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Abstract

Owing to their inherent complexity, stochastic neutron transport problems are often

examined by either using highly simplified models to make solutions more accessible,

or at the cost of significant computational effort for problems demanding higher

accuracy than such simplified models afford.

In this work, solutions to stochastic transport equations of varying complexity are

developed to examine a particular quantity of interest, the neutron survival proba-

bility. Using these solutions, the behavior of the survival probability is characterized

throughout a wide range of parameters to better inform expectations as the com-

plexity of the problem is increased.

First, the survival probability is modeled in an infinite medium. This provides

insight into the relationship between the survival probability and the passage of

survival time, the effective multiplication factor of the system, and the number of

factorial moments of fission multiplicity preserved in the equation.
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A steady-state diffusion equation is then solved semi-analytically in an one-

dimensional slab, expanding understanding of the behavior of the survival proba-

bility and providing a benchmark for other space-dependent solutions. Additional

steady-state solutions are produced by recognizing that the survival probability is

well-approximated by the first eigenfunction of the linear portion of the equation.

Not only is strong agreement observed with the semi-analytical solution, extension

to other geometries is made accessible and the impact that varying geometry has on

the survival probability is demonstrated.

Finally, solutions to the time and space-dependent survival probability diffusion

equation are computed using an eigenfunction expansion technique. By comparison

to the available semi-analytical steady-state solutions, as well as the known “ini-

tial” condition, the eigenfunction expansion technique demonstrates the capacity to

produce solutions of arbitrary accuracy throughout the available parameter space.

Extension to other geometries and multi-dimensional problems is performed, showing

the broad capabilities of the technique as well as exploring facets of its performance.

Additionally, a linear stability analysis of the equilibrium solution produced by the

eigenfunction expansion technique is performed, rigorously demonstrating the sta-

bility of the associated solutions.
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Chapter 1

Introduction

Inherent in the derivation of deterministic neutron transport equations is the assump-

tion that the neutron population is large enough that fluctuations in that population

about the mean may be ignored. This assumption holds well for many applica-

tions, including power reactor operation and assembly of critical experiments in the

presence of a strong neutron source.

There are, however, important applications wherein no such sizable population

can be credited with overshadowing deviations from the mean that result from the

inherently probabilistic nature of nuclear reactions. Examples include the study of

nuclear criticality accidents and assembly of critical experiments in the presence of

a weak neutron source. In studying such phenomena, a knowledge of the probability

of having a discrete, but arbitrary, number of neutrons in a given volume is essential

[1]. For this reason stochastic neutron transport equations have been developed.

The difference between treating a neutron population stochastically, rather than

deterministically, can drastically affect the pulse timing of burst reactors, the mag-

nitude of an exposure associated with a criticality accident, and characteristics of

other important phenomena. Hansen [2] noted that the neutron population in a
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Chapter 1. Introduction

given supercritical configuration either can, or can not, be described by standard

deterministic kinetics equation depending on whether or not the configuration was

assembled in the presence of a “strong” or “weak” neutron source. By develop-

ing a point model of the probability that a neutron will sponsor a persistent chain

reaction, he developed a somewhat qualitative definition of “strong” and “weak”

neutron populations and showed that predictions of systems based on determinis-

tic reactor kinetics equations can differ greatly from those resulting from stochastic

treatment of the problem. Fortunately, the degree to which a population is governed

by stochastic and deterministic behavior is thoroughly quantifiable. Prinja and Souto

[3] rigorously demonstrated the transition of the neutron population from stochastic

to deterministic behavior based on the source strength and multiplicative properties

of the system.

Recognizing the need for a complete and modern treatment of stochastic neutron

transport, Bell [4] developed an equation for the probability of finding an arbitrary

number of neutrons in a given volume at a given time in the future as a result of one

neutron existing with a given position and velocity at some initial time. Though Bell

was the first to make use of the space- and energy-dependent forms of the equation,

that Bell and Pál[5] independently derived probability distribution generating func-

tions has caused the equation to be commonly referred to as the Pál-Bell equation.

Despite its mathematical complexity, the importance of the Pál-Bell equation is

well appreciated. Of particular interest is a quantity that can be extracted from

the Pál-Bell equation known as the survival probability. The survival probability is

simply the complement of the extinction probability, which is the probability that

zero neutrons will exist in a given volume, at some time in the future, as a result of

one neutron existing with a given position and velocity at some initial time. As such,

the survival probability does not provide information about the number of neutrons

that will likely exist as a result of the initial neutron beyond that it is non-zero. Bell

2



Chapter 1. Introduction

and Lee [6] showed that the derivation of the survival probability equation is possible

from first principles as well.

Though there may be a seeming sparseness of information associated with having

lost information about the specific number of neutrons in the population, valuable

physical insight can be gleaned from the survival probability equation. By noting that

the only way that a neutron and its progeny can persist as time tends towards infinity

is by being part of a divergent chain, it can be seen that the steady-state form of

the survival probability equation provides what is coined the probability of initiation

(POI). Clearly, the POI can only be non-zero for supercritical systems. In considering

the time-dependent case, probability distributions in time of the initiation of the

first divergent neutron chain in a system can be generated, which is instrumental

in understanding the burst characteristics of the system being studied. Given its

utility, the survival probability equation warrants investigation.

While simpler than the full Pál-Bell equation, the survival probability equation is

extremely complex, resembling a standard adjoint transport equation with additional

nonlinear terms. To wrest solutions from the equation, simplifications such as point

models have been introduced, the contribution of nonlinear terms of degree higher

than two has been ignored (referred to as the quadratic approximation), and some

examinations have been restricted to the steady-state case. These simplifications

are necessarily lacking in completeness, and hence a more expansive technique is

desirable. While the complete time-dependent survival probability equation has been

implemented in LANL’s Sn code, PARTISN [7], it is computationally expensive and

hence leaves room for the development of well sorted approximate solution to the

problem with sufficient completeness.

The implementation in PARTISN was something of a conclusion to Bell’s positing

that an Sn code could be developed to solve the time-dependent survival probability

equation. Bell and Lee documented the development of such a code [6] for the time-

3



Chapter 1. Introduction

independent case and confirmed, at least qualitatively, that the shape of the POI

should be well characterized by the fundamental mode of an eigenfunction expansion

of the linear portion of the equation for systems sufficiently close to criticality, as

Bell had previously posited [4].

In this work, the efficacy of eigenfunction expansion (EFE) as a technique to arrive

at solutions to the time-dependent survival probability equation will be examined.

In doing so, the validity of Bell’s posit will be quantified, and the scope increased to

include significantly supercritical systems. To make the assessment more focused, the

diffusion approximation in wide use in deterministic transport problems will be devel-

oped for the survival probability equation so that the exact eigenfunctions that result

can be exploited for mathematical expediency. Ramsey and Hutchens [8] recently

examined such a survival probability diffusion equation, though no eigenfunction

expansion was performed. There,“a simple trial function/single-point collocation

approach” was used, though nonlinear terms beyond the quadratic were neglected.

In addition to the development of the EFE technique, a number of lumped models,

some analytical and some numerical, as well as a spatially-resolved semi-analytical

equilibrium solution, will be developed and examined. Lumped models are so-called

as they account for spatial effects in an averaged, simplified sense, and they are

very useful in approximating the behavior of a system under certain simplifying

assumptions. Additionally, they can be useful as benchmarks for related models in

that the solutions to a more complex model can be reduced to those of the analytical

lumped models, validating the associated numerical routines.

To assess the ability of EFE to accurately and efficiently model the survival

probability, comparisons of its results will be drawn against those for the various

analytical and semi-analytical benchmarks. With the EFE technique benchmarked,

extension to various geometries, including cylinders, spheres, and two-dimensional

slabs, will be demonstrated as well.

4



Chapter 2

Survival Probability Equations

2.1 The Pál-Bell Equation

Central to stochastic neutron transport theory is the probability of finding specific

numbers of neutrons in a phase space of interest. As such, it is useful to define

a quantity, pn

(
R, tf ;~r, Ω̂, E, t

)
, as the probability that a neutron with position ~r,

direction Ω̂, energy E, at time t will lead to n neutrons in an element of space, angle,

and energy phase space R at time tf . Equations for pn may be formulated from first

collision probabilities by writing them in terms of the probability that the initial

particle has a collision in R before tf , times the probability that that collision leads

to n neutrons in R at tf , plus the probability that the initial particle does not have

a collision and leads to n neutrons in R at tf . The latter probability can only be

non-zero when n is either zero or one. Here, in following Bell’s development [4], it

will be assumed that the neutron population is monoenergetic, that neutrons emerge

from collisions isotropically, and that there are no delayed neutron precursors. This

being the case, the number distribution satisfies :

5



Chapter 2. Survival Probability Equations

pn

(
R, tf ;~r, Ω̂, t

)
=

[∫ l(sb;st)

0

ΣT

(
~r + sΩ̂, t+ s

v

)
e
−
∫ s
0 ΣT

(
~r+s′Ω̂,t+

s′

v

)
ds′

ds

]
·

·

[
δn0c0

(
~r + sΩ̂, t+ s

v

)
+

+c1

(
~r + sΩ̂, t+ s

v

)∫
4π

pn

(
R, tf ;~r + sΩ̂, Ω̂′, t+ s

v

) dΩ̂′

4π
+

+c2

(
~r + sΩ̂, t+ s

v

)
·

·
∫

4π

∫
4π

n∑
m=0

pm

(
R, tf ;~r + sΩ̂, Ω̂′, t+ s

v

)
·

·pn−m
(

R, tf ;~r + sΩ̂, Ω̂′′, t+ s
v

) dΩ̂′

4π

dΩ̂′′

4π
+

+c3

(
~r + sΩ̂, t+ s

v

)
· · ·

]
+

+δn0H [st − sb] e
−
∫ sb
0 ΣT

(
~r+s′Ω̂,t+

s′

v

)
ds′

+

+δn0H [sb − st]~r+stΩ̂,Ω̂/∈R e
−
∫ st
0 ΣT

(
~r+s′Ω̂,t+

s′

v

)
ds′

+

+δn1H [sb − st]~r+stΩ̂,Ω̂∈R e
−
∫ st
0 ΣT

(
~r+s′Ω̂,t+

s′

v

)
ds′

(2.1)

where :

st = v (tf − t) (2.2)

l (sb; st) =

sb if sb ≤ st

st if st < sb

(2.3)

Here, sb is the distance the particle must travel to reach the system boundary, ΣT

is the total macroscopic cross-section, s is the measure of the length of l travelled, v

is the neutron velocity (which Bell set to unity in his derivation), cj is the probability

6



Chapter 2. Survival Probability Equations

that j neutrons will emerge from a collision, δni is the Kronecker delta function, and

H is the Heaviside function. Being that negative particle quantities are nonphysical,

pn equals 0 for n < 0.

Introducing a generating function allows the series of n differential-difference

equations to be combined into a single equation. This is accomplished by multiplying

Eq. (2.1) by zn and summing over n from zero to ∞. The generating function is

defined by the following equation, where for convenience, the explicit dependence on

R and tf will be dropped :

G
(
z;~r, Ω̂, t

)
=
∞∑
n=0

znpn

(
~r, Ω̂, t

)
(2.4)

As can be seen, this admits a significant simplification of the terms associated

with collisions which result in an increase in the number of neutrons :

G
(
z;~r, Ω̂, t

)
=

[∫ l(sb;st)

0

ΣT

(
~r + sΩ̂, t+ s

v

)
e
−
∫ s
0 ΣT

(
~r+s′Ω̂,t+

s′

v

)
ds′

ds

]
·

·

[
c0

(
~r + sΩ̂, t+ s

v

)
+

+c1

(
~r + sΩ̂, t+ s

v

)
·
∫

4π

G
(
z;~r + sΩ̂, Ω̂′, t+ s

v

) dΩ̂′

4π
+

+
J∑
j=2

cj

(
~r + sΩ̂, t+ s

v

)
·

(∫
4π

G
(
z;~r + sΩ̂, Ω̂′, t+ s

v

) dΩ̂′

4π

)j]
+

+H [st − sb] e
−
∫ sb
0 ΣT

(
~r+s′Ω̂,t+

s′

v

)
ds′

+

+H [sb − st]~r+stΩ̂,Ω̂/∈R e
−
∫ st
0 ΣT

(
~r+s′Ω̂,t+

s′

v

)
ds′
]

+

+H [sb − st]~r+stΩ̂,Ω̂∈R ze
−
∫ st
0 ΣT

(
~r+s′Ω̂,t+

s′

v

)
ds′

(2.5)

Here, J is the maximum number of particles that can emerge from a collision.

Evaluating Eq. (2.5) for G
(
z;~r + ∆sΩ̂, Ω̂, t+ ∆s

v

)
replaces the lower integration

7



Chapter 2. Survival Probability Equations

limits in the collision probability term with ∆s, and hence the value corresponds to

the lesser of the track lengths from ∆s to the system boundary, or from ∆s along sΩ̂

until time reaches tf . Subtracting Eq. (2.5), which corresponds to the value along

the entire sΩ̂ track length, leaves a value corresponding to the track length up to

∆s. Driving ∆s to zero allows for the formation of a non-linear partial differential

equation that defines the behavior of the generating function at the point ~r :

Ω̂ · OG+
1

v

∂G

∂t
= ΣT (~r, t)

[
G
(
z;~r, Ω̂, t

)
−

J∑
j=0

cj (~r, t)G0 (z;~r, t)j
]

(2.6)

with the final condition :

G
(
z;~r, Ω̂, tf

)
= z ~r, Ω̂ ∈ R

= 1 ~r, Ω̂ /∈ R (2.7)

and the boundary condition :

G
(
z;~rb, Ω̂, t

)
= 1 Ω̂ · ~n > 0 (2.8)

where G0 is here defined :

G0 (z;~r, t) =

∫
4π

G
(
z;~r, Ω̂′, t

) dΩ̂′

4π
(2.9)

A more convenient equation, in that it may be expressed in terms of the measur-

able nuclear properties of cross-sections and the factorial moments of fission multi-

plicities, is possible for the complement of the generating function :

−Ω̂ · Og − 1

v

∂g

∂t
= ΣT (~r, t)

[
1− g

(
z;~r, Ω̂, t

)
−

J∑
j=0

cj (~r, t) (1− g0 (z;~r, t))j
]

(2.10)

8



Chapter 2. Survival Probability Equations

where :

g
(
z;~r, Ω̂, t

)
= 1−G

(
z;~r, Ω̂, t

)
(2.11)

g0 (z;~r, t) =

∫
4π

g
(
z;~r, Ω̂′, t

) dΩ̂′

4π
(2.12)

c0 =
ΣC

ΣT

+ p0
ΣF

ΣT

(2.13)

c1 =
ΣS

ΣT

+ p1
ΣF

ΣT

(2.14)

c2 = p2
ΣF

ΣT

(2.15)

...

cj = pj
ΣF

ΣT

(2.16)

Here, ΣC is the macroscopic capture cross-section, ΣS is the macroscopic scatter-

ing cross-section, ΣF is the macroscopic fission cross-section, and pj is the probability

that a fission will release j neutrons. Because of the relationships between the vari-

ous cj and the macroscopic cross-sections, the first couple of terms in the summation

in Eq. (2.10) may be expanded and rearranged to produce an equation in terms of

those cross-sections :

−Ω̂ · Og − 1

v

∂g

∂t
= −ΣTg + ΣSg0 + ΣF

[
1−

J∑
j=0

pj (1− g0)
j

]
(2.17)

To recast Eq. (2.17) as a function of the factorial moments of the fission mul-

tiplicities, expansion of the summation term by way of the binomial theorem must

first be performed :

9



Chapter 2. Survival Probability Equations

−Ω̂ · Og − 1

v

∂g

∂t
= −ΣTg + ΣSg0 + ΣF

[
1−

J∑
j=0

pj

j∑
k=0

(−1)j−kj!

(j − k)!k!
g0
j−k

]
(2.18)

Expanding and regrouping the terms in the double summation allows for the

more desirable grouping by order of the associated nonlinearity of the terms. The

resulting coefficients are the factorial moments being sought :

−Ω̂ · Og − 1

v

∂g

∂t
= −ΣTg + ΣSg0 + ΣF

[
ν̄g0 −

J∑
j=2

(−1)jχj
j!

g0
j

]
(2.19)

where:

ν̄ =
J∑
j=0

jpj (2.20)

χj =
J∑
k=j

k!

(k − j)!
pk (2.21)

Here, ν̄ is the average number of neutrons emitted per fission and χj/j! is the

average number of j-tuplet neutron groups emitted per fission.

2.2 The Survival Probability Equation

The present aim is to determine the probability that a neutron with position ~r,

direction Ω̂, at time t, will lead to a non-zero number of neutrons in R at time tf

(i.e., the survival probability). In calculating this quantity, it is useful to observe

that the survival probability is simply the complement of the extinction probability.

The extinction probability is the probability that a neutron with position ~r, direction

Ω̂, at time t will lead to zero neutrons in R at time tf . To arrive at the extinction

probability, z is set to zero in Eq. (2.4) :

10
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G
(
z;~r, Ω̂, t

)
= p0 + zp1 + z2p2 + · · ·+ znpn

G
(

0;~r, Ω̂, t
)

= p0 (2.22)

The survival probability is therefore simply g with z equal to zero. For conve-

nience, P will be taken to represent the survival probability going forward :

P
(
~r, Ω̂, t

)
≡ g

(
0;~r, Ω̂, t

)
(2.23)

The survival probability therefore satisfies the following equation :

−Ω̂ · OP − 1

v

∂P

∂t
= −ΣTP + ΣSP0 + ΣF

[
ν̄P0 −

J∑
j=2

(−1)jχj
j!

P0

j

]
(2.24)

with the final condition :

P
(
~r, Ω̂, tf

)
= 1 ~r, Ω̂ ∈ R

= 0 ~r, Ω̂ /∈ R (2.25)

and the boundary condition :

P
(
~rb, Ω̂, t

)
= 0 Ω̂ · ~n > 0 (2.26)

where :

P0 (z;~r, t) =

∫
4π

P
(
z;~r, Ω̂′, t

) dΩ̂′

4π
(2.27)
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Eq. (2.24) resembles an adjoint Boltzmann transport equation with additional

nonlinear terms that account for the neutron multiplicities that result from fission.

The resemblance to a deterministic transport equation comes as no surprise given

that the same physical processes dictate the behavior of the subject particle, and

spurs the expectation that solutions to the survival probability equation ought to

resemble those for the neutron importance functions of the system.

2.3 Existing Formulations of the Survival Proba-

bility Equation

It is worthwhile to explore the relationship that Eq. (2.24) has with similar equations

developed in the foundational works of stochastic neutron transport.

For a neutron chain to survive as tf grows toward infinity, the system must be

supercritical and the neutrons that exist in R as a result of the initial particle must

be part of a divergent chain. Setting the derivative with respect to time equal to

zero in Eq. (2.24) therefore produces an equation for the POI, P∞ :

Ω̂ · OP∞ = ΣTP∞

(
~r, Ω̂

)
− ΣSP∞ (~r) + ΣF

[
ν̄P∞ (~r)−

J∑
j=2

(−1)jχj
j!

P∞ (~r)j
]

(2.28)

Eq. (2.28) is very similar to the equation that Bell and Lee derived from first

principles in documenting the development of their Sn code designed to solve the

time-independent survival probability equation. Relaxing the assumption that par-

ticles emerge from scattering collisions isotropically recovers their equation :

Ω̂ · OP∞ = ΣTP∞

(
~r, Ω̂

)
−
∫

4π

ΣS

(
~r, Ω̂′ → Ω̂

)
P∞

(
~r, Ω̂′

)
dΩ̂′+

+ΣF

[
ν̄P∞ (~r)−

J∑
j=2

(−1)jχj
j!

P∞ (~r)j
]

(2.29)
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A 0-D lumped model description of the survival probability, Q, wherein a uniform

spatial profile is assumed, can be readily extracted from Eq. (2.24) by removing the

dependence on ~r and Ω̂ :

1

v

dQ

dt
= ΣTQ− ΣSQ− ΣF

[
ν̄Q−

J∑
j=2

(−1)jχj
j!

Qj

]
(2.30)

Neglecting the fission terms in Eq. (2.30) resulting from J greater than two

recovers the analogous point-kinetics equation for the survival probability derived by

Hansen in his examination of neutron chains in the presence of weak neutron sources.

Both a diffusion theory analog to the steady-state survival probability equation,

Eq. (2.29), and the 0-D lumped model, Eq. (2.30), will be examined as complexity

of the problem is increased toward the full time and space-dependent problem.
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Chapter 3

The Diffusion Approximation

It is the objective of this work to examine the ability of the eigenfunction expansion

technique to describe the space and time-dependent behavior of the survival proba-

bility. Because this is to be something of a feasibility study of that approach, it is

desirable that the eigenfunctions be readily obtained, preferably without requiring

additional numerical effort. To this end, the diffusion approximation that is often

applied to deterministic transport problems will be applied to Eq. (2.24) so that

the exact eigenfunctions of the resulting equation for special geometries may be ex-

ploited, divesting the survival probability of its dependence on angle and increasing

the accessibility of solutions.

3.1 The Diffusion Approximation of the Survival

Probability Equation

A standard approach will be used for reducing the transport equation, Eq. (2.24),

to a diffusion equation [9] [10] [11].
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First, it will be assumed that the medium is uniform in composition and unchang-

ing in time so that the cross-sections are not functions of space within the medium,

or of time. Therefore, the way in which the survival probability behaves in the con-

stant medium does not change with time, but only with the difference between the

“current” time, t, and the final time, tf , which will be referred to hereafter as the

survival time, τ . Moreover, the survival time will be normalized to units of neutron

lifetimes, tl, and the assumption that scattering is isotropic will be relaxed :

Ω̂ · OP − ΣA
∂P

∂τ
=ΣTP −

∫
4π

ΣS

(
Ω̂′ · Ω̂

)
P
(
Ω̂′
)
dΩ̂′−

−ΣF

[
ν̄P0 −

J∑
j=2

(−1)jχj
j!

P0

j

]
(3.1)

where :

τ =
(tf − t)
tl

(3.2)

tl =
1

vΣA

(3.3)

Eq. (3.1) is a function of an angle dependent survival probability, P , and an

angle independent survival probability, P0 . In an effort to remove the dependence on

angle so as to have the complexity reduced, each term in Eq. (3.1) is integrated over

all solid angles. In doing so, it becomes useful to define a vector survival probability

current, ~P :

~P (~r, t) =

∫
4π

Ω̂P
(
~r, Ω̂, t

) dΩ̂

4π
(3.4)

Physically, the survival probability current is the net contribution to the survival

probability that results from particle streaming in Ω̂ at ~r. By extension, ~P · n̂ is
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Chapter 3. The Diffusion Approximation

the rate at which the survival probability changes through a unit area normal to

n̂. Mathematically, it is simply the integral of the product of the angle dependent

survival probability and the associated angle over all solid angles.

For ease of manipulation, the fission terms will be lumped together as an isotrop-

ically emitting source, F0 before Eq. (3.1) is integrated over all angles :

∫
4π

[
Ω̂ · OP − ΣA

∂P

∂τ

]
dΩ̂ =

∫
4π

[
ΣTP −

∫
4π

ΣS

(
Ω̂′ · Ω̂

)
P
(
Ω̂′
)
dΩ̂′ − F0

]
dΩ̂ (3.5)

where :

F0 = ΣF

[
ν̄P0 −

J∑
j=2

(−1)jχj
j!

P0

j

]
(3.6)

By taking advantage of the definitions of ~P and P0 and the fact that Ω̂ · OP =

O · Ω̂P , Eq. (3.5) may be significantly simplified :

O · ~P − ΣA
∂P0

∂τ
= ΣAP0 − F0 (3.7)

Unfortunately, Eq. (3.7) is also a function of two distinct quantities; the survival

probability current, ~P , and the angle-independent survival probability, P0 . Multi-

plying Eq. (3.1) by Ω̂
4π

before integrating, in an effort to develop an equation for the

survival probability current, results in another distinct quantity,
∫

4π
Ω̂Ω̂PdΩ̂ :

1

4π
O ·
∫

4π

Ω̂Ω̂PdΩ̂− ΣA
∂ ~P

∂τ
= ΣT

~P − µ̄ΣS
~P (3.8)

Here, µ̄ is the average scattering angle cosine. Because the integral of Ω̂ over all

angles is zero, the angle independent source term in Eq. (3.8) vanished.

Clearly, proceeding to multiply the equation by Ω̂ and integrating over all solid

angles in hopes of solving for the newly created quantities will just generate new
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quantities and the process will not conclude. To bring closure to the problem at

hand, it will be assumed that the survival probability is only weakly dependent on

angle. Specifically, it will be assumed that the survival probability is sufficiently

well-characterized as linearly anisotropic :

P
(
~r, Ω̂, τ

)
∼= P0 (~r, τ) + 3Ω̂ · ~P (~r, τ) (3.9)

Investigation of Eq. (3.9) by way of multiplying by 1
4π

and Ω̂
4π

, respectively, and

then integrating over all angles demonstrates mathematical consistency. Multiplying

Eq. (3.9) by 1
4π

and integrating over all angles recovers the definition of P0 :

∫
4π

P
dΩ̂

4π
= P0

�
�
�
��

1∫
4π

dΩ̂

4π
+ 3~P

�
�
�
�
�>

0∫
4π

Ω̂
dΩ̂

4π
= P0 (3.10)

Multiplying Eq. (3.9) by Ω̂
4π

and then integrating over all angles recovers the

definition of survival probability current, ~P :

∫
4π

Ω̂P
dΩ̂

4π
= P0

�
�
�
�
�>

0∫
4π

Ω̂
dΩ̂

4π
+ 3~P

��
��

��*
1/3∫

4π

Ω̂Ω̂
dΩ̂

4π
= ~P (3.11)

Substituting the linearly anisotropic survival probability from Eq. (3.9) into the

survival probability current equation, Eq. (3.8) and integrating gives :

1

4π
O

P0
��

�
��
�*

4π/3∫
4π

Ω̂Ω̂
dΩ̂

4π
+ 3~P

��
��

�
��*

0∫
4π

Ω̂Ω̂Ω̂dΩ̂

− ΣA
∂ ~P

∂τ
= (ΣT − µ̄ΣS) ~P (3.12)
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To arrive at an expression for ~P in terms of P0 from Eq. (3.12), it will be assumed

that the rate at which the survival probability current varies with survival time can

be neglected :

1

3
OP0 − ΣA

�
�
���

0

∂ ~P

∂τ
= (ΣT − µ̄ΣS) ~P

which yields Fick’s Law :

~P = DOP0 (3.13)

where :

D =
1

3Σtr

(3.14)

Σtr = ΣT − µ̄ΣS (3.15)

Here, D is the diffusion coefficient and Σtr is the macroscopic transport cross-

section.

Finally, a single equation for the angle independent survival probability can be

realized by substituting Eq. (3.13) into Eq. (3.7) :

DO2P0 − ΣA
∂P0

∂τ
= ΣAP0 − ΣF

[
ν̄P0 −

J∑
j=2

(−1)jχj
j!

P0

j

]
(3.16)
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3.2 The Survival Probability Diffusion Equation

It is the survival probability diffusion equation that will be the central focus of this

work. Having no further need for the distinction between angle-dependent and -

independent survival probabilities, the subscript notation will be dropped, and P

will be used to refer to the angle-independent survival probability described by Eq.

(3.16) for ease of notation. Some rearranging and combining of terms produces a

more amenable form :

−∂P
∂τ

+ L2O2P = (1− k∞)P +
ΣF

ΣA

J∑
j=2

(−1)jχj
j!

P j (3.17)

with the “initial” condition :

P (~r, 0) = 1 ~r ∈ R

= 0 ~r /∈ R (3.18)

and the boundary condition :

P (~r, τ) = 0 ~r /∈ R (3.19)

where :

L2 =
D

ΣA

(3.20)

k∞ =
ν̄ΣF

ΣA

(3.21)

Here, L is the diffusion length and k∞ is the infinite multiplication factor.
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The “initial” condition states that the probability that a particle will lead to at

least one particle in R if no time is allowed to pass is unity for particles in R. This

is a self-consistent statement in that if the particle is not allowed time to move and

interact with the medium, it will necessarily remain.

The boundary condition simply states that there is no probability that a particle

introduced beyond the boundary of the system will lead to one or more in the system.

While a more accurate treatment of diffusion approximation problems is possible by

way of the familiar Marshak boundary conditions, the purpose of the current work

is primarily to examine the efficacy of an eigenfunction expansion technique. The

boundary condition is therefore chosen to be Dirichlet to make examination of the

performance of the technique more straightforward.

With the survival probability diffusion equation now well posed for general ge-

ometries and material compositions, it is worth observing that the solution will only

converge with passing survival time if at least the quadratic factorial moment is in-

cluded. This is intuitive in that if only the linear terms are preserved, Eq. (3.17) is

analogous to an equation for the flux in a deterministic transport problem, except

the leakage term acts as a net gain. If such a system were supercritical, as the sys-

tems that are the concern of this work are, the flux would diverge in time. Hence, so

would the survival probability. Moreover, as will be shown later, linearized versions

of Eq. (3.17) can be used to assess the stability of nonzero steady-state solutions.
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A Time-Dependent 0-D Lumped

Model

To develop a general sense of how the survival probability behaves, a significantly

simplified form of the equation, one for which the probability is uniform throughout

the medium, will first be examined. The only way that the survival probability could

be the same everywhere in a medium is if that medium were infinite in extent. As

such, an equation for the survival probability in a hypothetical infinite medium will

be developed.

The obvious shortcoming of this approach is that it cannot inform as to any

spatial behavior. Still, a qualitative understanding of system characteristics, such

as how quickly the survival probability converges to the POI, and rough estimates

for the value of the survival probability as a function of various parameters (e.g.,

system excess reactivity, number of factorial moments included, and survival time),

can be gleaned. In this way, an understanding of the relative impact that varying

these parameters has on the system behavior can be begin to be developed to help

inform expectations for other, less simplified models.
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4.1 Development of a Spatially Uniform Lumped

Model

Considering the survival probability in this hypothetical infinite medium, Q, elimi-

nates the term with the Laplacian operator in Eq. (3.17) along with any dependence

on ~r. The result is the following nonlinear ordinary differential equation :

dQ

dτ
= (k∞ − 1)Q (τ)− k∞

ν̄

J∑
j=2

(−1)jχj
j!

Q (τ)j (4.1)

with the “initial” condition :

Q (0) = 1 (4.2)

Obviously, the absence of the leakage term eliminates the loss associated with

that phenomenon. To compensate for this, an artificial loss mechanism is introduced

by substituting keff for k∞ in an effort to account for finite-system effects :

dQ

dτ
= (keff − 1)Q (τ)− keff

ν̄

J∑
j=2

(−1)jχj
j!

Q (τ)j (4.3)

4.1.1 Applying the Quadratic Approximation : Develop-

ment of an Analytical Expression for a Time Depen-

dent 0-D Lumped Model

Applying the quadratic approximation eliminates nonlinear terms of degree three

and greater from Eq. (4.3). Because the quadratic form is a Bernoulli Equation, an

analytical solution is possible. This solution can serve to benchmark the numerical

solution scheme needed to solve Eq. (4.3) for greater degrees of nonlinearity.
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First, the quadratic form (i.e., J = 2) of Eq. (4.3) is recast by performing a

change of variables :

W (τ) =
1

Q (τ)
(4.4)

which yields :

dW

dτ
+ αW = β (4.5)

with the “initial” condition :

W (0) =
1

Q (0)
= 1 (4.6)

where :

α = (keff − 1) (4.7)

β =
keff
ν̄

χ2

2!
(4.8)

Using integrating factors and applying the “initial” condition readily yields an

analytical solution for the quadratic approximation of Eq. (4.3) :

Q (τ) =
1

1

ρ

χ2/2!

ν̄
(1− e−ατ ) + e−ατ

(4.9)

where :

ρ =
keff − 1

keff
(4.10)
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Here, ρ is the system excess reactivity. Being that the ability of a multiplying

system to propagate a neutron chain is tied to the effective multiplication factor of

that system, so to is the survival probability of a neutron in that system. Physical

intuition therefore suggests that the survival probability, and by extension the POI,

ought to go as the excess reactivity of the system in which it is injected. Eq. (4.9)

supports this intuition, and permits a well-quantified expectation of the magnitude

of the POI without having to perform any numerical work :

lim
τ→∞ Q(τ) ≡ Q∞ =

1

1

ρ

χ2/2!

ν̄
(1−��

�* 0

e−ατ ) +��
�* 0

e−ατ

Q∞ = ρ
ν̄

χ2/2!
(4.11)

Eq. (4.11) shows that the quadratic form of the survival probability equation has

an equilibrium value directly proportional to the system excess reactivity. Because

successively higher order nonlinear terms contribute less by virtue of being the prod-

uct of both increasingly small physical constants and numbers less than one raised

to increasing powers, Eq. (4.11) leads one to expect that the POI ought to roughly

approximate the system excess reactivity, particularly for smaller excess reactivities

where the higher order nonlinear terms contribute negligibly.

4.2 Numerical Results of the 0-D Lumped Model

All computations shown in this body of work are performed using scripts written

for use with Matlab R2012a. The platform used is 64-bit and all values are double-

precision floating-point numbers. All relative and absolute error tolerances for numer-

ical integrations are the highest precision allowed by the platform used; the relative

error tolerances are set to 2.2204 · 10−14 and the absolute error tolerances are set to

4.4408 · 10−16.
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The medium is modeled as pure 235U throughout all computations. All nuclear

cross-sections, as well as the average number of neutrons emitted per fission, ν̄, are

from Los Alamos National Laboratories’ Nuclear Information Services. Specifically,

the NJOY nuclear data processing system [12] processed ENDF/B-VII data [13] to

generate the relevant nuclear data. This data was collapsed to a single energy group

using the 235U prompt neutron energy spectrum for weighting to coincide with the

one-speed approximation applied in the development of the survival probability dif-

fusion equation. The factorial moments of the fission multiplicities were computed

using Eq. (2.21) and probabilities of n neutrons being emitted per fission corre-

sponding to the aforementioned value of ν̄ [14]. The data used in the computations

is summarized below in Table 4.1.

Table 4.1: Physical Constants

N235U v σs σc σf
(235U/barn · cm) (cm/sec) (barn) (barn) (barn)

4.8552 · 10−2 2.0137 · 109 6.1043 5.0638 · 10−2 1.2231
ν̄ χ2/2! χ3/3! χ4/4! χ5/5!

2.750 3.076 1.772 0.564 0.007

Because the survival probability diffusion equation is numerically stiff, associated

differential equations are solved throughout this work using a variable order solver

based on the numerical differentiation formulas [15]. The solutions are considered to

have converged on a steady-state solution when the maximum difference between the

values for the survival probability at a given position differ by less than 4.4408 ·10−16

between successive survival time steps.

The behavior of the survival probability for small survival times can be seen in

Figure 4.1 for varying values of keff and J , as computed using the 0-D lumped model.
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Q
(τ

)

τ
keff

J = 5

J = 2

Figure 4.1: Q(τ) for Small Survival Times (τ ≤ 20)

Figure 4.1 shows that the survival probability decreases more rapidly, and to

smaller values, for smaller values of keff , regardless of J . This makes intuitive sense

as the likelihood that a particle will survive for a given duration is directly tied to

the multiplicative properties of the system in which it is propagating.

It is also clear that there exists a substantial difference between the survival

probability computed using the quadratic approximation (i.e., J = 2) and higher

order nonlinearity for small survival times, and that the two become less disparate as

the survival time tends toward infinity, particularly for smaller values of keff . This is

as expected, given that the survival probability itself is diminishing with increasing

survival time, and the importance of additional nonlinear terms in providing an

accurate solution is greater for greater values of the survival probability.
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It is worth noting that the numerical solutions for the 0-D survival probability

with J = 2 are identical to those for the analytical solution to within the specified

tolerances throughout the entire keff and τ phase space, granting a high degree of

confidence in the numerical ODE solver used herein.

Even given the small survival times captured in Figure 4.1, the asymptotic ap-

proach of the survival probability toward the 0-D POI, Q∞ , can be seen for the higher

values of keff . While the solution technique used to solve Eq. (4.3) converges on the

POI with increasing survival time, the exact POI for the 0-D lumped model described

by Eq. (4.3) is simply the real root of a J-degree polynomial between zero and one :

0 = ρQ∞ −
1

ν̄

J∑
j=2

(−1)jχj
j!

Q∞
j (4.12)

As the examination of the analytical expression derived by applying the quadratic

approximation showed, the POI is linearly proportional to the system excess reac-

tivity.

Although the POI can be solved for directly for quadratic and cubic forms of the

survival probability equation in an infinite medium, how much survival time must

pass for the system to satisfy the steady-state convergence criteria and arrive at the

POI can only be determined numerically. Both the POI and the corresponding “infi-

nite” survival time, τ∞ , are shown in Figure 4.2. Whether the POI is computed using

Eq. (4.3) with the established POI convergence criteria, or by finding the appropriate

root of Eq. (4.12), the values for the POI computed are identical to within machine

precision, inspiring further confidence in the accuracy of the numerical scheme used

to solve Eq. (4.3).
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Figure 4.2: Q∞ and τ∞ for Varying keff

Figure 4.2 makes clear the need for higher order nonlinearity for accurately mod-

eling higher values of the POI. It also shows that the survival time required for

convergence is largely unaffected by the degree of nonlinearity of the survival prob-

ability equation, and almost purely a function of keff .

As an important aside, the nature of the variable order method implemented to

solve Eq. (4.3) can somewhat obfuscate the convergence time by solving over larger

intervals of survival time as the solution becomes asymptotic. To consistently resolve

the survival time required to reach steady state to within a given value, in this case

a single neutron lifetime, the degree of variability that the solver is allowed to use in

adjusting the time step size may be fixed such that a step size cannot be greater than

that value. This, however, comes at the cost of significant added computational run

time. Because the resulting values for the survival probability are indistinguishable
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given the scrutiny allowed by machine precision, the significantly increased speed

of the unrestricted variable order solver is the tool of choice for all studies of this

equation except for survival time to steady state.

While Figures 4.1 and 4.2 have provided a qualitative demonstration of the dis-

crepancy introduced in computing the survival probability with truncated nonlin-

earity, a quantitative analysis provides the needed elucidation. To see the relative

impact that varying the degree of nonlinearity of the equation has on the survival

probability, the difference in a solution for a given degree of nonlinearity relative

to the solution computed for full nonlinearity (i.e., J = 5), and therefore the most

accurate, is plotted in Figure 4.3.
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Because the “initial” condition requires that the survival probability be unity for

zero survival time, it is to be expected that the impact of truncating the nonlinearity

of the survival probability equation will be significant in early survival times, regard-

less of keff . Clearly, the higher order nonlinear terms are not significantly diminished

in early survival times, as they aren’t yet factors of numbers significantly less than

one raised to increasing powers. In later time, the value of the survival probability

continues to drop for lower values of keff , and therefore so does the relative error

associated with truncation of the nonlinearity. This coincides with previous observa-

tions and reinforces that the importance of preserving higher degrees of nonlinearity

is a function of the magnitude of the survival probability .

Figure 4.4 quantifies this impact for the steady-state case throughout a wide

range of keff .
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4.3 Conclusions from the 0-D Lumped Model

Examination of the spatially uniform lumped model demonstrated a number of im-

portant characteristics of the survival probability. While the results presented in this

chapter are those of a somewhat crudely lumped model, the trends and dependencies

on various parameters informs expectations for solutions of less simplified models of

the survival probability.

Using this simplification, both the temporal profile and magnitude of the survival

probability were shown to exhibit significant dependence on the degree of nonlinearity

of the survival probability equation, J . Examination of the survival probability

equation reveals the rate of change of the survival probability and the magnitude of

the POI vary linearly with keff and the system excess reactivity, respectively. The

role that varying system keff plays in the associated solution accuracy is therefore

that it informs the magnitude of the survival probability at a given point in time.

Computing the survival probability with any variation in J then produces error in

the value commensurate with the degree of nonlinearity truncation.

In short, setting J = 2 produces solutions which underestimate the survival

probability by more than 10% for values of the survival probability greater than

∼ 0.2. Setting J = 3 was found to produce solutions with errors of less than 1% for

similar values. Clearly, higher order nonlinear terms are needed to accurately define

the system behavior for higher values of the survival probability, such as for very

small survival times and high excess reactivities.
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Space-Dependent Steady-State

Solutions

While the 0-D lumped model was computationally inexpensive, and therefore prefer-

able for helping to develop a general sense of the magnitude and temporal behavior

of the survival probability, it is necessarily limited in its ability to inform. Though

the “initial” condition requires that the survival probability be uniform throughout

the medium, this is not the case in a finite medium for nonzero survival times.

To develop a sense of how the survival probability varies spatially, an examination

of the profile of the space-dependent steady-state survival probability, P∞(~r), will be

conducted. In so doing, an understanding of the shape of the POI as a function of

keff , as well as the degree of nonlinearity of the equation, will be cultivated.

Though a direct analytical solution is not possible, a full spatial solution for the

time-independent case in a one-dimensional slab can be found in implicit form, which

can be readily evaluated using quadrature. Thusly, the shape of the POI is accessible.

Bell and Lee qualitatively verified that the first eigenfunction (i.e., the fundamental

mode) corresponding to the linear eigenvalue equation for an importance function of
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a given system (i.e., the linear portion of the survival probability equation) is a “good

approximation” of the POI for “slightly supercritical systems.” [6] Expectations are

therefore established for the examination to be undertaken here.

Because the POI may be solved for semi-analytically, the solutions can serve as

a benchmark, facilitating a quantification of how well a fundamental mode approxi-

mation represents the POI for varying values of keff and degrees of nonlinearity, and

against which a time and space-dependent eigenfunction expansion solution may be

compared, at least at its steady state.

5.1 Development of a Semi-Analytical Solution

In considering the time-independent survival probability in a one-dimensional slab

of thickness X, defining some coefficients for ease of notation allows Eq. (3.17) to

be recast in the more compact form :

d2P∞
dx2

=
J∑
j=1

(−1)jCjP∞
j (5.1)

with the boundary condition :

P∞

(
±X

2

)
= 0 (5.2)

where :

C1 = B2
m

=
k∞ − 1

L2
(5.3)

Cj =
ΣF

D

χj
j!

(5.4)
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Here, B2
m

is the material buckling of the medium.

A reduction in order of Eq. (5.1) allows for separation, which in turn allows for

integration. First, a change of variables is performed :

q =
dP∞
dx

(5.5)

By substituting q into Eq. (5.1) and dividing by q, an expression coupling two

first order differential equations results :

1

q

dq

dx
=

1

q

(
J∑
j=1

(−1)jCjP∞
j

)

dq

dP∞
=

1

q

(
J∑
j=1

(−1)jCjP∞
j

)
(5.6)

Eq. (5.6) can be separated and integrated :

∫
qdq =

∫ ( J∑
j=1

(−1)jCjP∞
j

)
dP∞

q2

2
=

J∑
j=1

(−1)jCj
j + 1

P∞
j+1 + κ1 (5.7)

Because P∞ (x) is symmetrical about the origin so that P∞
′ (0) = q (0) = 0,

applying homogeneous boundary conditions allows for the constant of integration,

κ1, to be computed :

�
�
���

0

q (0)2

2
=

J∑
j=1

(−1)jCj
j + 1

P∞(0)j+1 + κ1

κ1 = −
J∑
j=1

(−1)jCj
j + 1

P∞(0)j+1 (5.8)
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By substituting Eq. (5.8) into Eq. (5.7), an expression for q in terms of P∞ and

P∞(0) is recovered :

q = ±

√√√√2
J∑
j=1

(−1)jCj
j + 1

(
P∞

j+1 − P∞(0)j+1
)

(5.9)

The symmetry of the solution about the origin again informs the path to solution

by providing that values of P∞ (x) from Eq. (5.9) for x ≥ 0 alone create a complete

solution. As such, only the negative values of q need be computed. Substituting

the definition of q into Eq. (5.9) yields a separable nonlinear first order ordinary

differential equation :

dP∞
dx

= −

√√√√2
J∑
j=1

(−1)jCj
j + 1

(
P∞

j+1 − P∞(0)j+1
)

dx =
dP∞

−

√√√√2
J∑
j=1

(−1)jCj
j + 1

(
P∞

j+1 − P∞(0)j+1
) (5.10)

Integrating Eq. (5.10) produces an expression wherein the function being sought,

P∞ (x), is a limit of integration. Hence, the solution is implicit :

∫ X/2

x

dx = −
∫ 0

P∞ (x)

dP∞√√√√2
J∑
j=1

(−1)jCj
j + 1

(
P∞

j+1 − P∞(0)j+1
)

∫ P∞ (x)

0

dP∞
′√√√√2

J∑
j=1

(−1)jCj
j + 1

(
P∞
′j+1 − P∞(0)j+1

) =
X

2
− x (5.11)
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Eq. (5.11) provides a means to compute the value of P∞ (x) for a given value of

x, but only if one already knows the value at x = 0, P∞(0). To find this value, it is

useful to define, and then compute, a normalized survival probability :

y (x) =
P∞ (x)

P∞(0)
(5.12)

By substituting Eq. (5.12) into Eq. (5.11), an expression that lends itself to

evaluation for the central value of the survival probability results :

∫ y(x)

0

P∞(0)dy′√√√√2P∞(0)2
J∑
j=1

(−1)jCj
j + 1

P∞(0)j+1

P∞(0)2

(
y′j+1 − 1

) − X

2
+ x = 0

∫ y(x)

0

dy′√√√√2
J∑
j=1

(−1)jCj
j + 1

P∞(0)j−1 (y′j+1 − 1
) − X

2
+ x = 0 (5.13)

Setting x = 0 in Eq. (5.13) produces an implicit equation for P∞(0) :

∫ 1

0

dy′√√√√2
J∑
j=1

(−1)jCj
j + 1

P∞(0)j−1 (y′j+1 − 1
) − X

2
= 0 (5.14)

By implementing a Newton-Raphson iteration scheme, P∞(0) can be computed :

P k+1
∞ (0) = P k

∞(0)−
g
(
P k
∞(0)

)
g′
(
P k
∞(0)

) for k = 0, 1, 2, · · · (5.15)

where :

g
(
P k
∞(0)

)
=

∫ 1

0

[
2

J∑
j=1

(−1)jCj
j + 1

P k
∞(0)j−1

(
y′j+1 − 1

)]−1/2

dy′ − X

2
(5.16)
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g′
(
P k
∞(0)

)
=

∫ 1

0

[
2

J∑
j=1

(−1)jCj
j + 1

(j − 1)P k
∞(0)j−2

(
y′j+1 − 1

)]

−1

2

[
2

J∑
j=1

(−1)jCj
j + 1

P k
∞(0)j−1

(
y′j+1 − 1

)]3/2
dy′ (5.17)

By providing an initial guess for P 1
∞(0) and iterating on k, Eq. (5.15) will converge

on a value for P∞(0). Based on the discussion of the expected values for the survival

probability that produced Eq. (4.11), the initial guess is set to the system excess

reactivity.

With the value of P∞(0) in hand, another Newton-Raphson iteration scheme can

be implemented to solve Eq. (5.11) for P∞ (x) for varying values of x :

P k+1
∞ = P k

∞ −
g
(
P k
∞

)
g′
(
P k
∞

) for k = 0, 1, 2, · · · (5.18)

where :

g
(
P k
∞

)
=

∫ Pk
∞

0

[
2

J∑
j=1

(−1)jCj
j + 1

(
P∞
′j+1 − P∞(0)j+1

)]−1/2

dP∞
′ − X

2
+ x (5.19)

g′
(
P k
∞

)
=

[
2

J∑
j=1

(−1)jCj
j + 1

(
P k
∞

j+1 − P∞(0)j+1
)]−1/2

(5.20)

5.2 A Fundamental Mode Approximation

To quantify how well the POI is represented by a fundamental mode approximation,

N=1
P∞ , an expression for that approximation must be developed. In contrast to the

semi-analytical solution, this approach may be applied to general geometries, and

will therefore be developed in such a way.
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First, it is assumed that the POI is well represented by the first eigenfunction of

an expansion of the linear portion of the survival probability equation :

N=1
P∞(~r) = A1R1(~r) (5.21)

where R1 is a solution to :

O2R1 = −B2
gR1 (5.22)

(e.g., A1 cos(Bgx), A1J0(Bgr), and A1
1
r

sin(Bgr) for 1-D slabs, cylinders, and

spheres, respectively).

To calculate the coefficient A1, Eq. (5.21) is substituted into the equation for the

POI, Eq. (5.1). The result is then multiplied by R1 and integrated over the domain,

effectively weighting the solution with the spatial profile of the fundamental mode :

−B2
gA1% = −B2

mA1%+
J∑
j=2

(−1)jCjA
j
1

∫
~r

Rj+1
1 (~r)d~r (5.23)

where :

% =

∫
~r

R2
1(~r)d~r (5.24)

Some reorganizing of Eq. (5.23) produces a polynomial whose roots are the

coefficient being sought. The root between one and zero is the central value of the

fundamental mode approximation of the POI :

0 = ρA1 −
1

%ν̄

J∑
j=2

(−1)jχj
j!

Aj1

∫
~r

Rj+1
1 (~r)d~r (5.25)
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5.3 Numerical Results of the Time-Independent

Solutions

Definite integrals without a closed form solution, such as those represented in Eq.

(5.16), Eq. (5.17), and Eq. (5.19), are evaluated using a Gauss-Kronrod quadrature

formula combining a 7-point Gauss rule and a 15-point Kronrod Rule [16]. Unfortu-

nately, some error, ∼ 5 · 10−9, is introduced by way of the integrable singularity at

y = 1. Newton-Raphson iteration schemes are considered to have converged if the

difference between the value for a given iteration and the one previous is less than

4.4408 · 10−16.

Because the semi-analytical technique produces a solution requiring no further

approximation, it will be examined first to show the actual spatial profile of the POI,

shown below in Figure 5.1 for varying values of keff and J .
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Figure 5.1: P∞ Throughout a One-Dimensional Slab
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The results shown in Figure 5.1 keep well with expectations. As can be seen, the

peak magnitude of the POI trends as the excess reactivity of the system, and the

spatial profile at least qualitatively resembles that of a corresponding importance

function. Also evident is the impact of preserving higher order nonlinearity as a

function of the magnitude of the POI.

While it is clear that the contribution of higher order nonlinear terms is felt in the

magnitude of the POI, it is not clear from Figure 5.1 how they impact the relative

shape. To better understand this impact, the difference between a solution for a

given degree of nonlinearity relative to the solution computed for full nonlinearity is

plotted in Figure 5.2.
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Figure 5.2: Error in P∞ Relative to the Fully Nonlinear (J = 5) Solution
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Figure 5.2 shows that the relative error between solutions corresponding to various

values of J is constant throughout the slab. That successive nonlinear terms affect

the relative error of the profile uniformly lends strong support to Bell’s supposition

that the shape of the POI is largely dictated by the linear portion of the equation

[4]. Moreover, Figure 5.2 shows that this is so for more than just modest excess

reactivities.

With Figure 5.2 clearly demonstrating that the shape of the relative error in the

POI is not impacted by varying degrees of nonlinearity for varying values of keff ,

Figure 5.3 serves as a complement, showing the impact that preserving additional

nonlinear terms has on the magnitude of the POI as a function of keff .
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While the development of the fundamental mode approximation was for gen-

eral geometries, the results examined here will initially be restricted to those of a

one-dimensional slab to permit direct comparison with the semi-analytical solutions.

Extension to other geometries is straightforward, accomplished with a simple substi-

tution of the corresponding fundamental mode eigenfunctions, and will be examined

later.

A qualitative comparison of the computed semi-analytical survival probability,

the corresponding fundamental mode approximation, and the 0-D lumped model

solution is made in Figure 5.4.
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P∞ , and Q∞ (J = 5)

Figure 5.4 confirms strong qualitative congruence between the semi-analytical

POI and its fundamental mode approximation. As expected, distinction between
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the two grows as a function of the excess reactivity of the system. While Figure 5.4

only shows results for full nonlinearity, Figure 5.2 showed that the relative shape does

not change with varying nonlinearity. It is therefore expected that the fundamental

mode approximation should have a similarly constant relative difference in shape.

To quantify the magnitude of error introduced by assuming the shape of the POI is

described by a fundamental mode approximation, relative and absolute differences

for varying degrees of nonlinearity are shown in Figure 5.5.
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P∞

Figure 5.5 confirms that the fundamental mode approximation works as well as

it does for a given keff regardless of the degree of nonlinearity, as the series for the

quadratic and quintic errors are barely distinguishable from one another.
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It stands to reason that such an approximation should work so well in spite of

the fact that the eigenfunctions are only associated with the linear portion of the

equation if the nonlinear fission terms are simply regarded as an arbitrary function

of space, representing a source. The equation is then reduced from a nonlinear

differential equation to a more common inhomogeneous Helmholtz Equation, whose

solutions should be satisfied by the corresponding eigenfunctions.

Having observed that the fundamental mode approximation does so well to rep-

resent the POI, and that it renders solutions in geometries accessible where a semi-

analytical solution is not, a sense of the difference that changes in geometry have on

the steady-state solution can be developed. The fundamental mode approximations

for various geometries are plotted below in Figure 5.6.
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As expected, the magnitude of the POI grows with additional dimensional finite-

ness for a given keff . This is the case because for a given keff , a system proliferates

particles at a prescribed rate, regardless of geometry. To preserve the system’s ca-

pacity for particle proliferation with increased dimensional finiteness but constant

material properties, the characteristic dimension of a system is increased. There-

fore, a particle “injected” at the center of that medium must travel more mean free

paths to reach the surface and escape. It follows that the probability of that particle

interacting with the medium and causing fission is thereby increased; so too is the

probability of initiation. Figure 5.7 demonstrates this through a wide range of keff .
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Figure 5.7: P∞(0) and Error in P∞(0) Relative to the Fully Nonlinear (J = 5) Solution
in Various One-Dimensional Geometries

In addition to verifying that magnitudes of the survival probability grow with

increasing finiteness for a given keff , Figure 5.7 also shows that the error associated
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with truncating nonlinear terms is not particularly sensitive to varying system geom-

etry. Being that no such sensitivity is to be expected, the slight differences that are

visible are attributable to the fact that such errors are a function of the magnitude

of the POI itself.

5.4 Conclusions from the Space-Dependent POI

Solutions

Study of the semi-analytical POI showed the importance of preserving nonlinearity

to achieve a given accuracy throughout the medium of interest in much the same

way that the results of the spatially uniform lumped model did. As with the results

offered by the lumped model, the quadratic approximation was found to produce

solutions that underestimate the peak magnitude of the POI by ∼ 10% for values

approaching ∼ 0.2; while setting J = 3 was found to produce solutions with errors of

less than 1% for values exceeding ∼ 0.2. Again, the accuracy of a solution associated

with a given J is dependent on the magnitude of the survival probability.

Additionally, it was demonstrated that the the shape of the relative error in the

POI is constant throughout the medium regardless of J , strongly supporting the

posit that the shape of the survival probability is defined by the linear portion of the

survival probability equation. Comparison to a fundamental mode approximation

showed strong agreement, providing direct confirmation that spatial profiles associ-

ated with the linear portion of the equation represent the survival probability well,

even for high values of keff , and regardless of J .
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Solution By Eigenfunction

Expansion

While the space-dependent steady-state solutions examined in the previous chapter

inform a great deal as to the shape that the survival probability takes as it reaches an

equilibrium solution, the “initial” condition requires that the survival probability be

uniform throughout the medium “initially.” Although the 0-D lumped model serves

this assumption well, it fails to capture the impact that the spatial variation has

on the survival probability when the survival time is nonzero. As was outlined in

the introduction, an understanding of the behavior of the time and space-dependent

survival probability is desirable.

It was demonstrated that a fundamental mode approximation does remarkably

well to represent the POI for even large values of keff , regardless of the nonlinearity of

the equation. Unfortunately, such an approximation will obviously do quite poorly

to capture the “initial” condition being that it must be uniform throughout at that

point. Being that the eigenfunctions of the linear portion of the survival probability

equation are solutions to a Sturm-Liouville problem, it is known that a corresponding
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eigenfunction expansion is capable of representing any piecewise smooth function,

including a uniform value [17]. Both the “initial” condition and the POI are piecewise

smooth, and there is no compelling reason to believe that the survival probability

would become otherwise as it evolves through time.

These observations, in concert with an appreciation for the need to be able to

preserve arbitrary degrees of nonlinearity, spur the utilization of an eigenfunction

expansion technique for solution of the time-dependent survival probability equation.

6.1 Development of an Eigenfunction Expansion

Solution Technique

It is first assumed that the survival probability is separable in space and time, and

that it may be described by an expansion into a complete set of eigenfunctions :

P (~r, τ) =
∞∑
n=1

Tn (τ)Rn (~r) (6.1)

In Eq. (6.1) Rn represents the nth eigenfunction and Tn the associated time-

dependent coefficient. Substituting the expansion into the survival probability equa-

tion leads to an infinite number of linked nonlinear partial differential equations :

L2

∞∑
n=1

TnO
2Rn −

∞∑
n=1

∂Tn
∂τ

Rn = (1− k∞)
∞∑
n=1

TnRn

+
ΣF

ΣA

J∑
j=2

(−1)jχj
j!

[
∞∑
n=1

TnRn

]j
(6.2)

with the “initial” conditions :

∞∑
n=1

Tn (0)Rn (~r) = 1 ~r ∈ R (6.3)
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and the boundary conditions :

∞∑
n=1

Tn (τ)Rn (~r) = 0 ~r /∈ R (6.4)

The eigenfunctions of the linear portion of Eq. (6.2) will be used for Rn. That is

to say, Rn is the solution to a Sturm-Liouville Equation satisfying the above boundary

conditions :

O2Rn = −λ2
nRn (6.5)

In addition to providing eigenfunctions for Rn, this allows for the substitution of

−λ2
nRn in the place of O2Rn in Eq. (6.2), reducing the system of partial differential

equations to one of ordinary differential equations :

−
∞∑
n=1

dTn
dτ

Rn =
∞∑
n=1

(
1− k∞ + L2λ2

n

)
TnRn +

ΣF

ΣA

J∑
j=2

(−1)jχj
j!

[
∞∑
n=1

TnRn

]j
(6.6)

Because the eigenfunctions are orthogonal to one another, multiplying Eq. (6.2),

by Rm and integrating over ~r removes the dependence on ~r :

−
∫
~r

∞∑
n=1

dTn
dτ

RnRmd~r =

∫
~r

∞∑
n=1

(
1− k∞ + L2λ2

n

)
TnRnRmd~r

+
ΣF

ΣA

J∑
j=2

(−1)jχj
j!

∫
~r

[
∞∑
n=1

TnRn

]j
Rmd~r

dTm
dτ

=
(
k∞ − 1− L2λ2

m

)
Tm −

ΣF

ΣA%m

J∑
j=2

(−1)jχj
j!

∫
~r

Rm

[
∞∑
n=1

TnRn

]j
d~r (6.7)

where advantage has been taken of :

∫
~r

RnRmd~r = %mδnm (6.8)
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To compute the “initial” conditions for the differential equations represented by

Eq. (6.7), the orthogonality of the eigenfunctions is again exploited by multiplying

Eq. (6.3) by Rm and integrating over ~r :∫
~r

∞∑
n=1

Tn (0)RnRmd~r =

∫
~r

Rmd~r

Tm (0) =
1

%m

∫
~r

Rmd~r (6.9)

Where as invoking the orthogonality of the eigenfunctions normally produces a

series of decoupled differential equations, Eq. (6.7) represents an infinite set of linked

nonlinear differential equations. The solutions are the temporal coefficients of the

eigenfunctions of the survival probability. If a solution to such a set of differential

equations is to be had, the eigenfunction expansion must be truncated to a finite

number of modes, N :

dTm
dτ

=
(
k∞ − 1− L2λ2

n

)
Tm −

ΣF

ΣA%m

J∑
j=2

(−1)jχj
j!

∫
~r

Rm

[
N∑
n=1

TnRn

]j
d~r (6.10)

Owing to the nonlinearity of the survival probability equation, computing the

coefficients of the nonlinear terms in Eq. (6.10) becomes increasingly laborious for

larger expansions. Setting the derivative with respect to time equal to zero results in

a set of N linked polynomials where the coefficients that satisfy the set of equations

are those associated with the eigenfunctions that define the POI. These solutions can

serve as a means to compute the POI more rapidly, if that is all that is desired, as

well as a means to ensure that the time-dependent solver converges correctly.

6.1.1 Diffusion Approximation Eigenfunctions

As previously mentioned, the diffusion approximation is applied here not only to

enjoy the simplicity afforded by removing the dependence of the survival probability
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on angle, but also so that the exact eigenfunctions of the resulting equation for

special geometries may be exploited. Doing so allows for the efficacy of solution by

eigenfunction expansion to be examined without having to expend additional effort

computing eigenfunctions to begin with.

Because solutions to the Helmholtz equation with homogeneous boundary condi-

tions are well understood for general geometries (e.g., slabs, cylinders, and spheres),

they will simply be reproduced here for completeness.

Table 6.1: Eigenfunctions and Geometric Buckling

Geometric
Geometry Eigenfunction Buckling

(Rn)
(
B2
g

)
1-D Slab cos

(
(2n− 1)π

X
x

) (
π

X

)2

1-D Cylinder J0

(
jn
R
r

) (
j1

R

)2

Sphere
1

r
sin
(nπ
R
r
) (

π

R

)2

2-D Slab cos

(
(2a− 1) π

X
x

)
cos

(
(2b− 1)π

Y
y

) (
π

X

)2

+

(
π

Y

)2

Here, J0 is a Bessel function of the first kind and jn is the nth zero of that function,

which are computed using Halley’s method [18].

System dimensions (i.e., slab side lengths X and Y , and cylindrical and spherical

radii R) are computed for a given geometry and keff in the usual way by equating

the geometry dependent definition of the geometric buckling from Table 6.1, which

results from the relevant boundary conditions, to the general definition of geometric

buckling, B2
g :

B2
g =

k∞
keff
− 1

L2
(6.11)
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6.1.2 Applying the Quadratic and Fundamental Mode Ap-

proximations : Development of an Analytical Expres-

sion for a Time and Space-Dependent Lumped Model

As with the 0-D lumped model, applying the quadratic approximation permits an

analytical expression for the survival probability if the fundamental mode approxima-

tion is also applied. Such an expression can be viewed as a time and space-dependent

lumped model, affording an extremely computationally economical solution.

Unfortunately, this analytical expression is only available if these approximations

are applied, so it is therefore subject to the same significant errors for large survival

probabilities. Despite these shortcomings, Eq. (6.12) requires next to nothing com-

putationally, being that it is an analytical expression, and can serve well depending

on the level of accuracy needed. Additionally, it provides a benchmark against which

the ability of a numerical scheme to handle the stiffness of the survival probability

equation may be measured.

Following the development presented in Chapter 3 for the 0-D lumped model as

applied to Eq. (6.10) for an unimodal “expansion” (i.e., J = 2 and N = 1) :

N=1
P (~r, τ) =

R1 (~r)

β

α
+

(
%1∫

~r
R1d~r

− β

α

)
e−ατ

(6.12)

where :

α =
(
k∞ − 1− L2λ2

1

)
(6.13)

β =
ΣF

%1ΣA

χ2

2!

∫
~r

R3
1d~r (6.14)
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6.2 Benchmarking the EFE Technique : Numeri-

cal Results in a 1-D Slab

The present focus will be restricted to the simple case of a one-dimensional slab so

that solutions provided by the eigenfunction expansion may be compared against the

benchmark provided by the semi-analytical POI developed in Chapter 5. Extension

to other geometries is straightforward, and is deferred to a later point so as not to

becloud that which we wish to examine.

Because the Helmholtz equation from which the eigenfunctions were derived is

a Sturm-Liouville problem, it is known that as N goes to infinity, the expansion

representation is able to converge exactly on the spatially uniform “initial” condition,

for it is a smooth function. Figure 6.1 shows this convergence for increasing N .
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It was shown in Chapter 5 that the fundamental mode approximation did quite

well to represent the POI, in part spurring the use of the eigenfunction expansion

technique here to determine whether or not additional modes could provide for a

more accurate solution. Figure 6.2 below provides a qualitative confirmation that

they indeed can.
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Figure 6.2: Semi-Analytical P∞ and EFE
N
P∞ for Varying keff , J , and N

Figure 6.2 shows that regardless of keff or J , the addition of even just one mode

beyond the fundamental brings the computed POI much closer to the semi-analytical

solution. The difference between the semi-analytical solutions and those for two and

fifty mode expansions is not discernible in the above plot throughout the parameter

space. To quantify the impact that additional modes has on the solution accuracy,

the maximum error that exists within the slab is plotted as a function of N in Figure
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6.3
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Figure 6.3: Maximum Difference Within Slab Between Semi-Analytical P∞ and EFE
P∞ for Varying keff , J , and N

Figure 6.3 demonstrates the expected EFE solution accuracy increase with in-

creasing N , ultimately converging on the upper limit of accuracy afforded in the

semi-analytical solution. It also shows that for smaller values of the POI, fewer

modes are needed to achieve a given accuracy. This stands to reason, for as keff

increases toward k∞ , the shape of the POI goes from a shape that is very well rep-

resented by the corresponding fundamental mode approximation toward a uniform

value. As Figure 6.1 shows, more modes are needed to accurately represent profiles

that are more spatially uniform.
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For the steady-state case, that the accuracy of a given expansion as a function

of N is only indirectly coupled with the values of J and keff , in that they inform the

magnitude of the POI, is consistent with the comparison of the semi-analytical and

fundamental mode approximation POIs.

Figures 6.1 through 6.3 demonstrate the ability of the EFE technique to accu-

rately produce the survival probability at both the “initial” and equilibrium states

for varying keff and J . While these are the only two points for which an analytical

solution is available for direct comparison, confidence in the ability of the technique,

as well as the numerical routine, is bolstered by consistency in comparison with the

existing developed analytical expressions as well :

• Setting the derivative with respect to time in Eq. (6.10) to zero and solving the

resultant system of steady-state equations produces coefficients that correspond

to an eigenfunction expansion of the POI. For the entire parameter space, these

POI values match those that the time-dependent solver converges on.

• The results of the EFE technique with J = 2 and N = 1 exactly match those

produced by the analytical expression developed in Section 6.1.2.

Being that the results are indistinguishable to within the specified precision,

there is a high level of confidence in the ability of the technique to solve the stiff

differential equations of the eigenfunction expansion and for the convergence criteria

to bring about accurate POIs. In other words, given all available benchmarking, the

EFE technique proves to be an effective method of solution for survival probability

equations of arbitrary nonlinearity.
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6.3 Further Examination of the EFE Technique in

a 1-D Slab

Because of the additional computational burden of solving higher modal expansions,

particularly for higher degrees of nonlinearity, it is important to understand how the

accuracy associated with an N -mode expansion varies within the available parameter

space. Having examined its accuracy at both the “initial” and equilibrium states,

attention will now be directed toward how well an expansion represents the survival

probability for varying survival times. As Figure 6.4 shows, the survival probability

shifts from its uniform “initial” state to a shape not drastically different than that

of a simple fundamental mode after just a single neutron lifetime has passed.
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Just as with the POIs for higher values of keff , there is some visible difference be-

tween the single mode approximations and multi-mode approximations, yet precious

little between various multi-mode approximations. Much more visible is the error

associated with truncation of the equation nonlinearity, which overshadows any error

associated with modal truncation of the eigenfunction expansion.

To better quantify the impact that increasing N has, the maximum relative error

between solutions for varying N will be examined. Unfortunately, there are no avail-

able analytical solutions against which the EFE solutions may be measured. Given,

however, the known ability of the EFE to accurately represent the “initial” condition

with increasing N , and the demonstrated ability to represent the equilibrium state,

it is assumed that it does well to model interim solutions as well.

In the absence of an analytical solution, the solution associated with the highest

value of N examined, N
MAX

, is taken to be the most accurate. Therefore, any errors

computed ought be relative to those solutions. Computing relative error in the usual

way, however, will not provide very insightful information, as convergence on that

solution is assured with increasing N . How well a given N mode expansion represents

the N
MAX

mode expansion is not terribly interesting as it does not inform as to the

level of convergence on the actual survival probability, because no such value is

available.

Operating under the assumption that increasing N increases accuracy, a more

valuable measure of the benefit associated with including additional modes in an

expansion is how much increasing N alters the solution. Hence, the best measure of

the accuracy associated with increasing N as a function of N is given by what will

here be called the relative modal error, ∆N :

∆N(~r, τ) =
|N−1P (~r, τ)−N P (~r, τ)|

N
MAX

P (~r, τ)
(6.15)
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Figure 6.5: Maximum Relative Modal Error in P for Varying τ , keff , J , and N

Figures 6.3 through 6.5 reinforce that the impact that increasing the number of

modes in an expansion has on solution accuracy is only indirectly coupled to τ , keff ,

and J by virtue of being directly tied to the magnitude of the survival probability

and its departure from its “initial” state. Figure 6.4 shows the shape and magnitude

of the survival probability to dramatically change from its “initial” uniform value to

one of significantly reduced magnitude, qualitatively resembling a fundamental mode

approximation. Figure 6.5 shows the corresponding plummet in relative modal error.

Because the shape and magnitude of the survival probability varies dramatically

in early survival times, and less so thereafter, so does the accuracy afforded by an

increase in N . To better appreciate the difference that additional modes has for

very small survival times, the survival probability within a one-dimensional slab for

N = 2 and N = 50 inside of one neutron lifetime is plotted in Figure 6.6.
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The corresponding maximum relative modal error is plotted below in Figure 6.7.
M
A
X

∆
N

(x
)

τ

N

Figure 6.7: Maximum ∆N for τ < 1 (keff = 1.05 & N = 3)

Figure 6.7 makes clear how quickly the accuracy afforded per mode is had with

the passage of even a very slight amount of survival time. Even just a ten mode

expansion achieves maximum relative modal error of less than two one-hundredths

of a percent within the first one-fiftieth of a neutron lifetime.

6.4 Examination of the EFE Technique in Various

1-D Geometries

With a thorough understanding of the ability of the EFE technique to provide so-

lutions throughout the parameter space in a one-dimensional slab, all that remains

to be seen is the impact that a change in geometry has on its efficacy. Based on
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the results shown for the steady-state case, it is expected that increased finiteness

will increase the peak magnitude of the survival probability for a given keff in the

time-dependent case as well. Figure 6.8 confirms that this is so.
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Figure 6.8: J=3
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Because of the nature of the eigenfunctions for the spherical geometry, the value

at the center alternates between 0 and 2, “initially,” for even and odd values of N ,

respectively. This accounts for the absence of a 0th data point for the spherical cases

depicted in Figure 6.8.

While Figure 6.8 gives a sense of the behavior of the survival probability in various

geometries, it doesn’t show the difference that varying geometry has on the efficacy

of the EFE technique. Because there is not an available analytical or semi-analytical

solution available for geometries other than a one-dimensional slab, this impact is
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only quantifiable by way of the relative modal error. Again, having established that

the accuracy of a given truncation is a function of the magnitude of the survival

probability, the parameter space will be limited so as to make clear the impact that

a change in geometry has.
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Figure 6.9 does not show the accuracy of a given EFE to be impacted by a

change of geometry in any special way. Apparently, as was revealed by the study

of the fundamental mode approximations of the POIs for various geometries, the

system geometry impacts the accuracy of the eigenfunction expansion approximation

in much the same way that τ , keff , and J do. That is, geometry impacts the accuracy

of the EFE by driving the shape and magnitude of the survival probability; the

accuracy of a given EFE is a function of the magnitude of the survival probability.
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Regardless of geometry, as keff grows and τ approaches zero, the survival probability

grows in magnitude and tends to become more uniform, thereby requiring more

modes in an expansion to achieve a given accuracy.

Figure 6.10 shows that a change in system geometry has no dramatic impact on

the survival time required to settle on the POI, τ∞ , with the exception of the change

from an infinite medium to finite geometries, which roughly halves τ∞ for a given keff .

Though not depicted below, τ∞ is not a significant function of N . Again, the nature

of the variable order solver used here masks what could only be subtle differences

(e.g., a few neutron lifetimes).

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

 1  1.05  1.1  1.15
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

                    
 
 

 
 
 

 
 
 

keff

Sphere J=3
N=50P∞(0) Sphere J=2

N=50P∞(0) Sphere τ∞ (J = 3)
Cylinder J=3

N=50P∞(0) Cylinder J=2
N=50P∞(0) Cylinder τ∞ (J = 3)

Slab J=3
N=50P∞(0) Slab J=2

N=50P∞(0) Slab τ∞ (J = 3)

τ ∞
(n

eu
tr

on
li
fe

ti
m

es
)

JN
=
5
0 P
∞
(0)

Figure 6.10: P∞(0) and τ∞ for Varying Geometry and keff (N = 50)

64



Chapter 6. Solution By Eigenfunction Expansion

6.5 Examination of the EFE Technique in Multi-

Dimensional Geometries

While the development of the EFE technique in Section 6.1 was for general geome-

tries, and therefore directly applicable to multi-dimensional geometries as well, the

simplicity of the development in a general geometry masks additional complexity

brought on by extension to multi-dimensional problems. It’s worth exploring these

complexities and understanding the impact that they have on solutions.

In the multi-dimensional case, the eigenfunctions of the Helmholtz Equation,

Eq. (6.2), are products of eigenfunctions in each of the dimensions, as opposed

to individual eigenfunctions as with the 1-D case. As a consequence, the multi-

dimensional example of Eq. (6.2), taken out of its expression in general geometry

and put into an expression in explicit terms of the relevant dimensions, gains an

additional summation per term, per dimension. Although straightforward, extension

to higher dimensional geometries does bring with it some complication in procedure.

For ease of demonstration, a 2-D slab with lengths X and Y will be examined here.

Again, it is first assumed that the survival probability is separable in space and

time. In this case, however, there is an expansion in each dimension :

P (x, y, τ) =
A∑
a=1

Ta (τ)Ra (x)
B∑
b=1

Tb (τ)Rb (y) (6.16)

Here, the expansions are already taken to be finite. As with the general case, Eq.

(6.16) is substituted into the survival probability equation :

−
A∑
a=1

B∑
b=1

dTaTb
dτ

RaRb =
A∑
a=1

B∑
b=1

(
1− k∞ + L2

[
λ2
a + λ2

b

])
TaTbRaRb

+
ΣF

ΣA

J∑
j=2

(−1)jχj
j!

[
A∑
a=1

B∑
b=1

TaTbRaRb

]j
(6.17)
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Because eigenfunctions in each dimension are orthogonal to one another, multi-

plying Eq. (6.2), by Rc(x) and Rd(y) and integrating over X and Y removes the

dependence on x and y. Because Ta and Tb are simply temporal coefficients of the

eigenfunctions Ra and Rb, respectively, they may be combined so that Eq. (6.17) be-

comes a single nonlinear ordinary differential equation, as the EFE technique requires

regardless of geometry :

−
∫ X/2

−X/2

∫ Y/2

−Y/2

A∑
a=1

B∑
b=1

dTab
dτ

RaRbRcRddydx =

∫ X/2

−X/2

∫ Y/2

−Y/2

A∑
a=1

B∑
b=1

(
1− k∞ + L2

[
λ2
a + λ2

b

])
TabRaRbRcRddydx

+
ΣF

ΣA

J∑
j=2

(−1)jχj
j!

∫ X/2

−X/2

∫ Y/2

−Y/2

[
A∑
a=1

B∑
b=1

TabRaRb

]j
RcRddydx

dTcd
dτ

=
(
k∞ − 1− L2

[
λ2
c + λ2

d

])
Tcd

− ΣF

ΣA%cd

J∑
j=2

(−1)jχj
j!

∫ X/2

−X/2

∫ Y/2

−Y/2

[
A∑
a=1

B∑
b=1

TabRaRb

]j
RcRddydx (6.18)

where :

%cd =

∫ X/2

−X/2
R2
cdx

∫ Y/2

−Y/2
R2
ddy (6.19)

Eq. (6.18) makes clear the additional computational burden drawn by such a

system of equations when expansions grow in each dimension as the number of terms

that must be solved for grows as the product of the two raised to whatever degree of

nonlinearity being solved for.

While there is no expectation that the essential characteristics of the EFE tech-

nique will be drastically affected by this extension, an understanding of the impact

that the additional complexity has on the solution behavior is in order.
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Bringing to bear the understanding garnered from the examination of the 1-D

geometries, plus the understanding that the coefficients of modes in each dimension

are intertwined by virtue of effectively sharing with the modes in the other dimension,

the plot of a centered cross-section of the “initial” condition in Figure 6.11 exhibits

both the expected convergence with an increasing number of modes and the expected

enhanced oscillations about the actual value.
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Figure 6.11: Eigenfunction Expansion “Initial” Condition in 2-D Slab for Varying
Equal Mode Expansions in Each Dimension

While reducing the number of modes in one direction dampens the oscillations,

it also reduces the uniformity in that direction and therefore leads to convergence

on a uniform value in the other direction that is not the actual “initial” condition.

Figure 6.12 demonstrates this behavior.

67



Chapter 6. Solution By Eigenfunction Expansion

A
=
1
0

B
=
1
0
P

(x
,y
,0

)

x
X/2

y
Y/2 X/Y = 1

A
=
1

B
=
1
0
P

(x
,y
,0

)

x
X/2

y
Y/2 X/Y = 1

Figure 6.12: “Initial” condition in a 2-D Slab for Various Expansion Combinations

68



Chapter 6. Solution By Eigenfunction Expansion

Based on the examination of various 1-D geometries, it is expected that the

introduction of an additional finite dimension will increase the maximum relative

modal error compared to a 1-D slab for a given τ , keff , and J . Figure 6.13 confirms

this expectation.
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Figure 6.13: Maximum Relative Modal Error in P for Varying τ , N , and Geometry
(keff = 1.05 & J = 2)

Examination of a 2-D slab with equal side lengths has produced the expected

results. That an increase in finiteness increases the magnitude of the survival prob-

ability for a given τ , keff , and J has been shown to apply generally.

However, as has been noted, the relative modal error of a given expansion is not

just a function of the magnitude of the survival probability, but of the relative uni-

formity in the shape of the survival probability as well. In 1-D cases, this uniformity
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is a function of τ and keff . The extension into extra dimensions affords additional

variability in the shape of the medium, and the uniformity of the survival probability

is also a function of that shape.

While for the “initial” condition varying the ratio of the side lengths has no

impact on the shape of the survival probability beyond scaling the dimensions, in

the equilibrium and interim states the impact is more significant. This impact is most

easily demonstrated by considering the POI in a 2-D slab where one side length is

much greater than the other (i.e., Y >> X) in comparison to a slab where they are

the same (i.e., Y = X).

For the oblong case, as Y grows, it becomes effectively infinite in extent as viewed

from the solution in the x direction at Y = 0. The solution in the x direction ought

to therefore approach the corresponding 1-D solution while the local solution in the y

direction should be uniform in magnitude. As has been shown, however, many modes

are needed to represent a uniform value well. As a consequence, the magnitude of

the solution in the x direction oscillates with the solution in the y direction.

For the square case, the solution in each direction should more closely resemble

that of the fundamental mode, as shown by the accuracy of the the fundamental

mode approximation of the POI. Consequently, fewer modes are needed to represent

the solution in each direction, and no such oscillation will be present.

These considerations demonstrate anew that the impact that increasing the num-

ber of modes in an expansion has on its accuracy is not simply a function of the

magnitude of the survival probability, but of uniformity of the shape of the survival

probability in a given dimension.

Figure 6.14 shows these behaviors by presenting a comparison between the POI

in two slabs of equivalent keff but of varying X/Y ratios.
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Although this behavior is undesirable, it is both expected and a predictable func-

tion of the shape of a given system.

Though convergence on the POI requires approximately the same number of neu-

tron lifetimes as the 1-D cases for a given keff , shown in Figure 6.10, the computa-

tional burden is significantly greater for a given number of modes in each dimension.

This comes as no surprise given the dramatic increase in the number of differential

equations that must be solved.

Though the parameter space is increased, and the complexity is therefore corre-

spondingly enhanced, it is clear that multi-dimensional EFE performs as expected.

6.6 Linear Stability Analysis of the Steady-State

Eigenfunction Expansion Solutions

Use of the eigenfunction expansion technique has an additional benefit. It makes

accessible a method for performing a linear stability analysis of the equilibrium solu-

tion. The fact that the POI is converged upon monotonically by solving the system

of equations represented by Eq. (6.10) builds confidence that the steady-state solu-

tion is stable. That the POIs matches extremely well with the semi-analytical POIs

and steady-state EFE POIs reinforce that confidence. Still, a more rigorous means

of ascertaining the stability, or lack thereof, of the POI is desirable. To this end, a

linear stability analysis of the eigenfunction expansion can be performed.

This is accomplished by introducing a small perturbation, tn, to the steady-

state solution, T̄n, and then allowing the system to evolve in time. The Hartmann-

Grobman Theorem guarantees the stability of the original steady-state, T̄n, provided

the perturbations diminish to zero [19].
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As will be shown, if the perturbations grow, the solution is unstable. If they

decay to zero, the solution is stable.

First, the perturbation is introduced :

Tn (τ) = T̄n + tn (τ) (6.20)

To determine whether or not the perturbation will grow or diminish, it must be

differentiated with respect to time :

dtn
dτ

=
dTn
dτ
−
�
�
���

0

d

dτ
T̄n

= fn (T1, T2, · · · , Tn, · · · , TN) (6.21)

Eq. (6.20) is then substituted into Eq. (6.21) :

fn (T1, T2, · · · , Tn, · · · , TN) = fn
(
T̄1 + t1, T̄2 + t2, · · · , T̄n + tn, · · · , T̄N + tN

)
(6.22)

Eq. (6.22) is then expanded in a Taylor series. Because the perturbations are

small, the nonlinear terms are in turn vanishingly small. The Taylor series is therefore

truncated after the linear terms :

fn (· · · , TN) = fn
(
· · · , T̄N

)
+
∂fn
∂T1

(
· · · , T̄N

)
t1 +

∂fn
∂T2

(
· · · , T̄N

)
t2 + · · ·

· · ·+ ∂fn
∂Tn

(
· · · , T̄N

)
tn + · · ·+ ∂fn

∂TN

(
· · · , T̄N

)
tN (6.23)

The series of N equations represented by Eq. (6.23) may be represented more

conveniently using the Jacobian matrix of the original system of equations :
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f1

f2

...

fn
...

fN


=



∂f1
∂T1

∂f1
∂T2

· · · ∂f1
∂Tn

· · · ∂f1
∂TN

∂f2
∂T1

∂f2
∂T2

· · · ∂f2
∂Tn

· · · ∂f2
∂TN

...
...

. . .
... . .

. ...

∂fn
∂T1

∂fn
∂T2

· · · ∂fn
∂Tn

· · · ∂fn
∂TN

...
... . .

. ...
. . .

...

∂fN
∂T1

∂fN
∂T2

· · · ∂fN
∂Tn

· · · ∂fN
∂TN





t1

t2
...

tn
...

tN


(6.24)

If the eigenvalues of the Jacobian are all negative, the perturbations will all go to

zero in time. If the largest eigenvalue is negative, it follows that all of the eigenvalues

must be. Figure 6.15 presents these eigenvalues throughout the parameter space,

assuring the stability of the steady-state solutions produced by EFE.
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6.7 Conclusions from the Eigenfunction Expan-

sion Solutions

Comparison of the eigenfunction expansion solutions in a one-dimensional slab to

available analytical “initial” conditions and semi-analytical equilibrium solutions

showed that the EFE technique is capable of representing the survival probability

to the highest accuracies possible. Using the access to more complicated geometries

afforded by EFE, the expected increase in the magnitude of the survival probability

with increased finiteness for a given keff was confirmed.

Because the survival probability significantly decreases in magnitude and takes

on a shape resembling a fundamental mode approximation very rapidly with the

passage of survival time, EFE permits accurate integration over the entire survival

time parameter space for problems where such integration might be needed.

The relative modal error, a measure of the accuracy afforded by additional modes

in an expansion, was shown to be a function of the magnitude of the survival prob-

ability as well as the relative uniformity of the shape of the survival probability.

Regardless of geometry, the number of factorial moments included in the equation

serves to inform the magnitude of the survival probability, with additional even mo-

ments diminishing the magnitude and odd moments increasing it. As keff grows and

τ approaches zero, the survival probability grows in magnitude and tends to become

more uniform. In multi-dimensional problems, uniformity of the shape of the sur-

vival probability is also a function of the shape of the medium, with increasing profile

uniformity in a given dimension for ratios of characteristic dimensions deviating from

unity.

Being that both the computational burden and the solution accuracy associated

with a given expansion is directly tied to the range of survival time being examined,
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the system keff , the number of factorial moments included in the equation being

solved, the number of modes in the expansion, and the shape of the medium hosting

the particle chain, the EFE technique proves to be a powerful method of solution

for time-dependent survival probability equations of arbitrary nonlinearity. Under-

standing the nature of the solution being sought based on expected behaviors allows

users to deliberately tailor expansions, affording a highly capable, flexible, and easily

manipulated balance of computational economy and solution accuracy. Additionally,

EFE lends itself to a linear stability analysis of the equilibrium solution, confirming

the stability of computed POIs.
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Conclusions and Future Work

7.1 Summary

Having begun with the one-speed, delayed neutron precursor-free, isotropic scat-

tering form of the Pál-Bell Equation, a simplified equation for the neutron survival

probability was developed by applying the well-known diffusion approximation. This

approximation was implemented primarily to take advantage of the exact eigenfunc-

tions that result from the linear portion of the equation in special geometries so that

the efficacy of an eigenfunction expansion technique to solve the equation could be

assessed.

Because the survival probability is defined by a nonlinear partial differential

equation, characteristics of the survival probability were examined by approach-

ing the problem with simplified forms of the survival probability equation. Though

qualitative expectations of the impact that varying parameters has are accessible

by Gedankenexperiment, accumulating the observations afforded by the simplified

equations and using them to develop expectations for the system behavior enabled

complexity to be reintroduced with confidence, and in a measured way.
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While the quadratic approximation affords a number of analytical expressions

describing the survival probability, more nonlinear terms must be preserved for larger

values of the survival probability to achieve given accuracies. Because the “initial”

condition of the survival probability demands large values, solution by numerical

methods is necessary for high accuracy time-dependent solutions where small survival

times are of interest. Additionally, for systems of large keff , the accuracy of the

quadratic solutions will be compromised regardless of the survival time range being

investigated.

To enable examination of equations of arbitrary nonlinearity for space and time-

dependent problems, an eigenfunction expansion technique was developed and char-

acterized. It was found to enable very high accuracy throughout an immense pa-

rameter space. Its demonstrated flexibility in terms of offering a broad spectrum of

accuracy versus computational effort emphasizes the value of developing expectations

of the solution behavior prior to computing the solution.

In the most general terms, the survival probability decreases in magnitude with

increasing survival times, and increases with increasing keff . Solution accuracy is

dependent on the magnitude of the survival probability in that the magnitude dic-

tates the impact that preserving additional factorial moments of fission multiplicity

will have as well as the relative modal error of eigenfunction expansion solutions.

Additionally, the dimensions of the medium and range of survival time impact not

only the magnitude of the survival probability, but the amount of uniformity in the

shape of the survival probability. In the steady-state case, Bell’s posit that the fun-

damental mode approximation does well to represent the probability of initiation for

systems that are only modestly supercritical has been positively confirmed. To first

order, it provides a decent approximation for even high values of keff .

By understanding these concepts, the eigenfunction expansion technique can be

deliberately crafted to achieve a desired accuracy and minimize the effort expended.
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7.2 Future Work

The intent of this work was largely to validate that eigenfunctions of the linear

portion of the survival probability equation can be used to construct the time and

space-dependent survival probability. To more easily demonstrate this, the diffusion

approximation was utilized. The validity of this approximation is limited, and ex-

tension to a full transport equation solution is therefore desirable as is extension to

multiple energy group problems.

Applications and studies incorporating this technique include modeling critical-

ity excursions and burst characteristics of certain reactors. Time-dependent cross-

sections and intrinsic, random sources can be incorporated to facilitate such studies.

Application to multiple region problems, such as would exist in most realistic con-

figurations of interest, is another area for further development.

As discussed, computational effort can be minimized by designing the solution

technique at the onset of the problem. Still, computational efficiency could be en-

hanced by implementing a mechanism to “throttle” the number of modes in an

expansion when they aren’t necessary to achieve the desired accuracy. In the same

way, the number of nonlinear terms in the equation could be adjusted in a time-

dependent fashion to achieve similar gains in efficiency. These sorts of utilities would

be especially valuable in dynamic simulations, where material configurations could

be changing rapidly.

With the benefit realized by existing simplified models of stochastic neutron

transport problems, the work presented here provides a means of more accurate

examination of a large class of problems where the neutron population is behaving

stochastically.
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