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Abstract

In this thesis we study string theory on orbifolds of AdS3. Non-extremal BTZ black

holes have been shown to offer a good opportunity to study closed string tachyon

condensation, as there are tachyons in the winding sector even in superstring theory.

We study extremal BTZ black holes, both M = 0 and M = J from a world sheet

perspective. The string spectrum is calculated within bosonic string theory and

tachyons are identified within the spectrum. The flat space limit of the M = 0

black hole is considered and an extension to superstring theory is discussed. In the

second half of the thesis we discuss the self dual orbifold. The self dual orbifold is

a simple example of a geometry which contains an AdS2 factor. AdS2 factors also

appear in the near horizon limit of extremal Kerr and Reissner-Nordström black

holes. Using the AdS/CFT correspondence we conjecture that the self dual orbifold

is dual to a CFT on two distinct boundary regions and find evidence to support this

statement. We consider asymptotically self dual orbifold spacetimes, one of which

is dual to a single copy of the groundstate of the CFT.
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Chapter 1

Introduction

At the beginning of the twentieth century the two great pillars of modern theoret-

ical physics were established, general relativity and quantum mechanics. General

relativity governs the world of the large scale, stars collapsing and galaxies being

born. Quantum mechanics, which has since been extended to quantum field theory

and the standard model, describes the microscopic landscape of atoms and nuclei.

These two theories, two of the most accurate and precise in human history, fun-

damentally disagree with each other. Although this discrepancy is serious, it only

becomes significant in a few extreme situations where the two regimes overlap. The

most obvious example is a black hole singularity. Here the distance scales we wish

to consider are very small, but space cannot be approximated to be flat; neither

general relativity or field theory can explain physics here satisfactorily.

There have been several attempts in the latter half of the 20th century and

the beginning of the 21st, to establish a ‘theory of everything’, which describes

the four fundamental forces of nature and incorporates quantum mechanics. The

most enduring of these is string theory. Instead of point particles string theory

uses small pieces of ‘string’ as the fundamental objects of physics. These strings

can either be open or closed. Closed strings are loops with periodic boundary

conditions. Open strings instead have two end points, which are restricted to be

on objects called D-branes [3, 4]. String theory has advantages and disadvantages

over standard quantum field theory. Possibly the largest advantage is that the

graviton naturally appears in the closed string spectrum. This means that string

1



Chapter 1. Introduction 2

theory offers a way to combine general relativity with quantum mechanics. The

two major disadvantages of bosonic string theory are that there are tachyons in the

bulk spectrum and that it predicts 26 spacetime dimensions rather than the 4 which

are observed. Tachyons represent instabilities in a theory, fortunately these can

removed by imposing supersymmetry. Superstring theory lives in 10 dimensional

space, which whilst less than bosonic string theory, is 6 more than would be liked.

To rectify this problem these extra dimensions are considered to be compactified on a

scale smaller than we can probe with current technology. The physics which emerges

from string theory is highly dependent on the way in which the compactification is

achieved, each different compactification leads to different string vacua. As of yet

no compactification has been found which has a low energy limit containing solely

the standard model of particle physics.

Tachyon condensation is a useful tool in the quest to understand the connection

between these different vacua of string theory. Currently tachyon condensation is

better understood for open rather than closed strings. In open string theory tachyon

condensation leads to the annihilation of unstable D-branes, as these constrain the

end points of open strings. As closed strings contain the graviton in their spectrum

and gravity defines the geometry of spacetime, it is conjectured that closed string

tachyon condensation results in some change to the structure of spacetime. This

may be a change in topology or even the wholesale destruction of spacetime.

Asymptotically locally euclidean (ALE) spaces (i.e. spaces whose geometry at

large distances are of the form Rk/Γ, where Γ is a subgroup of the rotation group)

have been studied [5] in connection with closed string tachyon condensation. These

spaces have a singular point at the origin about which the rotation subgroup acts.

Winding tachyons are present in this background and are localised near to this sin-

gularity. This localisation allows control in the condensation process. One of the

simplest examples of an ALE spacetime is the C/Zn orbifold. There are several

possibilities which could result from tachyon condensation in this case; a hole could

appear at the singularity and spread to consume the whole space, the orbifold could

elongate at the singularity to produce an infinite throat or there could be a topo-

logical change in which the singularity ‘smoothed out’ [6]. There is strong evidence

January 31, 2011



Chapter 1. Introduction 3

that the last option is in fact the case [7]. This would be a useful result as it would

remove two difficulties from the theory at once, both the tachyon and the singularity.

In recent times much of the progress which has been made within string the-

ory has been due to the AdS/CFT conjecture [8–10]. This conjecture relates string

theory living on an AdSn spacetime to a gauge theory which lives on the (n − 1)

dimensional boundary of that spacetime. Although this conjecture has not been rig-

orously proven there is a large amount of evidence in support of it. The conjecture

implies that strongly coupled string theories are dual to weakly coupled gauge the-

ories and vice versa. This duality means that calculations that were difficult within

strongly coupled gauge theories can be dealt with perturbatively within string the-

ory. The conjecture was originally conceived for an AdS5 spacetime with a four

dimensional gauge theory living on the boundary, it has however been extended to

a variety of different situations [8].

If the gauge theory on the boundary is to be at a finite temperature, then the

string theory in the bulk must have a finite temperature and the two theories must

have matching entropy. A thermal object must be introduced into the bulk. The

simplest object which can fulfil this role is a black hole. Classically black holes

are very simple due to the black hole uniqueness theorems - black holes have no

hair [11–13]. They can be completely determined by three quantities (at least in

four dimensions [14]), their mass, charge and angular momentum. Simple objects

having large entropy seems like a contradiction but it can be explained by considering

quantum mechanics on a curved background, in a semi classical setting. Via black

hole thermodynamics, black holes have a temperature associated with their surface

gravity and an entropy associated with the area of their event horizon [15]. As black

holes are thermal it is only natural that they radiate and this can be shown to be

the case, with Hawking radiation [16, 17]. The corresponding entropy in the gauge

theory is a result of entanglement between states on causally disconnected regions

of the boundary.

This thesis looks at string theory on a background of various AdS3 orbifolds.

AdS3 is the unique local solution to Einstein’s equations in three dimensions with a

negative cosmological constant. Note however that it is only locally unique, global

January 31, 2011



Chapter 1. Introduction 4

identifications can be made such that the manifold is still a solution to Einstein’s

equations. Manifolds constructed in this manner are known as orbifolds. One of the

most studied categories of AdS3 orbifold is the Bañados-Teitelboim-Zanelli (BTZ)

black hole [18,19]. As an example massive non-rotating BTZ black holes are orbifolds

of AdS3 by a hyperbolic generator of SL(2,R), the mass and radius of these black

holes are determined by the period of the identification [20]. These have similar

causal structure to higher dimensional black holes, with a singularity created in

order to remove closed timelike curves from the spacetime. As superstring theory

lives in ten dimensions the spacetimes are completed with seven more compatified

dimensions, which usually take the form of S3×T4. Although AdS3×S3×T4 and

its orbifolds are not good models for the real world, as there are only three large

dimensions rather than four, they are useful models for learning more about string

theory.

One of the reasons it is interesting to study BTZ black holes is that they may

help to shed light on the process of tachyon condensation. In a similar manner

to the C/Zn orbifold, the closed string spectrum of BTZ black holes contains a

winding sector, where the strings are wrapped around the black hole. In certain

circumstances this winding sector can contain a tachyon even in superstring theory.

(There are no tachyons in the non-winding sector in superstring theory). The fact

that these tachyons are localised means that the condensation process should be

easier to follow, as the tachyons are restricted to one particular region of space1.

The near horizon limit of extremal rotating BTZ black holes is known as the self-

dual orbifold [21], which can itself be constructed directly as an orbifold of AdS3.

The self-dual orbifold is an interesting object as it is a simple spacetime which can be

written as a fibration over AdS2. AdS2 is a factor which appears in the near horizon

limit of a number of extremal black holes. For example, it appears in the near

horizon limit of both extremal Kerr and Reissner-Nordström black holes [22, 23].

1In fact the winding modes are only ‘quasi localised’ due to long string states in the spectrum.

These long string states exist because the string tension is balanced out by the B-field, which

is necessary in constructing BTZ spacetimes [20]. Quasi-localised tachyons are still however (in

principle) easier to deal with than tachyons in the bulk.

January 31, 2011
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Extremal black holes have zero temperature but finite entropy. It is hoped that

by considering the AdS2/CFT correspondence the entropy of extremal black holes

can be explained. The self-dual orbifold offers a prime opportunity to study this

correspondence.

Chapter 2 motivates and supplies the tools required for the study of tachyons

on BTZ black holes. The first section is on worldsheet string theory. The Wess

Zumino Witten (WZW) model [24] and techniques used for calculating the string

spectrum and locating tachyons are introduced. The second section of this chapter

looks into tachyon condensation where different techniques for following the process

are considered. The C/Zn orbifold is given as a brief example where tachyons can

be located in a winding sector and the possible resulting spacetimes are explored.

Chapter 3 looks into the geometry of AdS3 and some of its orbifolds. AdS2,

AdS3, BTZ black holes and the self-dual orbifold are all discussed in various differ-

ent coordinate systems. These differing coordinate systems will become useful for

calculations in later chapters. The final section looks at calculating the closed string

spectrum on a massive non-rotating BTZ black hole [20, 25–29] in bosonic string

theory. Massive BTZ black holes are orbifolds of AdS3, created by a hyperbolic gen-

erator. Here the twisted sector states (closed string states with a non-zero winding

number about the black hole) are calculated in terms of a parafermionic represen-

tation of the current algebra, constructed using a twist operator. This technique is

based on work previously done on long string sectors in global AdS3 [30] and closely

related to the work on the elliptic orbifold in [31]. This is a useful example before

considering extremal BTZ black holes and also supplies results which will be used

directly in calculating the extremal rotating BTZ black hole spectrum.

Chapter 4 introduces black hole thermodynamics and the AdS/CFT correspon-

dence. The first half of this chapter concentrates on black hole thermodynamics,

showing some of the techniques that can be used to calculate the temperature of

different backgrounds and analyse the spectrum of Hawking radiation in different

coordinate frames. The second half of the chapter concentrates on the AdS/CFT

correspondence, motivating it from both a holographic and D-brane perspective.

The chapter ends by looking at thermal states such as black holes within AdS/CFT

January 31, 2011



Chapter 1. Introduction 6

and raising some questions about AdS2/CFT1.

Chapter 5 looks into extremal BTZ black holes in both the massless and extremal

rotating cases. The spectrum is calculated in bosonic string theory and tachyons

are found in the winding sectors. Extremal BTZ black holes have been less studied

than the non-extremal black holes mentioned in chapter 3. They are in a different

class of orbifold as they are constructed using a parabolic, rather than hyperbolic

orbifold generator and therefore need to be studied separately. Different worldsheet

techniques need to be employed as the parafermionic representation used for the

non-extremal black hole cannot be applied in this case. A different representation

of the vertex operators, which diagonalises the angular momentum for the extremal

BTZ black hole must be found. Previous work on the winding sectors of extremal

BTZ black holes was done in [32], here the relevance of the Wakimoto representation

of currents used in [26] was noted. This chapter introduces the M = 0 BTZ black

hole. The vertex operators in the untwisted sector are calculated using the Wakimoto

representation. The twisted sector is then constructed using a twist operator and

the tachyon is located within it. The flat space limit is discussed and the analysis

is extended to the extremal rotating BTZ black hole. Finally the extension to

superstring theory is considered, however difficulties arise in finding an appropriate

representation for the spin fields.

In chapter 6, we consider the self-dual orbifold. Like all geometries with an

AdS2 factor it has two asymptotic boundaries. From an orbifold point of view

the boundary has two disconnected regions because fixed points must be removed

when making the orbifold identification. This chapter looks into whether the self-

dual orbifold geometry is dual to a single copy of a gauge theory or two copies

living on the two different boundaries. In aid of this we use coordinate systems

which cover differing parts of the spacetime and calculate the dual gauge theories in

these different coordinate systems. We also look at asymptotically self-dual orbifold

spacetimes and ask whether any of these are dual to the ground state of the gauge

theory.

January 31, 2011



Chapter 2

Introduction to worldsheet string

theory and tachyon condensation

This chapter sets out some of the motivations and tools required to study twisted

sector states in extreme BTZ black holes. Section 2.1 shows how tachyons can be

located in a spectrum using worldsheet string theory. Section 2.2 outlines some

background on tachyon condensation and why BTZ black holes might provide a

useful laboratory for future study. A simple example of this is given, the tachyon is

found in the twisted sector of the C/Zn orbifold and the possible consequences are

discussed.

2.1 World-sheet string theory

String theory can be considered from two distinct points of view; the worldsheet

or the target spacetime. From the target space perspective the string propagates

through spacetime, mapping out a world sheet as it goes. From the worldsheet

point of view the spacetime dimensions are bosonic fields on the world sheet. For

a lot of the work in this thesis, especially calculating the string spectrum, it is this

worldsheet perspective which provides the tools which are required. This section

introduces the Wess Zumino Witten (WZW) model, which is a model of worldsheet

string theory on a group manifold and a useful way to consider string theory on both

AdS3 and S3 backgrounds. Using this model the worldsheet spectrum is calculated.

7



2.1. World-sheet string theory 8

Finally the extension to superstring theory is considered.

2.1.1 The WZW model

We will discuss worldsheet string theory on a group manifold, this is an effective

method for studying worldsheet string theory with both S3 and AdS3 target spaces.

The model used here is known as the WZW model [24]. It is a nonlinear sigma

model, with the action,

SWZW =
k

8πα′

∫
d2σTr(g−1∂agg

−1∂ag) +
ik

12π

∫
Tr(g−1dg∧ g−1dg∧ g−1dg). (2.1)

Here the string lives in a spacetime with symmetries G×G. g is an element of the

symmetry group G. k is the level of the current algebra. As we shall see in section

3.1, AdS3 has the symmetry group SL(2,R)L × SL(2,R)R. We are therefore most

interested in the case in which g is a group element of SL(2,R). The worldsheet

is a two dimensional manifold, covered by the coordinates (τ, σ). It is however in

practice often easier to use the complex coordinates z = σ + iτ , z̄ = σ − iτ .

Any theory with symmetries such that the action remains invariant under φα(z, z̄)→

φ′α(z, z̄) = φα(z, z̄) + δφα(z, z̄), with δφα(z, z̄) small, will contain conserved currents

and charges by Noether’s theorem. The conserved current can be calculated by

considering the transformation φ̃α(z, z̄) = φα(z, z̄) + ρ(z, z̄)δφα(z, z̄) where ρ(z, z̄) is

an arbitrary function and requiring S[φ] = S[φ̃]. In the case of the WZW model the

action is invariant under [20],

g(z, z̄)→ Ω(z)g(z, z̄)Ω̄(z̄)−1, (2.2)

with Ω ∈ SL(2,R). Take the transformation to be small such that, g → g+ωg−gω̄

with ω, ω̄ ∈ sl(2,R) and Ω = eω.

Using this transformation leads to the worldsheet conserved currents [25],

J(z) = −k
2
∂zgg

−1, J̄(z̄) = −k
2
g−1∂z̄g. (2.3)

J is conserved with respect to z̄ and J̄ is conserved with respect to z as they are

holomorphic and antiholomorphic respectively. J is dependent only on z and J̄
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2.1. World-sheet string theory 9

is dependent only on z̄. These currents can then be rewritten as a vector using

J = Jaτa,

Ja = kTr(τa∂zgg
−1), J̄a = kTr(τa∂z̄g

−1g). (2.4)

τa are the generators of the SL(2,R) symmetry defined by,

τ 1 =
i

2
σ3, τ 2 =

i

2
σ2, τ 3 =

1

2
σ2, (2.5)

where σa are the Pauli matrices. Sometimes it will be useful to expand these currents

in terms of modes.

Ja(z) =
∑
n∈Z

z−n−1Jan, (2.6)

The Ward identity can be used to then calculate the operator product expansions

(OPEs) for these conserved currents [33]. The Ward identity is,

iδA(z0, z̄0) =

∮
z0

dz

2πi
ωJ(z)A(z0, z̄0) +

∮
z̄0

dz̄

2πi
ω̄J̄(z̄)A(z0, z̄0), (2.7)

where A is an arbitrary field. Consider then the case where ω̄ = 0 and A = J .

Using the transformation above (2.2) and equation (2.4), it can be calculated that

δJ = [ω, J ]− k∂zω, (2.8)

ω can also be split up into vector form, ω = τaωa. (2.8) can then be reexpressed as,

δJa = ifabcω
bJ c − k∂zωa (2.9)

where fabc is a structure constant, in this case where G = SL(2,R) it is the totally

antisymmetric tensor, due to the commutation relations of τa. Using (2.7) and the

residue theorem it can be shown that the OPE for the currents is given by,

Ja(z)J b(w) ∼ k

2

ηab

(z − w)2
+
iεabcJ

c(w)

(z − w)
, (2.10)

with the conventions ε123 = 1 and ηab = diag(1, 1,−1). There is a similar expression

for J̄ . Considering the case where ω̄ = 0 and A = J̄ , it is straightforward to show

that JaJ̄ b = 0.

As with any conserved current, there will be associated conserved charges. In

this case the conserved charges will be the energy and angular momentum operators.
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2.1. World-sheet string theory 10

These can be calculated by making infinitesimal changes to the group element with

respect to the spacetime angular and time coordinates.

−iδg = ω(z)g − gω̄(z̄). (2.11)

Applying this to the Ward identity then leads to the conserved charges. In the case

of global coordinates (see chapter 3) for example the conserved charges become;

ESL(2,R) = J3
0 + J̄3

0 =

∮
dz

2πi
J3 −

∮
dz̄

2πi
J̄3, (2.12)

LSL(2,R) = J3
0 − J̄3

0 =

∮
dz

2πi
J3 +

∮
dz̄

2πi
J̄3. (2.13)

2.1.2 The spectrum

From now on we will concentrate on the holomorphic sector, with α′ set to 1. Pri-

mary fields are defined as fields which transform covariantly, the same way as g(z, z̄)

in equation (2.2). This is equivalent to imposing that,

: Ja0 Φλ : = −
∑
λ′

taλ′λΦλ′ (2.14)

: JanΦλ : = 0 n > 0 (2.15)

where Φλ is a primary field and taλ′λ is a matrix element. :: means normal ordered

The energy momentum tensor can now be defined in terms of the worldsheet

currents,

T (z) =
ηab
k − 2

: Ja(z)J b(z) : (2.16)

Acting with the energy momentum tensor on a primary operator gives the conformal

dimension, hλ, of that operator.

TΦλ = hλΦλ. (2.17)

Once the spectrum has been found in this manner, it can be seen if any tachyons

are present. To be tachyonic a mode must satisfy three conditions. It must grow

exponentially in time, be a physical state (i.e. (L0− 1)|phys〉 = (L̄0− 1)|phys〉 = 0,

where L0 is a worldsheet Virasoro generator) and be normalisable. From a spacetime

point of view these conditions lead to the Breitenlohner-Freedman (BF) bound in

AdS spacetimes, a tachyonic mode must have sufficiently negative mass squared. In

AdS3 the BF bound requires that m2 ≤ −1
4
.
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2.1. World-sheet string theory 11

2.1.3 Superstring theory

Until this point we have been considering bosonic string theory. Whilst being an

interesting theory in its own right it is unphysical; it does not allow for fermions in

the theory and there are tachyons in the bulk spectrum. We must therefore turn

our attention to superstring theory [4]. Superstring theory introduces fermions and

imposes supersymmetry. As we will see it also leads to the Gliozzi-Scherk-Olive

(GSO) projection which will remove tachyons from the bulk. We will concentrate

on type II superstring theory.

Once fermions, ψµ(z), are introduced into the action for a closed string, certain

restrictions must be placed on them. These are required so that Lorentz invariance

is respected and so that the closed string boundary conditions make sense, the action

must be invariant under z → z+2π. There are two ways to satisfy these conditions,

either the Ramond (R) or Neveu-Schwarz (NS) boundary conditions,

R : ψµ(z) = ψµ(z + 2π), (2.18)

NS : ψµ(z) = −ψµ(z + 2π). (2.19)

These conditions can be applied independently to left (ψ(z)) and right (ψ̃(z̄))

movers. In this setting the mass shell condition becomes 1
4
m2 = N − v = Ñ − ṽ.

Where v, ṽ = 0 for the R sector and 1
2

for the NS sector.

When constructing type II closed superstring theories the tachyon with m2 = −2

is only found in the (NS -, NS -) sector. (The minus sign here denotes eiπF = −1,

where F is the fermion number. A factor of −1 is contributed from the ghost ground

state).

The GSO projection is applied to enforce consistency in the spectrum. For

example it means that all pairs of vertex operators are mutually local and that

OPEs close. It works by picking out which sectors can be combined together to

form a consistent theory. It turns out that there are two ways of doing this, the

resultant theories are called type IIA and type IIB. Type IIA keeps the sectors which

satisfy,

exp(πiF ) = +1, exp(πiF̃ ) = (−1)α̃, (2.20)

where α̃ is 1 if the right movers are in the R sector and 0 if the right movers are in
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2.2. Tachyon condensation 12

the NS sector. Similarly for type IIB,

exp(πiF ) = +1, exp(πiF̃ ) = +1. (2.21)

Neither of these theories contain the sector (NS -, NS -), therefore neither of them

contain a tachyon in the bulk.

2.2 Tachyon condensation

This section largely follows arguments laid out in [6]. The study of tachyon con-

densation is in effect the study of the string theory configuration space. A tachyon

represents an inherent instability of a theory, it appears in a theory as an unstable

equilibrium. A simple toy model for tachyon condensation is a charged particle in an

electromagnetic potential located at a local maximum (figure 2.1). The potential,

around this maximum, looks like an inverted harmonic oscillator. Under a small ex-

citation the particle will move away from the maximum eventually settling at a local

minimum. The potential energy which is lost will be converted into electromagnetic

radiation. It’s often difficult to solve for the problem for the full time evolution, so

other techniques are employed.

The easiest way to see what will happen under this ‘condensation’ process is

through inspection. The particle will clearly move from the unstable situation at

the local maximum to the local minimum and if enough energy can be radiated away

it will form a static solution there. There are also other ways to follow this process,

one is to introduce a friction term to the equation of motion, such as;

d2r

dt2
= −V ′(r)− kdr

dt
(2.22)

k is the coefficient of friction and is always positive. With this technique it is possible

to follow the condensation process whilst ignoring the details of the type of radiation

given out. Note that the long term evolution of this system is independent of k.

This means that we can make the change of variable t = kt̃ then take k →∞. This

gives rise to following equation,

dr

dt̃
= −V ′(r). (2.23)
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r

V(r)

0 a b c

Figure 2.1: A possible potential for a charged particle. The particle stationary

at any of 0,a,b,c represent static solutions, however of those solutions 0 and b are

tachyonic as they would be unstable.

This process is analogous to the RG flow technique used in string theory to follow

the results of tachyon condensation.

2.2.1 Open string tachyon condensation

For open string tachyon condensation Sen conjectured that (i) the endpoint of ho-

mogeneous tachyon condensation on the world-volume of the D-brane is the closed

string vacuum, and (ii) the condensation of inhomogeneous modes of the tachyon

field leads to lower dimensional D-branes. [6]

There are several lines of evidence which support these conjectures. The first

mirrors the inspection method used for the toy model in the previous section. To

use this technique we need a clear view of the potential energy landscape. This is

not forthcoming from world sheet string theory as it deals with off shell quantities,

such as the potential only indirectly.
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2.2. Tachyon condensation 14

A second technique, which this time can be conducted from the point of view

of worldsheet string theory, is to follow the renormalisation group (RG) flow. This

is can be seen as analogous to equation 2.23 for our toy model. RG flow is the

process of integrating out high momentum modes from a theory, it ‘flows’ from the

ultra violet (UV), high energy theory to the infra red (IR), low energy theory. This

allows the same theory to be seen from different perspectives, so that factors that

previously would only show up in ‘loop’ calculations now show up at tree level.

It is also possible to exactly solve the equations of classical time evolution for

the decay of a D-brane via tachyon condensation. This solution is known as a

rolling tachyon or S-brane [34]. Determining the long term behaviour of this system,

however, is non trivial. This is because the solution is described in terms of an open

string theory, Sen’s conjectures state that it should decay into a closed string vacuum

state.

2.2.2 Closed string tachyon condensation

Closed string tachyon condensation is more complex than its open string counter-

part. This is mainly because closed strings have the graviton in their spectrum.

Rather than D-branes being modified or destroyed, in closed string tachyon conden-

sation it is spacetime itself which is altered. If the asymptotics of spacetime are

changed during this process (as has been suggested in certain cases) it is unclear if

the energy can be compared between the two states even in principle. This makes

some of the techniques used above for open strings inappropriate or very difficult to

use.

As was discussed in section 2.1.3, bosonic string theory has a generic tachyon.

This was removed by the GSO projection when considering type II superstring

theory in flat space. The study of closed string tachyon condensation must therefore

look into different situations where not all of the tachyons are removed by the GSO

projection.

In general, research into closed string tachyon condensation has concentrated on

situations where the tachyon has been localised. This has two advantages; firstly

any effect which the process has on spacetime will happen locally first, making it
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2.2. Tachyon condensation 15

easier to study. Secondly it allows any closed string radiation to dissipate into the

bulk. If we considered non-local tachyons there would be nowhere for this radiation

to go and it would not be clear that the system would end up in the ground state.

2.2.3 The C/Zn orbifold

This section offers a brief discussion about localised tachyons on a orbifold in su-

perstring theory, based on the work in [5]. One of the most studied cases for closed

string tachyon condensation is the C/Zn orbifold in a ten dimensional superstring

theory. The C/Zn orbifold is a cone created by taking flat space and identifying the

8-9 plane under a rotation 2π/n. The tip of the cone is a singular seven dimensional

submanifold. There are two possible actions on the spinors,

R = exp(2πiJ89/n) or exp((n+ 1)2πiJ89/n), (2.24)

where J89 is the rotation generator. For either choice Rn acts trivially on spacetime,

which implies that it either equals 1 or exp(2πiJ89) = (−1)F . If Rn = (−1)F , then

the orbifold group projects out fermions and introduces tachyons in the bulk. We

wish to study an orbifold with localised tachyons and so choose Rn = 1. This means

that only the second choice of R is valid and then only when n is odd.

In the sector twisted by Rk (1 ≤ k ≤ n − 1) the standard calculation for zero-

point energy leads to,

α′

4
m2 = −k/2n, for k even (2.25)

= (k − n)/2n, for k odd (2.26)

The lowest state is therefore tachyonic in every twisted sector. If n is odd spacetime

supersymmetry is broken in such a way that tachyons in the twisted sector, winding

around the cone, survive the GSO projection but tachyons in the bulk do not.

These twisted sector tachyons cannot move away from the tip of the cone without

stretching, which requires energy. They are therefore localised about the point.

Several suggestions were made for the fate of the C/Zn orbifold after tachyon

condensation [5]. Firstly a hole may appear at the tip of the cone which then

expands to engulf the whole of spacetime. Secondly the tip of the cone may expand
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2.2. Tachyon condensation 16

to become an infinite throat. Thirdly the tip of the cone may smooth over, either

to the string scale or continuing forever. It is the last of these suggestions which

appears to be the most likely, based on current evidence. It has been suggested that,

at least at late times, this smoothing out process travels outwards at the speed of

light as a dilaton pulse. The region inside the pulse is flat. Evidence for this was

obtained in [7] using RG flow on a gauged linear fixed sigma model.
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Chapter 3

BTZ black holes

This chapter focuses on the geometry of AdS3 and its various orbifolds, these include

the BTZ black hole and the self-dual orbifold. The variety of coordinate systems

introduced here will be used in the subsequent chapters to consider string theory

and the AdS/CFT duality on these backgrounds. It is shown how AdS2 arises as in

near horizon limits of extremal black holes, including in the self-dual orbifold. The

chapter concludes with the calculation of the bosonic string spectrum, including

finding the winding tachyon, on a massive BTZ black hole.

3.1 AdS3

AdS3 is the unique local solution to Einstein’s equations in three dimensions with

a negative cosmological constant. It is a maximally symmetric space of constant

negative curvature, with six Killing vectors. It is defined as a hyperboloid [35] [36],

−l2 = −U2 − V 2 +X2 + Y 2, (3.1.1)

embedded in a space R2,2 with a metric,

ds2 = −dU2 − dV 2 + dX2 + dY 2. (3.1.2)

The embedding space has six boost and rotation Killing vectors associated with

the SO(2, 2) isometry group as well as four translation Killing vectors. The trans-

lation Killing vectors are not confined to the hyperboloid, but all of the boost and
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3.1. AdS3 18

rotation Killing vectors are. AdS3 therefore has the isometry group SO(2,2) with

the associated Killing vectors,

Jab = ηacx
c∂b − ηbcxc∂a, (3.1.3)

with xa ≡ (U, V,X, Y ) and ηab is a diagonal matrix with entries (-1,-1,1,1).

The SO(2,2) isometry group can be decomposed into SL(2,R)L ⊗ SL(2,R)R.

The SL(2,R) group element takes the form,

g =

 U + Y V +X

X − V U − Y

 , (3.1.4)

Taking l = 1. The associated Killing vectors are,

ζ±1 =
1

2
(J01 ± J23), ζ±2 =

1

2
(J02 ± J13), ζ±3 =

1

2
(J03 ∓ J12). (3.1.5)

As with any manifold AdS3 can be described in a variety of different coordinate

systems. Two of the most important, global and Poincaré coordinates, are described

below. Both of these systems will be important for work on both the BTZ black

holes and the self-dual orbifold.

3.1.1 Global coordinates

Global coordinates for AdS3 can be defined in terms of the embedding coordinates,

U = l cosh ρ sin τ, V = l cosh ρ cos τ, (3.1.6)

X = l sinh ρ cos θ, Y = l sinh ρ sin θ. (3.1.7)

It can clearly be seen that any point (ρ, τ, θ) will be on the hyperboloid defined

by (3.1.1). The induced metric on AdS3 in global coordinates is then,

ds2 = l2[− cosh2 ρdτ 2 + dρ2 + sinh2 ρdθ2]. (3.1.8)

Here the coordinates have the ranges, 0 < ρ < ∞, 0 < θ < 2π and 0 < τ < 2π.

This manifold as it stands is of limited interest as it contains closed timelike curves.
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3.2. BTZ black holes 19

τ is written here as an angle so the curve ρ = ρ0, θ = θ0 is a closed timelike loop.

This can be rectified by extending the manifold to its universal cover, CAdS3, by

unwrapping τ so that its range becomes −∞ < τ < ∞. When discussing AdS3 it

will be the universal cover which we are interested in unless otherwise stated.

3.1.2 Poincaré coordinates

Poincaré coordinates can also be defined in terms of embedding coordinates,

U =
1

2r
(l2 + r2 + x2 − t2), V = l

t

r
, (3.1.9)

X =
−1

2r
(−l2 + r2 + x2 − t2), Y = l

x

r
. (3.1.10)

The metric in these coordinates is given by,

ds2 =
l2

r2
(−dt2 + dx2 + dr2). (3.1.11)

The range of these coordinates are, −∞ < x <∞, −∞ < t <∞ and 0 < r <∞.

This coordinate patch does not cover the whole of AdS3, it only covers half of it, the

other half can be covered using a similar coordinate patch as above, but allowing

−∞ < r < 0. To cover the whole of CAdS3 an infinite tower of Poincaré patches is

required.

3.2 BTZ black holes

BTZ black holes first emerged in [18] and [19] and during this section we will follow

the analysis in these two papers. Given the simplicity of gravity in (2+1) dimensions

the variety of the BTZ black hole is remarkable. The geometries described in this

section will allow the study of quantum mechanics and string theory on a relatively

simple background, which still has enough variety to be of interest.

3.2.1 BTZ coordinates

As the name suggests BTZ coordinates will be useful in describing the BTZ black

hole. Like the Poincaré coordinates it takes multiple coordinate patches to cover the
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whole of of AdS3, in this case 12 patches will be required. Firstly the hyperboloid

has to be split up into 3 different regions, with regard to the embedding coordinates,

Region1 : −U2 +X2 ≤ 0, −V 2 + Y 2 ≥ 0, (3.2.12)

Region2 : −U2 +X2 ≤ 0, −V 2 + Y 2 ≤ 0, (3.2.13)

Region3 : −U2 +X2 ≥ 0, −V 2 + Y 2 ≤ 0. (3.2.14)

Note that no part of the hyperboloid intersects the region −U2 + X2 ≥ 0 and

−V 2 + Y 2 ≥ 0.

Each region can then be covered by a set of four coordinate patches, Region 1

U = ±r̂ cosh φ̂, V =
√
r̂2 − l2 sinh t̂, (3.2.15)

X = r̂ sinh φ̂, Y = ±
√
r̂2 − l2 cosh t̂, (3.2.16)

ds2 = −(r̂2 − l2)dt̂2 + l2(r̂2 − l2)−1dr̂2 + r̂2dφ̂2,

l < r̂ <∞,−∞ < t̂, φ̂ <∞.

Region 2

U = ±r̂ cosh φ̂, V = ±
√
l2 − r̂2 cosh t̂, (3.2.17)

X = r̂ sinh φ̂, Y =
√
l2 − r̂2 sinh t̂, (3.2.18)

ds2 = −(r̂2 − l2)dt̂2 + l2(r̂2 − l2)−1dr̂2 + r̂2dφ̂2,

0 < r̂ < l,−∞ < t̂, φ̂ <∞.

Region 3

U = r̂ sinh φ̂, V = ±
√
l2 + r̂2 cosh t̂, (3.2.19)

X = ±r̂ cosh φ̂, Y =
√
l2 + r̂2 sinh t̂, (3.2.20)

ds2 = (r̂2 + l2)dt̂2 + l2(r̂2 + l2)−1dr̂2 − r̂2dφ̂2,

0 < r̂ <∞,−∞ < t̂, φ̂ <∞.

For simplicity in the following sections we shall consider l set to equal 1.

3.2.2 Massive BTZ black holes

BTZ black holes are orbifolds of AdS3 space, creating one involves making a periodic

identification. In general, orbifolds can be created by mapping a point P → e2nπζP ,

January 31, 2011
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where ζ is a Killing vector and n ∈ Z. Since the transformations are isometries,

the quotient space inherits a well defined metric and so is a solution to Einstein’s

equations. All that remains to worry about is the causal structure of the space.

These quotient spaces are black hole solutions if the Killing vector is of the form

ζ = r+J12 − r−J03 − J13 + J23 = ∂φ̂, where Jab is as described in equation (3.1.3)

and r+, r− are the positions of the outer and inner horizons of the BTZ black holes

respectively. Out of convention we choose r− ≤ r+. In cases where r+ 6= r− this

may be simplified by an SO(2,2) transformation to ζ ′ = r+J12 − r−J13.

BTZ Black holes are characterised by three constants, their mass M as well as

their angular momentum J and charge Q. This thesis will concentrate on uncharged

black holes. The mass and angular momentum can be characterised by r+ and r−

from the above transformations,

M = r2
+ + r2

−, |J | = 2r+r−. (3.2.21)

The other condition for these orbifolds to be valid spacetimes, besides being

solutions to Einstein’s equations, is that they must have admissible causal structure.

They must not contain closed timelike loops. The quotient transformations mean

that any curve joining two points on the same orbit will form a closed loop. A

necessary (and sufficient for the type of Killing vectors used to make BTZ black

holes) condition to avoid closed time like loops is that the Killing vector is spacelike,

ζ.ζ > 0.

For the identifications being considered the Killing vectors are not spacelike ev-

erywhere. This is remedied by removing these areas with timelike Killing vectors

from the spacetime. Once the quotient is made the surface with null Killing vectors

ζ.ζ = 0 will be the singularity in the spacetime. This makes sense as to continue

beyond the singularity would introduce closed timelike curves. Now the only incom-

plete geodesics on the quotient space are those which end on the singularity. The

orbifold can be split up into three distinct regions; region I with ζ.ζ > r+, region II

with r− < ζ.ζ < r+ and region III with ζ.ζ < r−. The boundaries between these

regions are lightlike and form the horizons of the black hole. The structure of the

Penrose diagram is the same as for Kerr black hole (Figure 3.1).
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I

III III

III III

I

Figure 3.1: The Penrose diagram for a BTZ black hole r+ 6= r− 6= 0. The zigzagged

line is the singularity at r = 0. The inner horizon is located between regions II and

III at r = r−. The outer horizon is located between regions I and II at r = r+.

Solutions without naked singularities are limited to −M ≤ J ≤M with M ≥ 0.

This can be seen by solving for r+, r− to find the horizons. The exception to this

rule is the case M = −1, J = 0 which although it has no horizon it also has no

singularity, it is simply AdS3 [19], see figure 3.2. To see this clearly it is best to

use a coordinate transformation. Starting with the metric given for region 1 above

let r̃ = r+r̂, t̃ = t/r+ and φ̃ = φ/r+. Note that φ̃ has the standard periodicity

φ̃→ φ̃+ 2π. The metric now becomes,

ds2 = −(r̃2 −M)dt̃2 + (r̃2 −M)−1dr̃2 + r̃2dφ̃2 (3.2.22)

This clearly has a similar form to the metric of the Schwarzschild black hole. In

the case M = −1 this metric can be seen to be identical to the metric for AdS3 in

global coordinates (3.1.8) with the coordinate transformation r̃ = sinhµ.

In the case of a massive non-rotating black hole the quotient transformation is

equivalent to the identification φ̂ → φ̂ + 2πr+ in the BTZ coordinate system. By
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M

J M=-1

M=J

M=0

Figure 3.2: BTZ black holes in terms of mass and angular momentum. Pure AdS3

is M=-1, J=0.

equation (3.2.21) r2
+ = MBTZ and J = r− = 0. It is interesting to compare the

coordinate patch regions 1, 2 and 3 (3.2.15, 3.2.17 and 3.2.19) to the regions as

mapped out in the Penrose diagram I, II and III, see figure 3.1. In the non rotating

case however there is no region III, as r− = 0. The Penrose diagram will instead look

more like that of a Schwarzschild black hole. In the coordinate patch ‘region 3’ the

Killing vector is timelike, these are therefore removed from the spacetime. In ‘region

2’, 0 ≤ ζ.ζ ≤ r2
+, this therefore maps to region II inside the black hole. In ‘region 1’,

r2
+ ≤ ζ.ζ, so it maps to region I outside the event horizon. In general when thinking

of the massive BTZ black hole we consider the ‘region 1’ coordinate patch and its

metric, as this is the area between the event horizon and spatial infinity. [18].

There is a simple coordinate transformation to get from the non-rotating (r̂, t̂, φ̂)

to rotating BTZ black hole (r, t, φ). Allow M,J to be as defined in equation (3.2.21),

0 < r− < r+ and use the region 1 metric (3.2.15).

r̂2 =
r2

+(r2 − r2
−)

r2
+ − r2

−
,

 t̂

φ̂

 =

 r+ −r−
−r− r+

 t

φ

 (3.2.23)

The metric under this coordinate transformation becomes,
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ds2 = −(r2 −M)dt2 +

(
r2 −M +

J2

2r2

)−1

dr2 − Jdtdφ+ r2dφ2 (3.2.24)

The identification to create the rotating BTZ black hole is φ = φ + 2π. Note

that this is a different identification to that of the non rotating black hole as φ is

not the same as φ̂. [25]

3.3 The self-dual orbifold

This section will focus on the geometry of the self-dual orbifold. The self-dual

orbifold is another example of an orbifold of AdS3, it will be studied in depth with

regard to the AdS/CFT correspondence in chapter 6. The self-dual orbifold arises

in a number of situations, directly as an orbifold of AdS3, as a near horizon limit

of an extremal BTZ black hole and as a near horizon, near extremal limit of a BTZ

black hole. In this section we will discuss appropriate coordinate systems for each

of these situations.

The self-dual orbifold spacetime was introduced in [21] as a quotient of AdS3

and its interpretation in the AdS/CFT correspondence was discussed by [35]. The

spacetime is a quotient along the Killing vector ξ = U∂X+X∂U +V ∂Y +Y ∂V , where

U, V,X, Y are the embedding coordinates (3.1.1). This Killing vector has a unit norm

||ξ||2 = 1, so the quotient has no fixed points in the bulk. The quotient preserves

an SL(2,R)× U(1) subgroup of the SL(2,R)× SL(2,R) symmetry of AdS3, where

the U(1) factor is generated by ξ. The global self-dual orbifold coordinate system

(t, φ, z) which covers the whole spacetime, relates to the embedding coordinates by

U +X =
1√
2
eφ(ez cos t− e−z sin t), (3.3.25)

U −X =
1√
2
e−φ(e−z cos t− ez sin t), (3.3.26)

V + Y =
1√
2
eφ(e−z cos t+ ez sin t), (3.3.27)

V − Y =
1√
2
e−φ(ez cos t+ e−z sin t). (3.3.28)

These coordinates are related to the usual global AdS3 coordinates (ρ, τ, θ) (3.1.1)
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by

cosh2 ρ = cosh2 z cosh2 φ+ sinh2 z sinh2 φ, (3.3.29)

tan(τ + θ) = −tanh 2z

sinh 2φ
,

tan(τ − θ) =
tanh 2φ cos 2t+ sinh 2z sin 2t

− tanh 2φ sin 2t+ sinh 2z cos 2t
.

in terms of which the metric of AdS3 is

ds2 = −dt2 + dφ2 + 2 sinh 2zdtdφ+ dz2 = − cosh2 2zdt2 + (dφ+ sinh 2zdt)2 + dz2 .

(3.3.30)

The self-dual orbifold is obtained by taking the quotient φ ∼ φ+ 2πr+ for some r+.

The spacetime can be seen to be a U(1) fibration over AdS2 (this will be discussed

further in section 3.4) and the Killing symmetries are

ξ =
1

2
∂φ, (3.3.31)

χ1 =
1

2
∂t, (3.3.32)

χ2 =
1

2
tanh 2z cos 2t∂t +

cos 2t

2 cosh 2z
∂φ +

1

2
sin 2t∂z, (3.3.33)

χ3 = −1

2
tanh 2z sin 2t∂t −

sin 2t

2 cosh 2z
∂φ +

1

2
cos 2t∂z. (3.3.34)

The factors of 2 in the χi are required to make them a representation of SL(2,R);

the one in ξ is simply conventional.

The spacetime has two boundaries, at z → ±∞. Taking (3.3.30) as a coordinate

system on all of AdS3 (without a quotient) we would also have reached the boundary

when φ→ ±∞, which are fixed points of the quotient φ ∼ φ+ 2πr+. From (3.3.29),

when φ→ ±∞,

tan(τ + θ) = 0, (3.3.35)

so this corresponds to τ + θ = 0 or π. That is, the quotient has fixed points on the

null lines τ+θ = 0, π in the conformal boundary. These lines separate the conformal

boundary into two strips. These two regions are the two boundaries of the self-dual

orbifold, at z → ±∞. When z → ±∞, (3.3.29) simplifes to

tan(τ + θ) = ∓ 1

sinh 2φ
, tan(τ − θ) = tan 2t. (3.3.36)
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So on the boundary t is mapped to the null coordinate running up along the strips

at z → ±∞, while φ is the null coordinate running across the strips.

Consider a surface of constant t, say t = 0. In the strips at z = ±∞, this will

map to τ − θ = 0, π. Let’s choose τ − θ = 0 at z =∞. At t = 0,

tan θ = −tanhφ− tanh z

tanhφ+ tanh z
. (3.3.37)

At z = ∞, as φ ranges from −∞ to ∞, θ ranges over (π/2, 0). At φ = ∞, as z

ranges from ∞ to −∞, θ ranges over (0,−π/2). At z = −∞, as φ ranges from ∞

to −∞, θ ranges over (−π/2, π). Finally, at φ = −∞, as z ranges from −∞ to ∞,

θ ranges from (π, π/2). As a result, the surface t = 0 maps to a sawtoothed curve

made from null segments:

t = 0↔



τ − θ = 0, θ ∈ (π/2, 0),

τ + θ = 0, θ ∈ (0,−π/2),

τ − θ = π, θ ∈ (−π/2,−π),

τ + θ = π, θ ∈ (π, π/2).

(3.3.38)

This is shown in figure 3.3.

In addition to arising as a quotient of AdS3, the self-dual orbifold can be obtained

as a near-horizon limit of the extremal BTZ black hole, a point of view which was

stressed in [37]. If we start with the BTZ black hole in a stationary coordinate

system, we obtain the self-dual orbifold in a coordinate system which only covers

a portion of the geometry. A convenient coordinate system is the near horizon

limit (u, v, r) coordinates introduced in [37], which are related to the embedding

coordinates by

U +X = er+u, (3.3.39)

U −X =
1

2
(e−r−u − 2ver−u), (3.3.40)

V + Y =
1

2
(e−r+u + 2ver+u), (3.3.41)

V − Y = er−u. (3.3.42)

The transformation between the global self-dual orbifold coordinates (t, φ, z) and
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Figure 3.3: The relation between the global AdS3 coordinates τ, θ and the global

self-dual orbifold coordinates t, φ on the boundary. (The lines θ = ±π are identified.)

Region I is z = ∞, region II is z = −∞. The direction of increasing t, φ in each

region is indicated. The heavy dashed line is the surface t = 0 given in (3.3.39).
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near horizon limit (u, v, r) coordinates is then

2e2r = cosh 2z cos 2t+ sinh 2z, (3.3.43)

v =
cosh 2z sin 2t

cosh 2z cos 2t+ sinh 2z
, (3.3.44)

e2u = e2φ (ez cos t− e−z sin t)

(ez cos t+ e−z sin t)
. (3.3.45)

The near horizon limit coordinates are also simply related to the Poincaré coordi-

nates (3.1.2) (x+ = (t+x)√
2
, x− = (x−t)√

2
, Z = r) on AdS3,

Z = e−r+u, x+ = 2e2u, x− = v − 1

2
e−2r. (3.3.46)

The metric of AdS3 in this coordinate system is

ds2 = du2 + 2e2rdudv + dr2 = −e4rdv2 + dr2 + (du+ e2rdv)2, (3.3.47)

and the Killing vectors are

ξ =
1

2
∂u, (3.3.48)

χ1 = −
[
1 +

1

4
(v2 + e−4r)

]
∂v −

1

4
e−2r∂u +

1

4
v∂r, (3.3.49)

χ2 = −
[
1− 1

4
(v2 + e−4r)

]
∂v +

1

4
e−2r∂u −

1

4
v∂r, (3.3.50)

χ3 = −v∂v +
1

2
∂r. (3.3.51)

Both the self-dual orbifold (t, φ, z) and AdS3 (τ, θ, ρ) global coordinate system covers

the whole of AdS3, but from (3.3.46), we can see that near horizon limit coordinates

(u, v, r) cover half a Poincaré patch of AdS3, as they cover the region x+ > 0.

From the AdS2 point of view, the transformation (3.3.43, 3.3.44) is precisely the

transformation from global coordinates to Poincaré coordinates on the AdS2 factor,

so these coordinates will cover the region of the self-dual orbifold corresponding to

the Poincaré patch in AdS2. It is interesting that half of the Poincaré patch in AdS3

corresponds to the Poincaré patch in AdS2. This patch includes a portion of the

boundary at z = ∞ in the self-dual orbifold global coordinates (t, φ, z). The other

half of the AdS3 Poincaré patch corresponds to an AdS2 Poincaré patch covering a

portion of the other boundary at z = −∞.
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The coordinate transformation simplifies further on the boundary. At z =∞,

u = φ, v = tan t. (3.3.52)

so the (u, v) coordinates cover the portion of the z =∞ strip with t ∈ (−π/2, π/2).

The relation between Poincaré coordinates x+, x− and the u, v near horizon limit

coordinates on the boundary is

x+ = 2e2u, x− = v. (3.3.53)

The self-dual orbifold spacetime can be obtained as a near-horizon limit of an

extreme BTZ black hole. In [37], it was observed that this near-horizon limit is very

easy to describe in the (u, v, r) coordinates (3.3.47). The extreme BTZ black hole

is given by this metric with the identifications

(ũ, ṽ) ∼ (ũ+ 2πr+, ṽ + 2πr+). (3.3.54)

We call the extreme BTZ coordinates (ũ, ṽ, r̃) to distinguish them from the near

horizon limit coordinates, describing the self-dual orbifold, which we will shortly

recover. To take the near-horizon limit, we want to write r̃ = r0 + r, and take

r0 → −∞. If we also write ũ = u, ṽ = e−2r0v, then the metric in terms of (u, v, r)

takes the same form (3.3.47) at finite r0, but now with the identifications

(u, v) ∼ (u+ 2πr+, v + 2πr+e
2r0). (3.3.55)

As we take the near-horizon limit r0 → −∞ for fixed (u, v, r), this reduces to

u ∼ u+ 2πr+, giving us the self-dual orbifold.

3.3.1 Black hole coordinates

The self-dual orbifold spacetime has two boundaries, but when we obtain it as a

near-horizon limit of the extreme BTZ black hole, we obtain it in a coordinate

system which only covers one of the boundaries. To see that both boundaries play

a role, it is useful to consider a different kind of near-horizon limit. We therefore

consider the near-horizon, near-extremal limit of the non-extremal BTZ black hole.
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We start with the BTZ black hole,

ds2 = −
(r2 − r2

+)(r2 − r2
−)

r2
dt2 +

r2dr2

(r2 − r2
+)(r2 − r2

−)
+ r2

(
dφ− r−r+

r2
dt
)2

, (3.3.56)

which has two asymptotic regions in the full eternal black hole spacetime. The

coordinate range r ≥ 0 only covers one asymptotic boundary, but the metric can be

extended in patches to cover both boundaries.

We first define a comoving coordinate system at the event horizon r = r+ by

setting φ′ = φ− r−
r+
t. Then define new coordinates (t̄, φ̄, r̄2) by

r2 = r2
+(1 + εr̄2), t =

t̄

r+ε
, φ′ =

φ̄

r+

, (3.3.57)

where ε =
r2
+−r2

−
r2
+

. The metric in these coordinates is

ds2 = − r̄
2(r̄2 + 1)

(1 + εr̄2)
dt̄2 +

(1 + εr̄2)

(r̄2 + 1)
dr̄2 + (1 + εr̄2)

(
dφ̄+

√
1− ε2

(1 + εr̄2)
r̄2dt̄

)2

. (3.3.58)

We can then take a near-horizon, near-extremal limit by taking ε → 0 for finite

values of (t̄, φ̄, r̄2). The resulting metric is

ds2 = −r̄2(r̄2 + 1)dt̄2 +
dr̄2

(r̄2 + 1)
+
(
dφ̄+ r̄2dt̄

)2
= −r̄2dt̄2 +dφ̄2 + 2r̄2dt̄dφ̄+

dr̄2

(r̄2 + 1)
.

(3.3.59)

This is the self-dual orbifold, in a “black-hole like” coordinate system. The AdS2

part of the metric is written in the black hole coordinates of equation (2.12) of [38].

It is also worth noting that the inner horizon at r̄2 = −1 remains at a finite distance

from the outer horizon at r̄2 = 0 as we take this limit.

To relate these coordinates to embedding coordinates, take the embedding of

BTZ,

U =

√
r2 − r2

+

r2
+ − r2

−
sinh(r+t− r−φ) =

√
r2 − r2

+

r2
+ − r2

−
sinh

(
r2

+ − r2
−

r+

t− r−φ′
)
, (3.3.60)

V =

√
r2 − r2

−

r2
+ − r2

−
cosh(r+φ− r−t) =

√
r2 − r2

+

r2
+ − r2

−
cosh(r+φ

′),

X = −

√
r2 − r2

+

r2
+ − r2

−
cosh(r+t− r−φ) = −

√
r2 − r2

+

r2
+ − r2

−
cosh

(
r2

+ − r2
−

r+

t− r−φ′
)
,

Y =

√
r2 − r2

−

r2
+ − r2

−
sinh(r+φ− r−t) =

√
r2 − r2

+

r2
+ − r2

−
sinh(r+φ

′),
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and apply the same ε→ 0 limit. This gives

U +X = −r̄e−t̄+φ̄, (3.3.61)

U −X = r̄et̄−φ̄,

V + Y =
√
r̄2 + 1eφ̄,

V − Y =
√
r̄2 + 1e−φ̄.

These coordinates are related to the global self-dual orbifold coordinates (t, φ, z) by

r̄2 = sinh2 z cos2 t− cosh2 z sin2 t, (3.3.62)

e2t̄ =
tanh 2z + sin 2t

tanh 2z − sin 2t
,

e2φ̄ = e2φ (cosh z cos t+ sinh z sin t)

(cosh z cos t− sinh z sin t)
.

Thus, the (t̄, φ̄, r̄) coordinates for r̄2 ≥ 0 cover a region z ≥ 0, tan2 t ≤ tanh2 z in

global self-dual orbifold coordinates (t, φ, z). Just as the non-extremal BTZ black

hole has two asymptotic regions, which can be displayed by taking two patches with

metrics (3.3.56), we can think of the black hole coordinates for the self-dual orbifold

as covering two regions outside the “horizon” at r̄2 = 0, thus including patches of

the two boundaries at z → ±∞.

Note that in these black hole coordinates, t̄, φ̄ are not null coordinates on the

boundary of the self-dual orbifold. This can be corrected by defining φ̃ = φ̄− t̄
2
; it’s

also useful to set t̃ = t̄
2
. Then the metric in these coordinates is

ds2 = −4r̄2(r̄2 + 1)dt̃2 +
dr̄2

(r̄2 + 1)
+
(
dφ̃+ (2r̄2 + 1)dt̃

)2

, (3.3.63)

and the relation to global self-dual orbifold coordinates (t, φ, z) is

r̄2 = sinh2 z cos2 t− cosh2 z sin2 t, (3.3.64)

e4t̃ =
tanh 2z + sin 2t

tanh 2z − sin 2t
,

e4φ̃ = e4φ sinh 2z − tan 2t

sinh 2z + tan 2t
.
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The Killing vectors in these coordinates are

ξ =
1

2
∂φ̃, (3.3.65)

χ1 =− 1

4

(√
r̄2 + 1

r̄
+

r̄√
r̄2 + 1

)
cosh 2t̃∂t̃ +

1

4

(√
r̄2 + 1

r̄
− r̄√

r̄2 + 1

)
cosh 2t̃∂φ̃

+
√
r̄2 + 1 sinh 2t̃∂r̄, (3.3.66)

χ2 =
1

4

(√
r̄2 + 1

r̄
+

r̄√
r̄2 + 1

)
sinh 2t̃∂t̃ −

1

4

(√
r̄2 + 1

r̄
− r̄√

r̄2 + 1

)
sinh 2t̃∂φ̃

−
√
r̄2 + 1 cosh 2t̃∂r̄, (3.3.67)

χ3 =− 1

2
∂t̃. (3.3.68)

On the boundary at z =∞,

e2φ̃ = e2φ, e2t̃ =
cos t+ sin t

cos t− sin t
; (3.3.69)

note that the rescaling of t̃ was chosen so that for t near 0, t̃ ≈ t. This coordinate

system covers the portion of the z =∞ strip with t ∈ (−π/4, π/4); half as much as

the u, v coordinates. In terms of the u, v coordinates,

e2φ̃ = e2φ, e2t̃ =
1 + v

1− v
, (3.3.70)

so it maps to the region v ∈ (−1, 1).

3.4 AdS2

As we saw in the previous section the self-dual orbifold can be described as a U(1)

fibration over AdS2. The self-dual orbifold can also be described as a near horizon

limit of an extremal BTZ black hole. As we shall see in this section AdS2 also

appears in the near horizon limit of other extremal black holes.

AdS2 is the solution to Einstein’s equations in (1+1) dimensions with a neg-

ative cosmological constant. It can be defined using embedding coordinates, as a

hyperboloid on R1,2. The metric and restriction on the embedding space are given

as,

ds2 = −dU2 − dX2 + dX2 − l2 = −U2 − V 2 +X2 (3.4.71)
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-

6

t

z

Figure 3.4: The regions in AdS2 covered by the different coordinate systems. The

global self-dual orbifold (t, z) coordinates cover the whole of AdS2, the near horizon

limit (v, r) coordinates cover the Poincaré wedge, and the (t̄, r̄) coordinates cover

the smaller wedge.

In Poincaré coordinates this becomes,

U =
1

2y
(l2 + y2 − t2), V =

lt

y
, X =

−1

2y
(−l2 + y2 − t2) (3.4.72)

ds2 =
−l2(dt2 + dy2)

y2
(3.4.73)

It can also be expressed in black hole like coordinates,

U =
√
r2 − l2 sinh(t), V = r, X =

√
r2 − l2 cosh(t) (3.4.74)

ds2 = −(r2 − l2)dt2 + l2(r2 − l2)−1dr2 (3.4.75)

AdS2 appears as a factor in near horizon extremal Kerr (NHEK) geometry. We will

show this by following the calculation in [22]. As the name suggests this geometry

is obtained by taking a near horizon limit on an extremal Kerr black hole in four

dimensions. In Boyer-Lindquist coordinates the metric for a Kerr black hole is given

by,

ds2 =
∆

ρ2

(
dt̂− a sin2(θ)dφ̂

)2

+
sin2(θ)

ρ2

(
(r̂2 + a2)dφ̂− adt̂

)2

+
ρ2

∆
dr̂2 + ρ2dθ2,

(3.4.76)

∆ ≡ r̂2 − 2Mr + a2, ρ2 ≡ r̂2 + a2 cos2(θ), a ≡ J

M
.
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The angular momentum is restricted to avoid naked singularities, such that −M2 ≤

J ≤ M2. As we are interested in the extremal case we take J = M2. NHEK

geometry can be recovered using a change of coordinates,

t =
λt̂

2M
, y =

λM

r̂ −M
, φ = φ̂− t̂

2M
, (3.4.77)

before taking the limit λ → 0 whilst holding t, y, φ and θ constant. This results in

the NHEK metric in Poincaré style coordinates,

ds2 = 2M2 1 + cos2(θ)

2

[
−dt2 + dy2

y2
+ dθ2 +

(
2 sin(θ)

1 + cos2(θ)

)2(
dφ+

dt

y

)2
]
,

(3.4.78)

with φ ∼ φ + 2π and 0 ≤ θ ≤ π. Similarly to Poincaré coordinates this patch only

covers part of the NHEK space. A set of global coordinates may be obtained by

making a further set of transformations,

y =
(

cos(τ)
√
r2 + 1 + r

)−1

, t = y sin(τ)
√
r2 + 1, φ = ϕ+ln

(
cos(τ) + r sin(τ)

1 + sin(τ)
√
r2 + 1

)
.

(3.4.79)

This results in the metric,

ds2 = 2M2 1 + cos2(θ)

2

[
−(1 + r2)dτ 2 +

dr2

1 + r2
+ dθ2 +

(
2 sin(θ)

1 + cos2(θ)

)2

(dϕ+ rdτ)2

]
.

(3.4.80)

In this setting the r, τ plane is AdS2 and the ϕ circle is a bundle over AdS2.

A similar result can be obtained for an extremal charged black hole in an AdS

background. The near horizon limit for certain extremal charged black holes in an

AdSd+1 spacetime is AdS2 × Rd−1 [23].

3.5 Winding tachyons in non-extremal BTZ black

holes

In this section the knowledge acquired in this and the previous chapter will be put to

use in calculating the string spectrum on a non-rotating BTZ black hole in both the

winding and non-winding sectors. Using this spectrum the presence of tachyons can

then be determined in the winding sector. This calculation will prove useful before

January 31, 2011



3.5. Winding tachyons in non-extremal BTZ black holes 35

looking at extremal black holes in chapter 5. Many of the results in this section will

also be used directly when calculating the spectrum for the extremal rotating BTZ

black hole. The spectrum for non-rotating BTZ black holes was studied in [20] and

this section will follow their calculations.

For the non-rotating BTZ black hole it is convenient to work in BTZ coordinates

(3.2.15), which corresponds to choosing a hyperbolic basis for the current algebra

in which J2 is diagonalised. In this coordinate system the conserved charges (2.12)

are;

Qt = J2
0 − J̄2

0 , Qφ = J2
0 + J̄2

0 . (3.5.81)

The periodic identification, φ ∼ φ+ 2πr+, used to construct the BTZ black hole

restricts the twisted sector states to quantised values of Qφ;

r+(J2
0 + J̄2

0 ) ∈ Z. (3.5.82)

We will work with the currents J2, J± = J1 ± J3, with the OPEs,

J+(z)J−(w) ∼ k

(z − w)2
+

2iJ2

(z − w)
, (3.5.83)

J2(z)J2(w) ∼ k/2

(z − w)2
, (3.5.84)

J2(z)J±(w) ∼ ± iJ±

(z − w)
. (3.5.85)

We will construct the untwisted sector states using a parafermionic representa-

tion and then impose a twist operator to construct the twisted sector states. Firstly

the current J2 is bosonised with a free field X

J2 = −i
√
k

2
∂X, (3.5.86)

where X(z)X(w) ∼ ln(z − w). Parafermions ξ± are introduced to complete the

current algebra,

J± = ξ±e±
√

2/kX , (3.5.87)

with,

ξ+(z)ξ−(w) ∼ k

(z − w)2+2/k
, ξ±(z)ξ±(w) ∼ (z − w)2/k. (3.5.88)
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In this paraferminonic representation the chiral primary operators of the current

algebra are given as,

Φjλ(w) = Ψjλ(w)e−iλ
√

2/kX , (3.5.89)

where λ is the J2 eigenvalue, which determines the spacetime energy. In the hyper-

bolic basis λ and j are unrelated. The conformal dimension of the primary operators

is given by,

h(Φjλ) = −j(j − 1)

k − 2
, (3.5.90)

where c2 = −j(j − 1) is the Casimir of the global SL(2,R) symmetry generated by

the zero modes of the currents. Using (2.17), (3.5.89), (3.5.90) it follows that,

h(Ψjλ) = −j(j − 1)

k − 2
− λ2

k
. (3.5.91)

At this stage we must reintroduce the antiholomorphic sector. In the untwisted

sector it was identical to the holomorphic sector. The condition (3.5.82) can be

imposed by requiring that the physical states are mutually local with the twist

operator tn.

tn = eir+
√
k/2n(X−X̄). (3.5.92)

It can then be seen that the nth twisted sector is then given by the composite

operator of the untwisted chiral primary with the twist operator.

Φn
jλλ̄ = ΨjλΨ̄jλe

−i
√

2/k[(λ+ k
2
nr+)X+(λ̄− k

2
nr+)X̄]. (3.5.93)

The twisted sector chiral primary operators then have conformal dimensions,

h(Φn
jλλ̄) = −j(j − 1)

k − 2
+ λr+n+

kn2r2
+

4
, (3.5.94)

h(Φ̄n
jλλ̄) = −j(j − 1)

k − 2
− λ̄r+n+

kn2r2
+

4
. (3.5.95)

We now wish to look for tachyons in this spectrum. By continuity we will argue

that if there are zero energy modes which satisfy the physical state condition, (L0−

1)|phys〉 = (L̄0− 1)|phys〉 = 0, then there must also be tachyons which are physical

in the spectrum. We set the energy and momentum to zero, λ = λ̄ = 0. After taking

into account internal degrees of freedom, it can be shown that there are tachyons

in the twisted sector (for large k) when
√
kr+ < 2. (For a more detailed discussion

refer back to the original paper [20]).
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Similar to the C/Zn orbifold in section 2.2.3, tachyons in the ground state of

the NS-NS sector can survive the GSO projection if we choose an antiperiodic spin

structure for the fermions on spacetime. The tachyons which survive this GSO

projection are in the odd twisted sectors.
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Chapter 4

Introduction to the AdS/CFT

correspondence and Hawking

radiation

4.1 Black hole thermodynamics

Black holes offer one of the best opportunities to study quantum gravity, through

the field of black hole thermodynamics. Hawking radiation gives a key insight into

the connection between quantum mechanics and general relativity. This section will

follow the arguments laid out in [15].

Black hole thermodynamics relates the gravitational quantities of surface gravity,

κ and surface area, A to the thermodynamic quantities, temperature, T and entropy,

S, by the relations,

T =
~κ
2π
, S =

A

4G~
(4.1.1)

For stationary black holes, where the event horizon is also a Killing horizon the

classical laws of black hole thermodynamics are as follows;

4.1.2 Zeroth Law. The surface gravity κ is constant over the event horizon of a

stationary black hole.

4.1.3 First Law. A change in surface area for a black hole is related to a change
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in mass, charge and spin of the black hole in the following manner,

dM =
κ

8π
dA+ ΩdJ + ΦdQ (4.1.3)

Ω is the angular velocity and Φ is the electric potential.

The second law of black hole thermodynamics links the area of a black hole

event horizon to the entropy of a black hole. This important relation will lead on

to holography in the next section. The second law of thermodynamics states that

entropy is non-decreasing, dS
dt
≥ 0. It was noticed that classically this is a property

which is shared with the black hole event horizon. As matter falls into a black hole

the horizon will increase in size, but as nothing can escape a black hole the horizon

area never decreases.

4.1.4 Second Law. The surface area of a black hole event horizon is non-decreasing,

dA

dt
≥ 0 (4.1.4)

This lead to the relation (4.1.1). As we shall see (4.1.4) only holds classically

and can be violated by quantum effects. Black hole event horizons can decrease

in size through Hawking radiation, as is discussed in section 4.1.2. In this case

the Hawking radiation carries away the relevant entropy, so that overall entropy is

non-decreasing.

4.1.5 Third Law. The strong form of this law is that as temperature tends to zero,

entropy tends to a universal constant. The weaker form is that it is impossible to

create an extremal black hole by incremental changes to a non-extremal black hole.

In practice there have been problems with an exact formulation of the third

law [39].

4.1.1 Unruh radiation

Before looking at Hawking radiation it is useful to consider Unruh radiation. Unruh

radiation is associated with an acceleration horizon. As general relativity is an

observer dependent theory, any theory of quantum gravity must also be observer
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dependent. As we will see this means that even the vacuum state of a theory is not

uniquely determined.

The Rindler horizon is the simplest example of a bifurcate Killing horizon. It

occurs when Minkowski space is viewed from the point of view of an accelerating

observer. Start with the usual Cartesian coordinate system (T,X) and apply a boost

transformation,

X = x cosh (κt), T = x sinh (κt). (4.1.6)

The metric in the Rindler coordinates becomes,

ds2 = −κ2x2dt2 + dx2 + ds2
R(d−2) . (4.1.7)

The Rindler coordinates only cover part of flat space, called the Rindler wedge

X2 − T 2 > 0, X > 0 (figure 4.1). The surface located at the point x = 0 is a

Killing horizon for the Killing vector ζ = ∂t, this is known as the Rindler horizon.

Stationary black holes are typified by this type of bifurcate Killing horizon, so results

here will have a useful application in a black hole setting later.

Rindler observers at constant x are accelerating with a = 1/x, the closer they

are to the horizon the faster they are accelerating. The important thing to note here

is that observers at constant x in the right wedge are not in causal contact with the

left Rindler wedge and vice versa. They cannot be influenced by any events or fields

which occur inside of the other region.

It can be shown using two point functions that any space, where the Euclideanised

time is periodic with τ ∼ τ + β, is thermal with a temperature T = 1/β. If we Eu-

clideanise flat space in Rindler coordinates the metric becomes,

ds2 = κ2x2dτ 2 + dx2 + ds2
R(d−2) . (4.1.8)

We wish for this to be a manifold and so be smooth at the horizon. As the metric

looks very similar to polar coordinates it is easy to see that τ ∼ τ + 2π
κ

. This implies

that the temperature is T = κ
2π

.

This form of thermal behaviour comes from the fact that the accelerated observer

cannot see the whole of the spacetime, they are limited to the Rindler wedge. To

describe the state seen by the accelerated observer a trace should be taken over the
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T

X

RL

Constant t

Constant x

Figure 4.1: The Minkowski coordinate system (T,X) with lines of constant Rindler

coordinates (x, t). The lines of constant x are the world lines for a constantly

accelerating particles with acceleration 1/x. Here the lines x = 0 which is X = T

and X = −T define the Rindler horizons. These split the spacetime up into four

separate regions, of which L and R can be covered by Rindler coordinates. These

regions are spatially separated, meaning that any uniformly accelerating observer in

R is causally disconnected from L and vice versa.

modes in the unseen region of space. Entropy will come from entanglement between

modes in the two halves of spacetime.

Constructing a quantum theory on curved spacetimes presents many problems.

One of the most pressing is that the vacuum is not unique, as we shall see. Not

being able to define a unique vacuum means that there is no natural way to define

positive frequency modes. To see this an inner product can be generalized from the

Klein-Gordon inner product for flat space, for fields f and g,
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(f, g) =

∫
Σ

dΣµj
µ
f,g, (4.1.9)

jµf,g = −i
√
−ggµν(f̄∂νg − ∂ν f̄ g).

As this inner product is a scalar, it at most depends on the spacelike slice Σ which the

current is integrated over, not on the coordinate system used to do the integration.

However the equations of motion imply that the current is conserved, ∂µj
µ = 0.

This means that the inner product is independent of the spacelike slice chosen and

therefore the choice of time coordinate.

The inner product is not positive definite for the set of all modes. We wish to

find a subset of modes for which the inner product is positive definite. We define

the set of positive frequency modes, Sp to be the maximal set such that,

(f, f) > 0 ∀f ∈ Sp (f, ḡ) = 0 ∀f, g ∈ Sp. (4.1.10)

The space of solutions of the field equations can now be decomposed into the positive

norm modes and their conjugate,

S = Sp ⊕ S̄p (4.1.11)

It turns out however that this decomposition is not unique. The set of positive

frequency modes can be chosen in multiple different ways. These different decom-

positions are not coordinate dependent (the inner product does not depend on the

coordinate system used), some choices however will seem more ‘natural’ for a par-

ticular choice of coordinate system. Given this decomposition, annihilation and

creation operators can be made in the usual manner. The vacuum can then be

identified using the annihilation operators,

a(f)|0〉 = 0 ∀f ∈ Sp. (4.1.12)

A Fock space can then be made using the creation operators acting on the vacuum.

The problem arises that there is no natural specification for the positive norm sub-

space, Sp. If a different positive norm subspace is used then it results in a different

vacuum state and a different Fock space. Modes of a different positive frequency
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subspace can always be expressed as a linear combination of the original positive

frequency modes and their conjugates, via the Bogliubov transformation,

f ′n =
∑
m

αnmfm + βnmf̄m, (4.1.13)

for f ∈ Sp and f ′ ∈ Sp′ .

We will now look at plane wave modes for massless free scalar theory in both

Minkowski and Rindler coordinates. They form two separate positive norm sub-

spaces in massless free scalar theory. In Minkowski coordinates the plane wave

solutions take the form,

uk = e−iωkV , (4.1.14)

where V = T−X and ωk is a positive frequency. These are obviously a convenient set

of modes to use for Minkowski space. The Rindler modes must be defined separately

for the left and right coordinate patches (see 4.1).

Rk = e−iωk(v) in R = 0 in L, (4.1.15)

Lk = eiωk(u) in L = 0 in R, (4.1.16)

with v = t − x and u = t + x. We shall now look at the right wedge. Again these

are a useful set of modes to consider the spectrum from the point of view of an

accelerated observer. By itself Rk is not a positive frequency mode with respect to

the Minkowski time T. A new mode, ũk, can however be constructed so that it is

identical to Rk in R but positive frequency with respect to Minkowski time.

ũk = e−iωk ln (−V )/κ for V < 0, (4.1.17)

= e−πωk/κeiωk ln (V )/κ for V > 0.

This can be shown to be a purely positive frequency mode with respect to Minkowski

time. If T is allowed to be complex then ũk is an analytic function on the lower half

plane. This can be rewritten as,

ũk = Rk + e−πωk/κL∗k, (4.1.18)
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where ∗ indicates complex conjugate. Since ũk is positive frequency it can be used

to construct annihilation operators, which destroy the Minkowski vacuum state,

a(ũk)|0〉Minkowski = 0. We can use the identity a(p) = −a†(p∗). This gives us that,

a(Rk)|0〉Minkowski = e−πωk/κa†(Lk)|0〉Minkowski (4.1.19)

A similar process can be done concentrating on the left sector. This results in the

relation,

a(Lk)|0〉Minkowski = e−πωk/κa†(Rk)|0〉Minkowski (4.1.20)

These two relations (4.1.19,4.1.20) can be formally solved by,

|0〉Minkowski =
∏
k

exp [e−πωk/κa†(Lk)a
†(Rk)]|0〉L × |0〉R (4.1.21)

Where |0〉L,R are the Rindler vacuum states in the left and right sectors. This is

only a formal relation as the Minkowski vacuum is not in the Hilbert space of the

Rindler vacuum.

Using this relation we can see that the Minkowski vacuum is thermal from the

point of view of accelerating observers . If there is an operator, O, which acts on

only one of the two sectors, then in calculating the operator expectation value a

trace is taken over the other sector. Formally;

〈0|MinkOR|0〉Mink =
∑
k

e−2πωk/κ〈m|ROR|m〉R (4.1.22)

Where |m〉R is the m particle state in the Fock space built on |0〉R.

4.1.2 Hawking radiation

Hawking radiation has many properties in common with Unruh radiation. Again it

is thermal radiation associated with a bifurcate Killing horizon. The difference is

that this time the horizon in question is the event horizon for a black hole, rather

than an acceleration horizon. In this case the observers which are static at a finite

distance from the event horizon are equivalent to the Rindler observers in the Unruh

case. It is these observers which will see the thermal Hawking radiation.

The temperature of the black hole can be calculated by Euclideanising the black

hole metric and forcing it to be a regular manifold at the horizon, if the ‘time’
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coordinate is taken to be periodic. This period is related to the surface gravity of

the black hole, which in turn is related to its temperature. For example with the

Schwarzchild black hole when the metric is Euclideanised under t→ iτ it becomes,

ds2 =

(
1− 2M

r

)
dτ 2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2) (4.1.23)

Making the coordinate transformations r̃ = 4M
(
1− 2M

r

)1/2
and τ̃ = τ

4M
, the event

horizon is now located at r̃ = 0. Taking the near horizon limit the metric becomes,

ds2 = r̃2dτ̃ 2 + dr̃2 (4.1.24)

For this to be a manifold at the event horizon τ̃ must have a periodicity of 2π. This

then implies that τ → τ + 2π/κ where κ = 4M is the surface gravity. Using the

KMS condition this leads to a temperature T = κ/2π = 2M/π. This shows that

black holes are thermal objects.

4.2 Holography and the AdS/CFT correspondence

In the previous section we saw that a black hole has an associated entropy (4.1.1).

Looking at this from a naive point of view there are two big surprises. The first is

that the entropy is associated with the area of the event horizon rather than the

volume or mass. The second is that black holes have a macroscopic entropy at all.

Classically black holes are some of the simplest objects described in physics. The no

hair theorems guarantee that black holes have a very limited number of parameters;

mass, spin and charge. How then can this be reconciled with their large entropies?

The first of these problems is concerned with the holographic principle [40,41].

4.2.25 The holographic principle. The entropy of a black hole is proportional

to its area in Planck units and this is the largest possible entropy for a system with

given surface area.

This is in essence a restating of the second law of black hole thermodynamics.

It suggests that in quantum gravity the degrees of freedom for a given volume live

on its surface, one per Planck area.
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The AdS/CFT correspondence is a duality between a string theory which lives in

anti de Sitter space and a gauge conformal field theory which lives on the boundary

of that space. The simplest example of this correspondence is between type IIB

string theory on AdS5 × S5 and four dimensional SU(N) Yang-Mills with N = 4

supersymmetry [42], although it can be extended to a much larger class of duality.

The correlation amounts to a one to one mapping of the spectrum, at any value of

energy and other quantum numbers. There is also an equality of observables (i.e.

correlation functions of operators) with an appropriate dictionary.

One way in which the AdS/CFT correspondence and holographic principle can be

motivated is to consider the difference between gravitational and gauge theories [43].

For a given number of dimensions gravitational theories have fewer observables than

non gravitational theories, this is because there is no invariant local way to specify

position in general relativity. This leads to issues when trying to incorporate gravity

into a gauge theory. The graviton is a massless spin-2 particle, but any entry in the

energy momentum tensor which is associated with massless spin-2 particles leads to

nonsensical results.

Consider instead a graviton as a bound state of two spin-1 gauge bosons. In

this way the graviton gains an extra degree of freedom. As well as the spacetime

position of its center of mass the graviton is also dependent on the separation of

the two spin-1 gauge bosons, in effect the graviton lives in one extra dimension. We

need to impose a couple more restrictions to see how this connects with AdS/CFT.

Firstly quantum field theory is easiest to deal with when it is scale invariant. We

therefore wish for the separation dimension z to scale in the same way as the centre

of mass coordinates xµ. The most general metric which respects this condition along

with the usual symmetries of spacetime is;

ds2 = L2dz
2 + ηµνdx

µdxν

z2
. (4.2.26)

This may be recognised as the Poincaré coordinate system for AdS space (3.1.11).

Two other conditions must be met. For the gauge bosons to act as a graviton

rather than a pair of gauge bosons we must take a strong coupling limit. The other

requirement is that the AdS scale L is large in comparison to the Planck length. This

allows room for a black hole with a large surface area and therefore large entropy,
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corresponding to a field theory with a large number of degrees of freedom.

So in a hand waving manner we have managed to find a duality between a five

dimensional gravitational theory on AdS space and a four dimensional gauge the-

ory on flat space. Another useful way to motivate the AdS/CFT correspondence

is to consider D-branes. This introduces some of the more ‘stringy’ aspects of the

correspondence. This was in fact the original motivation for the AdS/CFT corre-

spondence [44].

Consider type IIB string theory in flat Minkowski space [42]. Now to this set

up add a stack of N coincident D3 branes. In this situation type IIB string theory

contains two types of excitation. The first is the closed string which is in the bulk

and contains the graviton in its spectrum. The second is the open string which has

its end points on the D3 branes and describe excitations of the D3 branes. We wish

to consider the low energy limit of this theory where only massless string states are

excited. The action can be split up into the bulk action, the action on the branes

and the interaction between the two, the massive modes are integrated out. The

low energy limit for the closed strings in type IIB string theory is 10 dimensional

supergravity. The massless states for the open strings form a N = 4 supermultiplet

on the D3 branes and the low energy effective Lagrangian is that of N = 4 SU(N)

super Yang-Mills theory. At low energies the open and closed string sectors decouple

and the interaction terms vanish. This leaves behind free supergravity in the bulk

and a gauge theory on the branes.

There is a second perspective from which this set up can be seen, that of an

observer at spatial infinity. The D branes are massive charged objects which source

supergravity fields and warp spacetime. This leads to a solution with the metric,

ds2 =

(
1 +

R4

r4

)− 1
2 (
−dt2 + dx2

1 + dx2
2 + dx2

3

)
+

(
1 +

R4

r4

) 1
2 (
dr2 + r2dΣ2

5

)
,

(4.2.27)

where R4 is a constant proportional to the string coupling and N . As gtt is non-

constant energy is redshifted from the point of view of an observer at infinity.

E∞ =

(
1 +

R4

r4

)− 1
4

Er (4.2.28)

E∞ is the energy as measured by an observer at infinity and Er is the energy

January 31, 2011



4.2. Holography and the AdS/CFT correspondence 48

measured by an observer at constant radius r. This means that as an object of fixed

energy moves towards r = 0 the observer at infinity sees its energy decrease towards

zero. Again we are interested in the low energy limit of this system, this time in

terms of E∞. There are two types of excitation in the low energy limit, massless

states with long wavelength in the bulk and any excitation which approaches r = 0.

These two types of excitation decouple from each other in the low energy limit. This

is because the bulk excitations have much longer wavelengths than the size of the D

branes. They therefore do not interact with states localised near the D brane. Again

we have two decoupled sectors bulk supergravity and the ‘near horizon’ excitations.

In the near horizon region r << R and the metric becomes,

ds2 =
r2

R2

(
−dt2 + dx2

1 + dx2
2 + dx2

3

)
+
R2

r2
dr2 +R2dΣ2

5. (4.2.29)

This the metric for AdS5 × S5. The near horizon excitations are therefore type IIB

superstring theory on a AdS5 × S5 background.

So from the two different perspectives we have taken the low energy limit and

obtained supergravity on flat space decoupled from a second sector. This second

sector is either type IIB superstring theory on AdS5 × S5 or N = 4 SU(N) super

Yang-Mills theory. Since these two perspectives describe the same physics it is

natural to identify the two descriptions. It is therefore conjectured that type IIB

superstring theory on AdS5 × S5 is ‘dual’ to N = 4 SU(N) super Yang-Mills on

3 + 1 dimensions.

4.2.1 Evidence for the AdS/CFT correspondence

The AdS/CFT correspondence is a conjecture rather than a formally proved theory.

There is however an array of evidence to support it. [42, 43]

• The symmetries of the two theories match. Considering the AdS5 × S5 case.

N = 4 SU(N) super Yang-Mills has a SU(4) ∼ SO(6) R symmetry which

rotates its six scalar fields and four fermions. It also has the conformal sym-

metry in 4 dimensions, SO(2,4). These symmetries match to the space time

isometries of AdS5 × S5.
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• The spectra of the supersymmetric states on the two sides match. This includes

all modes of the graviton on AdS5 × S5.

• All of the amplitudes which are protected by supersymmetry and thus can be

easily compared are equal.

• When the duality is perturbed in a suitable manner to break the supersymme-

try or conformal symmetry the AdS5 × S5 geometry behaves in the expected

way from the field theory, i.e. confinement.

• Higher symmetries exist on both sides which allow certain quantities to be

calculated for all values of the coupling constant g, these have been matched

with consistency.

• Long string states can be matched together from the two theories.

4.2.2 The dictionary

Whilst we have so far noted that there is a duality between the gauge and gravity

theories, it is important to define exactly which quantities correspond for it to be

of any use. In particular we wish to be able to map the fields on the string side

to states in the conformal field theory. The duality may be expressed as a one to

one mapping between particle species in AdSd+1 and the single trace chiral primary

operators in the CFT. For simplicity we will consider scalar fields, φ, in Poincaré

coordinates. If the bulk field goes as z∆ as it approaches the boundary, then this

mapping can be realised as a scaled boundary limit, leading to a CFT operator, O,

of dimension ∆.

O(x) = C lim
z→0

z−∆φ(x, z) (4.2.30)

C is a constant which is dependent on convention and z = 0 defines the boundary of

the AdS space. This mapping can be checked under a scale transformation φ(x, z)→

φ(ζx, ζz). This results in a correctly scale transformed boundary operator O(x)→

ζ∆O(ζx).
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Similar analysis can be carried out for tensor fields. For example whenever a

CFT has a conserved current then there will be a corresponding gauge field in the

bulk. Once the mapping between states has been defined (4.2.30), it can be used to

calculate other quantities such as correlation functions.

4.2.3 AdS3

In the previous sections we have discussed the AdS/CFT correspondence with regard

to AdS5, but this is not the only duality between gauge and gravity theories. This

section will concentrate on AdS3 space, as this is required to study BTZ black holes

and the self-dual orbifold.

When we talk about the AdS3/CFT2 correspondence, we are in reality talk-

ing about the duality between type IIB string theory on AdS3 × S3 ×M4 and the

conformal field theory living on the two dimensional boundary of AdS3 space. M4

is a four dimensional manifold, for convenience we will usually take it to be T 4.

The AdS3 spacetime in global coordinates can be viewed as a cylinder (see fig-

ure 4.2). This duality can be derived again using a stack of D-branes, this time

however it requires two different types [42]. We start with a manifold which is

M4 × (6 dimensional flat space), D1 and D5 branes are then introduced. N1

D1 branes are introduced in a non-compact direction. N5 D5 branes are also added,

these wrap around the M4 dimensions, their remaining dimension is coincident with

the D1 brane. Again looking at different perspectives we can relate the near horizon

gravity theory with the gauge field which lives on the branes. The near horizon ge-

ometry becomes AdS3 × S3 where the radius of both the AdS space and the sphere

are given by the number of D branes and the string coupling.

ds2 = α′[
z2

R2
(−dt2 + dx2) +

R2

z2
dz2 +R2dΩ2

3] (4.2.31)

R2 = g6

√
N1N5 (4.2.32)

The resultantM4 volume in the near horizon geometry is then proportional toN1/N5

and independent of the volume of the original M4 factor.

The low energy dual field theory lives on the D1-D5 brane system. It is a 1+1

dimensional CFT with N = (4, 4) supersymmetry.
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4.2.4 Thermal states and AdS2

The AdS/CFT correspondence doesn’t only link pure AdS space to the ground state

of the gauge theory on the boundary, it also links bulk spacetimes which are asymp-

totically AdS to other (possibly excited) states on the boundary. Often the states

that are considered are thermal or at least have finite entropy. In AdS/CFT the ther-

mal objects that we consider are usually black holes. The eternal black hole has two

boundaries, on which the dual CFTs live [15]. These CFTs are entangled together

as information cannot pass from one to the other, they are causally disconnected.

To look at the state of a CFT on one particular boundary a trace must be taken over

the other boundary. The state will then be seen to be purely thermal, that is to say

the minimum amount of information, just the temperature, is known about it. In

AdS/CFT eternal black holes have two important features, horizons in the bulk and

two disconnected boundaries. We can see that the AdS/CFT correspondence links

thermal states in the bulk to thermal states on the boundary. The horizon gives

entropy to the gravitational theory and entanglement between the boundaries give

rise to entropy in the gauge theory. Extremal black holes have zero temperature but

finite entropy (this can be seen from their surface gravity and horizon area). As the

self dual orbifold is the near horizon limit of an extremal black hole it also falls into

this category.

AdS2 is an interesting case, in which the AdS/CFT correspondence is still poorly

understood. Whereas higher dimensional AdS spaces have a single boundary and

are dual to a pure CFT state, AdS2 has two distinct boundaries. Although the

boundaries are distinct, they are causally connected through the bulk and there is

no horizon present (see figure 4.2).

AdS2 geometry appears in the process of taking a near horizon limit for extremal

black holes in three, four and five dimensions (see section 3.4). It is thought there-

fore that the AdS2/CFT correspondence will have a direct bearing on microscopic

explanations for the Bekenstein-Hawking entropy of extremal black holes [45].

This leads to a number of issues; from a gravitational perspective there are no

horizons in the bulk. As entropy is proportional to horizon area it is unclear how

AdS2 can provide the entropy for extremal black holes. AdS2 has two boundaries
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on which a gauge theory can live, if separate CFTs live on these boundaries then

they can be entangled to provide the entropy required. The two boundaries however

are in causal contact, this should mean that there is some relation between the

Hamiltonians of the two CFTs.

Higher dimensional anti de Sitter spaces are dual to the ground state of the CFT

living on their boundaries. As AdS2 has finite entropy it cannot be dual to the

groundstate of a theory. It would be interesting to see if there is a geometry which

is dual to the ground state of a single copy of the CFT which lives on the boundary

of AdS2.

AdS AdS2 3

t t

Figure 4.2: AdS3 space is conformal to a cylinder with a single boundary, whereas

AdS2 is conformal to a strip which has two boundaries.

There have been a few attempts to construct a CFT which is dual to AdS2. [46]

deals with a super-conformal theory on a M2-brane moduli space, arising from a near

horizon limit in a multi-black hole background which will share many properties with

the CFT living on the boundary/boundaries of AdS2 space. [47] conjectures a matrix
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model to be dual to type 0A string theory on AdS2. [45] supports the idea that the

entropy in extremal black holes comes from the entanglement between states on

the two boundaries of the AdS2 factor in their near horizon limit. Calculations

can be done to show that the entanglement entropy between the two boundaries

on the AdS2 factor are equal to the black hole entropy. In many of these cases the

entanglement entropy has to be calculated holographically as the exact dual CFT

is unknown. We will return to these issues in chapter 6.
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Chapter 5

Extremal BTZ black holes

5.1 Introduction

The Banados-Teitelboim-Zanelli (BTZ) black hole [18,19] is a very useful laboratory

for exploring aspects of black holes and geometry in a simplified setting, as the

geometry is simply an orbifold of AdS3.

This chapter addresses the problem of finding an explicit set of vertex operators

for the untwisted and twisted sectors for the bosonic string on the zero-mass and

extremal rotating BTZ black holes. We consider an AdS3 × S3 geometry supported

by an NS-NS flux, corresponding to an F1-NS5 system compactified on a Ricci-flat

internal manifold. The world-sheet theory is a CFT with an ̂SL(2,R)k × ŜU(2)k

current algebra, with the level k being set by the NS-NS flux. We will discuss the

bosonic string in detail; the problem of extending our analysis to the superstring

will be discussed at the end of the chapter. We want to work in a parabolic ba-

sis for SL(2,R), which diagonalises the combination of generators corresponding

to the momentum along the compact circle in zero-mass BTZ. Here we show that

the hyperbolic Wakimoto representation introduced in [26], provides an appropri-

ate representation of the ̂SL(2,R)k current algebra. This representation has the

advantage that the expression for the vertex operators is more explicit than in the

parafermionic representation used in the non-extremal case.

We apply this calculation of the spectrum to study the tachyons in this back-

ground. Tachyons in the non-extremal non-rotating BTZ black hole were studied
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in [20], as an explicit example of the kind of quasi-localised closed string tachyons

discussed in [48].1 The idea is that if we consider string theory compactified on

a circle, when the size of the circle is smaller than the string length `s, there are

tachyonic winding modes. If the size of this circle varies over some base space, one

heuristically expects a tachyon which is confined to the region where the size of the

circle ≤ `s. It was found in [20] that there is a tachyon in the twisted sector NS-NS

ground state if the size of the circle at the black hole horizon is smaller than the

string scale,
√
kr+ ≤ `s. However, this tachyon is found not to be localised in the

near-horizon region, due to the coupling to the NS-NS field. As the zero-mass BTZ

black hole is the limit as r+ → 0, we would expect that in this case, the NS-NS

ground state in twisted sectors should always be tachyonic, and using the explicit

representation of the spectrum we obtain, that is indeed what we find. We also

extend the analysis to the rotating case, showing that tachyons arise in the twisted

sectors if
√
kr+ ≤ 2`s, as in the previous discussion of the non-rotating non-extremal

case. The study of tachyons in the M = 0 BTZ black hole has a couple of advantages

over the previous non-extremal case. Firstly, the expressions for the vertex operators

in the Wakimoto representation are more explicit than the parafermionic represen-

tation used in the previous case. Secondly, the geometry has a causal Killing vector

everywhere, so issues of tachyon condensation could be addressed in the M = 0 BTZ

black hole without having to deal with the complications of studying the behaviour

on a time-dependent background geometry in the region behind the horizon. We

will not address the question of the condensation of the tachyon, which remains a

challenging direction for future work.

In section 5.2, we review aspects of the M = 0 BTZ black hole. In section

5.3, we introduce the hyperbolic Wakimoto representation of the current algebra,

and use it to construct vertex operators for the untwisted sector states. We then

introduce a twist operator enforcing the orbifold condition, and use it to obtain the

twisted sector vertex operators. We discuss the condition for a tachyon to exist in

the spectrum, and argue that the NS-NS ground states in the twisted sector are

1As BTZ arises as the near-horizon limit of a charged black string, it is directly related to the

examples discussed in [49,50]. Other examples with a quasi-localised tachyon include [51,52].
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tachyonic, as expected. In section 5.4, we discuss the flat space limit, taking k →∞

while focusing on the neighbourhood of the singularity. In this limit, the zero mass

BTZ black hole reduces to the null orbifold of flat space [53,54].

In section 5.5, we extend the analysis to the extremal rotating BTZ black hole.

We show that the relevant orbifold action is chiral, with the action on left-movers

the same as for the zero-mass black hole while the action on right-movers is the

same as for the non-zero mass black hole. We can thus construct appropriate vertex

operators by combining the previous results for these two cases. We show that the

resulting set of vertex operators for twisted sectors is mutually local, and argue that

a tachyon appears when
√
kr+ ≤ 2`s, as expected.

In section 5.6, we discuss the extension of our results to the superstring. The

main open problem is to find a representation of the spin fields which diagonalises

the action of the spacetime angular momentum. Without such a representation,

we cannot explicitly construct vertex operators corresponding to the modes which

survive the orbifold projection in the NS-R and R-R sectors. The final section

summarises the chapter and considers possible routes for further investigation.

5.2 AdS3 worldsheet theory

Bosonic string theory on AdS3 is described by the SL(2,R) WZW model as given

in section 2.1. We can find the OPEs for the currents. They are

J bJ c =
iεbcaJ a

z − w
+

k
2
ηbc

(z − w)2
, J̄ bJ̄ c = −iε

bc
aJ̄ a

z̄ − w̄
+

k
2
ηbc

(z̄ − w̄)2
, (5.2.1)

where εabc is the totally antisymmetric tensor, with ε123 = 1, and ηab is the metric

defined by ηab = diag(1, 1,−1). There is a relative minus sign between the OPEs

for the left and the right moving currents, as noted in [31]. This minus sign can be

fixed using a relabelling process, setting Ja = J a, J̄1 = J̄ 1, J̄3 = J̄ 3, J̄2 = −J̄ 2.

The OPEs for both the left and right moving sectors are then identical for the new

currents,

J bJ c =
iεbcaJ

a

z − w
+

k
2
ηbc

(z − w)2
, J̄ bJ̄ c =

iεbcaJ̄
a

z̄ − w̄
+

k
2
ηbc

(z̄ − w̄)2
. (5.2.2)
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Assuming the currents have trivial monodromies, they will have a mode expansion

Ja =
∑
nεZ

z−n−1Jan J̄a =
∑
nεZ

z̄−n−1J̄an. (5.2.3)

The commutation relations for these modes are then

[Jan, J
b
m] = iεabcJ

c
m+n +

k

2
nηabδm+n,0, (5.2.4)

and similarly for the J̄a. In particular the zero modes form an SL(2,R)× SL(2,R)

subalgebra, corresponding to the spacetime isometries.

5.2.1 Zero mass black hole

The M = 0 BTZ black hole corresponds to writing the space in Poincaré coordi-

nates (3.1.2) and making an identification. In these coordinates the SL(2,R) group

element is

g =

 1
z

(t+x)
z

(x−t)
z

(x2+z2−t2)
z

 , (5.2.5)

so the metric is

ds2 =
k

z2
(−dt2 + dz2 + dx2) (5.2.6)

and the NSNS 2-form field is

B =
k

z2
dt ∧ dx. (5.2.7)

In Poincaré coordinates, the currents are

J1 = −ik
[
(∂x+ ∂t)

(x− t)
z2

+
∂z

z

]
, (5.2.8)

J2 = ik

[
−(x− t)

z
∂z +

(∂x− ∂t)
2

+
(∂x+ ∂t)

2z2
(2tx+ 1− x2 − t2)

]
,

J3 = −ik
[
−(x− t)

z
∂z +

(∂x− ∂t)
2

+
(∂x+ ∂t)

2z2
(2tx− 1− x2 − t2)

]
,

and

J̄1 = −ik
[
(∂̄x− ∂̄t)(x+ t)

z2
+
∂̄z

z

]
, (5.2.9)

J̄2 = ik

[
−(x+ t)

z
∂̄z +

(∂̄x+ ∂̄t)

2
+

(∂̄x− ∂̄t)
2z2

(−2tx+ 1− x2 − t2)

]
,

J̄3 = −ik
[
−(x+ t)

z
∂̄z +

(∂̄x+ ∂̄t)

2
+

(∂̄x− ∂̄t)
2z2

(−2tx− 1− x2 − t2)

]
.
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(In this notation ∂ = ∂z and ∂̄ = ∂z̄, where z and z̄ are the worldsheet coordinates).

To relate the spacetime energy and momentum to these currents, we consider

infinitesimal time and space translations. For the time-translation, the infinitesimal

transformation is

δ(t)g ≡ iε(t)(z)g − igε̄(t)(z̄) =
∂g

∂t
δt, (5.2.10)

where

iε(t)(z) =

 0 0

−1 0

 δt, iε̄(t)(z̄) =

 0 −1

0 0

 δt. (5.2.11)

Thus, in terms of the SL(2,R) generators

ε(t)(z) = (τ 2 + τ 3)δt ≡ τ+δt, ε̄(t)(z̄) = (τ 2 − τ 3)δt ≡ −τ−δt. (5.2.12)

A similar calculation can be performed for the infinitesimal transformations in the

x-direction, δ(x)g. Using the Ward identity (2.7) and substituting in ε and ε̄, it can

then be seen that

Qt = (J +
0 + J̄ −0 ), Qx = (−J +

0 + J̄ −0 ). (5.2.13)

In terms of the modified currents, the charges are then

Qt = (J+
0 + J̄+

0 ), Qx = −(J+
0 − J̄+

0 ). (5.2.14)

We obtain the M = 0 BTZ black hole by making periodic identifications along

the ∂x direction. The period of the identification can be changed by rescaling x, so

it is not a physical parameter. For convenience, we choose x ∼ x + 2π. Invariance

under this orbifold restricts states to have a quantised value of Qx,

(J+
0 − J̄+

0 ) ∈ Z. (5.2.15)

We therefore need to work in a parabolic basis for SL(2,R), which diagonalises J+
0 .

In the next section, we will use a Wakimoto representation for these currents to

implement this constraint.

5.3 Vertex operators on zero mass black hole

In this section, we construct vertex operators for the untwisted and twisted sector

states of the bosonic string on the M = 0 BTZ black hole.
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To implement the constraint (5.2.15), it is crucial to have a set of vertex operators

which diagonalise the action of J+
0 . It is therefore useful to have a representation of

the current algebra where J+ is as simple as possible. In the case of non-extreme

BTZ black hole in [20], we needed a representation which diagonalised J2, and

we could simply introduce a free boson representing the current J2, writing the

remainder of the vertex operator in terms of a parafermion. Since the current J+

is null, a simple free boson representation will not be possible. However, it turns

out that the hyperbolic Wakimoto representation of the ̂SL(2,R) current algebra

introduced in [26] provides a simple representation for J+ (the relevance of this

representation for the M = 0 BTZ black hole was previously noted in [32]). The

Wakimoto representation constructs the conserved currents in terms of a free boson

φ and anticommuting β − γ bosonic ghosts:

iJ+(z) = β(z), (5.3.16)

iJ−(z) = γ2(z)β(z) +
√

2k′γ(z)∂φ(z) + k∂γ(z), (5.3.17)

iJ1(z) = −γ(z)β(z)−
√
k′

2
∂φ(z), (5.3.18)

where k′ ≡ k − 2, and the OPEs for β,γ and φ are

β(z)γ(w) = −γ(z)β(w) ∼ 1

z − w
, (5.3.19)

φ(z)φ(w) ∼ − ln (z − w). (5.3.20)

This leads to the required OPEs for the conserved currents,

J+(z)J−(w) ∼ −k
(z − w)2

+
2iJ1(w)

z − w
(5.3.21)

J1(z)J±(w) ∼ ∓iJ±(w)

z − w
(5.3.22)

J1(z)J1(w) ∼
k
2

(z − w)2
(5.3.23)

Unlike in the non-zero mass BTZ black hole case, this is an explicit representa-

tion of the full current algebra. We introduce an identical representation for the

antiholomorphic currents J̄a, in terms of β̄(z̄), γ̄(z̄), φ̄(z̄).
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5.3.1 Untwisted sector vertex operators

We want to take a basis of vertex operators which diagonalise J+
0 . A vertex operator

V has J+
0 eigenvalue λ if J+V (z) = λV (z)

z−w . Using (5.3.19), this implies that

V (z) = eiλγf(β, φ). (5.3.24)

For AdS3, the ̂SL(2,R) current algebra is a spectrum generating algebra, and the

spectrum contains short string states in highest weight representations of the current

algebra: the continuous representations Ĉαj × Ĉαj for j = 1
2

+ is which correspond

to spacetime tachyons, and the discrete representations D̂±j × D̂±j for 1
2
< j < k−1

2
.

The spectrum in global AdS3 also contains long string states, but these do not

survive the orbifold projection, being replaced instead by the twisted sector states.

Diagonalising J+
0 corresponds to considering the representations of SL(2,R) in a

parabolic basis. For both the continuous and discrete representations of the current

algebra, in this parabolic representation, the eigenvalue λ can take all real values.

Since these are highest weight representations of the current algebra, we can

focus on the chiral primary operators; other vertex operators will be obtained as de-

scendents. Requiring that (5.3.24) be a chiral primary operator implies that f(β, φ)

is independent of β, as V would otherwise have too singular an OPE with J−. In-

cluding the anti-holomorphic sector, we can therefore take a basis of chiral primary

vertex operators in the untwisted sector of the form

Vjλλ̄(z, z̄) = eiλγ−
√

2
k′ jφeiλ̄γ̄−

√
2
k′ jφ̄. (5.3.25)

To implement the orbifold, we need to quantise the eigenvalue of J+
0 − J̄+

0 , that is,

we need

λ− λ̄ ∈ Z. (5.3.26)

In the next subsection, we will see how this quantisation condition can be imple-

mented using a twist operator. This will also allow us to construct vertex operators

for the twisted sector modes.

The energy momentum tensor for the WZW model is

T =
1

k − 2
ηab : JaJ b :, (5.3.27)
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which can be rewritten in terms of J+ and J− as

T =
1

(k − 2)
:

(
J1J1 − 1

2
J+J− − 1

2
J−J+

)
: . (5.3.28)

Working in the Wakimoto representation,

T = β∂γ − ∂2φ√
2k′
− (∂φ)2

2
. (5.3.29)

The conformal dimensions of the vertex operators (5.3.25) are then

h = h̄ =
−j(j − 1)

(k − 2)
. (5.3.30)

Thus, the label j on the vertex operators corresponds to the label on representations

of the current algebra.

5.3.2 Twist operator

So far, we have just described the vertex operators describing strings on AdS3 in a

basis which is adapted to working in Poincaré coordinates. To describe the M = 0

BTZ black hole, we would now like to impose the quantisation condition (5.2.15).

Following the same route as in the analysis of the non-extremal BTZ black hole [20],

we would like to impose this condition by requiring mutual locality of the untwisted

sector vertex operators (5.3.25) with an appropriate twist operator. The twisted

sector vertex operators will then be obtained by closure of the OPE including the

twist operator.

To do this we have to change our representation again and bosonize the β − γ

system as in [26],

β = ∂φ+, (5.3.31)

γ = φ−, (5.3.32)

where

φ± =
1√
2

(φ0 ± φ1), (5.3.33)

φi(z)φj(w) ∼ −ηij ln(z − w), ηij = diag(−1, 1). (5.3.34)
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We introduce a similar bosonization for β̄, γ̄. In this representation, the untwisted

sector chiral primary fields become

Vjλλ̄(z, z̄) = eiλφ−−
√

2
k′ jφeiλ̄φ̄−−

√
2
k′ jφ̄. (5.3.35)

This representation was used to discuss strings on AdS3 in Poincaré coordinates

in [55]. It was noted there that there are potential logarithmic branch cuts associated

with the definition of the boson φ+. We will now see (as also noted in [32]) that these

branch cuts are correctly interpreted as reflecting winding around the x direction,

describing the twisted sectors in the string on the M = 0 BTZ black hole.

The appropriate twist operators are

tn = ein(φ++φ̄+). (5.3.36)

This will impose the correct quantisation condition, as

tn(z)Vjλλ̄(w) ∼
exp(inφ+ + iλφ− −

√
2
k′
jφ)

(z − w)nλ

exp(inφ̄+ + iλ̄φ̄− −
√

2
k′
jφ̄)

(z̄ − w̄)nλ̄
, (5.3.37)

so the OPE will only be mutually local for λ− λ̄ ∈ Z.

We can also read off the twisted sector vertex operators from this OPE, obtaining

Vjnλλ̄ = exp(inφ+ + iλφ− −
√

2

k′
jφ) exp(inφ̄+ + iλ̄φ̄− −

√
2

k′
jφ̄). (5.3.38)

Note that the current algebra generators J−, J2 will have non-trivial monodromies

around a twisted sector vertex operator because of the dependence on φ+, reflecting

the twisting. The conformal dimensions for these twisted sector operators are

h = −j(j − 1)

k′
− nλ, h̄ = −j(j − 1)

k′
− nλ̄. (5.3.39)

The level-matching condition h− h̄ ∈ Z is satisfied as a consequence of the quantisa-

tion of the charge Qx in (5.3.26). Comparing this to the spectrum obtained for the

twisted sectors of the non-extreme BTZ black hole in [20], we see that the spectrum

there reduces to this one in the limit r+ → 0, as expected, with r+λthere = −λhere,

r+λ̄there = λ̄here. The full vertex operators involve taking descendents of these chiral

primary operators, and include a contribution from the internal CFT. The physical

state conditions will then be

−j(j − 1)

k′
− nλ+ hint +N = −j(j − 1)

k′
− nλ̄+ h̄int + N̄ = 1, (5.3.40)
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where hint, h̄int are the dimensions of the operator from the internal CFT, and N, N̄

are oscillator numbers for the current algebra. We assume that the internal CFT is

unitary, so hint, h̄int ≥ 0.

This is one of the main results of the chapter: by adopting this bosonised version

of the Wakimoto representation for the currents, we see that we can give completely

explicit expressions for the vertex operators for the full spectrum of string states on

the M=0 BTZ black hole, including twisted sector states. In [32], this representation

of the currents was also used to construct the Virasoro generators associated with

the asymptotic isometries of the spacetime in terms of the worldsheet currents. This

makes it possible to study the relation of the worldsheet theory to the dual CFT in

AdS/CFT, as was done for global AdS3 in [56, 57].

5.3.3 Tachyons in twisted sectors

As we are working with the bosonic string, we know there is a tachyonic ground

state in the untwisted sectors. We would like to see if there is a tachyon in the

twisted sectors. In the extension to the supersymmetric case, the expectation is

that there will be a choice of GSO projection which eliminates the ground state

in the untwisted sectors but retains it in the odd twisted sectors (corresponding to

choosing an antiperiodic spin structure on the orbifold circle in spacetime). Given

the appearance of a tachyon in twisted sectors for the non-extreme BTZ black hole

with
√
kr+ < 2ls [20], we would expect that there will be one here as well.

We need to consider carefully the definition of a tachyon. Classically, a spacetime

field is tachyonic if it has normalisable solutions which grow exponentially in time.

It is difficult to look directly for modes which grow exponentially in time from

the worldsheet point of view, as this would require complex λ, λ̄, which makes it

difficult to see how we can satisfy the physical state condition h = h̄ = 1 in the

twisted sectors. We will therefore look instead for modes with zero energy; if a

spacetime field has a normalisable solution of zero energy, it should generically also

have solutions which grow exponentially in time, by continuity.2 Since the x direction

2In a black hole background, modes supported close to the horizon have low energy as a result
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is spacelike everywhere in the M = 0 BTZ black hole, it is physically reasonable to

further restrict to modes which also have zero momentum along x; these should be

the most tachyonic modes for a field with a given mass-squared. Thus, it suffices

for us to consider modes with λ = λ̄ = 0.

Thus, we are looking for normalisable modes with λ = λ̄ = 0, satisfying the

physical state condition. In this case, the physical state condition for the twisted

sectors is identical to that in the corresponding untwisted sector, and the twisted

sector states will satisfy the physical state condition whenever the corresponding

untwisted sector states do. In particular, there are physical states obtained by

spectral flow from the tachyon in the untwisted sector, which have j(j − 1) < 0.

The remaining condition is normalisability. In the untwisted sector, we know

that we have the usual bosonic string tachyon, which has normalisable solutions with

λ = λ̄ = 0. The twist operator is expressed in terms of the Wakimoto representation,

and not in terms of the spacetime coordinates, so it is not possible to rigorously relate

the normalisability of twisted sector modes to the corresponding untwisted sector

ones, but we expect that at least for large k, the twisting will not significantly

modify the dependence on the radial coordinate, so twisted sector modes will be

normalisable if the corresponding untwisted sector mode is. Thus, we expect that

the λ = λ̄ = 0 vertex operators in twisted sectors obtained from the tachyon in

the untwisted sector will be normalisable, and hence give modes of a tachyon in the

twisted sectors.

As in [20], these modes have roughly the same radial behaviour as for the un-

twisted sector tachyon, so they are not well-localised in the neighbourhood of the

horizon. The twisted sector states are essentially long string states, which can prop-

agate to the asymptotic boundary of the M = 0 BTZ black hole at low cost in

energy because of the coupling the NSNS 2-form field.

The expectation is that while the untwisted sector tachyons are removed by

the GSO projection in the supersymmetric theory, the twisted sector tachyons will

of the gravitational redshift, so a non-tachyonic field will have an energy spectrum starting from

zero. However, it will not have a normalisable mode of strictly zero energy, so we believe this

condition is still physically appropriate even in the presence of a black hole horizon.
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remain. We will comment on this again when we discuss the extension of our work

to the superstring later.

5.4 The Null orbifold limit

An important source of intuition and a useful check on the calculations in studying

orbifolds of AdS3 is to consider the limit k → ∞, in which the space becomes flat.

For the non-zero mass BTZ black hole studied in [20], there were two flat space

limits of interest, the near horizon limit which focused on the region near the event

horizon, and the Milne limit, which focused on the singularity. For the M = 0 BTZ

black hole the event horizon and the singularity are at the same point in space,

z = ∞ in the coordinates of (5.2.6). The two limits are therefore replaced by one,

the null orbifold limit. In this section, we consider the behaviour of the untwisted

and twisted sector states we constructed above as we take this limit. This limit is

most closely analogous to the Milne limit in [20].

To show that the M = 0 BTZ black hole reduces to the null orbifold as we take

k →∞ focusing on the region near the Poincaré horizon at z =∞, we need to make

a change of coordinates. If we define new coordinates

y+ =

√
k

z
, y− =

√
k(t+ z), y = x, (5.4.41)

then the metric (5.2.6) becomes

ds2 = −(y+)2(dy−)2

k
− 2dy+dy− + (y+)2dy2. (5.4.42)

Taking the limit k → ∞ for fixed y±, y, the first term vanishes, and we can see

that the metric reduces to the null orbifold of [53,54], which was analysed in string

theory in [58,59]. In these coordinates, the null orbifold is simply the identification

y ∼ y + 2π. The quantization condition associated with this orbifold identification

remains simply λ − λ̄ ∈ Z. We should also consider the limit for the NSNS 2-form

field (5.2.7). To obtain a finite limit as k → ∞, we first need to make a gauge

transformation to write

B =
k

z2
(dt+ dz) ∧ dx =

(y+)2

√
k
dy− ∧ dy, (5.4.43)
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so in this gauge the 2-form vanishes in the limit as k → ∞. The contribution

from the 2-form is still important to see that the currents Ja, J̄a are conserved to

sub-leading order as we take the limit, as in [20].

It is also convenient to rewrite the null orbifold in Cartesian coordinates; the

relation is

x+ = y+, x− = y− +
1

2
y+y2, x = y+y. (5.4.44)

In these coordinates, the null orbifold metric is simply flat, but the identification is

more complicated:

(x+, x−, x) ∼ (x+, x− + 2πx+ 2π2x+, x+ 2πx+). (5.4.45)

Using (5.2.8) the currents can be calculated in terms of y±, y:

J1 = −i
√
k(y+∂y + y∂y+)− iy+∂y− + iy−∂y+ − i(y+)2y∂y +O(

1√
k

), (5.4.46)

J2 = −i
√
k(y+y∂y + ∂y− +

y2∂y+

2
− ∂y+

2
)

+i(−(y+)2y2∂y

2
+ y+y−∂y +

(y+)2∂y

2
− y+y∂y− + y−y∂y+) +O(

1√
k

),

J3 = i
√
k(y+y∂y + ∂y− +

y2∂y+

2
+
∂y+

2
)

−i(−(y+)2y2∂y

2
+ y+y−∂y − (y+)2∂y

2
− y+y∂y− + y−y∂y+) +O(

1√
k

).

This can be more simply re-expressed in terms of x±, x:

J1 = −i
√
k∂x− ix+∂x− + ix−∂x+ +O(

1√
k

), (5.4.47)

J2 = −i
√
k(∂x− − ∂x+

2
) + i(x−∂x− x∂x− +

1

2
(x+∂x− x∂x+)) +O(

1√
k

),

J3 = i
√
k(∂x− +

∂x+

2
)− i(x−∂x− x∂x− − 1

2
(x+∂x− x∂x+)) +O(

1√
k

).

We see that in the flat space limit k → ∞, the leading order (O(
√
k)) terms re-

produce the Cartesian translation currents on flat space. As in [20], the subleading

parts involve Lorentz transformations in the flat space limit, and are required to

make the total current conserved to subleading order taking into account the effects

of the 2-form field. The same can be done for the antiholomorphic sector.
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We can use this expression for the currents to relate the Wakimoto variables to

the coordinates in this limit,

β = −
√
k∂x+ − (x+∂x− x∂x+), (5.4.48)

γ =
2√
k
x− +

2

k
xx−, (5.4.49)

φ = −
√

2

k′

(√
kx+ x+x−

)
. (5.4.50)

This in turn implies that the bosonised versions of the Wakimoto variables are closely

related to the x±, x coordinates in the flat space limit; to leading order,

φ+ = −
√
kx+, φ− =

2√
k
x−, φ = −

√
2x. (5.4.51)

By studying the flat space limit of the antiholomorphic currents J̄a, one can similarly

learn that

φ̄+ = −
√
kx̄+, φ̄− = − 2√

k
x̄−, φ̄ =

√
2x̄ (5.4.52)

to leading order. Note that the factors of 2 in these expressions appear because in

units with α′ = 1, the flat space coordinates have OPEs xµxν ∼ 1
2
ηµν ln(z − w).

5.4.1 States and vertex operators

In the untwisted sector, the states which survive in this flat space limit are those

with λ − λ̄ ∈ Z ∼ O(1) and λ + λ̄ ∼ O(
√
k) (since we hold y− =

√
k(t + r) fixed

in the limit). To have h ∼ O(1), we need j ∼ O(
√
k), and similarly for the barred

quantities. In the twisted sectors, we still have λ−λ̄ ∈ Z ∼ O(1) and λ+λ̄ ∼ O(
√
k),

since the Qx and Qt eigenvalues are unaffected by twisting. However, in twisted

sectors h = − j(j−1)
k−2

− nλ, so h ∼ O(1) in twisted sectors requires j ∼ O(k3/4) to

cancel the
√
k contribution from λ. This cancellation can be achieved for modes

in the continuous representations of the current algebra if λ > 0, and for modes in

the discrete representations of the current algebra if λ < 0. Thus, both tachyonic

and non-tachyonic twisted sector modes survive in the flat space limit, but with this

curious correlation with the sign of λ. We expect that the resulting spectrum in the

flat space limit should agree with the one obtained in [58].

We note that as in the Milne limit in [20], in general the modes which survive

in twisted sectors in this flat space limit are not the ones which are obtained by
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twisting from the untwisted sector states which survive in the limit. This can also

be seen by observing that the twist operator (5.3.36) becomes, to leading order,

tn = e−n
√
k(x++x̄+), (5.4.53)

and hence does not have a well-defined flat space limit. Thus, our twist operator

construction does not have a counterpart in the null orbifold.

Despite the failure of the twist operator to survive in the flat space limit, one

might still hope that we could follow our vertex operators in this limit, since we

have an explicit construction of the vertex operators in terms of the Wakimoto

representation and we understand how these Wakimoto fields are related to flat

space coordinates in the limit. Disappointingly, this does not work. If we consider

the vertex operator (5.3.25) and substitute in the leading order relations between

the Wakimoto fields and the coordinates (5.4.51), we obtain

Vjλλ̄(z) = e
i 2λ√

k
x−+j 2

√
k

k−2
x
e
−i 2λ̄√

k
x̄−−j 2

√
k

k−2
x̄
. (5.4.54)

In the limit, let us write 2λ =
√
kE + Px, 2λ̄ =

√
kE − Px, j =

√
km. Then the

vertex operator is to leading order

Vjλλ̄(z) = eiEx
−+2mxe−iEx̄

−−2mx̄. (5.4.55)

We see that this expression has lost the dependence on Px, so it degenerates in the

flat space limit. This failure to obtain a good representation of the vertex operators

in the flat space limit is in retrospect not unexpected: the ̂SL(2,R) × ̂SL(2,R)

structure we used in constructing our vertex operators degenerates in this limit.

Although the metric and spectrum smoothly go over to the flat space orbifold in

this limit, a new representation of the vertex operators is necessary. Similarly, when

we take the r+ → 0 limit of the non-zero mass BTZ black hole, the spectrum of [20]

reduces to the one we have obtained here for the zero-mass black hole, but the vertex

operators do not have a smooth limit. A new representation is needed in the limit,

reflecting the fact that we are considering a different orbifold.

Thus, while the orbifold we are considering reduces to the null orbifold in the

limit k →∞, the representation of the vertex operators in terms of Wakimoto fields

degenerates in this limit, so we do not seem to be able to glean new insight into the

null orbifold from our construction.
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5.5 The extremal rotating black hole

We can easily extend this investigation of the zero mass BTZ black hole to study

extremal rotating BTZ black holes, with M = J . Rotating BTZ black holes are

orbifolds of AdS3 with an asymmetric action on the worldsheet; as we will see below,

the extremal rotating black holes correspond to an orbifold where the action on the

left-movers is the same as for the zero mass BTZ black hole, while the action on the

right movers is the same as for the non-zero mass black hole studied in [20]. Thus,

by combining our previous results, it is easy to determine the spectrum in this case

as well. The construction of the twisted sectors is based on an appropriate ansatz,

for which we then explicitly check the mutual locality.

The extremal rotating BTZ black hole has the metric

ds2 = k

(
−

(r2 − r2
+)2

r2
dτ 2 +

r2

(r2 − r2
+)2

dr2 + r2(dφ−
r2

+

r2
dt)2

)
, (5.5.56)

where φ is a periodic coordinate, φ ∼ φ + 2π. The spacetime is locally AdS3, with

periodicity of φ corresponding to the action of an orbifold. If we write AdS3 in the

embedding coordinates x0, x1, x2, x3 in R2,2 as the hyperboloid −x2
0−x2

1 +x2
2 +x3

3 =

−k2, the orbifold which gives us the above extremal rotating black hole is along the

Killing vector [18]

ξ = r+(J03 + J12) + J01 − J02 − J13 + J23, (5.5.57)

up to conjugation, where Jab are the Lorentz transformations on R2,2, Jab = ηbcx
c∂a−

ηacx
c∂b. In the coordinate system of (5.5.56), this Killing vector is ξ = ∂φ.

The extremal rotating BTZ metric is locally AdS3, so it can be related to the

Poincaré coordinate system (3.1.11) we used earlier. The coordinate transformation

z = R−1/2er+(φ−t), t+ x = e2r+(φ−t), t− x = −(T + φ), (5.5.58)

where

R =
1

2r+

(r2 − r2
+), T = t− r+

r2 − r2
+

, (5.5.59)

converts the metric (5.2.6) into the metric (5.5.56). This corresponds to writing the

group element of SL(2,R) as

g =

 R
1
2 e−r+(φ−t) R

1
2 er+(φ−t)

(T + φ)R
1
2 e−r+(φ−t) R

1
2 er+(φ−t) (T + φ+ 1

R

)
 . (5.5.60)
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As in section 5.2.1, we can determine the conserved charge associated with φ trans-

lation. The action of φ translation on the group element is

δ(φ)g =

 0 0

1 0

 g + r+g

 −1 0

0 1

 , (5.5.61)

so the conserved charge is

Qφ = −J+
0 + r+J̄

1
0 . (5.5.62)

Note that this naive expression will apply for the untwisted sectors; for the twisted

sectors, there is the possibility of a total derivative term, which we need to determine.

Thus, we see that the action in terms of SL(2,R) × SL(2,R) is chiral, with

the left moving part looking like that of a massless BTZ black hole we have stud-

ied above, while the right moving part looks like that of the massive BTZ black

hole. It is therefore natural to choose the parafermionic representation for the right

movers, and the Wakimoto representation introduced above for the left movers. The

parafermionic representation for the right movers involves writing the currents as

J̄1 = −i
√
k

2
∂X̄, J̄± = ξ̄±e±

√
2
k
X̄ , (5.5.63)

where X̄ is a free boson, X̄(z̄)X̄(w̄) ∼ − ln(z̄ − w̄), and ξ̄± are parafermions repre-

senting the remaining ̂SL(2,R)k/Û(1) algebra 3.2.2. Thus, the vertex operators in

the untwisted sector are

Vjλλ̄(z) = eiλγ−j
√

2
k′ φΨ̄jλ̄e

−i
√

2
k
λ̄X̄ (5.5.64)

where Ψ̄jλ̄ are parafermionic operators with conformal dimension h̄Ψ̄ = − j(j−1)
k′
− λ̄2

k
.

We know that these untwisted sector vertex operators are mutually local for the

operators corresponding to modes of fields on AdS. This gives us some information

about the OPE of the parafermionic operators, as the OPE of two such vertex

operators will only be mutually local if

m− 2

k′
jj′ − 2

k
λ̄λ̄′ ∈ Z (5.5.65)

where m characterises the leading singularity in the OPE of the parafermionic op-

erators,

Ψ̄jλ̄Ψ̄
′
j′λ̄′ ∼

O
(z − w)m

. (5.5.66)
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We construct an ansatz for the twisted sector states in this orbifold by combin-

ing the results for the twisted sectors from our earlier analysis of the massive and

massless black holes: that is, we guess that the twisted sector vertex operators are

simply the right moving part of the twisted sector state from the massive black hole,

combined with the left moving part of the twisted sector state from the massless

black hole. This gives

Vjλλ̄n(z) = exp

(
inφ+ + iλφ− − j

√
2

k′
φ

)
Ψ̄jλ̄ exp

(
−i
√
k

2

[
λ̄− k

2
nr+

]
X̄

)
(5.5.67)

The conformal dimensions for this operator are

h = −j(j − 1)

k′
− nλ, h̄ = −j(j − 1)

k′
− λ̄r+n+

kn2r2
+

4
. (5.5.68)

As in section 5.3.3, we should have a tachyon in the twisted sectors if we can satisfy

the physical state condition for a mode with j(j − 1) < 0 and λ = λ̄ = 0. This

requires
√
kr+ < 2, as in [20], so there is a tachyon if the size of the spatial circle at

the black hole horizon is small enough. As in section 5.3.3, this tachyon will not be

well localised in the region near the horizon.

Level matching will require that h− h̄ ∈ Z, which implies

−nλ+ r+nλ̄−
kn2r2

+

4
∈ Z. (5.5.69)

We would like to see this arise as a consequence of the quantisation of angular

momentum imposed by the orbifold. Naively, the generator of translation in φ is

(5.5.62), which would imply a quantisation condition −λ + r+(λ̄ − knr+/2) ∈ Z,

which does not agree with (5.5.69). Hence, as in [27], we will need to include a total

derivative term in the definition of Qφ, so that in twisted sectors

Qφ = −J+
0 + r+J̄

1
0 +

knr2
+

4
, (5.5.70)

implying a quantization condition

−λ+ r+λ̄−
knr2

+

4
∈ Z, (5.5.71)

consistent with (5.5.69). Note that unlike in non-rotating cases, the quantization

condition on λ, λ̄ depends on the twist n, so the twisted sector states cannot be
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obtained by considering the OPE of untwisted sector states with an appropriate

twist operator. Such a procedure would get the quantization condition wrong.

We then need to verify mutual locality of these twisted sector states. To deter-

mine mutual locality consider an OPE between Vjλλ̄n(z) and Vj′λ′λ̄′n′(w). It turns

out that the relevant condition for mutual locality is

m− 2

k′
jj′ − nλ′ − nλ− 2

k

(
λ̄− k

2
nr+

)(
λ̄′ − k

2
n′r+

)
∈ Z. (5.5.72)

This is satisfied as a consequence of (5.5.69) and (5.5.65). Therefore the correct spec-

trum for the twisted sector is indeed given by (5.5.67); this completes the untwisted

sector spectrum to obtain a mutually local set of operators with the appropriate

set of twisted sectors, indexed by a single integer denoting the twist. It would be

interesting to see if the modular invariance of the resulting partition function could

be explicitly verified, but this will be complicated to check, as is generally the case

for asymmetric orbifolds, so we will not attempt to do so explicitly here.

5.6 Supersymmetry

In this section, we will discuss the extension of our analysis of the spectrum to the

superstring. This analysis is particularly interesting for the M = J extremal rotat-

ing black holes considered here, as these are supersymmetric backgrounds for the

superstring. Also, from the point of view of considering the tachyons, the tachyons

in twisted sectors are most interesting in the superstring, where we expect the GSO

projection to eliminate the tachyon in the untwisted sector. For the supersymmetric

choice of spin structure on spacetime, spacetime supersymmetry implies that there

are no tachyons, but if we make the opposite choice of spin structure, we expect the

tachyons in odd twisted sectors to survive the GSO projection.

Unfortunately, we are not able to construct the spectrum for the superstring

explicitly. We have not succeeded in extending the nice representation of SL(2,R)

in terms of Wakimoto fields to the superstring, so we have not succeeded even in

constructing an explicit representation for the untwisted sector modes which survive

the orbifold projection condition. In this section, we will describe the problem,

focusing on the case of the M = 0 black hole for simplicity.
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We consider Type II String theory on BTZ ×S3×T4 as described by a ̂SL(2,R)

super-WZW model at level k. The super-current algebra is

Ja = ja − i

k
εabcψ

bψc (5.6.73)

with ψa having the usual OPE structure for a fermion,

ψa(z)ψb(w) ∼ k

2

ηab

(z − w)
(5.6.74)

ja(z)ψb(w) ∼ 0 (5.6.75)

The OPEs for the bosonic currents ja are almost identical to the previous section,

while the OPEs for the supercurrent Ja are very similar,

ja(z)jb(w) ∼ k̃

2

ηab

(z − w)2
+ i

εabcj
c

(z − w)
(5.6.76)

Ja(z)J b(w) ∼ k

2

ηab

(z − w)2
+ i

εabcj
c

(z − w)
(5.6.77)

where k̃ = k + 2. The world-sheet N = 1 super-current is

G(z) =
2

k

(
gabψ

ajb − i

3k
εabcψ

aψbψc
)
. (5.6.78)

For the superstring, the generator of x translations is again (5.2.13), but where

Ja are now the total currents given in (5.6.73). We therefore want to find a rep-

resentation of the total currents which simplifies the action of J+, and use this

representation to write the untwisted sector vertex operator in a form which diag-

onalises the action of J+. We can use a Wakimoto representation as before for the

bosonic currents ja, but the fermionic contribution to Ja is more problematic.

In [20,31], the fermions were rewritten in terms of a set of bosonsHI , I = 1, . . . , 5,

with OPEs

HI(z)HJ(w) = −δIJ ln(z − w), (5.6.79)

such that the spin fields

Sα = e
i
2
εIHI (5.6.80)

with εI = ±1 diagonalise the action of J2 and hence Qφ. In our case, it is J+ which

is relevant, and this involves a combination ψ1(ψ3 +ψ2) ≡ ψ1ψ+. We could formally

define a field H∗ by

∂H∗ = ψ1ψ+, (5.6.81)
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but this will not have the OPE of a free boson, so we cannot use it in constructing

the spin fields in a way analogous to [20,31]. As a result, we have no simple route to

constructing an appropriate basis of spin fields in this case which diagonalises the

action of Qx. We leave this as an open problem for future work. It is clearly very

interesting to try to understand these simple examples of BPS black holes from the

worldsheet perspective, so we hope further progress will be possible.

5.7 Discussion

The main result of this chapter is that we have obtained the full spectrum and dis-

cussed the tachyons appearing in this spectrum for the bosonic string on the M = 0

BTZ black hole and on the extremal rotating M = J black hole. The spectrum on

the zero mass black hole is just the limit of the spectrum obtained for the massive

black hole in [20], as we would expect. However, because the zero mass black hole

corresponds to a parabolic orbifold of AdS3, the description of the states in this

case is quite different from that of [20]. The use of the Wakimoto representation

in the M = 0 BTZ black hole enables us to give a fully explicit description of the

vertex operators for states in both untwisted and twisted sectors. This makes this

example a particularly interesting laboratory for further explorations of worldsheet

string theory on these black hole backgrounds; compared to the parafermionic rep-

resentation of the vertex operators employed for the massive black hole in [20], this

more explicit representation ought to give us greater control. Unfortunately, how-

ever, this description of the vertex operators appears to degenerate in the flat space

limit, so our understanding of the limit where we zoom in on the region near the

singularity is not significantly improved by the use of this representation.

For the zero mass black hole, we argued that the twisted sector modes obtained

from the bulk tachyon in the untwisted sector are also tachyonic. The analysis of

these tachyons will closely parallel the corresponding analysis in [20], so we have not

given much detail in our discussion of the tachyons. These modes are not localised

in the region near the horizon, as the coupling to the NSNS 2-form field makes a

negative contribution to the energy of the string, allowing it to propagate to large
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distances. The study of the condensation of these tachyons would be an interesting

direction for further work, but because the tachyon is not localised, it may be quite

challenging.

We extended our work on the zero mass black hole by considering the extremal

rotating black hole, which corresponds to an asymmetric orbifold, with the action

on left movers the same as for the zero mass black hole and the action on right

movers the same as for the massive non-rotating black hole. We were therefore able

to construct a proposal for the spectrum of strings on this background by combining

our work on the zero mass black hole with previous work on the massive black hole.

Finally, we considered the extension to the superstring. For the elliptic or hyper-

bolic orbifolds, it was possible to extend the orbifold construction to the superstring

by choosing an appropriate set of spin fields which were eigenfunctions of the mo-

mentum along the compact direction, allowing us to construct superstring vertex

operators which satisfy the appropriate quantisation condition. We were unable to

find a corresponding basis for the parabolic orbifold which gives the M = 0 BTZ

black hole; as a result, we cannot construct superstring vertex operators which are

well-defined on the orbifold spacetime. This technical problem appears to be the

most important direction for further work: obviously, the main motivation for inter-

est in the M = 0 and M = J black holes is that they are supersymmetric solutions

in appropriate supergravity theories [60]. Also, the study of the tachyons in twisted

sectors is mainly interesting in the context of the superstring, where we expect to

be able to choose a GSO projection which will project out the untwisted sector

tachyon but keep the tachyonic modes in odd twisted sectors. Any further progress

on these directions will require an appropriate construction of vertex operators for

the superstring.
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Chapter 6

The self-dual orbifold

6.1 Introduction

There has recently been interest in the holographic relation between spacetime ge-

ometries with AdS2 factors and their dual field theories. One example is the proposed

Kerr/CFT correspondence [22], which attempts to extend holography to provide a

description of the near-horizon region of uncharged extreme black holes. Another

comes from studies of field theories at finite charge density in the AdS/CFT cor-

respondence, which involve a particular Reissner-Nordström AdS black hole. This

black hole has a near-horizon AdS2 × Rn geometry in the low-temperature limit,

which controls the long-distance transport properties of the field theory [23]. String

theory in AdS2 arises in the near-horizon limits of a wide variety of four and five

dimensional black holes in both asymptotically flat (e.g., [61]) and asymptotically

AdS space (e.g., [62]).

The self-dual orbifold of AdS3 [21] (see section 3.3) is a simple example of a ge-

ometry with an AdS2 factor. This spacetime is a circle fibration over AdS2, with an

SL(2,R) × U(1) isometry group, and can be viewed as arising either as a quotient

of AdS3, or as the near-horizon limit of a BTZ black hole [35,37]. We can use these

descriptions to understand the dual field theory description in detail. It has two

asymptotic boundaries; from the quotient point of view, this is because the quotient

has fixed points on the conformal boundary of AdS3, and excising these fixed points

divides the boundary into two disconnected regions. The conformal geometry on
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these boundaries is a null cylinder; that is, a flat two-dimensional spacetime with a

null direction compactified. Working in coordinates which only covered one bound-

ary, it was argued in [35,37] (see section 6.2) that the dual field theory is the Discrete

Lightcone Quantization (DLCQ) of the original two-dimensional field theory dual to

AdS3, with the chiral sector which survives DLCQ in a thermal state (see also [61]).

This raises a question: Are there any other states of the DLCQ theory that have a

dual description as classical spacetimes that are asymptotic to the self-dual orbifold?

In [37], the geometry was considered in the analogue of Poincaré coordinates,

which only see one boundary of the spacetime, but the global self-dual orbifold has

two disjoint boundaries [35]. This raises a second long-standing question in the dual

CFT description of asymptotically AdS2 spacetimes: Are they dual to a single CFT,

or to two copies of the CFT living on the two boundaries?

In Sec. 6.3 we will argue that the self-dual orbifold should be thought of as dual

to two copies of the CFT. We will first give a general argument based on the bulk

diffeomorphism symmetries. We will then consider the orbifold global coordinates

as coordinates on AdS3 (without considering the quotient); here it is clear that

there are independent CFT degrees of freedom on the two boundaries. Finally,

we will consider the self-dual orbifold in the “black hole” coordinate system which

was obtained by considering a near-horizon, near-extremal limit of the non-extremal

BTZ black hole in section 3.3.1. These coordinates cover regions of both boundaries.

Since the non-extremal BTZ black hole is described by an entangled state in two

copies of a CFT, in the near-horizon infrared limit we still have a pair of entangled

CFTs (a similar argument was previously given in [45]). However, the infrared limit

restricts both theories to a chiral sector, and these sectors are entangled. This is

consistent with the picture of [37]; tracing over one boundary will give us a thermal

state in a chiral CFT. We can also see the proposed entanglement by thinking of

the orbifold global coordinates as coordinates on AdS3: these cover the conformal

boundary of AdS3 in two patches, and rewriting the vacuum state of a CFT on the

conformal boundary in these coordinates gives rise to entanglement of the right-

moving degrees of freedom. This interpretation is also consistent with the general

picture that the connectivity of regions of the boundary through the bulk is dual to
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entanglement between these regions in the CFT [63].

Extrapolating from this example suggests that the dual of any spacetime with

an AdS2 factor is a 1 + 1 CFT with one chiral sector in its ground state, and the

other in an entangled state with non-zero entropy. The entanglement plays a crucial

role in explaining the spacetime structure. This is quite different from the dual

description of higher-dimensional AdS spaces, which correspond to ground states of

a dual CFT, with no entropy.

The global description of AdS2 also leads to a puzzle – the two boundaries are

causally connected, implying non-zero commutators for operators in the two copies

of the CFT (Sec. 6.3.4)1. Entanglement cannot reproduce these commutators: if the

two copies of the CFT are independent, the operators should commute. Within the

patches of AdS2 that are recovered by the near-horizon limit of higher dimensional

black holes, the puzzle is avoided because there is no causal connection between the

regions of the two boundaries covered by the “black hole” coordinate systems. The

puzzle would be resolved if we were restricted to only consider correlation functions

between spacelike separated operators on the two boundaries of AdS2, perhaps in

view of the AdS2 instability of [38]. Understanding whether such restrictions can be

implemented is an important goal for future work.

The other main aim of this chapter is to construct new examples of asymptot-

ically self-dual orbifold spacetimes (Sec. 6.4) corresponding to different states of

the dual field theory. One motivation is to identify geometries dual to particular

pure states that contribute to the entropy of the spacetime as in the black hole

microstates program (see [65] for a review). Another motivation is that in the Kerr-

CFT correspondence, it has been shown that there are no non-trivial asymptotically

near-horizon extremal Kerr geometries [66, 67]; it would be interesting to know if

this is a general feature of spacetimes with AdS2 factors.

We first show that there is a quotient of AdS3 which is the natural dual to the

ground state for a single copy of a CFT on a null cylinder, and which can be obtained

1It is interesting to note that this problem is special to the two-dimensional case; in higher

dimensions, [64] shows that generically spacetimes cannot have disconnected boundaries that are

causally connected through the bulk.
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as a near-horizon limit of the M = 0 BTZ black hole.2 This is a quotient along a

null direction in the bulk, so the geometry has closed null curves, and the duality

may only be a formal correspondence in this case. This is similar to the Schrödinger

spacetime [69, 70], where this issue was pointed out in [71]. We then construct a

rich class of examples of asymptotically self-dual orbifold spacetimes by applying a

solution-generating transformation [72]. These geometries could be interpreted in

the dual CFT as more restricted thermal ensembles where the local charge density

is prescribed and not just the total charge. However, they are mildly singular in the

bulk on the boundary of the region covered by the orbifold Poincaré coordinates. It

is worth noting that this solution-generating approach relies on the existence of a

globally null Killing vector, which appears in the self-dual orbifold but not in the

higher-dimensional solutions with AdS2 factors such as near-horizon extremal Kerr

or the near-horizon limits of extreme Reissner-Nordström AdS black holes.

6.2 Chiral CFT

The geometry of the self-dual orbifold was discussed in various coordinate systems

in section (3.3). Here we use the near horizon limit coordinates to show that the

dual CFT is chiral.

The identifications (3.3.55) describe a circle of proper size 2πr+e
r0 viewed in

a boosted frame. So taking this limit corresponds to a DLCQ limit in the CFT

on the (u, v) cylinder, where we take the size of the circle to zero and the boost

to infinity to recover a null identification, giving the CFT on a null cylinder. In

general, this DLCQ limit will restrict us to the ground state for the right-moving

excitations, as the energy of right-moving excitations is infinitely blueshifted by the

boost: Ev = Eṽe
−2r0 . We might think that we could take Eṽ → 0 at the same time

to recover a finite energy in the boosted frame, but since the theory lives in finite

volume, there is a finite density of states, and the energy spectrum is quantised.

The spacing is at least ∆Eṽ ∼ e−S ∼ e−c, where c is the central charge. Although

this discreteness in the spectrum cannot be seen from the classical spacetime point

2This material, which appears in Sec. 4.2, has overlap with [68].
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of view, it will ensure that we are ultimately left with only the ground states for

the right-movers, with L0 = c
24

. The dual CFT is thus a chiral theory, with only

left-moving excitations.

The left-moving excitations are unaffected by this DLCQ procedure, so we would

expect them to be in the same state as before we took the near-horizon limit. The

dual of the extreme BTZ black hole is a thermal state for the left-movers, at tem-

perature TL = r+/2π. Since we have included a factor of r+ in our definition of the

identifications, the temperature with respect to our coordinate u is in fact T = 1/2π.

Thus, the proposal of [37] was that the dual description was a chiral CFT, with

the left-movers in a thermal state at temperature T = 1/2π. In section 6.3, we will

refine this proposal by considering the description of the self-dual orbifold including

both boundaries, and propose that the dual is an entangled state which reduces

to this thermal state on tracing over the CFT degrees of freedom on one of the

boundaries.

6.3 Holographic dual of the global spacetime

The self-dual orbifold has two boundaries. We would like to understand whether this

should be interpreted as the dual of a pair of field theories on these two boundaries, or

whether there should be a single CFT dual to the spacetime, as has been proposed for

AdS2 in [61]. We will argue from several points of view that the correct interpretation

seems to be as an entangled state in two disjoint copies of the CFT, living on the

two boundaries of the spacetime. We will see that a challenge to this interpretation

arises because the two boundaries of the self-dual orbifold are causally connected,

suggesting that there is an interaction between them.

6.3.1 Diffeomorphisms and Hamiltonians

There is a simple general argument using the bulk diffeomorphism symmetry which

implies that the dual description should indeed involve two copies of the field the-

ory. Consider a spacetime with two conformal boundaries. If we consider a bulk

surface of constant t, the bulk diffeomorphism freedom allows us to shift the surface
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arbitrarily. Changes in the constant t surface which do not affect its intersection

with the boundary are pure gauge, and are not seen from the boundary field theory

point of view. But diffeomorphisms which shift the intersection with the boundary

correspond to the action of a boundary Hamiltonian from the field theory point

of view [73, 74]. Since the bulk diffeomorphism symmetry includes transformations

which independently deform the intersection of the bulk constant t surface with

the two boundaries, there are two such Hamiltonians, acting separately on the two

boundaries. These generate a R × R symmetry of the theory, corresponding to

arbitrary time translations in the two CFTs.3 We take the presence of these two in-

dependent time-translation generators to imply that there are two separate physical

systems on the two boundaries. If the bulk geometry corresponded in the dual the-

ory to a state in a single field theory, we would expect to have just one Hamiltonian,

not two. This argument is quite general and would apply whenever the spacetime

has two boundaries.

In the self-dual orbifold, the bulk spacetime has a time-translation symmetry

that corresponds to the diagonal R subgroup of the R × R symmetry of the the-

ory. This implies that the dual CFT description should be in terms of a state in

the two CFTs which preserves this diagonal R subgroup. This state should involve

some non-trivial entanglement between the two theories, as the connectedness of

the spacetime in the bulk implies that there will be non-zero correlation functions

〈O1O2〉 between operators on the two boundaries. This relation between entangle-

ment and connections in the bulk spacetime was investigated in general in [63]. We

will work out the form of the entanglement in the case of the self-dual orbifold a

little further on.

3Actually, since the bulk surface meets the boundary in a one-dimensional surface in the self-

dual orbifold, there is an infinite-dimensional group of translations of this surface in each boundary,

but let us restrict for simplicity to the overall translational subgroup.
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6.3.2 Quotient perspective

To understand the holographic description in more detail, we consider the spacetime

from the quotient perspective. As a first step, we can consider the metric (3.3.30)

with φ non-compact as simply a new choice of coordinates on AdS3, where we

understand holography well.

From this perspective, it is clear that there are independent CFT degrees of

freedom in the two boundaries, as these correspond to different regions in the single

boundary of AdS3. The two Hamiltonians found above correspond to translations

of the two segments of the t = 0 surface in figure 3.3.

If we take a linear quantum theory on the boundary as a toy model for the CFT

on the cylinder, we can use the coordinate transformations given above to work out

the description of its vacuum state in terms of the self-dual orbifold coordinates.4

It is most straightforward to do this using the transformation (3.3.53) between the

(x+, x−) Poincaré coordinates on AdS3 and the (u, v) coordinates. There is a non-

trivial coordinate transformation between x+ and u, so the ground state for left-

movers with respect to x+ will map to an entangled state where the modes on one

boundary are entangled with the corresponding modes on the other. Tracing over

one boundary will then leave us with a thermal state for the left-movers on the other

boundary (see section 4.1.1).

If we consider a massless scalar field on the boundary, the positive frequency left

and right-moving mode solutions in (u, v) coordinates are, up to normalisation,

p1
ω,l = e−iωu, p1

ω,r = e−iωv, (6.3.1)

p2
ω,l = eiωu, p2

ω,r = e−iωv, (6.3.2)

where 1, 2 denote the two (u, v) coordinate patches, each of which covers half of the

Poincaré patch. In global coordinates, these two patches lie on the boundaries at

z = ±∞ respectively. The subscripts l, r denote left and right-moving modes. We

can construct modes which are purely positive frequency with respect to Poincaré

4This perspective was used to identify the state dual to the non-extremal BTZ black hole in [75];

this was extended to the extremal black hole in [76].
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coordinates by rewriting these solutions in terms of x+, x− and analytically contin-

uing in the lower-half complex x± plane, following [77]. This is a standard exercise;

the only difference here is that the relation is only non-trivial for the left-movers.

Using the coordinate transformation x+ = 1
2
e−2u, we see that solutions which are

pure positive frequency with respect to x+ are

W 1
ω,l = p1

ω,l + e−
πω
2 p̄2

ω,l, (6.3.3)

and similarly analytically continuing the solution p2
ω,l will give

W 2
ω,l = p2

ω,l + e−
πω
2 p̄1

ω,l. (6.3.4)

These are purely positive frequency modes with respect to x+, so the corresponding

annihilation operators a1
ω,l, a

2
ω,l will annihilate the ground state. Using the above

expressions, we can write these annihilation operators in terms of the annihilation

operators b1
ω,l, b

2
ω,l for the modes p1

ω,l, p
2
ω,l as

a1
ω,l = b1

ω,l − e−
πω
2 b2†

ω,l, (6.3.5)

a2
ω,l = b2

ω,l − e−
πω
2 b1†

ω,l. (6.3.6)

This indicates that the vacuum |0〉 in Poincaré coordinates can be formally written

as an entangled state in the Hilbert space built on the vacua |0〉1, |0〉2 annihilated

by the b1
ω,l, b

2
ω,l:

|0〉 = e−i
R∞
0 dωe−πωb1†ω,lb

2†
ω,l|0〉1 ⊗ |0〉2. (6.3.7)

This demonstrates that from the point of view of self-dual orbifold coordinates, the

vacuum on the boundary of AdS3 is an entangled state where the left-movers on

the two boundaries of the self-dual orbifold are entangled with each other. If we

trace over one boundary, we would have a thermal state for the left-movers on the

other boundary, at a temperature 1/2π. This is consistent with the analysis of [37]

because we have hidden the scale in u; the quotient identification is u ∼ u+ 2πr+.

We should next consider the effect of the quotient. The quotient will have three

effects; first, the points at φ = ±∞, corresponding to τ+θ = 0, π, are fixed points of

the quotient. We must therefore excise them from the boundary manifold, turning

it into two genuinely disconnected surfaces. Secondly, if we write the metric on one
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of these surfaces in terms of the (u, v) coordinates, the effect of the quotient is then

to make u periodic. This will restrict the momentum in the u direction to discrete

values, leaving us with the same entangled state, but with the integral in (6.3.7)

replaced by a sum. This reduces the SL(2,R)× SL(2,R) symmetry of the state to

SL(2,R)× U(1).

Thirdly, the quotient will project out the right-movers. This cannot be seen

directly by imposing the quotient on the boundary, as the left movers have no u

dependence. However, we can think of this null identification as a limit of a spacelike

identification, by thinking of the spacetime as cutoff at some finite r, and taking the

limit r → ∞ will give us an infinite boost. Thus, in this quotient perspective we

can also see the DLCQ of the field theory that was seen in the near-horizon limit

in [37]. The infinite boost as we take the limit r →∞ sets the right-movers to the

ground state. For a simple scalar field model, this is easy to see: the metric on a

surface at r = r0 is given by

ds2 = du2 + 2e2r0dudv. (6.3.8)

Thus the null coordinates at finite r0 are ũ = u, ṽ = v − 2e−2r0u. Right moving

modes are eiωRṽ, whilst left moving modes are eiωLũ. Looking at the right movers,

the modes which survive the quotient are those with ωR = ne2r0 for n ∈ Z. Therefore

as the cutoff is removed, r0 →∞ and the only right mover remaining is the ground

state, n = 0. For the actual CFT on the boundary, the picture is a little more

subtle; the theory lives in finite volume, so the energy spectrum is quantised, but

as was observed in our review of the DLCQ argument of [37], the level spacing is

∆L0 ∼ e−c. This discreteness cannot be seen from the spacetime point of view.

Nonetheless, as the boost is taken to infinity, we need to take L0 − c
24
→ 0, and the

energy will ultimately become smaller than this gap, forcing us to set L0 = c
24

.

This discussion considered a simple toy model of a single scalar field, but the key

point is just the non-trivial transformation between x+ and u, so the SL(2,R) ×

SL(2,R) invariant vacuum state for the full boundary CFT will similarly be an

entangled state for the left-movers on the two regions z = ±∞. The fact that the

CFT is in a non-trivial excited state can be seen directly from the fact that the

boundary stress tensor takes a non-vanishing value. This can be calculated from the
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bulk metric (3.3.47) using the usual holographic dictionary [78, 79]. The boundary

stress tensor is

Tαβ =
c

6
[παβ + hαβ] =

c

6
[Kαβ − (K − 1)hαβ], (6.3.9)

where Kαβ is the extrinsic curvature, hαβ is the induced metric on the boundary,

and c = 3/2G3 is the central charge of the boundary CFT. The metric (3.3.47) gives

Kuv = e2r, so K = 2, and the only non-vanishing component of Tαβ is

Tuu = − c
6
. (6.3.10)

Note that this is a momentum density in coordinates where the u direction is periodic

with period 2πr+; the total left-moving momentum on the boundary is hence cπr+/3.

This stress tensor could also be obtained by considering the Schwarzian deriva-

tive associated with the coordinate transformation (3.3.53) between the Poincaré

coordinates x+, x− and the u, v coordinates. In terms of holomorphic coordinates

w, w̄, the Schwarzian derivative gives in general

T (w′) = T (w)(∂w′w)2 +
c

12

[
∂3
w′w

∂w′w
− 3

2

(
∂2
w′w

∂w′w

)2
]
, (6.3.11)

and similarly for T̄ (w̄). Since the stress tensor in Poincaré coordinates vanishes in the

global vacuum state on the boundary cylinder, and the coordinate transformation

for the left-moving coordinates is trivial, this implies that Tvv = 0, and

Tuu =
c

12

[
∂3
ux

+

∂ux+
− 3

2

(
∂2
ux

+

∂ux+

)2
]

=
c

12
[4− 6] = − c

6
, (6.3.12)

reproducing the direct result. Thus, from the quotient point of view, the boundary

stress tensor is accounted for by the non-trivial conformal transformation from the

Poincaré coordinates to the self-dual orbifold coordinates (u, v), and is associated

with the fact that the field theory is in a non-trivial entangled state on the two

boundaries.

Thus, the self-dual orbifold is identified with a non-trivial entangled state of two

copies of the CFT, living on the two boundaries of the spacetime. The fact that

the dual description of a spacetime with an AdS2 factor involves an excited state is

quite different from the description of higher-dimensional AdS spacetimes, which are
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usually dual to the vacuum state in the dual CFT. This description of AdS2 is more

analogous to the description of black holes in higher-dimensional AdS spacetimes.

However, we would argue that the description of AdS2 will always be qualitatively

similar to this. There should be some entanglement to account for the connectivity

between the two boundaries in the AdS2 spacetime [63], and geometries with an

AdS2 factor are usually obtained as the near-horizon limit of black holes with a

non-zero entropy, which is reproduced by the entropy of the mixed state obtained

by tracing over one of the boundaries.

6.3.3 Near-horizon near-extremal limit

We can also argue for this description of the self-dual orbifold by taking the non-

extremal BTZ black hole and considering the near-horizon, near-extremal limit in-

troduced in section 3.3.1. The dual description of the non-extremal BTZ black hole

is as a saddle-point corresponding to an entangled state of two copies of the CFT

on the two boundaries of the maximal analytic extension of the black hole,5 with

the left- and right-movers at temperatures

TL =
(r+ + r−)

4π
, TR =

(r+ − r−)

4π
. (6.3.13)

Taking the near-horizon, near-extremal limit of the geometry is a DLCQ limit from

the point of view of the field theory. This DLCQ limit does not affect the structure

of the field theory, so it will give us two copies of the CFT in an entangled state

on the regions of the boundary of the self-dual orbifold covered by the black hole

coordinates (3.3.63). This confirms the entanglement description of the self-dual

orbifold geometry.

However, there is a small subtlety in the nature of the entangled state in these

coordinates. Naively one would say that as we take the extremal limit, TR →

0, but TL remains finite, reproducing the entangled state we saw above in (u, v)

coordinates. However, TR is the temperature with respect to the null coordinate

5This description was obtained by a similar quotient argument in [75] and by considering the

analytic continuation from the Euclidean black hole in [80].
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x− in the boundary of the black hole spacetime; this is related to the right-moving

coordinate t̃ in the near-horizon region by an infinite boost. Taking this boost into

account, the temperature with respect to t̃ is

Tt̃ =
TR
r+ε

=
1

2π
, (6.3.14)

while the temperature with respect to φ̃ is Tφ̃ = 1/2π, as it was in the analysis

above from the quotient point of view. Thus, when we consider the spacetime in

black hole coordinates, it appears to be dual to an entangled state where both the

left and right-movers are at finite temperature. This can also be seen by considering

the boundary stress tensor in these coordinates, which is given by

Tφ̃φ̃ = − c
6
, Tt̃t̃ = − c

6
. (6.3.15)

This appears to be inconsistent with the statement that L0 = c
24

, which should

follow from the DLCQ here as it did in [37]. However, the two statements are in

fact perfectly consistent. In general, for the CFT on a spacelike circle, the translation

generators are

L0 −
c

24
=

∮
Tzµn

µ, L̄0 −
c

24
=

∮
Tz̄µn

µ, (6.3.16)

where the integral is around the spacelike circle, and nµ is the unit normal to this

circle in the boundary metric. Since Tzz̄ = 0 for a spacelike circle, this reduces to

L0 −
c

24
=

∮
Tzzn

z, L̄0 −
c

24
=

∮
Tz̄z̄n

z̄, (6.3.17)

but in the limit as the circle becomes null, nz = 0. Thus, for the CFT on the null

circle, L0 − c
24

= 0, whether or not the right-moving component of the stress tensor

vanishes. A finite right-moving energy density translates to a vanishing right-moving

energy in the limit because the proper size of the compact direction is going to zero.

So for the near-horizon, near-extremal limit of the non-extreme black hole, we get

the CFT on a null cylinder in a state with entanglement for both the left and right

movers, but this still has L0 = c
24

.

This entangled state is not a different candidate description of the self-dual orb-

ifold; the state we have obtained in the near-horizon limit is in fact the same as the

state we obtained above from the quotient perspective, just described in a different
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conformal frame on the boundary. The entanglement of the right-movers comes

from the further coordinate transformation between t̃ and v coordinates (3.3.70). In

particular, the non-zero stress tensor Tt̃t̃ in (6.3.15) can be seen to arise from ap-

plying the Schwarzian derivative formula (6.3.11) to the conformal transformation

between t̃ and v coordinates. Thus, we obtain a consistent picture of the self-dual

orbifold as dual to a particular entangled state in two copies of the CFT on the two

boundaries.

6.3.4 Causal connection

We have obtained a description of the self-dual orbifold in terms of an entangled state

in two copies of the CFT from two independent points of view. This description

is also consistent with the description obtained in [37] by considering the near-

horizon limit of the extremal BTZ black hole. However, there is a problem with

this description, as it fails to account for the causal connections between the two

boundaries, which would appear to imply direct interactions between the theories

living on them.

To see that the boundaries at z = ±∞ are causally connected in the bulk,

consider the metric (3.3.30). We see that the conserved quantity from φ-translation

invariance is L = φ̇+ sinh 2zṫ, and the minimum elapsed t is along curves of L = 0,

for which along null geodesics

∆t =

∫ ∞
−∞

dz

cosh 2z
=
π

2
. (6.3.18)

If we think about (3.3.30) as a coordinate system on AdS3, there is no mystery

about this causal connection: it corresponds to causal connections in the boundary.

The part of the strip at z = −∞ with t > π/2 is in the causal future of the surface

at z = ∞, t = 0 in the boundary geometry. The two parts of a surface of constant

t were offset in τ − θ by π, so when ∆t > π/2, this offset is overcome and the

surfaces at z = ±∞ are connected by causal curves in the boundary. From this

AdS3 point of view, this is not a surprise; it is well-known that in AdSd, points in

the boundary which are causally connected in the bulk are also causally connected

in the boundary: the bulk and boundary light cones agree for pure AdS geometries.
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However, when we take the quotient, we must first delete from the conformal

boundary the points at τ+θ = 0, π, which are fixed points of the identification acting

on the conformal boundary. This breaks the causal connection between the two

strips on the boundary at z = ±∞. This breaking of the explicit causal connection

does not immediately cause problems, as the connection could be retained by a

boundary condition linking the behaviour of fields at τ +θ = −ε to the behaviour at

τ + θ = +ε. However, when we make the identification, we replace such a boundary

condition with a periodic boundary condition in the φ direction, and there is no

longer any connection between the behaviour of boundary fields on the two strips.

So in the quotient space, causal connection in the bulk is not reproduced by causal

connection in the boundary.

This is a problem because an AdS/CFT calculation with causal connection in

the bulk would usually predict a non-zero value for the commutator of operators on

the two boundaries. If O1 is a scalar operator on the boundary at z =∞ and O2 is

an insertion of the same scalar operator on the boundary at z = −∞,

〈[O1(0),O2(∆t)]〉 = ∆φ
bulk(∆t) 6= 0 for ∆t > π/2, (6.3.19)

where ∆φ
bulk is the half advanced minus half retarded propagator for the correspond-

ing bulk field φ.

This non-trivial commutator between operators on the two boundaries cannot

arise simply from entanglement between the quantum states of the theories on the

two boundaries, as the expectation value of the commutator is independent of the

state that the expectation value is evaluated in. Thus, this seems to require some

explicit interaction between the two boundary theories. The bulk prediction (6.3.19)

is not consistent with our proposed description of the self-dual orbifold in terms of

two independent, but entangled, boundary theories.

Indeed, it is very hard to see how the CFT description could be modified to

produce such interactions. From the quotient perspective, we would expect local

operators on the two strips to be simply independent once we delete the fixed points.

From the near-horizon point of view it is even harder to see how some interactions

could arise from taking the DLCQ limit; the two CFTs should still simply be entan-

gled. Specifically, in a black hole coordinate system, the portions of the boundaries
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that are captured are not in causal contact. So when we take this near-horizon limit,

the commutator between fields on the two boundaries vanish in the region we are

covering.

A possible resolution of our problem would be an obstruction to the extension

of the CFT to the full boundary of the self-dual orbifold spacetime. However, there

is a barrier to finding such an obstruction. The bulk spacetime has an SL(2,R) ×

U(1) isometry which acts transitively, mapping any point in the spacetime to any

other point. Any obstruction to extending the geometry from the region covered

by the black hole coordinates to the full spacetime must break this symmetry. The

entangled state that we constructed preserves the spacetime isometries, as we would

expect. We therefore expect the CFT in this state to live naturally on the conformal

boundary of the full global self-dual orbifold spacetime, by the analogue of the

argument of [81] in the higher-dimensional case. Finite SL(2,R) × U(1) actions

can map a point on one boundary to any other point on that boundary in the full

spacetime.

Another resolution would be a restriction on the types of correlation functions

we can consider. The isometries can map a point on one boundary to any other

point on that boundary, but will only map a pair of spacelike separated points to

spacelike separated points. From the near-horizon point of view, we obtain corre-

lation functions or commutators of operators on the two boundaries at spacelike

separated points as a limit of the same observables in the theory on the boundary

of the BTZ black hole. If we restrict to considering just such observables, there

will be no conflict with our entanglement description even when we consider the full

self-dual orbifold spacetime.

Such a restriction may be necessary because of the instability of AdS2 spacetimes

observed in [38]. If we consider the back-reaction from adding some energy to the

spacetime at one boundary, the spacetime will fail to be asymptotically AdS2 to

the future of the point where the energy is inserted. So we will not be able to

impose asymptotically AdS2 boundary conditions on the part of the other boundary

causally connected to the point where the energy is inserted. This suggests that we

cannot consider correlation functions like (6.3.19), so the fact that a linearised bulk
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analysis predicts a value for this correlation function which is inconsistent with our

entanglement description does not lead to actual inconsistencies in the full theory.

This possibility thus seems plausible, but it would be valuable to understand the

restrictions on which correlation functions we can consider in detail. It would be

particularly useful to understand this from the CFT point of view.

An alternative resolution is that there might not be any propagating states in

the AdS2 spacetime. The authors of [37] argued for such a picture by noting that

the DLCQ field theory dual to AdS2 does not have physical states charged under

this SL(2,R) group, so there should be no bulk states charged under the SL(2,R)

isometries of the spacetime. In the absence of such propagating degrees of freedom,

there can be no causal physical interaction between the two AdS2 boundaries, again

suggesting that the two boundary CFTs are non-interacting. From the CFT point

of view, this would correspond to a claim that local operators like O1 do not create

well-defined states in the chiral CFT dual to the self-dual orbifold.

6.4 Asymptotically Self-dual orbifold spacetimes

We want to identify the self-dual orbifold geometry with a particular entangled

state in a chiral CFT. The CFT should presumably have other states, and it is

important to try to construct other geometries dual to these states. In this section,

we discuss such constructions. We first discuss the boundary conditions defining

what we mean by asymptotically self-dual orbifold. We then note that we can

obtain another quotient geometry with a single boundary, which can be interpreted

as the dual of the ground state of a single copy of the CFT. We then consider

more general geometries constructed from the self-dual orbifold, first attempting a

perturbative approach and then applying Garfinkle-Vachaspati solution-generating

transformations. The more general solutions we construct have singularities in the

bulk.
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6.4.1 Boundary conditions

Before looking for solutions, we must first specify the asymptotic boundary condi-

tions we want to impose. We consider boundary conditions on a single conformal

boundary, defining states in a single copy of the CFT. If we wanted to consider space-

times dual to two copies of the CFT, they should have two conformal boundaries

and satisfy these boundary conditions on each of them.

Since the spacetime is locally AdS3, we can impose the standard Brown-Henneaux

boundary conditions [82] using the near horizon limit coordinates (u, v, r). These

boundary conditions are

guv ∼ e2r +O(1), guu, gvv ∼ O(1), gru, grv ∼ O(e−2r), grr ∼ 1 +O(e−2r).

(6.4.20)

The leading term gives us the null cylinder metric on the conformal boundary if we

assume the coordinate u is periodically identified as in the self-dual orbifold solution.

The subleading terms will then be interpreted as determining the stress tensor of

the dual field theory. The subleading part of guv, which gives the trace of the stress

tensor, vanishes when we satisfy the bulk equations of motion, so on-shell solutions

actually have guv ∼ e2r +O(e−2r).

However, in [37], a more restrictive boundary condition for asymptotically self-

dual orbifold spacetimes was proposed, requiring the O(1) part of gvv to vanish as

well. This corresponds in the field theory to saying that the stress tensor component

Tvv = 0. This was motivated by the chiral nature of the dual CFT. As reviewed in

section 3.3, taking the near-horizon limit corresponds to a DLCQ limit in the field

theory, which sets the right-movers to their vacuum state. If we interpret this as

saying that the limiting theory dual to the self-dual orbifold has no right-moving

excitations, it would be inconsistent to have a non-zero right-moving stress tensor. It

is therefore appropriate to require that Tvv = 0 as part of the boundary conditions.

We therefore propose that the dual description of a chiral CFT on the boundary is

spacetimes with the boundary condition

guv ∼ e2r +O(1), guu ∼ O(1), gru, grv, gvv ∼ O(e−2r), grr ∼ 1 +O(e−2r).

(6.4.21)
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Imposing the standard Brown-Henneaux boundary conditions would correspond

to considering a non-chiral CFT on the null cylinder, where we retain some right-

moving excitations. This is not the theory obtained in the strict near-horizon limit,

but it remains interesting to consider it. It may be useful to consider situations

where we do not take the strict near-horizon limit, and use the self-dual orbifold

as an approximation to a region of the BTZ black hole spacetime [83, 84]. Since

there are still some right-moving excitations, it may be that the Brown-Henneaux

boundary conditions are then the appropriate ones to use to model the matching of

the near-horizon region to the rest of the spacetime in this case.

The choice of boundary conditions determines the asymptotic symmetries of the

spacetime. For the standard Brown-Henneaux boundary conditions, the analysis

of [82] tells us that the asymptotic symmetries are diffeomorphisms depending on

two arbitrary functions ξ+(u), ξ−(v). The vector field generating the diffeomorphism

is

ξu = 2ξ+(u) +
1

2
e−2r∂2

vξ
−(v) +O(e−4r), (6.4.22)

ξv = 2ξ−(v) +
1

2
e−2r∂2

uξ
+(u) +O(e−4r), (6.4.23)

ξr = −∂uξ+(u)− ∂vξ−(v) +O(e−2r). (6.4.24)

Since u is a compact coordinate, ξ+(u) is a periodic function, and can be expanded

in terms of modes which satisfy a Virasoro algebra. This includes the left-moving

U(1) symmetry of the self-dual orbifold given by ∂u. However, as v is non-compact,

ξ−(v) is not periodic, and the right-moving symmetry here is not simply a Virasoro

algebra. Its interpretation from the CFT point of view is somewhat unclear.

For the boundary conditions (6.4.21), the asymptotic isometries are restricted.

As shown in [37], only the diffeomorphisms with ξ−(v) = A + Bv + Cv2 survive.

These correspond to the SL(2,R) Killing vectors (3.3.48). Thus, for the boundary

conditions (6.4.21), the asymptotic isometries are SL(2,R)× Virasoro, where the

Virasoro contains the left-moving U(1) symmetry.

Note that the diffeomorphisms which transform between the u, v, r coordinates

we are using and the orbifold global coordinates t, φ, z or black hole coordinates t̃, φ̃, r̄

do not satisfy the boundary condition (6.4.21). Rather the boundary conditions
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are also transformed by these diffeomorphisms and must be expressed in the new

coordinate frame. From the boundary point of view, the coordinate transformations

to global and black hole coordinates corresponded to conformal rescalings of the

v coordinate. But with the boundary conditions (6.4.21), the CFT only has a

conformal symmetry acting on the u coordinate. The conformal transformations of

the v coordinate are a part of the symmetries in ξ−(v) which is not in the SL(2,R)

subgroup we retain. Thus, while we are free to make such conformal transformations,

the theory will not be invariant under the change of variables. In view of this,

when we look for asymptotically self-dual orbifold solutions satisfying the boundary

conditions (6.4.21), we will study them in the analogue of the (u, v, r) coordinates

only.

6.4.2 Ground state of a chiral CFT and the null orbifold

In [85], a general classification of causally well-behaved quotients of AdS3 was given.

There was one other quotient which had the same type of boundary metric as the

self-dual orbifold, namely the quotient by

ξ = (V − Y )(∂U + ∂X)− (U −X)(∂V + ∂Y ), (6.4.25)

where U, V,X, Y are the coordinates on the R2,2 embedding space. This Killing

vector has ||ξ||2 = 0, but the Killing vector never vanishes, so the quotient has no

fixed points in the spacetime. However, when we consider the action just on AdS3,

the resulting quotient space will contain closed null curves. This Killing vector lies

in one of the two SL(2,R) factors in the SL(2,R)×SL(2,R) isometry group, so the

quotient has an SL(2,R)×U(1) isometry, as for the self-dual orbifold. A coordinate

system which covers the whole spacetime is [85]

U +X = e−ρ sin v + 2ueρ cos v, (6.4.26)

U −X = eρ sin v, (6.4.27)

V + Y = e−ρ cos v − 2ueρ sin v, (6.4.28)

V − Y = eρ cos v. (6.4.29)
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In these coordinates, ξ = ∂u and the metric takes the form

ds2 = −dv2 + dρ2 − 2e2ρdudv. (6.4.30)

The quotient in these coordinates is an identification u ∼ u+2π. Since the quotient

has no fixed points, the resulting quotient spacetime is smooth. The spacetime has

a single boundary at ρ→∞. The metric on this boundary is a null cylinder, as in

the self-dual orbifold. In terms of the global coordinates on the boundary of AdS3,

the quotient has a single line of fixed points at τ + θ = π. The supersymmetry of

this solution was analysed in [86], where it was shown that taking this quotient of

AdS preserves 3/4 of the supersymmetry (SUSY), including 1/2 of the left-moving

SUSY. Note that although the geometry has an SL(2,R) × U(1) isometry, it does

not have an AdS2 factor.

This quotient can also be viewed as an identification along a null direction in

Poincaré coordinates. That is, if we introduce the standard Poincaré coordinates

x+, x−, Z on AdS3, in terms of which the metric is

ds2 =
−2dx+dx− + dZ2

Z2
, (6.4.31)

then ξ = ∂x+ . This Poincaré coordinate system only covers a region of the spacetime,

but it has the advantage that the spacetime written in these coordinates satisfies

the more restrictive boundary conditions of section 6.4.1. This solution and the

self-dual orbifold are the only locally AdS3 spacetimes whose boundary metrics are

null cylinders.

This geometry can also be obtained by taking the near-horizon limit of the M = 0

BTZ black hole: if we start with the Poincaré coordinates (6.4.31), the M = 0 BTZ

black hole is obtained by making the identifications (x+, x−) ∼ (x+ + 2π, x− − 2π).

We take the near-horizon limit by defining x+ = x̃+, x− = e−2ρ0x̃−, Z = eρ0Z̃, and

take ρ0 → −∞ for fixed x̃+, x̃−, Z̃. This gives a metric of the same form, but with

x̃+ ∼ x̃+ + 2π, giving the null quotient (6.4.31).

Since the geometry has a single boundary, we would interpret this spacetime as

the dual description of a single copy of the CFT living on the null cylinder in some

pure state. We can identify the appropriate state by proceeding as in the self-dual

orbifold, taking the SL(2,R) × SL(2,R) invariant vacuum state on the boundary
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of AdS3 and considering the quotient action on it. The appropriate coordinate

system in this case is just the Poincaré coordinates (6.4.31). We know that the state

dual to AdS3 in Poincaré coordinates is a ground state for both the left- and right-

moving modes, so we propose that the dual of this quotient spacetime is the same

ground state with the momentum for left-moving excitations quantised, breaking

the symmetry of the state to SL(2,R)×U(1). This is consistent with obtaining the

quotient as the near-horizon limit of the M = 0 BTZ black hole; as the black hole

mass goes to zero, the temperature for both left- and right-moving modes vanishes.

Thus, the dual CFT interpretation of (6.4.30) is as a saddle-point for a single copy of

the CFT on the null cylinder in a ground state. (See the related discussion in [68].)

The main problem with this discussion is that the spacetime contains closed

null curves (CNCs), so one might not expect the spacetime (6.4.30) to be a good

description of the boundary field theory state. In particular, winding string modes

wrapping this compact direction will be light and could produce important correc-

tions to the geometry. The unbroken supersymmetry in this spacetime may protect

the geometry from such corrections, however. This problem is highly reminiscent

of the Schrödinger spacetimes [69,70], which similarly contain closed null curves (as

remarked in [71]). The self-dual orbifold would then be thought of as analogous

to the finite-temperature versions of Schrödinger spacetimes [71,87,88], in that the

circle becomes spacelike everywhere in the bulk. The situation is actually slightly

better than in the Schrödinger case, as the circle becomes constant size in the bulk,

whereas it was asymptotically null in the finite-temperature Schrödinger spacetimes.

It is interesting that while the metric (6.4.30) has CNCs, adding a tiny temperature

on the left or right moving side of the dual field theory seems to regulate the CNCs.

A purely left or right-moving temperature corresponds to extremal rotation in the

BTZ black hole whose near-horizon limit we are examining. This is reminiscent of

the “desingularization by rotation” in [89,90].

In [85], the problem with the causal structure of (6.4.30) was formally resolved

by combining the quotient action on AdS3 with an action on the S3 to obtain an

action which was everywhere spacelike. This removes the closed null curves, but the

resulting spacetime is not stably causal, as a Z identification on a compact space
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like S3 will identify pairs of points which are arbitrarily close together. As a result,

even if we include such an action on the S3, we still need to worry about light states

associated with strings winding around the circle: there will be winding sectors

where these strings are arbitrarily light.

Nonetheless, as in the Schrödinger case, this quotient spacetime provides an

interesting simple example of the dual of a pure state, and it is worth considering as

at least a formal dual of the ground state. The quotients with actions on the sphere

are also interesting, as they should correspond to ensembles where in addition to

the temperature we are turning on a chemical potential for some R-charge.

6.4.3 Perturbative excitations

From the CFT point of view, we would expect to be able to consider arbitrary

states for the left-movers. These might not all have a geometrical interpretation,

but small excitations around the state corresponding to the self-dual orbifold might

be expected to correspond to perturbations around the self-dual orbifold geometry.

We are most interested in understanding chiral excitations, which will satisfy the

boundary conditions of [37], and account for the entropy of the original black hole.

In this section, we consider such chiral excitations on the full extremal BTZ black

hole geometry. We find that surprisingly, excitations which keep the right-movers in

their ground states cannot be consistently described by small perturbations around

the black hole spacetime.6

We consider linearised fields on the extremal BTZ black hole background. We

will start by considering scalar fields. We consider a scalar field Φ of mass µ2, and

write the field in Fourier modes as

Φ = eiωt+imφfωm(r), (6.4.32)

where we are working in the BTZ black hole coordinates defined in (3.3.56). For the

extremal BTZ black hole, r+ = r−, chiral excitations from the CFT point of view

correspond to considering co-rotating modes with ω = −m in the bulk spacetime.

6Since the self-dual orbifold is a near-horizon limit of BTZ, this immediately implies that such

chiral excitations also cannot be described perturbatively on the self-dual orbifold.
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It turns out that precisely these modes are not regular on the horizon. The field

equation is 2Φ− µ2Φ = 0, and on the BTZ black hole (3.3.56), if Φ = eiωt+imφf(r),

2Φ =
1

r2h
[r2ω2−(r2−r2

+−r2
−)m2 +2r+r−ωm]eiωt+imφf(r)+eiωt+imφ

1

r
∂r(rh∂rf(r)),

(6.4.33)

where h(r) = (r2− r2
+)(r2− r−)2/r2. Hence, if r+ = r−, and ω = −m, the first term

disappears and 2Φ = eiωt+imφ 1
r
∂r(rh∂rf(r)). The solution of the radial equation

which satisfies the boundary conditions at infinity in this case is then just

fω=−m(r) = cm(r2 − r2
+)−h+/2, (6.4.34)

where h+ = 1
2
(1 +

√
1 + µ2)). The surprising feature of this solution is that it blows

up as we approach the black hole horizon at r → r+. This indicates that if we want

to consider chiral modes on the BTZ boundary, this perturbative analysis will break

down.

In fact, this failure is analogous to the “no-hair” theorem for the non-rotating

black hole, which says that there is no regular solution for the scalar field with ω = 0.

The connection can be seen more clearly by considering the general BTZ black hole,

with r+ 6= r−. Then if we define ωc = ω + r−
r+
m,

r2ω2−(r2−r2
+−r2

−)m2 +2r+r−ωm = r2ω2
c−2

r−
r+

(r2−r2
+)ωcm−

r2
+ − r2

−

r2
+

(r2−r2
+)m2.

(6.4.35)

So if ωc = 0, this factor vanishes on the horizon. The radial equation can be rewritten

in terms of an effective potential by introducing a tortoise coordinate r∗ such that

dr∗ = h−1dr; then writing f(r) = r−1/2ψ(r), the radial equation becomes

∂2
r∗ψ + ω2

cψ − h(r)veff (r)ψ = 0, (6.4.36)

where veff (r) > 0 for all r. Because of the overall h(r) factor, the effective potential

contribution vanishes near the horizon, so for ωc 6= 0, the solutions near the horizon

will look like e±iωcr∗ , giving the usual ingoing and outgoing modes on the horizon.

But if ωc = 0, the solutions will grow or decay near the horizon, as veff (r) > 0. The

solution which is regular at infinity will (at least generically) include a growing part

near the horizon.
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For r− = 0, this is the usual argument that there are no static scalar hairs on

the black hole. A similar interpretation in our case would be that the black hole

cannot support a chiral perturbation of the scalar field.

This calculation can trivially be extended to the vector case by observing that

since we are in 2+1 dimensions, a vector field is dual to a scalar. Thus, if we want a

solution for a Maxwell field with field strength given by F , we can find it by writing

F = ?dΦ for a scalar Φ satisfying the massless wave equation. The scalar solution

of (6.4.34) gives a field strength which blows up on the horizon.

6.4.4 Non-thermal states of chiral CFT and traveling wave

solutions

Having failed to construct more general geometries perturbatively, we will now con-

sider applying a solution-generating transformation to obtain new solutions of the

full equations of motion. Both the extremal BTZ black hole and the self-dual orb-

ifold have a null Killing vector field, given by ∂v in the near horizon limit (u, v, r)

coordinates. We can therefore apply the Garfinkle-Vachaspati solution generating

transformation [72] to add a travelling wave, as was done for asymptotically flat

black string solutions in [91]. The null Killing vector is k = ∂v, so with the index

lowered k = e2rdu. This satisfies ∇[µkν] = k[µ∇ν]S with S = −2r. The Garfinkle-

Vachaspati technique tells us that we can generate a new solution g̃µν by choosing

a function Ψ satisfying ∂vΨ = 0 and ∇2Ψ = 0, and defining

g̃µν = gµν + eSΨkµkν . (6.4.37)

That is,

d̃s
2

= (1 + e2rΨ)du2 + 2e2rdudv + dr2. (6.4.38)

This spacetime will be asymptotically AdS3 or asymptotically self-dual orbifold de-

pending on whether we make the spacelike direction u + v or the null direction u

compact.

If we consider just the three-dimensional spacetime, then ∇2Ψ = e−2r∂r(e
2r∂rΨ),

and Ψ = f0(u)+f1(u)e−2r. To preserve the asymptotics of the spacetime, we should
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set f0(u) = 0; the solution is then

d̃s
2

= (1 + f1(u))du2 + 2e2rdudv + dr2. (6.4.39)

However, this transformation is trivial; the Garfinkle-Vachaspati transformation in

general adds a gravitational wave to the previous solution, but in three dimensions,

there is no gravitational radiation. That is, any solution of the vacuum equations

of motion in 2 + 1 dimensions is locally AdS3. Thus, this solution is just a locally

AdS3 spacetime written in an unfamiliar coordinate system.7

To obtain something non-trivial we need to introduce some additional directions

and allow Ψ to depend them. Consider for example taking the product of our

geometry with an S3, as in the simplest embeddings in string theory, and allowing Ψ

to depend on the coordinates on the S3 factor in the geometry. For simplicity, assume

Ψ is in a particular spherical harmonic on the sphere, so Ψ = Ylm(θ, φ, ψ)g(r, u).

Then

e−2r∂r(e
2r∂rg)− l(l + 2)g = 0, (6.4.40)

with solutions g(r, u) = f0(u)elr + f1(u)e−(l+2)r. As previously, take f0(u) = 0

to preserve the boundary conditions, and for each spherical harmonic we have one

functions worth of solutions. For example, if we take the harmonic with l = 2,m = 0,

we have a solution

d̃s
2

= (1+f1(u) cos 2θe−2r)du2+2e2rdudv+dr2+dθ2+sin2 θdφ2+cos2 θdψ2. (6.4.41)

This solution has a non-vanishing Weyl tensor, indicating the presence of a gravita-

tional wave, and showing explicitly that this is a non-trivial example of an asymp-

totically self-dual orbifold spacetime. As in [91], these geometries are singular: they

have diverging Riemann tensor components on the would-be horizon at r → −∞, al-

though the curvature invariants are finite. Thus they have no extension to global co-

ordinates and only satisfy the self-dual orbifold boundary conditions on one bound-

ary, in the region corresponding to the (u, v, r) coordinates. The deformed spacetime

7Note that the situation here is different from the full asymptotically flat solution considered

in [91], where adding the l = 0 mode produces a physically different solution. This implies that

these different solutions all have the same near-horizon BTZ region.
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breaks the SL(2,R) symmetry, and does not have an AdS2 factor, although if we

made a dimensional reduction to two dimensions, the geometry would be asymptot-

ically AdS2 in Poincaré coordinates.

It is very satisfying that we finally have some examples of asymptotically self-

dual orbifold spacetimes, even if they have mild singularities in the bulk. It would

be interesting to understand their dual description. We expect them to correspond

to more general states for the left-movers, where the operators dual to excitations on

the sphere have non-zero expectation values, and a ground state for the right-movers.

However, the travelling wave breaks the symmetry corresponding to L−1 in SL(2,R).

We think of this symmetry as acting on the right-movers, so these geometries do

not correspond precisely to the same right-moving ground state as in the self-dual

orbifold. (Since the geometry is still invariant under L0 and L1, it still corresponds

to a ground state. This is also clear from the fact that it satisfies the boundary

conditions of [37].) It’s surprising that the Garfinkle-Vachaspati transformation

breaks this symmetry; we would naively have thought of it as acting just on the

left-movers. It would be interesting to understand this in more detail.

Other AdS2 cases

This solution-generating transformation provides a useful way to generate new so-

lutions. It is therefore interesting to ask if it is special to the self-dual orbifold,

or can be applied in other contexts where the geometry has an AdS2 factor. The

NHEK geometry does not have a null Killing vector, so it cannot be applied in that

case (the analogue of the Killing vector considered here would be ∂t, which is not

everywhere null because of the fibration over θ). Thus, there are no such solutions

in NHEK, as we might have expected given the results of [66,67].

In the context of Reissner-Nordström AdS black holes, the near-horizon geometry

in for example AdS4 is

ds2 =
l22
ρ2

(−dt2 + dρ2) + d~x2, (6.4.42)

where l2 = l/
√

6, with a vector field A = gF√
12ρ
dt. Clearly there is no null Killing

vector here, but one might hope to find one in the uplift to the full string or M

theory geometry. In the self-dual orbifold case, the v direction is timelike in the
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AdS2 factor, but becomes null when we uplift it to the three-dimensional geometry.

Consider for definiteness the uplift to eleven dimensions given in [92]. If we work

in units where the S7 has unit radius, l = 1/2, gF = 1/2, and the eleven-dimensional

metric is

ds2
11 = ds2

4 + ds2
CP 3 + (η + A)2, (6.4.43)

where η is the one-form dual to the Reeb vector in the writing of S7 as a Hopf fibra-

tion over CP 3. Hence in eleven dimensions there is a partial cancellation between

the two factors as in the self-dual orbifold case, but

gtt = − l
2
2

ρ2
+

g2
F

12ρ2
= − 1

48ρ2
, (6.4.44)

so the Killing vector ∂t remains timelike, and we can’t apply the Garfinkle-Vachaspati

transformation to this solution. The situation for Reissner-Nordström AdS5 black

holes is the same; it seems to be only when we are uplifting from AdS2 to a three-

dimensional solution that the factors work out so that we get a null isometry in the

higher-dimensional geometry.

This suggests that there is something a little special about the AdS2 from the

dual CFT point of view in the self-dual orbifold case; the null structure that is

responsible for the chiral CFT interpretation here isn’t obviously present in higher-

dimensional cases.

6.5 Discussion

We have studied the description of the self-dual orbifold from the point of view of the

dual CFT, and constructed examples of asymptotically self-dual orbifold spacetimes,

which should be dual to other states of the CFT. We have proposed that the full

spacetime can be described as an entangled state in two copies of the CFT, living

on the two boundaries. This description appears to have problems with the causal

connection between the two boundaries, which would lead to predictions for bulk

correlation functions which cannot be reproduced by considering an entangled state.

However, the special nature of AdS2 suggests that there will be restrictions on the

correlation functions which can be consistently considered. Acting with an operator
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in the field theory to throw in some energy from the boundary will cause a back-

reaction which violates the boundary conditions on the boundary after the operator

insertion. We have suggested that the problematic correlations involving timelike

separated operators on the two boundaries may simply not be legitimate observables.

This issue needs further exploration.

We discussed the asymptotic boundary conditions for the spacetime. Following

[37], we argued that considering a chiral CFT on the boundary is associated with

a boundary condition that is more restrictive that the ones imposed by Brown and

Henneaux. We constructed examples of asymptotically self-dual orbifold spacetimes

satisfying this boundary condition. This is interesting as it can be challenging to

construct asymptotically AdS2 spacetimes; in the Kerr-CFT context it was shown

in [66, 67] that the only spacetimes satisfying the relevant boundary condition are

diffeomorphic to the background. Note however that the solutions we construct are

singular in the bulk. Other examples of asymptotically AdS2 spacetimes which are

regular were recently obtained in higher-dimensional contexts in [93] by considering

RG flows from one AdS2 to another. We also identified a geometry corresponding

to the ground state of the chiral CFT which is dual at finite temperature to the self-

dual orbifold. This new geometry is obtained as a near-horizon limit of the M = 0

BTZ black hole, just as the self-dual orbifold is the near-horizon limit of the M > 0

extremal BTZ black holes.

In the simplest embedding in string theory, we would consider the self-dual orb-

ifold geometry ×S3 × T 4. As discussed in [85], in this context we can generalise

the quotients considered here by adding an action on the S3. This corresponds to

introducing a chemical potential for an R-charge. For the orbifold of section 6.4.2,

corresponding to the CFT in a ground state for both the left- and right-moving

excitations, it is meaningful to introduce such a chemical potential because we are

considering the theory in a Ramond sector, so there is a degenerate set of ground

states, which carry different R-charge.

We have assumed throughout this work that we were considering the field theory

in the Ramond sector, so there is some unbroken supersymmetry in the solution.

Since the circle is of finite size everywhere in the spacetime, we can change our
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choice of spin structure, which corresponds to considering the field theory in the

Neveu-Schwarz sector. If the compact circle in the interior is smaller than the string

scale, this solution will then have a tachyon. Since this circle has the same size

everywhere, we would expect the condensation of this tachyon to destroy the whole

spacetime.
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