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Abstract

The classical Hilbert symbol of a higher local field F' containing a primitive p™-th
root of unity (s is a pairing F*/(F*)pM x Kn(F)/p™ — pyn, describing Kummer
extensions of exponent p™. In this thesis we define a generalised Hilbert symbol

and prove a formula for it. Our approach has several ingredients.

The field of norms functor of Scholl associates to any strictly deeply ramified tower
F, a field F of characteristic p. Separable extensions of F correspond functorially

to extensions of F,, giving rise to ' = T'p_ C I'p.

We define morphisms Nz, : Ki(F)/pM — K§(F,)/p™ which are compatible with
the norms N, . /r, for every m. Using these, we show that field of norms functor
commutes with the reciprocity maps ¥z : K& (F) = I'¥® and Up, : Ki(F,) = T'Y
constructed by Fesenko.

Imitating Fontaine’s approach, we obtain an invariant form of Parshin’s formula for
the Witt pairing in characteristic p. The ‘main lemma’ from [1] relates Kummer
extensions of F' and Witt extensions of F, allowing us to derive a formula for the

generalised Hilbert symbol F oo X Ky (F) = ppar, where F is the p-adic completion

of hﬂn E,.
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Chapter O

Introduction

Abelian p-extensions of fields are explicitly described in two cases. If the field F'
contains some primitive p-th root of unity, Kummer-theory states that any abelian
extension of exponent dividing p™ is obtained by joining p-th roots of elements of

F* and gives a non-degenerate pairing
F*/(F*)pM X Fan/pM — HpM (1'7’}/) = —

where T'% is the Galois group of the maximal abelian extension of F' and pr =z
On the other hand, if F is of finite characteristic p, abelian p-extensions are described

by the Witt-pairing
W (F)/p x TR /p" — Z/p",  (b.7) = ~+(B) - B,

where B € Wy, (F*) is such that o(B) = o(B) — B =b.

This thesis is concerned with higher local fields whose first residue field is of charac-
teristic p > 2. We use the field of norms functor [35] and class field theory [11, 12]
to deduce a formula for a generalised Hilbert symbol from an invariant formula for
Parshin’s pairing.

In chapter 1, we give an overview over the theory of higher local fields. By definition,
an N-dimensional local field is a complete discrete valuation field ' whose (first)

residue field () is of dimension (N — 1), where 0-dimensional fields are defined to

be finite fields.



The first four sections of chapter 2 deal with Milnor K-groups. After mentioning
some basic properties, we describe the definition of a topology on Milnor K-groups
of higher local fields. The advantage of the topological Milnor K-groups K is that
they admit explicit topological generators. For details on K!, see e.g. [4, 11, 12,
14, 28, 29, 32, 43]. We go on to define the valuation v : K5 (F) — Z for any N-
dimensional local field F' in section 2.3. In section 2.4, we outline the definition of

a norm map N, p : Kiy(L) = K} (F) for finite field-extensions L/F.

Milnor K-groups were used by Kato [23, 24, 25] and Parshin [32, 33], and later
Fesenko [11, 12, 13, 14, 15, 16] to define class field theories for higher local fields.

Section 3.1 treats the construction of the norm-residue symbol
rrp: Gal(L/F)™ — K§(F) /Ny rKy(L)

for Galois extensions L/F', see [11, 12]. Taking projective limits over all finite abelian

extensions L, the inverses of all ry/r gives rise to the reciprocity map
Up: KL (F) — TP,

In [19, 41], Fontaine-Wintenberger defined the field of norms functor for local fields.
Their construction has been generalised amongst others by Abrashkin [3] and Scholl
[35]. Section 3.2 gives a description of the construction from [35] in the special case
of N-dimensional local fields. A tower F, = {F,},>0 is said to be strictly deeply
ramified (SDR) with parameters (ng, ¢) if all F}, have the same last residue field k,
and if there exists a system of local parameters ﬂ"), cees 7r§$) of F}, such that (771.("))17 =

7Y mod pe for all n > ng. Here p. is the ideal {x € Op |vp(z) > c}, where vp

is normalised by vp(ﬂo)) = 1. The field of norms functor X from [35] attaches
to each (equivalence class of towers) F, an N-dimensional local field X (F,) = F
of characteristic p. Its first valuation ring is obtained as Or = l'&n(’)Fn /Pe.r,, with
(n)

local parameters ¢; = (,

+)n and last residue field k. Furthermore, the field of norms

functor provides us with a one to one correspondence between separable extensions
of F and extensions of F,, = hﬂn F,, inducing an identification I'r = ' C I'p of

absolute Galois groups.

The rest of chapter 3 concerns the interaction between class field theory and the

field of norms functor. For special SDR towers F,, section 3.3 shows the existence



of canonical maps

N}'/Fn : Ky (F) — Ky(F,)

which are compatible with the norms Np,,, /g, and induce an isomorphism K% (F)
= l&an\,(Fn) Section 3.4 defines analogous maps, modulo quotients by p™, for
arbitrary SDR towers, assuming that Fl, contains a primitive p™-th root of unity.

Compatibility of class field theory and the field of norms is proved in section 3.5.

Theorem Let F, be a special SDR tower and L, the special SDR tower given by
L, = LF, for some finite Galois extension L/Fy. Let L/F be the corresponding

extensions of their fields of norms. Then the diagram

Tc/F

Gal(L/F) Ky(F)/Neyr Ky (L)

l iNm

Gal(La/Fy) “2 K& (Fo) /N1, Kk (L)
18 commutative.

For arbitrary SDR towers, the above statement holds after taking quotients modulo

pM. In particular, we always have

U

Kn(F)/p" ree /pM

o |
\I’Fn a

Kn(F,)/pM e /pM.

Chapter 4 treats abelian p-extensions of N-dimensional fields F of finite charac-
teristic. After a section on differential forms, section 4.2 treats Parshin’s pairing
Wi (F) x K&(F)/pM — Z/pM for fields F of characteristic p (see [32, 33]). We

first show that it is equivalent to a pairing
Ou(F) x Kn(F)/p" = Z/p",

where Oy(F) is the flat Z/p™-lift of F from [6]. We use this form to prove that
the composition of Parshin’s pairing with the reciprocity map ¥z : K!(F) — I'¥
yields the Witt pairing. In particular, this shows that the class field theories from

[12] and [32] coincide for p-extensions of fields of finite characteristic.
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Section 4.3 requires the use of Milnor K-groups of rings, which were defined in section
2.5. Following the approach taken in [17], we show that there is a special section
Col : K§(F) — K5 (O(F)) of the canonical projection K& (O(F)) — K& (F) which

allows us to find an invariant formula for Parshin’s pairing

Theorem Parshin’s pairing is induced, for each M > 1, by
[, =)+ O(F) x K(F) — Zy,

[b, {1, ... ,xN}) = Trw/z, © Res o) (b diogCol{z1, . .. ,xN}).

Chapter 5 is concerned with Kummer-extensions of higher local fields of character-
istic zero. Let F, be an SDR tower such that F,, contains some primitive p™-th

roof of unity (s, and let F be its field of norms.

Consider the subring A = {3 agp™t{" - -3 | (ay,...,an) = (0,...,0)} of the
flat Z,-lift O(F) and its prime ideal m, of all series with (aq,...,ay) > (0,...,0).
The Artin-Hasse-Shafarevich exponential induces an isomorphism e : my — 1+my4,

f—exp (Z g—:f). Let 0 :my — 1/7\;0 be its composition with the map induced by
(n)

t; + lim, oo (m;")P" which takes values in the p-adic completion ﬁoo of F.

Section 5.1 gives a slightly modified version of the ‘main lemma’ from [1], relating
Kummer extensions of F\oo and Witt-extensions of F. In section 5.2, we define the

generalised Hilbert symbol

7(*Vu)

F, . % Fo __
(_a _>M P Fo X Tp, — M (’LL, 7)M = pzv\f/ﬂ .
Let F, be an SDR tower with parameters (0,c). Suppose that cp™ > 22:%(1@ for

some m € N such that F}, contains a primitive p*™-th root of unity (p;4m. For

Hy i € Or such that Hy, . mod peym 5 = Crrem mod pe g, , let Hypyp be a lift

M+m

of Hy,,, to O(F) and set H = Hj, . — 1. Theorem The generalised Hilbert
symbol is given by
F. m f
(O(F) N/ (8)) i = it 6= Tr 0 Res (3-diogCol(8) )
for f € my and f € KY(F). Noting that 6 takes values in F* if F, is of the

form F,, = F(»/m,..., n/mn) for some local parameters 7y, ..., 7y of F, we also



obtain a (partial) formula for the classical Hilbert symbol. In section 5.3 we consider

Vostokov’s symbol

(= =) (FOM — e, (uo, {ua, - .. ,UN})M = (R where

—1) o o
b = Z % l(ul-)gdlogul N A Edlogui_l N dloguiﬂ A A dlogUJN'

0<i<N
It was first proved in [39] that this coincides with the Hilbert pairing. Kato [26]
obtained the formula as a special case of his approach to Fontaine-Messing theory.
Recently Zerbes [42] applied the theory of (p,I')-modules to prove it for fields F
having a first local parameters m; for which Q,{{m}} coincides with the algebraic
closure of Q, in F. We give a proof by first showing that it agrees with our formula
for ug € Vp and {us,...,un} € Im(Nz/p) coming from ['? and then reducing the

remaining cases to this one.

A word on notation. Unless otherwise stated, F' is an N-dimensional local field and
T, ..., Ty a system of local parameters. We assume that the first residue field is of
finite odd characteristic p. k always denotes the last residue field, which is a finite
extension of F,. Where a statement is made about fields of either mixed or equal
characteristic, the notation F'is used. When treating mixed and equal characteristic
separately, F' is used for mixed characteristic and F for fields of equal characteris-
tic. The local parameters of F are denoted ¢y,..., ¢y, reserving t1,...,ty for their
Teichmiiller representatives. The absolute Frobenius on any ring of characteristic p
as well as any endomorphism induced by it on rings of Witt vectors and flat Z,-lifts
will be denoted by o. On the other hand, ¢ = ¢ is used for the automorphism
of higher local field induced by the Frobenius of the last residue field k, so that if
[k :F,) = f, or(a) = o/ () for every a € k* or o € W (k)*.



Chapter 1

Higher Local Fields

In this chapter we introduce higher local fields, paying special attention to those

properties needed in later chapters.

1.1 Basic Properties

Recall that a classical local field is a complete discrete valuation field with finite
residue field, that is, a field F' equipped with a valuation v : F* — Z such that any
sequence z,, of elements in F' with v(z,, — Z4+m) — 00 as n — oo has a limit in F.
N-dimensional local fields are generalisations of classical local fields in the following

sense.

Definition 1.1 An N-dimensional local field F is defined inductively to be a com-
plete discrete valuation field, with valuation vg) and residue field FY) of dimension

(N —1). A 0-dimensional local field is a finite field.

We will only consider higher local fields whose first residue field is of odd character-
istic p. We write k = kp for the last residue field FN) of F. k is a finite extension
of F,.

A system of local parameters is a set of elements mq, ..., mn such that 7 is a uni-
formiser of F' for vg) and mo, ..., Ty are units for vg) whose residues o, ..., Ty are
local parameters for ). One defines on F' a rank N valuation v = (v, ... o))

6
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F* — ZN . where vg) is the usual valuation on the complete discrete valuation field

F*, and for i > 1, v (2) = vpe (mrl_v(l)(x) . ~7ri_v(i)(m)).

Remark It should be noted that most authors use different notation. For the
numbering of local parameters, the correspondence is given by n <> N +1—mn. The
sequence of residue fields F, FM, ..., FV) is also denoted F = Fy, Fn_1,...,Fp.
Finally, for the valuation (v®V,... ™) : F* — ZN the ordering on Z" prioritises
the last coordinate, with ™ being the discrete valuation on F.

The valuation v is unique up to multiplication on the right by an upper triangular
matrix with diagonal entries equal to 1.

Define the lexicographic ordering on Z" by setting (a,...,a,) <(by,...,b,) if a; =
by, ...,a; = b;, and a;11 < b;yq for some 0 < ¢ < n. For simplicity, we often write a
for the vector (ay,...,a,) € Z". Using this, we define the total valuation ring to be
Op ={x e F|(vW, ... .v™))(z) > (0,...,0)}. It can also be defined recursively by
setting Opov) = F®) and

Opu = {.”L“ € Opaw, |,T € OF<¢+1)}.
For 1 <n < N and (c¢q,...,c,) € Z", put

Picr,en) = {x € Op | (v(l), . ,v(”))(:z:) > (cq,. .. ,cn)}.

We denote by U | +P(er,....en) the corresponding subgroup of principal units
in F*. In the special case ¢ = (0,...,0,1), write p,_. o1y =mand 1 +m = Vp. m
is the maximal ideal of Op with residue field FY). Note that, in general, the ideals
P(e1,...en) depend on the choice of uniformisers.

Example F, ((ty))---((t1)) is an N-dimensional local field with local parameters
t1,...,tny and first valuation ring F,((tn))--- ((t2))[[t1]]- Its first residue field is
Fo((tn)) -+ ((£2)).

Another important class of examples of higher local fields is obtained as follows. If
F' is a (complete) discrete valuation field with valuation v, F{{X}} is the field of
formal power series >, , a; X" with v(a;) — o0 as i — —oo and infv(a;) > —o0.

F{{X}} is again a complete discrete valuation field, with valuation

vrgxy (D aiX') = minvp(a;)
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and residue field F(V((X)). To any local parameters 7y,...,my of F there cor-
respond local parameters 71, X, T, ..., 7y of F{{X}}. Any element > a;X* of

F{{X}} can be re-written as a convergent sum

> (S,

j=J i}[j
which emphasises the fact that any uniformiser m of F' is also a uniformiser of
F{{X}}.

To formalise the analogy, note that

F((X)) = (lim FIX]/(X) [X] = lim (Lm(Op /(=) ] ) [X ),

with first local parameter X and second local parameter 7, while

P = [ lim (lim(Op[X]/ (X)X ) /(2] (7

has first local parameter m and second local parameter X.

Example The field Q,{{t}} = {Zj>J(pj 2 ois10) a;;t")} has first valuation ring
Zy,{{t}}, the ring of power series with J = 0. Notice that it is isomorphic to
O(F,(())), the flat Z,-lift of the one-dimensional field [F,((¢)) defined in appendix
A.2. Tts total valuation ring is pZ,{{t}} + Z,|[t]] C Q,{{t}}.

More generally it follows from the construction that O(F) is the first valuation ring
of a mixed characteristic (N + 1)-dimensional field whenever F is an N-dimensional

local field of characteristic p.

The following result due to Zhukov is taken from [28§]

Theorem 1.2 (Classification) If F' is an N-dimensional local field of equal char-
acteristic p, then F = FUO((t)) = k((tx))---((t1)) for any set of local param-
eters ti,...,ty. If F is of mized characteristic, then F is a finite extension of
F'{{tn}}---{{t2}} for F' = Frac(W(k)) finite over Q,. Furthermore, there exists
a finite extension Fy of F' which is again of the form F"{{t\y}}---{{t1}}



1.2. Topology 9

1.2 Topology

For a classical local field ' with uniformiser 7, the valuation v : F* — ZU{oo} defines
a metric |z|, = r'@ for any fixed r € R, 0 < 7 < 1. With respect to this metric,
any element can be written as a convergent sum z = a,m° + @y 170 + - - where
v(a;) = 0 and the a; may be taken from some fixed set of coset representatives
of the residue field. This analytic point of view underlines the analogy with the
real numbers. Viewing the situation from an algebraic perspective, we start with
the ring of integers O with maximal ideal p. The natural map Op — @Op/p”
is surjective iff Op is complete with respect to the valuation topology, and the
valuation topology is discrete iff it is injective (see, e.g. [20]). If the valuation is
discrete, p = () is a principal ideal. The valuation topology on Op is then identical
to the topology induced from the product topology of [, Op/p" via T&nop/p” C
IL, Or/p", where Op/p™ carries the discrete topology. Using the isomorphism Op =
7 "Op, the valuation topology on F' is induced by the coproduct topology via
F = hgn 7 "Op C ], 7 "OF.

If F is a higher-dimensional local field with first valuation ring Op and uniformiser
1, we still have Op = lim Op /(m}) as abstract rings. Using the (first) valuation
topology, i.e. the metric derived from the first valuation would correspond to using
the discrete topology on all quotients Op/(n}"). However, Or/(m) = FU is itself a
complete discrete valuation field. To avoid this problem, one defines a finer topology

on higher local fields, the so-called canonical topology.

Example In the equal characteristic case F' = F(M)((t)), the canonical topology is
constructed inductively as follows. Let {U;};cz be a system of neighbourhoods of
zero in FY) with U; = FY if i > 0. Then U = {>_ a;t; | a; € U;} is a neighbourhood
of 0 in F. If F is of mixed characteristic, the construction uses sections of the

projection Op — FO),
The canonical topology has the following properties (see, e.g. [28, 29])

(i) The canonical topology is independent of the choice of local parameters,

(il) multiplication is sequentially continuous
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(iii) the topology is compatible with finite extensions.

Let now F' be any N-dimensional local field with local parameters m,...,my. It

follows inductively that any element x € F' can be written as

o § : i1 § : § t2 ) 1 __

112l 12l i2>12(d1)

— . . 1:1 DY iN

= E E T E [a(h,---ﬂz\f)]ﬂ—l TN (*)
11211 ia>12(i1) iNZIN(i1,50N )

where the z;, are in some fixed set of coset representatives of "), the x;,;, in some
fixed lift of a coset representatives of F® « Opa) to Op, etc. The [a,] are lifts
of elements from the last residue field £ which, by definition of the total valuation
ring, lie in Op. If char(F) = 0, it is usually assumed that the elements [a] are the
images of the Teichmiiller representatives in some unramified extension of Q,, while

in the equal characteristic case one uses the canonical inclusion k& — F'.

The canonical topology is such that an N-tuple formal series converges if and only
if it comes from an element of F' as above. A subset A C Z" is called admissible if,
for every iy, ..., i, € Z there exists I,11(i1,...,4,) € Z satisfying the condition that

if (a,...,an) € Aand a3 = iy,...,a, = iy, then a, 1 = I1(i, ..., 0,).

For a family {A;}c; of admissible sets, A; C Z]>VQ, consider the conditions

(A1) A =J,c; Ai is again admissible

(A2) N,e;A; = 0 for any infinite subset J C [
Thm. 1 in [28] implies

Theorem 1.3 For every a in some fixed set of coset representatives of the last
residue field k* in Op and for every a € ZN fix an element
Tga = am® + Z Bﬂll)l o -W%V,

b>a
bEAL o

for some family of admissible sets Ay satisfying (A1) and (A2). Then every x € F

can be uniquely written as x = ZaeAm Tqa(a) fOr some admissible A, € ZN .
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The structure of the multiplicative group of a higher local field is similar to the
one-dimensional case. The following follows from the additive expansion (%) of an

element of F'.

Lemma 1.4 For any set of local parameters my, ..., 7N, the group of non-zero ele-
ments of F' is

F*g<7T1>X"'X<7TN>X]{Z*XVF,

where Vp = 1+ m is the group of principal units (section 1.1).

The Parshin-topology or P-topology on F™* is defined to be the product topology of
the discrete topology on (m) X -+ X (my) and k*, and the subset-topology induced

on Ve by F. Thm. 2 from [28] describes convergent expansions in F*:

Theorem 1.5 Letr,, € F* be as in the previous theorem. Then any x € F* can

be uniquely written as

r=0n"t--- H 1+ 24 0(a))

a€A,

for some admissible set A, C Z]>VQ and any such product converges.

1.3 Principal Units

In the decomposition F* = (1) X - -+ X (wy) X k* X Vi, the first N factors are infinite
cyclic while £* is a cyclic group of order |k| — 1. In this section, we study the group

of principal units Vp =1+ m C Op.

From [43] §1.6, we need the following

Lemma 1.6 For any neighbourhood U of 1 in F', there exists m € N such that the

group of p™-th powers VF@m) cu
Corollary 1.7 Vi has a natural structure of Z,-module

PROOF Let a € Z,,, write a = a;p' for o; € N. Given u € Vi and a neighbour-
hood U of 1 in F, the above lemma implies that u®?™ € U for m > my, thus the

e 3 .
sequence u, = u®0taPttoenP™ converges in F. O
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Since ptl, 1 € Z, implies [ € Zs,, this also implies the following
Corollary 1.8 The group Vg is l-divisible for any p 1.

Remark The second corollary can also be proved formally by noting that for p 11
there exists fi(X) € Z,[[X]] such that (f;(X))' =1+ X as formal power series. It

then suffices to note that for x € mp, fj(z) converges in F.

The structure of Vi as Z,-module depends primarily on the characteristic of F'.

Proposition 1.9 If F is of characteristic p with local parameters ty,... tx then
Vr is generated topologically by all 1 + at;' --- T3 for a running through a basis of
k/F,, pta, and 0 < a.

Proposition 1.10 If F is of characteristic O with local parameters ..., wn, then
Vi admits topological generators 1+ ani*--- 73N for o running through a basis of
W(k)/Z, and 0 < a < ep/(p — 1), p1a, where e = v(p) is the absolute ramification
index of . If p—1|e, an additional element in 14+pc—1) is needed. If ¢, € F, this
can be taken to be e(ag) = 1 —an(1—G,)P, for some ag € W (k) with Try (x)/z,(c0) €
L.

For proofs, see e.g. [28], theorems 2.1 and 2.2.

It can be convenient to use a different set of generators, given by the Shafarevich

basis of F*/(F*)*". We shall use them in chapter 5.

Lemma 1.11 The Artin-Hasse exponential map

XP xr" . N
5(X)—€Xp<X—i—?—i—~-—|— o _|_...>:H(1_Xz)fu(z)/z
i

lies in Zy)[[X]] C Z,y[|X]] and satisfies E(X) =1+ X mod X?Z,[[X]]. Here p is
the Mébius function, p(i) = (=1)" if i has r distinct prime factors and u(i) = 0

otherwise.

For a proof, see, e.g. [16] I, (9.1). Using >, pu(d) =0if n >1and =1ifn =1,
we obtain 1 — X = HMiS(X")*I/".
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For higher local fields we need to generalise this slightly: For a ring R, consider the

subring

RIX) = { 3 raXit e X3 | > 0} € R((Xw) -+ (X))

and its ideal mpgjx]) consisting of all series with a > 0. Notice that, by definition, the
exponents with non-zero coefficients will always lie in some admissible subset of Z*.
With this notation, we see that £(X*) € Z,[[X]] for any a > 0, and £(X*) = 1+ X*

mod 1 4+ X*mpg(x) as congruence of elements in the unit group R[[X]]*.

The Artin-Hasse exponential £(X) has been generalised by Shafarevich to arguments
in W(k)[[X]]. For higher-dimensional local fields, we need to instead work with
WR[X]] € W(E)((Xx)) - ((X1)). Extend o : W(k) — W(k) to o : W(k)[[X]] —
W (k)[[X]] by X; — X7

Lemma 1.12 The Artin-Hasse-Shafarevich exponential

n

o o
Ex(F(X)) = exp (F(X) 47 f(X) 4+ T f(X) )
defines an isomorphism myyx)x] — 1 + My )x] with inverse

Ix(u(X)) = % log (:%X)p))

If f(X) = aX* mod p*W(k)[[X]] + XW (k)[[X]] with a € W(k), and a > 0,
then Ex(f(X)) = (1 + aX*)(1 + g(X))"" mod X*myyx) for some g(X) €
XW(k)[[X]].

The proof is a direct but tedious generalisation of the arguments in [16], VI, sections
(2.2) through (2.4). Convergence of all series follows from theorem 1.5 by carefully
keeping track of admissible sets. In the special case where f = f(X) = aX*, for
a € W(k) and a > 0, convergence follows from the obvious inclusion W (k)[[f]] C
W(k)(Xn))---((X1)), where W (k)[[f]] is the usual formal power series ring in the
variable f. If I’ is any local field with local parameters 7y, ..., 7y, the result of

substituting X; = m; into Ex(aX{"*--- X3") is denoted by E(a, it - - 7m3).

Corollary 1.13 If char(F) = p, Vz is topologically generated by all E(a,t"), for
pta a >0, and a running through a basis of k/F,. If char(F) = 0, Vg is
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topologically generated by all E(a, %), for pta, 0 <a <ep/(p—1), and o running
through a basis of W (k)/Z,, together with an additional element if (p — 1) |e.

If F contains some primitive p*-th root of unity s, we shall want to replace the
generator e(ap) = 1 — ap(1 — (,)? by the element w(cy) constructed as follows. Let
(e W (k)((Xn))---((X1)) be such that aizﬂ = (, and put H = ZJZ\J/[M — 1. Then for
ag € W (k) with Trw4)/z, (o) € Z, let

CL)(CY()) = Ex(aoH) ‘XZE'

We show that w(ap) may be used as generator of Vg instead of e(ay):

Lemma 1.14 w(ap) = e(ap) mod V;p), where V}p) is the subgroup of p-th powers

of V. In particular, we may use w(cyg) as a generator of Vi in place ().

Proor In Op, 1 —(, =1 — Cﬂhl ~ ¢/®=1)  Thus there exists v € Op with

M—1
1— (3

= ur®®=1 and hence H = ZﬂM — 1 satisfies

H=(1—axs® Dy _ 1= X/ mod pW (k)[X]] + X Dy o
Substituting X = &, we obtain

w(ag) = EX(onH)|X:£ = (1 — apr® P VuP) (1 + g(X)|x—p)” mod MpPep/(p—1)-

But a congruence of units in a ring modulo mg pe,/(,—1) becomes a congruence as
elements of the unit group modulo 1+ mp,/,—1), which is contained in V}p ). Thus
wlag) =1 — apr®/P Dy =1 — ap(1 — ¢,)P mod VP, as desired. O
The importance of w(ap) lies in the fact that its p™-th root generates an unramified
extension of F. This will follow from the main lemma in section 5.2, see lemma

5.18. This property means that w(ayp) is a so-called pM-primary element.

1.4 Extensions

We consider extensions L/ F of higher local fields. Let 7y, ..., 7y be local parameters

of Fand 7},..., 7% local parameters of L with associated valuation v, : L* — ZV.
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The ramification matrix (e(L%) is defined by e(¥) = Ug)ﬂll-. It is upper-triangular

and its diagonal entries satisfy
[L: F] = feu- -enn

for f = [LN) : FM)] the degree of the last residue extension. An extension L/F is
called purely unramified if [L : F| = fr/p = (L) FM it is tamely ramified if

pfen---eyn # 0, and wildly ramified otherwise.

Any extension L/F has a maximal purely unramified extension Lo/ F corresponding
to the extension of last residue fields, so any purely unramified extension is obtained

by joining roots of unity coprime to p.

The following shows that in certain special cases, there exists an analogue of this

for maximal sub-extension with ramification restricted to certain local parameters.

Lemma 1.15 If L/F is an extension of N-dimensional local fields with e; =1 for
i > s such that L/F and L) /F®) are separable then there exists a sub-estension
F C ECF with [E: F| =eyf and E® = L),

PROOF Let L, be a normal closure of L/F, G = Gal(L,./F) and G' = Gal(L,./L).
G acts on the s-th residue field Lgfc), fixing F®) pointwise, so there exists H C G
with G/H = Gal(Lffc) /F (5)). Similarly, G’ acts on LSQ fixing L) pointwise, thus
there is H' D H, such that L) = (L{)H'/H is the fixed field of H'/H C G/H. By
construction, H" O G’. Furthermore, the index of H'/H in G/H satisfies (G/H :
H'/H) = [L® : F®)] = e, f. Then the fixed field E = L satisfies the claim. [

There is no analogous result for extensions of non-perfect intermediate residue fields
Example If F' = Q,{{t}}, E = F(n) for some first uniformiser ¢ p, e.g. 7 = {/p,
and L = FE(T) with TP = t + 7. Then L") = EO(T) with 7" =7 is an inseparable
extension of M) = F) = F,((%)). Taking as uniformisers of L the elements 7, T', we

0

obtain e;; = (]S ) but there does not exist any sub-extension E; with [E' : F| =p
p

and Efl) = LW ie. which only comes from the my-ramified part.

Any Galois extension of higher local field has a maximal tamely ramified sub-

extension, given by the fixed field of any Sylow-p-subgroup.
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Proposition 1.16 Let F' be a higher local field with local parameters m, ..., mn and
P be a separable closure. Let F,,. be the maximal purely unramified extension of
F, and put F,, = hﬂpm Fu (71, ..., /7N). Then any tamely ramified extension

L/F is contained in F,,.

PROOF Let e = e(Ll/l; : --e(L]\/[;?V). Let k/F®™ be the extension of degree [L : FJ.

For a generator a € k of k*, let Ey = F([a]) C F,.. Next, for a system of local

parameters 7y,...,my of F, set E = Fo(y/]a], &/71,...,/7n). In the composite

EL, the local parameters 7}, ..., 7 of L are related to those of F' by In OLryv-1,
1e(NN) re(N=1,N-1) re(1D)

we have 77 ~ Ty, in O(LE)sz), TN_1 ~ -1, etc, and in O g, 7} ~ .

Working in the absolute valuation ring Opg, this translates as

/N e(NN)
(my) = TNQNUN
) \e(N-LN-1)  jq(N,N-1)
(7TN,1) =Ty TN-1ON—-1UN—-1

/\em)  1a(N,n) ta(n+1,n)
() =Ty T T Ol U,

e ra(N,1) 1a(2,1)
(m)S =m0 eemy Y man

for a; € k* (or Teichmiiller representatives), principal units v; € Vg, and integers
a(i,j). But L/F is tamely ramified so p { e and hence Vi is e-divisible. It follows
by working backwards that «,..., 7 € E. Since F}, also contains the maximal

purely unramified sub-extension of L/F, this implies that F},. D L. O

Definition 1.17 For a higher local field F' and n = p™d with p 1 d, let E/F(N) be
of degree n and let o € k generate k*. Set F(n) = F(/[a], T, ..., YmN) for any

set of local parameters m,...,mn of F.

With this definition, we have

Corollary 1.18 Any tamely ramified extension of F' of degree dividing n is con-

tained in F(n).



Chapter 2

Milnor K-groups

2.1 Definitions

Definition 2.1 The n-th Milnor K-group of a field F' is defined to be
Ko (F) = (F")*" St (F),

where St,(F') is the subgroup generated by all elements 11 ®- - -z, with x;+z; =1
fori # j. The class of xt1 ® -+ ® x, is denoted {x1,...,x,}. In dimension 0, one

defines Ko(F) = Z.

Note that K;(F) = F* is just the multiplicative group of the field since there are
no relations in dimension 1. The canonical map (F*)®" x (F*)®™ — (F*)®m+n
induces a multiplication of K-groups K,(F) X K,,(F) — K, inm(F) which makes
K.(F) =&, K,(F) into a graded ring.

K, is functorial: to any inclusion F' C L it associates a map j = jp/r : Kp(F) —
Ky (L)

The subgroups U© = 1 +p, and V& = 1 + m of the multiplicative group F* give
rise to the subgroups U9 K, (F) and VK, (F) of K,(F). They are, by definition,
the subgroups generated by all symbols having at least one entry in U ;f) (resp. in

V). We shall need the case where ¢ = (c¢) € Z!.

We give some useful identities in K, (F) for future reference.
17
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Lemma 2.2 Foranya,b € F* such that a+b € F*, {a,b} = {a+b, —b/a} € Ky(F).

For any x € F*, {x,—x} =0 and {—, —} is skew-symmetric.

Proor If x = 1 then clearly {z,—z} = 0. If x # 0,1 then —x = (1 — z)/(1 —
1/x), thus {z, -z} = {z,1 — 2} — {z,1 — 1/a} = 0. Skew-symmetry follows since
{z,y} +{y, a2} +{z, -2} + {y, —y} = {xy, —zy} = 0 for any =,y € F. Finally note
that {a,b} = {a,b} + {a,—a} + {1+ 2,22} = {a, —ab} + {a + b, —b} — {a + b,a} —

{a,—b} — {a,a} = {a+b, =2} O

Lemma 2.2 is used to prove the following
Lemma 2.3 The image of U x U in Ky(F) lies in U Ky(F)
Proor This follows from

{1 + IL’7TC+d’ —1— yﬂd} — {x,/.rc-i-d . y7rd, (1 + y7Td>/<1 + $ﬂ_c+d)}
= {_yﬂ-d7 (1 + ywd)/(l + CL‘7TC+d)} —+ {1 — fL‘/y7TC7 (1 + ywd)/(l + {L‘7Tc+d)}
= {—yr", 1 +yr"} + {1 —2/yr“1 + yn’} mod U

= {1 —x/yn®, 1 +yr?} mod U+

for any x,y € Op. O

Remark The same holds for ¢,d € Z™ with 1 < n < N and z,y in the pre-image

of Opv—n) in Op, but we shall only need the case n = 1.
Lemma 2.4 For any [ coprime to p, VK, (F) is l-divisible.

This follows from the [-divisibility of Vg (corollary 1.8). In fact by [4], prop. 1.2,
VK, (F) is uniquely [-divisible for n > 2.

Lemma 2.5 If x,y are roots of unity in a higher local field F' with char(F®)) =
p > 2, then {x,y} = 0. If char(FN)) = 2, the statement is true only if x,y are of
odd order.

PROOF Suppose p > 2 and x = (%, y = ¢ € p,, so that {z,y} = ab{(,(}. It follows
from {¢, —C} = 0 that 2{¢,(} = 0. Now if n = p™, then (¢ = ¢P"+Da g0 replacing
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a with (pM + 1)a if necessary, we may assume that ab is even, hence {¢%, ¢’} = 0.
If pfnand (, € F, then also (,, € k, so we may assume n = q — 1, ¢ = |k|. We
use the trick from [16], IX, prop. (1.3) to prove that K5 of a finite field is trivial.
k* has (¢ — 1)/2 squares and (¢ — 1)/2 non-squares. Since 1 is a square, the map
k\{0,1} — k\{0,1}, @ — 1 — « cannot map all non-squares to squares. This
means that there exist odd k,! with ¢¥ =1 — ¢! in k. In F, this means that there
exists z € mp such that (¥ = (1 — ') (1 + 2), hence Ik{¢, ¢} = {¢', ¢*} = {1+ 2}
But 1+ 2z € Vg is (¢ — 1)-divisible, so {¢!,1 + 2z} = 0. Since Ik is odd, we again get
{¢,¢} = 0. Finally, any root of unity ( is of the form CZC;M for some M and p t n,

and
{C. ¢} = *{Gu Gu} + 57{Gar, G} =0,
since the cross-terms cancel.
If char(F™)) = 2 and z,y € u, for 2 1 n, then n{z,y} = 0, but 2{x,y} = 0 since
2{(, ¢} = 0 still holds. So again {x,y} = 0. O

Example Notice that if char(F™)) =2, {—1,—1} # 0 in general. However if, e.g.
F D Qs, we have —1 = 1 — (—1) in F3 which lifts to

—1=(1-(-1)1+3+3*+--+), with 3+3°+ - €mp.
So{-1,-1} ={-1,1—(-1)}+{-1,1+3+3%+---} =0 because 1 + 3+ 32+ -

and 2 are squares in Qs.

Using this, we can describe the structure of K, (F). See, e.g. [43], prop. 1.2.

Proposition 2.6 Let F' be an N-dimensional local field and 7, ..., 7N a set of local
parameters. Then
(P = @ {mi-om e P (om,. . m,  }oVEL(F),
1< <in i1 <o ip 1
where o is a generator of the multiplicative group k* if char(F) = p (resp. the Te-
ichmiiller representative of a generator of k* in W (k) if char(F) = 0). In particular,

Ey(F)={m,....ev}H) @ @ {om .- micy, Tigr, . 7in}) © VEL(F)

1<i<N
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PROOF Because F* = (m) X - -+ (my) X k* X Vg, any n-symbol can be written as a
sum of symbols whose entries are local parameters, principal units, or in k* (resp.
Teichmiiller representatives). If a symbol contains two elements from k*, it is zero
by lem. 2.5. If a symbol contains an element of £* and a principal unit, it is again
zero since a? ! = 1 for a € k* and q = |k|, whereas Vi is (¢ — 1)-divisible. The
result follows because the intersection of any two of the above subgroups is clearly

trivial. 0

As with the multiplicative group F™, the first factor in this decomposition is a direct
sum of infinite cyclic groups, while the second one is a direct sum of cyclic groups

of order |k*|, so it remains to study VK, (F).

2.2 Topological K-groups

In this section we define a topology on K, (F) in such a way that its maximal
Hausdorff quotient admits generators for V K, (F'). The definition of topological K-
groups can be motivated by the following description, due to Fesenko, taken from

[43].

Proposition 2.7 Let my,..., 7N be local parameters of F', and r any positive inte-

ger. Then for given uy € Vi, us, ..., u, € F* there exist v; € Vi such that

fun un}= S {vn i, T} mod prV Ky (F).

1<i<N

This indicates that the groups K (F) = K,(F)/(,,p"K.(F')) are of interest.

We introduce a topology on K, (F') with respect to which V K, (F") admits topological
generators (see [32, 12] for the equal characteristic case and [11] for the mixed
characteristic case, as well as [14, 43]). Let Vp and F* be equipped with the P-
topology. V K, (F) is given the strongest topology satisfying

(i) The map induced by multiplication Ve x (F*)"~' — VK, (F) is sequentially

continuous, and

(ii) Addition and subtraction of symbols in V K,,(F) is sequentially continuous.



2.2. Topological K-groups 21

The factors ({m;,,...,m,}) and ({0, m;,,...,m,_,}) of the decomposition of K, (F)

from prop. 2.6 are given the discrete topology.

Definition 2.8 The topological Milnor K -groups are K!(F) = K, (F)/A,, where

A, is the intersection of all neighbourhoods of zero, with the induced topology.

By [14], prop. 2.6, A, = ,5; nV K, (F). Since Vp is [-divisible for p 1 [, this implies
Ay = s PV KW (F) so that, as abstract groups, K, (F) = K (F) are equal.

The structure theorem clearly holds for K (F') in the same way as it does for K,,(F).

Moreover, prop. 2.7 implies the following

Corollary 2.9 FEvery element x € VK!(F) can be written as a sum of elements

{U@, Tiqy - ,Winil} with U(iy,.osin_1) ceVrandl1 <9y <+ <ty <N,

-----

The relation from lemma 2.2, is used in the proofs (see [32, 11, 43]) of the following

results.

Proposition 2.10 If char(F) = p, with local parameters ty, ...ty then VK4 (F)

is generated by all elements {1+at*,t1,. .., ti_1,tit1, ..., In}, for a running through

a basis of k/F,, a > 0, and i mazimal with p t a;. K4 (F) is free on those generators.

The second part is proved using the non-degeneracy of Parshin’s pairing ([32], see

chapter 4).

Proposition 2.11 If char(F) = 0 then VK& (F) has topological generators {1 +
am®, Ty, ..., i1, Tit1, - - -, TN} for o running through a basis of W(k)/Z,, 0 < a <
ep/(p—1), and i is mazimal (or minimal) subject to p 1 a;. If , € F* then one also

needs {e,m,...,Tj—1,Mj+1,...,7n} for L < j < N and e as in prop. 1.10.

Using Vostokov’s symbol, it is shown ([11, 39]) that if {, € F, these topological
generators are minimal for K% (F)/p. Furthermore, if M is maximal such that

Cu € F, then K& (F)/p™ is free on those generators.

Remark It follows from the proofs of the above two propositions that the condition
p|a; for all j <1, p1a; may be replaced with an analogous statement for any chosen

numbering of the local parameter. We will make use of this in section 4.
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2.3 The morphism 0

In this section, we define the boundary morphism of Milnor K-groups for fields with
a discrete valuation. In order to simplify the exposition, we only consider ordinary
Milnor K-groups in this section and 2.4. All statements hold for topological Milnor
K-groups by continuity.

For a discrete valuation field F with valuation v, uniformiser 7, and residue field

F® define a map 0 : K,(F)— anl(F(l)) by

HNHwy, ..,z } = Z(—l)”J“"'Hs@E{xl, ey Tty

where, for any r = (r1,...,7s) with r <--- <,

oz, ...,xn} =v(xy) - v(x,,) z {-1,...,—1},

r € K,_,(F") is the symbol consisting of the residues of z;7**(®) with the r;-th
places omitted, and {—1,..., —1} € K,_(FWY). For the straightforward verification
that 0, defined on (F*)", does indeed factor through K, (F) see, e.g. [16], IX, (2.1).

Given x € F*, write it as # = 7@y for some unit u. Using {m,7} = {m, —1}
we see that any m-symbol can be written as a linear combination of two types of
symbols, namely {m,vy,...,v,_1} and {v},..., v} for m-units v;,v]. This shows
that 0 is independent of the choice of uniformiser. If 7’ = v, with v a 1-unit, then

{7 uy,...;uy_1,7'} = {mu1,...,un_1} + {v,u1,...,uy_1} has the same image

under J, and 0,.. The following can be used as an alternative definition of 0

Lemma 2.12 For units uy, . .., u,, we have O{m, uy,... uy_1, } = {U1,...,Tp_1} €

Kn 1(FMY), and 0{uy, ... up_1,u,} = 0.

PROOF Since v(u;) = 0, Tv") ({7, uy, ..., up_1}) = 0 unless r = (n), in which
case O {m u1, ..., upn_1} = {Ty, ..., Up_1}. Clearly 0"{us,...,u,} =0 for all r. O
Let now F be a higher local field. For an intermediate residue field F"~ with

uniformiser 7 y_,, denote the corresponding map 0 by 3d,,.

Definition 2.13 The valuation v on Ky (F') is defined to be the composite

v Kn(F) 25 Ky_ (FO) 22 00 g (p=1y 9% e (p)y = 7,
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A ‘uniformiser’ with respect to this valuation is a symbol consisting of any complete

set of local parameters {my,...,7n}.

Note that dy is the usual discrete valuation on the 1-dimensional local field FV-1.

Lemma 2.14 For a finite extension L/F of discrete valuation fields, the diagram

Ko(F) —— K, (L)

Kyt (FO) 2 K (L)

is commutative, with e = vy (wp). In particular, if L O F are N-dimensional local

fields, the valuation v satisfies

vi(jrsp(z)) = e eV N yp(2)
for any x € Ky(F)
Proor For a uniformiser g of F, Op{mp,x1,...,2xy_1} = {Z1,...,Ty_1} and
op{mp,x1,...,xny_1} = e{T1,...,Tny_1} since mp ~ 7% in O O

In the following section, we shall consider 0 on a function field F'(X) in one variable,
where F' may be any field, although we are only interested in higher local fields.
The discrete valuations on F'(X) are in one to one correspondence with the monic

irreducible polynomials of F[X], with one additional valuation corresponding to

1

<. We write v,(x) for the valuation corresponding to a(X) € F[X], and v to

the one corresponding to )—1{ Following [4], we denote the residue field of v,(x) by

F(v) = F[X]/(a(X)). If v = v, the residue field is F[£]/(5) = F.

X
Any element in K, (F(X)) can be written as a linear combination of elementary
symbols consisting of irreducible monic polynomials in F[X] and elements of F*.

The following two explicit formulae will be used throughout the following section.

Lemma 2.15 Ifay,...,an—1 € F* and a,,(X), ..., a,(X) € F[X] withm < n then
Ow({ar, ..., am-1,am(X),...,an(X)}) ={a1, ..., am-1}0,({am(X),...,a,(X)}) for

any v.
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This follows directly from the definition of 9. We will often tacitly make use of it

by assuming m = 1 for simplicity.

Lemma 2.16 Let A = {a1(X),...,a,(X)} € K, (F(X)) with a;(X) monic and
irreducible of degree d;, and let a; € F% be a fized root of a;(X). Then

;

(1) HD2g, . d {1, .., 1} if U = Voo

0(A) =S (=DHay (), ... ai_1 (), aigr (), . . . an(as)}y,  ifv= Vay(X)

0 otherwise,
\

where the image lies in the respective residue field F'(v) = F(oy) for each v = vg,(x).

PRrOOF For the case v = vy, we use the original definition of 0 as sum over all

for (ry,...,rs) = (1,...,n), with
O ay (X)), ... an(X)} = (=) (—dy) - (—dp) {1, ..., —1}.

If v = vq;(x), all a;(X) with i # j are v-units, and the claim follows from lemma

2.12, as does the last case. U

2.4 The Norm map

We outline the definition of a norm map Ky(L) — Kx(F) for finite extensions
L/F. We begin by considering simple extensions L = F(«a) = F[X]|/(m(X)) for
some irreducible polynomial m(X) € F[X]. Bass-Tate proved the following ([4]).

Theorem 2.17 The sequence

0 — Ko (F) -5 Ko (F(X)) 2% @D Kuoa(F(v)) — 0

VFVoo

1s exact and splits
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The norm maps N, are defined simultaneously for all F'(v)/F by requiring that the
extended sequence

0 — Kup1(F) =5 Kot (F(X)) 25 @ Ka(F(v)) 5% Ko (F) — 0

all v
be exact, where F(v,,) = F and N,_ is the identity map. This means that the

composite

Knii(F(X) —2 o @, Kn(F(0)) — 2 K, (F)

v V00
equals —0,_, Since the first map is surjective and Hom( P A, B) = P Hom (Av, B)
for any objects A, and B, this uniquely defines the maps N, for v # oo. Moreover,
Oso = id is K, (F)-linear, so again by surjectivity of @d,, we have

Lemma 2.18 The norm N, : K.(F(v)) = K.(F) is K.(F)-linear in the sense that
Nv(]F/F(v)(:L‘) y) = fENu(?/) € Kn—i—m(F) fO?” YIS Kn(F)J ye Km(F)

Lemma 2.19 Forn =1, N, : F(v)* — F* is the usual norm of fields.

PROOF Since the N, are uniquely defined by > N, 0 J, = —0., it suffices to show
that the usual norm satisfies this property. Noting that lemma 2.15 implies K, (F)-
linearity of 0,, it suffices to consider A = {a(X),b(X)} with a(X),b(X) monic, of
degrees n, m and with roots a of a(X) and /5 of b(X). Then

a’l}a(X)<A) = b(a), an(X)<A) = a(ﬁ)ila O (A) = (_1)(71)1+2nm = (—=1)"".

If v,(x) and vy(x) are non-equivalent, then the extensions F'(«) and F'(3) are linearly

disjoint and a(f) splits in F(«, 8)" as a(8) = [}, (8 — o). Now

Np(ai)/r(an (B = ai) = [ [ (8 — ai) = (=1)" H(ai = B) = (=1)"b(c).

=1
Thus Npg)r(a(B)) = (=1)"™ ][, b(ey). Clearly also Npwy/r(b(e)) = T1, b(as),
hence Nga)/r(b(a)) Npeg)r(a(B)™) = (—1)™™, as required. O

In analogy to the case of norms on fields we also have

Lemma 2.20 The composite K,,(F) AN K,(F(v)) EALN K, (F) is equal to multipli-

cation by [F(v) : F].
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PROOF Let v correspond to the irreducible polynomial m(X) € F[X] and consider

the symbol A = {m(X),a1,...,an} € K,11(F (X)), for a; € F*. Then 0, ,(A) =
{ai,...,a,} and 0,(A) = 0 for all other v # v,. Also,

Oso{m(X), a1,...,a,} = 0({m(X)}) {a1,...,an} = —d{ay, ..., a,},
for d = deg(m(X)) = [F(v) : F|. The claim follows O

The following is weaker than prop. 2.22 below, but can be proved by explicit ma-

nipulation.

Proposition 2.21 Given {a1(X),...,a,(X)} € K,(F(X)), where the a;(X) are
irreducible polynomials, of degree d;, with root ;. Let E = F(ay,...,a,)" be the
composite of the normal closures of all F(c;)/F. Then the norms F(«;)/F, for all
1, satisfy

jF/ENF(ai)/F({CLl(ai); ce ,&\i, Ce ,an(ai)}) = Z {%(al(ai)), N ,ZL\Z', e ,’)/Z‘(CLTL(OQ))},

Vi

where v runs through set of F-embeddings of F(«;) into F(a;)"™, with multiplicities

if the extension is not separable, and a; means the i-th place is omitted.

PROOF For a fixed root a; of a;(X) in F'%, let ozz(”) be its conjugates, 1 < r; < d;,

counted with multiplicities if the extension is inseparable.

By lemma 2.16,

Oy({a1(X), ..., an(X)}) = (=D ar(), . .., ai_1(w), ais1 (), . . . an(as)},

if v = g,(x), and 0 otherwise. Working in E, we see that a;(;) =], (a; — aj(»rj)),

for 1 < r; < d;, and therefore

Jreoe Ouf{ar(X), . an(X) = D (D {ai —al™, e —alm},
J#i
lgT‘jgd‘j

where the a;-term is missing. Denoting by M; the sum over all conjugates of «;, we

have

Mi O]F(vl)/E (¢] 8vi({a1(X), P ,CLn(X>})
= Z Z (_1)1{0657"1) - Odgh)a s 7051(”) - Ckz(iifl)a - 7&2(”) - Oé?(lrn)}‘

1<7‘j édj
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Then the image of {a;(X),...,a,(X)} under the composition of maps

®JF(v;)/E

Ky (F(X) — 22 o @ K, (F(v)) . @ K,y (B) —2

is equal to

Z Z (—1){al™ =™l =l el el (%)

1<i<d;  allj
1<7‘j Sd]'

We shall show that this equals
—8voo{a1(X), ce ,an+1(X)} = (—1>md1 cee dn{_]-; ceey —].} € Kn_l(F)7

for m = n(n+1)/2 4+ 1, that is, that the maps M; satisfy the defining equation of
the N,, after going up to K,,_1(E).

Suppose for the moment that all d; = 1, i.e. a;(X) = X — «; for o; € F. Then
F(ve,x)) = F and N, o Kp(F) — K,(F) is the identity. In this case the

Ya; (X)

definition of the norm becomes
00X —a1,..., X —a,} = Z(Nvoav)({X—al,...,X —an}) ie.
VF#00
(_1)m{_17 ) —1} = Z (_1)i{04i — 0 = QG Qg — Qg -, Qg Oén}-

1<i<n

Returning to (%), fix any j and any r;. Then the above implies that the sum over i

equals (—1)™{—1,...,—1}. Since there are d; of the r; and n of the j, this means
that

(%) =dy---d(-1)™{—1,..., =1} = =0, {a1(X), ..., a,(X)},
S0 jp/g 0 Y Ny, 00y, = >, M;, as required. O

A stronger statement follows from the following result taken from [16], IX, prop.

3.3.

Proposition 2.22 The diagram

0> Kni1 (F) — Kyt (F(X)) — 22~ @, Ku(F(v)) —2% K, (F)

| [ £

0— Kps(F') —= Ky (F/(X)) D, K (F'(w)) 2 K, (F)

0w

18 commautative
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Corollary 2.23 If L = F(v) with v = vax) for some monic irreducible a(X) €
F[X], and L' is the normal closure, then jp;r o Npjp @ Kn(L) — Kn(L') is equal
to p*Y . vi, where p° is the degree of inseparability and ; runs through a set of
F-embeddings of L into L'.

We shall also need the following corollary

Corollary 2.24 If L = F(v) for v = vyx) and F' is such that LN F' = F, let w
be such that L = F(U}) Then Nw OjL/LF’ = jF/F’ e} N,U

In order to define the norm for extensions rather than elements generating simple
extensions, one starts by showing that N, = N, is independent of the choice of
element generating it, i.e. that N, = N if F(a) = F(&/). Then one generalises
this to extensions L = F'(ayq, . .., «,) obtained by joining more than one element. As
a last step, one needs to prove that defined for a string (a, ..., ;) is independent
of the choice of elements «; generating the extension. This is then defined to be the

norm Npp : K,(L) = K,(F). The following is taken from [16], IX,(3.8).

Theorem 2.25 (Bass-Tate-Kato) Let L/F be a finite extension, then there exists
a norm map Np/pK.(L) = K.(F) which is K.(F)-linear and satisfies

(1) Npsr coincides with Ny, .. o, for any a; € L such that L(oy, ..., )

.....

(2) For any F C M C L, Nyp = Nyyr o Noju

(3) Npjr acts on Ko(L) = Z = Ko(F) as multiplication by [L : F| and on K,(L)

as the usual norm.
(4) Nijr o jrr s multiplication by [L : F|

(5) If L' > L D F, then jrji o Npyp = p*) 7 where p° is the degree of in-

separability and ~; runs through a set of distinct F-embeddings of L into L’

(6) Npjroo = Npjp for any F-automorphism o of L.

We will make ample use of (2) and (5), as well as the following corollary of (4).
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Corollary 2.26 The kernel of jp/1, is contained in the [L : F|-torsion subgroup of
K,(F).

Note that for simple extensions, this follows from lemma 2.20.

Lemma 2.27 The valuation vp on Ky(F') satisfies vp o Njp = fr/pvy where

fryp = [LW) : FMN] 4s the last residue degree of the extension L/F.

PROOF For any set 7y, ..., my of local parameters of F, v(K%(F)) = Z is generated

by v({m,...,7x}) = 1. Then
vrpo Ng/pojep({m,...,an}) = [E: Flvp({m,...,7n}) = [E: F].

On the other hand, vgojp/p({m1,...,mn}) = et ... V) by iterating lemma 2.14.

Since [E: F] = fe)...eNN) £ 0 and Z is free, the lemma follows. O

2.5 K-groups of rings

In section 4.2, we will need a generalisation of Milnor K-groups to rings. We propose

two possible constructions, each having its advantages and disadvantages.

For rings with ‘sufficiently many’ units such as (complete) discrete valuation rings,

Milnor K-groups are defined, e.g. in [10]

Definition 2.28 The Milnor K-groups K, (A) are defined to be
Kn(A) = (A*)®”/Stn(A),

where St,,(A) is generated by all elements a; ® - --®@a, with a;+a; =0 ora;+a; =1
fori# j. The image of a1 ® - -+ ® a,, in K,(A) is denoted {ay,...,a,}.

Because x # 0,1 in the ring A need not imply 1 — z € A*, the relation {x,—z}
which holds in Ky(F') for any field F' has to be enforced in the case of rings.

As in the case of fields, K, is functorial: to any ring-homomorphism f : A — B it

associates K, (f) : K,(A) — K,(B), satisfying the usual properties. We shall need
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the special case where f : A — A/p is the projection of a discrete valuation ring

onto its residue field.

In [10] it is proved that if A is a semi-local PID with field of fractions F', then
K,(A) — K,(F) is injective. In particular, if O is the first valuation ring of a
higher local field @ then j : K,(O) — K,(Q). One may define the topological
Milnor K-groups to be K}, (0) = Im(K,(0) — K,(Q) — K!(Q)) with the induced
topology.

While this definition of K, of rings is very natural, it can not be used to determine
a set of generators small enough to be of any use. In the special case of valuation
rings of higher local fields, the following turns out to be more appropriate. In view

of the applications (section 4.3), we consider (/N + 1)-dimensional local fields.

Definition 2.29 For a higher local field () with local parameters m = mwg, my, ..., TN
and first valuation ring O define the subgroup of K!(Q) corresponding to O to be
the closure K!(O) of the subgroup generated by all elements

{1+ moz,mj,,...,m, 1}, for €O, 0< jiy <+ < jpo1 <N

and {1+ am* -7V Ty o T o AT b {og Ty, m, (b

foraek*, 1<ip <--- <N, and (ay,...,an) > (0,...,0).

By cor. 2.9 or prop. 2.11 on generators of K!(Q), we may assume that 1 + moz =
14 Brlembt .7l for (bo, by, ...,by) > (0,...,0), ptb. Notice K%(Q) is generated

by K!(O) together with three types of generators, namely

{1+ ami N T, Ty oo s Tin o by {70, Tiys oy Tip 1 by QG T0y Wiy oo s iy o}

for 1 <i3 <--- < N,a>0and a € k*. Using this, we can prove the following

implicit description of K (O).
Lemma 2.30 For any uniformiser m of @), the sequence
0 — K'(0) — KL(Q) -5 K! (F) — 0

is exact, i.e. K!(O) may be defined independently of generators as K (O) = ker(9).
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Proor KL(O) — KL(Q) is injective by definition. If char(Q) = p, surjec-
tivity of 0 is clear. If char(Q) = 0, surjectivity follows since the multi-index
(ay,...,ayn) needed for generators of Vx corresponds to (0,as,...,ay), and since
char(F) = p, the absolute ramification index e = (eq, ..., exn) of Q satisfies eqg > 0,
thus (0,a1,...,ay) < ep/(p — 1) for all (ay,...,ay) > 0 € ZY. Thus 9 is always
surjective. Considering the generators of K (O) from def. 2.29, it follows that
K!(O) C ker(9). Finally notice that the images of the above complementary gen-
erators of K (Q) are free generators of K (F), thus no linear combination of them

lies in the kernel. O

Corollary 2.31 The groups K (O) and K (O) are related by j(K!(0)) C K!(0O),
where j : K/ (O) C K!(Q).

Proor Consider the alternative definition of 0 given by lemma 2.12 for the two
types of elements {vy,...,v,} and {v],...,v), ;,7} of K] (Q), with m-units v;, v}
Elements coming from K,(O) are of the first type, hence d(K!(O)) = 0. O
Remark Working in K/,(Q), elements coming from K/ (O) may be presented as
linear combinations of symbols having entries outside O*. For example, in K4(Q)
we have n{l + 7"v, 7} = —{1 + 7", —v}, and © ¢ O*. This also shows that the
inclusion K (0) C K!(O) is, in general, strict: If p | n, 1 + 7O is not n-divisible,
so {1+ 7"v, 7} € Ki(O) \ K5O).

The subgroup of K (O) corresponding to 1 + myO is defined to be the subgroup
generated by the first type of generators, it is denoted UMK (O). For a fixed
uniformiser my of @, define a map 0 : (Q*)®" — K, 1(F), where F is the first
residue field of Q, by §(z; ® -+ ® x,,) = {1, ..., U,}, where u; = xmi_v(mi). To see
that § induces a map on K,(Q) note that if z = wlu,y = 7'('6?] then £ +y = 1 can
only happen if ¢ # 7, say ¢ < j, and moreover ¢ = 0, but then u = 1 — ng sou=1

and {w,7} = 0.
Lemma 2.32 The sequence
0 — UVK!(0) — KL(O) -2 KL (F) — 0

18 exact.
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PROOF Surjectivity of § uses the same argument as in the above proof of the
surjectivity of 0, together with the fact that lifts of elements of F may be taken in
O*. Also, S(UMVK!(0)) = 0 since T+ 7x = 1 for any € O. For the converse,
note again that the images of the generators of K () which are not generators of

UMK (O) are free generators of K (F). O

§ can be extended to K (Q) — KL(F), but this depends on the choice of uniformiser
since for 7’ = wu, 0.{n’,v} = {u, v} # 0 for units u, v, whereas d.{7’,v} = {1,0} =

0.

Lemma 2.33 The restriction 5‘[@( s independent of the choice of uniformiser

0)
mo. In particular, UY K (O) = ker(6) is independent of the choice of m.

PROOF Let 7' = vr for v € O*. The only generators of K (QO) affected are the first
two types: They become {1 + z7’,...} = {1l +2vnr,...} and {1 + a7, 7',...} =
{1+ azvm,m,...} + {1+ zvm, v,...}, thus they are in the kernel of both 4, and &,

Corollary 2.34 The composite K (0) C K!(O) -2 K (F) is equal to the map

induced by the natural projection O — F*.



Chapter 3

Class-Field Theory and Field of

Norms

3.1 Class-Field Theory

For classical one-dimensional local fields, Class-Field theory gives an explicit de-
scription of abelian Galois groups. More precisely, for any finite Galois extension
L/F, the norm-residue symbol is an isomorphism 7, : Gal(L/F)* — F* /Ny /pL*.

For varying abelian extensions L, this yields the reciprocity map
Up: F* — m F* /Ny p(L") — lim Gal(L/F) = T
L

Neukirch’s construction (see [30, 31]) of the norm-residue symbol was generalised by
Fesenko in [11, 12] as follows. Let L/F be a finite extension of N-dimensional local
fields with Galois group G = Gal(L/F). Let L, and F,. be the maximal purely
unramified extensions of L and F. Gal(F,,./F) = Z is pro-cyclic, generated topo-
logically by the Frobenius ¢ of F. If the extension of last residue fields L") /()
is of degree f = [L™) : FM], then ¢} = ¢r. The isomorphism Gal(F,,/F) = Z
induces deg : Gal(Ly,/F) — Z defined by deg(y) = « if J|p, = ¢%. Setting
(L /F) = {7 € Gal(Ly,/F)|deg(y) € N}, it is shown that the restriction map
(L /F) — Gal(L/F) is surjective.

Given v € Gal(L/F), let ¥ € &(L,,/F) be a lift with 7|z, = ¢, n € N, and let

33
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S = L be the fixed field of the closed subgroup generated by 7, as in the diagram

YF S PL

F—————L
It is shown that [S : F] is finite, with last residue extension of degree [S™V) : F(V)] =

n. Furthermore, S, = L, and ¥ = pg is the Frobenius of S. By [11, 12], we have
Theorem 3.1 For any llg € Ky(S) with vg(Ilg) = 1, the element
riyp(Y) = Noyp(lls) + Npyp Ky (L) € Kiy(F)/Npp Ky (L)
is independent of the choice of v and Ilg. rr/p induces an isomorphism
ryr: Gal(L/F)*™ — Ky (F) /N rKy(L).

Taking the projective limit over all finite abelian extensions L of F, the inverses of

these maps gives rise to the reciprocity map

p s KNy (F) — lim KN (F)/NppK(L) — lim Gal(L/F) = T,

The norm-residue symbol in dimension N has analogous properties to the classical
case. In particular, if L/F and L'/F" are finite Galois extensions, with F' C F’ and
L C L'. Then ([12])

TL//FI

Gal(L'/F") —= K (F") /Ny p K} (L)

| o

Gal(L/F) —“~ K. (F) /Ny p K4 (L)
is commutative, where the right-hand vertical morphism is induced by the norm
We compute rr/r in a few explicit cases

Example Suppose L/F' is unramified of finite degree f. Then Gal(L/F) is cyclic,
generated by the restriction ¢ = @p|; of the Frobenius of F. Thus all admissi-

ble lifts o are of the form gp}f"f for n € N and the corresponding fixed fields S,
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are the unramified extensions of F' of degree 1 + nf. Therefore we may choose
g, = {m,...,7n} € K§(S,), where 7y, ..., my are local parameters of . Then
Ng,pr(Ilg,) = (1 +nf){m,...,7n}. But f{m,...,7n} € NppKy(L), thus all
Ns,r(Ilg,) are congruent modulo Np,pKy(L), and rpp(o) = {m,...,7n} +
NL/FKJtV(L)'

Example If F contains a primitive p»-th root of unity ¢, let £ be a p™-primary
element. For a set of local parameters my,..., 7y, let L = F(»\/7;) for some j.
Then Gal(L/F) is cyclic of order p* with generator o : »\/m; — ( »\/7;. Let pp be
the absolute Frobenius of F' and let —p™ < a < 0, pt a, be such that Frobenius acts
on *\/z as pp( "\/E) = (*(*V/e). Pick 0 < b < pM such that ab =1 mod p™ and
pick a lift o of o such that 7|p,, = ¢P. This is possible because F,, and L are lin-
early disjoint. Then the fixed field S of ¢ is F(#\/e7;), with local parameters
Ty Tty PN/ETG, Tjs - T, and Ngyp{my, ... w1, PN/ETj, Tjgn, ..., TN} =
{m,...,emj,...,an}. Since {m,...,7mn} € NppK4 (L), this shows that rpp(0) =
{m,....mj_1, e, Mg, . v+ Npyp Kk (L),

3.2 The Field of Norms Functor

In [19], Fontaine-Wintenberger developed a way of relating local fields of mixed
characteristic to those of equal characteristic. To any so-called arithmetically profi-
nite extension F../F of local fields (with perfect residue field) of characteristic 0
their field of norms functor associates a field of characteristic F := Xp(Fy) which
induces an equivalence of the category of separable extensions of F,, with that of

separable extensions of Xp(F,.). In particular, it provides us with

F]—'%FFOO C I'g.

Suppose an arithmetically profinite extension F., is obtained as F,, = hﬂn F, for
some tower of extensions F,. Then the field of norms is constructed as follows. Its
multiplicative group is F* = lgln E>. where the limit is taken with respect to norms.
Arithmetic profiniteness of Fio/F implies that Ng, ., /5, (€nim + Yntm) converges in

F,, as n — oo, and addition in F* is defined via (z(™),, + (y™),, = (2(™),, with
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2™ = lim, 0 Np, /5 (2™ + y("F™)) - Since the subgroup 1 + pOp,, of Of,
satisfies (", Np,,,./F (1 + DOF,...) = {1}, one sees that F* = m Er/(1 4 pOp,).
[19] provides an alternative definition. Let C, be the p-adic completion of a fixed al-
gebraic closure of Q, and let Oc, be its ring of integers. Define the ring R = l&n Oc,,
where the projective limit is taken with respect to p-th power maps, and addition is
defined via (a(™),, + (b™),, = (c™),, with ™ = lim,, o, (a™™ 4 pnFm))P" R
is of characteristic p, with valuation vg : R* — Q defined by vg((x™),,) = v, (@),
maximal ideal p = {z|vg(z) > 0} and residue field F4%9. The projection O¢, —
Oc,/p induces an isomorphism R — l'gl(?cp /p. In particular the unit group of R
is B* = lm 0%, /(14 pOg, ).

Fontaine-Wintenberger go on to prove that the inclusion F; — C induces

Fr= @F:/(l +pO0p,) = C;/(1+ pOg,) = (Frac(R))*,
where the projective limit on the left-hand side is taken with respect to norms, for

n = ng, some ng, and the one on the right-hand side with respect to p-th powers.

Example If Fy D Q,(¢,) with uniformiser 7 and last residue field k, set F,, =
F(7™) for 7 = /7, then F* = (7(")) x k* x (1 +7™Op, ). Taking quotients by

14+ 71Op, instead of 1 4+ pOp, does not change the limit, and so
F = lim Fy /(14 70g,) = (1) x k* x lim(1 + 7V 0p,) /(1 + 7Og,),

with t = (7(),,. Using that y(z) = 2 mod (1 + (1 — (,)Op,) for every z € O,
and v € Gal(F,/F,—1), we see that

Nr,r, <1+Z[ai]7r(")i> = <1+Z[ai]ﬂ(”)i>p = 1—1—2[0@]#("’1” mod (147OF, )

for Teichmiiller representatives [a;]. It follows that

L+ tk[[H] — Jm(1 +7™0p,) /(1 +705,), 1+ aiti v (1 n Z[ai](ﬂ"))i)
i1 i1 "

is an isomorphism. Thus F* = k((¢))*. By the definition of addition in the field of

norms, this map is also additive, and therefore F = k((t)).

In the case of higher-dimensional local fields the construction involving norms does

not generalise naturally: If, e.g. F,, = F(?TYL), . ,W](\T,L)) with (Wgn))pn =m; € F, then
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an/anl(ﬂ(")) = (7" )" since [F, : F,_1] = p". Taking p-th powers, on the

other hand, behaves well.

This approach has been adopted by Scholl ([35]) to define a generalisation of the field
of norms functor. We describe his construction in the special case of N-dimensional
local fields, which are special cases of so-called d-big fields, for d = N — 1. The main

ideas of this construction are as follows.

Let vp : F' — Z U {oo} be the first valuation of F' and extend it (uniquely) to an
algebraic closure F'*. For ¢ > 0 and for any algebraic extension E/F, define the
ideals

pc,E = {33' S OE' | 'UF<5U> = C} C OE'
If the field E is clear from the context we may simply write p..

Suppose F, = {F), },>0 is a tower of N-dimensional local fields. Scholl calls F, strictly
deeply ramified (SDR) with parameters (ng, c) if there exists an index ng > 0 and

¢ > 0 such that [F}, 41 : F,] = p" for all n > ng and if there is a surjective map

Q}?pn+1/OFn — (OFn+1/pC)d'

By [35], prop. 1.2.1, this implies that for n > ng, the first ramification index is
€F,.1/F, = P, the extension of first residue fields is the inseparable extension Fn(fr)l =

(F,El))l/p, and the p-th power map induces a surjection o : Op, ., /p. = Op, /pe.

It follows that for n > ng, all F;, have the same last residue field k = FT%V) and there

exist local parameters 7r§”), o ,7T](\7;) of F,, such that (WE”H))}’ = 7T§n) mod p..

Define two towers F, ~ F! to be equivalent whenever there exists r € Z and ny, € N
with F! = F,,, for all n > ny. Set X*(F,) = l'gln%o OF, /p., where the projective
limit is taken with respect to the p-th power map. By thm. 1.3.2 of [35], X " (F, ¢, ng)
is a complete discrete valuation ring of characteristic p and residue field canonically
isomorphic to FY for any n > ng. Up to isomorphism, it only depends on the

equivalence class of the tower F, and is independent of ¢ and ng.

Going to equivalent towers, we may therefore assume ny = 0 and denote the field
of fractions of X+ (F,,c,ng) by X(F,) = F. It is an N-dimensional local field with
local parameters t; = (ngn))n and first residue field F(V) = Fo(l).
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By construction, Or = lgl Op, /p., and there is a canonical isomorphism

Or/pe.r — Or, /e,

given by Y a,t® +— S [a® "|(z™)2 for all n = ny.

Theorem 1.3.5. of [35] states that the Field of Norms defines an equivalence between
finite extensions of F,, = %ﬂn F,, and finite separable extensions of F. In particular,
any separable extension L£/F of F is the field of norms of some strictly deeply
ramified tower L, with L, = LgF, for some finite extension Lg/Fy. This defines

I'r>Tp CTg,.

3.3 Special towers

The aim of this section is to construct canonical projections Nz g, : Ki(F) —

K}, (F,) which are compatible with the norms Np, ./, for every m > 0.

Definition 3.2 We call a strictly deeply ramified (SDR) tower F, with parameters
(no,c) a special SDR tower if every extension F,/F,_1 appears as a tower of N

p-extensions

F,,="F,c'F,c---c?™F,=F,

for all n > ng. F, will be called very special if F,, = F(#»/m,..., n/7n) for some

system of local parameters my,...,mny of F = Fy.

Lemma 3.3 For any SDR tower, there exists ny > ng such that for n > nq, there

s a canonical projection

N, - Ky(F) — Ky(F) /U Ky (F),

for g = ¢ — vp(ﬂm)). Furthermore, Nz, is given on topological generators of

K4G(F) by {in, . iy {770y and {1+ a6, T B, - En )
{1+ [a"_n]gﬂ(”))ﬂ, 7r§n), o ﬂfﬁ)l, 71'1-(_7’1_)1, o ,ES\T,L)}.

PROOF Since the tower F, is strictly deeply ramified, vp(ﬂn)) — 0 as n — oo,

thus there exists ny such that ¢; = ¢ — UF(']TY”)) > (0. The projection pr : O —
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OF,/pc — OF,/p., induces projections of multiplicative groups O% — 0%, /U }(pil)
and maps t1 — 7" Using F* = O% x (t;) and F* = OF. X (™) we define F* —
Fx/U 1(??) by t; — 7T§n) . By the choice of ¢; this is well-defined. By construction, it is
multiplicative. To see that it respects Steinberg relations, let x,y € F with z+y = 1.
Let r, s be such that t"x, t°y € O%, then pr(z) = pr(t " (t"z)) = ( §”))—T pr(t"x) and
pr(y) = (7T§n))_5 pr(t®y). If r = s then pr(t"z) + pr(t"y) = pr(t"x + t"y) since both
summands are in O%. If r < s, say, then r = 0 and 2 = 1 — t°y € O%F, thus again
pr(z) =1—pr(t*y). It follows that pr induces N z/p, as required.

(n

The explicit description of A/ F/F, is obtained by noting that ¢; — = ) and a —

[@?"] under the projection O — Op, /p.. O

Our next aim is to lift Nz g, : K& (F) = Ky (F) /UK (F,) to NF/p, : KG(F) =
K% (F,). We illustrate our approach in the case of a very special SDR tower F,, =

F™, 7y and (7P = 7Y

Lemma 3.4 In the very special case F, = F(ﬂ'YL), . ,W](\;L)) and (Wgn))p = ("

the projections K4 (F) — K4(F,) /UKL (F,) are compatible with the norm maps

)

PrROOF Or — Of, /p. maps t; — 7T§" mod p. and a — [a® "] mod p.. Thus, on

generators of K% (F), the projection is given by {7, ... Iy} = {x\™, ..., 7"} and
{14+ at* %, ... tiit,tigr, .., Iny = {14 [a” "]x™e, 7T§n), o ,ﬂgf)l,wi(z)l, o ,W](\?)}
for all n. Since the extensions Fn,l(ﬂ](-")) for j # i and F,_(z™2) (p 1 a;) are

pairwise linearly disjoint over F;,_i, the norm in this case can be decomposed as

Ng,jp, , = Nno- - Nip1oN;j_g0---NjyoNg,
corresponding to the tower of sub-extensions obtained by first joining 7T§\7), ey 7T§_7_)1,
(n)

7

, continuing with W(n)l, o ,7r§n), and finally adding (7(™)2. But for the

skipping 7 ol
above generators of K% (F,), the norm only acts on one entry, and it remains to

note that N,(1+ [a” "|z(Ma) =1+ [a "]z Ve and Njw](.”) = 7rj(.n_1). O

For those very special towers, this gives Ky (F) — Jim Kn(F,) /U Ky (F,), where

the projective limit is taken with respect to norm maps.
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Lemma 3.5 In the very special case F,, = F(»/m,..., n/7n), the norm Ng, /g, _,
K§(F,) — K4 (F,_1) satisfies Nn/n,l(U(d)K]tV(Fn)) C UPDKn(F,_) for any d >
0.

ProOF Note that UK (F,) ¢ VK4 (F,) is generated topologically by the ele-

ments {1 + OéE(”M’ 7.‘,%”)’ s 77‘-1'(?)17 ﬂ-z(—t)lv s 77T](\?)}7 where a; = d. Since Ur (ﬂ-gnil)) =

pv F(7r§")), the claim follows from the explicit formulae for the norm from the previous

proof. O

Corollary 3.6 I'&nU(Cl)Kf\,(Fn) =0, i.e. lgleV(Fn) — @K}V(Fn)/U(cl)K}tv(Fn)

s an isomorphism.

Using this, Nz, is defined to be the composite of @N 7/Fy With the projection
to K4 (Fy,),

N+ Ky (F) — lim Ky (F,) JUCO KL (F) = lim Ky () — Ky(Fn).

In particular, Nz/p, (2) = limy 00 Nr, /5 (N 7/, (2)) for every o € K (F).

The approach in this very special case can be generalised to special SDR towers. Let

F, be a special SDR tower with parameters (0, c). For each n > 1, the ramification

index is e, /., = (p, ..., p), thus there exist local parameters ﬂn), e ,W](VN) and a

permutation i = (1 2 i) € S, such that the r-th subextension "F,, /"~1F}, is of the

i1 dg

form "F, = T_an<7T,§:L)) for all r.

Proposition 3.7 If F, is a special tower with parameters (0, c), let W&n), o ,’/T](\?) be

local parameters of F,, satisfying (WZ(”))P = 7T§n71) mod p. for each i. Let ny > 0

be fived such that ¢; = ¢ — vp(m\™) > 0, and set ¢y = c1/p > 0. Then the norm

N1 : K4(F,) = K4 (Fo-1)/UD K (F,_) is given on topological generators by

— {1 -+ O'(og)ﬂ(n—l)% ﬂ_gn—l)7 o 771_1@;1), 71_21(-751)7 o 771_5\7_1)}‘

PrROOF Using the above decomposition of F,/F, 1 as a power of N simple p-
extensions, it suffices to consider extensions F'/F with [F": F] = p, F' = F(x) for

some j, and 7T;-p = m; mod p.. Also, it follows from the linearity of the norm-map
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and the special structure of the generators that it suffices to consider three cases:
the one-symbols {7}, {1+x7}} and the two-symbol {1+ 7", 7}, for x € F. Here
x takes account of a and the m; for ¢ # j. Furthermore, using local parameters of
F if p | a, we may assume that p ta. But then {14 zn® m}} = {1 4+ a7}, -z}, so
this reduces to the second case.

Note that the congruence 7T;-p = m; mod p. in Op implies that 7T;-p =m; mod U (e1)

as congruence in F"*. So for any v € Homp(F, F'"¢), y7;

= u,7; for some u,
with ub € U, But this means that Uy, € Ul(f,z), with ¢ = ¢;/p. Therefore
Npypm) = 7r; = m; mod U®2) and similarly Npyp(1 +am;) = 1+ 2Pm; mod Ule2),

i

Corollary 3.8 The projections Nz, are compatible with the norms Ng,,,/r, for
n > ny and induce @Nf/pn D KL (F) — lgI_nK]tV(Fn)/U(CQ)KfV(Fn), where the

projective limit is taken with respect to norms.

Proposition 3.9 If F, is a special SDR tower with parameters (0,c), the norm
Noujm-1 @ K4(F,) — K4 (F,—1) satisfies Ny 1UDKL(E,) C UKL (F, ) for

every d > 0 and n > ny, where § = min{d, ¢ }.

PrROOF To ease notation, set F' = F,,_; and F’ = F,,, and write 7, ..., 7 (resp.
71, ...,7y) for local parameters of F” (resp. of F). Let F = C --- C "F = F’ be
the tower of sub-extensions of degree p with "F' = Tle(ﬂZ’.(r)) for 1 <r < N. Using

the remark after prop. 2.11, we consider the special topological generators

u = {1 —|—@£/277T,£(1)7 . 777112(871)77]'1{(5«}1)7 . 77T7/,(N)}

of UYKL (F'), where i € S, is such that F, = Fy_1(m,), and j = i(s) is such that
P|aiqy for s <r < N and p { a; (i.e. sis maximal such that p { a;)). By using
local parameters of F' whenever a; > p, we may assume that 0 < a; < p for each i,

and replace a with azn® € F' if necessary. Thus we have a;y = 0 for s <r < N.

Now any fixed generator u of U@ K% (F') of the above type can be written as a

product of two symbols

u={1+az", 7Tz/‘(1)7 e ’ﬂ-;(s—l)} {W;(SH), ce 77T§(N)} = Uy,
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with w) = jg,/ryur for ug € UDK(Fy), and up € Kiy_ (Fy).
The proof is in three steps.

Firstly, by the linearity of the norm map,

NNF/SF<U1u2) = U1 NNF/SF(UQ) = U { 5+1)) X (W;(N))p}
= {1+ ar', W;(l), . ,w;(s,l)} {mis+1ys - - - iy} mod U(d)KfV(SF).
Since the second factor is in jop K4 _,(°F), we may ignore it by linearity.

The second step is Nepjs-1p. Here we need to consider Nep/s-1p(1 + I?T;aj), for
r € *7'F such that x7r/-aj = an’®, and for p { a;, j =i(s). Using p 1 a;, we see that
S = s~ (mh) =°~ P (r /a]) As before, all conjugates of 7 over S=1F are congruent

modulo U(2). Thus for xw;aj € pg, we obtain
Nsp/sqp(l + xﬂ_;aj) = (1 + xﬂ}aj)p mod U(62+d)'

Thus Nepjs-1p(1 + x7r ) € U(‘H‘s and therefore Nxp/s—1p(u) € UHI KL (*7'F), for
0 = min{d, 2 }.

The third step is to show that for any r < s,

NTF/T—IFU(d+6)K§V(TF) - U(d+5)K§V(r—1F)'

If a generator of U@ K¢ ("F) only has W;(T) in one entry, the arguments of the first
two steps apply. Otherwise, it is of the form {1+z7j¢\, 7).\ }ik,_/k (y) for 2 € "7'F
and y € Ky_o(""'F). But {1 + a7, 7} = {(1 + xﬂg‘(‘r))l/“, —x}, so this is again

the same as the second step. Il

Corollary 3.10 If F, is a special SDR tower, Iim U UKL (F,) =0, i.e. the canon-
ical map LKt (F,) — LK"/ (F,)/UCYKL(F,) is an isomorphism, where again

the projective limit is taken with respect to norm maps.
We define Nz, : Ki(F) = K§(F,) to be the composite

K (F) = lim Ky (F,) /UK (F,) = lim Kyy(F) = Ky (F).

In particular, Nz, p, (¥) = limy 00 N&, ., /5 (N 7/5, 0 () for 2 € K5 (F).
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Corollary 3.11 Nz/p, commutes with the valuation v on N-th K groups in the
sense that v, o Ng/p,(x) = vr(x) for any x € Ki(F). In particular, Vg, o

N ({Ex - 01}) = 1.

Proposition 3.12 For a special SDR tower F, with associated field of norms F,

the map induced by all Nz/p, yields an isomorphism

lim Ny, K (F) < i K (F) /U K (F,) = lim K (F,).

PROOF To prove injectivity, consider a set of topological generators {ti,...,tx}
and ({1 + at® &1, 61, by, - - ’%N})a of Ki(F), say a < A for some A. Since
the F, are of mixed characteristic, their absolute ramification indices ey have first
coordinate e;}: > 0. Thus A < eg, p/(p — 1) for all n sufficiently large. For such n,
the above topological generators mapped to a basis of K% (F},)/p. This shows that
for fixed A and all a < A, the kernel is trivial. By the definition of the topology on
Vzr (and therefore Vx K4 (F)), every element is a limit of a finite sum of elements

with @ < A for A fixed, so @N;/Fn is injective.

To prove surjectivity, we may without loss of generality assume that ¢ > 0 is such
that 1 — (, € p. if ¢, € Fy. Then K4 (F,)/UKY (F,) is topologically generated
by the symbols {m\"”, ..., 7"} and {1 + a(zx™)2,m, ..., 7", 7TZ-(Z)1, 7MY for

a < ep/(p— 1), which lie in the image of Nr/p,. O

3.4 Arbitrary Towers

In this section we consider arbitrary SDR towers F,, with parameters (0, ¢). The idea
is to find a finite extension F, which is a special SDR tower. Using the valuation in-
duced from F on both F, and FE, to simplify notation, one has jr,, /g, U D)KL (F) C
UDKY(E,) for each d > 0, and Hm UDKY(E,) = {1} by cor. 3.10. The main
difficulty is to control the kernel of jg, /g,.

Lemma 3.13 Let F'/F be a totally ramified separable extension of degree [F' : F| =
p", ie. F'™) = FN) . Let m,d € N be such that (p")! = p™d and ptd. Then there
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exists a tower Ey C -+ C E, with Ey D F such that [E; : E;_1] =p for 1 <i < N,
Ey/F is tamely ramified of degree dividing d, and F'Ey = E,,.

PROOF Let F™ be the Galois closure of F'/F, so that [F™ : F]|(p")! = p™d.
As in the proof of prop. 1.16, let E/F(N) be of degree p™d and let a € k Dbe
a generator of k*. For a system 71,...,my of local parameters of F, let F' =
F({o, ¢mi, ..., &mn). Then Ey := E' N F™ is the maximal tamely ramified sub-
extension of F¢/F hence of degree dividing d and G = Gal(F"¢/Ey) is a p-group.
Let H = Gal(F"™¢/F'Ey) be the subgroup corresponding to the sub-extension Fy C
F'Ey C F". By group-theory, there exists a tower H = Hy < Hy_1 < -+ < H; <
Hy = G of subgroups with (H;_; : H;) = p for each i. The fixed fields E; = (EF"¢)Hi

satisfy the claims of the lemma. O

Corollary 3.14 Let F, be an arbitrary SDR tower with parameters (ng,c). Then
there exists a tamely ramified extension E of F,, such that the tower E, with E, =

EF, forn > ng is a special SDR tower.

The case of special SDR towers and jg, ,/r,_, © Np,/r,_, = NEF,/EF,_1 © JF./EF,

imply the following

Lemma 3.15 If F, is a SDR tower with associated special SDR tower E, and field

of norms F then the composite
K(F) — Ki(F) [UD K (F) ™5 Ki(BF,) UKy (BF,)
is compatible with norms Ng, /g, for different n > ny.

For arbitrary SDR towers, we obtain a weaker result.

Proposition 3.16 Let F, be an SDR tower such that F., contains a primitive p -th
root of unity Cpr. Then @U(CQ)KN(FR)/pM =0

PrROOF Without loss of generality, assume F, has parameters (0,c¢) and (y; € Fp.
Let E/Fy be the associated tamely ramified extension such that E,, E, = E'F, is a
special SDR tower. Let

On = ker (]Fn/En . U(CQ)KN(Fn)/pM — U(CQ)KN(En)/pM)
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be the kernel of jp, /g,. By cor. 3.10, lim UYKy(E,)/pM = 0, thus it remains to
show that @n C, =0. Let En be the maximal unramified p-subextension of £,/ F,,.
Then p t [E, : E,] implies ker (jEn/En  Kn(E,) /pM — Kn(E,)/p™) = 0 by cor.

2.26, so it suffices to consider

C, = ker (an/En UKy (F,)/pM — KN(En)/pM)‘

Since [E, : F,] = [ESN) ; FT(LN)], there is an F,-basis of EN) containing an [F,-basis

B,, of ). Using this, we may take as Shafarevich basis of Kx(F},)ys the elements

(i) {m1,..., 7N}, for a system of local parameters 7y, ..., 7y of F,
(i) {E(a, %), T, ..., W1, Tis1,---, TN}, for a € B,,, i minimal with p 1 a;,
(iii) {e,m1,..., TMi_1, Tis1,-.., 7N}, for some pM-primary element ¢ and 1 < i < N.

A Shafarevich basis for Ky (FE,)a can be chosen to contain the elements of (i) and
(ii). Thus C,, is contained in the subgroup of Ky(F,)/p™ generated by the elements
of type (iii). Since € € Fy, this reduces the problem to showing that @Dn =0,
where D, is the subgroup of Ky_;(F,) generated by {x{" ... ={") 7r§ﬁ)1, !
for 1 < ¢ < N. We prove this by iterating the above approach and reducing it to

Ng,/p,_, : Ki(F,) 3 e = P € pKy(F,—1), which is clear.

To prove @Dn = 0, consider again the associated special SDR tower E, from
above. Since E,/FE,_; breaks up into a tower of N — 1 extensions of degree p,
each obtained by joining one local parameter, we clearly have Ng, /g, K N_1(E,) C
pKn_1(En-1), hence Wm jp, /g, Dn = 0. By the same argument as before, it thus
suffices to consider the kernel D,, = ker (an/En c Kn o1 (Fy)/pM — KN,l(En)/pM).
Using the analogous Shafarevich basis elements of Ky_1(F},), we may iterate this

argument as indicated. O

Corollary 3.17 For an SDR tower F, with (3 € F, there exist canonical maps
Nzjg, » En(F)/p" — Kn(F,)/p"

for eachn > 0, such that Nr/g, = Np, .. /5, oNF/F, ... for each m,n. They commute

with the valuation v on Ky in the sense that vi, o Ng/p, = vr. In particular,
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vp, (Nz/p{tn, ..., t1}) =1 mod p". Furthermore, the induced map

Um Nk, © Ky(F)/p" — lim Ky(F,)/p"

18 an isomorphism.

3.5 Compatibility

We are now ready to prove the compatibility of class field theory and the field of

norms functor.

Theorem 3.18 Let F, be an SDR tower and let L, be given by L, = LF, where
L/Fy is a finite abelian Galois extension. Let L/F be the corresponding extension

of their fields of norms.

Suppose either that F, is a special SDR tower, or that F, 3 (y and Gal(L/Fp) is
of exponent dividing p™. Then diagram

Tc)F

Gal(L/F) 7 K4(F) [N Ky (L)

l iNm

Gal(Ly/F,) =2 K (F,) /Np, Ky (L)

15 commutative.

ProoF The proof is identical for special and arbitrary powers. We treat the case
of special towers. Dealing with arbitrary towers requires taking quotients by p™

everywhere.

The groups Gal(LF,,/F,) are canonically isomorphic, denote them by G. Consider

the following commutative diagram

Ly L,
Ln Ln+1
G

G Ey o

/ e

F, Foi1.
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For o € G, pick lifts 7,, € Gal(L¥"/F,,) and 7,41 € Gal(L¥,,/F,11) such that their

restrictions satisfy o, |pwr = % and 7,11] Fer = PR for the same m € N.

Let S,+1 and S, be their respective fixed fields. Then
Sn+1 = (LZ:l)anH = (Fn+1Lzr)gn+1 = Fn+1Sna

so the tower S, is also strictly deeply ramified and is a finite extension of F,, with

[S,, : F,] = m for n sufficiently large.

The reciprocity map for L, /F, is

where IIg, € K% (S,) is any element satisfying vg, (IIg,) = 1. Since the extension

F,.11/F, has no unramified part, the same holds for S,;1/S,, so by lemma 2.27

Vsn o NSn+1/Sn (HSn+1) = VSnJrl (H n+1> = 1

so there exists a system (Ilg, ), of Ils, € K} (S,) satisfying Ng, /s, ,(Is,) = Ig,_,
and Vs, (Hsn) =1

On the level of fields of norms, pick a lift & satisfying o|z.r = ¢ for the same
m as previously. If S is the fixed field of this o, take IIs € K%(S) such that
Nsss,(Ils) = Ilg, for each n. Then vs(Ils) = 1, so

’I“E/]:<O'> = NS/]—'(HS) + NE/]:K]tV(ﬁ)

To finish the proof, note that

N,
K4(S) — "~ K1(S,)
NS/]—'\L lNSn/Fn
N Fn
Ki(F) — s K (F)

is commutative by construction, so for o € Gal(L/F),

Nrp, orr/7(0) = Nrg, © Nsyr(Ils) mod Nrp, (Ne/rKy(L))

identifying o with its image in Gal(L, /F},). O
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Corollary 3.19 If F, is a special SDR tower, the total diagram

Ki(F) re
Nf/Fnl l
t Y ab

KN(FH) FFn’

1s commutative, where the right-hand vertical map is the composite of the isomor-

phism % = F%’w given by the field of norms functor, and the inclusion F‘}f’w C F‘ﬁ;.

Corollary 3.20 If F, is an SDR tower with (y € F, then

W
K (F) ! —2 T
Nf/Fni J{
Up, .
K4 (F,)/pM — re /pM,

is commutative where T /pM — F‘I{% /pM is induced by the field of norms functor.



Chapter 4

The Witt-Artin-Schreier Pairing

In this chapter, we describe abelian p-extensions of higher local fields of equal char-

acteristic p.

4.1 Differential Forms

Let F be a higher local field of equal characteristic p, with system of local pa-
rameters Z,,...,%; and last residue field k. Consider its flat Z/p™-lift Oy (F) =
W (k)((tn)) -+ ((t1)), where t; = [t;] € Wy (F) are Teichmiiller representatives
of the local parameters (see appendix A.2). Since Oy (F) is obtained from W (k)
by a succession of steps involving taking polynomial algebras, completions, and lo-
calisations, its module of continuous differential forms over Z,, Qw,, (k) ((tx))-((t1)) 15
free with basis di1,. .., dty. For the same reason, O(F) = lim Oy (F), its field of
fractions Q(F) and the W (k)-subalgebra Qo(F) = W(k)((tn))--- ((t1)) of Q(F) all
have the property that their module of differential forms over Z,, resp. Q,, is free

of rank N.

To ease notation later on, put di,zz = dz/z. Then Qg(f) is free over Q, and the

residue of an N-form is

and similarly for Qg( 7y QgM (F) and ng ) The residue has the following standard

49
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properties

(i) fwe Qg(_fl) then Res g dw = 0,

(ii) if 7,,...,Ty is another system of local parameters of F and #,, ...t are lifts

to O(F), then Res g(r) (dlogt’l ERRWA dlogﬂ\,) =1,

(iii) if Res (w) = a, then there exists w’ € Qg(_]_-l) such that w = dw' + adjegti A+ A

diogt'y -

By construction, O(F) depends on the choice of local parameters ty,...,ty of F
used to construct the flat lifts. We illustrate an alternative approach to residues
which is independent of local parameters in F. For n > 0, and a fixed choice
of local parameters t;, let Oy (0™ F) be the flat Z/p™-lift constructed using the
local parameters ?{n, o ,fﬁ? of o™(F). Also, let c7"F be the inseparable extension
obtained by joining E ? for 1 < i < N and denote by ¢~ the isomorphism F —
o "F. Then

Wa(eM=1F) € Oy (F) € Wi (F) € Opr(o ™ F),
W (F) = Oy (F) + pOu (07" F) + -« + pM 1Oy (oM F).

Define Q(]—“ , M) to be the submodule of Q{,VVM(F) generated as Z,-module by all
forms w = ydipewy A -+ A diogzy for all y € Wiy (oM=L F) and z; € Wy (F)*. Since
y € Om(F) and z; € Op (0 MF), w can be written as w = w djogts A -+ A diogtn,

for w € Oy (e ™™ F). This induces a natural embedding
Loy (F) - ﬁ(]:, M) - OM(Ul_M]:) Q@O (F) QgM(;), W weE dlogtl ARERA dlogtN-

Note that w € Oy ('™ F) may in turn be written as w = >t} -+ t3 for
a € W(k) and (ay,...,ay) C pP~™Z" running through some admissible set. Using
this, we define the residue Resy,,(r) on Q(]—", M) to be Resw,,(r)(w) = oo,..0)-
Using the canonical inclusion g 7 C Q(F, M), it can be seen that Res o, ) (w) =

Res w,, (7)(w) for any N-form w € QgM(I).

We want to show that Res,,(r) is independent of the choice of local parameters of

F. Let 7,,...,Ty be a different set of local parameters of F. Let O} (6™ F) be the
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flat Z/p™-lifts constructed using the elements 7. " and let Res Wit (7 be the residue

defined using to (7).
Proposition 4.1 For any w € Q(F, M), Resw,,(r)(w) = Resyy, 7.

PROOF Any z € Wy (F)* can be written as x = at{* ---t3 en with a € W (k)*,

(a1,...,an) € ZN, € € (1 4+ mg(r)) mod pM O(F) and
n €L+ pOy(c™'\F)+ -+ p" 1Oun(c" ™ MF) =1+ pWar(o™ ' F).

Using pWy (07 F) = VW 1(F) C pOn(a'™MF), we see that log converges on
1+ pWy (o~ F). Letting o = log(n) € pWy—1(c7'F), it follows that dj,gz can be
written

dlogx = aldlogtl + -+ aNdlogtN + dloge + dn/

Writing € as a convergent product € = Hg (1 — 6@9), we see furthermore that
doge = — D (Bat?)"diog () for b in some admissible set in Z%, and 8, € Wy (k).
Now note that t2"djgt? A dn = (bldlogtl 4o 4 bNdlogtN) A d(tn), for b > 0
and n € pWy(0~LF) since this reduces to dt® A dt2 = 0. Then we see that any

w € ﬁ(]—‘, M) can be written as a sum of the three types of elements
(1) wdiogti A -+ A diogtn, for ay, € Wiy (k),
(ii) mdiogti A - -+ A diogty, With m € mg(r) mod pM . and
(1) duoglis A+~ A diggls, Adiy A+ A ds, Tor my € pWr(o~ ).
Because Resyy,,(r) = 0 for all elements from (ii) and (iii), one has Resw,,r)(w) =

o, € Wiy (F). Thus we need to check that Res y,, r) (dlogt’l Ao A dlogtk,) =1. To
©) (4)

see this, note that ¢, = [«;] titjfll 13 €m; as above, where agi) =... = a§?1 =0
and al@ = 1. Then the claim follows from the above manipulations. g

4.2 Parshin’s Pairing

If F is any field of characteristic p, any abelian extension of exponent p is ob-

tained by joining all coefficients of !X C Wy, (F*P) for some subgroup X C
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W (F) /oW (F). Witt-Artin-Schreier theory provides a perfect pairing

War(F) /oW (F) x TZ/p" — Wy (F,)
((bos - - bar—1),7) — (v(Bo)s - - s Y(Brr=1)) — (Bos - - - » Bar—1)

where (Bo,...,0m-1) € Wy(F°P) is any element satisfying o(fo,...,0u-1) =
(bo, . ..,bar—1). Here, as usual, p(w) = o(w) — w for any w € Wy (F).

We shall consider the case where F is an N-dimensional local field of characteristic p.
In [32], the Witt-Artin-Schreier pairing is used to construct the p-part of class-field
theory for higher local fields of characteristic p by defining the pairing

[—, =Y W (F) x Kn(F) /pM Kn(F) — War(k).

We start by clarifying the construction of [—, —} ;.

Let gi,'a?j be lifts of b;,¢; € F with respect to the map W (k)((tn))---((t1)) — F
induced by W (k) — k, for 0 <i < M — 1, 1 < j < N. Parshin’s pairing is

[(b()? R bM*l); {1'1, s 7xN})M = (3/07 s 7ZUM—1) S WM(k>
(Yo, - - -, Yar—1) is the unique Witt-vector with ghost-components
y® = Res (E(i)dlogil A A dlogifN),

where the residue is taken in ng(f). By [32], lemma 3.1, the residue is integral,
ie. lies in W(k), so y; € k are well-defined. Instead of taking ghost-components
in characteristic zero, taking the residue there, and going back to Wy, (k) using the

inverse operation to taking ghost-components, we work in Wy, (F).

Notice that any b = (b, ..., by—1) € Wy (F) can be written as
b= [bo] + V[bl] +--+ VMil[bel] € WM(.F)

Taking as lifts of b; the Teichmiiller representatives [b;] € Wy, (F), it follows that

the (M — 1)-st ghost-component of b is

M—1 M—i—1

Y = (ool 4 P e M T ]

= [oMbo] + -+ VoM ] 4 -+ VI oMby ] = oMb,



4.2. Parshin’s Pairing 53

In particular, this shows that b ~Y € Oy(F). Thus [—, —}a may be defined as
|:b, {171, e ,[L’N}}M = Res W (F) (O'M_l(b) dlogfl VANCIEIVAY dlog%N)v

where z; € W)y (F)* is any lift of z; € F.

Lemma 4.2 The value of Parshin’s symbol
[(bo, Ce ,bM_l), {371, e ,ZL‘N})M = Res W (F) O'M_l(b) d]ogfl A A d]ong,

is independent of the choice of lifts T; € Oy (F)*.

PrOOF For x € F* let ,7" be two different lifts to Oy (F)*. Then  — 7’ €
pOp(F), so there exists a € Oy (F) with 2 = Z(1 + pa). Now Oy (F) is a p-adic
ring, so the logarithm log(1 + pa) converges in pOy(F). Thus dieg?’ = dieg® +
d(log(l +pa)) and log(1 + pa) = py for some y € Oy (F). We need to show that

Res o, m) (B +pb 4o+ 720, + pM har)pdy =0 mod p.
But o”'dy = d(¥'y) mod p’ implies that Res o, (r) (b”idy) = 0 mod p* for each i,

which proves the claim. O

It would be nice to generalise this result to lifts in W), (F)*. However, the element z—
T’ above would then lie in VW (F) = pWy (o~ (F)) and hence a,y € Wy (o= (F)),

and we no longer get the extra factor of p in the above expression.
Lemma 4.3 We have o [b,z}y = [0(b), x}ar for any b € Wiy (F) and x € Ky(F).

PROOF K (F) is generated by all symbols {f,, ..., ¥y}, for varying local parameters
f;_, e ,z_f/N. By prop. 4.1, Res,,(r) is independent of the choice of local parameters,
thus we may assume z = {f1,...,tx}. Writing oM710 = 3" q, bt - 15 € On(F),
we obtain [b,z}y = o, 0. Also, oM 1(ob) = Y o)™ -+ thY, and hence
[o(b),x} = o(a,..0) = o[b,x}r, as required. O

.....

Using this, we obtain Parshin’s pairing

[—, _)M : WM(JT")/p X KN(JT") — WM(Fp) = Z/pM, [b, LL‘)M =Tr [b,.’l?}M,
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where Tr : Wy (k) — Wy (F,) is induced by the trace of fields k& — F, and the
identification Wy, (F,) = Z/pM is given by (M — 1)-st ghost-components.

The chain of inclusions Wy (6™ =2 F) € Oy (F) C Wiy (F) shows that b +— oMt
induces Wy (F)/p — On(F)/p. Since [b,z)y = [ob,x) = -+ = [cM1b, ) for
any b € Wy (F) and z € K4 (F), this shows that Parshin’s pairing is equivalent to

[—. =) : Om(F) /o x Ky (F) — Z/p"™,

[b, {1, ... ,mN})M = Tr o Res (UM’I(b) diogT1 N\ -+ A dlogEN),

where the lifts #; are in Oy (F) C Wi (F), and the residue is Res o, (7).

In [32, 33|, Parshin proves that this pairing is non-degenerate and thus can be used
to define the p-part of class field theory W1 : K4 (F)/p™ — T'%/pM. To prove
that W% coincides with the construction from [12], it suffices to show that Parshin’s
pairing, composed with the reciprocity map WE : K% (F) — I'? due to Fesenko

induces the Witt pairing. We give details of the outlined proof from [12], §2.

Theorem 4.4 For an N-dimensional local field F of characteristic p and a finite
abelian p-extension L/F, the class field theories constructed by Parshin ([32]) and
Fesenko ([12]) agree.

PROOF Let M be the exponent of Gal(L/F) so that L is contained in the composite
of finitely many linearly disjoint cyclic extensions of degree p. Therefore we may
without loss of generality assume that £/F is cyclic, £ = F(X) for X € O (F*P)
with pX =2 € Oy (F).

We need to show that for {y;,...,yn} € K& (F),

[z Ay, uw )y = 9(X) - X,

where [—, —)a/ is Parshin’s pairing, v = rg/lf({yl, ..., yn}) € Gal(L/F) corresponds
to {y1,...,yn} under Fesenko’s reciprocity map, and p(X) = z.
Notice first that K4 (F) is generated by all symbols {¢i,...,ty} for various sets of

local parameters ¢y, ..., ¢y. Thus it suffices to prove the theorem for {¢,...,ty} €

K& (F) where the ¢; are any fixed set of local parameters.
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Also, Oy (F)/gp is generated as Z/p™-module by two types of elements. On the
one hand elements ) o, t{" - - - t3", where the sum is over some admissible set with
A < a < 0 for some fixed A, and, on the other hand, ag € W), (k) of trace Tr (ag) =
1 € Z/pM. So we may furthermore assume that z (with £ = F(X), o(X) = x) is of

either form.

In the second case, Parshin’s symbol yields
[ao, {t, ... ,fN})M = Tr o Res (agdlogtl A A dlogtN) =Tr(ag) =1,

by the choice of agy. Using Fesenko’s construction, we note that L£/F is totally
unramified, with Galois group Gal(L/F) = (pr|r) generated by the restriction of the
Frobenius of F to £. By the first example in section 3.2, TE/F<QOF|L) ={t1,...,tn}
mod N,/ zK}(L). But p(X) = ap just means that the absolute Frobenius g acts
as or(X) = X +ag. Now if [FN) : F,] = f then gpF}k = o/ where o is the absolute

Frobenius. Thus
o(X)=X+ag+0o(ag)+-+0"rag=X+Tr(ag) =X +1

and consequently ¢(X) — X = 1, as required.

In the first case, for x = > a,t{* -+ - 13 as above and £ = F(X) with p(X) = =,

Parshin’s pairing gives

[.T, {l_fl, R ,ZN})M = Tr o Res (Zagti‘l s 't(]lVNdlogtl VANREIRIAN dlogt]\[) =0

since a < 0 for all a. By [33], prop. 2, this implies that {t,...,in} € NgyzK4(L),
so {t1,...,txy} mod Ny zKi (L) = rz/#(id) corresponds to the trivial element of
the Galois group, so id(X) — X = 0, too. O

4.3 An Invariant Formula

The pairings Oy (F) /o x Kn(F)/pM — Z/pM are not a priori compatible with the
projections modulo p~!. For classical local fields, Fontaine [17] proves an invariant

formula using special lifts of F to O(F). We adapt his method to higher dimensions.
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Given F, fix a set of local parameters ¢, ...,ty. They provide a p-basis of F. Con-
sider its corresponding flat Z,-lift O(F) = Wy (k){{tn}} - - {{t:1}} (see appendix
A.2), with field of fractions Q(F). Q(F) is an (N + 1)-dimensional local field with

parameters p,t1,...,tN.

Consider the inseparable extension F' = ¢ 'F = F(Ty,...,Ty), where T = t,.
Using T'; as p-basis of F/, we obtain a corresponding extension of fields of fractions
Q(F) = Q(F)(T4,...,Ty) and an isomorphism o : Q(F') — Q(F) which maps

T; — t; and is equal to the frobenius on W (k). Denote by o' its inverse.

Finally, denote by N, the composite

N, = Noryaur 00 Kn(Q(F)) — Kn(Q(F)).

Note that N, induces N, : K4 (O(F)) — K4%(O(F)). This can be seen by consid-
ering topological generators and noting that Q(F")/Q(F) breaks up into a tower of
N sub-extensions of degree p in such a way that the norms of the N sub-extensions

act at most on one entry of those generators.

Working with the groups K!(O(F)) defined in section 3.5, we shall find a special
section of reduction modulo p: K4 (O(F)) — K4 (F). Start with the exact sequence

0 — UVKL(O(F)) — K4 (O(F)) — K4 (F) — 0,

and apply N, — 1 to each group. Since F'/F is inseparable, N, = 1 on F. The

snake lemma yields

(VWKL (OF)) y, o — (KN(OF))) y, -, — KN (F)

No No

— UDKL(O(F))/(Ny = DUV K (O(F)).
Lemma 4.5 The middle morphism of the above diagram is an isomorphism.

Proor UMK (O(F)) is generated by two types of generators. On the one hand,
u = {1+[a]p™ts, t;, ... tiy_, }, and we see that Nyu = {14 [a”|pP 0t%, t;), ..., tiy_, }-
Similarly, for the second type v = {1 + [B]p™2, p,tj,,...,t;y_,} of generators, we
have N,v = {(1+ [B]p**)?, p, t},, ..., t;y_,}. Notice that

lim (1 + [a"n]ppnaoi_fi> =1 and 1Lm (1 + [Bo"]pp"b%g)p" 1

n—o0
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Now by the definition of the topology on K4 (Q(F)), Vo X (Q(F)*)*W-1 —
K§(Q(F)) is sequentially continuous and therefore N(u) — 0 and N”(v) — 0 as
n — oo. Since O(F) is absolutely unramified, it follows from [43], prop. 2.1 that
K§(O(F)) is topologically free, so we conclude that (U(l)K}t\,((’)(]:)))NU:1 =0 and
the middle morphism is injective.

To see that it also surjective, note that {1+ [a]t%, t;), ..., tix_,} € (K}‘/\,((’)(]:)))NU:1
for all @ € k* and a > 0, and {t1,...,tn} € (KItV(O(]:)))NJ:l and that their
images in K% (F) topologically generate it. Alternatively, notice that by the ex-
plicit description of N, on generators of UV K4 (O(F)), (1 + Ny + N2+ ---)(u) =
{u t;,, ..., tix_,} converges in K5 (O(F)) because v’ = [T (1 + [a”"]p""*t%) con-
verges in F*, and similarly for v. But (1 — N,)(1 + N, + N2+ ---)(u) = 1 so all
generators of UM K (O(F)) are also in (N, — 1)UV K4 (O(F)) and it follows that

the last quotient in the above long exact sequence is trivial. O

For the groups K} (O(F)) € K4%(O(F)), one sees that the map induced by the
projection O(F) — F again induces an isomorphism (K (O(F)))n, — K& (F) by
considering that the lifts {t1,...,¢tx} and {1 + [a]t%, t;,, ..., ti\y_, } Of generators of
Ky(F) lie in (KN (O(F))) y,
K§(0) \ Ki(O) given in the remark after cor. 2.31 was typical. If O = O(F),
n{l +7"v, 7} = —{1+7"v,—v} ¢ (K}V(O(}")))chl = (K;V(O(F)))Ngzl.

_,- This indicates that the example of an element in

We denote by Col : K§(F) = (KN(O(F))) y _, € K§(O(F)) (‘Coleman lifts’) the

No

inverse map.

Corollary 4.6 Col : K& (F) — K& (O(F)) is continuous. On the basis of K& (F)
from prop. 2.10, Col is given by

Col({t1,... . tn}) = {t1,..., tn}

COl(E(O&,ig),El, ce 7ti—17ti+17 ce ,EN}) = {E([Of],ig),tl, N 7tz‘—1>ti+1a C ,tN}.

PROOF The explicit formulae for C'ol on the level of generators follows from the fact

that the elements on the right-hand side lie in (K} (O(F))),, _, and are lifts of those

No

on the left-hand side. To see that Col is continuous, note that for a = (aq,...,ay)

running through an admissible set in Z]>VQ, (0,a4,...,ay) runs through an admissible
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set of ZJi™". Thusif [T (E(cw, ")) converges in F, so does [] (E([ow), 1) in O(F) C
Q(F) (since the first local parameter p of Q(F) appears with exponent 0). O

In what follows, we shall need to work in Qf z = Qg 7 ® Q(F). The morphism

Q(F)* = Qo(r) given by x = diggx = df induces

K;V(Q(‘/—-.)) — Qg(]:)a {371, s 7:EN} = dlogxl ARERNA dlonga

which we shall also denote by diqg.

Lemma 4.7 For z € O(F) and u € K§(F), we have

o(Res (2 diogCol(u))) = Res (0(z) diogCol(u))

PROOF It suffices to consider generators u,; == {E(a, %), 1, ..., i1, i1, In}
and ug := {t1,...,tn} of Ky (F). Writing x = 3, wyt? , then o(x) = 3~ o(w,)t*.

For the first type of generators, we have
thogCol(ua,;) = Z[aan]tgpn(_l)iaidlogtl A A diogtn

and Res (2 diogCol () = 3, [0 a;w_gpm, where the sum is taken over all (finitely
many) n such that w_gn # 0. On the other hand, o(z) = Y o(wp)t? and thus
Res (0(2) diogCol(uq;)) = S [0 M aio (w_gpm) = o (Res (2 diogCol(ua,))). Also,
o (Res (zdiogCol(ug))) = o(wy) = Res (0(2)diogCol(ug)), as required. O
Following the argument in [17], this can be obtained more naturally as a consequence

of the defining property of Col, the N,-invariance, as follows.

With Q(F') = Q(0~'F) as before, we have Qf ) = Q(F) diogti A -+ A diggln and
O3y = Q(F) diogTi A - -+ A dhogTry = Q(F') dhogty A+ -+ A diogty,

since diogt; = pdiogT; for all i and p is invertible in Q(F’). Again ¢; — T; induces

ot Qg(f) — Qg(f,) given by
O'_1 (l’d]ogtl JARRIVAN dlogtN) = O'_I(I)dlong VANRERIVAN dlogTN = p_NO'_l({L’)dlogtl NNty

Define the trace map tr : Q¢ zy — Qq(r) to be the usual trace on Q(F') — Q(F),
and the identity on dipgt; A -+ A diogtn. It is Q(F)-linear and after ‘going up’ to
Q(F")((p)/Q(F)((p), it coincides with taking the sum over all Galois conjugates.
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Using the fact that the composite of the norm N = Ng#)/qF) with the map
7 K§(Q(F)) = KL (Q(F')((,)) is also equal to the sum over all Galois conjugates,

it follows that the outer diagram in

N tr N 7 N
Qo Qo) Qo))

dlog T dlog T dlog T

KN (Q(F) —~ EN(Q(F)) — KN (Q(F)(G)),

is commutative. Since ¢ is injective, so is the left-hand diagram.

Noting that 07! o dipg = dig 0 07 : KN(Q(F)) — Qg(f,), this implies that
tr o tdyogCol(x) = djogCol(x), which is analogous to the property N,Col(z) =
Col(z) on the level of K-groups.

Lemma 4.8 For any w € Qg x), Res otr(c™!(w)) = 0~ (Res (w)).

PROOF Write w as w = Y [ag|p™t]" - - t3Y dioglt A -+ A diogty for a € k*, and

(ag, . ..,ay) running through some admissible set. Then

o (w) = Z[ag_l]l)aoﬂal TR Y diggt A+ A diggty.

If p|a;forall 1 <i< N, then tr acts as multiplication by p" on this term. If there
is some ¢ > 1 with p{ a;, then tr(T77" ---T3N) = 0. Thus

Resotr(o(w)) = Z [agfl]pao = O'_l< Z [adp‘m) = 0~ Y(Res(w)),

g:(ao’o 9999 0) a= (a070 7777 0)

as required. O

Noting that tr is Q(F)-linear, we have
tro ' (o(z).digCol(u)) = x.tr o (dipgCol(u)) = x dipgCol ().

Together with the lemma, this implies o Res (z djogCol(u)) = Res(o(x) dingCol(u))

more generally for z € Q(F) and without needing to consider generators.

We are now ready to prove the following invariant formula for Parshin’s pairing.
Theorem 4.9 The Witt-pairing O(F) x K& (F) — Z, is given by

[b‘{ul, o ,uN}) = Trwz, © Res(bdiogCol{u, ..., un}) € Zy.
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Proor We need to prove that for each M,
Tr o Res (b.diogCol{us,...,ux}) mod p" = [b mod p™, {us,...,un})um

is Parshin’s formula. Since [—, —),; is independent of the choice of lifts u; € O(F)
of u; € F, we may assume that the lifts are chosen such that {u,...,uy} =
Col({uy,...,un}). Then the identity o Res (x di,gCol(u)) = Res (o(x) djogCol(u))
implies
[b mod p™ {uy,...,un}),, = Tr oRes (7' (b) diogCol{us, ..., uy}) mod p"
=Tr o ™ o Res (bdiogCol{uy, . ..,uy}) mod p

= Tr o Res (bdipgCol{us,...,ux}) mod p™,

since Tr oo = Tr : W (k) — Z,. O



Chapter 5

The Hilbert Pairing

In this chapter we use the field of norms functor to derive formulae for the Hilbert
symbol in characteristic zero from the invariant formula of Parshin’s pairing in char-

acteristic p.

5.1 Relating Kummer and Witt extensions

Consider an SDR tower F, with parameters (0, c), Fi,, = hﬂn F,, and associated field

of norms F.

Definition 5.1 An SDR F, tower is called m-admissible, for m € N, if F, has

26F — 2€Fm
p™(p—1) p—1

th root of unity (yrim. Here ep = vp(p) is the (first) absolute ramification index of

F.

parameters (0, c) with ¢ > and if F,, contains some primitive pM+m-

Following [3], define an N-dimensional analogue of Fontaine’s ring R as follows. Let
C(N), be the completion of an algebraic closure of Q,{{mn}}---{{m}} and let
Oc(n), be the integral closure of its first valuation ring in C(N),. Then R(N) =
1&1 Oc(n),/Pe, where the projective limit is taken with respect to p-th powers and
p. = {z € C(N),|v,(z) > ¢} for ¢ > 0. As sets, one has R(N) = lim Oc(w), given
by (z™), = (™), with 2™ = lim,,_. (Z"T™)P" for any lift 2("*™) of 2(**™) to
Oc(n),- R(N) is a perfect ring of characteristic p with valuation vg(z) = v,(Z().

61
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Its field of fractions is denoted R(N)o. Let W(R(N)) be the ring of Witt vectors of
R(N), and define

n:W(R(N)) — Ocewy,. D Pl = > p'a”,

for 550) € Oc(n), as before.

To see that n is a ring homomorphism, consider a,b € R(N). Then [a] + [b] =
[co] +p[cT ]+ +p"e "]+ --- for some ¢; € R(N). If S;(Xo, ..., Xi;Yp,...,Y))

are the polynomials defining addition of Witt-vectors, we have, for each M and 1,

since (077a)©® = a(® for a € R(N). Using this, ¢\ 4 - - + pM(c3,")© = q® + p©
mod p™*1 by the definition of addition in Wy 1(R(N)). The claim follows since
this holds for all any M.

As in [18], let ¢ € R(N) be such that ¢ = 1 and ¢ = (, # 1. Then ker(n) =

le]-1
o)1

sW(R(N)) is the principal ideal generated by s =

If ep = vp(p) is the first ramification index of F, v,(x) = vp(z)/ep for every z € F.
This shows the inclusion F,, C C(N), induces O, /p. C Ocw),/Peje, and thus
Or C R(N)

Let O(F) = W(k){{tn}} - {{t1}} be the flat Z,-lift constructed using as Z,-basis
the local parameters ¢y, ..., ¢y of F with ¢; = (Wgn))n for WE”) € F,. Any z € O(F)

can be written as a convergent sum
§ apzra1 ZaN

for (ag,...,an) € ZN*! subject to the conditions ay > 0,a1 > I (ag),...,an =

In(ag,...,an_1) for some Iy, ..., Iy. Let A C O(F) be the W (k)-subalgebra
A= {Z’ € O(‘F) ’ (Il(a0)7'--7[N(a07"'aa'N—1)) > (0770)}

of t-integral elements and let m4 be the prime ideal of all x € A with (ay,...,ay) >
(0,...,0). Taking as p-basis of the absolute valuation ring Oz the same set of local

parameters ty,...,ty and letting t; = [¢;] be their Teichmiiller representatives in
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Wi (Ox), it can be seen that A is the flat Z,-lift of O(F). The absolute Frobenius

o on F induces o : A — A.

Denote the restriction of n to A again by n : A — ]300, where F,, = thn and
}/7’\00 is its p-adic completion. By construction, 7 is the identity on W (k) C A, and

In order to translate between (additive) Witt-theory and (multiplicative) Kummer
theory, we let e : my — 1+ my be the map induced by the Artin-Hasse Shafare-

on

vich exponential, e(f) = exp (> p—n( f)). It is a group isomorphism with inverse

[l :14+my — my given by l(u) = %log (). Denote by 6 the composite group
homomorphism

0=noe :mA—>ﬁ:o.

Suppose now that F, is m-admissible and fix a primitive p*™-th root of unity
Crtm € Fin. Consider the identification Ox/pom 7 = OF,, /p. (the valuation on F,,
being the induced valuation from F') from the definition of the field of norms, and

let H},,,, € O be such that

Hyi, mod peym 7 = Crrym mod pe.

set H=HP "

Mam — L

For any lift Hyjyp € Aof Hy, ., ie. Hypn mod p = Hy,

For f € myu, pick T € W(F*P) such that p(T') = % € O(F). For v € T'x, define
a(f) € Zy by a,(f) =~(T) —T.
On the level of Kummer theory, the canonical isomorphism I'x = I'p means we

may view 7 as element of ['p. For z € F., pick £ € (ﬁoo)sep such that & = z, and

by (z
define b, (z) € Z/pM by % = J]f/l+m( ),

They are related by the following result (see [1])
Lemma 5.2 (Main Lemma) Fory € I'? and f € my,
a,(f) =b,(6(f)) mod p".

The proof in [1] deals with the case of very special towers which are 0-admissible

and have ¢ = ep. The first step of the proof needs to be modified for this context.
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2ep
p—1°

Since F, is m-admissible, c satisfies cp™ > Then Hj,,,, mod pepm 7 = Crrgm
mod p. r implies
Hyypy = 0"~ (e) mod p2/(p-1.r,

since vg is defined using the valuation v, on C(N),. For 7" € R we have

vr(e” = 1) =0, [ = 1D)O] =, [ lim (Gn — 1) ] = 0,(G — 1) = L

n—o0

Thus Hj,,, = oM ™(¢) mod (7" — 1)2R. Applying o to both sides, we obtain
o(Hjypp) =0 M™(e) mod (¢ — 1)?R.

On the level of lifts, Hym € A satisfies o Hym = HY, +m mod p. Combining
this with the previous congruence, we see that there exist w; € W(R(N)) and
wy € W(R(N)p) such that

Hyy = 07 e] o+ ([e] = 1)%wn + put.
Taking p™*™~1-th powers, it follows that
H i le\l+m

brem — 1= [e] = 14 ([e] = D)*wa + p™ "}

for some wy € W(R(N)) and wh, € W(R(N)p). Finally, diving through by H ([e]—1),

we obtain

% <[€]1_ Tt w) mod p™ W (R(N)o)

for some w € W(R(N)).

Now let 7" € W(R(N),) be such that p(T") = =L and set a,(f) =~(T") =T for

G
v € Tz, Since limp, o0 0™ (fw) = 0, we have a,(f) = a/,(f) mod p™.
We outline the approach taken in [1] to complete the proof, which generalises easily
to higher dimensions. The ultimate aim is to translate the additive Witt equation to

a multiplicative Kummer extension. This is achieved by first constructing a solution
of a Witt-equation in the ideal sW (R(N)) C W(R(N)).

Set T = T’([E]"_1 —1), then o(T}) — Ty = f. Modulo p, this becomes T} — sT} = f
mod pW (R(N)y) which is monic. It follows from s, f € R(N) and induction that
Ty € W(R(N)). Thus X =T'([e] — 1) = sT1 € WHR(N)) = sW(R(N)), and X is
a solution of Z* — X = f in W'(R(N)).
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After ‘going up’ to an N-dimensional analogue of Fontaine’s ring A..;s, one can make

use of the property

el—1)p—1
os =ps;, for s;=1 mod ([5] —1, ([e] ;) )

in Agis to conclude % — X = f mod S where S C A is an ideal on which %
is topologically nilpotent. This means that there exists an exact solution m with

o(m)—pm=pf, X =m mod S.

One then puts Y = exp(m) to obtain o(Y)Y ' = exp(pf) and proves that such
Y € Aqis correspond bijectively to solutions Y € 1+ sW (R(N)). Finally an explicit
description of y(m) — m is used to show that the element u = (o™ (Y e(f))) €
Oc(w), satisfies w?" = 0(f) and # = (%,

5.2 The Generalised Hilbert Symbol

In this section we define a generalised Hilbert symbol and use the ‘main lemma’ to

deduce a formula from the invariant formula for Parshin’s pairing.

Definition 5.3 Let F, be an SDR tower with associated field of norms F. If Fo 2
Cur for some primitive pM-th root of unity Cyr, define the generalised Hilbert symbol
to be

1(U)

~ o
(_’_)f/; : FooXKN(‘F)/pM—>:upM7 (u’b)M:T’

where U € (Fao)*P satisfies UP" = u and v = Ux(b) € I'% is viewed as an element

of F“Fboo via the identification given by the field of norms functor.

Using the projection Nz r : Kn(F)/pM — Ky(F)/p™ from section 3.4, we give a

partial description of this pairing.

Theorem 5.4 Suppose F, is an m-admissible SDR tower. For f € my and § €

K& (F), the generalised Hilbert symbol is given by

(O0F), Nryr(B))rr = CBr8 | ¢ =Tr oRes (%dlogCOZ(B))
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PROOF Let v = Ux(8) for B € K4(F), and a,(f) = y(T) — T for p(T) = &. By
thm.4.9,

a,(f) = [%,6) = Tr o Res (% legCol(ﬁ)).
On the other hand, the compatibility of class field theory and the field of norms for

arbitrary towers shows that under the identification
re/pM =Ty, /pY Iy /"

v = Ux(A) is identified with Up(NF/r(8)) € Ky(F)/p™. By the main lemma,
b,(0(f)) = ay(f) and the formula follows. O

We indicate how this formula can be obtained from the case of 0-admissible SDR
towers. Let F! be the 0-admissible SDR tower defined by F = F,,,,,. Then F! ~ F,
as towers (see [35]) and the identification F' = F is given by taking p™-th powers,

as can be seen from

Or = @n Op, /pe — @ Ocvy, /Pe —— @1 Ocv), — Ocv)
Op =lim Of,.,/pc —lim Oc(),/pc ——1im Oc(v), — Oy

i

An element (z(™),, € Of is mapped, along the top row, to 7@ = lim,_,q(z®)?".
Similarly, (/™) € O, is mapped to 7'¥) = hmHoo(x’(i))pi. But F/ = F1n, SO
2/ = () = (z(mF)P" € Oc(yy, /pe and therefore (Z0)P" =7,

Let 0:my — 1/7\* be the map corresponding to the tower F, and 6/ : my — ﬁ:o the

one corresponding to F’. Then 6 is defined by [(z™),] + 7 and therefore, using
the identification ' & F, we obtain 6(f) = 0'(f)?" for any f € ma.

Using the commutative diagram,

Np,/F

Ko (F) =205 K () Kn(F)/p
- O
L /p" g /oM g /p"
it follows that we need to identify 7' = Vg, (Nz/p, (8)) with v = ¥ p(Ng/p(B)) for
any 3 € Ky(F)/pM = Kn(F')/pM. By the previous theorem for F! and M + m,

7'(U)
T

C]'\T;_if;eS(j) ( (f) Nf’/F’(ﬁ))J}\?/;/—&-m -
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with UP""™ = @(f). This shows that

Fe _ VF(Upm) _ ~p™TroRes ¢

(0r(f),Nz/p(B)) T Mmoo

and the formula for F, follows from (UP")?" = (¢/(f))"™ = (6(f))*" and the

formula for F!

As an application of this, we give a formula for the classical Hilbert symbol. Sup-
pose ' 3 (y. Let mq,...,mny be a system of local parameters of F' and set
F, = F(»/m,..., »/Tn). Then the tower F, is very special SDR, with field of
norms F = k((Iy))--- (&) for & = (=), € Wm Op, /p.. For this very special
tower, n: A — F. takes values in F. Since n is defined on Teichmiiller representa-
tives, this follows from 7(t;) = limpy,_yee (7™ )" = 7 € F for each i.

Let R € O(F)* be the subgroup
R ={(t;) X -+ x {ty) X k" x (1 4+ my),

where k* is identified with the groups of its Teichmiiller representatives. Note that

n(R) = F* is all of F™.

The classical Hilbert symbol h is defined by

F*/(F)" x K (F)[pM — e, (o, {ur, - un b = Gy ™),
for h(ug,...,uy) € Z/p™ and some fixed primitive p™-th root of unity (y;.

Then we have

Corollary 5.5 If ug € Vg and {uy, ..., un} € Im(Nz/p : K§(F) = Ky(F)), then

the classical Hilbert symbol is given by

h(ug, ..., uy) = Tr o Res <l(11;0)

dlogal AR dlogﬂN>7
for some u; € R with n(u;) = u;.

PrOOF For ug € Vi, pick any lift 1y € 1 +my4. By the explicit description of Col

and Nz/p, the composite

~ Nz/p
-

KN(O(F)) D Col(Kn(F)) — Ky(F) Kn(F)
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is induced by t; — m € F for 1 < i < N. So we may pick 4; € R such that
{ty,...,un} = Col({g1,...,gn}) for g ={g1,...,gn} € K (F) with
Nf/F{gla"'vgN}:{u17"'>uN}-

Then djogCol(g) = diogtts A - - - A diogliy, as required. O

5.3 Vostokov’s Symbol

We start by defining a multilinear form V : (Qo(F) )N+ — Z/pM, for Qo(F) =
W (k)((tn)) - - - (1)) as before, by

V (@, ...x) = Tr o Res ( 3 @i)

0<i<N
(=1)’
H

Here H = EJ@M — 1. We put ¢ = ZogigN ®; € ng(f)

o, =

UU;) Zdioglis A -+ A Zdioglli—1 A dioglit1 A -+ A diggUn -

Remark If F, is a very special tower, we may assume that it has parameters (0, ef).
Then for H}, € F with H}, mod pOr = (yy mod pOr and Hy € A a lift of H},,
we see that H ]ﬁ}M —1= Zﬁw —1 mod pM, so in this case the two constructions of H

coincide.

Proposition 5.6 Vs skew-symmetric.

PrROOF To prove V(a(),. .. ,ﬂi, . ,ﬂj, . ,ﬂN) = —V(ao,. .. ,ﬂj, . ,ﬂi, . ,ﬂN), we
may assume that 7 = ¢ + 1. Since A is skew-symmetric, all but two terms of
O (U, . .., uy) cancel and we are left with

(—l)l(q)(,ﬂ“ﬂzﬂ,)—i—@(,ﬂzﬂ,ﬁ“)) =
%l z) dlogao JARREIAN %dlogai—l A dlogai—H AERA dlogaN

l(Wiy1)2 dlogao JAREIAN %dlogai A diogliva N -+ A dipgln

mIH

+

|-

(u

(s

HUit1) Zdioglio A -+ A Zdioglli—1 A diogliy A -+ + A dioglin
( ) dioglo A - -+ A %dlogaiJrl N dhogliza N -+ A diggUn

= %dlogﬁo ARRNA %dlogai—l A [%l(ai)(dlogaiﬂ - %dlogai+1)+

+ 2 (@is1) (dioglis — Ceogi)] A dioglies A -+ A dogliy. 1)
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Note that

A1) (@) %] = 1@ (@i41)d ()

= [diogll; — %dlog@;}l@iﬂ)% + 1(U;) [drog iy — %dlogai+1] 1
which is the middle term in (1) above. Now d(H ') = H-2pM¢?"~14((), so
Res (1(w;)1(u;)d( ) A Zdioglio A+ A diogliy) =0 mod pMA,

hence V is skew-symmetric. O

Let ¢ = vi(p) € Z" be the absolute ramification index. In analogy with [1], define
the rings

AozA[[tg@%l),%pH, and A= A"® Qy(F),
so A = lignwo t=2 A% Elements of a € A may be viewed as formal Laurent power

series a = w,t?, for ¢ € ZV and w, € W(k) and a € A° if and only if for every

n >0, v,(w,) = —n whenever a > epn, and v,(w,) > n whenever b > —ep(n — 1).

Using this expansion, we define the residue Res w of any w € QX to be the coefficient

wo Of EQ lf w = Z wgzgdlogtl FANIIIVAN dlogtN'

Finally let A~! C A be the subalgebra

A= {x = ngﬁ

Notice that A~ D A[[%H and o defines a morphism A~! — A°.

o(x) = ngl_fpg € AO}.

Lemma 5.7 Let A € O% be such that p = Anj'--- 7wy, and let X € A be such that
n(X) = X. Then the kernel of n: A — Op is generated by p — e

PROOF By construction, 77(/):§g —p) = 0. Suppose now that z = ) [ay, 4]p*t* €
ker(n). Since A/(th —p,p) = A/(p,t9), n induces A/(p,t¢) = Op/p. Thus for
x € ker(n), we conclude that [a,] = 0if a < e. For y; = > [t .4 (X‘lp — te)tee,
where the sum is over ap > 0 and a > e, set { = z — y;. Then z} € pA, so
x) = px; for some 1 € A and 7 € ker(n) by construction. Iterating this argument,

we obtain elements y, € (p — XEQ)A and z,, € ker(n) such that z = y; + pr; =
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y1 +plys + pr2) = - =y +py2 + -+ + p" ty, + px, for each n. Since A is a
p-adic ring, y; + - - + p"y, + - -+ converges, hence ker(n) = (p — \t9). O

We state a few estimates that will be needed below.

Lemma 5.8 For a lift fe R of ( € F, the element H = EpM — 1 satisfies

(a) H = a;t?/®=Y + payte/ =Y for a; € A*, ay € A.
1
(b) == a;lt—gp/(p—l)<1 + a4t_> foray € AH;%H C A,
(c) LHP! = af? a4 € AH%]] for az € A* and ay € my.

(d) H = wte/P=V (X< — p) for w € A*

M—-1

Proor In F, (7 -1=¢(—-1= vr® P~V for some unit v. Thus ZpM

-1

1+ 0t/ 4 a(p — ng) =1+ 0t/®D for 5,7 € A. Thus

H = (1 + {)\’tﬁ/(lj*l))p —1= @\’ptﬁp/(pfl) _|_pvp 1t€ 4. _|_p{}’t€/(10*1)

=a tJ’/(p 1) +pa te/(p = CL t‘p/(p Q) <1 + al CL2£>
te

(a) and (b) follow. For (c), one obtains

p—1

L1 _ 1[(@6/@—1) 1) — 1]p_1 —

1 [GP1en/ =) vt i
p P

p
To verify (d), (a) implies that H = a/t¢/~1 (Xﬁ + abp) with ) € A* and a}, € A
Using n(H) = 0, we see that n(ay) = —1, so ay = —1 + a4 (\t¢ — p) for o] € A.
Therefore H = a/jt¢/ (1) (/\15e p)(1 + alp) is of the required form. O

Proposition 5.9 If (@) = 1 for some i, then V(t, ..., dy) =0 mod p™

PrOOF We may assume that ¢ = 0. By the lemma, this implies that 1y = a(p—Xzé)
for some a € A, hence ugp =1+ a(p — /):tg). It follows that

log(to), Zlog(ty) € A[[5]] c A°

converge.
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Let f; = (u;) =

(fl (10g<u0))%dlogal ARRRA %dlogaifl A dlogdloga’i+1 ARRRNA dlogaN>
dfz g -~ fl g -~ o o 1
= [ﬁ 5(log(u0)) + ﬁ ;dlogUQ -+ fl;(log(uo))d(ﬁﬁ VAN (‘k)

The second term of (%) is the i-th term ®; of ®, up to a factor of (—1)*.The following
lemma shows that the third term of (x) has zero residue modulo p*, thus we may

replace the i-th term in ® with the first term of ().

Lemma 5.10 For1 <i< N,
Res (f2(10gi0)d(%) A Zdiogli A -+ A diogli ) =0 mod p 4,

where the u;-term between %dbgﬁi,l and dioglliv1 is missing.

PRrOOF Note that d(%) = H=2p* (7" ~1d((). Also, Zlogily € A[[£1]], fi € A, and
Loet 2ep/(p— 1)AH%]]> SO

/5 ogin) d() € ks Al 5] d(0).

pt teip

M y—2 :
The residue occurs in a generic term pM¢—2er/(— 1)t62 P th £ el —epj =

(1,...,1), but 24’ < ep, so this implies that the exponent of p is M +i1—j5 2> M. U

Let &' be obtained from & by replacing the i-th term &; = (— )Zf’ ”dloguo A
with EU ) (log Up) df; for 1 < ¢ < N. By the above argument and the lemma,
Res (') = Res (®) mod p". Since df = diogll — Sdiogl, the i-th term of &' is then

(I); _ (_1)i

H % 10g(@\0) (%dlogﬂi - dlogﬂi) AN %dlogﬂl VAN AN dlogﬂN.

Substituting (do) = & (log(do) — 2 log(to)) in the O-th term ®o = ®;, we obtain
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HP = (log ao — %log aO)Cllogal ARRRNA legﬂN

— % log a{)(%dlogal — diogl1 ) A dioglia A -+ A diogliy

+ %log ao(%dlogﬁg — dlogag) A %dlogal N dlogag VANCEIIVAN dloga]v

+

(_1>N% 10g a()(%dlogaN - dlogaN) A %dlogﬂl JANRIEIA %dlogaN,1

= (log Uy — %log ﬂo)dbgﬁl A A diogliy

+ %log ao (dlogal - %dlogal) A dlogﬁQ ARRNA dlogaN

o1~ o o~ o o~ oy o~ ~ .
+ 5 log Uo;dlog’lh ARRNA ;dloguiq A (dlogui — ;dlogui) A diogtlipr N -+ A diogin

p log Uo dlogul JAREEIAN %dlogaN—l A (dlogaN - %dlogaN)

(IOg UO) dlogul VANKIIRIVAN dlogﬂl — %(IOg a()) %dlogﬂl VANCIIRIVAN %dbgiZN

Notice that if diogU = >, a;diogt; (for a; € A), then Z dlogu = > 0(a;)diogt;. Therefore
@’ is of the form
P = %( (log(up))o () — 10%@0)1') diogti N -+ N diogln,

for z € A and log(uo), & log(uo) € A[[%H We need the following result, which we

shall prove below.

Lemma 5.11 For anyy € AH%]],

Res (% dlogtl VANIERIVAY dlogtN) Res ( ] dlogtl A dlogtN> mod pMA'

For y = %log(ﬂo) x, this shows that

Res (') = Res (U( w5

log (o) x log(up)
P 0

diogts A -+ N diogtn.
—ZH H log®1 log"V

By lemma 5.8 (d), H = wt®/ @~V (At —p) for w € A*. Also, Uy = a(p— M) for some
a € A since n(u

0) = 1, and therefore log(uy) = log(1 + a(p — /):zg)). It follows that
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z:= H 'log(ug)z € A™! and therefore a(ﬂ%@) = 2(zlog(t))/ 2 H. Finally, we
have

Tr o Res (®') = Tr o Res (0(2) — 2)diogt1 A -+ A diogtny = 0
and thus V(uo,..., ~) =0 mod pM O

PROOF [of lemma 5.11] To start with, it follows from U(Z) = (? mod pA and H =
(" —1that oH = (H+1)?—1 mod pM*1 A, hence o H = pH(1+bH)+ HP for some
b € A. Thus we can write %H = H(1+bH + H’;l + C%), for ¢ € A. Considering

the expansion

Y
H

Hr1 P
(—(bH+ 5 +CF)+(bH+ 5 i

o=
T =

% 19

in A°, the right-hand side is a sum of terms + H" (H;l )S (”FM)” with coefficients in

A and r + s+ n > 1. We shall show that for each of them, the coefficient of #? is
congruent to 0 mod p*. Since 1 := yHT(%I) € AH*—H again, it is sufficient to

consider r = s = 0 and n > 1, noting that, if n = 0, there clearly is no residue.

Write

epi 1

t n+1
:E—sz p and Hn‘i’l:(tj/ ) Z ]tJ

for v;,w; € A. The coefficient of {* occurs when iep — ej — (n + 1)( Q_”l)

< 0, 1t
remains to show that then the exponents of p satisty j —¢+ Mn > M. Since i,j > 0
it suffices to consider i > M(n —1). If i = M(n — 1) the condition becomes j > 0
which is always satisfied, thus we may assume ¢ > M(n — 1) + 1 or ¢ > n, since

M > 1. Using j(p — 1) = ip(p — 1) — (n + 1)p, we have

(pP=10{—i+Mn-1)>[ip(p—1) = (n+1)p] —ilp— 1) + M(n—1)(p— 1)
Zn(p—1)"—(n+1p+(n—1)(p—1)=npp—2) - 2p.
Ifp>5,orifp=3andn > 2, thisis >0,ie. j—i+Mn>M. Ifp=3andn=1

then the condition coming from the coefficients of t° gives j > ip — }% =3 — 1.

Since 4,5 > 0 by assumption, we again get 7 —i+ M > M. O

Remark The analogous result in [1], lemma 3.1.3, is obtained by replacing diogt;

by dt; in the statement of the lemma. The proof found there can be used for our
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statement in almost all cases: Noting that

' M n M
_ <p_> c p—AO’
H\H t2ep/(p—1)

one sees that the only way the coefficient of t can be non-divisible by p™ is if

2ep/(p —1) = epand n = 1, iie. p = 3 and n = 1. In this case, taking e.g.

y = % € AH%H yields the non-trivial residue p™ 1.
We define Vostokov’s symbol
Vi (FYNY S 2™ Vg, .. un) = V (T, . .., Ty),

where u; € R are such that n(u;) = u;.

Corollary 5.12 The value of V. mod p™ is independent of the choice of lifts U; of

u; € F*.

PROOF Let wy, ..., uy be lifts of the elements wy, ..., uy. Any other lift of u; is of

the form u; = w;v for v with n(v) = 1. Thus
O (Ug, ..., Uj,...,uy) = P(Ug, ..., Uj,...,ux)+ D(Ug,...,V,...,Un),

and the residue of the second term is divisible by p™. U
Proposition 5.13 V is symbolic, i.e. V(ug,...,un) =0 if u; +u; =1 fori# j.

PrROOF By skew-symmetry, we may assume that ¢ = 0,7 = 1. Also, by cor. 5.12,

we may choose lifts in R such that 7y + ©; = 1 again. Then
(g, ., in) = [0)Zdiogiis — (T )dhoglio| A diogily A+ A diogii.

We need to distinguish three cases. Assume first that one of g, u; € my, say
x =1y € my. We show that I(z)djog(1 — ) — (1 — x)digx is an exact differential.

Working in Q(F), set

F = Liy(z) + éLig(ax) +log(1 — z)l(x),
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for the dilogarithm Lis(X) = 3> %+, Then dF = l(2)diog(1 —2) — (1 — )2 diog and

it remains to show that F' € m,. To verify the claim, write

o Zi—;‘ B o(z)" B " (x)

e p*n? n
1 (x) k1 orm ! ()
- $m(—2——)+zzxmp[ (1 - mpP ) - k]
e m m it et m2p xmP mp

The first sum is clearly in my4. To see that the terms of the double sum are integral,

note that the coefficients of ™" are

1 (1 B Jxmpkl) =)

- _ ky k
m2p?¥ e mpF [p%X? (1+p"X —exp(p X))H

X:fml(:p),
so F' € my, as required.

Using this, we obtain
D@, 1= 2,T, . Tix) = |d(5) = F() | Adioglia A+ A diogii,
Since d(+) = H=2pM P =14(C), we have

F d(%) = ZLdH e pMy2r/®PV A[2]]4d(C),

Tl

~

and so again Res (@(x, 1— U, ... ,uN)) =0 for z € my,.

To deduce the last two cases from the first one, we follow [5]. Since we only con-
sider odd primes p, the computation simplifies slightly. To ease notation, we write

~

(0o, U1] = ¢(Uo, Uy, . .., uy) for arbitrary but fixed Uy, ..., uy.

Suppose now that 7,' € my or 4; " = (1 —1) "t € my. The relation used in lemma
2.2 to prove that the 2-symbol {x, —z} vanishes allows us to deduce this case from

the previous one as follows. Writing —z = (1 — z)/(1 — 1), we obtain

-1

2,1 —a]=—[z7"1—a]=—[z"1—a] [z -2 =—[z7H1-27=0

if z7! em.

If none of @, Uy ", 1 — g, (1 — U)~" is in m then one of the four is a(1 + x) for

a€W(k)*,a#1,and x € m. Let y = za™! € 1 + my so that Uy = ay.
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Since % € m, we have

a(l— a(l— a(l— —a
0= [ 1 - o) = [y Lo

=l-yay—1-[1-y,a—1]+[%5,1-ayl —[a,1 —a]+[a—1,1—q]
= —yay—1] -1 —ya— 1]+, 1 —ay], (%)

noting that [a,1 — a] = 0 since da = 0 = d(1 — a) for a € W (k)*.

Also, =% € m, thus

l—ay
1= 1-y 1 _ 11— (1—a)
0= [1fayy’ - 17(31/] - [1fayy’ kay]

=[l-yl-a-[1-yl-ayl+[1-yyl—[1-ay,(1-a)y +[l—ay 1 — ayl

:[1—y,1—a]—[1—y,ay—1]+0—([1—ay,le“]%—[l—ay,ay])%—O

(é)()—[l—ay,ay]—i—():[x,l—x],

where (A) follows by substituting 0 for the three terms of (x) above. O
Corollary 5.14 V induces V : K4(F) — Z/p™.

Consider now h : (F*)N¥*! defined by the Hilbert symbol (ug, {us,...,ux}) =

Lemma 5.15 h is skew-symmetric.

PRrOOF Consider h(ug, ..., Uiy ..., Wj, ... un)+h(U, .. U, oo Uy .. uy). I both
i,7 > 0 then this is 0 because Ky(F') is skew-symmetric. If ¢ = 0, suppose uy =
u; and let L = F(*Y/ug). Then {u,...,un} = Npjp{ur,..., "N g, ..., un} €
Np/pKn(L) and thus Wp({ui,...,un}) = 0 by the definition of the reciprocity

map, hence h = 0. Skew-symmetry follows. Il
Corollary 5.16 h induces h: Ky (F) — Z/pM.

Theorem 5.17 The Vostokov pairing coincides with the Hilbert symbol, i.e.
h(uo, {u1,...,un}) = V(ug,uy,...,uy) mod p

for any u; € F* and lifts u; € R.
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PROOF By cor. 5.5,
h(UO, . ,UN) = %l(uo)dlogﬂl VANREIWAN ﬂN = (I)()(U,O, .. 7UN)

is the first term of V', so it remains to prove that

—1)*
Tr o Res ( Z ( H) l(ui)%dloguﬂ FANEIIRIVAN %dlogui—l A dlogui—i-l A--- A dlog“N) =0.

1<i<N

It suffices to consider Coleman lifts of the topological generators {ty,...,ty} and

{E(@,zg),l_fl, ce 7ti—17 ti+17 e ,%N} Of K]tv(]:)
If {uy,...,un} = {t1,...,tn}, then [(u;) = 0 for 1 < i < N, so the remaining N
terms vanish and hence ¢(ug,t1,...,tx) = h(ug,t1,...,tN).

If {uy,...,un} ={E([a],t%),t1,... , ti1,tis1, ..., tn} then the first two terms of ®

are non-zero. Because [(E([a],t%)) = [a]t%, it remains to show that

Q
Tro Res%za %dloguo A diogts A -+ N diogli—1 A diogtiva N -+ A diggty =0 mod pM.
Since ug € 1 4+ m, the djogt;-component of dioup is equal to ydit; for y in m. By
lemma 5.8 (a), + = ¢t~</(P=1) > 0 an% for some a,, € A. It follows that the above

residue is the coefficient of t2 in

a0 g P
[atto(y)t > a e

n=0 =

ep
p—1

This happens when a + pb — — en = 0, where pb is the contribution from o(y).
This implies that p|ne + a, but p t a by assumption, thus also p t ne, hence p 1 e.
Since (y; € F, this means that M = 1, but n is the exponent of p so for M = 1, the
only interesting case is n = 0, in which case p|a is a contradiction. Thus the residue

of the second summand is = 0 mod p™, and again h(ug,...,uy) = V(ug, ..., uy)

mod p™ in this case.

Considering topological generators of K% (F), it follows that the only remaining

cases are

(1) ¢(U7 {w(a())Jﬂ-l? sy =1, Tt 1y - - - 77TN}> for 1 < { < N.

(2) o(m, {w(ag), Ty i1, Mgty .-, N}) = (—1)°
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(3) ¢(7Tz‘a {E(avﬂg)aﬂ-h ey T, Thge1y - 77TN}) =0,

For w(ag) = EK(QOH)’X:7T as in lemma 1.14. By skew-symmetry, they can be

reduced to the first case. O

Remark Considering that Ky1(F)/p™ = p,u is generated by {w(ag), 71, ..., 7},

one can further reduce the proof to the case ug = w(ay), u; = t;.
Lemma 5.18 The element w(ay) is p™ -primary

PROOF Let F, and F be as above. For ag € W (k) C W(F), the extension £ =
F(Ap) of F obtained by joining all coefficients of Ay, € Wy (k*P) with p(Ay) = ap
mod p™ is unramified. If Tr ) /z,(Q0) € Zj, it is of degree pM by Witt theory.
The Kummer-extension L/F corresponding to £/F is given by joining a p*-th root
of 0(apH) = w(ap). Since the field of norms preserves unramified extensions by

construction, we see that F(?\/w(ag))/F is unramified of degree p™. O
Corollary 5.19 h(w(a),m1,...,7N8) = Trww)z, (@) = V(w(ag), 71, .., 7).

Proor For V, this follows by taking lifts ¢; of m; and noting that [(¢;) = 0, hence
® = ®. For h, the lemma shows that L = F(*\/w(ap)) is unramified of degree p™
over F, thus Gal(L/F) = (pp|L) is generated by a restriction of the Frobenius of
F. By class field theory, rr/p(¢r|r) = {m1,...,7n}. Thus h(w(ag), m1,...,78) =
or(€)/€ where €2 = w(ap). Again by the main lemma, ©p(€)/€ = op(An) — Ay
for Ay, € Wy (k*P) such that p(Ay) = ap. But if [F™ : F,] = f, then op = o/
acting on Wy (k°?). Thus

or(An) = o/ (Ay) = o/ (An) + a0 = 0/ (Ay) + () + g = -+

= Ay —I—O'f_l(Oéo) —+ .. —|—0‘<Oé()> + g = Ay +TrW(k)/Zp(050);

and op(Ay) — Ay = Trw z, (o), as required. 0



Appendix A

Lifts

In this appendix we give two constructions of lifts of lifts of rings of characteristic p

to characteristic p™ or 0. They agree in the case of perfect rings.

A.1 Witt vectors

Let A be a ring of characteristic p and n > 0 an integer. The ring of Witt-vectors
of length n, W, (A), is given as a set by the product of n copies of A, A”. Addition

and multiplication are defined as follows. Consider the polynomials
Wi Xoy -, Xic1) = X5 4+ pXT 4 4 p X € Z[Xo, -, X

It can be shown that there exist unique S;_1, P,y € Z[Xo, ..., X;-1;Y0,...,Y; 1]
such that

wz‘(So, ce Si—l) = wi(XO; s aXi—l) + wi(YO7 s ,Yi—1)

wi(P(b ey B—l) - U}i(X(), s 7Xi—1) wz(YOa s 7}/7:—1)

for each i > 0. Now for Witt-vectors a = (ag, ..., an_1),b = (bg,...,bp_1) € W,(A),

define addition and multiplication by
a —+ b= (SO(CLO, bO), Sl(ao, ai; bo, b1)7 ey Sn_l(ao, ey A1, bo, Ce abn—l))
ab= (Po(ao, bo), P1(a0, ay; bo, 51)7 ce Pn—1(a0, O T R bn—1))-

79
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It follows from this definition that p™ = 0 in W, (A). By construction, if A, is any

ring in which p™ = 0, then any ring-homomorphism a : A — A, /p induces a ring-

homomorphism W, (A) — A, given by (ag,...,a,—1) — wy(a(ag),...,a(a,—-1)).
wy_1 is called the (n — 1)-st ghost component of a = (ay,...,a,_1) and is denoted
a" V) = w,_(a).

It can be seen that the projection to the first n coordinates defines a surjective
homomorphism W,,1,(A) — W, (A) for any m. The (total) Witt ring of A is
defined to be W(A) = Hm W, (A) with respect to these projections. W(A) is the
set of sequences (aq, ...,a,,...) of a; € A with addition and multiplication given
by (So,...,Sn,...)and (Py,..., P,,...), respectively.

The map A — W(A), a — (a,0,...) is multiplicative but not additive. If a # 0,
(a,0,...) is usually denoted [a] and is called the Teichmiiller representative of A.
Taking Teichmiiller representatives defines an injection of multiplicative groups [—] :
A* — W(A)* and we shall identify a € A* with its image in W (A)* when there is
no risk of confusion.

W and W, are functorial in that to any homomorphism f : A — B (of rings) there

corresponds a homomorphism

W(F): W(A) = W(B): W) (g, an...)) = (f(ao), ..., flan),...)

which respects composition of morphisms and the identity morphism. In particular,

the absolute Frobenius o : a — a” of A induces the Frobenius (usually denoted F)

o:W(A) = W(A): (ag,...,an,...)— (ab,...,a,...)

) n’

on Witt-vectors (and similarly for W,,).

The Verschiebung V : W(A) — W(A) (resp. W,(A) — W,(A)) is given by
V((ag,ai,...,an,...)) = (0,a9,...,a,,...). V is additive and satisfies V(a) V7 (b)
= Vi (o9 (a)o(b)). Any Witt-vector can be written as

(ag, - .-y an,...) = [ag) + V([a1]) + - + V™ ([an]) + V" ((any1, ... ))

for any n.
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o and V are related by oV = Vo = p. If A is a perfect field k of characteristic p,
the absolute Frobenius is an isomorphism, hence so is ¢, and any Witt-vector can

be written as
(@05 -+ s any---) = [ag] + pla] ]+ +p"[ag T+ P o N ans1s Angas - )

This shows in particular that if &k is perfect, W (k) is a p-adic complete discrete
valuation ring with valuation v(0,...,0,a;,...,) =1 (if a; # 0), and residue field k.
Example If k =F,, W, (F,) = Z/p"Z via w, : (o, . .., 0n_1) > a} +pazfn71 +- 1+
p"ta,_1, where a; € Z/p"Z are any lifts with of @;. Taking the projective limit, this
induces W(F,) = Z,, given by (ag, ..., an,...) — [ag]+plai]+- - -+p"[a,)+. . ., where
la;] = lim,, o a? " is the usual Teichmiiller representative in Z,. More generally,

W (F,m) is the ring of integers of the unramified extension of Q, of degree m.

We remark that the functor Witt-vectors can be defined for arbitrary rings, together

with an additive Verschiebung and a multiplicative Frobenius (see, e.g. [21])

A.2 Flat Lifts

If A is a non-perfect ring of characteristic p, we still have a canonical isomorphism
W(A)/VW(A) = A, but VIV(A) # pW (A) since o is not surjective. This indicates
that W (A) is in a way “too big”. In [6], a flat lift of A to Z, is defined to be a
flat Z,-module O(A) such that O(A)/pO(A) = A. This is equivalent to giving, for
every n > 1, a flat Z/p"Z-module O,,(A) such that the sequence

0 — Op(A) 25 Opim(A) —> O (A)/p" = Op(A) — 0

is exact for every n,m. The equivalence is given by O,(A) = O(A)/p" and O(A) =
im O,,(A).

We describe the construction of lifts in the special case of N-dimensional local fields
F = k((ty))---((t1)). In this case, o(F) = k((t})) - ((t])) and we see that F
is a vector space over o(F) with basis consisting of all monomials ¢{* - -3 with
0 < a; < p for all i. This means that ty,...,ty is a so-called p-basis for F, and by
prop. 1.1.7 of [6], a lift O,,(F) exists and is equal to the subring of W,,(F) generated
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by all elements of the form p? [ 7 |[t]* - - - [t1]*V, for & € F and 0 < a; < p" for all

i.

Lemma A.1 For any fized set of local parameters t,. .., ty, the lift Oy (F) con-
structed by using them as p-basis is canonically isomorphic to Wy (k)((tn)) -+ - ((t1)),

where t; = [t;] are Teichmiiller representatives.

PROOF For any z € F, p/[2?" '] = (0,...,0,2%",0,...,0) € Wy (F), where the z*"
is at the j-th place. It follows that Wy (oM =Y (F))[t1,. .., tx] C On(F). The inclu-
sion W (k)[tn] € War(eM=2(F)[t1, ..., tn] extends to an inclusion Wy (k)[[tn]] C
War(oM=Y(F)[tr, . .. tx] since B € eM=1(F). Also, t5' = (&% )%, so
we obtain Wy (k)((ty)) € Wa(aM=1(F))[t,...,tx]. Continuing inductively, we

deduce that

War(k) () -+ ((t1)) € War (@™ (F))[ta, ., tn] € Ou(F).

But Wi (k)((tn)) - - ((t1)) is flat over Z/pMZ since it is obtained from Wy, (k) by a
sequence of steps involving taking polynomial rings, completions, and localisations,
and it satisfies Wy (k)((tn)) -+ ((t1))/(p) = k((tn)) -+ ((t1)) = F, and it follows
that all inclusions are equalities. O
Taking projective limits, we see that O(F) = W (k){{tn}} - {{t1}} is the p-adic
completion of W(k)((ty))--- ((tx)). By construction, O(F) = Im O(F)/p" and we
see that it is a complete discrete valuation ring with uniformiser p and residue field

F.

We denote by Q(F) the field of fractions Q(F) = Frac(O(F)). It is an (IV + 1)-
dimensional local field of characteristic 0, with local parameters p,t1,...,ty, first
valuation ring O(F) and first residue field F. We denote by Qo(F) the subring
W(k)((tn)) - ((tr)) € O(F).
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