying a highly porous material. Proc. R. Soc. A, 465:207–217, 2009.

[51] A.A. Hill and M.S. Malashetty. An operative method to obtain sharp nonlin-

ear stability for systems with spatially dependent coefficients. Proc Roy Soc

London A, 468:323–336, 2012.

[52] A.A. Hill and M. Carr. The influence of a fluid-porous interface on solar pond

stability. Advances in Water Resources, 52:1–6, 2013.

[53] A.A. Hill and M. Carr. Stabilising solar ponds by utilising porous materials.

Advances in Water Resources, 60:1–6, 2013.

[54] D. Jou, V.A. Cimmelli, and A. Sellitto. Nonequilibrium temperatures and

second-sound propagation along nanowires and thin layers. Physics Letters A,

373:4386–4392, 2009.

[55] D. Jou, A. Sellitto, and F.X. Alvarez. Heat waves and phononwall collisions

in nanowires. Proc. Roy. Soc. London A, 467:2520-2533, 2011.

[56] P.N. Kaloni and A. Mahajan. Stability of magnetic fluid motions in a saturated

porous medium. ZAMP, 62:529–538, 2011.

[57] J.P. Kelliher, R. Temam, and X. Wang. Boundary layer associated with the

Darcy-Brinkman-Boussinesq model for convection in porous media. Physica

D, 240:619–628, 2011.

[58] A. Kumar, P. Bera, and A. Khalili. Influence of inertia and drag terms on

the stability of mixed convection in a vertical porous-medium channel. Int. J.

Heat Mass Transfer, 53:23–24, 2010.

[59] A. Kumar, P. Bera, and J. Kumar. Non-Darcy mixed convection in a vertical

pipe filled with porous medium. Int. J. Thermal Sciences, 50:725–735, 2011.

[60] A. Kumar and B.S. Bhadauria. Thermal instability in arotating anisotropic

porous layer saturated by aviscoelastic fluid. Int. J. Non–Linear Mech., 46:47-

56, 2011.



Bibliography 124

[61] A.V. Kuznetsov and D.A. Nield. Thermal instability in a prous medium layer

saturated by a nanofluid: Brinkman model. Transp. Porous Media, 81:409–

422, 2010.

[62] A.V. Kuznetsov and D.A. Nield. The effect of Local Thermal Nonequilib-

rium on the onset of convection in a porous medium layer saturated by a

Nanofluid:Brinkman model. J. Porous Media, 14:285–293, 2011.

[63] A.V. Kuznetsov and D.A. Nield. The onset of convection in a tridisperse porous

medium. Int. J. Heat Mass Transfer, 54:3485–3493, 2011.

[64] O. Kvernvold and P.A. Tyvand. Non-linear thermal convecticm in anisotropic

porous media. J. Fluid Mech., 90:609–624, 1979.

[65] G. Lebon and A. Cloot. Bénard-Marangoni instabiity in a Maxwell-Cattaneo

fluid. Phys. Lett. A, 105:361-364, 1984.

[66] G. Lebon and P.C. Dauby. Heat transport in dielectric crystals at low tem-

perature: A variational formulation based on extended irreversible thermody-

namics. Phys. Review A, 42:4710–4715, 1990.

[67] J. Lee, I.S. Shivakumara, and A.L. Mamatha. Effect of nonuniform temper-

ature gradients on thermogravitational convection in a porous layer using a

thermal nonequilibrium model. J. Porous Media, 14:659–669, 2011.

[68] S. Lombardo, G. Mulone, and M. Trovato. Nonlinear stability in reaction-

diffusion systems via optimal Lyapunov functions. J Math. Anal. Appl.,

342:461–476, 2008.

[69] Lord Rayleigh. On convection currents in horizontal layer of fluid when the

higher temperature is on the under side. Philos. Mag. Ser., 32:529-546, 1916.

[70] M.S. Malashetty and M. Swamy. The effect of rotation on the onset of con-

vection in a horizontal anisotropic porous layer. Int. J. Thermal Sc., 46:1023–

1032, 2007.



Bibliography 125

[71] M.S. Malashetty and M. Swamy. Combined effect of thermal modulation and

rotation on the onset of stationary convection in a porous layer. Transp. Porous

Media, 69:313-330, 2007.

[72] M.S. Malashetty and B.S. Biradar. The onset of double diffusive reaction-

convection in an anisotropic porous layer. Phys. Fluids, 23:064102, 2011.

[73] M.S. Malashetty and B.S. Biradar. The onset of double diffusive convection

in a binary Maxwell fluid saturated porous layer with cross-diffusion effects.

Phys. Fluids, 23:063101, 2011.

[74] M.S. Malashetty and M. Swamy. Effect of rotation on the onset of thermal

convection in a sparsely packed porous layer using a thermal non-equilibrium

model. Int. J. Heat Mass Transfer, 53:3088-3101, 2010.

[75] M.S. Malashetty, I. Pop, and R. Heera. Linear and nonlinear double diffusive

convection in a rotating sparsely packed porous layer using a thermal non-

equilibrium model. Continuum Mech. Thermodyn., 21:317–339, 2009.

[76] C.B. Moler and G.W. Stewart. An algorithm for generalized matrix eigenprob-

lems. SIAM J. Numer. Amal., 10:241–256, 1973.

[77] A. Morro. Evolution equations and thermodynamic restrictions for dissipative

solids. Math. Computer Modelling, 52:1869–1876, 2010.

[78] A. Morro. Evolution equations for non-simple viscoelastic solids. J. Elasticity,

105:93–105, 2011.

[79] C.E. Nanjundappa, M. Ravisha, J. Lee, and I.S. Shivakumara. Penetrative

ferroconvection in a porous layer. Acta Mechanica, 216:243–257, 2011.

[80] Nield, D.A., Barletta, A.: Extended Oberbeck–Boussinesq approximation

study of convective instabilities in a porous layer with horizontal flow and

bottom heating. Int. J. Heat Mass Transf 53, 577–585 (2010)

[81] D.A. Nield and A.V. Kuznetsov. The Effect of Local Thermal Nonequilibrium

on the Onset of Convection in a Nanofluid. J. Heat Transfer, 132:052405, 2010.



Bibliography 126

[82] D.A. Nield and A.V. Kuznetsov. The effect of vertical throughflow on thermal

instability in a porous medium layer saturated by a nanofluid. Transp. Porous

Media, 87:765–775, 2011.

[83] D.A. Nield and A.V. Kuznetsov. The Onset of Convection in a Layer of a

Porous Medium Saturated by a Nanofluid: Effects of Conductivity and Vis-

cosity Variation and Cross-Diffusion. Transp. Porous Media, 92:837–846, 2012.

[84] D.A. Nield and A. Bejan. Convection in Porous Media. 4th edn., Springer,

New York, 2013.

[85] N.C. Papanicolaou, C. Christov, and P.M. Jordan. The influence of thermal

relaxation on the oscillatory properties of two-gradient convection in a vertical

slot. European J. Mech. B/Fluids, 30:68–75, 2011.

[86] L.E. Payne, J.F. Rodrigues, and B. Straughan. Effect of anisotropic perme-
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Appendix A

Cattaneo theories

A.1 Cattaneo-Fox law and Cattaneo-Christov law

To clarify the Cattaneo-Fox law and the Cattaneo-Christov law we begin with the

Maxwell-Cattaneo law of heat conduction [17],

τQi,t + Qi = −κT,i. (A.1.1)

When equation (A.1.1) is combined with the conservation of energy equation it

leads to the hyperbolic telegraph equation for the temperature field. Thus the

temperature can propagate as a damped travelling wave. However, equation (A.1.1)

is insufficient to describe heat transfer in a moving fluid [28], or heat conduction in

nanomaterials see, e.g., Wang et al. [138], and references therein. As a result, the

equation governing the heat flux must involve an objective derivative.

Straughan and Franchi [110] proposed the following modification on the Maxwell-

Cattaneo law (A.1.1)

τ
(
Q̇i − εijkwjQk

)
= −Qi − κT,i, (A.1.2)

which has come to be known as the Cattaneo-Fox heat flux law. Here w = curlv/2, a

superposed dot denots the material time derivative. The derivative τ
(
Q̇i − εijkwjQk

)

is an objective (Jaumann) time derivative of Fox [34] for the heat flux.

Christov [21] proposed an appropriate objective derivative for the heat flux when

dealing with a Cattaneo type theory for a fluid. He suggests the following Lie
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derivative which is a frame indifferent objective rate,

τ (Qi,t + vjQi,j −Qjvi,j + vj,jQi) = −Qi − κT,i, (A.1.3)

which has come to be known as The Cattaneo-Christov law .

The Cattaneo-Christov theory has been placed on a sound thermodynamic basis

by Morro [77]. Straughan [119] showed that the Cattaneo-Christov theory yields a

well defined thermo-acoustic theory for wave propagation in a gas.

A.2 Guyer-Krumhansl model

The generalization of equation (A.1.1) which follows from the solution of the lin-

earized Boltzmann equation is a well-known Guyer-Krumhansl equation for heat

flux [42–44]. This equation has been analysed by Lebon and Dauby [66] by means

of variational argument in the context of extended thermodynamics, which has form

τQi,t + Qi = −κT,i + τ̂∆Qi + 2τ̂Qk,ki. (A.2.4)

Here τ̂ = ττNc2
s/5 where τN is a relaxation time and cs is the mean speed of phonons.

Franchi and Straughan [38] proposed modifying equation (A.1.2) by incorporat-

ing the Guyer-Krumhansl terms for heat flux. Then one would modify equation

(A.1.2) to

τ
(
Q̇i − εijkwjQk

)
= −Qi − κT,i + τ̂(∆Qi + 2Qk,ki). (A.2.5)

Franchi and Straughan [38] employed equation (A.2.5) to study problem of thermal

convection.



Appendix B

The D2 Chebyshev tau method

In this Appendix, we describe how the Chebyshev polynomials are used in hydro-

dynamic stability problems. For this purposes we introduce some recurrence rela-

tionship between the functions and the Chebyshev polynomials. We then illustrate,

by using the Bénard problem for the Brinkman model discussed in Chapter 1, the

Chebyshev tau method employing a chebyshev representation of the second deriva-

tive operator (D2 Chebyshev tau method).

B.1 The Chebyshev polynomials

The Chebyshev polynomial of the first kind, denoted by Tn(x), is polynomial of the

nth degree defined by the relation

Tn(x) = cos nϑ, whene x = cos ϑ, (B.1.1)

where −1 ≤ x ≤ 1 (the range of the corresponding variable ϑ ∈ [0, π]), and n =

0, 1, 2, . . .. The first two polynomials may be deduced from (B.1.1)

T0(x) = 1,

T1(x) = x.

From the trigonometric identities, we have

Tn+1(x) = cos(n + 1)ϑ

= cos nϑ cos ϑ− sin nϑ sin ϑ, (B.1.2)
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and

Tn−1(x) = cos(n− 1)ϑ

= cos nϑ cos ϑ + sin nϑ sin ϑ. (B.1.3)

By combining (B.1.2) and (B.1.3) we find

Tn+1(x) + Tn−1(x) = 2 cos nϑ cos ϑ,

and so we have the fundamental recurrence relation

Tn+1(x) = 2xTn(x)− Tn−1(x), n = 1, 2, 3, . . . . (B.1.4)

Together with T0(x) = 1, and T1(x) = x we can obtain the rest of the set of

Chebyshev polynomials

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1,

T5(x) = 16x5 − 20x3 + 5x,

etc.

The Chebyshev polynomials are orthogonal polynomials in the interval (−1, 1) with

respect to the weighting function 1/
√

(1− x2). In particular,

〈Tn, Tm〉 =

∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =





π if m = n = 0,

π

2
if m = n 6= 0,

0 if m 6= 0.

(B.1.5)

To proceed to (B.1.5) we consider the weighted inner product of Tn(x) and Tm(x)

on the interval −1 < x < 1,
∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =

∫ π

0

cosnϑ cos mϑdϑ. (B.1.6)

In the case of n = m = 0, we have
∫ π

0

cos nϑ cos mϑdϑ =

∫ π

0

dϑ

= π,
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and when n = m 6= 0, then

∫ π

0

cos nϑ cos mϑdϑ =
1

2

∫ π

0

[cos(n + m)ϑ + cos |n−m|ϑ] dϑ

=
1

2

∫ π

0

[cos(n + m)ϑ + 1]dϑ

=

[
sin(n + m)ϑ

2(n + m)

]π

0

+
π

2

=
π

2
.

Finally. in case of n 6= m, we have

∫ π

0

cos nϑ cos mϑdϑ =
1

2

∫ π

0

cos(n + m)ϑ + cos |n−m|ϑdϑ

=

[
sin(n + m)ϑ

2(n + m)

]π

0

+

[
sin |n−m|ϑ

2 |n−m|
]π

0

= 0.

Thus, we have proved that equation (B.1.5) is achieved.

B.2 The Chebyshev differentiation matrix D2

In this section, before proceeding to derive the coefficients of the matrix D2 we

introduce the differentiating Chebyshev polynomials Tn(x) with respect to x,

dTn

dx
=

dTn

dϑ
· dϑ

dx

=
n sin nϑ

sin ϑ
,

and so

T ′
n+1(x) =

(n + 1) sin(n + 1)ϑ

sin ϑ
, (B.2.7)

T ′
n−1(x) =

(n− 1) sin(n− 1)ϑ

sin ϑ
. (B.2.8)

By adding (B.2.7)-(B.2.7), and then using trigonometric identities, we have

T ′
n+1(x)

n + 1
− T ′

n−1(x)

n− 1
=

1

sin ϑ
[sin(n + 1)ϑ− sin(n− 1)ϑ]

= 2 cos nϑ

= 2Tn(x), for n ≥ 2.
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In the case of n = 0, and n = 1, respectively, we find that T ′
1(x) = 1 and T ′

0(x) = 0.

Therefore, the recurrence relation for n ≥ 0 as follows

2Tn(x) =
1

n + 1
T ′

n+1(x)− 1

n− 1
T ′
|n−1|(x). (B.2.9)

Now, let consider the Chebyshev expansion of a continuously differentiable function

f ∈ (−1, 1),

f(x) =
∞∑

n=0

anTn(x), (B.2.10)

where an are the Chebyshev expansion coefficients. Similar expressions for f ′(x),

f ′′(x), . . ., are assumed so that

f (k)(x) =
∞∑

n=0

a(k)
n Tn(x), (B.2.11)

where f (k) is the kth derivative of f , and a
(k)
n are the Chebyshev expansion coefficients

of the kth derivative. Therefore, considering the first-order derivative, one finds

d

dx

∞∑
n=0

anTn(x) =
∞∑

n=0

a(1)
n Tn(x)

=
1

2

∞∑
n=0

a(1)
n

(
1

n + 1
T ′

n+1(x)− 1

n− 1
T ′
|n−1|(x)

)

=
1

2

d

dx

∞∑
n=0

a(1)
n

(
1

n + 1
Tn+1(x)− 1

n− 1
T|n−1|(x)

)

=
1

2

d

dx




(
2a

(1)
0 − a

(1)
2

)
T1 +

(
a

(1)
1 − a

(1)
3

)

2
T2 +

(
a

(1)
2 − a

(1)
4

)

3
T3 + · · ·


 .

Equating coefficients of Ti(x), i ≥ 1 gives the recurrence relation,

2pap = cp−1a
(1)
p−1 − a

(1)
p+1, for p ≥ 1, (B.2.12)

where c0 = 2 and cp = 1 for p ≥ 1.

Proceeding by summing both sides of equation (B.2.12) over p with p+n = odd,

from p = n + 1 to p = ∞, then

2
∞∑

p=n+1
p+n=odd

pap =
∞∑

p=n+1
p+n=odd

cp−1a
(1)
p−1 − a

(1)
p+1

=
(
cna

(1)
n − a

(1)
n+2

)
+

(
cn+2a

(1)
n+2 − a

(1)
n+4

)
+

(
cn+4a

(1)
n+4 − a

(1)
n+6

)
+ · · · ,
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since cp = 1 for p ≥ 1. Simplifying the foregoing equation gives

a(1)
n =

2

cn

∞∑
p=n+1
p+n=odd

pap.

Thus, in general we obtain

a(k)
n =

2

cn

∞∑
p=n+1
p+n=odd

pa(k−1)
p , n ≥ 0, (B.2.13)

Now, we replace a
(k−1)
p by its expression in terms of the infinite series and so equation

(B.2.13) may be written as

a(k)
n =

2

cn

∞∑
p=n+1
p+n=odd

p
2

cp

∞∑
m=p+1
p+m=odd

ma(k−2)
m , cp = 1 forp ≥ 1

=
4

cn

∞∑
p=n+1
p+n=odd

p
∞∑

m=p+1
p+m=odd

ma(k−2)
m

=
4

cn

(n + 1)
[
(n + 2) a

(k−2)
n+2 + (n + 4) a

(k−2)
n+4 + (n + 6) a

(k−2)
n+6 + · · ·

]

+
4

cn

(n + 3)
[
(n + 4) a

(k−2)
n+4 + (n + 6) a

(k−2)
n+6 + (n + 8) a

(k−2)
n+8 + · · ·

]

+
4

cn

(n + 5)
[
(n + 6) a

(k−2)
n+6 + (n + 8) a

(k−2)
n+8 + (n + 10) a

(k−2)
n+10 + · · ·

]

=
4

cn

(n + 1) (n + 2) a
(k−2)
n+2

+
4

cn

[(n + 1) + (n + 3)] (n + 4) a
(k−2)
n+4

+
4

cn

[(n + 1) + (n + 3) + (n + 5)] (n + 6) a
(k−2)
n+6

+
4

cn

[(n + 1) + (n + 3) + (n + 5) + (n + 7)] (n + 8) a
(k−2)
n+8 + · · ·

=
4

cn

∞∑
p=n+2
p+n=even

pa(k−2)
p

p−1∑
m=n+1
m+n=odd

m. (B.2.14)
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Next by expanding the inner summation, we obtain

p−1∑
m=n+1
m+n=odd

m = (n + 1) + (n + 3) + (n + 5) + · · ·+ (p− 1)

=

1
2
(p−n)−1∑

i=0

(n + 1 + 2i)

= (n + 1)

1
2
(p−n)−1∑

i=0

1 + 2

1
2
(p−n)−1∑

i=1

i

=
1

2
(n + 1) (p− n) +

1

2

(
1

2
(p− n)− 1

)
(p− n)

=
1

4

(
p2 − n2

)
.

Substituting back into equation (B.2.14), we have

a(k)
n =

1

cn

∞∑
p=n+2
p+n=even

p
(
p2 − n2

)
a(k−2)

p (B.2.15)

Further, we truncate the Chebyshev expansion of ak(x) at the n = Nth term as

follows

a(k)(x) =
N∑

n=0

a(k)
n Tn(x) + eN+1(x), (B.2.16)

where eN+1 is the error term. Suppose that eN+1 is small, we may therefore approx-

imate a(k)(x) in term of finite series â(k)(x) =
N∑

n=0

ânTn, where the coefficients ân are

evaluated by using the Clenshaw-Curtis quadrature formula, we refer the reader to

the book by Evans [33].

Let now define a vector â(k) =
(
â

(k)
0 , â

(k)
1 , â

(k)
2 , . . . , â

(k)
N

)T

, then upon substituting

into equation (B.2.15) we find,

â(k)
n =

1

cn

∞∑
p=n+2
p+n=even

p
(
p2 − n2

)
a(k−2)

p . (B.2.17)

Thus, we may obtain an upper triangular matrix D2 such that â(k) = D2â(k−2),
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where D2 is given by

D2 =




0 0 4 0 32 0 108 · · ·
0 0 0 24 0 120 0 · · ·
0 0 0 0 48 0 192 · · ·
0 0 0 0 0 80 0 · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·




.

In the next section, we discuss the application of the D2 Chebyshev tau method.

B.3 Application of the D2 Chebyshev tau method

to the Bénard problem for the Brinkman model

The Bénard problem for the Brinkman model is studied in Chapter 1. For the

present section the D2 Chebyshev tau method will be used to solve the eigenvalue

problem (1.3.7) in Section 1.3. This is rewritten for clarity

W ′′ − a2W = λ
(
W ′′′′ − 2a2W ′′ + a4W

)− a2RΘ,

0 = RW + Θ′′ − a2Θ.
(B.3.18)

The corresponding boundary conditions, when we consider fixed surfaces, are

W = W ′ = Θ = 0, at z = 0, 1. (B.3.19)

The system (B.3.18) is an eigenvalue problem for R, given a and λ. The key idea

is to write (B.3.18) as a system of second order equations. Therefore, we introduce

variable χ = W ′′ − a2W and so we may rewrite the system (B.3.18) in the form

W ′′ − a2W − χ = 0,

λχ′′ − λa2χ− χ = Ra2Θ,

Θ′′ − a2Θ = −RW.

(B.3.20)

Next, we recast equations (B.3.20) and the boundary conditions (B.3.19) in the

interval (−1, 1), and then we write W , Θ, and χ in the form of a series of Chebyshev

polynomials. Truncating each sum, so that

Ŵ (z) =
N∑

n=0

WnTn(z), χ̂(z) =
N∑

n=0

χnTn(z), Θ̂(z) =
N∑

n=0

ΘnTn(z), (B.3.21)
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and

Ŵ ′′(z) =
N∑

n=0

W (2)
n Tn(z), χ̂′′(z) =

N∑
n=0

χ(2)
n Tn(z), Θ̂(z) =

N∑
n=0

Θ(2)
n Tn(z).

(B.3.22)

Thus, from (B.3.20) we conclude

4Ŵ (2)(z)− a2Ŵ (z)− χ̂(z) = τ1TN−1 + τ2TN ,

4λχ̂(2)(z)− λa2χ̂(z)− χ̂(z)−Ra2Θ̂(z) = τ3TN−1 + τ4TN ,

4Θ̂(2)(z)− a2Θ̂(z) + RŴ (z) = τ5TN−1 + τ6TN ,

(B.3.23)

where τi are tau coefficients which may be used to measure the error associated with

truncation in (B.3.21), and (B.3.22).

To remove τ ′is we take the weighted Chebyshev inner product of equation (B.3.23)

with the polynomial Ti for i = 0, 1, . . . , N−2, and then we let Ŵ = (W0,W1, . . . , WN)T ,

Θ̂ = (Θ0, Θ1, . . . , ΘN)T , and χ̂ = (χ0, χ1, . . . , χN)T , with similar forms for Ŵ (2), Θ̂(2)

and χ̂(2) and make the substitutions Ŵ(2) = D2Ŵ, Θ̂(2) = D2Θ̂, and χ̂(2) = D2χ̂.

Next, we add two rows of zeros to the bottom of D2 to make the matrix square,

and these rows can be overwritten by the boundary conditions (B.3.19), where the

relations Tn(±1) = (±1)n, T ′
n(±1) = (±1)n−1n2 are used, as follows

N∑
n=0

Wn = 0,
N∑

n=0

(−1)n Wn = 0,
N∑

n=0

Θn = 0,
N∑

n=0

(−1)n Θn = 0,

N∑
n=0

n2Wn = 0,
N∑

n=0

(−1)n−1 n2Wn = 0,

or upon simplification,

BC1 : W0 + W2 + W4 + · · ·+ WN−1 = 0,

BC2 : W1 + W3 + W5 + · · ·+ WN = 0,

BC3 : W1 + 32W3 + 52W5 + · · ·+ N2WN = 0,

BC4 : 4W2 + 42W4 + · · ·+ (N − 1)2WN−1 = 0,

BC5 : Θ0 + Θ2 + Θ4 + · · ·ΘN−1 = 0,

BC6 : Θ1 + Θ3 + Θ5 + · · ·ΘN = 0.
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Thus, the system (B.3.23) may be arranged as

4D2Ŵ − a2Ŵ − χ̂ = 0,

λ4D2χ̂− λa2χ̂− χ̂ = Ra2Θ̂,

4D2Θ̂− a2Θ̂ = −RŴ.

(B.3.24)

The system (B.3.24) represent a matrix equation of the form

Ax = RBx, (B.3.25)

where A and B are (N + 1)× (N + 1) matrix given by

A =




4D2 − a2I −I 0

BC1 0 · · · 0 0 · · · 0
BC2 0 · · · 0 0 · · · 0

0 λ (4D2 − a2I)− I 0

BC3 0 · · · 0 0 · · · 0
BC4 0 · · · 0 0 · · · 0

0 0 4D2 − a2I

0 · · · 0 0 · · · 0 BC5

0 · · · 0 0 · · · 0 BC6




,

B =




0 0 0

0 · · · 0 0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0 0 · · · 0

0 0 a2I

0 · · · 0 0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0 0 · · · 0
−I 0 0

0 · · · 0 0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0 0 · · · 0




.

The matrix equation (B.3.25) is solved by employing the QZ algorithm of Moler and

Stewart [76]. More details of employing the Chebyshev tau method may be found

in Dongarra et al. [31].


