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ABSTRACT 

CO2 displacement is the most widely used EOR process, but poor sweep efficiency and 

large CO2 utilization rates are limitations to the economic and technical success of CO2 floods. 

Developing a methodology to maximize the sweep efficiency and minimize the CO2 utilization 

rate would greatly improve the economics of these fields. This thesis evaluates the sweep 

efficiency of a successful, late-in-life, continuous injection CO2 flood at the Little Creek Field, 

Mississippi. In this work, we evaluate several heterogeneity measures in terms of recovery 

efficiency and utilization rate. Core studies available from 41% of the wells in the field were 

used to compute various heterogeneity measures, and the resulting values were correlated with 

pattern-by-pattern recoveries and CO2 utilization rates. Weak correlation trends were found for 

most of the measures in terms of R2 values. However, there was still a trend confirming the idea 

that more heterogeneity corresponds to higher utilization rates and lower recoveries. Mapping of 

the well-by-well heterogeneity measures appear to show geological trends better than traditional 

maps of the basic parameters that make up the measures. These geological trends were then 

successfully used to adjust rock-types during reservoir modeling. Reservoir simulation was 

performed to understand the reservoir response to CO2 flooding and develop alternatives for 

sweep improvement. Continuous CO2 injection under certain alternate operations would help. 

The WAG process was effective in increasing the sweep efficiency of the reservoir for most of 

the cases studied by providing favorable mobility ratios and contacting more of the oil in the 

reservoir. The Gas-Assisted Gravity Drainage (GAGD) process was also evaluated. Solvent 

saturation profiles show that results are essentially consistent with the proposed GAGD theory. 
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However, oil recovery was less than the best WAG cases, which is not surprising due to the high 

connate water saturation (0.56), relatively low thickness and lack of dip to the reservoir. 

Moreover, an increase in recovery could be realized more in the future for both the WAG and 

GAGD processes because CO2 contacted larger amounts of unswept oil in the reservoir 

compared to continuous CO2 flooding.  
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1. INTRODUCTION 

Reservoir engineering was originally concerned with the calculation of the amount of oil 

and natural gas that could economically be produced from a reservoir. In recent years, the role of 

reservoir engineering has become more important in providing the best ways to maximize the 

recovery of oil and natural gas since they are indispensable in supplying the daily energy needs 

of the world. Recently, the oil price reached a record maximum of US $147 per barrel. This clearly 

indicates the importance of oil in the world economy today. 

Enhanced oil recovery (EOR) operations, including gas, air or water injection into a 

reservoir, are performed to increase the recovery of oil after natural reservoir energy has 

displaced the primary oil to the production wells (Willhite, 1986). Waterflooding, also known as 

secondary recovery, is the most common fluid injection method which initially occurred 

accidentally in Pithole City, Pennsylvania in 1865 (Craig, 1971; Willhite, 1986). Waterflooding 

is the main recovery method providing high production rates in the U.S and Canada (Craig, 

1971). Since the late 1980’s, the recovery of remaining oil in the reservoir after primary and 

secondary recoveries has been improved by CO2 flooding which is one of the most promising 

EOR techniques for light oil (Grigg and Schechter, 1997). 

Taber, et al. (1997) estimated that CO2 flooding could produce some incremental oil from 

nearly four out of five of the world’s reservoirs. Today, U.S. oil production from CO2 flooding is 

approximately 240,313 barrels per day according to an EOR survey in the Oil & Gas Journal 

(Koottungal, 2008). Table 1 shows values for technically recoverable oil resources from CO2 
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miscible floods in the U.S according to another recent survey performed by Advanced Resources 

International (Kuuskraa and Ferguson, 2008). 

 

Table 1: Technically Recoverable Resources from Applying “State-of-the-Art” CO2 EOR 
Data Base and National Totals (after Kuuskraa and Ferguson, 2008) 

Basin/Area 

DATA BASE NATIONAL 

OOIP 
(Billion 
Barrels) 

OOIP 
Favorable 
for CO2-

EOR 
(Billion 
Barrels) 

Technically 
Recoverable 

(Billion 
Barrels) 

OOIP 
(Billion 
Barrels) 

Technically 
Recoverable 

(Billion 
Barrels) 

1. Alaska 65.4 64.5 12.0 67.3 12.4 

2. California 75.2 31.6 5.7 83.3 6.3 

3. Gulf Coast (AL, 
FL, MS, LA) 26.4 20.2 4.2 44.4 7.0 

4. Mid-Continent 
(OK, AR, KS, NE) 53.1 28 6.4 89.6 10.7 

5. Illinois/Michigan 12.0 4.6 0.8 17.8 1.2 

6. Permian (W TX, 
NM) 72.4 63.1 13.5 95.4 17.8 

7. Rockies (CO, UT, 
WY) 23.7 18 2.9 33.6 4.2 

8. Texas, East/Central 67.4 52.4 10.9 109.0 17.6 

9. Williston (MT, ND, 
SD) 9.4 7.2 1.8 13.2 2.5 

10. Louisiana 
Offshore 22.2 22.1 4.6 28.1 5.8 

11. Appalachia (WV, 
OH, KY, PA) 10.6 7.4 1.2 14.0 1.6 

Total 437.8 319.1 64 595.7 87.1 
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Although CO2 flooding is the most successful and widely used EOR process, poor sweep 

efficiency and high CO2 utilization rates, defined as the ratio of the amount of CO2 injected to 

the produced oil, are obstacles preventing the financial and practical success of CO2 flooding 

(Taber, et al., 1997). This thesis will attempt to address this problem to improve the oil recovery 

with detailed analysis of reservoir performance. Sweep efficiency can be defined as a measure of 

how the overall displacement affects the recoverable mobile hydrocarbons. It can be formulized 

as (Green and Willhite, 1998), 

 D VE E E= ×  (1) 

where E is the overall recovery efficiency, ED is the microscopic displacement efficiency and EV 

is the volumetric sweep efficiency. ED determines the effectiveness of the injected fluid that 

contacts the moving oil while EV shows the effectiveness of the injected fluid to sweep out the 

reservoir areally and vertically (Green and Willhite, 1998). In favorable EOR processes, the 

value of E approaches 1.0 resulting in low residual oil saturations, Sor. Miscibility between the 

fluids, reducing the effect of interfacial tension (IFT) between the fluids, oil volume expansion 

and reducing oil viscosity can increase the microscopic displacement efficiency (Green and 

Willhite, 1998). Favorable mobility ratios between displaced and displacing fluids improve both 

areal and vertical sweep efficiency (Green and Willhite, 1998). On the other hand, viscous 

fingering and gravity segregation are the main reasons for poor sweep efficiency. Moreover, 

geologic factors such as reservoir heterogeneity, high permeability zones or fractures always 

influence the completion and success of an EOR process. An EOR project failure can be avoided 

by identifying these factors with a number of methods including core and log analysis, pressure 

transient analysis, seismic surveys, etc. (Green and Willhite, 1998).  
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1.1 Objectives 

Increasing the number of economically cost efficient CO2 flooding applications is 

becoming more viable these days. Maximizing the oil recovery factor and minimizing the 

utilization rate would greatly improve the economical benefits. The main motivation for this 

thesis is to understand sweep efficiency by the study of a successful, late-in-life, continuous 

injection CO2 flood at the Little Creek Field, Mississippi. We would like to understand what 

happened during the flood, what made the flood successful, and what might have been done 

differently to increase recovery. One way to evaluate the sweep efficiency is through a detailed 

simulation study in order to develop methodologies to improve the oil recovery factor by 

ensuring that the injected CO2 contacts more of the reservoir. The ultimate goal in previous 

simulation studies on the Little Creek Field was history matching reservoir performance of the 

CO2 pilot flood in order to design the full field operation. The purpose of our simulation study is 

not necessarily just to obtain history match in the pilot area, but to provide insight into the sweep 

process and to study alternatives to what was actually done in order to identify strategies to 

improve recovery. For instance, there has been no published simulation study of the Water 

Alternating Gas (WAG) injection process for the Little Creek Field. It may be too late in the 

reservoir life to improve recovery for this field, but this study will document what difference a 

WAG process might have made at Little Creek and hence might make in similar reservoirs 

elsewhere. Likewise, gravity stable processes will also be examined.  

The understanding obtained from this thesis may lead to the development of operating 

practices for improving oil recoveries and reducing CO2 utilization in other active or planned 

CO2 injection projects which have poor sweep efficiency.  
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1.2 Outline 

This thesis evaluates the sweep efficiency of a mature CO2 flood in Little Creek, 

Mississippi in order to understand what operationally might have done differently and to identify 

strategies to improve recovery. The thesis can be divided into two main parts. The first part 

presents the results from a study of the available cores from the field. Some background 

information on the reservoir properties and development of the Little Creek Field will be 

introduced in Chapter 2. Chapter 3 presents an evaluation of the cores available from 41% of the 

wells in the Little Creek Field. The Dykstra-Parson and Lorenz coefficients were calculated for 

each well and the results were assessed in terms of their correlation to pattern area recovery 

efficiency and utilization rate at various times over the life of the flood. Although weak 

correlation trends were found with oil recoveries and slightly better correlation in terms of R2 

values were found for utilization rates, there was still a trend confirming the idea that more 

heterogeneity corresponds to higher utilization rates and lower recoveries. A detailed statistical 

analysis was also performed showing that the correlations between reservoir performance and the 

heterogeneity measures were statistically significant enough to show this idea. Much more 

significantly, mapping of the heterogeneity measures well by well appear to show geological 

trends better than traditional maps of more basic parameters. When doing reservoir modeling and 

history matching, these geological trends provided a successful way to adjust different rock types 

and guide mapping of permeability and porosity.  

The second part of the thesis deals with understanding sweep in various parts of the field 

and evaluating alternatives for the improvement of the recovery by using reservoir computer 

simulation. The first proposal for a tertiary recovery process in the Little Creek Field by Shell 
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Oil Company was to use a line drive pattern with high pressure natural gas in a pilot location. 

With the help of computer mathematical models, both the line drive and inverted nine-spot 

patterns were studied. The results from the Shell work proposed that an inverted nine-spot 

pattern was more efficient than the line drive and additionally verified that CO2 injection instead 

of natural gas increased the recovery efficiency (Hansen, 1977a; Todd, 1970).  

A pilot CO2 flood was developed and implemented in early 1974 and after completion of 

pilot operations, simulation studies were done by Morse (1979), Youngren and Charlson (1980) 

and Cottrell (1984). The purpose of these studies was to evaluate the pilot response to CO2 

injection and develop an understanding of the mechanisms that influenced flood response in 

order to design the full field flood. 

 In this study, multiple areas of the field were evaluated and the pilot area was chosen as 

the initial study due to the previous work done in this region. While little information was 

provided in the previous studies about the reservoir response in the pilot area to waterflooding, 

relatively more information was provided on the reservoir performance as a result of the CO2 

flooding. A slightly different model is introduced which was designed to allow the waterflood 

response to be modeled. Once the waterflood history match was obtained, the response to CO2 

flooding was evaluated without modification to the basic parameters of the model. The results of 

this work are presented in Chapter 4 and in Chapter 5, an evaluation of alternative methodologies 

to increase recovery is presented. Then, the same method developed in the pilot area was used to 

assess flood response for an active region of the field. The results of this work are presented in 

Chapter 6.  
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2. LITTLE CREEK FIELD RESERVOIR PERFORMANCE 

In this chapter, reservoir development and basic reservoir data of the Little Creek Field 

will be presented. After primary and secondary recoveries, the field has been subject to CO2 

flooding. The development of the field from initial discovery to the present will be described. 

Detailed information about the producing formations in the field will also be described.  

2.1 Reservoir Development 

The Little Creek Field was discovered by Shell Oil Company in January 1958, and is 

located in Lincoln and Pike Counties in southwest Mississippi (Figure 1). The producing pay 

zone is the lower Tuscaloosa (Upper Cretaceous) Denkman sand. The current operator 

designates the producing zones as the Q and the Q2 sandstones (Walsh, 2007). 

 

 

Figure 1: Little Creek Field (from Denbury Resources Inc., 2007) 
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The Little Creek Field originally contained an estimated 101.9 million barrels of oil 

(Cronquist, 1968; Hansen, 1977b). The primary drive mechanisms were said to be fluid 

expansion and solution gas drive with limited aquifer influx based on the early production data 

(Hansen, 1977a; Werren, et al., 1990). The field began to produce oil from the Shell-Lemann No. 

1 well with 588 BOPD and 260 MCFGPD from an open-hole interval from 10,770 to 10790 ft 

(Werren, et al., 1990). The field was rapidly developed by drilling on 40 acre spacing in the 

northern part of the field and field production was around 9100 BOPD from 56 wells at the end 

of 1958 (Cronquist, 1968). The discovery of the southern part of the field was in November, 

1958. Through 1961, 190 wells had been completed with 155 producers. Werren, et al. (1990) 

state that through 1990 the total number of wells in the field was 208 with 162 being producing 

wells. There are a total of 233 wells in the field today (Pennell, 2007). 

Primary recovery was approximately 25 million barrels of oil (MMBO) which was 25% 

of the original oil in place (OOIP). A peripheral line-drive waterflood operation was initiated in 

early 1962. Waterflooding was very successful with an additional 21.7 MMBO (22% of the 

OOIP) produced during secondary recovery (Cronquist, 1968; Hansen, 1977a; Smith, 1973). 

Production decline began in 1964 and waterflooding was stopped in early 1970 (Cronquist, 

1968). However, one well (Well 2-4A) produced oil until late 1978 even after waterflooding had 

ended.  

Shell Oil Company considered different methodologies to recover the large amount of 

remaining oil considering that an estimated 47% of the OOIP was produced by primary and 

secondary means. They developed two miscible project options using reservoir simulation 

studies. A natural gas miscible displacement process was initially proposed, but they did not 
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pursue this option due to the high amount of natural gas required (Hansen, 1977a). Shell decided 

to pursue CO2 flooding instead. A CO2 pilot was performed between February 1974 and 

February 1977 and more than 120,000 bbls of oil (an additional 0.12% of the OOIP ) was 

produced (Hansen, 1977a). After a long shut-in period in the field due to the construction of the 

Jackson Dome CO2 pipeline and the field CO2 injection facilities, tertiary recovery was initiated 

in December, 1985 (Werren, et al., 1990). Since that time, CO2 has been continuously injected 

into the field, and an additional 18 MMBO (18.4% of OOIP) has been recovered in the past 22 

years. Figure 2 shows the historical production and injection data provided by the current 

operator of the field, Denbury Resources Inc. Table 2 shows a comparison of the Little Creek 

Field to other CO2 miscible projects from the 2008 Worldwide EOR survey from the Oil and Gas 

Journal (Koottungal, 2008). 

Little Creek Field was operated by Shell Oil Company until J.P. Oil Company purchased 

the field in June, 1996. Denbury Resources Inc has been the operator of the field since the 

company acquired the field in September, 1999 (Senocak, et al., 2008). Inverted nine-spot 

pattern flooding is used for CO2 injection operations and production wells that have 

uneconomically high gas-oil ratios are converted to injection wells. The reservoir has been 

subjected to CO2 flooding for more than 20 years and was considered to be a good example for 

evaluating the flood performance of a late-in-life reservoir. Total recovery from the field is 

approximately 65% (calculated by 101.9 MMBO of OOIP); thus the target for any further EOR 

operations is the remaining 35%. The most important thing influencing the project economics for 

tertiary recovery processes is the amount of remaining oil. Denbury would certainly like to 

increase or accelerate recovery in Little Creek Field, but they also have other fields where they  
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Figure 2: Field Historical Production and Injection Performance 
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have CO2 operations (including several in Louisiana). Therefore, identifying strategies and 

modifications to current operations to improve recovery in a long-term flood should be beneficial 

not only for Denbury but also to other operators considering CO2 floods. 

 

Table 2: 2008 Worldwide EOR survey (Selected Fields, after Koottungal, 2008) 

Operator Field 
Oil  

Gravity 
(0API) 

Previous 
Prod 

Start
date

So, 
% 

Start

So, 
% 

End

Project 
Maturity 

Total 
Prod
b/d 

Enh.
Prod
b/d 

Pure  
  Resources 

Dollarhide 
(Devonian) 40 Primary, 

Waterflooding 5/85 35 22 Half finished 2,420 1,970

Exxon- 
Mobil 

Means 
(San Andres) 29 Waterflooding 11/83 - - Half finished 10,000 8,700

Merit 
Energy 

Northeast 
Purdy 38 Waterflooding 9/82 - - Half finished 1,800 1,800

Chevron Rangely 
Weber Sand 35 Waterflooding 10/86 38 29 Just Started 15,30011,600

Occidental South Welch 34 Waterflooding 9/93 50 15 Half finished 1,180 865 

Great 
Western 
Drilling 

Twofreds 36 Waterflooding 1/74 50 - Nearing 
Completion 170 170 

Merit 
Energy Wertz 35 Waterflooding 10/86 - - Nearing 

Completion 3912 2986

Denbury     
Resources Little Creek 39 Waterflooding 1985 44 21 Nearing 

Completion 1650 1650

Denbury 
Resources 

West 
Mallalieu 40 Primary 1986 44 21 Half finished 6200 6200

 

2.2 Reservoir Properties 

Little Creek Field is producing 39° API gravity crude oil from the Q and Q2 sandstones. 

The average pay zone is at a depth of approximately 10,750 ft (10,350 ft subsea). The average 
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net thickness of the Lower Tuscaloosa Q and Q2 sandstones is 40 ft. The maximum net thickness 

of the Q sandstone is 55 ft while it is 30 ft for the Q2 sandstone (Smith, 1973; Werren, et al., 

1990). Figures 3 and 4 show the net isopach maps of the Q and Q2 sandstones, respectively 

(Pennell, 2006). 

The representative type logs shown in Figure 5 illustrate typical SP and resistivity 

responses and show wells that include both the Q and Q2 sandstones, wells where only the Q 

sandstone with an abandonment facies is present, and wells where none of the sandstones occur 

(Werren, et al., 1990). The Lower Tuscaloosa Q-Q2 sandstone bodies exhibit “fining-upward” 

response on electric logs and are interpreted as point bars deposited in a fluvial meander belt on a 

deltaic plain (Werren, et al., 1990). The age of the reservoir rocks is late Cretaceous, 

Cenomanian and the lithology is fine to medium-grained sublitharenite (Werren, et al., 1990). 

The Q sandstone is the most common reservoir rock and was penetrated by almost all of 

the wells in the field. The Q2 sand is not present over large sections of the field (Smith, 1973; 

Werren, et al., 1990). The Q and Q2 sandstones are distinct markers, but they appear to be 

contiguous. Based on pressure and production data, it was interpreted that the two sands are in 

communication (Cronquist, 1968; Werren, et al., 1990). In some wells, the Q2 sandstone, which 

is the lower layer, disconnects from the Q sandstone because of a shale zone in between. It 

merges back with the Q sand in most other parts of the field (Cronquist, 1968). Smith (1973) 

suggested that there are no data available indicating major discontinuities within the reservoir. In 

addition, it was also suggested that the continuity of the reservoir was usually obvious based on 

reservoir performance (Werren, et al., 1990). 
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Figure 3: Little Creek Net Q Sand Isopach Map (Pennell, 2006) 
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Figure 4: Little Creek Net Q2 Sand Isopach Map (Pennell, 2006) 
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Figure 5: The objective sandstones in Little Creek Field (from Werren, et al., 1990) 

 

The reservoir was initially filled with undersaturated oil and Cronquist (1968) indicated 

that there was a common water oil contact (WOC) in the field at 10,415 ft subsea. However, 

Werren, et al (1990) found that “free and 100%-water levels” were at 10,425 ft and 10,420 ft, 

respectively based on production data, capillary pressure curves and log data. Cronquist (1968) 

claimed that there was usually no clean oil below 10,390 ft subsea and defined this depth as the 

base of the transition zone. A value of 10,415 ft subsea was used as a WOC contact level in our 

simulation model which will be discussed in Chapter 4. Table 3 summarizes the basic reservoir 

and fluid properties for Little Creek (Hansen, 1977a; Morse, 1979; Youngren and Charlson, 

1980). 
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Table 3: Reservoir Parameters (from Hansen, 1977a; Morse, 1979; 
Youngren and Charlson, 1980). 

Reservoir Conditions and Fluid Properties 

Initial Reservoir Pressure 4840 psia 

Bubble-point Pressure 2150 psia 

Initial Reservoir Temperature 248 °F 

Initial GOR 555 SCF/STB 

Oil Formation Volume factor, Bo at Pi 1.32 RB/STB 

Oil viscosity at Pi 0.4 cp 

Oil viscosity at Pb 0.3 cp 

Oil gravity 39°, API 

Gas gravity 0.925 (air = 1.0) 

Connate Water Saturation, Swc 0.56 

Residual Oil Saturation, Sor 0.21 

Minimum Miscibility Pressure 4500 psia 
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3. CORE STUDY 

In this chapter, core studies obtained from about half of the wells in the Little Creek Field 

will be discussed. These core studies were used to calculate the most widely used heterogeneity 

measures in an attempt to evaluate whether these measures have reasonable correlation with 

geology, oil recovery or CO2 utilization for each pattern in the field. The focus was on using the 

core data to direct reservoir characterization and modeling. 

3.1 Core Analysis 

Ho and Ehara (2007) identify core analysis as a method to measure petrophysical 

properties of a reservoir such as permeability and porosity. Core samples collected from 

wellbores during drilling are used to observe the characteristics of the reservoir rock in the 

laboratory.  

In this thesis, core data from the Little Creek Field was reviewed. There were 96 cored 

wells (out of 233) in the field (Senocak, et al., 2008). In Figure 6, all the wells with gold circles, 

regardless of their sizes, indicate the cored wells. The differentiation between the Q and the Q2 

sand was carried out by reviewing the logs. A total of 10 wells were found which had core data 

from the Q2 sand (Senocak, et al., 2008). In this study, data from the Q and the Q2 sands were 

usually aggregated to perform calculations since they appeared to be contiguous (Werren, et al., 

1990). 

3.2 Permeability and Porosity Relationships 

In this section, the porosity vs. permeability distribution in the field is presented. The  
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Figure 6: Core Location Map 

porosity and permeability for each core plug from the 96 cored wells in Little Creek is plotted in 

Figure 7. Although it is obvious that there is a wide trend of increasing permeability with 

porosity, it can also be seen that there is a wide scatter of points around this trend which is 
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Figure 7: Permeability- Porosity Crossplot 

 

because of “grain size, grain sorting and clay content variations that are properties of fluvial 

sandstone reservoirs” (Jensen, et al., 2000). Note that, porosities range from 5.5% to 38.6%. 

However, a constant porosity of 23.4% had previously been used for evaluating flood 

performance (Cronquist, 1968; Hansen, 1977; Youngren and Charlson, 1980; Senocak et al., 

2008). Air permeabilities vary from less than 0.1 md up to 4440 md. Note that the permeability 

values are generally less than 1000 md except for one high permeability zone in the interval from 

10,367 ft to 10,379 ft subsea in Little Creek Unit Well No 27-14 (also called the Solomon-

Atkinson Unit No. 1) (Smith, 1973). Note also that there is a line of permeability values at 0.1 
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md that may indicate a measurement limit of the permeameter used. Permeability values at or 

lower than 0.1 md were included in the core study if the values were determined to be from the 

main part of the sand body (i.e. within the perforated interval or within the SP deflection 

indicating the Q & Q2 zones).  

The arithmetic mean of the porosity values and the geometric mean of the permeability 

values including all data points from each cored well are 24.3%, and 33.8 md, respectively. For 

more accurate results, these variables were also calculated using data from 45 wells which had 

more than 15 measured data points per well. However, the results did not change drastically with 

an arithmetic mean porosity value of 24.1% and a geometric mean permeability of 32 md. The 

geometric mean is defined as the Nth root of the multiplication of a set of N positive numbers. 

The average of data distributed log-normally can be approximated by calculating the geometric 

mean (Smith, 1973). Permeability is a good example of a random variable with an approximately 

log normal distribution, so the geometric mean of permeability would be more representative 

than the arithmetic mean for the average permeability of the reservoir (Smith, 1973). 

Subsequently, porosity-thickness (φh) and permeability-thickness (kh) of the cored 

interval for each cored well were calculated. Using these core derived φh and kh values, maps of 

these parameters were generated throughout the field using a database and mapping software 

package called Dynamic Surveillance System (DSS). This tool uses a standard nearest neighbor 

mapping procedure whereby the calculated value at a point is the average of each of the point 

values within a radius of influence divided by the squared distance from the calculation point to 

each known value (McMurray, 2008). These maps are shown in Figure 8 where darker areas 

correspond to larger values. The range of kh values was from 1000 to over 5000 md-ft while φh 
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values varied from 0.877 to over 13.241, across the field (Senocak, et al., 2008). The variation in 

porosity affects pattern volumes and original oil in place estimations. Using the pattern average 

porosities rather than the field average porosity resulted in a 5% increase in estimated oil in place 

for the field.  

 

 

Figure 8: Maps of φh (left) and kh (right) from wells in the core study 

 

3.3 Little Creek Channels 

An important factor in the application of a CO2 flood such as Little Creek is an 

understanding of reservoir heterogeneities and the recognition of the main flow channels in the 
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reservoir in order to evaluate sweep efficiency. Figures 9 through 11 are ancient Little Creek 

Field channels as interpreted by Smith (1973) and Werren, et al. (1990). Smith (1973) using 

information from a Shell internal report stated that the Q and Q2 sandstones were point-bar 

deposits characterized by a meandering river system as shown in Figure 11 (from Smith, 1973). 

Figure 11 indicates the feasible point-bar trend and the main channel. Based on Werren’s 

explanation, Smith (1973) stated that the Q2 sand in the south part of the field must have had 

lower river energy than the Q sand as well as lower energy than the other Q2 sands seen in the 

reservoir.  

 

 

Figure 9: Interpreted depositional model (from Werren, et al., 1990) 
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Figure 10: Q marker to Top Q sandstone isopach map (from Werren, et al., 1990) 
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Figure 11: Little Creek Ancient Channel (from Smith, 1973) 

 

Raj et al. (2004) defines river meandering as “an inherent characteristic of drainages in an 

alluvial plain”. The broad channel system of a river tends to deposit sediment depending on 
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“planform geometry” (Raj, et al., 2004). Kamal (2006) shows a map and side view (cross-

section) of a channel. He pointed out that the flow with highest velocity tends to go from outer 

corner to outer corner as the channel meanders down slope. Figure 12 (from Kamal, 2006) shows 

this interpretation. The highest velocity flow in the river tends to produce a smooth bed in the 

main part of the channel; however, the high velocity flow cuts deeper along the outside of river 

bends and shallower along the inside of river bends. 

 

 

Figure 12: Diagram of a river channel (from Kamal, 2006)  

 

Based on this general geologic understanding, the arrows in Figure 11 are showing the 

fastest current direction. However, Kamal (2006) also concluded that the highest velocity current 

switching from one side to the other generates a “helical flow” facilitating sediment deposition 

towards the inside of the bend. The sediment deposition would be fine-grained in the shallower 

parts of the river because the flow velocity would be lower. 

In 1990, Werren, et al. (1990) suggested that the depositional feature for the Little Creek 

Field could be interpreted as shown in Figure 9. This figure shows how the wide meandering 
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streams deposited the Q point-bars. Lighter regions correspond to river sand prior to 

abandonment facies. Hamlin and Cameron (1987) also stated that fluvial point bars are the 

typical depositional environment in the Little Creek Field.  

Werren, et al. (1990) introduced a different approach to interpreting the channel sand. 

They suggested that the thickness from the Q marker to the top of the Q sand could be used as a 

channel map and indicates where the deposition of “fine-grained siltstone and mudstone” 

occurred. This map is shown in Figure 10 (from Werren, et al., 1990). They state that this map 

can be viewed as the last position of the river channel. 

3.4 Heterogeneity Measures 

The main objective of the core study was to evaluate the variation of the reservoir 

properties that affect flow. Reservoir heterogeneity has been important in understanding 

reservoir performance for years (Lake and Jensen, 1986). Jensen, et al. (2000) defined 

heterogeneity as “variability that affects flow”. Permeability variations are the most obvious 

sources of heterogeneity. But it is the spatial arrangement of these permeability variations which 

most affects flow behavior. 

A number of heterogeneity measures have been proposed to reflect the heterogeneity of 

reservoirs (Lake and Jensen, 1991). Initially, these heterogeneity measures allowed petroleum 

engineers to develop depletion schedules which better accounted for reservoir heterogeneity. 

Many enhanced recovery resources used these measures to provide a relative value to examine or 

explain the influence of heterogeneity on recoveries. With the development of statistical methods 

and reservoir simulation, heterogeneity measures were often relegated to relative measures of 



 

27 

heterogeneity and were shown to be insufficient to account for short- and long-scale correlation 

structures that may be present in a formation.  

There are a number of quantitative expressions for permeability variation and they are 

summarized in Craig (1971). One of the earliest studies introduced by Miller and Lents (1947) 

used the positional approach technique in which core data from each well in a reservoir was 

divided into intervals of equal sand thicknesses, and the permeabilities for each interval was 

calculated by averaging within each sand thickness interval. They verified the agreement of gas 

cycling performance of reservoirs with this technique. Dykstra and Parsons (1950) evaluated the 

effect of permeability variation on waterflood predictions by using core data. They presented a 

correlation between their value called “coefficient of permeability variation” and recovery values 

from waterflooding. Schmalz and Rahme (1950) also proposed a heterogeneity measure called 

the Lorenz coefficient and attempted to use this coefficient to characterize the permeability 

distribution in a sand zone. In later studies, the Lorenz technique was adjusted by adding 

porosity to the calculation (Lake and Jensen, 1991).  

These two most commonly used measures of heterogeneity in the petroleum industry 

both range from zero to one where higher values (those between about 0.5 and 1) correspond to 

higher heterogeneity (Lake and Jensen, 1986). In other words, a value of zero is for a completely 

homogenous reservoir while a value of one is for an “infinitely” heterogeneous reservoir; 

however, VDP and LC are usually not the same (Jensen, et al., 2000). 

 The Dykstra-Parson coefficient based on permeability distribution is computed as 

(Dykstra and Parsons, 1950; Lake and Jensen, 1991) 
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where “k50 is the median permeability and k84.1 is the permeability one standard deviation above 

k50 on a log-normal probability plot”. Dykstra and Parsons (1950) declared that 50k and 84.1k should 

be read from the straight line or “best-fit line” drawn through the data sorted in decreasing value 

and plotted on log-normal probability paper. Note that the line would be parallel to the base line 

if the reservoir rock was totally homogenous resulting from identical permeability values for all 

samples. The slope of the permeability variation line increases as the heterogeneity increases. 

Figure 13 is an example plot of the permeability data from the Skelly Ralph McCullough Well in 

the Little Creek Field (LCFU # 36-7). For this well, VDP is 0.48.  

 Different definitions of VDP such as “permeability-porosity ratios” and “variable sample 

sizes” have also been presented (Jensen, et al., 2000; Lake and Jensen, 1991); however, these 

definitions were not included in this study.  

The Lorenz coefficient introduced by Schmalz and Rahme (1950) is computed from a 

plot of cumulative flow capacity, Fj versus storage capacity, Cj. The flow capacity and the 

storage capacity are calculated as follows (Jensen, et al., 2000) 
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Figure 13: Example for Dykstra-Parsons Plot of Skelly Ralph McCullough 
Well (LCFU36-7) 

 

where N is the total number of data values and 1 J N.≤ ≤  The partial sums are calculated after 

the data is ranked in decreasing order of k/φ. The Lorenz curve is then created by plotting F 

versus C on a linear graph. The Lorenz coefficient is equal to “twice the area between the Lorenz 

curve and the diagonal” (Lake and Jensen, 1991). Note that the Lorenz curve would be the 

straight diagonal line if the medium was homogenous (i.e. if all samples had the same 

permeability values) (Lake and Jensen, 1991). Increasing levels of heterogeneity with higher 

Lorenz coefficients is associated with higher transmissivity (kh), but lower storativity (φh) 

(Jensen, et al., 2000). Figure 14 is an example Lorenz plot for the Skelly Ralph McCullough 

Well in the Little Creek Field (LCFU # 36-7). For this well, LC is 0.33.  
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Figure 14: Example for Lorenz Plot of Skelly Ralph McCullough Well (LCFU 36-7) 

 

Dykstra-Parson and Lorenz coefficients were calculated for each of the 96 cores in the 

Little Creek Field. This is in contrast to the more common way to present heterogeneity 

information which is on a field-wide basis due to the typically limited amount of core data 

collected. Figure 15 shows a plot of Dykstra-Parsons coefficient vs. Lorenz coefficient for the 

Little Creek data. This plot includes data from both the Q and Q2 sands for each well that has 

more than 15 data points. Wells with fewer than 15 measured values were not included in the 

heterogeneity measures part of the study. The VDP values range from 0.47 to 0.96 with a mean of 

0.45 and a standard deviation of 0.133. The LC values range from 0.22 to 0.75 with a mean of 

0.445 and a standard deviation of 0.11 (Senocak, et al., 2008).  
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Figure 15: Dykstra Parsons Variability vs. Lorenz Coefficient Plot 

 

An attempt was made to correlate pattern performance to these heterogeneity measures. 

For each of the wells in a flood pattern in the field, the heterogeneity measures were compared to 

oil recovery and gross CO2 utilization (defined as the ratio of the cumulative CO2 injected to the 

cumulative oil recovered). Figures 16 and 17 show graphs of incremental EOR versus the 

Dykstra-Parsons and Lorenz coefficients respectively at different values of the hydrocarbon pore 

volumes (HCPV) of CO2 injected. As can be seen from these plots, there is an expected trend 

that oil recovery generally decreases with increasing values of the heterogeneity measures and 

tend to be lowest for the highest values; however, there is a large variation which results in weak 

R2 values. 
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Figure 16: Dykstra-Parsons Coefficients vs. Incremental Oil Recovery Plot 

 

 

Figure 17: Lorenz Coefficients vs. Incremental Oil Recovery Plot. 
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When gross CO2 utilization is plotted against the Dykstra-Parsons and Lorenz 

coefficients (Figures 18 and 19 respectively), a slightly better correlation is observed. In this 

plot, the trendlines for the 50% HCPV CO2 injected and 100% HCPV CO2 injected values are 

nearly parallel to each other; however, the slope of the trendline for the 200% HCPV CO2 

injected data falls off. The reason for the change in slope may be due to a fewer number of data 

points (only a few patterns have reached the 200% HCPV CO2 injected value) or due to gas 

cycling which may be occurring due to gravity or viscous effects more than heterogeneity 

effects. Note that the Dykstra-Parsons and Lorenz coefficients were not correlated in any sense 

to EOR recovery or gross utilization when using the last available data rather than a consistent 

HCPV. Also note that the best correlations were found when the average porosities for each 

pattern were used, rather than the constant field average porosity of 23.4%.  

 

 

Figure 18: Dykstra-Parsons Coefficients vs. Gross CO
2
 Utilization Plot 
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Figure 19: Lorenz Coefficients vs. Gross CO
2 
Utilization Plot 

 

Jensen, et al. (2000) define the coefficient of determination, R2, as that proportion of the 

variability in a data set explained by the model being used to fit the data. This proportion can be 

computed from 
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where iY  is the observed data, and 
^

iY  is the predicted data for a fixed value of iX , as shown in 

Figure 20 (from Jensen, et al., 2000). So, R2 would be equal to 1 if the residual values were zero. 
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Figure 20: The least-squared procedure (from Jensen, et al., 2000) 

 

R2 is also defined as the square of the “sample correlation coefficient”, r, which stands 

for “the product moment correlation coefficient of Bravais and Pearson” (Sachs, 1984) and is 

estimated by 
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where x with a mean of 
_

x  and y with a mean of 
_

y are the two variables, and n is the number of 

data points (Sachs, 1984). The square of the correlation coefficient, corresponds to R2 assuming 

that x and y are bivariate normally distributed, and the relationship between x and y is linear 

(Sachs, 1984).  

The correlation coefficient determines the relationship between the real parameters and 

the fitted regression model (Chatfield, 1983; Jensen, et al., 2000; Sachs, 1984). However, it 

needs to be considered that the best fit line may not be the correct model for evaluating the data. 

residual
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A single point can skew the fit line, causing significantly high residuals (Jensen, et al., 2000). In 

this study, R2 signifies how much the variation in oil recovery and gross CO2 utilization changes 

with respect to reservoir heterogeneity. A lower R2 value is still satisfactory by confirming the 

expected idea. The correlation between the heterogeneity measures and oil recovery and gross 

CO2 utilization could also be statistically significant although the R2 is small.  

Alternatively, another statistical approach called the analysis of variance (ANOVA) can 

be evaluated. R.A. Fisher established this statistical technique to analyze experimental results 

relying on different factors (Sachs, 1984). Gelman (2006) defines ANOVA as “a set of models 

that can be fit to data, and also a set of methods for summarize an existing fitted model”. Sachs 

(1984) mentions that ANOVA assumes normal distribution and estimates the mean of group 

scores. There are different types of ANOVA depending on the effects of one or more treatment 

variables. In this study, the one way ANOVA technique for a single independent variable was 

used (ANOVA: Single Factor). The aim of this analysis is to determine if there is significant 

effect of heterogeneity on oil recovery and gross CO2 utilization. The general form is as follows; 

 EOR = f (Heterogeneity) (7) 

 Gross CO2 Utilization = f (Heterogeneity) (8) 

The one way analysis of variance can be defined as (Sachs, 1984) 

 total within betweenSS SS SS= +  (9) 

where withinSS is “the sum of squares of the deviations of the observed values from the 

corresponding sample (group) means” and betweenSS is “the sum of squares of the deviations of the 

sample (group) means from the overall mean” (Sachs, 1984). 

 “The mean sum of squares (MS)” approximates the variances as (Sachs, 1984) 
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where; 

k : number of groups 

n : total sample size 

( 1)k − : degrees of freedom (1 i k≤ ≤ ) 

( )n k− : degrees of freedom (1 ij n≤ ≤ ) 

_

.ix  : sample average 

_
x  : overall (grand) mean 

A larger value of 
^

between

within

MS F
MS

=  than criticalF  (found from tabulated values of F for ( 1), ( )k n k− −

and significance level α) indicates that the group means are significantly different (Sachs, 1984). 

The 
^
F term is calculated from (Sachs, 1984); 
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Table 4 shows a comparison between 
^
F  and criticalF  for populations of heterogeneity 

measures against both oil recovery and gross CO2 utilization (SCF/STB). Despite the fact that 

the data fits for the heterogeneity measures vs. EOR recovery and utilization have smaller R2 
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values than we would like them to have, the fact that 
^

criticalF F>>  for all of the correlations 

shows that the trends are statistically significant.  

Table 4: Comparison of F̂  to Fcritical  and Confidence Intervals for T-test 

Heterogeneity 
measure 

HCPV 
CO2, % 

%OOIP EOR Gross CO2 Utilization 

F̂  Fcritical
Confidence 
Interval, % F̂  Fcritical

 Confidence 
Interval, %

VDP 

50 938 4.1 97.7 49 8.9 97.5 

100 569 4.2 91.4 34.8 9.2 94.3 

200 310 4.4 76.4 135 10.6 90.6 

LC 

50 312 4.1 98.1 49.2 8.9 98.4 

100 192 4.2 95.5 34.9 9.2 95.1 

200 78 4.5 82 136 11 92.4 
 

In addition, a standard t-test to evaluate whether the slope of the line was significantly 

different from 0 was conducted for each of the regression lines. Confidence intervals that the 

slopes were significantly different from 0 were 98.4%, 95.1% and 92.4% for the Lorenz 

coefficient slopes for the utilization data and 98.1%, 95.5% and 82% for the recovery slopes. For 

the Dykstra-Parsons coefficient-utilization data, the confidence intervals were 97.5%, 94.3% and 

90.6% and were 97.7%, 91.4% and 76.4% for the recovery slopes.  

One reason for conducting the study was to try to see the main channel of the reservoir. 

Up to this point, it was hard to see the interpreted channels quite as easily as was hoped. As 

previously shown, net sand maps and the interpretation of the depositional setting show a distinct 

fluvial channel. It was difficult to see any sense of the channel with existing porosity-thickness 
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and/or permeability-thickness maps (see Figure 8). It could be that the choice of the particular 

grey-scale color scheme prevents seeing the channel. What would help the characterization effort 

would be a quantitative measure that could aid in the detection of the main channel.  

Surprisingly, the consistency with the channel models was observed when Dykstra-

Parsons and Lorenz coefficients were mapped. Figures 21 and 22 show a similar “nearest 

neighbor” mapping technique from the DSS system where the parameter being mapped is the 

core-derived Dykstra-Parsons coefficient and Lorenz coefficient respectively. Lighter areas 

correspond to lower heterogeneity and are mainly in the heart of the field, while darker regions 

correspond to more heterogeneous values which are positioned around the edges. The lighter 

regions, especially those inside the red lines, are interpreted to be showing the main body of the 

channel. Although this interpretation is subjective, it is consistent with geological interpretations. 

It is also consistent with an evaluation of the channel distribution based on representative SP 

curves in the field as shown in Figure 23 (from Smith, 1973). As can be seen, SP curves which 

show impermeable shale separate from permeable and porous sands are likely to be channel 

deposits and are toward the middle part of the reservoir. Point-bar deposits tend to be at the 

edges of the reservoir. This behavior is a general characteristic of the depositional environment 

(Smith, 1973; Werren, et al., 1990). Blocky SP and bell shaped SP curves are interpreted as 

channel deposition with uniform porosity and permeability. Point-bar deposition is characterized 

by “fining upward” SP response with corresponding “fining upward” permeability values where 

high permeability is found towards the bottom of the zone and lower permeability towards the 

top of the zone (Smith, 1973). 
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Figure 21: Map of Dykstra-Parsons Variability Map 
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Figure 22: Map of Lorenz Coefficient Map 
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● higher values
● lower values
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Figure 23: Representative “Q-Q2” SP curve 

 

An attempt was made to better define the exact contour of the channel instead of creating 

it subjectively. Ordinary kriging of the Lorenz coefficient values was used to obtain contour 

lines. Figure 24 shows the Lorenz coefficient kriging map where dark blue corresponds to lower 

Lorenz coefficients. As can be seen, it is not easy to see the main channel body compared to 

Figure 22. However, it is obviously showing some exceptional regions in the main channel 

where the Lorenz coefficients are higher and also showing the location of the areas which have 

lower Lorenz coefficients. When the Figures 22 and 24 were combined and observed together, 
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the contours of the Lorenz map inside the interpreted channel can be seen much easier. In this 

figure, the interpreted main channel generally follows the contour map, but cross some contours 

in certain places and then follows the contours again. The dashed black line on Figure 25 

deviates from the interpreted (red) line in several places, but is generally showing consistency  

 

 

Figure 24: Lorenz Coefficient Kriging Map 
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with the interpreted result. Note that Figure 22 is the map which was used in this project, but 

attempts were made during the latter stages of the project to better define a method for 

determining the channel.  

 

 

Figure 25: The contour map of the Lorenz inside the Channel 
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The Lorenz coefficient map indicated the channels more clearly compared to the Dykstra-

Parsons map (Senocak, et al., 2008). Jensen, et al. (2000) stated that because the Lorenz 

coefficient calculation does not depend on “best-fit procedures” and thus is prone to less error, it 

is the preferred heterogeneity measure over the Dykstra-Parsons coefficient since it provides 

more accuracy and incorporates porosity as well as permeability.  

From a petroleum engineering standpoint, the variation in permeability can cause 

unfavorable results in miscible displacements, because the injected solvent tends to pass through 

the higher permeability paths (Smith, 1973). However, gravity segregation could mitigate these 

effects if there is decreased permeability near the top of the reservoir (Smith, 1973). The 

importance of variations in permeability was considered in this work instead of assuming that the 

reservoir properties were uniform. Since the heterogeneity measures do not consider the lateral 

continuity of the heterogeneity (they are a measure of the vertical heterogeneity), layer-by-layer 

estimates of permeability and porosity will be incorporated into the simulation model. The 

interpreted channel system using the Lorenz coefficient map offers a way to determine different 

rock types in the reservoir simulation model. This work will be presented in Chapter 4.  
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4. PILOT AREA RESERVOIR SIMULATION 

Chapter 2 discussed the reservoir and production data relevant to this study of sweep 

efficiency. All reservoir parameters used in the simulation model and details on the construction 

of the simulation model based on the core study will be presented in this chapter. The simulator 

used will be introduced briefly. Simulation studies of the CO2 pilot in Little Creek have been 

done in order to evaluate field performance and explore alternative operations that might have 

increased recovery. Results from these studies will be presented in the next two chapters. A 

similar set of studies in an active region of the field will be described in Chapter 6. 

 

4.1 Numerical Simulator 

The IMEX software from the Computer Modelling Group (CMG) with the pseudo-

miscible option is a finite-difference, black oil simulator that was used in this study (Computer 

Modelling Group, 2007). This is similar to the systems used in previous studies. The pseudo-

miscible, black oil fluid model is based on the method introduced by Todd and Longstaff (1972) 

and is used to simulate the miscible displacement performance by representing the reservoir with 

a coarse numerical grid (Computer Modelling Group, 2007). In order to evaluate the mixing 

capability of the miscible fluids within the grid blocks, a mixing parameter ω is introduced 

(Computer Modelling Group, 2007). The ω parameter ranges from zero to one where a value of 

one stands for complete mixing of CO2 and oil while a value of zero is for the case of no 

dispersion (Computer Modelling Group, 2007). For miscible displacement studies, an ω value of 

0.33 is recommended (Todd and Longstaff, 1972) and this value was used for all of the studies in 
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this thesis. The model consists of four-components which are water as the wetting phase, and 

gas, solvent and oil as non-wetting “phases”. In this simulation study, it is believed that the 

pseudo-miscible model is sufficient to represent the CO2 displacement process since it is faster 

and more efficient compared to computationally complex compositional models. The purpose of 

this work is to evaluate sweep and investigate options to improve sweep. This is viewed as being 

dominated by displacement. Had this work focused on current operations at Little Creek, the 

compositional model would be required since the recovery mechanism currently is more likely to 

be dominated by vaporization of the remaining oil rather than displacement. 

4.2 Creating the Model 

The structure map and the net pay isopach maps of the Q and Q2 sands were obtained from 

Denbury Resources Inc (Pennell, 2006), in order to incorporate the structure and thickness 

variation throughout the reservoir into the model. This is somewhat different than what was 

considered in previous simulation studies at Little Creek where structure and net pay were 

represented in a conceptual sense, but not explicitly (Morse, 1979; Youngren and Charlson, 

1980). The maps were digitized by using the WINDIG 2.5 digitizing software (Lovy, 1996). 

While digitizing, three points were chosen as reference points to set the boundaries of the 

environment. As many points as possible were digitized to keep the shape of the reservoir as 

close as possible to the original maps. Figures 26 through 28 show these digitized maps. They 

were brought into the CMG Builder software to begin the process of building the model. 

In the simulation model for the pilot area, the grid system has considerably more grid blocks 

than in previous studies. A 14× 12× 4 block grid system had been used in the Shell studies  
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Figure 26: Digitized Structure Map 

 

 

Figure 27: Digitized Q Isopach Map 

 

Figure 28: Digitized Q2 Isopach Map 
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(Cottrell, 1984; Morse, 1979) while a 10× 10× 10 grid system had been used in a study by 

ARCO (Youngren and Charlson, 1980). In a later Shell study, Cottrell (1984) added several grid 

cells near the edges of the pilot area as a sensitivity to the pattern area pore volume. Our three 

dimensional grid system is 50× 50× 8 with the Q2 sand in the last layer of the pilot area of the 

20,000 grid cells in our study. 5,607 blocks were “pinched out” (i.e. the grid cells had no 

thickness and were removed from the active simulation grid (Computer Modelling Group, 2007). 

The grid was created as a Cartesian grid system with regular 120 ft× 120 ft grid cells over a 40×

46 cell area. The remaining grid cells were expanded in an attempt to include extra storativity 

and flux outside the main reservoir “window”. A 2D view of the grid system with the top of the 

first layer as the color scheme can be seen in Figure 29. The edge of the field to the east and 

south was not very well defined, so the most likely reservoir volume for these portions of the 

reservoir were determined after several adjustments to the model.  

4.3 Aquifer 

A limited water drive mechanism was believed to exist based on the early production 

performance (Cronquist, 1968). An aquifer was attached to the easternmost side of the model in 

order to evaluate the nature of the water influx and its influence on the water production. A 

Fetkovitch aquifer model was selected to represent the water influx in the reservoir. Aquifer size 

and strength were used as history matching parameters because the precise extension and 

strength were not known. The dimensions and ability to flow were changed until a reasonable 

history match result was obtained for primary and secondary recovery. The model aquifer 

properties giving the best history match are given in Table 5.  
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Figure 29: Cartesian grid system used in the simulations for pilot area 

 

Table 5: Aquifer Dimensions and Strength 

Aquifer Properties 
Flux Direction i 

Thickness 15 ft 
Porosity 0.2 
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4.4 Production and Injection Data 

Data provided by Denbury Resources Inc. had some missing production and injection 

data for the pilot area. Different Shell reports, information from the Mississippi Oil and Gas 

Board and well files were used to compile the production and injection history because no single 

source had all of the data required from initial production to the end of the pilot. In case of any 

discrepancies between the reports, data from the Shell reports were used since it was considered 

to be a more reliable source. Most of the production and injection data were obtained from 

Hansen’s Shell report (Hansen, 1977a) by digitizing the data from figures showing the daily 

production and injection for each well because only the cumulative field data was tabulated in 

this report. Figure 30 shows an example of one of the discrepancies between the Shell reports 

and the data provided by Denbury.  

 

 

Figure 30: Cumulative Water Production  
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4.5 Fluid Properties 

The reservoir crude oil was a highly undersaturated black oil with a stock tank gravity of 

39° API and an initial gas-oil ratio of 555 SCF/STB. The initial reservoir pressure and the bubble 

point pressure were 4840 psi and 2150 psi, respectively (Werren, et al., 1990). Initial reservoir 

temperature was 248 °F and minimum miscibility pressure provided by Denbury Resources Inc. 

was 4500 psi. Note that this miscibility pressure is lower than the 4800 psi used by Youngren 

and Charlson (1980) and is also on the low side of the CO2-recombined fluid critical point of 

4700 psi ±300 psi measured by Orr (1976). Reservoir conditions and reservoir properties of the 

field were also given in Table 3. The miscibility assumption between CO2 and Little Creek crude 

oil was shown to be valid based on the study of Morse (1979). The following table from Morse 

(1979) gives the C1 through C6 mole fractions. 

Table 6: Hydrocarbon Components 

Component Mole, % Liquid Volume % 
Hydrogen-Sulfide - - 
Carbon Dioxide 0.43 0.15 

Nitrogen 0.85 0.34 
Methane 27.67 8.33 
Ethane 8.69 3.43 
Propane 5.41 3.01 

iso-Butane 1.22 0.80 
n-Butone 3.16 2.01 

iso-Pentane 1.91 1.41 
n-Pentane 1.81 1.33 
Hexanes 4.64 3.81 

Heptanes Plus 44.21 75.38 

Heptanes Plus: 
Specific Gravity 60°/60° = 0.8472 

API @ 60 °F = 35.5 
Molecular Weight = 222 
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In the simulation model, PVT data were obtained from Fair’s PVT data analysis (Fair, 

1987). Fair analyzed 72 PVT data points including laboratory analysis of fluid samples collected 

from different wells between 1958 and 1966. These fluid samples were below the measured 

bubble point pressure. The quality of the data was questionable because of variations in the 

sampling conditions and laboratories used (Fair, 1987). After performing a regression analysis on 

the 72 PVT data points, Fair concluded that some data with bubble point values less than 1900 

psia were not representative of the original reservoir fluid because the flowing BHP was as large 

or larger than the measured bubble point. He neglected these samples in his analysis. 

CO2 properties required for the solvent PVT table in the simulation model were obtained 

from the Chemistry WebBook of National Institute of Standards and Technology (Watters, 2005) 

at pressure increments of 200 psia from 100 to 5100 psi 248 °F. The volume and density 

information obtained from this reference were used to compute the solvent expansion, formation 

volume and compressibility factors at each pressure.  

4.6 Development of the Model Based on Core Study 

Much of the initial input data for the reservoir properties shown in Table 3 were obtained 

from the previous Shell studies. However, there are some fundamental differences compared to 

the previous simulation studies in terms of using the data. In this simulation model, the porosity 

and permeability values at the well locations from the core study described in Chapter 3 were 

used as will be described in the next section. The effects of previously illustrated heterogeneity 

measures on the model will also be discussed later in this chapter. 
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4.6.1 Porosity and Permeability 

Instead of using constant values for porosity and permeability throughout the field as was 

done in the previous simulation studies (Morse, 1979; Youngren and Charlson, 1980), values 

from the core study at each well were used. Porosity and permeability maps layer by layer were 

created. These reservoir properties from the core study were first determined for each layer 

separately in the pilot area. Porosity and permeability values at the well locations were then 

imported using the CMG Builder software. Layer porosity and x-direction permeability values 

for each grid cell in the layer were generated using the Ordinary Kriging estimation method 

(Computer Modelling Group, 2007). Ordinary Kriging is a geostatistical technique to interpolate 

the input data based on weighted nearest neighbor averaging. Variograms and search areas are 

required for this method. The variogram depends on the data variance as well as the distance 

between the data points (Computer Modelling Group, 2007). Variogram parameters for each 

layer in the model are presented in Appendix A. 

In general, the use of Ordinary Kriging when populating reservoir models provides data 

values that are “too smooth” (Jensen, et al., 2000) and so is likely not the best method to 

characterize permeability and porosity values. Because there is more variability in permeability 

as compared to porosity, it may be a reasonable method for porosity but underestimates 

permeability variations. The intent in this work was not to do uncertainty qualification for the 

Little Creek Field. Geostatistical simulation and multiple realizations would be required for that 

effort. Building the model with multiple layers and basing the permeability and porosity values 

on the available core data was felt to be a reasonable compromise between representing the 

reservoir heterogeneity and having a model that had more heterogeneity than previous studies yet 
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was efficient for evaluating reservoir displacement and sweep enhancement options. Kriging of 

the logarithm of the permeability values would be a better option, but was not done for this part 

of the study. East-west vs. north-south permeability contrast was taken to be 2 to 1 in the pilot 

region based on information in Hansen (1977a). Vertical permeability values were assigned by 

multiplying the x-direction permeability by 0.001 (making 0.58z

x

T
T ≈ ). 

4.6.2  Relative Permeability and Capillary Pressure 

As described in the core study section, the Little Creek Field was found to be moderately 

heterogeneous. An attempt was made to incorporate the heterogeneity of the formation into the 

simulation model. By doing so, the effects of heterogeneity in the reservoir formation were 

investigated (especially the Lorenz coefficient map). It was observed that there was only a slight 

correlation between breakthrough times and the Lorenz coefficient map. However, there was 

enough to give some idea about the possible rock types. 

Figure 31 shows the Lorenz coefficient map and the interpreted channel in the pilot area. 

The early cumulative water production for individual wells in the pilot area is shown in Figure 

32. It can be seen that Well 1-10 began producing water essentially upon initial completion 

which could indicate that the well was completed in a transition zone. It can also be observed 

that several of the other wells produced water after a short delay presumably due to aquifer 

support. Also, note that nearly all of the wells had drastic increases in water production which 

indicated the waterflood response from early 1963 to late 1964.  

A comparison of the Lorenz coefficient map and breakthrough times suggests that water 

flow is easier in the regions where the Lorenz coefficients are smaller. The explanation behind 
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this interpretation is based on the fact that water moves from the easternmost side (see Figure 

33). For instance, Well 1-10 began to produce water immediately as mentioned before and was 

followed by Well 1-2 and Well 1-6. The water movement from Well 1-2 and Well 1-6 to Well 1-

3 and Well 1-12 is faster than from Well 1-10 to Well 1-11. 

Relative permeability relationships were the subject of much discussion in the previous 

simulation studies. The original relative permeability curves generated by Core Laboratories 

during field development were always subject to revisions. The simulation models developed by 

Morse (1979) and Fair (1987) had resulted in not producing enough water when the original 

relative permeability curves were used. In both reports, water relative permeability curves were 

altered. They were altered to allow the water to flow easier and reduced the oil flow a bit. 

 
Figure 31: Map of the Lorenz Coefficient in the Pilot Area 
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Figure 32: Cumulative Water Production Values 

 

Figure 33: Water Saturation Profile before Waterflooding in the Pilot Area 

Cumulative Water Production for Individual Wells

Time (Date)

C
um

ul
at

iv
e 

W
at

er
 S

C
 (b

bl
)

1959 1960 1961 1962 1963 1964 1965 1966
0

10,000

20,000

30,000

Well 1-3Well 1-3iwWell 1-4Well 1-4iw

Well 1-6Well 1-6iw

Well 1-7Well 1-7iw

Well 11-2

Well 2-1
Well 2-2Well 2-3

Well 2-7

Well 36-13 Well 36-14Well 36-15Well 36-15iw

ake prod 1

ake prod 2 17,000 18,000 19,000 20,000 21,000 22,000 23,000 24,000 25,000 26,000 27,000

17,000 18,000 19,000 20,000 21,000 22,000 23,000 24,000 25,000 26,000 27,000

15,000
16,000

17,000
18,000

19,000
20,000

21,000

15
,0

00
16

,0
00

17
,0

00
18

,0
00

19
,0

00
20

,0
00

21
,0

00
22

,0
00

23
,0

0

0.00 1265.00 2530.00 feet

 0.00  0.25  0.50  0.75  1.00 km

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Water Saturation 1963-01-01     K layer: 1



 

58 

In this simulation model, two rock-type zones were defined based on the analysis of the 

water production values and the map of the Lorenz coefficients in the pilot area indicating that 

some of the water production could be due to poor quality rock. Figure 34 indicates the two rock 

regions set in the simulator. The red region corresponds to a rock-type which was assumed to be 

a lower quality region (i.e. more heterogeneous) while the blue region corresponds to an assumed 

homogeneous region based on the Lorenz coefficient map. The more homogeneous rock region 

used the same oil and water relative permeability curves as in the study by Fair (1987). In the 

more heterogeneous rock region, the oil flow was lowered a bit and had much higher curvature. 

The water relative permeability values were generally lower in this region as well, but with 

similar curvature as in the work by Fair (1987). Figure 35 shows the relative permeability curves 

used in this work.  

Cottrell (1984) stated that it was believed that the effect of the oil-water capillary 

pressure curves on overall performance in the pilot area was weak. In this work. capillary 

pressure curves in the blue region were deemed negligible based on the thought that this region 

was more homogeneous or of higher quality. Oil-water capillary pressures were considered to be 

essential in the more heterogeneous region (red region) as evidenced by the interpreted transition 

zone production in Well 1-10. This “poor” rock region was located out of the main reservoir 

channel viewing it as something like an overbank deposit or the edges of the point bars. The 

capillary pressure curve used in Fair (1987) and those used in this work are shown in Figure 36. 

The capillary pressure relationship in Fair (1987) was obtained by a review of the petrophysical 

properties of Little Creek by Shannon (1984). In that review, Shannon generated one average 

curve from the capillary pressure data available from 36 air-mercury measurements on core 
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plugs from Little Creek. It was noted that the relationship was realistic based on saturation 

profiles viewed in the field (Fair, 1987). 

 

Figure 34: Rock-type regions set in the simulator 

 

Figure 35: Relative Permeability Curves 
used in the simulation 

 

Figure 36: Capillary Pressure Curves 
used in the simulation 
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4.7 History Matching Results 

Primary, secondary and CO2 flood responses were simulated and history matched in the 

pilot area. The reason behind simulating the full history was to provide an estimate of the fluid 

saturations before the CO2 flood started and to provide an accurate representation of the CO2 

response with minimal adjustments of the model to account for the complex response to the CO2 

flood. Oil production rates were used as the operating constraints for the history match. In some 

instances, total fluid production is required as a primary constraint if oil saturation values fall too 

low. That did not occur and the model was able to produce the specified oil rates throughout the 

history. As a result, oil rates are not shown in the history match plots. 

In early versions of the model, 4 layers were used instead of 8. These initial attempts to 

match the history in the pilot area under the oil constraint mode resulted in a failure of the model 

to produce enough water during CO2 flooding. The first acceptable match of the cumulative 

water production history was obtained when two rock regions based on core analysis were 

applied into the model. Additionally, gravity segregation of CO2 into the upper layers occurred 

quite rapidly causing high solvent rates. Based on these results, the model was switched to an 8-

layer model and vertical permeability was decreased which provided improvement in both water 

and solvent production in accordance with historical performance.  

Wells in the pilot area are shown in Figure 37. The pilot was ¼ of an inverted nine-spot 

pattern. Fluid was kept inside of the test pattern by five water injection wells (Wells 1-2, 1-3, 1-

4, 1-5 and 1-12). Dark colored boxes in the figure correspond to production wells, whereas light 

colored ones are the water injection wells. 
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Figure 37: Wells in the Pilot Area 

 

Pilot operations began with the initiation of water injection into the planned CO2 injector 

and into the five injectors at the end of August, 1973. The intent of this injection was to increase 

the reservoir pressure from 4440 psi to above the minimum miscibility pressure (Hansen, 1977a). 

After December 1975, Well 1-2 was shut in and was no longer used as a water injection well. 

Well 36-15 was converted to a water injection well to substitute for Well 1-2 (Hansen, 1977a). 

Well 1-10 was used as the CO2 injector. Shale barriers on the east and south side of the pilot area 

along with good productive capabilities of the wells, their nearness to the central production 

facilities and compressors, and the idea of negligible gravity effects because of the low structural 

dip in this region were some of the reasons for the selection of this part of the field as the pilot 

area (Hansen, 1977a; Smith, 1973). Pilot area cumulative production and injection history 

including primary and secondary recovery can be seen in Figure 38. Additionally, Figure 39 

shows the water injection performance for each well in the pilot area. 
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Figure 38: Cumulative Production and Injection in Pilot Area 

 

 

Figure 39: Cumulative Water Injection for Each Well 
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The area-wide history match to the cumulative water production between the years of 

1958 and 1978 is shown in Figure 40. The field history matched result is quite good. In order to 

verify the model, history matches for each individual well are also shown. Figures 41 and 42 

show the cumulative water production results including primary and secondary recovery for each 

individual well, where the red circles represent the observed water production data, and the blue 

solid line is the simulated water production response. As can be seen, the actual water production 

data and the simulated ones for each individual well are in good agreement. Figure 41 show 

wells that were deemed to have “good” matches while Figure 42 shows wells that have slightly 

poorer matches. Additionally, cumulative gas production for the area is shown in Figure 43. 

Simulated gas production during primary and secondary recovery also matches the actual gas 

production data reasonably well.  

 

 

Figure 40: Field Water Production 
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Figure 41: Individual Well History Matches to the Cumulative Water Production  
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Figure 42: Individual Well History Matches to the Cumulative Water Production 

 

Figure 43: Pilot Area Cumulative Gas Production History Match  
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Water production rates for each well are shown in Figures 44 and 45. Although the water 

production rate matches for the individual wells are not quite as good as the cumulative ones, 

they are still quite good and are a better indicator of possible model mismatches compared to the 

cumulative graphs. For instance, the model started to produce water in several of the wells a little 

earlier than history. It is also possible that the earliest water production data may not be recorded. 

The simulated water rates for each well in Figures 44 and 45 also show that the model missed 

some peak points of the water production.  

History matching of the CO2 flooding period was more challenging than the 

waterflooding period. Since it is a “window model” and the pilot area was shut in starting from 

the end of waterflooding until the initiation of the CO2 flooding, the primary difficulty 

encountered was accounting for the flux into and out of the model region. This difficulty was 

overcome by using fake water injector and fake producer wells. In the early years (during 

secondary recovery), these wells were controlled by bottom-hole pressure according to isobar 

maps from Cronquist (1968) shown in Figures 46 through 48. The boundary conditions in the 

system were set up using these contours. As can be seen, pressure decreases during 

waterflooding from the easternmost side of the field (where the pilot area is) towards the middle 

part of the field. After June,1964, the BHP constraints for the wells were adjusted based on the 

water production history and kept constant. Our estimation was that this was the most reasonable 

way to handle the flux into and out of the model. The locations of these “fake wells” are shown 

in Figure 29.  
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Figure 44: Individual Well History Matches to the Water Production Rate
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Figure 45: Individual Well History Matches to the Water Production Rate 

 
Figure 46: Isobars and position of flood 

front (July, 1962) (from Cronquist, 1968) 

 
Figure 47: Isobars (April, 1963) (from 

Cronquist, 1968) 
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Figure 48: Isobars and position of flood front (June, 1964) (from Cronquist, 1968) 

 

The final model provided a good history match of water production for both 

waterflooding (see Figures 41 through 45) and CO2 flooding periods which are shown in Figures 

49 through 52. The overall simulated water production compared to the actual values for 

individual wells (Wells 1-6, 1-7 and 1-11) during CO2 flooding are shown in Figures 49 through 

51. The observed and simulated production data are in very good agreement for the individual 

wells during the CO2 flooding period. The quality of the model can also be judged from Figure 

52, which shows a comparison between the simulated and historical CO2 production data.  

Water rates, bottom-hole pressure and water cut values of individual wells during CO2 

flooding are shown in Figures 53 through 58. Although there are some differences, simulated 

water rates match the historical water rates slightly better during the CO2 flooding period 

compared to the waterflooding period.  
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Figure 49: Well 1-11 Cumulative Water Production History Match (CO2 Flooding) 

 

 

Figure 50: Well 1-16 Cumulative Water Production History Match (CO2 Flooding) 

Well 1-11 Cumulative Water Production

Time (Date)

C
um

ul
at

iv
e 

W
at

er
 S

C
 (b

bl
)

1960 1965 1970 1975
2.00e+4

7.00e+4

1.20e+5

1.70e+5

2.20e+5

History
Simulated

Well 1-6 Cumulative Water Production

Time (Date)

C
um

ul
at

iv
e 

W
at

er
 S

C
 (b

bl
)

1960 1965 1970 1975
1.80e+4

2.18e+5

4.18e+5

6.18e+5

8.18e+5

History
Simulated 



 

71 

 

Figure 51: Well 1-7 Cumulative Water Production History Match (CO2 Flooding) 

 

 

Figure 52: Pilot Area Cumulative CO2 Production History Match (CO2 Flooding) 
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Figure 53: Well 1-11 Water Rate History Match and Bottom-hole Pressure 

 

 

Figure 54: Well 1-11 Water Cut History Match 
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Figure 55: Well 1-6 Water Rate History Match and Bottom-hole Pressure 

 

 

Figure 56: Well 1-6 Water Cut History Match 
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Figure 57: Well 1-7 Water Rate History Match and Bottom-hole Pressure 

 

 

Figure 58: Well 1-7 Water Cut History Match 
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Although there was no tabulated pressure information in any of the reports provided, 

there is some information about the reservoir pressure in Cronquist (1968) and Hansen (1977a) 

mentions that the reservoir pressure in the pilot area was around 4400 psig in 1973 before pilot 

operations were started. In Figure 59, it can be seen that simulated average reservoir pressure is 

close to that value in 1973. The influence of the water injection initiated in late 1973 before the 

CO2 flood started, can also be seen in this graph.  

 

 

Figure 59: Average Reservoir Pressure before and during CO2 Flooding 

 

Hansen (1977a) claimed that the pilot area pressure reached about 5500 psig as a result of 

the water injection based on static surface pressure data from shut-in Wells 1-6 and 1-11. He also 
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(Hansen, 1977a). The simulated pressure values in Wells 1-6 and 1-11 were slightly above 5000 

psi by the end of the injection period rather than the reported 5500 psi. The more significant 

effect of the water injection can be seen in bottom-hole pressures of the production wells (see 

Figures 53 through 57). As these figures demonstrate, simulated well bottom-hole production 

pressures were generally higher than the minimum miscibility pressure of 4500 psi.  

Operational problems and unanticipated declines in bottom-hole pressure were 

encountered in Well 1-7 and Well 1-6 (Hansen, 1977a) that dropped these wells below minimum 

miscibility pressure. With the beginning of CO2 operations, the bottom-hole pressure in Well 1-

11 had significantly increased (6300 psig in June, 1974) (Hansen, 1977a). The measured 

maximum bottom-hole pressure in Well 1-11 was 6974 psig in late 1974 and the pilot area 

pressure decreased slowly until pressure from this well declined to 5000 psig in early 1975 

(Hansen, 1977a). The historical observations in Well 1-11 can be seen in its simulated bottom-

hole pressure (Figure 53) but the actual simulated pressure values are consistently lower than 

those stated in Hansen (1977a). He mentioned that the bottom-hole pressure in Well 1-7 drew 

down from 4956 psig in late August 1974 to 3538 psig in October 1974. Hansen (1977a) 

reported that they replaced a 1-inch choke with a 14/64 inch choke to solve this problem. Again, 

the simulated pressure values are not as low as reported, but are consistent with the observations.  

4.8 Keys to the History Match 

The history match results presented relied primarily on two things. First, an adequate 

primary and secondary recovery match which was controlled by the initial saturation distribution 
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and aquifer support. The two rock regions, and corresponding capillary pressure and relative 

permeability curves provided the solution to the initial reservoir response. 

Second, since this is a window model, the saturation distribution at the start of CO2 

operations is a key. This distribution was controlled by the placement of the fake wells since this 

area had good information regarding the pressure and saturation movement from the maps by 

Cronquist (1968). 
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5. EVALUATION OF ALTERNATIVE OPERATIONS FOR THE 
PILOT AREA 

 

According to the history matching results in Chapter 4, the quality of the simulation 

model was verified. Simulations were repeated under different operating scenarios to evaluate 

how the reservoir performance might be affected in the pilot area. This chapter will discuss the 

evaluation of alternative operational strategies to improve sweep efficiency. 

Green and Willhite, (1998) state that many factors such as geology, fluid distributions 

and pattern-geometry effects should be taken into account in the development of a miscible 

displacement operation. They also emphasized that the understanding of reservoir heterogeneity 

is important for the operations. In this part of the study, reservoir analysis was done before 

evaluating the effect of using different simulation models. First, oil recovery was observed by 

examining the remaining oil saturation profile of the model at the end of CO2 operations. The 3D 

oil saturation profile at the end of pilot operations is shown in Figure 60. As can be seen, the well 

(1-10) located in the lowest part of the reservoir had been used for CO2 injection. The elevation 

of the well locations can be seen in Figure 61. Note that the 1-10 well is in the heterogeneous 

part of the reservoir based on the channel description from the Lorenz coefficients map discussed 

previously (see Figure 34). 

According to Figure 60, the south part of the model still has high oil saturation values and 

the oil sweep was mainly deployed towards Well 1-11, especially in the top layers. Rapid 

response to the CO2 flood and consequent oil breakthrough in Well 1-11, as well as previous 

reservoir simulation studies, provided evidence of the east-west and north-south permeability  
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Figure 60: Oil Saturation in 3D view at the end of pilot operations 

 

 

Figure 61: Structure Map of the Top of the Formation in the Pilot Area 
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contrast. In this aspect, our model behavior was similar to the previous reservoir performance 

evaluations. Moreover, Figure 62 shows the solvent saturation profile. In the top layers, the CO2 

continues beyond Well 1-11. The reason for this could be that the east-west vs. north-south 

permeability ratio is 2 to 1 but it could also be that Well 1-11 was not completed in these layers.  

Based on these observations, five alternative cases were constructed to compare the 

sweep efficiency under different scenarios. In all cases, the originally used pattern geometry of ¼ 

of an inverted nine-spot and the five containing water injection wells (Well 1-2, 1-3, 1-4, 1-5 and 

1-12) were kept the same. The limitations and different scenarios for each case are defined in the 

following sections. 

5.1 Case 1 – CO2 Injection from Well 1-6  

In this case, Well 1-6 was used as the CO2 injector and Wells 1-10, 1-7 and 1-11 were 

used as production wells throughout the life of the pilot operations. As in the historical model, 

Well 1-6 was completed in layers 5-7. Three different simulation runs were performed. In the 1st 

run, the CO2 injection well was controlled by CO2 injection rates that were the same as the 

original pilot values in well 1-10 (a total of 3,373 MMSCF). The production wells were 

controlled by a bottom-hole pressure constraint of 5000 psi (above minimum miscibility 

pressure). In the 2nd run, the model was the same as in the 1st run, but included several wells as 

water injectors that were located in the south part of the pattern and originally were perforated in 

shallower zones (Wells 1-14, 1-14A and 1-13). The purpose behind this operation was to try to 

sweep oil trapped in the south part of the pilot area to the producing wells. These new injection  
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Figure 62: Simulated Solvent Saturation in Each Layer with Pilot Well Configuration 
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wells were completed in layers 1-7. The model in the 3rd run is same as that in the 2nd run, but 

production wells 1-10 and 1-11 were completed in all available layers. Well 1-10 was completed 

only in layers 2-6 and Well 1-11 was completed in layers 5-8 in the previous model. Well 1-7 

was originally completed in layers 1-7 and both 1-7 and 1-10 do not have a Q2 layer. Figures 63 

through 65 shows the results of these runs. 

Figure 63 shows that the model in the 3rd run is capable of recovering more oil. A 

comparison of water cut and solvent production rates for each run to the historical values are 

shown in Figures 64 and 65. In the 3rd run, the cumulative oil production during the CO2 

flooding period is around 200,000 barrels of oil. Water cut values are less than was seen in the 

actual pilot. Although there is early CO2 production in all three runs, solvent rates are generally 

at about the same level as in the actual plot.  

 

 
Figure 63: Field Cumulative Oil Production for Case 1 
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Figure 64: Field Water Cut for Case 1 

 

 
Figure 65: Field CO2 Production Rate for Case 1 
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An additional attempt was made to be able to see the sweep in a better sense by using the 

solvent saturation profile for the best scenario. Note that Well 1-6 is structurally higher than the 

original injector. Using Well 1-6 as an injector is then both a more gravity stable process and an 

attempt to sweep oil towards the reservoir boundary rather than away from the boundary. The 

difference between the original operations with Well 1-10 and this case can be seen in Figure 66 

especially in the top layers. The CO2 did not move into the top layer as far. Moreover, Figure 66 

shows that solvent tends to go towards the northwest (towards Well 1-7) which is more obvious 

especially in layers 4-7. Thus, the CO2 does not sweep the same region as the original pilot. The 

recovery for this particular case is better than the original one. More of the solvent seems to be 

staying in the region of study for this case especially in the upper layers. In addition, there are 

fewer isolated areas with high solvent saturations next to areas with much lower solvent 

saturations. This indicates that the solvent seems to be staying within the layer it enters better 

than in the original pilot. 

5.2 Case 2 – CO2 Injection from Well 1-7 

In this case, Well 1-7 was used as the CO2 injector and Wells 1-10, 1-6 and 1-11 were 

used as production wells. Well 1-7 was originally completed in the first through seventh layers. 

For this case, the well was completed only in the lower layers (layers 5-7). The same scenarios 

and limitations were applied as was done in the previous case. Figures 67 through 69 show the 

results of the well responses to the each different operation. Figure 67 shows that the model used 

in the 3rd run is producing significantly more oil than history. A comparison of water cut and 

solvent production rates for each run to the historical values are given in Figures 68 and 69. The



 

85 

 

Figure 66: Solvent Saturation Profile for the best scenario in Case 1 
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Figure 67: Field Cumulative Oil Production for Case 2 

 

 

Figure 68: Field Water Cut for Case 2 

Field Cumulative Oil Production

Time (Date)

C
um

ul
at

iv
e 

O
il 

SC
 (b

bl
)

1974 1975 1976 1977 1978 1979
2.00e+6

2.10e+6

2.20e+6

2.30e+6

History
CO2 Inj: Well 1-7
CO2 Inj: Well 1-7, Add Water Injectors
CO2 Inj: Well 1-7, Add Water Injectors, Perf.

Field Water Cut

Time (Date)

W
at

er
 C

ut
 S

C
 - 

%

1974 1975 1976 1977 1978 1979
0

20

40

60

80

100

History
CO2 Inj: Well 1-7
CO2 Inj: Well 1-7, Add Water Injectors
CO2 Inj: Well 1-7, Add Water Injectors, Perf.



 

87 

 
Figure 69: Field CO2 Production Rate for Case 2 

 

cumulative oil production in the 3rd run is approximately 218,000 bbl during the tertiary recovery 

period. Water cut values and CO2 production rates are generally at the same level as history, but 

there is again early CO2 breakthrough. 

Figure 70 shows the solvent saturation values in each layer for the best scenario. There is 

again success in preventing CO2 deployment into the top layers. Based on Figure 70, most of the 

solvent moves oil toward Well 1-6. A much smaller amount moves toward Well 1-10, and the 

least toward Well 1-11. Very little CO2 is lost outside the region of interest. Because there is a 

much smaller amount of solvent that has moved towards Well 1-11 and 1-10, it may be possible 

to continue the injection process by shutting in Well 1-6 if solvent rates are too high and 

continue to recover more oil. 
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Figure 70: Solvent Saturation Profile for the best scenario in Case 2 
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5.3 Case 3 – CO2 Injection from Well 1-11 

In this case, everything is the same as Case 1 and 2 except that CO2 is injected into Well 

1-11 which is completed in the fourth through eighth layers, and Wells 1-10, 1-6 and 1-7 are 

used as the production wells. The results for this case can be seen in Figures 71 through 73. The 

best response is again from the 3rd run, and 230,000 bbl of oil is produced during the CO2 

injection period. Water cut values in this run are lower than and CO2 production rates are 

generally at about the same level as the historical values. 

 

 

Figure 71: Field Cumulative Oil Production for Case 3 
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Figure 72: Field Water Cut for Case 3 

 

 

Figure 73: Field CO2 Production Rate for Case 3 
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Figure 74 shows the solvent saturation profile for the best scenario. This time the solvent 

deployment to the top layers is again much less than the original pilot. A large amount of CO2 is 

deployed throughout the region of interest and contacts most of the oil between Wells 1-6 and 1-

10. Additional recovery may be possible as Well 1-7 has not had significant contact with solvent, 

but the areal extent of this region in each of the layers is smaller than in the previous case.  

Cases 1 through 3 provide significantly higher oil recovery than historical values. Much 

of this additional recovery is by moving oil out of the southern area and by completing additional 

layers to allow more solvent to enter and sweep oil out of those layers. These both may be model 

artifacts; however, monitoring the remaining oil saturation profile provided the capability to 

examine the reservoir development and observe oil possibly trapped in parts in the reservoir. 

Operational changes based on these observations could then be implemented to improve the 

recovery.  

A summary describing the different scenarios for Cases 1 to 3 can be seen in Table 7 

5.4 Case 4 – WAG Technique 

Undesirable mobility ratios due to the low viscosity of the displacing fluid compared to 

the displaced fluid cause poor sweep efficiency (Green and Willhite, 1998). In 1958, Caudle and 

Dyes developed the water-alternating-gas (WAG) process by suggesting the injection of water 

and gas alternately to alleviate this problem (Green and Willhite, 1998). WAG injection ratios 

generally range from 0.5 to 4 volumes of water per volume of solvent at reservoir conditions 

(Green and Willhite, 1998). 



 

92 

 

Figure 74: Solvent Saturation Profile for the best scenario in Case 3 
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Table 7: Summary of the Cases 1-3 

Cases  EOR 
Type 

Constraints Injector Run 
# 

Additional  
Operations 

Injector Producer   

Case 1 

Continuous 
CO2 

Injection 
 

Historical 
CO2 

injection 
rate 

 

BHP = 
5000 psi 

 

Well 1-6 
 

1 - 

2 
1) Use wells 1-14, 1-

14A and 1-13 as 
water injectors 

3 

1)  Use wells 1-14, 1-
14A and 1-13 as 
water injectors  

2)  Perforate wells 1-10 
and 1-11 in all 
layers 

Case 2 
Continuous 

CO2 
Injection 

Historical 
CO2 

injection 
rate 

 

BHP = 
5000 psi 

 

Well 1-7 
 

1 - 

2 
1) Use wells 1-14, 1-

14A and 1-13 as 
water injectors 

3 

1) Use wells 1-14, 1-
14A and 1-13 as 
water injectors  

2)  Perforate wells 1-
10, 1-11 and 1-6 in 
all layers 

Case 3 
Continuous 

CO2 
Injection 

Historical 
CO2 

injection 
rate 

 

BHP = 
5000 psi 

 
Well 1-11

1 - 

2 
1) Use wells 1-14, 1-

14A and 1-13 as 
water injectors 

3 

1) Use wells 1-14, 1-
14A and 1-13 as 
water injectors  

2)  Perforate wells 1-
10 and 1-6 in all 
layers 

 



 

94 

In Case 4, an attempt was made to understand how the oil sweep might be affected if the 

pilot area was operated by a WAG technique. Five different simulation runs for each of the 

previous 3 cases were performed to investigate the impact of WAG ratio and WAG cycles. Both 

CO2 and water were injected in the same well in cycles. In the first three runs, a WAG process 

was simulated consisting of one year CO2 injection followed by one year of water injection 

performing at WAG ratios of 1:1, 1:2 and 4:1 respectively (HCPV of CO2 injection was always 

kept the same as the original values, and the injected water amount was calculated based on the 

specified WAG ratio). In the last two runs, simulations of 3 months of CO2 injection and 3 

months of water injection were followed by one month of CO2 injection and one month of water 

injection. A WAG ratio of 1:2 was used for these runs.  

Figures 75 through 77 shows the cumulative oil, water cut and CO2 production rates for 

the runs using Well 1-6 as an injector compared to the best recovery from Case 1 (Run 3). 

During the WAG process, the highest cumulative oil production was about 265,000 bbls of oil 

(when the WAG ratio is 1:2 with one month cycle). This is more than twice the amount of oil 

produced during the continuous CO2 flood pilot and about 15% more than the simulated oil 

produced from the equivalent continuous injection model. Note that there is not much difference 

between the historical water cut and the one in this run (it is even slightly less). There is still 

earlier breakthrough in the solvent production, but the cumulative CO2 production is about 1,730 

MMSCF which is much less than the 2,740 MMSCF in the base run (3rd run of Case 1). Note 

that the total CO2 production in the WAG simulation (1,400 MMSCF in March, 1977) is also 

smaller than the historical value (about 1,760 MMSCF in March, 1977 which is the last data 

obtained).  
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Figure 75: Field Cumulative Oil Production (Well 1-6 is injector) 

 

 

Figure 76: Field Water Cut (Well 1-6 is injector) 

Field Cumulative Oil Production

Time (Date)

C
um

ul
at

iv
e 

O
il 

SC
 (b

bl
)

1974 1975 1976 1977 1978 1979
2.00e+6

2.10e+6

2.20e+6

2.30e+6

2.40e+6

2.50e+6

History
Run 3
WAG 1:1 (1 year cycle)
WAG 1:2 (1 year cycle)
WAG 4:1 (1 year cycle)
WAG 1:2 (3 month cycle)
WAG 1:2 (1 month cycle)

History
CO2 Inj: Well 1-6, Add Water Injectors, Perf.
WAG 1:1 (1 year cycle)
WAG 1:2 (1 year cycle)
WAG 4:1 (1 year cycle)
WAG 1:2 (3 month cycle)
WAG 1:2 (1 month cycle)

Field Water Cut

Time (Date)

W
at

er
 C

ut
 S

C
 - 

%

1974 1975 1976 1977 1978 1979
0

20

40

60

80

100

History
CO2 Inj: Well 1-6, Add Water Injectors, Perf.
WAG 1:1 (1 year cycle)
WAG 1:2 (1 year cycle)
WAG 4:1 (1 year cycle)
WAG 1:2 (3 month cycle)
WAG 1:2 (1 month cycle)



 

96 

 

Figure 77: Field CO2 Production Rate (Well 1-6 is injector) 
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the runs using Well 1-7 as an injector compared to the best run for Case 2 (Run 3). The best 

cumulative oil production is approximately 310,000 bbl. The oil is recovered at a water cut 

relatively consistent with history. The solvent production is again earlier than historical data and 

the cumulative CO2 production is about 2,560 MMSCF. This is smaller than the 3,060 MMSCF 

in the base run (3rd run of Case 2) but is higher than the historical value (about 1,760 MMSCF in 

March, 1977). In this case, a comparison of the cumulative solvent oil ratio during CO2 flooding 

is important. It is 8 MSCF/bbl in March, 1977 while it was 14.7 MSCF/bbl for the same month 

in the historical data (see Figure 81 ). 

Field CO2 Production Rate

Time (Date)

So
lv

en
t R

at
e 

SC
 (f

t3
/d

ay
)

1974 1975 1976 1977 1978 1979
0.00e+0

2.00e+6

4.00e+6

6.00e+6

8.00e+6

1.00e+7

History
CO2 Inj: Well 1-6, Add Water Injectors, Perf.
WAG 1:2 (1 year cycle)
WAG 1:1 (1 year cycle)
WAG 4:1 (1 year cycle)
WAG 1:2 (3 month cycle)
WAG 1:2 (1 month cycle)



 

97 

 

Figure 78: Field Cumulative Oil Production (Well 1-7 is injector) 

 

 

Figure 79: Field Water Cut (Well 1-7 is injector) 
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Figure 80: Field CO2 Production Rate (Well 1-7 is injector) 

 

 

Figure 81: Field Cumulative Solvent-Oil Ratio (Well 1-7 is injector) 
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A comparison of the cumulative oil, water cut and CO2 production rate for the runs using 

Well 1-11 as an injector can be seen in Figures 82 through 84. In the best response to this 

operational process, the cumulative oil production is approximately 284,000 bbl. The oil is 

recovered at a relatively lower value of the water cut than seen in the historical data. There is still 

earlier breakthrough of the solvent, but the cumulative CO2 production is at a value of about 

1,900 MMSCF in the WAG runs rather than about 2,830 MMSCF in the base model run (3rd run 

of Case 3). The total CO2 production for this model is slightly lower than the historical value 

(1,570 MMSCF vs. about 1,760 MMSCF in March, 1977).  

 

 

Figure 82: Field Cumulative Oil Production (Well 1-11 is injector) 
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Figure 83: Field Water Cut (Well 1-11 is injector) 

 

 
Figure 84: Field CO2 Production Rate (Well 1-11 is injector) 
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The results of these scenarios for each different CO2 injector indicate that one year of 

CO2 injection and one year of water injection used in the first three runs produce much more oil 

than history. Different WAG ratios with this cycle did not change the oil recovery significantly, 

but did increase the water cut. More frequent cycles of WAG injection with a 1:2 WAG ratio 

increased the oil recovery more for each different injector. Figure 85 shows a comparison of the 

different CO2 injectors in terms of cumulative oil production as a function of time. The best oil 

recovery is obtained when Well 1-7 is used as a CO2/water injector with a 1:2 WAG ratio in one 

month cycles. Thus, it can be concluded that a WAG process using the 1:2 ratio and with one 

month cycles injecting in Well 1-7 would yield the maximum incremental oil recovery in the 

pilot area.  

 

 
Figure 85: Comparison between the best recoveries from all runs for each injector 
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Additionally, the WAG process was simulated using Well 1-10 as a WAG injector 

without any additional operations (Well 1-10 was the original CO2 injector). The aim was to 

understand the difference between continuous CO2 injection and the WAG process under 

original operations. 

Figures 86 through 88 show the cumulative oil, water cut and CO2 production rate for the 

runs using Well 1-10 as an injector. The best cumulative oil production is approximately 177,000 

bbl during CO2 flooding. In that run, the oil is recovered at a water cut relatively consistent with 

history. The solvent production is again earlier than historical data, but it is much lower than 

history from late 1975 to late 1976. Note that according to these results, the pilot area would 

recover 77,000 bbl more oil if it was operated using the WAG process rather than continuous 

CO2 flooding.  

A summary of the different scenarios for Case 4 is shown in Table 8. 

 
Figure 86: Field Cumulative Oil Production (Well 1-10 is injector) 
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Figure 87: Field Water Cut (Well 1-10 is injector) 

 

 

Figure 88: Field CO2 Production Rate (Well 1-10 is injector) 
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The solvent saturation profile for the best scenario (when Well 1-7 was used as a 

CO2/water injector at a WAG ratio of 1:2 with one month WAG cycle) can be seen in Figure 89. 

The CO2 in this case moves away from the injector in a nearly radial pattern when compared to 

Figure 70 showing the solvent saturation values for the continuous CO2 displacement. This 

seems to show that the model stabilized the solvent front, which provides a more favorable 

mobility ratio to increase the sweep efficiency. 

However, it needs to be stated that reservoir simulation tools are useful in the prediction 

of fluid movement, but not in the simulation of operational problems. Hansen (1977a) stated that 

there were operational problems when water and CO2 were mixed in this reservoir. He mentined 

that all producers produced considerably large amount of sand during pilot operations. Well 1-7, 

which is located at the edge of the reservoir, had been “sand-fraced” during its water injection 

life and was the most problematical source in terms of sand production (Hansen, 1977a). This 

could be the reason why the water alternating gas process was never tried at Little Creek. 

Reservoir simulations cannot predict operational difficulties, but if there are no operational 

difficulties, then the simulation results show that the WAG process would certainly help. In this 

particular case, a 1:2 WAG ratio with one month cycle is the best choice. 

Attempting to overcome unfavorable mobility ratios between the injected CO2 and the oil 

displaced by the WAG technique yielded better EOR performance than continuous CO2 injection 

in the simulated model. However, one of the other problems with the WAG process mentioned in 

several published materials is the reduction of the displacement efficiency at the pore scale 

especially in water-wet rocks (Green and Willhite, 1998). Unfavorable mobility ratios at the 

solvent and oil interface results in viscous fingering of solvent bypassing the oil. This would  
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Figure 89: Solvent Saturation Profile for the best scenario in a WAG technique (CO2 Injection from Well 1-7) 
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Table 8: Summary of the Case 4 

Cases 
Constraints Additional 

Operations Injector Run 
# 

EOR 
Type Injector Producer 

Case 4 

Original 
HCPV of 

CO2 injected 
and water 

injection rate 
based on 

WAG ratios  
 

BHP = 
5000 psi 

 

1) Use wells 1-14, 
1-14A and 1-13 
as water 
injectors 

2) Perforate wells 
1-10 and 1-11 in 
all layers  

Well 1-6 
 

1 WAG 1:1 
1 year cycle 

2 WAG 1:2 
1 year cycle 

3 WAG 4:1 
1 year cycle 

4 WAG 1:2 
3 month cycle 

5 WAG 1:2 
1 month cycle 

1) Use wells 1-14, 
1-14A and 1-13 
as water 
injectors 

2) Perforate wells 
1-10,1-11 and 
1-6 in all layers 

Well 1-7 
 

1 WAG 1:1 
1 year cycle 

2 WAG 1:2 
1 year cycle 

3 WAG 4:1 
1 year cycle 

4 WAG 1:2 
3 month cycle 

5 WAG 1:2 
1 month cycle 

1) Use wells 1-14, 
1-14A and 1-13 
as water 
injectors 

2) Perforate wells 
1-10 and 1-6 in 
all layers  

Well 1-11 
 

1 WAG 1:1 
1 year cycle 

2 WAG 1:2 
1 year cycle 

3 WAG 4:1 
1 year cycle 

4 WAG 1:2 
3 month cycle 

5 WAG 1:2 
1 month cycle 

- Well 1-10 

1 WAG 1:1 
1 year cycle 

2 WAG 1:2 
1 year cycle 

3 WAG 4:1 
1 year cycle 

4 WAG 1:2 
1 month cycle 
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occur when solvent velocities are higher than water velocities due to smaller water injection 

volumes. Alternatively, more oil might be trapped because of high water saturation at the solvent 

and oil interface. This would occur in the case where too much water injection occurs and water 

velocities are higher than solvent velocities (Green and Willhite, 1998). Thus, an optimum water 

and solvent injection ratio providing equal water and solvent velocities would be important in a 

WAG process.  

Rao, et al. (2004) mentioned that the field performance of WAG floods have been 

disappointing (which might be due to the use of inappropriate WAG ratios) and have yielded 

only 5-10% increases in oil recoveries. Based on this fact, they showed a comparison of a 

conventional view of the WAG process and the interpreted flow pattern considering the natural 

gravity segregation schematically depicted in Figures 90 and 91 (Rao, et al., 2004). As an 

alternative method to the WAG process, the Gas-Assisted Gravity Drainage (GAGD) process 

was introduced by Rao, et al. (2004). An attempt at the application of the GAGD process in the 

pilot area will be provided in Case 5. 

 
Figure 90: Conceptual CO2-WAG process (from Rao, et al., 2004) 
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Figure 91: Probable breakdown of a WAG cycle (from Rao, et al., 2004) 

 

5.5 Case 5 – GAGD Technique 

In this case, the effect of an innovative flood design and well placement technology was 

investigated. The GAGD process attempts to take advantage of gravity effects by providing 

vertical segregation between the injected CO2 and reservoir oil (Rao, et al., 2004). This process 

uses horizontal production wells near the water-oil contact and existing vertical CO2 injection 

wells (Rao, et al., 2004). The purpose of converting the producing wells to horizontals was to see 

if this would enable CO2 to contact larger amounts of unswept oil in the reservoir, taking 

advantage of the gravity override phenomena (Kuuskraa, 2008). Figure 92 shows a diagram of 

the GAGD process. As can be observed from the figure, natural gravity segregation provides the 

accumulation of a CO2 zone at the top of the pay zone and also provides the draining of oil and 

water down to the horizontal producers in the GAGD application. According to the theory in 

Rao, et al. (2004), the volumetric sweep efficiency would be maximized by a CO2 zone moving 
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down and to the sides, providing more sweep of the reservoir. Rao, et al. (2004) also state that 

the natural gravity segregation would assist delaying, or eliminating breakthrough to the 

production well. Additionally, they pointed out that the maximum efficiency could be obtained if 

the reservoir pressure could be kept above the minimum miscibility pressure. In a later study, 

Mahmoud and Rao (2007) concluded that miscible GAGD process could recover almost 100% 

microscopic sweep efficiency and more than 54% in the tertiary mode.  

The models providing the best recovery (3rd case) in the first three cases were used as a 

basis for this part of the study. In the first runs, the vertical production wells were converted to 

horizontal wells and the vertical CO2 injection well (but completed only in layers 1 to 4) was 

kept based on the GAGD theory. Horizontal sections of the production wells were completed in 

the center of the sixth layer (in order to stay away from the water-oil contact). An additional 

attempt was made by converting the injection well to a horizontal well in the top zone to further 

take advantage of the CO2 segregation process. 

 

 
Figure 92: Concept of the GAGD process (from Rao, et al., 2004) 
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The well constraints used were the same as the ones used in other cases in order to be 

consistent. The constraints for the CO2 injection well was the historical injection rate and the 

constraints for production wells were bottom-hole pressures of 5,000 psi. Based on a study by 

Shedid and Zekri (2002), horizontal well lengths longer than 1,000 ft would provide an increase 

in well productivity for horizontal wells under steady-state conditions. Several models were 

simulated to predict the reservoir reaction to changes in the lengths and orientation of the 

horizontal wells. Considering the distances between the wells (especially between Wells 1-7 and 

1-10 when they were used as production wells), a 1,200 ft length of horizontal section was used 

for horizontal production wells in each model. Laterally completed horizontal wells along the 

structure yielded the best recoveries. However, for the last three runs 360 ft length horizontal 

sections provided more recovery. Figures 93 through 95 show the horizontal well configuration 

and lengths which provided the best results for each case.  

 

 

Figure 93: Horizontal Well Configuration 
(when Well 1-6 used as an injector) 

 

Figure 94: Horizontal Well Configuration 
(when Well 1-7 used as an injector) 
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Figure 95: Horizontal Well Configuration (when Well 1-11 used as an injector) 

 

The responses for each run for three different horizontal and vertical injectors are shown 

in Figure 96. In the best scenario, Well 1-7 was a horizontal injector in the top layer, and 213,350 

barrels of oil during CO2 flooding could be recovered. For vertical injectors, the highest oil 

production is about 193,100 bbl when Well 1-6 was used as the injector and Wells 1-7, 1-10 and 

1-11 were used as horizontal production wells. Note that the water cut levels are relatively lower 

than history in this scenario. This confirms the idea that sweep will be enhanced in the reservoir 

without an increase in water production as suggested by Rao, et al. (2004). Also note that solvent 

rates are generally lower than historical values until early 1977 (except when Well 1-7 was used 

as both a vertical and a horizontal injector). However, the production forecasts for Case 5 were 

not as beneficial as was hoped. Although the GAGD process was developed as an effective 

alternative to WAG, the simulated WAG cases produced more oil (almost 310,000 barrels of oil 

when Well 1-7 was a WAG injector vs. the 213,350 for the GAGD case).  
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Figure 96: Field Cumulative Oil Production for Case 5 

 

 

Figure 97: Field Water Cut for Case 5 
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Figure 98: Field CO2 Production Rate  

 

The solvent saturation profile is shown in Figure 99. Because the solvent injector was 

completed in the first layer, there is a high amount of CO2 in the top layers, and relatively less in 

the lower layers. As can be seen, a fair amount of the solvent contacts the region of interest in the 

top layers and drains the fluid down to the horizontal producers. So, the model is obviously 

consistent with the GAGD theory.  

Rao, et al. (2004) mention that gravity-stable gas injection would be best if applied in low 

connate water saturation, thick, highly dipping or reef type light oil reservoirs with moderate to 

high vertical permeability. However, Little Creek has a high connate water saturation (0.56) and 

might not dip enough to be able to take advantage of the natural gravity segregation. Note that 

the vertical permeability values used in the model were fairly low in order to provide the history 
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match. This might be another explanation for the lower oil recovery results. In addition, Little 

Creek might not dip enough to be able to take advantage of the natural gravity segregation. The 

gravity number for the pilot area was around 10-6 when average values for reservoir and fluid 

parameters were used. Thus, the lower recovery results are not a surprise. It is encouraging that if 

an optimal well configuration can be determined, then the GAGD and WAG results can be 

similar for fields like Little Creek that may be sensitive to water injection. 

One additional study was done to be able to compare the WAG and GAGD processes and 

to show if there is correlation of solvent saturation profiles to core and well log data. A cross-

sectional view of the solvent saturation for each layer between Well 1-7 and Well 1-6 as the 

producer is shown in Figure 100 for both the WAG configuration and for the GAGD 

configuration. The solvent migrates through the middle layers in the WAG figure with only a 

small pocket of high solvent saturation near Well 1-7 in the 5th layer. This shows that the solvent 

does not channel to the producer and the WAG process seems to be working as in the theoretical 

pictures (Figure 90). The GAGD configuration also appears to be working as expected. The 

solvent is staying primarily in the top layers and gradually migrates down to the producer. The 

solvent saturation values are larger in the GAGD configuration primarily due to the fact that the 

water saturation value is fixed and the solvent is replacing oil in the GAGD configuration 

whereas the saturation values are clouded by the increased water saturation in the WAG process.  

Figure 101 shows the SP log response and the core porosity and permeability data for 

these wells. Wells 1-6 and 1-7 appear to be in the main part of the channel based on this figure. 

Their porosity values are fairly constant but the permeability values have some variation 

throughout the zone especially in Well 1-6.  



 

115 

 

Figure 99: Solvent Saturation Profile for the best scenario in a GAGD technique at (CO2 Injection from Well 1-7) 
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Figure 102 shows a comparison of the solvent saturation profile between Wells 1-7 and 

1-11 in both the WAG and GAGD configurations. In this case, the WAG displacement is 

showing a slight rounding of the front location and the front has not yet reached the producer 

(Well 1-11 is much farther from the injector than Well 1-6). In the GAGD configuration, there is 

less solvent in the upper layers for this orientation than was seen between Wells 1-7 and 1-6. Part 

of the explanation for this might be that Well 1-11 has an SP profile that looks more like the 

classic point bar profile (Figure 103). In addition, the permeability values are much higher in the 

lower zones than in the upper zones in Well 1-11. Similar behavior can be seen in the profile 

between Well 1-7 and Well 1-10 (Figure 104). Again, Well 1-10 is slightly closer to Well 1-7 so 

more solvent has gotten to Well 1-10 than was seen at Well 1-11. The SP log shape again shows 

something more like a point bar shape and there is again a high permeability zone towards the 

bottom. In addition, there is a high permeability zone at the top of this well that does not appear 

in any of the other wells (Figure 105).  

Note that in all of the above cases there are pockets of low solvent saturation near the 

production well. This likely indicates that there is even more oil that could be recovered and the 

ultimate plateau for the cumulative production is a bit higher. In contrast, the pilot recovery had 

reached its peak prior to termination of the flood.  
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Figure 100: Cross-sectional Solvent Saturation Profile between Wells 1-7 (injector) and 1-6 

for the a) WAG case and b) GAGD case 

    
Figure 101: Core and log data for Wells 1-6 and 1-7 
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Figure 102: Cross-sectional Solvent Saturation Profile between Wells 1-7 (injector) and 1-
11 for the a) WAG case and b) GAGD case 
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Figure 103: Core and log data for Well 1-11 

  
Figure 104: Cross-sectional Solvent Saturation Profile between Wells 1-7 (injector) and 1-10 for the 

a) WAG case and b) GAGD case 

 
Figure 105: Core and log data for Well 1-10 
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A summary of the different scenarios for Case 5 is shown in Table 9. 

 

Table 9: Summary of the Case 5 

Cases  EOR 
Type 

Constraints Run 
# Injector Additional Operations 

Injector Producer

Case 5 

Continuous 
CO2 

Injection 
 

Original 
HCPV of 

CO2 
injected 

and water 
injection 

rate based 
on WAG 

ratios  
 

BHP = 
5000 psi 

 

1 Well 1-7 
vertical 

1) Use wells 1-14, 1-14A 
and 1-13 as water injectors
2) Perforate wells 1-10, 1-
11 and 1-6 in all layers  

2 Well 1-11 
vertical 

1) Same as Run 1 
2) Perforate wells 1-10 

and 1-6 in all layers  

3 Well 1-6 
vertical 

1) Same as Run 1 
2) Perforate wells 1-10 

and 1-11 in all layers  

4 Well 1-7 
horizontal 

1) Same as Run 1 
2) Perforate wells 1-10, 1-

11 and 1-6 in all layers  

5 Well 1-11 
horizontal 

1) Same as Run 1 
2) Perforate wells 1-10 

and 1-6 in all layers  

6 Well 1-6 
horizontal 

1) Same as Run 1 
2) Perforate wells 1-10 

and 1-11 in all layers  
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6. RESERVOIR SIMULATION STUDY OF PATTERN 10-9 

After the successful work done in the previous simulation study, it was believed that the 

understanding gained from modeling the pilot area could be used as leverage for other parts of 

the reservoir. Pattern 10-9 was chosen because it is one of the active regions in the field and 

because there was injection survey information which could be used to compare simulation to 

actual results other than productivity.  

6.1 Development of the Model 

Between the initiation of the pilot study and the initiation of this work, Denbury 

Resources Inc. had updated the Q and the Q2 sand isopach maps (see Figures 106 and 107). 

These maps just include the south part of the field where Denbury continues their operations. 

These maps were used to provide the current information to the model of the pattern. Figures 108 

and 109 show the digitized maps. 

Similar to what was used in the pilot area study, the model for this pattern consists of a 

three dimensional 50× 50× 8 Cartesian grid system (base grid cell sizes were 120 ft× 120 ft). 

The Q2 sand was again located in the bottom layer. 17,046 of the 20,000 cells were active. A 45

× 45 areal section of the reservoir contains the main portion of the pattern and the remaining grid 

cells were enlarged using the same reasoning as in the pilot area model. Figure 110 shows the 

grid system used for Pattern 10-9. 
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Figure 106: Little Creek Updated Q Sand Isopach Map (Walsh, 2007) 
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Figure 107: Little Creek Updated Q2 Sand Isopach Map (Walsh, 2007) 

  

10
20

20 10

10

20

20

10

20

0

0

0
20

20

0

30 30

0

30

0

020
20

0
30

30
0

20

30

0
10

010

20

20

10

0

Pattern 10-9 

½ mile



 

123 

 

Figure 108: Digitized Updated Q Isopach Map 

 

 

Figure 109: Digitized Updated Q2 Isopach Map 

20

20

10

10

10

10

20

20

30

30

30

30

40

40

50

50

50

50
60

60

50

50

40

40

50

50

40

40

10

1 0

20

20
10

10

60

60

30

30

20

20

10

10
40

40

1,000 3,000 5,000 7,000 9,000 11,000 13,000 15,000 17,000 19,000 21,000 23,000

1,000 3,000 5,000 7,000 9,000 11,000 13,000 15,000 17,000 19,000 21,000 23,000

0
2,000

4,000
6,000

8,000
10,000

12,000
14,000

16,000
18,000

0
1,

00
0

3,
00

0
5,

00
0

7,
00

0
9,

00
0

11
,0

00
13

,0
00

15
,0

00
17

,0
00

19
,0

00

 0.00  0.25  0.50  0.75  1.00 miles

0.00  0.50  1.00 km

0 0

10

100

0

20

20

20

20

10

10

0

0

10

10

10

10

0
0

20

20

20

20

10

10

0

0

3030

10

10

0

0

10

10

0

0

30

30

40

40

-1,000 0 1,000 3,000 5,000 7,000 9,000 11,000 13,000 15,000 17,000 19,000 21,000

-1,000 0 1,000 3,000 5,000 7,000 9,000 11,000 13,000 15,000 17,000 19,000 21,000

0
2,000

4,000
6,000

8,000
10,000

12,000
14,000

16,000
18,000

0
2,

00
0

4,
00

0
6,

00
0

8,
00

0
10

,0
00

12
,0

00
14

,0
00

16
,0

00
18

,0
00

20
,0

0

 0.00  0.25  0.50  0.75  1.00 miles

0.00  0.50  1.00 km



 

124 

 

 
Figure 110: Cartesian grid system used in the simulations for Pattern 10-9 
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Development of the model for Pattern 10-9 was much easier than the pilot area because 

the experience of modeling based on the core study was already acquired. Porosity and 

permeability values available at each well were calculated layer by layer in order to create their 

maps as was done previously. However, unlike in the pilot area study, the logarithm of the 

permeability values was used to create the maps instead of using the actual values. The Ordinary 

Kriging estimation method was again used for this region (see Appendix A for variogram 

information). The idea of the two rock types set according to the Lorenz coefficient map was 

applied, and the same relative permeability and capillary pressure curves for the two rock types 

were used in this model. Figure 111 shows the Lorenz Coefficient map and the interpreted 

channel in the Pattern 10-9 area. Pattern 10-9 is mainly inside the channel.  

 

 
Figure 111: Map of the Lorenz Coefficient in the Pattern 10-9 
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The rock type regions set in the simulator are shown in Figure 112. The red region 

represents the heterogeneous part of the field; whereas the blue region represents the 

homogeneous region. Detailed information about these rock types has been given in Chapter 4.  

 

 

Figure 112: Rock-type regions set in the simulator 
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used as the match data. Due to the lack of pressure data in this area, the simulated results will be 

used to check whether producing bottom-hole pressures were above the minimum miscibility 

pressure.  

 

 

Figure 113: Wells in the Pattern 10-9 

 

Pattern 10-9 shown in Figure 113 is an inverted nine spot pattern that becomes more of a 

line-drive orientation over time. Production wells are marked by green solid circles while 

injectors are marked by red solid triangles. Well 10-9 was the initial CO2 injector for this pattern. 

Wells 11-5 and 11-12 were converted to injector wells when they “gassed out”. Pattern 10-9 

cumulative oil production and CO2 injection history for each well can be seen in Figures 114 and 

115. 
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Figure 114: Oil Production for Each Well in Pattern 10-9 

 
Figure 115: Solvent Injection in Pattern 10-9 
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There was no water injection in this particular region, but it is still obvious to see the 

effect of waterflooding done in the surrounding parts of the field on Pattern 10-9. Water injection 

well locations and flood fronts defined by the 10% water-cut line along with estimated reservoir 

pressure contours are shown in Figures 116 through 118 (from Cronquist, 1968). In the field, the 

fluid front was moving towards the region of interest according to these maps. In other words, 

the sweep of oil from the north half and from the south part of the field allowed oil to enter the 

Pattern 10-9 area during the waterflooding period. In addition, CO2 flooding operations in 

adjacent patterns were being developed at the same time as Pattern 10-9. Unlike the pilot area, it 

was very hard to supply the fluid flow from adjacent regions. This issue was resolved by setting 

water and oil injectors and producers at select locations in the expanded portions of the grid 

system to provide the extra fluid inflow and outflow. These wells (labeled “Fake” in Figure 110) 

were controlled by bottom-hole pressure according to the isobar maps provided by Cronquist 

(1968) as was done in the pilot area study. Figures 119 through 121 show the simulated pressures 

for these years which agrees reasonably well with the maps provided by Cronquist (1968). As 

can be seen, pressure decreases from the north and south of the region towards the middle part of 

the field through June 1964. After that time, the bottom hole pressure constraint on these wells 

was adjusted according to water production history and noted operational changes in adjacent 

wells. Note that the wells did not have continuous injection or production. They were one or the 

other at different times depending on the operational history, and the isobar maps from Cronquist 

(1968). Again, the saturation distribution prior to CO2 operations in the area is a key to obtaining 

reasonable match results.  
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Figure 116: Isobars and position of flood 
front (July, 1962) (from Cronquist, 1968) 

 

Figure 117: Isobars (April, 1963) (from 
Cronquist, 1968) 

 

 

Figure 118: Isobars and position of flood front (June, 1964) (from Cronquist, 1968) 
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Figure 119: Simulated Areal Pressure Map (July, 1962) 

 
Figure 120: Simulated Areal Pressure Map (April, 1963) 

 
Figure 121: Simulated Areal Pressure Map (June, 1964) 
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The area-wide history match to the cumulative water production from the productive 

history of Pattern 10-9 is shown in Figure 122. As can be seen, cumulative water production was 

matched quite successfully. The final history matching results of the cumulative water 

production for some wells in the pattern are also shown in Figures 123 and 124 where the red 

circles correspond to the observed water production data, and the blue solid line is the simulated 

water production response. History matching results were generally similar in quality to those in 

the pilot area. History match results for the rest of the wells can be seen in Appendix B.  

 

 

 
Figure 122: Field Water Production 
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Figure 123: Individual Well History Matches for the Cumulative Water 
Production for Wells 10-8 and 11-12 
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Figure 124: Individual Well History Matches for the Cumulative Water 
Production for Wells 10-7 and 10-16 
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6.3   Evaluation of Alternative Operations for Pattern 10-9 

The history matching results for Pattern 10-9 shown in the previous section and in 

Appendix B provide the basis from which to test the model under different operating scenarios 

and investigate how the reservoir response in Pattern 10-9 would be affected by these changes.  

The progress of this section followed the same reservoir analysis methods as was done in 

the pilot area alternative operations section. First, the areal oil saturation profile predicted at the 

end of the history match simulation was examined to see the swept and unswept portions of the 

pattern. The layer by layer oil saturation distribution is shown in Figure 125. The simulator was 

run using all available production and injection data through May 2006 (the time of initiation of 

this study). 

Additionally, the CO2 saturation distribution at the end of the history match was also 

observed. Figure 126 show this solvent profile. The CO2 reaches a large portion of the formation 

in the 4th, 5th, 6th and 7th layers. However, the amount of solvent deployment in the top layers 

decreases gradually, possibly due to the relatively lower permeability values in these layers. So, 

geological properties of the reservoir seem to help control the gravity effects in this part of the 

field more than was seen in the pilot area.  

Note that CO2 injection profile logs were run in the CO2 injection well (Well 10-9) over 

the perforated interval in November, 2006. Injection profile logs determined that the upper 35 ft 

and the lower 5 ft were taking 28% of the injected CO2, and that a 10 ft section (20% of the 

perforated interval) in between was taking the remaining 72% of the solvent. This indicates that 

the injected CO2 may be by-passing much of the oil saturated part of the upper zones. Solvent
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Figure 125: Oil Saturation in 2D View for Each Layer of Pattern 10-9  
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Figure 126: Solvent Saturation in 2D View for Each Layer of Pattern 10-9
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flux magnitude at reservoir conditions is the output parameter from the simulator that provides 

values similar to compare to the log response. This parameter is plotted in Figure 127 and shows 

that the majority of the solvent goes into layers 4-7 (the lower 57% of the reservoir). Based on 

the last data values in this figure, 73% of the solvent flux flows into the lowest 57% of the 

reservoir. This is somewhat different from the log result since there is no high injectivity zone 

above a low injectivity zone at the bottom of the formation. It is likely that there is a higher 

permeability zone that does not appear in the model since there is no core data for Well 10-9. 

However, the results are consistent in that the lower parts of the reservoir appear to be taking 

most of the CO2. Consequently, there is probably still remaining oil especially in the upper layers 

as shown in Figure 125. Note that the CO2 injection wells are located in the structurally higher 

parts of the pattern (see Figure 110) and that all the wells are inside the interpreted main channel 

(see Figure 112). Because of this, the original injection operations may be providing good sweep. 

However, the original well configuration for the pattern, or the miscible displacement process 

used might cause poor sweep efficiency. 

Based on these observations and the knowledge gained during alternative operations part 

of the pilot area study (Chapter 5), different cases with different scenarios were developed in 

order to evaluate options for improving the sweep efficiency. Two different miscible CO2-water 

displacement processes using three different pattern geometries were used to evaluate the 

increase in oil recovery from Pattern 10-9: (1) WAG flood using the original nine-spot pattern, 

(2) continuous CO2 injection and WAG using a five-spot well pattern, (3) continuous CO2 

injection and WAG using a line drive pattern. Three groups of well configurations were used: (a) 

vertical injection (V.I.) and vertical production (V.P.) wells, (b) vertical injection (V.I.) and 
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horizontal production (H.P.) wells, and (c) horizontal injection (H.I.) and horizontal production 

(H.P) wells. Horizontal production wells were completed in the sixth layer, whereas horizontal 

injection wells were perforated in the first layer as was done in the pilot area study. Unlike in the 

pilot area study, during CO2 flooding, the bottom-hole pressures that provided the best history 

match for each production well were used as the operating constraints in all cases for this study. 

In this way, oil recovery comparisons under current operations versus the different scenarios 

would be consistent. The different scenarios and other parameters for each case will be defined 

next.  

 

 

Figure 127: Flux Solvent Magnitude for Well 10-9 
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6.3.1 Case 1 – WAG in a 1:2 Ratio with One-Month Cycles 

Water-alternating CO2 injection at a 1:2 WAG ratio using one-month cycles was the most 

successful technique in the pilot area. Thus, the effects of a WAG process on oil displacement 

were investigated in Pattern 10-9.  

In this case, the original CO2 injection wells (10-9, 11-5 and 11-12) were used as CO2 

and water injectors, alternately. Both CO2 and water were injected in the same well in one-month 

WAG cycles in this case. Five different WAG models were simulated using the existing pattern 

geometry becoming more of a line-drive orientation over time. This is different from what would 

be done using the operating practices of the current operator. Current practice is to convert 

producers to injectors once the wells have reached an uneconomic gas-oil ratio. The aim for this 

part of the study was to show the differences between a WAG process and continuous CO2 

flooding using the same injectors as were used in the history. In the first three runs, the effects of 

three different well configurations were examined. The HCPV of CO2 injected was kept the 

same as in the history; the injected water amount was calculated based on a WAG ratio of 1:2. 

Additionally, two more runs were performed by injecting only half the amount of CO2 and water 

at WAG ratios of 1:2 and 1:1. The reason for doing this was to understand if it was possible to 

improve the economics by reducing the volume of CO2 that needs to be injected into the 

reservoir. Only vertical injectors and producers were used in these two runs. 

The results are shown in Figures 128 through 130. The highest recovery was obtained by 

vertical injection and production wells, followed by the horizontal production and injection 

configuration. The least amount of oil recovery was obtained by the horizontal production and 

vertical injection well case. Similar to the pilot area, this process is better than continuous 
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injection for this portion of the field. In the best scenario, the oil production increased nearly 

twice as much as in the historical continuous injection flood. The WAG process at 1:2 ratio 

yielded a final recovery of 6.7% OOIP for the VI¯VP well configuration (5.1% OOIP had been 

recovered by primary and secondary recovery). Note that the water cut level is almost the same 

as in the historical result.  

Figure 130 shows the solvent production rate. The model that provides the best history 

match is considered as the base model, and is compared to each of the alternative models 

because the history of solvent production data was not available. Note that the solvent production 

rate in the best scenario is generally lower than in the base model during early time. However, 

there are higher solvent rates in the last years of the simulation. 

The model with the H.I and H.P. configuration produces oil at relatively lower solvent 

rates in the early years among the first three options. The oil production is slowly, but linearly 

increasing in these particular years. Because the oil production is relatively lower than the 

historical values in the early years, this model will not be as economical during these years. 

However, this option recovers more oil than all cases except the VP-VI 1:2 WAG. Note however 

that even for the lowest performing cases, the technique provides increased recovery over the 

historical continuous flood. Even for the cases where the amount of injected CO2 was decreased 

by ½, the reservoir response was nearly the same as in the history. The WAG ratio did not make 

a significant difference, but a WAG ratio of 1:1 resulted in an increase in water cut. Additionally, 

it can be seen that the solvent production rate was considerably lower.  
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Figure 128: Field Cumulative Oil Production for Case 1 

 

 

Figure 129: Field Water Cut for Case 1 
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Figure 130: Field CO2 Production Rate for Case 1 
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be an option to yield higher recovery. So, a five-spot pattern was considered for this part of the 

field.  

In this case, the CO2 miscible displacement process was performed under three different 

scenarios developed by using the same group of well configurations as in Case 1. Additionally, 

the effect of a WAG process using a five-spot vertical well pattern was also investigated. 

Figure 132 shows the 2D five-spot pattern geometry of injection and production wells 

used for this case. Green solid circles correspond to production wells, whereas red solid triangles 

correspond to injectors. Unlike the original wells in the pattern, Wells 10-8, 10-10, 10-16, 15-2 

and 14-4 were continuously used as injectors and 11-5, 10-9 were continuously used as 

production wells. In all scenarios, the total volume of CO2 injection from history was equally 

distributed between the six injectors. In addition, the injection wells begin injecting CO2 at the 

same time (September, 2000). The results for the different scenarios are shown in Figures 133 

through 135. As can be seen, converting Pattern 10-9 from an inverted nine-spot to a five-spot 

well pattern increased the oil recovery for the continuous injection case. As expected, the WAG 

displacement process yielded the best incremental oil recovery, but also had the highest water cut 

level. The ultimate recovery would be increased from 6% to 6.5% of OOIP for the area, which is 

slightly lower than the 6.7% in Case 1. Similar to Case 1, the results for this case also support the 

theory that more recovery would be obtained using horizontal production and injection wells. 

Note that the solvent production rate is increasing continuously for all scenarios and is higher 

than in the base model in the last years, but that the WAG with H.P. and H.I. well configuration 

yielded relatively lower solvent production rates. 
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Figure 131: Permeability Distribution for each layer in Pattern 10-9 
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Figure 132: Five spot pattern geometry in Pattern 10-9 

 

 
Figure 133: Field Cumulative Oil Production for Case 2 
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Figure 134: Field Water Cut for Case 2 

 

 

Figure 135: Field CO2 Production Rate for Case 2 
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6.3.3 Case 3 – Line Drive 

For this case, a miscible CO2-water displacement process using a direct line drive pattern 

was simulated. The design approach was similar to that used in Case 2. The same scenarios, 

continuous CO2 injection using V.P.-V.I., H.P.-V.I, and H.P.-H.I. configurations and a WAG 

process at a 1:2 ratio, were applied using a line drive pattern.  

Figure 136 shows the direct line-drive pattern geometry of injection and production wells 

used in the simulations. Unlike the original wells in the pattern, Wells 10-10, 15-2, 15-1 and 14-4 

were used as injectors and Well 11-5 was continuously used as a production well. As was done 

in Case 2, the total amount of CO2 injected from history was equally distributed between the six 

injectors and the injection wells began injecting CO2 at the same time (September, 2000).  

 

 

Figure 136: Direct Line Drive in Pattern 10-9 
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Figures 137 through 139 show the results of four different operating scenarios using the 

line drive pattern. For the development of a miscible displacement operation, this pattern 

geometry would not be more effective at oil recovery than the existing pattern geometry. The 

total oil production using vertical production and injection wells is about the same as in the 

history. The best oil production in this case was obtained from using a WAG flood and is the 

only case where significantly better recovery was seen. The total recovery under the WAG 

process is close to the one produced in Case 2, but the water cut level is much lower than in that 

case. However, higher oil recovery in the future with horizontal production and injection wells 

was not seen for this case. Note that the solvent production rate is not as high as in Case 2, but is 

higher than the base model during the last years of CO2 flooding.  

 

 

Figure 137: Field Cumulative Oil Production for Case 3 
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Figure 138: Field Water Cut for Case 3 

 

 

Figure 139: Field CO2 Production Rate for Case 3 
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6.4 Summary of Alternative Operations for Pattern 10-9 

In this chapter, a history matched model was used to evaluate the possible performance of 

the Pattern 10-9 area under three configurations: the original nine-spot pattern, a five-spot pattern 

and a line-drive well pattern. Each case had multiple runs using different well configurations 

under both continuous CO2 injection and various WAG processes. For the Pattern 10-9 area, the 

WAG technique using V.I. and V. P. well configurations provided the highest recoveries similar 

to the pilot area. Note that the highest oil recovery was obtained when using the existing pattern 

geometry (6.7% OOIP). When the pattern was changed to a 5-spot pattern, the ultimate recovery 

decreased to 6.5% OOIP, but still was higher than historical values (6% OOIP). As mentioned in 

Chapter 5, the GAGD process has been developed as an alternative method to the WAG process. 

The process of using horizontal production wells near the bottom of the reservoir and horizontal 

injectors at the top (instead of vertical ones) can provide good recovery, but success depends on 

the pattern chosen. The results were positive using the existing pattern geometry and the five-

spot but were negative for the direct line drive pattern. 

The solvent saturation profile for the best scenario for the WAG technique (using V.P 

and V.I wells with the existing pattern geometry) is shown in Figure 140. Comparing this figure 

to Figure 126, it can be seen that same amount of CO2 contacts more oil by using the WAG 

technique than continuous CO2 flooding (especially noticeable in layers 2-4). The CO2 tends to 

go more in a northeast direction out of the pattern in the continuous CO2 flooding model, but it is 

mainly confined inside the pattern in the WAG technique. By comparison, Figure 141 shows the 

solvent saturation profile for the GAGD process by using H.P. and H.I. with the inverted 9-spot 

pattern geometry. Similar to the pilot area, a large amount of the solvent contacts the pattern in 
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the top layers and drains the fluid down to the horizontal producers which is consistent with the 

GAGD theory. The calculated gravity number for Pattern 10-9 was much lower than in the pilot 

area (about 4× 10-7). This might again be the reason of the lower oil recovery in the simulated 

GAGD tecnhnique. 

 A summary of the different scenarios for all cases is shown in Table 10. 
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Figure 140: Solvent Saturation Profile for the best scenario (WAG technique at a WAG ratio of 1:2 with one month WAG 

cycle using V.P and V.I wells in the existing pattern geometry) 
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Figure 141: Solvent Saturation Profile for the GAGD technique using H.P and H.I wells in the existing pattern geometry 
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Table 10: Summary of the Cases 1-3 of Pattern 10-9 

 

Cases  EOR 
Type 

Constraints Pattern 
Geometry Run 

# 

Well 
Configuration 

Injector Producer   

Case 1 

WAG 1:2 
ratio with 
one-month 

cycles 
 

Original HCPV of 
CO2 injected 

and water 
injection rate 

based on WAG 
ratios 

Simulated 
BHP that 
provided 

the history 
matched 

 

Original 
 

1 V.P. and V.I. 

2 H.P. and V.I. 

3 H.P. and H.I. 

½ of the Original 
HCPV of CO2 
injected 
and water 
injection rate 
based on WAG 
ratios 

4 V.P. and V.I. 

WAG 1:1 
ratio with 
one-month 

cycles 

5 V.P. and V.I. 

Case 2 

Continuous 
CO2 

Injection 

Original HCPV of 
CO2 injected Simulated 

BHP that 
provided 

the history 
matched 

 

5-spot 
 

1 V.P. and V.I. 

2 H.P. and V.I. 

3 H.P. and H.I. 

WAG 1:2 
ratio with 
one-month 

cycles 

Original HCPV of 
CO2 injected 

and water 
injection rate 

based on WAG 
ratios  

4 V.P. and V.I. 

Case 3 

Continuous 
CO2 

Injection 

Original HCPV of 
CO2 injected Simulated 

BHP that 
provided 

the history 
matched 

 

Line 
Drive 

1 V.P. and V.I. 

2 H.P. and V.I. 

3 H.P. and H.I. 

WAG 1:2 
ratio with 
one-month 

cycles 

Original HCPV of 
CO2 injected 

and water 
injection rate 

based on WAG 
ratios 

4 V.P. and V.I. 
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7. CONCLUSIONS AND RECOMMENDATIONS 

This thesis has dealt with the evaluation of sweep efficiency in Little Creek Field in order 

to understand the mechanisms controlling sweep in a late-in-life, continuous injection CO2 flood 

and search for alternatives to the way the field was conducted in order to improve recovery. In 

the first part of this thesis, core analysis and evaluation of heterogeneity effects on reservoir 

performance were discussed. Dykstra-Parson and Lorenz coefficients were computed pattern by 

pattern to find a reasonable correlation between oil recovery and CO2 utilization. There was an 

expected trend showing that the more the heterogeneity, the higher the amount of CO2 utilization 

and the less the amount of oil recovery. The results did not show perfect correlations, but the 

relationship between heterogeneity measures and reservoir performance values were shown to be 

statistically significant by using the ANOVA method and the standard t-tests on the significance 

of the slope of the regression line. 

Contrary to the use of field-wide averages, mapping of well by well heterogeneity 

measures was shown to be a good tool to see geologic trends when compared to traditional maps. 

The characterization of the main body of the channel in Little Creek Field was performed 

qualitatively by using heterogeneity measures. The Lorenz coefficient map provided more 

insight into the reservoir than trying to map permeability, porosity or thickness alone.  

The geological trends observed in the Lorenz coefficient maps were then successfully 

used to adjust rock-types and guide geostatistical modeling of permeability and porosity when 

performing reservoir modeling and history matching in the second part of the thesis. Two rock 

regions were defined based on the water production values and the map of the Lorenz 

coefficients in the pilot area. One of these regions was perceived to be heterogeneous and located 
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outside the main reservoir channel, whereas the other was described as being homogeneous or 

more specifically of a higher quality. Gravity effects were evaluated by using eight layers in the 

model. After obtaining successful history matching results, the same method developed in the 

pilot area was used to assess flood response for the Pattern 10-9 area and again good matches for 

this particular part of the field were obtained.  

One of the main keys to both matches was determining the saturation distribution in the 

reservoir prior to CO2 injection. In these window models, this was accomplished by adding 

injection and production wells located in the larger volume grid blocks along the outer edges of 

the models. These wells were controlled based on observed operational changes in the field 

surrounding the window unless there was something within the window area that was specified. 

From the pilot area history match, it appears that a fairly large amount of CO2 moved out 

of the flood area and was not utilized effectively. Using one of the other pilot area wells that are 

structurally higher generally allowed more CO2 to stay in the area of interest. Application of the 

WAG technique increased recovery in the pilot area with reduced utilization rates. A WAG ratio 

of 1:2 with one month WAG cycles was found to provide the highest recovery values of those 

tested. From the solvent saturation maps, flood front stabilization appears to be the reason for the 

higher recoveries seen in the WAG simulations. Simulations of the GAGD process were highly 

dependent on well orientation and length. When well orientation and length are correctly 

determined, the simulations of the GAGD process showed slightly lower recoveries than the 

WAG process simulations, but were fairly close. Given that Little Creek has low structural relief 

and high connate water saturation, the fact that GAGD technique may have some application in 

this type of environment was a bit unexpected. 



 

158 

The Pattern 10-9 area simulations showed many of the same characteristics as the Pilot 

Area simulations. In addition, a five-spot pattern configuration was evaluated. The five-spot 

showed slightly higher recoveries under continuous injection constraints but with lower initial 

response rates. Recoveries using the WAG technique at the 1:2 ratio were slightly lower than the 

current inverted nine-spot simulations. 

Recommendations for future work include incorporating any additional injection or 

production profile logs that may have been run in the field into the geological model. As shown 

in the Pattern 10-9 area model, this data can have a significant impact on the interpretation of the 

results. Logs have been run in several other parts of the field. Thus use of the techniques from 

this thesis should apply to other parts of the field, and should be done. In addition, with current 

computational capabilities, it may be possible to do a full-field simulation of the Little Creek. 

Again, techniques from this thesis should provide a good starting point for that work and reduce 

the time spent integrating data. 
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APPENDIX A: PERMEABILITY AND POROSITY VARIOGRAM 
INFORMATION  

 

Table A.1: Permeability variogram information for each layer in the Pilot Area 

Permeability 

Layer 1 2 3 4 5 6 7 8 

Number of lags 5 5 5 5 5 5 5 5 

Lag size 840 800 810 860 860 850 860 770 

Search radius 2000 2000 2000 2000 2000 2000 2000 2000 

Variogram type Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian

Nugget 0 31 0 31 31 31 31 31 

Sill 254 1429 955 2260 2187 4265 5148 1062 

Range 3346 3133 3104 3341 3288 3341 3288 2992 

 
Table A.2: Porosity variogram information for each layer in the Pilot Area 

Porosity 

 Layer 1 2 3 4 5 6 7 8 

Number of lags 5 5 5 5 5 5 5 5 

Lag size 770 850 900 780 810 800 870 920 

Search radius 2000 2000 2000 2000 2000 2000 2000 2000 

Variogram type Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian

Nugget 0 0 0 0 0 0 0 0 

Sill 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 

Range 3065.4 3243 3553 4573 2430 3185 1740 2760 
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Table A.3: Permeability variogram information for each layer in Pattern 10‐9 

Permeability 

  Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8

Number of lags 6 6 6 6 6 6 6 6 

Lag size 740 700 890 750 800 840 960 900 

Search radius 2000 2000 2000 2000 2000 2000 2000 2000 

Variogram type Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian

Nugget 0 0 0 0.011 0 0 0   

Sill 0.056 0.036 0.187 0.115 0.119 0.029 0.042 0.018 

Range 3473 3404 2909 3244 3034 1776 2360 2360 

 
Table A.4: Porosity variogram information for each layer in Pattern 10‐9 

Porosity 

  Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8

Number of lags 7 7 6 6 7 7 7 6 

Lag size 780 780 1070 750 710 840 840 1000 

Search radius 2000 2000 2000 2000 2000 2000 2000 2000 

Variogram type Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian

Nugget 0 0 0 0 0 0 0 0 

Sill 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 

Range 3881 3649 2160 2687 1955 1700 2174 3924 
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APPENDIX B: INDIVIDUAL WELL HISTORY MATCHES IN 
PATTERN 10-9 

 

The final history matching results of the cumulative water production for the rest of the 

wells in Pattern 10-9 is shown in Figures B1 through B4 where the red circles is the observed 

water production data, and the blue solid line is the simulated water production response. 

 

 
Figure B.1: Individual Well History Matches for the Cumulative Water Production for 

Wells 15-1 and 10-9 
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Figure B.2: Individual Well History Matches for the Cumulative Water Production for 
Wells 10-15 and 10-10 
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Figure B.3: Individual Well History Matches for the Cumulative Water Production for 
Wells 11-5 and 11-13 
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Figure B.4: Individual Well History Matches for the Cumulative Water Production for 
Wells 15-2 and 14-4 
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Although the cumulative water performance is used to show the quality of the match as 

was done in the pilot area, the simulated water production rates for individual wells are also 

reasonable with some exceptions. Figures B5 and B6 show the simulated water production rate 

for each well in Pattern 10-9 during primary and secondary recovery. This model has the same 

problem as the model of the pilot area, early breakthrough and not quite being able to catch the 

peak rates. Wells 10-16, 14-4, 15-1 and 15-2 are good examples showing these problems. There 

might be some incorrect data values especially for the early years. For instance, the sudden 

increase up to 15,000 bbl/day for the water rate shown in Well 14-4 is certainly questionable. 

However, in general, the results are still reasonable. Figures B.5 and B.6 show the simulated 

water production rate for the rest of the wells in Pattern 10-9 during primary and secondary 

recovery. 

The simulated water production rates as compared to actual values and well bottom-hole 

pressures for individual wells during CO2 flooding are shown in Figures B.7 through B.12. Note 

that the simulated water rates match the historical water rates slightly better during the CO2 

flooding part of the history. Also note that bottom-hole pressure values were found to be above 

the minimum miscibility pressure of 4500 psi for the wells with a dip in late 2001 and early 

2002. It was provided by the fake injectors and producers, which had bottom-hole pressure 

constraints of above 4500 psi during CO2 flooding. Although the pressure decline started with the 

oil production in late 2001 and early 2002, most of the wells were again above 4500 psi. 
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Figure B.5: Individual Well History Matches for the Water Production Rate for 
Wells 10-8, 11-12, 10-10, 10-7, 10-15 and 10-16 for the waterflood period (1958-1974) 
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Figure B.6: Individual Well History Matches for the Water Production Rate for 
Wells 15-1, 10-9, 11-5, 11-13, 15-2 and 14-4 for the waterflood period (1958-1974) 
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Figure B.7: Water Rate History Match and Bottom-hole Pressure for Wells 10-10 and 10-
15 for the CO2 injection period (1995-present) 
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Figure B.8: Water Rate History Match and Bottom-hole Pressure for Wells 10-16 and 10-7 
for the CO2 injection period (1995-present) 
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Figure B.9: Water Rate History Match and Bottom-hole Pressure for Wells 10-8 and 11-12 
for the CO2 injection period (1995-present) 
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Figure B.10: Water Rate History Match and Bottom-hole Pressure for Wells 11-13 and 11-
5 for the CO2 injection period (1995-present) 
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Figure B.11: Water Rate History Match and Bottom-hole Pressure for Wells 14-4 and 15-1 
for the CO2 injection period (1995-present) 
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Figure B.12: Water Rate History Match and Bottom-hole Pressure for Wells 15-2 for the 
CO2 injection period (1995-present) 
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