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Abstract

Let p be an odd prime, and let K be a finite extension of Qp such that K

contains a primitive p-th root of unity. Let K<p be the maximal p-extension of

K with Galois group Γ<p of period p and nilpotence class < p. Recent results

of Abrashkin describe the ramification filtration
{

Γ
(v)
<p

}
v>0

, and can be used

to recover the structure of Γ<p [5].

The group Γ<p is described in terms of an Fp-Lie algebra L due to the classical

equivalence of categories of Fp-Lie algebras of nilpotent class < p, and p-groups

of period p of the same nilpotent class. In this thesis we generalise explicit

calculations from [5] related to the structure of Γ<p.



Table of Contents

1 Introduction 1

2 Nilpotent Artin-Schreier theory 6

2.1 Lazard correspondence . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Main theorem of the nilpotent Artin-Schreier theory . . . . . . 7

2.3 Identification for local fields of positive characteristic . . . . . . 10

2.4 Analytic automorphisms of K . . . . . . . . . . . . . . . . . . . 12

2.4.1 Lifting automorphisms of K . . . . . . . . . . . . . . . . 14

2.5 Ramification filtration of G<p . . . . . . . . . . . . . . . . . . . 15

3 Main setting and fundamental exact sequences 17

3.1 Fundamental exact sequence . . . . . . . . . . . . . . . . . . . . 18

3.2 Relation to characteristic p . . . . . . . . . . . . . . . . . . . . 19

3.3 NAS identification . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Structure of Γ<p . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Linearisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Working with the recurrence relation 29

4.1 Explicit calculations modulo M(p− 1) + C2(LK) . . . . . . . . 30

4.2 Considerations modulo higher degree commutators . . . . . . . 32

5 Solving the recurrence relation 33

5.1 Basic objects and properties . . . . . . . . . . . . . . . . . . . . 34

5.2 Admissible partitions . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Properties of coefficients 49

6.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Coefficient for non-degenerate vectors . . . . . . . . . . . . . . 52
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§1 Introduction 1

Basic notions: Throughout this thesis we will assume that p is an odd prime.

By local field, we mean a complete discrete valuation field with finite residue

field. We will assume knowledge of the basic properties of local fields and their

extensions as found in e.g. [9, 16].

If G is a topological group (resp. L is a topological Lie algebra), then for

any n ∈ N we denote by Cn(G) (resp. Cn(L)) the closure of the subgroup of

commutators of length > n.

1 Introduction

A theme of modern number theory has been to understand the extent to which

the arithmetic properties of a field are encoded in its absolute Galois group.

For global fields, it is a result of Neukirch, Iwasawa, Ikeda, and Uchida that

the knowledge of the absolute Galois group is equivalent to the knowledge

of the field itself. That is, if the absolute Galois groups of two global fields

are isomorphic as profinite groups, then the fields themselves are isomorphic

[11, 15, 19]. This is not the case with local fields [21], in fact only limited

invariants of the field can be recovered from the group structure alone (see

introduction of [14]). However there is a local analogue of this result if one

also considers the ramification filtration.

Recall that the Galois group of an extension of local fields has the additional

structure of a decreasing filtration of normal subgroups {Γ(v)}v>0 given by

the ramification subgroups in the upper numbering. In the local setting then,

if the absolute Galois groups of two local fields are isomorphic as profinite

groups, and the isomorphism is compatible with the ramification filtrations,

then the local fields themselves are isomorphic. This result was proved by

Mochizuki for local fields of characteristic 0 [14], and for local fields of both

positive and mixed characteristic by Abrashkin [3, 4].

For a local field then, any description of its Galois group should also describe

the ramification filtration in order to be arithmetically significant. On the

abelian level this is provided by local class field theory, which gives an iso-

morphism between E× and a dense subgroup of ΓE/C2(ΓE), and describes
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the ramification filtration of ΓE/C2(ΓE) as the images of the subgroups of

principal units of E×. At this level though, we see very little of the structure

of the ramification filtration as, by the Hasse-Arf theorem, we can recover only

integral breaks of the ramification filtration in the upper numbering. To get

a more complete picture we must move beyond the abelian setting, and of

particular interest is the maximal p-extension and its quotients.

Recall that, for a local field E, with ΓE = Gal(Esep/E), the maximal p-

extension E(p) of E is the compositum (inside Esep) of all finite Galois

extensions of E whose degree is a power of p. Let ΓE(p) be the Galois group

of E(p)/E, then ΓE(p) is a pro-p group.

The profinite group-theoretic description of ΓE(p) is well known. If char(E) = p,

then ΓE(p) is a free pro-p group with infinitely many generators [13]. If

char(E) = 0 there are two cases; if E does not contain a primitive p-th root of

unity then ΓE(p) is a free pro-p group with [E : Qp] + 1 generators [17, 18],

and if E does contain a primitive p-th root of unity then ΓE(p) is a Demushkin

group with [E : Qp] + 2 generators and one relation (of a particular form)

[8, 17]. However, as these results do not describe the ramification filtration,

then from the discussion above, they do not fully reflect the appearance of

ΓE(p) as a Galois group of a local field extension.

For fields of characteristic p, the nilpotent Artin-Schreier theory developed

in [1, 2] allows us to work with extensions of fields of characteristic p whose

Galois group has nilpotence class less than p, and period pM for any M > 1.

Although the general theory is applicable in a wider setting, our particular

interest is in the case where E is a local field of characteristic p, and M = 1.

In this setting the nilpotent Artin-Schreier theory can be used to give an

explicit description of the Galois group of the maximal p-extension of period p

modulo the subgroup of commutators of length > p, together with an explicit

description of its ramification filtration.

The methods of the nilpotent Artin-Schreier theory cannot be applied directly

to local fields of characteristic 0, however recent results [5, 6] allow the theory
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to be applied via the field of norms functor of Fontaine-Wintenberger, which

for a particular class of infinite field extensions allows us to relate the Galois

group of a local field of characteristic 0 to the Galois group of a local field of

characteristic p [10, 20].

Outline of thesis

Let K be a finite extension of Qp such that ζp ∈ K, where ζp is a primitive

p-th root of unity. Denote by K<p the maximal p-extension of K with Galois

group of nilpotence class < p and period p. Then Γ<p := Gal(K<p/K) =

ΓK/Γ
p
KCp(ΓK). The results in this thesis are concerned with the structure of

Γ<p, and are based on recent papers by Abrashkin [5, 6].

In chapter 2 we follow [1] throughout to present the relevant results of the

nilpotent Artin-Schreier theory. Of particular importance to us is the case

where K is a local field of characteristic p. Let Ksep be a separable closure

of K, and G := Gal(Ksep/K). Let K<p ⊂ Ksep be the maximal p-extension

of K whose Galois group has period p and nilpotence class < p, and let

G<p := Gal(K<p/K). The nilpotent Artin-Schreier theory provides us with

the following identification.

η0 : G<p −→ G(L), (1.1)

where L is a profinite Fp-Lie algebra with Fp-module of generators K∗/(K∗)p,
and G(L) is the group defined on the underlying set of L with operation given

by the Campbell-Hausdorff group law.

We also present the techniques of the theory that can be used to lift automor-

phisms of K to automorphisms of K<p [1, 2].

In chapter 3 we follow [5] throughout to present results related to the structure

of Γ<p. The main steps of [5] are the following.

(i) Fundamental exact sequence. We fix once and for all a uniformiser π0 of K.

For all n > 1, let πn ∈ K be such that πpn = πn−1, and let K̃ =
⋃
n>1K(πn),

then the following sequence is exact.
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Γ
K̃ Γ<p Gal(K(π1)/K) = 〈τ0〉Z/p 1 ,

where τ0(π1) = ζpπ1.

(ii) Relation to characteristic p. The field extension K̃/K is arithmetically

profinite and so the field of norms functor provides us with the construction

of a local field K of characteristic p, and an identification Γ
K̃
' ΓK.

(iii) Nilpotent Artin-Schreier theory. As K is a local field of characteristic p

we can apply the identification η0 of the nilpotent Artin-Schreier theory to

obtain the following exact sequence,

G(L) Γ<p 〈τ0〉Z/p 1 .

The techniques of the nilpotent Artin-Schreier can be applied to consider lifts

τ<p ∈ Γ<p of τ0, which in turn can be used to recover the kernel of G(L)→ Γ<p

thus establishing the following exact sequence of p-groups,

1 G(L/L(p)) Γ<p 〈τ0〉Z/p 1 .

If we fix a lift τ<p ∈ Γ<p of τ0 then the sequence splits, and the structure of

Γ<p is determined by the action by conjugation of 〈τ<p〉Z/p on G(L/L(p)).

(iv) Linearisation. Let L be the Fp-Lie algebra such that G(L) = Γ<p under

the Lazard correspondence (see §2.1). It is shown in [5] that the lift τ<p

can be recovered from the Lie structure of L. This represents a significant

simplification, as it avoids the use of the Campbell-Hausdorff group law. In

particular, we obtain the following exact sequence in the category of Fp-
modules,

0 L/L(p) L Fpτ0 0 .

The sequence splits, so that if τ<p ∈ L is a lift of τ0, then the structure of

L is determined by the derivation adτ<p ∈ Der(L/L(p))/ Inn(L/L(p)). It is

proved in [5] that the set of lifts τ<p of τ0 are in bijection with solutions of

a recurrence formula (3.6). The form of these solutions describe a lift τ<p
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and the corresponding derivation adτ<p , thus determining the structure of

L and hence the structure of Γ<p = G(L). The main result in this thesis

is the recovery of an explicit solution of the recurrence formula (3.6), which

generalises explicit calculations from [5].

In chapter 4 we introduce a recurrent procedure used in [5] that will allow us

to recover a solution of (3.6), and demonstrate the method by recovering an

explicit solution of the recurrence formula modulo commutators of length > 2

(this case was stated in [5]).

The remaining chapters contain the original work of the thesis. In chapter 5

we recover a solution of the recurrence formula under a simplifying assumption,

and introduce all notation and properties that will enable us to recover a

general solution. In chapter 6 we demonstrate that, although the coefficients

appearing in our solution are complicated in general they have an essentially

combinatorial interpretation, and using this interpretation we recover some

general properties of the coefficients. Finally, in chapter 7 we use our results

to give a general solution of the recurrence formula (3.6).

This in principle fully determines the structure of Γ<p. Unfortunately, the

result is not recovered in a form from which we can also recover explicitly

the generators of the ramification groups of Γ<p. This is not ideal given the

importance of the ramification filtration discussed above. As it is, we compare

our result with explicit calculations from [5] to demonstrate that the result can

be used to efficiently write down solutions of recurrence formula (3.6) modulo

commutators of small degree. As we give a thorough characterisation of terms

related to the structure of Γ<p it is reasonable to expect that applications will

be found, and at the very least, the explicitness of the solution provides an

opportunity for further study.
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2 Nilpotent Artin-Schreier theory

In this chapter we present the relevant details of the nilpotent Artin-Schreier

theory [1]. The theory makes use of the Lazard correspondence [12], which

establishes an equivalence of categories of finitely generated Lie Zp-algebras of

nilpotence class less than p, and finitely generated pro-p groups of the same

nilpotence class.

2.1 Lazard correspondence

The following description of the Lazard correspondence can be found in [1],

and is derived from [7, ex 8.4, ch 2].

Let AQ be the free associative algebra over Q freely generated by the (non-

commuting) indeterminants {x, y}. Then AQ has the natural structure of a

Lie algebra over Q, with Lie product defined by [a, b] = ab− ba. Let LQ be

the free Lie algebra over Q with free generators {x, y}, then we have a natural

embedding LQ ⊂ AQ.

We define the degree of a monomial in AQ by setting deg x = deg y = 1, and

extending in the usual way. For n > 1, denote by Cn(AQ) the ideal generated

by all monomials of degree > n, and let ÂQ = lim←−nAQ/Cn(AQ). Similarly,

for n > 1, let Cn(LQ) be the ideal generated by all commutators of length

> n, and let L̂Q = lim←−n LQ/Cn(LQ). Note that Cn(AQ) ∩ LQ = Cn(LQ) for

all n > 1, and thus the natural embedding LQ ⊂ AQ induces an embedding

L̂Q ⊂ ÂQ.

The Campbell-Hausdorff series is defined in ÂQ as H(x, y) = log(expx exp y).

Its first few homogenous components are well known, and are given as follows,

x+ y +
1

2
[x, y] +

1

12
[x, [x, y]] +

1

12
[y, [y, x]]− 1

24
[y, [x, [x, y]]] modC5(AQ).

Clearly these terms are elements of LQ, and in fact the result known as the

Campbell-Hausdorff formula states that H(x, y) ∈ L̂Q. We can define then

a group structure G(L̂Q) on the underlying set of L̂Q, with group operation



§2.2 Main theorem of the nilpotent Artin-Schreier theory 7

given by l1 ◦ l2 = H(l1, l2).

Let Hn(x, y) denote the homogenous terms of degree n in the Hausdorff se-

ries, then the terms of Hn(x, y) are p-integral for 1 6 n < p. In particular,

if L is a finitely generated Zp-Lie algebra of nilpotence class < p, then a

group G(L) can defined on the underlying set of L with group operation

l1 ◦ l2 = H(l1, l2) modCp(L̂Q). Then G(L) is a finitely generated pro-p group

of the same nilpotence class as L, and there exist inverse Campbell-Hausdorff

formulas from which we can recover the Lie structure of L from G(L).

The correspondence L → G(L) induces an equivalence of categories of finitely

generated Lie Zp-algebras of nilpotence class less than p, and finitely generated

pro-p groups of the same nilpotence class [12]. For any ϕ ∈ End(L) there is a

unique ϕ′ ∈ End(G(L)) such that ϕ and ϕ′ are identical as set maps. Hence

an automorphism of the Lie algebra L is automatically an automorphism of

the p-group G(L) and vice versa, acting on the underlying set in the same

way. The correspondence has the following properties [12].

Subgroups of G(L)←→ Subalgebras of L ;

Normal subgroups of G(L)←→ Ideals of L ;

1G ∈ G(L)←→ 0 ∈ L ;

g−1 ∈ G(L)←→ −g ∈ L .

2.2 Main theorem of the nilpotent Artin-Schreier theory

Let K be a field of characteristic p (not necessarily local), Ksep a fixed sep-

arable closure of K, and ΓK = Gal(Ksep/K). Let L be an Fp-Lie algebra of

nilpotence class < p.

Denote by LKsep the extension of scalars L ⊗Fp Ksep. Let σ be the absolute

Frobenius morphism of K (i.e. σ(x) = xp for all x ∈ Ksep). Then σ and ΓK

act on LKsep as follows.

— (id⊗σ)(l ⊗ x) = l ⊗ σ(x), and LKsep�σ=id = L ;
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— for g1, g2 ∈ ΓK we have (id⊗g1)((id⊗g2)(l ⊗ x)) = l ⊗ (g1(g2(x))) ;

— The actions of σ and ΓK commute, and (LKsep)ΓK = L ⊗Fp K .

Remarks: (1) For notational convenience, if l ∈ LKsep and g ∈ ΓK we will

generally use the shorter notation σ(l) and g(l). We will however retain the

full notation in certain instances for clarity of exposition.

(2) For any topological Fp-Lie algebra L, and any topological Fp-module F ,

we will use here and below the notation LF = L⊗̂FpF .

The main theorem of the nilpotent Artin-Schreier theory is the following.

Theorem 2.1. [1] Let K be a field of characteristic p > 0, and let L be an

Fp-Lie algebra of nilpotence class < p. Then there exists a one to one map of

sets,

π : G(LK)/R −→ {conjugacy classes of Hom(ΓK , G(L))},

where R is an equivalence relation on G(LK) such that for l1, l2 ∈ G(LK),

then l1
R∼ l2 if there exists c ∈ G(LK) such that l2 = σc ◦ l1 ◦ (−c).

The full proof is given in [1, §1.3], here we restrict our attention to demon-

strating the construction of the map π. The first step is to relate elements of

G(LK) to the construction of homomorphisms ΓK → G(L).

Let e ∈ G(LK), and let F (e) := {f ∈ LKsep : σ(f) = e ◦ f}. It is proved in [1]

that for any e ∈ G(LK), the set F (e) is non-empty.

Proposition 2.2. [1] Let K be a field of characteristic p > 0, and let L be

an Fp-Lie algebra of nilpotence class < p. For any e ∈ G(LK), and f ∈ F (e),

the following is a homomorphism,

πe,f : ΓK → G(L),

τ 7→ (−f) ◦ τ(f) .

Proof. As ΓK acts on G(LKsep) by functorality then we just need to show that

πe,f (τ) ∈ G(L) for all τ ∈ ΓK , which we can do by showing that the image of

τ is invariant under σ.



§2.2 Main theorem of the nilpotent Artin-Schreier theory 9

Note that σ and ΓK commute as automorphisms of Ksep, so that for any

τ ∈ ΓK we have

σ(τf) = τ(σf) = τ(e ◦ f) . (2.1)

Furthermore, as τ ∈ ΓK and e ∈ G(LK) then τe = e, and thus from (2.1) we

obtain that σ(τf) = e ◦ τf . Therefore we have

σ((−f)◦τf) = σ(−f)◦σ(τf) = −σ(f)◦e◦τf = (−f)◦(−e)◦e◦τf = (−f)◦τf .

As (−f) ◦ τf is σ-invariant, then ((−f) ◦ τf) ∈ G(L).

For a fixed e ∈ G(LK), we can also show that if f1, f2 ∈ F (e) then f1 = f2 ◦ x
for some x ∈ G(L). Recalling that elements of G(L) are invariant under σ

then we have,

σ((−f1 ◦ f2) = −σ(f1) ◦ σ(f2) = (−f1) ◦ −e ◦ e ◦ f2 = (−f1) ◦ f2 .

Thus f1 = f2 ◦ x for some x ∈ G(L). It follows that πe,f1 and πe,f2 are

conjugated by the element x, and thus belong to the same conjugacy class of

Hom(ΓK , G(L)).

Therefore, for any e ∈ G(LK), the conjugacy class of πe,f ∈ Hom(ΓK , G(L))

does not depend on the choice of f ∈ F (e), and the map π in theorem 2.1 is

then defined as follows.

π : G(LK)/R→ {conjugacy classes of Hom(ΓK , G(L))},

e 7→ π(e),

where for any e ∈ G(LK), π(e) denotes the conjugacy class of πe,f .

Thereom 2.1 implies the following properties.

— For any η ∈ Hom(ΓK , G(L)) there exists e ∈ G(LK), and f ∈ F (e) such

that η = πe,f ;

— If η1, η2 ∈ Hom(ΓK , G(L)) are such that η1 = πe1,f1 , and η2 = πe2,f2 ,

then η1, η2 are conjugate via an element of G(L) if and only if e1 =

σ(c) ◦ e2 ◦ (−c) for some c ∈ G(LK).
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Remarks:

(1) The above results were presented in [1] under the assumption that the

action of ΓK on Ksep is given by (g1g2)a = g2(g1a) where g1, g2 ∈ ΓK

and a ∈ Ksep. In the setting of [1] then, for any e ∈ G(LK) the set

F op(e) := {f ∈ G(LKsep) : σ(f) = f ◦ e} is non empty and the correspondence

g 7→ g(f) ◦ −f establishes a group homomorphism Γop
K → G(LK), where Γop

K

is the opposite group of ΓK , i.e. the group defined on the underlying set of

ΓK with group composition given by (g1g2)op = g2g1. In [5] the presentation

of the nilpotent Artin-Schreier theory as given in [1] is called ‘contravariant’,

whereas the presentation used throughout this thesis (and in [5, 6]) is called

‘covariant’. We note that all results established in the contravariant setting

hold for the covariant setting by replacing the relevant group or Lie structures

with their opposites i.e. for any group G we have G ' Gop via x 7→ x−1, and

for any Lie algebra L we have L ' Lop via x 7→ −x.

(2) Let K be a field of characteristic p > 0. If L is a one dimensional Fp-
Lie algebra, then by fixing a generator of L we obtain the identifications

G(L) ' (Z/pZ,+) and G(LK) ' (K,+). Thus, in this case, the main theorem

gives the classical Artin-Schreier isomorphism, K/(σ−id)K ' Hom(ΓK ,Z/pZ).

(3) Let η = πe,f be such that η : ΓK → G(L) is an epimorphism, If we denote

by Ke := K
Ker(η)
sep , then η induces a group isomorphism ΓKe/K ' G(L). Note

that the field Ke is not dependent on the choice of f , since if f, f ′ ∈ F (e)

then the main theorem of NAS implies that πe,f and πe,f ′ belong to the same

conjugacy class of Hom(ΓK , G(L)), thus both homomorphisms are epimorphic

and their kernels coincide.

2.3 Identification for local fields of positive characteristic

Let K be a local field of characteristic p. We fix a uniformiser t, whence

K ' k((t)) with k ' FpN0 for some N0 ∈ N. Denote by K<p the max-

imal p-extension of K of period p and nilpotent class less than p. Then

G<p := Gal(K<p/K) = ΓK/Cp(ΓK)ΓpK .
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Let L̃ be the free profinite Lie Fp-algebra with the Fp-module of topologi-

cal generators K∗/K∗p, and let L̃k := L̃ ⊗̂Fpk be the Lie algebra obtained

by extension of scalars by k. Let Z+(p) = {a ∈ N : (a, p) = 1} and let

Z0(p) = Z+(p) ∪ {0}. It is shown in [1] that L̃k has the set of free generators

{D0} ∪ {Dan : a ∈ Z+(p), n ∈ Z/N0}. In order to treat the generator D0 in

the context of all generators we fix α0 ∈ k such that Trk/Fp α0 = 1, and for

any n ∈ Z/N0 we set D0n = σn(α0)D0.

The generators Dan arise as follows. If we recall the Artin-Schreier pair-

ing K∗/K∗p = Hom(K/(σ − id)K,Fp), then fixing a uniformiser t ∈ K and

an element α0 ∈ k of trace 1 gives us an identification K = (σ − id)K ⊕
(Fpα0)⊕a∈Z+(p) (kt−a), whence K/(σ − id)K ' (Fpα0)⊕a∈Z+(p) (kt−a). Upon

extending scalars to k we obtain

K∗/K∗p ⊗Fp k = HomFp(K/(σ − id)K, k)

= HomFp((Fpα0)⊕a∈Z+(p) (kt−a), k) .

Then Dan is the homomorphism such that Dan(wt−a) = σn(w) for w ∈ k,

and D0n is the homomorphism such that D0n(α0) = σn(α0). Notice that

σ(Dan) = Da,n+1, and Dan = Da,n+N0 .

Proposition 2.3. [1, §5.1] Let K be a local field of characteristic p, with fixed

uniformiser t, and let L = L̃/Cp(L̃). Then we have the following isomorphism

η0 : ΓK/(ΓK)pCp(ΓK) ' G(L) ,

where η0 is induced by πe,f ∈ Hom(ΓK, G(L̃)) with e =
∑

a∈Z0(p)

t−aDa0, and

f ∈ F (e).

The proof is given in [1, §5.1], and establishes for e, f chosen as above, that

the homomorphism πe,f : ΓK → G(L) is surjective, and Ker(πe,f ) = Cp(ΓK)ΓpK

(see remark (3) above).

Note that the elements e, f play a very important role in the nilpotent Artin-

Schreier theory. A key idea is that the relation σ(f) = e ◦ f means that
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the coefficients of f can be interpreted as roots of modified Artin-Schreier

extensions, and thus the action of ΓK on f encodes the action of ΓK on

p-extensions of K (see [6, §1.4]).

2.4 Analytic automorphisms of K

Let K be a field of characteristic p (not necessarily local), L an Fp-Lie algebra

of nilpotence class < p, and let η : ΓK → G(L) be an epimorphism. Recall

that Ke ⊂ Ksep denotes the fixed field of Ker(η).

Suppose h is a continuous automorphism of K, and ĥ is a lift of h to Ksep,

(i.e. ĥ ∈ Aut(Ksep) such that ĥ�K = h), then we have the following result.

Proposition 2.4. [1, prop 1.5.1] The following are equivalent.

(1) ĥ(Ke) = Ke ;

(2) (idL⊗ĥ)(f) = c ◦ (A ⊗ idKsep)(f) for some c ∈ G(LK) and A ∈ Aut(L)

(whereby A is also an automorphism of G(L)).

Proof. Let f1 = (idL⊗ĥ)(f) and e1 = (idL⊗h)(e) (noting that e ∈ G(LK)

and ĥ�K = h). Then since σ and ĥ commute as automorphisms of Ksep we

can show that f1 ∈ F (e1) as follows,

σf1 = σ((idL⊗ĥ)(f)) = (idL⊗ĥ)(σ(f)) = (idL⊗ĥ)(e ◦ f)

= (idL⊗h)(e) ◦ (idL⊗ĥ)(f) = e1 ◦ f1 .

As f1 ∈ F (e1), we can introduce η1 ∈ Hom(ΓK , G(L)) such that η1 = πe1,f1 .

Then for any g ∈ ΓK we have

η1(g) = −f1 ◦ g(f1) = (idL⊗ĥ)(−f) ◦ g(idL⊗ĥ)(f)

= (idL⊗ĥ)((−f) ◦ (idL⊗ĥ−1gĥ)(f)) .
(2.2)

Note that (ĥ−1gĥ) ∈ ΓK , as it acts as the identify on K. Note also that

(−f) ◦ (ĥ−1gĥ)(f) = η(ĥ−1gĥ). Hence (−f) ◦ (ĥ−1gĥ)(f) ∈ G(L), and it

follows that ĥ((−f) ◦ (ĥ−1gĥ)(f)) = (−f) ◦ (ĥ−1gĥ)(f). Thus from (2.2) we

obtain for all g ∈ ΓK that

η1(g) = η(ĥ−1gĥ) . (2.3)
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(1) =⇒ (2) : Recall that Ke is the fixed field of Ker(η), and since ĥ(Ke) = Ke

equation (2.3) implies that Ker(η) = Ker(η1). This in turn implies the

existence of A ∈ Aut(G(L)) (which is also an automorphism of L) such that

the following diagram commutes.

ΓK G(L)

ΓK G(L)

η

η1
ĥ−1gĥ A

η

Moreover, for all g ∈ ΓK we have,

η1(g) = A(η(g)) = A((−f) ◦ gf) = (A⊗ idKsep)(−f) ◦ (A⊗ idKsep)(gf)

= (A⊗ idKsep)(−f) ◦ g((A⊗ idKsep)(f)) .

Since η1(g) = −f1 ◦ gf1 we obtain that

(A⊗ idKsep)(−f) ◦ g((A⊗ idKsep)(f)) = −f1 ◦ gf1 ,

and upon rearrangement we have f1◦(A⊗idKsep)(−f) = g(f1◦(A⊗idKsep)(−f)).

Notice that f1◦(A⊗idKsep)(−f) ∈ G(LKsep)ΓK , hence f1◦(A⊗idKsep)(−f) = c

for some c ∈ G(LK).

(2) =⇒ (1) : Consider η1(g) for g ∈ ΓK . Since (idL⊗ĥ)(f) = c ◦ (A⊗ id)(f)

we have

η1(g) = (−f1) ◦ gf1 = (A⊗ idKsep)(−f) ◦ (−c) ◦ g(c ◦ (A⊗ idKsep)(f)) ,

and since c ∈ G(LK) we have gc = c, so that

η1(g) = (A⊗ idKsep)(−f) ◦ g(A⊗ idKsep)(f)) .

Hence g ∈ Ker(η1) ⇐⇒ g((A ⊗ idKsep)(f)) = (A ⊗ idKsep)(f) ⇐⇒ gf =

f ⇐⇒ g ∈ Ker(η).

Thus the kernels of η and η1 coincide, and it follows from (2.3) that ĥ(Ke) =

Ke.
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If h ∈ Aut(K) then proposition 2.4 implies that the lifts ĥ�Ke ∈ Aut(Ke) can

be determined by the image (idL⊗ĥ)(f) by specifying the image in the form

(idL⊗ĥ)(f) = c ◦ (A⊗ id)(f), with A ∈ Aut(L) and c ∈ G(LK).

2.4.1 Lifting automorphisms of K

In the particular case where K is a local field of characteristic p, then with

respect to the identification η0 from section 2.3, proposition 2.4 allows us to

lift automorphisms of K to automorphisms of K<p = KCp(ΓK)ΓpK
sep as follows.

Suppose h ∈ Aut(K) then for any lift h<p ∈ Aut(K<p) by proposition 2.4 we

have that

(idL⊗h<p)(f) = c ◦ (A⊗ idK<p)(f) , (2.4)

for some c ∈ G(LK) and A ∈ Aut(L).

By applying σ to both sides of (2.4), and using that σf = e ◦ f we obtain the

following relation,

(idL⊗h)(e) ◦ c = σc ◦ (A⊗ idK)(e). (2.5)

Since (idL⊗h)(e) =
∑

a∈Z0(p) h(t−a)Da0, and (A⊗idK)(e) =
∑

a∈Z0(p) t
−aA(Da0),

then this relation gives us the opportunity to recover lifts h<p as follows. Mod-

ulo C2(LK) we have that

∑
a∈Z0(p)

h(t−a)Da0 ≡ σc− c+
∑

a∈Z0(p)

t−aA(Da0) . (2.6)

As h is known, we can expand the left hand side, and recover solutions for c and

A to specify (idL⊗ĥ)(f) modC2(LK<p). Similarly, suppose we have recovered

solutions c′ and A′ that specify (idL⊗ĥ)(f) modCn(LK<p) for 2 6 n < p, then

we have that c = c′ + Xn for some Xn ∈ Cn(LK) and A = A′ + An where

An(Da0) ∈ Cn(Lk) and relation (2.5) implies that

σXn−Xn+
∑

a∈Z0(p)

t−aAn(Da0) ≡ h(e)◦c′−σc′◦(A′)(e) modCn+1(LK) . (2.7)
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All terms on the right hand side of (2.7) are known, and so solutions for Xs and

As modulo Cn+1(LK) can be recovered, thus specifying (idL⊗ĥ)(f) modCn+1(LK<p).

2.5 Ramification filtration of G<p

Let K be a local field of characteristic p, and let η0 be the identification

from section 2.3. Although not central to our main approach, we present

here the description of the ramification filtration of G<p with respect to the

identification η0.

For v > 0 let G
(v)
<p denote the ramification subgroups of G<p in the upper

numbering. Under the Lazard correspondence, for all v > 0 we have η0(G
(v)
<p) =

G(L(v)) where L(v) ⊂ L are ideals of L. The nilpotent Artin-Schreier theory

provides an explicit description of the generators of these ideals.

Definition 2.5. For any γ > 0 and n ∈ N we define the element F0
γ,−n ∈ Lk

as

F0
γ,−n =

∑
16s<p
ai,ni

η(n1, . . . , ns)[. . . [a1Da1,n1 , Da2,n̄2 ], . . . , Das,ns ] ,

where the sum is taken over all ai ∈ Z0(p) and 0 > ni > −n such that,

— a1p
n1 + · · ·+ asp

ns = γ ;

— If 0 = n1 = · · · = ns1 > · · · > nsm−1+1 = · · · = nsm > −n (where sm =

s), then η(n1, . . . ns) = (s1! · · · (sm − sm−1))−1, and η(n1, . . . , ns) = 0

otherwise.

Proposition 2.6. [1, Thm. B] For any v > 0, let G(L(v)) := η0(G
(v)
<p). Then

L(v) = L(v)
k �σ=id, where L(v)

k is an ideal of Lk. For any v > 0 there is a

natural number Ñ(v) such that if N > Ñ(v) is fixed, then L(v)
k is generated by

{σn(F0
γ,−N ) : γ > v, n ∈ Z/N0}.

Proof. The proof is given in [1] in the context of the contravariant the-

ory. The result is adapted to the covariant theory by replacing the terms

[Das,n̄s , . . . , [Da2,n̄2 , Da1,n̄1 ] . . .] with [. . . [Da1,n̄1 , Da2,n̄2 ], . . . , Das,n̄s ] and not-

ing that [Das,n̄s , . . . , [Da2,n̄2 , Da1,n̄1 ] . . .] = (−1)s−1[. . . [Da1,n̄1 , Da2,n̄2 ], . . . , Das,n̄s ].
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The elements F0
γ,−n will appear in chapter 7 when comparing our main result

with explicit calculations in [5].
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3 Main setting and fundamental exact sequences

We now turn our attention to the main setting of this thesis. Let K be a finite

extension of Qp, with residue field k ' FpN0 , and absolute ramification index

eK . We assume that ζp ∈ K, where ζp is a fixed primitive p-th root of unity,

and we fix once and for all a uniformiser π0 of K. Let K be an algebraic

closure of K, and ΓK := Gal(K/K), the absolute Galois group of K.

Let K<p be the maximal p-extension of K of period p and nilpotence class less

than p, then Γ<p := Gal(K<p/K) = ΓK/Cp(ΓK)ΓpK . The main aim of this

chapter is to present recent results [5] related to the structure of Γ<p, which

provides a basis for the calculations and results obtained in the later chapters.

Consider the field extension K(π1)/K, where π1 ∈ K is such that πp1 = π0.

Since ζp ∈ K, then by Kummer theory we have Gal(K(π1)/K) ' 〈τ0〉Z/p

where τ0 is uniquely defined by τ0(π1) = ζpπ1. Clearly K(π1) ⊂ K<p, and thus

the Galois correspondence gives us the following exact sequence of p-groups,

1 Gal(K<p/K(π1)) Γ<p 〈τ0〉Z/p 1 .

If we fix a lift τ<p ∈ Γ<p of τ0, then the sequence splits and the structure of Γ<p

is determined by Gal(K<p/K(π1)) and the action of τ<p on Gal(K<p/K(π1))

by conjugation.

In the coming sections we will follow [5] throughout. In particular, in section

3.1 we will construct an infinite field extension K̃/K and show that the group

Gal(K<p/K(π1)) can be identified with a quotient group of Γ
K̃

. In section 3.2

we will use the field of norms functor of Fontaine-Wintenberger to identify the

group Γ
K̃

with the absolute Galois group of a local field K of characteristic p.

Thus the group Gal(K<p/K(π1)) can be understood in terms of automorphisms

of a local field of characteristic p, and we can apply techniques from the NAS

theory to recover the structure of Gal(K<p/K(π1)), and lifts τ<p ∈ Γ<p of τ0

together with its action by conjugation on Gal(K<p/K(π1)), thus recovering

the group structure of Γ<p.
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3.1 Fundamental exact sequence

For all n ∈ N, let πn ∈ K be such that πpn = πn−1. Let K̃ =
⋃
n∈NK(πn), and

let Γ
K̃

= Gal(K/K̃) .

If we fix an embedding Γ
K̃
⊂ ΓK , then the natural epimorphism ΓK → Γ<p

induces a continuous group homomorphism ĩ : Γ
K̃
→ Γ<p. Let j : Γ<p →

〈τ0〉Z/p be the natural epimorphism, then we have the following result from

[5].

Proposition 3.1. [5, prop 6.1] The following sequence is exact,

Γ
K̃ Γ<p

ĩ
〈τ0〉Z/p

j
1 .

Proof. Following the proof in [5]. The extension K̃/K is not Galois, so we

introduce its Galois closure K̃ ′ =
⋃
n>1K(πn, ζpn), where for all n ∈ N we

define ζpn ∈ K such that (ζpn)p = ζpn−1 . As we have chosen coherent systems

of roots {ζpn}n∈N and {πn}n∈N it follows from Kummer theory that Γ
K̃′/K

is topologically generated by 〈σ, τ〉 where for all n ∈ N we have τ(πn) =

ζpnπn, τ(ζpn) = ζpn , σ(πn) = πn, and σ(ζpn) = ζ1+ps0
pn for some s0 ∈ Z, and

σ−1τσ = τ (1+ps0)−1
.

Note that the extension K̃ ′/K̃ is a Galois extension with Galois group 〈σ〉,
hence Γ

K̃
is generated by Γ

K̃′ and a lift σ̂ ∈ Γ
K̃

of σ ∈ Γ
K̃′/K̃ . To prove

the proposition then, we must show that the images of Γ
K̃′ and σ̂ under the

natural homomorphism ΓK → Γ<p generate the kernel of Γ<p → 〈τ0〉Z/p.

It follows from the actions of τ and σ above that C2(〈σ, τ〉) ⊂ 〈τp〉 and

〈σ, τ〉p = 〈σp, τp〉, hence Γp
K̃′/K

Cp(ΓK̃′/K) = 〈σp, τp〉 and we have a natural

exact sequence

〈σ〉 Γ
K̃′/K/Γ

p

K̃′/K
Cp(ΓK̃′/K) 〈τ〉 mod〈τp〉 1 .

Since 〈τ〉mod〈τp〉 = 〈τ0〉Z/p it follows from the above exact sequence that the

images of Γ
K̃′ and σ̂ under the natural homomorphism ΓK → Γ<p generate

the kernel of Γ<p → 〈τ0〉Z/p.
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As a result of proposition 3.1 we can identify the image of Γ
K̃

in Γ<p with the

group Gal(K<p/K(π1)). In the next section we will see that the group Γ
K̃

can

be interpreted as the absolute Galois group of a local field of characteristic p.

3.2 Relation to characteristic p

The field of norms was developed by Fontaine-Wintenberger in [10, 20]. This

remarkable construction allows us, for a certain class of field extensions, to

relate the Galois group of a local field of characteristic 0 with the Galois group

of a local field of characteristic p.

In particular, an infinite field extension L/K is arithmetically profinite (APF)

if the ramification groups Γ
(v)
K ΓL are open subgroups of ΓK for all v > 0 (i.e.

if the ramification groups are determined on finite field extensions). If K is a

local field of characteristic 0, and L/K an infinite APF extension, then the field

of norms theory gives a construction of a local field XK(L) of characteristic p,

and establishes an equivalence of categories between the algebraic extensions

of L and the separable extensions of XK(L). The following proposition shows

that the field of norms theory can be applied to the extension K̃/K.

Proposition 3.2. The field extension K̃/K is arithmetically profinite.

Proof. Let K0 := K, and for all n > 1 let Kn := K(πn). For any n > 0

the extension Kn+1/Kn is a totally ramified extension of degree p. It is well

known from Kummer theory that the extension Kn+1/Kn has the unique

upper ramification break
p eKn
p−1 =

pn+1eK0
p−1 (here eKn denotes the absolute

ramification index of Kn).

Using the notation of [20, 1.4.2], for any n > 0 let in =
pn+1eK0
p−1 , and let

bn = (i0 + (i1 − i0)p−1 + · · ·+ (in − in−1)p−n). Clearly the sequence {in}n>0

is strictly increasing, and lim−→n
in = +∞. Also, noting that for any n > 1, we

have in − in−1 = pneK0 , then for all n > 0 we have bn =
peK0
p−1 + (n − 1)eK0 .

Thus the sequence {bn}n>0 is also strictly increasing, and lim−→n
bn = +∞.

Note that for any n > 1 the points {(im, bm) : 0 6 m 6 n} are the edge

points of the Herbrand function ϕKn/K , and in particular bn is the maximal

upper ramification break for the extension Kn/K. Let {Γ(v)
K }v>0 denote the
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ramification filtration of ΓK in the upper numbering, then for any v > 0 the

group Γ
(v)
K acts trivially on Kn if and only if v > bn. As {bn}n>0 is strictly

increasing and unbounded it follows that for any v > 0 we can choose some n

large enough that Γ
(v)
K acts non-trivially on Km for all m > n. In particular,

for any v > 0, if K(v) denotes the fixed field of Γ
(v)
K , then K(v) ∩ K̃ is a finite

extension of K, thus the group Γ
(v)
K Γ

K̃
is of finite index in ΓK , and hence is an

open subgroup of ΓK . By definition then, K̃/K is an arithmetically profinite

extension.

Let K := XK(K̃) denote the field of norms of the extension K̃/K. Retaining

temporarily the notation K0 := K, and Kn := K(πn) for all n > 1, then we

have the following construction of K [20, §2]. By definition, K∗ = lim←−nK
∗
n

where the limit is taken with respect to the norm maps. An element α ∈ K is

a norm compatible sequence of elements (αn)n>0 with αn ∈ Kn. For α, β ∈ K
multiplication is defined component-wise by αβ = (αnβn)n>0, where αnβn

denotes multiplication in the field Kn. The definition of addition is less

straightforward. For α, β ∈ K, it is proved that the arithmetic profiniteness of

K̃/K implies that, for any n > 0, the sequence (NKn+m/Kn(αn+m+βn+m))m>0

converges to an an element γn ∈ Kn, and addition is then defined by setting

α+ β = (γn)n>0.

With the operations defined above it is shown that K is a local field of char-

acteristic p. Moreover, as K̃/K is totally ramified the residue field of K can

be canonically identified with the residue field k of K. It follows that upon

choosing a uniformiser t of K we obtain an identification K ' k((t)), and we

have a natural choice of uniformiser t ∈ K such that t = (πn)n>0.

The field of norms has the following functorial properties [20, §3]. For any finite

extension F/K̃ in K the extension F/K is also arithmetically profinite, and its

field of norms XK(F ) is a finite separable extension of XK(K̃). If F/K̃ is Ga-

lois then there is a canonical isomorphism Gal(F/K̃) ' Gal(XK(F )/XK(K̃)).

Moreover, let XK(K) := lim−→XK(F ) where the limit is taken over all finite

extensions F/K̃ in K, then XK(K) is a separable closure of XK(K̃), and the

field of norms theory establishes a canonical isomorphism ΓXK(K̃)
' Γ

K̃
.
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Using the notation K := XK(K̃), and recalling that G<p := ΓK/Γ
p
KCp(ΓK),

then applying the field of norms theory we obtain the following.

Proposition 3.3. [5, prop 6.2] The following sequence is exact,

G<p Γ<p 〈τ0〉Z/p 1 .

Proof. Recall from proposition 3.1 that we have the exact sequence

Γ
K̃ Γ<p

ĩ 〈τ0〉Z/p
j

1 .

By the field of norms functor we have an identification Γ
K̃
' ΓK, and hence,

as above, a natural continuous homomorphism ĩ : ΓK → Γ<p. Clearly the

subgroup ΓpKCp(ΓK) is in the kernel of ĩ, and by factoring through we obtain

an induced homomorphism i : G<p → Γ<p such that the images ĩ(Γ
K̃

) and

i(G<p) coincide.

Note that, if i : G<p → Γ<p is the induced homomorphism from above, then

as Γ<p is a finite group, the kernel of i is an open normal subgroup of G<p.

3.3 NAS identification

As K is a local field of characteristic p, we can apply the nilpotent Artin-

Schreier theory outlined in section 2.3. In particular, we fix the uniformiser

t = (πn)n>0 ∈ K as above, and fix α0 ∈ k an element of trace 1, then we have

the following identification (see proposition 2.3).

η0 : G<p ' G(L),

— where η0 is induced by η = πe,f with e =
∑

a∈Z0(p) t
−aDa0 and f ∈ F (e);

— Lk has free generators {D0} ∪ {Dan : a ∈ Z+(p), n ∈ Z/N0} over k.

We assume throughout that the elements e, f are fixed, thus fixing the identifi-

cation η0. With respect to the identification η0, then directly from proposition

3.3 we obtain the following proposition.

Proposition 3.4. The following sequence is exact,
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G(L) Γ<p
i

〈τ0〉Z/p
j

1 .

As a result of this, the group ΓK<p/K(π1) can be identified with a quotient

group of G(L), and in order to recover the identification we need to recover

the kernel of the morphism i : G(L)→ Γ<p .

For 2 6 s 6 p, denote by Cs(Γ<p) the commutator subgroups of Γ<p, and

let is : G(L) → Γ<p/Cs(Γ<p) be the morphisms induced by i. Clearly, for

2 6 s 6 p we have that Cs(Γ<p) ⊂ ΓK<p/K(π1), and hence, with respect to the

identification η0, we have that Ker(is) = G(L(s)) for some ideal L(s) of L. In

particular, G(L(p)) is the kernel of the homomorphism G<p → Γ<p .

The issue in the recovery of the ideals L(s) lies in the following. Suppose

τ ∈ ΓK is a lift of τ0, then via the field of norms functor τ appears as an

automorphism of Ksep and we would like to utilise the techniques of the NAS

theory from section 2.4.1 to recover the lifts of τ0 and their action on G(L).

However as our APF extension K̃/K is not a normal extension, then if τ ∈ ΓK

is a lift of τ0, its identification under the field of norms functor to an automor-

phism of Ksep does not induce an automorphism of K, and thus the techniques

of the NAS theory cannot be applied directly.

The solution to this problem was given in [5]. The method used was to approx-

imate τ0 by an automorphism h0 ∈ Aut(K). The techniques of section 2.4.1

can then be applied to h0 to recover lifts h<p ∈ Aut(K<p). Recalling that, with

respect to the identification η0, a lift h<p ∈ Aut(K<p) of h0 is determined by its

action on the element f , it is shown that under suitable conditions lifts of h0 to

K<p correspond to lifts of τ0 to K<p. This allows the results obtained for lifts

of h0 to be applied to the lifts τ<p, and led to a recovery of the structure of Γ<p .

The techniques used to establish the validity of the approximation are beyond

the scope of this thesis. Therefore we state the relevant results in the next

section, and give only a brief overview of the methods used in [5].
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3.4 Structure of Γ<p

To define the ideals L(s) we use the following weight function for generators

of Lk from [5].

Definition 3.5. For any Dan ∈ Lk, let wt(Dan) = s if (s− 1)e∗ 6 a < se∗.

Let L(s)k be the ideal generated by all monomials [. . . [Da1,n1 , Da2,n2 ], . . . , Dar,nr ]

such that
∑

16i6r wt(Dai,ni) > s. Then L(1)k = Lk, and for all s1, s2 ∈ N we

have L(s1)k ⊂ L(s2)k ⇐⇒ s1 6 s2, and [L(s1)k,L(s2)k] ⊂ L(s1 + s2)k. Thus

the ideals L(s)k give a decreasing filtration on Lk, and induce a corresponding

filtration L(s) on L where L(s) := L(s)k�σ=id.

Recall from proposition 3.4 that we have the following exact sequence,

G(L) Γ<p
i 〈τ0〉Z/p

j
1 .

(3.1)

For any 1 6 s 6 p, let is : G(L)→ Γ<p/Cs(Γ<p) be the morphism induced by

i.

Proposition 3.6. [5, §6.5] The following sequence is exact for all 2 6 s 6 p,

1 G(L)/G(L(s)) Γ<p/Cs(Γ<p)
is

〈τ0〉Z/p
j

1 .

In particular, Ker(G(L)→ Γ<p) = G(L(p)) thereforeG(L/L(p)) ' ΓK<p/K(π1),

and we obtain from (3.1) the following short exact sequence of p-groups,

1 G(L/L(p)) Γ<p
ip

〈τ0〉Z/p
j

1 .

We also have, for all 2 6 s < p that Cs(Γ<p) ' G(L(s))/G(L(p)).

We give the following sketch of the methods used in [5]. Recall that ζp ∈ K is

a fixed primitive p-th root of unity. As π0 is a fixed uniformiser of K, then we

have a unique expansion ζp = 1 +
∑

i>
eK
p−1

βiπ
i
0 where βi ∈ k. Recall that eK

denotes the absolute ramification index of K, and note that vπ0(ζp − 1) = eK
p−1

implies that βeK/p−1 6= 0.
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Let h0 ∈ Aut(K) be such that h0 acts as the identity on the residue field of K
and h0(t) = t(1 +

∑
i>

eK
p−1

βpi t
ip), where the coefficients βi ∈ k are given by the

fixed expansion of ζp ∈ K above. For convenience in future calculations we

write the automorphism h0 in the following form h0(t) = t(1 +
∑

j>0 α̃jt
e∗+pj),

where for any j > 0, α̃j = βpi with i = eK
p−1 + j, and α̃0 6= 0.

Let G̃h0
:= {h ∈ Aut(K<p) : h�K ∈ 〈h0〉}. Recall that G<p = Gal(K<p/K),

then clearly G<p ⊂ G̃h0 , and with respect to the identification η0 we obtain

the natural short exact sequence of profinite p-groups,

1 G(L) G̃h 〈h0〉 1 .
(3.2)

The group G̃h was studied in [5, §2.4]. By the formalism of the nilpotent

Artin-Schereier theory from section 2.4.1, lifts h̃0 ∈ G̃h of h0 ∈ Aut(K)

are uniquely determined by solutions (Ah̃0
, ch̃0

) of the recurrence relation

(idL⊗h0)(e) ◦ c = σc ◦ (Ah̃0
⊗ idK)(e) (see [5, Proposition 2.3]). As we saw in

section 2.4.1, the automorphism Ah̃0
∈ Aut(G(L)) corresponds to conjugation

by h̃0 on elements of G(L), thus we will use the more suggestive notation Adh̃0
.

Noting that modulo C2(L)K the Campbell-Hausdorff group law corresponds

to addition in LK, then the first step in the recovery of a solution of the

recurrence relation is to obtain a solution of the following congruence.

σc− c+
∑

a∈Z0(p)

t−a Adh̃0
(Da0) ≡

∑
a∈Z0(p)
i>0

h0(t−a)Da0 modC2(L)K

Expanding the right-hand side, it was recovered that Adh̃0
(D00) ≡ D00 modC2(L)k,

and for any a ∈ Z+(p), Adh̃0
(Da0) ≡ Da0 −

∑
j>0 α̃jaDe∗+pj+a,0 modC2(L)k

(cf. analogous calculations in section 4.1 below).

Using that (τ<p ◦ l ◦ τ−1
<p ◦ l−1) ≡ Adτ<p(l) − l modC2(G(Lk)) then it was

recovered from the above that for all s > 2, Cs(G̃h) modC2(G(Lk)) is generated

by all Dan such that a > (s− 1)e∗. Using general properties of Adh̃0
, this was

extended to recover that for any s > 2 the commutator subgroups of G̃h are

given by Cs(G̃h) = G(L(s)), where for all s > 2, L(s) ⊂ L are the ideals given
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in definition 3.5. It was shown that exact sequence (3.2) induces the following

exact sequence [5, proposition 2.7].

1 G(L)/G(L(p)) Gh0 〈h0〉mod〈hp0〉 1 ,
(3.3)

where Gh0
:= G̃h0/G̃

p
h0
Cp(G̃h0).

Finally, in [5, §6] by comparing the action of Gh0 on the element f of the

NAS identification η0 with the action on f of the image of Γ<p under the field

of norms functor, it was proved that if h0(t) is defined in terms of the fixed

expansion of ζp as above, then the groups Gh0 and Γ<p are isomorphic, and

thus all properties of Gh0 established in [5, §2] are valid for the group Γ<p.

K K(π1) K<p

K̃ K̃K<p K

KG(L(p))
<pK K<p Ksep

Figure 1: Diagram of relevant field extensions, where dashed lines indicate a

correspondence under the field of norms functor X
K̃/K

.

3.5 Linearisation

The results in the previous subsection were obtained in [5] without the need

to specify a lift τ<p explicitly. Although we can recover τ<p from the relation

(idL⊗h0)(e) ◦ c = σc ◦ (A ⊗ idK)(e), the complicated form of the Campbell-

Hausdorff group law makes it very difficult to do so. In [5] an analogue of the

recurrence relation was recovered purely in terms of Lie algebras.

Let L be the Fp-Lie algebra such that G(L) = Γ<p under the Lazard corre-

spondence, and let Fpτ0 be the trivial Fp-Lie algebra corresponding to 〈τ0〉Z/p,
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then from proposition 3.6 we obtain the following short exact sequence of

p-groups,

1 G(L/L(p)) G(L) G(Fpτ0) 1 . (3.4)

By the properties of the Lazard correspondence, exact sequence (3.4) induces

the following short exact sequence of Lie algebras,

0 L/L(p) L Fpτ0 0 . (3.5)

If τ<p ∈ G(L) is a lift of τ0, then the structure of G(L) = Γ<p is determined

by Adτ<p ∈ Aut(G(L/L(p))). By the properties of the Lazard correspondence,

Adτ<p is automatically an automorphism of L̄ := L/L(p). Moreover, by ex-

plicit calculations in [5, Lemma 2.6] the automorphism Adτ<p is a unipotent

automorphism of L̄ (see also sketch in previous section). Therefore, as L̄ has

nilpotence class less than p, we can relate Adτ<p ∈ Aut(L̄) to a derivation

adτ<p ∈ Der(L̄) via the truncated exponential i.e. ẽxp(adτ<p) = Adτ<p .

Although there is a natural relation between Adτ<p and adτ<p , this does not

immediately free us from the use of the Campbell-Hausdorff group law, as

we are still reliant on the recovery of solutions of the recurrence relation

(idL⊗h0)(e) ◦ c = σc ◦ (A⊗ idK)(e) to specify a lift τ<p and the corresponding

automorphism Adτ<p . The major simplification in [5] was the recovery of an

analogue of the recurrence relation given purely in terms of the Lie structure

of L, which we present below.

We set h0(t) = t(1 +
∑

j>0 α̃jt
e∗+pj), where for any j > 0, α̃j = βpi with

i = eK
p−1 + j, and α̃0 6= 0 (recall that the βi correspond to our fixed expansion

of ζp).

Let ωτ ∈ teK/(p−1)O∗K be such that 1 +
∑

j>0 α̃jt
e∗+pj ≡ ẽxp(ωpτ ) mod te

∗p.

Then h0(t) ≡ ẽxp(ωpτ ) mod te
∗p+1 (see [5, Proposition 2.1]).
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Definition 3.7. LetM :=
∑

16s<p t
−se∗L(s)m +L(p)K, where m denotes the

maximal ideal of the valuation ring of K. Then M is a Lie-subalgebra of LK.

For any i > 0, let M(i) := tie
∗M, then {M(i)}i>0 is a decreasing filtration of

ideals of M.

Proposition 3.8. [5, Proposition 3.7] For any a ∈ Z0(p) let Va0 := adτ<p(Da0).

The set of lifts τ<p ∈ Γ<p of τ0 are in bijection with the set of solutions{
(c̄1, {Va0}a∈Z0(p))

}
of the following recurrence formula modulo M(p− 1).

σc̄1 − c̄1 +
∑

a∈Z0(p)

t−aVa ≡

−
∑

16s<p
j>0

∑
a1,...,as

1

s!
t−(a1+···+as)ωpτ [. . . [a1Da1,0, Da2,0], . . . , Das,0] (3.6a)

−
∑

26s<p

∑
a1,...,as

1

s!
t−(a1+···+as)[. . . [Va1,0, Da2,0], . . . , Das,0] (3.6b)

−
∑

26s<p

∑
a2,...,as

1

(s− 1)!
t−(a2+···+as)[. . . [σc̄1, Da2,0], . . . , Das,0] (3.6c)

where the indices a1, . . . , as in the above sums run over Z0(p) .

Proof. This formula was established in [5, §3.5] in the context of lifts of h0, with

h0(t) ≡ t(ẽxp(ωpτ )) mod tpe
∗+1. The solutions of the formula, (c̄1, {Va0}a∈Z0(p)),

are shown to be in bijection with the set of images of lifts h<p in Gh0 [5, remark

after proposition 3.7] . With h0 chosen as above then by [5, proposition 6.4]

the images of lifts of h0 in Gh0 correspond precisely to the lifts τ<p ∈ Γ<p of

τ0, thus the result can be given in terms of τ<p as above.

Note that adτ<p ∈ End(L/L(p)), and hence for any Dan ∈ Lk we have

adτ<p(Dan) = σn(adτ<p(Da0)) = σn(Va0). Thus the elements Va0 fully deter-

mine the derivation adτ<p , and hence the structure of L via the short exact

sequence (3.5).

3.6 Summary

Within the context of this thesis we cannot give a full account of the results of

[5] with regard to the approximation of τ0 by h0, and the process of linearisation.

Therefore, we give the following summary to fix the ideas relevant to thesis.
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1. We should like to investigate the structure of Γ<p via the exact sequence

1 Gal(K<p/K(π1)) Γ<p 〈τ0〉Z/p 1 ,

where τ0(π1) = ζpπ1, and ζp = 1 +
∑

i>1 βiπ
i
0 with βi ∈ k. The group

Γ<p is determined by a lift τ<p ∈ Γ<p of τ0, and Adτ<p .

2. Via the field of norms functor and the techniques of the nilpotent Artin-

Schreier theory we have the following exact sequence (see (3.4)),

1 G(L/L(p)) G(L) G(Fpτ0) 1 .

The structure of Γ<p = G(L) is determined by a solution (Adτ<p , c)

of the recurrence relation (idL⊗h0)(e) ◦ c = σc ◦ (A ⊗ idK)(e), where

h0(t) = t(1 +
∑

i>1 β
p
i t
ip). The solutions of the recurrence relation are

in bijection with the set of lifts τ<p ∈ Γ<p of τ0 [5, Proposition 2.3].

3. In [5, §3] it was established that we can replace all involved group

structures with the corresponding Lie structures (see (3.5)),

0 L/L(p) L Fpτ0 0 .

The structure of L is determined by a solution (adτ<p , c1) of recurrence for-

mula (3.6), with ωτ ∈ teK/(p−1)O∗K such that h0(t) ≡ t(ẽxp(ωpτ )) mod tpe
∗+1.

4. Moreover, any solution (adτ<p , c1) of recurrence formula (3.6) corresponds

to a unique solution (Adτ<p , c) of (idL⊗h0)(e) ◦ c = σc ◦ (A⊗ idK)(e).

Thus, by the results of [5], recovering the structure of Γ<p is equivalent to

recovering a solution of recurrence formula (3.6). This is the main aim of this

thesis, and a solution of (3.6) is given in theorem 7.4.

Unless otherwise specified, we will assume throughout the remainder of this

thesis that we are working with a fixed choice of field K, with fixed uniformiser

π0 and fixed primitive p-th root of unity ζp ∈ K. Similarly, we will assume

that the identification η0 of the nilpotent Artin-Schreier theory is fixed.
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4 Working with the recurrence relation

In this section we outline a recurrent procedure that will allow us to recover a

solution of recurrence relation (3.6), and hence recover the structure of L. We

use the continuous Fp-linear operators R and S from [5], and we recall briefly

their definitions and basic properties.

Suppose that M is a profinite Fp-module, then the continuous Fp-linear op-

erators R,S : MK → MK are defined as follows. (Recall in (ii) below, that

k ' FpN0 , and α0 ∈ k is such that Trk/Fp(α0) = 1).

Definition 4.1. [5, §2.2] For any b ∈Mk and n ∈ Z,

(i) If n > 0 then R(btn) = 0, and S(btn) = −
∑
i>0

σi(btn) ;

(ii) If n = 0 then R(b) = α0Trk/Fp(b), and S(b) =
∑

06j<i<N0

σj(α0σ
i(b)) ;

(iii) If n < 0 and vp(n) = k, then R(btn) = σ−k(btn), and S(btn) =∑
06i<k

σ−i(btn) .

Proposition 4.2. [5, Lemma 2.2] For any b ∈MK we have,

(a) R(b) + (σ − idMK)(S(b)) = b ;

(b) If b = b1 + σb2 − b2, where b1 ∈
∑

a∈Z0(p) t
−aMk + α0M and b2 ∈ MK,

then b1 = R(b) and b2 − S(b) ∈M.

When n 6= 0, then definition of the operators R and S should be familiar

from the classical theory of Artin-Schreier extensions. The case n = 0 is less

straightforward and we include the following clarification from [5].

Let b ∈ Lk. Recall that Trk/Fp(α0) = 1, then b =
∑

06i<N0
σi(α0)b. For all

0 6 i < N0 we set Ri(b) = α0σ
−i(b) and Si =

∑
06j<i σ

j(Ri(b)). Then

b =
∑

06i<N0

σi(α0)b =
∑

06i<N0

σi(Ri(b)) =
∑

06i<N0

((σ − id)Si +Ri)(b) .



§4.1 Explicit calculations modulo M(p− 1) + C2(LK) 30

We set R =
∑

06i<N0
Ri, and S =

∑
06i<N0

Si, whence

S(b) =
∑

06j<i<N0

σj(α0σ
−i(b)) =

∑
0<i<N0

( ∑
06j<N0−i

σj(α0)
)
σ−i(b) .

The operators R and S are used in the following recurrent procedure. Suppose

that for some 2 6 l < p we have recovered recurrence relation (3.6) as

σc̄1 − c̄1 +
∑

a∈Z0(p)

Va0 ≡ Tl modM(p− 1) + Cl(LK) .

Then by proposition 4.2 we can apply the operators R and S to the right-hand

side to obtain the following expressions.

c̄1 ≡ S(Tl) modM(p− 1) + Cl(LK) ,

∑
a∈Z0(p)

t−aVa0 ≡ R(Tl) modM(p− 1) + Cl(LK) .

The first congruence provides an expression for c̄1 modM(p − 1) + Cl(LK)

directly. In the second congruence, we note, from the definition of R, that all

terms appearing on the right-hand side are of the form t−a
′
b with b ∈ L̄k and

a′ ∈ Z0(p). By equating terms with equal exponent of t in this expression we

can recover Va0 modL(p)k + Cl(Lk) for all a ∈ Z0(p).

Once we have recovered a solution (c̄1, {Va0}a∈Z0(p)) moduloM(p−1)+Cl(LK),

then we can recover the right-hand side of (3.6) explicitly modulo M(p− 1) +

Cl+1(LK), and repeating this process allows us to recover a full solution of (3.6).

Note that there is a non-unique choice of c̄1 at each step in the above process.

The non-unique choice of c̄1 relates to the non-uniqueness of the choice of lift,

and choosing c̄1 is equivalent to fixing a choice of lift.

4.1 Explicit calculations modulo M(p− 1) + C2(LK)

As a brief illustration of the method we recover a solution of recurrence relation

(3.6) modulo M(p− 1) + C2(LK). This case was stated in [5].
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Note that ωpτ ∈ te
∗O∗K, therefore we have ωpτ =

∑
j>0Ajt

e∗+pj , where Aj ∈ k
for all j > 0, and A0 6= 0.

Proposition 4.3. We have the following congruences.

V0 ≡ 0 modL(p) + C2(L),

Va0 ≡ −
∑
j>0

AjaDa+e∗+pj,0 modL(p)k + C2(Lk), ḟor a ∈ Z+(p).

Proof. Consider recurrence relation (3.6). Sums (3.6b) and (3.6c) contain

only terms of length greater than one, so that modulo C2(LK) the recurrence

relation is given by

σc̄1 − c̄1 +
∑

a∈Z0(p)

t−aVa0 ≡ −
∑
j>0

∑
a1∈Z0(p)

Ajt
e∗+pj−a1a1Da1,0 . (4.1)

Noting that if a1 = 0 then the corresponding term in the right-hand side

of (4.1) is zero, then for all non-zero terms of the sum the exponent of t is

non-zero and prime to p.

Applying the operator S to the right-hand side of (4.1) we obtain

c̄1 ≡
∑
j>0
n>0

∑
a1<e∗+pj

σn
(
Ajt

e∗+pj−a1a1Da1,0

)
modC2(LK).

Let N∗ be such that pN
∗
> e∗(p− 1), then modulo M(p− 1) we can assume

that n < N∗ in the above sum, hence we have

c̄1 ≡
∑
j>0

06n<N∗

∑
a1<e∗+pj

σn(Aj)t
pn(e∗+pj−a1)a1Da1,n modM(p− 1) + C2(LK).

(4.2)

Applying the operator R to the right-hand side of (4.1) we obtain

V0 ≡ 0 modL(p) + C2(Lk),∑
a∈Z+(p)

t−aVa0 ≡ −
∑

a∈Z+(p)
j>0

Ajt
−aaDa+e∗+pj,0 modM(p− 1) + C2(LK).
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By equating terms with equal exponents of t in this expression we recover

that, for all a ∈ Z+(p),

Va0 ≡ −
∑
j>0

AjaDa+e∗+pj,0 modL(p)k + C2(Lk).

4.2 Considerations modulo higher degree commutators

It is quite possible to continue with these explicit calculations modulo higher

degree commutators, however the calculations naturally become more compli-

cated. Modulo C3(Lk) the calculations are reasonably simple as many of the

terms in the recurrence relation can naturally be seen to belong to C3(Lk), e.g.

terms of the form [Va0, Da2,0]. Modulo C4(Lk) this is no longer the case, and

in fact all complications for the general case already appear at this level. In

particular, as we progress to higher degree commutators complications arise as

the same term can arise in multiple ways with different coefficients. We can see

this already if we consider the recurrence formula moduloM(p− 1) +C3(LK).

Consider the term − 1
2!A0t

e∗−a1−a2a1[Da10, Da20] appearing in (3.6a). If a1 >

e∗, then by our explicit calculations the term −A0a1Da10 appears as a term of

Ve∗−a1,0 modulo C2(Lk), and thus we obtain the term 1
2!A0t

e∗−a1−a2a1[Da10, Da20]

in (3.6b). Of course, in this case the coefficients cancel, but for general terms

this is not the case. For this reason the calculations modulo higher degree

commutators are best treated with a more general approach, which we present

in the next chapter.
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5 Solving the recurrence relation

In this chapter and the next we will work with recurrence relation (3.6) under

the assumption that ωpτ0 = tc, where c ∈ pN and c > e∗. It is sufficient to work

with this choice as all solutions of (3.6) depend σ-linearly on ωpτ0 (see chapter

7). As such we have the following recurrence congruence modulo M(p − 1)

for the elements c̄1 = c1 modM(p− 1) and Va0 := adτ<p(Da0) modL(p)k, for

a ∈ Z0(p).

σc̄1 − c̄1 +
∑

a∈Z0(p)

t−aVa0 ≡

−
∑

16s<p

∑
a1,...,as

1

s!
tc−(a1+···+as)[. . . [a1Da1,0, Da2,0], . . . , Das,0] (5.1a)

−
∑

26s<p

∑
a1,...,as

1

s!
t−(a1+···+as)[. . . [Va1,0, Da2,0], . . . , Das,0] (5.1b)

−
∑

26s<p

∑
a2,...,as

1

(s− 1)!
t−(a2+···+as)[. . . [σc̄1, Da2,0], . . . , Das,0] (5.1c)

where the indices a1, . . . , as in the above sums run over Z0(p).

Note that relation (5.1) makes sense only in M̄ :=M/M(p− 1), but we will

retain the notation Dan for the images of Dan in M̄.

Notation: Let (ā, n̄) = (a1, n1, . . . , as, ns), where 1 6 s < p, all ai ∈ Z0(p),

and ni ∈ Z. We will also use the notation ā = (a1, . . . , as) and n̄ = (n1, . . . , ns).

If we want to indicate that our vectors have length s we will use the notation

(ā, n̄)s. For any (ā, n̄) we also use the following notation.

D(ā,n̄) = a1[. . . [Da1,n1 , Da2,n2 ], . . . , Das,ns ] ,

γ(ā, n̄) = a1p
n1 + · · ·+ asp

ns .

We are going to find the coefficients of decompositions via D(ā,n̄) of the el-

ements σc̄1, and Va0 for a ∈ Z0(p) (we recover σc̄1 rather than c̄1 as this is

better suited to sum (5.1c) of the recurrence formula). As noted in the previous

chapter, for any (ā, n̄) the term D(ā,n̄) may appear in our recurrence formula

in more than one way, and from more than one sum. For this reason, we
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will introduce the concept of admissible partitions of (ā, n̄). Each admissible

partition of (ā, n̄) will correspond to a different occurrence of D(ā,n̄) in the

recurrence formula. Then D(ā,n̄) appears in the above decompositions with

non-zero coefficient only if (ā, n̄) admits at least one admissible partition. For

any (ā, n̄) we will recover the contribution of each admissible partition to the

appropriate coefficient of D(ā,n̄), and prove that the coefficient of D(ā,n̄) is

equal to the sum of those contributions.

There is a small but important subtlety with regard to the terms D(ā,n̄). Recall

that all Dan depend essentially on nmodN0 (where k ' FpN0 ) i.e. for any

n ∈ Z we have Da,n+N0 = Dan, therefore it is quite possible that two distinct

vectors (ā, n̄) and (ā′, n̄′) describe the same Lie monomial, e.g. (a1, N0) and

(a1, 0). However, we will present all decompositions in terms of vectors (ā, n̄),

with associated terms D(ā,n̄), and by indexing the decompositions in this way

we treat the elements D(ā,n̄) as though they were distinct. Note that this is

necessary in order to understand how a term arises in the recurrence formula.

5.1 Basic objects and properties

For any vector (ā, n̄) we will be considering the associated terms D(ā,n̄) in (5.1)

modulo M(p− 1). As L(p) ⊂M(p− 1) we need only consider vectors (ā, n̄)

such that wt(D(ā,n̄)) < p. Noting from definition 3.5 that for any a ∈ Z0(p),

wt(Dan) = [a/e∗] + 1 we introduce the following set of vectors.

Definition 5.1. Let A(e∗) be the set of vectors (ā, n̄)s such that ai ∈ Z0(p),

and ni ∈ Z, with
∑

16i6s[ai/e
∗] < p− s.

As we assume e∗ to be fixed throughout this chapter, we will agree to use the

simpler notation A.

Definition 5.2. For any (ā, n̄) ∈ A, we say {(āi, n̄i)ui : 1 6 i 6 l} is a

partition of (ā, n̄) of order l where,

— for any 1 6 i 6 l, āi = (ai1, . . . , aiui), n̄i = (ni1, . . . , niui) ;

— ā = (a11, . . . , a1u1 , a21, . . . , a2u2 , . . . , al1, . . . , alul) ;

— n̄ = (n11, . . . , n1u1 , n21, . . . , n2u2 , . . . , nl1, . . . , nlul) .
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Definition 5.3. We say a partition {(āi, n̄i)ui : 1 6 i 6 l} of (ā, n̄) is locally

constant if for all 1 6 i 6 l we have ni1 = · · · = niui . In this case we shall

agree to use the notation n̄i for any of the (equal) numbers ni1, . . . , niui .

Note that any (ā, n̄) ∈ A admits a locally constant partition. For any (ā, n̄) ∈ A
we denote by P(ā, n̄) the set of all locally constant partitions of (ā, n̄), and we

denote by P(A) the set of all locally constant partitions of all (ā, n̄) ∈ A.

Definition 5.4. For any (ā, n̄) ∈ A and any m ∈ Z we set σm(ā, n̄) =

(ā, n̄+m), where n̄+m = (n1 +m, . . . , ns +m).

Similarly, if π = {(āi, n̄i)ui : 1 6 i 6 l} ∈ P(ā, n̄), then for any m ∈ Z we set

σm(π) = {(āi, n̄i +m)ui : 1 6 i 6 l}.

Note that if π ∈ P(ā, n̄), then σm(π) ∈ P(σm(ā, n̄)), for any m ∈ Z.

Suppose π = {(āi, n̄i)ui : 1 6 i 6 l} ∈ P(A), we will use below the notation

π[i] = (āi, n̄i), π = {π[i] : 1 6 i 6 l}, and π6t = {π[i] : 1 6 i 6 t} for any

1 6 t 6 l. We will also use the notation γ(π) = γ(ā, n̄), γ(π[i]) = γ(āi, n̄i),

and γ(π6t) = γ(ā1, n̄1) + · · ·+ γ(āt, n̄t). By convention we will set γ(π60) = 0.

We will often use the property that if π ∈ P(A) and π′ = σm(π) for some

m ∈ Z then γ(π′6t) = pmγ(π6t) for all 0 6 t 6 l.

5.2 Admissible partitions

With all notation and properties of the previous section we now introduce the

concept of admissible partitions by induction on the order l (recall in (b)(ii)

below that k ' FpN0 ).

Definition 5.5. Let π ∈ P(A), then π is admissible if,

(a) γ(π)− cpn̄1 ∈ Z ;

(b) one of the following holds,

(i) γ(π) < cpn̄1 and n̄l > 1 ;

(ii) γ(π) = cpn̄1 and −N0 < n̄l 6 0 ;

(iii) γ(π) > cpn̄1 and n̄l 6 0 ;

(c) and if l > 1 then σ−n̄l(π6l−1) is admissible.
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Definition 5.6. For any π = {π[i] : 1 6 i 6 l} ∈ P(A),

(a) Let l(+)(π) = max{0 6 i 6 l : γ(π6i) < cpn̄1} .

(b) Let l(0)(π) = max{0 6 i 6 l : γ(π6i) 6 cpn̄1} .

The following properties follow easily from basic definitions

Proposition 5.7. For any π ∈ P(A),

(a) l(+)(π6t) = min{t, l(+)(π)}, and l(0)(π6t) = min{t, l(0)(π)} for any 1 6 t 6

l.

(b) l(+)(π) = l(+)(σ
m(π)) and l(0)(π) = l(0)(σ

m(π)) for any m ∈ Z.

Remark: We will often use the simpler notation l(+) and l(0) when the

partition π is clear from context. Similarly, by part (b) of the above proposition

we can unambiguously use the notation l(+) and l(0) for both π and σm(π).

For any (ā, n̄) ∈ A we denote by Padm(ā, n̄) the subset of all admissible

partitions in P(ā, n̄), and denote by Padm the set of all admissible partitions

of all (ā, n̄) ∈ A. With the above notation we can give the following explicit

characterisation of admissible partitions.

Proposition 5.8. Let π ∈ P(A) be such that γ(π)− cpn̄1 ∈ Z, then π ∈ Padm

if and only if

(a) n̄1 > n̄2 > · · · > n̄l(+)
> n̄l(+)+1 6 · · · 6 n̄l 6 0 ;

(b) if l(+) < i 6 l(0) then n̄i − n̄i+1 > −N0.

Remark: In (a), if l(+) = l we set n̄l(+)+1 = 0. Similarly, in (b), if l(0) = l we

set n̄l(0)+1 = 0.

Proof. If π ∈ P(A) is a partition of order 1 such that γ(π)− cpn̄1 ∈ Z, then

the proposition follows directly from definition 5.5. Let π = {π[i] : 1 6 i 6

l} ∈ P(A) be a partition of order l > 1 such that γ(π)− cpn̄1 ∈ Z, and assume

for induction that the proposition is true for all partitions of order l − 1.

As the admissibility of π depends partly on the admissibility of σ−n̄l(π6l−1)

we begin by setting π′6l−1 = σ−n̄l(π6l−1), and use our induction hypothesis to

recover the conditions under which π′6l−1 is admissible.
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Let l′(+)
:= l(+)(π

′
6l−1), and l′(0)

:= l(0)(π
′
6l−1). Then by our induction assump-

tion, π′6l−1 ∈ Padm if and only if the following conditions hold:

n̄′1 > · · · > n̄′l′
(+)

+1 6 · · · 6 n̄
′
l−1 6 0; and n̄′i−n̄′i+1 < N0 for all l′(+) < i 6 l′(0).

(5.2)

As n̄′i = n̄i − n̄l for all 1 6 i 6 l − 1 it follows from (5.2) that π′6l−1 ∈ Padm if

and only if the following conditions hold:

n̄1 > · · · > n̄l′
(+)

+1 6 · · · 6 n̄l−1 6 n̄l; and n̄i−n̄i+1 < N0 for all l′(+) < i 6 l′(0).

(5.3)

Using definition 5.5 and (5.3) then we have the following conditions for π to

be admissible.

(i) If γ(π) < cpn̄1 , then l′(+) = l − 1. Hence π ∈ Padm if and only if

n̄1 > n̄2 > · · · > n̄l > 0.

(ii) If γ(π) > cpn̄1 , then l′(+) = l(+)(π). Hence π ∈ Padm if and only if

n̄1 > n̄2 > · · · > n̄l(+)
> n̄l(+)+1 6 · · · 6 n̄l 6 0; and n̄i − n̄i+1 > −N0 for all

l(+) < i 6 l(0).

This completes the inductive step, and the proposition follows by induction

on l.

The following propositions will be of use when applying the operators R and

σS to terms of the recurrence relation, and both follow easily from basic

definitions and proposition 5.8.

Proposition 5.9. Let π ∈ P(A) be such that γ(π) < cpn̄1, and let i ∈ Z.

Then σi(π) ∈ Padm if and only if n̄1 > · · · > n̄l and n̄l + i > 1.

Proposition 5.10. Let π ∈ Padm be such that γ(π) > cpn̄1, and let i ∈ Z.

(a) if l(0) = l then σi(π) ∈ Padm if and only if −N0 < i+ n̄l 6 0.

(b) if l(0) < l then σi(π) ∈ Padm if and only if −vp(γ(π)− cpn̄1) 6 i 6 −n̄l.

In theorem 5.13 below we show that the elements σc̄1 and Va0 for a ∈ Z0(p)

can be expressed as k-linear combinations of terms associated to admissible

partitions. We introduce the following sets to distinguish further between

terms of σc̄1 and Va0.
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Definition 5.11. We define the following subsets of Padm.

Pσ = {π ∈ Padm : γ(π)− cpn̄1 ∈ pZ} ,
PV = {π ∈ Padm : γ(π)− cpn̄1 ∈ Z0(p)} .

Note that Padm = Pσ ∪ PV , and Pσ ∩ PV = {π ∈ Padm : γ(π) = cpn̄1}.

Proposition 5.12. Let π ∈ Padm such that γ(π) > cpn̄1.

(a) σi(π) ∈ PV if and only if i = −vp(γ(π)− cpn̄1).

(b) σi(π) ∈ Pσ if and only if −vp(γ(π)− cpn̄1) < i 6 −n̄l.

Proof. As π ∈ Padm then by proposition 5.10 (b) we have that σi(π) ∈ Padm

if and only if −vp(γ(π) − cpn̄1) 6 i 6 −n̄l. Moreover as γ(π) > cpn̄1 then

σi(π) ∈ Padm belongs to precisely one of PV or Pσ. Therefore it is enough to

prove statement (a), which follows easily from the fact that vp(γ(π′)− cpn̄′1) =

vp(γ(π)− cpn̄1) + i.

If π ∈ P(ā, n̄) we will use below the notation Dπ = D(ā,n̄).

Theorem 5.13. (a) For all π ∈ Pσ there are κσ(π) ∈ k such that

σc̄1 =
∑
π∈Pσ

κσ(π)tcp
n̄1−γ(π)Dπ .

(b) For all π ∈ PV there are κV (π) ∈ k such that for any a ∈ Z0(p)

Va0 =
∑
π∈PVa

κV (π)Dπ ,

where PVa := {π ∈ PV : γ(π) = cpn̄1 + a}.

Proof. Consider first sum (5.1a) of the recurrence formula. All terms of the

sum are of the form − 1
s! t

c−γ(ā,n̄)D(ā,0̄)s , and hence we can associate each term

with a unique locally constant partition of order one. Therefore sum (5.1a)

can be written in terms of partitions as follows.

−
∑

16s<p

1

s!

∑
πs

tc−γ(πs)Dπs

where for 1 6 s < p the sum runs over all partitions πs = {(ā1, 0̄)s} ∈ P(A)

of length s and order one.
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Clearly all coefficients are in k, and hence we need only consider the form

of the involved terms when applying the operators σS and R to recover the

contributions to the elements σc̄1, and Va0 for a ∈ Z0(p) respectively.

If πs = {(ā1, 0̄)s} is such that c−γ(πs) > 0 then the partition is not admissible

(as n̄l = 0). However for such terms R(tc−γ(πs)Dπs) = 0 and so there are no

contributions to Va0 for any a ∈ Z0(p). Applying the operator σS we obtain

terms of the form tcp
n̄′1−γ(π′s)Dπ′s where π′s = σi(πs) with i > 1, and π′s is

admissible by definition, as n̄′1 = i > 1. In particular all contributions to σc̄1

from terms of this form correspond to σ-admissible partitions, and occur with

coefficient in k.

If πs = {(ā1, 0̄)s} is such that γ(πs) = c then the partition πs is admissible.

Applying the operator R we obtain contributions to V0 of the form Dπ′ where

π′s = σ−i(πs) with 0 6 i < N0, and π′s is admissible by proposition 5.10.

In particular π′s ∈ PV0 . Applying σS we obtain contributions to σc̄1 of the

form Dπ′ where π′s = σ−i(π) with 0 6 i < N0 − 1, and again such terms are

admissible by proposition 5.10, and occur with coefficient in k.

Finally, if πs = {(ās, 0̄s)} is such that γ(πs) > c then the partition πs is

admissible. Let vp(c− γ(πs)) = M , then applying the operator R we obtain

terms of the form tcp
n̄′1−γ(π′)Dπ′s , where π′s = σ−M (πs), and hence π′s ∈ PV by

proposition 5.12. More specifically, π′s ∈ PVa where a = γ(π′s)− cpn̄
′
1 ∈ Z+(p),

and the term Dπ′s contributes to Va0. Applying the operator σS we obtain

contributions to σc̄1 of the form tcp
n̄′1−γ(π′)Dπ′s , where π′s = σi(πs) for some

−M < i 6 0 and thus π′s ∈ Pσ by proposition 5.12.

Therefore, all contributions to Va0 and σc̄1 from terms of (5.1a) are of the

appropriate form. In particular, as all terms of sums (5.1b) and (5.1c) are

elements of C2(LK), then the proposition is true modulo M(p− 1) + C2(LK),

and we can proceed by induction.

Let 2 6 r < p and assume that the proposition is true modulo M(p − 1) +

Cr(LK). As we have already established the relevant properties for terms of

(5.1a), then we need only consider terms in (5.1b) and (5.1c).

Consider sum (5.1b). For any a ∈ Z0(p) by our induction assumption all
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terms of Va0 modM(p− 1) +Cr+1(LK) correspond to Va-admissible partitions.

Therefore any term of (5.1b) is of the following form.

− κV (π′)

(s+ 1)!
tcp

n̄′1−γ(π′)−γ(ā,0̄)s [. . . [Dπ′ , Da2,0], . . . , Das,0] ,

where π′ ∈ PVa with a = γ(π′)− cpn̄′1 .

To any such term we can associate a unique partition π ∈ P(A) such that

2 6 l 6 r with π[l] = (a2, 0, . . . , as, 0) and π6l−1 = π′ ∈ PV , therefore sum

(5.1b) can be written in terms of partitions as follows.

−
∑
π

1

(ul + 1)!
κV (π6l−1)tcp

n̄1−γ(π)Dπ (5.4)

where π runs over all π ∈ P(A) such that 2 6 l 6 r with n̄l = 0 and

π6l−1 ∈ PV .

Note that cpn̄1 − γ(π) ∈ Z60, as π6l−1 is V -admissible, and −γ(π[l]) ∈ Z60.

It follows that all partitions of this form are admissible by definition 5.5, and

by inductive assumption all terms occur with coefficient in k.

Similarly, if we consider sum (5.1c), then by our induction assumption the

sum can be written as

−
∑
π

1

(ul)!
κσ(π6l−1)tcp

n̄1−γ(π)Dπ (5.5)

where π runs over all π ∈ P(A) such that 2 6 l 6 r with n̄l = 0 and

π6l−1 ∈ Pσ.

If π in (5.5) is such that γ(π) < cpn1 then the partition π is not admissible,

however, as γ(π6l−1) < cpn̄1 and π6l−1 ∈ Pσ by our induction assumption,

then for such π we have n̄1 > · · · > n̄l = 0. Upon applying the operator σS,

all contributions to σc̄1 are of the form tcp
n̄′1−γ(π′)Dπ′ , where π′ = σi(π) for

some i > 1 and thus π′ ∈ Pσ by proposition 5.9. As in the case for terms

of (5.1a), we can see that upon applying the operator R such terms do not

contribute to Va0 for any a ∈ Z0(p).

All remaining terms π in (5.5) are such that γ(π) > cpn̄1 and π is admissible

for the same reasons as terms of (5.4). For these terms, and for all terms of

(5.4) we can follow precisely the same reasoning as we did for terms of (5.1a)
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to conclude from proposition 5.10 that upon applying the operators R and

σS all contributions to the elements Va0 and σc̄1 occur with coefficient in k

and correspond to the appropriate admissible partitions modulo M(p− 1) +

Cr+1(LK). This completes the inductive step, and the theorem follows by

induction on r.

5.3 Coefficients

In this section we give an explicit description of the coefficients κσ(π) and

κV (π) from theorem 5.13. For any admissible partition π such that γ(π) = cpn̄1

the partition is both V -admissible and σ-admissible, and the coefficient is more

complicated in this case. As such we introduce the notion of non-degenerate

partitions, and recover the coefficient for such partitions first.

Definition 5.14. We say a partition π = {π[i] : 1 6 i 6 l} ∈ P(A) is

non-degenerate if γ(π6t) 6= cpn̄1 for all 1 6 t 6 l.

We will denote by Pnd(A) the subset of all non-degenerate partitions in P(A),

and similarly we will use the notation Pnd
adm, Pnd

σ , Pnd
V to denote the subsets

of non-degenerate partitions of the appropriate sets.

If π ∈ Pnd(A), then π6t ∈ Pnd(A) for all 1 6 t < l, and σm(π) ∈ Pnd(A)

for all m ∈ Z. We also note that Pnd
adm = Pnd

σ ∪ Pnd
V , and Pnd

σ ∩ Pnd
V = ∅. In

particular, if π ∈ Pnd
adm, then σ−n̄t+1(π6t) ∈ Pnd

adm for all 1 6 t < l, and hence

σ−n̄t+1(π6t) belongs to precisely one of PV or Pσ.

Definition 5.15. For any π ∈ Padm set δπ[0] = 0, and for any 1 6 t 6 l we

define

δπ[t] =

 1, if l(0) < t 6 l, and σ−n̄t+1(π6t) ∈ PV .

0, otherwise.

Remark: If π is non-degenerate then δπ[t] = 0 if and only if σ−n̄t+1(π6t) ∈ Pσ.

Definition 5.16. For any π ∈ Pnd
adm we define

κ(π) = (−1)l−l(0)

∏
16t6l

((ut + δ[t− 1])!)−1 .
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Proposition 5.17. Let π, π′ ∈ Padm be such that π′ = σm(π) for some m ∈ Z.

Then δπ[t] = δπ′ [t] for all 0 6 t < l.

Proof. As l(0)(π) = l(0)(π
′), then δπ[t] = δπ′ [t] = 0 for all 0 6 t 6 l(0). For

any l(0) < t < l, since n̄′t+1 = n̄t+1 + m and π′6t = σm(π6t) then we have

σ−n̄
′
t+1(π′6t) = σ−n̄t+1(π6t), and hence δπ[t] = 1 if and only if δπ′ [t] = 1.

Corollary 5.18. Let π, π′ ∈ Pnd
adm be such that π′ = σm(π) for some m ∈ Z.

Then κ(π) = κ(π′).

With respect to the decompositions by admissible partitions in theorem 5.13

we have the following result.

Theorem 5.19. For any π ∈ Pnd
adm ,

(a) if π ∈ Pnd
σ then κσ(π) = κ(π);

(b) if π ∈ Pnd
Va

then κV (π) = κ(π).

Proof. To prove the theorem we must prove for any non-degenerate π ∈ PVa ,

that the associated term Dπ occurs in Va0 with coefficient κ(π), and for any

non-degenerate π ∈ Pσ, that the associated term tcp
n̄1−γ(π)Dπ occurs in σc̄1

with coefficient κ(π). We prove this by induction on the order l of the partition.

In the proof of theorem 5.13 we saw that any term associated with a partition

of order one must arise from sum (5.1a), which is given as follows.

−
∑

16s<p

1

s!

∑
πs

tc−γ(πs)Dπs

where for any 1 6 s < p the index πs runs over all πs = {(ā1, 0̄)s} ∈ P(A).

Note that a partition of order one is non-degenerate if and only if γ(π) 6= cpn̄1 .

If γ(πs) < c, then the contributions to σc̄1 are given by
∑

i>1
1
s! t

pi(c−γ(πs))σi(Dπs).

Suppose π′s = σi(πs) for some i > 1 then π′s ∈ Pnd
σ and since δπ′s [0] = 0 and

l(0)(π
′
s) = l = 1 then κ(π′s) = 1

u1! .

If γ(πs) > c, then πs is admissible and as δπs [0] = 0 and l(0)(πs) = 0 then

κ(πs) = − 1
u1! . If vp(cp

n̄1−γ(π)) = M , then by corollary 5.18 the contributions

to σc̄1 are given by κ(π′s)t
cpn̄
′
1−γ(π′)Dπ′s where π′s = σ−i(πs) for some 0 6 i <

M , and the contribution to Va0 is given by κ(π′s)Dπ′s where π′s = σ−M (πs),

and a = γ(π′s)− cpn̄1 .
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Therefore the theorem is true for all non-degenerate admissible partitions of

order one.

Let 2 6 l < p and assume for induction that the theorem is true for all

partitions of order l − 1. Consider the explicit description of sums (5.1b) and

(5.1c) given in equations (5.4) and (5.5) respectively. For any non-degenerate

term appearing in these sums, as π6l−1 is non-degenerate then π6l−1 belongs

to precisely one of PV or Pσ, therefore the non-degenerate terms of order l in

(5.1) are given by the following sum.

−
∑
π

κ(π6l−1)

(ul + δπ6l−1
[l − 1])!

tcp
n̄1−γ(π)Dπ (5.6)

where π runs over all π ∈ Pnd(A) of order l such that π6l−1 ∈ Pnd
adm and

n̄l = 0.

If γ(π) < cpn̄1 in the above sum, then π is not admissible and therefore the

coefficient κ(π) is not defined, however, as δπ = 0 for all 0 6 t 6 l then π

occurs in (5.6) with coefficient
∏

16t6l(ut!)
−1, and by proposition 5.17 we see

that the (admissible) contributions to σc̄1 are given by κ(π′)tcp
n̄′1−γ(π′)Dπ′

where π′ = σi(π) for i > 1.

If γ(π) > cpn̄1 then the term is admissible and appears in sum (5.6) as

κ(π)tcp
n̄1−γ(π)Dπ. We can then follow the same reasoning as we did for

partitions of order one to conclude that all terms contributing to σc̄1 and Va0

occur with the appropriate coefficient.

Therefore the proposition is true for all non-degenerate admissible partitions

of order l, and the theorem follows by induction on l.

To recover the coefficient in full we must consider all possible cases to remove

the assumption about the non-degeneracy of π. As noted above, the coefficient

for degenerate partitions is more complicated as admissible components such

that γ(π6t) = cpn̄1 can appear from both V0 and σc̄1. Our recurrent procedure

implies the following inductive definition.

Definition 5.20. For any π ∈ Padm, we define inductively κV (π) = κV (π6l)

and κσ(π) = κσ(π6l), where for any l(+) 6 i 6 l,
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κV (π6i) =


0 if i = l(+)

σn̄i+1(α0) · κ̃(π6i) if l(+) < i 6 l(0)

(δπ[i]) · κ̃(π6i) if l(0) < i 6 l

κσ(π6i) =



∏
16i6l(+)

(ui!)
−1 if i = l(+)( ∑

n̄i+1<j<N0+n̄i

σj(α0)
)
· κ̃(π6i) if l(+) < i 6 l(0)

(1− δπ[i]) · κ̃(π6i) if l(0) < i 6 l

where for any l(+) < i 6 l, κ̃(π6i) = −
(
κV (π6i−1)

(ui + 1)!
+
κσ(π6i−1)

(ui)!

)
.

Remark: By our usual convention, if l(0) = l then we set n̄l(0)+1 = 0.

We prove in theorem 5.23 below, that these coefficients are precisely those

implied by theorem 5.13. In preparation for the proof, we establish a property

of the coefficients with respect to σ, and prove that for a non-degenerate

partition the coefficient defined in 5.20 agrees with the coefficient as given in

definition 5.16.

Proposition 5.21. Let π ∈ Padm with γ(π) > cpn̄1 and n̄l = 0,

(a) if γ(π) = cpn̄1, then σ−i(κ̃(π)) = κ̃(σ−i(π)) for any 0 6 i < N0.

(b) if γ(π)− cpn̄1 ∈ N, then σ−i(κ̃(π)) = κ̃(σ−i(π)) for any 0 6 i 6 vp(γ(π)−
cpn̄1).

Proof. Let π ∈ Padm with γ(π) > cpn̄1 and n̄l = 0, and let π′ = σ−i(π) ∈ Padm

for some i ∈ Z, then by proposition 5.10 any such i necessarily satisfies

the conditions in the statements. With the above notation we prove that

σ−i(κ̃(π6t)) = κ̃(π′6t) for all l(+) < t 6 l, (recall that l(+)(π) = l(+)(π
′)).

Let t = l(+) + 1, then as κV (π6l(+)
) = κV (π′6l(+)

) = 0 we have

κ̃(π6t) = −
κσ(π6l(+)

)

ut!
and κ̃(π′6t) = −

κσ(π′6l(+)
)

u′t!
.
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Since σ−i(κσ(π6l(+)
)) = κσ(π′6l(+)

) the statement is clear in this case.

If l = l(+) + 1 then we are done. Otherwise, let l(+) + 1 < t 6 l and assume

for induction that σ−i(κ̃(π6t−1)) = κ̃(π′6t−1). To recover κ̃(π6t) we must first

recover κV (π6t−1) and κσ(π6t−1), and similarly for κ̃(π′6t).

Case 1: γ(π6t−1) = cpn̄1 . In this case the coefficients κV (π6t) and κσ(π6t) are

given as follows.

κV (π6t) = σn̄t+1(α0)κ̃(π6t), and κσ(π6t) =
( ∑
n̄t+1<j<N0+n̄t

σj(α0)
)
κ̃(π6t) .

Similarly, as γ(π′6t) = cpn̄
′
1 then by definition we have

κV (π′6t) = σn̄
′
t+1(α0)κ̃(π′6t), and κσ(π′6t) =

( ∑
n̄′t+1<j<N0+n̄′t

σj(α0)
)
κ̃(π′6t) .

Since n̄′t = n̄t − i, and n̄′t+1 = n̄t+1 − i then it follows from our inductive as-

sumption that σ−i(κV (π6t−1)) = κV (π′6t−1), and σ−i(κσ(π6t−1)) = κσ(π′6t−1).

Therefore,

σ−i(κ̃(π6t+1)) = −
(
σ−i(κV (π6t))

(ut+1 + 1)!
+
σ−i(κσ(π6t))

(ut+1)!

)
= κ̃(π′6t+1) .

Case 2: γ(π6t−1) > cpn̄1 . By proposition 5.17 we have δπ[t− 1] = δπ′ [t− 1].

If δπ[t− 1] = 1 we have κ̃(π6t) = − κ̃(π6t−1)
(ut+1)! and κ̃(π′6t) = − κ̃(π′6t−1)

(u′t+1)!
.

Similarly, if δπ[t− 1] = 0 we have κ̃(π6t) = − κ̃(π6t−1)
ut!

and κ̃(π′6t) = − κ̃(π′6t−1)

u′t!
.

For both values of δπ[t−1] our inductive assumption implies that σ−i(κ̃(π6t)) =

κ̃(π′6t) , which completes the inductive step. It follows by induction on t,

that σ−i(κ̃(π6t)) = κ̃(π′6t) for all l(+) < t 6 l, and in particular σ−i(κ̃(π)) =

κ̃(π′).

Proposition 5.22. Let π ∈ Pnd
adm be such that γ(π) > cpn̄1 , then κ̃(π) = κ(π).

Proof. Consider κ̃(π6t) for t = l(+) + 1. As δπ[i] = 0 for all 0 6 i 6 l(+), and

κ̃V (π6l(+)
) = 0 then it follows that κ̃(π6t) =

∏
16i6t((ui + δπ[t− 1])!)−1.
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If l = l(+) + 1 then clearly κ̃(π6l) = κ(π) and we are done. Otherwise we

note that for any l(+) + 1 < t 6 l, then as π is non-degenerate we have

γ(π6t−1) > cpn̄1 . As we saw in case 2 in the proof of proposition 5.21, if

δπ[t − 1] = 1 we have κ̃(π6t) = − κ̃(π6t−1)
(ut+1)! , and if δπ[t − 1] = 0 we have

κ̃(π6t) = − κ̃(π6t−1)
ut!

.

It follows easily that κ̃(π6l) =
∏

16i6l((ui + δπ[i− 1])!)−1, which is precisely

the expression for κ(π) in definition 5.16.

Theorem 5.23. For any π ∈ Padm let κσ(π) and κV (π) be as given in

definition 5.20. Then

σc̄1 =
∑
π∈Pσ

κσ(π)tcp
n̄1−γ(π)Dπ ,

and for all a ∈ Z0(p),

Va0 =
∑
π∈PVa

κV (π)Dπ .

Proof. To prove the theorem we must prove for any π ∈ PVa , that the associ-

ated term Dπ occurs in Va0 with coefficient κV (π), and for any π ∈ Pσ, that

the associated term tcp
n̄1−γ(π)Dπ occurs in σc̄1 with coefficient κσ(π). If π is

a non-degenerate partition, then these statements follow from proposition 5.22

and theorem 5.19. As such we need only establish the theorem for degenerate

partitions, which we do by induction on the order l of the partition.

We consider first terms of (5.1a). Note that π = {(ā1, 0̄)s} is a degenerate

partition if and only if γ(π) = c. Therefore the degenerate terms of (5.1a) are

given as follows.

−
∑

π:γ(π)=c

1

u1!
Dπ

Note that all such π are admissible with l(+) = 0 and l(0) = 1. Therefore,

κV (π6l(+)
) = 0 and κσ(π6l(+)

) = 1, and it follows that κ̃(π61) = − 1
u1! . Using

proposition 5.21, it follows that for any π in the above sum, the contributions

to V0 are given by α0κ̃(π′)Dπ′ where π′ = σ−i(π) for some 0 6 i < N0,

and the contributions to σc̄1 are given by (
∑

0<j<N0−i σ
j(α0))κ̃(π′)Dπ′ where

π′ = σ−i(π) for some 0 6 i < N0 − 1.
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Note here, that the operator σS only produces terms σ−i(π) for 0 6 i < N0−1,

and therefore not all σ-admissible terms appear in the image of σS. However,

for the σ-admissible partition π′ = σ−N0+1(π) the coefficient κσ(π′) = 0, as

the sum
∑

0<j<1 σ
j(α0) is empty. Therefore the non-occurrence of the term

σ−N0+1(π) is reflected in the definition of the coefficient. Thus the theorem is

true for partitions of order one.

Let 2 6 l < p and assume for induction that the theorem is true for all

partitions of order < l. As all terms obtained from (5.1a) are associated with

partitions of order one, then we need only consider sums (5.1b) and (5.1c).

Noting that κV (π6l−1) (resp. κσ(π6l−1)) is non-zero only if π6l−1 is V -(resp.

σ-)admissible, then by our inductive assumption, the terms associated with

partitions of order l in (5.1) are given by

−
∑
π

κV (π6l−1)

(ul + 1)!
tcp

n̄1−γ(π)Dπ −
∑
π

κσ(π6l−1)

ul!
tcp

n̄1−γ(π)Dπ (5.7)

where the sums run over all π ∈ Padm of order l such that nl = 0.

Clearly then, any π in the above sum occurs with associated term κ̃(π) tcp
n̄1−γ(π)Dπ.

For any term such that γ(π) = cpn̄1 , then using proposition 5.21 we can follow

the same reasoning as we did for partitions of order one to establish that the

contributions to V0 and σc̄1 occur with the relevant coefficient. Similarly, for

terms γ(π) > cpn̄1 it follows easily from proposition 5.21 that all contributions

to Va0 and σc̄1 occur with the appropriate coefficient.

This completes the inductive step, and the theorem follows by induction on

l.

5.4 Main theorem

For any vector (ā, n̄) ∈ A we denote by Pσ(ā, n̄) the set of all σ-admissible

partitions of (ā, n̄), and for any a ∈ Z0(p) we denote by PVa(ā, n̄) the set of

all Va-admissible partitions of (ā, n̄). We will say a vector (ā, n̄) is admissible

if it admits an admissible partition, and similarly we will say a vector (ā, n̄) is

Va(resp. σ)-admissible if it admits a Va(resp. σ)-admissible partition. Combin-

ing the results of the previous sections we can present the elements σc̄1, and
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Va0 for a ∈ Z0(p), as decompositions of terms D(ā,n̄) associated to admissible

vectors (ā, n̄).

Definition 5.24. For any (ā, n̄) ∈ A we define

κσ(ā, n̄) =
∑

π∈Pσ(ā,n̄)

κσ(π), and κVa(ā, n̄) =
∑

π∈PVa (ā,n̄)

κV (π) .

Theorem 5.25. A solution of recurrence formula (5.1) is given by the follow-

ing elements.

(a) σc̄1 =
∑
(ā,n̄)

κσ(ā, n̄)tcp
n1−γ(ā,n̄)D(ā,n̄),

(b) for any a ∈ Z0(p), Va0 =
∑
(ā,n̄)

κVa(ā, n̄)D(ā,n̄).

Proof. Consider first statement (a). Note that for any (ā, n̄) the coeffi-

cient κσ(ā, n̄) is non-zero only if (ā, n̄) is σ-admissible. Moreover, for all

σ-admissible (ā, n̄), any occurrence of the term tcp
n1−γ(ā,n̄)D(ā,n̄) corresponds

to a σ-admissible partition of (ā, n̄). By theorem 5.23, all such partitions of

(ā, n̄) occurs with coefficient κσ(π) and hence statement (a) follows by the

definition of κσ(ā, n̄).

Similarly, for statement (b) we note that for any a ∈ Z0(p) and (ā, n̄) the

coefficient κVa(ā, n̄) is non-zero only if (ā, n̄) is V -admissible and γ(ā, n̄) =

cpn1 + a. For any a ∈ Z0(p), any occurrence of the term D(ā,n̄) in Va0

corresponds to a V -admissible partition of (ā, n̄) such that γ(π) = cpn̄1 + a.

By theorem 5.23, all such partitions of (ā, n̄) occurs with coefficient κV (π) and

hence statement (b) follows by the definition of κVa(ā, n̄).
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6 Properties of coefficients

In this chapter we investigate further the coefficients κVa(ā, n̄) and κσ(ā, n̄)

from theorem 5.25. The properties of a vector (ā, n̄) are intimately linked

with the properties of its partitions, therefore we rephrase in terms of vec-

tors some of the results and properties that were established in the previous

chapter in terms of partitions. As the coefficients κVa(ā, n̄) and κσ(ā, n̄) are

defined as the sum of the coefficients of all appropriate admissible partitions

of (ā, n̄), then the problem of recovering the coefficients κVa(ā, n̄) and κσ(ā, n̄)

is essentially the combinatorial problem of recovering all admissible partitions

of a given vector. We will show that if (ā, n̄) is an admissible vector such

that γ(ā, n̄) < cpn1 then it admits a unique admissible partition, and thus

the coefficient κσ(ā, n̄) has a very simple expression in this case. If (ā, n̄) is

an admissible vector with γ(ā, n̄) > cpn1 we will show that, in general, the

vector admits a large number of admissible partitions, and thus in this case

the coefficients κVa(ā, n̄) and κσ(ā, n̄) are more complicated.

Although some results are used in chapter 7 to compare our approach to

explicit calculations from [5], this chapter is not central to our main result.

Rather, its purpose is to show that, although the coefficients are complicated,

they are accessible, and this is most easily demonstrated under the simplifying

assumption of chapter 5.

6.1 Definitions

Definition 6.1. For any (ā, n̄)s ∈ A we define the following:

(a) For any 1 6 i 6 s, γi(ā, n̄) = a1p
n1 + · · · + aip

ni . By convention we set

γ0(ā, n̄) = 0.

(b) s(+)(ā, n̄) = max{0 6 i 6 s : cpn1 − γi(ā, n̄) > 0}.
(c) s(0)(ā, n̄) = max{0 6 i 6 s : cpn1 − γi(ā, n̄) > 0}.

Remark: Note that if (ā, n̄′) = σm(ā, n̄) for some m ∈ Z then γi(ā, n̄
′) =

pm(γi(ā, n̄)) for all 0 6 i 6 s, and it follows easily that s(+)(ā, n̄
′) = s(+)(ā, n̄)

and s(0)(ā, n̄
′) = s(0)(ā, n̄).
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Recall that we defined a vector (ā, n̄) to be admissible if it admits at least

one admissible partition. The following proposition follows directly from our

explicit characterisation of admissible partitions in proposition 5.8.

Proposition 6.2. (ā, n̄) ∈ A is admissible if and only if γ(ā, n̄)− cpn1 ∈ Z,

and one of the following holds:

(a) γ(ā, n̄) < cpn1 and n1 > · · · > ns > 0.

(b) γ(ā, n̄) > cpn1 with n1 > · · · > ns(+)+1 6 . . . 6 ns 6 0, and ni−ni+1 < N0

for any s(+) < i 6 s(0).

Definition 6.3. For any (ā, n̄) ∈ A there is some (unique) 1 6 m 6 s and

1 6 s1 < · · · < sm = s such that

n1 = · · · = ns1 6= ns1+1 = · · · = ns2 6= · · · 6= nsm−1+1 = · · · = ns.

We say the elements s1, . . . , sm are structural points, and for any vector we

denote by S(ā, n̄) = {s1, . . . , sm} the set of structural points of (ā, n̄).

Of course, any locally constant partition of (ā, n̄) must respect these structural

points, and in fact these structural points determine a minimal (in the sense

of order) locally constant partition of (ā, n̄), i.e. π ∈ P(ā, n̄) such that

π[i] = (asi−1+1, nsi−1+1, . . . , asi , nsi) for all 1 6 i 6 l(= m). For admissible

vectors such that γ(ā, n̄) < cpn1 we can show that such a partition is in fact

the only admissible partition of (ā, n̄).

Proposition 6.4. Let (ā, n̄) be admissible such that γ(ā, n̄) < cpn1, and let

S(ā, n̄) = {s1, . . . , sm}. Then (ā, n̄) admits the unique admissible partition

π = {π[i] : 1 6 i 6 l}, where l = m, u1 = s1 and ui = si − si−1 for all

2 6 i 6 l.

Proof. Consider the partition π = {π[i] : 1 6 i 6 l}, where l = m, u1 = s1

and ui = si − si−1 for all 2 6 i 6 l. As (ā, n̄) is admissible and γ(ā, n̄) < cpn1 ,

then n1 > · · · > ns > 0 by proposition 6.2, and by definition of the structural

points it follows that for the partition π we have n̄1 > · · · > n̄l > 0, and thus

π is admissible by proposition 5.8.

Now let π′ ∈ P(ā, n̄) be a partition distinct from π, then there is some

1 6 t 6 l′ such that u′1 + · · ·+ u′t 6= si for any si ∈ S(ā, n̄). But for such t we
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have n̄′t = n̄′t+1, and since cpn̄
′
1 > γ(π′) then π′ is not admissible by proposition

5.8.

Using the expression for κσ(ā, n̄) from definition 5.20 we have the following

corollary.

Corollary 6.5. Let (ā, n̄) be admissible such that γ(ā, n̄) < cpn1, and let

S(ā, n̄) = {s1, . . . , sm}. Then κσ(ā, n̄) = (s1!(s2 − s1)! · · · (sm − sm−1)!)−1.

As we saw in definition 2.5 the coefficient in the above corollary appears in

the nilpotent Artin-Schreier as η(n̄) in connection with the generators of the

ramification ideals, and will be of use in chapter 7 when we compare results

with [5]. As such we give the following definition of η(n̄) in terms of our

notation.

Definition 6.6. Let (ā, n̄) ∈ A, and let S(ā, n̄) be its set of structural points.

If ns1 > · · · > nsm then η(n̄) = (s1!(s2− s1)! · · · (sm− sm−1)!)−1, and η(n̄) = 0

otherwise. By convention we set η(∅) = 1.

As noted at the beginning of the chapter, if (ā, n̄) is an admissible vector such

that γ(ā, n̄) > cpn1 then the situation is not as simple.

Proposition 6.7. Let (ā, n̄) be an admissible vector such that n1 = · · · = ns,

and γ(ā, n̄) > cpn1. Then for any π ∈ P(ā, n̄), π is admissible if and only if

u1 > s(+).

Proof. By assumption we have γ(ā, n̄)− cpn1 ∈ Z>0, and hence s(+) < s. Let

π ∈ P(ā, n̄) and assume that u1 > s(+), Then for all 1 6 t 6 l we have

γ(π6t)− cpn̄1 > 0, and n̄t = n̄t+1, thus π ∈ Padm(ā, n̄) by proposition 5.8.

On the other hand, if u1 6 s(+), then γ(π61)− cpn̄1 < 0, and since n̄1 = n̄2

then π 6∈ Padm(ā, n̄) by proposition 5.8.

The above implies that if (ā, n̄)s is as stated in the proposition then any

choice of partition in the ‘non-positive part’ is admissible. In fact, in this case

one can show that (ā, n̄)s admits 2r admissible partitions, where r = s−s(+)−1.
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A similar result holds for a general admissible vector, and because of the

large number of admissible partitions for such vectors it is unlikely that we

will find a simple expression for the coefficients κVa(ā, n̄) and κσ(ā, n̄) in

general. However, we can recover a reasonably simple recurrence formula for

‘non-degenerate’ vectors, from which we can deduce some properties of the

coefficients κVa(ā, n̄) and κσ(ā, n̄), and give some special cases.

a1 a2 a3

a4 a5 a6 a7 a8

a9 a10 a11

γi(ā, n̄) < cpn1 γi(ā, n̄) > cpn1

Figure 2: Heuristic interpretation of all admissible partitions of a vector (ā, n̄),

with S(ā, n̄) = {3, 8, 11} and s(+)(ā, n̄) = 5.

6.2 Coefficient for non-degenerate vectors

Definition 6.8. We say a vector (ā, n̄) is non-degenerate if γi(ā, n̄) 6= cpn1

for all 1 6 i 6 s.

Note that any partition of a non-degenerate vector (ā, n̄) is necessarily non-

degenerate (see definition 5.14).

Definition 6.9. For any 1 6 i 6 s let λi(ā, n̄) = 0 if n1 = · · · = ni, and

λi(ā, n̄) = max{sj ∈ S(ā, n̄) : sj < i} otherwise.

Definition 6.10. Let (ā, n̄)s be admissible. For any 0 6 i < s, let δi(ā, n̄) = 1

if vp(cp
n1 − γ(ā, n̄)i) = ni+1, and δi(ā, n̄) = 0 otherwise.

The following properties follow easily from basic definitions.

Proposition 6.11. Let (ā, n̄) and (ā, n̄′) be admissible vectors such that

(ā, n̄′) = σm(ā, n̄) for some m ∈ Z, then:

(a) S(ā, n̄′) = S(ā, n̄).

(b) λi(ā, n̄
′) = λi(ā, n̄) for all 1 6 i 6 s.

(c) δi(ā, n̄
′) = δi(ā, n̄) for all 0 6 i < s.
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Definition 6.12. For any non-degenerate admissible vector (ā, n̄) such that

γ(ā, n̄) > cpn1 we define recursively the coefficient κ(ā, n̄) = κs(ā, n̄), where

for any s(+) < i 6 s:

κi(ā, n̄) =


−η(n1, . . . , ni)−

∑
s(+)<j<i

κj(ā, n̄)

(i− j + δj)!
if λi(ā, n̄) 6 s(+)

−
∑

λi6j<i

κj(ā, n̄)

(i− j + δj)!
if λi(ā, n̄) > s(0)

Remark: For any non-degenerate vector s(+) = s(0), but the use of s(0) in the

above definition is deliberate, as that case is also valid for degenerate vectors.

From the properties stated in proposition 6.11 then we have the following

property of κ(ā, n̄).

Proposition 6.13. Let (ā, n̄) and (ā, n̄′) be non-degenerate admissible vectors

such that (ā, n̄′) = σm(ā, n̄) for some m ∈ Z, then κ(ā, n̄) = κ(ā, n̄′).

Theorem 6.14. Let (ā, n̄) be a non-degenerate admissible vector such that

γ(ā, n̄) > cpn1.

(a) If (ā, n̄) is Va-admissible then κVa(ā, n̄) = κ(ā, n̄).

(a) If (ā, n̄) is σ-admissible then κσ(ā, n̄) = κ(ā, n̄).

Proof. Recall from definition 5.24 that for any (ā, n̄) ∈ A,

κσ(ā, n̄) =
∑

π∈Pσ(ā,n̄)

κσ(π), and κVa(ā, n̄) =
∑

π∈PVa (ā,n̄)

κV (π).

As (ā, n̄) is non-degenerate, then all partitions of (ā, n̄) are non-degenerate

and we can use the simpler formula for κσ(π) and κV (π) from definition 5.16.

Moreover, if (ā, n̄) is Va-admissible then all admissible partitions of (ā, n̄) are

Va-admissible, and similarly if (ā, n̄) is σ-admissible. Therefore to prove the

proposition it is sufficient to prove for any non-degenerate admissible (ā, n̄),

that κ(ā, n̄) =
∑

π∈Padm(ā,n̄) κ(π).

Let (ā, n̄) ∈ A be admissible such that γ(ā, n̄) > cpn1 . By proposition 6.13 we

can also assume that ns = 0. Under these assumptions it follows easily from

basic definitions that for any π ∈ P (ā, n̄) of order > 2, π is admissible if and

only if π6l−1 is admissible.



§6.2 Coefficient for non-degenerate vectors 54

If s = s(+) + 1, then γi(ā, n̄) > cpn1 for all 1 6 i < s, and it follows in the

same way as proposition 6.4 that (ā, n̄) admits a unique admissible partition

π corresponding to the structural points S(ā, n̄). Moreover, as s = s(+) + 1

we have l − l(0) = 1 and δπ[t] = 0 for all 0 6 t < l. Thus by definition 5.16 we

have
∑

π∈Padm(ā,n̄) κ(π) = −η(n̄), which is precisely the coefficient κ(ā, n̄) as

given in definition 6.12.

Suppose then that s > s(+) + 1, and that the proposition is true for all

vectors (ā′, n̄′)j such that λs 6 j < s and (ā′, n̄′)j = (a1, n1, . . . , aj , nj),

i.e. the elements of the vector (ā′, n̄′) agree with the elements ai and ni

of the vector (ā, n̄) for 1 6 i 6 j. For any λs 6 j < s, if we fix π[l] =

(aj+1, nj+1, . . . , as, ns)s−j , then the set of all partitions in P (ā, n̄) such that

π[l] = (aj+1, nj+1, . . . , as, ns)s−j is in bijection with P (ā′, n̄′)j via the map π 7→
π6l−1. In particular, if (ā′, n̄′)j is admissible, then by our induction assumption

the contribution to the coefficient κ(ā, n̄) is given by − 1
(s−j+δj)!κ(ā′, n̄′)j , and

if (ā′, n̄′)j is not admissible then there is no contribution to the coefficient

κ(ā, n̄).

The proposition follows from the above by noting that if λs 6 s(+), then

δλs = 0, and (ā′, n̄′)j = (a1, n1, . . . , aj , nj) is admissible if and only if j = λs or

s(+) < j < s, and if λs > s(+) then (ā′, n̄′)j = (a1, n1, . . . , aj , nj) is admissible

for all λs 6 j < s.

(a) Padm(ā, n̄)

a1 a2 a3 a4 a5

(b) {π ∈ Padm(ā, n̄) : π[l] = (ā, n̄)}

a1 a2 a3 a4 a5

(c) {π ∈ Padm(ā, n̄) : π[l] = (a4, n4, a5, n5)}

a1 a2 a3 a4 a5

(d) {π ∈ Padm(ā, n̄) : π[l] = (a5, n5)}

a1 a2 a3 a4 a5

Figure 3: Heuristic interpretation of the recovery of κ(ā, n̄), where S(ā, n̄) =

{5}, and s(+)(ā, n̄) = 2.
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By the above proposition, we can study properties of the coefficients κσ(ā, n̄)

and κVa(ā, n̄) for non-degenerate vectors by studying the coefficient κ(ā, n̄).

6.3 Properties of the coefficient κ(ā, n̄).

Example 1: In the case that (ā, n̄)s is admissible and non-degenerate with

s = s(+) + 1 then κ(ā, n̄) has a particularly simple form,

κ(ā, n̄) = −η(n̄).

Although γ(ā, n̄) > cpn1 , this is related to the situation in proposition 6.4; for

the same reasons the vector still admits a unique admissible partition in this

case.

Example 2: Let (ā, n̄)s be admissible. In general, if κi(ā, n̄) = 0 for some

1 6 i < s this does not imply that κ(ā, n̄) = 0. However, if i ∈ S(ā, n̄) and

i > s(0) then the implication does hold.

Proposition 6.15. Let (ā, n̄)s be a non-degenerate admissible vector. If

κsi(ā, n̄) = 0 for some si ∈ S(ā, n̄) with si > s(0), then κ(ā, n̄) = 0.

Proof. If si = s then there is nothing to prove, so assume that s(0) < si < s.

It is sufficient to prove that κsi(ā, n̄) = 0 implies that κsi+1(ā, n̄) = 0.

Note that for any si < i 6 si+1 we have λi = si, and as si > s(0) then by

definition 6.12 for any si < i 6 si+1 we have

κi(ā, n̄) =
∑
si6j<i

κj(ā, n̄)

(i− j + δj)!
.

If i = si + 1 then κi(ā, n̄) =
κsi (ā,n̄)

(1+δsi )!
= 0. Similarly, for any si < i 6 si+1

if κj(ā, n̄) = 0 for all si 6 j < i then κi(ā, n̄) = 0. By induction then

κsi(ā, n̄) = 0 =⇒ κsi+1(ā, n̄) = 0.

The proposition follows by noting that if κsi(ā, n̄) = 0 then κsj (ā, n̄) = 0 for

all i 6 j 6 m, and in particular κ(ā, n̄) = 0.

This proposition can be useful when performing explicit calculations, as in some

cases we can use it to rule out the occurrence of vectors of a particular form by



§6.3 Properties of the coefficient κ(ā, n̄). 56

showing that the coefficient is 0 without needing to recover the coefficient in full.

Example 3

Proposition 6.16. Let (ā, n̄)s be a non-degenerate admissible vector. If there

is some 2 6 i 6 s such that i − λi > 2 with δλi = 0 and δλi+1 = 1, then

κ(ā, n̄) = 0.

Proof. Note that λi ∈ S(ā, n̄) by definition, therefore we set λi = si and prove

that the conditions in the proposition imply that κsi+1(ā, n̄) = 0, in which

case κ(ā, n̄) = 0 by proposition 6.15.

Case 1: si 6 s(+).

By assumption δsi+1 = 1, and hence κs1+1(ā, n̄) = −η(n1, . . . , nsi+1), and

κsi+2(ā, n̄) = −η(n1, . . . , nsi+2) + 1
2!η(n1, . . . , ns+1).

As si > si + 1 then η(n1, . . . , nsi+1) = η(n1, . . . , nsi) · 1 and η(n1, . . . , nsi+2) =

η(n1, . . . , nsi) · 1
2! , (if si = 0 we recall that η(∅) = 0). Hence κsi+2(ā, n̄) = 0.

If si+1 = si + 2 then we are done, otherwise assume that si + 2 < i 6 si+1,

and that κj(ā, n̄) = 0 for all si + 2 6 j < i. We have the following expression

for κi(ā, n̄).

κi(ā, n̄) = −η(n1, . . . , ni)−
∑

si<j<i

κj(ā, n̄)

(i− j + δj)!

= −η(n1, . . . , ni)−
κsi+1(ā, n̄)

(i− si)!

But κsi+1(ā, n̄) = −η(n1, . . . , nsi) ·1, and η(n1, . . . , ni) = η(n1, . . . , nsi) · 1
(i−si)! ,

and thus κi(ā, n̄) = 0.

It follows (for case 1) by induction that κsi+1(ā, n̄) = 0 and thus κ(ā, n̄) = 0

by proposition 6.15.

Case 2: si > s(+).

This follows in a similar way. By assumption, δsi = 0 and δsi+1 = 1, therefore

κsi+1(ā, n̄) = −κsi(ā, n̄), and κsi+2(ā, n̄) = − 1
2!κsi(ā, n̄) + 1

2!κsi(ā, n̄) = 0.

If si+1 = si + 2 then we are done, otherwise assume that si + 2 < i 6 si+1,

and that κj(ā, n̄) = 0 for all si + 2 6 j < i. We have the following expression
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for κi(ā, n̄).

κi(ā, n̄) = −
∑
si6j<i

κj(ā, n̄)

(i− j + δj)!

= −κsi(ā, n̄)

(i− si)!
− κsi+1(ā, n̄)

(i− si)!

But κsi+1(ā, n̄) = −κsi(ā, n̄), thus κi(ā, n̄) = 0. It follows (for case 2) by

induction that κsi+1(ā, n̄) = 0, hence κ(ā, n̄) = 0 by proposition 6.15.

We can apply the above proposition to recover the following special case.

Proposition 6.17. Let (ā, n̄)s be an admissible vector such that s > 2 and

a1 > c. Then κ(ā, n̄) = 0.

Proof. Note that, as a1 > c, then s(+) = s(0) = 0, therefore (ā, n̄) is non-

degenerate, and as (ā, n̄) is admissible then it follows from proposition 6.2

that n1 6 · · · 6 ns 6 0.

By definition, δ0(ā, n̄) = 0. We will also establish that δ1(ā, n̄) = 1 and

n1 = n2, in which case the result will follow from proposition 6.16.

As a1 > c, then a1 ∈ Z+(p), and as c ∈ pN it follows that vp(cp
n1−a1p

n1) = n1.

As stated above, n1 6 n2 6 · · · 6 ns 6 0. Suppose for contradiction that

n1 < n2, then vp(cp
n1−γ(ā, n̄)) = n1 < 0 (use that vp(a2p

n2 + · · · aspns) > n2).

But (ā, n̄) is admissible with γ(ā, n̄)− cpn1 ∈ N, and we have a contradiction.

It follows that n1 = n2, and δ1(ā, n̄) = 1 (as vp(cp
n1 −a1p

n1) = n1). Moreover,

λ2(ā, n̄) = 0 and thus κ(ā, n̄) = 0 by proposition 6.16.

Example 4 As a final example we have the following special case.

Proposition 6.18. Let (ā, n̄) be a non degenerate admissible vector. If

1 6 i 6 s is such that δλi = · · · = δi−1 = 1, then

κi(ā, n̄) = κλi(ā, n̄) ·
B(i−λi)

(i− λi)!

where Bn denotes the n-th Bernoulli number.
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Proof. As δi = 0 for all i 6 s(+) then δλi = 1 implies that λi > s(+), and

as δλi = · · · = δi−1 = 1 then κi(ā, n̄) =
∑

λi6j<i
κj(ā,n̄)

(i−j+1)! . We prove the

proposition by induction on the length i− λi.

Induction base: Let i = λi + 1. As δλi = 1, then κλi+1(ā, n̄) = − 1
2!κλi(ā, n̄).

To establish the inductive base it is enough to note that B1
1! = − 1

2! .

Inductive step: Let i > λi + 1 and assume the proposition is true for all

λi 6 j < i. The key to proving the inductive step is the following well known

recurrence relation for the Bernoulli numbers, which holds for all n > 1.∑
06j6n

(
n+ 1

j

)
Bj = 0

Dividing through by (n+ 1)! and rearranging we obtain the following identity,

which holds for any n > 1.

Bn
n!

= −
∑

06j<n

Bj
(n− j + 1)!j!

(6.1)

As δj = 1 for all λi 6 j < i then by our induction assumption we have

κi(ā, n̄) = −κλi(ā, n̄) ·
∑

λi6j<i

Bj−λi
(i− j + 1)!(j − λi)!

= −κλi(ā, n̄) ·
∑

06j′<i−λi

Bj′

(i− λi − j′ + 1)!(j′)!

Using (6.1) with n = i − λi we see that κi(ā, n̄) = κλi(ā, n̄) · Bi−λi
(i− λi)!

as

required. This completes the inductive step, and the proposition follows for

any length i− λi by induction.

In particular, as Bn = 0 for all odd n > 1, then the above proposition can be

combined effectively with proposition 6.15 when carrying out explicit calcula-

tions.

The appearance of the Bernoulli numbers is not surprising, as the recovery

of the coefficient is essentially a combinatorial problem, in which context the

Bernoulli numbers frequently arise.
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6.4 General remarks

The results of this chapter demonstrate that, for non-degenerate vectors, al-

though the coefficient is complicated in general it is still possible to work

explicitly with the associated terms, and extract general properties. The

recovery of the coefficient is very accessible to combinatorial methods, and for

vectors of short length the recurrence formula is easily and quickly handled by

programs such as Mathematica or Maple.

It is possible to define a recurrence formula for the coefficients κVa(ā, n̄)

and κσ(ā, n̄) for degenerate vectors (ā, n̄) in a very similar way, however the

expression is not concise due to the involved coefficients α0, and the fact that

terms arise from both V0 and σc̄1. For this reason we do not give an explicit

formula, but note that if (ā, n̄) is a degenerate vector such that γ(ā, n̄) > cpn1

then for any s(0) < i 6 s such that λi > s(0) that portion of the coefficient is

recovered as per definition 6.12, thus many of the properties of this section

can also be applied to degenerate terms.
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7 General solution of the recurrence formula

All results in chapters 5 and 6 were obtained under the simplifying assump-

tion that ωpτ = tc with c ∈ pN. In the general setting we need to consider

ωpτ =
∑

j>0Ajt
e∗+pj , where Aj ∈ k and A0 6= 0, therefore in order to provide

a general solution of recurrence formula (3.6) we need to make some formal

adjustments to our notation.

Firstly, for any given vector (ā, n̄) ∈ A, all properties established in the

previous chapters correspond to c = e∗ + pj for a fixed choice of j > 0. For

example, suppose (ā, n̄) ∈ A is such that n̄ = 0̄ and γ(ā, n̄) = e∗ + 1. Then

(ā, n̄) is an admissible vector with respect to c = e∗, but not with respect to

c = e∗ + p (as γ(ā, n̄) < e∗ + p and n̄ = 0̄). As such, we adapt the notation of

chapter 5 to reflect a specific choice of j > 0.

Definition 7.1. Let ωpτ =
∑

j>0Ajt
e∗+pj , then for any j > 0 we denote by

Padm,j the set of all admissible partitions with respect to c = e∗+pj. Similarly

we set Pσ,j = {π ∈ Padm,j : γ(π)− (e∗ + pj)pn̄1 ∈ pZ}, and for any a ∈ Z0(p)

we denote by PVa,j = {π ∈ Padm,j : γ(π) = (e∗ + pj)pn̄1 + a}.

Secondly, for any j > 0 in the expression for ωpτ we have an associated coefficient

Aj ∈ k, which appears in (5.1a). For any partition π ∈ Padm,j if one formally

follows the coefficient Aj through the recurrent procedure one sees that the

cumulative effect of σ on Aj is precisely the cumulative effect of σ on π[1].

Therefore we introduce the following definitions.

Definition 7.2. Let ωpτ =
∑

j>0Ajt
e∗+pj , then for any j > 0 and π ∈ Padm,j

κV,j(π) = σn̄1(Aj) · κV (π), and κσ,j(π) = σn̄1(Aj) · κσ(π) ,

where the coefficients κV (π) and κσ(π) are given in definition 5.20, with respect

to c = e∗ + pj.

Definition 7.3. Let ωpτ =
∑

j>0Ajt
e∗+pj , then for any j > 0, and (ā, n̄) ∈ A

κσ,j(ā, n̄) =
∑

π∈Pσ,j(ā,n̄)

κσ,j(π), and κVa,j(ā, n̄) =
∑

π∈PVa,j(ā,n̄)

κV,j(π) .
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With these adjustments, for any fixed j > 0, the corresponding terms con-

tributing to Va0 or σc̄1 are given by theorem 5.23, and thus the following

general solution of the recurrence formula follows directly from the results of

chapter 5 by linearity.

Theorem 7.4. Let ωpτ =
∑

j>0Ajt
e∗+pj, then a solution of (3.6) is given by

the following elements.

(a) σc̄1 =
∑
j>0

∑
(ā,n̄)

κσ,j(ā, n̄)t(e
∗+pj)pn1−γ(ā,n̄)D(ā,n̄) .

(b) For any a ∈ Z0(p), Va0 =
∑
j>0

∑
(ā,n̄)

κVa,j(ā, n̄)D(ā,n̄) .

From our discussion in section 3.6, the elements Va0 in theorem 7.4 define a

class of derivations adτ<p ∈ Der(L/L(p))/ Inn(L/L(p)), thus fully describing

the structure of L, and hence the structure of Γ<p.

It is regrettable that we are unable to present an immediate application of

the results in this thesis. However, we have obtained a very precise charac-

terisation of the elements Va0; they appear as k-linear combinations of terms

D(ā,n̄) associated to admissible vectors, which are of a very predictable form.

We have also demonstrated in chapter 6 that, for any (ā, n̄) ∈ A, the recovery

of the coefficients κσ,j(ā, n̄) and κVa,j(ā, n̄) can be reduced to essentially com-

binatorial methods, from which general properties of the elements D(ā,n̄) can

be recovered. Due to the explicitness of the nilpotent Artin-Schreier theory,

and our explicit recovery of the terms Va0, we should certainly expect that

the results of this thesis can be applied to study further the group Γ<p.

As it is, in the next section we compare our description of the elements Va0

from theorem 7.4 with explicit calculations from [5], and in the final section

we discuss briefly some opportunities for further study.
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7.1 Comparison with explicit calculations in [5]

The following expressions for the elements Va0 modL(3)k for a ∈ Z0(p) were

given in [5, proposition 3.9].

V00 ≡ −α0

∑
j>0

06n<N0

σ−n(AjF0
e∗+pj,0) modL(3)k ,

Va0 ≡ −
∑
n>1
j>0

σn(AjF0
e∗+pj+ap−n,−n)−

∑
m>0
j>0

σ−m(AjF0
e∗+pj+apm,0) modL(3)k .

Recall from section 2.5 that the terms F0
γ,−n appear in connection with gener-

ators of the ramification groups under the identification η0 of the nilpotent

Artin-Schreier theory. Modulo L(3)k the terms of Va0 can quite naturally be

grouped in this way, as at this level the terms involved admit a unique admis-

sible partition. Because the terms F0
γ,−n appear naturally in the NAS-theory,

as a first approach to the recovery of a solution of (3.6) we sought to recover

a general solution involving these elements. Although this was achieved, the

grouping of terms led to complicated expressions, and a complicated exposition

(cf. [5, §5.2] for associated difficulties in recovering V00 in this form). Moreover,

there was no meaningful control on the appearance of F0
γ,−n in the various

terms. The exposition given in this thesis is more natural with respect to the

recurrent procedure, and hopefully provides a clearer picture of how the terms

of Va0 and σc̄1 and their coefficients arise.

Whilst the above expressions for Va0 modL(3)k from [5] can be recovered by

continuing the explicit calculations from chapter 4, it is informative to recover

the elements from theorem 7.4 above. We show that our solution matches

the expression for V00 given above, and note that similar calculations can be

carried out to verify that our solution matches the expression Va0 for any

a ∈ Z+(p).

Proposition 7.5.∑
j>0

∑
(ā,n̄)

κV0,j(ā, n̄)D(ā,n̄) ≡ −α0

∑
j>0

06n<N0

σ−n(AjF0
e∗+pj,0) modL(3)k .
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Proof. It is sufficient to prove that the congruence in the proposition holds

for any fixed j > 0. Suppose then that j > 0 is fixed, and consider first the

sum on the left-hand side of the congruence. Note that for any (ā, n̄) ∈ A
the coefficient κV0,j(ā, n̄) is non-zero only if (ā, n̄) is (V0, j)-admissible. If

(ā, n̄)1 ∈ A we have γ(ā, n̄) 6∈ pN, and therefore there are no (V0, j)-admissible

vectors of length one. For any (ā, n̄)2 ∈ A, we have γ(ā, n̄) ∈ pN only if

n1 = n2. Therefore, modulo L(3)k any (V0, j)-admissible (ā, n̄) is of the form

(a1,−r, a2,−r) with a1 + a2 = e∗ + pj and 0 6 r < N0. Note that any such

term admits the unique admissible partition π = π[1] = {(a1,−r, a2,−r)} (use

that γ1(ā, n̄) < (e∗ + pj) and n1 6 0). Therefore, by definition 7.3 we have

κV0,j(ā, -r̄) = −α0σ
−r(Aj)

1
2! .

Now consider the sum on the right-hand side of the congruence. By definition

2.5 the element F0
e∗+pj,0 is given as follows.

F0
e∗+pj,0 ≡

∑
a1=e∗+pj

a1Da1,0 +
∑

a1+a2=e∗+pj

1

2!
a1[Da1,0, Da2,0] modL(3)k

where a1, a2 ∈ Z0(p).

Again, no term of length one can occur, so the first sum is empty. All terms

of length two correspond to (V0, j)-admissible vectors (ā, 0̄)2. It follows that

for any 0 6 r < N0 we have∑
(ā,-r̄)

κV0,j(ā, -r̄)D(ā,-r̄) ≡ −α0 σ
−r(AjF0

e∗+pj,0) modL(3)k .

As (ā, -r̄) is not (V0, j)-admissible for any r > N0, then the congruence in the

proposition holds for any choice of j > 0.

7.2 Opportunities for further study

As noted in the introduction, our solution can not be considered completely

satisfactory in terms of ramification properties, as the lift τ<p ∈ of τ0 described

by the elements in theorem 7.4 is not of a form from which we recover explicitly

the generators of the ramification groups of Γ<p. In order to fully describe the

ramification filtration for the group Γ<p additional care must be taken when

specifying the choice of lift τ<p via a solution of (3.6). Such lifts are described

in [5] as arithmetic lifts, and although the full technical considerations are more
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involved, the situation is completely analogous to the classical case for finite

Galois extensions, where the incompatibility of the upper numbering with

subgroups means that different lifts of τ0 may belong to different ramification

groups of Γ<p (see e.g [16, IV §3]).

In [5, §6.5] a description of the ramification filtration of Γ<p was given as

follows. The nilpotent Artin-Schreier theory describes the ramification groups

of G<p as groups defined on ideals L(v) of L (see section 2.5), and due to the

compatibility of the field of norms functor with ramification, the images of L(v)

in L̄ = L/L(p) describe the ramification groups of the extension K<p/K(π1)

via the Herbrand function ϕ
K̃/K of the APF extension K̃/K. Furthermore,

the ramification filtration of the extension K(π1)/K has a simple descrip-

tion, with unique break in the upper (and lower) numbering corresponding to

e∗ = peK/p− 1.

An arithmetic lift of τ<p corresponds to a lift such that τ<p ∈ L(e∗), and

τ<p 6∈ L(v) for any v > e∗. Therefore in [5, §6] it was recovered that for

all v > e∗ the ramification groups of Γ<p are given by G(L(v′)/L(p)) where

v′ = e∗ + p(v − e∗) (using the Herbrand function for the extension K(π1)/K).

If τ<p is an arithmetic lift of τ then for v 6 e∗ the ramification group Γ
(v)
<p is

generated by τ<p and G(L(v)/L(p)). As an application in [5] it was shown for

K[s] := K
Cs+1(L)
<p that the maximal upper ramification number of K[s]/K is

e∗ if s = 1, and e∗ + (e∗(s− 1)− 1)/p if 2 6 s < p.

The following criterion was established in [5] to determine whether a lift τ<p,

given by a solution (c̄1, {Va0}a∈Z0(p)), of (3.6) is arithmetic.

Theorem 7.6. [5, Theorem 4.8] The following properties are equivalent.

(a) τ<p is arithmetic.

(b) (Adτ<p − idL)L ⊂ L(e∗) and for a sufficiently large N ,

c̄1 ≡
∑
γ,j>0

∑
06i<N

σi(AjF0
γ,−it

−γ+e∗+pj) modL(e∗)
K +M(p− 1) .
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(c) (Adτ<p − idL)L ⊂ L(e∗) and for a sufficiently large N ,

c̄1(0) ≡
∑
j>0

∑
06i<N

σi(AjF0
e∗+pj,−i) modL(e∗)

k +M(p− 1) .

Remark: For statement (c) of the theorem, we note that c̄1(0) is used in [5]

to denote the terms of c̄1 corresponding to t0.

It would be interesting to establish whether our solution in theorem 7.4 corre-

sponds to an arithmetic lift. With respect to the above criterion, any work in

either showing the the solution given in theorem 7.4 is arithmetic, or making a

different choice of lift to recover an arithmetic lift (i.e. by choosing a different

c̄1), should come essentially within the ‘degenerate portion’ of a term, by which

we mean the section of (ā, n̄) such that γi(ā, n̄) = cpn1 . This reduces essentially

to recovering the element V00 and the terms of c̄1(0) in the appropriate form.

Again, this is related to difficulties discussed in [5, §5.2].

As mentioned above, the maximal upper break of the ramification filtration for

the extensions K[s]/K was given in [5]. Another interesting avenue for further

study would be to recover all ramification breaks for these extensions. As re-

marked in [5, Introduction], the ramification filtration of ΓpKC2(ΓK)/ΓpKC3(ΓK)

was studied in [22], however the explicit nature of the nilpotent Artin-Schreier

theory, together with a complete description of the generators of the ramifica-

tion ideals of L should allow for a deeper study of the ramification breaks of Γ<p.
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