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Abstract

With recent advances in the capabilities of high performance computing (HPC) platforms

and the relatively simple representation of complex geometries of porous media, lattice Boltz-

mann method (LBM) has gained popularity as a means of solving fluid flow and transport

problems. In this work, LBM was used to obtain flow parameters of porous media, study the

behavior of these parameters at varying flow conditions and quantify the effect of roughness

on the parameters by relating the volume averaged flow simulation results to Darcy and

Forchheimer equations respectively.

To validate the method, flow was simulated on regular and random sphere arrays in cu-

bic domains, for which a number of analytical solutions are available. Permeability and

non-Darcy coefficients obtained from the simulation compared well with Kozeny and Ergun

estimates while deviation from the observed constant permeability and tortuosity values

occurred around Re ≈ 1 − 10. By defining roughness as hemispherical protrusions on the

smooth spheres in the regular array, it was observed from flow streamlines obtained at dif-

ferent roughness heights that the average length of the flow paths increased with increasing

roughness height. As such, the medium tortuosity and non-Darcy coefficient increased while

the permeability decreased as height of the roughness increased.

Applying the method to a 3D computed tomography image of Castlegate sandstone, the

calculated macroscopic permeability and beta factor components were in good agreement

with reported experimental values. In addition, LBM beta factors were compared with a

number of empirical models for non-Darcy coefficient estimation and were found to be of

the same order of magnitude as most of the correlations, although estimates of the models

showed wide variation in values. Resolution of the original sample was increased by infilling

viii



with more voxels and simulation in the new domain showed better flow field resolution and

higher simulated flow regimes compared to those of the original sample, without significant

change in the flow parameters obtained. Using the Reynolds number based on the Forch-

heimer coefficient, the range of transition from Darcy to non-Darcy regime was within the

values reported by Ruth and Ma (1993) and Zeng and Grigg (2006).
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Chapter 1
Introduction

1.1 Motivation and Objective

Porous media provide important path ways for fluid flow in many geophysical and engineer-

ing systems including petroleum reservoirs, and have continued to attract research interest

for better understanding of flow behaviors to aid in investment decision making. Among the

important parameters necessary to quantify single phase flow in such systems is the medium

permeability which models flow at low Reynolds number and is obtained as the constant

of proportionality in the continuum linear relationship between the applied pressure gradi-

ent and volume averaged flow rate in Darcy law. To perform economic analysis of reservoir

engineering investments, conventional simulators use the diffusivity equation derived with

Darcy’s law for reservoir fluid flow performance analysis using permeability and other rock-

fluid property data obtained from the field and experiments. However, at sufficiently high

flow conditions, numerous observations suggest that the contribution of fluid inertia to pres-

sure drop becomes significant such that permeability is no more a constant but varies with

the flow conditions. In addition, with the easy-to-recover oils long gone and with more em-

phasis on production enhancement techniques, flow deviations from Darcy’s law are common

in fractured reservoirs especially around the wellbore. These deviations are attributed to in-

ertial effect which in petroleum reservoirs is responsible for low productivity in near well

regions due to flow convergence leading to significant pressure drop for a given velocity. Flow

deviation is also encountered in gas reservoirs in which the contribution of inertia and gas

slippage leads to nonlinearity. For such systems, conventional (Darcy law based) reservoir

simulators underpredict reservoir performance since the fundamental governing equations do

not properly model flow behavior in the reservoir. This has consequences some of which are

difficulty in matching production data in history matching in addition to wrong investment
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decisions made from the simulator results. To avoid these, it is necessary to model inertial

flows and to obtain correct values of parameters for input in reservoir simulators.

Holditch and Morse (1976) in their numerical experiments showed that non-Darcy flows

could reduce the effective conductivity of fractures near the wellbore region by a factor of

about 20. As such, the primary motivation for understanding the non Darcy effects is to ap-

propriately model the flow regime based on fundamental fluid dynamics with applications to

porous media flow. Further, physics based models can be used to predict the onset of inertial

effects along with quantifiable contribution to the overall process. A number of equations

like the Forchheimer equation, Brinkman equation, the cubic law have been proposed to

model fluid behavior in the regions of this deviation. Amongst all the available models, the

quadratic Forchheimer equation is widely accepted and it quantifies the deviation in terms

of the beta factor or Forchheimer coefficient. However, quantification of these parameters

numerically is made difficult by the complex pore structure and irregular geometry of the

system. Obtaining estimates of this parameter for real systems is one of the most challenging

tasks of porous media modeling and simulation. This comes with challenges as it is difficult

to obtain easy and accurate flow simulation in realistic media without modification of the

complex topology and flow path. In addition, these flow quantities have been obtained from

experiments and from analytical and empirical expressions that relate the macroscopic prop-

erties to some attributes of the porous media. However, the analytical expressions are only

approximations for ideal cases while the empirical expressions have utility only in media

similar to scenarios for which they were obtained and thus, are inaccurate when applied to

a wide range of other media. Also, experimental determination of these parameters can be

time consuming and expensive. In addition, they do not capture the effect of pore geometry

on the flow field distribution and thus also, on the value of these quantities. Numerical exper-

iments are cheaper; however, methods like network modeling depend on the simplification of

the complex pore geometry while the finite difference (FD), finite elements (FE), and finite

2



volume (FV) methods respectively involve discretization of the Navier-Stokes (NS) equa-

tions and are even more challenging in solving for the variables on the complex pore/solid

boundaries that line the entire media.

With advances in micro-imaging technology and its application for generation of accurate

3D models of porous media and the massive increase in computing power, an opportunity for

accurate flow simulation and flow parameter quantification has been presented. The lattice

Boltzmann method (LBM) is well placed to take benefit from these advances since it recovers

the Navier - Stokes equation from the discrete Boltzmann equation. Unlike the conventional

computational fluid dynamics (CFD) methods that are based on the macroscopic continuum

equations, the LBM uses a mesoscopic equation to determine macroscopic fluid dynamics.

It has the advantage of being flexible in the specification of variables in complex boundaries

in terms of simple particle bounce back and reflection. This flexibility has opened up the

potential for its use in modeling and simulating flow in complex systems like porous rocks.

Since its algorithm is based on nearest neighbors, it is well suited for parallel computing and

has taken advantage of the progressive increase in computing powers over the years.

1.2 Thesis Outline

This thesis presents the research work leading up to flow parameter quantification from re-

sults of flow simulation in porous media using the LBM. Chapter 2 introduces the concept

of porous media flow outlining the different flow regimes, the regions and scenarios in a

reservoir where they are encountered and the applicable equations for modeling flow in the

Darcy and non-Darcy regimes respectively. A brief introduction to numerical methods for

pore scale flow simulation is given while methods for reconstructing the pore scale geometry

of porous media are mention and discussed.

In Chapter 3, theory of the LB method is reviewed including the two common models,

3



viz. the Bhatnagar-Gross-Krook (BGK) and Multiple Relaxation time (MRT) models, and

approaches for implementing the pressure gradient are mentioned. In addition, the source

of errors likely to affect the LBM simulation results are reported while the conversion from

LBM units to physical units are given.

Chapter 4 introduces the approach for using the kinetic models and the implementations

of the driving force to simulate flow. Initial and boundary conditions applied are discussed

while the method used for obtaining the flow parameters from the LBM simulation results

is given. Also, the description of the geometries of the system whose flow parameters are

obtained is presented.

Results of the flow simulations on the geometries described in Chapter 4 are presented

in Chapter 5, showing trends of the LBM calculated flow parameters at different Reynolds

number and at different roughness levels. The flow parameters are also analyzed to quantify

the onset of the deviation from Darcy’s law using an appropriate dimensionless number.

Chapter 6 gives a summary of results of the present work and proposes directions for future

work using the LBM.
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Chapter 2
Fundamentals of Fluid Flow in Porous Media

Fluid flow problems are generally described by the Navier-Stokes (NS) equation derived from

conservation of fluid mass and momentum. Due to the difficulty in solving the NS equations,

approximate solutions are obtained by considering only the dominant forces acting within

the fluids at particular flow conditions for different flow problems. In porous media, single

phase flow is driven by two forces, viz; viscous force acting between the layers of fluids and

the inertial force between fluids and the solid phases. As shown in Fig. 2.1, viscous forces

dominate in the low pressure gradient regime with a corresponding linear relationship be-

tween the pressure gradient and volume averaged velocity. The solution of the NS equations

in this viscous dominated region by neglecting the inertial forces produces Stokes equation,

from which Darcy’s law is obtained by volume averaging. Thus the linear/low pressure gra-

dient regime is also known as Darcy regime in porous media studies.

With pressure gradient increase, the inertial forces between the fluid and the rock surfaces

dominate with a non-linear pressure gradient with velocity. Stokes law and in effect, Darcy’s

law fail in this regime since they do not account for the increased influence of inertial effects

at the higher pressures. Thus, it is necessary to properly understand this flow regimes and

the regions in a reservoir where they occur for application of the proper equation.

In the following sections, the flow regimes and applicable governing equations will be ana-

lyzed in details with appropriate parameters that quantify flow in those regimes.

5



Figure 2.1: Typical flow regimes in porous media.

2.1 Darcy Flows

Darcy flow is common in the bulk of the reservoir, far away from the well where the dominant

viscous force produces a creeping motion of the reservoir fluid. In this regime, the Reynolds

number (Re), given in Equation 2.1, is small (O[1]) and the flow is dominated by fluid viscous

forces, such that the pressure gradient responsible for the flow is linearly proportional to the

superficial velocity.

Re =
ρuDp

µ
(2.1)
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Darcys law which is the common equation used in petroleum reservoir engineering to model

fluid flow in this regime is given by

~u =
K

µ
∇p (2.2)

K, the permeability tensor is a medium property that acts on the pressure gradient and

transforms it into the velocity vector.

2.1.1 Permeability

The medium permeability is obtained from numerous experiments in which a fluid is made

to flow through a sample of a porous medium for a given applied pressure gradient, and

the volumetric flow rate measured from which the permeability is obtained as in Equation

2.2. Permeability is highly dependent on the size, distribution and connectivity of the pore

spaces and it defines the physical relationship between the porous media, the fluid that

flows through it and the conditions imposed by the flow process. Thus, a quantitative and

qualitative prediction of this property in porous media requires an accurate microscopic

model of the porous media and an understanding of the contribution of the microstructure

of the medium to flow distribution. The continuum scale experimental methods neither

capture the effect of tortuosity, pore space irregularity and other microscopic details of

the rock on the permeability, nor deliver the flow distribution in the pores. Since the full

permeability tensor of reservoir rocks is difficult to measure, empirical relations are often

used to estimate permeability through pore structure parameters. The simplest micro-scale

approach to predict the permeability taking into account the pore geometry is the one

provided by Kozeny and Carman, given below, derived from the Hagen-Poiseuille equation

for flow in a pipe.

q = uA = −πR
4

8µ

∆p

L
(2.3)
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q: Volumetric flow rate; A: cross sectional area. On comparison with the Darcy law and

eliminating the length with the tortuosity and replacing the radius with the hydraulic radius,

the intrinsic permeability becomes

k =
D2
p

8τ(1− φ)2a2
v

(2.4)

τ = tortuosity, av = specific surface area (surface area/rock volume) and Dp =particle

diameter. These properties are combined into a geometric factor, Ap.

k =
φ3D2

p

Ap(1− φ)2
Ap = 8τa2

v = 72τ (2.5)

Ap = 150 and 180 for Kozeny-Carman and Ergun equations respectively . Other empirical

relations exist in the literature for estimating permeability from microscopic geometric quan-

tities and are widely used because they are easy and simple to understand. However, these

relations introduce geometric quantities like the permeability, specific surface area, forma-

tion factor, etc that are not readily measured from experiments, especially for complicated

systems.

2.1.2 Tortuosity (τ)

Fluid flow through porous media is influenced by the microscopic properties of the media

like volume and structure of the pore spaces. The amount of void spaces is quantified by

the medium porosity while the complex pathways of these spaces are quantified using a

property known as the tortuosity. Tortuosity is a tensor and its components are defined

as the square of the ratio of the actual distance traveled by the fluid to the length of the

media in the direction of the pressure gradient. The concept was introduced by Carman as a
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corrective factor needed to model the influence of the tortuousness of the domain available

for displacement of a fluid phase.

τ =

(
Le
L

)2

(2.6)

L and Le are the length of the media and the actual distance traveled by the fluid particles

in the porous media. The definition of tortuosity stems from the fact that the pore spaces

are connected into a network of complex and sinuous pathways so that the actual distance

traveled by the particles is greater than the length of the media. According to Equation 2.6,

a medium with straight paths parallel to the flow direction have tortuosities of one while

the tortuosity of a medium with complicated pore space networks is greater than one. This

property invariably affects the flow properties since reservoir rocks with tortuosity greater

than one offer greater resistance to fluid flow and hence, have smaller permeabilities and

larger beta factorsccompared to those whose tortuosity values are close to unity. Thus, al-

though tortuosity is not explicitly captured in Darcy and Forchheimer equations respectively,

it reflects in the values of permeability and beta factor. There are no established methods for

measuring tortuosity. However, it has been estimated by geometrical analysis as in the bun-

dle of tube method, experimentally using the NMR (Nuclear Magnetic Resonance) (Rigby

and Gladden 1996) and numerically from flow simulation results (Nabovati and Sousa 2007).

Using the result of these methods, empirical relations for tortuosity as a function of porosity

and permeability have been developed.

2.2 Non-Darcy Flows

In regions close to the wellbore, it is observed that the pressure drop predicted by Darcys

equation is lower than the actual values, indicating that some other effects, notably inertia,

are responsible for the additional pressure drop. The behaviour is caused by the non-Darcy
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effect, also known as the inertial effect. The contributions of these effects to flow are not

captured by Darcy’s law since they have no significant impact at low Reynolds number.

Investigators in gas flow technology frequently used the term turbulent and non-Darcy to

describe viscous-inertial flow at high velocities near the wellbore of a gas well. The contri-

bution of turbulence to the deviation from Darcy law has been ruled out since transition

to the non-linear laminar flow regimes in porous media is gradual unlike the sharp change

experienced in turbulence flows in pipe. In addition, the range of Reynolds number within

which flow transition is observed is significantly higher in pipe flows than in flow through

porous media.

Rushing et al. (2004) underlined that gas slippage and inertial flow may cause significant flow

measurement errors. They attributed this to the result of convective flow as fluid particles

move through tortuous rock pore throats of varying sizes. In the non-Darcy regime, the iner-

tial contributions are marked by an increase in the pressure change without a proportionate

increase in fluid velocity. This additional pressure change, they noted, is associated with the

dissipation of inertial energy as fluid particles accelerate through smaller pore throats and de-

celerate thorough larger pore throats. Furthermore, the fluid acceleration creates secondary

flow patterns and irreversible conversion of kinetic energy into heat through viscous shear.

Ruth and Ma (1993) suggested that the fundamental reason for the nonlinear flow can be

attributed to the microscopic inertial effect which alters the velocity and pressure fields. Has-

sanizadeh and Gray (1987) presented an order of magnitude analysis for the volume averaged

equation and concluded that the microscopic viscous force is the source of the nonlinearity.

The link between inertial effect and viscous dissipation was regarded as a paradox by Has-

sanizadeh and Gray (1987). This, they resolved when they considered that the pore scale

convective inertial effect contributing to the form drag led to an increase in the total viscous

dissipation. It is well known that if a fluid is inviscid, then boundary layer separation cannot

occur if it flows through a porous media, therefore no form drag. The total drag around
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the rock matrix consists of a linear dependent viscous drag as in Darcy flow and the form

drag which is proportional to the square of velocity as obtained in the Forchheimer equation.

Despite the diverse opinions on the origin of the nonlinearity, it is generally accepted that

the source of the deviation in the non-Darcy flow regime is microscopic inertial effect. This

emphasizes the need to quantify the flow parameters from flow modeling and simulation

carried out at the scale of the pore spaces.

2.2.1 Forchheimer Equation

Under high flow rate conditions, especially in regions around the wellbore and in gas reser-

voirs, the inertial forces may become large so that the linear relationship does not hold.

Several criteria have been proposed to identify the threshold beyond which the linear rela-

tionship fails. The Reynolds number based on particle diameter is widely used and critical

values between 1 and 10 obtained from experiments and numerical simulations have been

reported in literature. In this regime, additional information is necessary to properly model

flow since Darcy’s law is insufficient to capture the non-linear behavior. In addition to sev-

eral attempts, Forchheimer (1914) extended Darcy’s law by adding a quadratic velocity term

which is analogous to the inertia dependence on velocity squared in turbulent flows in fluid

mechanics .

∆p

L
=
〈u〉µ
k

+ βρ〈u〉|〈u〉| (2.7)

β, is a medium property known as the beta factor (non-Darcy coefficient) which quantifies

the amount of inertial contribution to the total pressure drop. Forchheimer equation, like

Darcy’s equation, originated empirically from experiments. Nevertheless, both equations have

been derived from the NS equations using volume averaging and homogenization principles

respectively (Ruth and Ma 1993), (Ruth and Ma 1992), (Whitaker 1999) and (Whitaker
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1996). At low Reynolds number flows characteristic of laminar regimes, the contribution

of inertia is insignificant as the square of the velocity is negligible. Thus, the Forchheimer

equation reduces to Darcy’s law in viscous dominated laminar flows. Even the Forchheimer

equation has been subject of numerous criticisms as Ruth and Ma (1993), Barree and Conway

(2004) and Huang and Ayoub (2006) doubted the ability of the quadratic velocity term to

capture all regions beyond the Darcy flow. However, the objective of this work is not to put

the numerous empirical relations to further test, but to calculate the permeability and beta

factor for Darcy’s and Forchheimer’s equations respectively, from LBM simulation results

2.2.2 Forchheimer Coefficient/Beta Factor (β)

The Forchheimer coefficient quantifies the extent of flow deviation from the linear Darcy’s

regime. In the non-Darcy regime, dissipation increases due to inertial contribution to flow and

this affects the apparent medium permeability. In this region, the permeability is not constant

but varies with flow velocity and is used with the beta factor to model flow. Generally, in the

petroleum industry, the beta factor is assumed to be a constant and is normally obtained

as the slope of the inverse of the apparent permeability obtained in the non-Darcy regime

versus a pseudo Reynolds
(
ρu
d

)
number.

1

kapp
=

1

µ〈u〉
∆p

L
=

1

kint
+
βρ|〈u〉|
µ

(2.8)

Like the permeability, β is a tensor. It is constant in the range of the Forchheimer regime and

is a property of the porous medium like permeability, tortuosity, porosity etc. A number of

empirical and analytical expressions have been proposed to estimate the beta factor with the

simplest being the Ergun equation modeled for collection of spheres and for cylindrical con-

duits using the bundle of tube model and from which the permeability can also be obtained.

According to Ergun (1952), the non-Darcy coefficient and permeability are proportional to

the particle/conduit diameter and medium porosity as given below.
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∇p =
150µ(1− φ)2〈~u〉

φ3D2
p

+
1.75(1− φ)ρ〈~u〉2

φ3Dp

(2.9)

β =
1.75(1− φ)

φ3Dp

(2.10)

k =
φ3D2

p

150(1− φ)2
(2.11)

Combining Equations 2.10 and 2.11, the Ergun beta factor related to the medium perme-

ability and porosity is

β =
0.142887

k0.5φ1.5
(2.12)

In addition to the Ergun equation, a large number of empirical relations based on experimen-

tal data have been developed, viz., Thauvin and Mohanty (1998), Geerstma (1974), Coles

and Hartman (1998) correlations to mention a few. Hernandez (2004) reported that most of

these correlations for beta factor have an inverse relationship with permeability and porosity

and can all be summarized into a form similar to Equation 2.12.

β =
a

kbfφ
c
p

(2.13)

kf is medium permeability, a and c are constants whose values differentiate the correla-

tions while b must be 0.5 for the unit of beta factor to be inverse of length. The wide range

of correlations available in literature for predicting permeability and beta factor underscores

the importance of these flow parameters and how easy it is desired for them to be obtained

for input in reservoir simulators. For complex media however, the Ergun equation and other
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empirical correlations may not accurately predict the beta factor since they have been de-

veloped to be applicable to particular media. Thus, the Forchheimer coefficient obtained

for a given medium differ for different correlations. This was confirmed by Jones (1987) in

which he showed a two order of magnitude difference in the inertial coefficient obtained from

different correlations for a given medium permeability. However, there is need to accurately

quantify the value of these parameters and to estimate the impact of the beta factor on

flow deviations from Darcy’ s law. Ruth and Ma (1993) in their paper suggested that if the

Forchheimer effects are to be properly studied, very detailed knowledge of the microscopic

flow field must be obtained. Continuing, they noted that it is insufficient to simply know

the structure of the porous media-the flow patterns in the various flow regimes must also be

known.

The empirical relations treat porous media as continuum. As a result, flow distribution

in the individual pore and solid phases are not identified. Numerical methods on the other

hand, solves the flow equations in the individual pore spaces and on the boundary between

the two phases to produce the flow distribution for the whole domain which is averaged and

arranged in the form of the empirical relations to obtain the flow parameters.

2.3 Overview of Numerical Approaches

Numerical simulations of fluid flow in 3D pore structure can, in principle, provide accu-

rate estimations of permeability and beta factor if an accurate model of the real medium

is available. The 3D model is often created by the computed tomography imaging or from

statistically reconstructed samples from 2D thin sections. The pore boundaries of real porous

media are arbitrarily complex and this poses a major challenge in specifying boundary val-

ues of the variables and solving the flow problem using the conventional FD, FV and FE

methods to discretize the Stokes equation. The LBM solves this problem and has established

itself as a credible alternative to the conventional Navier-Stokes solvers. It is a relatively new
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method and has been used extensively by Feichtinger (2005), Guo and Zheng (2002), Chen,

Martinez, and Mei (1996), He et al. (1997), and Mei et al. (2000) to simulate incompressible

Couette, lid driven and Poisueille flows respectively and produced good results that com-

pare well with analytical formulas. Unlike the conventional computational fluid dynamics

(CFD) methods based on the macroscopic continuum equations, the LBM uses a mesoscopic

equation, specifically the Boltzmann equation to determine macroscopic fluid dynamics. It

has the advantage of being flexible in the specification of variables on complex boundaries

in terms of simple particle bounce back and reflection. This flexibility has opened up the

potential in its use for modeling and simulating flow in complex media like porous rocks.

Since its algorithm is based on nearest neighbors, it is adaptive to parallel computing and

has taken advantage of the progressive increase in computing powers over the years.

The earliest known applications of the LBM in porous media simulation are by Succi, Foti,

and Higuera (1989) and Cancelliere et al. (1990). They used the method to estimate the

permeability of 3-D porous media and obtained values that were comparable to the Kozeny

equation. Thereafter, Rothman (1988) and Ferreol and Rothman (1995) used the method

to simulate single phase and 2-phase flow in the Fountainbleau sandstone. Recently, Jin,

Patzek, and Silin (2004) built virtual samples of consolidated and unconsolidated reservoir

rocks by applying the physics based reconstruction approach and directly calculated the ab-

solute permeability of the medium using results obtained from the LBM simulation of flow

in the domain. Torskaya, Jin, and Verdin (2007) studied the relationship between perme-

ability and irreducible water saturation, represented by the amount of clay deposited on the

solid phase of the porous medium. Using the LBM on a synthetic generated 3D image of

the pore space domain the permeability was estimated for different morphology of dispersed

clay in the medium. The results of these numerous efforts compared well with appropriate

analytical and experimental data. However, most of the earlier efforts either used the single

relaxation time BGK model which is highly dependent on simulation parameters or treated

15



the permeability and the beta factor as a single scalar quantity without any estimate of the

tortuosity.

2.4 Pore-Scale Representation of Porous Media

2.4.1 Reconstruction of Microstucture of Porous Media

Flow simulation for rock property prediction is not possible without an accurate reconstruc-

tion of the porous media geometry. Thus, it is absolutely necessary to have a 3D model of

the pore space. Jin, Patzek, and Silin (2004) reported that the following three approaches

are commonly used to reconstruct the microstructures of natural rocks.

1. Experimental Approach: This approach includes serial sectioning, which is based

on the combination of a series of 2D sections to form a 3D image (Lin and Cohen

1982) and X ray computed tomography which uses non destructive X-ray computed

tomography to image the 3D pore space of realistic porous media at resolution of

the order of microns. These methods are time consuming, expensive and unrealistic

especially when they are required to account for pore spaces in the sub micron regime,

that are common abundant in carbonates (Okabe 2004).

2. Statistical Approach: This includes the two-point correlation function measured

from 2D thin section of real rocks. The correlation function is used with other geometric

properties such as porosity to generate a 3D image with the same statistical properties

as the original 2D thin section. A relatively new method is the multiple point statistics

to generate 3D images based on two dimensional thin sections (Okabe 2004). These

methods however, fail to reproduce the long range connectivity of the pore space (Oren

and Bakke 2003).

3. The Process or Physics Based Reconstruction: This approach generates the

3D microstructure by modeling the dynamic geological processes of sedimentation,

compaction and diagenesis by which natural rocks are formed.
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Okabe (2004) compared the 3D microstructures of Fointainebleau sandstone generated by

the three different methods and reported that the process based method better reproduces

the shapes of grains and pores of typical porous media.

2.4.2 Micro-Computed Tomography (CT) Imaging

Micro-CT imaging is a technique used to visualize and measure the geometric properties of

interior of a porous media without sample preparation or chemical fixation. Typically, the

spatial resolution is of the order of microns and must be smaller than the sizes of the void

spaces for the pores to be captured in the digital scans.

A CT image is created by directing X-rays through the slice plane of the sample from

multiple orientations and measuring their resultant decrease in intensity, to obtain an X-ray

shadow image. These X-rays are scattered and/or absorbed as they pass through the sample.

Attenuation of the x rays is primarily a function of X-ray energy and density and atomic

number of the material being imaged. As a result, the mineral grains can be discriminated

from the pore space in the images of the sample. A specialized algorithm is then used to

reconstruct the distribution of X-ray attenuation in the slice plane of the shadow image into

a gray scale image. By acquiring a stacked, contiguous series of CT images, data describing

an entire volume is obtained. The gray scale image is thereafter thresholded to segment the

data into pore and solid phases such that certain geometric properties like porosity of the

original imaged sample are preserved.

2.4.3 Description of Segmented Porous Media

Porous media consists of two phases; Pore phase (P), Rock phase (M). The 3D image of the

porous media obtained from CT scans is discretized and converted into a binary image so

that the position vector ~x of the phases is described by:

∗ All real porous media used for simulations in this work were generated by CT imaging
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I(~x) =

 0 for ~x ∈ P

1 for ~x ∈M

 ; ~x = xi, xj, xk = 0, 1, . . . Ni−1; 0, 1, . . . Nj−1, 0, 1, . . . Nk−1

(2.14)
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Chapter 3
Overview of Lattice Boltzmann Method
(LBM)

The lattice Boltzmann method (LBM) is a numerical scheme for simulating fluid flow prob-

lems in terms of a single variable, the particle distribution function, compared to the tra-

ditional CFD methods that solve the N-S equation for the macroscopic variables such as

pressure and velocity. The numerical scheme is derived from microscopic physics as it mod-

els fluids as a collection of parcels with some distribution of positions and momenta. The

upscaled or coarse-grained dynamics of these parcels results in the macroscopic dynamics of

the fluid. Although the method is derived from microscopic physics, it is able to recover accu-

rately, solutions of the N-S equations in the hydrodynamic limit of low Mach number (Succi,

Foti, and Higuera 1989). The desired macroscopic variables can be recovered as moments of

the distribution function. It finds favor in pore scale modeling because of the flexibility with

which it treats complex boundary conditions in terms of particle reflection and bounces at

appropriate spatial locations flagged as wall sites.

3.1 Theory of LBM

The lattice Boltzmann equation is a discrete form of the continuous Boltzmann equation

∂fα
∂t

+ eαfα = Ω (3.1)

fα(~x,~eα∂t) is the fraction of fluid particles that have traveled in any of the phase space

directions represented by α and Ω is the collision operator which will be described later.

Evolution of the distribution is achieved by discretizing and solving a microscopic kinetic

equation for the particle distribution function, fα(~x,~eα∂t), in each time step. In the method,
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(a) D3Q19 Model. (b) Bar plot of particle distribution for D3Q19
Model.

Figure 3.1: Velocity directions and distribution functions of particle on a typical 3D lattice
node.

time and space are discretized with velocity limited to a finite set of vectors that represent

the admissible directions in which the particles can travel. Different models with different

particle directions are in use in the LBM for discretizing the three dimensional cubic lattice.

For this work, the D3Q19 model will be used. The model is shown in Fig. 3.1. It has = 18

discrete cubic lattice velocities with a fluid particle at rest. Of the 18 directions, 6 are to

the face centers while 12 are towards the edge centers of the cubic lattice as described in

Equation 3.2.

eα =


(0, 0, 0); α = 0

(±1, 0, 0), (0,±1,±0), (0, 0,±1); α = 1, 2, 3, 4, 5, 6

(±1,±1, 0), (±1, 0,±1), (0,±1,±1); α = 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18

(3.2)

~eα: Vector of velocity direction

Other models like the D3Q15 and D3Q27 are available. The D3Q15 model requires less

computation per iteration, however, it provides less accurate results and has been reported

20



(a) Pre-particle streaming. (b) Post-partcle streaming.

Figure 3.2: Particle streaming between nodes. The distribution functions of the node in
the center, represented by black arrows are streamed to neighboring nodes, along the same
direction. Correspondingly, the colored distribution functions of the neighboring nodes are
streamed to the center node, along the same direction.

to have numerical instabilities at high Reynold’s number (Latt 2011), (Mei et al. 2000) and

(Feichtinger 2005). The D3Q27 has particles streaming to the 8 corners of a cubic lattice, in

addition to the 19 directions of the D3Q19 model. It has all the advantages of the other two

models but requires more computations per iteration while authors have reported that it’s

simulation results are not too different from the D3Q19 model at high flow conditions (Mei

et al. 2000), (Habich 2006), (Feichtinger 2005) and (Latt 2011).

The basic LBM algorithm consists of two steps; Particle streaming and collision.

Streaming: This step involves the transfer of the particles between nodes along a par-

ticular velocity direction as depicted in the transfer of the colored particles in Fig. 3.2.

Mathematically, it is given as

fα(~x+ ~eα∂t, t+ ∂t) = f ∗α(~x,~eα∂t) (3.3)
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Collision: During this step, momentum exchange between the particles take place due to

collision with each other at a particular node according to;

f ∗α(~x,~eα∂t) = fα(~x,~eα∂t) + Ω (3.4)

f ∗α(~x,~eα∂t) is the post collision distribution function, fα(~x,~eα∂t) is the pre-collision distribu-

tion function and Ω is the collision operator. The collision operator accounts for the fact that

after collision, the total number of particles in a node along a particular direction changes

due to momentum exchange between the particles.

These two steps are combined with appropriate internal and external boundary conditions

to obtain the macroscopic variables of density and pressure as moments of the particle dis-

tribution functions.

ρ(~x, t) =
18∑
0

fα(~x, t) (3.5)

~u(~x, t) =
1

ρ(~x, t)

18∑
0

~eαfα(~x, t) (3.6)

3.2 Kinetic Models

Bhatnagar-Gross-Krook (BGK) and Multiple Relaxation Time (MRT) models will be used to

approximate the collision term (Struchtrup 2005) and (D’Humieres et al. 2002). In the BGK

approximation, particle distribution evolves due to collision tending toward an equilibrium

distribution function which is defined by the macroscopic velocity at that particular point.

The collision term in the BGK model is given by;
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Ω =
1

λ
[fα(~x,~eα∂t)− f eqα (~x,~eα∂t)] (3.7)

f eqα (~x,~eα∂t) is the equilibrium distribution function which is obtained from the macroscopic

values of the velocity and density as given below,

f eq(~x, t) = wαρ(~x, t)

[
1 + 3~eα~u+ 9

(~eα~u)2

2
− 3

~u2

2

]
(3.8)

wα is the weight factor for the α velocity direction while ρ and u are the macroscopic

density and velocity respectively, all in lattice units. For Equation 3.7, λ is the dimensionless

relaxation time parameter and it measures the rate at which the distribution functions tend

towards equilibrium. Thus, collision is considered a relaxation process that evolves toward

an equilibrium state since the value of the new distribution function is modified based on

its deviation from the equilibrium function. It is also a tuning parameter that controls the

viscosity of the fluid and hence, the flow Re, as given in Equation 3.9.

νlu =
(2λ− 1)

6
; λ > 0.5 (3.9)

A single relaxation rate for all variables in the BGK model leads to significant instability

when fluids with low viscosities are simulated. It also limits the range of fluid physical pa-

rameters that can be modeled. In contrast to the BGK model, the multiple relaxation time

(MRT) model developed by D’Humieres et al. (2002), independently adjusts the rate at

which the individual variables relax due to collision, towards equilibrium. The MRT model

has all the typical features of a lattice Boltzmann method except that it deals with moments

of the distribution function since the moments provide a convenient way of expressing the

various relaxation processes due to collision.
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Collision in the MRT method is represented by a generalized relaxation process in which

the distribution functions for the different velocity directions approach their local equilib-

rium values at different characteristic time scales given in terms of a collision matrix, S.

Ωα|(x,t) = −S
(
fα(~x, t)

)
−
(
f eqα (~x, t)

)
= −

∑
β

Sαβ

(
fα(~x, t)− f eq(~x, t)

)
(3.10)

Sαβ are elements of the collision matrix whose eigenvalues are the inverse of the relaxation

times for the different processes. Thus all the eigenvalues must be between 0 and 2. The

BGK method is equivalent to the MRT model when all the elements of the collision matrix

are the same. The streaming process, like in other LB methods, proceeds in the phase space.

However, collision is designed to take place in the moment space since some moments of

the distribution functions represent physical phenomena, like density, momentum, viscous

stress. This requires a transformation from the velocity space spanned by the distribution

functions to the moment space spanned by the moments of the distribution functions, and

the transformation matrix comprises of linear set of vectors that are orthogonalized by the

Gram-Schmidt procedure. The MRT LBE

fα(~x+ ~eα∂t, t+ ∂t)− fα(~x, t) = −M−1Ŝ [mα(~x, t)−meq
α (~x, t)] (3.11)

is obtained using the transformation

mα = Mfα; fα = M−1mα (3.12)

M is the transformation matrix constructed as polynomials of the discrete velocity compo-

nents.
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According to the MRT method, the eigenvectors of the collision matrix S are the column

vector components of the transformation matrix so that using the spectral theory for matrix

diagonalization, a diagonal collision matrix, Ŝ in moment space, is obtained from which the

kinematic and bulk viscosities of the fluid can be obtained. The elements of the collision

matrix will be chosen as recommended by D’Humieres et al. (2002). The values are also the

MRT implementation in OpenLB and Palabos.

3.3 Sources of Error

In LBM, spatial truncation errors do not arise from the approximation of the flow equation

like in other numerical methods, since the fundamental equation, the LBE is a discrete form

of the Boltzmann equation. Errors, however, are due to the approximation of the real porous

media and when the limits of application of the LBE are surpassed as outlined below.

3.3.1 Finite Size effect

The finite size effect is determined by the Knudsen number which is the ratio of the mean free

path to the characteristic dimension of the pore spaces. These effects are the major sources

of error in the LBM and are caused by insufficient grid points in the lattice to resolve the

small pores in the domain. The accuracy of LBM simulation results increases with decreas-

ing Knudsen number i.e large computational domain size, and meeting this requirement is a

major challenge especially for low porosity reservoirs rocks with very small connected pore

spaces (percolating pore space). This type of systems may require unreasonably large com-

putational size to properly resolve the percolating pore spaces. Thus, this effect limits the

extent of application of the LBM for real porous media with tight pores like in fractured car-

bonates. To quantify the extent of the finite size effect, simulation is performed at different

resolutions and the estimated permeability is compared to analytical and/or experimental

results. Finite size effect can be minimized by using smaller values of relaxation times (Zou
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and He 1997) and (Okabe 2004). However, at very low relaxation time values, especially close

to 0.5, the LB algorithm becomes unstable.

3.3.2 Compressibility effects

As earlier stated, the LBM assumes fluid to be in a weakly compressible state as evident in

the equation of state given in Equation 3.21. The compressibility is measured by the Mach

number.

Ma =
Mean speed of fluid

speed of sound
(3.13)

And for the lattice system

Ma =
u

cs
(3.14)

To use the LBM for incompressible flow simulation, it is necessary to reduce the lattice fluid

compressibility by minimizing the Mach number. It is important to note that this Mach

number is not the physical number that relates to the speed of sound in air. Rather, cs

(lattice speed of sound) is the speed with which information is transfered through the model

while the Mach number in Equation 3.13 represents the upper limit of the lattice velocity to

simulate weakly compressible flows. The recommended Mach number is 0.1 (Timm Kruger

2009) and this limits the average lattice velocity in the system to about 0.057. Mean velocities

beyond this value a creates a greater dependence of pressure on density and produces pressure

oscillations that prevents flow simulations from converging.

3.3.3 Discretization

This error is due to the inability of the regular lattice to accurately reproduce the geometry

of the pore spaces. LBM uses regular lattices to discretize the computational domain and

as such creates roughness in the form of stair cases on the boundaries of pore and rock
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matrix. The result is that particle bounceback does not take place on the actual pore/matrix

interphase but on solid nodes adjacent adjacent to fluid nodes. This effect can be minimized

by also increasing the lattice resolution since smaller voxels will improve the delineation of

the boundaries by the nodes.

3.4 Lattice Units and Unit Conversion

In LBM, parameterized values of the lattice constants and fluid/flow properties in lattice

units are used in simulation and the correspondence between the real physical system that is

being simulated and the parameterized simulation is achieved through the Reynolds number

(principle of dimensional similarity). Important lattice constants used for relating measure-

ments in the two systems are the resolution, discrete time step and the viscosity in lattice

units. However, in OpenLB/Palabos, an additional unit known as the dimensionless system is

introduced to interface between the lattice units and the physical units. This has the advan-

tage that from the dimensionless units, the simulation result can be related to any physical

system of arbitrary value. Using Darcys law and appropriate unit conversion between the

physical units and the lattice unit, the components of the permeability tensor of the system

are calculated as will be shown in Sec. 4.4.

The basic unit conversions used in the LBM for single phase flow are given below, where all

the flow variables are functions of time and are defined at every lattice node.

∆x =
L

Ni

(3.15)

up = ulu
∆x

∆t
(3.16)
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Using the maximum lattice velocity from the Mach number limit, the maximum simulated

velocity in physical units is

upmax ≈ 0.057
∆x

∆t
(3.17)

νp = νlu
∆x2

∆t
(3.18)

Re =
ρpupDp

µp
=
uluDplu

νlu
(3.19)

pp = pluρp
∆x2

∆t2
(3.20)

∆x= lattice resolution, ∆t = time step, L = physical length of the domain in i direction

and Ni = lattice size in i direction.

In addition, fluids in LBM are treated as weakly compressible with an equation of state given

below.

plu = c2
sρlu; c2

s =
1

3
(3.21)

p: pressure, ρ=fluid density, cs = lattice speed of sound.

Combining of Equations 3.20 and 3.21 gives

pp = ρluc
2
sρp

∆x2

∆t2
(3.22)

3.5 OpenLB and Palabos

The open source code OpenLB is a numerical framework for lattice Boltzmann simulations

that can implement both serial and in parallel computations using either MPI or OpenMP

(Latt 2008). It scales well over thousands of cores even with small lattice sizes. During each

∗ Subscripts: p:physical units; lu:lattice units
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iteration, the code calculates both collision and propagation of the distribution function.

Using this package, it is easy to reach regimes in which billions of lattice sites are processed

in one second. Thus, code performance is measured in lattice updates per second and it

represents the number of lattice sites that complete a collision and propagation cycle in one

second. Units are lus, Mlus (Mega-lus), Glus (Giga-lus). Palabos is the latest release of

OpenLB and it has better parallelism with capability to implement more LBM models both

for single phase and two phase flows. Scaling studies of OpenLB is presented in Sec. 5.1.

3.6 Resources

Image volume files (IVF): IVF is the input to the simulation and is essentially an ASCII

file that contains the characters 1 and 0 which describe the pore and matrix phases distri-

bution of the rock samples.

OpenLB: The LBM algorithm will be implemented using OpenLB. OpenLB is able to

simulate incompressible single phase and multi-phase flow dynamics using popular kinetic

models like BGK and MRT to model particle interactions.

Computing platform: In order to capture the secondary flow patterns developed in inertial

dominated flows in porous media, a large resolution of the digital porous media is necessary.

Thus, a typical simulation of flow on realistic porous media will require over 15 million grid

points which is equivalent to over 250 million degrees of freedom using the LBM. To meet

computational demand and large memory requirement for these simulations, we use the

computer clusters at LSU High Performance Computing (HPC) and some of the Louisiana

Optical Network Initiative (LONI) systems. The LSU HPC systems are capable of over 3

Tflops while Queen Bee, LONI’s flagship supercomputer is a 50.7 Tflops system at peak

performance (LONI 2011).
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Visualization packages: To illustrate the tortuous flow paths of the fluid particles through

the complex pore structure of the rock samples, we shall use the open source Paraview and/or

the commercial Ensight and Avizo packages respectively to visualize the image file output

from OpenLB or Palabos.
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Chapter 4
Modeling and Simulation Methodology

4.1 Approach

Fluid flow in reservoirs, whether in Darcy or inertial dominated regimes, is driven by pressure

gradient prevailing around the wellbores. We shall simulate such pressure-driven flow in the

3-D models of reservoir rocks, as provided in the image volume files, to estimate the flow

and rock parameters using the lattice Boltzmann method on high performance computing

resources. This procedure is summarized as shown in the flow chart of Fig. 4.3.

Two approaches will be used to impose the pressure gradient on the media:

1. Density difference approach: In this approach, the pressure gradient to drive flow in

the porous media is implemented by imposing fluid density gradient in the direction

of flow by using Equations 3.21 and 3.22. As a result, the pressure gradient in physical

units is related to the lattice units value by

(
∆p

L

)
ip

= ρp
∆x

∆t2

(
∆p

L

)
ilu

(4.1)

Where

(
∆p

L

)
ilu

=
∆ρlu
3Ni

=
ρinlet − ρoutlet

3Ni

(4.2)

Thus, equation (4.1) becomes

31



(
∆p

L

)
ip

= ρp
∆x

∆t2
∆ρlu
3Ni

(4.3)

2. Body force approach: In this approach, pressure gradient is imposed on the fluid in

the domain by using a uniform body (bfi
) force added at each time step to the fluid

particles in the pore space. The body force produces the same amount of flow as the

pressure driven flow since its value is calculated from the pressure gradient.

(
∆p

L

)
ilu

= bfi
(4.4)

The particles are accelerated at each time step by addition of this force to the distribu-

tion functions in the direction of the imposed pressure gradient while a corresponding

amount of the body force is subtracted from particles moving in the opposite direction.

The equivalent pressure gradient is calculated using Equation 4.1.

4.2 Initial Conditions

The initial state of the system is only important when a time dependent flow is studied. To

calculate the flow parameters, the final steady state for a particular driving force is desired

and is independent of the initial conditions. Thus, to speed up the simulation, an initial

velocity distribution of 0.01 lu will be defined over the whole domain. Since the LB method

works with the distribution functions, the defined macroscopic velocity will then be trans-

formed into the corresponding particle distribution functions which are used as the initial

values for simulation.

~u(~x, t) = Uini (4.5)
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(a) Particle distributions before bounce

back.

(b) Partcle distribution after bounce

back.

Figure 4.1: 2D representation of particle bounce back around the pore-solid boundary. Par-
ticles next to the solid boundaries, traveling into the solid phase are bounced back and
streamed in the opposite direction, into the fluid.

Uini is the value of the lattice velocity initialized on all lattice nodes of the computational

domain. A value of 0.01 was used in this work for all flow simulations.

4.3 Boundary Conditions

No slip boundary condition at the fluid/solid interface will be implemented using the stan-

dard bounce back scheme illustrated in Fig. 4.1. In this scheme, the distribution function

traveling from a fluid node to a neighboring solid node is bounced back along the same link.

This ensures a zero velocity vector on the bounce back node as obtained in real fluid flows.

Fluid flow will be open to domain faces perpendicular to the direction of the imposed pressure

gradient while faces parallel to flow directions will be sealed with no flow boundaries. This is

done to mimic the experimental setup used for flow simulation in the laboratory. However,

for periodic domains, periodic boundary condition will be used on all the external faces such

that the distribution function leaving a particular boundary face renters the domain on the

opposite boundary, along the same link.
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Figure 4.2: Summary of LBM procedure for porous media simuation

4.4 Estimating Flow Parameters

4.4.1 Scaling Study and Parameter Tuning

The results will be analyzed to investigate the effect of relaxation time and resolution on

the permeabilty and non-Darcy coefficient. The relaxation time that gives a permeability

estimate close to the experimental value at a reasonable computational domain size will be

used for further analysis for the particular sample.
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In the following section, the porous media macroscopic variables of interest will be out-

lined and the techniques of obtaining them from the LBM variables and simulation results

will be given.

4.4.2 Porosity

Porosity of a medium is given by the ratio of the total number of voxels with a value of 0

assigned to the centre, to the total number of voxels in the domain.

φ =
volume of pore space

bulk volume
=

∑
I(~x) = 0∏
Nj

(4.6)

4.4.3 Tortuosity

Tortuosity is a lineal measure of the complex pathways in the pore spaces and is estimated

using the two Equations below, which are variations of the equations suggested by Nabovati

and Sousa (2007).

τ =

(∑
umag∑
|uj|

)2

(4.7)

τ1 =

(∑
umag∑
uj

)2

(4.8)

Since negative values of velocity component in the direction of pressure gradient will be

expected, the tortuosity values obtained from Equation 4.8 will be larger than those obtained

from Equation 4.7 due to the fact that the effect of negative velocities on the denominator

is to reduce the over all summation, and hence, increase the ratio as compared to Equation

4.7 where the summation is over the magnitude of the velocity in the direction of applied

gradient.
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4.4.4 Permeability

On converting the variables in Darcy’s law to lattice units, Equation 4.9 is obtained and

used to calculate the components of permeability for periodic and irregular domains.

kij =
∆x2νluui
(∆p/L)jlu

(4.9)

4.4.5 Beta factor

The beta factor is obtained as the slope of the plot of the inverse of the apparent permeability

versus the pseudo Reynolds number as presented in the Equation 4.10, where the intercept

on the inverse apparent permeability axis provides an estimate of the intrinsic permeability

of the medium.

1

kapp
=

1

µ〈u〉
∆p

L
=

1

kint
+
βρ〈u〉
µ

(4.10)

4.5 Porous Media Cases Studied

4.5.1 Regular and Random Sphere Packs

The porous media, shown in Fig. 4.5 will be used to validate the method. The first medium

consists of a distribution of uniform spheres in a body centered cubic arrangement. The

length of the cube is 175 µm. The second is the CT image of a real porous media. It consists

of irregular distribution of 123 µm diameter spheres in a cube. The tomography image is

discretized into 250×250×250 voxels with a resolution of 5.8 µm at 40.7% porosity. For these

type of media, flow distributions have been extensively studied and analytical and empirical

expressions for their flow parameters abound.
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(a) Regular BCC (b) Irregular packing

Figure 4.3: Sphere pack porous media

4.5.2 Castlegate Sandstone

The castlegate sandstone is the second oldest of the several sandstone formations within the

cretaceous Mesaverde group of east-central Utah. The formation analyzed is an outcrop rock

of approximately 150 − 180 µm grains of which about 70% are quartz and the remaining

30% includes rock fragments, feldspar and mica. Although the formation contains very small

amount of original clays, much of the pristine rock fragments are altering or have altered to

clays and are at various stages of deformation between the compact rock grains like quartz.

Images of the rock sample obtained from thin sections and SEM highlighting some of the

features outlined above are shown in the figures below. In addition, the porosity of the sample

is reported as 21-25% and it comprises interparticle, intraparticle and secondary porosities.

Intraparticle pore spaces are found within the rock fragments and are thought to form due

to deformation, dissolution and alteration of original rock fragments to clay.

Imaging and Segmentation

A 3-D image of the sample for numerical simulation was obtained by micro-tomography

imaging of a 6 mm sample of the castlegate. During the procedure, the sample was exposed
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Figure 4.4: SEM. Shows well sorted grains
with minor coatings of clay. Inter particle
pore space is very well connected.

Figure 4.5: Thin-Section. White grains are
primarily quartz and igneous rock fragments
and dark grains are shale or rock fragments.

Figure 4.6: Thin-Section photomicrograph.
Ductile rock fragment has been deformed
between quartz grains, reducing the inter-
particle porosity.

Figure 4.7: Constructed 3D gray scale image
of the Castlegate sandstone.
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Figure 4.8: 2D slice (150 of 425) of gray scale
image.

Figure 4.9: 2D slice (150 of 425) of the seg-
mented gray scale image, showing clearly
pore spaces (black) and the rock matrix
(white).

to a 30 keV X-ray energy source for 1.5 secs and threshold values of 90, 100 on the gray

scale were used to segment the reconstructed image into solid and void spaces respectively

using a target porosity of 20%. A 300× 300× 425 voxels subset with resolution of 7.57 µm,

corresponding to 2.271×2.271×3.217 mm of the original sample was cut off from the imaged

sample for further analysis. Figs. 4.7, 4.8 and 4.9 show the original gray scale and segmented

images respectively, of the analyzed sample.

The computational domain is obtained by defining its nodes at the center of the voxels

of the segmented image. In this work, a cubic subset of size 300 × 300 × 300 voxels of the

original imaged sample is used as the simulation domain. The domain is discretized using the

indicator function of Equation 2.14 to describe the phase distribution on the nodes, where

the distance between two nodes (7.57 µm) is the image resolution or voxel size.

∗ CT imaging of the Castlegate Sandstone was carried out by Dr. Clinton Willson (cwillson@lsu.edu) while petrophysical
analysis was done by Dr. Stephen Sears (sosears@lsu.edu)
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Chapter 5
Results and Discussion

5.1 Code Performance and Scalability

The performance of the OpenLB code used for our simulation is tested by running on a

number of cores on the high performance computing (HPC) resources at Louisiana State

University (LSU) and noting the wall clock time it takes to execute a fixed number of

iterations. The I/O operations were reduced to minimize the time spent by the processors in

writing out image and data files. Strong scaling results and efficiency of the OpenLB code

for the 2503 irregularly arranged sphere pack computational domain on the HPC systems are

shown in Figs. 5.1 and 5.2 respectively. Fig. 5.1 shows a significant decrease in execution time

as more cores are used in running the code. Beyond 56 - 64 cores, the benefit of using more

processors for simulating flow on the 2503 computational domain diminishes as significant

time saving was not gained by running on more nodes. This is supported by the curve

tending towards an asymptotic value at higher processor counts. Efficiency measures the

speed of code execution with increasing number of cores, and for an ideal system, (i.e 100%

efficiency), a linear relationship should be maintained between execution speed and number

of cores. In Fig. 5.2, the code performance deviates from the initial linear relationship as

more nodes are added to the communication domain. Beyond the linear regime, the speed of

execution does not scale up with the increasing number of processors and this corresponds

to the diminishing execution speed observed in Fig. 5.1.
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5.2 Verification and Validation Cases

5.2.1 Body Centered Cubic (BCC) Sphere Pack

Flow was simulated in the media represented by Figs. 4.3a until steady state was reached.

Using Equations. 4.7 and 4.8, two estimates of the average tortuosity are calculated at dif-

ferent Re while the components of the permeability tensor are obtained from the simulation

results at low values of average velocity for which Darcys law is valid. Since the domain ge-

ometry is periodic with respect to its boundaries, the diagonal components of the tortuosity,

permeability and beta factor respectively for the BCC sphere pack will be the same while

the off-diagonal components will be zero.

Like in all numerical methods, the LBM simulation results are dependent on the resolution

of the computational domain which, for porous media, determines the physical accuracy in

representing pore boundaries using voxelized images. We quantified the effect of lattice res-

olution on our simulation by varying the size of the computational domain for the regular

BCC distribution of spheres and calculating the permeability from the simulation results. In

addition to resolution, the relaxation rate of the distribution function, specified by the re-
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laxation time also affects the simulation result since it determines the location of the bounce

back nodes on the interphase between the pore and the rock phases. Thus, the relaxation

rate is varied for a fixed resolution (3503 size) at Re ≈ 0 and the response of calculated y-

direction permeability is plotted as shown in Fig. 5.3. The graph shows decreasing apparent

permeability trend at decreasing values of the relaxation times analyzed. The change, how-

ever, is small with 1.35% change between the maximum and minimum values. Thus, for this

domain with uniform geometry, the simulation results can be considered to be independent

of relaxation time. For further simulations, a relaxation time of 0.9 was used since it guar-

antees more accurate flow results. Fig. 5.4 shows the plot of permeability in the y-direction

obtained for different resolutions of the computational domain. On this log plot, the change

in permeablity is insignificant with about 0.145% difference between the values obtained

for resolutions corresponding to 4003 and 503 computational sizes respectively. This means

that the different resolution levels outlined on the graph were adequate to resolve the pore

spaces and produce reliable LBM simulation results. To simulate high Re flows and reduce

computational times, 3503 lattice size was used for further simulations. The maximum ob-
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tainable Re before the onset of compressibility error (maximum lattice velocity ≈ 0.057 lu

at Ma = 0.1) for a relaxation time of λ = 0.9 (lattice viscosity = 0.1333 lu) is given by

Remax =
ulumaxDplu

0.1333
; ulumax ≈ 0.057 (5.1)

From the formula above, Remax = 129 for the BCC sphere pack at N = 350 while the maxi-

mum Re simulated in the domain was 83. Again, to ensure accurate simulations, a relaxation

time of λ = 0.9 was used to simulate on the 3503 lattice size and the permeability estimates

obtained were compared with the Carman-Kozeny and Ergun formulae respectively as shown

below.

K =


11.7 0 0

0 11.7 0

0 0 11.7

D
kCarman = 9.23D

kErgun = 11.08D

The values above show good comparison between the analytical estimates and the diagonal

elements of the permeability tensor as obtained from simulation result.

To investigate in detail, the behavior of the permeability and average length of the flow

paths in the BCC sphere packing at 3503 lattice size, the y-direction permeability and esti-

mates of tortuosity obtained from Equations. 4.7 and 4.8 are plotted as shown in Fig. 5.5.

On the graph, permeability is constant up to Re ≈ 4.0, beyond which it decreases as Re in-

creases, due to contribution of inertia to high flow regimes. Tortuosity also followed a similar

trend as the permeability, with transition occurring at the Re ≈ 4.0. The region of constant
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Figure 5.5: Variation of apparent permeability and tortuosity of BCC sphere pack with Re.

permeability and tortuosity signifies the viscous dominated regime for which Darcy’s law is

valid. In addition, τ is the same as τ1 at low Reynold’s number, but less than τ1 at high Re

as fluid particles recirculate in the domain, in agreement with the explanation of Sec. 4.4.3.

However, additional trend in the tortuosity plot is observed as the estimates only decreased

till Re ≈ 15 and Re ≈ 30 respectively for τ1 and τ and then increased in value beyond this

Reynold’s number for τ1. Below are the tortuosity estimates for the BCC sphere packing at

low Re.

τ1 =


1.23 0 0

0 1.23 0

0 0 1.23

 ≈ τ

From the result above, we can say that for a unit length of BCC cubic packing, the average

length of all the flow paths through the domain is approximately 1.23L, where L is the flow
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domain length.

6

7

8

9

10

11

12

13

14

15

0 10 20 30 40 50 60 70

A
p

p
ar

e
n

t 
 1

/k
yy

 ⨉
 1

0
1

0
 (m

-2
) 

ρ〈uy〉/μ ⨉ 104(m-1) 
 

Figure 5.6: Inverse of apparent permeability versus pseudo Re.

To obtain the non-Darcy coefficient in the y-direction, the inverse of kyy obtained for differ-

ent Reynolds numbers were plotted against a pseudo-Reynold’s number as shown in Fig. 5.6.

In accordance with Equation 4.10, a straight line graph is obtained with intercept equal to

the intrinsic permeability while the beta factor was calculated from the slope. It is observed

from the graph that, two linear regimes are observed which are here termed the Forchheimer

and-post Forchheimer regions respectively. Transition from the Darcy to Forchheimer region

occurs at pseudo-Re ≈ 2.6 × 104 m−1 (Re ≈ 4.0 as earlier shown) while transition from

Forchheimer to post-Forchheimer regime occurs at pseudo-Re = 5.04× 105 m−1 (Re ≈ 79).

From these linear sections for similar graphs for x, z-directions respectively, the diagonal

components of the non-Darcy coefficients tensor which are the same for all directions are

obtained and presented below.
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Figure 5.7: Velocity field at Re ≈ 0. Figure 5.8: Velocity field at Re = 85.

β =


0; Re < 4

75486m−1; 4 < Re < 79

229563 m−1; Re > 79

(5.2)

The off-diagonal components of β were obtained as zero because of the periodicity of the

domain. In addition, the Ergun estimate of β = 238040 m−1 compares well with non-Darcy

coefficient estimated for the linear regime at Re > 79.

The steady state velocity fields obtained from simulating flow in the BCC sphere pack at

two different Reynold’s numbers are shown in Figs. 5.7 and 5.8. In addition, flow streamlines

are shown in Figs. 5.9 and 5.10 for low and high Re respectively and characteristic of inertial

flows, eddies can be seen behind the particles in the inset of Fig. 5.10 while the streamlines

at low Re are parallel to each other, as seen in the inset of Fig. 5.9. These streamlines show

the fluid flow direction through all percolation pathways in the domain.
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Figure 5.9: Streamlines in BCC sphere do-
main at Re ≈ 0.

Figure 5.10: Streamlines in BCC sphere do-
main at Re = 85.

5.3 Roughness Studies

In Sec. 5.2, transport properties for the BCC sphere packs were obtained from LBM results

at different flow conditions. In carrying out the simulation, the media were assumed to

be composed of smooth spheres and this assumption was ideal to obtain results that are

verifiable using analytical equations. On the other hand, in addition to the complex nature

of the solid-pore interface, porous media in natural systems are characterized by rough

interfaces that may impact significantly on the behavior of fluids flowing through them.

The formation of these rough surfaces could be the result of deposition of clay and other

minerals on the rock matrix, from partial dissolution of the rock matrix, or from fracturing

or grain shearing arising from increased overburden pressure. In all of these conditions, the

flow parameters will be different from those of the same systems without roughness. Thus,

it is important to quantify the effect of grain roughness on flow parameters and how much

these parameters deviate from the original systems.

In this section, flow is simulated on a BCC arrangement domain with protrusions on the

spheres acting as surface roughness. We modeled the surface protrusions as depositions of

hemispherical particles, placed on locations at which planes tangent to the surface of the
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Figure 5.11: 2D representation of roughness on the regular BCC sphere pack.
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Figure 5.12: Calculated permeability for different roughness domains at different Re.

sphere are parallel to the sides of the domain as shown in Fig. 5.11. Six of these protrusions

are defined on each sphere and the height is expressed as a percentage of the diameter of the

smooth sphere. We simulated for four (4) different roughness heights of 20%, 15%, 10% and

5% of the diameter of the sphere and estimated the permeability, tortuosity and beta factor

at these roughness conditions. Figs. 5.15 show the flow field through the domain of the rough

48



1.1

1.2

1.3

1.4

1.5

1.6

1.7

0.0001 0.01 1 100

To
rt
uo

si
ty
 

Re 

τ  at 0% 
τ1 at 0% 
τ  at 5% 
τ1  at 5% 
τ  at 10% 
τ1  at 10% 
τ  at 15% 
τ1  at 15% 
τ  at 20% 
τ1  at 20% 

Figure 5.13: τ of different roughness domains at different Re.

spheres, delineating the magnitude of the protrusion as given by their heights. Comparing the

streamlines of Figs. 5.16 and 5.17, it is seen that the flow paths through the domain having

a roughness height of 20% are more tortuous than those through the 5% roughness height

domain. Similar relationship is expected when comparing a domain with larger roughness

height to another with smaller roughness height. This is reflected in the plot of tortuosity

estimates at different Re for the domains, as shown in Fig. 5.13. At low Re, it is seen from the

graph that τ and τ1 are the same for each individual roughness domain but deviate from each

other as Re increases, due to flow path separation which is not considered in the definition

of τ . Although the tortuosity trends are similar for flow through all the geometries, the value

of the estimates increases with the roughness heights. Thus, the average length of the flow

paths through the domain with 20% roughness height is greater than those through the 5%

roughness domain. This behavior is further captured in the apparent permeability estimates

for the geometries at different Re as shown in Fig. 5.12. Again, the permeability trend for all

the domains are the same and similar to that for the smooth sphere. However, the apparent
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permeability decreased as the roughness height increased. This finding is closely related to

that for tortuosity since larger roughness heights signify greater resistance to flow and hence

a corresponding decrease in permeability. In addition, Fig. 5.12 shows that flow deviation

from the viscous dominated Darcy regime to the non-Darcy regime occurs within the same

Re range (Re ≈ 4.0) for all the roughness heights and the smooth spheres domain.
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Figure 5.14: Inverse of apparent permeability for different roughness heights.

Finally, from the apparent permeability calculated at different Re from the LBM simulation

results, the non-Darcy coefficient was obtained from the plot of the inverse of the apparent

permeability versus the pseudo Re. The graph for all the domains is shown in Fig. 5.14 and

it is seen that the plots become steeper as the roughness height increases, implying that

the beta factor increases. Thus the beta factor increases. This is expected since the greater

resistance offered by the larger roughness lengths leads to more contribution by local pressure

gradient due to flow inertia increases.
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(a) Roughness height = 5% (b) Roughness height = 10%

(c) Roughness height = 15% (d) Roughness height = 20%

Figure 5.15: Velocity distribution for flow from bottom to top (y-direction) through the
rough domains. Roughness height is expressed as percentage of smooth sphere diameter.

Figure 5.16: Flow streamlines through do-
main at 10% roughness height at Re = 83.

Figure 5.17: Flow streamlines through do-
main at 20% roughness height at Re = 79.
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Table 5.1: Flow properties of rough BCC sphere arrangement.

Roughness φ k τ ≈ τ1 β × 103

(D) (m−1)

0% 0.3206 11.70 1.227 75.5
5% 0.3203 (↓ 0.09%) 11.52(↓ 1.48%) 1.237(↑ 0.77%) 94.9(↑ 25.72%)
10% 0.3184 (↓ 0.68%) 10.73(↓ 8.22%) 1.286(↑ 4.73%) 163.2(↑ 116.26%)
15% 0.3132 (↓ 2.32%) 9.64(↓ 17.60%) 1.365(↑ 11.28%) 319.1(↑ 322.75%)
20% 0.3039 (↓ 5.21%) 8.53(↓ 27.05%) 1.443(↑ 17.56%) 370.0(↑ 390.21%)

The tortuosity, permeability and beta factor calculated from our LBM simulation results

for the rough domains with the corresponding percentage increase (↑) or decrease (↓) in the

values, as the case may be, when compared to those of the smooth BCC sphere arrangement

are summarized and presented in Table 5.1.

5.3.1 Disordered Sphere Pack

Having validated the method on the computer generated periodic BCC sphere arrangement,

flow was simulated in the irregularly arranged sphere pack using the density gradient ap-

proach for pressure gradient with no flow boundaries on the sides of the sample and λ = 0.9.

The results for tortuosity and permeability are presented in Table ??. The difference in val-

ues of the directional estimates of the tortuosity and permeability confirms that the domain

is not isotropic, although the permeability values compare well with the Carman-Kozeny

estimate obtained using the domain porosity. In addition, the tortuosity is greater than that

for regular BCC arrangement since the spherical particles are irregularly distributed. As a

result, fluid particles flowing through the two samples travel through a larger average dis-

tance in the disordered sphere pack compared to that in BCC smooth sphere arrangement.

Furthermore, the directional tortuosities and permeabilities are inversely proportional since

directions with longer flow paths offer more resistance to flow, and hence will have lower

permeability compared to those of directions with smaller tortuosity. However, beta factor

was not calculated because inertia dominated flows could not be simulated for the given

resolution as the maximum Reynold’s number obtained before non convergence of flow due
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Table 5.2: Flow properties of disordered sphere pack domain

Direction k τ τ1

(md)

x 16.40 1.575 1.578
y 16.57 1.573 1.576
z 15.02 1.682 1.670

kKozeny = 16.41 D φ = 0.407

Figure 5.18: Flow distribution in 3D domain
of random distribution of spheres at Re ≈ 0.

Figure 5.19: 2D slice of velocity distribution
in random sphere pack at Re ≈ 0.

to compressibility errors was low. For this computational domain, Dp ≈ 21 lu and applying

Equation 5.1, Remax ≈ 9.0.

The velocity distribution obtained from the LBM simulations are shown in Figs. 5.18 and

5.19. Even though inertia dominated flow could not be simulated globally in the domain,

inertial contributions can be identified locally in regions with small pore sizes and hence,

high velocities as represented by the hot colors in the figures above.

5.4 Realistic Porous Media

5.4.1 Permeability, Tortuosity and Beta factor of Castlegate Sand-
stone

The porosity of the castlegate sample was reported to be 19%, the original segmented image

had a porosity of 18.50% while the value for the subset (300× 300× 300 voxels) chosen for
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simulation was 18.2%. The closeness of the porosity value of the subset used for simulation

indicates that it is representative of the original image from which it was taken. Flow is

simulated in the x, y and z- directions respectively of the sample and the flow parameters

are obtained from the simulation results. For this sample, the body force approach is used

to implement the pressure gradient as compressibility effects becomes very pronounced (and

mass is not conservation globally) for low porosity systems at high pressure gradients when

density gradient approach is used. Directional permeability components are calculated from

the LBM simulation results at steady state, at low values of average velocity using Equation

4.9, where Equation 4.4 is used for the body force pressure gradient.

400

600

800

1000

1200

1400

1600

1800

2000

0.6 0.8 1 1.2 1.4 1.6

k z(
m

d
) 

Relaxation time, λ 

Figure 5.20: Variation of Castlegate sandstone permeability with relaxation time.

The choice of the relaxation time is made by simulating apparent permeability under low

pressure gradients for different relaxation times as presented in Fig. 5.20. Unlike the BCC

sphere pack in which simulation results were almost independent of the relaxation time,
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Table 5.3: LBM determined flow properties of Castlegate sandstone imaged at 7.57 µm
resolution

Direction τ τ1 k β × 107

(md) (m−1)

x 2.577 2.738 1092 10.00
y 2.606 2.801 1036 7.299
z 2.465 2.593 1129 3.552

kexperiment = 1040 md φ = 0.1802
βexperiment = 4.53× 106 − 8.17× 107 m−1

for the Castlegate sandstone, a larger decrease in permeability with reduction in relaxation

time is observed. This is because for systems with complex pore-solid boundaries like the

Castlegate sandstone sample, the change in the location of the bounceback node between a

pore and a solid node is more pronounced than for regular systems like the BCC sphere pack

and hence, greater effect of relaxation time on simulated permeability. A relaxation time of

0.9 as recommended in literature (He et al. 1997), (Zou and He 1997) is used for further

analysis and the tortuosity and apparent permeability obtained at different flow velocities

are plotted against the pseudo-Reynold’s number and shown in Figs. 5.21, 5.22 and 5.23

respectively. From Fig. 5.23, apparent permeability is constant at low flow conditions and

then decreased at higher values of the pseudo Reynold’s number as inertia dominate the flow.

A similar transition trend is also observed for the tortuosities, however for all directions, τ1

estimates increase beyond the transition region while τ decreased beyond the region. This

is explained by the fact that Equation 4.8 for τ1 captures the effect of flow recirculation at

high flow rates by dividing the sum of the velocity magnitudes by the sum of the directional

velocity component, while Equation 4.4.3 for τ does not reflect the recirculation, since it

divides the magnitude sums by the sum of the moduli of the particular velocity component.

The intrinsic tortuosities and directional permeability estimates from the LBM simulations

are presented in Table 5.3.

Non-Darcy coefficients in x, y and z-directions respectively are obtained by plotting the in-

verse of the apparent permeabilities against the pseudo-Reynolds number as shown in Figs.
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Figure 5.21: Castlegate tortuosity (τ).
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Figure 5.23: Castlegate sandstone permeability at different flow regimes (pseudo-Reynolds
number).

5.24. Straight line graphs are obtained with intercepts approximately equal to the intrinsic

directional permeabilities and from which directional beta factors are calculated as slopes of

the graphs and also presented in Table 5.3.
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Figure 5.24: Inverse of LBM simulated apparent permeability versus pseudo-Reynolds num-
ber for Castlegate sandstone at 7.57µm resolution.
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Figure 5.25: Inverse of kz versus pseudo Reynolds number for Castlegate sandstone.
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Figure 5.26: Simulated pressure gradient, for different Castlegate sandstone resolutions.
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Figure 5.27: Apparent permeability versus Forchheimer number for Castlegate sandstone.

Table 5.3 also contains the experimental values of permeability and beta factor for the Castle-

gate sandstone. LBM permeability estimates are in agreement with the experimental value
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Figure 5.28: Experimental (White 2010) and LBM simulation results.

while Forchheimer coefficient from LBM simulation in the three directions are within the

reported experimental range. Also, the larger values in tortuosity estimates compared to

those of the BCC and disordered sphere packs show that the fluid particles move through

highly tortuous pathways as they flow along different directions from inlet to outlet.

Having obtained permeability and tortuosity of the sample using LBM simulation results, we

compare our beta factor estimates with a number of empirical formulations for beta factor

calculation (Li and Engler 2001). These relations, listed in Table 5.4, depend on permeability,

tortuosity and/or porosity. The second column of the table gives the model equations, the

third column outlines the required unit of the input permeability and the unit of the output

beta factor. Permeability used in these relations are the directional estimates obtained from

LBM simulation results, sample porosity is φ = 0.182 while τ1 is used as the sample tortuosity

for models that require tortuosity. As seen in the fourth column of the table, a wide range of
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Figure 5.29: Velocity distribution on x mid-
plane of 7.57 µm resolution (1−50, 1−50, 1−
50 voxels subset) Castlegate sandstone at
∇p ≈ 9.08 × 105 N/m3 in z-direction. Flow
is from bottom to top.

Figure 5.30: Velocity distribution on x mid-
plane of 1.24 µm resolution (300×300×300
voxels subset) Castlegate sandstone at∇p ≈
9.08×105 N/m3 in z-direction. Flow is from
bottom to top.

Table 5.4: Model results for Castlegate beta factor.

Model Equation Model β and k units βx, βy, βz × 107

(m−1)

Thauvin & Mohanty 1.55× 1012 × φ0.449k−1.88 cm−1, md 6.806, 7.737, 5.492
Janicek & Katz 1.82× 108k−1.25φ−0.75 cm−1, md 1.04, 1.112, 0.998

Geertsma 0.005k−0.5φ−5.5 cm−1, cm2 5.650, 5.802, 5.557
Pascal et al 4.8× 1012k−1.176 m−1, md 128.3, 136.6, 123.4

Jones 6.15× 1012k−1.55 ft−1, md 0.3941, 0.4279, 0.3743
Liu et al 8.91× 108k−1φ−1τ ft−1, md 4.027, 4.344, 3.689

Coles & Hartman 1.07× 1012k−1.88φ0.449 ft−1, md 0.3171, 0.3505, 0.2979
Cooper et al 10−3.25k−1.023τ 1.943 cm−1, cm2 5.633, 6.216, 4.899
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Figure 5.31: Velocity distribution on x mid-plane of 1 − 300, 1 − 300, 1 − 300 voxels subset
of 7.57 µm resolution Castlegate sandstone at ∇p ≈ 9.08× 105 N/m3 in z-direction. Flow is
from bottom to top.

beta factors ranging from about 106 − 109 m−1 were obtained using the empirical relations.

Although most correlations predict a non-Darcy coefficient of the order of 106 − 107 m−1,

the Pascal correlation estimates β ≈ 1.28× 109 m−1, which is over two orders of magnitude

greater than the result of the other models. This difference in the prediction of beta factor by

the correlations outlines the difficulty in using empirical formulas to model flow parameters

since different models give different estimates of the parameter. Comparing results of the

fourth column of Table 5.4 with LBM obtained beta factors presented in Table 5.3, there

is good comparison between both sets of data since most data in Table 5.4 are of the same

order of magnitude as the LBM simulation result.

5.4.2 Effect of Resolution on Castlegate Simulation Result

As earlier mentioned, resolution of the computational domain has a major effect on LBM

simulation results, like in other computational fluid dynamics methods. In Sec. 5.2.1, the

contribution of resolution on flow permeability was quantified for the BCC smooth sphere

arrangement and its effect on the simulation result was not significant since BCC domain
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Figure 5.32: Flow streamlines through
7.57 µm resolution (50× 50× 50 voxels sub-
set) Castlegate sandstone at ∇p ≈ 9.08 ×
105 N/m3 in z-direction

Figure 5.33: Flow streamlines through in-
creased resolution (300 × 300 × 300 at
1.24 µm.) Castlegate sandstone at ∇p ≈
9.08× 105 N/m3 in z-direction.

geometry is regular with high porosity while the different resolutions (computational sizes)

studied were adequate to resolve the pore spaces. However, resolution becomes very impor-

tant for samples with low porosities, tight pore spaces and complex boundaries, typical of the

Castlegate sandstone, especially for simulating flows in the high Reynolds number regimes.

Quantifying the effect of resolution is particularly important for this Castlegate sample since

it was reported that some pore spaces were resolved with as low as one voxel (personal

communication with Dr. K. Thompson). This can be shown to be highly inadequate by

applying Equation 5.1 but with Dplu representing the characteristic diameter of the pore

spaces. Thus, it is obvious that high Re flows can only be simulated with very high sample

resolutions which guarantees large characteristic pore diameter of the sample.

The tomography image of the Castlegate sandstone was supplied at a fixed resolution of

7.57 µm and a sample size of 300 × 300 × 425 voxels. Resolution of this original sample

is increased by infilling each voxel with thirty six smaller voxels (six in each direction) of

the same indicator function to obtain a new sample of size 1800 × 1800 × 2550 voxels at a
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Table 5.5: Flow properties of Castlegate at 1.24 µm resolution

φ τ τ1 kz βz × 107

(md) (m−1)

0.1786 1.861 1.878 1116 1.190

resolution of 1.24 µm. This way, the geometry and porosity of the original sample is pre-

served while providing more pore spaces on which to simulate fluid flow. Mathematically, the

increase in resolution increases ∆x
∆t

in Equation 3.16, resulting in increased physical value of

the fluid velocity. Due to limitation of computing resources, the first 300× 300× 300 voxels

subset of the new sample was used for simulation. Its porosity is φ = 0.1786. This subset is

the same as the first 50× 50× 50 voxels of the original sample but with resolution (domain

size) increased by a factor of about six.

Fluid flow in the z-direction is simulated on the new subset with increased resolution to

obtain the results in Table 5.5. The permeability of this sub-domain compares well with that

of the original sample while the tortuosity and beta factor estimates are smaller than those

of the previous sample. The differences in the flow parameter estimates for the two samples

is due to the fact that the samples are slightly different as reflected in the difference in the

their porosities.

Detailed analysis of the effect of resolution is made by comparing the simulation results for

the two different sample subsets with resolutions of 7.57 µm and 1.24 µm respectively as

shown in Figs. 5.25, 5.26 and 5.27. From Fig. 5.25 which shows the inverse of the z-direction

apparent permeability at different pseudo-Reynolds number values, simulation results for the

sample at 1.24 µm extends to higher pseudo-Reynolds values of up to 40000 m−1 compared

to those of the sample at 7.57 µm with maximum pseudo-Reynolds of about 3000 m−1. Fig.

5.26 shows the applied pressure gradient curves versus pseudo-Reynolds for the two samples,

both in Darcy (linear) and non-Darcy (nonlinear) regimes, on the same plot. Again, the high
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resolution sample permits simulation of larger pressure gradient values before the upper limit

of lattice velocity is reached, compared to the low resolution sample. As a result of the low

simulated pseudo-Reynolds regimes for the low resolution sample, the deviation of the total

pressure gradient curve from the Darcy flow curve is not obvious. However, deviation of total

pressure drop from linear Darcy pressure gradient is obvious for the high resolution sample.

To quantify the onset of flow deviation from Darcys law for the Castlegate sample, we plot

a graph of permeability versus Reynolds number. However, in this case, unlike in the distri-

bution of spheres and other regular obstructions for which the equivalent particle diameter

is known, we follow the concept used by several authors including Geerstma (1974), Jones

(1987), Zeng and Grigg (2006) and Green and Duwez (1951) for real porous media in which

the characteristic length is defined in terms of the permeability and beta factor. According

to Zeng and Grigg (2006), two types of Reynolds number criteria are used for non-Darcy flow

in porous media. They are; Type-I represented by Equation 2.1 applied mainly for columns

of packed particles in which the characteristics length, usually representative particle diam-

eter, is available, and Type-II, represented by Equation 5.3, also known as the Forchheimer

number, used mainly in numerical modeling of complex porous media.

Reβ (and Fo) =
kβρu

µ
(5.3)

Using the z-direction permeability and beta factor for the two samples reported in Tables

5.3 and 5.5 to calculate the Forchheimer number, a plot of the apparent permeability versus

Forchheimer number is made and shown in Fig. 5.27. Deviation from the constant apparent

permeability regime occurs at Reβ ≈ 0.02−0.08 for the two samples which is consistent with

the value of Reβ = 0.005 − 0.2 reported by both Ruth and Ma (1993) and Zeng and Grigg

(2006).
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Furthermore, experimental result by White (2010) is converted to a format comparable

with the LBM simulation results by calculating the apparent permeability at different flow

conditions (pseudo-Reynolds) followed by plotting and fitting the data with a straight line,

on the same graph as the z-direction LBM flow results for the two sample subsets. Fig. 5.28

shows this plot. Although the slopes (beta factor) of the experimental and 1.24 µm resolu-

tion sample data are different as seen from the graph, their values are of the same order of

magnitudes viz., 3 × 107m−1 and 1 × 107m−1 respectively. Interestingly, it is observed that

although data for the 7.57 µm sample occupies just a small region with a slope of about

4 × 107m−1, its results will closely match the experimental data if flow is simulated up to

the same flow regimes as the experimental results, since they have similar slopes.

Finally, we capture the effect of resolution on flow distribution by showing velocity and

streamlines through the sample at different resolutions, as shown in Figs. 5.29, 5.30, 5.31,

5.32 and 5.33. Figs. 5.29 shows velocity distribution through a 2D slice of the 7.57 µm,

1 − 50 × 1 − 50 × 1 − 50 voxels subset while Fig. 5.30 is the velocity distribution through

the same sample subset but at the increased resolution (1.24 µm). It is seen that velocity

distribution in the increased resolution samples are better resolved compared to the distri-

bution in the original sample subset. This difference in the velocity resolution is responsible

for the variations and extent of flow results obtained from the LBM simulation. In addition,

Fig. 5.31 shows velocity distribution on a 2D slice of the 7.57 µm resolution sample, but of

1 − 300 × 1 − 300 × 1 − 300 voxels size. It shows a collection of pore spaces with poorly

resolved velocity distributions in them.

As earlier mentioned, increasing the sample resolution creates more connected pore spaces

which become available for fluid flow. This is observed by comparing Figs. 5.32 and 5.33

which show flow streamlines through the 1 − 50 × 1 − 50 × 1 − 50 voxels subset, at the
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original and increased resolutions respectively. Streamlines in Fig. 5.33 are more disordered

compared to those of Fig. 5.32 and this is because the additional pore voxels opens up poorly

resolved pore spaces and channels in the original sample that otherwise were not in the con-

nected flow path. This is seen in new pore channels at the bottom of the outlet face in Fig.

5.33 which are not observed in Fig. 5.32.
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Chapter 6
Conclusion

6.1 Conclusion

In this work, the benefits of using lattice Boltzmann method to simulate fluid flow in sys-

tems characterized by complex boundaries, like porous media, are outlined. Using both body

force and density gradient approaches with the bounce back scheme to implement the no-

slip boundary condition between the solid and the fluid phases, the method is validated on

3−dimensional domains of regular and irregular distribution of spheres. Thereafter, flow was

simulated on a real porous media, the Castlegate sandstone with complex geometries like

uneven pore-grain boundaries and low porosity composed of intra- and inter-particle pore

spaces. From the volume averaged simulation results, the media permeability, tortuosity and

beta factor are estimated and compared with the Ergun and Kozeny equation estimates for

the validation cases and experimental results for the Castlegate sandstone.

Validation results show good comparison for permeability and non-Darcy coefficient between

LBM simulation and the Kozeny and Ergun estimates respectively. Also, from the plot of

apparent permeability against Reynolds number, two regimes are observed; the viscous dom-

inated regime characterized by constant permeability and the inertia regime characterized

by decreasing permeability at increasing Reynold’s number. The transition from the viscous

dominated Darcy regime to the inertia dominated non-Darcy regime is well within the range

(Re ≈ 1− 10) reported in literature for regular sphere packs. Also, the effects of roughness

on the media flow parameters are quantified by simulating flow in the same geometry as

one of the validation cases, but with roughness defined as hemispherical protrusions on the

particles. Presence of roughness increased the flow path length and thus, increased the tortu-

osity and non-Darcy coefficients while decreasing the permeability since the domain became
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more resistant to flow as compared to the smooth arrangement. In addition, the Castlegate

sandstone permeability of 1092−1116 md and beta factor estimates of 1×107−10×108m−1

obtained from LBM simulation results are in good agreement with experiment values of 1040

md and 4.53×106−8.17×107m−1 respectively while empirical predictions of the beta factor

using LBM calculated permeability and tortuosities showed wide variation in values in the

range of 4×106−1.37×109m−1, although the estimates of most of the correlations analyzed

are of the same order of magnitude as the simulation result. Using the LBM beta factor

estimate and Type-II Reynolds number defined by Zeng and Grigg (2006), the calculated

transition range obtained in this work is within the values given by Ruth and Ma (1993) and

Zeng and Grigg (2006).

The LBM algorithm was implemented using the open source codes, OpenLB and Palabos

which were run on high performance computing resources and we reached regimes in which

over a billion grid variables of computations were carried out at the rate of millions of lattice

site update per second. In addition, the codes scaled well on the multiple processors and

showed increasing computational speed as more nodes were used.

6.1.1 Recommendation

From the findings of this work , several aspects of our simulation results and the LB method

deserve further studies. These includes:-

Models less Dependent on Relaxation Time

The LBM results are much dependent on the relaxation time for the BGK model. Even the

MRT model for complicated pore/solid boundaries, like the Castlegate sandstone sample,

still show some dependence on relaxation, though less so compared to the BGK model. To

improve the reliability of the LBM results, it is imperative to use models whose results are
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less dependent on the relaxation time. This is important especially when the LBM is to be

applied to systems in which effects like rarefaction and compressibility are encountered.

Compressibility Effect

Compressibility effects are a major issue for low porosity systems when pressure gradient

to drive flow is implemented by density difference. LBM guarantees accurate results only

at slightly compressible regimes. For low porosity samples, high pressure gradients (high

flow rate conditions) can only be implemented by large density gradients which invariably

introduce fluid compressibility in an incompressible fluid system. The effect is that mass is

not conserved globally.

Mach Number Limit

Ma = 0.1 places a limit on the range of lattice flow velocity and hence the upper limit on

the Reynolds number that can be simulated. This means that for systems with small length

dimensions, only by increasing the resolution can high flow rate conditions be simulated.

Models that relax the Mach number limit while still not compromising the result accuracy

should be used.

6.1.2 High Sample Resolution

Samples of porous media to be used for LBM flow simulations should be at high resolutions

to guarantee high Reynolds number regimes.
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Appendix: Nomenclature

Symbols Description SI Units

K Permeability tensor m2

∇p Pressure gradient N/m3

µ Dynamic viscosity Ns/m2

〈~u〉 Volume averaged velocity vector m/s
q Flow rate m3

A Cross sectional area m2

τ&τ1 Tortuosity No unit
Dp Particle diameter m
av Specific surface area m−1

β Beta factor m−1

ρ Fluid density kg/m3

φ Porosity No unit
fα(~x,~eα∂t) Particle distribution function No unit

~eα Phase velocity vector No unit
Ω Collision operator No unit
νlu Lattice kinematic viscosity No unit
λ Dimensionless relaxation time No unit
S Collision matrix No unit
M MRT transformation matrix No unit

Ŝ Diagonal collision matrix No unit
cs Lattice speed of sound (c2

s = 1
3
) Lattice units
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