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Abstract: We analyse the long-term dynamics of the two-dimensional Navier–

Stokes equations on a rotating sphere and the periodic β-plane, which can be con-

sidered as a planar approximation to the former. It was shown over fifty years ago

that the Navier–Stokes equations can be described by a finite number of degrees of

freedom, which can be quantified by, for example, the so-called determining modes

and determining nodes. After considerable effort, it was shown that, independently

of rotation, the number of determining modes and nodes both scale as the Grashof

number G, a non-dimensional parameter proportional to the forcing.

Using and extending recent results on the behaviour of the rotating Navier–Stokes

equations, we prove under reasonable hypotheses that the number of determining

modes is bounded by cG1/2 + ε1/2M , where 1/ε is the rotation rate and M depends

on up to third derivatives of the forcing. Our bound on the number of determining

nodes is slightly weaker, at cG2/3 + ε1/2M .
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Chapter 1

Introduction

The incompressible Navier–Stokes equations describe the flow of a fluid and are used

in applications such as weather prediction, modelling air flow around aircrafts and

studying ocean currents. The equations are given by

∂tv + v · ∇v +∇p = µ∆v + fv, (1.0.1)

∇ · v = 0,

where v = v(x, t) is the fluid velocity at a point x = (x1, . . . , xn) ∈ Rn, n = 2 or 3

and time t ∈ R, p is the pressure, µ is the kinematic viscosity and fv is the forcing.

The existence and uniqueness of solutions to the three-dimensional case in general

are still unknown; in contrast, these are well-known for the two-dimensional case

([2]–[4]). In this thesis we consider the case of n = 2 on a doubly periodic plane and

the unit sphere.

It is often useful to consider (1.0.1) on a rotating frame, as this is a naturally arising

situation in which we consider a fluid, for example with the effect of the earth’s

rotation on ocean currents and the atmosphere. By describing the earth’s rotation

by a constant vector Ω, the Coriolis parameter is given by f = 2Ω sin θ, where θ is

the latitude (defined to be 0 at the north pole). We frequently model a fluid flow

on the surface of the earth by using a unit rotating sphere, on which the Rossby

parameter becomes β := ∂yf = 2Ω cos θ. The rotating Navier–Stokes equations on
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the unit sphere thus read as

∂tv + v · ∇v + 2
ε

cos θ v⊥ +∇p = µ∆v + fv,

∇ · v = 0. (1.0.2)

A simpler method of modelling a fluid on the earth’s surface is the β-plane approx-

imation, which is useful for phenomena that occur on a scale much smaller than the

domain itself [5]. On such scales, one can reasonably approximate the behaviour of

the fluid by instead considering it as being on a tangent plane, so that it becomes

convenient to use a Cartesian coordinate system (x1, x2) = (x, y) instead. Using the

β-plane approximation involves allowing the Coriolis parameter to vary linearly, so

that we describe it near latitude θ0 as

f = f0 + βy,

where f0 is the Coriolis parameter at θ0, β = ∂yf is the gradient of f in latitude and

y is the meridional distance from θ0. Due to incompressibility, a constant rate of

rotation does not affect the dynamics, i.e. without loss of generality we can consider

the fluid at the equator. This gives f0 = 0, with which we obtain the β-plane

approximation of (1.0.1):

∂tv + v · ∇v + βyv⊥ +∇p = µ∆v + fv, (1.0.3)

where v⊥ = (−v2, v1), with v1 and v2 denoting the x and y components of v respect-

ively.

Physical intuition suggests that the flow of a fluid on a rotating plane or sphere

would become more zonal with increasing rotation rate; there are numerical works

[6] and analytical proofs that agree with this ([7], [8]). Notably, both on the β-plane

and the sphere, a rotation rate scaling as βy will eventually make the non-zonal part

ṽ of the flow bounded by

|∇ × ṽ|2L2 . O(ε). (1.0.4)
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In this thesis, we combine this result regarding the smallness of the non-zonal flow

undergoing fast rotation, with determining modes and nodes.

It has been known for over half a century [9] that the two-dimensional Navier–Stokes

equations can be described by a finite number of degrees of freedom. For periodic

boundary conditions, an upper estimate on the Hausdorff dimension of the global

attractor A was made by Constantin et al [10], giving

dimH(A) ≤ cG2/3 (1 + log G)1/3, (1.0.5)

where G := |fv|L2/(µ2κ2
0) is the Grashof number, a parameter used to describe how

turbulent a flow is. A lower bound on the attractor dimension was given by Liu [11]:

cG2/3 ≤ dimH(A), (1.0.6)

thereby proving that the aforementioned upper estimate is in fact sharp, up to a

logarithm. For the rotational case with periodic boundary conditions, Al-Jaboori

and Wirosoetisno [7] showed that with sufficiently large β, dimH(A) = 0.

The theory of determining modes was introduced by Foias and Prodi [9], to describe

the number of degrees of freedom of the two-dimensional Navier–Stokes equations.

One considers two solutions of (1.0.1), with the same viscosity µ:

∂tv + v · ∇v +∇p = µ∆v + fv, (1.0.7)

∂tv
# + v# · ∇v# +∇p# = µ∆v# + fv# ,

where |(fv − fv#)(t)|L2 → 0 as t → ∞. The rough idea is that when we consider

the projection of the difference δv := v − v# to lower and higher wavenumbers

(modes), if the difference in the lower modes converges to 0 after time, then the

whole of δv will also eventually converge to 0. This will be made rigorous in the

relevant chapters. Over the years, progress has been made in bounding the number

of determining modes, or the minimal threshold wavenumber required to guarantee

this convergence. Jones and Titi [12] proved that on the periodic plane, the number

of determining modes scales as κ ∼ cG1/2, which agrees with what is expected based
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on physical arguments ([13], [14]).

The idea of determining nodes was first introduced by Foias and Temam [15]. Sim-

ilarly to determining modes, one considers the difference between two solutions of

the Navier–Stokes equations (1.0.7). The approach here is that with the solutions

being identical at a large enough (but finite) number of points, the difference in

the solutions will again converge to 0 after sufficient time. Foias and Temam gave

bounds on the maximal distance between these nodal points, depending only on

µ, the domain and the forcing; others such as Jones and Titi [12] instead proved

bounds on the total number of nodes required, which scales as N ∼ cG. Robinson

and Friz [16] showed that the number of nodes is bounded from below by the fractal

dimension of the global attractor:

dimf (A) < cN. (1.0.8)

We are unaware of results in the opposite direction, i.e. lower bounds on the attractor

dimension in terms of the number of nodes, which would be useful in practice when

combined with our results, as listed below.

In this thesis, we prove that under a sufficiently fast differential rotation, the number

of determining modes and nodes are reduced for both the torus and unit sphere,

when compared with the general non-rotating case. The structure of the thesis is as

follows. After listing a collection of definitions and general inequalities in Chapter

2, the main content starts in Chapter 3, where we derive bounds on the number

of modes over the torus. We then prove similar bounds on the number of modes

over the sphere in Chapter 4, after stating and/or showing the necessary spherical

equivalents of results from the previous chapter.

We formally introduce the concept of determining nodes in Chapter 5, followed by

an auxiliary lemma from Jones and Titi [12], recast in a more suitable form for

generalisation to S2 later in Chapter 6. Using these, we prove our improved bounds

on the nodes. Finally, in Chapter 6, we derive our bounds on the nodes over the

sphere. For this we require a spherical analogue of the aforementioned auxiliary
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lemma, which we obtain via an icosahedral triangulation of the sphere.

We note that even though we require different tools and auxiliary results to prove

our theorems over the torus and the sphere, the results themselves are of the same

order over each domain. This suggests that even though there are technical differ-

ences between the domains, the rotating 2D Navier–Stokes equations behave in a

fundamentally similar way over them.





Chapter 2

Background

The purpose of this chapter is to collect definitions and well-known inequalities used

throughout the thesis for reference. The majority of the results hold over both the

torus and the sphere; some definitions and results on the sphere have been deferred

to Chapter 4.

2.1 Notation

For this thesis, we work with either a torus T2 := [0, L] × [−L/2, L/2] or the unit

sphere S2 := {(θ, φ) : θ ∈ [0, π], φ ∈ [0, 2π)}.

Let Ω be either T2 or S2. For 1 ≤ p ≤ ∞, we denote by Lp(Ω) the Lebesgue space,

consisting of the space of Lebesgue measurable functions u : Ω→ Rn such that

∫
Ω
|u(x)|p dx <∞,

with respect to the corresponding metric. When 1 ≤ p <∞, Lp(Ω) is also a Banach

space when equipped with the norm

|u|Lp(Ω) :=
(∫

Ω
|u(x)|p dx

)1/p
.

For p = ∞, L∞(Ω) consists of functions on Ω that are measurable and essentially
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bounded. It is also a Banach space, when equipped with the norm

|u|L∞(Ω) := ess sup
x∈Ω
|u(x)|

= inf {sup
x∈Λ
|u(x)| : Λ ⊂ Ω, Ω\Λ has zero measure}.

In the special case of p = 2, L2(Ω) is also a Hilbert space, with inner product and

norm defined by

(u, v)L2(Ω) :=
∫

Ω
u(x)v(x) dx,

|u|L2(Ω) := (u, u)1/2
L2(Ω),

where v denotes the complex conjugate of v. When the domain of integration is

clear and no confusion would arise, we may write | · |p := | · |Lp , | · | := | · |L2 and

(·, ·) := (·, ·)L2 for conciseness.

The Sobolev space Hs(Ω) consists of functions with derivatives up to order s lying

in L2(Ω):

Hs(Ω) := {u : Dmu ∈ L2(Ω), ∀ |m| ≤ s},

where

Dmu := ∂m1
x1 ∂

m2
x2 u,

|m| := m1 +m2, m1,m2 ≥ 0.

The inner product and norms are defined by

(u, v)Hs(Ω) =
∑
|m|≤s

(Dmu,Dmv)L2(Ω),

|u|Hs(Ω) := (u, u)1/2
Hs(Ω),

which is equivalent to the norm defined by

|u|2Hs
∗(Ω) := |u|2L2(Ω) +

∑
|m|=s

(Dmu,Dmu)L2(Ω). (2.1.1)



2.1. Notation 9

Furthermore, for u satisfying ∫
Ω
u dx = 0, (2.1.2)

(2.1.1) is also equivalent to

|u|2Hs
∗(Ω) ∼

∑
|m|=s

(Dmu,Dmu)L2(Ω), (2.1.3)

due to the Fourier coefficient uk = u(0,0) (for Ω = T2) or spherical harmonic coeffi-

cient ulm = u00 (introduced in Chapter 4, when Ω = S2) being zero by definition.

Functions we consider in this thesis all satisfy (2.1.2) over the respective domain

and hence (2.1.3) is equivalent to the Hs norm; we thus abuse notation slightly and

denote instead by Hs(Ω),

Hs(Ω) = {u : Dmu ∈ L2(Ω), ∀ |m| = s}. (2.1.4)

As a useful (dimensionless) parameter to describe how turbulent a flow is, we define

the generalised Grashof number G by

G :=
|fv|L2(Ω)

µ2κ2
0
, (2.1.5)

where µ is the kinematic viscosity, κ0 = κ0(Ω) is the Poincaré constant (see Lemma

4). Using higher derivatives of fv, we define “higher Grashof numbers” by

Gm := |∇
mfv|L2(Ω)

(µκ0)2−m , (2.1.6)

where the denominator ensures that Gm is dimensionless for all m. We note that

G0 = G exactly, with this definition.

Throughout the thesis, unnumbered constants c denote dimensionless constants that

may change value from one use to the next. We will also drop all dimensional

quantities except length; it will thus become convenient to define the dimensionless

parameter ν0 := µκ2
0.
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2.2 Preliminary inequalities

We make extensive use of several well-known inequalities, which we collectively state

here for convenience.

Lemma 1 (Young’s inequality). Suppose a, b ≥ 0 and 1 ≤ p, q ≤ ∞ are such that

1/p+ 1/q = 1. Then

ab ≤ ap

p
+ bq

q
. (2.2.1)

Lemma 2 (Hölder’s inequality). Suppose f ∈ Lp(T2) and g ∈ Lq(T2), where 1 ≤

p, q ≤ ∞ and 1/p+ 1/q = 1. Then fg ∈ L1(T2), and

|fg|L1(T2) ≤ |f |Lp(T2) |g|Lq(T2). (2.2.2)

Lemma 3 (Hölder’s inequality on the sphere). Suppose f ∈ Lp(S2) and g ∈ Lq(S2),

where 1 ≤ p, q ≤ ∞ and 1/p+ 1/q = 1. Then fg ∈ L1(S2), and

|fg|L1(S2) ≤ |f |Lp(S2) |g|Lq(S2). (2.2.3)

Lemma 4 (Poincaré’s inequality). Suppose u ∈ H1(X) for bounded X. Then there

exists κ0 > 0, depending only on X, such that

κ0|u|L2(X) ≤ |∇u|L2(X). (2.2.4)

For X = T2 and u such that
∫
T2 u = 0, the Poincaré constant κ0 is given by

κ0 := inf
u

|∇u|L2

|u|L2

= inf
u

(( ∑
k∈ZL

|k|2|uk|2)/(
∑

k∈ZL

|uk|2
))1/2

= 2π/L,

where ZL := {(2πl1/L, 2πl2/L) : (l1, l2) ∈ Z2} and uk are the Fourier coefficients of

u. The corresponding Poincaré constant for X = S2 will be computed in Chapter 4,

after a suitable expansion of v ∈ L2(S2) into its harmonics is introduced.

Lemma 5 (Agmon’s inequality in 1D). Suppose u ∈ L∞([0, 1]) ∩H1([0, 1]). Then

|u|L∞([0,1]) ≤ c1 |u|
1/2
L2([0,1])|∇u|

1/2
L2([0,1]), (2.2.5)
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where c1 = 1/π + 2.

Proof. Let γ, x ∈ [0, 1]. By the fundamental theorem of calculus,

u2(x) = u2(γ) +
∫ x

γ
(u2(y))′ dy = u2(γ) + 2

∫ x

γ
u(y)u′(y) dy.

We bound this from above as

u2(x) = u2(γ) + 2
∫ x

γ
u(y)u′(y) dy

≤ u2(γ) + 2
∫ x

γ
|u(y)u′(y)| dy

≤ u2(γ) + 2|uu′|L1([0,1])

≤ u2(γ) + 2|u|L2([0,1])|u′|L2([0,1]) by Hölder.

Integrating both sides from γ = 0 to 1 gives

u2(x) ≤
∫ 1

0
u2(γ) dγ + 2|u|2|u′|2

= |u|22 + 2|u|2|u′|2

≤ κ−1
0 |u|2|u′|2 + 2|u|2|u′|2 by Poincaré

=
(
κ−1

0 + 2
)
|u|2|u′|2.

The Poincaré constant for [0, 1] is bounded by 1/π [17], so taking the maximum

value of the left side gives

|u|2∞ ≤
(
κ−1

0 + 2
)
|u|2|u′|2

≤ (π−1 + 2)|u|2|u′|2.

We note that this one-dimensional version of the more well-known Agmon’s inequal-

ities in R2 or R3 is particularly useful when we consider zonal (i.e. independent of

x) functions. This will be made clear in the relevant chapters.

Lemma 6 (Agmon’s inequality in 2D). Suppose u ∈ L∞(T2) ∩H1(T2). Then there
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exists a constant c2(T2) such that

|u|L∞(T2) ≤ c2 |u|
1/2
L2(T2)|∆u|

1/2
L2(T2). (2.2.6)

There are many different interpolation inequalities that are useful for bounding

functions in Sobolev spaces. We will only be requiring the following for the purposes

of this thesis:

Lemma 7 (Ladyzhenskaya’s inequality). Suppose u ∈ H1(Ω), where Ω = T2 or S2.

Then there exists a constant c3(Ω) such that

|u|L4(Ω) ≤ c3 |u|
1/2
L2(Ω)|∇u|

1/2
L2(Ω). (2.2.7)

We will make extensive use of the following Gronwall-type inequality ([13], [18]):

Lemma 8. Let ρ be a locally integrable real function on (0,∞) such that

lim inf
t→∞

∫ t+1

t
ρ(τ) dτ > 0, (2.2.8)

lim sup
t→∞

∫ t+1

t
ρ−(τ) dτ <∞, (2.2.9)

where ρ− := max{−ρ, 0}. Also, let σ be a real locally integrable function on (0,∞)

such that

lim
t→∞

∫ t+1

t
σ+(τ) dτ = 0, (2.2.10)

where σ+ := max{σ, 0}. Suppose ξ is an absolutely continuous non-negative function

on (0,∞) such that

d
dtξ + ρξ ≤ σ almost everywhere on (0,∞).

Then ξ(t)→ 0 as t→∞.

We also often use the following integral inequality.

Lemma 9. Let ν > 0 be fixed and u(t) ≥ 0. Suppose that for any t ≥ 1, we have

∫ t

0
u(τ)eν(τ−t) dτ ≤M.
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Then for any t > 0,

∫ t+1

t
u(τ) dτ ≤

∫ t+1

t
eν(τ−t)u(τ) dτ ≤

∫ t+1

0
eν(τ−t)u(τ) dτ ≤ eνM. (2.2.11)





Chapter 3

Determining modes on the

periodic β-plane

In this chapter we prove our main result concerning the number of determining

modes on the rotating torus T2 = [0, L] × [−L/2, L/2]. We outline the existing

theory on the modes for the Navier–Stokes equations in Section 3.1.2, which will

become the basis for Chapter 4 also. We then introduce the zonal and non-zonal

components of the vorticity in Section 3.2, as well as citing a useful control on the

non-zonal vorticity from [7]. Combining these two elements together, we state and

prove our result on the number of determining modes in Section 3.4.

Whilst the β-plane is an approximation of the sphere, we will see later in Chapter 4

that our results on the periodic plane and the sphere are of the same order.

3.1 Statement of the problem

We derive the vorticity form of the Navier–Stokes equations below, which is both

more convenient for our purposes and more useful for numerical simulations. We

recall that when there is no ambiguity, we may write | · |p = | · |Lp , | · | = | · |L2 and

(·, ·) = (·, ·)L2 .
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3.1.1 Vorticity form

We recall the β-plane approximation of the Navier–Stokes equations:

∂tv + v · ∇v + βyv⊥ +∇p = µ∆v + fv, (3.1.1)

∇ · v = 0.

By Hodge’s decomposition theorem (see [19]), v can be written as

v = ∇ϕ+∇⊥ψ + H , (3.1.2)

where ϕ, ψ are scalars and H is a (curl-free and divergence-free) harmonic vector

field. Since ∇ · v = 0, taking the divergence of (3.1.2) gives

0 = ∇ · v = ∇ · ∇ϕ+∇ · ∇⊥ψ +∇ ·H

= ∆ϕ. (3.1.3)

Expanding ∆ϕ in Fourier series leads to

∆ϕ(x, t) = −
∑

k∈ZL

|k|2ϕkeik·x = 0, (3.1.4)

where we recall ZL := {(2πl1/L, 2πl2/L) : (l1, l2) ∈ Z2}. This implies that ϕk = 0

for k 6= 0, thus

ϕ(x, t) =
∑

k∈ZL

ϕkeik·x = ϕ(0,0)(t), (3.1.5)

implying that ϕ is constant in x, i.e. ∇ϕ = 0. Hence (3.1.2) becomes

v = ∇⊥ψ + H . (3.1.6)

There are exactly two independent harmonic vector fields in T2, which we can take

to be the constant vector fields ex and ey ([19]). Without loss of generality (see

[20]), we can take H = 0, which is equivalent to

∫
T2

v(x, t) dx = 0 ∀t ≥ 0, (3.1.7)
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which we assume. Consequently, we also require

∫
T2
fv(x, t) dx = 0 ∀t ≥ 0. (3.1.8)

With these assumptions, v is determined uniquely from ω.

Requiring compatibility of the βyv⊥ term over the periodic domain implies the

following natural symmetries, which we also assume:

v1(x,−y, t) = v1(x, y, t), (3.1.9)

v2(x,−y, t) = −v2(x, y, t), (3.1.10)

where we recall that v1 denotes the x component of v and similarly for v2. Together

with periodicity, (3.1.10) implies that

v2(x,−L/2, t) = −v2(x, L/2, t) = 0. (3.1.11)

We impose analogous symmetries on fv, which we assume to be time-independent:

fv1(x,−y) = fv1(x, y), (3.1.12)

fv2(x,−y) = −fv2(x, y). (3.1.13)

With these assumptions, we take the curl∇⊥· of (3.1.1), where∇⊥·v = ∂xv2−∂yv1 =:

ω is the scalar vorticity:

∇⊥ · ∂tv +∇⊥ · (v · ∇v) + β∇⊥ · (yv⊥) +∇⊥ · ∇p = µ∇⊥ · (∆v) +∇⊥ · fv. (3.1.14)

The first term becomes

∇⊥ · ∂tv = ∂x(∂tv)2 − ∂y(∂tv)1 = ∂t(∂xv2 − ∂yv1) = ∂tω. (3.1.15)

The second term of (3.1.14) is given by

∇⊥ · (v · ∇v) = ∇⊥ · (v1∂x + v2∂y, (v1, v2))

= ∂x(v1∂xv2 + v2∂yv2)− ∂y(v1∂xv1 + v2∂yv1)

= −∂yv1(∂xv1 + ∂yv2) + ∂xv2(∂xv1 + ∂yv2)
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+ v1∂x(∂xv2 − ∂yv1) + v2∂y(∂xv2 − ∂yv1)

= v1∂x(∂xv2 − ∂yv1) + v2∂y(∂xv2 − ∂yv1)

(since ∂xv1 + ∂yv2 = 0 by (3.1.1))

= ∂xψ ∂yω − ∂yψ ∂xω =: ∂(ψ, ω), (3.1.16)

where ψ := ∆−1ω is the streamfunction defined uniquely by
∫
T2 ψ = 0. The Jacobian

∂(·, ·) has the properties that

(∂(a, b), b) =
∫
T2

(∂xa ∂yb− ∂ya ∂xb) b dx

=
∫
T2

(−∂y(a ∂xb) + a ∂2
xyb+ ∂x(a ∂yb)− a ∂2

xyb) b dx

=
∫
T2

(
−∂y(a ∂xb)− ∂x(a ∂yb)

)
b dx

=
∫
T2

(−a ∂xb ∂yb+ a ∂yb ∂xb) dx by integration by parts

= 0, (3.1.17)

and

(∂(a, b), c) =
∫
T2

(∂xa ∂yb− ∂ya ∂xb) c dx

=
∫
T2

(
−∂y(a ∂xb) + ∂x(a ∂yb)

)
c dx

=
∫
T2

(a ∂xb ∂yc− a ∂yb ∂xc) dx = (∂(b, c), a)

= (∂(c, a), b) by symmetry (3.1.18)

for all real a, b and c such that their integrals over T2 vanish and the expressions

above are defined. To compute the third term of (3.1.14), we first replace y by the

periodic extension of

Y (y) =


1 if y = −L/2

y otherwise.

Taking the (distributional) curl of Y v⊥ gives

∇⊥ · (Y v⊥) = Y∇⊥ · v⊥ + v⊥ · ∇⊥Y = Y∇ · v + v⊥ · ∇⊥Y = v2Y
′, (3.1.19)
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where Y ′(y) = 1 − Lδ(y − L/2) is the distributional derivative, with δ being the

Dirac distribution, and the third equality follows from (3.1.1b). We note that (3.1.11)

implies that Y ′(L/2) v2(x, L/2, t) = 0, so we can replace v2Y
′ in (3.1.19) by v2. Thus,

the third term of (3.1.14) becomes

κ0

ε
v2 = κ0

ε
∂xψ, (3.1.20)

where κ0/ε := β. The pressure term of (3.1.14) becomes, by the properties of the

curl and gradient,

∇⊥ · ∇p = 0. (3.1.21)

The first term on the right hand side of (3.1.14) becomes

µ∇⊥ · (∆v) = µ∆∇⊥ · v = µ∆ω, (3.1.22)

due to the commutativity of the Laplacian and the curl. Finally, we define the

forcing on vorticity by

f := ∇⊥ · fv = ∂xfv2 − ∂yfv1 , (3.1.23)

which inherits the time-independence of fv. Putting all these terms together, we

obtain the vorticity form of the two-dimensional β-plane approximation of the Navier–

Stokes equations:

∂tω + ∂(ψ, ω) + κ0

ε
∂xψ = µ∆ω + f. (3.1.24)

We also note that due to the property of the curl, (3.1.7) implies

∫
T2
ω(x, t) dx = 0 ∀t ≥ 0. (3.1.25)

3.1.2 Theory of determining modes

In this section, we formally introduce and define the determining modes of the

Navier–Stokes equations. Having derived the vorticity form, we now consider two

solutions ω, ω] (with corresponding streamfunctions ψ, ψ]) of (3.1.24) with the same
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forcing and possibly different initial conditions:

∂tω + ∂(ψ, ω) + κ0

ε
∂xψ = µ∆ω + f, (3.1.26)

∂tω
] + ∂(ψ], ω]) + κ0

ε
∂xψ

] = µ∆ω] + f. (3.1.27)

We note that our assumption on the forcing is slightly stronger than that made by

Foias and Temam, in that we assume the forcings are equal (i.e. fv = fv]) rather

than limt→∞ |(fv − fv])(t)| = 0. Qualitatively this does not make a difference, the

general case being a straight forward extension; we have made the assumption purely

for simplicity. By defining δω := ω − ω] and δψ := ψ − ψ], we note that

∂(ψ, ω)− ∂(ψ], ω]) = ∂xψ ∂yω − ∂yψ ∂xω − ∂xψ]∂yω] + ∂yψ
]∂xω

]

= ∂xψ
]∂yω − ∂xψ]∂yω] − ∂yψ]∂xω + ∂yψ

]∂xω
] + ∂xψ ∂yω

− ∂xψ]∂yω − ∂yψ ∂xω + ∂yψ
]∂xω

= ∂xψ
]∂yδω − ∂yψ]∂xδω + ∂xδψ ∂yω − ∂yδψ ∂xw

= ∂(ψ], δω) + ∂(δψ, ω).

Hence subtracting (3.1.27) from (3.1.26) gives

∂tδω + ∂(ψ], δω) + ∂(δψ, ω) + κ0

ε
∂xδψ = µ∆δω. (3.1.28)

We expand δω in terms of its Fourier coefficients δωk:

δω(x, t) =
∑

k∈ZL

δωk(t)eik·x, (3.1.29)

where we recall ZL := {(2πl1/L, 2πl2/L) : (l1, l2) ∈ Z2}. By fixing a threshold

wavenumber κ ≥ κ0, we define Pκ as the L2 projection to lower wavenumbers:

δω<(x, t) := Pκδω(x, t) :=
∑
|k|≤κ

δωk(t)eik·x, (3.1.30)

and the projection to higher modes by

δω>(x, t) := δω(x, t)− δω<(x, t) =
∑
|k|>κ

δωk(t)eik·x. (3.1.31)
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Using these definitions, we obtain the following Poincaré-type inequalities:

|δω>|2L2 =
∑
|k|>κ
|δωk|2 ≤

∑
|k|>κ

(|k|/κ)2 |δωk|2 = 1
κ2 |∇δω

>|2L2 , (3.1.32)

and an inequality in the opposite direction,

|∇δω<|2L2 =
∑
|k|≤κ
|k|2 |δωk|2 ≤

∑
|k|≤κ

κ2|δωk|2 = κ2|δω<|2L2 . (3.1.33)

It was shown by Foias and Prodi [9] that if one takes large enough κ, the behaviour

of the (non-rotational) two-dimensional Navier–Stokes equations (1.0.1) can essen-

tially be determined by the behaviour of the lower “modes”, in the sense that if

|Pκδω(t)|L2 → 0 as t → ∞, then |δω(t)|L2 → 0 also. Manley and Trève ([13] [14])

conjectured that, based on physical arguments, the minimum number of determining

modes in the general case scales as κ/κ0 ∼ G1/2
0 . Jones and Titi’s later result [12]

agrees with this:

Theorem 10 (Jones and Titi ‘93). Suppose δω satisfies (3.1.28). There exists an

absolute constant c4 such that if

κ/κ0 ≥ c4 G
1/2
0 , (3.1.34)

then

lim
t→∞
|Pκδω(t)|L2(T2) = 0 implies lim

t→∞
|δω(t)|L2(T2) = 0. (3.1.35)

Our aim for this chapter is to obtain an improved bound on this existing result,

making use of the regularising effect of rotation on the dynamics.

3.2 Zonal and non-zonal components of the

vorticity

In order to improve bounds on the number of determining modes, it can be helpful

to separate the vorticity into its zonal and non-zonal components, which we define
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by

ω̄(y, t) := 1
L

∫ L

0
ω(x, y, t) dx, (3.2.1)

ω̃(x, y, t) := ω(x, y, t)− ω̄(y, t). (3.2.2)

We also express these in Fourier space as

ω̄(y, t) =
∑
k1=0

ωk(t)eik·x, (3.2.3)

ω̃(x, t) =
∑
k1 6=0

ωk(t)eik·x. (3.2.4)

For convenience and consistency, we write

ω̄k =


ωk k1 = 0

0 otherwise,
(3.2.5)

and

ω̃k =


0 k1 = 0

ωk otherwise.
(3.2.6)

Thus ω̄ and ω̃ are orthogonal in Hm for m = 1, 2, · · · :

(ω̄, ω̃)Hm =
∑

k

|k|m ω̄k |k|mω̃k =
∑
k1=0
|k|m ω̄k |k|mω̃k +

∑
k1 6=0
|k|m ω̄k |k|mω̃k

= 0. (3.2.7)

We note that by definition, ∂xω̄ = 0, which is particularly useful when we consider

that

∂xU = ∂xV = 0 implies ∂(U, V ) = ∂xU ∂yV − ∂yU ∂xV = 0 (3.2.8)

for any U , V such that the expression is defined. We also note that ω̄ being spatially

one-dimensional allows the use of Agmon’s inequality (2.2.5).

With ω̄ and ω̃ thus defined, we state the following result by Al-Jaboori and Wiro-

soetisno [7] (using our definition of Gm), which we will use frequently. Recall that
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ν0 = µκ2
0.

Theorem 11. Assume that the initial data v(0) ∈ L2(T2) and that |∆f |L2(T2) <∞.

Then there exists a time T0(|v(0)|L2(T2)) and a constant c5(ν0) such that

|ω̃(t)|2L2(T2) + µ
∫ t+1

t
|∇ω̃(τ)|2L2(T2) dτ ≤ εM0/κ

2
0, (3.2.9)

|ω̃(t)|2L2(T2) + µ
∫ t

0
|∇ω̃(τ)|2L2(T2)eν0(τ−t) dτ ≤ εM0/κ

2
0 (3.2.10)

for all t ≥ T0, where

M0 = c5 G2G3(1 + G2
0). (3.2.11)

We note that the constants in [7] may include lengths, while ours do not, which

accounts for the extra factor of κ−2
0 . We also note that ourM0 is a slight improvement

on that given in [7], with a G2 G3 dependence instead of G2
3 . This is because the “worst”

term in the original result (in the sense of requiring the highest order Grashof number

to bound it) was |∆f |L2|∆ω|L2 , which was further bounded as |∆f |L2|∆ω|L2 ≤

c (|∆f |2L2 +|∆ω|2L2) (by Young) in order to simplify a long sum. Thus the |∆f |2L2 term

could only be bounded by G2
3 , but leaving it simply as |∆f |L2|∆ω|L2 automatically

gives us a G2 G3 bound instead.

3.3 Consequences of different forms of forcing

Finally, before stating our main result, we consider different types of zonal forcing

f̄ and their effects on the flow. We give three different examples below, which are

used often in numerical simulations.

Bandwidth-limited: f̄ = Pκf
f̄ (κf ≥ κ0), (3.3.1)

Algebraic decay: |f̄(0,k)| ≤
ν2

0 κ
s−1
0 |k|−s√

2 ζ(2 + 2s)1/2
G0 (s > 5/2), (3.3.2)

Exponential decay: |f̄(0,k)| ≤
ν2

0
2κ0

( 2γ
1 + 2γ

)1/2
eγ(1−|k|/κ0) G0 (γ > 0), (3.3.3)

where ζ(s) := ∑∞
n=1 n

−s is the Riemann zeta function. We note that the bandwidth-

limited f̄ is the conceptually important case to us; the algebraically and exponentially
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decaying cases can be considered as smoother and more “realistic”.

The requirement for (3.3.2) that s > 5/2 is purely to ensure f ∈ H2(T2), so that

we can apply Theorem 11. The precise expressions for (3.3.2) and (3.3.3) have been

chosen to guarantee that |∇−1f̄ |/(µκ0)2 ≤ G0, in order to be consistent with the

definition of the Grashof number given in (2.1.5):

|f̄(0,k)| ≤
ν2

0 κ
s−1
0 |k|−s√

2ζ(2 + 2s)1/2
G0 implies that

|∇−1f̄ |2 =
∑
k1=0
|fk|2/|k|2 ≤

∑
k∈〈2π/L〉

ν4
0 κ

2s−2
0 G2

0
2ζ(2 + 2s)|k|2s+2 = ν4

0 κ
2s−2
0 G2

0
2ζ(2 + 2s)

∑
k∈〈2π/L〉

|k|−2s−2

= ν4
0 κ

2s−2
0 G2

0
ζ(2 + 2s)

∑
k≥κ0

k−2s−2 by symmetry

≤ ν4
0 κ

2s−3
0 G2

0
ζ(2 + 2s)

∫ ∞
κ0

dk
k2s+2 = µ4 κ4

0
(2s+ 1)ζ(2 + 2s) G

2
0 ,

which leads to the bound

|∇−1f̄ |/(µκ0)2 ≤
(
(2s+ 1)ζ(2 + 2s)

)−1/2
G0 ≤ (6 ζ(2 + 2s))−1/2 G0 ≤ G0,

since ζ is decreasing in s and lims→∞ ζ(s) = 1.

Considering f̄ satisfying (3.3.3) instead,

|f̄(0,k)| ≤
ν2

0
2κ0

( 2γ
1 + 2γ

)1/2
eγ(1−|k|/κ0) G0 implies that

|∇−1f̄ |2 ≤
∑
k1=0
|fk|2/|k|2 ≤

ν4
0 G2

0
4κ2

0

( 2γ
1 + 2γ

) ∑
k∈〈2π/L〉

e2γ(1−|k|/κ0)

k2

= ν4
0 G2

0
κ2

0

(
γ

1 + 2γ

) ∑
k≥κ0

e2γ(1−|k|/κ0)

k2 by symmetry

≤ µ4κ4
0 G2

0

(
γ

1 + 2γ

)
e2γ ∑

k≥κ0

e−2γk/κ0 since k ≥ κ0

= µ4κ4
0 G2

0

(
γ

1 + 2γ

)
(1 + e−2γ + e−4γ + · · · )

= µ4κ4
0 G2

0

(
γ

1 + 2γ

)
/(1− e−2γ) ≤ µ4κ4

0 G2
0 for all γ > 0,
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leading to

|∇−1f̄ |/(µκ0)2 ≤ G0.

With these forms of f̄ in mind, we state and prove the following intermediate results.

Lemma 12. Suppose ω satisfies (3.1.24) and define ω̄<f := Pκf
ω̄, ω̄>f := ω̄ − ω̄<f

for some κf ≥ κ0. Assume ν0 = µκ2
0 < 1. Then there exists an absolute constant c∗

such that:

(a) if f̄ satisfies (3.3.1), then

∫ t

0
|∇ω̄>f |2L2(T2)eν0(τ−t) dτ ≤ 3 c∗(εM0)2/ν3

0 ; (3.3.4)

(b) if f̄ satisfies (3.3.2), then

∫ t

0
|∇ω̄>f |2L2(T2)eν0(τ−t) dτ ≤ c∗(εM0)2/ν3

0 + 8ν0

(2s+ 1)ζ(2s+ 2)

(
κ0

κf

)2s+1
G2

0 , and

(3.3.5)

(c) if f̄ satisfies (3.3.3),

∫ t

0
|∇ω̄>f |2L2(T2)eν0(τ−t) dτ ≤ c∗(εM0)2/ν3

0 +8 ν0 e2γ(1−κf/κ0) G2
0 . (3.3.6)

Proof. We begin by multiplying (3.1.26) by ω̄>f in L2:

(∂tω, ω̄>f) + (∂(ψ, ω), ω̄>f) + κ0

ε
(∂xψ, ω̄>f) = µ(∆ω, ω̄>f) + (f, ω̄>f). (3.3.7)

The first term becomes

(∂tω, ω̄>f) = (∂tω̃, ω̄>f) + (∂tω̄<f , ω̄>f) + (∂tω̄>f , ω̄>f)

= (∂tω̄>f , ω̄>f) = 1
2

d
dt |ω̄

>f |2, (3.3.8)

by the orthogonality of ω̄ and ω̃ (3.2.7). By splitting ω = ω̄+ ω̃ and ψ = ψ̄+ ψ̃, the

second term of (3.3.7) becomes

(∂(ψ, ω), ω̄>f) = (∂(ψ, ω̄), ω̄>f) + (∂(ψ, ω̃), ω̄>f)

= (∂(ω̄, ω̄>f), ψ) + (∂(ψ, ω̃), ω̄>f) by (3.1.18)

= (∂(ψ, ω̃), ω̄>f) by (3.2.8)
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= (∂(ψ̄, ω̃), ω̄>f) + (∂(ψ̃, ω̃), ω̄>f)

= (∂(ω̄>f , ψ̄), ω̃) + (∂(ψ̃, ω̃), ω̄>f) by (3.1.18)

= (∂(ψ̃, ω̃), ω̄>f) by (3.2.8). (3.3.9)

Integration by parts shows that the third term of (3.3.7) is 0:

κ0

ε
(∂xψ, ω̄>f) = κ0

ε
(∂xψ̃, ω̄>f) + κ0

ε
(∂xψ̄, ω̄>f)

= κ0

ε
(∂xψ̃, ω̄>f) since ∂xψ̄ = 0

= κ0

ε

∑
|k|>κf

k1ψ̃k ω̄k = κ0

ε

( ∑
|k|>κf

k1=0

k1ψ̃k ω̄k +
∑
|k|>κf

k1 6=0

k1ψ̃k ω̄k

)

= 0. (3.3.10)

We note the following property of the Laplacian:

(−∆u, u) = −
∫
T2
u (∂2

xxu+ ∂2
yyu) dx

= −
∫
T2
u ∂2

xxu dx−
∫
T2
u ∂2

yyu dx

=
∫
T2

(
(∂xu)2 + (∂yu)2

)
dx by integration by parts

= |∇u|2 (3.3.11)

for u ∈ H2(T2), by which the first term on the right hand side of (3.3.7) becomes

µ(∆ω, ω̄>f) = µ(∆ω̄, ω̄>f) + µ(∆ω̃, ω̄>f)

= µ(∆ω̄, ω̄>f) by (3.2.7)

= µ(∆ω̄<f , ω̄>f) + µ(∆ω̄>f , ω̄>f)

= µ(∆ω̄>f , ω̄>f) = −µ|∇ω̄>f |2. (3.3.12)

Collecting (3.3.8) to (3.3.12) gives

1
2

d
dt |ω̄

>f |2 + µ|∇ω̄>f |2 = −(∂(ψ̃, ω̃), ω̄>f) + (f, ω̄>f). (3.3.13)
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The first term on the right hand side of this can be bounded by

|(∂(ψ̃, ω̃), ω̄>f)| = |(∂(ω̄>f , ψ̃), ω̃)| by (3.1.18)

≤ |∇ψ̃|∞|ω̃|2|∇ω̄>f |2 by Hölder

≤ 2
µ
|∇ψ̃|2∞|ω̃|2 + µ

8 |∇ω̄
>f |2 by Young. (3.3.14)

Similarly, we bound the forcing term by

(f, ω̄>f) = (f̄>f , ω̄>f) ≤ |∇−1f̄>f |2|∇ω̄>f |2

≤ 2
µ
|∇−1f̄>f |2 + µ

8 |∇ω̄
>f |2. (3.3.15)

Thus (3.3.13) becomes

d
dt |ω̄

>f |2 + 3
2µ|∇ω̄

>f |2 ≤ 4
µ
|∇ψ̃|2∞|ω̃|2 + 4

µ
|∇−1f̄>f |2.

Assuming large enough t, we can use the bound on |ω̃| from Theorem 11 to give

d
dt |ω̄

>f |2 + 3
2 µ|∇ω̄

>f |2 ≤ c
εM0

ν0
|∇ψ̃|2∞ + 4

µ
|∇−1f̄>f |2.

Using Agmon’s inequality (2.2.6) on the right hand side leads to

d
dt |ω̄

>f |2 + 3
2µ|∇ω̄

>f |2 ≤ c εM0

ν0κ2
0
|∇ω̃|2 + 4

µ
|∇−1f̄>f |2.

We then apply Poincaré’s inequality (3.1.32) on the |∇ω̄>f | term on the left hand

side:
d
dt |ω̄

>f |2 + µ |ω̄>f |2 + µ

2 |∇ω̄
>f |2 ≤ c εM0

ν0κ2
0
|∇ω̃|2 + 4

µ
|∇−1f̄>f |2

and multiply by eν0t,

d
dt(e

ν0t|ω̄>f |2) + µ

2 eν0t|∇ω̄>f |2 ≤ c εM0

ν0κ2
0
|∇ω̃|2eν0t + 4

µ
eν0t|∇−1f̄>f |2,

then integrate in time and multiply by e−ν0t to obtain

|ω̄>f(t)|2 + µ

2

∫ t

0
eν0(τ−t)|∇ω̄>f |2 dτ

≤ e−ν0t|ω̄>f(0)|2 + c εM0

ν0κ2
0

∫ t

0
|∇ω̃|2eν0(τ−t) dτ + 4

µν0
|∇−1f̄>f |2
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≤ c∗(εM0)2

2 ν2
0κ

2
0

+ 4
µν0
|∇−1f̄>f |2, (3.3.16)

where we have used (3.2.10) and assumed t is large enough to absorb the |ω̄>f(0)|2

term into the (εM0)2 term, in combination with the adjusted constant c∗.

We now consider the consequences of the hypotheses (3.3.1) to (3.3.3). When f̄

satisfies (3.3.1), we have f̄>f = 0 by definition, so that (3.3.16) becomes

µ

2

∫ t

0
eν0(τ−t)|∇ω̄>f |2 dτ ≤ c∗(εM0)2

2 ν2
0κ

2
0
, (3.3.17)

where we have used Lemma 9 and dropped the first term on the left hand side. With

our assumption that ν0 < 1 and hence eν0 < 3, we arrive at

∫ t

0
eν0(τ−t)|∇ω̄>f |2 dτ ≤ 3 c∗(εM0)2/ν3

0 ,

which is (3.3.4).

When f̄ satisfies (3.3.2), we have

|∇−1f̄>f |2 =
∑
|k|>κf

k1=0

|fk|2/|k|2 ≤
∑
|k|>κf

k1=0

ν4
0 κ

2s−2
0 G2

0
2ζ(2 + 2s) |k|

−2s−2

= ν4
0 κ

2s−2
0 G2

0
2ζ(2 + 2s)

∑
|k|>κf

k1=0

|k|−2s−2

= ν4
0 κ

2s−2
0 G2

0
ζ(2 + 2s)

∑
k>κf

k−2s−2 by symmetry

≤ ν4
0 κ

2s−3
0 G2

0
ζ(2 + 2s)

∫ ∞
κf

dk
k2s+2 = ν4

0 (κ0/κf )2s+1 G2
0

(2s+ 1)ζ(2 + 2s)κ4
0
, (3.3.18)

so (3.3.16) becomes

∫ t

0
eν0(τ−t)|∇ω̄>f |2 dτ ≤ c∗ (εM0)2/ν3

0 + 8(κ0/κf )2s+1ν0

(2s+ 1)ζ(2s+ 2)G
2
0 , (3.3.19)

which is (3.3.5).

Finally, when f̄ satisfies (3.3.3),

|∇−1f̄>f |2 =
∑
|k|>κf

k1=0

|fk|2/|k|2 ≤
∑
|k|>κf

k1=0

ν4
0 G2

0
4κ2

0

( 2γ
1 + 2γ

)e2γ(1−|k|/κ0)

|k|2
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=
∑
k>κf

ν4
0 G2

0
κ2

0

(
γ

1 + 2γ

)e2γ(1−k/κ0)

k2 by symmetry

≤ ν4
0 G2

0
κ4

0

(
γ

1 + 2γ

) ∑
k>κf

e2γ(1−k/κ0) since k > κf ≥ κ0

≤ ν4
0 G2

0
κ4

0

(
γ

1 + 2γ

)
e2γ(1−κf/κ0)(1 + e−2γ + e−4γ + · · · )

= ν4
0 G2

0
κ4

0

(
γ

1 + 2γ

)e2γ(1−κf/κ0)

1− e−2γ ≤ ν4
0
κ4

0
e2γ(1−κf/κ0) G2

0 , (3.3.20)

so (3.3.16) becomes

∫ t

0
eν0(τ−t)|∇ω̄>f |2 dτ ≤ c∗(εM0)2

ν3
0

+ 8 ν0 e2γ(1−κf/κ0)G2
0 , (3.3.21)

giving (3.3.6).

3.4 Bounds on the number of determining modes

We now have all the definitions and intermediate results required for the proof of

our main result, which we state below. We assume, as with Lemma 12, that ν0 < 1.

Theorem 13 (Determining modes for the β-plane). Let δω be the solution of (3.1.28)

with f ∈ H2(T2). Then the low modes are determining, i.e. limt→∞ |Pκδω(t)|L2(T2) =

0 implies that limt→∞ |δω(t)|L2(T2) = 0, if any of the following hold for constants c6,

c7, c8 and ε sufficiently small:

(a) if f̄ satisfies (3.3.1) and

κ/κ0 > c6 max{(εM0)1/4, (κf/κ0)3/8 G1/4
0 }; (3.4.1)

(b) if f̄ satisfies (3.3.2) and

κ/κ0 > c7 max{(εM0)1/4,G(2s+5)/(8s+14)
0 }, or (3.4.2)

(c) if f̄ satisfies (3.3.3) and

κ/κ0 > c8 max{(εM0)1/4, Fγ(ν−1/2
0 G0)3/8 G1/4

0 }, (3.4.3)

where the function Fγ is defined in (3.4.40) below.
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The smallness requirement on ε is given in (3.4.28), (3.4.35) and (3.4.41) below for f̄

satisfying (3.3.1), (3.3.2) and (3.3.3) respectively. Technically these requirements are

not essential and can be removed in exchange for adding another ε-dependent term

in the bounds (3.4.1), (3.4.2) and (3.4.3); we have chosen to include them purely to

simplify the statement of the theorem.

We note also that for large u, Fγ(u) ≈ log u/(2γ), so that the last term in (3.4.3)

scales (up to a logarithm) as G1/4
0 .

Our proof below suggests that the (εM0)1/4 bounds can be thought of as an effect

of the non-zonal f̃ and the G0 bounds as arising from the zonal f̄ . For small ε, one

may therefore consider the rotating Navier–Stokes equations as a combination of a

one-dimensional (zonal) “average” and a two-dimensional small (non-zonal) noise,

which agrees with the physical expectations [6]. It is therefore unlikely that, whilst

using our same approach, a bound with a smaller power of G0 could be obtained.

Finally it is worth noting that since we require s > 5/2 in order to apply Lemma 12,

the worst case dependence we have is of the order G5/17
0 .

Proof. We begin by multiplying (3.1.28) by δω> in L2 to obtain

(∂tδω, δω>) + (∂(ψ], δω), δω>) + (∂(δψ, ω), δω>) + κ0

ε
(∂xδψ, δω>) = (µ∆δω, δω>).

(3.4.4)

Fourier expansion shows that the κ0/ε term is 0:

κ0

ε
(∂xδψ, δω>) = κ0

ε

∑
|k|>κ

ik1δψk δωk

= −κ0

ε

∑
|k|>κ
−ik1|k|2δψkδψk

= 0 by symmetry, (3.4.5)

so that (3.4.4) becomes

1
2

d
dt |δω

>|2 + µ|∇δω>|2 = −(∂(ψ], δω), δω>)− (∂(δψ<, ω), δω>)− (∂(δψ>, ω), δω>).

(3.4.6)
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For the first term on the right hand side, (3.1.17) implies that (∂(ψ], δω>), δω>) = 0,

so

(∂(ψ], δω), δω>) = (∂(ψ], δω<), δω>). (3.4.7)

We split ω = ω̄ + ω̃ to write the last term of (3.4.6) as

(∂(δψ>, ω), δω>) = (∂(δψ>, ω̄), δω>) + (∂(δψ>, ω̃), δω>). (3.4.8)

Using (3.2.8), the first term on the right hand side of this becomes

(∂(δψ>, ω̄), δω>) = (∂(δψ̃>, ω̄), δω̃>). (3.4.9)

In order to apply the bounds we obtained in Lemma 12, we write ω̄ = ω̄<f + ω̄>f ,

where ω̄<f = Pκf
ω̄ and ω̄>f = ω̄ − ω̄<f . Now (3.4.9) becomes

(∂(δψ̃>, ω̄), δω̃>) = (∂(δψ̃>, ω̄<f), δω̃>) + (∂(δψ̃>, ω̄>f), δω̃>). (3.4.10)

We thus expand (3.4.6) as

1
2

d
dt |δω

>|2 + µ|∇δω>|2

=− (∂(ψ], δω<), δω>)− (∂(δψ<, ω), δω>)− (∂(δψ>, ω̃), δω>)

− (∂(δψ̃>, ω̄<f), δω̃>)− (∂(δψ̃>, ω̄>f), δω̃>). (3.4.11)

We bound the first two terms on the right hand side by

|(∂(ψ], δω<), δω>)| = |(∂(δω>, ψ]), δω<)| by (3.1.18)

≤ |∇ψ]|∞|∇δω>|2|δω<|2 by Hölder

≤ 4
µ
|∇ψ]|2∞|δω<|22 + µ

16 |∇δω
>|22 by Young, (3.4.12)

and

|(∂(δψ<, ω), δω>)| = |(∂(δω>, δψ<), ω)|

≤ |∇δω>|2|∇δψ<|∞|ω|2

≤ 4
µ
|∇δψ<|2∞|ω|22 + µ

16 |∇δω
>|22. (3.4.13)



32 Chapter 3. Determining modes on the periodic β-plane

The third term on the right hand side of (3.4.11) can be bounded as

|(∂(δψ>, ω̃), δω>)| ≤ |∇δψ>|∞|∇ω̃|2|δω>|2

≤ c |∇δψ>|1/2|∇δω>|1/2|δω>||∇ω̃| by (2.2.6)

≤ c

κ
|∇δω>||δω>||∇ω̃| by (3.1.32)

≤ µ

16 |∇δω
>|2 + c

µκ2 |∇ω̃|
2|δω>|2, (3.4.14)

and the fourth term as

|(∂(δψ̃>, ω̄<f), δω̃>)| = |(∂(δψ̃>,∇ω̄<f),∇δψ̃>)| by integration by parts

≤ c |∆ω̄<f |∞|∇δψ>|22

≤ c
κ

1/2
0
κ2 |∆ω̄

<f |1/2|∇3ω̄<f |1/2|δω>|2 by (3.1.32) and (2.2.5)

≤ c
(κ0κ

3
f )1/2

κ3 |∇ω̄<f | |δω>| |∇δω>| by (3.1.33)

≤ µ

16 |∇δω
>|2 + c

κ0κ
3
f

µκ6 |∇ω|
2|δω>|2. (3.4.15)

We bound the final term of (3.4.11) by

|(∂(δψ>, ω̄>f), δω>)| = |(∂(δω>, δψ>), ω̄>f)|

≤ |∇δω>|2|∇δψ>|2|ω̄>f |∞

≤ c κ
1/2
0 |ω̄>f |1/2|∇ω̄>f |1/2|∇δω>||∇δψ>| by (2.2.5)

≤ c
(
κ0

κf

)1/2
|∇ω̄>f ||∇δω>||∇δψ>| by (3.1.32)

≤ c

κ

(
κ0

κf

)1/2
|∇ω̄>f | |∇δω>| |δω>| by (3.1.32)

≤ µ

16 |∇δω
>|2 + c

µκ2
κ0

κf
|∇ω̄>f |2|δω>|2 by Young. (3.4.16)

Collating these and rearranging, we arrive at

d
dt |δω

>|2 + µ |∇δω>|2 ≤ 8
µ
|∇ψ]|2∞|δω<|2 + 8

µ
|∇δψ<|2∞|ω|2 + c

µκ2 |∇ω̃|
2|δω>|2

+ c
κ0κ

3
f

µκ6 |∇ω|
2|δω>|2 + c κ0

µκ2κf
|∇ω̄>f |2|δω>|2.
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Applying (3.1.32) on the |∇δω>|2 term on the left hand side and rearranging gives

d
dt |δω

>|2 + |δω>|2
(
µκ2 − c

µκ2 |∇ω̃|
2 − c

κ0κ
3
f

µκ6 |∇ω|
2 − c κ0

µκ2κf
|∇ω̄>f |2

)
≤ 8
µ
|∇ψ]|2∞|δω<|2 + 8

µ
|∇δψ<|2∞|ω|2. (3.4.17)

We now apply Lemma 8, with

ρ = µκ2 − c

µκ2 |∇ω̃|
2 −

c κ0κ
3
f

µκ6 |∇ω|
2 − c κ0

µκ2κf
|∇ω̄>f |2,

σ = 8
µ

(|∇ψ]|2∞|δω<|2 + |∇δψ<|2∞|ω|2),

ξ = |δω>|2, (3.4.18)

i.e. ρ is the bracket on the left hand side of (3.4.17) and σ is the right hand side. In

order to validate that the hypothesis of the lemma concerning σ is met, we quote

the following result from [7], which give bounds on the derivatives of the vorticity:

|∇mω(t)|2L2(T2) +µ
∫ t

0
|∇m+1ω|2L2(T2)eν0(τ−t) dτ ≤ c(m)G

2
m(1 + c′(m)ν2

0G2
0)m

(µκ0)2m−2 (3.4.19)

for all t ≥ Tm(|v(0)|, |∇m−1f |;µ); we note that the bounds themselves are independ-

ent of the initial data. Thus the hypothesis concerning σ is met because |∇ω| is

bounded when integrated over time and |δω<(t)| → 0 as t → ∞ by construction

(since finite-dimensional norms are equivalent).

The hypothesis on ξ holds since the regularity of the 2D Navier–Stokes equations dir-

ectly implies that |ω| has a continuous derivative. We therefore need the hypothesis

on ρ to be fulfilled, which would follow from

lim sup
t→∞

∫ t+1

t

( 1
µκ2 |∇ω̃|

2 +
κ0κ

3
f

µκ6 |∇ω|
2 + κ0

µκ2κf
|∇ω̄>f |2

)
dτ < cµκ2, (3.4.20)

which in turn is implied by

lim sup
t→∞

∫ t+1

t
|∇ω̃|2 dτ < c µ2κ4, (3.4.21)

lim sup
t→∞

∫ t+1

t
|∇ω|2 dτ < cµ2κ8

κ0κ3
f

, and (3.4.22)

lim sup
t→∞

∫ t+1

t
|∇ω̄>f |2 dτ < c µ2κ4κf

κ0
. (3.4.23)
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For the first of these conditions, we recall that (3.2.9) implies

∫ t+1

t
|∇ω̃|2 dτ ≤ εM0/ν0,

so (3.4.21) follows when

κ/κ0 > c (εM0/ν
3
0)1/4. (3.4.24)

By (3.4.19), the second condition (3.4.22) is implied when

cG2
0ν0 < µ2κ8/(κ0κ

3
f ) ⇐⇒ κ/κ0 > c ν

−1/8
0 (κf/κ0)3/8G1/4

0 . (3.4.25)

In order for (3.4.23) to be fulfilled, we first consider the case when f̄ satisfies (3.3.1).

Recalling (3.3.4), we apply Lemma 9, so that

∫ t+1

t
|∇ω̄>f |2 dτ ≤ c (εM0)2/ν3

0 , (3.4.26)

i.e. (3.4.23) is met when

κ/κ0 > c (εM0)1/2ν
−5/4
0 (κ0/κf )1/4. (3.4.27)

This bound is weaker than that of (3.4.24) when

εM0 ≤ c ν2
0(κf/κ0), (3.4.28)

which we will assume. Combining (3.4.24), (3.4.25) and (3.4.27), we arrive at (3.4.1).

When f̄ instead satisfies (3.3.2), we apply Lemma 9 to (3.3.5) to obtain

∫ t+1

t
|∇ω̄>f |2 dτ ≤ c (εM0)2/ν3

0 + c cζ(s)ν0(κ0/κf )2s+1 G2
0 =: I1 (3.4.29)

where 1/cζ(s) := (2s + 1)ζ(2s + 2). Thus (3.4.23) would be satisfied when I1 <

cµ2κ4(κf/κ0). Analogously to what we did to (3.4.20), this is implied by

(κ/κ0)4 > c (εM0)2ν−5
0 (κ0/κf ), and (3.4.30)

(κ/κ0)4 > c cζ(s) ν−1
0 (κ0/κf )2s+2 G2

0 . (3.4.31)
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Since both (3.4.22) and (3.4.31) must be met, we equate these bounds to find

(κf/κ0)2s+7/2 = c cζ(s)ν−1/2
0 G0 (3.4.32)

which fixes κf , turning both (3.4.22) and (3.4.31) to

κ/κ0 > c (cζ(s)3/2ν
−(s+5/2)
0 G2s+5

0 )1/(8s+14). (3.4.33)

Using κf determined in (3.4.32), (3.4.30) becomes

κ/κ0 > cs (εM0)1/2ν
−5/4+1/(16s+28)
0 G−1/(8s+14)

0 (3.4.34)

where cs = c cζ(s)−1/(8s+14), noting that since we require s > 5/2, the exponent of G0

lies between −1/34 and 0, giving a weak dependence. This bound is dominated by

that of (3.4.24) when

εM0 ≤ c c−4
s ν

2−1/(4s+7)
0 G2/(4s+7)

0 . (3.4.35)

Assuming this, (3.4.2) follows from (3.4.24) and (3.4.33).

Finally, when f̄ satisfies (3.3.3), Lemma 9 and (3.3.6) imply that

∫ t+1

t
|∇ω̄>f |2 dτ ≤ c (εM0)2/ν3

0 + c ν0 e2γ(1−κf/κ0) G2
0 . (3.4.36)

As in the previous case, (3.4.23) would be satisfied if the following both hold:

(κ/κ0)4 > c (εM0)2ν−5
0 (κ0/κf ), and (3.4.37)

(κ/κ0)4 > c ν−1
0 e2γ(1−κf/κ0)(κ0/κf )G2

0 . (3.4.38)

Equating (3.4.25) and (3.4.38) gives

(κf/κ0)5/2 e2γ(κf/κ0−1) = cγ ν
−1/2
0 G0, (3.4.39)

which can be inverted to give

κf/κ0 = Fγ(G0/ν
1/2
0 ) where F−1

γ (y) = y5/2e2γ(y−1)/cγ. (3.4.40)
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With κf thus fixed, (3.4.24) would dominate (3.4.37) when

εM0 ≤ c ν2
0(κf/κ0). (3.4.41)

Assuming this, (3.4.3) follows from (3.4.24) and (3.4.25).



Chapter 4

Determining modes on the sphere

In this chapter, we state and prove our theorem concerning the number of determ-

ining modes on the sphere. We begin by introducing the necessary definitions and

properties of functions over S2 in Section 4.1, followed by deriving the spherical

equivalent of Lemma 12 in Section 4.3. With these results established, we prove our

theorem in Section 4.4.

One could argue that due to the more “realistic” nature of the domain, this chapter

is more useful in practical applications. We also note, however, that despite the

β-plane of the previous chapter being an approximation of the sphere, the results of

the two chapters are of the same order, supporting our argument that the β-plane

is a good approximation for our purposes.

4.1 Definitions and inequalities on the sphere

We begin by defining our coordinate system. The unit sphere is defined by S2 :=

{(θ, φ, r = 1) : θ ∈ [0, π], φ ∈ [0, 2π)}, where θ is the polar angle or latitude (with

θ = 0 corresponding to the north pole) and φ is the azimuth angle or longitude.

The corresponding Jacobian (determinant) is sin θ, so that the integral of a scalar
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function u over the sphere is

∫
S2
u dA :=

∫ π

0

∫ 2π

0
u(θ, φ) sin θ dφ dθ.

We recall that when there is no room for confusion, we use the notation | · | = | · |L2 ,

| · |p = | · |Lp and (·, ·) = (·, ·)L2 .

The spherical gradient, Laplacian, curl and covariant derivative are given by

∇u = ∂θu eθ + 1
sin θ ∂φu eφ,

∆u = 1
sin2 θ

∂2
φφu+ 1

sin θ ∂θ(sin θ ∂θu),

(∇× u) · er = (∂θ(sin θ uφ)− ∂φuθ)/ sin θ) er,

∇uv = (u · ∇)v

= (uθ ∂θvθ + uφ∂φvθ/ sin θ) eθ + (uθ ∂θvφ + uφ ∂φvφ/ sin θ) eφ,

where eθ = cos θ cosφ ex + cos θ sinφ ey − sin θ ez, eφ = − sinφ ex + cosφ ey and

er = sin θ cosφ ex + sin θ sinφ ey + cos θ ez are the unit vectors in the corresponding

directions. Thus integration by parts leads to the following identity:

(u,−∆u)L2 = −
∫ π

0

∫ 2π

0

1
sin θ u ∂

2
φφu dφ dθ −

∫ π

0

∫ 2π

0
u ∂θ(sin θ ∂θu) dφ dθ

=
∫ π

0

∫ 2π

0

1
sin θ |∂φu|

2 dφ dθ +
∫ π

0

∫ 2π

0
sin θ|∂θu|2 dφ dθ

= |∇u|2L2 = |(−∆)1/2u|2L2 . (4.1.1)

The Jacobian is given by

∂(ψ, ω) = 1
sin θ (∂θψ ∂φω − ∂φψ ∂θω), (4.1.2)

which, as in the planar case, satisfies the following properties:

(∂(a,b), c) =
∫ π

0

∫ 2π

0
(−∂φ(a ∂θb) + ∂θ(a ∂φb)) c dφ dθ

=
∫ π

0

∫ 2π

0
(a ∂θb ∂φc− a ∂φb ∂θc) dφ dθ by integration by parts

= (∂(b, c), a) = (∂(c, a), b) by symmetry, (4.1.3)
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and

(∂(a, b), b) = (∂(b, b), a) by (4.1.3)

= 0 by (4.1.2), (4.1.4)

for all real a, b and c such that their integrals over S2 vanish and the expressions

above are defined. We also note that for a, b such that ∂φa = ∂φb = 0, the Jacobian

simplifies to

∂(a, b) = 1
sin θ (∂θa ∂φb− ∂φa ∂θb) = 0. (4.1.5)

Analogous to Fourier expansion in the planar case, we expand u using the spherical

harmonics Ylm, following the conventions given in [21]:

u(θ, φ, t) =
∞∑
l=0

l∑
m=−l

ulm(t)Ylm(θ, φ), (4.1.6)

where Ylm is defined by

Ylm(θ, φ) =
((l −m)!(2l + 1)

4π(l +m)!

)1/2
eimφPm

l (cos θ) (4.1.7)

and the associated Legendre polynomials Pm
l are solutions to

(1− x2) d2

dx2P
m
l (x)− 2x d

dxP
m
l (x) +

(
l(l + 1)− m2

1− x2

)
Pm
l (x) = 0.

The coefficients ulm of (4.1.6) are given by

ulm(t) :=
∫
S2
u(θ, φ, t)Ylm(θ, φ) dA,

where (̄ ) denotes the complex conjugate. The operator −∆ has Ylm as its eigenfunc-

tions with corresponding eigenvalues l(l + 1):

−∆Ylm = l(l + 1)Ylm, (4.1.8)

which implies that Ylm form an orthonormal basis of L2(S2) (see [22]). Hence this

justifies the expansion in (4.1.6), because of the completeness and orthonormality of
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Ylm: ∫ π

0

∫ 2π

0
Yl1m1(θ, φ)Yl2m2(θ, φ) sin θ dφ dθ = δl1,l2δm1,m2 , (4.1.9)

where δ is the Kronecker delta.

By definition, one immediately sees that

∂φω = ∂φ

∞∑
l=0

l∑
m=−l

ωlmYlm =
∞∑
l=0

l∑
m=−l

ωlm∂φYlm =
∞∑
l=0

l∑
m=−l

imωlmYlm.

Using Ylm and (4.1.9), the inner product becomes

(u, v) =
∫ π

0

∫ 2π

0

∞∑
l=0

l∑
m=−l

ulmYlm
∞∑
l=0

l∑
m=−l

vlmYlm sin θ dφ dθ

=
∞∑
l=0

l∑
m=−l

ulmvlm (4.1.10)

for u, v ∈ L2(S2), analogous to the Cartesian case. By (4.1.1) and (4.1.8), this

implies that

|∇u|2 = (u,−∆u) =
∞∑
l=0

l∑
m=−l

l(l + 1)|ulm|2. (4.1.11)

Using spherical expansion, we obtain

|∂2
θφv|2 ≤ |(−∆)1/2∂φv|2

= −
∫
S2
∂φv ·∆∂φv sin θ dφ dθ by integration by parts

=
∞∑
l=0

l∑
m=−l

m2|vlm|2 l(l + 1) by the orthogonality of Ylm

≤
∞∑
l=0

l∑
m=−l

l2(l + 1)2|vlm|2 = |∆v|2. (4.1.12)

Finally, to conclude our collection of basic spherical properties, the Poincaré constant

κ0 is exactly
√

2 by definition:

κ0 := inf
u

|∇u|
|u|

= inf
u

(( ∞∑
l=0

l∑
m=−l

l(l + 1)|ulm|2
)
/
( ∞∑
l=0

l∑
m=−l

|ulm|2
))1/2

=
√

2.
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4.2 Statement of the problem

We recall the Navier–Stokes equations on the rotating sphere:

∂tv +∇vv + 2
ε

cos θ v⊥ +∇p = µ∆v + fv, (4.2.1)

∇ · v := 1
sin θ (∂θ(sin θ vθ) + ∂φvφ) = 0,

where 1/ε is the angular velocity at which the sphere rotates about a fixed axis and

v⊥ is v rotated by π/2.

By Hodge’s decomposition theorem (see [19]), v can be written as

v = ∇ϕ+∇⊥ψ, (4.2.2)

where ϕ and ψ are scalars. Taking the divergence of (4.2.2) gives

0 = ∇ · v = ∇ · ∇ϕ+∇ · ∇⊥ψ

= ∆ϕ, (4.2.3)

and by expansion in spherical harmonics,

∆ϕ(θ, φ, t) = −
∞∑
l=0

l∑
m=−l

l(l + 1)ϕlm(t)Ylm(θ, φ) = 0, (4.2.4)

which implies that ϕlm(t) = 0 for l 6= 0. Thus ϕ(θ, φ, t) = ϕ00(t)Y00, implying that

∇ϕ = 0.

Now, taking the curl (i.e. ∇⊥·) of (4.2.2) gives

ω := ∇⊥ · v = ∇⊥ · ∇⊥ψ = ∆ψ (4.2.5)

(where we fix ψ uniquely by requiring that
∫
S2 ψ = 0). Therefore, any sufficiently

smooth and divergence-free v can be written as v = ∇⊥ψ = ∇⊥∆−1ω.

Turning to (4.2.1), we take its curl to obtain the vorticity form:

∂tω + ∂(ψ, ω) + 2
ε
∂φψ = µ∆ω + f, (4.2.6)

where f := ∇⊥ · fv necessarily has 0 integral over S2.
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We define the determining modes on the sphere analogously to the planar case. As

in (3.1.28), we consider two solutions ω, ω] (with corresponding streamfunctions ψ,

ψ]) of (4.2.1), with the same f but different initial conditions:

∂tω + ∂(ψ, ω) + 2
ε
∂φψ = µ∆ω + f, (4.2.7)

∂tω
] + ∂(ψ], ω]) + 2

ε
∂φψ

] = µ∆ω] + f. (4.2.8)

By defining δω := ω − ω] and δψ := ψ − ψ], we have

∂(ψ, ω)− ∂(ψ], ω]) = 1
sin θ (∂θψ] ∂φδω − ∂φψ] ∂θδω + ∂θδψ ∂φω − ∂φδψ ∂θω)

= ∂(ψ], δω) + ∂(δψ, ω). (4.2.9)

Subtracting (4.2.8) from (4.2.7) thus gives

∂tδω + ∂(ψ], δω) + ∂(δψ, ω) + 2
ε
∂φδψ = µ∆δω. (4.2.10)

Then, by fixing a threshold wavenumber κ ≥ κ0, we define Pκ as the L2 projection

to lower modes:

δω<(θ, φ, t) := Pκδω(θ, φ, t) :=
∑
l≤κ

l∑
m=−l

δωlm(t)Ylm(θ, φ), (4.2.11)

and the projection to higher modes by

δω>(θ, φ, t) := δω(θ, φ, t)− δω<(θ, φ, t) =
∑
l>κ

l∑
m=−l

δωlm(t)Ylm(θ, φ). (4.2.12)

Using the definition of Pκ, we obtain the following Poincaré-type inequalities:

|δω>|2 =
∑
l>κ

l∑
m=−l

|δωlm|2 ≤
∑
l>κ

l∑
m=−l

l(l + 1)
κ2 |δωlm|2 = 1

κ2 |∇δω
>|2,

which gives

κ|δω>| ≤ |∇δω>|, (4.2.13)

and

|∇δω<|2 =
∑
l≤κ

l∑
m=−l

l(l + 1) |δωlm|2 ≤ κ(κ+ 1)
∑
l≤κ

l∑
m=−l

|δωlm|2 = κ(κ+ 1)|δω<|2,
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leading to

|∇δω<|2 ≤ c? κ
2|δω<|2, (4.2.14)

where c? = 1 + κ−1
0 = 1 + 1/

√
2.

Our aim for this chapter is to obtain an improved bound on the existing general case

result (3.1.34) on the rotating sphere, i.e. to find a tighter bound on the threshold

wavenumber κ such that |δω<(t)| → 0 implies |δω(t)| → 0. Analogously to Chapter

3, we separate the vorticity into its zonal (zero frequency) and non-zonal components,

which we define by

ω̄(θ, t) := 1
2π

∫ 2π

0
ω(θ, φ, t) dφ, and (4.2.15)

ω̃(θ, φ, t) := ω(θ, φ, t)− ω̄(θ, t). (4.2.16)

Using spherical harmonics, these are expressed as

ω̄(θ, t) =
∞∑
l=0

ωl0(θ, t)Yl0(θ, φ), and (4.2.17)

ω̃(θ, φ, t) =
∞∑
l=0

l∑
m=−l
m6=0

ωlm(θ, φ, t)Ylm(θ, φ), (4.2.18)

since ω̄ being independent of φ implies that all m 6= 0 terms in the expansion must

be 0. For convenience and consistency, we write

ω̄lm =


ωlm m = 0

0 otherwise,
(4.2.19)

and

ω̃lm =


0 m = 0

ωlm otherwise.
(4.2.20)

Thus ω̄ and ω̃ are orthogonal in Hs for s = 1, 2, · · · :

(ω̄, ω̃)Hs =
∞∑
l=0

l∑
m=−l

(l(l + 1))s ω̄lm ω̃lm
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=
∞∑
l=0

(l(l + 1))sω̄l0 ω̃l0 +
∞∑
l=0

l∑
m=−l
m 6=0

(l(l + 1))s ω̄lm ω̃lm

= 0. (4.2.21)

With ω̄ and ω̃ thus defined, we state the main result by Wirosoetisno [8], using our

definition of Gm. Recall that ν0 = µκ2
0.

Theorem 14. Assume that the initial data v(0) ∈ L2(S2) and that |∆f |L2(S2) <∞.

Then there exists a time T0(|v(0)|L2(S2)) and a constant c9(ν0) such that

|ω̃(t)|2L2(S2) + µ
∫ t+1

t
|∇ω̃(τ)|2L2(S2) dτ ≤ εM0/κ

2
0, (4.2.22)

|ω̃(t)|2L2(S2) + µ
∫ t

0
|∇ω̃(τ)|2L2(S2)eν0(τ−t) dτ ≤ εM0/κ

2
0 (4.2.23)

for all t ≥ T0, where

M0 = c9 G2G3(1 + G2
0). (4.2.24)

Again, the constants in [8] may include lengths, whereas ours are dimensionless,

which accounts for the extra factor of κ−2
0 .

4.3 Consequences of different forms of forcing

For the purposes of this chapter, we consider the below forms of zonal forcing,

modified from those mentioned in Chapter 3 for the sphere.

Bandwidth-limited: f̄ = Pκf
f̄ (κf ≥ κ0), (4.3.1)

Algebraic decay: |f̄l0| ≤
ν2

0 κ
s−1
0 (l(l + 1))−s/2√
2ζ(2 + 2s)1/2

G0 (s > 5/2), (4.3.2)

Exponential decay: |f̄l0| ≤
ν2

0√
2κ0

( 2γ
1 + 2γ

)1/2
eγ(1−l/κ0) G0 (γ > 0), (4.3.3)

where ζ(s) := ∑∞
n=1 n

−s is the Riemann zeta function. Again, the requirement for

(4.3.2) that s > 5/2 is purely to ensure that f̄ ∈ H2(S2), so that we can apply

Theorem 14. The precise expressions for (4.3.2) and (4.3.3) have been chosen to
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ensure that |∇−1f̄ |/(µκ0)2 ≤ G0, in order to be consistent with the definition of the

Grashof number given in (2.1.5):

|f̄l0| ≤
ν2

0 κ
s−1
0 (l(l + 1))−s/2√
2ζ(2 + 2s)1/2

G0 implies

|∇−1f̄ |22 =
∞∑
l=1

|fl0|2

l(l + 1) ≤
∞∑
l=1

ν4
0 κ

2s−2
0 G2

0
2ζ(2 + 2s)(l(l + 1))s+1

= ν4
0 κ

2s−2
0 G2

0
2ζ(2 + 2s)κ

−2s−2
0 + ν4

0 κ
2s−2
0 G2

0
2ζ(2 + 2s)

∞∑
l=2

(l(l + 1))−s−1

≤ µ4κ4
0 G2

0
2ζ(2 + 2s) + ν4

0 κ
2s−3
0 G2

0
2ζ(2 + 2s)

∫ ∞
κ0

(k(k + 1))−s−1 dk

≤ µ4κ4
0 G2

0
2ζ(2 + 2s) + ν4

0 κ
2s−3
0 G2

0
2ζ(2 + 2s)

∫ ∞
κ0

k−2s−2 dk

= µ4 κ4
0 G2

0
2ζ(2 + 2s) + µ4κ4

0 G2
0

2(2s+ 1)ζ(2 + 2s)

≤ µ4κ4
0 G2

0
ζ(2 + 2s) since s > 5/2, (4.3.4)

where the sum in the first line has been taken from l = 1 because our assumption

that
∫
S2 f = 0 implies that f00 = 0, by definition. Rearranging (4.3.4) thus gives

|∇−1f̄ |/(µκ0)2 ≤
(
ζ(2 + 2s)

)−1/2
G0 ≤ G0,

since ζ is decreasing in s and lims→∞ ζ(s) = 1. We also check that

|f̄l0| ≤
ν2

0√
2κ0

( 2γ
1 + 2γ

)1/2
eγ(1−l/κ0) G0 implies

|∇−1f̄ |2 =
∞∑
l=1

|fl0|2

l(l + 1)

≤ ν4
0 G2

0
κ2

0

(
γ

1 + 2γ

)
e2γ

∞∑
l=1

e−2γl/κ0

l(l + 1)

≤ µ4κ4
0 G2

0

(
γ

1 + 2γ

)
e2γ

∞∑
l=1

e−2γl/κ0 since (l(l + 1))−1 ≤ 1
2 = κ−2

0

≤ µ4κ4
0 G2

0

(
γ

1 + 2γ

)
(1 + e−2γ + e−4γ + · · · ) since κ−1

0 < 1

= µ4κ4
0 G2

0

(
γ

1 + 2γ

)
/(1− e−2γ) ≤ µ4κ4

0 G2
0 for all γ > 0,
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which implies that

|∇−1f̄ |/(µκ0)2 ≤ G0.

With these forms of f̄ in mind, we state and prove the following intermediate results.

Lemma 15. Suppose ω satisfies (4.2.6) and define ω̄<f := Pκf
ω̄, ω̄>f := ω̄ − ω̄<f

for some κf ≥ κ0. Assume ν0 = µκ2
0 < 1. Then there exists an absolute constant c∗∗

such that

(a) if f̄ satisfies (4.3.1), then

∫ t

0
|∇ω̄>f |2L2(S2)eν0(τ−t) dτ ≤ 3 c∗∗(εM0)2/ν3

0 ; (4.3.5)

(b) if f̄ satisfies (4.3.2), then

∫ t

0
|∇ω̄>f |2L2(S2)eν0(τ−t) dτ ≤ c∗∗(εM0)2/ν3

0 + 4 ν0

(2s+ 1)ζ(2s+ 2)

(
κ0

κf

)2s+1
G2

0 , or

(4.3.6)

(c) if f̄ satisfies (4.3.3),

∫ t

0
|∇ω̄>f |2L2(S2)eν0(τ−t) dτ ≤ c∗∗(εM0)2/ν3

0 + 8 ν0 e2γ(1−κf/κ0) G2
0 .

(4.3.7)

Proof. We first remark that conceptually, this proof is analogous to that of Lemma

12. The differences are purely down to the individual results and inequalities used

having planar and spherical versions (for example, Lemma 14 being the spherical

analogue of Lemma 11), and the types of forcing being defined differently. We

therefore omit individual technical details to avoid complete repetition.

We begin by multiplying (4.2.7) by ω̄>f in L2:

(∂tω, ω̄>f) + (∂(ψ, ω), ω̄>f) + 2
ε

(∂φψ, ω̄>f) = µ(∆ω, ω̄>f) + (f, ω̄>f). (4.3.8)

The first term becomes

(∂tω, ω̄>f) = 1
2

d
dt |ω̄

>f |2 (4.3.9)

by the orthogonality of ω̄<f and ω̄>f and (4.2.21). By splitting ω = ω̄ + ω̃ and
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ψ = ψ̄ + ψ̃, the second term of (4.3.8) becomes

(∂(ψ, ω), ω̄>f) = (∂(ψ, ω̃), ω̄>f) + (∂(ψ, ω̄), ω̄>f)

= (∂(ψ̃, ω̃), ω̄>f). (4.3.10)

Integration by parts shows that the third term of (4.3.8) is 0:

2
ε

(∂φψ, ω̄>f) = 2
ε

(∂φψ̃, ω̄>f) + 2
ε

(∂φψ̄, ω̄>f) = 2
ε

(∂φψ̃, ω̄>f) since ∂φψ̄ = 0

= 2
ε

∞∑
l=0

l∑
m=−l

imψ̃lmYlmω̄
>f

lmYlm

= 0 by (4.2.19), (4.2.20).

(4.3.11)

The first term on the right hand side of (4.3.8) becomes

µ(∆ω, ω̄>f) = µ(∆ω̄, ω̄>f) + µ(∆ω̃, ω̄>f)

= µ(∆ω̄, ω̄>f) by (4.2.21)

= µ(∆ω̄<f , ω̄>f) + µ(∆ω̄>f , ω̄>f)

= µ(∆ω̄>f , ω̄>f) by the orthogonality of ω̄<f and ω̄>f

= −µ|∇ω̄>f |2 by (4.1.1). (4.3.12)

Collecting (4.3.9) to (4.3.12) gives

1
2

d
dt |ω̄

>f |2 + µ|∇ω̄>f |2 = −(∂(ψ̃, ω̃), ω̄>f) + (f, ω̄>f). (4.3.13)

Assuming t is large enough, we apply Theorem 14 so that the first term on the right

hand side of this can be bounded as

|(∂(ψ̃, ω̃),ω̄>f)| = |(∂(ω̄>f , ψ̃), ω̃)| by (4.1.3)

≤ |∇ψ̃|4|ω̃|4|∇ω̄>f |2 by Hölder

≤ 2
µ
|∇ψ̃|24|ω̃|24 + µ

8 |∇ω̄
>f |2 by Young

≤ c

µ
|∇ψ̃||ω̃|2|∇ω̃|+ µ

8 |∇ω̄
>f |2 by Ladyzhenskaya
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≤ c

ν0
εM0|∇ψ̃||∇ω̃|+

µ

8 |∇ω̄
>f |2 by (4.2.22)

≤ c
εM0

ν0κ2
0
|∇ω̃|2 + µ

8 |∇ω̄
>f |2 by Poincaré. (4.3.14)

Similarly, we bound the forcing term by

(f, ω̄>f) ≤ 2
µ
|∇−1f̄>f |2 + µ

8 |∇ω̄
>f |2. (4.3.15)

Thus (4.3.13) becomes

d
dt |ω̄

>f |2 + 3
2µ|∇ω̄

>f |2 ≤ c
εM0

ν0κ2
0
|∇ω̃|2 + 4

µ
|∇−1f̄>f |2. (4.3.16)

We use the Poincaré-type inequality (4.2.13) on the |∇ω̄>f | term on the left hand

side:

d
dt |ω̄

>f |2 + ν0 |ω̄>f |2 + µ

2 |∇ω̄
>f |2 ≤ c

εM0

ν0κ2
0
|∇ω̃|2 + 4

µ
|∇−1f̄>f |2 (4.3.17)

and multiply by eν0t,

d
dt(e

ν0t|ω̄>f |2) + µ

2 eν0t|∇ω̄>f |2 ≤ c
εM0

ν0κ2
0
|∇ω̃|2eν0t + 4 eν0t

µ
|∇−1f̄>f |2. (4.3.18)

We then integrate in time and multiply by e−ν0t:

|ω̄>f(t)|2 + µ

2

∫ t

0
eν0(τ−t)|∇ω̄>f |2 dτ

≤ e−ν0t|ω̄>f(0)|2 + c
εM0

ν0κ2
0

∫ t

0
|∇ω̃|2eν0(τ−t) dτ + 4

µν0
|∇−1f̄>f |2

≤ c∗(εM0)2

2 ν2
0κ

2
0

+ 4
µν0
|∇−1f̄>f |2, (4.3.19)

where we have used (4.2.23) and assumed t is large enough for the adjusted constant

c∗ to absorb the |ω̄>f(0)|2 term into the (εM0)2 term.

We now consider the consequences of the hypotheses (4.3.1) to (4.3.3). When f̄

satisfies (4.3.1), we have f̄>f = 0 by definition, so that (4.3.19) becomes

µ

2

∫ t

0
eν0(τ−t)|∇ω̄>f |2 dτ ≤ c∗(εM0)2

2 ν2
0κ

2
0
, (4.3.20)

where we have used Lemma 9 and dropped the first term on the left hand side. With
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our assumption that ν0 < 1 and hence eν0 < 3, we arrive at

∫ t

0
eν0(τ−t)|∇ω̄>f |2 dτ ≤ 3 c∗(εM0)2/ν3

0 , (4.3.21)

which is (4.3.5).

When f̄ satisfies (4.3.2) instead, we have

|∇−1f̄>f |2 =
∞∑
l>κf

|fl0|2

l(l + 1) ≤
∞∑
l>κf

ν4
0κ

2s−2
0 (l(l + 1))−(s+1)

2ζ(2 + 2s) G2
0

= ν4
0κ

2s−2
0

2ζ(2 + 2s) G
2
0

∞∑
l>κf

(l(l + 1))−(s+1)

≤ ν4
0κ

2s−3
0

2ζ(2 + 2s) G
2
0

∫ ∞
κf

dl
(l(l + 1))s+1

(since terms in the sum are non-negative and decreasing)

≤ ν4
0κ

2s−3
0

2ζ(2 + 2s) G
2
0

∫ ∞
κf

dl
l2s+2 = µ4κ4

0 (κ0/κf )2s+1

2(2s+ 1)ζ(2 + 2s) G
2
0 , (4.3.22)

so after ignoring the first term on the left hand side, (4.3.19) becomes

∫ t

0
eν0(τ−t)|∇ω̄>f |2 dτ ≤ c∗(εM0)2/ν3

0 + 4 ν0(κ0/κf )2s+1

(2s+ 1)ζ(2s+ 2)G
2
0 , (4.3.23)

which is (4.3.6).

Finally, when f̄ satisfies (4.3.3),

|∇−1f̄>f |2 =
∞∑
l>κf

|fl0|2

l(l + 1) ≤
∞∑
l>κf

ν4
0

2κ2
0

( 2γ
1 + 2γ

)e2γ(1−l/κ0)

l(l + 1) G
2
0

≤
∞∑
l>κf

ν4
0

2κ4
0

( 2γ
1 + 2γ

)
e2γ(1−l/κ0) G2

0 since l(l + 1) > κ2
0

= ν4
0
κ4

0

(
γ

1 + 2γ

)
G2

0

∞∑
l>κf

e2γ(1−l/κ0)

≤ ν4
0
κ4

0

(
γ

1 + 2γ

)
G2

0 e2γ(1−κf/κ0)(1 + e−2γ + e−4γ + · · · )

= ν4
0
κ4

0

(
γ

1 + 2γ

)
G2

0
e2γ(1−κf/κ0)

1− e−2γ ≤ ν4
0
κ4

0
e2γ(1−κf/κ0) G2

0 , (4.3.24)

so (4.3.19) becomes

∫ t

0
eν0(τ−t)|∇ω̄>f |2 dτ ≤ c∗(εM0)2/ν3

0 + 8 ν0 e2γ(1−κf/κ0)G2
0 , (4.3.25)
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giving (4.3.7).

4.4 Bounds on the number of determining modes

We now state the main theorem for this chapter. We assume, as with Lemma 15,

that ν0 < 1.

Theorem 16 (Determining modes on the sphere). Let δω be the solution of (4.2.10)

with f ∈ H2(S2). Then the low modes are determining, i.e. limt→∞ |Pκδω(t)|L2(S2) =

0 implies that limt→∞ |δω(t)|L2(S2) = 0, if any of the following hold for constants c10,

c11, c12 and ε sufficiently small:

(a) if f̄ satisfies (4.3.1) and

κ/κ0 > c10 max{(εM0)1/4, (κf/κ0)3/8 G1/4
0 }; (4.4.1)

(b) if f̄ satisfies (4.3.2) and

κ/κ0 > c11 max{(εM0)1/4,G(2s+5)/(8s+14)
0 }; or (4.4.2)

(c) if f̄ satisfies (4.3.3) and

κ/κ0 > c12 max{(εM0)1/4, Fγ′(ν
−1/2
0 G0)3/8 G1/4

0 }, (4.4.3)

where the function Fγ′ is defined in (4.4.41) below.

As in Theorem 13, the smallness requirements on ε, which will be given in (4.4.29),

(4.4.36) and (4.4.42), are in place purely to simplify the statement of the theorem

and can be removed at the expense of longer expressions for the bounds on κ. The

function Fγ′ in (4.4.3) is, up to a multiplicative constant, equal to its planar analogue

Fγ in (3.4.3).

Proof. This proof essentially follows that of the planar case, with spherical inequal-
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ities replacing their planar analogues. We multiply (4.2.10) by δω> in L2 to obtain

(∂tδω, δω>) + (∂(ψ], δω), δω>) + (∂(δψ, ω), δω>) + 2
ε

(∂φδψ, δω>) = (µ∆δω, δω>).

(4.4.4)

Harmonic expansion shows that the 2/ε term is 0:

2
ε

(∂φδψ, δω>) = 2
ε

∞∑
l>κ

l∑
m=−l

imδψlmδω
>

lm

= −2
ε

∞∑
l>κ

l∑
m=−l

iml(l + 1) δψlmδψ>

lm

= 0 by symmetry, (4.4.5)

so

1
2

d
dt |δω

>|22 + µ|∇δω>|22 = −(∂(ψ], δω), δω>)− (∂(δψ<, ω), δω>)− (∂(δψ>, ω), δω>).

(4.4.6)

For the first term on the right hand side, (4.1.3) and (4.1.4) imply that (∂(ψ], δω>), δω>) =

0, so

(∂(ψ], δω), δω>) = (∂(ψ], δω<), δω>). (4.4.7)

We split ω = ω̄ + ω̃ to write the last term of (4.4.6) as

(∂(δψ>, ω), δω>) = (∂(δψ>, ω̄), δω>) + (∂(δψ>, ω̃), δω>). (4.4.8)

The first term on the right hand side of this becomes

(∂(δψ>, ω̄), δω>) = (∂(δψ̄>, ω̄), δω>) + (∂(δψ̃>, ω̄), δω>)

= (∂(δψ̃>, ω̄), δω>) by (4.1.5)

= (∂(δψ̃>, ω̄), δω̄>) + (∂(δψ̃>, ω̄), δω̃>)

= (∂(ω̄, δω̄>), δψ̃>) + (∂(δψ̃>, ω̄), δω̃>) by (4.1.3)

= (∂(δψ̃>, ω̄), δω̃>) by (4.1.5). (4.4.9)

In order to apply the bounds we obtained in Lemma 15, we split ω̄ = ω̄<f + ω̄>f ,
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where ω̄<f = Pκf
ω̄ and ω̄>f = ω̄ − ω̄<f . Now

(∂(δψ̃>, ω̄), δω̃>) = (∂(δψ̃>, ω̄<f), δω̃>) + (∂(δψ̃>, ω̄>f), δω̃>). (4.4.10)

Thus (4.4.6) becomes

1
2

d
dt |δω

>|2 + µ|∇δω>|2

=− (∂(ψ], δω<), δω>)− (∂(δψ<, ω), δω>)− (∂(δψ>, ω̃), δω>)

− (∂(δψ̃>, ω̄<f), δω̃>)− (∂(δψ̃>, ω̄>f), δω̃>). (4.4.11)

We bound the first two terms on the right hand side by

|(∂(ψ], δω<), δω>)| = |(∂(δω<, δω>), ψ])|

≤ |ψ]|4|∇δω<|4|∇δω>|2 by Hölder

≤ 4
µ
|ψ]|24|∇δω<|24 + µ

16 |∇δω
>|22 by Young

≤ c

µ
|ψ]||∇ψ]||∇δω<||∆δω<|+ µ

16 |∇δω
>|2 by Ladyzhenskaya, (4.4.12)

and

|(∂(δψ<, ω), δω>)| ≤ |∇δψ<|4|∇ω|2|δω>|4

≤ c

µκ0
|∇δψ<|24|∇ω|22 + cµκ0|δω>|24

≤ c

µκ0
|∇δψ<||δω<||∇ω|2 + µκ0

16 |δω
>||∇δω>| by Ladyzhenskaya

≤ c

µκ0
|∇δψ<||δω<||∇ω|2 + µ

16 |∇δω
>|2 by Poincaré. (4.4.13)

The third term on the right hand side of (4.4.11) is bounded by

|(∂(δψ>, ω̃), δω>)| ≤ |∇δψ>|4|∇ω̃|2|δω>|4

≤ c |∇δψ>|1/22 |∇δω>|1/22 |δω>|2|∇ω̃|2 by Ladyzhenskaya

≤ c

κ
|∇δω>|2|δω>|2|∇ω̃|2 by (4.2.13)

≤ µ

16 |∇δω
>|2 + c

µκ2 |∇ω̃|
2|δω>|2 by Young. (4.4.14)

The rest of the proof is almost exactly identical to that of Theorem 13; we therefore
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omit duplicate technical details. The fourth term on the right hand side of (4.4.11)

is bounded by

|(∂(δψ>, ω̄<f), δω>)| ≤ µ

16 |∇δω
>|2 +

c κ0κ
3
f

µκ6 |∇ω|
2|δω>|2. (4.4.15)

We bound the final term of (4.4.11) as

|(∂(δψ>, ω̄>f), δω>)| ≤ µ

16 |∇δω
>|2 + c κ0

µκ2κf
|∇ω̄>f |2|δω>|2. (4.4.16)

Collating these and rearranging, we arrive at

d
dt |δω

>|2 + µ |∇δω>|2 ≤ c

µ
|ψ]||∇ψ]||∇δω<||∆δω<|+ c

µκ0
|∇δψ<||δω<||∇ω|2

+ c

µκ2 |∇ω̃|
2|δω>|2 +

c κ0κ
3
f

µκ6 |∇ω|
2|δω>|2

+ c κ0

µκ2κf
|∇ω̄>f |2|δω>|2. (4.4.17)

Applying (4.2.13) on the |∇δω>|2 term on the left hand side and rearranging gives

d
dt |δω

>|2 + |δω>|2
(
µκ2 − c

µκ2 |∇ω̃|
2 −

c κ0κ
3
f

µκ6 |∇ω|
2 − c κ0

µκ2κf
|∇ω̄>f |2

)
≤ c

µ
|ψ]||∇ψ]||∇δω<||∆δω<|+ c

µκ0
|∇δψ<||δω<||∇ω|2. (4.4.18)

We apply Lemma 8, with

ρ = µκ2 − c

µκ2 |∇ω̃|
2 −

c κ0κ
3
f

µκ6 |∇ω|
2 − c κ0

µκ2κf
|∇ω̄>f |2,

σ = c

µ
|ψ]||∇ψ]||∇δω<||∆δω<|+ c

µκ0
|∇δψ<||δω<||∇ω|2,

ξ = |δω>|2, (4.4.19)

i.e. ρ is the bracket on the left hand side of (4.4.18) and σ is the right hand side. In

order to validate that the hypothesis of the lemma concerning σ is met, we quote

the following result from [8], which give bounds on the derivatives of the vorticity:

|∇mω(t)|2L2(S2) +µ
∫ t

0
|∇m+1ω|2L2(S2)eν0(τ−t) dτ ≤ c(m)G

2
m(1 + c′(m)ν2

0G2
0)m

(µκ0)2m−2 (4.4.20)

for all t ≥ Tm(|v(0)|L2(S2), |∇m−1f |L2(S2);µ). Again, these bounds themselves are
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independent of the initial data. Thus the hypothesis concerning σ is met because

|δω<(t)| → 0 as t → ∞ by construction and |∇ω| is bounded when integrated

over time (4.4.20). The hypothesis on ξ holds also due to the regularity of the 2D

Navier–Stokes equations.

We therefore need to fulfil the hypothesis on ρ, which would follow from

lim sup
t→∞

∫ t+1

t

( 1
µκ2 |∇ω̃|

2 +
κ0κ

3
f

µκ6 |∇ω|
2 + κ0

µκ2κf
|∇ω̄>f |2

)
dτ < cµκ2. (4.4.21)

This in turn is implied when all of the following are satisfied:

lim sup
t→∞

∫ t+1

t
|∇ω̃|2 dτ < c ν2

0(κ/κ0)4, (4.4.22)

lim sup
t→∞

∫ t+1

t
|∇ω|2 dτ < c ν2

0(κ/κ0)8(κ0/κf )3, and (4.4.23)

lim sup
t→∞

∫ t+1

t
|∇ω̄>f |2 dτ < c ν2

0(κ/κ0)4(κf/κ0). (4.4.24)

As before, (4.2.22) implies that the first condition follows for

κ/κ0 > c (εM0/ν
3
0)1/4. (4.4.25)

By applying Lemma 9 to (4.4.20), the second condition (4.4.23) is implied when

c ν0 G2
0 < ν2

0(κ/κ0)8(κ0/κf )3,

or equivalently, for

κ/κ0 > c ν
−1/8
0 (κf/κ0)3/8G1/4

0 . (4.4.26)

We first consider the case when f̄ satisfies (4.3.1). As in the periodic case (3.4.27),

we apply Lemma 9 to (4.3.5), so that

∫ t+1

t
|∇ω̄>f |2 dτ ≤ c (εM0)2/ν3

0 , (4.4.27)

i.e. condition (4.4.24) is met when

κ/κ0 > c (εM0)1/2ν
−5/4
0 (κ0/κf )1/4. (4.4.28)
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This bound is weaker than that of (4.4.25) when

εM0 ≤ c ν2
0(κf/κ0), (4.4.29)

which we will assume. Combining (4.4.25), (4.4.26) and (4.4.28) gives (4.4.1).

When f̄ instead satisfies (4.3.2), we apply Lemma 9 to (4.3.6) to obtain

∫ t+1

t
|∇ω̄>f |2 dτ ≤ c (εM0)2/ν3

0 + c cζ(s)ν0(κ0/κf )2s+1 G2
0 =: Is1 (4.4.30)

where 1/cζ(s) = (2s + 1)ζ(2s + 2). Thus (4.4.24) would be satisfied when Is1 <

cµ2κ4(κf/κ0). Analogously to what we did to (4.4.21), this is implied by

(κ/κ0)4 > c (εM0)2ν−5
0 (κ0/κf ), and (4.4.31)

(κ/κ0)4 > c cζ(s) ν−1
0 (κ0/κf )2s+2 G2

0 . (4.4.32)

Since both of conditions (4.4.26) and (4.4.32) must be met, we equate these bounds

to find

(κf/κ0)2s+7/2 = c cζ(s)ν−1/2
0 G0, (4.4.33)

which fixes κf , turning both (4.4.23) and (4.4.32) to

κ/κ0 > c (cζ(s)3/2ν
−(s+5/2)
0 G2s+5

0 )1/(8s+14). (4.4.34)

Using κf determined in (4.4.33), (4.4.31) becomes

κ/κ0 > cs (εM0)1/2ν
−5/4+1/(16s+28)
0 G−1/(8s+14)

0 , (4.4.35)

where cs = c cζ(s)−1/(8s+14), noting that since we require s > 5/2, the exponent of G0

lies between −1/34 and 0, giving a weak dependence. This bound is dominated by

that of (4.4.25) when

εM0 ≤ c c−4
s ν

2−1/(4s+7)
0 G2/(4s+7)

0 . (4.4.36)

Assuming this, (4.4.2) follows from (4.4.25) and (4.4.34).

Finally, when f̄ satisfies (4.3.3), Lemma 9 and (4.3.7) imply

∫ t+1

t
|∇ω̄>f |2 dτ ≤ c (εM0)2/ν3

0 + c ν0 e2γ(1−κf/κ0) G2
0 . (4.4.37)
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As in the previous case, (4.4.24) would be satisfied if the following both hold:

(κ/κ0)4 > c (εM0)2ν−5
0 (κ0/κf ) and, (4.4.38)

(κ/κ0)4 > c ν−1
0 e2γ(1−κf/κ0)(κ0/κf )G2

0 . (4.4.39)

Equating (4.4.26) and (4.4.39) gives

(κf/κ0)5/2 e2γ(κf/κ0−1) = cγ′ ν
−1/2
0 G0, (4.4.40)

which can be inverted to give

κf/κ0 = Fγ′(G0/ν
1/2
0 ) where (Fγ′)−1(y) = y5/2e2γ(y−1)/cγ′ . (4.4.41)

With κf thus fixed, (4.4.25) would dominate (4.4.38) when

εM0 ≤ c ν2
0(κf/κ0). (4.4.42)

Assuming this, (4.4.3) follows from (4.4.25) and (4.4.26).



Chapter 5

Determining nodes on the periodic

β-plane

In this chapter, we state and prove our theorem concerning the determining nodes on

the rotating torus T2 = [0, L]× [−L/2, L/2]. We begin by introducing the concept of

determining nodes, followed by existing results that have been shown for the general

(non-rotating) Navier–Stokes equations. We then prove an auxiliary lemma relating

norms of a function to its nodal values, which is of key importance to our theorem.

Finally, in Section 5.2, we prove our main result of the chapter, as well as discussing

its consequences and comparing to its modes’ analogue of Theorem 13.

Although closely related to the determining modes of Chapter 3, the nodes differ in

that they are concerned with the fluid’s velocity or vorticity in physical space, rather

than its wavenumber counterparts in Fourier space. This can make the theory more

useful in practice, for example when one takes data from physical experiments or

observations, rather than having to Fourier transform them first.

We recall the following from Chapter 3. The vorticity form of the β-plane Navier–

Stokes equations is given by

∂tω + ∂(ψ, ω) + κ0

ε
∂xψ = µ∆ω + f. (5.0.1)
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Then δω = ω − ω] satisfies

∂tδω + ∂(ψ], δω) + ∂(δψ, ω) + κ0

ε
∂xδψ = µ∆δω, (5.0.2)

where ω, ω] are solutions to (5.0.1) with the same f and different initial conditions.

We also recall the definition of the zonal and non-zonal components of the vorticity:

ω̄(y, t) := 1
L

∫ L

0
ω(x, y, t) dx, and

ω̃(x, y, t) := ω(x, y, t)− ω̄(y, t).

As in previous chapters, where there is no ambiguity, we write | · | = | · |L2 , | · |p = | · |Lp

and (·, ·) = (·, ·)L2 .

5.1 Theory of determining nodes

We explain the concept of determining nodes, introduced by and the existence of

which was proved by Foias and Temam [15], which is related to the modes presented

in Chapter 3. The set E = {x1, · · · ,xN} ⊂ T2 is said to be a set of determining

nodes if

lim
t→∞

δv(xi, t) = 0 for all i ∈ {1, · · · , N} implies lim
t→∞
|δω(t)|L2(T2) = 0.

Foias and Temam’s approach to this idea involved bounding the maximal distance

between neighbouring nodal points, in order to quantify how “dense” the points

would have to be within the domain. Slightly more recently, Jones and Titi [12] took

a different approach and derived bounds on the number of nodal points required for

the general (1.0.1) case:

Theorem 17 (Jones and Titi ‘93). Let v and v# satisfy (1.0.7). There exists an

absolute constant c13 and a set of determining nodes E = {x1, · · · ,xN} ⊂ T2, where

N ≥ c13 G0,

i.e. limt→∞ |v(xi, t)−v#(xi, t)| = 0 for i ∈ {1, · · · , N} implies limt→∞ |δω(t)|L2(T2) =
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0.

It is believed that this bound is qualitatively optimal, in the sense that it agrees with

estimates based on physical principles conjectured by Manley and Trève [14]. We will

prove improved bounds on the number of nodes, under the additional assumption

that the domain is undergoing a differential rotation.

We also require the following estimates from [12], which relate the Hs and L∞ norms

of a function to its value at the nodes.

Lemma 18. Let u ∈ H2(T2). Define

η(u) := max
1≤i≤N

|u(xi)|,

where T2 is divided into N equal squares with corners at xi, for i ∈ {1, · · · , N}.

Then

|u|2L2(T2) ≤ c14

(
L2η2(u) + L4

N2 |∆u|
2
L2(T2)

)
, (5.1.1)

|∇u|2L2(T2), |u|2L∞(T2) ≤ c14

(
Nη2(u) + L2

N
|∆u|2L2(T2)

)
, (5.1.2)

where c14 is an absolute constant.

We will give the proof below, written in a slightly different manner (and possibly

different constants) to that in [12], so that it will be easier to compare with the

analogous collocation lemma for the sphere, presented later in Chapter 6.

Proof. Let Q = [0, l] × [0, l] be a square and assume that we know the values of

v ∈ H2(Q) at the corners (0, 0), (0, l), (l, 0) and (l, l). We will obtain bounds on the

“one-dimensional” L2 norms of v over Q (i.e. norms with one variable fixed), then

use these to bound |u|L2(T2).

We first aim to integrate v ∈ H2(Q) from (0, 0) to P = (xp, yp) ∈ R := [l/2, l]×[l/2, l]

(i.e. R is the quadrant of Q furthest from (0, 0)). By the fundamental theorem of

calculus,

v2(xp, y) = v2(x, y) +
∫ xp

x
∂xv

2(x′, y) dx′, (5.1.3)
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where x ∈ [0, xp]. Integrating this with respect to x and y over the rectangle

Ωp := [0, xp]× [0, yp] gives

∫ yp

0

∫ xp

0
v2(xp, y) dx dy = |v|2L2(Ωp) +

∫ yp

0

∫ xp

0

∫ xp

x
∂xv

2(x′, y) dx′ dx dy. (5.1.4)

y = yp

y = l/2

x = xp(0, 0)

x = l/2

P
Q

Ωp

R

Figure 5.1: Illustration of R and Ωp within Q.

The left hand side of (5.1.4) is equal to

∫ yp

0

∫ xp

0
v2(xp, y) dx dy = |xp|

∫ yp

0
v2(xp, y) dy = |xp||v(xp, ·)|2L2(0,yp), (5.1.5)

where we have used the absolute value of xp to emphasize that this is the length

(xp − 0), rather than the coordinate itself. The right hand side of (5.1.4) becomes

|v|2L2(Ωp) +
∫ yp

0

∫ xp

0

∫ xp

x
∂xv

2(x′, y) dx′ dx dy

≤ |v|2L2(Ωp) + 2
∫ yp

0

∫ xp

0

∫ xp

x
|v ∂xv|(x′, y) dx′ dx dy

≤ |v|2L2(Ωp) + 2
∫ yp

0

∫ xp

0

∫ xp

0
|v ∂xv|(x′, y) dx′ dx dy

= |v|2L2(Ωp) + 2|xp||v ∂xv|L1(Ωp)

≤ |v|2L2(Ωp) + 2|xp||v|L2(Ωp)|∂xv|L2(Ωp) by Hölder

≤ 2|v|2L2(Ωp) + |xp|2|∂xv|2L2(Ωp) by Young.

(5.1.6)
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Thus applying (5.1.5) and (5.1.6) to (5.1.4) gives

|v(xp, ·)|2L2(0,yp) ≤
2
|xp|
|v|2L2(Ωp) + |xp||∂xv|2L2(Ωp). (5.1.7)

Similarly to (5.1.3) but by integrating in the y-direction instead, we have

v2(x, yp) = v2(x, y) +
∫ yp

y
∂yv

2(x, y′) dy, (5.1.8)

where y ∈ [0, yp]. By symmetry, we obtain

|v(·, yp)|2L2(0,xp) ≤
2
|yp|
|v|2L2(Ωp) + |yp||∂yv|2L2(Ωp). (5.1.9)

Equipped with (5.1.7) and (5.1.9), we integrate u from (0, 0) to (x, y) ∈ R as follows.

By the triangle inequality, we have

u(x, y)− u(0, 0) ≤ |u(x, y)− u(0, 0)| ≤ |u(x, y)− u(x, 0)|+ |u(x, 0)− u(0, 0)|,

which, after rearranging, implies that

u2(x, y) ≤ 3u2(0, 0) + 3|u(x, y)− u(x, 0)|2 + 3|u(x, 0)− u(0, 0)|2. (5.1.10)

By applying (5.1.7) to v = ∂yu, xp replaced by x and yp by y, the second term on

the right hand side of this is bounded by

|u(x, y)−u(x, 0)|2 =
∣∣∣∣∫ y

0
∂yu(x, y′)dy′

∣∣∣∣2 ≤ |∂yu(x, ·)|2L1(0,y)

≤ |1|2L2(0,y)|∂yu(x, ·)|2L2(0,y) by Hölder

= |y||∂yu(x, ·)|2L2(0,y)

≤ |l|
( 2
|x|
|∂yu|2L2([0,x]×[0,y]) + |x||∂2

xyu|2L2([0,x]×[0,y])

)
by (5.1.7)

≤ |l|
( 2
|l/2| |∂yu|

2
L2(Q) + |l||∂2

xyu|2L2(Q)

)
= 4|∂yu|2L2(Q) + |l|2|∂2

xyu|2L2(Q). (5.1.11)

Similarly, we would like to apply (5.1.9) to v = ∂xu. We note that we need to rotate

Q in order to do so, since we require yp = 0.
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P

(0, l)

(xp, 0)

Ωp

Q

R

Figure 5.2: Rotation of Q in order to define R 3 (xp, 0) and corres-
ponding Ωp.

Thus by integrating v = ∂xu from (0, l) instead of (0, 0), we bound the last term of

(5.1.10) by

|u(x, 0)−u(0, 0)|2 =
∣∣∣∣∫ x

0
∂xu(x′, 0) dx′

∣∣∣∣2 ≤ |∂xu(·, 0)|2L1(0,x)

≤ |1|2L2(0,x)|∂xu(·, 0)|2L2(0,x) by Hölder

= |l||∂xu(·, 0)|2L2(0,x)

≤ |l|
( 2
|l/2| |∂xu|

2
L2(Q) + |l||∂2

xyu|2L2(Q)

)
by (5.1.9)

= 4|∂xu|2L2(Q) + |l|2|∂2
xyu|2L2(Q). (5.1.12)

Applying (5.1.11) and (5.1.12) to (5.1.10) gives

u2(x, y) ≤ 3u2(0, 0) + 3|u(x, y)− u(x, 0)|2 + 3|u(x, 0)− u(0, 0)|2

≤ 3u2(0, 0) + 12|∂yu|2L2(Q) + 12|∂xu|2L2(Q) + 6|l|2|∂2
xyu|2L2(Q)

≤ 3u2(0, 0) + 24|∇u|2L2(Q) + 6|l|2|∂2
xyu|2L2(Q)

= 3u2(0, 0) + 24|∇u|2L2(Q) + 6|Q||∂2
xyu|2L2(Q). (5.1.13)

We integrate this over R, giving

|u|2L2(R) ≤ 3|R|u2(0, 0) + 24|R||∇u|2L2(Q) + 6|R||Q||∂2
xyu|2L2(Q). (5.1.14)
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We then “rotate” R three times and take the sum to cover Q (i.e. we integrate from

the three other nodes too, over all the quadrants):

|u|2L2(Q) ≤ 3|Q|max{u2(0, 0), u2(0, l), u2(l, 0), u2(l, l)}

+ 24|Q||∇u|2L2(Q) + 6|Q|2|∂2
xyu|2L2(Q). (5.1.15)

Now that we have bounds on |u|L2(Q), we use these to bound |u|L2(T2). We divide T2

into N equal squares Qi, i ∈ {1, · · · , N}, each of side length L/
√
N , and place the

nodes at their corners (noting that periodicity implies that we have
√
N rows and

columns of nodes, rather than
√
N + 1). We apply (5.1.15) to Q = Qi, which gives

|u|2L2(Qi) ≤ 3|Qi|η2(u) + 24|Qi||∇u|2L2(Qi) + 6|Qi|2|∂2
xyu|2L2(Qi)

= 3|Qi|η2(u) + 24L
2

N
|∇u|2L2(Qi) + 6 L

4

N2 |∂
2
xyu|2L2(Qi). (5.1.16)

Taking the sum over i ∈ {1, · · · , N} gives

|u|2L2(T2) ≤ 3|T2|η2(u) + 24L
2

N
|∇u|2L2(T2) + 6 L

4

N2 |∂
2
xyu|2L2(T2)

≤ 3|T2|η2(u) + 24L
2

N
|∇u|2L2(T2) + 3 L

4

N2 |∆u|
2
L2(T2)

= 3L2η2(u)− 24L
2

N
(u,∆u)L2(T2) + 3 L

4

N2 |∆u|
2
L2(T2) by (3.3.11)

≤ 3L2η2(u) + 24L
2

N
|u∆u|L1(T2) + 3 L

4

N2 |∆u|
2
L2(T2)

≤ 3L2η2(u) + 24L
2

N
|u|L2(T2)|∆u|L2(T2) + 3 L

4

N2 |∆u|
2
L2(T2) by Hölder,

(5.1.17)

where the second line is due to integration by parts and the periodicity of the domain:

|∂2
xyu|2 =

∫ L/2

−L/2

∫ L

0
(∂2
xyu)2 dx

=
∫ L/2

−L/2

([
∂yu ∂

2
xyu

]x=L

x=0
−
∫ L

0
∂yu ∂

3
xxyu dx

)
dy

= −
∫ L/2

−L/2

∫ L

0
∂yu ∂

3
xxyu dx

= −
∫ L

0

([
∂yu ∂

2
xxu

]y=L/2

y=−L/2
−
∫ L/2

−L/2
∂2
yyu ∂

2
xxu dy

)
dx

=
∫ L

0

∫ L/2

−L/2
∂2
xxu ∂

2
yyu dx
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≤ 1
2

∫
T2

(
(∂2
xxu)2 + 2∂2

xxu ∂
2
yyu+ (∂2

yyu)2
)

dx

= 1
2 |∆u|

2.

Thus (5.1.17) becomes

|u|2 ≤ 3L2η2(u) + 24L
2

N
|u||∆u|+ 3 L

4

N2 |∆u|
2

≤ 3L2η2(u) + 1
2 |u|

2 + 288 L
4

N2 |∆u|
2 + 3 L

4

N2 |∆u|
2 by Young,

leading to

|u|2 ≤ 6L2η2(u) + 582 L
4

N2 |∆u|
2,

which is (5.1.1). Applying this to (3.3.11) gives the first part of (5.1.2):

|∇u|2 = −(u,∆u) ≤ |u∆u|1 ≤ |u||∆u| by Hölder

≤ N

2L2 |u|
2 + L2

2N |∆u|
2 by Young

≤ N

2L2

(
6L2η2(u) + 582 L

4

N2 |∆u|
2
)

+ L2

2N |∆u|
2 by (5.1.1)

= 3Nη2(u) + 583
2
L2

N
|∆u|2.

Using Agmon’s inequality instead of (3.3.11) and following the same steps as above

gives

|u|2∞ ≤ c |u||∆u| by Agmon

≤ · · · ≤ cNη2(u) + c
L2

N
|∆u|2,

which is the second part of (5.1.2). This concludes the proof.

An alternative approach to prove the same lemma is to adapt the following lemma

from Pasciak [23] (see [24] also). The collocation operator IN describes the unique

operator that interpolates u to the equally spaced nodes of T2, via the approximation

space SN := span {eik·x : |k| ≤ 2πN/L}. It can be compared to the inverse of the

discrete Fourier transform. Our N below refers to the total number of nodal points

(as is in the entirety of the thesis), which corresponds to N2 in Pasciak’s paper.
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Lemma 19. Let IN denote the collocation operator on u ∈ L2(T2). Then there

exists an absolute constant c15 such that

|u− INu|L2(T2) ≤ c15
|T2|
N
|∆u|L2(T2). (5.1.18)

The lemma immediately implies that

∫
T2

(
u(x)− INu(x)

)2
dx = |u− INu|2 ≤ c

|T2|2

N2 |∆u|
2.

Expanding the brackets and rearranging gives

∫
T2

(
u2(x) +

(
INu(x)

)2
)

dx ≤ 2
∫
T2
|u(x)INu(x)| dx + c

|T2|2

N2 |∆u|
2

≤ 2|u||INu|+ c
|T2|2

N2 |∆u|
2 by Hölder

≤ 1
2 |u|

2 + 2|INu|2 + c
|T2|2

N2 |∆u|
2 by Young.

Removing the second term on the left hand side and rearranging again gives (see

[23] for the last inequality)

|u|2 ≤ 4 |INu|2 + c
|T2|2

N2 |∆u|
2 ≤ c |T2|η2(u) + c

|T2|2

N2 |∆u|
2,

which is exactly (5.1.1) up to a constant. As in our proof, (5.1.2) can be easily

derived from this.

5.2 Bounds on the number of determining nodes

As with our proof on the determining modes (Theorem 13), we consider different

forms of the zonal forcing f̄ , as given in (3.3.1) to (3.3.3), and the consequences they

have on the number of determining nodes.

Theorem 20 (Determining nodes on the periodic β-plane). Let δω be the solution

of (5.0.2) with f ∈ H2(T2). Then there exists a set of determining nodes E =

{x1, · · · ,xN} ⊂ T2, when
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(a) f̄ satisfies (3.3.1) and

N > c16(ν0) max
{
ε1/2M

1/2
0 , (κf/κ0)1/3 G2/3

0

}
, or (5.2.1)

(b) f̄ satisfies (3.3.2) and

N > c17(ν0, s) max
{
ε1/2M

1/2
0 , G (4s+5)/(6s+5)

0

}
or (5.2.2)

(c) f̄ satisfies (3.3.3) and

N > c18(ν0) max
{
ε1/2M

1/2
0 , F ∗γ (ν−1

0 G
2/3
0 )1/3 G2/3

0

}
, (5.2.3)

for constants c16, c17, c18, F ∗γ defined as in (5.2.27) below and sufficiently small ε.

The above-mentioned smallness requirements on ε are given in (5.2.18), (5.2.24) and

(5.2.28). We have chosen to state them later and separately from the statement of

the theorem for clarity; one could include them here in exchange for longer and more

complicated-looking bounds on N .

We note that since we will use Lemma 18 in the proof that follows, the implicit

assumption of the theorem is that N is the square of an integer.

Similarly to Theorem 13, (5.2.27) implies that F ∗γ (u) scales as log u/(2γ) for large

u, so that the second and larger (dominant) bound in (5.2.3) scales basically as

G2/3
0 log G0.

We also note immediately that these bounds are qualitatively worse than the modes’

equivalent given in Theorem 13, since one would expect N to scale as (κ/κ0)2 (this

is apparent by comparing the dimensions of N and κ/κ0), but our bounds on N

are worse. Our speculation is that this is purely due to a technical and artificial

issue such that we cannot (almost entirely) carry over the proof for the determining

modes, rather than there being a fundamental qualitative difference between the

modes and nodes.
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Proof. We begin by multiplying (5.0.2) by δω in L2:

(∂tδω, δω) + (∂(ψ], δω), δω) + (∂(δψ, ω), δω) + κ0

ε
(∂xδψ, δω) = µ(∆δω, δω). (5.2.4)

As in (3.4.5), the fourth term is 0:

κ0

ε
(∂xδψ, δω) = κ0

ε

∑
k

ik1δψkδωk

= κ0

ε

∑
k

−ik1|k|2δψkδψk = 0.

Furthermore, the second term is also 0, due to (3.1.17). Thus (5.2.4) becomes

1
2

d
dt |δω|

2 + (∂(δψ, ω), δω) = µ(∆δω, δω), (5.2.5)

of which the right hand side becomes, as in (3.3.12),

µ(∆δω, δω) = −µ|∇δω|2. (5.2.6)

By splitting the vorticity into ω = ω̄ + ω̃, the second term of (5.2.5) becomes

(∂(δψ, ω), δω) = (∂(δψ, ω̄), δω) + (∂(δψ, ω̃), δω). (5.2.7)

Similarly to (3.4.10), we further split the zonal vorticity ω̄ into ω̄ = ω̄<f + ω̄>f , where

ω̄<f = Pκf
ω̄ and ω̄>f = ω̄− ω̄<f , for some κf ≥ κ0 that we will fix later. Rearranging

(5.2.5) thus gives

1
2

d
dt |δω|

2+µ|∇δω|2 = −(∂(δψ, ω̃), δω)−(∂(δψ, ω̄<f), δω)−(∂(δψ, ω̄>f), δω). (5.2.8)

Now we choose E to be the set of N equally spaced points over T2 (i.e. arranged

in a square grid). We use (5.1.2) to bound the first term on the right hand side of

(5.2.8):

|(∂(δψ, ω̃), δω)| ≤ |∇δψ|∞|∇ω̃|2|δω|2 by Hölder

≤ cµ
N

L2 |∇δψ|
2
∞ + cL2

µN
|∇ω̃|2|δω|2 by Young

≤ cµ
N

L2

[
Nη2(∇δψ) + L2

N
|∇δω|2

]
+ cL2

µN
|∇ω̃|2|δω|2 by (5.1.2). (5.2.9)
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We then use (5.1.1) on the second term on the right hand side of (5.2.8):

|(∂(δψ, ω̄<f), δω)| ≤ |∇ω̄<f |∞|∇δψ|2|δω|2

≤ c κ
1/2
0 |∇ω̄<f |1/2|∆ω̄<f |1/2|∇δψ||δω| by Agmon

≤ c (κ0κf )1/2|∇ω̄<f ||∇δψ||δω| by (3.1.33)

≤ c (κ0κf )1/2|∇ω||∇δψ||δω|

≤ cµ
N

L4 |∇δψ|
2 + cL4

µN2κ0κf |∇ω|2|δω|2 by Young

≤ cµ
N2

L4

[
L2η2(∇δψ) + L4

N2 |∇δω|
2
]

+ cL4

µN2κ0κf |∇ω|2|δω|2 by (5.1.1).

(5.2.10)

We bound the last term of (5.2.8) as

|(∂(δψ, ω̄>f), δω)| ≤ |∇δψ|∞|∇ω̄>f |2|δω|2

≤ cµ
N

L2 |∇δψ|
2
∞ + cL2

µN
|∇ω̄>f |22|δω|22 by Young

≤ cµ
N

L2

[
Nη2(∇δψ) + L2

N
|∇δω|2

]
+ cL2

µN
|∇ω̄>f |2|δω|2 by (5.1.2).

(5.2.11)

Finally, we also apply (5.1.2) to the second term on the left hand side of (5.2.8) and

rearrange to obtain

|δω|2 ≤ c
(
Nη2(∇δψ) + L2

N
|∇δω|2

)

⇒ c µ
N

L2 |δω|
2 − cµN

2

L2 η
2(∇δψ) ≤ µ|∇δω|2. (5.2.12)

Thus putting together (5.2.8) to (5.2.12) gives

d
dt |δω|

2 + |δω|2
[
cµ
N

L2 −
cL2

µN
|∇ω̃|2 − cL4

µN2κ0κf |∇ω|2 −
cL2

µN
|∇ω̄>f |2

]

≤ cµ
N2

L2 η
2(∇δψ). (5.2.13)

We seek to apply Lemma 8 to ξ = |δω|2, ρ being the bracket on the left hand

side and σ the right hand side of (5.2.13). The hypothesis of the lemma on σ =

(cµN/L2) η2(∇δψ) is met because ∇δψ(xi, t) → 0 as t → ∞ for all i and |∇ω| is
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bounded due to (3.4.19), while that on ξ follows from the regularity of the Navier–

Stokes equations.

The hypothesis on ρ would follow immediately if

lim sup
t→∞

∫ t+1

t

(
L2

µN
|∇ω̃|2 + L4

µN2κ0κf |∇ω|2 + L2

µN
|∇ω̄>f |2

)
dτ < cµ

N

L2 ,

which is equivalent to

lim sup
t→∞

∫ t+1

t

( 1
ν0N
|∇ω̃|2 + 1

ν0N2
κf
κ0
|∇ω|2 + 1

ν0N
|∇ω̄>f |2

)
dτ < c ν0N, (5.2.14)

where we recall ν0 = µκ2
0 = 4π2µ/L2. Without any further assumptions, we would

require that each of the three terms on the left hand side satisfies the inequality

independently.

For the first term, we note that (3.2.9) implies

∫ t+1

t
|∇ω̃|2 dτ ≤ εM0/ν0,

so (5.2.14) for the |∇ω̃|2 term would be satisfied for

N2 > c εM0/ν
3
0 . (5.2.15)

For the second term, we recall from Chapter 3 that (3.4.19) implies

∫ t+1

t
|∇ω|2 dτ ≤ c ν0G2

0 ,

so the |∇ω| part of (5.2.14) is implied by

N >
c

ν
1/3
0

(
κf
κ0

)1/3
G2/3

0 . (5.2.16)

For the inequality involving |∇ω̄>f |2 in (5.2.14), we need to handle the cases separ-

ately according to the different forms of f̄ .

We consider first when f̄ satisfies (3.3.1). By (3.3.4),

∫ t+1

t
|∇ω̄>f |2 dτ ≤ c ε2M2

0/ν
3
0 ,
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so the |∇ω̄>f | part of (5.2.14) holds if

N > c εM0/ν
5/2
0 . (5.2.17)

This bound is dominated by (5.2.15) when

εM0 ≤ c ν2
0 . (5.2.18)

Assuming this, (5.2.1) follows from (5.2.15) and (5.2.16).

For f̄ instead satisfying (3.3.2), we apply Lemma 9 to (3.3.5) to remark that

∫ t+1

t
|∇ω̄>f |2 dτ ≤ c ε2M2

0/ν
3
0 + c cζ(s) ν0 (κ0/κf )2s+1 G2

0 = I1, (5.2.19)

where 1/cζ(s) = (2s + 1) ζ(2s + 2). Therefore, the |∇ω̄>f |2 part of (5.2.14) would

be satisfied if I1 ≤ c ν2
0N

2; analogously to what we did with (5.2.14), this in turn is

implied by

N2 > c (εM0)2/ν5
0 , and (5.2.20)

N2 >
c

ν0
cζ(s)(κ0/κf )2s+1 G2

0 . (5.2.21)

Since (5.2.16) and (5.2.21) must both hold, we equate these bounds (noting that

(5.2.21) scales as N2 instead of N) to find the optimal κf that will minimise the

bounds on N :

c
cζ(s)
ν0

(
κ0

κf

)2s+1
G2

0 = c

ν
2/3
0

(
κf
κ0

)2/3
G4/3

0

⇐⇒ (κf/κ0)2s+5/3 = c cζ(s) ν−1
0 G

2/3
0 . (5.2.22)

Thus fixing κf , both (5.2.16) and (5.2.21) now read

N > c (cζ(s)ν−1
0 G4s+5

0 )1/(6s+5). (5.2.23)

As with the case when f̄ satisfies (3.3.1), we compare (5.2.15) and (5.2.23) to find

that the bound given in (5.2.15) dominates for

εM0 ≤ c ν
3−2/(6s+5)
0 (cζ(s)G4s+5

0 )2/(6s+5), (5.2.24)
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which we assume, thus giving (5.2.2).

Finally we consider f̄ satisfying (3.3.3). Applying Lemma 9 to (3.3.6) gives

∫ t+1

t
|∇ω̄>f |2 dτ ≤ c (εM0)2/ν3

0 + c ν0 e2γ(1−κf/κ0) G2
0 .

As before, the |∇ω̄>f |2 part of (5.2.14) is satisfied when both of the following hold:

N2 > c (εM0)2ν−5
0 , and (5.2.25)

N2 > c ν−1
0 e2γ(1−κf/κ0) G2

0 . (5.2.26)

We equate the right hand side of (5.2.16) and (5.2.26) to obtain

c

ν0
e2γ(1−κf/κ0) G2

0 = c

ν
2/3
0

(
κf
κ0

)2/3
G4/3

0

⇐⇒ (κf/κ0)2/3 e2γ(κf/κ0−1) = c∗γ ν
−1
0 G

2/3
0 ,

which we invert to find

κf/κ0 = F ∗γ (ν−1
0 G

2/3
0 ), (5.2.27)

where (F ∗γ )−1(y) := y2/3e2γ(y−1)/c∗γ.

We compare (5.2.15) and (5.2.16) to determine that the bound given by (5.2.15)

dominates when we assume

εM0 ≤ c
(
κf
κ0

)1/3
ν

8/3
0 G

2/3
0 . (5.2.28)

This gives (5.2.3).





Chapter 6

Determining nodes on the sphere

In this chapter, we state and prove our theorem concerning the number of determining

nodes on the rotating sphere. One could argue that this is the most “applicable”

result of this thesis, in the sense that it is based on a rotating sphere (which can be

used to approximate the behaviour of the earth’s atmosphere or ocean currents, for

example), and requires knowledge of the relevant function at physical points, rather

than its harmonics, as was with the case of modes.

In order to prove our theorem, we need a spherical analogue of Lemma 18, which

requires us to choose how we allocate the nodes. We do this by triangulating the

sphere, the manner of which is described in Section 6.1. The bulk of the proof of

the auxiliary lemma is in Sections 6.2.2 and 6.2.3.

We begin by recalling the necessary definitions and results. From Chapter 4, we

recall that the vorticity form of the Navier–Stokes equations on the sphere is given

by

∂tω + ∂(ψ, ω) + 2
ε
∂φψ = µ∆ω + f. (6.0.1)

Then for ω, ω] satisfying (6.0.1) with the same forcing and different initial conditions,

δω = ω − ω] satisfies

∂tδω + ∂(ψ], δω) + ∂(δψ, ω) + 2
ε
∂φδψ = µ∆δω. (6.0.2)
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The zonal and non-zonal components of the vorticity are given by

ω̄(θ, t) := 1
2π

∫ 2π

0
ω(θ, φ, t) dφ, and

ω̃(θ, φ, t) := ω(θ, φ, t)− ω̄(θ, t).

We also recall the idea of determining nodes from Chapter 5 and adapt it to the

sphere. The set E = {x1, · · · ,xN} ⊂ S2 is said to be a set of determining nodes if

lim
t→∞

δv(xi, t) = 0 for all i ∈ {1, · · · , N} implies lim
t→∞
|δω(t)|L2 = 0.

6.1 Triangulation of the sphere

The implicit assumption on Lemma 18 was that the nodes were placed at equal

spacings within the domain. Since we evidently cannot divide S2 into squares the

same way as in the planar case, we will need to allocate the nodes in a different

manner for our spherical analogue.

Our approach is based on the icosahedral triangulation of the sphere, as follows.

At iteration 0, we place N0 = 12 nodes at the vertices of an inscribed regular

icosahedron, and project the edges to the corresponding geodesic segments on the

sphere (this is understood in what follows). The sphere is thus divided into F0 = 20

equal (spherical equilateral) triangular faces. At each successive iteration, we put

a new node in the middle of each edge, splitting the edge into two new edges, and

connect the three new vertices on each face by new edges. The number of faces at

iteration n is thus Fn = 20 · 4n, the number of edges is En = 3Fn/2 (since each face

has three edges, each of which is shared by two faces) and by Euler’s formula, the

number of nodes is Nn = 2− Fn + En = 2 + 10 · 4n.

We note that unlike the planar case, this approach implies that the faces formed

by the placement of the nodes will have different sizes, for n > 0. In particular,

the original N0 = 12 nodes will always be part of exactly five neighbouring faces,

whereas all other nodes will form part of six faces.
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n = 0 n = 1 n = 2

Figure 6.1: Subdivisions of a triangle at iteration n (not to scale).
Shaded subtriangles are equilateral.

The triangulation also has the following property:

Lemma 21. Any triangle ∆ in the icosahedral triangulation, at any level, has corner

angles that satisfy

53° ≤ ρ0, ρ1, ρ2 ≤ 73°. (6.1.1)

Geometric considerations and numerical computation suggest that the sharp bounds

are 72°, which is the angle of the triangles in the icosahedron, and 54°. We seek

instead to show (6.1.1) in order to keep the proof simple; these could be improved

to 54− and 72+ with some extra work but minimal conceptual difficulty. We defer

the proof to the end of this chapter.

6.2 Collocation lemma

We now state the analogue of Lemma 18 for the sphere. We will use similar notation

as we did in the proof of Lemma 18, in order to highlight the similarities and

differences.

Lemma 22. Let u ∈ H2(S2). Define

η(u) := max
1≤i≤N

|u(xi)|,

where xi ∈ S2, i ∈ {1, · · · , N}, are the vertices of the icosahedral triangulation of

S2, as described above. Then

|u|2L2(S2) ≤ c19

(
|S2|η2(u) + |S

2|2

N2 |∆u|
2
L2(S2)

)
, (6.2.1)
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|∇u|2L2(S2), |u|2L∞(S2) ≤ c19

(
Nη2(u) + |S

2|
N
|∆u|2L2(S2)

)
, (6.2.2)

where c19 is an absolute constant.

We note that we have chosen to leave |S2| as it is, rather than replace with |S2| = 4π,

to show how these inequalities relate to Lemma 18 and to emphasize the (length)2

dimension. The N here is the number of nodes Nn in the icosahedral triangulation,

i.e. it takes values of Nn = 2 + 10 · 4n.

The proof of Lemma 22 is split into parts as follows. In Section 6.2.1, we compute

bounds on “one-dimensional” norms (i.e. with one variable fixed) of an arbitrary

function v ∈ H2(∆∗). Here, ∆∗ is an arbitrary spherical triangle with the constraints

that its (corner) angles satisfy Lemma 21, and that its sides are no larger than those of

the n = 0 triangles (i.e. no larger than a0 = π/2− tan−1(1/2) = 1.10714871779 · · · ).

We then use these to compute an estimate for |u|L2(∆∗) in Section 6.2.2, followed by

bounds over the whole of S2 in Section 6.2.3. We conclude in Section 6.4 by proving

Lemma 21.

6.2.1 Bounds with one variable fixed

We begin by proving an intermediate result, bounding the norms of a function on

∆∗ that is fixed in one variable. We first choose our coordinates such that ∆∗ lies in

the northern hemisphere with one of its edges along the equator θ = π/2 and one

of its nodes at (θ, φ) = (π/2, 0). We denote by c = (θc, φc) the centroid of ∆∗ and

define R as the intersection of ∆∗ and the spherical sector {(θ, φ) ∈ S2 : θ ≤ θc}.

We define h as the height of ∆∗ (i.e. the geodesic distance between the top node of

∆∗ and the equator), and the (left and right) longitudes where the bottom edge of

R intersects ∆∗ by φl and φr.

Using the spherical metric, we define the one-variable norms of v over a line of

constant θ or φ as follows:

|v(·, φ′)|2L2(θ0,θ1) :=
∫ θ1

θ0

|v(θ, φ′)|2 dθ, (6.2.3)
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|v(θ′, ·)|2L2(φ0,φ1) :=
∫ φ1

φ0

|v(θ′, φ)|2 sin θ′ dφ. (6.2.4)

However, in this chapter we only apply (6.2.4) at the equator, such that we only

concern ourselves with norms of the form:

|v(π/2, ·)|2L2(φ0,φ1) =
∫ φ1

φ0

|v(π/2, φ)|2 dφ. (6.2.5)

With these assumptions, we state the following lemma, which gives an analogue of

(5.1.7) and (5.1.9) for the sphere.

Lemma 23. Let ∆∗ be a triangle satisfying (6.1.1), and suppose that the values of

v ∈ H2(∆∗) at all corners are given. Then, for any (θp, φp) ∈ R, one has

|v(·, φp)|2L2(θp,π/2) ≤
2

|φp| sin θp
|v|2L2(Ωp) + |φp|

sin θp
|∂φv|2L2(Ωp), (6.2.6)

|v(π/2, ·)|2L2(0,φp) ≤
2

cos θp
|v|2L2(Ωp) + cos θp

sin2 θp
|∂θv|2L2(Ωp), (6.2.7)

where Ωp := [θp, π/2]× [0, φp] and L2(Ωp) is defined using the spherical metric.

Ωp

R

θ = θc

(π/2, 0)
φ = φp

C

P

h

θ = θp

φ = φl
+θ

φ = φr +φ

Figure 6.2: Illustration of R and Ωp for some ∆∗.

Proof. We begin by integrating v from (π/2, 0) to P = (θp, φp) ∈ R. By the

fundamental theorem of calculus,

v2(θ, φp) = v2(θ, φ) +
∫ φp

φ
∂φv

2(θ, φ′) dφ′, (6.2.8)
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where (θ, φ) ∈ Ωp. We integrate this with respect to θ and φ over Ωp, using the

spherical metric (i.e. dA = sin θ dθ dφ):

∫ π/2

θp

∫ φp

0
v2(θ, φp) sin θ dφ dθ = |v|2L2(Ωp) +

∫ π/2

θp

∫ φp

0

∫ φp

φ
∂φv

2(θ, φ′) dφ′ sin θ dφ dθ.

(6.2.9)

Recalling the “fixed-φ” norm defined in (6.2.4), we replace sin θ by sin θp to bound

the left hand side of (6.2.9) from below by

∫ π/2

θp

∫ φp

0
v2(θ, φp) sin θ dφ dθ = |φp|

∫ π/2

θp

v2(θ, φp) sin θ dθ

≥ |φp|
∫ π/2

θp

v2(θ, φp) sin θp dθ = |φp| sin θp|v(·, φp)|2L2(θp,π/2), (6.2.10)

where the absolute value of φp has been taken to emphasize that we mean the length

(φp − 0), rather than the longitude itself. Using the spherical metric again, the right

hand side of (6.2.9) is bounded by

|v|2L2(Ωp)+
∫ π/2

θp

∫ φp

0

∫ φp

φ
∂φv

2(θ, φ′) dφ′ dθ dφ

≤ |v|2L2(Ωp) + 2
∫ π/2

θp

∫ φp

0

∫ φp

φ
|v ∂φv|(θ, φ′) dφ′ sin θ dφ dθ

≤ |v|2L2(Ωp) + 2
∫ π/2

φp

∫ φp

0

∫ φp

0
|v ∂φv|(θ, φ′) sin θ dφ′ dφ dθ

≤ |v|2L2(Ωp) + 2|φp||v|L2(Ωp)|∂φv|L2(Ωp) by Hölder

≤ 2|v|2L2(Ωp) + |φp|2|∂φv|2L2(Ωp) by Young.

(6.2.11)

We then apply (6.2.10) and (6.2.11) to (6.2.9) to obtain

|v(·, φp)|2L2(θp,π/2) ≤
2

|φp| sin θp
|v|2L2(Ωp) + |φp|

sin θp
|∂φv|2L2(Ωp), (6.2.12)

which is (6.2.6).

In the planar case, we could obtain the y-direction analogue of the bound in the

x-direction by symmetry, however we cannot do this on the sphere, due to the non-

equivalence between θ and φ and the triangular shape of the domain. We therefore

explicitly follow the steps below.
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Similarly to (6.2.8), the fundamental theorem of calculus implies that

v2(π/2, φ) = v2(θ, φ) +
∫ π/2

θ
∂θv

2(θ′, φ) dθ′, (6.2.13)

where (θ, φ) ∈ Ωp. Integrating this with respect to θ and φ over Ωp gives

∫ π/2

θp

∫ φp

0
v2(π/2, φ) sin θ dφ dθ = |v|2L2(Ωp) +

∫ π/2

θp

∫ φp

0

∫ π/2

θ
∂θv

2(θ′, φ) dθ′ sin θ dφ dθ.

(6.2.14)

The left hand side of this is equal to

∫ π/2

θp

∫ φp

0
v2(π/2, θ) sin θ dφ dθ =

∫ π/2

θp

sin θ
∫ φp

0
v2(π/2, φ) sin(π/2) dφ dθ

=
[
− cos θ

]θ=π/2
θ=θp

∫ φp

0
v2(π/2, φ) sin(π/2) dφ = cos θp |v(π/2, ·)|2L2(0,φp).

(6.2.15)

The right hand side of (6.2.14) is bounded by

|v|2L2(Ωp) +
∫ π/2

θp

∫ φp

0

∫ π/2

θ
∂θv

2(θ′, φ) dθ′ sin θ dφ dθ

≤ |v|2L2(Ωp) + 2
∫ π/2

θp

∫ φp

0

∫ π/2

θ
|v ∂θv|(θ′, φ) dθ′ sin θ dφ dθ

≤ |v|2L2(Ωp) + 2
∫ π/2

θp

∫ φp

0

∫ π/2

θp

|v ∂θv|(θ′, φ) sin θ′
sin θ′ dθ

′ dφ sin θ dθ

≤ |v|2L2(Ωp) + 2
sin θp

∫ π/2

θp

∫ φp

0

∫ π/2

θp

|v ∂θv|(θ′, φ) sin θ′ dθ′ dφ sin θ dθ

= |v|2L2(Ωp) + 2
sin θp

[
− cos θ

]θ=π/2
θ=θp

∫ π/2

θp

∫ φp

0
|v ∂θv|(θ′, φ) sin θ′ dθ′ dφ

≤ |v|2L2(Ωp) + 2 cos θp
sin θp

|v|L2(Ωp)|∂θv|L2(Ωp) by Hölder

≤ 2|v|2L2(Ωp) + cos2 θp
sin2 θp

|∂θv|2L2(Ωp) by Young.

(6.2.16)

Applying (6.2.15) and (6.2.16) to (6.2.14) thus gives (6.2.7):

|v(π/2, ·)|2L2(0,φp) ≤
2

cos θp
|v|2L2(Ωp) + cos θp

sin2 θp
|∂θv|2L2(Ωp). (6.2.17)

Using this lemma, we bound |u|L2(∆∗) in the following section.
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6.2.2 Bounds over a triangle

The main part of the proof of Lemma 22 is split over this section and Section 6.2.3.

We return to our function u ∈ H2(S2) and derive bounds over ∆∗, which depends

on values of u outside of ∆∗.

Proof of Lemma 22: We begin by integrating u from (π/2, 0) to (θ, φ) ∈ R ⊂ ∆∗.

By the triangle inequality, we have

u(θ, φ)− u(π/2, 0) ≤ |u(θ, φ)− u(π/2, φ)|+ |u(π/2, φ)− u(π/2, 0)|,

which implies that

u2(θ, φ) ≤ 3u2(π/2, 0) + 3|u(θ, φ)− u(π/2, φ)|2 + 3|u(π/2, φ)− u(π/2, 0)|2. (6.2.18)

The second term on the right hand side of this is bounded by

|u(θ, φ)− u(π/2, φ)|2 =
∣∣∣∣∫ π/2

θ
∂θu(θ′, φ) dθ′

∣∣∣∣2 ≤ |∂θu(·, φ)|2L1(θ,π/2)

≤ |1|2L2(θ,π/2)|∂θu(·, φ)|2L2(θ,π/2) by Hölder

= (π/2− θ)|∂θu(·, φ)|2L2(θ,π/2) ≤ |h||∂θu(·, φ)|2L2(θ,π/2)

≤ |h||∂θu(·, φ)|2L2(π/2−h,π/2). (6.2.19)

We apply (6.2.6) to v = ∂θu, θp replaced by our θ ∈ [π/2 − h, θc], φp being our

φ ∈ [φl, φr] and Ωp = [θ, π/2]× [0, φ] to bound this further by

|u(θ, φ)− u(π/2, φ)|2 ≤ |h||∂θu(·, φ)|2L2(π/2−h,π/2)

≤ |h|
( 2
|φ| sin θ |∂θu|

2
L2(Ωq) + |φ|

sin θ |∂
2
θφu|2L2(Ωq)

)

≤ |h|
( 2
|φl| sin(π/2− h) |∂θu|

2
L2(Ωq) + |φr|

sin(π/2− h) |∂
2
θφu|2L2(Ωq)

)
, (6.2.20)

where Ωq := [π/2 − h, π/2] × [0, φr], and the last line follows by observing that

|φ|−1 ≤ |φl|−1, 1/ sin θ ≤ 1/ sin(π/2− h) and |φ| ≤ |φr|.

Similarly, the third term on the right hand side of (6.2.18) can be bounded by using
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θ = θc

(π/2, 0)

C

h

+θ
φ = φr +φ

Ωq

Figure 6.3: Illustration of Ωq.

(6.2.7) on v = ∂φu:

|u(π/2, φ)− u(π/2, 0)|2 =
∣∣∣∣∫ φ

0
∂φu(π/2, φ′) sin(π/2) dφ′

∣∣∣∣2 ≤ |∂φu(π/2, ·)|2L1(0,φ)

≤ |1|2L2(0,φ)|∂φu(π/2, ·)|2L2(0,φ) by Hölder

≤ |φr||∂φu(π/2, ·)|2L2(0,φr)

≤ |φr|
( 2

cos θ |∂φu|
2
L2(Ωq) + cos θ

sin2 θ
|∂2
θφu|2L2(Ωq)

)
≤ |φr|

( 2
cos θc

|∂φu|2L2(Ωq) + cos(π/2− h)
sin2(π/2− h) |∂

2
θφu|2L2(Ωq)

)
, (6.2.21)

where the last line follows from noting that 1/ cos θ ≤ 1/ cos θc, cos θ ≤ cos(π/2− h)

and 1/ sin2 θ ≤ 1/ sin2(π/2 − h). Thus by using (6.2.20) and (6.2.21), (6.2.18)

becomes

u2(θ, φ) ≤ 3u2(π/2, 0) + 3|u(θ, φ)− u(π/2, φ)|2 + 3|u(π/2, φ)− u(π/2, 0)|2

≤ 3u2(π/2, 0) + 6|h|
|φl| sin(π/2− h) |∂θu|

2
L2(Ωq) + 3 |h||φr|

sin(π/2− h) |∂
2
θφu|2L2(Ωq)

+ 6|φr|
cos θc

|∂φu|2L2(Ωq) + 3 |φr| cos(π/2− h)
sin2(π/2− h) |∂2

θφu|2L2(Ωq)

≤ 3u2(π/2, 0) + 6
( |h|
|φl| sin(π/2− h) + |φr|

cos θc

)
|∇u|2L2(Ωq)

+ 3
( |h||φr|

sin(π/2− h) + |φr| cos(π/2− h)
sin2(π/2− h)

)
|∂2
θφu|2L2(Ωq). (6.2.22)
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We integrate this over R to obtain

|u|2L2(R) ≤ 3|R|u2(π/2, 0) + 6|R|
( |h|
|φl| sin(π/2− h) + |φr|

cos θc

)
|∇u|2L2(Ωq)

+ 3|R|
( |h||φr|

sin(π/2− h) + |φr| cos(π/2− h)
sin2(π/2− h)

)
|∂2
θφu|2L2(Ωq). (6.2.23)

Recalling the periodic case (5.1.15), in order to bound |u|L2(S2) we would like to

“rotate” R twice so that the union of the three Rs corresponding to the three nodes

will, by definition, cover ∆∗. We denote by R′ and R′′ the two other regions defined

analogously to R, corresponding to the different choice of node of ∆∗ being at (π/2, 0),

with Ωq′ and Ωq′′ also defined similarly. Taking the sum of (6.2.23) corresponding

to each node gives us a bound on u over ∆∗, keeping in mind that Ωq ∪ Ωq′ ∪ Ωq′′ is

not contained within ∆∗:

|u|2L2(∆∗) ≤ |u|
2
L2(R) + |u|2L2(R′) + |u|2L2(R′′)

≤ 9Rmax η
2(u) + 6Rmax

( |h∗|
|φl∗| sin(π/2− h∗)

+ |φr∗|
cos θc∗

)
·
(
|∇u|2L2(Ωq) + |∇u|2L2(Ωq′ ) + |∇u|2L2(Ωq′′ )

)
+ 3Rmax

( |h∗||φr∗|
sin(π/2− h∗)

+ |φr∗| cos(π/2− h∗)
sin2(π/2− h∗)

)
·
(
|∂2
θφu|2L2(Ωq) + |∂2

θφu|2L2(Ωq′ ) + |∂2
θφu|2L2(Ωq′′ )

)
,

where Rmax := max{|R|, |R′|, |R′′|}. The ∗ subscript denotes the (same) choice of

node such that the right hand side is maximal (i.e. h∗, φl∗, φr∗ and θc∗ individually

may not necessarily be the largest of their corresponding parameters).

Now that we have bounds on u over ∆∗, we return to our triangulation of the sphere.

We denote by ∆i, i ∈ {1, · · · , N = Nn}, the triangles covering the sphere; they can

be compared to Qi in the periodic case. For fixed x ∈ S2, we choose our ∆∗ to

be the ∆i containing x. Then Ωq is covered by the union of at most 6 other ∆i,

i.e. Ωq ⊆ ∪6
i=1∆i (via a possible relabelling of the indices). We “rotate” R twice

(i.e. define R′ and R′′ as before) and take the sums of their corresponding forms of
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Ωq′′

Ωq

Ωq′

C

Figure 6.4: Ωq and its “rotations” Ωq′ , Ωq′′ , which are defined via
the choice of corner node.

(6.2.23) to cover ∆i:

|u|2L2(∆i)
≤ 9Rmaxη

2(u) + 6Rmax

( |hi′|
|φli′ | sin(π/2− hi′)

+ |φri′|
cos θci′

)
|∇u|2L2(∪18

k=1∆b(k))

+ 3Rmax

( |hi′ ||φri′ |
sin(π/2− hi′)

+ |φri′| cos(π/2− hi′)
sin2(π/2− hi′)

)
|∂2
θφu|2L2(∪18

k=1∆b(k)),

(6.2.24)

where the i′ subscript denotes the choice of node of ∆i to integrate from, such that

the whole right hand side is maximal. We thus have a bound on u over each ∆i.

In the next section, we sum (6.2.24) over S2 to obtain our desired bounds of (6.2.1)

and (6.2.2).

6.2.3 Bounds over S2

Now that we have a bound on u over each ∆i, we take their sum to obtain a bound

over S2. Summing (6.2.24) over i gives

|u|2L2(S2) = |u|2L2(∪N
i=1∆i)

≤ 9|S2|η2(u) + 6 · 18 max
i

{
|∆i|

( |hi′|
|φli′ | sin(π/2− hi′)

+ |φri′|
cos θci′

)}
|∇u|2L2(S2)

+ 3 · 18 max
i

{
|∆i|

( |hi′ ||φri′ |
sin(π/2− hi′)

+ |φri′| cos(π/2− hi′)
sin2(π/2− hi′)

)}
|∂2
θφu|2L2(S2)

≤ 9|S2|η2(u) + 108|∆max|
( |hM |
|φlM | sin(π/2− hM) + |φrM |

cos θcM

)
|u|L2(S2)|∆u|L2(S2)
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+ 54|∆max|
( |hM ||φrM |

sin(π/2− hM) + |φrM | cos(π/2− hM)
sin2(π/2− hM)

)
|∂2
θφu|2L2(S2), (6.2.25)

where |∆max| is the area of the largest triangle, the M = M(n) subscript denotes the

choice of both triangle and node such that the right hand side is maximal, and the

second line follows from applying (4.1.1) to the second term on the right hand side.

From here on, all norms are over the whole of S2. By applying (4.1.12) to the last

term, (6.2.25) becomes

|u|2 ≤ 9|S2|η2(u) + 108|∆max|
( |hM |
|φlM | sin(π/2− hM) + |φrM |

cos θcM

)
|u||∆u|

+ 54|∆max|
( |hM ||φrM |

sin(π/2− hM) + |φrM | cos(π/2− hM)
sin2(π/2− hM)

)
|∆u|2.

Applying Young’s inequality to the second term on the right hand side gives

|u|2 ≤ 9|S2|η2(u) + 1
2 |u|

2

+ 1458|∆max|2
( |hM |
|φlM | sin(π/2− hM) + |φrM |

cos(π/2− hM)

)2
|∆u|2

+ 54|∆max|
( |hM ||φrM |

sin(π/2− hM) + |φrM | cos(π/2− hM)
sin2(π/2− hM)

)
|∆u|2.

Rearranging this, we obtain

|u|2 ≤ 18|S2|η2(u) +
[
2916

( |hM |
|φlM | sin(π/2− hM) + |φrM |

cos θcM

)2
+ 108c′M

]
|∆max|2|∆u|2

≤ 18|S2|η2(u) + c2
M

|S2|2

N2

[
2916

( |hM |
|φlM | sin(π/2− hM) + |φrM |

cos θcM

)2
+ 108c′M

]
|∆u|2

(6.2.26)

which is (6.2.1), where

c′M := |hM ||φrM |
sin(π/2− hM) + |φrM | cos(π/2− hM)

sin2(π/2− hM) and

cM := |∆max|N/|S2|,

i.e. cM is the ratio between the largest and average triangle areas. Clearly c′M is

decreasing in n, thus it is bounded by its value at n = 0. Using (6.4.25) and (6.4.26)

below and explicitly computing all triangles of generations 0 to 4, we found that the

worst value of |hM |/(|φlM | sin(π/2 − hM)) is in fact attained at generation 0, and
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that of |φrM |/ cos θcM is approached in the limit of large generation.

Applying Young’s inequality to (6.2.1) will give the first part of (6.2.2):

|∇u|2L2 = −(u,∆u) ≤ |u∆u|L1 ≤ |u|L2|∆u|L2 by Hölder

≤ N

2|S2|
|u|2 + |S

2|
2N |∆u|

2 by Young

≤ c
N

2|S2|

(
|S2|η2(u) + |S

2|2

N2 |∆u|
2
)

+ |S
2|

2N |∆u|
2 by (6.2.1)

= c
(
Nη2(u) + |S

2|
N
|∆u|2

)
.

Applying Agmon (2.2.6) and following essentially identical computations gives the

second part of (6.2.2):

|u|2∞ ≤ c |u|L2|∆u|L2

≤ · · · ≤ c
(
Nη2(u) + |S

2|
N
|∆u|2

)
.

To finish the proof, we prove Lemma 21 in Section 6.4, which immediately implies

that the right hand side of (6.2.26) can be bounded independently of the number of

iterations n.

6.3 Bounds on the number of determining nodes

We now state and prove our main result. As with our proof on the modes, we

consider different forms of the zonal forcing f̄ , as given in (4.3.1) to (4.3.3), and the

consequences they have on the number of nodes.

Theorem 24 (Determining nodes on the sphere). Let δω be the solution of (6.0.2)

with f ∈ H2(S2). Then there exists a set of determining nodes E = {x1, · · · ,xN} ⊂

S2 when

(a) f̄ satisfies (4.3.1) and

N > c20(ν0) max
{
ε1/2M

1/2
0 , (κf/κ0)1/3 G2/3

0

}
, or (6.3.1)
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(b) f̄ satisfies (4.3.2) and

N > c21(ν0, s) max
{
ε1/2M

1/2
0 , G (4s+5)/(6s+5)

0

}
or (6.3.2)

(c) f̄ satisfies (4.3.3) and

N > c22(ν0) max
{
ε1/2M

1/2
0 , F ∗γ′(ν−1

0 G
2/3
0 )1/3 G2/3

0

}
, (6.3.3)

for constants c20, c21, c22, F ∗γ′ defined as in (6.3.27) below and sufficiently small ε.

The above-mentioned smallness requirements on ε are given in (6.3.17), (6.3.23) and

(6.3.28). We have chosen to state them later and separately from the statement of

the theorem for clarity and simplicity; one could include them here in exchange for

longer and more complicated bounds on N .

Proof. The proof is essentially identical to that of the planar case, but using the

spherical estimates we have derived in place of their planar analogues. We begin by

multiplying (6.0.2) by δω in L2:

(∂tδω, δω) + (∂(ψ], δω), δω) + (∂(δψ, ω), δω) + 2
ε

(∂φδψ, δω) = µ(∆δω, δω). (6.3.4)

As in (4.4.5), the fourth term is 0 by the antisymmetric property of ∂φ∆−1:

2
ε

(∂φδψ, δω) = 2
ε

(∂φδψ,∆δψ) = −2
ε

∞∑
l=0

l∑
m=−l

iml(l + 1) δψlmδψlm = 0.

The second term of (6.3.4) is also 0, due to (4.1.4). Thus (6.3.4) becomes

1
2

d
dt |δω|

2 + (∂(δψ, ω), δω) = µ(∆δω, δω) = −µ|∇δω|2. (6.3.5)

By splitting the vorticity into ω = ω̄ + ω̃, we expand the second term of (6.3.5) as

(∂(δψ, ω), δω) = (∂(δψ, ω̄), δω) + (∂(δψ, ω̃), δω). (6.3.6)

We further split the zonal vorticity ω̄ into ω̄ = ω̄<f +ω̄>f , where we recall ω̄<f = Pκf
ω̄

and ω̄>f = ω̄ − ω̄<f , for some κf ≥ κ0 that we fix later. We thus rearrange (6.3.5):

1
2

d
dt |δω|

2+µ|∇δω|2 = −(∂(δψ, ω̃), δω)−(∂(δψ, ω̄<f), δω)−(∂(δψ, ω̄>f), δω). (6.3.7)
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As mentioned earlier, we choose E to be the set of N vertices of the icosahedral

triangulation of S2. We then apply (6.2.2) to bound the first term on the right hand

side of (6.3.7):

|(∂(δψ, ω̃), δω)| ≤ |∇δψ|∞|∇ω̃|2|δω|2 by Hölder

≤ c
µN

|S2|
|∇δψ|2∞ + c

|S2|
µN
|∇ω̃|2|δω|2 by Young

≤ c
µN

|S2|

[
Nη2(∇δψ) + |S

2|
N
|∇δω|2

]
+ c
|S2|
µN
|∇ω̃|2|δω|2 by (6.2.2).

(6.3.8)

Next, we apply (6.2.1) on the second term on the right hand side of (6.3.7):

|(∂(δψ, ω̄<f), δω)| ≤ |∇δψ|2|∇ω̄<f |∞|δω|2

≤ c κ
1/2
0 |∇δψ||∇ω̄<f |1/2||∆ω̄<f |1/2|δω| by Agmon

≤ c (κ0κf )1/2|∇ω||∇δψ||δω| by (4.2.14)

≤ c
µN2

|S2|2
|∇δψ|2 + c

|S2|2

µN2 κ0κf |∇ω|2|δω|2 by Young

≤ c
µN2

|S2|2
[
|S2|η2(∇δψ) + |S

2|2

N2 |∇δω|
2
]

+ c
|S2|2

µN2 κ0κf |∇ω|2|δω|2 by (6.2.1).

(6.3.9)

We bound the last term of (6.3.7) as

|(∂(δψ, ω̄>f), δω)| ≤ |∇δψ|∞|∇ω̄>f |2|δω|2

≤ c
µN

|S2|
|∇δψ|2∞ + c

|S2|
µN
|∇ω̄>f |2|δω|2 by Young

≤ c
µN

|S2|

[
Nη2(∇δψ) + |S

2|
N
|∇δω|2

]
+ c
|S2|
µN
|∇ω̄>f |2|δω|2 by (6.2.2).

(6.3.10)

Finally, we apply (6.2.2) to the second term on the left hand side of (6.3.7) and

rearrange to obtain

|δω|2 ≤ c
(
Nη2(∇δψ) + |S

2|
N
|∇δω|2

)
⇐⇒ c

µN

|S2|
|δω|2 − c µN

2

|S2|
η2(∇δψ) ≤ µ|∇δω|2. (6.3.11)
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Thus putting together (6.3.7) to (6.3.11) gives

d
dt |δω|

2 + |δω|2
[
c
µN

|S2|
− c |S

2|
µN
|∇ω̃|2 − c |S

2|2

µN2 κ0κf |∇ω|2 − c
|S2|
µN
|∇ω̄>f |2

]

≤ c
µN2

|S2|
η2(∇δψ). (6.3.12)

We seek to apply Lemma 8 to ξ = |δω|2, ρ being the bracket on the left hand

side and σ the right hand side of (6.3.12). The hypothesis of the lemma on

σ = (cµN2/|S2|) η2(∇δψ) is met because ∇δψ(xi, t) → 0 as t → ∞ for all i (by

construction) and |∇ω| is bounded due to (4.4.20), while that on ξ follows from the

regularity of the Navier–Stokes equations.

The hypothesis on ρ would follow immediately if

lim sup
t→∞

∫ t+1

t

( |S2|
µN
|∇ω̃|2 + |S

2|2

µN2 κ0κf |∇ω|2 + |S
2|

µN
|∇ω̄>f |2

)
dτ < c

µN

|S2|
,

which is equivalent to

lim sup
t→∞

∫ t+1

t

( 1
ν0N
|∇ω̃|2 + 1

ν0N

κf
κ0
|∇ω|2 + 1

ν0N
|∇ω̄>f |2

)
dτ < c ν0N, (6.3.13)

where we recall ν0 = µκ2
0. In turn, this follows when each of the three terms on the

left hand side satisfies the inequality independently.

For the first term, we recall (3.2.9), which implies that

∫ t+1

t
|∇ω̃|2 dτ ≤ εM0/ν0,

so (6.3.13) for the |∇ω̃|2 term would be satisfied for

N2 > c εM0/ν
3
0 . (6.3.14)

For the second term on the left hand side of (6.3.13), we recall that (4.4.20) implies

∫ t+1

t
|∇ω|2 dτ ≤ c ν0 G2

0 ,

so the |∇ω| part of (6.3.13) is implied by

N >
c

ν
1/3
0

(
κf
κ0

)1/3
G2/3

0 . (6.3.15)
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For the inequality involving the |∇ω̄>f |2 term in (6.3.13), we need to handle the

cases separately according to the different forms of f̄ .

First we consider when f̄ satisfies (4.3.1). By (4.3.5),

∫ t+1

t
|∇ω̄>f |2 dτ ≤ c ε2M2

0/ν
3
0 ,

so the |∇ω̄>f | part of (6.3.13) holds if

N > c εM0/ν
5/2
0 . (6.3.16)

This bound is dominated by (6.3.14) when

εM0 ≤ c ν2
0 . (6.3.17)

Upon assuming this, (6.3.1) follows from (6.3.14) and (6.3.15).

For f̄ instead satisfying (4.3.2), we apply Lemma 9 to (3.3.5) to observe that

∫ t+1

t
|∇ω̄>f |2 dτ ≤ c ε2M2

0/ν
3
0 + c cζ(s) ν0 (κ0/κf )2s+1 G2

0 = I1, (6.3.18)

where 1/cζ(s) = (2s + 1) ζ(2s + 2). Thus the |∇ω̄>f |2 part of (6.3.13) would be

satisfied if I1 ≤ c ν2
0N

2; analogously to what we did with (6.3.13), this in turn is

implied by

N2 > c (εM0)2/ν5
0 , (6.3.19)

N2 >
c

ν0
cζ(s)(κ0/κf )2s+1 G2

0 . (6.3.20)

Since (6.3.15) and (6.3.20) must both hold, we equate these bounds to find the value

of κf that minimises the bounds on N :

c
cζ(s)
ν0

(
κ0

κf

)2s+1
G2

0 = c

ν
2/3
0

(
κf
κ0

)2/3
G4/3

0

⇐⇒ (κf/κ0)2s+5/3 = c cζ(s) ν−1
0 G

2/3
0 . (6.3.21)

Thus fixing κf , both (6.3.15) and (6.3.20) now become

N > c (cζ(s)ν−1
0 G4s+5

0 )1/(6s+5). (6.3.22)
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As before, we compare (6.3.14) and (6.3.22) to observe that the bound given in

(6.3.14) dominates for

εM0 ≤ c ν
3−2/(6s+5)
0 (cζ(s)G4s+5

0 )2/(6s+5), (6.3.23)

which we assume, giving (6.3.2).

Finally, we consider f̄ satisfying (4.3.3). By applying Lemma 9 to (4.3.7), we note

that

∫ t+1

t
|∇ω̄>f |2 dτ ≤ c (εM0)2/ν3

0 + c ν0 e2γ(1−κf/κ0) G2
0 .

The |∇ω̄>f |2 part of (6.3.13) is satisfied when both of the following are satisfied:

N2 > c (εM0)2/ν5
0 , (6.3.24)

N2 >
c

ν0
e2γ(1−κf/κ0) G2

0 . (6.3.25)

In order to obtain the optimal κf that minimises our bound on N , we equate the

right hand side of (6.3.15) and (6.3.25), which leads to

c

ν0
e2γ(1−κf/κ0) G2

0 = c

ν
2/3
0

(
κf
κ0

)2/3
G4/3

0

⇐⇒ (κf/κ0)2/3 e2γ(κf/κ0−1) = c∗γ′ ν
−1
0 G

2/3
0 . (6.3.26)

We invert this, which gives

κf/κ0 = F ∗γ′(ν−1
0 G

2/3
0 ), (6.3.27)

where (F ∗γ′)−1(y) := y2/3e2γ(y−1)/c∗γ′ .

We compare (6.3.14) and (6.3.15) to conclude that the bound given by (6.3.14)

dominates when we assume

εM0 ≤ c
(
κf
κ0

)1/3
ν

8/3
0 G

2/3
0 . (6.3.28)

This gives (6.3.3).
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6.4 Proof of Lemma 21

Proof of Lemma 21: Our methodology is as follows. We begin with the n = 5

triangulation and fix one arbitrary “ancestor” triangle ∆ := ∆(5), and consider all

its “descendants”. To reduce clutter, we denote the sides of ∆ by a, b and c (the

latter does not denote a generic constant, for this proof only), with corresponding

angles α, β and γ. Direct numerical computation shows that

0.928 · · · |∆
(0)|

45 < |∆(5)| < 1.206 · · · |∆
(0)|

45 and (6.4.1)

1.000 · · · a
(0)

25 < a, b, c < 1.195 · · · a
(0)

25 , (6.4.2)

where ∆(0) denotes the original n = 0 triangle with sides a(0). Since |∆| < 10−3 is

already very small, we will prove that any level n descendant ∆(n) with sides a(n)
(j)

satisfies

|∆(n)| ' 45−n|∆|, (6.4.3)

a
(n)
(j) ' 25−n a(j), (6.4.4)

to a very good approximation, to be made precise below.

We consider a level 6 descendant of ∆ with corner angle γ and adjacent sides a/2

and b/2. We denote the inner side by c†.

∆(6)

b/2
γα

β

c †

a
a/2

b

c ∆

Figure 6.5: Illustration to show relationship between ∆ and ∆(6).
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We start by considering the areas of ∆ and ∆(6), which are given by

tan(|∆|/2) = tan(a/2) tan(b/2) sin γ
1 + tan(a/2) tan(b/2) cos γ , (6.4.5)

tan(|∆(6)|/2) = tan(a/4) tan(b/4) sin γ
1 + tan(a/4) tan(b/4) cos γ , (6.4.6)

and seek to prove that |∆(6)| ' |∆|/4.

We note that, for n = 5,

a > b/2, b > a/2, and (6.4.7)

sin γ > 2/3. (6.4.8)

It is readily apparent below that these hold for all subsequent iterations.

Using Taylor’s theorem for tan, tan−1 and sin, we write (6.4.5) and (6.4.6) as

|∆| = ab

2 sin γ + 3
5 (ab sin γ)2ϕ(%), (6.4.9)

|∆(6)| = ab

8 sin γ + 1
30 (ab sin γ)2ϕ(%), (6.4.10)

where the sides a, b and c satisfy (6.4.7) and (6.4.8) and ϕ denotes an arbitrary

function, which may change from one use to the next, such that |ϕ(%)| ≤ 1. Since

|∆(6)| is very closely approximated by |∆|/4, we compare these to obtain

|∆(6)| = |∆|4 + 3
20 (ab sin γ)2 ϕ(%) = |∆|4 + 3

5 |∆|
2ϕ(%)

= |∆|4
(
1 + 2.4 |∆|ϕ(%)

)
. (6.4.11)

Now we consider the inner side c† of ∆(6). We recall the cosine rule:

cos c = cos a cos b+ sin a sin b cos γ. (6.4.12)

Similarly to our approach on the estimates of the areas, we use Taylor’s theorem on

cos to approximate c† by c/2. Applying (6.4.12) to ∆(6) gives

cos c† = cos(a/2) cos(b/2) + sin(a/2) sin(b/2) cos γ

=
(

1− 1
2(a/2)2 + 1

4!(a/2)4ϕ(%)
)(

1− 1
2(b/2)2 + 1

4!(b/2)4ϕ(%)
)
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+
(
a/2 + 1

6(a/2)3ϕ(%)
)(
b/2 + 1

6(b/2)3ϕ(%)
)

cos γ

= 1− 1
2

(
(a/2)2 + (b/2)2 − 1

2 ab cos γ
)

+ 12
(1

8 ab sin γ
)2
ϕ(%), (6.4.13)

where we have used the assumptions of (6.4.7) and (6.4.8) to simplify the expression.

We expand the left hand side of (6.4.13) as

cos c† = 1− 1
2 c

2
† + 1

4! c
4
† ϕ(%). (6.4.14)

Equating (6.4.13) and (6.4.14) thus gives

c2
† + 1

12 c
4
† ϕ(%) = (a/2)2 + (b/2)2 − ab

2 cos γ + 24
(1

8 ab sin γ
)2
ϕ(%)

= (c/2)2 + 24 |∆(6)|2 ϕ(%), (6.4.15)

where we have used the planar cosine rule and the fact that |∆(6)| ≥ (ab sin γ)/8

(being the area of the planar triangle with the same a, b and γ) for the second line.

This expression clearly has 4 real roots in c†; discarding the 2 negative roots, we

consider the remaining 2 possible solutions. Denoting by g the right hand side of

(6.4.15), the roots of (6.4.15) are approximately at

c2
† ≈ g or

−1 +
√

1− (g/3)ϕ(%)
ϕ(%)/6 , (6.4.16)

since c† � 1. The second possible solution of c2
† is, however, incompatible with

c† > 0, so the only feasible solution is that c† ≈
√
g.

Returning to (6.4.15), rearranging the expression gives

c2
†

(
1 + 12

5 |∆
(6)|2 ϕ(%)

)
= (c/2)2

(
1 + 1

10 c
2
† ϕ(%)

)
+ 24|∆(6)|2 ϕ(%)

= (c/2)2
(

1 + 3
10 |∆|ϕ(%)

)
+ 24 · 2|∆(6)| (c/2)2 ϕ(%)

= (c/2)2
(

1 + 6
5 |∆

(6)|ϕ(%)
)

+ 48|∆(6)| (c/2)2 ϕ(%)

(6.4.17)

by assuming c† > a/4, b/4 and a, b > c†. Rearranging this further results in

c† = c

2
(
1 + 50|∆(6)|ϕ(%)

)1/2
. (6.4.18)
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Thus c† is well approximated by c/2.

Obviously, analogous expressions to (6.4.11) and (6.4.18) apply to the two other

corner descendants. Temporarily denoting the corner descendants by ∆(6)
α , ∆(6)

β , ∆(6)
γ

and the central descendant by ∆(6)
ζ , we have

|∆(6)
ζ | = |∆| − |∆(6)

α | − |∆
(6)
β | − |∆(6)

γ |. (6.4.19)

Thus we have also

|∆(6)
ζ | =

|∆|
4
(
1 + 2.4|∆|ϕ(%)

)
, (6.4.20)

and bounds analogous to (6.4.18) also hold for the sides of ∆(6)
ζ . Thus (6.4.11) and

(6.4.18) hold for all four descendants of ∆. We also note that

1 + 2.4|∆|ϕ(%) < 4
3 . (6.4.21)

By induction, we have

|∆(n)| = |∆
(n−1)|
4

(
1 + 2.4|∆(n−1)|ϕ(%)

)
= |∆|

4n−5

(
1 + 2.4|∆(n−1)|ϕ(%)

)
· · ·

(
1 + 2.4|∆|ϕ(%)

)
(6.4.22)

≤ |∆|3n−5 . (6.4.23)

We shall make use of both these bounds below. Similarly, the sides of ∆(n) satisfy,

with the obvious notation,

a(n) = a

2n−5

(
1 + 50|∆(n)|ϕ(%)

)1/2
· · ·

(
1 + 50|∆(6)|ϕ(%)

)1/2
,

b(n) = b

2n−5

(
1 + 50|∆(n)|ϕ(%)

)1/2
· · ·

(
1 + 50|∆(6)|ϕ(%)

)1/2
,

c(n) = c

2n−5

(
1 + 50|∆(n)|ϕ(%)

)1/2
· · ·

(
1 + 50|∆(6)|ϕ(%)

)1/2
. (6.4.24)

As for the products on the right hand side, we have the upper bound

(
1 + 50|∆(n)|ϕ(%)

)1/2
· · ·

(
1 + 50|∆(6)|ϕ(%)

)1/2

≤ exp
(

25
n∑
j=6
|∆(j)|

)
≤ exp

(
12.5|∆|

)
, (6.4.25)
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where for the last step we have used (6.4.23). Using the fact that e−2x < 1− x for

|x| < 0.5, we find the lower bound

(
1 + 50|∆(n)|ϕ(%)

)1/2
· · ·

(
1 + 50|∆(6)|ϕ(%)

)1/2

≥ exp
(
−50

n∑
j=6
|∆(j)|

)
≥ exp

(
−25|∆|

)
. (6.4.26)

We recall that |∆| ≤ 10−3. This concludes the proof of Lemma 21.
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