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Abstract

Reservoir architecture may be inferred from analogs and geologic concepts, seismic surveys,

and well data. Stochastically inverted seismic data are uninformative about meter-scale fea-

tures, but aid downscaling by constraining coarse-scale interval properties such as total

thickness and average porosity. Well data reveal detailed facies and vertical trends (and may

indicate lateral trends), but cannot specify intrawell stratal geometry. Consistent geomodels

can be generated for flow simulation by systematically considering the precision and density

of different data. Because seismic inversion, conceptual stacking, and lateral variability of

the facies are uncertain, stochastic ensembles of geomodels are needed to capture variability.

In this research, geomodels integrate stochastic seismic inversions. At each trace, con-

straints represent means and variances for the inexact constraint algorithms, or can be

posed as exact constraints. These models also include stratigraphy (a stacking framework

from prior geomodels), well data (core and wireline logs to constrain meter-scale structure

at the wells), and geostatistics (for correlated variability). These elements are combined in

a Bayesian framework.

This geomodeling process creates prior models with plausible bedding geometries and

facies successions. These prior models of stacking are updated, using well and seismic data

to generate the posterior model. Markov Chain Monte Carlo methods sample the posteriors.

Plausible subseismic features are introduced into flow models, whilst avoiding overtuning

to seismic data or conceptual geologic models. Fully integrated cornerpoint flow models

are created, and methods for screening and simulation studies are discussed. The updating

constraints on total thickness and average porosity need not be from a seismic survey: any

spatially dense estimates of these properties may be used.
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Chapter 1
Introduction

A review of geomodeling, sedimentology, seismic data, and seismic inversion is given in this

chapter. These are the fundamental concepts, ideas, and the context on which this research

is built. The details in the upcoming chapters discuss some frequently used geomodeling con-

cepts. Discussion about geomodels and their role in petroleum engineering is given in section

1.1. Geologic and stratigraphic data central to the algorithms in this dissertation, as well as

their value and limitations are discussed in section 1.2. Sections 1.3 and 1.4 discuss scale and

resolution issues of seismic data and seismic inversion, respectively. Seismic inversion data is

used in this research. Therefore, it is fundamental in understanding the resolution of seismic

interpretation and the role of seismic in modeling structural and rock property variations in

geologic models. Problems in using seismic derived properties in building geomodels and the

current approach in solving some of the issues are discussed in section 1.5. Objectives and

significance of the research are discussed in section 1.6 and section 1.7.The approach taken

to solve the problems and the outline of the thesis are discussed in 1.8 and 1.9.

1.1 Geomodeling

Geomodels are geometric and petrophysical representations of oil and gas fields, used to

predict the flow of fluids through a porous rock. Realistic geomodels are needed to predict

the effect of heterogeneities in the reservoir under various recovery scenarios. They are the

link between geologic concepts that define structure of deposition and the properties used in

mathematical flow simulations. They integrate diverse information from different sources and

ultimately represent 3D reservoirs in 3D. Since flow modeling has become more important

for asset management, the importance of geomodeling has increased.
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1.1.1 Challenges in Geomodeling

Geomodels should be geologically realistic, but must balance geologic detail versus compu-

tational efficiency in reservoir simulation. The more detail in a geologic model, the more grid

cells are required to represent the complex geology, and consequently, time to simulate fluid

flow in the geologic model increases. It is known that not all the details in the deposition

influence the fluid flow between injectors and producers often separated by 2 km (Willis

and White 2000). Simple geomodels with incorporated key heterogeneities are the best com-

promise models to understand the fluid flow in the reservoir. As a result, one of the main

challenges in building geomodels is to understand what scale and how significant the various

heterogeneities which are present in the depositional environment will influence the recovery

mechanism. In this study, models are built at the scale of ∼ 1 m vertical resolution, which

may be close to the “right” scale to simulate and predict. That is, we construct the model

at the flow scale, rather than the more common practice of constructing over-resolved geo-

models and upscaling. The “right scale” for downscaling is where fluid flow is not sensitive

to heterogeneity below that resolution. Even if significantly influencing heterogeneities are

well understood, 3D modeling of geomodels is complex, because it needs to incorporate such

diverse (and challenging) geologic features as stratigraphic stacking (section 1.2, chapter 5)

and diverse data, such as seismic inversion (section 1.4). The phase of model building that

ensures the models honor the available data is called data conditioning.

1.1.2 Geomodel Construction

Methods to construct geologic models depend upon geologic variability, and this in turn de-

pends on the sedimentary process that creates the reservoir. In reservoirs with low variability

like sheet sands in distal turbidities, layers and their properties laterally may vary little. In

these reservoirs, deterministic methods based on interpolation can be used to build reservoir

architecture and model rock properties. Common deterministic methods are based on either

kriging or weighted inverse distance. In inverse distance methods, weights of the hard data
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points for interpolation are assigned based on the inverse of distance criterion; the larger the

distance from estimated point, the less weight the datum will have. Kriging uses the concepts

of random variables, weak stationarity (higher order moments do not change when shifted

in time or space) and autocorrelation (correlation of variable with itself against a time or

space shift) to predict values of a variable distributed in space. Performance of these methods

depends on the availability of conditioning data like well control, and may represent geology

well when the properties are not varying over distances less than the data spacing. Uses of

these methods are limited as deterministic methods generate artificially smooth property

variations. Such variations are uncharacteristic of actual variation in many geosystems. For

instance, permeability may vary at a much smaller scale than well spacing.

The counterpart of deterministic processes is the stochastic process. Rather than estimat-

ing a single possible outcome of the reservoir model, there is some variability in a stochastic

process. Even if all the conditioning data are the same, there are many possibilities on how

the model will be realized (although some of the models are more probable than others).

The most common stochastic processes are as follows:

• Gaussian Simulation: This method is used to simulate a random field extended

by using multi-Gaussian (or multinormal) distributions. The models generated are

conditioned to well constraints (hard data) and use the variogram model(soft data),

which is a autocorrelation function that characterizes the spatial variability of the

Gaussian variable. Several algorithms like simulated annealing, sequential Gaussian

simulation (SGS), and LU decomposition are based on Gaussian simulation. In this

research, a variation of SGS is used as explained briefly below. The SGS proceeds

sequentially and predicts a random variable at each grid cell; the SGS follows a preset

path, eventually visiting all the grid nodes. The steps are shown below:

1. Define a random path through all of the nodes to be simulated.
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2. At a node in the random sequence, use simple or ordinary kriging to estimate

the mean and variance of the random variable, which is assumed to be Gaussian.

Both simulated and original data are used to condition the estimate.

3. Draw a random value P ∈ [0, 1], then use the mean µ and variance σ2 of kriging

estimate and assign that value to the node being simulated, assuming the attribute

is distributed as N(µ, σ); the simulated value is the deviate that has a cumulative

probability P .

4. Visiting nodes sequentially generate the kriging estimates and assign values at all

simulation nodes.

• Multipoint Geostatistics: This method also assumes some form of weak-stationarity

and simulates the random variable being modeled sequentially. Multipoint geostatistics

(MPG) also integrate hard and soft data, but the soft data is a training image rather

than a variogram in kriging-based methods. A training image represents a conceptual

image of the sedimentary heterogeneity to be reproduced in the simulated model. The

training image is used as a template to find conditional probability distributions of a

given pixel pattern. In the sequential simulation, probability of the pixels belonging to

each pattern is calculated from conditional functions, and the pattern is assigned to

the pixel proportional to the probability (Strebelle 2002).

• Object-Based Method: This method was first used in geologic modeling to simu-

late shales which are not correlated between wells (Haldorsen and Lake 1984). Later,

this method was used to model reservoirs with distinct geometries, such as fluvial

channel systems. This is because geometry of the channel complexes, channels, or

overbank deposits can be easily parameterized as templates characterized by simple

shapes (Chessa 1995). A type of object-based model called a surface-based model is

useful in simulating stratigraphic surfaces. The surfaces are based on predetermined

templates for a geologic setting. The surface-based or object-based models place these
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templates stochastically in the reservoir, while matching the observations and models.

When there are many conditioning data, it is hard to condition surface or object based

models (Pyrcz, Catuneanu, and Deutsch 2005).

1.2 Geology Basics

1.2.1 Data Types and Scales

Reservoir characterization is performed by analyzing different geologic data. Understanding

the source of data and its limits is essential in any data integration techniques. In this

research, geologic data coming from various sources are to be used depending on both scale

and resolution. Integrating all these data in building geomodels is crucial as incorporating all

this information increases confidence in the resulting geomodels and prediction performance.

However, current methods are not able to include these diverse and multiscale data. Geologic

data for modeling comes from the sources shown below.

• Core: Core samples are useful for calibrating well log estimates. They are also useful

for examining small scale heterogeneities, thereby inferring depositional environment.

Even though the resolution of core is high, the coverage of the reservoir is small. Typical

core diameters are ∼ 10 cm and lengths are ∼ 10 m.

• Well Logs: Well logs measure rock properties Such as resistivity, sonic velocity and ra-

dioactivity; models and correlations allow estimation of reservoir properties like poros-

ity and water saturation. Well logs are also useful to understand stratigraphy and

layering of reservoir if enough wells are available. Vertical resolution is ∼ 10 cm, a

resolution commonly available throughout the well (or at least the productive section).

Still, the areal coverage is low and the volume of reservoir sampled by wells is low.

For the algorithms described in this study, core and well log data must be upscaled

from decimeter scale to meter scale. Because the main properties modeled in this dis-
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sertation are porosity and thickness, upscaling from core- or log-scale to the flow- or

meter-scale is both simple and accurate.

• Seismic: Seismic gives information about the larger scale heterogeneity and may help

estimate reservoir properties through inversion, but the resolution is low ∼ 10 m (Liner

2004).

• Outcrop: Outcrops are exposures of sedimentary bedrock at the earth’s surface. Out-

crops allow direct observation of deposition environment features such as bedding ori-

entation, paleo-current directions, and lithofacies architecture. An outcrop will pro-

vide analog information with excellent vertical resolution, but showing only 2D cross-

sections. Model data used in this work for example variogram and stacking patterns,

could come from outcrop data.

1.2.2 Clastics Sedimentology Basics

Distribution, continuity, and internal characteristics of sandstones depend on the deposi-

tional environment. Sedimentary structures of sand bodies are similar if the depositional

environments match closely. In this section, sedimentary deposits in major environments are

described, mostly based on the research of R. J. Le Blanc (1976).

1. Alluvial(Fluvial): This environment is characterized by deposits of sediment, trans-

ferred by fluvial systems across continental regions towards delta mouths or subcanyon

regions. This system is mainly divided into two main sub-environments

• Alluvial Fan and Braided Stream: Sands of this origin are derived from

mountainous erosion and are transported to alluvila fans through canyons, finally

deposited on braided systems.

• Meandering Stream: Sedimentation occurs in this system because of channel

migration and abandonment. When a channel migrates along a caving-bank area,

it deposits a point bar on the other side of the channel.
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2. Aeolian: These are sand dunes deposited by wind in arid areas with low vegetation

in coastal and desert areas.

3. Deltaic: These are shore sediments lying between the flood-tide and ebb-tide and are

generally divided into two main sub-environments.

• Distributary Channel: Distributary channels of the deltaic plain bring sand

deposits to the delta front.

• Delta Fringe Sands: These are the sands deposited in front of the river mouth

as bars. Once sands are brought in by channel, they are dispersed by the marine

processes of waves, tides, and currents.

4. Coastal Plain Sands: These are present on coastal plains, such as barrier islands

and tidal channel sandstones. Barrier-island sands are long and narrow belts, found

parallel to the shoreline. The thickness depends on the depth of inner continental shelf

waters.

5. Shallow Marine: In transgressive conditions, shallow marine sediments are formed

as the sea advances toward land. Transgressions can occur with a rising sea level, a

subsiding coastal plain, or an abandoned delta.

6. Deep Marine: Sediments from the continental slope (where deltas and carbonate

reefs are present) reach the ocean floor by passing through canyons as debris flows and

turbidity currents. Ultimately, sediments are deposited in the deep marine.

The shape and size of river mouth bars in deltaic reservoir depend on the rate of sediment

deposition, subsidence, flood cycles, and reworking processes by the sea. Variability in geom-

etry and properties between sand bodies also occur under similar depositional circumstances.

Geomodeling must incorporate the different shapes and sizes of geobodies (variogram range

and sill) to determine how they assemble together. More discussion on modeling clastics is

given in 1.2.4.
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Figure 1.1: Three major reservoir types for geologic modeling from Weber and van Geuns
(1990).

1.2.3 Stratigraphy Basics

Stratigraphy is the study of layers. Sequence stratigraphy relates the layering of rocks to sea-

level changes by studying, the interaction of sedimentation with respect to sea level changes,

sediment supply, and subsidence. Stratigraphy uses the principles of original horizontality,

lateral continuity, superposition, cross-cutting, and faunal successions to determine the rela-

tion of a layer to the other layers above and below within a geologic system (Embry 2002).

In this study, stacking patterns, an arrangement of vertical facies successions of sedimentary

body surfaces, is used as one of the inputs for data integration. This is a major element in

stratigraphic interpretation of the depositional settings. For example, stacking patterns for

unconfined-sheet sands can prograde (move seaward), retograde (move landward), or aggrade

(move vertically).

1.2.4 Modeling Clastic Reservoirs

Depending on variability of properties like permeability (vertically and laterally) and dis-

continuous sands of variable thickness, Weber and van Geuns (1990) divided most of the

reservoirs with different depositional settings into three major divisions for modeling pur-

poses (Fig. 1.1).

• Layer cake reservoirs are reservoirs where properties change little, either laterally or

vertically. Few wells are required to correlate the layers between the wells, as sandbodies
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Figure 1.2: Classification of clastics depositional environments into three reservoir types from
Weber and van Geuns (1990).

laterally are very extensive. These reservoirs are modeled as a package of superimposed

extensive layers with no sudden thickness variations.

• Jigsaw-puzzle reservoirs are sand body objects that stack together without much

background low permeable facies. Layer properties significantly change vertically and

laterally due to layer truncations and low permeability bodies which are embedded

between the sand bodies. Several wells in a square kilometer are needed to characterize

these types of reservoirs. Usually, stochastic methods are implemented to model such

reservoirs.

• Labyrinth reservoirs are rarely correlated between wells with realistic well spacing.

These reservoirs are characterized by sand bodies or lenses in a low permeable rock

background. The sand bodies are connected by low permeable thin sand stone sheets.

Even though there are a number of depositional settings with different continuity and con-

nectivity characteristics (Clastics Sedimentology Basics, earlier), understanding the closest

reservoir type for the depositional setting provides an indication for a geomodel construction

method. For layer-cake models, deterministic methods may be adequate, as there are very

minor lateral variations. For labyrinth reservoirs, object-based models are more appropriate.
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The objects with particular shape and size are placed under a low-permeability background.

However a number of realizations are required to understand the connectivity between the

wells.

The proposed surface-based approaches (chapters 2 and 3) are especially appropriate for

jigsaw-puzzle reservoirs where the layers pinchout and geobodies are stacked upon one an-

other. To mimick geologic pinchouts in reservoir modeling using kriging based methods cre-

ates a challenge. Current kriging-based models that generate models with pinchout behavior

and conditioning to seismic and well data prove even more difficult. However, stacking pat-

terns provide rich, geologic information. Although integrating this information is challenging

using kriging-based methods, yet this becomes feasible, using a surface-based approach with

stratigraphic information. Surface-based models can be used to generate realistic-looking

stacking patterns, but they are hard to condition to seismic and well data. Despite in-

herent difficulties, an ensemble of surface–based models can be used to infer probabilistic

descriptions of stacking patterns, and thereby incorporate this stratigraphic information into

stochastic geomodels (chapter 5).

1.3 Seismic Data

Even in the earliest forms, seismic surveys reduced risk in exploring for oil and gas. The

advent of 3D seismic and better seismic processing techniques has further reduced risk in

exploration phase and improved characterization of the reservoirs. But generally, reservoir

characterization using seismic data alone cannot resolve spatial heterogeneities and stratig-

raphy at the scale desired for flow simulation. Using seismic data, it is difficult to identify

beds thinner than 10 m from 3-D seismic signals when the reservoir depth is greater than

3,000 m (Dobrin and Savit 1988; Widess 1973); λ/4 could be resolved where λ is the wave-

length of seismic. The limit and errors associated with seismic estimates, therefore, allocate

seismic data either to inference of the external architecture or guiding the probable internal

stratigraphic architecture of a reservoir.
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Nonetheless, seismic data acquisition and processing provide excellent lateral coverage of

the reservoir, with spacing often as dense as 12.5 m. The lack of vertical resolution of the

seismic data can be partly offset by using model parameters (for example, layer thickness,

porosity and permeability)derived from core and well-logs; well data have high vertical res-

olutions.

Principles of seismology are used to estimate the properties of the subsurface by sending

controlled seismic energy into earth and observing reflected seismic waves at receivers. The

seismic energy source can be dynamite, air gun, or vibrators. Seismic (acoustic) waves are a

form of elastic wave that propagates through the subsurface. The wave propagation depends

on the property of the medium called seismic impedance I which is the product of wave

velocity and density of the rock (I = ρv). If a seismic wave passes through the boundary of

two different rocks with varying impedances, a portion of the seismic wave energy reflects,

while some transmits through the boundary. The amplitude of the reflected wave called

reflection coefficient (R) depends on the impedance contrast between the two layers that

created the wave.

R = (I2 − I1)/(I2 + I1) (1.1)

where Ii = ρv. From seismic study we have travel time, which is the time it takes for a

reflection to arrive at the receiver from a boundary. If the seismic velocity in the rock is

known, the travel time may be used to estimate the depth to the geologic boundary that

generated the reflection. For a wave traveling vertically, the travel time (t) from the source

to the reflector and back is provided by the formula t = 2d/v, where d is the depth of

the reflector and v is the wave velocity in the rock. (This discussion greatly simplifies the

processing step, omitting important issues such as migration and stacking. That level of

detail is not considered essential in this context.)

Travel time and amplitude of the reflected waves are used to interpret the subsurface. A

brief explanation of interpreting seismic data utilizing the reflectors is given below.
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1.3.1 Synthetic Seismic at Wells

Both a v(z) velocity model and a ρ(z) density model, which are a function of depth are

needed to create a synthetic seismic at wells. The product of these two models offers an

acoustic impedance model of the subsurface. Because a vertical or nearly vertical well is

similar to a seismic trace, an impedance model may be estimated for nearby seismic traces.

We can compare this with the amplitude data from the seismic survey for quality control,

attribute correlation, and wavelet extraction. The impedance model may be obtained from

the sonic logs and density (or neutron) logs.

Sonic logs record interval transit time, that is, estimates of the reflection time between

layers which is shown as estimated as thickness of layers (from logs) divided by velocity.

∆t =
z2 − z1

v̄
(1.2)

Velocity of a layer also is obtained from this equation because sonic gives the transit time

(∆t) and most logs give thickness of a layer (z2− z1). Using the density and velocity models,

reflection coefficients are estimated at the rock boundaries.

R at each interface as a function of travel time (from sonic logs) is called the reflection

coefficient (RC) series. A synthetic is created by convolving the RC series with a wavelet as

shown in Fig. 1.3. A wavelet is a wave pulse approximation for a seismic source (generated

by an air gun, dynamite, or other sources) which contains many frequencies and is time-

limited. If the wavelet is a good approximation for the wave produced by the actual source,

comparing the reflectors between the synthetic and actual seismic data gives the geological

horizons that cause seismic reflections at the well (or trace). A series of related reflections

on several vertical traces is referred to as a reflection event. By correlating reflection events

across the wells, an estimated cross-section of the geologic structure can be interpreted (Liner

2004).
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Figure 1.3: Generating synthetic at a trace by starting with a earth model and convolving
with wavelet.

1.3.2 Structure Interpretation

Once seismic reflection events have been correlated with geological horizons using synthetics

at wells, structural interpretation proceeds in three steps as follows:

1. Fault detection: Near-vertical faulting can be seen on seismic sections (inline and

crossline sections) and low-dip faults are best seen in horizontal sections (time slices).

2. Horizon tracking: Tracking of amplitude–related quantities (also known as attributes)

such as peak amplitude or RMS amplitude can be used to pick horizons.

3. Time to depth conversion: Depth conversion is carried out by combining the seismic,

well control, and velocity model to create a structure map in depth rather than time. For

linear depth-velocity models (Liner 2004), the cross plot between the average velocity

ṽ and depth z (from logs) at wells gives the velocity gradient k and surface velocity

v0 at those wells (related as ṽ = v0 + kz), z being vertical depth. Average velocity

is computed by using log picks and seismic time picks from sonic logs (Eq. 1.2). A

map is created by contouring the v0 values at each well. These surface velocities at
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every location, velocity gradients, and observed seismic time picks, gives the depth of

a horizon throughout the reservoir.

1.3.3 Stratigraphic Interpretation

Stratigraphic understanding has improved since the advent of 3D seismic. Stratigraphic

features tend to be subtle and are usually indicated by variations in amplitude, phases, and

terminations (Liner 2004). These features are best seen in horizontal time slices. Such studies

improve understanding of the depositional environment and possible recognition of features

such as channel complexes, which may constrain the geologic model further.

1.3.4 Reservoir Properties Estimation

Seismic attributes are used to estimate reservoir properties. There are many ways to extract

seismic attributes which are secondary quantities from seismic amplitude, e.g., normalized

amplitude. If these attributes are correlated to reservoir properties at wells they are used to

predict reservoir properties between wells.

1.4 Seismic Inversion

Given a set of reflectors and the physical laws of wave propagation, we can develop a sub-

surface model structure and its physical properties. These types of problems are generally

called inverse problems; when applied to reflection seismology, it is called seismic inversion.

Seismic inversion is used to transform a noisy, seismic trace into density and sonic logs, the

inverse of transforming these two logs into a synthetic (Synthetic Seismic at Wells, earlier)

(Latimer 2006).

Seismic inversion helps remove peculiarities of wavelets and then estimates reservoir prop-

erties with a better resolution. Inversion may be considered in several ways.

• Acoustic seismic amplitude is inverted to generate physical rock properties like impedance.

Using rock physics, it is possible to generate reservoir parameters that are directly used
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in flow simulation like porosity, layer depths, and fluid saturations (Gunning and Glin-

sky 2004).

• Inversion provides higher resolution images, because it removes wavelet effects such as

tuning via deconvolution.

• Acoustic impedance inversion requires incorporation of well log data. So, inversion is

a data integration step, and the resulting data tie to the wells and also approximately

match seismic data.

Compared to seismic amplitudes, inversion gives higher resolution stratigraphic images and

better estimates of reservoir properties, because it removes tuning and wavelet effects.

1.4.1 Rock Physics Analysis

In a seismic survey, a compressional wave (P-wave) is generated using a source. When a

seismic wave propagates through elastic boundaries within the earth, both P-waves and

S-waves are generated. Reflected waves are recorded at different offsets. Then the common

mid-point (CMP) gather uses a group of traces whose source-receiver midpoint lies in a small

region of the Earth’s surface (Fig. 1.4). Basically, inversion creates impedance values at all

CMP bins. So, CMP gathers contain information about P-wave velocity, S-wave velocity,

and density (Mavko, Mukerji, and Dvorkin 2003).

Rock properties like the bulk modulus (k), shear modulus (µ), porosity, fluid type, lithol-

ogy, clay content, and gas saturation affect seismic wave propagation through rocks. This is

because any elastic medium is characterized by velocity and density (Seismic Data, earlier),

and they are dependent on the rock properties through elastic constants. Rocks are elas-

tic and elastic theory provides the relation between velocity (P and S waves) and density

to elastic constants (shear and bulk modulus that are functions of rock properties) under
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Figure 1.4: Location of CMP for a set of receivers and sources.

certain assumptions. For isotropic media (Liner 2004),

Compressional wave velocity(Vp) =

(
λ + 2µ

ρ

)1/2

Shear wave velocity(Vs) =

(
µ

ρ

)1/2

where Lame’s parameter(λ) = k − 2µ/3

Further, theory gives the relation between porosity, fluid, and other properties of reservoir

rock to seismic propagation in reservoirs. For example, the Gassmann (1951) equation gives

the effect of pore fluid on k. It calculates the bulk modulus of the rock with fluid using the

bulk moduli of the solid frame, the matrix, and the pore fluid (Wang 2001):

k∗ = kd +

(
1− kd

km

)2

φ
kf

+ 1−φ
km

− kd

k2
m

where k∗ is the bulk modulus of rock which depends on kf , kd, and km, called the bulk

moduli of fluid, frame, and matrix respectively. There are many assumptions in deriving the

Gassmann equation; in particular, there is an effective medium of macroscopic isotropy. In

short, the wavelength is assumed long, compared to the grain and pore sizes. Similarly, other
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reservoir properties affect elastic properties such as k and µ, and they further affect, velocity

and density of the rock.

To predict lithology, fluid, and porosity, which are of interest to reservoir engineers, we

must estimate P-wave velocity, S-wave velocity, and density of layers from seismic amplitude

data; this is called full elastic inversion. Both P-wave velocity and S-wave velocity are needed

as they propagate through rock differently, depending on lithology and fluid content. What

is observed from seismic study are the amplitudes of the reflected waves; that relationship

between amplitudes and velocity is needed for seismic inversion. The amplitudes of reflected

and transmitted P- and S-waves for any angle of incidence are given by Zoeppritz equation

(Aki and Richards 2002).

1.4.2 Seismic Parameter Inversion

Zoeppritz equations relating to wave reflection coefficient and impedance simplify signifi-

cantly when the angle of incidence is zero and the layers are flat.

RPi =
IPi+1 − IPi

IPi+1 + IPi

(1.3)

where RPi is the zero offset P-wave reflection coefficient at the interface i and IPi = ρivPi

is the P-impedance of the layer i. To use this approximation, CMP gathers can be stacked

(added) and approximated as zero offset reflections. This is because the average of all the

angles of reflection implies a mean angle of incidence of zero (Russell and Hampson 1991).

A seismic trace is not an RC series, but it is generated by the convolution of the wavelet

and the RC series

S(t) = W(t) ∗R(t) + N(t) (1.4)

where S(t) is the seismic trace, W(t) is the seismic wavelet, R(t) is the reflectivity, ∗ denotes

convolution, and N(t) is the noise.

There are different techniques to invert seismic data and many common parametric inver-

sion methods involve the following steps:
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• Start with an initial guess of model parameters m, like P- and S- wave velocities.

• Define an objective function, f(m) =‖ S −D ‖ that characterizes the misfit between

observed seismic data D and corresponding prediction S (1.4).

• Minimize the objective function f(m) to get a most-likely estimate of m.

Inversion using the steps explained above along with rock physics gives the reservoir param-

eters (Tarantola 2004).

1.5 Motivation

Uncertainties of reservoir properties are minimized by integrating available multiple types

of data. Densely distributed seismic data reveal only decameter-scale features, and so these

subseismic geological layers and their properties should be integrated with hard well data;

but well data are sparse. Also, conceptual geological models provide continuity information

between two lateral points and stacking patterns; this information is not provided by trace-

based stochastically inverted seismic data or the well data. All this information is mainly at

two different scales: one is seismic scale information, generally with less precision, but denser;

the other is subseismic scale information estimated be means of well data, with high precision

at the well locations but wells are sparse. The former constrains the latter for thickness and

porosity in a form like

∑
hi = H∑

φihi = φH

where H is the total thickness predicted by seismic, φ is the porosity and h is the layer

thickness. Incorporating additional information such as constraints on the sum of the values

increases the precision of estimates (Deutsch, Srinivasan, and Mo 1996; Behrens et al. 1998;

Doyen et al. 1997). Another issue, apart from constraining the individual thickness sum to

seismic thickness, is that all estimates must be nonnegative (Michalak and Kitanidis 2003).
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Even though geologic parameters like thickness and porosity are nonnegative, the way these

parameters are approximated in modeling by Gaussian functions may make the transformed

parameters negative; for thickness, the negative value indicates a pinchout layer. Trans-

formed parameters can be made nonnegative by data transformation or by using Lagrange

multipliers (Fletcher 2000). The commonly used power transformation (a special case is the

log transformation, with a power of zero) cannot be used for truncated distributions in which

there is a significant probability that the variable could be zero. Also, transformations distort

additive properties so that sum constraints (as above) cannot be imposed. For example, if

we were to use ln(h) to model a log-normal variable and the constraint is
∑

h = H, then

because
∑

ln h 6= lnH, an additive constraint is hard to impose. Using Lagrangian multipli-

ers with nonnegative constraints could solve the problem. This would require expanding the

parameter space x with Lagrangian multipliers (λ), expanding the original function f(x)

into the Lagrange function, and solving the function (1.5) with k active constraints where k

is the number of layers in each column.

L(x, α) = f(x) +
k∑

i=1

λigi(x) (1.5)

The solution is obtained by differentiating the Lagrangian with respect to x and λ. This

gives equations (1.6) that can be solved to obtain the best estimate of f with constraints

gi(x) ≥ 0 in our case gi(x) = x, the layer thickness.

∇xL(x, λ) = 0

gi(x) ≥ 0, i ∈ K

λi ≥ 0, i ∈ K (1.6)

λigi(x) = 0,∀i

This a quadratic programming (QP) problem where f(x) = xT Cx + gx, with inequality

constraints. If the constraints gi(x) ≥ 0 for the problem are affine functions and f is quadratic

and positive definite, then convexity can be exploited to obtain the solution. Addressing the
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problem as QP gives results which can be interpreted as a maximum likelihood estimate

(MLE), but individual realizations to capture uncertainty are either difficult or impossible.

If a single most likely estimate of the properties is to be obtained, then using the Lagrange

maximum likelihood method suffices. But when conditional realizations from the posterior

are desired, then a single MLE is not adequate.

1.6 Objectives

The methods developed to generate geologic models must integrate data from seismic, well,

and geologic information consistently. This integration is challenging because the resolution

and accuracy of these data types differ. Consistency requires downscaling methods not biased

toward any particular data. Seismic inversion results have the lowest resolution but are spread

throughout the reservoir; away from wells, seismic data provide constraints which should be

honored. The well data has the resolution needed for geomodels, but they are areally sparse.

Well data should be honored precisely when geomodels are built. Geologic correlation lengths

quantify how continuous a geologic body can be, and this informs the probability that a layer

is present or not at a given location. Another form of geologic knowledge is the conceptual

stacking pattern that describes how layers are related with each other; stacking models should

be included when geomodels are built.

1.7 Significance of the Research

Integrating diverse data improves the accuracy of reservoir models. Integrated geologic mod-

els with seismic, well, and conceptual information better describe the range of geomodel

properties and geometry. The reason for preparing geologic models is that they are required

for reservoir simulation, which is essential to assessing reservoir performance under different

development scenarios. Models built with all the data will be more accurate and so give more

relevant production performance. In this dissertation, the methods used to integrated differ-

ent scale information are based on Bayesian methods; because of their generality, they are

20



applicable for other types of information also. Any information that has low or high resolu-

tion and present everywhere or few locations can be integrated using the proposed methods.

The formulation in terms of a Gaussian proxy for thickness or porosity allows modeling layers

that pinch out or have nonpay (zero porosity) regions. The proposed Bayesian formulation

includes seismic constraints, pinch-out modeling, and integration of geologic data in the form

of correlation lengths, seismic inversion and well data. This comprehensive formulation is an

original contribution of this dissertation to geomodeling research.

In this current work geologic information like correlation lengths and stacking patterns are

also integrated. Incorporating this information is especially important when fewer well data

are available. This is because stacking pattern information helps to extrapolate the geologic

models whenever there is little well data to guide the subseismic layers. Extrapolation is a

challenge for traditional kriging based algorithms. Stratal architecture is integrated using

surface-based models, and the resulting geomodels generated are consistent with the well

and seismic information. The problem of integrating stratigraphic data in building geologic

models using surface-based model is equivalent to surface-based model conditioning. The

method to condition these models is shown in this study using the ensemble of surface-

based models. This procedure circumvents the need to condition individual surface-based

realizations, and so avoids the problems of creating artifacts around wells. Surface-based

models are generally difficult to condition, so the proposed preprior approach is an important

contribution.

The proposed methods create ensembles of realizations to characterize uncertainty. A

multivariate probabilistic screening method is proposed to select realizations that span the

flow response space; the approach is also flexible in the responses considered, rigorous in its

use of high-discrepancy sampling methods, and original in its conception and implementation.

It can be used to make complex geomodeling workflows more computationally tractable.
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1.8 Current Approach

Previous research has introduced an open source tools that support this workflow, including

Delivery(Gunning and Glinsky 2004) and Massager (Gunning and Glinsky 2006; Glinsky

et al. 2005). Delivery performs a fully probabilistic seismic inversion using a layer-based

model of the reservoir (where the layering and rock physics comprise the prior model),

and Massager introduces lateral correlation into the point estimates and then maps the

seismic grid data to corner point grid data. The results are gridded arrays of relevant reservoir

parameters such as layer thickness, hydrocarbon probability, and auto- and cross-covariances.

An ensemble of realizations of the reservoir properties can be generated both for volumetric

calculations, as well as statistical reservoir modeling.

In this research stochastic seismic inversion models generated by tools like Delivery and

Massager are downscaled. Two possible approaches to downscale the stochastic inversion

models impose the seismic data as a constraint via Bayesian likelihood, but differ in the

formulation of that likelihood. Both the methods integrate seismic data by visiting traces

sequentially, which is similar to sequential Gaussian simulation. One approach downscales

seismic constraints with precision scaled on the seismic noise. Although each seismic inver-

sion model coming from stochastic inversion gives particular values, e.g., sum and average

constraints for total thickness and average porosity, an ensemble of these realizations can

be used to characterize the variances and an averages of constraints. If these results are

assumed to follow Gaussian distributions, downscaling seismic properties using inexact con-

straints should be weighted toward the mean seismic constraint, with weighting related to

the inverse of the seismic noise. The second downscaling method uses seismic information as

exact constraints, downscaling one particular seismic inversion model. The exact constraint

method is preferred because each seismic realization has thickness, porosity, saturation and

other properties is consistent with the amplitude, velocity model, density model, and wavelet

information (and their covariances). Thus, the exact constraint approach yields models with

22



the proper correlations between the flow properties. For example, if the travel time of the

wavelet is high, then the layer thickness may be high or porosity of that layer is high. Again,

these correlations are honored when one particular layer is downscaled but downscaling one

realization with exact constraints is a challenging problem. Seismic uncertainty is addressed

by considering many different inversions as constraints; thus the workflow has a cascading,

hierarchical form (Kalla et al. 2007).

Even with all this data in a geomodel still there is uncertainty as there are many unknown

geomodel properties to estimate from relatively few measurements. Characterization of this

uncertainty is feasible when seismic inversion data are downscaled. One way of modeling

this uncertainty is by generating ensembles of models; each ensemble realization is called a

realization. When seismic are used as exact constraint, each seismic inversion models has

many possible downscaled models corresponding to it, and the need to consider multiple

inversion models combinatorically generates more realizations. In the inexact case, multiple

models could be generated from downscaling ensemble seismic statistics. All these models

should be consistent with all available data.

A selection of O(10) of the O(102) − O(103) realizations will be used in multiphase flow

simulations; full-physics flow simulations are expensive. Because some of the realizations are

similar, they will respond to fluid flow in a similar way. The realizations selected should

be different from each other when responding to fluid flow, and must be selected in a way

that maintains a rigorous probabilistic framework. One of the aims of this study is to sam-

ple realizations that are identified as diverse so that they capture the uncertainty in flow

responses.

1.9 Outline of Thesis

The next chapter of this thesis chapter 2 incorporates seismic constraints with noise. The

algorithm proposed augments additional variables which are indicators of a layer being zero

in the SGSIM algorithm, and uses MCMC techniques to sample the posteriors (Kalla et al.
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2006). This sample from unnormalized truncated Gaussian priors of the layer thickness serves

to integrate data at two different scales to create an ensemble of reservoir property maps. The

final product of this study is a set of horizon depths filled with layers and the property maps

for each layer. In chapter 3, formulation for the exact constraint problem is discussed. When

the seismic constraint is exact, an algorithm rotates the basis and samples on a hypersurface.

This formulation has the attractive property of preserving correlations in the rock physics

and inversion results.

A block solver technique for avoiding sequential simulation pitfalls is discussed in chap-

ter 4. In this chapter, a sequential simulation similar to SGSIM is compared with a global

method similar to LU decomposition and a sequential method with approximate marginals.

Integrating stratigraphic information to the downscaling algorithm by using surface based

models is the topic of chapter 5. Adding stratigraphic information to seismic and well control

constraints the geologic model and generates more realistic-looking as well as more data-rich

reservoir models. Important aspects of building stratigraphic models using surface based

models are discussed. Choosing representative realizations is discussed in chapter 6. Impor-

tance of sampling rather than ranking in choosing realizations is discussed in section 6, before

providing overall summary and conclusions in chapter 8.
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Chapter 2
Downscaling of Seismic Inversion Inexact
Thickness∗

2.1 Integrating Geologic, Seismic and Well Data

Reservoir simulation models are constructed from sparse well data and dense seismic data,

using geologic concepts to constrain stratigraphy and property variations. Reservoir models

should integrate spare, precise well data and dense, imprecise seismic data. Because of the

sparseness of well data, stochastically inverted seismic data can improve estimates of reservoir

geometry and average properties. Although seismic data are densely distributed compared to

well data, they are uninformative about meter-scale features. Besides the limited resolution,

seismic-derived depths and thicknesses are uncertain, due to noise in the seismic data and

uncertainty in the rock physics models (Gunning and Glinsky 2004; Gunning and Glinsky

2006). Thus, the resolution limit and uncertainties associated with seismic depth and thick-

ness estimates have commonly limited the use of seismic data to either inferring the external

geometry or guiding modeling of plausible stratigraphic architectures of reservoirs (Deutsch,

Srinivasan, and Mo 1996).

Our objective is to use probabilistic depth and thickness information from the layer–based

seismic inversion code Delivery (Gunning and Glinsky 2004) to inform a downscaling

algorithm operating on a cornerpoint grid. Delivery provides ensembles of coarse-scale

geomodels that contain thickness and other property constraint information. These coarse-

scale models must be downscaled to the flow model scale, honoring well data such as layer

thicknesses, porosity and permeability (Doyen et al. 1997; Behrens et al. 1998). The down-

scaling must embrace conceptual geologic models for stratigraphic frameworks, especially

layer correlation models between sparse conditioning points.This problem fits inside a larger

workflow, where this integration of the geomodel, well data, and seismic data is referred to

∗ Portions of this chapter appeared in 2006 SPE conference paper no. 103268.
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as “enforcement,” and the associated algorithms comprise the software package known as

Enforcer.

Seismic constraints and priors are modeled on the quasivertical block edges, analogous

to seismic traces. Simulation at the edges preserves geometric detail in cornerpoint models.

The stochastic inversion assumes no trace-to-trace correlation, and the traces are not nec-

essarily coincident with cornerpoint edges in the flow model. Geologically plausible lateral

correlations are introduced, and seismic data are kriged to the (possibly nonvertical) corner-

point edges using methods implemented in deliveryMassager. Analogous seismic-scale

frameworks are used in Delivery (Gunning and Glinsky 2004) for constructing prior esti-

mates of layer locations, and are typically constructed using geomodeling software (Schlum-

berger Technology Co. 2005), although quasimechanistic depositional modeling (Griffiths

et al. 2001) or surface-oriented geostatistics algorithms (Pyrcz 2004) are possible alterna-

tives.

2.1.1 Nature of the Seismic Constraints

The data used by the downscaling problem are typically realizations of the seismic inversion

coarse-scale model, “massaged” to the edges of columns of the cornerpoint grid. These in-

verted models contain the requisite coupling between geometry and rock properties which

seismic inversion induces, plus the necessary spatial correlation behavior forced by the mas-

saging algorithm. These coarse-scale models provide explicit constraints on the corresponding

subgridded models, which are nontrivial to respect using conventional geostatistical algo-

rithms for fine-scale heterogeneity.

A characteristic difficulty is that parameters of the fine-scale model such as thickness may

have one-sided or mixture distributions (e.g., the mode of layer thickness may be zero in

a cornerpoint model). Because of constraints to be imposed, linear estimation may prove

inadequate. For example, one may wishe to ensure consistency both in thickness and in

average porosity in a downscaling problem consisting only of vertical gridding refinement.
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Therefore, the following equations must be considered at column of gridblock corners:

K∑
k=1

hk = H

K∑
k=1

hkφk = Φ̄H

where K is the number of layers, k indicates a particular layer, φ is the porosity, h is a

layer thickness, H is the total thickness predicted by seismic, and Φ̄ is the estimated average

porosity at the trace scale. If layer porosity and thickness must be jointly estimated, the

problem is nonlinear.

In summary, seismic downscaling to well and stratigraphic data on an arbitrary corner-

point grid is a difficult problem, chiefly on account of the constraints, but also because of

nonlinearities.

2.1.2 Summary of Related Work

Several researchers worked on integrating seismic information in building geologic models

using 2D and 3D seismic data. Early work was done by Araktingi and Bashore (1992),

Bashore et al. (1993), Araktingi, Hewett, and Tran (1993), and others. These researchers

integrated seismic and well data using kriging with an external drift and cokriging using a

Markov-Bayes approximation (Goovaerts 1997). Seismic data are used to impact the large-

scale features in the approach, considering well-log as primary data and the seismic data

as secondary. The external drift method changes the kriging weights to satisfy the seismic

trends. In the Markov-Bayes approach, variograms for seismic and cross-correlation are ob-

tained from well data variogram. An inherent assumption in the study is that the variogram

is scale dependent, and may be used for the same variogram with both well and seismic data.

A collocated cokriging technique using Bayesian updating for a kriging solution is used to

integrate dense, but low resolution seismic data by Doyen, den Boer, and Pillet (1996). Doyen,

den Boer, and Jans (1997), and Behrens and Tran (1999) considered a seismic constraints

introduction into Bayesian formulation through the likelihood functions. The approach in
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this thesis is also to use similar framework to make a similar assumption, by ignoring the

vertical correlation with the vertical cells in order to implement the algorithm faster. The

seismic likelihood function is used to update point kriging estimates at each simulated point

in the 3-D model. Behrens and Tran (1998) used sequential simulation with a block kriging

that treats seismic data as soft constraints to integrate seismic data. Covariance function for

seismic data is derived by integrating subseismic covariance functions. Property estimates are

obtained by weighted linear combinations of neighboring cells, as well as a seismic average of

the current trace. Lee et al. (2002) talked about sampling posterior using Metropolis-Hasting

and Gibbs algorithms. They used mismatch between seismic and sum of the layer thickness

as the likelihood, and estimated prior from interpolation. This research also applies a similar

framework, but for a more general problem, such as when layers pinchout.

If there is a significant possibility of thickness or porosity being zero then methods in

this chapter using auxiliary variables are more appropriate then methods explained before.

However, none of the approaches explained before can ensure preservation of the correlations

inherent in the rock physics, seismic data, and seismic inversions. The cascading workflow,

which preserves these correlations are discussed using exact-constraint approach in chapter

3 (Kalla et al. 2007).

2.1.3 Use of Terms

Layers are generally not resolved by seismic data, but can be identified in wells. Sublayers

might exist if some geomodel layers are not resolved in the cornerpoint grid layers. In this

paper, well data is used only at the layer scale – sublayer log and core data must be upscaled.

Traces are a segment of reservoir whose average properties are constrained by seismic, and will

generally contain many layers. Traces correspond to the edges of the cornerpoint gridblocks

(Ponting 1989; viz., COORD records, Schlumberger Technology Co. 2004). Conditioning data

are a type of trace; order, properties, and thickness are specified at conditioning traces.

A Path is a sequence in which traces (or layers, or blocks) are visited. We use a quasirandom
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multigrid path.

Multigrid paths are paths that preferentially visit widely spaced points early.

The Resolution Matrix is the inverse of the covariance matrix, and closely related to the

Hessian in an optimization problem.

2.2 Problem Formulation

Our approach is to combine diverse data elements in prior and likelihood expressions to obtain

a posterior probability. The overall posterior distribution is approximated by the posterior

obtained by a multigrid sequential simulation passing over all columns or column–blocks of

the cornerpoint grid. Each column of blocks is simulated by sampling from a Bayesian pos-

terior distribution conditional on hard data and previously visited columns via the priors,

and collocated coarse-scale constraints via the likelihood. The prior distribution for each

column is determined by solving an ordinary kriging system (Goovaerts 1997) using obser-

vations and previously simulated values. The seismic data are incorporated via a constraint

on the sum of the layer thicknesses, which comes from a stochastic seismic inversion. In the

proposed approach, layer thicknesses are modeled as truncated Gaussian processes to allow

for pinchouts; this model complicates imposition of the seismic sum constraint (Sampling

Approach, later). The prior data and thickness constraints are combined in a Bayesian pos-

terior form. Finally, the posterior is sampled using Markov chain Monte Carlo methods with

auxiliary variables (Gelman et al. 2003).

An efficient approximation to the posterior covariance matrix is crucial to the success of

this Bayesian approach. In this study, efficiencies are gained by assumptions regarding a par-

ticular form of the covariance, which yields a computationally tractable matrix (Estimating

the Prior, later). This posterior covariance matrix is required by the sequential simulation

algorithm, and encapsulates the compromise between prior information from kriging and

total thickness constraints derived from seismic information.
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Figure 2.1: Contours of minus log likelihood and and minus log prior distributions for a
two-layer system, with H̄ = 4, σH = 1, t̄ = (4, 1), and σt = 1. Contours are in increments of
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)
or ∆
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)
, with values of zero along exactly honoring the thickness sum

(dashed line) and where t = t̄ (small circle). Consistent units.

For simplicity, we will consider systems with a single thickness constraint. More general

constraints are addressed in the later discussion and in the next chapter. Numerical methods

and sampling methods are also discussed in later sections.

2.2.1 Truncated Proxy for Thickness

A proxy t for thickness h is used. The untruncated proxy t is kriged to obtain prior dis-

tributions, because kriging assumes variables are continous, yet the actual thickness h is

non-negative. The proxy t may take on negative values, whereas h is truncated at zero. The

probability of tk ≤ 0 corresponds to the probability that layer k is absent, locally:

P (hk = 0) =

∫ 0

−∞
dP (tk) (2.1)

2.2.2 Algorithm Outline

Before discussing details, the algorithm framework is presented (Fig. 2.2). First, the un-

truncated Gaussian surrogate for all conditioning data with h = 0 must be simulated. Then,
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Figure 2.2: Flow chart for sequential simulation using Markov Chain Monte Carlo.

a multigrid random path for a sequential simulation is generated. At each point on the path,

the prior is estimated by kriging, and the likelihood is used to update thicknesses at the

trace by seismic data. To treat the possibility of zero thicknesses (or pinchouts), auxillary

variables are used, followed by a Metropolis-Hastings step to propose a new thickness vec-

tor. The chain is iterated to convergence, a sample vector t is drawn, and the simulation

then moves to the next trace in the path. Multiple paths may be used to generate multiple

chains, in the same way that sequential Gaussian simulations generate multiple realizations

(Deutsch and Journel 1997).

2.2.3 Estimating the Prior

This step in the algorithm supplies prior means t̄ and variances σ2
tk for all layers on a given

trace.
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A few assumptions can simplify the kriging solution, and greatly improve efficiency (Nu-

merical Considerations, later).

1. For many block shapes and grid spacings, traces can be approximated as vertical when

computing the kriging covariance matrix (i.e., small lateral trace displacement, com-

pared to trace spacing). Then the areal separation between the visited trace and each

of its neighbors is constant for all layers and all trace-neighbor pairs.

2. If in addition, the covariance models are the same for all layers, then the covariance

matrices will be the same on a layer-by-layer basis as well.

3. Layer thicknesses may be a priori uncorrelated vertically at each trace. This may be

reasonable, as the lateral thickness variations are likely more informative than the

thicknesses of the layers above and below. This assumption seems particularly appro-

priate for turbidite systems, in which meter-scale beds may correspond to individual

depositional events: bed thicknesses then correlate strongly only within beds, with

between-bed correlations being weak or even negative, if compensatory deposition or

scouring were occurring.

If all of these assumptions are reasonable, then (1) the priors for each layer can be computed

separately; (2) the kriging matrices are identical for all layers, and therefore only one kriging

system needs to be solved at each trace; and (3) the prior variances in each column are then

uniform. The prior means vary layer-by-layer. The tracewise-constant prior variance allows

more efficient solution methods (Numerical Considerations, later). These assumptions need

not be imposed: this would make the kriging system(s) more expensive to solve, and the

approximation to the posterior covariance will be more expensive to compute.

The neighbor list is extracted from the list of conditioning data and previously simulated

points using a k-d tree (Bentley 1975) with specifications of desired points per quadrant.

This search strategy is more efficient than most alternatives, especially on irregular grids.
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This would assume that a two-dimensional layer thickness correlation implies that a two-

dimensional search would suffice, thus improving search efficiency.

Cokriging or collocated kriging could be used to get prior covariances (Goovaerts 1997).

Such a result would integrate well with the seismic data, which would provide local corre-

lated estimates of trace-scale properties (Gunning and Glinsky 2004). Alternatively, these

essential rock physics correlations can be preserved using a cascading workflow originating

from seismic inversions (Kalla et al. 2007).

If vertical correlations are included, separate neighbor lists may be required for each of

the K` layers at the trace, or a single list could be used for all layers. Although the single

list might require solving a larger kriging system, it would only require solving one kriging

system for all K layers.

2.2.4 Zero Thickness Conditioning Data

In this paper, the untruncated Gaussian proxy t is kriged, not the actual thickness h. At

simulated traces, t is computed and stored, and only converted to h for output. Conditioning

data present more of a challenge. If we observe some layer k on trace ` has h`k = 0, the value

of t`k is indeterminate; we only know t`k ≤ 0. The conditioning data might be decorrelated,

if we use a simple but reasonable draw such as

tk = N−1
(
t̄k, σ

2
tk; r

)
, r ∼ U [0, P (hk = 0)] (2.2)

where P (hk = 0) is given by Eqn. (2.1), N is the normal distribution function, and U is the

uniform distribution function. However, we model the correlation with a loop over all layers,

as follows:

1. Find all zero conditioning data in this layer, k; the list of the locations of zero data is

indexed over λk ∈ {0 . . . Λk}. The positive conditioning data in layer k are indexed by

d ∈ {0 . . . Dk}.
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2. Initialize all Λk zero thickness observations in layer k with random draws, using Eqn.

(2.2).

3. Visit each point λ, forming a kriging system of size Dk + Λk − 1, composed of all

points in this layer except the current point. Compute the mean and variance, and

draw r ∼ U [0, P (hk = 0)]; in the first iteration, the kriging weights and variances are

stored for reuse. P (hk = 0) is computed using the new mean and standard deviation

of tk. The new simulated value tk is the inverse of N(t̄k, σ
2
tk) at cumulative probability

r.

4. Generate a chain and store.

5. Repeat ∀k ∈ {1 . . . K}

The stored chains can be used at the beginning in later simulations of layer thickness. Before

simulating any new points, sets of the zero-thickness conditioning data are drawn from the

stored chain.

2.2.5 The Posterior Resolution Matrix

The seismic data are combined with the prior to obtain posterior probability. The seis-

mic data are incorporated as a constraint on the total thickness, H̄, with the resolution

1
σ2

H
obtained from a stochastic inversion, using Delivery (Gunning and Glinsky 2004).

The posterior probability for any thickness vector t is, from Bayes’ rule,

π (t|H,d`k) =
p (H|t,d`k) p (t|d`k)

p (H|d`k)

where d`k is a vector of the all neighboring conditioning or previously simulated traces in layer

k in the neighborhood of trace `. The product of the likelihood and prior are proportional

to the posterior, without a normalizing term in the denominator, which does not depend on

t. That is,

π (t|H,d`k) ∝ p (H|t,d`k) p (t|d`k) (2.3)
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We assume that departures from the prior (t̄k) and updating (H̄) data means are normally

distributed with standard deviations σtk and σH , respectively. The assumptions apply to

departures, not values, and so the resulting posterior probabilities are not assumed to be

normal, as will be demonstrated in later examples. The multivariate prior distribution of t

is

p(t|d`k) =
1

(2π)
K
2 |Cp|

1
2

exp

[
−1

2
(t− t̄)TC−1

p (t− t̄)

]
(2.4)

where Cp is the prior or kriging covariance matrix, which is of rank K with the kriging

variances σ2
tk along the diagonal. The number of active layers (with tk > 0) is κ.

Similarly, we can express the updating constraint on H as a Gaussian likelihood,

p(H|t,d`k) =
1√

2πσH

exp

[
−(H − H̄)2

2σ2
H

]
(2.5)

where

H = tTT

and

Tk =


0 if tk < 0

1 otherwise

(2.6)

The conditioning on d`k in Eqn. (2.5) is indirect, due to the conditioning of t on d`k. The

product of Eqns. (2.4) and (2.5) is the proportional to the posterior, Eqn. (2.3). This product

can be converted to a quadratic form by taking the logarithm, giving

−2 ln [π (t|H,d`k)] = ln
[
(2π)K |Cp|

]
+ ln

(
2πσ2

H

)
+

(t− t̄)TC−1
p (t− t̄) +

(tTT− H̄)2

σ2
H

(2.7)

We seek a stationary point in the posterior probability by setting the gradient with respect

to t of Eqn. 2.7 to zero, viz.,

C−1
p (t− t̄) +

(TTTt− H̄)

σ2
H

= 0
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The Hessian, G of Eqn. (2.7) is the desired resolution matrix (which is the inverse of the

posterior covariance):

G = C−1
p + TTT /σ2

H (2.8)

If the prior covariance matrix is diagonal, C−1
p and G are easy to compute. For Tk = 1,∀k,

the Hessian has the form

G =



1
σ2

t1
+ 1

σ2
H

1
σ2

H
· · · 1

σ2
H

1
σ2

H

1
σ2

t2
+ 1

σ2
H

· · · 1
σ2

H

...
. . . . . .

...

1
σ2

H

1
σ2

H
· · · 1

σ2
tK

+ 1
σ2

H


(2.9)

If the prior variances σ2
tk are all equal (Problem Formulation, earlier), G is Toeplitz (Golub

and van Loan 1996), and in fact is a particularly simple form, with all super- and sub-

diagonals equal. Note that the Hessian is constant, except for the dependence of T on t; this

is a lurking nonlinearity.

2.3 Prior and Likelihood Distributions in 2D

Important features of higher-dimensional cases are easily visualized for a system with two

layers (Fig. 2.1). The dashed line in Fig. 2.1 is the thickness sum constraint, and lines parallel

to it are isoprobability contours. In three dimensions, the dashed line in Fig. 2.1 corresponds

to a triangle with vertices on each t-axis at H̄; increasing H̄ shifts the high-likelihood region

away from the origin, but with no change in slope. Tighter seismic constraints will narrow

the width of the high-likelihood region.

The assumption of equal prior variances implies the prior has the circular shape shown in

Fig. 2.1; it would be ellipsoidal if prior variance differed by layer, and an inclined ellipsoid

should the layer thicknesses be correlated. Such priors could be sampled by using methods

discussed in this paper, but the resolution matrices would be non-Toeplitz and the algorithms

would be slower.
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In this example, the prior mean thicknesses (4 m and 1 m for the two layers) sum to

greater than the mean trace thicknesses (4 m), so the prior center of mass [circles in Fig.

2.1; Eqn. (2.4)] lies above the maximum likelihood line [dashed line in Fig. 2.1; Eqn. (2.5),

for tk > 0,∀k ∈ {1, 2}]. Because t̄2 is small compared to H̄, there is substantial prior (and

posterior) probability that t2 is negative, yielding many realizations with h2 = 0.

If no layer kriging data were used and the seismic data were considered exact, any layer

thickness pair (t1, t2) having a 45 degree slope along the dashed line could be used. Conversely,

in a sequential simulation not conditioned to seismic, the layer thicknesses would simply be

drawn from the prior (Fig. 2.1).

Sampling problems are caused by the nonlinearity [Eqns. (2.2.5, 2.6)] apparent as slope

discontinuities in the likelihood where the axes intersect the contours of the likelihood sur-

face (Fig. 2.1). This nonlinearity may dominate sampling where the prior admits significant

probability of one or more thicknesses being zero (as is the case for layer 2 in Fig. 2.1). In

higher dimensions, many layers may be pinched out at any given trace, and a method to move

“around” these corners while sampling is needed (Auxiliary Variables to Treat Pinchouts,

later discussed).

2.4 Sampling Approach

Because the log–posterior surface is quadratic with constraints (Eqn. (2.8)), most likely

a posteriori thickness vector could be found by constrained quadratic programming (Nocedal

and Wright 1999). However, our goal is simulation, not maximum–a posteriori estimation,

so we sample from the posterior. Samples are generated using the Markov chain Monte Carlo

(MCMC) method (Fig. 2.2).

In this section, the focus is on simulation at a given trace `. The overall simulation proceeds

by visiting all ` that are not in the conditioning data set by a specific, random, multigrid

path.
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2.4.1 Observed Thicknesses of Zero

Some layers may be absent at conditioning points, hk = 0. For these points, we only know that

tk ≤ 0 at these points, but require a particular value of tk to use in estimating means at the

traces to be simulated. One could simply draw random numbers in the range [0, P (hk = 0)]

to apply an inverse normal transformation, but this would decorrelate the variables. Instead,

we precondition these data using a Gibbs sampler to preserve the correlation (Zero Thickness

Conditioning, earlier discussion).

2.4.2 Auxiliary Variables to Treat Pinchouts

The posterior distribution has marked slope discontinuities at the interfaces in parameter

space where layers pinch out (i.e., the hyperplanes tk = 0; Fig. 2.1). Standard MCMC meth-

ods based on small jumping proposals will diffuse around such distributions very slowly. It

has been shown that introducing auxiliary variables u can promote mixing, i.e., alteration

between states, in difficult MCMC problems with related “configurational stiffness” charac-

teristics (Higdon 1998). Auxiliary variable methods use an augmented posterior probability

space:

π(u, t) = π(t)π(u|t) (2.10)

where the augmented binary variables u (uk ∈ {0, 1} ∀k ∈ {1 . . . K}) are chosen to align

samples in the directions of maximum posterior, considering the bends in the likelihood.

When the sampling kernel in the MCMC algorithm is near the slope discontinuities, these

auxiliary variables can change from zero and one (or vice versa), and allow the sampling

direction to change.

The term π(u|t)
[
=
∏K

k=1 π(uk|tk)
]

is a conditional probability for the auxiliary variables,

which may be constructed in any helpful way. In our case, we construct the conditional to

help detect the kinks in the posterior that occur when layers pinch out. One possible choice
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of a symmetric form is

π (uk = 1|tk) =


1− 1

2+tk/σπk
if tk ≥ 0

1
2−tk/σπk

otherwise

(2.11)

where σπk is a univariate approximation to the multivariate posterior covariance,

1

σ2
πk

=
1

σ2
tk

+
κ

σ2
H

(2.12)

That is, σπk ≈
∑K

j=1 Gkj, [Eqn. (2.9)]. κ is the current number of active layers; κ =
∑K

k=1 Tk ≤

K.

Sampling from the augmented posterior distribution is performed by alternating Gibbs

samples for the auxiliary variables with Metropolis–Hastings samples for the thicknesses tk.

The Gibbs sampling scans over the layers. At each layer, a uniform [0, 1] random number is

drawn. If the random number is less than π(uk = 1|tk), uk is assigned 0. When the uk for

all K layers have been simulated, we construct a resolution matrix (step size and direction

are dependent on u) from which jumping proposals are formed, which are well “tuned” for

the current configuration of the system. The auxiliary variables create an adaptively varying

proposal kernel that does not break reversibility.

The Gibbs sample gives a list of “likely” active layers at the current iterate in u.

2.4.3 Metropolis-Hastings Step

The new kernel obtained from the Gibbs step (previous section) is used to sample a new

thickness vector t using a Metropolis-Hastings step. Let the number of active layers be

κ, κ ≤ K. At each trace, a resolution matrix of rank K is constructed and its Cholesky

factors are computed. The resolution matrix Gκ = C−1
p +uuT /σ2

H is used to make the MCMC

jumping proposal [Eqn. (2.13), later]. The appropriate resolution and inverse matrices are

computationally inexpensive for the simple Toeplitz resolution matrix used in the proposed

approach (Numerical Considerations, discussed later). The Hessian G and the posterior

covariance Cπ = G−1 are of rank K, but the matrix inverse used in this sampling is of lower

39



rank κ (Numerical Considerations, later). The Cholesky factor LCπ of the covariance matrix

(the Cholesky factorization is Cπ = LCπL
T
Cπ) is multiplied into a κ-long vector of random

normal variables r ∼ [N(0, 1)] to produce a vector ∆t of proposed changes in t,

∆t = sLCπr (2.13)

so that ∆t ∼ N(0, s2G−1
κ ), where s is a scalar chosen for sampling efficiency, typically

s2 = 5.76/κ for large κ (Gelman et al. 2003). This vector is rank κ, and the changes must

be sorted back into t by referencing u. We can compute that likelihood at the new point

t′ = t+∆t, using Eqn. (2.5). The Metropolis-Hastings transition probability is then (Gelman

et al. 2003)

α = min

(
1,

π (t′|H,d`k)
∏K

k=1 π(uk|t′k)
π (t|H,d`k)

∏K
k=1 π(uk|tk)

)
(2.14)

Eqn (2.14) is similar to the standard Metropolis-Hastings ratio, but has been modified to

include the auxiliary variables so that reversibility is maintained. The proposed transition

∆t is then accepted with probability α, and the algorithm proceeds to the next Gibbs sample

for the auxiliary variables.

2.5 Numerical Considerations

The Toeplitz form of the posterior resolution matrix and subsidiary assumptions simplify

computations (Estimating the Prior, earlier). Because of these simplifications, only two ma-

trix solutions are required per trace: (1) a Cholesky factorization of the kriging matrix (which

is dense and not Toeplitz, with rank equal to the number of neighbors used, N`), and (2) the

factorization of the inverse of the Toeplitz resolution matrix (rank K` and very inexpensive).

If the Toeplitz-yielding assumptions were not made, K` rank-
∑K`

k=1 N`k kriging systems will

be required at each trace `. Even more prohibitive, the posterior resolution matrix G would

have to be refactored every time any tk flips from a positive to nonpositive state. Because

this occurs deep within the sampling method (Sampling Approach, earlier), this would result

in a remarkable loss in efficiency.
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To carry out the simulation, we need the Cholesky factor LCπ of the posterior covariance

matrix, Cπ = G−1. With LCπ, we can generate correlated normal deviates, ∆t, from uncor-

related random normal input vectors, r ∼ N(0, 1), ∆t = LCπr (Metropolis-Hastings Step,

earlier; Goovaerts 1997). For the special Toeplitz matrices, the factor LCπ can be computed

from the Cholesky factor of the resolution matrix G. That is, (1) Factor G to get LG, (2)

invert LG by back-substitution to get L−1
G (inexpensive because the matrix is triangular),

and (3) take the persymmetric transpose (Golub and van Loan 1996) of L−1
G . This is the

Cholesky factor of Cπ, LCπ.

The rank “downdate” from K to κ < K is the lower rank-κ triangle of LCπ. The matrix

rank changes whenever the auxiliary variable transitions between zero and nonzero. Because

of the Toeplitz form, the required factored correlation matrices LCπκ, regardless of the num-

ber of active layers κ (or rank), can be computed from a single factoring of the rank-K

covariance and inverse to get LCπ, and the taking the appropriate rank-κ submatrix.

In combination, the efficient factorization method for the posterior rank-K covariance ma-

trix and determination of LCπκ for all possible pinchout combinations makes this algorithm

efficient. Precise work estimates for these matrix calculations have not been done, but an

upper bound is the work done for a general Toeplitz matrix (Golub and van Loan 1996), by

inverting the resolution matrix and factoring that inverse to get LCπ. For that less efficient

approach, the inverse of the Toeplitz resolution matrix requires W ∝ K3 floating opera-

tions (flops), and further work W ∝ K4 flops is required for the factoring. In comparison,

the proposed method is at worst W ∝ K3 for the inverse and all factors in a full order of

improvement (further discussion in Performance, later).

2.6 Simulations of Two-Layer Systems

Several two-layer simulations illustrate the behavior of the data integration algorithm. Dif-

ferent combinations of prior and updating data variance are considered, along with perfectly
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Table 2.1: Parameters and results for 2-layer simulation

Prior Constraint Posterior
Case t̄1 t̄2 σt H̄ σH t̄1 t̄2 Covariance of t H̄ σH

Tight 3.0 1.0 1.0 4.0 0.1 2.86 1.11

(
0.46 −0.50

−0.50 0.59

)
4.00 0.10

Loose 3.0 1.0 1.0 4.0 0.5 2.97 0.97

(
0.53 −0.46

−0.46 0.72

)
4.00 0.49

TT t < H̄ 3.0 1.0 0.5 6.0 0.5 3.65 1.66

(
0.16 −0.08

−0.08 0.16

)
5.31 0.41

consistent versus slightly contradictory prior means and constraints. Results are summarized

in Table 2.1.

2.6.1 Tight Sum Constraint

This case assumes the sum of the layer prior means is equal to the trace mean, but the layer

thicknesses are poorly resolved (Fig. 2.3). Because the means are consistent and the con-

straint variance is relatively small, the simulations tightly cluster around the constraint line,

and the posterior means of t are near their prior means, although the correlation induced by

the constraint is marked (covariance column, Table 2.1). Moreover, many realizations have

t near (4, 0)T (which is very unlikely in the prior) because of the relatively tight seismic

constraint (σt/σH = 10). The bend in the posterior, caused by the pinchout, is clearly seen

below t2 = 0 [Fig. 2.3(a)]. The posterior layer variances are reduced, because of the added

data in the constraint (eigenvalues, Table 2.1). The axial (maximum) standard deviation is

the same for the posterior as for the (isotropic) prior, but the transverse standard devia-

tion is significantly reduced. The univariate histograms of t are slightly non-Gaussian, and

truncation makes the histograms of h depart even more. The strict seismic constraint has

transformed the uncorrelated prior into a posterior in which the thicknesses are strongly

negatively correlated, a natural outcome of a sum constraint.
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Figure 2.3: Simulation results for a two-layer case with inaccurate layer thickness but total
thickness (h1 +h2) tightly constrained. H̄ = 4, t̄ = (3, 1)T , σH = 0.1, and σt = 1; consistent
units.

2.6.2 Loose Constraint and Prior

As for the previous case, the prior means are taken to be consistent with the seismic con-

straint. However, the variances of both prior and constraint are higher for this case. The

data are therefore more dispersed, and it is more likely that layer 2 is assigned a zero thick-

ness (Fig. 2.4). As before, although t appears nearly Gaussian in the univariate histograms,

h will be truncated to nonnegative values and is thus non-Gaussian, and the bend in the

posterior at t2 = 0 is observed.

2.6.3 Sum of Prior Means Less Than Constraint

A mismatch between the prior layer means and the thickness constraint shifts the axis

of the cloud of simulations points above or below the constraint line (Fig. 2.5). In this

case, both layer thicknesses are increased from their priors to better match the seismic

constraint. For the moderate standard deviation and prior means much greater than zero,

few truncations occur; the posteriors are nearly Gaussian. For this nearly multi-Gaussian

case, the constraint has transformed the isotropic, uncorrelated prior thicknesses (Fig. 2.1)

to a strongly correlated, more compact posterior. Since the prior and constraint variances

43



−2 −1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

5

6

t1

t2

within 2σ of
prior mean

total thickness constraint

(a) Scattergram, N = 8000

−2 −1 0 1 2 3 4 5 6
0

100

200

300

400

500

600

700

t2

Counts

layer 2

layer 1

total

1148 h2-truncations

(b) Histogram, bin size ∆t = 0.05

Figure 2.4: Simulation results for a two-layer case with inaccurate layer and total thicknesses
(h1 + h2). H̄ = 4, t̄ = (3, 1)T , σH = 0.5, and σt = 1; consistent units.

are equal, the mean of the scatter cloud is shifted roughly one-half the distance from the

prior toward the constraint, as would be expected (Table 2.1; Gelman et al. 2003).

2.7 Synthetic 3D Cases

A synthetic 3D data set is used to test and illustrate the MCMC simulation method. Prior

(range and sill of semivariogram, R) and updating data (trends in H̄ and σH) parameters

are varied to illustrate behavior, and algorithm performance is discussed.

For all cases, x − y extent is 1000 × 1000 m, the number of grids in those directions are

100×100 respectively, and the number of layers is 10. The framework for the reference model

was created by randomly placing objects with scaled bi-Gaussian thickness variations in x

and y; for the 1 km areal grid, an isotropic standard deviation, σ = 500 m, was used to

compute layer thickness with

h(x, y) = hmax exp

[
(x− x̄)2 + (y − ȳ)2

σ2

]

This object-based method with Gaussian thickness variations is not the same as a Gaussian

covariance process. The object models are used only to create conditioning data. Twenty-five
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Figure 2.5: Simulation results for a two layer case with prior sum less than the sum constraint.
H̄ = 6, t̄ = (3, 1)T , σH = 0.5, and σt = 0.5; consistent units.

traces were used in cases discussed in this section; the algorithm has also been used with no

conditioning traces and with up to 200 conditioning traces.

2.7.1 Illustrative Cases

Four different cases show features of the data integration method (Fig. 2.6). With short

ranges, termination is more common, although the average layer thickness is similar to

the longer range [Figs. 2.6(a,b)]. There is little noise, unlike what is commonly observed

in Gaussian processes; the layer thicknesses vary smoothly and plausibly, and near-zero

thicknesses do not appear in isolated areas; this results from the truncation rules and the

smooth Gaussian variogram. The pinchout pattern is clearer in the longer-range case (b). In

particular on the first cross-section in the left, the light layer near the base and the dark layer

in the middle appear to taper and pinch out smoothly; this behavior is more characteristic

of object models than most covariance-based simulations.

Seismic data may imply a thickness trend [Fig. 2.6(c)]. The seismic trend will be re-

produced in the simulation, with a precision conditioned on the inferred seismic thickness

variance, σH . If the seismic variance is higher for smaller mean thicknesses, low thicknesses
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(a) Short range, R = 200 (b) Long range, R = 750

(c) Seismic thickness trend, H̄ = 7 + 13x
X

m, R = 350;
x = 0 is on the left front

(d) Noise varies, σH = 5− 3x
X

; R and H̄ as in (c); x = 0
is on the left front

Figure 2.6: Simulations on 100× 100× 10 cornerpoint grids, areal extent is X = Y = 1000
m, and 25 conditioning traces are used. Unless otherwise noted, H̄ = 20 and σH = 2. All
realizations use a Gaussian semivariogram with Rx = Ry = R, γ(∆) = 1−exp

[
− (||∆||/R)2],

m2. All models flattened on the topmost surface. Range, thickness, and standard deviation
are in m. 7.5× vertical exaggeration for all figures. Vertical black lines in (d) are conditioning
traces.
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fluctuate more, as may be seen by comparing the left front edges of Figs. 2.6(c) and (d). For

the low variance case (c), the edge panel is of nearly uniform thickness while the nonuniform

variance case (d) has much greater fluctuation on the left edge.

Although based on a synthetic case, these results indicate that the proposed method

can reproduce complex pinchout layering and plausible seismic trends. The number of pin-

chouts can be quite large in complex cornerpoint grids; 30,608 of 100,000 trace segments are

zero-thickness in one of the example cases [Fig. 2.6(c)]. The complex pinchout structure is

obtained, even though the conditioning data are not especially dense [Fig. 2.6(d)].

2.8 Discussion

2.8.1 Cornerpoint Grids

The MCMC simulation is over the block edges, or traces. This is different from many geo-

statistical modeling approaches, which are commonly block-centered. However, geometry –

especially pinchouts or discontinuities at faults – can be modeled more accurately using cor-

nerpoints. The porosity and other rock properties should be simulated or estimated at the

same point, because these properties are generally correlated through the rock physics model

and seismic response. Even for cornerpoint grids, reservoir simulators use block centered val-

ues for rock properties such as porosity. The trace properties must be averaged appropriately

to the block center. A simple mean is probably adequate for thickness and porosity-thickness.

However, the permeability must be upscaled more carefully, especially for nonrectangular

blocks; a good method might be to integrate the Jacobian over the half-block domains (Peace-

man 1993). Even for uniform permeability, the Jacobian integration correctly provides face-

and direction-dependent transmissibilities for a nonrectangular grid. The method could also

be used to perform approximate upscaling for sublayer heterogeneities, and compute more

accurate pore and bulk volumes.
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2.8.2 Convergence of Inexact MCMC Simulations

MCMC methods may converge too slowly to be practical, or may have multiple modes, such

that multiple chains and/or methods to switch between modes are needed. In numerical

experiments undertaken so far in this algorithm, these potential problems do not appear to

be too severe.

Convergence is critiqued by examining posterior distribution statistics over many iterations

(Gelman et al. 2003). For a variety of cases examined, the means converge in no more than

≈ 1000 iterations, and the variances stabilize in no more than ≈ 2500 iterations. That is,

some 2500 iterations are needed for the chain to begin sampling the posterior reliably; this

is referred to as the “burn–in”; samples prior to burn-in are discarded before the chain is

used to simulate the posterior. This number of iterations, while large, is not prohibitive, if

the proposal method is computationally inexpensive (Numerical Considerations, previously),

and the acceptance rate is not too small. For a realistic 3D synthetic problem, the proposed

method attains a sampling rate of almost 200,000 iterations per second and an acceptance

rate averaging ≈ 0.4, which makes such long, burn-in requirements manageable (Synthetic

3D Cases, later). Chains started in widely dispersed parts of t-space converge to the same

posterior (Fig. 2.7). This was expected, based on the relatively simple form of the posterior

resolution matrix, G. The early behavior depends on the starting point [Fig. 2.7(a)]: chains

that move in from the flanks of the constraint (transverse paths) take large, efficient steps;

those moving along the axis zig-zag and advance more slowly. The latter is the classic behavior

of movement along a trough in a minimization problem where the eigenvalues of the Hessian

differ markedly (Table 2.1). After many iterations, all chains are sampling the same region

[Fig. 2.7(b)], and the post-burn-in chains are statistically indistinguishable.

The simple, two-dimensional examples indicate the algorithm is reproducing expected

results in limiting cases.
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Figure 2.7: Four Markov chains starting from diverse points tend to migrate toward the most
likely region. (a) Convergence is slower for points that must move along the axis to reach the
area of the mode. (b) Results are practically identical for long chains, because the posterior
is unimodal. The prior and constraint data are the same as in Fig. 2.3.

2.8.3 Performance of Inexact MCMC Simulations

For adequate performance, an MCMC simulation should converge to its target distribution

in as few steps as possible. A larger step size helps explore the posterior in fewer steps.

On the other hand, large steps are more likely to be rejected, “wasting” computations on a

sample that would not be retained. The step size is usually adjusted indirectly, by scaling

the posterior covariance (which is used to generate steps; Metropolis-Hasting step, earlier).

For the system examined, the covariance is not scaled; this gives a step size applying the

square root of the smallest diagonal element in the posterior covariance matrix. In high-

dimensional problems, it may be more appropriate to use C̃π = 5.76
K

Cπ to ensure adequate

acceptance rates (Gelman et al. 2003). Although the unscaled covariance yields larger steps

for K = 10, the test cases had acceptance rates of 30 to 40 percent. This step size and

acceptance rate appears to yield good convergence thorough exploration of the posterior, as

well as smooth posterior samples (where they should be smooth: for example, if the prior
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Table 2.2: Performance summary for the 3D example (one complete simulation)a

Process Work in secondsb

Kriging work 5.95
Toeplitz solver work 0.22

Total overhead all traces 6.17
Samples, 5000 per trace, all traces 299.20

Cost of example simulation, excluding io 305.37
a Model size, 100× 100× 10; 5000 samples per trace
b Using a 2 GHz Pentium-M (laptop) processor with 1 GB of RAM.

implies truncations are either very unlikely or almost certain). Therefore the best choice of

scaling is problem-dependent.

The computational cost of a single simulation [for the case of Fig. 2.6(a)] is examined

component-by-component in Table 2.2. Several features are striking. First, 97.98 percent of

the work is done in the deepest part of the sampling loop, which requires random number

draws, extractions of submatrices, and multiplication of random normal vectors by lower

triangular matrices (the Cholesky factor of the posterior covariance matrix, LCπκ). None of

these operations is particularly expensive, but a total of 5×107 iterations were performed for

this case (≈ 164, 000 samples accepted per second). Because the kriging system is solved only

once per trace – and is two-dimensional, with an efficient k-d neighbor search – the associated

work is small, about 1.95 percent. The Toeplitz manipulations are practically cost-free, only

about 0.07 percent of the total work. Finally, the overall cost of about five minutes on a

laptop computer (for 105 unknowns) does not seem prohibitive. Because it is a tracewise

sequential algorithm, this MCMC method scales linearly in the number of block edges, or

traces. Thus, a model with 106 traces and 10 layers should require approximately 8.5 hrs if

attempted on a single Pentium-M processor with adequate memory it is not too alarming,

for a model with 107 unknowns. The Toeplitz covariance and inversion work, then, scales

approximately with the third power of layer count (Numerical Considerations, previously)

and linearly for generating samples at traces. However, Toeplitz solver work takes less than 1

50



percent of the computing time (Table 2.2). That is, although the cubic scaling is unfavorable

for large K, the multiplier for the Toeplitz work is small; as a result, this component does not

control the total work required. This is because proposing samples consume most of the work;

each trace has thousands of proposals and therefore requires only one K3 Toeplitz solve. The

total, sampling-dominated work scales with K rather than K3. Therefore, a model with 20

layers takes approximately twice as long as the 10-layer model used in the illustrations.

2.8.4 Related Methods

As discussed in Simulation of Two-Layer Systems, if no layers are likely to be absent, the

posterior distribution remains multi-Gaussian, and simulation and estimation methods are

linear. In this case, the proposed method is a variant of collocated cokriging, where the

collocated data are a sum rather than a constraint on a single thickness (Goovaerts 1997). The

proposed methods are needed only when there is a substantial likelihood of layers terminating

laterally, in which case untruncated Gaussian models will fail.

Previous work on reservoir characterization with truncated Gaussian fields has focused

on categorical simulations (Xu and Journel 1993; Matheron et al. 1987). In contrast, the

proposed method combines aspects of categorical and continuous simulations. The condition

tk ≤ 0 on the thickness proxy is equivalent to setting an indicator for layer occurrence to zero.

However in the categorical case, all tk > 0 would be identical (for a binary case), whereas

we use values tk > 0 to model the continuous variable hk. This hybrid approach could be

applied without constraints, yielding sequential truncated Gaussian simulations of thickness;

this corresponds closely to the cases with high σH presented above, and with similar resulting

images.

Many issues remain – especially implementation of more complex constraints, as well

as integration with fine-scale geomodels in an auxiliary variable framework; the proposed

method appears to offer a foundation for further development.
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Chapter 3
Downscaling Multiple Seismic Inversion
Constraints to Fine–Scale Flow Models∗

Mesoscale (≈10 m) reservoir models obtained by seismic inversion using rock-physics con-

cepts and effective-media ideas are a manageable basis for Bayesian seismic integration,

because seismic is usefully informative at this scale as explained above. An attractive route

to attain typical geocellular scale (≈1 m) models is to downscale mesoscale models to meter-

scale models by using constraint equations embodying the effective media laws. In particular,

downscaling specific realizations similar to exact constraints drawn from the posterior of a

stochastic mesoscale inversion, produces sum constraints for fine scale models.

We use probabilistic depth and thickness information originating from the layer–based

seismic inversion code Delivery (Gunning and Glinsky 2004) as input to a downscaling

algorithm operating on a cornerpoint grid. Seismic constraints and priors are modeled on

the quasivertical block edges, analogous to seismic traces. Simulation at the edges preserves

geometric detail required for cornerpoint reservoir models used in many commercial reser-

voir simulators (e.g., Schlumberger Technology Co. 2004). Block-center properties such as

porosity are obtained by averaging the edge properties.

Realization ensembles from seismic inversions (e.g., Delivery; Gunning and Glinsky

2004) carry rich information about interproperty and vertical interzone correlations, induced

by the seismic information (Fig. 3.1). These ensembles are generated, assuming there is no

trace-to-trace correlation, and the traces generally do not coincide with cornerpoint edges

in the flow grid. This must be corrected by augmenting the interproperty and interzone cor-

relations with the mesoscale lateral correlation structures required for geological continuity,

and constructing models or model–samples at the quasivertical cornerpoint edges of the flow

grid (e.g., deliveryMassager; Gunning, Glinsky, and White 2007). Each realization from

∗ Portions of this chapter appeared in 2007 SPE conference paper no. 110771.
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Figure 3.1: Layer–based realizations before (upper right) and after (lower right) seismic
inversion, as produced by the Delivery code at a particular seismic trace. Synthetic traces
corresponding to particular realizations are shown in black with the actual seismic data
(grey) in the left insets.

deliveryMassager thus captures vertical, horizontal, and interproperty correlations at

the mesoscale (Fig. 3.2).

These realizations are natural inputs to the downscaling problem we describe. They contain

the requisite coupling between geometry and rock properties that seismic inversion induces,

plus the necessary spatial correlations required for geological smoothness. These mesoscale

models provide explicit sum constraints on the corresponding subseismic layers. Such con-

straints are nontrivial, to respect using conventional geostatistical algorithms for fine–scale

heterogeneity.

Specifically, we consider a fine–scale model of K (k ∈ {1 . . . K}) layers, each layer k with

thickness hk and porosity φk. We use t as an untruncated surrogate for layer thickness,

hk = max(0, tk): the proxy t may take on negative values, whereas h is truncated at zero.

If one wishes to ensure consistency of both thickness and average porosity in a downscaling

problem, the following constraints must be imposed at each column of gridblock corners:

K∑
k=1

Ik max(0, tk) = Hs (3.1)
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Figure 3.2: Four mesoscale layer–based realization cross–sections in depth of a simple 3–layer
shale/sand/shale wedge test problem with Graben–like fault, as output from the Deliv-
eryMassager code.(Gunning, Glinsky, and White 2007) Reflection surfaces that are well
defined in time may still have appreciable depth variability, due to transverse variations and
uncertainties in the velocity structure.

K∑
k=1

Ik max(0, tkφk) = ΦHs (3.2)

K∑
k=1

(1− Ik) max(0, tk) = Hsh (3.3)

The right–hand sides of these equations are obtained from a mesoscale joint realization of

net thickness Hs, non–net thickness Hsh, and the mesoscale net porosity-thickness ΦHs.

Mesoscale porosity Φ is the net thickness weighted average. Here Ik ∈ {0, 1} is a predeter-

mined facies indicator for layer k, where there are Ks ≤ K “sand” layers with Ik = 1, and

Ksh = K −Ks “shale” layers with Ik = 0.

The fine–scale model prior to these constraints is a joint multi–Gaussian distribution of

t, φ (over all layers at each trace) with means and covariances constructed in the usual ways,

such as from log data or variogram analysis of outcrop analogs (Willis and White 2000). The

principal challenge of this approach is that the downscaling constraints potentially force the

posterior of the fine–scale model to have truncated regions (e.g., the mode of layer thickness
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or porosity may be zero). The nonlinearity embedded in the max(0, tk) terms makes linear

estimation inadequate in many cases.

If all thicknesses and porosities have prior means much higher than the corresponding prior

standard deviations (i.e., pinchout and nonpay intervals are unlikely), methods introduced

by Doyen et al. (1997), Behrens et al. (1998), and Lee et al. (2002) could be used to integrate

seismic constraints with noise (inexact constraints). On the other hand, if there is a significant

possibility of thickness or porosity being zero, then methods similar to Kalla et al. (2006)

using auxiliary variables are more appropriate. However, neither of these approaches can

ensure preservation of the correlations inherent in the rock physics, seismic data, and seismic

inversions. The cascading workflow, which preserves these correlations, is a novel feature of

the proposed exact-constraint approach. This method could also be used for downscaling

conceptual models and possibly to condition surface– (Pyrcz, Catuneanu, and Deutsch 2005)

or process–based (Wellner et al. 2007) models.

Terms used are consistent with the last chapter. Additionally, Truncated Gaussian is used

in a nonstandard way in this chapter. Generally, it implies a rescaled probability density,

viz.,

f ∗(h(t)) =


0 t < 0

f(t)
1−F (0)

t ≥ 0

here, instead, we intend

f ∗(h(t)) =



0 t < 0

F (t)δ(t) t = 0

f(t) t > 0

where (for this equation only) δ(t) indicates the Dirac delta function. Although this usage

is nonstandard, it at least has the virtue of being descriptive.
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3.1 Problem Formulation

We combine diverse data elements in prior and likelihood/constraint expressions to obtain

a posterior probability. The overall posterior distribution is approximated by a multigrid

sequential simulation passing over all traces of the grid. Properties at each trace are simulated

by sampling from a Bayesian posterior distribution whose prior is assembled from hard

data and previously visited traces, and whose likelihood is comprised by the local coarse

scale constraints (sums from the massaged seismic inversions). The prior distribution for

each layer at a given trace is obtained by solving a kriging system (Goovaerts 1997) with

well observations and previously simulated values as the informing data. This procedure

is similar to the usual sequential simulation approximation for multi–Gaussian models. An

efficient approximation to the local–prior covariance matrix is crucial to the success of this

Monte Carlo approach. This matrix must be factored at each step of the sequential simulation

algorithm, and some approximations make the sampling process more efficient (Assumptions

on Prior Covariance, later).

3.1.1 Algorithm Outline

The algorithm is similar to many sequential algorithms, except that Markov Chain Monte

Carlo (MCMC) is used to generate conditional samples that match seismic constraints at

each spatial location (Fig. 3.3). A multigrid random path specifies the simulation sequence.

At each point on the path, the local conditional prior is constructed using kriging, and sam-

pling of the local posterior is performed using MCMC in a reduced-dimensionality subspace

with projections back to the constraint surface in the original space (Sampling with Exact

Constraints, later). A sample from the converged MCMC chain is chosen, and the algorithm

proceeds to the next trace in the multigrid path.
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Figure 3.3: Flow chart for sequential simulation using Markov Chain Monte Carlo.

Figure 3.4: Exact constraint geometry with the prior sum more than the sum constraint.
The point r is projected distance δ along u until it lies on the constraint surface.
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3.1.2 Prior and Posterior Formulation

The posterior probability π for the thicknesses and porosities is, from Bayes’ rule,

π (ts, φs, tsh|Hs, Φ, Hsh,d`) =

p (Hs, Φ, Hsh|ts, φs, tsh) p (ts, φs, tsh|d`)

p (Hs, Φ, Hsh)

(3.4)

where d` is a vector of the all neighboring conditioning or previously simulated traces in

the neighborhood of trace `. The size of the vectors ts, φs and tsh are Ks, Ks and Ksh,

respectively. The likelihood (first term in numerator) is an exact constraint in the proposed

cascading workflow, so that the posterior probability of the model is either (1) identically

zero if the constraint is not satisfied, or (2) proportional to the prior, if the constraint is

satisfied. The second term on the numerator is the prior for the local fine–scale variables,

constructed using typical kriging apparatus. The denominator is a scaling term, which need

not be computed for MCMC methods.

Assuming multi–Gaussian and independent distributions (Assumptions on Prior Covari-

ance, later), the variables ts, φs and tsh are normally distributed with standard deviations

σts,σφs and σtsh, respectively. The multivariate prior distribution of ts for example is

p(ts|d`) =
1

(2π)
Ks
2 |Cps|

1
2

exp

[
−1

2
(ts − t̄s)

TC−1
ps (ts − t̄s)

]
(3.5)

where Cps is the prior or simple kriging covariance matrix for thicknesses of sand, which

has rank Ks. Ordinary kriging is used to estimate the means. Cokriging (e.g., of t and φ)

could be used for the means and variances. We solve the kriging system, using a Cholesky

factorization.

The constraints [Eqns. (3.1-3.3)] will yield posterior distributions that may be far from

normal and (unlike the priors) are correlated (Simulations of Two-Layer Systems, later).

3.1.3 Assumptions on Prior Covariance

A number of assumptions make calculation more efficient for the local conditional prior

distributions.
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1. Traces may be approximated as vertical when computing the kriging covariance matrix:

the areal separation between the current trace and each of its neighbors is assumed

constant for all layers for each trace-neighbor pair. This assumption is not strictly valid

for nonparallel cornerpoint block edges, or traces (the lines along which the k-index

varies in a grid). However, the assumption is acceptable (1) if the traces are nearly

parallel, (2) if their lateral displacement within the reservoir interval is small compared

to trace spacing, or (3) if the effect on the computed covariances is generally small.

If the numbers of sand and shale facies are Ns and Nsh, respectively, only 2Ns + Nsh

kriging systems must be solved. This number would typically be much less than the

number of parameters to be estimated, 2Ks + Ksh.

2. Vertical correlation of layer properties is neglected, so that all kriged estimates are

two-dimensional. This leads to a simpler, smaller kriging system. This assumption

also makes the prior covariance matrices diagonal for the exact constraint problem.

This assumption seems reasonable for many episodic depositional systems, such as

turbidites. Trends could be introduced in the priors if required; for example, in deltaic

sediments one could stipulate an upward-increasing mean thickness to simulate the

residuals of the trend. The form of the trend could vary by area. This rescaling of

mean or variance has been widely used in geostatistics; Goovaerts (1997) recommends

this approach for systems with strong, known trends. Such trends could be used for

both thickness and porosity.

3. Optionally, the covariance models are the same for all the shales and sands. If this

assumption is not made, the prior covariance matrix will be anisotropic and must

be transformed in the MCMC calculations. This assumption is important for inex-

act constraints, because this assumption leads to a simple Toeplitz structure that is

computationally efficient (Kalla et al. 2006), yet less important for exact constraints.
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Recapitulating, the benefits of these assumptions are: (1) the kriging matrices are identical

for all layers, and therefore only 2Ns + Nsh kriging systems need be solved at each trace (in

this paper, 3 for ts, tsh, and φs); (2) the priors for each layer can be computed separately;

and (3) the prior variances in each property are constant, but the prior means vary layer-by-

layer. The problem is still tractable without these assumptions (Performance of the MCMC

Simulations, later).

3.2 Sampling with Exact Constraints

Exact constraints lower the dimensionality of the sampling problem. The maximum a poste-

riori (MAP) estimate is commonly obtained by using Lagrange multipliers (Michalak and Ki-

tanidis 2003; Golub and van Loan 1996). For sampling, however, we reformulate the problem

in a lower-dimensional space and perform appropriate projections to ensure the constraint

is honored.

3.2.1 Orthogonal Subspace Projection

At each trace, three constraints (Eqs. 3.1-3.3) are applied in this downscaling method. The

system has 2Ks + Ksh random variables (sand thicknesses, sand porosities, and shale thick-

nesses), and thus 2Ks +Ksh−3 degrees of freedom. The constrained posterior is sampled by

a MCMC random walk in a lower dimensional subspace, with projection to the constraint

surface to reconstruct the full set of variables.

Because it is assumed that there is no vertical correlation, the variables ts, tsh, and φs

are a priori uncorrelated between layers (i.e., Cov(ts, ts), Cov(tsh, tsh) and Cov(φs, φs) are

diagonal and Cov(ts, tsh) ≡ 0). Moreover, no correlation is assumed between φs and ts;

Cov(ts, φs) ≡ 0 (this assumption could be modified using appropriate trend models; As-

sumptions on Prior Covariance, earlier). Thus, the three variables can be simulated in three

separate blocks, with the only restriction being that ts must be simulated before φs, because

the simulated ts is used in imposing the total porosity thickness constraint ΦHs.

60



The following description describes the procedure for the sand thickness vector ts at a

single trace `. The constraints for shale thickness tsh and sand porosity φ are honored in the

same way.

3.2.2 The Projection

We reparametrize, projecting all points in T, the original space of ts, onto the plane normal

to u = (1, 1, . . . , 1)/
√

Ks. The basis for this new space of R is obtained by singular value

decomposition or SVD (Golub and van Loan 1996). The space R is a (Ks − 1)-dimensional

basis orthogonal to u = (1, 1, . . . , 1)/
√

Ks (Fig. 3.4). In this Ks − 1 subspace, a point is

denoted by r, and a point in Ks dimensions is τ = (δ, r), where the first element is parallel

to u. Although potentially confusing, the use of these three entities (r in rotated (Ks − 1)-

dimensional R space, τ in rotated Ks space, and ts in the original Ks T space) is essential

to explaining and implementing the algorithm. The transformation matrix U rotates the

Ks-long augmented vector τ = (δ, r) back to original coordinates in T, viz., ts = Uτ .

The random walk is performed in the (Ks − 1)-dimensional R subspace because the seis-

mic constraint reduces the dimensionality by one. Rotation is useful because some of the

directional vectors in the original T space are aligned with some constraint facets (Fig. 3.4).

In Fig. 3.4, t1 and t2 are the directional vectors for a 2D problem; they are parallel to the

constraint surface when t1 < 0 or t2 < 0 , whereas u = (1, 1)/
√

2 is not parallel to any

constraint facet. For this 2D example, sampling is done on the 1D r (⊥ to u) and projected

back to the constraint. In comparison, if sampling were done on the reduced basis t1 (without

rotation), a sampled t1 greater than H cannot be projected back to the constraint surface

by using the other basis vector t2.

For any point in R space, the point ts is obtained by transforming ts = Uτ and then

solving for δ:
Ks∑
k=1

max(0, ts(k)) = Hs (3.6)
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Eqn. (3.6) is piecewise linear and monotonic in ts, and therefore has a unique solution. The

solution can be found in O(Ks log Ks) time by sorting ts and searching between its elements

for the δ that satisfies Eqn. (3.6). Once δ is known, τ = (δ, r) and ts = Uτ . The Ksh shale

thicknesses are obtained similarly. For porosity, the constraint is

Ks∑
k=1

max(0, ts(k)) max(0, φs(k)) = ΦHs (3.7)

which can be solved by sorting the φs(k) for which ts(k) is positive, and finding φs. Eqns. (3.7)

and (3.6) uses truncation to ensure only positive porosities and thicknesses are used when

matching constraints.

3.2.3 Effects of Projection on MCMC Sampling

The constrained posterior is sampled by a random walk in 2Ks+Ksh−3 dimensions, followed

by a projection to the constraints to simulate the other three variables. Therefore, for one

MCMC step, we sample a vector m defined as

m = {ts(1) . . . ts(Ks), φs(1) . . . φs(Ks), tsh(1) . . . tsh(Ksh)}

Since the earlier assumptions (Assumptions on Prior Variance, earlier) deem ts, φs, and tsh

to be uncorrelated, we solve this problem with a three-fold blocking. The random walk is

a Markov chain on the constraint surface. Since original sampling is done in linear R (one

dimensional lower) for each constraint, with that sample being projected onto the nonlinear

constraint, a Jacobian is used to compute the correct acceptance probability α for a jump

from m to m′ in the Metropolis-Hastings formula

α = min

(
1,

π (m′) PJ (m|m′)

π (m) PJ (m′|m)

)
(3.8)

These Jacobian terms PJ correct for changes in the angle of projection (Fig. 3.4) should

the walk move between facets of the constraint hypersurface. Due to a prior lack of cor-

relation, the Jacobians for the three variables (sand and shale thickness, plus porosity)

are PJ(m|m′) = PJ(ts|t′s)PJ(tsh|t′sh)PJ(φs|φ′
s). Similarly, the prior for the properties is
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π(m) = π(ts)π(tsh)π(φs). The facet used to form n differs for the two PJ in Eqn. (3.8): for

PJ (ts|t′s) it is normal to the facet that ts lies on, and for PJ (t′s|ts) the facet containing t′s

is used. The Jacobian for the jump from ts to t′s is

PJ (ts|t′s) =
1

u · n
=

1

|u||n| cos θ
(3.9)

where n is based on the location of ts, as discussed above. The angle θ is measured between

u and n (Fig. 3.4). The ratio of the Jacobians is 1, if ts and t′s lie on the same facet, correctly

reducing the Metropolis-Hastings α to its usual form. Including the Jacobians, PJ preserves

reversibility of the MCMC steps if ts and t′s are not on the same facet, as required for correct

MCMC calculations (Gelman et al. 2003).

3.2.4 Generating and Accepting Proposals

This section focuses on simulation at a given trace `. The overall simulation proceeds by

visiting all ` that are not in the conditioning data set by a quasirandom, multigrid path.

At a particular trace, while generating samples, transitions between points are proposed in

the rotated space R. If the prior covariance Cp (in original t− or φ−coordinates) is not

isotropic (Assumptions on Prior Covariance, earlier), then the covariance corresponding to

the rotated subspace must be transformed when computing proposals, via C̃ = UCpU
T.

The Schur complement yields the covariance of the R-space vector r (using δ = H/
√

K, the

distance from the origin to the central facet), C̃r = C̃22 − C̃21C̃
−1
11 C̃12, where C̃ is split up

into the blocks (1,2) corresponding to the (δ, r) pieces. Thus proposals, should be sampled

from the distribution ∆r ∼ N(0, s2C̃r). The Cholesky factor L̃r of the covariance matrix C̃r

is multiplied into a scaled (K − 1)-long vector of standard normal deviates a ∼ [N(0, 1)] to

get a properly correlated random step:

∆r = sL̃ra. (3.10)

Here s is a scalar chosen for sampling efficiency (Gelman et al. 2003), typically s = 5.76/(K−

1) for large K. The constraint is imposed by projecting r′(= r + ∆r) and transforming to
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new coordinates (Orthogonal Subspace Projection, earlier). The proposal prior probability

is computed at the new point t′, using Eqn. (2.4). The Metropolis-Hastings transition prob-

ability is then computed (Gelman et al. 2003) using Equation (3.8). The proposed transition

is accepted with probability α, and the algorithm iterates until equilibrium of the MCMC

sample. One of the realizations from the equilibrium distribution is randomly chosen and

added to the “conditioning” data for later traces. This process is continued until all the

traces are visited.

3.3 Prior Distributions and Constraints for Two or

Three Properties

Important features of higher-dimensional cases are more easily visualized with two layers.

Simple parameter choices are used to clarify the explanation.

For two layer thicknesses, the constraint surface comprises two orthogonal line segments,

joined by a 45 degree “chamfer” in the 1st quadrant (Fig. 3.4). In three dimensions, the

chamfer in Fig. 3.4 is a triangle with vertices on each t-axis at H (Fig. 3.5); increasing H

shifts the high-likelihood region away from the origin, but with no change in slope. There

are six additional facets comprising the constraint in three dimensions; for K variables, there

are 2K − 1 facets. On one facet (analogous to the 45 degree facet in 2D), all K of the t are

positive. Between 1 and K − 1, layers have t ≤ 0 on the remaining 2K − 2 facets; each facet

corresponds to a distinct pinchout configuration. Depending on the prior and the constraint,

the posterior of t may be distributed on few or many of these facets.

If no layer kriging data are used and the seismic data are considered exact, any t on any

facet of the constraint hypersurface can be used. In a sequential simulation not conditioned

to seismic, the layer thicknesses are simply drawn from the prior.
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Figure 3.5: The three-dimensional constraint surface for a three layer case has 23 − 1 = 7
facets. Hyperplanes intersect all t-axes at the total thickness constraint, H.
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m to yield H = 4 m.
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Table 3.1: Parameters and results for 2-layer simulation
Layer Prior Posterior

t̄ σt φ̄ σφ h̄ Ct φ̄ Cφ

1 3
1.

0.20
0.05

2.89
(

0.44 −0.48
−0.48 0.55

)
0.23

(
0.0008 0.0

0.0 0.0021

)
2 1 0.30 1.11 0.31

3.4 Simulations of Two-Layer Systems

We now consider a case with prior mean thicknesses of 3 m and 1 m, 1 m standard deviations,

and constraints of total thickness Hs = 4 m and ΦHs = 1.0 m; the layer porosity prior means

are 0.2 and 0.3, with a standard deviation of 0.05 (Table 3.1). We will consider only one

facies, K = Ks = 2.

In this case, the sum of the prior thickness means is equal to the thickness constraint,

but the individual layer thicknesses are poorly resolved (Fig. 3.6). Because the means are

consistent with the constraint, the posterior means of t are near their prior means, and the

two layer distributions look like mirror images, with their high (layer 1, h1 ≈ 4) and low

(layer 2, h2 ≈ 0) complementing one another. The thickness constraint is fulfilled exactly

for every realization (Fig. 3.7). The univariate histograms of t are nonGaussian, due to the

constraints. The thickness constraint induces a nearly perfect negative correlation in the layer

thicknesses (Table 3.1; ρ12 = C12/
√

C11C22 = −0.98); the departure from -1 occurs because

a small fraction of the realizations are not found on the 45 degree portion of the constraint

surface. There will be a substantial negative correlation in thickness, if the prior means are

larger than the prior standard deviations, such that most points lie on the hypersurface facet

in the first quadrant.

In contrast, the posterior means of the two layer porosities (0.23, 0.31) are greater than

the prior means (0.20, 0.30); Fig. 3.8, Table 3.1. The posterior must shift because the sum

of the prior porosity thickness, φ1t1 + φ2t2 = 0.2 × 3 + 0.3 × 1 = 0.9 m, is less than the

seismic porosity-thickness constraint, ΦHs = 1 m. This shows that priors need not match
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Figure 3.7: Simulations results for a two
layer case with thickness priors t̄ =
(3 m, 1 m), σt = 1 m, and H = 4 m.
All the realizations are exactly on the
constraint surface.
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Figure 3.8: Porosity distributions for
two layers. The constraints Φ and H are
such that realizations having φ2 > 0.25
are not very probable and this skews the
curve steeper on the right side.

the constraint exactly, and posterior reconciles the prior and likelihood. The distribution of φ1

and φ2 (Fig. 3.9) also reveals the constraint information: the porosity of both layers cannot

simultaneously be higher than or less than 0.25; this gives a striking inclined hourglass shape

to the posterior (Fig. 3.9). All simulated φ1t1 and φ2t2 exactly satisfy the ΦH constraint (Fig.

3.10).

The interactions of constraints and priors can be quite complex (Figs. 3.11). All realiza-

tions in this crossplot of t1 and φ1 are constrained by the condition φ1t1 < 1 (or φ1 = 1/t1,

which is the hyperbola at the upper right of the figure)since ΦHs = 1. As the thickness of a

layer increases, the porosity of the layer converges to φ = ΦHs/t1, which is 0.25 for t1 = 4.

These simple two layer cases demonstrate several features of the procedure. First, con-

straints are indeed honored exactly and the truncation behavior is captured – that is, pin-

chout configuration varies between realizations. The nonlinearity caused by truncation and

product constraints (viz., φh) give rise to particular correlations and clearly non–Gaussian
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Figure 3.9: Simulation results of poros-
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straints the porosity of both the layers
cannot be greater or less than 0.25 si-
multaneously. The prior for porosity is
φ̄ = (0.2, 0.3), σφ = 0.05.
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Figure 3.11: Cross plot for the distribu-
tion of porosity and thickness for layer
one. As layer thickness reaches the total
thickness constraint h1 = H = 4 m, the
porosity converges to average porosity
and φ1 = Φ = 0.25.
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layer porosity must converge to average
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Table 3.2: Design of 3D flow simulations

Sands Shales
Factor Low (-) Base (0) High (+) Low (-) Base (0) High (+)

Range, λ = a/L 0.25 0.5 1.0 0.25 0.5 1.0
Sill, ν = σt/µt 0.50 1.0 2.0 0.5 1.0 2.0

posteriors. These insights and verifications allow us to move on to a three-dimensional flow

model.

3.5 Synthetic Three-Dimensional Examples

Synthetic 3D cases test and illustrate the MCMC simulation method.

3.5.1 Geomodel Construction

The prior distribution is varied by changing the range (b) and sill (σ2) of the Gaussian

semivariograms,

γ(∆x) = σ2

[
1− exp

(
−(3∆x)2

b2

)]
(3.11)

where ∆x is the lag.

Trends in H-related parameters are varied to illustrate behavior. The simulations are con-

ditioned on four traces which have hs(k) = Hs/Ks∀k ∈ {1 . . . Ks} for sands and hsh(k) =

Hsh/Ksh∀k ∈ {1 . . . Ksh} for shales (Table 3.2). Porosity at these traces increases down-

ward linearly from 0.2 to 0.3 in the sands. For all cases, the grid size is I × J × K is

100× 100× 10 and the x− y extent is 1000× 1000 m; L = 1000 m. The total sand thickness,

Hs = 14 m, shale thickness, Hsh = 6 m, and porosity thickness, ΦHs = 3.5 m, are uniform.

Seismic is informative at the scale of Hs and Hsh, but not for the layer thicknesses hs or hsh.

The porosity prior is a variogram range of 500 m and variogram standard deviation of 0.025

for all cases. The permeability is assigned using an exponential transform of porosity,

k = 20 exp (10φ) (3.12)
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1 Jan 2000

TRACER_16_1_500_500_5.EGRID 02 Aug 2007

0.000 0.075 0.150 0.225 0.300

(a) Porosity realization, base case (0000)

TRACER_36_1_500_500_4.EGRID 02 Aug 2007

0.000 0.075 0.150 0.225 0.300

(b) Porosity realization, higher sand sill (00+0)

10 Oct 2011

TRACER_16_1_500_500_5.EGRID 02 Aug 2007

I1 P1

0.000 0.250 0.500 0.750 1.000

(c) Tracer concentration at breakthrough, base case
(0000).

12 Mar 2008

TRACER_36_1_500_500_4.EGRID 02 Aug 2007

I1 P1

0.000 0.333 0.667 1.000

(d) Tracer concentration at breakthrough, higher sand
sill (00+0).

Figure 3.13: Simulation on 100×100×10 cornerpoint grids, areal extent is X = Y = L = 1000
m. Constraints used are H = 20 m, Hs = 14 m, and ΦHs = 3.5 m; Φ = 0.25. Vertical
exaggeration is tenfold for all figures. Dark blue layers are zero-porosity shales in (a) and
(b). Compared with the base case, the high sand sill case has layers that are of less uniform
thickness and have more truncation. Thus, the high-sill case has lower recovery efficiency.

We specify alternating shales and sands, Ks = Ksh = 5. The system comprises 100×100×5 =

5× 104 mesoscale constraints for each of the three variable:, ts, tsh, and φs (150,000 total).

The correlation range and sill are varied for the sandstone and shale layer thicknesses

(Table 3.2). Increasing the range gives larger average dimensions to the geobodies, whereas

increasing the variance (at constant mean thickness) makes the geobodies vary more in

thickness and be more likely to truncate (i.e., have zero thickness or “pinch out”) more

frequently. This difference is apparent when comparing realizations for the base case prior

and for priors with a greater sand sill (cases 0000 and 00+0, Table 3.3; Fig. 3.13 a,b).
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Table 3.3: Results of 3D flow simulations

Run νsh λsh νs λs NpD

0 (base) 0 0 0 0 0.564a

17 (high sill) 0 0 + 0 0.505b

1 - - - - 0.649
2 - - - + 0.658
3 - - + - 0.399
4 - - + + 0.578
5 - + - - 0.624
6 - + - + 0.553
7 - + + - 0.579
8 - + + + 0.516
9 + - - - 0.603
10 + - - + 0.599
11 + - + - 0.481
12 + - + + 0.645
13 + + - - 0.649
14 + + - + 0.608
15 + + + - 0.392
16 + + + + 0.595

a value is mean of 6 replicates, σ = 0.046
b value is mean of 6 replicates, σ = 0.061

The high-sill case has greater variability in sand thickness; there will be additional truncated

beds; to fulfill the thickness constraints, there must also be an increase in thick beds. The

high-sill case bedding geometry is thus more “come-and-go” and less “layer-cake.”

The realizations displayed in Fig. 3.13 are chosen to illustrate differences; they are not

chosen to be “typical” realizations for their respective cases.

This cascading data integration method has several features that distinguish it from con-

ventional geostatistical methods. There is little surface rugosity; the layer thicknesses vary

smoothly and plausibly. Further, near-zero thicknesses do not appear in isolated areas be-

cause of the truncation rules and the smooth Gaussian variogram. Finally, all three con-

straints are fulfilled at every trace.
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3.5.2 Three-Dimensional Flow Modeling and Analysis

The effects of varying stratigraphy through the proposed downscaling method are investi-

gated by means of flow modeling. All models use the same seismic constraint data; here,

constant mesoscale values of thickness and porosity over the flow domain are found as dis-

cussed above. The differences in flow behavior are due only to differences in continuity (as

expressed in the prior) and stochastic fluctuations. A range of models with distinct ranges

and variances for both sand and shale layers are created, using the proposed methods for

downscaling.

Four factors are considered using a two-level full factorial experimental design, with six

replicates of the base case (0000, Table 3.3) to investigate stochastic fluctuation and six

replicates of the high sand sill case to reconcile fluctuations and effects (00+0, Table 3.3;

total of 28 runs). The models are single-phase tracer simulations for simplicity and efficiency.

The geometry is one–quarter of a five–spot (a symmetry element if rates were balanced,

properties were homogeneous, and the patterns were infinite). The only response analyzed

is recovery, i.e., when the produced normalized tracer concentration exceeds 10 percent,

referred to as NpD.

Although honoring the same mesoscale constraints and conditioning data, the flow models

have notably different flow responses, with recovery at 10 percent tracer fraction ranging

from NpD = 0.39 to 0.65. The various priors allow quite diverse models, so this variability is

unsurprising (Table 3.3). The flow behavior for distinct prior models appears quite different,

as expected (Fig. 3.13c,d). The greater variability in thickness and more frequent termination

in the high sand sill case increase tortuosity and cause lower recovery.

Changing the prior can have a significant effect on responses such as recovery. We examine

the effects of prior variability versus stochastic fluctuation when using a pair of points. Sets

of six replicates were examined for the base case (0000; design center) and for a higher

sand sill value (00+0; design face center). For these sets, a Welch two-sample t-test (R
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Development Core Team 2007) indicates that the mean responses for the different priors are

not the same (t = 1.88; for 95 percent confidence, the critical value tc = 0.12). Therefore,

the means are different, and the specification of the prior has a significant effect compared

with stochastic fluctuations. However, if the factorial is analyzed using a linear model, the

variance captured by the model does not dominate the residuals (variance ratio F = 3.2,

with 15 and 5 degrees of freedom, not significant at 95 percent confidence). Thus, stochastic

fluctuations or nonlinear effects are not negligible when compared to the linear trend.

In summary, (1) prior specification has a statistically significant effect on response; and

(2) prior variability and stochastic fluctuations may both make substantial contributions to

overall response variability. Thus, it is important to use prior models — here, variogram

ranges and sills — that reflect actual reservoir variability. These might be inferred from

modern systems, outcrop exposures, or mechanistic depositional models.

3.6 Discussion

3.6.1 Challenges in Field Applications

One assumption in the proposed approach is that total number of layers (K) are known

and correlations of these layers among the wells are also known. Deterministic prior knowl-

edge on layer stratification may not be available, requiring a stochastic approach to layer

identification and correlation. Such an approach would be very useful for field applications.

In addition, the wireline log and data at wells are commonly of a higher resolution than

the flow-model layer scale. Thus, these data must be upscaled to the layer scale (circa 1

m) before downscaling the seismic data. Fortunately, the data used for seismic constraints

– porosity and thickness – are straightforward to upscale. After the downscaling step, the

flow model can be infilled with permeability and other properties (which may be upscaled

through use of existing methods; e.g., Li, Beckner, and Kumar (1999))

If the inversion neglects lateral correlations (e.g., Delivery), the trace data should be

processed to approximately reconstruct the lateral correlation expected in the reservoir.
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Figure 3.14: log(configurations) occurring at first 100 traces in the sequence, while simulating
thickness for the base case (0000). Maximum number of configurations for 10 layers is 210−1
= 1023

The smoothing process must preserve interproperty correlations at each trace, as well (e.g.,

DeliveryMassager).

If faults deform the reservoir, the modeling team must specify whether thickness and

porosity are correlated across faults. If they are not correlated downscaling has to be done

separately in fault block; this would increase bookkeeping, but is computationally trivial.

The presented results did not consider fluid saturation and its effects of seismic data. A

seismic scale constraint on saturation could be added using a form like

ΦHsS̄o =
Ks∑
k=1

hskφkSok

The sequential method used to compute φ after hs could be used to compute Sok.

3.6.2 Flow Model Diversity

Stochastic flow models may fail to capture the full range of uncertainty. This can lead to an

underestimation of risk, or may cause ensemble inversion methods to fail (Gu 2006). In both

cases, a more diverse set of flow models will mitigate the problem.

One way of assessing model diversity is to examine how many distinct layering config-

urations occur in a model. In other words, at each trace, the number of permutations of

truncated and present layers may be counted. For the ten–layer case in the examples, there
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are 210 − 1 = 1023 possible configurations at each of the 104 traces (over 107 possible stack-

ing patterns, in principle). The count for the base case (0000) (Fig. 3.14) shows that no

trace is nearly that diverse. This is expected, because the prior information from wells and

previously simulated data restrict the range of a priori probable configurations. This effect

is clear, because traces that are simulated later in the sequential process generally have fewer

configurations.

However in a single realization, 13,909 configurations were simulated, with the most fecund

trace totaling 311 (occurred at 2nd trace) alternative configurations. This wide range of

stratigraphic behavior was attained, even though there were four conditioning wells and

10,000 mesoscale constraints.

Flow responses also provide evidence of model diversity. The flow models (Synthetic Three-

Dimensional Examples, earlier) are highly constrained (10,000 mesoscale constraints on each

of Hs, Hsh, and ΦHs; plus four wells with fine–scale constraints on all layer h and φ).

Nonetheless, the flow responses are very diverse, with NpD ranging from 0.39 to 0.65 – with

all meso– and fine–scale data honored exactly and remain identical for all models. It appears

that allowing thickness variations and layer termination tends to increase model diversity,

compared with methods that only simulate intensive properties like k and φ.

Model diversity might be further increased by treating the layer labeling or correlation

stochastically (Challenges in Field Applications, earlier).

3.6.3 Convergence of the Exact MCMC Simulation

MCMC methods may converge too slowly to be practical, or may have multiple modes such

that multiple chains and/or methods to switch between modes are needed. In numerical

experiments undertaken so far, these potential problems do not appear to be too severe in

the proposed algorithm.

Convergence is critiqued by examining posterior distribution statistics over many iterations

(Gelman et al. 2003). For the 2D problem, the means converge in no more than ≈ 100
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Table 3.4: Performance summary for the 3D example (one complete simulation)a

Process Work in secondsb

Kriging work 2.32

Total overhead all traces 4.45
Samples, 5000 per trace, all traces 485.46

Cost of example simulation, excluding io 492.23
a Model size, 100× 100× 10; 5000 samples per trace
b Using a 2 GHz Pentium-M (laptop) processor with 1 GB of RAM.

iterations, and the variances stabilize in no more than ≈ 200 iterations. That is, some 200

iterations are needed for the chain to begin sampling the posterior reliably; this is referred to

as the “burn–in.” Samples prior to burn–in are discarded, and the stabilized portion of the

chain is used to simulate the posterior. This study used 5000 iterations to ensure adequate

sampling; this is not prohibitive, if the proposal method is computationally inexpensive and

the acceptance rate is not too small. For a realistic 3D synthetic problem, the proposed

method attains a sampling rate of almost 100,000 iterations per second and an acceptance

rate averaging ≈ 0.4, which makes such long chains manageable. Convergence is improved

by starting MCMC sampling from the posterior mean, which can be estimated in these

problems.

These 3D tests also show good convergence (typically, ≈ 1000 iterations).

3.6.4 Performance of the Exact MCMC Simulations

A large step size in the MCMC proposals allows rapid exploration of the posterior. On the

other hand, large steps are more likely to rejected, causing wasted computations on a sample

that is not accepted. A good compromise appears to be to scale the covariance to yield

acceptance rates of about 30 percent (Gelman et al. 2003).

The computational cost of a single simulation is examined component–by–component

(Table 3.4). Several features are striking. First, 98 percent of the work is done in the

deepest part of the sampling loop, which requires random number draws, sorting vectors,
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and multiplication of random normal vectors by the Cholesky factor. The kriging system

is solved only three times per trace, and is two–dimensional with an efficient k-d neighbor

search (Bentley 1975), causing the associated work to be small, about 0.5 percent. Yet the

overall cost of eight minutes for 150,000 variables on a laptop computer does not seem pro-

hibitive. Since the algorithm is trace–wise sequential, the overall-cost scales linearly in the

number of traces; this extrapolates to 106 variables in about fifty five minutes on a laptop.

Even if the prior variances in each constraint are not constant (Assumptions on Prior

Covariance, earlier), the problem is still manageable, especially with little change in efficiency

related to kriging work. For the 10-layer case discussed if the prior variances are not constant,

the extra work will be approximately five percent of the total work and in computation

time, around 20 seconds. Most of the extra work in this case involves estimating covariance

corresponding to the rotated subspace and then multiplying Cholesky factor L̃r into a for

each proposal (Generating and Accepting Proposals, earlier.). This work required scales

according to O(K2) (where K is the layer count, not the block count). We estimate this

would add about 40 percent to computation time, and three minutes for the 3D problem

discussed above.
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Chapter 4
Sequential Sampling and Marginalization in
Seismic Downscaling

In the last two chapters, the idea is to incorporate seismic data in mesoscale Bayesian seismic

inversions that treat subseismic heterogeneity via effective–media theory; subsequently, we

downscale these inversions to meterscale models by using constraint equations to embody the

effective media laws (Gunning, Glinsky, and White 2007). The proposed approach models

layer thicknesses as “marked–surfaces”, with truncations of negative thicknesses to allow

pinchouts. For example, a set of K sublayers (thicknesses tk, k ∈ {1 . . . K}), drawn from a

meso-scale layer of total interval thickness H, implies the downscaling constraint for each

column
K∑

k=1

max(tk, 0) = H

The constraint is embedded in a likelihood expression to yield a Bayesian posterior

π (t|H,d) ∝ L (H|t,d) p (t|d) (4.1)

where t is a vector of thicknesses, H is the “target thickness”, and d any additional hard

data. The posterior distribution for the fine scale parameters is generally high dimensional,

so we seek a sequential simulation algorithm by passing over all columns of the grid. Each

column is simulated by sampling from a Bayesian posterior distribution, conditional on hard

data and previously visited columns via the priors, and collocated coarse scale constraints

via the likelihood. A suitable likelihood, with “accuracy” σH for K layers at a column; with

expected total net-sand thickness, H is

L(H|t,d) ∝ exp

−[( K∑
k=1

max(0, tk)

)
−H

]2

/2σ2
H

 (4.2)

Equation 4.2 corresponds to the inexact constraints discussed in Chapter 2. Prior distribution

for the K layers is determined by kriging surrounding layer thickness (using data and previous
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simulations); the distributions are t ∼ N(t̄,Cp), where t̄ and Cp are the kriged estimates

and errors, respectively. A local, linearised posterior covariance derived from (4.1) is

C̃ = (C−1
p + XXT /σ2

H)−1 (4.3)

where X is a design matrix comprising 1’s if a layer k is present (tk > 0) and zero otherwise; X

depends on t. This nonlinearity makes the posterior a piece-wise Gaussian, which is difficult

to sample.

4.1 Linear Theory

If we partition the model vector t into I parts (t1 t2 . . . tI), distribution π(t) may be

simulated by decomposition

π(t) = π(t1)π(t2|t1) . . . π(tI |t1 . . . tI−1)

which is the basis for sequential simulation. To simulate π(t) sample from π(t1), π(t2|t2), . . .

and finally from π(tI |t1 . . . tI−1), π(ti|t1 . . . ti−1) is the marginal distribution at location i,

conditional on already simulated points from 1 to i−1 (Fig. 4.1). This marginal distribution

may be obtained by integrating π(t) over unvisited sites from i + 1 to I

π(ti|t1 . . . ti−1) =

∫ ∞

−∞
π (t) dti+1 . . . dtI

In our case, the posterior is linked to prior, and in Eq. 4.1, likelihood is a simple product

over all traces; therefore, posterior conditional on d and H is

π(ti|t1 . . . ti−1,d,H) ∝
∫ ∞

−∞

I∏
j=1

L (Hj|tj,d) p (t|d) dti+1 . . . dtI (4.4)

Eqn. (4.4) is integrated over all tj, j ∈ {(i + 1) . . . I}.

Assume the prior t ∼ N(µ,C)

p(t|d) =
1

(2π)
K
2 |C|

1
2

exp

[
−1

2
(t− µ)TC−1(t− µ)

]
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Figure 4.1: Conditioning and unsimulated traces when simulating at a trace i = 6 and for
I = 12.

Consider the simple partitioning of t into current (t1) and “unvisited” (t2) sites, t = (t1 t2).

This partitioning makes the prior look like

p(t|d) ∝ exp

−1

2

 t1 − µ1

t2 − µ2


T  C11 C12

C21 C22


−1 t1 − µ1

t2 − µ2




Using the notation Σ = C−1 gives Σ11 Σ12

Σ21 Σ22


 C11 C12

C21 C22

 =

 I 0

0 I

 (4.5)

Assume we have observations H = (H1,H2) from a linear observation process and error

model H−Xt ∼ N(0,CH). Likelihood is proportional to

L(H1,H2|t) ∝ exp

−1

2

 X1t1 −H1

X2t2 −H2


T C−1

H1
0

0 C−1
H2


 X1t1 −H1

X2t2 −H2




The covariance C−1
H is usually diagonal; without loss of generality, it may be factored into

X and H (Kalla, White, and Gunning 2007). This form is apposite for linear observations

or constraints that apply to distinct blocks of t.

L(H1,H2|t) ∝ exp

−1

2

 X
′
1t1 −H

′
1

X
′
2t2 −H

′
2


T X

′
1t1 −H

′
1

X
′
2t2 −H

′
2



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where X
′
= C−1/2X and H

′
= C−1/2H.

The product of prior and likelihood is proportional to posterior, and the log of bayesian

posterior is equal to

−2 log π(t|d,H) =

 t1 − µ1

t2 − µ2


T  C11 C12

C21 C22


−1 t1 − µ1

t2 − µ2


+

 X
′
1t1 −H

′
1

X
′
2t2 −H

′
2


T X

′
1t1 −H

′
1

X
′
2t2 −H

′
2

+ const (4.6)

If the log posterior can be written as a quadratic function with mean µ̃ and covariance C̃

−2 log π(t|d,H) =

 t1 − µ̃1

t2 − µ̃2


T  C̃11 C̃12

C̃21 C̃22


−1 t1 − µ̃1

t2 − µ̃2

+ const (4.7)

then comparing the coefficients of tT t in equations 4.6 and 4.7 gives the inverse of covariance

of the posterior C̃−1

 C̃11 C̃12

C̃21 C̃22


−1

=

 C11 C12

C21 C22


−1

+

 X
′
1 0

0 X
′
2


T  X

′
1 0

0 X
′
2


Using equation 4.5 we can write the above equation as Σ11 + X

′T
1 X

′
1 Σ12

Σ21 Σ22 + X
′T
2 X

′
2


 C̃11 C̃12

C̃21 C̃22

 =

 I 0

0 I

 (4.8)

Then the marginal of t1, given H has covariance obtained by expanding above matrix and

solving for C̃11, is

C̃11 = (Σ11 + X
′T
1 X

′

1 −Σ12(Σ22 + X
′T
2 X

′

2)
−1Σ21)

−1 (4.9)

By comparing coefficients of t in equations 4.6 and 4.7, we obtain the mean of the posterior,

while expanding and solving the equation similar to Eq.(4.8) gives, the marginal mean as

t̃1 = C̃11X
′T
1 (H

′

1 −X
′

1µ1) + C̃11X
′T
2 (H

′

2 −X
′

2µ2) + µ1 (4.10)
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In sequential simulation, the dimensionality of t2 (and rank of C22) can be very large.

Important C̃11 (Eq.4.9), Σ22 and other matrices are obtained by inverting C22. Therefore we

must approximate equations 4.9 and 4.10. One plausible approximation, based on a “weak

correlations” (small C12) Taylor series expansion yields

C̃11 = (C−1
11 + X

′T
1 X

′

1 + C−1
11 CT

21X
′T
2 X

′

2C21C
−1
11︸ ︷︷ ︸

X
′
2,eff

)−1 (4.11)

and

t̃1 = C̃11(X
′T
1 (H

′

1 −X
′

1µ1) + X
′T
2,eff(H

′

2 −X
′

2µ2)) + µ1. (4.12)

This removes the need to invert a (potentially very large) C22 matrix block. Equation 4.12

is a standard Bayesian formula to update t1 given H
′
1, with the contribution of secondary

data H
′
2, is attenuated by the modified sensitivity matrix X

′

2,eff. This is a manageable ap-

proximation for a marginal that includes the effect of information at unvisited sites.

4.2 Sampling within Nonlinear Constraints

The above equations are for linear constraints f(t) = Xt. For the nonlinear constraints

f(t) = X(t)t, as in the downscaling problem, additional approximations are needed to make

the marginal for t1 tractable. The marginal of t1 is conditional on seismic information H

π (t1|H) ∝
∫

L (H1|t1)L (H2|t2)p (t1, t2) dt2

If we neglect the nonlinearities in t2, then the marginal is analytically integrable, because it

fits the linear theory as explained in the last section

π (t1|H) ∝ e
− (f(t1)−H1)2

2σ2
H1

∫ ∞

−∞
e−

1
2
(X2t2−H2)T C−1

H2
(Xt2−H2)p (t1, t2) dt2 (4.13)

which we call sequential simulation with marginalization (SM). A heavier approximation

neglects lateral correlations between the current and unsimulated columns, t1 and t2, thus

yielding sequential simulation without marginalization (SS),

π (t1|H) ∝ e
− (f(t1)−H1)2

2σ2
H1 p (t1) (4.14)
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Figure 4.2: 2D example for comparing GM,SM, and SS methods.

4.3 2D Examples

A small 2 layer× 2 column 2D example compares SM and SS algorithms with a global MCMC

method (GM). Columns have 1 m separation (Fig. 4.2). Two constrasting cases of constraint

uncertainty (σH) and lateral correlation (range, λx) are considered. The seismic thickness

constraint (H = 2 m) at trace one, H = 3 m at the second trace, and σH , are stationary.

The prior means (for µ1 in Eqn. (4.12)) are t̄k = 1 m ∀k; autocovariances are Gaussian with

sill related to a stationary prior standard deviation of σt = t̄k. These parameters cause a low

probability for layers to pinch out, in which case the SM method works well. The assumption

in the derivation of SM method is that the system is linear. For these examples, auxiliary

variables are used for sampling (Kalla et al. 2006).

Weak geologic correlation (λx = 0.25 m). The marginals for the first column visited for the

global, marginalized, and standard sequential methods [Fig.(4.3)] have only small differences.

This shows that marginalization is not required, if lateral correlation is weak.
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(b) Weak seismic data, weak correlation

Figure 4.3: Global (GM), sequential marginalized (SM), and standard sequential (SS) simu-
lation results for weak correlation cases. Results are for layer 1.
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(b) Strong seismic data, strong correlation

Figure 4.4: Global (GM), sequential marginalized (SM), and standard sequential (SS) simu-
lation results for strong correlation cases. Results are for layer 1.

Weak seismic constraint and strong geologic correlation (σH = 0.25 m and λx = 4 m). The

marginals for the global method differs [Fig.(4.4a)] from the standard sequential method.

The approximate marginal method closely follows the rigorous MCMC result.

Strong seismic constraint and strong geologic correlation (σH = 0.025 m and λx = 4 m).

The marginals for the global method are different than the SM and SS method [Fig.(4.4b)].

The SS method is found to be closer than the rigorous SM result. This poor result for the

SM method is due to a seismic constraint in the second trace which is inconsistent with the
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current trace. If there is a strong correlation, then both the constraints should be very close,

i.e., data is not consistent in this case.

Sampling the uncertainty in these nonlinear downscaling problems is difficult. Global

MCMC methods are accurate but expensive, which motivates consideration of sequential

methods. Cheaper sequential methods are reasonably accurate, provided the lateral correla-

tion is not high, and the constraints are weak. If the correlation is high and constraints are

strong, näıve sequential simulation poorly approximates the marginals. For such cases, the

proposed approximate marginals offer improved sampling at a moderate cost.

4.4 Discussion

A difficult question in nonlinear downscaling problems is whether the system posterior dis-

tribution can be adequately factored into the product of conditional distributions, as implied

by the sequential pass over the columns of gridblocks (Liu 2001).

Generating conditional distributions at the current trace in sequential simulation requires

integrating information over “unvisited” sites in computing analytical marginal distribu-

tions and conditioning only on “visited” sites. The integrability requirement is usually met

only through exponential family distribution Functions; yet the posteriors in our problem

do not tend to follow exponential forms. Nonetheless, the approximations we make can be

improved by blockwise sequential schemes, although a block approach not only increases

the dimensionality of the MCMC sampling subproblem, but also exacerbates the configura-

tional complexity of handling more pinchout transitions. Comparing methods with rigorous

marginals to local approximations for several test problems, the local method errors increase

as transverse correlation lengths increase. The intuitively clear reason for this is that the

information from “unvisited” sites should increasingly shape the local marginal as the cor-

relations strengthen. Although global schemes handle this correctly, these approaches simul-

taneously increase sampling dimensionality and the configurational complexity of handling

more pinchout transitions.
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Interestingly, within the modeling framework of treating imaged seismic data as dense

independent information, rigorous global methods that correctly develop the local marginal

distribution may overstate the statistical certainty at any particular location, especially

when the transverse correlation lengths are long. Loosely speaking, this is because all n

seismic traces within a correlation length contribute to the reduction in uncertainty at the

current point, and the result, a 1/
√

n reduction which occurs if all the traces are treated

as independent measurements, may be over–optimistic. In practice, many systematic effects

found in acquisition and processing tend to make the imaged seismic data less informative.
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Chapter 5
Stratigraphic Stacking Patterns in
Downscaling to Fine–Scale Flow Models

Subsurface models are poorly constrained, due to sparse sampling of the depositional het-

erogeneity by wells and low-resolution seismic data. In geostatistical modeling, geologic con-

tinuity information, such as correlation lengths, are included in kriging, sequential Gaussian

simulation and their variants. This information comes from geologic analogues like outcrops,

conceptual models, and process-based models. In the downscaling approach discussed, the

integrating of stacking patterns as observed in analogues, should result in more realistic and

more constrained models.

In clastics, analogues aid in modeling sand body distribution and continuity, which are

controlled by depositional environment (Section 1.2). Clastic reservoirs may have continuous

and/or discontinuous shales; their locations are governed by the geometry of the bedding

surfaces along which they were deposited. Since these important bedding characteristics are

understood from analogues, they must be included when building geologic models and are

usually included as models in the form of priors.

5.1 Integrating Stacking Patterns

Generating the models and parameters for stacking patterns and integrating at the current

trace-wise algorithm is challenging. For integration to be viable at each trace a “preprior”

mean and variance for tk,∀k ∈ [1, K] must be specified. This “preprior” gives the proba-

bility of a layer being present at a particular trace and provides a statistical, stratigraphic

description of the entire reservoir. For example, in a prograding geologic system from left to

right, the lowest layers on the left should have relatively low mean thicknesses, yet have a

significant probability of pinching out. The mean thickness of layers then should increase in

the middle and decrease in the upper layers as deposition moves rightward. As the proba-

87



bility of truncation is inversely related to the mean thickness, so probability of truncation

decreases in the middle and increases in the upper layers. For Gaussian functions, any of

the two parameters (mean, variance or probability of truncation) define a unique function.

If each layer mean and variance are available at all points on a corner point grid, then this

information may be integrated while estimating the prior by kriging. Preprior can be used

as

• The mean and variance of preprior is used to estimate the simple kriging mean and

variance while estimating prior (Section 5.3)

• The harmonic mean of variances and a variance-weighted mean of preprior and kriging

can be used as prior variance and mean respectively

The new prior is used in exactly the same way as before in the downscaling algorithm. The

only difference is that the preprior has stratigraphic detail, which is also included in the

downscaling approach.

5.2 Preprior Using Surface Based Modeling

Surface based models (SBM) have been used to mimic stratigraphic architecture; ensembles

of these are used to estimate the preprior in this case. Other methods can be used to generate

the preprior but integrating the preprior information into the downscaling algorithm will be

similar, as discussed in section 5.3. Surface-based models are a variant of object based models

and are applied to different depositional settings. In this chapter, surface based models are

used to generate compensational stacking of the distal part of a turbidite deposit (Pyrcz

2004). This is a sample problem to show how the method works, but this procedure would

be similar for other depositional environments.
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5.2.1 Generating Lobes Using Surfaces

For compensational stacking of turbidite lobes, the general procedure is to generate an initial

surface with certain geometry and place it on the initial base topography. The body between

the surface and base topography is a geobody defined as a lobe. The next surface is generated

and stacked on the initial surface to obtain the second lobe, and the procedure continues.

The bathymetry after inserting a surface depends on where the surface is inserted. If we have

K lobes present in the reservoir, K surfaces are generated and stacked one after the other.

The K surfaces and the bottom known bathymetry, creates the K lobes required.

This simple stacking can be utilized to generate realistic and complex geologic patterns

but artifacts are easy to interfere. This is because physics does not driv the forward model

or stacking but it is driven by a set of rules. Geobodies are created based on simple shapes

and inserted in the model, depending on prior rules. For example, one rule in stacking could

be not to stack a layer exactly on the top of a previous layer. A lot of work has gone forward

generating realistic surface-based models; Pyrcz (2004) provides a good discussion. In this

research, simple prograding stratigraphic models are built by using surface-based modeling;

the method to integrate the model statistics using an ensemble is also discussed. Again, this

very simple stacking algorithm is not advocated for geomodeling, but is only used (as other,

more complex models could be used) to generate the preprior.

5.2.2 Lobe Geometry and Surface Positioning

Surface models generated here can be thought of as filling the 4th order Bouma sequence

detected by the seismic with 3rd order lobes (Fig. 5.1). Initial bathymetry is needed, as

explained earlier, for surface-based modeling; here, we fill the seismic volume with lobes, so

that the bottom of a seismic zone becomes the base surface. In our synthetic case a simple

flat surface is assumed as base surface and lobes are stacked to mimic a prograding system

from left to right. Lobe geometry is a simple quadratic function, and it is used to estimate

thickness of lobe as a function of location
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Figure 5.1: Filling of 4th order lobes by the 3rd order prograding lobes.
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Figure 5.2: Surface template and its geometric parameters.

t(x, y) = b

[
1−

(
x− x0

a1

)2

−
(

y − y0

a2

)2
]

(5.1)

Constants a1 and a2 are radii of elliptical lobe from center x0 and y0. The constants are

simulated from a normal distribution function, with a given mean and variance. Parameter

b is the maximum height of the lobe, again generated by a random normal deviate with

mean height and variance given as input. These input statistics usually come from analogue

and well data. The surface then can be placed, depending on deposition, by maintaining

inter-relationships between the lobes. This relation is controlled by placement of the center

of the lobe x0 and y0. In this study the geologic system is prograding x0 of a lobe, obtained

by adding a scaled random deviate to the center of the last lobe x0. y0 is assumed to migrate

from left to right as a normal deviate from centerline. Surface models are built in a larger

area than required in order to remove the boundary effects.
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5.2.3 Conditioning

Surface-based models are uncertain; conditioning one of these models to well and seismic

without creating artifacts is difficult. In this study, an ensemble of these models are used

to characterize surface-based model uncertainty. Ensemble means and variance of variables,

such as thickness or porosity of all layers and at all traces, is used to condition SBM. These

ensemble properties as estimated then could be used to build and to condition the geomod-

els as the geological uncertainty is estimated; more importantly, this removes the need to

condition one specific surface-based realization. Conditioning the SBM to seismic and well

data is equivalent to downscaling the seismic constraints while incorporating stratigraphic

detail, which is the current problem.

5.3 Integrating Surface Based Models

One way to integrate the surface-based ensemble statistics is to use the mean and variance

data available at all points on a corner point grid, while doing simple kriging. Some advan-

tages on taking this path are given here. The terminology used in deriving the simple kriging

apparatus is similar to Goovaerts (1997) work.

5.3.1 Using Ensemble Statistics in Kriging Apparatus

Kriging estimates the value of a continuous attribute Z at location ui conditioning on n data

at uα denoted as Z(uα), α = 1, . . . , n. Kriging estimate Z∗(ui), a linear regression estimate

Z∗(ui)−m(ui) =
n∑

α=1

λ(uα) [Z(uα)−m(uα)] = λT(uα) [Z(uα)−m(uα)] (5.2)

Where λ(uα) is the weight assigned to data point, Z(uα). m(ui) and m(uα) are the expected

values of random variables Z(ui) and Z(uα). Residual, R(u) = Z(u) − m(u) is modeled

as a stationary random function with zero mean and covariance C(h), where h is the dis-

tance between two locations. A auto-covariance function C(h) is built, using the residuals.

λ(uα),Z(uα), and m(uα) are column vectors with size n holding information about neigh-
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boring data and their weights. Similarly, a column vector m and matrix C are defined with

rank n + 1 and partitioned as in Eq. 5.3. For simplicity, u is dropped from the equations.

For example, Z(uα) is written as Zα

Z =

Zi

Zα

m =

mi

mα

C =

Cii Ciα

Cαi Cαα

 (5.3)

C is the covariance matrix between the n + 1 conditioning traces and the simulated trace.

Cαα is the n × n covariance matrix between conditioning data; Cii is the variance at the

simulated trace, and Ciα = CT
αi is the conditioning data to simulated data covariance matrix.

m holds the mean values for current trace and conditioning traces, and Z holds the estimated

values for current trace and conditioning traces.

From the theory of multivariate normal distributions,

p (Z) =
1

(2π)(n+1)/2|C|1/2
exp

{
−1

2
(Z−m)T C−1 (Z−m)

}
the distribution of Zi conditional on Zα is multivariate normal function

p (Zi|Zα) ∝

exp
{
−1

2
(Zi −mi −CiαC

−1
αα(Zα −mα))

T
C−1

|Cαα
(Zi −mi −CiαC

−1
αα(Zα −mα))

}
with mean

Z∗
i = mi + λα [Zα −mα] (5.4)

where λα = CiαC
−1
αα and variance

C|Cαα = σ2
i = Cii − λαCαi (5.5)

The same results can also be obtained by linear regression (Eqn. 5.2). This derivation, rather

than linear regression, gives a better understanding of what kriging is doing and what it

means to the assumptions of the stationarity of mean and variance. In simple kriging esti-

mates (Goovaerts 1997), stationarity of mean is assumed [mi = mα = m] or a trend in mean

when kriging is applied with a trend. In our case, we do not hold stationarity or trend in
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a local mean. This formulation is possible, because the means and variances data may be

obtained from ensemble surface-based models at all traces, including the well locations. The

variogram for the residuals is computed by using the well data. One of the issues with this

modeling is labeling the layer numbers and identifying the well picks, as discussed in section

5.3.3.

5.3.2 Non-Stationarity and Negative Values

The covariance matrix C is built by using a residual variogram with the assumption of second

order stationarity. That is, the residual variance will be constant everywhere in the domain.

If residual variance at a trace is not equal everywhere, one could rescale the residual by using

the standard deviation, then use SK or OK and correlograms to krige the scaled deviate and

concept of a purely local variance with a global normalized deviate correlation. Covariance

models for normalized residuals should be used.

However, if the layers pinch-out, the usual truncated Gaussian distributions of the layer

properties, such as thickness, would arise at a given trace. Surface-based modeling gives

only positive values. Therefore in our downscaling problem, negative values are required to

get Gaussian function for all variables. The surfaced-based models can be built to obtain

negative values by either

• Extrapolating Eq. 5.1 for the whole domain, which gives negative values wherever layers

pinch out. If ensemble properties after extrapolation are approximately Gaussian, the

mean and variance are used to estimate local distribution by using Eqs. 5.4 and 5.5.

• The ensemble of surface based models gives thickness and other property distributions

which are truncated Gaussian. An estimate of Gaussian mean and variance are needed

in Eqs. 5.4 and 5.5; these can be estimated from left truncated Gaussian parameters,

since the ensemble provides the mean, variance, and number of samples truncated to

the total number of samples, using methods explained in Cohen (1949).
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Assumptions in this work are similar to SGS, in that surface based models are consistent

with well data. The discrete well data must be a plausible member of the distributions

obtained from surface models.

5.3.3 Choosing the Well Picks

The K layers present in our surface-based model are to be related with the layers that

are observed at the wells. This step is required before the conditioning of layers to well and

seismic data. At wells, elevations, rather than thicknesses, are used to choose the layers. This

is because elevation of layer boundaries (or depth if measured if the reference is a top surface)

are better approximated as Gaussian functions (except at the lower boundaries) when using

surface-based models. Elevation of a boundary is simply the sum of all the thicknesses below

the specific boundary, if traces are vertical. At a well trace using ensemble realizations,

the mean qk,∀k ∈ [1, K] and variance σ2
qk,∀k ∈ [1, K] of all the boundary elevations are

estimated. Let us assume that at the same well, the elevations of all the layers ez,∀z ∈ [1, Z]

are observed, where 0 ≤ Z ≤ K (Fig.5.3). These Z layer observations are to be mapped as

K total layers in the reservoir. At a well identifying the well observation with surface-model

ensemble elevations is like finding one out of many multivariate normal populations to which

a new observation belongs.

Estimating

Assume there are K layers in the reservoir. Elevation for each layer k at a well trace is

assumed Gaussian with probability density function fk(·), where k ∈ 1...K. Then for each

observation ez at the well, where z ∈ 1...Z (discrete picks of layer boundaries at wells), the

likelihood of ez being a member of each population is calculated and then the population

with the largest likelihood is taken.

For example, let us assume we have a two-layer reservoir (K=2) but only one layer is ob-

served at a well (Z=1). An ensemble of surface models will give the distribution of elevations
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Figure 5.3: Mapping of well layers observed (Z = 4) to SBM layers (K = 5).

for both the layers N(q1, σq1) and N(q2, σq2). Let the discrete well elevation be e1 (Fig. 5.4).

If the likelihood of e1 belonging to the first boundary (L1(e1)) is more plausible than the

second boundary (L2(e1)), then e1 is associated with the first layer boundary.

L1(e1) > L2(e1) ⇐⇒ −(e1 − q1)
2/(2σ2

q1)− log(σq1) > −(e1 − q2)
2/(2σ2

q2)− log(σq2)

Figure 5.4: Assaigning the layer observed to either of 2 layers by likelihood.
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Sampling

In the last section, estimating the most probable mapping of well observations to the K layers

present in the reservoir is deterministic. Probabilistic mapping of the Z layers observed at a

well to the K layers present in the model is discussed here. Let Yk be a variable which takes

value one, if the well observation ez is associated with kth boundary, and zero otherwise. The

observation ez is allocated to each group according to the probability of its belonging to the

kth group.

P (Yk = 1|ez) =
fk(ez)∑K

k=1 fk(ez)
(5.6)

At a well trace, the first layer e1 from the bottom could be associated with any layer

k,∀k ∈ [1, K], with probability given by Eq. 5.6; let a sampled model layer mapped with e1

be the ith layer. Then the second layer at the well e2 is assigned to model the layer between

layers i + 1 and K by a sampling proportional to the probability of e2 belonging to any of

those layers. The procedure repeats until all the model layers are tagged with all the well

layers.

If any of the layers at the well is known to correlate with the model layer, layers above and

below that layer are tagged with the above procedure as if the known layer is the reference

layer. It can be extended to any known number of layers.

5.4 Results

A simple code that generates stacking layers using distributions for length, height, and the

center location of a lobe is used. A ten-layer model is generated, assuming a prograding

system. One instance of 100 realizations from a stacker is taken as the real case, shown in

Fig. 5.5(a). Fifteen wells and seismic constraints are taken from this model. Also, the average

and variance of thicknesses for each layer are founded by running the stacker 100 times. The

ensemble averages are used as means in the simple kriging. Scaled residuals are kriged and

the variogram for scaled residuals is obtained at the wells, where well observations for all
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(a) Base model used to pick constraints (b) Simulated model with 15 wells

(c) Simulated model with 5 wells (d) Simulated model with no wells.

Figure 5.5: Simulation on 50× 50× 10 cornerpoint grids, areal extent is X = Y = L = 1000
m. Constraints used are well and seismic (exact). Also ensemble statistics of surface based
models are used in simple kriging. Vertical exaggeration is twentyfold for all figures. The
more the number of wells, the closer the model is to the base case, but all the constraints
are satisfied in every model.

layers and ensemble statistics from 100 realizations are available. For all cases, the grid size

is I × J ×K is 50× 50× 10 and the x− y extent is 1000× 1000 m; L = 1000 m. The total

thickness (H) is given by the seismic constraints.

Fig. 5.5(b) is generated using ensemble statistics, well data, and seismic data. Seismic data

is integrated at each and every trace as exact constraints in using the algorithm found in

Chapter 3. As a result, the total thicknesses of both the base and the simulated model are

exactly the same at all the traces. The integrated model is very similar to the reference case

(Fig. 5.5(a)). All the layers terminating in the reference case are very similar to the base
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case. There is also very little noise in the simulated model, unlike the truncated Gaussian or

indicator simulations.

5.5 Discussion

5.5.1 Sensitivity to Well Data

Although based on a synthetic case, the data integration method demonstrates how to repro-

duce complex pinchout layering and to match seismic constraints exactly, which is required

to condition surface-based models. In 15 well examples, an abundance of well control is used

to show that this method can integrate many wells, which constitutes a major problem with

most methods used to condition the surface-based models. The above procedure uses kriging

and as such, the interpolation of added conditioning data is better. As a result, the simulated

case matches the reference case very well. If there are less number of wells (Fig. 5.5(c,d)), due

to less constraining data, various realizations would present differently yet all the seismic,

well, and ensemble statistics would be honored. For instance, in Fig. 5.5(d), no well data is

used yet the system is prograding and seismic constraints are honored. This is because we

are integrating stacking patterns through preprior. If there is no well data, preprior dictates

the layering, an essential process in reservoir modeling.

5.5.2 Sensitivity to Preprior Information

The reservoir models in Fig 5.6 are built similar to previous cases but without preprior.

In these cases, ordinary kriging is used which applies well data to estimate the kriging

mean and variance, rather than simple kriging, which uses ensemble statistics as in previous

cases. When models are simulated without well conditioning (Fig. 5.6(d)), layers are not

prograding, but stacking on top of one another. This is because no well data or preprior tells

the simulation which layers are prefered in which side, as a prograding system. However, as

the number of well data increases, this additional information informs the stacking pattern

and then the models looks more like the base case (Fig. 5.6(a,b,c)). When there is little
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(a) Simulated model with 15 wells (b) Simulated model with 10 wells

(c) Simulated model with 5 wells (d) Simulated model with no wells.

Figure 5.6: In this simulation on 50 × 50 × 10 cornerpoint grids, the areal extent is X =
Y = L = 1000 m. Constraints used are well and seismic (exact). No ensemble statistics of
surface-based models are used. Vertical exaggeration is twentyfold for all figures. Less well
models are not only prograding, but in fact are randomly filling the seismic volume. As the
number of wells increase, the models are closer to the base case.

well data for the reservoir or parts of the reservoir, the use of preprior information helps to

mimic the stratigraphic patterns. The stationarity issues with kriging can also be decreased

by using preprior.
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Chapter 6
Selecting Geostatistical Realizations Using
Fast Flow Simulations

Heterogeneities at different scales in the reservoir influence flow. The true effect of all the

heterogeneity on fluid flow could only be estimated by exhaustive sampling of the entire reser-

voir. Due to lack of such detailed (and practically speaking, impossible) sampling, knowledge

of the spatial variations in properties such as porosity and permeability is not possible. How-

ever, geostatistical models (under certain assumptions) are conditioned to geologic, seismic,

well control and other data, and are able to present an array of plausible subsurface geologic

models. Even with very good subsurface data, capturing the true image of all the geology

is not possible because of the complex and hierarchical nature of the heterogeneities present

in the subsurface. In addition, there is the question of flow model adequacy, which is not

addressed in this dissertation. The uncertainty is caused by undersampling spatially, which

can be addressed (albeit indirectly, and weakly) by generating multiple geostatistical models.

However, although these models honor all the available data and their spatial structure, each

model could be quite different from other models in response to the fluid flow or the spatial

distribution of static average properties like net-to-gross. This arises from a lack of constrain-

ing data. The fewer the constraining data, the more uncertainty and the more different the

realizations become in response to production.

In any case, the realizations are intended to characterize the uncertainty. Some of these

realizations are not plausible because of an inability to integrate production data; building

geologic models honoring production data remains an ongoing research (Li et al. 2007). Even

when not considering the rejected models, the number of feasible models available could run

to the hundreds.

Significantly, these realizations are generated by using a particular algorithm based on cer-

tain assumptions like linearity or stationarity (Goovaerts 1997). Under these assumptions, all
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the realizations are “reasonable.” If these assumptions are not met, then generating models

with the algorithm might give unrealistic geologic models, and then more appropriate mod-

eling techniques would be used. This chapter addresses uncertainties in lack of information,

and the resulting stochastic fluctuations in flow responses, rather than geostatistical model

per se; an alternative geostatistical formulation is discussed in chapter 5.

6.1 The Need to Screen

Flow simulation is widely used for reservoir forecasting and management. Flow models are

built from geomodels, which are uncertain because of sparse data and complex geologic

origins as discussed above. Increasingly, engineers quantify uncertainty by considering a range

of plausible geomodels. However, it is expensive and difficult to simulate many geomodels

using full-physics flow models. A small set of geomodels are to be selected from hundreds

of realizations. Many of these initial set of realizations are redundant. The redundancy or

similarity of the models should be judged upon response of these models to the fluid flow

rather than visual inspection. Some models may look different visually but could respond to

fluid flow very similarly. From the initial set of realizations, similar geomodels are removed

and so the remaining are different and they would capture the uncertainty. We need efficient

and robust methods to select relatively small sets of geomodels that are nonetheless diverse

and representative.

6.2 Sampling Not Ranking Realizations

Realizations have commonly been selected by ranking (Deutsch and Srinivasan 1996). Rank-

ing uses an easy-to-estimate secondary response like effective permeability; the chosen re-

sponse should correlate with full-physics (or primary) responses like cumulative oil recovery.

Secondary responses are useful if the rank correlations with the primary responses are high.

However, the ranking may change if factors like well pattern change; generally, the rank dif-

fers for various responses. Primary responses, like breakthrough time, depend on connectivity
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and continuity of good quality rock, also many secondary responses or their combinations

measure the continuity. When there are many secondary responses that are of interest, a sin-

gle ranking is hard to obtain; therefore selection of low, medium, and high cases using a single

ranking does not represent uncertainty. Conversely, we must consider the joint, multivariate

distribution of many secondary responses in order to choose realizations that are diverse in

all responses. A quasirandom sampling method called Hammersley sequences ensures the

sample is representative in the multivariate distribution of secondary responses.

6.3 Simple Static and Dynamic Responses

Simple summary statistics, computed by estimating volume average properties, can be used

as secondary responses to differentiate various realizations. Average properties for a realiza-

tion such as net to gross or net pore volume are estimated by first defining the cut-off for

net sand, using a porosity or permeability threshold. Below that threshold, the porosity and

permeability of the rock is considered zero and an indicator of net sand I = 0. I = 1 means

that the cell is a net sand, and can contribute to fluid flow. The volume average net-to-gross

for N cell block or reservoir is

NTG =
1

NVp

N∑
i=1

Iivi (6.1)

Volume average porosity (Φ) is estimated as

Φ =
1

Vp

N∑
i=1

φivi (6.2)

where vi and φi are the volume and porosity of cell i, N is the total number of cells in the

reservoir, and Vp is the total pore volume of the reservoir.

Upscaled permeability can also be used as a secondary response, although upscaling per-

meability is usually harder than other parameters. Upscaling properties for the coarser scale

grid are obtained from fine scale grids; as a result, flow responses for both the grids are the

same for a chosen range of boundary conditions. The most accurate method to upscale per-

meability is to solve flow equations with constant pressure and no flow boundary conditions
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(called the pressure solver technique). There are other techniques which are less accurate,

but much faster. The method introduced by Cardwell and Parsons (1945) and improved by

Li, Cullick, and Lake (1995) and others is fast and close to the pressure solver technique.

Upscaled effective permeability is between the upper and lower bounds, which presents har-

monic and arithmetic static averages. The horizontal effective permeability is similar to the

horizontal directional upper bounds, and the vertical effective permeability is likewise near

the vertical directional lower bounds. Upscaling a section of a reservoir would involve both

arithmetic and harmonic average as explained in Li, Beckner, and Kumar (1999). Whether

upscaled dynamically or statically, significant computation, or at least workflow management,

is needed to manage many upscaled models for ranking realizations (Deutsch and Srinivasan

1996; Kupfersberger and Deutsch 1999; Ates et al. 2005). In this current research, upscaled

permeability of a subgrid can be one of the secondary responses for sampling realizations.

There are other dynamic measures used other than flowing upscaled models. One such mea-

sure is to use a shortest path algorithm that calculates time of flight between two locations

under single-phase constant rate flow conditions. These random path algorithms are similar

to streamline simulations, which are also used for ranking realizations (Ates et al. 2005).

Other ranking methods use a tracer test analysis, which is also used in this dissertation.

However in this work, tracer simulations provide some of the secondary responses, because

other secondary responses (e.g., upscaled injectivities) are also considered for sampling the

realizations.

6.4 Screening Using Fast Flow Simulations

In this work, to make uncertainty assessment feasible, we propose a method to select relevant

models by using simple and fast simulations, assuming a single phase tracer flow. Although

the screening simulation does not include all of the physics or operational constraints of the

full-field model, it does incorporate many important effects of heterogeneity; and it is used

to select models, rather than approximate them.
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Here, single-phase tracer simulations are used for the secondary responses. Many responses

can be computed from tracer simulations like injectivity, Lorenz coefficients, and several

residence time statistics. Although the screening simulation must simplify the physics and

operational constraints, tracer simulations include geomodel heterogeneity and geometry.

Various injector-producer pairs sample reservoir anisotropy. The number of injectors and

producers depends on the size and scale of heterogeneities needed to capture. This screening

method samples flow model variability with far less computation than full-physics simulations

in high-dimensional geomodel spaces.

At the same time, the sampling preserves variability in flow responses. This method in-

cludes other statistics like average porosity, together with tracer test statistics to allow sample

realizations to be easily done. The method is also easy to adapt to other approximate flow

models and alternative sampling methods. Sampling multivariate secondary responses leads

to realizations that differ for a variety of production scenarios that are not otherwise possible

with ranking based on a single secondary response.

6.4.1 Tracer Test Analysis

If a tracer is injected as a slug (or pulse injected) through injectors, it mixes and disperses

with the reservoir fluid before reaching a producer, where tracer concentration C is measured

as a function of time t (volume of tracer is measured if rate is not constant). This tracer

response curve (C vs. t) is influenced by the reservoir heterogeneity. For homogeneous reser-

voirs, the tracer breakthrough time is longer and the spread of C vs. t curve remains small.

On the other hand, for more heterogeneous reservoirs, the breakthrough time is shorter, and

the spread of the tracer distribution curve is larger. Tracer analysis and the method of mo-

ments based on ideal tracer assumption as shown here is mainly from Shook and Forsmann

(2005). An ideal tracer is a tracer that is fully miscible with an injected phase, and the tracer

does not partition, decay, or adsorb from the injected phase. The tracers are assumed not to

change the density or viscosity of the injected phase; therefore they are “ideal.”
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Under constant rate injection, the volume swept by the tracer is proportional to the

cumulative tracer produced (
∫∞

0
Cdt), and the mean residence time of the tracer (t̄) is (Saad,

Maroongroge, and Kalkomey 1996)

t̄ =

∫∞
0

tCdt∫∞
0

Cdt

The above equation is for pulse tracer injection; if the tracer is injected as a slug with the

duration of injection ts, the mean residence time is modified as

t̄ =

∫∞
0

tCdt∫∞
0

Cdt
− ts

2

This solution is for multiple wells and for any well pattern. Variance of the tracer response

curve gives the spread of the curve, and it is a good indicator of heterogeneity in the reservoir.

It is estimated as

σ2 =

∫∞
0

t2Cdt∫∞
0

Cdt
− t̄2

In many situations, tracer simulations are not run until the concentration of the tracer goes

back to zero. Usually the tracer response curve has a large tail. Not running the simula-

tion without observing this tail leads to an underestimation of the mean response time. If

simulation is stopped at time tb, an exponential decline of the tracer can approximate the

concentration at a late time, C(t) ∼ b exp(−at),∀ t > tb. Coefficients a and b are estimated by

fitting a late time trend just before tb with the exponential decline curve. After considering

the extrapolation t̄ is

t̄ =

∫ tb
0

tCdt +
∫∞

tb
tCdt∫ tb

0
Cdt +

∫∞
tb

Cdt
=

∫ tb
0

tCdt + b
a2 exp(−at)(1 + atb)∫ tb

0
Cdt + b

a
exp(−at)

F-Φ Curves

Shook and Forsmann (2005) found that tracer test analysis can estimate flow geometry

parameters, such as flow and storage capacities. If tracer flow paths may be imagined as

streamlines going through a reservoir, each streamline path has a volumetric capacity and a

velocity, depending on time of flight (Ates et al. 2005). By arranging streamlines in decreasing
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volumetric capacity, cumulative flow capacity (Fi) of streamline i is defined as the sum of all

flow capacities (kiAi/Li for i, from Darcy’s law) greater than streamline i divided by the sum

of all flow capacities. Cumulative storage capacity (Φi) also is similar, except that it replaces

flow capacity with storage capacity (φiAiLi which is pore volume) of streamline i. Flow and

storage capacities are useful for quantifying the heterogeneities as the ratio of permeability to

porosity that is proportional to interstitial velocity in a single phase flow. Flow and storage

capacities can be estimated from tracer tests. The cumulative storage capacity, Φi, is

Φi =

∫ t

0
tCdt∫∞

0
tCdt

The cumulative flow capacity, Fi, is the cumulative tracer recovery at time t divided by

complete recovery

Fi =

∫ t

0
Cdt∫∞

0
Cdt

The shape of F − Φ curve gives the fraction of pore volume contribution to a fraction of

recovery.

Lorenz and Dykstra-Parsons Coefficients

From F − Φ curve other estimates of reservoir heterogeneity like Lorenz coefficient (LC)

and Dykstra-Parsons coefficient (VDP ) can be estimated (Lake and Jensen 1989). Lorenz

coefficient is estimated as

LC = 2

[∫ 1

0

FdΦ− 1

2

]
When LC is close to zero, the reservoir is homogeneous and when it is close to one Reservoir,

is heterogeneous. LC cannot be greater than 1 as it is normalized.

Dykstra-Parsons Coefficient is estimated from a tracer test by taking the derivative of

F − Φ plot. The derivative (F ′) represents instantaneous fluid velocity. The coefficient is

VDP =
F ′|Φ=0.5 − F ′|Φ=0.841

F ′|Φ=0.5

VDP uses the F ′ at the mean (Φ = 0.5) and one standard deviation above the mean

(Φ = 0.841). The statistics come from tracer test analysis, much like mean residence time,
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Lorenz and Dykstra-Parsons coefficients, and tracer breakthrough time are used as secondary

responses. Sampling realizations in this research with multiple secondary responses are done

by Principal Component Analysis.

6.4.2 Principal Component Analysis (PCA)

The central idea in this chapter is to use many secondary responses, both static and dy-

namic, to sample realizations. Various injector-producer pairs sample anisotropy by using

several dynamic responses, together with many upscaled properties to assess the variability

of different sections of reservoir.

The dimensionality of all the secondary responses generated can be in the hundreds. Many

of these are intercorrelated and redundant and therefore can be eliminated while retaining

the variation in the data set by using Principle Component Analysis (PCA). This is achieved

by rotating the secondary responses data cloud axis and generating a new set of variables

called principle components (PCs), aligned with the data cloud and ordered such that the

first few PCs retain most of the variability present in the original variables.

Extraction of principal components amounts to a variance maximizing rotation of the

original variable space (Hair et al. 2005). After finding the PC (a vector) on which the

variance is maximal, there remains some variability around this PC. In PCA, after the first

PC has been extracted (that is, after the first vector has been drawn through the data),

we continue to define another PC that maximizes the remaining variability, and so on. In

this manner, consecutive factors are extracted. Since each consecutive factor is defined to

maximize the variability that is not captured by the preceding factor, consecutive factors

are orthogonal to each other (under linearity assumption). This new orthogonal basis gives

a set of factors (PCs) that accounts for most of the variability in the system.

Let the data set be X, an m × n matrix, where m is the number of samples or re-

alizations and n is the number of variables. Also assume the covariance of the X be Σ

(= E
[
(X− E[X])(X− E[X])T

]
), a matrix whose (i, j)th element is the covariance between
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Figure 6.1: Example PCA for 3D problem

ith and jth variables of X. Principle components are the eigenvectors of Σ and eigenvalues of

this matrix, giving the variance along each principle component. The higher the eigenvalue

of a PC, the higher the contribution of that PC towards the variability of the data set.

Generally a small subset of PC’s can capture most of the variability.

6.5 Synthetic Example

6.5.1 Geomodel Construction

A downscaled model with high sand sill (σ2
s = 36) and medium range (b/L = 0.5) is taken

as a reference case (Three-dimensional Cornerpoint Flow Simulations, Chapter 3, earlier).

Downscaling is done with four conditioning wells, all of which have an average thickness

imposed and a porosity trend that increases downward linearly from 0.2 to 0.3. Fifty re-

alizations are generated with a 100 × 100 × 10 grid with 1000 × 1000 m areal extent. The

total sand thickness Hs = 14 m, total shale thickness, Hsh = 6 m, and average porosity

Φ = 0.25 constraints are imposed at each trace. Alternative sand and shale architecture is

used. Permeability is assigned, using an exponential transform of porosity,

k = 20e10φ

All the 50 realizations have the same well and seismic constraints but very few wells are used

to condition the model. As a result, stochastic fluctuations are very dominant and 50 realiza-
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Figure 6.2: Residence time distribution of tracer at producer 1 for a realization

tions are very different. This is a practical situation, reflecting the early field development,

where little well conditioning data is available, and the uncertainty is huge.

6.5.2 Secondary Responses Considered

Single phase tracer simulation uses a geometry of one-quarter of a five-spot. Several responses

were considered for each producer: tracer breakthrough time, mean residence time, volume

swept, mean residence time without exponential correction, standard deviation, and skewness

of tracer distribution, Lorenz coefficient, and dynamic effective permeability. Tracer statistics

are obtained from residence time distribution of the tracer at each producer (Fig. 6.2).

Dynamic effective permeability is obtained by the ratio of flowrate to pressure difference

between an injector and a producer; this variable is proportional to effective permeability.

Mean residence time, with or without exponential correction, is estimated to understand the

effect of later time tracer distribution on sampling (Tracer Test Analysis, earlier).

6.5.3 PCA Analysis

Twenty-four responses are obtained, since there are three producers and eight responses

at each producer. Lower dimensional parameterization of 24-dimensional data is done by

estimating principle components (PCs) of the data, which will be 24-dimensional vectors
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Figure 6.3: Variance captured by each
PC.
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Figure 6.4: Cumulative proportion of
variance.

aligned with the directions of maximum variance of the data. The PCs are ordered by data

variance as discussed in earlier section. In Fig. 6.3, variance captured by each PC is shown.

The first PC is aligned with the direction of maximum variance, and the second PC in the

orthogonal direction contributes the most variance, and so on. In this case, seven PCs are

capturing 90 percent of the total variance (Fig. 6.4); as a result, the other PCs are discarded.

All 50 realizations can be transformed and sampled in the new PC space with no corre-

lations. If the correlations are zero, sampling methods like Monte-Carlo, Latin hypercubes,

and Hammersley sequences (a quasi-Monte Carlo method) can be directly used to sample

the principal component space. Low dimensionality in a PC space makes sampling methods

more accurate and efficient. Sampling in this lower dimensional multivariate space can also

be done by using experimental design methods such as orthogonal arrays (Kalla and White

2005).

6.5.4 Hammersley Sampling on PCA Space

Five samples are selected using Hammersley sequence on the PC space; the nearest neighbors

(using Euclidean distance) among 50 are chosen. The samples generated by Hammersley are

space-filling, with a relatively small but still representative sample (Kalagnanam and Diwekar

1997). These selected samples are distinct from one another and thus capture most of the
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Figure 6.5: Loading parameters for first two significant PCs.

variability. Fig. 6.5 shows PC1 and PC2 and the 50 realizations. The five samples chosen by

Hammersley are also shown. As expected, they fill the PC space very well. Fig. 6.6 shows

the mean residence time response of producer 1 and 2 for all 50 samples on the original

axis. They are negatively correlated. Also shown in the figure are the five samples chosen

by Hammersley, these samples cover the data cloud and thereby sampl the original space as

well. If better coverage were required, more samples should be used; using five samples in a

7-dimensional PC space (24 dimensional in the original responses) is rather aggressive.

The correlation coefficient between mean residence time, with or without exponential

correction at a late time, is almost equal to one. This shows that for sampling, there is

no need to do late time tracer correction. Mean residence time, however, is different with

and without correction; if the residence time per se were sought, rather than a secondary

sampling variable, then the correction should be applied.

6.5.5 Validation Using Full Physics Simulations

The five samples selected from 50 realizations using the tracer distribution and other sec-

ondary responses are to be diverse in primary response space. Sampled points primary re-

sponse distribution should be representative of the distribution of the original realizations.

In other words, the statistics from the five samples and 50 realizations should be closer.
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Figure 6.6: Two correlated responses from tracer flooding.
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Figure 6.7: Two full-physics responses for the 50 realizations.

To validate the sampling, primary responses like recovery at breakthrough time (BT) and

recovery at one pore volume (1 PV) is estimated by running two phase flow simulations. For

all 50 realizations, two phase flow simulations are done with geometry of one-quarter of a

five-spot, like the tracer flooding. Breakthrough is considered when 100 STB/day of water is

produced from the field and recovery is estimated as the amount of oil produced compared

to the initial mobile oil in place. Typical fluid properties and relative permeability curves are

used for this study (Appendix A). Injectors are rate-controlled and producers are controlled

by bottom hole pressure.
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Table 6.1: Recovery summary for the 50 realizations and the 5 samples

Recovery for 50 Recovery for 5 Recovery for 50 Recovery for 5
at BT (%) at BT (%) after 1PV (%) after 1PV (%)

Mean 28.1 29.7 77.8 78.9
Stand Dev 7.2 6.9 9.1 7.4

Fig. 6.7 shows the recovery at breakthrough and after 1 PV injected for all 50 realiza-

tions. Also shown in the figure are the five samples chosen by Hammersley using secondary

responses, which cover the 50 realizations well. The recovery at breakthrough for 50 re-

alizations varies from 12.7 percent to 41.5 percent, and the recovery after 1 PV for the

50 realizations varies from 55.2 percent to 89.8 percent. In Table 6.1, mean and standard

deviation for the 50 realizations and five samples are shown.

6.6 Discussion

A Welch two-sample t-test indicates that the means of recovery (means are 28.1 and 29.7,

t = −0.5; 95 percent confidence interval: -0.1 0.07) at breakthrough time and recovery after

1PV (means are 77.8 and 78.9, t = −0.3; 95 percent confidence interval: -0.1 0.08) for the

five samples and 50 realizations are not the same. In other words, the five sample mean does

not specify the 50 realization mean for both primary responses. However, the F -test presents

a variance ratio of F = 1.1 and 1.5 for breakthrough and recovery, which is within the 95

percent confidence interval. Therefore, we see that, the variance captured by the five samples

does not differ from the 50 original realizations for both primary responses.

Even though the means are different at the 95 percent confidence interval, p-value for the

two cases (64% for BT and 76% for 1 PV) is around 70%. So for both the primary responses,

it is likely that both samples belong to the same population. More work is needed with a

greater number of realizations (more than 200), with more samples (around 20), in order to

provide a more concrete understanding. Influences of gravity, capillary, and viscous forces on
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sampling efficiency, as well as the number of samples required for capturing the distribution

of primary responses, should be addressed in the future studies.

This work, by incorporating fast flow simulations, PCA, and Hammersley, in sampling

rather than ranking, is novel in its approach. Further, any fast flow simulation method such

as shortest path algorithms or other sampling techniques like simple Monte Carlo sampling

may be used with this current approach.
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Chapter 7
Concluding Discussion

Focused discussions have been presented in previous chapters. This chapter briefly addresses

issues that span many topics and future work that may be fruitful in integrated reservoir

modeling.

7.1 Future Research

There are outstanding issues that should be addressed to improve the data integration tech-

niques proposed in this work.

7.1.1 Surface Modeling Data

The surface-based models used in this research require data such as geologic correlation

lengths and possibly layer architecture, which is difficult to estimate. However, these data

may be obtained from a variety of historical, experimental, or numerical approaches.

• Historical (Outcrop Data): Outcrop data supplies a wealth of small-scale facies and

spatial information unattainable in subsurface investigations. Some of the several types

of information that may be obtained from outcrops are depositional feature orienta-

tions like paleocurrent directions and grading and stacking patterns. White et al. (2004)

investigated tide-influenced deltaic sandstones in an outcrop of the Frontier Formation

in central Wyoming. Stratigraphy in the upper and lower portions of this analogue

is influenced by the episodal tidal deposition and ebb-directed currents respectively,

and deposited geobodies show those characteristics. These studies allow understand-

ing for the extent of the sand bodies in similar depositional settings. Outcrops give

detailed, small-scale heterogeneity; therefore their effect on fluid flow may be studied

extensively. However these results are for analogue, rather than the reservoir under
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study. They are also 2D cross-sections; as such, the outcrops will involve intensive

work to characterize the heterogeneity. Finally, each outcrop is but one realization of

the sedimentary process. Although extensive exposures would mitigate this problem,

that process may cause difficulty in developing statistical models of the form proposed

in this dissertation.

• Experimental (Flume or Tank Models): Experimental stratigraphy is generated

by using flume or tank models to fill up “basins” under a controlled supply of sedi-

ment, subsidence, base level variations, and transport mechanisms. For doing such a

controlled experiment, state of the art, an experimental setup is required, much like

the Jurassic Tank at the University of Minnesota (Paola et al. 2001). The experiments

imitate those physical processes involving the sediment transport with shoreline and

stratigraphic records, evolving over time. Only the boundary conditions may be con-

trolled in these experiments, but as in many actual reservoir cases, the paleocurrent

directions, the rate of sediment influx, and other boundary conditions are unknown.

Therefore, it is hard to mimic stratigraphy of a particular reservoir, but these exper-

iments in general give a plethora of information on how sediment records evolve over

time, as well as the interaction of different boundary conditions on a sedimentary en-

vironment. However, each experiment is time-consuming, and given the experiment’s

size and complexity, is expensive. This makes it difficult to formulate statistical models

solely from experimental data.

• Numerical (Mechanistic Sedimentation Models): Mechanistic sedimentary mod-

els of a depositional setting are generated by solving sediment transport equations.

These models are process-imitating, forward models that incorporate the physics be-

hind the deposition. Numerical models are very similar to tank models, but numerical

models allow easy interpretation, simply because it is easier to scan through these

models. Yet these models also have the same limitations of tank models in boundary
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conditions. It follows that this uncertainty about the sediment rate in the paleocon-

ditions, as well as the timing of the big sediment influx, also makes mimicking the

reservoir architecture a difficult procedure. However, an ensemble of these models may

provide a useful statistical model for use as a preprior as formulated in this disserta-

tion. The computational effort of running a large suite of such models may limit this

application in the near future.

Many realizations will be needed for these models, if we are to develop robust statistical

models. One approach would be to derive properties from outcrop, tank experiments, and

numerical experiments, in order to build surface-based models, as discussed earlier in chapter

5. Typically, the rules for the surface-based models are controlled by physical and numerical

models. The inherent uncertainty (even though this uncertainty is difficult to estimate) found

in the parameters for surface-based models are easy to adjust; as a result, an ensemble of

these models can provide the robust statistics required. Again, any other approach may

be used to build the necessary statistics, as explained in the last paragraph; ensembles of

numerical models, providing they are relatively inexpensive, could be useful.

7.1.2 Stratigraphic Model Inference

In this dissertation, the stratigraphic model (or preprior) has been formulated as a spatially

varying probability field, p(t|l, k, K), where l is the current trace (areal location), k is the

layer, and K is the total number of layers. As noted in the previous section, this requires

many realizations to compute a stable estimate. One goal of future research should be to

formulate guidelines for the number of realizations required, based on a priori parameters

or convergence monitoring.

An additional complication is heteroscedacity, the upward-increase of stratigraphic model

variance. Briefly, this is caused by the sequential nature of deposition. This is noticeable in

simple surface-based stacking models and also in numerical models. This chaotic behavior is

evinced in the unpredictability of natural phenomena such as deltaic lobe autocyclicity. As
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deposition (or simulation of deposition) proceeds, the placement of each succeeding layer is

conditional on an increasingly large number of prior choices (which determine the accessibility

of sediment supply and areal variation of accommodation, Reading 1996). Fundamentally,

sedimentation is not a Markov process: the new locus of sedimentation depends on many

previous sedimentation episodes, not just the most current episode. In terms of impact on

the stratigraphic model, in a compensational stacking geologic environment, the layers on

the top will vary widely for different realizations, and the preprior (which is the average of

all the realizations) will be less informative about how layers are arranged with respect to

one another at the top, as compared to the bottom of the depositional succession.

Although this chaotic nature may be a true reflection of natural sedimentation, it tends

to be expressed unrealistically, as local noise rather than global uncertainty in the current

implementation of the stratigraphic model. At this point, it is not clear how to formulate

the model to partition the noise correctly amongst various scales. Nonetheless, the Bayesian

formulation does ensure that the realizations will be less dependent on the stacking pattern

information at the top of the succession where preprior variance is high, thereby allowing

seismic and well data to exert a comparatively greater influence. Clearly, a more robust and

consistent method for estimating the preprior is needed.

7.1.3 Prior Model Inference

The proposed approaches use variograms of t to regularize the grossly underdetermined,

downscaling problem. The untruncated proxy t is kriged rather than truncated h to obtain

prior distributions, because kriging assumes variables are Gaussian distributions (continuous

distributions with a range of −∞ to +∞), but actual thickness h is non-negative. Unfortu-

nately, while the variogram of h might be observable in the data sources discussed above,

the variogram of the untruncated Gaussian t is utterly unobservable and must be inferred

from h. This inference problem was not addressed in this dissertation.
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In principle, a Gibbs sampling procedure, similar to the approach used to convert h = 0

well data to t (chapter 2.2.4), could be used to address this. If we observe some layer k on

trace ` has h`k = 0, the value of t`k is determinate by this procedure; we can use t`k ≤ 0 at

these traces and other traces where t = h to determine the variogram for t. However, the

estimation is nontrivial and will require careful formulation and validation versus a variety

of historical, experimental, and numerical data sets.

7.1.4 Selecting the Right Ensemble

The transfer of uncertainty from the geologic model to production forecasting is optimized by

selecting realizations that are different from one another (chapter 6). The proposed method

of running fast flow simulations and using statistics like average permeability, and then

sampling by using Hammersley sampling as well as a principal component analysis, allows a

small, selected sample to remain diverse to span the multidimensional response. Five samples

chosen from 50 realizations span multiple responses (Fig. 6.7) but these few samples (5)

cannot mimic all the primary responses distribution statistics. However, even this small

sample correctly reproduced the variance in a blind prediction of a waterflood process (which

was not used to select the small sample).

A more comprehensive study, involving around 200 initial realizations and a sample of

circa 20 from those, together with a comparison of the primary response statistics, might

prove that the responses distributions show similarities. Also, other fast flow simulation

techniques may prove useful, such as flowing through the upscaled models, shortest path

algorithms. The influence of well spacing (optimal well spacing) for fast flow simulations and

the influence of gravity, viscous, and capillary forces effects on sampling should be further

studied.
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7.2 Model Testing

7.2.1 Verification Remains Elusive for Earth Models

Most 3D models to this point are not well tested. It can be argued that geomodels and other

models in earth sciences like weather forecasting models can never be verified or validated,

because the modeled system is never closed and models require input parameters that are

incompletely known (Oreskes, Shrader-Frechette, and Belitz 1994). Verification can be done

by comparing the geomodel generated to the truth case, but architecture and properties of

the actual reservoir that is being modeled are always unknown, and so cannot be verified.

Despite this difficulty, it is worthwhile to compare different algorithms against one another,

and to compare model output against observed data. Geoscientists could generate well-

constrained, quantitative, field studies of specific environments that represent the prime

sources to be modeled. Then a comparison may be made between the reference model and

the model generated by algorithm. Even then, it will be a challenge to generate goodness-

of-fit criteria and to design testing protocols. Model selection techniques such as Bayesian

information criterion (BIC) may prove to be unuseful, as the number of free parameters to

be estimated are huge. When used to compare different realizations on an average, all the

realizations may have same BIC (Liddle 2007). More work is needed to show the applicability

of these techniques in comparing models.

7.2.2 Validation

Validation does not require the establishment of truth. The internal consistency required for

validation is more appropriate for the computer code, and relates only weakly to comparisons

of 3D model predictions to physical reality. Nevertheless, simplified 2D models provide insight

and validate the algorithm. When seismic is used as an inexact constraint, 2D case studies

(Figs. 2.3, 2.4, and 2.5) have shown that the marginal distributions of the two layers and

distribution of the total thickness are consistent with the prior and the likelihood. All the
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samples generated by MCMC sampling are consistent with the well data (through the prior)

and the seismic data (through likelihood). Similarly, when seismic is used as exact constraints,

the 2D cases show that the marginals are consistent with the well, and the total thickness is

exactly equal to the seismic constraint (Fig. 3.6). The 2D cases validate the algorithm and

the mathematical procedure.

7.2.3 Consistency

Validation of the 3D results is weak, because various realizations will give different results. Yet

consistency of the realizations can be established; the validation is only probabilistic. Further,

a 3D realization is valid, depending on the input parameters and the various approximations

that are used to build that model. For the example 3D cases provided in this research,

geologic frameworks provided by many realizations involving different prior and likelihood

and in inexact and exact constraint problems, static models built are consistent with all

of the geological and geophysical information. In inexact constraint 3D problems, as the

noise of the seismic increases (Fig.2.6c and Fig.2.6d) the sum of layers are more influenced

by well information. Therefore, the total thickness deviates from the seismic mean. On the

other hand, if the seismic noise is less, the total thickness closely matches the seismic mean.

When the variability increases (in exact constraint problem; Fig.3.13a and Fig.3.13b) and

the geologic correlation length decreases (in an inexact constraint problem; Fig.2.6a and

Fig.2.6b) the layers pinch out more frequently. These model parameters and their behavior

are honored in the realizations, while being consistent with all other constraints.

The consistency of results is also evident when stratigraphic data (preprior) is incorpo-

rated. When more well data and stratigraphic data are included, the realizations become close

to the reference case, as expected (Fig.5.5). When the preprior and the well data are not

used, the realizations generated are aggrading rather than prograding (Fig.5.6). When there

is no well or preprior data, the relative location of the layers is unknown to the algorithm;

as a result, stratigraphy is not reproduced. Nevertheless, the prior information (correlation
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lengths) and the seismic data are honored. Realizations with either the wells or preprior are

able to replicate the reference model. All these results show the consistency of realizations

as generated by use of the downscaling algorithm.

7.2.4 Calibration

Comparing the flow response of the actual production of real case and geomodel, called his-

tory matching in the petroleum industry, may be of great help to show consistency of the flow

results (Oliver 1994). Yet it must be understood that even if the flow responses are consistent,

we neither validate nor verify the model. The actual truth case could be very different from

the realization. This is because the flow average, or integrates the heterogeneities between

the injector and the producer. History matching can be seen as a (nonlinear) deconvolution

or downscaling process, functionally similar to the seismic-based methods discussed in this

dissertation. Similarly to the results of this dissertation, history matching is non-unique. The

results are best viewed probabilistically (Li 2008).

One could use history matching to calibrate a surface-based model to numerical, experi-

mental, or historical stratigraphic models. That is, the prior and preprior could be inferred

using yet a third inversion process, in addition to the flow- and seismic-based modeling. The

process is similar to the variogram inference used for surface-based models in a somewhat

simpler context, applying only well data and shape templates (Pyrcz 2004). This compre-

hensive geomodeling workflow has yet to be realized.
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Chapter 8
Summary and Conclusions

8.1 Summary

In this thesis, new methods are proposed to integrate multiscale data. The methods involve

downscaling seismic inversion models. A seismic model is uncertain because of its low resolu-

tion and noise; further, multiple realizations are used to characterize this uncertainty. When

the downscaling is done by picking up a realization it is called an exact method. The advan-

tages are that downscaling a single realization incorporates the correlation between the layer

thickness, porosity, net-to-gross and other parameters that are honored in seismic inversion.

Downscaling inexact seismic constraints incorporates the seismic noise which is obtained by

an ensemble of realizations. Both exact and inexact methods are useful and apply sequential

algorithm which decomposes the domain, based on multi-Gaussian assumptions. It is shown

that when the correlations are not tight, the decomposition is a good approximation, but if

they are tight, sequential methods with marginals are more appropriate.

Including stratigraphy into reservoir models by using kriging-based algorithms is chal-

lenging. In this work, surface-based models are used to build stacking patterns, used in the

sequential algorithm, together with seismic and well data. An ensemble of surface-based mod-

els is generated, and the distributions of thicknesses and properties obtained are assumed

Gaussian and sunsequently used in simple kriging. This seismic downscaling approach, using

an ensemble of surface-based models, could be regarded as conditioning surface-based mod-

els. Any other approach that can characterize the stratigraphic detail can also be integrated

in a similar fashion; therefore more appropriate methods for generating such details should

be investigated.

A method to select realization by using fast flow simulations and secondary responses, such

as upscaled permeability, is shown. This procedure uses both principal component analysis
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and sampling techniques to sample a few realizations from an original set of realizations.

A large number of an original set of ealizations is generated to capture uncertainty in the

primary responses. Selecting realizations using fast simulations removes the need to run

expensive two- and three-phase simulations for all original realizations.

8.2 Conclusions

Stochastic seismic inversion computations can be integrated by means of a truncated Gaus-

sian geostatistical model for layer thickness, using a Markov chain Monte Carlo method.

Truncation makes the problem nonlinear, which is ameliorated by the introduction of aux-

iliary variables and a mixed Gibbs-Metropolis-Hastings sampling procedure in an inexact

constraint problem. Under reasonable assumptions, the posterior resolution matrix is a spe-

cial form of Toeplitz matrix; the special form can be exploited to make MCMC sample

proposals more efficient to evaluate. Mesoscale seismic inversion realizations (which act as

exact constraints) of net-sand, gross sand, and porosity are “stochastically downscaled”, us-

ing a Metropolis Hastings sampler by projection to the exact constraint surface. Use of exact

constraints from stochastic seismic inversion realizations preserves correlations implied by

rock physics and seismic data.

Proposal efficiency is critical to the usefulness of both these methods, because many thou-

sands of proposals must be evaluated at each trace for a single, cornerpoint grid realization.

The ability of the method to reproduce, limiting case results and correctly modeled trun-

cations, are verified by examining algorithm behavior in two dimensions. Synthetic three–

dimensional cases demonstrate that the proposed data integration procedures are acceptably

efficient and are capable of producing models consistent with seismic data while exhibiting

diverse flow behavior.

Sampling the uncertainty in these nonlinear downscaling problems is difficult. Global

MCMC methods are accurate but expensive, which motivates consideration of sequential

methods. Cheaper sequential methods are reasonably accurate, if the lateral correlation is
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not high and if the constraints are weak. If the correlation is high and constraints are strong,

näıve sequential simulation will poorly approximate the marginals. For such cases, the pro-

posed approximate marginals offer improved sampling at a moderate cost.

A new approach to integrate stratigraphic data using surface-based models is also shown.

This approach involves generating an ensemble of surface based models; this removes the need

to condition one specific realization and also integrates the uncertainty of the surface-based

models. Since this approach is Bayesian, the importance of seismic, well, and stratigraphic

data are honored without overtuning to one particular information. All these methods, once

explained, can be used in general when other information is available; yet the methods are

not limited to surface-based models to generate the preprior.

Sampling rather than ranking, is proposed for selecting realizations from uncertain geologic

models. In this research, tracer simulations a type of fast flow simulations are used to screen

the realizations. The PCA and Hammerlsey sampling techniques are then used to select

small but representative samples from the original set of realizations. This general procedure

can be extended to other fast flow simulations, such as streamline simulations, and other

sampling techniques like Latin hypercubes. New methods are proposed to create, screen, and

analyze models in this powerful, but complex workflow.
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Appendix A: Eclipse Data Input File

RUNSPEC

TITLE
3d Waterflood Simulation for Screening

DIMENS
- - NDIVIX NDIVIY NDIVIZ
100 100 10 /

OIL

WATER

FIELD

WELLDIMS
- - NWMAXZ NCWMAX NGMAXZ NWGMAX
10 10 10 10 /

UNIFOUT

NSTACK
100 /

START
1 ′JAN′ 2000 /

GRID
INIT

INCLUDE
GRID DATA /

COPY
PERMX PERMZ /
PERMX PERMY /
/

MULTIPLY
PERMZ .2 /
/
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MINPV
20 /

PINCH
0.1 ′NOGAP′ /

PROPS

GRAVITY
- -Oil Water Gas
50.0 1.05 0.60 /

Rock
- -RefP Cf
7500 8.3E-6 /

PVDO
- -PRES FVF VIS
400 1.0120 1.160
1200 1.0040 1.164
2000 0.9960 1.167
2800 0.9880 1.172
3600 0.9802 1.177
4400 0.9724 1.181
5200 0.9646 1.185
5600 0.9607 1.190
6000 0.9560 1.195
/

- - RELATIVE PERMEABILITY AND CAPPILARY PRESSURE CURVES
SWOF
0.27 0.000 0.900 0
0.35 0.012 0.596 0
0.40 0.031 0.438 0
0.45 0.060 0.304 0
0.50 0.099 0.194 0
0.55 0.147 0.109 0
0.60 0.204 0.048 0
0.65 0.270 0.012 0
0.70 0.346 0.000 0
0.75 0.432 0.000 0
0.80 0.527 0.000 0
0.85 0.631 0.000 0
0.90 0.744 0.000 0
0.95 0.867 0.000 0
1.00 1.000 0.000 0 /
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PVTW
- - RefP Bw Cw Visc Viscosibility
7500 1.0211 2.68E-06 0.3959 0 /

RSCONST
- - RS BUBPRES
0.8 50 /

SOLUTION

EQUIL
9875 6000 20480 0 100 0 1 /

SUMMARY

RUNSUM
SEPARATE
TCPU
RPTONLY

FOPT
FWPT
FWPR

WWIR
′I1′ /

WOPR
′P2′
′P3′
′P4′ /

WBHP
′I1′
′P2′
′P3′
′P4′ /

WWPR
′P2′
′P3′
′P4′ /

SCHEDULE
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RPTSCHED
′RESTART=1′ ′FIP=1′ /

WELSPECS
′I1′ ′P′ 1 1 1∗ ′water′ /
′P2′ ′P′ 1 100 1∗ ′OIL′ /
′P3′ ′P′ 100 1 1∗ ′OIL′ /
′P4′ ′P′ 100 100 1∗ ′OIL′ /
/

COMPDAT
′I1′ 1 1 1 10 ′OPEN′ 1∗ 1∗ 0.75 1∗ 0 /
′P2′ 1 100 1 10 ′OPEN′ 1∗ 1∗ 0.75 1∗ 0 /
′P3′ 100 1 1 10 ′OPEN′ 1∗ 1∗ 0.75 1∗ 0 /
′P4′ 100 100 1 10 ′OPEN′ 1∗ 1∗ 0.75 1∗ 0 /
/

WCONINJE - - Name Phase Status Mode Qsc, Lsc, BHP
′I1′ ′WATER′ ′OPEN′ ′RATE′ 5000 1∗ 8000 /
/

WCONPROD - - NAME Status Mode Qo,Qw,Qg,Ql,Qr,BHP
′P2′ ′OPEN′ ′BHP′ 5∗ 4000 /
′P3′ ′OPEN′ ′BHP′ 5∗ 4000 /
′P4′ ′OPEN′ ′BHP′ 5∗ 4000 /
/

TUNING
/
/ - - LITMIN LITMIN MXWSIT
20 1 100 1 8 /

TSTEP
200∗5/
TSTEP
48∗30.4 /

END
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Appendix B: Nomenclature

Roman Symbols

a random number
b variogram range

C̃ covariance matrix in new coordi-
nates, m2

Cp prior covariance matrix based on
kriging, m2

Cπ posterior covariance matrix, m2

d neighboring conditioning
G posterior resolution matrix or Hes-

sian, m−2

h nonnegative layer thickness, m
H total thickness at trace, m
I facies indicator (1 for pay, 0 other-

wise)
L Cholesky factor of covariance ma-

trix, m
m all variables simulated at trace
n normal vector to a surface
N(µ, σ2) normal distribution function with

mean µ and variance σ2

N−1(µ, σ2; r)inverse normal distribution func-
tion with mean µ and variance σ2,
at a cumulative probability of r

NpD recovery factor at breakthrough,
pore volumes

p probability density
P probability
PJ Jacobian term in Metropolis-

Hastings transition
R subspace in transformed coordi-

nates; vector for the subspace is r
r random number
Rx covariance range parameter in di-

rection x, m
s scaling factor
t Gaussian proxy for h, may be neg-

ative, m
u auxiliary variable correlated to

layer state
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u vector orthogonal to the first-
quadrant hypersurface facet

U uniform distribution function
U rotation matrix
T Tk = 1

2
(sgn(tk) + 1)

W computational work, flops
x, y, z coordinates, m
X, Y, Z grid extents, m

Greek Symbols

α Metropolis-Hastings transition
probability

δ magnitude of the direction vector u
δ(t) Dirac delta function
∆ separation vector for variogram

models, m
γ semivariogram model
κ number of layers at a trace with

tk > 0
λ dimensionless range, b/L
ν coefficient of variation
φ layer porosity
Φ or Φ̄ trace average porosity
π posterior
σ2 variance
τ vector of properties in the trans-

formed axes

Indices and Special Subscripts

D number of nonzero conditioning
data

k indices over layers
K total number of layers
` indices over traces
L total number of traces
p prior
s sand
sh shale
λ, Λ zero thickness data index and count
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Diacritical Marks

·̄ mean
·′ proposed point, may become new

point
·̃ rotated
·∗ truncated
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Appendix C: SPE Permissions

SPE Copyright Requirements

Author-Retained Rights and Terms and Conditions

The term “employers” in the following means the companies, universities, or organizations
for which the authors worked at the time the paper was written.

1. Authors/employers retain all intellectual property rights, including any idea, process,
procedure, or article of manufacture described in the paper.

2. Authors/employers may reproduce and distribute copies of the paper internally to
employees of the company or organization for which the author worked at the time the
paper was written. Such distribution includes posting of the paper on the employer’s
intranet accessible only to company employees.

3. Authors/employers may reproduce, or authorize reproduction of, and distribute up
to 50 paper copies of the paper outside the company or organization for which the
author worked at the time the paper was written for personal, business, or educational
purposes provided that the SPE copyright notice is included, the copies are not used
in any way that implies SPE endorsement of a product or service, and the copies
themselves are not offered for sale.

4. Authors/employers may make an oral presentation of the same material provided
proper acknowledgement of SPE copyright ownership is made.

5. Authors/employers may incorporate all or part of the paper in future writings or pre-
sentations. If the entire paper or a portion thereof is used in substantially unchanged
form, proper acknowledgement of SPE copyright must be made. If the paper is substan-
tially changed or altered in substance so that it is a new work of authorship, reference
should be made to the SPE publication.

6. Authors/employers may request return of one-time journal publication rights to enable
publication of the paper in a journal or magazine if the paper is not being considered
for publication in an SPE journal. Such requests should be made in writing to SPE
Customer Service. Requests for return of one-time journal publication rights will not
be granted for papers submitted to SPE for peer review unless the paper is declined
for publication or it is at least 6 months after the submission date.

7. In the case of work performed under a U.S. government contract or grant, SPE rec-
ognizes that, if the contract/grant so requires, the U.S. government has royalty-free
permission to reproduce all or portions of the paper and to authorize others to do so
for official U.S. government purposes only.

Company or companies as used herein means the company the author worked for at the time the paper was written, such
companys parent (if any), and any company for which the company (or such ultimate parent) owns or controls, directly or
indirectly, fifty percent or more of the stock or voting rights.
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8. For all uses not covered by Items 2 through 6, authors/employers must request per-
mission from SPE to reproduce or authorize reproduction of the paper.

9. Although authors are permitted to re-use all or portions of the paper in other works,
this does not include granting third-party requests for reprinting, republishing, or other
types of re-use. SPE must handle all such third-party requests
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