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ABSTRACT 

 Managed Pressure Drilling (MPD) is an emerging drilling technology that utilizes mud 

weight, surface backpressure and annular frictional pressure loss (AFP) to precisely control the 

wellbore pressure. 

The goal of this project is to identify the most appropriate initial response and kick 

circulation method for the kicks that result from complications specific to MPD. These 

complications that can cause a reduction in bottomhole pressure were classified as surface 

equipment failures and unintended equivalent circulating density (ECD) reductions. Rotating 

control device (RCD) and pump failures are the examples of surface equipment failures. Pump 

efficiency loss and BHA position change represent the unintended ECD reductions.  

Shut-in (SI), MPD pump shut down, increasing surface backpressure, increasing pump 

rate, starting a new pump with surface backpressure and increasing pump rate with surface 

backpressure responses were simulated on a transient drilling simulator for kicks taken due to the 

pump efficiency loss, and the simulation results were evaluated. Shut-in and starting a new pump 

with a surface backpressure were simulated for a pump failure, which led to a loss of total AFP, 

and the simulation results were evaluated. A shut-in response was simulated for surface pressure 

loss (RCD failure), and its results were evaluated. Shut-in, MPD pump shut down, increasing 

surface backpressure pressure, increasing pump rate and increasing pump rate with surface 

backpressure responses were simulated, and the simulation results were evaluated for the kick 

taken due to BHA position change. 



 

xi 

 

Kick circulation was also simulated after the influx was stopped by the initial responses. 

The kicks were circulated using driller’s method at normal, half, and increased circulating rates 

depending on the initial response. The results of circulating simulations were also evaluated. 

SI was concluded to be applicable for all kicks caused by bottomhole pressure 

fluctuations. However, increasing casing pressure is the most effective response if it is practical 

given the surface equipment and its condition. Normal rate circulation following these responses 

is generally better than using an increased or slow pump rate for these kinds of kicks. It reduces 

the surface backpressure and non productive time (NPT) required versus slower pump rates. 
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1. INTRODUCTION 

1.1 Managed Pressure Drilling Concept 

The international Association of Drilling Contractors (IADC)
1
 defines managed pressure 

drilling (MPD) as follows: 

 “MPD is an adaptive drilling process used to precisely control the annular pressure profile 

throughout the wellbore.” IADC further states that “The objectives are to ascertain the downhole 

pressure environment limits and to manage the annular hydraulic pressure profile accordingly. It 

is the intention of MPD to avoid continuous influx of formation fluids to the surface. Any influx 

incidental to the operation will be safely contained using an appropriate process. ” 

 The purpose of managed pressure drilling is to create a pressure profile in the annulus 

within the operating window guided by pore and fracture pressures
2
. Pressure control in the 

annulus is achieved by employing the following techniques: adjusting fluid density, frictional 

pressure losses and the surface backpressure by using a combination inclusive of a rotating 

control device (RCD), choke, pump, and the design of well bore and drillstring configuration
3
. 

MPD uses some of the same equipment used in underbalanced drilling (UBD). However, in 

contrast to the UBD operations, MPD operations are intended to prevent formation fluid from 

flowing into wellbore
4
. Hydrostatic pressure, or the equivalent static density (ESD) of the fluid in 

the annulus, is to be maintained lower than pore pressure during UBD. It can be equal, higher, or 

less than the pore pressure in MPD. However, the wellbore pressure, whether static or dynamic, 

is always expected to be equal or higher than the pore pressure during MPD. There are several 

variations of MPD including Constant Bottom Hole Pressure Method (CBHP), Pressurized Mud 
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Cap Drilling (PMCD), dual gradient (DG), health, safety, and environment (HSE), which is also 

referred to as returns flow control
5
. Figure 1 shows these MPD variations and their benefits as 

described by Hannagen
6
. The CBHP method of MPD has a wider application area and many 

benefits compared to the other MPD variations. This research focuses on the CBHP method of 

MPD application as explained in the following sections.   

 

  

MPD Method 

MPD as a Solution to Real  

Drilling Challenges 

Value 

Proposition 

CBHP 

(Constant 

Bottom Hole 

Pressure) 

PMCD 

(Pressurized 

Mud Cap 

Drilling) 

DG (Dual 

Gradient) 

HSE (Health, 

Safety, 

Environment) 

Drill "Undrillable" Ultra-tight Pore/Frac 

Pressure gradients 

Drill to the 

target 

        

Drill "Undrillable" Vuggy /Fractured 
carbonates  

where OB circulation is impossible     

 

  

Drill to target depth in wells with  
high insitu stresses   

 

    

Increase ROP-drilling closer to balanced 

…while 

saving 

money 

        

Increase ROP-drilling through HP LV 

 nuisance gas zones   
  

  

Reduce Number of Loss/Kick  Occurrence         

Reduce Time Spent Dealing with  

Well Control Events         

Detect kicks earlier         

Reduce pressure cycles that cause  
fatigue-related borehole instability   

  

  

Reduce severe overbalanced pressure  

induced borehole instability   

 

    

Reduce open hole exposure-time induced 

 borehole instability   

  

  

Reduce mud costs         

Set casing deeper   
 

    

Reduce number of casing strings   

 

    

Reduce required rig size   

 

    

Trip faster in HPHT environments         

Remove H2S Hazard from Rig Floor 

…and 

improving 

safety 

        

Remove HPHT Hazard from  Rig Floor 

Positive Fluid Containment at Surface 

 in Marine or other 

Environmentally Sensitive Locations 

Figure 1: MPD variations and Properties
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1.2 Motivations for Managed Pressure Drilling 

The efforts behind the development of new drilling technologies are often to reduce the 

non-productive time (NPT) due to drilling problems. Table 1 shows the drilling problems 

occurring during offshore gas well drilling in the Gulf of Mexico from 1993 to 2002, and more 

than 36% of the drilling problems occur due to the pressure issues. Stuck pipe, lost returns, and 

kicks are all related to the pressure problems and compose the important portion of the NPT.   

Table 1: Drilling problems in Gulf of Mexico from the final report of MMS Joint 

Industry Project DEA 155 (data from James K. Dodson Company)
7 

Water Depth <600 ft <600 ft 

TVD <15,000 ft >15,000 ft 

Wells 549 102 

Average TVD 11,668 ft 17,982 ft 

Differentially Stuck Pipe 11.60% 11.10% 

Lost Circulation 12.70% 12.80% 

Well Instability  4.30% 2.50% 

Kick 8.20% 9.70% 

Trouble Subtotal 36.80% 36.10% 

 

 

Saponja et al.
8 

explained, based on Dodson’s data, that drilling NPT generates 25% of a 

standard well’s cost. In addition, Kozicz
3
 stated in his paper that approximately 50% of the 

drilling NPT comes as a result of pressure issues. Lost circulation and stuck pipe problems may 

be reduced by minimizing wellbore pressure opposite the zones causing these problems. On the 

other hand, kicks, shallow water flows, and wellbore instability require a wellbore pressure high 

enough to control these problems. Deep wells often encounter problems of both kinds, with tight 

margins between the minimum and maximum operable, practical wellbore pressures. The precise 

control possible with MPD can help to reduce or eliminate such problems. Quitzau et al.
9
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proposed a concept for extending casing points by managing the ECD. In his concept, a large 

diameter liner is run as part of drillstring in the high pressure formation, whereas a small 

diameter liner is used in the shallower sections of the hole. The mud weight is then reduced to 

provide a higher ECD within the pore and fracture pressures window at the bottom and a lower 

ECD and thus a lower pressure in the shallower sections. Saponja et al.
8 

supported MPD as a 

cost-effective method that drills through high pressure zones without increasing mud weight. 

Drilling with a lower overbalanced pressure improves ROP. In addition, the risk of needing an 

additional intermediate casing string is reduced by managing the wellbore pressure and by 

avoiding formation influx and loss returns
8
. 

Saponja et al.
8
 suggested that MPD enables the process of drilling “economically 

unattainable
1
” formations by means of conventional drilling together with improved ROP and 

reduced NPT. Fossil et al.
2 

mentioned that one of the repeated drilling problems, which also 

increases the NPT, is the loss of circulation in high-temperature high-pressure (HTHP) 

deepwater wells.
 
In his paper, Coker

10
 stated that around 70% of the offshore hydrocarbon 

reservoirs cannot be drilled by conventional drilling due to economic issues. He added that 

considerable hydrocarbon resources will be left in place unless MPD technology is utilized. May 

et al.
11

 explained that Shell applied managed pressure drilling as an innovative technology to 

safely drill depleted reservoirs in the Gulf of Mexico. Further, he added that Shell used MPD 

technology and successfully completed drilling a well that was previously concluded as 

unsuccessful due to lost circulation and wellbore instability problems in the Gulf of Mexico. 
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MPD is required because it can help to reduce the drilling cost, mitigate the pressure 

related drilling hazards, and drill into formations otherwise inaccessible due to tight pore 

pressure and fracture pressure window, thus avoiding kick and lost returns risks.  

1.3 Constant Bottom Hole Pressure Method of Managed Pressure Drilling 

The constant bottom hole pressure (CBHP) method of MPD maintains a constant 

bottomhole pressure by manipulating backpressure and wellbore frictional pressure losses in a 

closed drilling system
12

. Vieira et al.
13 

stated that turning the pumps on and off leads to 

bottomhole pressure fluctuations. This may bring drilling and wellbore stability incidents, which 

increases the NPT
13

. The CBHP method of MPD utilizes a closed loop circulating system and is 

intended to eliminate the bottomhole pressure fluctuations occurring during pump turn on/off.   

Bottomhole pressure is a function of three factors: hydrostatic pressure of the drilling 

fluid, frictional pressure losses due to circulating drilling fluid in the annulus, and surface 

backpressure. The CBHP of MPD is achieved by the combination of these parameters in a 

specially equipped system. Figure 2 depicts the factors that manage the bottomhole pressure. 

Figure 3 illustrates MPD drilling and its advantages over conventional drilling in the pore 

pressure fracture gradient window. In conventional drilling, equivalent static density (ESD) of 

the drilling fluid is maintained above the pore pressure gradient. This may create a risk of loss 

when the circulation is started and the ECD exceeds the fracture gradient as shown in Figure 3. 

On the contrary, ESD of the drilling fluid is typically kept less than or about equal to the 

formation pressure gradient during the CBHP method of MPD. In dynamic conditions, ECD 

increases the wellbore pressure to a level slightly above the formation pressure. Surface 

backpressure can be adjusted during drilling or static conditions to maintain a constant 
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bottomhole pressure. Surface pressure can compensate for the lack of the ECD effect while the 

pumps are turned off for tripping or connections. Surface pressure is maintained with a special 

piece of equipment called a rotating control device (RCD). The main function of the RCD is to 

seal the annulus, contain the annulus pressure, and divert the wellbore flow to the choke 

manifold
13

. 

The CBHP method of MPD is especially applicable in the small hole sizes because of the 

higher ECD effect.  

 

 

Figure 2: Bottomhole pressure parameters 
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Figure 3: MPD and conventional drilling wellbore pressure profiles 

 

1.4 Research Objectives 

MPD employs special equipment and techniques that enable continuous dynamic well 

control; therefore, this feature allows alternative well control methods. The objective of this 

research is to identify reliable well control methods for the constant bottomhole pressure method 

of managed pressure drilling. Well control methods may include different initial responses to 

kicks and different kick circulation strategies when compared to conventional drilling.  

This research focuses on alternative well control methods for formation influx caused by 

unintended bottom hole pressure fluctuations below the formation pressure. Unintended BHP 

fluctuations can be caused by surface equipment or downhole (e.g. washout) failures and control 
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errors. Four specific kick scenarios were studied in this research: pump efficiency loss, pump 

failure, RCD failure, and ECD reduction due to BHA position change. These scenarios were 

selected to serve as models for the other causes of pressure fluctuations in the well.   

Pump efficiency loss, which is a common mechanical occurrence during drilling, leads to 

partial loss of annular frictional pressure (AFP). While drilling close to the formation pressure, 

partial loss of AFP may result in formation influx into wellbore.  

Pump failure is another of equipment problem, which leads to the total loss of AFP. Loss 

of AFP can then trigger the formation flow into the wellbore.  

An RCD may fail due to a worn rubber-sealing element if servicing is not provided often 

enough. If an RCD fails in a static condition, the trapped pressure offsetting the AFP is lost, and 

a kick is gained. The RCD failure scenario represents a loss of surface pressure. Another cause is 

a choke wash out.  

A reduction in ECD at a high pressure zone due to the BHA moving below the zone is the 

final scenario defined in the project. In such a case, wellbore pressure at the top of the high 

pressure zone decreases based on the reduction in drill collar length above the high pressure sand 

zone as the well is drilled deeper. 

These scenarios were simulated on the Dynaflodrill simulator provided by SPT Group. 

The simulation results were evaluated to identify the most appropriate initial responses and 

circulation procedures for kicks taken under these various causes of kicks. This research was 

conducted as a part of a LSU-industry consortium project and supported by major operating and 

oil service companies.  
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1.5 Overview of Research 

This research is described in this thesis in eight chapters. 

Chapter 1 introduces managed pressure drilling and the constant bottom hole pressure 

variation of MPD, explains the purpose of the thesis, and introduces the scenarios that have been 

studied. 

Chapter 2 reviews the MPD literature. It further explains the CBHP method of MPD 

concept and the required equipment. It also reviews the associated well control issues in the 

literature. Finally, this chapter summarizes published case histories for the CBHP method of 

MPD. 

Chapter 3 describes the research plan and gives details about the methodology used to 

complete the research. This includes the description and features of the simulator used. 

Chapter 4 defines the matrix of simulations performed for the initial response study and 

the prospective alternative initial responses to stop the formation influx. 

Chapter 5 defines the potential kick circulation strategies.  

Chapter 6 describes slim (Well X) and large hole (Well Y) well scenarios. Well X 

represents a typical offshore slim hole side track on which simulation studies were performed. 

Well Y represents a typical vertical large hole development drilling well on which simulation 

studies were performed. Further, kick scenarios are introduced in this section. 

Chapter 7 presents the results of the simulated initial responses and circulation methods 

for defined kick scenarios. The results of the kick scenario simulations are then analyzed. The 

effectiveness of initial responses and circulation strategies are discussed with respect to 
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effectiveness of stopping formation feed-in, the risk of lost returns, the risk of surface equipment 

failure, NPT, and the final pit gain (additional gain).  

Chapter 8 derives conclusions for each kick scenario and for overall simulation runs. This 

section also presents recommendations for future studies.  
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2. LITERATURE REVIEW 

The focus of this research is to investigate well control methods for influx taken due to 

unintentional fluctuations in bottomhole pressure during MPD operations. This subject has not 

been addressed in significant detail in industry publications or professional papers. Nevertheless, 

there is relevant published knowledge. This chapter summarizes the pertinent information found 

in a review of literature on well control and MPD operations. It includes an overview of the 

different MPD concepts; a review of the different approaches and equipment being used to 

implement the CBHP method of MPD; a description of a variety of well control considerations 

relating to MPD; and finally, a summary of relevant field experiences from published case 

histories.  

2.1 General MPD Concepts 

MPD is an advanced drilling technology that utilizes both a pressurizable fluid system 

and specialized equipment to more precisely control the annular pressure profile throughout the 

wellbore
13

. The aim is to maintain the annulus pressure within close tolerances and close to the 

boundary of formation pressure, wellbore stability, and fracture pressure
2
. The pressurizable 

closed circulation system of MPD allows better and more accurate control of the wellbore 

pressure profile by coordinating surface pressure with mud weight and pump rate adjustments
5
. 

MPD technology optimizes the drilling process by minimizing the NPT and avoiding drilling 

problems associated with pressure fluctuations
4
. Different from the underbalanced drilling 

(UBD), the objective of MPD is to avoid the formation fluid influx, and the drilling-related 

problems, thus enabling production from the economically undrillable prospects 
4
.   

Malloy
14

 stated that one MPD method is not enough to address these problems.  
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Hannegan
4 

explained the several variations of MPD, such as CBHP method of MPD, 

pressurized mud cap drilling (PMCD), dual gradient drilling (DGD), HSE MPD, riserless MPD, 

and zero discharge riserless MPD.  

Vieria et al
13

 described the CBHP method of MPD as a technique that maintains a 

bottomhole pressure (BHP) constant during the entire drilling operation. The CBHP method 

utilizes appropriate levels of surface backpressure and AFP to maintain the BHP constant in a 

pressurizable fluid system by avoiding ECD changes. Hannegan
5
 stated that CBHP fits well in 

tight pressure environments.  

 Terwogt
15

 defined Pressurized Mud Cap Drilling (PMCD) as an advanced technique used 

to manage wells with drilling fluid losses. Upon losing the drilling fluid into formation, 

hydrostatic pressure in the annulus decreases. If it drops below the formation pore pressure of a 

permeable formation, the formation fluid begins to flow. The well is controlled by filling the 

annulus at a higher rate than the flowing gas. He named this method “mud cap drilling.” If the 

wellbore pressure across the high pressure permeable zone is less than the formation pressure 

due to mud losses, the annulus is filled with a slightly lower mud weight than the reservoir 

pressure. This allows surface pressure to be maintained at the surface by closing the annulus with 

a RCD. This method uses a lower mud weight and closed pressure system and is called PMCD. 

Fossil et al.
2
 explained that controlled mud cap (CMC) is another MPD variation that relies on a 

high pressure drilling riser with a BOP system to separate subsea and surface levels for deep 

water offshore application. A multiphase real-time simulator is required to calculate pressure 

profile in the wellbore. The simulator will control the mud lift pump power distribution system. 
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It will regulate the speed of the mud lift pump so that the required height of the mud column in 

the riser is maintained in controlling the BHP. 

Schubert et al.
16

 defined dual gradient drilling (DGD) as an unconventional method of 

drilling that utilizes a relatively small diameter return line to circulate the drilling fluid and 

cuttings from sea floor to surface. DGD allows wellbore pressure stay within the operating 

window limited by the formation pore and fracture pressure. A seafloor pump is utilized to lift 

the return fluids and cuttings from annulus to mud system. The riser is filled with seawater 

during DGD, and a rotating diverter separates the wellbore fluids from the seawater. A return 

line is used as a choke line in conventional riser drilling for well control.  

Hannegan
5
 summarized the HSE or returns flow control of MPD. It aims to enhance 

health, safety, and environmental issues by closing the mud returns on the rig floor. The annulus 

is isolated to prevent return fluids to expose to the atmosphere. Hannegan
4
 further explained that 

riserless MPD is useful in controlling shallow geohazards. The subsea choke decrease increases 

BHP as if the drilling were performed with a marine raiser filled with drilling fluid and cuttings. 

He also defined zero discharge riserless MPD as a dual gradient riserless drilling.  

2.2 Constant BHP Method and Systems 

This section includes an overview of the different systems and equipment used to 

implement the CBHP method of MPD. This research focuses on the CBHP method. Hence, the 

existing service companies, in addition to equipment and technologies that support CBHP MPD, 

will also be summarized. 

The objective of the CBHP method is to avoid kick and loss hazards by maintaining a 

constant BHP. This is typically achieved by drilling with a fluid that is lighter than the pore 
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pressure so that the BHP is held constant by utilizing surface backpressure and AFP in a closed 

circulation system. It is applicable in environments with narrow pressure limits between pore or 

stability and fracture pressures. Drilling can continue in deeper sections with the same mud 

weight used in the shallower section as it can utilize AFP and surface backpressure. Thus, the 

CBHP of MPD allows lengthier open hole sections and reduces the required number of casing 

strings
17

.  

The CBHP method of MPD requires a closed circulation system and special equipment. 

The key components of a closed circulation system include a RCD and a non-return valve 

(NRV). A RCD seals the annulus and allows choke to control the wellbore pressure from the 

surface
18

. Cantu et al
18 

stated that RCD has become standard drilling rig equipment and the key 

component of well control equipment during UBD and MPD operations. An NRV is a one-way 

valve that allows fluid to flow in one direction
19

. The NRV is a vital tool in preventing possible 

back flow from the bottom through the drill string, trapping the pressure in the annulus for safe 

tripping or connections
13

. Typically, at least two NRVs are required to be positioned in the BHA 

for safe drilling. The MPD choke manifold is another key component for controlling wellbore 

pressure to maintain a constant BHP. There are automated and manual chokes available in the 

industry. An automated system controls the choke manifold via a programmable logic controller, 

which is adjusted based on a hydraulic simulator. An automated choke should provide more 

precise control than a manual choke. During tripping operations, a downhole deployment valve
13

 

(DDV) may also be used to avoid snubbing and to trap the pressure for constant bottom hole 

pressure. It is run as a part of casing string and can be controlled from the surface. Aside from 

use of the DDV, the mud weight can also be increased and circulated to kill the well at a slow 
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rate so that the heavy mud is placed across the open hole or in the casing
21

. Vieira et al.
13

 also 

recommended a “MPD multiphase separator” be used for the wells that may encounter large 

volumes of formation influx. 

There are also various systems developed by service and operating companies; these 

utilize different technologies and tools to implement the CBHP method of MPD. Dynamic 

annular pressure control system (DAPC), Secure Drilling, a continuous circulation system 

(CCS), an ECD reduction tool, and Sperry Drilling Services' GeoBalance™ Managed Pressure 

Drilling (MPD) are systems for applying the CBHP of MPD. 

At Balance introduced a closed system called the DAPC system to control the BHP. The 

DAPC system provides an automated control of surface-applied annular backpressure to the 

annulus to maintain the BHP constant. DAPC components are listed as the choke manifold, 

backpressure pump, integrated pressure manager, real time hydraulics model, and coriolis flow 

meter
22

. A pressure while drilling (PWD) tool can be attached to the BHA in order to calibrate 

the hydraulic simulator. 

Impact Solutions Group introduced the Secure Drilling
TM

 system as a new MPD 

technology
23

. The Secure Drilling System utilizes “micro-flux control” technology for improving 

drilling in narrow margins, offshore and other challenging wells through automated kick 

detection
24

.  Santos et al
25 

stated that the micro-flux control concept can detect a kick as low as 

0.25 bbl in some situations. The system uses a closed-loop circulation system managed by 

automated data acquisition and a computerized pressure control system.  The system was tested 

with oil and water based mud at Louisiana State University in 2005
24

. 
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The continuous circulating system (CCS)
26

 is equipment that was developed by a joint 

industry project, managed by Maris International Ltd, and supported by Shell U.K., BP, Statoil, 

BG, Total, and Eni. Jenner et al.
26 

defined CCS as a new technology that enables continuous 

circulation during the connection of drill pipes to drill string in CBHP. The idea behind CCS is to 

create a steady pressure regime and ECD
27

. CCS technology provides improved control of 

equivalent circulating density, eliminates pressure surges during connections, and removes the 

rig downtime to circulate the cuttings by providing continuous circulation. This reduces the stuck 

pipe problems, especially in the horizontal wells. In tight margins, it removes the pressure spikes 

during connections and reduces the risk of lost returns, wellbore breathing, or ballooning. 

However, CCS cannot handle a BHA that has an OD higher than “5-7/8”, and it is not used in the 

well control events
26

.
 
 

Weatherford, cooperating with BP, developed an ECD reduction tool as an MPD 

application
28

. Bern et al
29 

described the ECD reduction tool as a special tool to counteract 

wellbore pressure increase due to AFP annulus by effectively reducing the hydrostatic head. The 

ECD reduction tool is added in the drillstring by making a short trip and represents a low cost 

method to convert conventional drilling to MPD
29

.  

Finally, Halliburton introduced Sperry Drilling Services' GeoBalance™ Managed Pressure 

Drilling (MPD) Service to reduce the drilling days and improve economics
30

. 

2.3 Well Control Concepts 

The focus of this research is to investigate a reliable well control method for the CBHP 

method of MPD. Well control for MPD has not been studied in detail. Existing information in 

the literature related to well control and MPD will be summarized after the conventional well 



 

 

17 

control concept has been discussed. Thus, this section reviews the conventional well control 

issues.  

One of the most important points in well control is the influx (kick) detection. Early kick 

detection is crucial to blow out prevention.
31

. The primary indications of a kick are a gain in the 

pit volume, an increase in return mud flow rate, a decrease in pump pressure, or an increase in 

pump strokes or drilling rate during conventional drilling. Jardine et al.
32

 explained the 

importance of accurate flow measurements and the effect of heave motion in kick detection for 

floating rigs. Bryant et al.
33

 evaluated the gas influx detection by using an MWD acoustic 

technique. The results showed that acoustic responses can indicate the existence of a gas bearing 

formation earlier than the conventional methods. Codazzi et al.
34 

explained the acoustic method 

for gas influx detection. The technique can detect the kick earlier than conventional techniques. 

Once the kick is detected based on the mentioned surface warning signals, the pump is 

shut down and the well is checked for flow
31

. Dupuis et al.
35 

recommended avoiding flow check 

and closing the BOP quickly after a kick is detected in slim hole wells. If the well is flowing, 

then the formation fluid flows into the wellbore and the well is shut in as an initial response to 

stop the formation fluid influx during conventional procedure. The kick can be circulated with 

Driller’s method or the Wait and Weight method or the Concurrent method
36

.  

Swab kick occurs because of hydrostatic pressure reduction in the annulus. Rudolf et al.
37

 

explained that swab kicks are caused by the upward movement of drillstring or casing in the 

hole. He added that the mud weight should be determined to compensate for the swab and 

temperature effects. Shaughnessy et al.
38 

noted well control issues such as swabbing on trips, 
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ballooning formations, low permeability kicks, liner top failure, flow after cementing, and casing 

wear during ultra high pressure, high temperature drilling.  

2.4 Well Control for CBHP Method 

This section reviews well control concepts, including initial reactions, circulation 

methods, and the causes of the kick during CBHP of MPD.  

Das et al.
39 

compared and evaluated the shut in the well, applying surface backpressure 

while continuing circulating and increasing pump rate as the possible and alternative initial 

responses for CBHP method MPD. He concluded that there is no single best reaction as the 

initial response results depend on the hole geometry and the location of the weak zones. 

Nevertheless, he added that increasing the choke pressure and pump rate may stop the influx 

with lower pit gain and lower surface choke pressure versus the shut in during MPD operations. 

He described that increasing the pump rate minimizes the need for surface backpressure. In 

addition to that, he defined increasing the casing pressure as the simplest alternative response, 

causing less risk of lost return at the casing shoe versus the shut in. This research evaluates the 

initial responses he studied along with the new responses for different kick and wellbore 

scenarios. 

Chustz et al.
40

 explained the advantage of the DAPC system of the CBHP method of 

MPD toward stopping the influx instantly. He mentioned that the DAPC system can increase 

BHP instantly upon gaining an influx up to the defined minimum allowable pressure before 

fracturing. He discussed increasing annular pressure while both circulating and ramping down 

the rig pumps before shutting in the well. He highlighted the elimination of additional influx 

prior to shut in compared to the conventional drilling operations.  
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Malloy
14

 stated that MPD allows control of BHP from the surface within a “30-50 psi” 

range. 

The Mineral Management Service (MMS)
41 

described a matrix for controlling a kick 

during MPD operations. Figure 4 shows the matrix defined by the MMS. The possible initial 

responses include shutting in, increase of backpressure, pump rate and mud weight. If the hazard 

is severe and falls into the red-shaded area in Figure 4, shutting in the well is the only applicable 

response.  
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Figure 4: Influx control matrix
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In addition, Saponja et al.
8 

defined a similar Flow Control Matrix (FCM) as a primary 

well control step during underbalanced drilling operations, interfacing between MPD and well 

control as shown in Figure 5. The FCM
8
 gathers all operational hazards and equipment 

limitations and provides a tangible response to the rig crew. The hazards and the responses are 

defined based on the wellhead flowing pressure and the return gas rate. Initial responses include 

changing the pump rate, surface backpressure, and shut-in.  
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                      Figure 5: Flow Control Matrix
8
 

The MPD well control system requires special equipment along with the conventional 

equipment. A joint industry project,
 
DEA155

7
, written by Malloy

7 
defined RCD as one of the 

main components of an MPD system. He also added that RCD is not expected to take the place 

of a blow out preventer as a primary well control device. He stated that an RCD can have “2500 
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psi” capability for land, jack up and barge drilling operations. This rate is altered to “5000 psi” in 

the static mode.  

Saponja et al.
8
 explained the minimum BOP stack configuration with RCD and 

primary/secondary flow lines that fits the Alberta Energy and Utilities Board (EUB)regulations 

as shown in Figure 6. An annular preventer is installed for primary isolation during RCD 

servicing. Blind rams are used to isolate the well when the drillstring is out of the well.  

 

Figure 6: BOP stack arrangement for MPD
8 
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Chutz et al.
40

 emphasized the utility of PWD for CBHP: PWD provides real time BHP 

monitoring.  Nevertheless, he added that the MWD signals are weak when circulating at reduced 

rates.  

Fredericks et al
42 

stated that DAPC can detect the kicks by monitoring and comparing 

flow in and out. A flow meter is installed downstream of the choke manifold to measure the flow 

out. The system also compares the real BHP and hydraulics model for an improved kick 

detection. If a kick is detected, the well can be shut in or the system can increase BHP and 

circulate the kick automatically by setting a new bottomhole pressure set point. The system was 

tested in the “Shell SIMWELL” test well to evaluate the control of a gas kick. A nitrogen gas 

bubble was injected while DAPC was controlling the backpressure. The system detected a 

reduction in the hydrostatic pressure and manipulated the backpressure automatically to maintain 

the BHP constant. 

 Santos et al.
43

 explained well control issues for the Secure Drilling system. A micro 

influx indicates a kick, and the choke is automatically manipulated to increase the backpressure 

for flow in and flow out equality. He
43

 added that after the backpressure is increased and the flow 

in is equal to the flow out, the system circulates the kick out by a driller’s method of maintaining 

the BHP constant.  

Bode et al.
44

 discussed the well control issues on a slim-hole well and introduced the 

importance of frictional pressure losses in slim hole wells. A slim hole well brings new 

procedures and techniques to well control. He explained that based on his slim hole well data, 

more than 90% of the pump pressure is required for the pressure losses in the annulus, versus 

about 10% in conventional wells. This fact indicates a new procedure for well control operations. 
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He also explained that “Dynamic kill” is an effective well control method when the well can be 

killed by the significant ECD effect, because the dynamic kill method has an advantage over 

conventional circulation methods. BHP is controlled by the combination of hydrostatic pressure 

of the mud and the frictional pressure losses in the annulus during dynamic kill. On the other 

hand, the dynamic kill method depends on the surface capacity, open hole fracture pressure, and 

the anticipated formation pressure. In addition, Bode et al.
44 

emphasized the importance of the 

early detection of kick when it was small enough not to harm the formation or shoe during well 

control operations. In conventional wells, a kick detection depends on the size of the mud tank 

and type of pit volume totalizer (PVT) equipment; however, due to the small capacity in the 

annulus, a kick should be detected smaller than 1 bbl in slim hole wells. Bode et al.
44

 mentioned 

the significant advantage of electromagnetic flow meters over PVT to detect the kick while 

small. 

2.5 Causes of Kicks 

 Formation fluid enters the wellbore when the wellbore pressure is below the formation 

pore pressure of a permeable formation. An underbalanced wellbore pressure occurs during 

failure to fill an annulus, the swabbing effect of pulling the pipe, loss circulation, drilling with 

insufficient density of drilling fluid, or when an abnormally pressured formation is 

encountered
31

. Abnormal pore pressure is caused by four mechanisms: compaction effect, 

diagenetic effect (or chemical alteration of rock minerals by geologic processes), density 

differential effects, and fluid migration effects
31

.  

  A careless choke operation, control system failure, or RCD leak may also cause 

formation fluid influx into wellbore during the CBHP of MPD. Chustz et al.
40,45 

pointed out that 
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BHP excursions is experienced during MPD operations due to unplanned events of surface 

equipment, such as the change of RCD element or top drive swivel packing. 

Figure 7 is a sample of BHP, casing pressure, and ECD during connection and 

circulation. During connections, the ECD effect is lost: the expected pressure profile due to ECD 

change is drawn with a dashed line in Figure 7. Actual BHP is maintained constant by offsetting 

the AFP with surface backpressure.  Figure 8 shows the procedure for maintaining the BHP 

constant during a MPD pump shut down. As the pump is ramped down and ECD decreases, 

appropriate levels of surface backpressure is applied to compensate for the reduction in the ECD  

2.6 Schedule to Maintain BHP Constant During Pump Start Up or Shut Down 

Medley et al.
47 

explained the preparation for the dynamic to static transition during MPD. 

Hydraulic models are utilized to calculate a casing pressure schedule for the pump rate decrease. 

The well is not shut down. Instead, choke is partially closed. The idea is to impose pressure to 

the annulus at the surface by reducing the choke opening. ECD and bottom hole circulating 

pressure can be calculated by hydraulic models, which can also be validated by PWD data if 

available. A “surface back pressure versus pump rate” table is prepared as a schedule to follow 

during MPD pump shut down or start up. Before reducing the pump rate, the choke opening is 

reduced until the required surface pressure is read on the gauge. The pump rate is set to the next 

target on the schedule. This procedure is repeated until the pump is shut down. With this method, 

BHP is maintained above the pore pressure, and influxes are avoided.  
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Figure 7: Bottomhole pressure during CBHP of MPD
8 

 

 

 Figure 8: Choke pressure in connection during CBHP of MPD  
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2.7 Case Histories for CBHP Method 

This section includes the drilling experiences achieved by a CBHP variation of MPD, its 

application, and related well control issues available in published case histories.  

Chustz et al.
45

 explained a case history of a drilled well by Shell Oil Company in the Gulf 

of Mexico. Shell deployed CBHP of MPD and DAPC technology for a redevelopment drilling in 

deep water fields that were previously inaccessible. The redevelopment well was drilled 

successfully, and BHP was kept relatively constant by the system. The depleted formation 

caused reductions in the formation fracture pressure in specific intervals. The high AFP, together 

with static mud weight designed for wellbore stability, threatened fracturing in the depleted 

intervals. The minimum equivalent mud weight (EMW) for wellbore stability was 14.3 ppg at 

TD. The fracture gradient at the depleted interval was 15.3 ppg. A safe operating drilling window 

was therefore 1 ppg. Conventional drilling would result in a dynamic mud weight that would 

exceed fracture gradient by 0.3 ppg. The automated DAPC system was used and allowed the 

mud weight to be reduced to 13.9 ppg, yielding 15.2 ppg ECD at the designated pump rate, 

rotary speed and penetration rate. During connections and with rig pumps off, surface 

backpressure was applied to compensate the loss of the ECD effect, and the EMW was 

maintained at 14.6 ppg. The trainees of drilling crew is crucial for MPD operations. BHP control 

within a tight operating window depends on a driller’s performance in pump start up and turn off 

processes. 

 A Secure Drilling system
46

 was successfully used to drill a well in the Santa Barbara 

field in Venezuela. The well was planned to be drilled with 11 to 14 ppg mud weight, but the 

Secure Drilling system drilled with 9.5 ppg. The system drilled the well with 200-300 psi 
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overbalance, which would have been 2000 psi if the conventional drilling had been used. The 

well was drilled without stuck pipe, lost circulation, drag, H2S and other directional issues
46

. 

Caldorani et al.
27 

gave an extensive case history of the CCS system of MPD in drilling a 

well in the Mediterranean. Numerous drilling problems had been encountered with conventional 

drilling due to a close operating window limited by pore and fracture pressures. CCS was used 

when the well was reentered, and plugs were drilled out in the 8-1/2” hole. ECD was maintained 

constant, while drilling from 4846 m to 4971 m. After that depth, gas influx was observed, and, 

at 4979 m, mud losses occurred. At 4991m, more severe losses were encountered, and a lost 

circulation material pill was pumped to stop the losses. After stopping the losses, a 7” liner was 

run and the well then was drilled with a 5-7/8” hole. This interval was also drilled with a CCS 

system, but, at 5130 m, the gas level in the annulus increased. Then the Hydril BOP was closed, 

and mud was bullheaded down the drillstring. Again, gas influx was encountered, followed by 

losses, while drilling from 5128 m to 5130 m. A rotating BOP was rigged up, and drilling 

resumed with the annulus pressure held between 500 to 800 psi. Attempts to complete the well 

with a 5” liner were unsuccessful. The well was secured with a cement plug. Petrobel drilled into 

the previously inaccessible reservoir by using CCS and MPD equipment. However, the failure to 

complete the well and the many well control challenges encounter reinforce the need for reliable 

well control procedures to handle influxes and loss problems in MPD operations. 

 Vieria et al.
13 

described a case history of an exploratory well drilled with the CBHP 

Method of MPD in Saudia Arabia. From previously drilled wells, the formation pressures were 

estimated for the 8-3/8
”
 and 5-7/8

”
 hole sections. Many drilling and wellbore stability problems 

were encountered in the previous offset wells. One possible reason for the instability was the 
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significant fluctuation in the BHP expected in conventional drilling during pump turn on/off due 

to ECD changes. The CBHP method of MPD was employed during the drilling of 8-3/8” and 5-

7/8” hole sections as shown in Table 2, where ∆P referred to dynamic and static wellbore 

pressure differences that would have occurred using conventional methods. 

Table 2: The reasons for use of MPD method
13

 

Hole 

Section 
Drilling problems 

MPD technique 

applicable 
Solution provided ∆P (psi) 

8 3/8" 

Tight Hole, influx, 

salt water 

formation CBHP 

CBHP during connections and tripping 

procedures, avoiding hole sloughing and 

influx. Possible abnormal pressure. 

715 

5 7/8" Gas influx 
CBHP for manage the possible abnormal 

pressure. 
780 

 

The purpose of MPD here was to drill to the target depth with minimum drilling 

complications, thereby avoiding well control operations by maintaining BHP constant and 

properly managing the wellbore pressure. Bottomhole pressure was maintained constant during 

static and dynamic conditions with MPD. The well was successfully drilled, and it represented 

the first well employing the CBHP method with MPD in the Kingdom of Saudi Arabia.  
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3. RESEARCH METHOD 

3.1 Introduction 

The objective of this research is to establish a sound basis for determining the best initial 

responses and circulation methods to use for kicks taken due to unintentional pressure 

fluctuations. These can be caused by surface equipment failures (e.g. loss of surface pressure and 

pump failure) and unintended ECD reductions (e.g. pump efficiency loss and changing ECD due 

to a BHA position change) during CBHP drilling. The initial response is fundamental in stopping 

formation influx, and the circulation method is important for controlling and removing the kick 

in a safe manner. 

Different initial responses, described in Chapter 4, and kick circulation methods, 

described in Chapter 5, were simulated for different kick and well conditions using a transient, 

multi-phase flow simulator. The simulator results were evaluated and compared for each kick 

and well scenario at critical zones such as at casing shoe, bottom and surface.  

3.2 Research Plan 

In order to achieve the project objective, the following work plan was completed.  

1.  Transient underbalanced drilling simulators were investigated to select the most suitable 

software for this project in July-August 2007. 

2.  A literature review about MPD and well control issues was conducted to define the 

project and to identify the surface equipment problems encountered during MPD, such as RCD 

failure.  

3.  Information on the characteristics of reservoirs and well representative of typical MPD 

applications were gathered from the project sponsors. The main reason for using MPD 
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technology in these applications was a tight operating window between pore pressure and 

fracture pressure.  

Formation properties and the drilling description were input as data for the simulations of 

two well scenarios: Well X with a 6” hole size and Well Y with an 8.5” hole size. 

4. Kick detection limits were categorized as low gain and high gain. Low gain was defined 

between 2 to 5 bbl, while high gain was defined between 15 to 20 bbl. 

5. Potential causes for decreases in bottomhole pressure during MPD operations were 

identified by discussions in project consortium meetings and by the literature review in regard to 

the surface equipment problems encountered during MPD.  

6. Simulations were conducted for the multiple alternative initial responses that are feasible 

for each cause of kick. Kicks were simulated for each well scenario and for the assumed 

detection limits. 

7. The purpose of each initial response was to stop the influx from the formation, by 

increasing the wellbore pressure to equal or slightly higher than the reservoir pressure. At the end 

of each initial response, a simulation file screen was saved to allow consistent comparison of 

different kick circulation methods as the kick was circulated. 

8. After the formation influx was stopped by the initial responses, a circulation test was run 

on the simulator. The driller’s method was applied as the primary circulation method, because 

the continuing mud weight was already known to be sufficient for the planned operation for most 

causes of the kicks. Three major circulating options were investigated: reduced, normal, and 

increased circulating rates.  
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9. The simulations were compared and evaluated in two parts: initial responses and kick 

circulation methods. The primary effectiveness measure of the initial response is the success in 

stopping formation influx. The secondary criteria are the risk of fracturing the formation and the 

final surface pressure required. An additional final criterion is the ease of the application of the 

initial response. 

The primary effectiveness of kick circulation is the removal of the kick with a slightly 

overbalanced BHP held constant during circulation so as not to result in an additional influx. The 

secondary criterion is to maintain the integrity of the surface equipment and wellbore. The 

success of the kick circulation methods was evaluated based on the maximum bottom pressure, 

maximum surface pressure, wellbore pressure at the shoe casing, risk of lost returns, flow rate at 

surface, maximum pit gain and the kick circulation time as well as the practicality of the 

implementation of the method. 

10. Complications and errors encountered during the simulations were recorded and reported 

to SPT Group, the supplier of the simulator. 

General conclusions were explained for the initial responses and kick circulation 

methods.  Specific conclusions for each kick scenarios were summarized by considering the 

initial responses and kick circulations together collectively.  

3.3 Multiphase Flow Simulator 

A transient, multiphase flow simulator, Dynaflodrill (DFD), was used to conduct the 

simulations in this research. DFD is part of the drillbench software marketed by SPT Group. 

Dynaflodrill
48 

was created to investigate the UBD operations for steady state and dynamic 

conditions. 
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3.3.1 Features 

DFD can simulate realistic scenarios in steady state or dynamic modes by utilizing 

multiphase flow models. Three aspects of DFD are discussed below: problem description and 

setup, operation and output. 

3.3.2 Problem Description and Setup 

DFD was designed to allow formation properties, depths and pressures, drill string 

component properties, bit size, nozzle area, drilling fluid properties, casing size and setting 

depths, wellbore temperatures, and well survey data to be utilized as input data to simulate real 

scenarios. Drill string and parasitic gas injection options are provided to conduct the special 

operations. Formation fluid types can be selected. 

3.3.3 Operations 

DFD is designed to simulate drilling, circulating, tripping, gas injection, and well control 

operations. DFD presents two execution options: batch mode and interactive. Batch mode uses 

input data to simulate a given scenario as a function of time. In interactive mode, an execution 

panel enables real-time control of pump rate, ROP, and surface backpressure. Figure 9 shows the 

interactive execution panel of DFD. Well control operations may be conducted upon gaining a 

kick, which can be detected from the increase in flow out, total influx, influx from the reservoir, 

free gas, and pump pressure plots. Surface casing pressure can be applied either as pressure 

values or as choke opening fraction. The surface casing pressure can be monitored with a real-

time choke pressure plot. In addition, a number of real time plots like bit and well depth, bottom 

hole pressure, pressure at observation points, pump pressure, annulus pressure profile, frictional 

gradient, gas rate out, total influx, and flow in-flow out provide precise feedback on drilling and 
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well control operations. Nevertheless, DFD does not report the pit gain, and fracture pressure is 

not defined or considered in DFD. Thus, mud losses cannot be calculated and simulated. Pit gain 

is calculated after exporting the flow in and flow out data to an Excel spreadsheet.  

 

 

Figure 9: Execution panel of DFD 
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3.3.4 Output 

Casing pressure, flow in and flow out, pump pressure, gas rate at the surface, wellbore 

pressures at bottom, casing shoe depth and high pressured formation were used as output for the 

evaluation of the initial responses and circulation methods simulation results.  

3.3.5 Evaluation of Simulation Results 

After all simulation results were obtained, the results were transferred to Excel sheets, 

and the necessary plots like casing pressures, bottom hole pressure etc. were prepared. Finally, 

the results of related scenarios were tabulated in one Excel sheet for comparison of initial 

responses and circulation methods. Along with the tabulated results, several plots were prepared. 

Flow out and pump pressure versus time were plotted after the kick was detected. At the end of 

initial responses, casing pressures, flow in and flow out were plotted versus time, and wellbore 

pressure profile plots were prepared. After the circulation of kick, casing pressures, flow out, pit 

gains, and gas rate out were plotted versus time. These plots and tabulated results were evaluated 

for a comprehensive conclusion about the success and practicality of the operations. The 

practicality of operations was evaluated based on the schedule or calculation requirement before 

the kick or during the kick gain. The practicality of the new responses was also evaluated based 

on the full-scale trials on Petroleum Engineering Research and Technology Transfer Laboratory 

(PERTT Lab). 

3.3.6 Causes of BHP Reductions 

There are several potential causes of BHP reductions during MPD operations. These 

reductions can fit into three categories: human carelessness, equipment failure, or formation 

failure. The carelessness of drilling crews may cause BHP reduction. Failure to fill the annulus 
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during tripping, reducing pump rate during circulation, increasing the choke opening or reducing 

the surface backpressure by mistake can be classified as human carelessness. The second cause 

of the BHP reduction is equipment failure. Equipment failure occurs when the surface or drilling 

equipment fails. RCD failure, choke erosion, swivel packing leakage, leaking drillpipe, pump 

failure, power system failure, and pump efficiency loss are included as mechanical failures. An 

automated control system failure is also considered on equipment failure. BHP reduction due to 

formation failure occurs when the formation is fractured and mud is lost into the fractured zone. 

Mud can also be lost when a high permeable formation or natural fractures are encountered.  

This research focuses on kicks taken due to equipment failures and on the effects of 

inadequate or incorrect design on the wellbore pressure reduction. Equipment failures that lead to 

BHP reductions affect two real time parameters: surface backpressure and ECD. For example, 

surface pressure loss is observed when a RCD failure or a choke erosion failure occurs. In this 

research, RCD failure was simulated to represent the loss of surface backpressure. An ECD 

reduction can occur due to equipment failures such as pump failure, pump efficiency loss, power 

system failure, or a leak in the drillpipe. In this research, an ECD reduction was studied by 

simulating pump failure, which also represents a power system failure, and pump efficiency loss.  

Human carelessness in the hydraulic design, which can cause a reduction in wellbore 

pressure opposite a high pressure, permeable zone due to an ECD reduction, was also studied in 

this research. This effect resulted from an ignoring the wellbore geometry change in the 

hydraulics calculations due to the BHA progressing deeper as the well is drilled. 
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4. Initial Responses to Kicks 

4.1 Introduction 

The initial response to a kick is crucial in stopping a formation fluid influx as soon as 

possible. The initial response determines the success of the well control operations, since it is the 

first reaction of a well control operation. In a kick occurrence, the initial response is applied to 

stop the formation fluid intrusion in a way that that allows the wellbore pressure to be increased 

over the formation pore pressure. In conventional drilling, “shut-in” is the only generally 

accepted initial response that can be applied in a well control situation. However, the closed 

circulation system of MPD-CBHP allows for alternative initial response applications in addition 

to shut-in. The drilling fluid can be pressurized, since the annulus is sealed with an RCD, which 

isolates the annulus and diverts the return flow to the choke manifold. Application of surface 

backpressure and the management of AFP and their derivatives bring new initial response 

possibilities to well control operations. Alternative initial responses include making a MPD 

pump shut down by increasing surface backpressure per step (ending up with a closed choke), 

increasing surface backpressure at the current rate, increasing pump rate, starting a new pump 

with casing pressure, and increasing pump rate with surface backpressure, which is derived from 

surface pressure and AFP utilization. Table 3 presents a matrix showing which of these can be 

applied to each class of kick cause that was defined in Chapter 3. The remaining section 

describes each of these reactions in more detail. 

4.2 Shut-In 

Shut-in has proven to be an effective initial response in conventional drilling. Shut-in 

closes the well, enables pressure build up, and stops the formation fluid influx. Shut-in can be 
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accomplished by using either an annular BOP or a ram BOP. Shut-in can be applied in two ways: 

hard shut-in and soft shut-in
31

. Soft shut-in takes longer and causes higher kick volumes. Hard 

shut-in stops the flow faster but can lead to a pressure surge from a water hammer 

effect
31

.During the CBHP method of MPD, a well can be shut in either by closing BOPs or by 

fully closing the choke on the MPD choke manifold when the BOPs are open if an RCD is in 

use.  

 Shut-in enables calculation of the kill mud weight and formation pressure using the shut-

in drill pipe pressure (SIDPP) and the mud density. However, non-return valves (NRV), which 

are essential in MPD for safe connections and tripping, prevents the shut-in pressure build up 

from being observed on the drill pipe pressure gauge. It requires bumping the float and 

interpreting SIDPP; such SIDPP is often difficult to interpret when bumping the float.  

Table 3: Project matrix; kick scenarios and possible initial responses 
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4.3 MPD Pump Shut Down  

MPD pump shut down (MPD SD) is a method for turning off the pumps and increasing 

choke pressure, based on a schedule designed to provide a relatively constant bottomhole 

pressure. Frictional pressure losses in the annulus are calculated for several pump rates. Before 

reducing the pump rate, the difference in the frictional pressure between the current and next 

slower rate is added as backpressure using the choke. Then the pump rate is reduced to the next 

level, and this sequential process is repeated until the pump is turned off. Therefore, the 

reduction in the ECD effect as pump speed is reduced is compensated by the appropriate levels 

of backpressure. The pump rates in the schedule must be selected properly so that the added 

backpressure between steps is less than the pressure increase that would cause formation 

fracture. This method was applied as an initial response by closing the choke at the end of the 

pump shut down. MPD SD was simulated on a time-dependent schedule. Manual MPD SD takes 

six to ten minutes, while an automated MPD SD takes two to three minutes to turn off the pump, 

as per the test conducted at LSU Well Control Facility and discussion with consortium members. 

4.4 Increasing Surface Backpressure  

Casing pressure cannot be applied without closing the BOPs in conventional drilling. The 

closed system of MPD provided by the RCD enables casing pressure application without closing 

the BOP. Increasing casing pressure is a potentially fast initial response in that it can be applied 

to stop the formation flow while circulating in an MPD operation. The surface casing pressure is 

applied by reducing the choke opening. One common approach for implementing this method is 

to increase casing pressure until flow in and flow out are equalized. When the flow in and flow 

out are equal, the formation flow is concluded to have stopped, and the wellbore pressure and 
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formation pressure balanced. After that time, pump pressure can be maintained constant for 

constant bottomhole pressure during kick circulation.  

4.5 Increasing Pump Rate   

Increasing the pump rate, which is essentially beginning a dynamic kill, is a response that 

does not require increasing the surface backpressure. The logic is that increasing frictional 

pressure losses in the annulus can increase bottomhole pressure to balance the formation 

pressure. It can be very effective in slim hole wells but is unlikely to be applicable in large hole 

wells. Once formation flow has been stopped, its verification can be difficult and typically relies 

on matching flow in and flow out. The pump pressure and rate must then be maintained constant 

and should be followed carefully. Application of this method is limited by the pressure and 

stroke ratings of the pumps. 

4.6 Starting Up a New Pump with Casing Pressure 

Starting up a new pump with casing pressure is used in two different implementations 

depending on the scenario. 

This response provides a dynamic change between pumps (starting a new pump while 

turning off a failing pump) and continuous circulation. It also involves increasing the surface 

casing pressure to equal to the hydrostatic pressure loss, which can be estimated based on the 

assumed kick detection limit or a measured pit gain. At the same time, the backup pump is 

started and circulation continues by the old and new pump together. The key point is to keep the 

actual total pump rate at the original pump rate before the efficiency loss. Before reducing the 

old pump rate, the total pump rate is increased above the normal (original) rate by the initial rate 

with the new pump. Then, the pump rate of the failing pump is reduced by an equal amount. The 
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total increased pump rate, which is equal to the sum of the rates from both pumps, should be 

chosen so as to avoid causing excessive shoe pressure. This method can be implemented with or 

without requiring a flow out meter downstream of the pump to be implemented to replace an 

inefficient pump.  

This response can be altered and applied for the pump failure case and can also called as 

starting a new pump with a reduced choke opening. In such a case, the pump is started up while 

the choke opening is reduced. During the pump rate increase, the pump pressure and flow out are 

monitored. Until pump rate is brought to its original rate, flow out is forced to be close to the 

flow in. After pump rate is brought to the circulating rate, pump pressure is not allowed to 

increase above normal circulating pump pressure. 

4.7 Increasing Pump Rate with Casing Pressure 

Increasing the pump rate with increased casing pressure combines both responses in an 

attempt to optimize the pressure values in the well. This initial response also requires less surface 

pressure, and reduces the risk of lost returns at the casing shoe versus only increasing casing 

pressure. 

The specific procedure used in this study to implement this concept is dependent upon the 

kick scenario. During a pump efficiency loss case, a flow in meter is assumed to be installed. 

Then, the pump rate is set to give an actual rate, original pump rate and the casing pressure is 

increased simultaneously, based on the hydrostatic loss calculated in advance from the kick 

detection limit. For a kick caused by BHA position change, the casing pressure is increased 

initially. The increased casing pressure reduces the flow out, and then the pump rate is increased 

to flow out rate. Hence, the wellbore pressure is increased by utilizing the surface backpressure 



 

 

41 

and ECD. Formation flow stop is verified by comparing the pump rate and flow out rates. 

However, since the pump rate is high, flow stop verification must done rapidly and then pump 

pressure should be maintained constant. Otherwise rapid gas migration reduces the wellbore 

pressure and may result in kick gain. 
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5. KICK CIRCULATION METHODS 

5.1 Introduction 

A kick must be circulated out of the well, after the initial kick response and the formation 

flow is stopped, to allow routine operations to be resumed. The kick must be circulated to the 

surface while wellbore pressure is maintained constant to avoid additional kicks. In this research, 

the driller’s method (DM) was applied because the existing mud weight was adequate to 

maintain control except when MPD operations were disrupted by an unanticipated reduction in 

wellbore pressure. Other common kick circulation methods are the wait and weight method and 

the concurrent method. These involve increasing the mud weight during the kick circulation. 

Therefore, they are not required, nor applicable, to most of the types of kicks studied in this 

project. 

5.2 Driller’s Method  

The DM is a widely used kick circulation method. It requires almost no calculations, and 

that makes it practical for application during conventional drilling. Circulation starts as soon as 

the stabilized pressures are recorded. This avoids excessive pressure imposed on the casing shoe 

that results from gas migration. In addition, waiting in a static condition for the mud mixing may 

lead to stuck hazards
49

. The driller has no need to follow a drill pipe schedule, since the pump 

pressure is always held constant as the mud weight is changed. The DM more easily responds to 

nozzle plugging problems
49

. However, The DM has a higher risk of surface equipment failure, 

because a higher surface pressure is expected during DM
49

. Therefore, operating limits should be 

understood regarding surface equipment such as BOPs, RCD (unless the BOPs are open), flow 

return line, choke, and mud-gas separator, as to whether the equipment can handle expected 
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pressures and flow rates exposure. DM circulates the kick by maintaining the bottomhole 

pressure constant, which is controlled based on the pump pressure. This is achieved by adjusting 

the choke opening. In this research, three derivatives of DM were used: reduced (half) circulating 

rate, full (normal) circulating rate (also includes the slightly reduced circulating rate after a pump 

efficiency loss), and increased circulating rate.  

5.2.1 Reduced Rate Driller’s Method 

The driller’s method is most frequently applied at a reduced circulating rate. This rate is 

typically about one-half of the normal circulating rate. The advantages of using a reduced rate 

are a lower peak gas flow rate and better control, as the kick is circulated slowly. However, the 

reduced circulating rate increases the NPT and requires a higher surface casing pressure, which 

leads to higher risk lost returns at the potential weak zones.  

Pump pressures at normal and reduced rates are routinely recorded after making 500 ft of 

hole in conventional drilling
31

. This recorded pressure is used upon experiencing a kick. After 

the initial response is applied, the pump rate is set to kill rate, i.e., half the rate of the normal rate, 

and the kick is circulated. In addition, the reduced circulating rate allows for the assumption that 

frictional pressure losses in the annulus can be ignored. This assumption is important in 

conventional well control, because it allows safer circulation with the additional surface 

backpressure. 

 The approach for applying this method to MPD operations is slightly different. Pump 

pressure at a reduced circulating rate is recorded with the additional backpressure, since the 

wellbore pressure is kept slightly higher than the pore pressure with the ECD support. Unless 
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additional surface backpressure is applied when the mud weight is lower than the pore pressure 

in permeable formations, a kick will occur.  

5.2.2 Normal Rate Driller’s Method 

The driller’s method can also be applied at a normal circulating rate. This rate is equal to 

the actual original rate (or a lower rate due to pump efficiency loss). The full circulating rate is 

evaluated as an alternative method to the circulation at the reduced rate. This approach utilizes 

the AFP to reduce the backpressure required during MPD. The advantages of using a normal 

circulating rate are the reduced NPT, surface casing pressure and pressure exposure at shoe by 

utilizing the AFP. The disadvantage of this method is the high gas flow rate at surface, which 

may create a risk for the handling capacity of the separator. In addition, fast circulation of the 

kick may cause difficulty in responding to complications. 

5.2.3 Increased Rate Driller’s Method 

The driller’s method can also be applied at an increased circulating rate. This approach 

utilizes the increased AFP to significantly reduce the backpressure requirement during MPD. 

The well is killed at higher pump rates than the initial rate. This method reduces the NPT, the 

surface casing pressure required and pressure across the casing shoe versus normal circulating 

rate. The disadvantages of this method are high return mud and gas rates at the surface, as well as 

difficulty in responding to dangerous situations. There are also some complications with the 

increased rate circulation, such as the BHP increase, which requires a method to reduce 

excessive BHP at the end of the circulation.  
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6. DESCRIPTION OF SCENARIOS 

6.1 Wellbore Scenarios 

Consortium members of this project provided two well descriptions that were appropriate 

for MPD applications.  

6.1.1 Slim Hole Well X 

The industry consortium supporting this research provided data for a well with a small-

hole diameter, and this well has a similar configuration to that defined by Chustz et al
40

. This 

well, known as Well X, is an excellent candidate in the study of MPD.  

Figure 10 shows the wellbore configuration for Well X. The major characteristics of the 

well include the following: 

 The drillstring is composed of 3.5” drillpipe, 3.5” heavy drillpipe and 4.75” drill collars.  

 The well is cased at 15150 ft MD/13979 ft TVD.  

 A high pressure sand exists at 16265 ft MD/14800 ft TVD, and there are two potential 

loss zones both above and below the high pressure sand. These occur at 15150 ft 

MD/13979 ft TVD - at the casing shoe; and 16982 ft MD/15320 ft TVD - at the bottom 

section, which represents a depleted sand.  

 The highest pore pressure gradient in the open hole is 13.7 ppg (10544 psi) at 16265 ft 

MD/14800 ft TVD.  

 

Following a conventional well control design, a mud weight greater than 13.7 ppg is 

required to drill Well X. However, if this mud weight was used, that would have led to 

significant frictional pressure losses in the slim annulus and increased the risk of problems such 
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as lost returns and pipe sticking. To overcome these complications, a 13.2 ppg mud weight 

should be utilized in a MPD drilling method. The pressure difference between the 13.7 ppge 

formation and 13.2 mud weight is compensated for by the 0.52 ppge of ECD. During tripping or 

connection, the 0.52 ppge ECD effect is balanced by the surface backpressure at the choke. 

 

 

Figure 10: Schematics for Well X 

 

Figure 11 presents the trajectory of Well X. The Well X is not a vertical well which 

means that the measured depth is different from the true vertical depth. True vertical depth is 
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used to find the vertical length of the kick in order to calculate the hydrostatic pressure loss 

during the implementation of some initial responses. 

 

Figure 11: Well X trajectory from DFD 
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6.1.2 Large Hole Well Y 

Well Y, which is a representation of MPD’s larger hole application, was provided and 

defined by the industry consortium supporting this project. The 12.25” interval of Well Y was 

identified as a potential candidate for MPD because of the 1.0 ppge margin between the pore and 

fracture pressures. Figure 12 illustrates a summary of the wellbore configuration. 

 

 
Figure 12:  Wellbore Schematics for Well Y 

The well is vertical from surface to the target depth. There is a potential loss zone around 

the casing shoe at 13780 ft MD/TVD and a high pressure zone at 14960 ft MD/TVD.  A 17.2 
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ppg mud weight is used to drill 30 ft of a 12.25” hole into a 17.3 ppg high pressure zone. The 

pressure difference between the mud weight and formation pressure gradient is offset by the AFP 

at 760 gpm circulation rate. Fracture pressure gradient decreases with depth and reaches to17.9 

ppg at the bottom while it is 18.3 ppg at the casing shoe. The highest risk of lost return takes 

place at the bottom of the hole. 

6.2 Kick Scenarios 

MPD offers a wellbore pressure profile close to the formation pore pressure. Any 

reduction in a bottomhole pressure component (as shown in Figure 2) may cause the (balanced or 

slightly overbalanced) wellbore pressure profile to shift below the formation pore pressure. 

Complications that could cause such reductions were categorized as surface equipment failure 

and unintended ECD reduction. Each kick scenario was simulated for small and large pit gains, 

which were defined as 2-5 and 15-20 bbl, respectively. Table 4 shows the simulated initial 

responses and circulation methods for defined kick scenarios described in the following sections.  

6.2.1 Surface Equipment Failure 

Wellbore pressure is controlled by the density of drilling fluid, surface casing pressure 

and ECD. The surface casing pressure and ECD are provided by the surface equipment. The 

surface casing pressure is maintained by utilizing the choke manifold and a RCD, whereas the 

ECD is generated by the rig pumps. Failures of RCD and pump pressure lead to the loss of 

surface casing pressure and ECD. Therefore, these failures cause pressure reduction in the entire 

wellbore. RCD and pump failures are discussed in the following section. 
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Table 4: Responses and circulation methods matrix for kick scenarios 

 
 

6.2.1.1 RCD Failure (Loss of Surface Pressure) 

Any loss of surface pressure with more generally pumps off would cause a kick. A RCD 

failure is an example of this cause. The rubber-sealing element of RCD wears out over time, and 

it must be replaced periodically. If the RCD maintenance is not performed regularly, the RCD 

can fail, causing the wellhead pressure to be lost, and the annulus to be exposed to atmospheric 

pressure. This leads to an underbalanced condition and a pit gain if the density of the drilling is 

less than the formation pressure gradient.  

This case was simulated with the pumps off, and the overbalance pressure was provided 

by a surface backpressure. This case could also represent other surface equipment failures that 

could cause loss of surface well pressure, such as the choke line washout. 
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6.2.1.2 Pump Failure 

A power or a mechanical failure may result in a pump failure. When a pump fails, 

circulation stops and the AFP is lost. This does not cause any well control problems for 

conventional drilling, but it could lead to a kick which would call for a well control response for 

MPD operations. In this case, the well was circulated at the original rate until the assumed pump 

failure occurred. Afterwards, ECD in the annulus was lost resulting in the formation influx.  

6.2.2 Unintended ECD Reduction 

An AFP reduction causes a decrease in the ECD, and therefore, leads to pressure drops in 

the wellbore. ECD reduction can occur as a result of a decreasing pump rate, a leaking 

drillstring, or a changing wellbore geometry. Pump efficiency loss and a changing wellbore 

geometry due to BHA movement were simulated as the causes of unintended ECD reductions 

representing the kick scenarios in this research. 

6.2.2.1 Pump Efficiency Loss 

Pump efficiency loss is a common pump problem observed in drilling operations. 

Continuous operation for an extended period causes a loss in pump efficiency which changes the 

flow rate pumped into drillstring. Ultimately, this process reduces the AFP in the wellbore. 

Partial loss of ECD does not cause any trouble in conventional drilling. However, a reduction in 

ECD while using a static mud weight less than the pore pressure gradient can result in formation 

fluid intrusion into the wellbore in MPD. In this research, the pump efficiency loss scenario was 

created based on a 10% loss in the volumetric efficiency. In other words, this case was simulated 

by reducing the original pump rate by 10%. 
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6.2.2.2 BHA Position Change 

The wellbore pressure opposite a given formation decreases as the drill collars move 

through and pass the formation. This is because the annular frictional pressure losses are higher 

in the narrow annulus around the drill collars than they are in the annulus around the drillpipe. 

This reduction in wellbore pressure, or ECD, opposite a permeable formation can cause a kick if 

the wellbore pressure is less than the formation pressure. Figure 13 and Figure 14 illustrate the 

reduction in the ECD at the top of high pressure sand caused by a deep progression of BHA 

below the sand. This whole process can result in a kick. 

 The BHA is located across a high pressure sand as shown in Figure 13. In this situation, 

pressure at the top of the high pressure zone is equal to the sum of the choke pressure (if any), 

the hydrostatic pressure, and frictional pressure drops across the drill pipe and the length of drill 

collars above the sand. The pressure at the top of the sand is greater than the pore pressure, 

which permits safe drilling. However, as the drilling continues, the BHA progresses deeper, and 

the drill collars move below high pressure sand. This reduces the AFP at the top of the high 

pressure sand. The pressure at the top of the zone is then equal to the sum of the choke pressure, 

hydrostatic pressure and AFP around the drill pipe. Therefore, the higher ECD around the drill 

collars is replaced by the lower ECD around the drill pipe and the loss of the higher AFP 

gradient around the drill collar can lead to an underbalanced condition and a kick. This condition 

was simulated as one cause of unintended ECD reduction. 

This case was simulated on Well X. The flow rate was adjusted to 160 gpm from 190 

gpm because circulating at 190 gpm generated sufficient frictional pressure loss around the 

drillpipe to prevent a kick. The initial bit depth was set at 16500 ft with the top of the drill 
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collars, above the top of the high pressure sand. Drilling progressed until a kick volume 

representing the assumed detection limit was gained. While drilling with 160 gpm, the drill 

collars moved down in the hole, and the total length of drill collars above the high pressure sand 

decreased. Then, the wellbore pressure dropped below the pore pressure. When a pit gain 

increase was detected, drilling was stopped and well control methods were applied. 

 

 

Figure 13:  BHA position and overbalanced condition at high pressure zone 
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Figure 14: BHA position and underbalanced condition at high pressure zone 

 

6.3 Summary 

Alternative initial responses and circulation methods were simulated for surface 

equipment failures and unintended ECD reductions in small and large wellbore geometries for 

small and large pit gains. RCD and pump failures were simulated as the examples of surface 

equipment failures. Pump efficiency loss and BHA positions were simulated as the examples of 

unintended ECD reduction case. Each scenario was simulated for large and small kick detection 

limits. The following chapter will discuss the results of these kick scenarios. 
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7. RESULTS AND ANALYSIS 

The DFD software is used to study different scenarios of formation fluid influx during 

drilling due to the two following failure categories: 

- Surface equipment failure 

- Unintended ECD reduction 

For each of the above possible failure cases, two scenarios are studied. Scenarios studied 

for surface equipment failure are listed as: 

- RCD failure (Loss of surface pressure) 

- Pump failure 

Similarly, scenarios studied for unintended ECD reduction are: 

- Pump efficiency loss 

- BHA position change 

The above four scenarios are simulated for two different kick sizes, which are 2-5 bbl and 

15-20 bbl for small and large kicks respectively. 

In addition, each of the scenario sets mentioned above are studied for two different wells, 

namely Well X and Well Y, with different wellbore geometries as described in Chapter 6. BHA 

position change scenario is not simulated for Well Y due to insignificant ECD effect expected 

for wells that have relatively larger hole size diameter than Well X. 

This chapter presents and discusses the simulation results of the different initial responses 

and the circulation methods simulated for these kick scenarios as given in Table 4.  
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7.1 Kicks Taken due to Surface Equipment Failure 

The initial responses and circulation methods for kicks due to surface equipment failure 

are represented by two scenarios, namely RCD failure (representing the loss of the surface 

pressure) and pump failure (representing the loss of ECD). 

7.1.1 RCD Failure (Surface Pressure Loss) 

Failure of a RCD with the pumps off caused release of the trapped pressure required to 

maintain the wellbore pressure, and the formation fluid intruded into the wellbore.  

Among all of the six initial response options, SI was the only applicable response because 

the surface backpressure could not be applied when there was no RCD, and pumping would not 

be feasible as the return flow would come to the rig floor. After the influx was stopped by the SI, 

the kick was circulated out with the driller’s method at normal and half circulating rates. This 

scenario was repeated both for small and large pit gains in Well X and Well Y.  

7.1.1.1 Results 

Figure 15 shows the flow rate and surface casing pressure change for the entire well 

control process, which includes loss of surface casing pressure, SI, pump start up and kick 

circulation at normal circulating rate for large pit gain in Well X. In this figure, it can be seen 

that casing pressure was not maintained constant during the pump start up; instead, it was 

reduced as the pump rate was increased. 

Conventional SI is implemented by turning the pumps off; however since in this scenario 

the pumps were already turned off, the well was shut in after the pit gain was increased to 21 bbl. 

This increased the casing pressure and increased the wellbore pressure. Tables 5 and 6 

summarize the initial response and circulation results for large pit gain in Well X and Well Y, 
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respectively. These tables include important parameters that allow the evaluation of the most 

appropriate initial response and circulation methods such as the maximum pressures (i.e. at the 

casing shoe, bottom and surface), the maximum return rates and NPT. The detailed simulation 

results for Well X and Well Y are given in the results section of appendix.  

 

 

Figure 15: SI and further kick circulation after RCD failure, Well X 

 

 

Table 5: Response and circulation results for RCD failure in Well X 
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   Table 6: Response and circulation results for RCD failure in Well Y

 
 

7.1.1.2 Analysis 

The results of the simulation showed that SI followed by normal circulation rate reduced 

the surface casing pressure and NPT versus the reduced circulation rate as seen in Figure 16. 

This was also true for Well Y (see Table 6, NPT column). However, normal circulating rate 

caused a higher return rate at the surface. Therefore, surface equipment should be able to handle 

the maximum return rate.  

Tables 5 and 6 indicate that the maximum casing shoe and bottomhole pressures, and 

therefore the maximum risk of lost returns occurred during pump start up for circulation as seen 

in Figure 17. These are slightly greater than the maximum pressures observed during the initial 

responses. 

The difference in the maximum surface pressures between normal and reduced 

circulating rates in Well X was higher than in Well Y (see Table 5and Table 6). However, the 

difference in the maximum surface casing pressures during kick circulation at normal and 

reduced rates were not significant in Well Y since it has a lower ECD effect due to the larger 

annulus.  
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SI must be applied for the kicks caused by a RCD failure, as it is the only applicable 

response. Circulating the kick at normal circulating rate is advantageous in reducing the surface 

pressure. In addition, the maximum risks of lost returns occur during pump start up. 

 

 

Figure 16: Normal and reduced circulating rates comparison 

 

 

 

 Figure 17: SI and further pump start up for full rate circulation, 2 bbl kick, Well Y  
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For the evaluation of half and full circulating rate methods, the simulation results showed 

no significant difference between small and large kick sizes. 

7.1.2 Pump Failure 

Only two applicable initial responses were indentified for kicks taken due to pump 

failure. The well could be shut-in or a new pump could be started without shutting the well in. 

Therefore, SI and starting a new pump with a reduced choke opening (SNP w/Pc) responses were 

simulated for the kicks taken due to a total loss of ECD caused by a pump failure. After the 

formation flow was stopped by SI response, the kick was circulated out with driller’s method at 

full and half circulating rates. The SNP w/Pc response was simulated as an alternative response 

to SI. First, the influx was stopped by SNP w/Pc, and then the kick was circulated out with 

driller’s method at a normal circulating rate. These responses were simulated for small and large 

pit gains in Well X and Well Y.  

7.1.2.1 Results 

This scenario was simulated for two initial responses: SI and SNP with a reduced choke 

opening. 

The SI response resulted in approximately similar casing pressure and flow in/out profiles 

with RCD failure (as shown in Figure 15). They were both applied when the pump was not 

circulating. After the casing pressure was stabilized, both responses required a pump start up to 

circulate out the kick. The only difference is in the reality. In case of a pump failure, SI is applied 

by closing the choke in a pump failure case, however during a RCD failure the well is closed by 

closing BOPs. 
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Figures 18 and 19 show the results of SNP with a reduced choke opening response for 

large pit gain in Well Y. Figure 18 presents the BHP, casing shoe pressure, casing pressure and 

flow in/out.  Figure 19 presents the choke opening and pump pressure change with time. Figure 

18 (showing flow in and out trends) and Figure 19 (showing pump pressure trend) are important 

because these plots should be used to determine how the choke opening can be adjusted to make 

the flow in and flow out rates equal. This response is implemented by adjusting choke opening 

based on the pump pressure and flow out measurement. It stops the influx by utilizing the ECD 

and surface backpressure. The choke opening was defined to be initially reduced to 0.7 (Figure 

19), while a new pump was brought up to the original pump rate. The choke opening was 

adjusted in small increments to match the flow in and flow out, and then (after pump rate reaches 

the original rate) to match the pump pressure to the original pump pressure since the normal 

circulating pressure was providing enough bottomhole pressure to control the wellbore until the 

pump failed (Figure 18).  

Table 7 presents the important response results for SI and SNP with a reduced choke 

opening. Table summarizes the pressures at the potential weak zones and final gain, which are 

utilized to evaluated and compare the responses. Table 8 shows the simulated circulation results 

at the end of the initial response.  The data in the tables was used to compare and evaluate the 

initial responses and circulation methods, by comparing the risk of loss returns at weak zones 

and the maximum observed surface pressure requirements.  

Response and circulation results are similar for Well X and Well Y. Thus, the results (for 

large and small pit gains) for Well X are presented in the appendix section. Well Y results are 

analyzed in the following section. 
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Figure 18: SNP w/Pc response for Well Y, large gain 

 

 

Figure 19: Choke opening and pump pressure during SNP w/Pc for Well Y 
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Table 7: Response results for pump failure in Well Y 

 
 

Table 8: Response and circulation results for pump failure in Well Y 

 
 

7.1.2.2 Analysis 

The simulation results for the SI and SNP with a reduced choke opening responses are 

similar. Pump start up after SI required a slightly higher (less than 30 psi) pressure at the shoe 

than did SNP with reduced choke opening (Table 8). SNP with a reduced choke opening gave a 

higher maximum circulating surface casing pressure because a larger influx intruded into 

wellbore during the response application. It also had less NPT than SI since it did not require 

pressure stabilization.  
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Figure 20 illustrates the bottomhole pressures for SI and SNP w/Pc. It shows that this 

process stopped the formation flow with only minor bottomhole pressure fluctuations whereas 

there were significant pressure fluctuations during pump start up after SI. 

SNP with a reduced choke opening requires adjustment of choke opening based on 

metering of flow out and pump pressure. Therefore, its application is complex and the success of 

this response depends on the application. On the contrary, SI is easy and straightforward to 

implement. 

 

 

Figure 20: BHP fluctuations during SI and SNP w/Pc 
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7.2 Kicks Taken due to Unintended ECD Reduction 

Unintended ECD reductions are exemplified by pump efficiency loss and BHA position 

change in this research. For the pump efficiency loss scenario, the pump pressure to secure the 

wellbore is known.  However, it is not known for BHA position change scenario. 

7.2.1 Pump Efficiency Loss 

A pump efficiency loss of 10% was used in this research. Initial responses were classified 

as non-circulating and circulating responses. Non-circulating responses do not benefit the ECD 

and only stop the formation flow by an increase in surface casing pressure. These responses are 

SI and MPD SD. Circulating responses utilize only ECD or both ECD and surface casing 

pressure to stop the influx. These are the increased casing pressure, increased pump rate, starting 

a new pump with casing pressure and increased pump rate with casing pressure responses. 

7.2.1.1 Results 

Pump efficiency loss scenario results were given as non-circulated and circulated 

responses. The below results were obtained from Well X for a 15 bbl kick. Simulation 

applications and results are approximately same for Well X and Well Y and for small pit gain 

case. The important differences observed for the large pit gain case are further discussed in the 

analyses section. The remaining results are shown in the appendix. 

7.2.1.1.1 Non-Circulating Response Results 

Non-circulating responses are the SI and MPD SD. Figure 21 illustrates a manual MPD 

SD in normal conditions. Flow in, out and casing pressure in Figure 21 show base line for initial 

response application. The flow out in this plot is used for early kick detection. Figures 22 and 23 

show the results of the SI, manual MPD SD, automated MPD SD and the modified manual and 
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automated MPD SDs. Figure 22 shows the flow in and flow out profiles which represents the 

effectiveness of the responses in stopping the influx (such as how fast the influx was stopped). 

Figure 23 compares the surface casing pressure required and thus the risk of lost returns at casing 

shoe and risk of surface equipment failure. These plots compare the non-circulating responses in 

terms of final gains and surface casing pressures, and this comparison was used to evaluate the 

most appropriate initial response method to be applied for this scenario. The most suitable 

response is the one, which leads to the lowest surface pressure and pit gain. SI response stopped 

the flow rapidly and ended up with the lowest surface casing pressure. Manual MPD SD had the 

largest influx and the maximum surface casing pressure as it caused a longer underbalanced 

condition compared to the others. Automated MPD SD response was relatively better than the 

manual MPD SD since the well was closed in a shorter time. MPD SD responses were improved 

by additional surface casing pressure. These new responses stopped the influx as fast as SI but 

these responses gave higher surface casing pressure. The most important results in these plots are 

that the lowest surface casing pressure was achieved by SI. 

 

 

Figure 21: MPD SD under normal conditions 
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Figure 22: Flow in and out for SI, MPD SD responses 

 

 

Figure 23: Casing pressures for SI and MPD SD responses  
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7.2.1.1.2 Circulating Response Analysis 

7.2.1.1.2.1 Increasing surface casing pressure 

The first simulated circulating response is the increased casing pressure. Three different 

choke pressure applications were proposed. Initially, the choke pressure was increased to the 

maximum casing pressure before fracturing with a pressure value that is a 100 psi (safety factor) 

less than the maximum choke pressure (MCPBF-SF). Secondly, a potentially improved response 

was executed by applying surface backpressure equal to the loss of hydrostatic pressure 

calculated from the pit gain. Finally, casing pressure was increased in steps of 200 psi until flow 

out got equal to flow in. The results of these responses are shown in Figures 24 and 25. These 

plots show the effectiveness of the responses in terms of flow in, flow out and surface casing 

pressure. In Figure 24, it can be observed that after 20
th

 min, flow out and flow in were almost 

equal, hence the influx was stopped by all responses.  

 

 Figure 24: Flow in/out for increasing the casing pressure responses 
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Therefore, the response that gives low casing pressures in Figure 25 and high feasibility 

will be compared with other initial responses in the analysis section.   

 

Figure 25: Casing pressures for increased casing pressure responses 
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 Figure 26: Increased pump rate response  

 

 

Figure 27: Annulus pressure profile after the increased pump rate 
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Figure 28: BHP during increasing pump rate and further kick circulation 
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stopped with acceptable bottomhole pressures fluctuates (less than 70 psi) and final gain 

(16.8bbl). 

The schedule in Table 9 was also used in a variation where casing pressure is increased 

only after the old pump was totally replaced by a new pump. Figure 30 shows starting a new 

pump and then increasing casing pressure response without a flow in meter installed based on the 

schedule in Table 9. The formation fluid influx was stopped but the final kick size (31.4 bbl) 

increased as the choke pressure was reacted after the new pump was set to the original rate as 

shown in Figure 30. 

Finally, the same response was applied assuming a flow in meter installed as shown in 

This initial variation was also reinforced by applying surface casing pressure. The amount of the 

surface casing pressure was again determined based on the hydrostatic pressure loss in the 

wellbore obtained from the pit gain. It allowed rapid adjustments to be sure that flow out is equal 

to flow in. This reduced the total kick size (15.96 bbl). However, Figure 31 plot shows that 

bottomhole pressure increased about 90 psi.  

7.2.1.1.2.4 Increased Casing Pressure with Corrected Pump Rate 

The final circulating response simulated is the increased (corrected) pump rate with 

increased casing pressure. The pump rate was corrected to the original rate with casing pressure. 

Figure 32 illustrates the results of correcting pump rate response as casing pressure was 

increased to offset the loss of hydrostatic pressure. The plot includes the flow in, flow out and 

casing pressure change versus time. The results are very similar to the prior response. The plot 

also shows that influx was stopped with 16 bbl. The overbalance is verified when flow in and out 

are equal after 20
th

 minute. 
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Table 9: Schedule for starting up a new pump 

Old Pump, gpm 

New Pump, 

gpm Total, gpm 

Qin, indicated Qout, actual with 90 % Eff Q Q, ind. Q, act. 

190 170 0 190 170 

190 170 15 205 185 

175 157.5 15 190 172.5 

175 157.5 30 205 187.5 

160 144 30 190 174 

160 144 45 205 189 

145 130.5 45 190 175.5 

145 130.5 60 205 190.5 

130 117 60 190 177 

130 117 75 205 192 

115 103.5 75 190 178.5 

115 103.5 90 205 193.5 

100 90 90 190 180 

100 90 105 205 195 

85 76.5 105 190 181.5 

85 76.5 120 205 196.5 

70 63 120 190 183 

70 63 135 205 198 

55 49.5 135 190 184.5 

55 49.5 150 205 199.5 

40 36 150 190 186 

40 36 165 205 201 

25 22.5 165 190 187.5 

25 22.5 180 205 202.5 

10 9 180 190 189 

10 9 190 200 199 

0 0 190 190 190 
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Figure 29: SNP w/Pc without a flow meter installed 

 

Figure 30: SNP then applying Pc without a flow meter installed 
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Figure 31: SNP w/Pc with a flow in meter installed 

 

Figure 32: Increasing (correcting) pump rate with casing pressure 
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7.2.1.2 Analysis 

7.2.1.2.1 Non-Circulating Responses 

Non-circulating responses stop the flow without measuring flow in and flow out. There is 

also no need for formation flow verification. At the end of the non-circulating responses, choke 

is closed and the casing pressure builds up. This process increases the wellbore pressure and 

stops the flow.  

Figures 22 and 23 compare the non-circulating responses. The shut in response is simple 

after the kick is detected. The pumps were turned off, and then the well was shut in by closing 

the choke. A MPD SD schedule was prepared so that the bottomhole pressure would not increase 

beyond 100 psi, and this rise was avoided when the pump was shut down. MPD SD was applied 

to stop the formation influx on a time schedule representing a manual procedure. This response 

was very slow and led to an additional kick gain. Thus, kick volume increased up to 41 bbl, as 

shown in Figure 23. An automated MPD SD was also simulated in order to compare with the 

manual MPD SD. The automated MPD SD was relatively more successful, but it also resulted in 

an additional 8 bbl kick. During a manual MPD SD, the wellbore was exposed to an 

underbalanced condition for a longer time. This explains the final gain differences between 

manual and automated MPD SD responses. SI stopped the flow with a lower final pit gain and a 

casing pressure versus MPD SD responses. 

A potentially improved MPD SD method was also considered as an initial response. 

Additional casing pressure was added to the MPD SD schedule. The hydrostatic pressure loss for 

a 15 bbl gas kick (kick detection limit) was calculated and added to the surface pressure in the 

MPD SD schedule. This method was named “MPD SD with additional choke pressure” (MPD 
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SD w/Pc). MPD SD w/Pc was very effective in minimizing the additional gain. During this 

response, flow out was nearly equal to the flow in at all levels of pump rate as in Figure 22. A 

very small additional kick was gained during this response. An automated form of MPD SD 

w/Pc response was also performed to obtain results for a better comparison. Both automated and 

manual MPD SD w/Pc successfully stopped the formation flow with similar final casing 

pressures. The final gain and the shut in casing pressure was less than all other MPD SD. SI has 

a great advantage over manual and automated MPD SD. However, the improved manual and 

automated MPD SD gives the same final gain as SI. 

7.2.1.2.2 Circulating Responses 

Circulating responses for kicks caused by loss of pump efficiency generally require 

accurate flow in and flow out measurements. These responses involved various combinations of 

increasing choke pressure and pump rate. Formation flow stoppage was verified by comparing 

the accurate flow measurements. Once the flow in was higher than flow out and the following 

slope of flow out increase was reduced (as shown in Figures 24 and 26), the initial response was 

considered successful. Then, kick circulation was continued by maintaining started by 

maintaining the pump pressure rate and pump pressure constant. This approach was applied for 

both the increased casing pressure and increased pump rate responses. 

7.2.1.2.2.1 Increased Surface Casing Pressure 

Three variations of increased casing pressure response, as described in section 

7.2.1.1.2.1, were simulated. All stopped the formation fluid influx. 

MCPBF-SF was the only response that did not require flow in metering and resulted in 

about a 16 bbl gain. This response ended up with slightly less gain than the stepwise casing 



 

 

78 

pressure increase response. The final surface choke pressure was 295 psi higher than necessary 

to stop the formation flow influx.  

Increasing casing pressure to offset the hydrostatic pressure lost due to the kick fluids 

was also successful. However, increasing the casing pressure based on the hydrostatic pressure 

loss may not be sufficient since the pump rate was reduced and the overall AFP lowered. 

Therefore, it would generally require comparing measured flow in and out and adjusting casing 

pressure to stop the formation fluid flow. 

The increased casing pressure response based on forcing flow out equal to flow in was 

also simulated. Initially, casing pressure was increased in a 200 psi step and the flow out versus 

flow in was measured. At the 20
th

 minute, as shown in Figure 24, flow out was increasing. An 

additional 200 psi, totaling 400 psi surface backpressure, was applied, and the influx was stopped 

(Figure 25).  

7.2.1.2.2.2 Increased Pump Rate 

Increasing the pump rate, similar to a dynamic kill, whereby the AFP can be utilized to 

increase the BHP and to stop the formation influx is most likely to succeed in slim hole wells 

like Well X. After a 15 bbl kick was detected, increasing the pump rate was attempted as a 

means to stop the formation fluid influx. The pump rate was directly increased to equal the flow 

out value of 270 gpm as shown in Figure 26, and the well was killed by the increased AFP. The 

flow out rate was observed for a period before committing to a kick circulation rate. However, 

during that period, circulating at a high rate led to rapid gas migration and quick expansion of the 

kick volume. Therefore, pump rate was again increased to a value just above the flow out of 275 

gpm. Figure 27 shows that the new pump rate increased the AFP and the wellbore pressure 
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profile shifted above the formation pore pressure. A drillpipe pressure was measured at that rate, 

and the kick circulation was initiated at the 275 gpm pump rate. This response also requires 

accurate flow in and flow out metering.  

7.2.1.2.2.3 Starting a New Pump with Additional Casing Pressure 

Starting a new pump (SNP) with additional casing pressure is a method that can be 

applied with or without a flow meter installed to the downstream of the pump. This initial 

response can utilize the knowledge that there was no formation flow before the loss of pump 

efficiency as a basis for stopping the influx. Specifically, circulating with an efficient pump at 

the original pump pressure provides enough bottomhole pressure to secure the wellbore. This 

requires replacing the failing pump with an efficient pump. Control is achieved more quickly if 

surface backpressure is applied to offset the loss of hydrostatic due to the kick fluid. The failing 

pump can then be replaced with a new one by simultaneously changing the rate from each pump. 

It was applied in three different ways.  

Initially, it was performed by assuming no flow in meter was installed. It began by 

applying surface casing pressure as shown in Figure 29 and then the new pump rate was 

increased gradually. When maximum pump rate was reached, the final gain ended up with 16.8 

bbl.  

The second response was simulated without initial application of additional casing 

pressure. Casing pressure was applied to increase the pump pressure to the original value after 

the new pump rate was increased to the original rate as shown in Figure 30. This response gave a 

31 bbl kick; because the wellbore pressure was still below the formation pressure, and the influx 

continued, during the pump transition in the absence of the casing pressure.  
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Finally, a potentially improved response, SNP with additional surface casing pressure, 

was simulated. The simulation results are shown in Figure 31. The aim to use a flow in meter 

was to keep the actual pump rate above 190 gpm. During pump start up, the new pump rate was 

increased to keep the actual pump rate above 190 gpm. This was achieved by increasing new 

pump rate by 15 gpm, while the old pump rate was reduced by 15 gpm. The 15 gpm increment 

for the new pump was selected because it increased the total pump rate to 205 gpm, which 

caused 54 psi higher AFP than 190 gpm. Generally, a 54 psi addition is an allowable BHP 

increase, and it should not cause any wellbore stability risk. This response gave the minimum 

smallest final gain of 15.96 bbl. 

7.2.1.2.2.4 Increased Casing Pressure with Corrected Pump Rate 

Increasing (correcting) the pump rate of the inefficient pump to give an actual flow rate 

into the well equal to the intended rate with casing pressure response was applied by increasing 

surface backpressure. Hence, formation flow was stopped by the increased ECD and the surface  

backpressure as shown in Figure 32. The actual pump rate was increased to the original value, 

and the choke pressure was added to create a balanced or slightly overbalanced condition. This 

response is only applicable if there is a flow in meter installed so that the actual rate is known. 

Otherwise, this response cannot be applied. By the use of the flow in meter, the pump stroke rate 

was increased to an indicated 211 gpm for an actual flow rate in of 190 gpm. Casing pressure 

equal to the hydrostatic pressure loss was added simultaneously with the increased pump rate. 

After that, the pump rate was maintained constant and the choke pressure was adjusted to keep 

drillpipe pressure constant at the pre-recorded value before the pump lost efficiency. This 

response stopped the flow quickly. 
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7.2.1.2.3 Comparison of Responses 

This section compares the results of different initial responses. Initial responses that have 

more than one application are presented by the response that gave the best result. Therefore, the 

results of six different initial responses are plotted and tabulated. Plots show and compare the 

pressure profiles at different sections of the wellbore. Tabulated results present and compare the 

pressures at shoe, bottomhole pressure, surface pressure and the final gains.  

Figure 33 shows the entire wellbore pressure profiles for the SI, automated MPD SD 

w/Pc, stepwise increasing casing pressure by monitoring flow out, increasing pump rate, SNP 

w/Pc with flow in meter installed and increasing pump rate with casing pressure responses as 

well as the pressure profiles before and after taking the kick. It compares the surface casing 

pressure requirements of the initial responses. Surface casing pressures decrease from non-

circulating responses to circulating responses. Automated MPD SD w/Pc caused the highest 

surface pressure, and it was followed by SI response. The surface pressures decrease as the use 

of AFP increases. The increased casing pressure, SNP w/Pc and the increased pump rate with 

increased casing pressure responses gave similar results as they had similar surface pressures. 

Finally, increased pump rate gave no surface pressure as it only utilized AFP to increase the 

wellbore pressure. Figure 34 shows the pressure profiles for these responses over the depth 

interval opposite the casing shoe. The pressure results at the casing shoe are examined in terms 

of risk of casing shoe failure or lost returns. Non-circulating responses (automated MPD SD 

w/Pc and SI respectively) had the highest risk. Other than the non-circulating responses, 

increasing casing pressure had the highest risk of casing shoe failure because it required a higher 

surface pressure than the other circulating responses. The minimum risk of lost returns resulted 
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from increased pump rate response. Briefly, the casing shoe pressure increases depending on the 

surface pressure. Hence, circulating responses, which utilize AFP and reduce the need for surface 

pressure, end up with a lower risk of casing shoe failure.  

 

 

Figure 33: Final wellbore pressures in Well X 

 

Figure 35 illustrates the pressures for six initial responses across the high pressure sand 

zone. All of the initial responses shifted the pressure profile into safe window and successfully 

stopped the formation fluid influx. The highest overbalance pressure was provided by automated 
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rate, resulted in a similar pressure opposite the high pressure zone. The increased pump rate 

provided the lowest pressure at the high pressure zone because it had no surface pressure and 

utilized only the AFP. 

 

 

Figure 34: Final wellbore pressures across the casing shoe in Well X 
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plot. Circulating reactions generally resulted in higher bottomhole pressures due to the high 

frictional pressure gradients around the drill collars, but the automated MPD SD w/Pc gave the 

highest BHP for the same reason as in the previous paragraph. The SI response gave the lowest 

BHP because it stopped the flow based on the formation pressure and imposed no additional 

AFP. Therefore, SI provided the lowest risk of lost returns below the kick zone. 

Table 10 summarizes these wellbore pressures after high gain for eleven initial responses 

as well as the normal circulating wellbore pressures. The table is used to evaluate responses in 

terms of the highest pressures at casing shoe, bottom and surface, and final pit gain. 

SI is the best non-circulating response because it gave the lowest pressures at every point, 

provided the smallest gain and is easy to apply.  

Circulating responses generally caused lower pressures on surface equipment and at the 

casing shoe than non-circulating responses did, as they used AFP. However, they caused higher 

bottomhole pressures, which can be a problem if the greatest risk of lost returns is on the bottom. 

However, conditions are important for circulating responses because pressure values everywhere 

are affected by the wellbore and drillstring geometry. The increased pump rate response had the 

largest advantages and disadvantages in this regard. However, it had other disadvantages (pump 

pressure limitation, faster loss of pump efficiency, requires flow meter, schedule for pump rate 

reduction). Any circulating response with the inefficient pump may result in pump failure and 

well control failure. The most practical responses are probably SI and SNP w/Pc. They support 

switching to the use of an efficient pump. SNP w/Pc had advantage in maintaining stability and 

integrity, reducing NPT and providing continuous circulation over SI. Nevertheless, its 

application is more complex than SI. 
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Figure 35: Final wellbore pressures across the high pressure zone in Well X 

 

Figure 36: Final wellbore pressures at the bottomhole in Well X 
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Table 10: Initial response results for high gain kick due to pump efficiency loss, Well X 
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7.2.1.2.3.1 Initial Responses in Well Y  

The same initial responses were also studied in a relatively larger hole, Well Y; where the 

ECD is less significant compared to Well X. The aim is to see the effectiveness of the initial 

responses in different wellbore sizes.   

Non-circulating and circulating responses (except for the increased pump rate response) 

gave generally similar results in terms of risk of lost returns and final kick sizes as shown in 

Figure 37 and Table 11.  

 

 

Figure 37: Final wellbore pressures at the bottomhole in Well Y 
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Table 11 gives the surface pressures, final gains, pressure at shoes and bottom. The order 

of the lost returns risk and surface equipment failure risk (due to surface casing pressure) are 

similar to Table 10 except for the increased pump rate response.  

Table 11: Initial response results for high gain kick due to pump efficiency loss, Well Y 

 

  

Figure 37 shows the final pressure profiles of the initial responses. The plot compares the 

pressures at shoe and bottom with respect to pore pressure and fracture pressure. There is a 

significant difference when increasing the pump rate response was simulated in Well Y. 
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Different from Well X, the increased pump rate response could not stop influx because the 

wellbore pressure was less than the formation pressure as shown the Figure 37. Pump rate was 

increased to its maximum rating; but the developed AFP was inadequate to stop the formation 

influx. Therefore, it is concluded that the success of an increasing pump rate response depends 

on the well conditions and brings risks for large pit gain.  

7.2.1.2.3.2 Kick Circulation 

Circulation to remove kick fluids following the most relevant initial responses was also 

simulated. Circulations were simulated at both the normal drilling rate and at half that rate for the 

non-circulating responses. Circulation was also continued at a constant rate for the circulating 

responses. Pumps were started up for kick circulation at normal or half circulating rate after the 

formation influx was stopped by non-circulating responses. Figure 38 illustrates a complete well 

control process. It also shows the casing pressure, flow in/out, gas rate out and pit gain behavior 

during a full well control operation. In Figure 38, a kick was taken, and the well was shut in. 

After the pump was started, kick was circulated with Driller’s method. Until point “1” in the 

figure, gas was being circulated to surface, and during that period gas expanded and flow out 

increased. At point “2,” the pit gain was at a peak, and casing pressure was maximized to 

compensate for the gas expansion. After point “2,” the flow out dropped below the flow in, AFP 

and annulus hydrostatic pressure increase, and the choke opening needs to be increased. At point 

“3,” the gas rate at the surface peaked and flow out dropped to its minimum point because of gas 

hold up at the surface. After that point, mud offset the gas, and the casing pressure requirements 

decreased. Flow out started to increase and equalize with flow in as the gas content in the mud 

decreased. 
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Figure 38: SI and normal rate kick circulation 
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increased rate, 275 gpm, resulted in the lowest surface pressure requirement as a result of the 

significant AFP.  

Another benefit of circulating at increased or normal rates is the reduced NPT. The kick 

is circulated out in a shorter time at high circulation rates. Therefore, it was concluded that 

circulating at the full or higher rate demonstrated advantages over reduced rate circulation. 

Figures 40 and 41 show the gas rate and mud return rate at the surface, based on the circulation 

rate. These plots prove that the peak return flow rates are dependent on the circulating rates. Gas 

flow rate out decreases as the circulating pump rate decreases. Figures 40 and 41 show that 

circulating at an increased rate increased both the gas and mud rates at surface. Therefore, the 

surface equipment should be sized to handle these peak return flow rates during kick circulation 

for the kick circulation rate that is planned for use.   

 

Figure 39: Casing pressures during circulation study 
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Figure 40: Gas return rates at the surface  

 

  Figure 41: Mud return rates at the surface  
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A significant complication is that the increased rate response requires a schedule for 

reducing pump rate during kick circulation. This complication occurs because after the gas 

reaches the surface, bottomhole pressure increases as mud replaces the circulated gas. As the 

kick was removed, the choke opening was increased to maintain the pump pressure. Although 

the choke was fully opened (meaning that no backpressure was applied), the pump pressure 

began to increase. There was still about 9 bbl of gas in the well at the 76
th

 minute, and as shown 

in Figure 42, the pump pressure begins increasing as the gas was removed. At this stage, there 

were three possible reactions: pump pressure (and bottomhole pressure) might be allowed to 

increase and circulation would continue, pump rate could be directly reduced to the original rate 

(190 gpm), or pump rate could be reduced gradually.  

 

 

Figure 42: Pump pressure as gas reaches the surface during the increased pump rate  
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Figure 43 shows the final wellbore pressures for these possible three responses. 

Continued circulation at an increased rate increased the bottomhole pressure more than was 

necessary to stop the influx. There was no risk of lost returns for this well, but for tighter 

margins, such an increase may fracture the formation. In addition, the final BHP would be higher 

than seen in Figure 43, because the simulator crashed before the kick circulation was completed. 

Also, the pump pressure might increase more than was allowed. When the pump rate was 

directly reduced to the original value, another kick was gained because the presence of the 9 bbl 

kick resulted in the well’s being underbalanced. However, if the pump rate was gradually 

reduced to the original rate based on a schedule, the BHP could be successfully maintained 

within a reasonable pressure window.  

Figure 44 shows the gradual pump rate reduction, based on a schedule created with an 

Excel spreadsheet. In Figure 44, the plot to the right side of dashed line shows the simulation 

results for a gradual reduction of pump rate. As seen in the plot, kick was circulated successfully 

and the flow in and out became equal. 

The overall kick circulation simulation results are summarized in Table 12. The table 

compares the maximum pressure values at casing shoe, bottomhole and surface, the maximum 

flow out rates and NPT of the circulation simulation results. The evaluation for circulation is 

conducted based on the circulation duration time, maximum pressure at the potential weak zones 

and the surface, maximum flow rates at surface, and the ease of application. The maximum 

pressure at the casing shoe, or risk of shoe failure, was observed during circulations after non-

circulating (SI and automated MPD SD w/Pc) responses as shown in Figure 39 and summarized 

in Table 12. This was true for full rate and half rate circulations. The maximum observed 
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pressures at the shoe after the responses that required a pump start up for kick circulation are at 

least 100 psi than those for circulating responses, independent from the circulation rate. This 

higher pressure at the shoe occurred during pump start up. Therefore, the evaluation of initial 

responses at the shoe should consider the initial response and the consequent kick circulation 

together. Similarly, the maximum observed BHP should also be evaluated while considering the 

initial response together with the circulation. It should be noted that the MPD SD w/Pc response 

caused the highest shoe and bottom pressures and therefore the highest risk of lost returns. All of 

the other responses gave lower and similar maximum bottomhole pressures. The circulating 

responses gave the maximum shoe pressures within a range of 96 psi and minimized the risk of 

lost returns at the shoe. 

For the normal circulating rate responses, the maximum annulus surface pressure was 

observed either when the gas hold up was at maximum or during pump start up. The maximum 

surface pressure during circulation is minimized when the kick is circulated at an increased rate 

due to the increased AFP. 

A shorter time was spent for total well control in circulating responses than for non-

circulating responses. Circulating responses stopped formation flow relatively quickly, whereas 

non-circulating responses required pressure stabilization that increased the NPT time. 

Additionally, when circulating at a normal or increased rate, a well control operation was 

completed in a shorter time than at half rate circulation, and this significantly reduced the NPT. 

The increased circulating rate gave the shortest circulation time, which in turn reduced NPT and 

the cost. However, it required a schedule as discussed in this section when the gas reached 

surface.  
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The advantages of circulating responses include the lower cost of NPT, lower pressure  

on surface equipment and at casing shoe. However, it should be recalled that the circulating 

responses and their consequent kick circulations are performed with an inefficient pump (except 

for SNP w/o flow metering). This may cause pump failure and failure in well control. Therefore, 

a simple shut in followed with a kick circulation at normal circulating rate using an efficient 

pump and SNP w/Pc are the most appropriate reactions for these kinds of kicks. Among these, 

SNP w/o flow metering provides continuous circulation and reduces the NPT, whereas SI and 

full rate circulation requires no preliminary calculations or schedules and no flow in or out 

metering. 

 

 

Figure 43: Wellbore pressures 
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Figure 44: Gradually reduced pump rate  
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Table 12: Circulation results for high gain kick due to pump efficiency loss, Well X  

 

 

7.2.2 BHA Position Change 

BHA position change led to a reduction in ECD across the high pressure zone in the 

wellbore. This reduced the wellbore pressure below the formation pore pressure. SI and MPD SD 

responses were applied as non-circulating responses. The increased casing pressure, increased 

pump rate and combination of these were applied as circulating responses. After the non-

circulating responses, kick was circulated at normal and half circulating rates. The kick was 

circulated at the rates that the influx was stopped after circulating responses. This case was 
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simulated for only Well X because ECD was not significant in Well Y (relatively larger well), 

for large and small pit gains. 

7.2.2.1 Results and Analysis 

BHA position change results were divided into non-circulating and circulating responses. 

The results below were obtained from Well X after gaining a 20 bbl kick. The tabulated results 

for small pit gain are shown in the appendix as large pit gain is more important and there is no 

significant difference between large and small pit gains. 

7.2.2.1.1 Non-Circulating Responses 

Non-circulating responses are SI and MPD SD. Figures 45 and 46 present a MPD SD for 

pre-kick conditions. Figure 45 shows that the bottomhole pressure is maintained relatively 

constant during a MPD SD, which means the aim of MPD SD is met under normal conditions.  

Figure 46 establishes a kick baseline or fingerprint which enables to detect the small kick. MPD 

SD schedule was simulated under kick conditions. The flow out in this figure can be used for 

early kick detection by checking whether the flow out trends match, since mismatch means a 

kick. 

Figures 47 and 48 show the applications and the results of the SI, manual MPD SD and 

automated MPD SD applied after the kick was detected. Figure 47 compares the flow return rates 

during SI, manual MPD SD and automated MPD SD responses, which is used to evaluate the 

effectiveness of the responses in formation influx stoppage. A response is considered as effective 

if the flow out trend is equal to flow in, which is SI in this case. Figure 48 is used to compare the 

corresponding surface pressures of the responses. The lowest casing pressure reduces the lost 

returns risk and surface equipment failure risk, which is also for SI in this case.  
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The SI final casing pressure was less than 900 psi and the final gain was 21.9 bbl. The SI 

was rapid and stopped the formation fluid flow with the less final gain and casing pressure than 

the MPD SD responses as shown in Figure 47 and 48. Some additional gain occurred while 

turning off the pump for SI as shown in Figure 47. However, it was not significant. 

The final surface casing pressures and gains for manual and automated MPD SD 

responses were about 1100 and 1600 psi, and 28 bbl and 49 bbl, respectively. Automated MPD 

SD ended up with a lower final gain and casing pressure compared to the manual MPD SD 

because the automated MPD SD was completed in a shorter time. However, these responses 

were not effective compared to SI. 

Figures 49 and 50 compare SI and the improved (adding casing pressure equal to 

hydrostatic pressure loss to the pump shut down casing pressure schedule) manual and 

automated MPD SD responses. Figure 49 compares flow in and out values for SI and the 

improved MPD SD responses, similar to Figure 47. Figure 50 shows that the improved manual 

and automated MPD SD responses stopped the formation flow with about 870 psi surface casing 

pressures. The final gains for these responses were about 22 bbl.  

The improved MPD SD responses stopped the influx effectively and gave almost the 

same final gain and casing pressure as SI (see Figures 49 and 50). However, there exist 

limitations for improved MPD SD responses. Pressure loss and the required overbalance pressure 

are not known precisely and are needed for the revised MPD SD schedule. This is not a huge 

disadvantage, unless the pressure loss is overestimated, because the needed pressure will build 

up after closing the choke. 

 



 

 

101 

 

Figure 45: BHP during pre-kick MPD SD 

 

 

Figure 46: Pre-kick MPD SD 
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Figure 47: Flow in/out during SI, manual and automated MPD SD 

 

 

Figure 48: Casing pressures for SI, manual and automated MPD SD 
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Figure 49: Flow in/out during SI, improved manual and automated MPD SD 

 

Figure 50: Casing pressures for SI, improved manual and automated MPD SD 
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7.2.2.1.2 Circulating Responses 

Responses utilizing continued circulation for kicks caused by ECD reduction due to BHA 

position change were also applied to stop the influx. These responses include increasing surface 

backpressure, increasing pump rate, and increasing pump rate with surface backpressure. 

7.2.2.1.2.1 Increasing Surface Backpressure 

The technique of increasing surface backpressure while continuing to circulate was 

applied in three different ways. These are increasing casing pressure to MCPBF-SF, increasing 

the casing pressure equal to the hydrostatic pressure loss (calculated from pit gain) and stepwise 

increase of casing pressure. These responses are same as the increased casing pressures 

responses used in the pump efficiency loss case.  

Figures 51 and 52 show the results of these responses. Figure 51 presents the surface 

casing pressures resulting from these initial responses and therefore the relative risk of 

equipment failures. The final surface casing pressure for MCPBF-SF, increasing the casing 

pressure equal to the hydrostatic pressure loss and stepwise increase of casing pressure responses 

are about 870, 475and 500 psi respectively. Figure 52 illustrates the flow in and flow out 

profiles. This plot is used to show that flow in and flow out is almost equal, which indicates that 

flow was stopped, at the end of the responses. 

MCPBF-SF does not require flow measurement. It stopped the flow but caused excessive 

surface casing pressure.   

Increasing the surface backpressure equal to the hydrostatic pressure loss requires flow 

measurement in this case. In theory, this response should not have stopped the influx since the 
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normal wellbore pressure was inadequate to prevent formation influx. The added safety pressure 

to surface backpressure stopped the influx with a very low overbalance pressure. 

Stepwise casing pressure increase was implemented by 200 psi increments. When the 

flow out increased, surface backpressure was increased by an additional 200 psi. This pressure 

increase forced the flow out be almost equal to flow in as shown in Figure 52. In the 28
th

 minute 

of Figure 52, flow out started to increase again. However, only a 100 psi surface backpressure 

was applied because flow out was almost equal to the flow in and 200 psi surface backpressure 

increase would cause an unnecessarily high wellbore pressure.  

The stepwise casing pressure increase stopped the flow with a similar final gain to the 

other circulating responses and it resulted in a lower casing pressure than the MCPBF-SF 

response as shown in Figure 51. Practically, this response is considered preferable to the 

increased casing pressure equal to the hydrostatic pressure loss because no prior calculations are 

required to define an initial casing pressure and it is more feasible. 

 

Figure 51: Casing pressure for three increasing surface backpressure responses 
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Figure 52: Flow in and out for three increasing surface backpressure responses 
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Figure 53: Increasing the pump rate response 
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circulating rate and low casing pressure. Once the flow is stopped, kick must be controlled by 

maintaining the new recorded pump pressure constant because fast gas expansion may lead the 

wellbore pressure to drop again. This response also required a pump rate reduction schedule as 

the gas kick was removed to avoid an excessive bottomhole pressure increase. 

 

 

Figure 54: Increasing the pump rate with casing pressure 
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present and compare the pressures at shoe, bottomhole pressure, surface pressure and the final 

gains for each initial response.   

Figure 55 shows the wellbore pressure profiles of representative examples of the initial 

responses. It compares the surface casing pressures results of the simulated responses. The 

automated MPD SD w/Pc and SI caused the maximum casing pressures because they did not 

have the benefit of AFP. For the circulating responses, the casing pressures experienced 

decreased progressively between the stepwise increasing surface backpressure, increasing the 

pump rate with casing pressure and increasing pump rate responses.  

Figure 56 focuses on the pressure profiles opposite the casing shoe, high pressure sand 

zone and bottom. It shows the risk of lost returns at the potential loss zone. None of these initial 

responses caused any significant risk of lost returns in Well X as shown in Figure 56. However, 

initial responses can be ranked based on their risk of lost returns at the casing shoe. Automated 

MPD SD w/Pc and SI have the highest risk of lost returns. The increased casing pressure gave 

desired results at every critical point compared to circulating and non-circulating responses. It 

gave a lower casing shoe pressure than non-circulating responses and provided the highest 

overbalance at the high pressure zone. 

Table 13 summarizes the simulated initial response results. It compares the tabulated 

pressure and gain size. It shows that the initial responses ended up with almost similar pit gains 

except that the standard MPD SD responses were worse. Circulating responses showed lower 

pressures at the casing shoe and therefore reduced the risk of lost returns at the shoe. The 

bottomhole pressure results of essentially all of the responses were close. 
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Figure 55: Wellbore pressure profiles 

 

Figure 56: Pressure profile at shoe and high pressure zone 

0

2000

4000

6000

8000

10000

12000

14000

16000

0 2000 4000 6000 8000 10000 12000

D
ep

th
,f

t Pressure, psi Well Pressure Profile -Entire 

Auto MPD SD w/Pc

SI

Incr. Pc stepwise 

Incr. Q

Kick

Incr. Q w/Pc

15000

15200

15400

15600

15800

16000

16200

16400

9500 10000 10500 11000 11500

D
ep

th
, 
ft

Pressure, psi

Well Pressure Profile-Bottom 

Casing Shoe

Auto MPD 

SD w/Pc

SI

Incr. Pc stepwise

Incr. Q

Kick

Incr. Q w/Pc



 

 

111 

Table 13: Initial response results for BHA position change 

 
 

7.2.2.1.4 Comparison of Kick Circulation 

Kick was circulated by driller’s method at the end of the five initial responses mentioned 

above.  

Figure 57 shows and compares the casing pressures during the kick circulation 

simulations after each initial response. The highest casing pressures during circulation were 

observed for the half circulating rate cases, due to the lower AFP. On the other hand, full 
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circulating rate experienced a lower maximum casing pressure while circulating out the kick. 

The increased pump rate minimized the casing pressure imposed on the surface equipment, but it 

required much higher pump pressure and surface flow rate capacity due to large return rates. 

 

 

Figure 57:  Casing pressures during circulation 
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pressures were observed during pump startup after the non-circulating responses. Circulating 

responses eliminated these fluctuations, as they did not require pump start up. The increased 

pump rate response did not result in the highest pressure at the bottom, as it did in the pump 

efficiency loss case. This is because it had the lowest overbalance opposite the high pressure 

zone. However, it required a schedule to eliminate the bottomhole pressure increase during kick 

circulation. Increasing the pump rate with casing pressure had the same requirements as the 

increaed pump rate response.  

Increasing the casing pressure stepwise was the most desirable initial response because 

since its application is not limited by the pump pressure for the kicks taken due to reduction in 

the ECD. The increased casing pressure response is the most practical for minimizing pressures 

and NPT without requiring any special procedures. 

Table 14: Circulation results for BHA position change
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8. CONCLUSION 

This thesis investigated alternative initial responses and proper circulation methods for 

different kick scenarios resulting from the unintended bottomhole pressure fluctuations. This 

chapter presents the conclusions and some recommendations resulting from the analysis of the 

simulation runs made during the investigation. The following conclusions include the best well 

control methods for kicks taken due to surface equipment failures (e.g. RCD and pump failure) 

and unintended ECD reductions (e.g. pump efficiency loss, BHA position change). 

8.1 Specific Kick Cause Conclusions 

This section explains the best initial responses and circulation methods if the cause is 

known. RCD failure is an example of loss of surface pressure, and a pump failure represents a 

total loss of ECD. A pump efficiency loss is one example of an ECD reduction. A reduction in 

ECD due to BHA position change causing wellbore pressure drop opposite a given formation in 

the wellbore is another example of an ECD reduction. 

8.1.1 RCD Failure 

A SI response using the BOP, specifically followed by a pump start up schedule for 

normal circulating rate, is concluded to be the most appropriate well control method for kicks 

caused by loss of RCD failure. SI stops the formation flow successfully, and normal circulating 

rate reduces the NPT and surface pressure. However, the surface equipment must handle the 

maximum return rates that result from kick circulation at normal circulation rate and potential 

rapid gas migration. This response also applies to other causes of loss of surface pressure 

containment such as a choke wash out. In such a case, the BOP is closed and conventional SI is 

applied same as the RCD failure.  
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8.1.2 Pump Failure 

A SI response by simply closing the choke, followed by a pump start up schedule for the 

normal circulating rate, is the most appropriate well control response to a pump failure. It stops 

the formation flow, and it is straightforward to apply. SI can also be applied when the cause of 

the inability to maintain the circulation is a failure in the power generating system.  

Starting a new pump with a reduced choke opening is a new idea for an initial response 

that is concluded to be an opportunity as a well control option for kicks caused by pump failure. 

It minimizes the bottomhole pressure fluctuations and reduces the NPT relative to a SI response.  

It also reduces the period that the well stays static. However, the implementation procedure for 

this response requires further development. This response is not applicable if the cause of the 

pump failure is the power system failure. 

8.1.3 Pump Efficiency Loss 

A SI response by closing the choke, followed by a pump start up schedule for the normal 

circulating rate, is the most appropriate well control response to a pump efficiency loss. It also 

allows circulating the kick with a new pump, but the well is static during the pressure 

stabilization after SI. It has the same advantages and disadvantages as described in the previous 

section (8.1.2). 

Starting a new pump with additional surface casing pressure is a new idea for an initial 

response that is concluded to be an opportunity as a well control option for kicks caused by 

pump efficiency loss. This response replaces a failing pump with a new one while providing 

continuous circulation. Along with continuous circulation, it reduces the pressure imposed on the 

surface equipment and casing shoe, reduces NPT and eliminates the period that the well stays 
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static. However, it creates pressure fluctuations, and the operator must be able to control the 

failing and new pump at the same time. 

8.1.4 BHA Position Change  

Increasing the casing pressure until the measured flow out is equal to flow in is the most 

effective response for kicks caused by BHA position change. It provides continuous circulation 

and lower pressures versus the non-circulating responses. Although other circulating responses 

require schedules for reducing the pump rate to eliminate the bottomhole pressure increase after 

the kick reaches surface, the increased casing pressure response does not require any preliminary 

calculations. However, this response requires accurate flow out measurement. 

A SI response followed by a pump start up schedule for normal circulating rate is 

concluded as a secondary well control option. It increases the final gain while the pump is being 

turned off. It has the same features as stated in 8.1.2. 

8.2 Overall Conclusions 

The following conclusions are derived from the overall simulation runs and analysis. 

These conclusions are related to kicks caused by bottomhole pressure reductions but they may 

also be effective for kicks caused by higher formation pressure.  

1. SI is applicable for every kick scenario caused by bottomhole pressure reduction. It has 

several advantages. It is straightforward and the easiest initial response to implement. It does not 

require any flow measurement. It minimizes bottomhole pressure, which is desired if there is a 

weak zone at bottom. However, it typically gives higher pressure at casing shoe and at surface. It 

may result in significant pressure fluctuations during pump start up at casing shoe and at bottom. 
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It also requires turning the pumps off which accelerates the formation feed-in and may increase 

the kick size. It results in longer NPT than a typically circulating response. 

2. Increasing the casing pressure is the most effective response if it is practical given the 

surface equipment and its condition. It minimizes the casing shoe and surface casing pressures 

and NPT relative to the SI response. It requires no preliminary calculation or schedule. 

Nevertheless, it requires metering of flow out (and flow in for pump efficiency loss). It also 

requires intact pressure containment equipment: RCD, choke.  

3. Normal rate circulation following these responses is generally better than using an 

increased or slow pump rate for these kinds of kicks. It reduces the surface pressure and NPT 

versus slower pump rates. It does not require a pump rate reduction schedule like the increased 

rate circulation response does. The disadvantage relative to a slower pump rate is that the surface 

equipment must handle the high return rates. During kick circulation, drillpipe pressure should 

be maintained constant, and flow out should not be forced to be equal to flow in. 

8.3 Conclusions Regarding Other Applicable Responses  

1. An increased pump rate response can be advantageous depending on the conditions. It 

requires less surface casing pressure and reduces NPT relative to the other responses. It 

minimizes the risk of casing shoe failure. However, it does not necessarily stop the formation 

flow and can significantly increase risk during the attempt to stop the formation flow. Pump 

pressure and rate ratings limit its application in many situations. Surface equipment must handle 

the higher maximum return rate. It causes high bottomhole pressure depending on the location of 

the high pressure zone. It requires accurate flow out metering. It requires a schedule for pump 

rate reduction as kick is removed to maintain BHP.  
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2. MPD SD can be applied as an alternative to SI if the pit gain is very small when the kick 

is detected but has no advantage over SI. Its effectiveness depends on the overbalance tolerance 

of the bottomhole pressure that the MPD pump shut down is created with.  

3. An automated MPD SD has advantage over manual MPD SD if the influx continues 

during the process because the automated MPD SD reduces the time that the well is 

underbalanced. 

8.4 Recommendations 

SNP w/Pc after a pump efficiency loss, starting a new pump with a reduced choke 

opening after a pump failure and the improved MPD SD responses are new ideas and their 

effectiveness and operational ease should be investigated. These responses should be 

demonstrated in a real well to observe and define general procedures. Bottomhole pressure 

fluctuations and operational practicality of the SNP w/Pc and SNP with a reduced choke opening 

should be investigated. The improved MPD SD that begins by increasing the casing pressure 

should be demonstrated to observe the pressure fluctuations in front of the casing shoe.  

Two new related ideas were proposed by John Rogers Smith and Gerry Masterman in the 

LSU Petroleum Engineering department. The evaluation of these ideas is also recommended.  

Smith suggested a method combining a normal shut-in reaction and a normal pump start 

up pressure schedule for responding to a pump failure. His method is as follows: 

i. Begin closing the drilling choke to increase casing pressure as soon as a total 

pump failure is identified.  

ii. Line up to circulate using a back-up pump as soon as practical.    
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iii. Engage the backup pump and begin circulating.  Increase rate towards first rate in 

pump start up schedule.    

iv. If CP is less than the first CP in the pump start up schedule, continue increasing 

the pump rate (and closing the choke if not fully closed).  If CP is greater than the 

first CP in the schedule, open the choke more to reduce the CP to the target 

value.   

v. Once pump rate and CP are adjusted to any step on the pump start up schedule, 

continue following the schedule.   

vi. Once the pump rate has been returned to the normal circulating rate, expect DPP 

to stabilize at the target DPP.  If not, kick volume may have reduced hydrostatic 

pressure in the annulus.  If necessary, reduce choke opening to increase CP to 

force DPP at normal circulation rate to equal the target DPP.   

vii. OPTION:  If loss of hydrostatic is known (either from pit gain or from SICP 

being greater than the scheduled CP with pumps off), add the loss of hydrostatic 

to each CP on the pump start up schedule.   

Gerry Masterman developed an idea for replacing a failing pump with a “new” pump 

while continuing circulation for the pump efficiency loss problem. His idea is as following: 

i. Start 2
nd

 pump and if necessary, increase  rate until DPP = DPP circulating at full 

rate before pump problem  

ii. As DPP increases above target DPP begin reducing rate on 1
st
 pump  

iii. As DPP decreases to near or below target DPP begin increasing rate on 2
nd

 pump  
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iv. Repeat ii) and iii) until 1
st
 pump is shut down and 2

nd
 pump is at the original full 

circulating rate.   

v. Expect DPP to stabilize at the target DPP.  If not, kick volume may have reduced 

hydrostatic pressure in the annulus.  If necessary, reduce choke opening to 

increase CP to force DPP at normal circulation rate to equal the target DPP.   

Several upgrades to Dynaflodrill would be very advantageous. The numerical solution 

should be more stable. The version four of the software typically crashes when a large volume 

gas is at or near the surface. Inclusion of a formation fracture model to simulate loss scenarios is 

also recommended because any excessive surface casing pressure increase may break the 

formation and create lost returns, which increases the hydrostatic pressure loss.  This effect 

cannot be studied with the version four of the software. 

 

 

 

 

 

 

 

 

 

 



 

 

121 

REFERENCES 

1. IADC Glossary of MPD and UBD terms, www.iadc.org 

 

2. Fossil, B., Sangesland, S., “Managed Pressure Drilling for Subsea applications; Well 

Control Challenges in Deep Waters,” SPE/IADC 91633 presented at the SPE/IADC 

Underbalanced Technology Conference and Exhibition, Houston, Texas, 11-12 October, 

2004.  

 

3. Kozicz, J., “Managed-Pressure Drilling-Recent Drilling Experience, Potential Efficiency 

Gains, and Future Opportunities,” IADC/SPE 103753 presented at the 2006 IADC/SPE 

Asia Pacific Drilling Technology Conference and Exhibition, Bangkok, Thailand, 13-15 

November, 2006.  

 

4. Hannegan, D.M.,“Managed Pressure Drilling in Marine Environments – Case Studies,”   

SPE/IADC 92600 presented at the SPE/IADC Drilling Conference, Amsterdam, 23-25 

February, 2005. 

 

5. Hannegan, D., “Case Studies-Offshore Managed Pressure Drilling”, SPE 101855 

presented at the 2006SPE Annual Technical Conference and Exhibition , San Antonio, 

Texas, U.S.A, 24-27 September, 2006. 

 

6. Hannegan, M., “SPE Distinguished Lecturer Series,” SPE 2006 -2007  

 

7. Malloy, K. P., “A Probabilistic Approach to Risk Assessment of Managed Pressure 

Drilling in Offshore Applications,” Minerals Management Service Technology 

Assessment and Research Study 582, Contract 0106CT39728, 31 October, 2008.  

 

8. Saponja, J., Adeleye, A., Hucik, B., “Managed Pressure Drilling (MPD) Field Trials 

Demonstrate Technology Value,” IADC/SPE 98787 presented at the 2005 Managed 

Pressure Drilling Conference and Exhibition, San Antonio, Texas, 20-21 April, 2005.  

 

9. Quitzau, B., Leach, C.: “Extending Casing Points in Abnormal Pressure-Drill-in Liners,” 

World Oil, March 2004, Vol.225, No.3, p. 57-62. 

 

10. Coker, C. I., “Managed Pressure Drilling Applications Index,” OTC 16621 presented at 

the 2004 Offshore Technology Conference, Houston, Texas, USA, 3-6 May, 2004 

 

11. May, J., Roes, V., Scott, D. “Shell applies managed pressure drilling in the Gulf of 

Mexico” Offshore Magazine, August 2005,Vol.65, No.8, pp.83-85. 

 

12. Das, A., “Simulation Study Evaluating Alternative Initial Responses To Formation Fluid 

Influx During Managed Pressure Drilling” Master Thesis, May 2007, p.3. 

http://www.iadc.org/


 

 

122 

 

13. Vieria, P., Arnone, M., Russel, B., Cook, I., Moyse, K.., Torres, F., Qutob, 

Hani.,“Constant Bottomhole Pressure: Managed Pressure Drilling Technique Applied in 

an Exlporatory Well in Saudi Arabia,” SPE/IADC 113679 presented at the 2008 

SPE/IADC Managed Pressure Drilling and Underbalanced Operations Conference and 

Exhibition, Abu Dhabi, UAE, 28-29 January, 2008. 

 

14. Malloy, K.P., “Managed pressure drilling-What is it anyway?” World Oil, March 2007, 

Vol. 228, No. 3, pp. 27-34. 

 

15. Terwogt, J.H., Makiaho, L.B., Beelen N.v., Gedje, B.J., Jenkins, J.,”Pressured Mud Cap 

Drilling from A Semi-Submersible Drilling Rig” SPE/IADC 92294 presented at the 2005 

SPE/IADC Drilling Conference, Amsterdam, The Netherlands. 

 

16. Schubert, J.J., Juvkam-Wold, H.C., Choe, J.,”Well-Control Procedures for Dual-Gradient 

Drilling as Compared to Conventinal Riser Drilling,” SPE 99029, SPE Drilling & 

Completion, December  2006, Vol.21, No.4, pp.287-295 

 

17. Weatherford, 

http://www.weatherford.com/weatherford/groups/public/documents/general/wft021445.p

df 

18. Cantu, J.A., May, J., Shelton, J.,“ Using Rotating Control Devices Safely in Today’s 

Managed Pressure and Underbalanced Drilling Operations,” SPE/IADC 91583 presented 

at the 2004 SPE/IADC Underbalanced Technology Conference and Exhibition, Houston, 

Texas, 11-12 October 2004.  

 

19. Total Glossary, http://www.uk.total.com/crosscontent/glossary.asp 

 

20. Lovorn, R., Curtis, F.,”Choose the correct MPD service level” E&P, October 2007. 

http://www.epmag.com/archives/features/710.htm 

 

21. Spriggs, P., Frink, P., J., “ MPD Planning: How Much Is Enough?” SPE/IADC 113682 

presented at the 2008 SPE/IADC Managed Pressure Drilling and Underbalanced 

Operations Conference and Exhibition, Abu Dhabi, UAE, 28-29 January, 2008. 

 

22. At Balance, http://www.atbalance.com/TE_dapc_system.html 

 

23. Impact Solutions Group, http://www.impact-os.com/secure_drilling.htm 

 

24. Santos, H., Catak, E., Kinder, J., Franco, E., Lage, A., Sonnemann, P., “ First Field 

Applications of Microflux Control Show Very Positive Surprises” IADC/SPE 108333 

presented at the IADC/SPE Managed Pressure and Underbalanced Operations 

Conference and Exhibition, Galveston, Texas, 28-29 March, 2007.  

http://www.weatherford.com/weatherford/groups/public/documents/general/wft021445.pdf
http://www.weatherford.com/weatherford/groups/public/documents/general/wft021445.pdf
http://www.uk.total.com/crosscontent/glossary.asp
http://www.epmag.com/archives/features/710.htm
http://www.atbalance.com/TE_dapc_system.html
http://www.impact-os.com/secure_drilling.htm


 

 

123 

25. Santos, H., Leuchtenberg, C., Shayegi, S., “Micro-Flux Control: The Next Generation in 

Drilling Process” SPE 81183 presented at the SPE Latin American and Caribbean 

Petroleum Engineering Conference, Port of Spain, Trinidad, West Indies, 2-30 April, 

2003. 

 

26. Jenner, J.W., Elkins, H.L., Springett, F., Lurie, P.G., Wellings J.S., “The Continous-

Circulation System: An Advanced in Constant-Pressure Drilling,” SPE Drilling & 

Completion, September 2005, Vol.20, No.3, pp168-178. 

 

27. Calderoni, A., Chiura, A., Valente, P., Soliman, F., Squintani, E., Vogel, R.E., Jenner, 

J.W.,“ Balanced Pressure Drilling With Continuous Circulation Using Jointed Drillpipe – 

case History, Port Fouad Marine Deep 1, Exploration Well Offshore Egypt,” SPE 102859 

presented at the 2006 SPE Annual Technical Conference and Exhibition, San Antonio, 

Texas, 24–27 September, 2006.  

 

28. Furlow, W., “New tool addresses ECD problem,” Offshore, June 2002, Vol. 62, Issue 6,  

 

29. Bern, P.A., Armagost, W.K., Bansal, R.K., “ Managed Pressure Drilling with the ECD  

Reduction Tool,” SPE 89737 presented at the SPE Annual Technical Conference and 

Exhibition, Houston, Texas, 26-29 September, 2004.  

 

30. Halliburton, 

http://www.halliburton.com/ps/Default.aspx?navid=1160&pageid=1142&prodid=PRN%

3a%3aJC2X0B15  

 

31. Well Control Manual, Petroleum Engineering Research and Technology Transfer 

Laboratory, Louisiana State University, undated.  

 

32. Jardine, S.I., McCann, D.P., White, D.B., Blake, A.J., “An Improved Kick Detection 

System for Floating Rigs,” SPE 23133 presented at the Offshore Conference, Aberdeen, 

3-6 September, 1991.   

33. Bryant, T.M., Wallace, S.N., “Field Results of An MWD Acoustic Gas Influx Detection 

Technique,” IADC/SPE 21963 presented at the 1991 SPE/IADC Drilling Conference, 

Amsterdam, 11-13 March, 1991.  

 

34. Codazzi, D., Till, P.K., Starkey, A.A., Lenamond, C.P., Monaghan, B.J., “Rapid and 

Reliable Gas Influx Detection,” IADC/SPE 23936 presented at the 1992 IADC/SPE 

Drilling Conference, New Orleans, Louisiana, 18-21February, 1992. 

 

35. Dupuis, D., Augis,D., Sagot, A., Aquitiaine E., Delahaye T., Cartalos, U., Burban, B., 

“Valiation of Kick Control Method and Pressure Loss Predictions on a Slim Hole Well,” 

SPE/IADC 29348 presented at the 1995 SPE/IADC Drilling Conference, 28 February- 2 

March, 1995. 

http://www.halliburton.com/ps/Default.aspx?navid=1160&pageid=1142&prodid=PRN%3a%3aJC2X0B15
http://www.halliburton.com/ps/Default.aspx?navid=1160&pageid=1142&prodid=PRN%3a%3aJC2X0B15


 

 

124 

36. Shah, J., “New dynamic low choke method kills wells at balance point using surface-

applied pressure” Drilling Contractors, July/August, 2007. 

 

37. Rudolf, R.L., Suryanarayana, P.V.R., “Kick Caused by Tripping-In the Hole on Deep, 

High Temperature Wells” SPE 38055 presented at the 1997 SPE Asia Pacific Oil and Gas 

Conference, Kusla Lumpur, Malaysia, 14-16 April, 1997. 

 

38. Shaughnessy, J.M., Romo, L.A., Soza, R.L., “Problems of Ultra-Deep High Temperature, 

High-Pressure Drilling,” SPE 84555 presented at the 2003 Annual Technical Conference 

and Exhibition, Denver Colorado, 5-8 October, 2003.  

 

39. Das, K.A., Smith, J.R., Frink, P.J., “ Simulations Comparing Different Initial Responses 

to Kicks Taken During Managed Pressure Drilling” IADC/SPE 112761 presented at the 

2008 IADC/SPE Drilling Conference, Orlando, Florida, 4-6 March, 2008. 

 

40. Chustz, M.J., Smith, L.D., Dell, D., “ Managed Pressure Drilling Success Continues on 

Auger TLP” IADC/SPE 112662 presented at the 2008 IADC/SPE Drilling Conference, 

Orlando, Florida, 4-6 March, 2008. 

 

41. Minerals Management Service, United States Department Of The Interior Minerals 

Management Service Gulf Of Mexico Ocs Region, “Managed Pressure Drilling Projects,” 

15 May2008, p.6. 

 

42. Fredericks, P.D., Reitsma, D., “MPD automation addresses drilling challenges in 

conventional, unconventional resources,” Drilling Contractors, November/December, 

2006. 

 

43. Santos, H., “Prototype testing indicate positive results for Secure Drilling Micro-Flux 

Control system,” Drilling Contractors, July/August, 2006. 

 

44. Bode D.J., Noffke, R.B., Nickens, H.V., “Well-Control Methods and Practices in Small- 

Diameter Wellbores,” Journal of Petroleum Technology, November 1991, Vol.43, No.11, 

pp.1380-1386. 

 

45. Chustz, M.J., May, J., Wallace, C., Reitsma, D., Fredricks, P., Dickinson, S., Smith, L.D., 

“Managed-Pressure Drilling With Dynamic Annular Pressure-Control System Proves 

Successful in Redevelopment Program on Auger TLP in Deepwater Gulf of Mexico” 

IADC/SPE 108348 presented at the IADC/SPE Managed Pressure Drilling and 

Underbalanced Operations Conference and Exhibition, Galveston, Texas, 28-29 March, 

2007. 

 

46. Impact Solutions Group, http://www.impact-os.com/news/2.htm 

http://www.impact-os.com/news/2.htm


 

 

125 

47. Medley, G.H., Moore, D., Nauduri, S., “Simplifying MPD: Lessons Learned,” 

SPE/IADC 113689 was presented at the 2008 SPE/IADC Managed Pressure Drilling and 

Underbalanced Operations Conference & Exhibition, Abu Dhabi, 28-29 January, 2008. 

 

48. Scandpower Petroleum Technology( SPT Group), 

http://www.sptgroup.com/en/Products/Drillbench/Dynamic-UBD/Dynaflodrill2 

 

49. Roy, R.S., Nini, C.J., Sonneman, P., Gillis, B.T., “Driller’s Method vs Wait and Weight 

Emthod: One offers distinct well control advantages” Drilling Contractors, 

November/December, 2007.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.sptgroup.com/en/Products/Drillbench/Dynamic-UBD/Dynaflodrill2


 

 

126 

APPENDIX A1: SIMULATOR INPUT DATA FOR WELL X 

SURVEY

 

 

Survey section 

Md  Inclination  Azimuth  
Vertical  

depth  

[ft]  [deg]  [deg]  [ft]  

0.00 0.0 0.0 0.00 

88.00 0.0 0.0 88.00 

170.00 0.0 0.0 170.00 

2988.00 0.0 0.0 2988.00 

3088.00 0.2 137.8 3088.00 

3188.00 0.1 112.6 3188.00 

3288.00 0.1 49.5 3288.00 

3388.00 0.2 27.7 3388.00 

3488.00 0.2 8.2 3488.00 

3588.00 0.2 358.5 3588.00 

3688.00 0.1 327.9 3688.00 

3788.00 0.2 258.6 3788.00 

3888.00 0.2 267.2 3888.00 

3988.00 0.4 339.3 3988.00 

4088.00 1.3 25.6 4087.99 

4188.00 1.0 28.0 4187.97 

4288.00 0.9 32.0 4287.95 

4388.00 0.9 27.1 4387.94 

4488.00 0.8 32.0 4487.93 

4588.00 0.8 44.9 4587.92 

4688.00 0.5 56.8 4687.91 

4788.00 0.5 66.3 4787.91 

4888.00 0.3 84.0 4887.91 

4988.00 0.2 123.1 4987.90 

5088.00 0.4 134.5 5087.90 

5188.00 0.5 153.4 5187.90 

5288.00 0.7 167.6 5287.90 

5388.00 0.5 179.1 5387.89 
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5488.00 0.4 189.6 5487.89 

5588.00 1.3 161.6 5587.88 

5688.00 1.1 148.3 5687.85 

5788.00 1.2 143.0 5787.83 

5888.00 0.8 123.1 5887.82 

5988.00 0.8 121.4 5987.81 

6088.00 0.9 112.1 6087.80 

6188.00 1.2 107.7 6187.78 

6288.00 1.1 71.2 6287.76 

6388.00 0.9 55.1 6387.75 

6488.00 1.2 59.7 6487.73 

6588.00 1.2 63.1 6587.71 

6688.00 1.3 59.3 6687.68 

6788.00 1.2 62.2 6787.66 

6888.00 1.4 72.3 6887.63 

6988.00 1.3 74.3 6987.61 

7088.00 1.2 72.6 7087.58 

7188.00 1.2 67.3 7187.56 

7288.00 1.4 61.6 7287.53 

7388.00 1.3 61.7 7387.51 

8173.00 0.1 205.1 8172.45 

8263.00 0.1 275.5 8262.45 

8353.00 1.6 58.5 8352.43 

8443.00 3.5 53.5 8442.34 

8533.00 5.2 53.8 8532.08 

8623.00 6.2 54.8 8621.63 

8713.00 7.5 51.6 8710.99 

8803.00 8.6 54.8 8800.10 

8893.00 10.0 51.7 8888.92 

8983.00 11.3 48.6 8977.37 

9074.00 12.5 47.4 9066.41 

9164.00 13.9 48.0 9154.03 

9254.00 15.5 47.7 9241.08 

9344.00 17.0 47.5 9327.48 

9437.00 18.0 47.7 9416.18 

9528.00 19.3 47.4 9502.40 

9618.00 20.8 46.9 9586.94 
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9711.00 21.7 47.2 9673.61 

9801.00 22.4 47.5 9757.03 

9893.00 23.5 48.3 9841.75 

9984.00 24.9 48.3 9924.75 

10074.00 26.4 48.8 10005.88 

10166.00 26.7 49.1 10088.18 

10257.00 27.0 49.1 10169.36 

10349.00 27.7 49.2 10251.08 

10439.00 28.3 49.5 10330.55 

10532.00 29.4 50.4 10412.00 

10623.00 30.9 50.4 10490.69 

10714.00 32.1 50.0 10568.28 

10804.00 33.3 50.5 10644.01 

10895.00 34.4 50.0 10719.59 

10986.00 35.5 49.8 10794.17 

11076.00 36.6 49.4 10866.94 

11165.00 37.0 49.3 10938.20 

11255.00 37.4 49.4 11009.89 

11345.00 37.6 49.2 11081.29 

11435.00 38.0 49.4 11152.41 

11525.00 38.5 49.2 11223.08 

11616.00 38.8 49.3 11294.15 

11707.00 39.4 49.4 11364.77 

11798.00 39.7 49.4 11434.94 

11890.00 40.1 49.4 11505.52 

11982.00 40.4 49.8 11575.74 

12074.00 40.3 49.9 11645.85 

12164.00 40.6 49.7 11714.34 

12254.00 40.8 50.0 11782.57 

12346.00 40.9 50.0 11852.16 

12437.00 40.6 50.2 11921.10 

12531.00 40.6 50.4 11992.47 

12631.00 40.5 50.2 12068.45 

12713.00 40.4 50.8 12130.85 

12805.00 40.2 50.6 12201.02 

12900.00 40.5 50.8 12273.42 

12994.00 40.6 51.0 12344.84 
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13175.00 41.0 50.9 12481.86 

13270.00 41.0 51.1 12553.56 

13360.00 41.1 51.0 12621.43 

13451.00 41.0 50.9 12690.06 

13545.00 41.0 50.6 12761.00 

13637.00 41.2 50.7 12830.33 

13727.00 41.5 50.8 12897.89 

13818.00 41.4 50.9 12966.10 

13910.00 41.2 51.0 13035.21 

14002.00 40.8 50.7 13104.65 

14033.00 40.7 51.0 13128.13 

14141.00 41.1 50.7 13209.76 

14233.00 40.8 51.3 13279.25 

14323.00 40.7 51.2 13347.43 

14413.00 40.4 51.1 13415.82 

14503.00 39.9 51.3 13484.61 

14592.00 40.0 51.0 13552.84 

14682.00 40.1 51.0 13621.73 

14772.00 40.4 51.4 13690.42 

14862.00 40.1 51.5 13759.11 

14951.00 40.1 51.7 13827.19 

15042.00 40.1 51.7 13896.80 

15132.00 40.2 52.1 13965.59 

15170.00 40.2 52.2 13994.62 

15193.00 41.6 54.4 14012.01 

15200.00 41.6 54.4 14017.24 

15243.00 41.6 54.4 14049.37 

15300.00 41.1 55.3 14092.16 

15400.00 40.1 56.8 14168.12 

15443.00 39.6 57.4 14201.13 

15500.00 40.7 59.0 14244.70 

15600.00 42.5 61.5 14319.49 

15700.00 44.4 63.9 14392.08 

15750.73 45.4 65.1 14428.01 

15800.00 44.9 63.4 14462.76 

15900.00 44.0 60.1 14534.12 

16000.00 43.3 56.7 14606.49 
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16021.30 43.1 55.9 14622.02 

16100.00 43.1 55.9 14679.49 

16200.00 43.1 55.9 14752.50 

16300.00 43.1 55.9 14825.52 

16400.00 43.1 55.9 14898.54 

16500.00 43.1 55.9 14971.55 

16580.04 43.1 55.9 15029.99 

16600.00 43.1 55.9 15044.57 

16700.00 43.1 55.9 15117.58 

16780.04 43.1 55.9 15176.03 

16800.00 43.4 55.9 15190.56 

16900.00 44.9 55.9 15262.31 

16982.30 46.1 55.9 15319.98 

17000.00 46.1 55.9 15332.25 

17100.00 46.1 55.9 15401.55 

17200.00 46.1 55.9 15470.85 

17300.00 46.1 55.9 15540.16 

17400.00 46.1 55.9 15609.46 

17500.00 46.1 55.9 15678.76 

17600.00 46.1 55.9 15748.06 

17674.95 46.1 55.9 15800.01 
 

 

WELLBORE GEOMETRY 

 
 

Startup conditions 

Target depth [ft]  17700.00 

 
Casing program 

Name  
Hanger  

depth  

Setting  

depth  

Inner  

diameter  

Outer  

diameter  

 
[ft]  [ft]  [in]  [in]  

7" T95 32.0 lbs/ft 0.00 15150.00 6.094 7.000 
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Open hole section 

Length  Diameter  

[ft]  [in]  

1832.00 6.000 
 

 

STRING 

 

 
 

Drillstring 

Drillstring type: 
 

Drillpipe 

Average stand length [ft]  30.00 

 
Component section 

Component  Type  
Section  

length  

Inner  

diameter  

Outer  

diameter  

  
[ft]  [in]  [in]  

DC 4 3/4" NC 35-37 DrillCollar 250.00 2.500 4.750 

HWDP 3 1/2" NC38(3 1/2 IF) Drillpipe 450.00 2.063 3.500 

dp 3 1/2" S135 15.50 lb/ft Drillpipe 16282.00 2.602 3.500 

 
 

Bit: Bit 6" 

Name: 
 

Bit 6" 

Outer diameter [in]  6.000 

Flow area [in2]  0.37 

 
Bit nozzles 

Diameter  

[1/32 in]  

11 

11 

11 

11 
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SURFACE EQUIPMENT 

 

 
 

Choke 

Inner diameter [in]  3.000 

Closure time [min]  0.33 

Choke control: 
 

Opening 

Working pressure [psi]  14.7000 

 
Pump 

Liquid rate change [RateChange]  0.0015772545 

Volumetric output [PumpCapacity]  0 

 
BOP 

Closure time [min]  0.08 

 

INJECTION SYSTEM 

 

 
 

Injection system 

Check valve installed: 
 

no 

 
Drillstring injection 

Active: 
 

yes 

 
Gas 

Density [gas gravity]  1.00 

N2 [0-1]  0.75 

CO2 [0-1]  0.25 

Hydrocarbon [0-1]  0.00 

H2S [0-1]  0.00 

 
Annulus injection 

Active: 
 

no 
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MUD 

 

 
 

Fluid: LSU_WellX 

Name: 
 

LSU_WellX 

Base oil density [lbm/USgal]  7.3022 

Water density [lbm/USgal]  8.3454 

Solids density [lbm/USgal]  35.0507 

Density [lbm/USgal]  13.20 

Reference temperature [Fahrenheit]  90.00 

Fluid type: 
 

Liquid 

Oil water ratio: 
 

0/100 

Rheology type: 
 

Non-Newtonian; Fann tables 

Pvt model: 
 

Black oil 

 
Fann reading 

Shear  

rate  
Shear stress  

[rpm]  [lbf/100ft2]  

600.0 47 

300.0 26 

200.0 17 

100.0 11 

6.0 3 

3.0 2 

 
 

RESERVOIR 

 

 
 

Cuttings 

Hole cleaning criterion: 
 

MaxConcentration 

Max concentration 
 

0.04 
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Lithology 

Name  Top  Bottom  
Reservoir  

type  
Pressure  Temperature  

Reservoir  

fluid  
Flow model  

 
[ft]  [ft]  

 
[psi]  [Fahrenheit]  

  

Form 1 15150.00 16265.00 Matrix 8723.0000 145.00 Gas 
Reservoir 

model 

HP 

Sand 
16265.00 16401.00 Matrix 10544.0000 155.81 Gas 

Reservoir 

model 

Form 2 16401.00 16982.30 Matrix 9297.0000 157.17 Gas 
Reservoir 

model 

LP 

Sand 
16982.30 17101.00 Matrix 8763.0000 162.93 Gas 

Reservoir 

model 

 
 

Layer 

Density [lbm/USgal]  0.01 

 
Water 

Density [lbm/USgal]  8.4289 

Compressibility [psi-1]  7.58E-08 

Volume factor 
 

1 

Viscosity [cp]  2.00 

 
Oil 

Density [lbm/USgal]  7.4691 

Compressibility [psi-1]  1.38E-06 

Volume factor 
 

1.1 

Viscosity [cp]  2.00 

 
Gas 

Density [gas gravity]  0.65 

N2 [0-1]  0.00 

CO2 [0-1]  0.00 

Hydrocarbon [0-1]  1.00 

H2S [0-1]  0.00 

 

TEMPERATURE 
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Drillstring temperature 

Depth  Temperature  

[ft]  [Fahrenheit]  

0.00 85.00 

17700.00 170.00 

 
 

Annulus temperature 

Depth  Temperature  

[ft]  [Fahrenheit]  

0.00 90.00 

17700.00 170.00 

 
 

OPTIONAL INPUT 

 

 
 

Operation 

Grid cell count 
 

80 

 
Well 

Open hole roughness 
 

0.099996 

Steel roughness 
 

0.0018 

 
Sub models 

Pressure loss model: 
 

Semi-empirical 

Gas density model: 
 

Hall-Yarborough 

Friction factor model: 
 

Dodge-Metzner 

Rheology model: 
 

Robertson-Stiff 

 
Surface equipment 

Working pressure [psi]  14.7000 
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APPENDIX A2: SIMULATOR INPUT DATA FOR WELL Y 

SURVEY 

 

 
 

Survey section 

Md  Inclination  Azimuth  
Vertical  

depth  

[ft]  [deg]  [deg]  [ft]  

0.00 0.0 0.0 0.00 

14960.00 0.0 0.0 14960.00 

15865.00 0.0 0.0 15865.00 

16000.00 0.0 0.0 16000.00 

 
 

WELLBORE GEOMETRY 

 

 
 

Startup conditions 

Target depth [ft]  16180.00 

 
Casing program 

Name  
Hanger  

depth  

Setting  

depth  

Inner  

diameter  

Outer  

diameter  

 
[ft]  [ft]  [in]  [in]  

14" 106.7lbs/ft 0.00 13780.00 12.500 14.000 

 
 

Open hole section 

Length  Diameter  

[ft]  [in]  

1210.00 12.250 
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STRING 

 

 
 

Drillstring 

Drillstring type: 
 

Drillpipe 

Average stand length [ft]  90.00 

 
Component section 

Component  Type  
Section  

length  

Inner  

diameter  

Outer  

diameter  

  
[ft]  [in]  [in]  

DC 8 " DrillCollar 400.00 2.750 8.000 

HWDP 6 5/8"  Drillpipe 280.00 4.000 6.625 

dp 6 5/8" G105 27.70 lb/ft Drillpipe 14310.00 5.902 6.626 

 
 

Bit: Bit 12 1/4 

Name: 
 

Bit 12 1/4 

Outer diameter [in]  12.250 

Flow area [in2]  0.97 

 
Bit nozzles 

Diameter  

[1/32 in]  

13 

13 

13 

 
 

SURFACE EQUIPMENT 

 

 
 

Pump 

Liquid rate change [RateChange]  0.0015772545 

Volumetric output [PumpCapacity]  0.001 
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BOP 

Closure time [min]  0.08 

 

INJECTION SYSTEM 

 

Injection system 

Check valve installed: 
 

no 

 
Drillstring injection 

Active: 
 

yes 

 
Gas 

Density [gas gravity]  1.00 

N2 [0-1]  0.75 

CO2 [0-1]  0.25 

Hydrocarbon [0-1]  0.00 

H2S [0-1]  0.00 

 
Annulus injection 

Active: 
 

no 

 

MUD 

 

Fluid: Water Based Mud Well Y 

Name: 
 

Water Based Mud Well Y 

Base oil density [lbm/USgal]  7.3022 

Water density [lbm/USgal]  8.3454 

Solids density [lbm/USgal]  35.0507 

Density [lbm/USgal]  17.20 

Reference temperature [Fahrenheit]  117.00 

Fluid type: 
 

Liquid 

Oil water ratio: 
 

0/100 

Rheology type: 
 

Non-Newtonian; Fann tables 

Pvt model: 
 

Black oil 
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Fann reading 

Shear  

rate  
Shear stress  

[rpm]  [lbf/100ft2]  

600.0 124 

300.0 72 

200.0 52 

100.0 33 

6.0 11 

3.0 10 

 
 

RESERVOIR 

 

 
 

Cuttings 

Hole cleaning criterion: 
 

MaxConcentration 

Max concentration 
 

0.1 

 
Lithology 

Name  Top  Bottom  
Reservoir  

type  
Pressure  Temperature  

Reservoir  

fluid  
Flow model  

 
[ft]  [ft]  

 
[psi]  [Fahrenheit]  

  
Sand 

1 
14960.00 14991.00 Matrix 13458.0000 360.00 Gas 

Reservoir 

model 

 
 

Layer 

Density [lbm/USgal]  35.00 

 
Water 

Density [lbm/USgal]  8.3454 

Compressibility [psi-1]  7.58E-08 

Volume factor 
 

1 

Viscosity [cp]  2.00 
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Oil 

Density [lbm/USgal]  7.3022 

Compressibility [psi-1]  1.30E-08 

Volume factor 
 

1 

Viscosity [cp]  2.00 

 
Gas 

Density [gas gravity]  0.65 

N2 [0-1]  0.00 

CO2 [0-1]  0.00 

Hydrocarbon [0-1]  1.00 

H2S [0-1]  0.00 

 

TEMPERATURE 

 
 

Drillstring temperature 

Depth  Temperature  

[ft]  [Fahrenheit]  

0.00 113.00 

1066.00 121.00 

2049.00 127.00 

3033.00 134.00 

4016.00 140.00 

5000.00 147.00 

6066.00 154.00 

7049.00 160.00 

8033.00 166.00 

9016.00 172.00 

10000.00 177.00 

11024.00 181.00 

12048.00 185.00 

13071.00 188.00 

14030.00 191.00 

14960.00 200.00 
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Annulus temperature 

Depth  Temperature  

[ft]  [Fahrenheit]  

0.00 146.00 

1066.00 157.00 

2049.00 166.00 

3033.00 176.00 

4016.00 184.00 

5000.00 192.00 

6066.00 199.00 

7049.00 204.00 

8033.00 208.00 

9016.00 211.00 

10000.00 212.00 

11024.00 211.00 

12048.00 210.00 

13071.00 207.00 

14030.00 204.00 

14960.00 201.00 

 
 

OPTIONAL INPUT 

 
 

Operation 

Grid cell count 
 

80 

 
Well 

Open hole roughness 
 

0.1 

Steel roughness 
 

0.01 

 
Sub models 

Pressure loss model: 
 

Semi-empirical 

Gas density model: 
 

Hall-Yarborough 

Friction factor model: 
 

Dodge-Metzner 

Rheology model: 
 

Robertson-Stiff 
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APPENDIX A3: SIMULATION RESULTS  

Table 15: RCD failure, initial response results in Well X for 21 bbl kick 

 

Table 16: RCD failure, circulation results in Well X for 21 bbl kick 

 

Table 17: RCD failure, initial response results in Well X for 4 bbl kick 
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Table 18: RCD failure, circulation results in Well X for 4 bbl kick 

 

Table 19: RCD failure, initial response results in Well Y for 20 bbl kick 

 

Table 20: RCD failure, circulation results in Well Y for 20 bbl kick 
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Table 21: RCD failure, initial response results in Well Y for 2 bbl kick 

 
 

Table 22: RCD failure, circulation results in Well Y for 2 bbl kick 

 
 

 
Table 23: Pump failure, initial response results in Well X for 20.2 bbl kick 
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Table 24: Pump failure, circulation results in Well X for 20.2 bbl kick 

 
 

Table 25: Pump failure, initial response results in Well X for 3.4 bbl kick 

 
 

Table 26: Pump failure, circulation results in Well X for 3.4 bbl kick 
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Table 27: Pump failure, initial response results in Well Y for 20 bbl kick 

 
 

Table 28: Pump failure, circulation results in Well Y for 20 bbl kick 

 
 

Table 29: Pump failure, initial response results in Well Y for 3 bbl kick 

 



 

 

147 

Table 30: Pump failure, circulation results in Well Y for 3 bbl kick 
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Table 31: Pump efficiency loss, initial response results in Well X for 15 bbl kick 
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Table 32: Pump efficiency loss, circulation results in Well X for 15 bbl kick 
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Table 33: Pump efficiency loss, initial response results in Well X for 2 bbl kick 
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Table 34: Pump efficiency loss, circulation results in Well X for 2 bbl kick 
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Table 35: Pump efficiency loss, initial response results in Well Y for 20 bbl kick 
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Table 36: Pump efficiency loss, circulation results in Well Y for 20 bbl kick 
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Table 37: Pump efficiency loss, initial response results in Well Y for 2.12 bbl kick 
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Table 38: Pump efficiency loss, circulation results in Well Y for 2.12 bbl kick 
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Table 39: BHA position change, initial response results in Well X for 20 bbl kick 
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Table 40: BHA position change, circulation results in Well X for 20 bbl kick 
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Table 41: BHA position change, initial response results in Well X for 2 bbl kick 
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Table 42: BHA position change, circulation results in Well X for 2 bbl kick

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

160 

VITA 

Hakan Guner was born in Izmir, Turkey, in March, 1983. He received his Bachelor of 

Science degree in Petroleum and Natural Gas Engineering Department in 2006 from Middle East 

Technical University, Ankara, Turkey. After graduated from Middle East Technical University, 

he was awarded a Master of Science scholarship by Turkish Petroleum Corporation. He then 

attended Louisiana State University in Baton Rouge, Louisiana, where he is currently pursuing 

his Master of Science in Petroleum Engineering. His research interests include drilling 

engineering, managed pressure drilling and well control. 

 


