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NOMENCLATURE 

mi = Molality, m (number of moles per 1 kg of aqueous solution) 

zi = Ion Charge, dimensionless 

K = Equilibrium Constant, dimensionless 

PCO2 = Partial Pressure of Carbon Dioxide (CO2), bar 

ai = Ion Activity, dimensionless  

I= Ionic Strength of an Aqueous Solution, m 

γi =Ion Activity Coefficient, dimensionless  

k = Permeability, D or m2 

ɸ = Porosity, % 

b = Fracture Aperture, mm or µm 

P = Pressure, psi or atm  

T = Temperature, oC  

Q = Flow Rate (bbl/day or ml/min) 

w = Fracture Width (ft) 

L = Fracture Length (in) 

µ = Viscosity (cp) 

pf = Phenolphthalein End-point, ml 

mf  = Methyl Orange End-point, ml 
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ABSTRACT 

Carbon capture and storage is one of the technologies that could help reduce CO2 

concentration in the atmosphere while contributing to cutback of Greenhouse Gas emissions. 

Depleted oil and gas fields are favorable targets for CO2 storage because existing wells can be 

readily used as injection wells. However, a number of abandoned wells also serve as gateway to 

the reservoir which should be considered in the context of effective Carbon capture and storage. 

Wellbore cement is a very essential element in wellbore systems that serve as a barrier between 

different zones in the subsurface. The fractures inside wellbore cement sheath, one of the 

possible pathways for CO2 leakage to surface and/or fresh water aquifers, impair the effective 

sealing of the wellbore cement. Hence, the existence of microfractures poses a risk for Carbon 

capture and storage.  

The purpose of this experimental study is to gain understanding about the effect of acidic 

brine on the behavior of cement fracture and porosity. Two experiments were conducted, one 

under atmospheric and one under high pressure conditions, using CO2 saturated brine. Fracture 

widening was observed in CT images of the low pressure experiment and was verified with 

pressure drop calculations. The low pressure experiment resulted in the reduction of porosity 

whereas the high pressure experiment resulted in a slight increase in porosity. The porosity 

reduction was caused by calcite deposition which was confirmed by mineralogical analysis, 

ESEM images and effluent brine analysis. There were 2 mechanisms working simultaneously: 

leaching and precipitation (carbonation). It appeared that leaching took place first and drove the 

carbonation process. Leaching resulted in an increase in porosity whereas carbonation resulted in 

a reduction of porosity. In a possible leakage scenario, acidic brine exposure may result in a 

reduced fracture aperture due to carbonation coupled with confining stress around cement sheath.                                  
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CHAPTER 1 

INTRODUCTION 

1.1 Background  

Statistics indicate that the concentration of carbon dioxide (CO2) in the atmosphere is 388 

ppm1 (the pre-industrial level was 280 ppm2). Increasing awareness of climate change has led to 

extensive research and development of possible solutions to mitigate the effects of global climate 

change caused by greenhouse gases (GHG). Carbon Capture and Storage (CCS) technology is 

proposed as one of the steps to reduce atmospheric CO2. The Intergovernmental Panel on 

Climate Change3 (IPCC) defines CCS as “a process consisting of the separation of CO2 from 

industrial and energy-related sources, transport to a storage location and long-term isolation from 

the atmosphere”. Depleted oil and gas reservoirs are one of the favorable candidates for CO2 

storage because their subsurface geology is well known, and infrastructure, such as wells and 

pipelines already exist. For safe, sustainable and economic CCS projects, abandoned wells in 

fields used for carbon sequestration should not have conductive pathways for injected CO2 to 

escape back to the surface. During the life of a well, the wellbore system experiences many 

pressure and temperature cycles due to completion, injection, and production operations, which 

can cause microannulus formation and/or fracture propagation in the wellbore cement. Cement 

fractures are identified as one of the potential leakage pathways for stored CO2 to migrate along 

the wellbore back to the surface. Before implementing a storage project, the integrity of any 

existing wellbore network should be analyzed against the possible leakage scenarios. Behavior of 

cement fractures in CCS environment under long time periods (hundreds of years) should be 

understood as a part of the risk assessment process. Safe subsurface containment of CO2 is 

manageable with the help of adequate monitoring and established remediation measures, which 
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can be deployed when required. 

1.2 Objective 

The objectives of this experimental study are to evaluate the change in the fracture aperture 

and investigate porosity alterations of neat, class-H Portland cement when exposed to CO2 

saturated brine through a controlled single fracture. The porosity is primarily affected by the 

dissolution and precipitation reactions occurring due to incompatibility of the highly alkaline 

cement system and acidic brine. Two reaction mechanisms take place which have opposite 

effects on porosity: leaching of cement and carbonation of Portlandite. In order to identify the 

dominant mechanism, a through material characterization of reacted cement was carried out, 

both qualitatively and quantitatively.  

1.3 Methodology 

To reach the stated objectives, flow-through experiments were conducted using 1 in by 12 in 

cement cores prepared using class-H cement (water to cement ratio-w/c=0.38).  CO2 saturated 

brine was obtained by bubbling CO2 through a brine reservoir. Two sets of experiments were 

carried out using CO2 saturated brine with 2 ml/min at different injection pressures to determine 

the effect of pressure on the porosity alteration. Quantitative and qualitative material 

characterization techniques were employed to have an understanding about chemical reactions 

between the cement and CO2-brine system. Effluent brine samples were analyzed to support 

findings from analytical techniques. 

1.4 Overview of Thesis 

Chapter 1 outlines global climate change and Carbon Capture Storage (CCS) technology as a 

solution to reduce CO2 concentration in the atmosphere. Next, objective and methodology of this 

study are presented.  
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Chapter 2 includes a literature review on relevant topics such as global carbon dioxide 

emissions, wellbore cements, and data from experimental and field studies in the literature 

related to cement degradation in CO2-brine environments.  

Chapter 3 describes the experimental set-up and procedures utilized to reach the proposed 

research objectives. Material characterization techniques, employed to understand the alterations 

in the cement internal structure, along with cement sample preparation and curing process are 

also documented in this chapter. 

Chapter 4 provides the results of flow-through experiments with varying injection pressures. 

Microstructural characterization data, effluent brine analysis and porosity measurements are 

reported in Chapter 4 as well. The discussion section compares the reported data to similar 

studies. 

Chapter 5 briefly summarizes this research and gives conclusions based on the interpretation 

of the experimental data. Recommendations are also made for improving the future experiments 

on durability of cement in acidic brine environments. 
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CHAPTER 2 

LITERATURE REVIEW 

The objective of this study is to understand the change of the porosity/permeability in 

fracture surfaces within wellbore cement due to CO2 saturated brine exposure at two different 

injection pressures. A through literature review is presented in this chapter covering a wide range 

of subjects from CCS technology to flow-through fracture theory and deterioration of cement.  

2.1 Carbon Dioxide (CO2) Sources and Emissions 

According to the Environmental Protection Agency (EPA) estimates, greenhouse gas 

emissions including carbon dioxide, methane, nitrous oxide and hydrofluoracarbons (HFCs) 

were 6,956.8 million metric tons of CO2 equivalents in 2008, and U.S. CO2 emissions alone from 

fossil fuel combustion were estimated as 5,572.8 million tons4. Stationary sources, which have a 

permanent location, constituted nearly 70% of the CO2 emissions and the remaining portion was 

emitted from the transportation sector. Approximately 47% of the CO2 emissions are produced 

by the refineries/chemical industry. Figure 2.1 shows CO2 emissions (million tons) from 

different fossil fuel combustions based on the IEA estimates globally.   

 

Figure 2.1: CO2 Emissions from Fossil Fuel Consumption (IEA, 2009)5 
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2.2 Carbon Capture and Storage (CCS) 

Carbon, capture and storage (CCS) is a proposed technology that could help reduce CO2 

concentration in the atmosphere. CCS starts with capturing CO2 from major sources such as 

power plants, then processing it into a pure state, compressing it to the supercritical phase, and 

finally injecting it into a suitable geologic formation where it will be trapped for hundreds to 

thousands of years by means of the following  trapping mechanisms6;  

• Physical Trapping (Structural and Stratigraphic Trapping): After CO2 is injected it rises 

upward due to density difference with the formation water. Its migration will terminate 

when it encounters an impermeable layer which can be a structural or stratigraphic trap. 

• Residual Trapping: As a CO2 plume is moving in the reservoir, some amount of CO2 is 

left behind at the tail of the plume due to pore spaces. With time, the saturation of CO2 

left behind the plume decreases and when it becomes lower than critical gas saturation, it 

becomes immobile and trapped. 

• Solubility Trapping: Some amount of injected CO2 goes into formation brine solution. 

The solubility of CO2 inside the brine is affected by salinity, pressure and temperature. 

• Mineral Trapping: After dissolving in formation brine solution, CO2 in the solution will 

form carbonic acid (H2CO3). Carbonic acid can react with the minerals that exist in the 

reservoir to form solid carbonates which are immobile. Mineral trapping is the most 

favorable trapping mechanism since CO2 becomes incorporated in mineral structure. 

 

The activity levels of trapping mechanisms will be different during the life of the CCS 

project as shown in Figure 2.2. Mineral trapping starts to be active over long time scales.  The 

containment of CO2 underground becomes more secure from physical to mineral trapping. 
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Figure 2.2: Trapping Mechanisms (downloaded from CRC Australia website)7 

2.2.1 Capture  

CO2 can be captured with three different methods such as post-combustion, pre-combustion 

and oxy-fuel combustion8,9. The cost of each method is different and carbon recovery rates are 

different. The estimated cost of capturing CO2 with current techniques is $150 per ton10.  

 
 Post-combustion: CO2 can be separated from flue (exhaust) gases produced from burning 

fossil fuels in the air. The small volume of CO2 in the flue gas (ranging from 3-15% by 

volume) is captured by dissolving the CO2 into a liquid solvent such as amines, a class of 

organic chemical compounds. 

 Pre-combustion: Fossil fuels can be separated into hydrogen and carbon dioxide before 

they are burnt. This process produces high concentrations of CO2 between 35% and 45%. 

 Oxy-fuel combustion: This method employs burning the fuel in an oxygen environment 

instead of air and results in an exhaust gas consisting only of concentrated CO2 and water 

vapor. The CO2 is typically greater than 80% by volume. This method results in the 

highest recovery of CO2. 
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2.2.2 Storage  

After CO2 is captured and transported, storage operations will be implemented in a suitable 

geologic formation by injecting CO2 at least at 1,071 psi (75.3 atm) and 31 oC for conversion 

from gas state to supercritical state3,9. Suitable storage sites for CO2 sequestration are depleted 

oil and gas reservoirs, deep saline aquifers and unmineable coal beds11. 

 Depleted oil and gas reservoirs are favorable locations for storing CO2 since detailed 

knowledge already exists about the geologic structure. Numerous active abandoned wells 

give access to the reservoirs, and they can be converted into CO2 injection wells. These 

wells require attention: wellbore integrity studies about possible leakage risks should be 

carried out before implementing storage projects in depleted oil and gas fields.  

 Saline aquifers have the largest volume available for storage which is shown for North 

America in Table 2.1. However, they are not as thoroughly characterized as depleted oil 

and gas reservoirs, and they do not have many wells penetrating into the target 

formations.  

 Unmineable coal beds can be used if they are located below depths that cannot be 

economically extracted. The disadvantage is the depth window for this storage site is 

between 600-1,000 m which limits available volume for CO2 storage11.  

The target formation should be at a minimum depth of 800-1,000 m to provide sufficient 

pressure to provide enough pressure for injected CO2 to stay in the supercritical state3,6,9.  In 

order to select a geologic storage location, three criteria should be considered; capacity, 

containment and injectivity3,9. The geologic formation should have enough capacity (pore 

volume) to store the injected volume of CO2. Wellbore systems penetrating the storage 

reservoirs, faults, and caprocks should be impermeable to serve as a seal to prevent CO2 



8 

` 

migration from reservoir where it confined. Permeability of the formation should be enough to 

allow injection of CO2 depending on the surface pressure limitations. 

 

Table 2.1: Available Capacity for Carbon Storage in North America (2008 Carbon Sequestration 
Atlas of the United States and Canada) 12 

 

 

2.2.3 CO2 Injection and Post-Injection 

CO2 is typically injected in its supercritical state to employ the maximum usage of the 

reservoir capacity3,9. Supercritical CO2 (SCCO2) has the highest density therefore it occupies the 

lowest volume among other CO2 phases. After injection operations, some portion of the SCCO2 

goes into the brine solution. Depending on the pressure, temperature, and salinity conditions, 

some portion of the injected CO2 does not dissolve. The undissolved CO2 tends to rise upward 

due to density difference with the formation brine13. Some of the SCCO2  may be converted to 

gaseous CO2 when the pressure and temperature conditions are enough for supercritical 

transition. During injection, CO2 displaces the brine that exists near the wellbore region. After 

injection is terminated, the pressure pulse created by the injection of CO2 will dissipate with 

time11. The formation brine will migrate back towards the wellbore region, pushing injected CO2 

upwards due to density difference after the pressure pulse has dissipated13. Therefore, in the post 

injection period there is a high possibility that the wellbore cement will be exposed to CO2 rich 

brine and this will be one of the main motivations for this study. This study is focused on 

Depleted Oil and Gas Reservoirs 152 billion tons 

Unminable Coal Seams 173-196 billion tons 

Deep Saline Aquifers 3,634-13,909 billion tons 
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mimicking this scenario in the laboratory. 

2.2.4 Outlook at Current and Planned CCS Projects Worldwide  

There are three large scale projects currently in operation worldwide. The following list is 

ordered chronologically14. 

 Sleipner-Norway; 1 MM ton/year is injected to a saline aquifer since 1996, Statoil 

 Weyburn-Canada, 1.2 MM ton/year is injected to a depleted oil reservoir since year 2000, 

JV between the governmental and major oil companies. 

 In-Salah-Algeria, 500,000+ ton/year is injected to a saline aquifer since 2004, BP and 

Statoil 

According to the National Energy Technology Laboratory (NETL) CCS database15, there are 

around 190 other projects in 20 countries around the world. 

2.2.5 Concerns about CCS Technology 

Although CCS seems like the most feasible method for reducing atmospheric carbon content, 

there are concerns associated with this technology. The primary concern is that stored CO2 will 

not stay underground for hundreds to thousands of years but instead migrate to upper formations 

(including the fresh water aquifers) and/or surface that will raise Health, Safety and Environment 

(HSE) issues16. The financial burden for countries is another concern. Compression and 

capturing cost in the US is estimated to be $91.90 billion in 201016. Also, some researchers claim 

that CO2 can occupy only 1% of the pore volume and injectivity will be reduced with time due to 

interaction between CO2 and the reservoir rock17. This experimental study only focuses on the 

leakage potential of CO2 through wellbores, not capacity. There are numerous depleted oil and 

gas fields which are planned to be converted to carbon storage locations. These fields have tens 

to thousands of abandoned wells, e.g. Alberta, Canada and West Texas, USA. For safe, 
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sustainable and economic CCS projects, abandoned wells in the fields used for CO2 storage 

should not have conductive pathways for CO2 to escape back to the surface. Pathways such as 

microannuluses between casing and cement and/or microfractures inside the cement sheath may 

act as potential leakage conduits for CO2. Also the fluid adjacent to the wellbore cement also has 

some implications on the cement integrity. To understand the possible leakage problem through 

the wellbore cement, an understanding about cement and its interaction with CO2-brine mixtures 

over extended periods of time and under dynamic conditions is essential. 

2.3 Portland Cement and Its Usage in Petroleum Industry 

2.3.1 Portland Cement Chemistry 

In the petroleum industry Portland cement is the primary cement used for applications such 

as wellbore cementing (primary and remedial) and well abandonment. The chemical composition 

of Portland cement is predominantly Calcium (Ca2+) and Silicon (Si4+). It has four major 

minerals18. These are Alite, Belite, Aluminate and Ferrite. Table 2.2 shows alternative names and 

chemical compositions of these minerals.  

Table 2.2: Mineral Phases in Portland Cement18 

         Alite Tricalcium Silicate (Ca3SiO5)    C3S 

         Belite Dicalcium Silicate (Ca2SiO4)    C2S 

Aluminate Tricalcium Aluminate (Ca3Al2O6)    C3A 

        Ferrite Tetracalcium Aluminoferrite (Ca4Al2Fe2O10)   C4AF 

 

The silicate phases (C3S and C2S) comprise more than 80% of the Portland cement. 

Hydration takes place when cement is mixed with water. After complete hydration of cement, 

two main products are formed: Calcium Silicate Hydrate (3CaO·2SiO2·3H2O or C-S-H)18, which 

constitutes 70% of the hydrated cement and is the main binding material and Portlandite 
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(Ca(OH)2), which occupies 15- 20 % of the volume after hydration. There are also other minor 

minerals formed as a result of hydration such as Ettringite ((CaO)6(Al2O3)(SO3)3.32 H2O). Even 

after partial hydration, the cement undergoes volumetric shrinkage due to the lower volume of 

hydration products. The cement pore solution (pore water) is highly alkaline (pH~13), depending 

on the water to cement ratio. The long curing times (it is reported that cement is hydrated 70% in 

28 days18) may result in the conversion of the Ca(OH)2 to C-S-H that leads to reduction in 

porosity and permeability.  

2.3.2 Portland Cement in Wellbore Cementing  

Because oil and gas wells drilled vary in terms of wellbore profiles and depths, there are 

many different cement formulations to satisfy the different needs associated with different well 

depths, formation fluids, pressures and temperatures. Cements are classified according to degree 

of sulfate resistance and hydration rate18. Therefore, they have different water to cement (w/c) 

ratios. Cements are available in the market from class-A to H to address different cementing 

needs19. Class-A (w/c=0.46) type of cement is manufactured for use up to 6,000 ft as a basic 

cement type without additives19. Class-G (w/c=0.44) and class-H (w/c=0.38) cements can be 

used up to 8,000 ft without additives but using additives it can be used in deeper depths. As the 

particle size of the cement gets smaller, the surface area (measured in Blaine fineness, m2/kg or 

cm2/gr) gets larger and hydration takes place at a more rapid pace. Class-H cement has 1,600 

cm2/gr of Blaine fineness whereas class-G has 1,800 cm2/gr of fineness18. Class-H cement 

(w/c=0.38) has larger particle sizes and class-G (w/c=0.44) cement hydrates faster than class-H 

cement. Cement additives are used to obtain desired setting time such as accelerators and 

retarders. The most common accelerator used in cementing operations is Ca(Cl)2. 

Lignosulfonates are typically used as a thinner in drilling fluids, are commonly used as a 
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retarder. Additives such as fly ash can be added to decrease the permeability of the cement 

system.  

2.3.3 Wellbore Cementing 

Oil and gas wells are cased and cemented based on pore and fracture pressure profiles to 

reach Total Depth (TD) safely. Primary cementing is carried out using a bottom plug, a top plug 

and a spacer. Upon reaching the target depth for a particular well section, the drillstring and 

bottomhole assembly (BHA) is pulled out of the hole (POOH). The drilling fluid (mud) is 

conditioned and mud cake on the formation walls is removed for a better displacement process. 

A casing string is run and a casing shoe is placed at the bottom of the casing string and float 

collar (where the top and bottom plug land) is placed 2-3 joint of casings above the casing shoe 

which consists of a float valve. Prior to the cementing operation, the lines are pressurized and 

checked against any leaks. The cementing operation starts with pumping the spacer together with 

the bottom plug, which allows fluid to flow through. The spacer pushes the mud and stays under 

the mud column in the annulus20. Secondly a tail cement slurry is pumped followed by the lead 

cement slurry. It pushes the spacer keeping the mud and cement slurry separated. Finally, the top 

plug is placed using the mud, and pressure build up is observed on the stand pipe when the top 

plug is placed. Once the cementing operation is completed, the wait on cement (WOC) period 

starts and depending on the laboratory tests, drilling of the next section begins after WOC time. 

There are other cementing methods available such as 2-stage cementing and dump bailer 

method18,20.  

Cemented holes are evaluated with well logs such as the Cement Bond Log (CBL) and the 

Variable Density log (VDL). A CBL qualitatively determines the bond quality of cement to the 

casing and may give an approximation of where the cement top (TOC) is.  
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In the case of an unsuccessful primary cementing, secondary cementing attempts are made to 

offset the possible effects of an unsuccessfully cemented hole on the life of the well.  

Oil and gas wells are cemented for three main reasons: 

 Zonal Isolation 

 Structural support for the wellbore 

 Casing protection against corrosive fluids 

Amongst these reasons, zonal isolation is the most critical point for the long-term and safe 

CCS projects since containment of injected CO2 in the subsurface is directly related to the 

isolation of zones. Hence, additional literature about zonal isolation is presented in the following 

section. 

2.3.4 Zonal Isolation  

The zonal isolation function of wellbore cement is to prevent unwanted fluid entry into 

wellbore which may eventually lead to Sustained Casing Pressure (SCP). SCP is defined as the 

casing pressure caused by trapped gas or liquid in the annulus, which can only be bled off 

temporarily21.  Nelson and Guillot22 reports that 11,000 casing strings in over 22,000 oil and gas 

wells in the Gulf of Mexico show sustained casing pressure which is an indication of inadequate 

zonal isolation.  In order to achieve the zonal isolation function, the wellbore should be properly 

cased and cemented. SCP has three main causes given by Bourgoyne et al.21: 

 Tubing and casing leaks  

 Poor primary cementing 

 Damage to primary cement during the life of the well 

Tubing and casing leaks lead to migration of the fluid from reservoir to behind the casing 

resulting in annular pressure. Poor primary cementing can arise from not following the proper 
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cementing practices such as conducting the cement job without having a complete mud cake 

removal from the formation face. Due to insufficient mud cake removal, the cement will not 

form a strong bond to the formation face and which will eventually lead to a microannulus and/or 

microfractures22.  

Damage to primary cement is most possible in abandoned oil and gas wells some of which 

already have 30-50 years of service life. Primary cement can be damaged due to many pressure 

and temperature cycles caused by oilfield operations such as completion, pressure testing, 

production, and stimulation during the life of the well23. Since the thermal expansion and 

elasticity coefficients are different for casing and cement, the pressure and temperature change in 

the casing can result in a different expansion and contraction in cement which increases the 

possibility of forming a microannulus between casing and cement and/or microfractures within 

the cement sheath (Figure 2.3). 

 

 

 

 

 

 

 

 

 

Figure 2.3: Schematic of Fractured Cement Sheath 
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2.3.5 Experimental and Simulation Studies on Wellbore Cement Integrity 

There are numerous experimental studies reported in the literature which investigate the 

effects of wellbore stresses on cement integrity.  

Ravi et al.23 simulated the effect of wellbore stresses on the wellbore cement using Finite 

Element Analysis (FEA). They studied three different types of cement with different physical 

properties such as Young`s modulus and volumetric shrinkage in two different well geometries. 

Hydration of cement, depressurization of 3,750 psi caused by changing the fluid (13 lb/gal) to 

completion fluid (8.6 lb/gal) for a 16, 500 ft well and pressurization of 10,000 psi caused by 

hydraulic fracturing of the casing were simulated. Their results indicate that conventional oilwell 

cement (4% shrinkage and Young`s modulus of 1.2 x 106 psi) failed and de-bonded from casing 

at the end of the depressurization of the casing and pressurization resulted only in failure of 

cement not de-bonding from casing. On the other hand, cement with no volumetric shrinkage 

properties did not fail in any of the pressurization and depressurization simulations. 

Boukhelifa et al.24 studied the effect of casing expansion and contraction on the cement 

sheath using an experimental set-up with a core in the center, cement in the annulus and an outer 

ring simulating the casing. They tested conventional neat cement. They rotated the inner core to 

simulate the contraction and expansion of the casing. Single rotation corresponds an outer radial 

displacement of 30 µm which corresponds to 116 psi change inside the casing according to the 

calibration of their strain gauge. Initial permeability of the whole system was 7-8 mD (7-8x10^-15 

m2). They observed a permeability increase (measured using air) which indicated a microannulus 

was formed after 0.5 turns. Permeability was reduced after 2.5 turns indicating closure of the 

microannulus. However, radial cracks were observed on the cement surface. Three turns resulted 
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in opening of cracks and further turns lead to an increase in permeability to 1,000 mD (10^-12 

m2). 

2.4 Geochemistry of Carbon Dioxide (CO2) and Brine Mixture  

2.4.1 Carbon Dioxide (CO2) 

Carbon dioxide has been used by the food industry, the oil industry, and the chemical 

industry. The petroleum industry has many years of experience using CO2 for Enhanced Oil 

Recovery (EOR). CO2 can exist in solid, gas, liquid and supercritical phases at different pressure 

and temperatures as shown Figure 2.4. At 25 oC, gaseous CO2 liquefies around 800 psi25. CO2 

becomes supercritical when the pressure is above 1,071 psi and temperature is above 31 oC 

3,9,13,14. Supercritical CO2 has a high density comparable to a liquid (density of 506 kg/m3 at 

1,071 psi and 31Co) and viscosity comparable to a gas in the range of 0.02-0.1 centipoises26. CO2 

may also become dangerous to human health if its concentration exceeds 5,000 ppm27. 

 

Figure 2.4: CO2 Phase Diagram (downloaded from the Department of Chemistry website, 
University of Wisconsin) 25 
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2.4.2 CO2 Addition to Fresh Water 

When CO2 is introduced to water, carbonic acid (H2CO3) is formed (Equation 1). After the 

acid evolution, the pH of the solution drops until reaching equilibrium. Carbonic acid is also 

dissolved to produce bicarbonate (HCO3
- ) and further reaction results in forming the carbonate 

ions (CO3
-2 ) 28. The equilibrium constant for carbonic acid formation is given in Equation 2. 

 
COଶ 	+ 	HଶO			

	
⇒				HଶCOଷ     .......................................................................................... (1) 

Kେ୓ଶ = 	 ୟౄమిోయ
ୟౄమో				×					ୟిోమ

  .............................................................................  (2) 

 
where “a” stands for the activity. KCO2 is the equilibrium constant. 

 
Activity is the multiplication of the activity coefficient (γi) and the molality (mi). The activity 

coefficient can be calculated using Davies (Equation 4) or Debye-Huckel equations29. Davies 

equation is the simplified version of Debye-Huckel equation and it is reported to be valid until a 

few tenths molal ionic strength29. Ionic strength (I) is defined as; 

I = 0.5	 × ∑m୧ 	× (z୧)ଶ	  .......................................................................................... (3) 

where, mi is the molality (mol/kg) and zi is the charge of each ion. 

log	(γ୧) = 	 (ି଴.ହ଴ଽଵ)×(୸౟)మ

ଵା√୍
+ 0.102(z୧)ଶI						 ............................................................................... (4) 

If the activity of CO2 is replaced with its equivalent partial pressure, then Equation 2 can be 

written in an alternate way (Equation 5). Activity of H2O can be assumed as 1 for aqueous 

solutions. Partial pressures of carbon dioxide are tabulated in the literature for different 

temperature and pressures29. (PCO2=10-3.5 bar at atmospheric conditions) 

aୌమେ୓య = 	Kେ୓మ 		× 				Pେ୓మ ....................................................................................................... (5) 
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The carbonic acid dissolution reaction is given by, 

HଶCOଷ 				 	⇒			Hା 	+ 	HCOଷ
ି	  ................................................................................................. (6) 

The equilibrium constant for this reaction is, 

Kଵ = 	
ୟౄశ			×			ୟౄిోయష

ୟౄమిోయ
   and K1= 10-6.35 at atmospheric conditions ................................................ (7) 

Equation 7 can be rewritten as, 

aୌା = −	log	(pH)	and		aୌେ୓యష = 	୏భ				×						ୟౄమిోయ
ି୪୭୥	(୮ୌ)

	   .................................................................. (8) 

The equilibrium constant for the bicarbonate dissolution reaction is given in Equation 10, 

HCOଷ
ି + Hା 	

	
⇒	COଷ

ିଶ   ................................................................................................. (9) 

Kଶ = 	
				ୟిోయషమ

ୟౄశ	×			ୟౄిోయష
   and K2= 10-10.33 at atmospheric conditions ............................................. (10)  

The activity of bicarbonate ions can be written in terms of the partial pressures and equilibrium 

constants, 

	aୌେ୓ଷି = ୏భ			×				ୟౄమిోయ
ୟౄశ

	= 	୏భ			×				୏ిోమ				×					୔ిోమ
ି	୪୭୥	(୮ୌ)

  ..................................................................... (11)     

∑ 	Dissolved	COଶ 	= 	mୌమେ୓య 		+ 	mୌେ୓యష 		+ 	mେ୓యషమ		 ............................................................................................ (12) 

If the pH of the solution is below 7, then the concentration of carbonate ion can be neglected 

(Figure 2.5).   

Using Equation 12, the amount of dissolved CO2 in the solution can be computed by 

knowing the molality of carbonic acid, bicarbonate and carbonate ions. Numerous studies exist 

in the literature which model the solubility of CO2 in fresh water such as Duan-Sun30 model 

which is developed for solutions containing Na+ and Cl-. Bicarbonate and carbonate 

concentrations are equal at a pH of 10.3328,29,31. At pH of 6.35, carbonic acid and bicarbonate 

concentrations are equal as shown in Figure 2.5.  
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For our study, it is important to determine whether calcite was precipitating or dissolving. 

Oversaturated or undersaturated aqueous solutions can be identified using a saturation index (SI) 

value criteria. The ion activity product (IAP) is the product of the activity of calcium and the 

activity of the carbonate ion, which can be calculated with Equation 13.  

 

 

Figure 2.5: Activity of Carbonate, Bicarbonate and Carbonic Acid as a Function of pH 
(Applications of Environmental Aquatic Chemistry, Weiner E.) 32 

 

IAP = aେୟమశ 			× 		aେ୓యషమ   ........................................................................................ (13) 

The saturation index is then, 

SI = log( ୍୅୔
୏౩౦

)  ........................................................................................ (14)  

Equilibrium constant (Ksp) can be obtained from geochemistry books29,32. Ksp can be adjusted 

to different T and P conditions by correction factors29. Ksp is equal to 10-8.48 at atmospheric 

conditions29. 

If the saturation index (SI) is less than zero, the brine solution is undersaturated and calcite 

dissolves. If SI is larger than 0, then the brine solution is precipitating calcite. 
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2.4.3 CO2 Addition to Brine Solution 

The solubility of CO2 in brine solutions is different than the solubility of CO2 in fresh water 

due to total dissolved solids (TDS), such as Na+, Cl- and K+ in the brine solution. Solubility of 

CO2 decreases with increasing salinity because the activity coefficient increases with salinity33. 

As pressure drops, the solubility of CO2 in brine also reduces.  

2.4.4 Chemical Interaction between Portland Cement and CO2 Saturated Brine  

When cement is exposed to CO2 saturated brine, a series of chemical reactions35,36,37 take 

place as summarized below; 

 
COଶ 	+ 	HଶO				

	
⇒				HଶCOଷ			 .................................................................................................. (15) 

Ca(OH)ଶ + HଶCOଷ 			 	⇒	CaCOଷ + HଶO				(Also	called	as	carbonation) .................................. (16) 

HଶCOଷ + CaCOଷ 		 	
⇒		Ca(HCOଷ)ଶ	  ........................................................................................ (17) 

Ca(HCOଷ)ଶ	 + Ca(OH)ଶ 	 	⇒	2CaCOଷ + HଶO		  ........................................................................ (18) 

After Ca(OH)2 has been consumed, CaCO3 begins to dissolve. 

Hା	(aq) 	+ 	CaCOଷ	(s) 			
	
⇒	Caାଶ	(aq) 	+ HCOଷ

ି	(aq)	  ......................................................... (19) 

Consumption of the hydrogen ions (H+) results in a pH increase. 

If all CaCO3 is depleted then Calcium Silicate Hydrate	(C-S-H), due to Ca2+ leaching, will be 

converted into a gel like structure36 and wellbore cement will lose its integrity. 

 
C − S − H	(s) 			

	
⇒		Caାଶ(aq) + 	OHି	(aq) + 	amorphous	gel − SiOଶ	(s)	 ............................ (20) 

The pH of the pore solution of cement decreases to 8 when the carbonation is totally 

complete38. In the literature, phenolphthalein has been used to determine if the carbonation is 

complete since phenolphthalein (pink color) becomes colorless when pH drops below 8.320. The 
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carbonation process results in the decrease of the porosity because CaCO3 (calcite, 36.9 cc/mol) 

occupies more space (larger volume) than Portlandite (33.1 cc/mol)37.  Furthermore, calcite has a 

higher density than Portlandite39 so cement paste undergoes an increase in mass with 

carbonation. Permeability of the cement is reported to decrease by carbonation due to blockage 

of macropores40, but the further flow of carbonic acid can remove the carbonated layer and cause 

the permeability to increase again.  

 It is reported that leaching, which takes place when cement is exposed to a pH less than 13, 

has an opposite effect on cement porosity as it causes porosity to increase38. In our study, both 

carbonation and leaching take place because of exposure to acidic brine. Figure 2.6 is showing 

the time effect on the microstructure. As the cement becomes older ongoing hydration results in 

further C-S-H formation and creation of gel pores (smaller than 0.01µm).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Time Effect on Microstructure of Hardened Cement 

Shift in Pore structure 
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2.5 Experimental Studies and Field Data on Portland Cement-CO2 Interaction 

There are many well-documented studies in the literature which investigated the degradation 

phenomenon of Portland cement in CO2 rich environments, some of which were also supported 

by field data.  

Onan41 investigated the effect of supercritical CO2 on the samples prepared with different 

compositions (neat class-H cement and cement with pozzolan) under static conditions. Under 

low temperature and pressure (105 oF and 2,800 psi) partial carbonation was observed whereas 

high temperature and pressure testing conditions resulted in complete dissolution of Portlandite 

and C-S-H. No permeability change was noted from the tested conventional cements, but 

permeability increased for special systems. 

Bruckdorfer42 studied cement samples with exposure to CO2-water. Experiments were 

conducted at 79.4 oC and 3,000 psi for 4-6 weeks. Strength loss was observed in the samples 

regardless of fly ash additions. Carbonation depths were measured and compared for the cement 

samples and fly ash addition was found to increase the carbonation depth. Under the constant 

pressure, increasing temperature resulted strength loss. 

Duguid et al.43 investigated the effect of carbonated brine on class-H cement. The authors 

used carbonic acid as permeant with pH of 2.4-3.7. They observed total removal of C-S-H and 

Ca(OH)2 of cement in 31 days which lead to cement with no mechanical integrity. 

Gouédard et al.44 conducted an experimental study using class-G cement and they cured 

samples under ~ 3,002 psi and 90 oC. In their study, cement cores were submerged into brine 

solution so that the bottom part was exposed to CO2 saturated brine and the top part exposed to 

supercritical CO2 under ~ 4,061 psi and 90 oC. They extrapolated their data and estimated 100 

mm alteration depth for 35 years of exposure. The alteration rates for CO2 rich brine and 
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supercritical CO2 are proportional to square root of time (defined by diffusion). 

Kutchko et al.45 carried out experiments using supercritical CO2 and CO2 saturated brine 

under static conditions with class-H cement. After curing the cement cores in 1% NaCl solution 

for 28 days, the cores were partially submerged in a solution so that the top portion of the core 

was exposed to supercritical CO2, whereas, the bottom portion was exposed to CO2 saturated 

brine. They analyzed the alteration depths in both sections with time and concluded that the 

alteration mechanisms are different. The alteration in the bottom part, which was exposed to CO2 

saturated brine, is similar to an acid attack and alteration rate is not constant due to CaCO3 

precipitation. The supercritical CO2 attack was similar to an ordinary carbonation where the 

alteration rate is proportional to square root of time (defined by diffusion). After extrapolation, 

they concluded that 30 years of exposure to CO2 rich brine would result in 1 mm of alteration 

depth in cement. 

Huerta et al.46,47 investigated the effect of HCl acidic solution on the behavior of fractures by 

employing confining stress cycles coupled with a set of flow through experiments using class-H 

cement. They cured their samples under 125 oF and atmospheric pressure. In their first set of 

experiments46, they tried to establish a correlation between the confining stress and the fracture 

aperture using loading/unloading cycles. They observed elastic behavior, in which fracture 

apertures were returning to their same values after loading and unloading cycles without acid 

exposure. When exposed to a HCl solution (pH=0.3), they observed plastic behavior, in which 

the cement core was deformed permanently. In their second set of experiments47, cement cores 

were fractured using the Brazilian method and immersed in a HCl solution (pH=3.5). The 

samples were treated with acid for 7 and 12 days to see the effect of acid exposure on cement. 

The cement core, which was exposed to acidic solution for 7 days, showed nearly elastic 
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behavior. However, the core, which was exposed for 12 days, showed plastic behavior. Fractures 

closed with increasing confining stress did not return to initial apertures with unloading cycles. 

They concluded that confining stress coupled with the acid exposure effect can close cement 

fractures and will prevent further flow.   

Bachu and Bennion 48 carried out two sets of experiments with cores prepared using class-G 

cement to quantify the permeability changes with exposure to CO2 saturated brine (saturated at 

~2,198 psi and 65 oC) and supercritical CO2.  In the first set of experiments, the cement core was 

exposed to CO2 saturated brine with ~ 2,198 psi pressure drop across the 3 cm core for 90 days 

under ~ 4,197 psi confining stress. In the second set of experiments, the cement-casing pair was 

exposed to supercritical ethane and CaCl2 solution using ~ 1,998 psi pressure drop with perfect 

bond (0 cm annular gap) and 0.003, 0.0012 and 0.0018 cm annular gaps under a confining 

pressure of ~ 3,495 psi. Results of the first experiment showed that the permeability of the intact 

cement, 0.1µD (10-19 m2), initially decreased to 0.01µD (10-20 m2) then remained constant. The 

second set of experiments showed that the permeability of the cement-casing pair with a perfect 

bond was 0.001 µD (10-21 m2) but existence of 0.01-0.3 mm microannulus and/or fractures inside 

the cement increased the permeability up to 1 mD (10-15 m2). The authors concluded that the 

cement sheath, even after exposed to acid, has sufficient permeability for zonal isolation but 

existence of microannulus and/or cement fractures are the main conductive pathways for CO2 

leakage.  

Brandvoll et al.49 conducted static and flow-through experiments with cement samples (2.5 

by 5 cm) which were prepared from class-G cement. The samples were cured for 28 days and the 

experimental conditions were 36 oC and 1,450 psi (100 bar) for both experiments. Static and 

flow through experiments were carried out using fluids with salinity of 16% and 3.5% 
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respectively. The static experiments were carried out with samples saturated with water and brine 

under 725 psi (50 bar) pressure supplied by CO2 injection.  Flow-through experiments were 

carried out under a confining pressure of 435 psi (30 bar) using flow rates values changing 

between 0.1 and 0.4 ml/min through a predrilled 1 mm radius channel. Static experiments show 

partial carbonation. Flow-through experiments resulted in consumption of Portlandite and C-S-

H.  Moreover, calcite/aragonite precipitation within channel and an increase in channel diameter 

was also observed.  The effluent brine analysis confirmed that silica was leaching from the 

cement.  

Wigand et al.50 studied the effect of the brine and supercritical CO2 on the shale-cement 

composite. The core holder containing shale-cement composite was held in the vertical position 

and fluid was injected from the bottom. Cement was fractured with the help of a hammer and 

chisel but fracture dimensions were not known. A total of 26.47 ml brine and 88.3 ml 

supercritical CO2 was flowed through cement-shale composite in 113 days. XRD and SEM were 

utilized to characterize the mineralogical and microscopic changes. Two distinct zones were 

identified: a gray zone which still had Portlandite and calcite as the only carbonation product and 

an orange zone which contained different forms of CaCO3 such as calcite and vaterite and 

amorphous material. They also observed both widening and closing (calcite filling) of the cement 

fractures. The resulting cement porosity (23.8%) is lower than its original value (37.8%) in the 

orange zone. 

Carey at al.51 investigated the effect of CO2-brine flow on the microannulus simulated by the 

artificial channels, created between the cement and steel, as a casing. They prepared cement-

casing composite in which steel was in the center of the cement (simulating the casing-cement 

system). A mixture of the supercritical CO2 and brine was flowed through limestone and cement-
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casing composite using ~ 2,030 psi injection and ~ 4,060 psi confining pressure with 0.333 

ml/min and 0.1665 ml/min (used in last 5 days) for ~17 days. Limestone was placed ahead of the 

cement-casing composite to equilibrate the pH of the fluid before passing through the cement-

casing composite. Permeability increased from 0.52 D (0.52x10-12 m2) to 1.5 D (1.5x10-12 m2) 

during the experiments probably due to dissolution. There were two zones: an orange zone was 

observed to contain CaCO3 forms, and an unaltered zone contained Portlandite.  

Two field studies are available in the literature to verify the experimental studies.  

Carey et al.52 investigated cement samples taken from a 55 year old well in SACROC field, a 

30-year CO2 EOR site located in West Texas. In this study, they observed alteration in wellbore 

cement exposed to CO2. Casing and cement samples were taken from the shale caprock-cement 

and cement-casing interfaces. The casing samples did not show significant corrosion. The 

cement samples taken from the shale caprock-cement interface were orange in color. The cement 

sample taken from the casing-cement interface indicated carbonation with an orange coloration. 

Permeability of these cement samples was in the range of 0.1- 2 mD (10-16-2x10-15 m2).  

Crow et al.53 analyzed the samples taken from a 30 year old natural CO2 producer well 

(production casing was cemented with class-H cement and 50 % fly ash system), which did not 

show any sustained casing pressure history. Cement cores were taken from cement-rock and 

cement-casing interface. Formation fluid samples were found to have pH values of 5.2-6.1. 

Higher values of permeability (21 µD/21x10-18 m2) and porosity (41 %) were observed in 

samples taken closer to the CO2 reservoir than the samples (1 µD and 25 % porosity) taken near 

the cement-caprock interface. A vertical interference test (VIT) was run to understand whether 

communication existed between the lower and upper perforations by pressuring and measuring 

the pressure pulses across the perforations. After numerical modeling of VIT data, the overall 
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permeability of the wellbore system (cement interfaces and casing) was computed as 0.01 D (10-

14 m2); whereas, the permeability of the cement core taken from the same depths was 1µD (10-18 

m2). This field data shows that the permeability of the cement-casing system is greater than the 

cement itself implying that there some artifacts (microfractures and/or microannulus) exist in the 

wellbore system. 

2.5.1 Comparison of Experimental Studies and Field Data  

Wellbore cement samples taken from wells exposed to CO2 showed degradation to some 

degree, but they still provide a barrier by having a low permeability52,53. Existing field data 

suggests that intact cement sheath is not the primary concern for leakage from abandoned oil and 

gas wells. Instead, the microannulus between cement-casing and/or casing-formation interface 

and/or microfractures within cement sheath are the primary concerns for possible leakage. 

Moreover, interaction of these conduits, coupled with the effect of CO2-brine mixtures, is not 

well understood. The behavior of interaction between the defects and the CO2-brine mixtures 

will motivate our study. For the above reasons, the following experiments were designed to 

observe the interaction between the flowing CO2 saturated brine and the cement fracture coupled 

with the confining stress applied to cement core. 

2.6 Modeling Single Phase Flow through Single Fractures  

2.6.1 Parallel Plate Approach 

The study of naturally occurring fractures can be found in the petroleum literature, water 

resources research and rock mechanics literature. Fractures are important in Petroleum 

Engineering since they enhance the permeability of the reservoir system to a large extent 

(permeability of the fracture is equal to the square of the aperture).  Underground water flows 

through fractures needs to be investigated for managing the available water resources. Fractures 
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are also important elements in rock mechanics since their mechanical behavior under stress is 

essential for solving rock mechanics problems. Fractures are characterized by the following 

properties; fracture aperture, width, length and roughness54, as presented in Figure 2.7. Aperture 

(b) is the vertical distance between two fracture walls. Fracture width (w) is defined as the 

longitude of the fracture walls. Usually, roughness is expressed in terms of absolute roughness 

(e/b) which is basically the ratio of the height of the irregularities to the aperture (smooth 

surfaces have e/b equal to 0)54. 

 

 

 

 

 

        

Figure 2.7: Schematic of Single Fracture 

 

The first research about single fractures was carried out by Lomize54 in 1951. He used 

parallel glass plates in his experiments. He assumed the fracture walls are smooth, parallel plates 

and that separation between these parallel plates are constant. Based on his experiments, he 

found that the flow rate passing through the fracture is proportional to the cube of aperture. He 

also developed correlations to predict the friction factors with different roughness ratios with 

laminar or turbulent flow. In reality, since aperture sizes are not the same at each point, many 

researchers use different definitions of aperture such as arithmetic and geometric average of local 

apertures.  

 

Fracture width, w 

Fracture Aperture, b 
Fracture 
length, L 
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2.6.2 Navier-Stokes and Stokes Equations 

The motion of an incompressible fluid can be described by the “Navier-Stokes” equation55.  

ρ(u.∇)u + ρ	 ୢ୳
ୢ୲

= µ∇ଶu − ∇p − ρg  ...................................................................................... (21) 

where	u is velocity, g is gravitational constant,	ρ is density, µ is viscosity and ∇p is pressure 

difference. Assuming steady-state flow, acceleration can be neglected. If inertial forces are 

assumed to be small, the ρg term can also be neglected. The advective term causes this equation 

to be nonlinear. If the advective term is excluded, a very simple equation is obtained called 

“Stokes” equation. 

µ∇ଶu = ∇p   ........................................................................................................................... (22) 

Equation 22 can be used to model single phase fluid flow in single fractures 55.  

2.6.3 Cubic Law 

Witherspoon et al.56 investigated the validity of the cubic law by conducting set of 

experiments. It is called the cubic law since flow rate depends on the cube of the aperture, “b”. 

Using pressure drop (psi), fracture width (ft), fracture length (in), flow rate (bbl/day) and 

viscosity (cp) of the fluid, fracture aperture can be calculated. Equation 23 was originating from 

Equation 22.  

Q = 5.11 × 10଺ ቂ୵×∆୮×ୠయ

୪×ஜ
ቃ   ........................................................................................ (23) 

Assumptions56: 

•  Parallel plates                                  

•  Smooth walls  

In order to be able to use cubic law, one has to assume that flow is occurring between 

parallel-plates and smooth walls. Also, flow should satisfy laminar (NRe<1150), steady-state 
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(dP/dt=0) and isothermal (T=constant) conditions55,57. Reynolds number is the ratio of the 

inertial forces to the viscous forces. 

Nୖୣ = ଽଶ଼	஡	୴	ୈ
ஜ

  ....................................................................................................................... (24) 

where, ρ is density (ppg or lb/gal), v is velocity (ft/sec), D is diameter (in) and µ is viscosity (cp). 

2.6.4 Modifications to Cubic Law 

Jones et al.58 modified the cubic law equation (Equation 23) in order to account for the 

roughness effect which is given as Equation 27.  It includes friction factor59 which can be found 

using either Equation 25 or 26 depending on the flow regime (laminar or turbulent). According 

to de Marsily57 the transition from laminar flow to turbulent flow takes place when Reynolds 

number (NRe) exceeds 1150. Note that if ff is equal to 96/NRe, the cubic law is obtained.  

 

For laminar flow59,   f୤ = ቀ96
Nୖୣ
ൗ ቁ ൬1 + 3.1 × ቀe

bൗ ቁ
ଵ.ହ
൰ ................................................................(25) 

 
For turbulent flow59,   1

f୤
଴.ହൗ = 1 + 2log3.8ቀb eൗ ቁ  ................................................................ (26)  

 

Modified cubic law58, Q = 5.06 × 10ସ × w ቂ∆୮×ୠయ

୤౜×୪×஡
ቃ
଴.ହ

............................................................ (27) 

 
2.6.5 Comparison of Cubic Law Based Models 

Cubic law based models employ different hydraulic aperture definitions such that some 

models use the geometric mean of the all measured apertures and some models use the arithmetic 

mean of measured apertures for the hydraulic aperture. Also, some of the models integrate the 

effect of the contact area, roughness and tortuosity. Roughness is used for calculating the friction 

factors. 
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Konzuk et al.60 presented a detailed experimental study comparing all the cubic law based 

models. In their study apertures were initially measured and the observed and calculated flow 

rates were compared. According to their results if Reynolds number is smaller than 1, calculated 

and observed flow rates are very close when one uses the geometric mean of the measured 

apertures or incorporates the roughness factor. 

2.6.6 Aperture Measurements 

Fracture aperture can be measured with various methods such as CT and resin impregnation 

method. 

Hakami et al.61 filled the fracture, within a granite core, with epoxy resin while applying 

confining stress. Then, the core (19 cm by 41 cm) was cut into pieces, cast into concrete and cut 

along the fracture and several images were taken along the core using stereo-microscope. Since 

the fracture is filled with epoxy, it was easily differentiated from the rock matrix and fracture 

aperture was measured.  

Konzuk et al.60 used the same technique, but they also mixed the resin with red dye in order 

to differentiate the rock and the fracture easily. This method creates a disadvantage that fractures 

filled with resin cannot be used for the next flow through experiments.  

Keller62 used X-Ray Tomography (CT) to measure fracture apertures while the core is kept 

inside the core holder. He used CT to measure apertures for a single fracture in granite core, 

sandstone core and multi fractures for a granite core. CT enables us to differentiate between the 

low and high mass regions by different levels of brightness. For this technique, in order to 

measure apertures, initially a calibration map should be set-up. A calibration map is prepared by 

scanning feeler gauges with known thicknesses placed inside between two flat surfaces so that 

aperture is known beforehand. After having the CT for the fracture with known aperture, the CT 
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signals can be correlated with the apertures. The correlation was used to convert CT signals into 

equivalent apertures. According to his results, fracture apertures along the core followed log-

normal distribution. 

2.6.7 Roughness Measurements 

Although the parallel plate approach and cubic law assumes the walls of the fracture are 

smooth, in reality fracture surfaces are rough. A surface profiler can be used to determine the 

roughness by generating a topography map of the fracture surfaces60. 

Fractures can be studied accurately by utilizing aperture and roughness measurements and 

using a better defined cubic law, as presented above. Since these techniques were not available, a 

simple cubic law (Equation 23) will be used to infer the fracture apertures.  
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CHAPTER 3 

EXPERIMENTAL SET-UP AND PROCEDURE 

3.1 Cement Sample Preparation 

Cement cores were prepared from a class-H cement slurry (w/c=0.38) according to API 

Recommended Practice for Testing Oil Well Cements, API RP-10B19. 327 grams of water and 

860 grams of cement were mixed to prepare 600 ml of class-H slurry. After mixing the cement 

and water in required proportions at 4,000 RPM for 15 seconds and at 12,000 RPM for 35 

seconds using a Hamilton Beach mixer, a vacuum pump was used to degas the cement slurry. 

After degassing, the cement slurry was poured into custom made molds (1 in by 13 in) as shown 

in the Figure 3.1. The wait on cement (WOC) period was 20 hours after pouring the slurry into 

molds. This optimum time was found by trial and error. After demolding the hardened cement, 

cement cores were cured in tap water for 4 to 6 months periods to allow time for the cement to 

complete its hydration (cement completes 70 % of its hydration in 28 days18). In the case of an 

existing irregular surface, the cement halves (Figure 3.2) were polished with sand paper to obtain 

smooth surfaces as much as possible. Two halves of cement (Figure 3.2) were put together using 

epoxy before starting the experiment, and the resulting core (1 in by 12 in) is shown in Figure 

3.3. Fracture width reduced to 0.6 due to epoxy between the cement halves. 

 

Figure 3.1: Cement Preparation Mold 
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Figure 3.2: Cement Halves  

 

Figure 3.3: Cement Core (1 in by 12 in) 

3.2 Experimental Fluids 

A CO2 saturated brine solution is used for all experiments. Brine is prepared with distilled 

water to ensure that unknown species are not present in the solution. The brine composition was 

originally designed to simulate West Texas formation fluids. This original brine contained Mg 

and CaCO3 in minor amounts. The composition was then simplified to include only NaCl and 

KCl. As seen in the Table 3.1, the brine solution contained ~ 2% dissolved solids. After mixing 

water and salts, brine was filtered using filter papers to eliminate undissolved solid particles that 

can plug the flow lines in the experimental set-up. A filter was also installed upstream of the core 

to reduce the risk of plugging the flow lines. An accumulator (volume ~25 l) was used to 

accommodate the brine solution. CO2 was bubbled through the accumulator at 15 psi resulting in 

a pH of 4.0. This method was selected instead of simultaneously flowing brine and CO2, to 

prevent the possibility of multiphase flow through the cement fracture. However, the pump 

manufacturer did not recommend any pH value lower than 4.5. Therefore, fresh brine was mixed 
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with acidic brine to obtain pH values around 4.9-5.2 (in order to remain within manufacturer`s 

specifications) measured with an Oakton Waterproof pH Tester 10 which was also used to 

measure the effluent pH values throughout the experiments. The digital pH meter was calibrated 

with standard buffer solutions (pH=4, 7, 10) each week. 

 

Table 3.1: Brine Composition 

 

 

Table 3.2: Dissolved Solids in Brine Solution  

Ions  Na+ Cl- K+ 

Concentrations 7,944 mg/l- 
0.3455 m (mol/kg) 

12,413.9 mg/l- 
0.3502 m (mol/kg) 

180.8 mg/l-  
0.0046 m (mol/kg) 

 
 

3.3 Experimental Set-up 

The experimental set-up consisted of a Hassler type core holder (cell), syringe pump, 

hydraulic pump, back pressure regulator (BPR), cone shaped accumulator, pressure transducers, 

pressure gauges, data acquisition system and filter to prevent solid particles (larger than 50 µm) 

from flowing into the Hassler cell. A schematic of the experimental set-up is shown in Figure 

3.4. The Hassler cell was mounted vertically on a stand position to mimic the upward flow of 

CO2 saturated brine through the fractured vertical wellbore cement column.  

Chemical Reagents Molecular Weight Amount added to 1 l 
of Distilled Water Molality (mol/kg ) 

Sodium Chloride 
(NaCl) 58.45 g/mol 20.196 g 0.3455 m 

Potassium Chloride 
(KCl) 74.6 g/mol 0.345 g 0.0046 m 
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Figure 3.4: Schematic of Experimental Set-up 
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3.3.1 Syringe Pump  

A Teledyne Isco E500 model syringe pump system capable of providing flow rates from 

0.001 ml/min to 207 ml/min was used in this study. The pump can produce pressures up to 3,750 

psi. It consists of two individual pumps (pump A and B), with 507 ml capacity each, which can 

be operated in independent pump mode as well as in continuous flow mode by the electronic 

controller. The lowest pH of 4 was recommended to prevent the corrosion of the pump. Pump A 

was used during the experiments in auto refill mode to provide continuous flow. It requires ~2.5 

minutes to be refilled at a refill rate of 200 ml/min. Hence, CO2 saturated brine was continuously 

pumped during 24 hours except the refills (total refill time is approximately 15 minutes per day). 

 

 

 

 

 

 

 

                  

 

 
Figure 3.5: Teledyne Isco Syringe Pump 

3.3.2 Hassler Type Core Holder 

The Hassler cell was manufactured by Temco-Tulsa, OK. It can accommodate cores up to 1 

in diameter and 12 in length. The core holder has a Viton rubber sleeve. There are six pressure 
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taps along the sleeve with 2 inch spacing. The rubber sleeve requires at least 500 psi net 

overburden to seal the annulus of the core holder from the core sample. In order to prevent the 

entry of the confining fluid, the rubber sleeve is clamped to the fixed distribution plug. The first 

pressure tap and last pressure tap are located 1 in from the core inlet and outlet, respectively. The 

holder can withstand 3,750 psi of injection and confining pressure. Confining stress is applied to 

the rubber sleeve containing the cement core ensuring that linear flow occurs only through the 

cement fracture preventing the radial flow. 

  

Figure 3.6: Hassler Type Core Holder  

3.3.3 Data Acquisition System 

Omega Pressure transducers were used to record the pressure drop data along the core and 

one transducer was used to record the inlet pressure at the core face. Two sets of transducers 

were used one for high pressure (0-5,000 psi) and the other for low pressure (0-50 psi) 

measurements. The transducers have a stated accuracy of 0.25% of the full pressure. Pressure 

transducers were then connected to six digital transmitters (Omega DIN-113) with electrical 

PRESSURE 
TRANSDUCER 

HASSLER CELL 

INLET 

OUTLET 
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wiring. Pressure transducers were calibrated directly with the pump which was calibrated by its 

manufacturer. Digital transmitters convert the voltage data, which is the output of the pressure 

transducers, to RS-232 signals. RS-232 signals were converted into RS-485 signals, which can 

be read by the computer. Afterward, the data is stored in the computer using a data logger 

program. The stable pressure drops were then selected and used to infer the fracture apertures. 

3.3.4 Back Pressure Regulator (BPR) and Hydraulic Pump  

A back pressure regulator (BPR), manufactured by Temco-Tulsa, OK, was used to achieve 

higher injection pressures. The BPR can accommodate flow rates up to 10 ml/min.  Dome 

pressure was applied using Nitrogen (N2). The upstream pressure (the pressure in the outlet) was 

adjusted to a value very close to the applied dome pressure (one to one ratio). 

The hydraulic pump, manufactured by Enerpac, was used to exert confining stress on the 

cement core using hydraulic oil.  

3.4 Experimental Program 

The experiments were designed to see the effect of increasing injection pressure on the 

cement fracture. Therefore, injection pressure was the only different parameter. The 600 psi net 

overburden pressure (Pconfining-Pinjection) was maintained in the low and high pressure experiments. 

In Table 3.3, the experimental matrix is shown. Before starting the experiments, the system was 

tested using an unfractured cement core with water flow to see if the set-up provides an 

approximate permeability value (10-18-10-20 m2) for neat class-H cement.  

Table 3.3: Experimental Matrix 

Name Curing  Back P. PConfining POverburden
  Q(ml/min) Duration 

Low P. 180 days-water 0 psi  600 psi ~ 600 psi 2  30 days 

High P. 120 days-water 1,800 psi 2,400 psi ~ 600 psi 2 10 days 
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3.5 Material Characterization Techniques 

Prior to and after the experiments, material characterization techniques were employed to 

gain insight into physical and mineralogical alterations inside the cement internal structure. 

3.5.1 X-Ray Computed Tomography (Low Resolution CT)  

X-Ray computed tomography, also known as CT, is a non-destructive technique62,63 which 

utilizes rotating X-ray source around the sample to build the CT image. It was first used for 

medical applications, but was adapted later for petroleum engineering applications63. CT-

scanning enables a quick determination of the core sections where dissolution/precipitation 

occurred. In fractured core samples, it provides information about the fracture geometry. 

Unreacted and reacted cement cores used in the low and high pressure experiments were scanned 

in Weatherford Laboratories using a Picker PQ5000 4th generation CT-scanner with a spatial 

resolution of 0.25 mm (250 µm) at an energy level 140 keV for quick determination of dissolved 

sections. The cement core was scanned inside the rubber sleeve first but the stainless steel 

pressure taps adversely affected the scanning process. Cement cores were later scanned without 

the rubber sleeve64. X-Ray Computed Tomography was also used to measure the distance 

between the fracture walls prior and post to acidic brine exposure in order to determine the 

widening or closing of the fracture. 

3.5.2 Micro-CT (High Resolution CT) 

Micro-CT is becoming a common tool used for porosity modeling65. The reacted and 

unreacted cement mini-cores (3 mm by 5 mm) were drilled in the Rock Preparation Laboratory 

in the Geology and Geophysics Department at LSU using a drill press. The Center for Advanced 

Microstructures and Devices (CAMD) was utilized and images were taken using 2.5 µm 

resolution and 34 keV monochromatic energy. Imaging the height of 1 mm lasted about 1 hour 
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and sequential heights were reconstructed with 0.5 degree spacing. The resulting files for 1 mm 

height were around ~ 1 GB (giga-byte) and combining images for 5 mm height was ~3.8 GB. 

The large size images were cropped using Avizo sofware in the Visualization Center located in 

Middleton Library, LSU to obtain images in the order of ~1 GB in size that can be handled in 

average computers. 

3.5.3 Mercury Intrusion Porosimetry (MIP) 

In MIP technique, mercury is injected into cement to understand the pore throat size 

distribution35. Cement samples require to be dried prior to MIP analysis to remove surface water. 

The injection pressure is gradually increased to be able to intrude even smaller pore throats with 

a lower limit of 0.001 µm. MIP assumes that all the pores are connected66. Besides its 

disadvantages, it is a quick technique that has been in application for many years; therefore, it 

was employed to see the effect of acidic brine on the pore throat size distribution. 

3.5.4 Environmental Scanning Electron Microscopy (ESEM) 

Portions of unreacted and reacted cement core samples were imaged using ESEM for 

microstructural characterization. ESEM was deployed to further investigate the nature of altered 

zones within the cement at a much finer scale and under low vacuum conditions in order to 

prevent cement dehydration during the analysis. The sections with higher atomic mass appear 

brighter. ESEM images were obtained using EDAX model electron microscope at Chevron ETC, 

Houston. 

3.5.5 Energy Dispersive Spectroscopy (EDS) 

EDS is a spot analysis that can be used while using ESEM. It detects the chemicals that are 

present in section of interest. When it is used on a low magnification image, it also detects 

chemicals surrounding the section of interest. This technique is a powerful tool to detect an 
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increase or reduction in Ca/Si that may be an indication of precipitation and dissolution.  

3.5.6 X-Ray Diffraction (XRD) 

XRD is a bulk analysis technique, used to determine the mineralogical content of a core 

sample, in which the section of interest is powdered and placed inside the X-Ray diffractometer. 

X-rays are emitted and rotated from 2 to 70 degrees at a step of 0.02 degree increments with Cu 

Kα1 (copper) radiation. The X-ray source sends the signal and receives a response. Each mineral 

has a characteristic response. Computer software determines the type of mineral and outputs 

peak versus intensity plots for the minerals present in the core sample. Since XRD can only 

determine crystalline substances, the amorphous materials cannot be identified by XRD. XRD 

analyses were conducted on the control (unreacted) sample and reacted samples in the LSU 

Geology Department using a Siemens Kristalloflex D5000 X-Ray diffractometer.  

3.5.7 Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) 

ICP-OES is a method which was conducted to determine Ca2+ content in the fluid. The 

fundamental characteristic of this process is that each element emits energy at specific 

wavelengths peculiar to its atomic character. By determining which wavelengths are emitted by a 

sample and their intensities, the analyst can determine the elements from the given sample 

relative to a reference standard qualitatively and quantitatively. The samples were analyzed in 

the LSU Department of School of Plant, Environmental and Soil Sciences using a Spectro 

CirosCCD ICP-OES machine. During the experiments, effluent brine samples were monitored for 

pH and collected daily and samples were selected for ICP-OES analysis depending on pH values.  

3.6 Image Based Porosity 

After Micro-CT images were reconstructed and cropped to a smaller size image, the ImageJ67 

(National Institutes of Health, USA) software was utilized to determine the threshold values for 
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the images. Threshold values are selected from a 0-255 scale (8-bit image contains 28 = 256 

colors). Using the Pelican high performance computer at LSU the gray scale images were 

converted into binary images (i.e. solid and void) using an indicator based kriging algorithm68. 

This process assigns zero to void spaces and one to matrix. The output images were then 

processed with ImageJ67 software, and using the histogram tool, the percentage of void spaces 

(ratio of 0`s to the whole image) were obtained. The porosity obtained from Micro-CT gives an 

estimation about the macroporosity depending on the resolution (e.g. volume of the pores larger 

than 10 µm is identifiable when 5 µm resolution is used). 

Figure 3.7 shows cross-sectional schematic of the 12 in cement core and sections prepared 

for the analytical techniques presented above.  Fracture surface was directly in contact with 

acidic brine. Low Resolution CT was conducted on the entire core whereas small regions were 

cut apart for ESEM, Micro-CT and MIP techniques. Pictures of these sections are presented in 

Appendix A. 

 

 

Figure 3.7:  Locations of Samples Prepared for Different Analytical Techniques 
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3.7 Geochemical Analysis 

The alkalinity values were determined using phenolphthalein and methyl orange solutions 

according to standard alkalinity measurement procedure69. This procedure involves adding 0.02 

N H2SO4 (sulfuric acid) to reduce the pH to 8.3 and 4.3. The amount of acid used to reduce the 

pH to 8.3 (known as phenolphthalein end point, pf) and 4.3 (known as methyl orange end point, 

mf) are recorded.  HCO3
- and CO3

-2 concentrations are then calculated in mg/l according to Table 

3.4. As seen from the table, carbonate is not detected when pf is 0 or pH is below 8.3.  

 

Table 3.4: Alkalinity Determination (OFITE Drilling Fluids Manual) 69 

pf = 0 mf x 1,220 = mg/l HCO3
– Bicarbonate only 

pf = mf pf x 340 = mg/l OH– Hydroxide only 

2pf < mf 
2pf x 600 = mg/l CO3

–2 

 

(mf –2pf) x 1,220 = mg/l HCO3
– 

Carbonate  
 

Bicarbonate  

2pf = mf mf x 600 = mg/l CO3
–2 

Carbonate only 
 

2pf > mf 
(2pf – mf) x 340 = mg/l OH– 

 
(mf – pf) x 1,200 = mg/l CO3

–2 

Hydroxide 
 

Carbonate  
 

 

The standard procedure of alkalinity test presented above, was followed and used coupled 

with ICP analysis to decide whether the brine solution was oversaturated or undersaturated with 

calcite. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

This chapter will report and discuss the results obtained from the low and high pressure 

experiments. In order to understand the microstructural alterations caused by the acidic brine, 

unreacted (control) cement cores were compared with reacted cores using analytical techniques 

described in Chapter 3.  

4.1 X-Ray Computed Tomography (Low Resolution CT)  

 As an initial point for microcharacterization, low resolution CT images, shown in Figure 4.1, 

were taken at 8 different locations (8 axial slices) along the 12 in cement core prior to and after 

the low pressure experiment to nondestructively visualize the alterations due to acidic brine 

exposure. The locations of axial slices were the same in the unreacted and the reacted cores as 

they were recorded in the CT scanner`s memory. The light areas around the axial slices are 

caused by the beam hardening effect which is an artifact caused by absorption of X-Rays of 

certain energies prior to penetrating the sample63. The section between slice #1 and slice #2, 

section 1-2, is the outlet section -the last contact point with acidic brine. The section between 

slice #7 and slice #8, section 7-8, is the inlet section which is the first contact point with acidic 

brine. Sections 1-2 and 7-8 were dissected for further microcharacterization. Since X-Ray 

Computed Tomography is sensitive to sample density; regions having higher atomic mass appear 

brighter in CT images, and completely dark areas represent void spaces such as pores or 

fractures. The Ca2+-depleted regions along the fracture walls are indicated by darker color, due to 

their lower atomic mass compared to the other sections within the axial slices.  

Fracture apertures were measured using ImageJ67, before and after exposure to CO2 saturated 

brine, illustrated in Figure 4.2. As observed, Figure 4.2 reveals the dissolution along the fracture 
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walls, indicated with darker color, and widening of the fractures. Measurements were done at the 

center of the slices. Table 4.1 tabulates measured fracture apertures for the low pressure 

experiment. Fracture aperture became 26% wider in slice #1 (outlet) in the reacted cement core 

than in the unreacted cement core under unconfined stress conditions. The widening percentage 

appears to be the largest in slice #2 whereas the smallest increase occurred in slice #3. The 

average of these changes was 24.4 % and the standard deviation was 8.6%. 

a) Unreacted Cement Core (Slices #1 to 6) b) Unreacted Cement Core (Slices #7 to 8) 

c) Reacted Cement (Slices #1 to 6) d) Reacted Cement (Slices #7 to 8) 

Inlet 

Outlet 

Inlet 

Outlet 

Micro-CT 

Figure 4.1: Low Resolution CT Images for Low Pressure Experiment 
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Figure 4.2: Widening of Fracture and Dissolution along the Fracture Walls in Parts b, d, f and h 

for Low Pressure Experiment 
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Table 4.1: Aperture Measurements Using Low Resolution CT for Low Pressure Experiment 

 
 
 
 
 
 
 
 
 
 
 
 
(Fracture aperture indicated with * is low compared to other axial slices probably due to an 
erroneous measurements during CT scanning or an irregular fracture surface.) 
 

Fracture widening was validated with aperture calculations using pressure drop data collected 

during the flow-through experiments. The cubic law (Equation 23, page 29) was used to 

calculate an average fracture aperture along the 12 in cement core. Parameters used to compute 

the fracture aperture, 

Fracture Width	(w) = 0.6	in = 0.05	ft																		Viscosity	(µ) = 0.9	cpଷସ 

Fracture	Length	(L) = 12	in																																			Flow	Rate(Q) = 2	ml/min = 0.018	bbl/day 

Results are shown in Table 4.2. Aperture calculations show that the fracture is widening by 

2.2 µm or ~4% as a result of the 30 day acid brine flow. Fracture aperture decreased in the first 

14 days of the experiment but increased to a larger value than the initial aperture.  

Table 4.2: Aperture Calculations Using Cubic Law for Low Pressure Experiment 

Number of Days Average Pressure Drop  Aperture % Change 
0 (Unreacted) 5.6 psi 57.2 µm - 

1 5.6 psi 57.2 µm 0% 
7 7 psi 53 µm - 7.3% 

14 8 psi 50.8 µm -11.2% 
21 5.2 psi 58.6 µm + 2.45% 
28 4.9 psi 59.6 µm + 4.2% 
30 5 psi 59.4 µm + 4% 

Axial Slice # Aperture,    
unreacted 

Aperture, 
reacted 

% 
Increase 

    1 (outlet) 0.71 mm      0.90 mm     26 % 
   2*  0.59 mm*      0.81 mm     35 % 

         3 0.97 mm      1.06 mm      9 % 
   4 1.15 mm      1.34 mm     16 % 

         5 1.05 mm      1.35 mm     28 % 
         6 0.85 mm      1.04 mm     21 % 
         7 0.72 mm      0.91 mm     26 % 
     8 (inlet) 0.79 mm      1.04 mm     31 % 
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Low resolution CT was not carried out for the high pressure experiment due to experimental 

problems. Therefore, identification of the samples was not possible for inlet and outlet sections. 

The samples analyzed from the high pressure experiment will be designated as reacted samples 

in the following sections. 

4.2 Micro-CT (High Resolution CT) and Image Based Porosity 

After scanning the 12 in core using low resolution CT, higher resolution analysis was 

conducted to evaluate alterations on a finer scale. The Micro-CT analytical tool is widely used 

for image based porosity characterization. In this study regions identified with low resolution CT 

images were used to determine locations where mini-cores were extracted for Micro-CT. The 

outlet region of the core in the low pressure experiment was selected for Micro-CT analyses.  

4.2.1 Low Pressure Experiment 

The mini-core for Micro-CT (3 mm by 5 mm) was drilled from the fracture surface into the 

core in the outlet section (indicated in Figure 4.1 and Figure 4.2). Micro-CT images were 

obtained at 2.5 m resolution. The 5 mm height of the mini-core, extracted from the reacted 

outlet section was imaged. Micro-CT image of the unreacted (control) sample is shown in Figure 

4.3 and porosity was found to be 0.25 % (Table 4.3) using a threshold value of 141. Figure 4.4 

depicts the density change in the z-direction from fracture surface to the inner part of the core 

indicated with darker/brighter coloration. The transition zone from region I (fracture surface) to 

region II (inner part of the core) is identified and cross-sections are shown in Figure 4.5. Two 

subvolumes were extracted from the image volume—one in region I and one in region II. Once 

the two phases were identified (void and matrix) using simple thresholding with ImageJ67, the 

porosity was calculated by calculating the volume fraction of the void phase. Threshold values 

used for Region I and Region II were 109 and 90 respectively. Porosity values were then found 
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to be 1.39 % and 0.45 % for subvolumes cropped from regions I and II, respectively for pores 

larger than 5 µm (Table 4.3). Porosity, defined as the volume fraction of void space that contains 

pores on the order of 5 µm or larger for image based porosity, seemed to increase in region I (the 

region in contact with acidic brine).  

 

                                                 

Figure 4.3: Micro-CT Image (axial slice #178) of Unreacted Core for Low Pressure Experiment 
 

 

 

 

Figure 4.4: Cross-sectional View of Micro-CT Image (2.24 ×2.25 × 2.01 mm3) along the Length 
of Mini-core for Low Pressure Experiment (outlet section)  

 
 

I 

II 

Fracture Surface 

Inner Part of the core 

X Y 

Z 

~ 3 mm 
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Figure 4.5: Micro-CT Image (axial slices) of Reacted Cores for Low Pressure Experiment (outlet 

section) 
 
 
 

 
Table 4.3: Image Based Porosity for Low Pressure Experiment (outlet section) 

 

 

 

 

4.2.2 High Pressure Experiment 

The resolution of 2.5 µm was also used to image mini-core for the high pressure experiment. 

Porosity was found to be 0.36% for the unreacted (control) sample, illustrated in Figure 4.6, 

using a threshold value of 140. A three mm height of reacted sample was imaged (Figure 4.7). 

Figure 4.8 shows similar brightness values, indicating a slight difference in the density in the 

high pressure experiment, across z-direction. There was no apparent transition observed from 

region I to II as opposed to the low pressure experiment.  Porosity values were calculated for 

region I and II by utilizing the same procedure used for the low pressure experiment. Threshold 

values used for Region I and Region II were 120 and 134 respectively. Results of imaged based 

a) Slice #217, Region II b) Slice #352, Region II &I c) Slice #501, Region I 

Unreacted-Low Pressure Reacted-Low Pressure 
Porosity Porosity-Region I Porosity-Region II 
0.25 % 1.39 % 0.45 % 

II I II I 
~ 3 mm 
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porosity analysis are shown in Table 4.4. The high pressure experiment resulted in a smaller 

porosity increase when compared to the low pressure experiment.  

 
 

 

Figure 4.6: Micro-CT Image (axial slice #254) of Unreacted Core for High Pressure Experiment 
 

 

 

 

 

 

 

 

 
 
 
 

 
Figure 4.7: Cross-sectional View of Micro-CT Image (2.45 × 2.45 ×3.2 mm3) along the Length 

of Mini-core for High Pressure Experiment  
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Figure 4.8: Micro-CT Image (axial slices) of Reacted Core for High Pressure Experiment 

 
      

      

Table 4.4: Image Based Porosity for High Pressure Experiment  
 
 

 

 

 

When Figures 4.4 and 4.5 are compared with Figures 4.7 and 4.8, it can be observed that 

change in porosity was more evident in the low pressure experiment because of the distinct 

change in brightness with exposure to acidic brine. 

4.3 Mercury Intrusion Porosimetry (MIP) 

MIP raw data includes incremental intrusion (ml/g), cumulative intrusion (ml/g), capillary 

pressure (psi) and pore throat sizes (µm) in a tabulated format. Porosity (percent of sample 

volume) values were calculated for each pore throat size by dividing incremental intrusion values 

to the cumulative intrusion values. The summation of porosity values results in total (global) 

porosity.  

  
a) Slice #275, Region I b) Slice #925, Region II 

Unreacted-High Pressure Reacted-High Pressure 

Porosity Porosity-Region I Porosity-Region II 
0.36 % 0.45 % 0.41 % 

I 
~ 3 mm 

II 
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4.3.1 Low Pressure Experiment 

MIP standard provided the pore throat size distribution ranging from 0.0018-70 µm. This 

wide range of pore throats was further divided into four sub-intervals: 0.0018-0.1 µm, 0.1-0.5 

µm, 0.5-5 µm and 5-70 µm as shown in Figures 4.9 to 4.12. The control sample is represented by 

Unreacted LP. Inlet and outlet sections of the cement core are denoted by Reacted LP_7-8 and 

Reacted LP_1-2 respectively. Porosity values were plotted against pore throat sizes. 

 

Figure 4.9 suggests a reduction in the porosity between 0.01 µm and 0.04 µm (indicated with 

a circle) with acidic brine exposure. The porosity reduction is more pronounced in Reacted 

LP_1-2 (outlet) sample than Reacted LP_7-8 (inlet) sample. There is no change in porosity 

below 0.01 µm (10 nm).  

 

`  
 

Figure 4.9: Pore Throat Size Distribution between 0.0018 µm and 0.1 µm for Low Pressure 
Experiment  
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Figure 4.10: Pore Throat Size Distribution between 0.1 µm and 0.5 µm for Low Pressure 
Experiment 

 

Pore throats between 0.1 µm and 0.5 µm are analyzed in Figure 4.10. Porosity was reduced 

with the acidic brine exposure. It is also observed that there were no pore throats between 0.1 µm 

and 0.5 µm in the Reacted LP_7-8 (inlet) sample. The Unreacted LP (control) sample had higher 

porosity than the Reacted LP_1-2 (outlet) sample except the pore throat size of 0.14 µm in which 

their porosity values are very similar. 

` 
Figure 4.11 shows the pore throat size distribution between 0.5 µm and 5 µm. For 3 µm pore 

throat size, the porosity was highest in the Unreacted LP (control) sample. The reacted LP_7-8 

(inlet) sample had higher porosity than the Reacted LP_1-2 (outlet) sample. Interestingly, at a 

pore throat size of 3.55 µm, the Reacted LP_1-2 (inlet) sample had higher porosity than the 

Unreacted LP (control) and the Reacted LP_7-8 (outlet) samples. The porosity values were 

nearly identical around 4.5 µm. 
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Figure 4.11: Pore Throat Size Distribution between 0.5 µm and 5 µm for Low Pressure 
Experiment 

 
 

The pore throat size distribution of the 5-70 µm sub-interval is illustrated in Figure 4.12. MIP 

analysis suggested that there were no pore throats larger than 62 µm. The largest measured pore 

throat was 62 µm. There was an increase in the porosity between 32 µm and 62 µm which is 

easily distinguishable from the dotted region for the Reacted LP_1-2 (outlet) sample.  

 

Figure 4.13 presents the pore throat size distribution between 0.0018 µm and 70 µm. The 

reduction in total porosity can be recognized from the dotted region where Unreacted LP 

(control) sample has the highest porosity. Smallest pore throats (0.0018 µm -0.1 µm) showed a 

reduction in porosity. Pore throats larger than 0.1 µm did not show a distinct separation between 

the control and reacted samples. 
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Figure 4.12: Pore Throat Size Distribution between 5 µm and 70 µm for Low Pressure 

Experiment 
 
 

 
Figure 4.13: Pore Throat Size Distribution for Low Pressure Experiment between 0.0018 µm and 

70 µm 
 

4.3.2 High Pressure Experiment 

Figure 4.14 shows that porosity diminished as a result of the high pressure experiment in the 
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associated with the pore throats smaller than 0.005 µm has reduced more therefore, overall 

porosity decreased in this sub-interval.  

 

 

Figure 4.14: Pore Throat Size Distribution between 0.0018 µm and 0.1 µm for High Pressure 
Experiment 

 
 
 

There was an obvious increase in porosity in the 0.1-0.5 µm sub-interval due to acidic brine 

exposure as shown in Figure 4.15. There were no pore throats, between 0.14 µm and 0.47 µm, 

present in the unreacted cement core. A pore range that was not observed in unreacted (control) 

sample seems to have developed.  

Figure 4.16 presents pore throats between 0.5 µm and 5 µm. New pore throats became 

accessible to mercury and the trend of development of pore throats continued until 0.92 µm. 

There were no pore throats present in the unreacted (control) or reacted samples between 0.92 

µm and 2.6 µm. Overall, porosity increased in this range. 
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Figure 4.15: Pore Throat Size Distribution between 0.1 µm and 0.5 µm for High Pressure 

Experiment 
 

 

Figure 4.16: Pore Throat Size Distribution between 0.5 µm and 5 µm for High Pressure 
Experiment 

 
The largest pore throats (5-70 µm) measured by MIP show a reduction in porosity as 

presented in Figure 4.17. The overall reduction in porosity was caused by a porosity decrease 
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Figure 4.17: Pore Throat Size Distribution between 5 µm and 70 µm for High Pressure 
Experiment 

 

 

Figure 4.18: Pore Throat Size Distribution between 0.0018 µm and 70 µm for High Pressure 
Experiment 
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always show porosity reduction between 0.002 µm and 0.04 µm. Instead, porosity increased 

between 0.005-0.01 µm at 0.04 µm. There is also a noticeable increase between 0.1 µm and 1 

µm.  Contribution of pore throats between 0.0018 µm and 0.1 µm to total porosity is very high 

(above 90%) compared to contribution from pore throats larger than 0.1 µm in the low and high 

pressure experiments. All the porosity changes in sub-intervals are tabulated in Table 4.5. 

Here, pores having pore throats smaller than 5 µm are referred to as micropores while pore 

pores having pore throats equal to or larger than 5 µm are considered macropores. Total porosity 

is the sum of microporosity and macroporosity. Total porosity decreased from ~26% to ~20% in 

the low pressure experiment. Microporosity decreased in the low pressure experiment and 

slightly increased as a result of the high pressure experiment. Macroporosity decreased in the 

Reacted LP_7-8 (inlet) sample and increased in the Reacted LP_1-2 (outlet) sample. The high 

pressure experiment resulted in the reduction in macroporosity. As opposed to the low pressure 

experiment, the high pressure experiment resulted in a slight (1.8%) total porosity increase. 

 

Table 4.5: Summary of Pore Throat Size Distribution for Low and High Pressure  
Experiments 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Pore throat size 

Sub-Interval 

Unreacted  

LP 

(Control) 

Reacted 

 LP_7-8 

(Inlet) 

Reacted  

LP_1-2 

(Outlet) 

Unreacted 

HP 

(Control) 

Reacted 

HP 

0.0018-0.1µm 24.51 % 19.79 % 18.95 % 20.64 % 19.78 % 

0.1-0.5 µm 0.95 % 0 % 0.53 % 0.058% 0.947 % 

0.5-5 µm 0.27 % 0.22 % 0.198 % 0.1548 % 0.557 % 

5-70 µm 0.58 % 0.49 % 0.748 % 0.387 % 0.35 % 

Total Porosity 26.31 % 20.5 % 20.426 % 21.24 % 21.63 % 
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4.4 Environmental Scanning Electron Microscopy (ESEM) Coupled with Energy  
      Dispersive Spectroscopy (EDS) 
 

Microstructural characterization provides spatial distrubution of different mineral phases 

before and after the flow-through experiments. EDS analysis is routinely applied to provide 

chemical elemental identification of microstructural features. ESEM analyses are presented in 

order to understand the microstructural alterations causing porosity changes in reacted cement 

cores. These images also provide insight into dissolution and precipitation reactions which occur 

during acidic brine exposure. The ratio of Calcium to Silicon (Ca/Si), determined by EDS 

analysis, is an aid in determining influx of Ca2+. When Ca+2 rich minerals precipitate in the 

cement matrix, spot analysis of that region will show increased Ca/Si ratios. Figure 4.19 

compares the unreacted and reacted cement cores for an inlet section in the low pressure 

experiment. Figure 4.19-b reveals calcite deposition within cement matrix and remaining 

Portlandite minerals indicated with arrows. Ca/Si is 5.64 for the unreacted cement core, shown in 

Figure 4.19-a. Reacted core has a Ca/Si of ~30 (Figure 4.19-b). 

 
Figure 4.19: ESEM Images of Unreacted and Reacted Cement Cores for Low Pressure 

Experiment (inlet section) 
 

 

  
a) Unreacted core, dense cement matrix b) Reacted core showing calcite precipitation 

Portlandite Calcite 
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Element  Wt %  At % 

 O K 42.14 62.65 

 SiK 10.81 09.16 

 ClK 00.84 00.56 

 CaK 39.24 23.29 

 FeK 03.87 01.65 

a) Fracture–top view                            b) EDS analysis of the spotted region 

  

Element  Wt %  At % 

 C K 02.18 04.41 

 O K 37.86 57.53 

 SiK 04.06 03.51 

 ClK 02.25 01.54 

 CaK 51.87 31.47 

c) Calcite Deposition Inside Fracture d) EDS data verifies calcite deposition  

 

Element  Wt %  At % 

 C K 02.98 05.50 

 O K 48.20 66.85 

 SiK 01.56 01.24 

 S K 00.26 00.18 

 CaK 45.65 25.27 

e) 400x magnification of fracture f) EDS analysis of Ca2+ rich deposits 
 

Figure 4.20: ESEM Images of Fracture Wall for Low Pressure Experiment (outlet section) 

B 
A  

B 

I 

II 
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Figure 4.20 shows the top view of the fracture in 24x, 100x and 400x magnifications for an 

outlet section in the low pressure experiment. Deposits inside the fracture, denoted with A and B, 

are shown in Figure 4.20-a, c and e. 

Also Ca/Si ratios can be calculated from the EDS analyzes (weight percentages are given in 

K count) for selected regions. For the region II shown in Figure 4.20-a, Ca/Si ratio was 3.62 

which indicates leaching of Ca2+ from that region, when it is compared to the unreacted sample 

which has a Ca/Si of 5.64. For structures A and B in the Figures 4.20-c and e, Ca/Si increased to 

~13 for structure A and ~30 for structure B. This suggests that Ca2+ leached from the cement 

matrix and deposited in the form of calcite inside the fracture. The structures are considered to be 

CaCO3 due to both the crystal shape and the EDS analysis which suggests the co-existence of 

Ca2+, C4+ and O-2. 

 
Figure 4.21: ESEM Image of Fracture Surface Shown with EDS analysis for Low Pressure 

Experiment (inlet section)  
 

Figure 4.21 shows the fracture surface of the outlet section of the cement core. The fracture 

surface was exposed directly to the acidic brine therefore, most structural changes would be 

 

Element  Wt %  At % 

 C K 04.13 07.42 

 O K 50.27 67.81 

 SiK 02.38 01.83 

 CaK 41.02 22.09 

 FeK 02.21 00.85 

 

a) Calcite precipitation on fracture surface b) EDS data for region I  

I 
II 

III 
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expected in this region. There are 3 regions that are visibly different as shown in Figure 4.21-a. 

The Ca/Si ratio for regions I and III are ~17 and ~9 (Appendix C) respectively. There was no 

measurement done in region II but  EDS analyses of regions I and III suggest a gradual Ca/Si 

ratio reduction from region I to III. Figure 4.21-b also shows the existence of Fe3+ which is likely 

coming from an unhydrated Ferrite component of the Portland cement.  

  

Figure 4.22 is a high magnification image of Portlandite-Ca(OH)2 (EDS data shows 40% 

calcium and 47% oxygen-Appendix C) minerals surrounded by calcite minerals in the inlet 

section of the core for the low pressure experiment.  

 

Figure 4.22: High Magnification ESEM Images for Low Pressure Experiment (inlet section) 

 

Low magnification ESEM images of the unreacted and reacted cores for the high pressure 

experiment are shown in Figure 4.23. The cement core is not significantly altered with acidic 

brine exposure since unreacted and reacted cement cores have visibly similar matrixes. 

Figure 4.24 presents higher magnification images of the reacted cores for the high pressure 

experiment. Figure 4.24-a is an 800x magnification image of the reacted sample. Calcite 

  
a)  Portlandite and calcite minerals b)  Closer look at the Portlandite 

Portlandite 
(Ca(OH)2) 

Calcite 
(Ca(CO3)) 
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minerals are deposited in the middle (region II) in the forms of cubes. Region I and III are 

primarily composed of C-S-H, which appears like needles, but Region III appears denser than 

Region I. Region II has Ca/Si of ~10, suggesting the existence of Ca2+-rich minerals; Region I 

has a Ca/Si ratio of 3.7, which is close to the Ca/Si of 4.94 for the unreacted cement core 

showing it was significantly altered. 

 
 

 

Figure 4.23: Low Magnification ESEM Images for High Pressure Experiment 

 
 

 

 

 

 

 

 

Figure 4.24: High Magnification ESEM Images of Reacted Samples for High Pressure 
Experiment 

 

  
a) Unreacted cement core b) Reacted cement core 

  
a) 800x b) Calcite precipitation, 3000x 

I 
II 

III 
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4.5 X-Ray Diffraction (XRD) 

XRD analyses were conducted to complement the results which were presented related to 

fracture aperture change, porosity and microstructural alterations, in terms of mineralogy. 

Reference Intensity Ratios (RIR) were required to compute the weight percentages of the 

minerals, and they were not integrated into the computer software used in XRD. Therefore 

quantification of weight percentages of minerals could not be achieved. Although there was no 

weight percentage data for experiments, the reduction or increase in the amount of the mineral 

phases can be identified from the peak ratios of relevant phase diffractograms, for example 

Portlandite peaks before and after the flow-through experiments. 

In this study, flow was achieved through a controlled fracture therefore, cement/fluid 

interaction  is expected to be highest at the fracture wall. XRD is a bulk technique that requires 

powdering a sample and analyzing it as an average of the amount of minerals present in the 

sample. Averaging minerals may lead to misunderstanding of the minerals in the region of 

interest. In order to avoid this, XRD analyzes were conducted on the sections which were cut 

directly from fracture surfaces so that actual alteration can be identified. Portlandite (marked 

with P) has a main peak at around 34 degrees and calcite (marked with CC) has a main peak at 

29 degrees. Both minerals have other minor peaks presented below. 

Figure 4.25 presents 2-theta versus intensity plot for XRD analyzes for low and high pressure 

experiments. It depicts that Portlandite mineral was totally dissolved and calcite amount 

increased to approximately 5 times of its original value as a result of cement/fluid interaction. 

The high pressure experiment resulted in similar mineral characteristic alterations with the low 

pressure experiment, as identified from the peaks 

 



68 

` 

.                          

 

  

 

 
 

Figure 4.25: XRD Plot Showing Mineralogical Alterations for Low and High Pressure 
Experiments (CC and P represent Calcite and Portlandite respectively) 
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4.6 Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) 

Analyzing unreacted and reacted cement cores using several material characterization 

techniques provides insight into alterations in the cement internal structure, the changes that 

occurred in the solid specimen needed to be verified with changes in the fluid component of the 

cement/brine system. Acidic brine was flowed through the controlled fracture, and it interacted 

with the cement fracture surface. Hence, brine chemical analysis can contribute to our 

understanding of the dissolution and precipitation processes. CO2 saturated brine samples, both 

influent and effluent, were evaluated by measuring pH, ICP analysis and carbonate/bicarbonate 

concentrations. ICP analysis of effluent brine samples and experimentally determined alkalinity 

values are provided in Table 4.6 for the low pressure experiment. Carbonate ions were not 

detected in the first 4 effluent brine samples due to pH being lower than 8.3 (Table 3.4)69. When 

calcium leached out of the cement matrix as a result of the acidic brine attack the concentration 

of Ca2+ in the effluent brine increased. Saturation index (SI) calculations were carried out in 

order to decide whether the brine solution was oversaturated or undersaturated in terms of 

calcite.  

Table 4.6: Alkalinity Measurements for Low Pressure Experiment 
 

#Days Ca2+  
(mg/l) 

Influent 
pH 

Effluent 
pH mf pf 

HCO3
-

(mg/l) 
CO3

-2 

(mg/l) 
OH-

(mg/l) 
Control  0.48 4.9 - 0.22 0 134.2 0 0 

1 39.40 5.2 5.9 0.56 0 341.6 0 0 
6 16.65 5.2 6.9 0.23 0 140.3 0 0 

12 14.83 5 6.8 0.12 0 73.2 0 0 
15 12.69 5.1 9.5 0.42 0.11 122 66 0 
18 18.05 4.9 10.2 0.17 0.06 30.5 36 0 
21 11.55 4.9 9.6 0.22 0.01 122 6 0 
24 11.51 5 9.3 0.15 0.02 67.1 12 0 
30 20.05 4.9 10.1 0.25 0.13 0 72 1.7 
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An example calculation for the effluent sample taken after 24 days of experiment is shown 

below. Na+ (0.3455 m), K+ (0.0046 m) and Cl- (0.3502 m) co-exist in our system and ionic 

strength calculations were computed based on these species. 

Activity coefficient calculations: 

Ionic	Strength = 0.5	(0.3455 + 0.0046 + 0.3502) 	= 	0.35	m																				 

logγେୟశమ =
(−0.5091	× (2)ଶ 	× 	0.351/2	)

1 + ଴.ଷହଵ
ଶ

+ (0.10182 × (2)ଶ × 0.35	)		 

γେୟశమ 	= 	0.243													γୌେ୓యష = 	0.702																	γେ୓యషమ 	= 	0.243																																																								 

Activity calculations: 

aେୟశమ = γେୟశమ 	× 	molality	(mol/kg) 

Molality (m) values for ions are obtained by dividing their concentrations (given in mg/l) to their 

molecular weights. 

Saturation Index calculations for the sample collected after 24 days; 

Activity of Calcium can be computed as, 

aେୟశమ = 11.51 ÷ 40 ÷ 1000	× 	0.243 = 6.99E − 05	(Molecular	Weight	of	Caାଶ = 40	g/mol) 

Activity of Carbonate is found to be, 

aେ୓యషమ = 12 ÷ 60 ÷ 1000 × 	0.243	 = 4.86E− 05	(Molecular	Weight	of	COଷ
ିଶ 	= 60	g/mol) 

Ion Activity Product (IAP) can be calculated by multiplying activities of Ca2+ and CO3
-2. 

IAP = aେୟାଶ 	× 	aେ୓యషమ 	= 	3.39E− 9 

Saturation	Index	(SI) = 	log	(IAP)	– 	log	൫Kୱ୮൯ = log	(3.39E− 9)− log	(10− 8.48) 	= 0.011 

(Equlibrium	constant	is	known	at	atmospheric	conditions, Kୱ୮ = 10ି଼.ସ଼	)ଶଽ	 

 



71 

` 

Since SI is positive, calcite is slightly oversaturated in the sample collected after 24 days. 

Hence, calcite should be precipitating in cement at that time.  

As shown in Table 4.7, saturation indices were positive except for the effluent sample 

collected after 21 days of experiment. When the pH of the sample is below 8.3, carbonate 

concentration is 0 according to OFITE Drilling Fluids Manual69 because carbonate concentration 

is very small that it cannot be detected with alkalinity test. Hence, carbonate concentrations in 

the first four data points (Table 4.6) are 0. Even though no carbonate ions were measured for 

these data points using alkalinity test, carbonate concentration can still be calculated using 

measured bicarbonate concentrations from Equation 10, page 18. Carbonate concentrations and 

saturation indices were computed for these points. Saturation indices were plotted against time in 

Figure 4.26. As Figure 4.26 illustrates, initial brine composition was highly undersaturated with 

calcite and effluent brine samples were becoming oversaturated in the second half of the 

experiment. The trend of being oversaturated with calcite implies that calcite was precipitating 

on the cement matrix. 

Table 4.7: Saturation Indices for Low Pressure Experiment 

#Days Ion Activity Product Saturation Index 

Control 1.05E-14 -5.49, undersaturated 

1 3.48E-11 -1.97, undersaturated 

6 6.06E-11 -1.73, undersaturated 

12 2.23E-11 -2.16, undersaturated 

15 2.06E-8 0.79, oversaturated 

18 1.59E-08 0.68, oversaturated 

21 1.7E-09 -0.28, undersaturated 

24 3.39E-09 0.011, oversaturated 

30 3.55E-08 1.03, oversaturated 
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Figure 4.26: Saturation Indices for Low Pressure Experiment 

The degree of oversaturation/undersaturation with calcite is strongly dependent on the pH of 

the analyzed brine sample. Since CO3
-2 does not virtually exist at pH values lower than 8.3, 

which is also shown in Figure 2.5 (page 19), it is impossible to obtain an oversaturated solution 

because IAP is very low resulting in negative SI values. In samples having pH values higher than 

8.3, as samples presented in Table 4.7 (except sample collected after 21 days), carbonate 

concentration is high leading to high IAP and positive SI values. Hence, brine samples became 

oversaturated. 

4.7 Discussion of Results 

4.7.1 Dissolution and Precipitation Reactions 

When solutions with different pH values come into contact with each other, they tend to 

equilibrate by exchanging the H+ and OH- ions. In this study, acidic brine which had a low pH, 

was flowed through a controlled fracture within a core. As previously stated, the cement pore 

solution is highly alkaline (pH ~13) and the acidic brine used in this study had pH values from 
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4.9 to 5.2. The high alkalinity property of the cement pore solution is provided by the abundance 

of Na+, K+, and OH- ions in the pore solution. At the same time, the high pH environment 

provided favorable conditions for Portlandite (Ca(OH)2) crystal growth. This incompatibility 

between two different systems resulted in leaching of OH-  from the pores. Portlandite (Ca(OH)2) 

starts to dissolve in order to provide a new supply of OH- ions to the environment to help the 

system come into equlibrium. Calcium in solution from the dissolution of Portlandite combine 

with CO3
-2 ions and precipitate as calcite (CaCO3). Our results show that precipitation of calcite 

occurrs in preferential locations on the fracture surface, especially within the dissolved regions 

where reaction provided new free volume as shown in ESEM images (Figure 4.21). However, 

conversion from Portlandite to CaCO3 is a volume reducing reaction37 resulting in a decreased 

volume of dark areas (reduction in porosity), shown in Figure 4.24. Carbonation also resulted in 

having a Ca/Si of 12 and 45 (Figure 4.20-d&f) from the unreacted sample having Ca/Si of 5.64 

as presented in ESEM images (Figure 4.19-a). As described before, fracture surfaces are directly 

in contact with the acidic brine so dissolution is expected in these regions. This showed that 

precipitation took place where dissolution reactions occur. This indicates that dissolved regions 

are preferential regions for carbonation. ESEM image (Figure 4.24) showing calcite precipitation 

inside pores are in agreement with field study results presented by Carey et al.51. 

Calcium which was not converted into calcite was detected in the effluent brine samples for  

the low pressure experiment. Further geochemical calculations indicated that samples were 

oversaturated with calcite. That clearly shows the occurrence of precipitation while leaching of 

Ca2+ takes place. One of the brine samples was slightly undersaturated (SI= -0.28) but in overall, 

samples were oversaturated with calcite. Figure 4.26 clearly shows the transition from being 

undersaturated to oversaturated. 
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Figure 4.27 summarizes the chemical processes taking place on the fracture surface upon 

contact with acidic brine resulting in the widening of the fracture. XRD data revealed that calcite 

precipitated during the low and high  pressure experiments as shown in Figure 4.25. 

 

 

 

 

 

 

 

 

Figure 4.27: Summary of Chemical Reactions Occurring around Fracture Wall with Acidic Brine 
Exposure 

  

It should be noted that since XRD is a bulk analysis technique, averaging of the mineral 
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reliable results than powdering the samples. Wigand et al.50 reported depletion of Portlandite and 

calcite precipitation after supercritical CO2 exposure which agrees with our observations shown 

in Figure 4.25.  
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using ImageJ67 at similar locations (Figure 4.2) showed widening of the fracture 20% to 50%. 

Slice #8 showed a higher percent of widening (34%) than slice #1 (18%) probably due to being 

the first contact point with acidic brine and having more severe reactions. The widening of the 

fracture was supported with the cubic law calculations done using pressure drop measurements.     

Calculated apertures showed fluctuations due to dissolution and precipitation reactions with time 

but the final calculated fracture aperture was larger than the initial value indicating widening of 

the fracture. The increase in the calculated fracture aperture is small compared to the 

measurements from the low resolution CT images.  This can be explained with the difference in 

measurement techniques; aperture calculations were carried out under confined stress conditions 

and CT images were obtained under unconfined conditions. Confined stress conditions tend to 

minimize the widening of the cement fracture. The widening of the fracture and precipitation of 

calcite (Figure 4.20) inside the fracture were also observed by Wigand et al.50.  

Possible reaction scenarios between a cement fracture and acidic brine in the field may result 

in fracture widening smaller than the widening observed in this experiment due to the higher 

confinement stress. This is contradicting with the Huerta et al.47 study where they conclude that 

fractures may close under the loading stress cycles because their experiments are more 

applicable to injection wells during injection. In a possible injection scenario loading cycles may 

result in closing the fracture but dynamic alteration on the fracture surface tend to increase the 

fracture aperture. Moreover, after the injection ceases and there are no more loading cycles, 

dynamic alteration still contribute to the widening of the fracture. 

4.7.3 Porosity Alteration 

Dissolution (leaching) and precipitation (carbonation) have opposite effects on porosity; 

carbonation in confined space reduces porosity whereas leaching increases the porosity38. 
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Carbonation37, the conversion of Portlandite into calcite, as reported in the literature results in 

losing some of the void space since Portlandite (33.1 cc/mol) occupies less volume than calcite 

(36.9 cc/mol).  

 
During the low pressure experiment precipitation reactions dominantly took place resulting 

in the reduction of total porosity from 26% to 20% (~23% reduction). Figure 4.28 shows the 

cumulative intrusion curve which indicates porosity reduction and cumulative intrusion values 

plotted against capillary pressures for the low pressure experiment. Capillary resistance increased 

indicating a higher pressure differential needed to reach same pore throats in the reacted samples. 

For capillary pressures lower than 2,000 psia cumulative intrusion was larger in the Reacted 

LP_1-2 sample (outlet) than the Reacted LP_7-8 sample (inlet), probably due to more severe 

dissolution and precipitation reactions taking place in the inlet section. In capillary pressures 

higher than 2,000 psia cumulative intrusion values of inlet and outlet sections appeared to follow 

similar trends. This suggests that with a pressure differential lower than 2,000 psia fluid can 

access more space in the outlet section. In higher capillary pressures a fluid can intrude the same 

amount of space in inlet and outlet sections. In the low pressure experiment, four sub-intervals 

were identified: 0.0018-0.1 µm, 0.1-0.5 µm, 0.5-5 µm and 5-70 µm. Pore throats smaller than 5 

µm constituted more than 90% of the total porosity.  The porosity associated with the lowest 

pore throat size range (0.0018-0.1 µm) was reduced. Porosity associated with the largest pore 

throats increased for the outlet section of the cement core, confirmed by MIP and image based 

porosity using Micro-CT images which were also in agreement with results reported by Bishop 

et al.70. Calcite precipitation blockage caused the porosity reduction. Leaching took place in large 

pore throats (5-70 µm) which resulted in an increase in the porosity in the outlet section. An 
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opposite behavior was observed in the inlet section of the cement core which can be due to the 

continuous contact of fresh acidic brine (rich in CO2) having a low pH with cement. This contact 

resulted in a carbonation dominant reaction which decreased total porosity. 

 
Pore throats smaller than 0.01 µm are not involved in the leaching process of Ca2+, therefore 

this is not the primary concern for cement degradation process. As more Portlandite leaches from 

the cement matrix the void space becomes larger. This reflects into the volume of the larger pore 

throats between 5-70 µm which is important as large pore throats become accessible at lower 

pressures.  

 
The high pressure experiment resulted in a slight increase (1.8%) in total porosity from 

21.26% to 21.64%. The cumulative intrusion curve for the high pressure experiment is shown in 

Figure 4.29. Capillary resistance was increased with acidic brine exposure in this experiment. 

Separation between cumulative intrusion curves around 1,000 psi is more distinct suggesting that 

larger pore throats are more affected by leaching than smaller ones. The short duration of this 

experiment possibly played a role in the increase of the porosity due to leaching. Large pore 

throats (5-70 µm) decreased in this experiment but it may be more reasonable to say they did not 

change because MIP measurements may not be very accurate. Micro-CT suggested that 

macroporosity remained at a value close to the unreacted sample. It does not completely agree 

with MIP measurements but it suggests that less alteration took place than the low pressure 

experiments. Also, the two measurements are different, as MIP is more like a bulk analysis 

whereas Micro-CT is a more localized analysis.    
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Figure 4.28: Cumulative Intrusion Curve for Low Pressure Experiment 

 

 

Figure 4.29: Cumulative Intrusion Curve for High Pressure Experiment 
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4.7.4 Effect of Time 

Time appears to be the main factor when deciding on the dominant mechanism during the 

reactions. Differences observed in low and high pressure experiments show the effect of time.  

Thirty days were sufficient for the carbonation to be the dominant reaction, whereas, 10 days 

was not enough for the carbonation mechanism to be dominant over leaching as implied by the 

change in porosity. 

Quantitative XRD analysis is presented in Table 4.8. It revealed complete consumption of 

Portlandite and precipitation of calcite. Initial amounts of Portlandite were converted into calcite, 

silicate phases and some of them were carried out with the acidic brine solution.  When 

Portlandite is totally consumed calcite will be dissolved (Equation 19, page 20). The preliminary 

study showed that 8 weeks of exposure was not even sufficient to start calcite consumption. It 

should be noted that as dissolution occurs, hydration of cement continues as inferred from 

increasing amount of Calcium Silicate (C-S-H). 

The preliminary study was conducted in spring 2009 semester for 8 weeks. In the first 4 

weeks, acidic brine was flowed at a rate of 1.65 ml/min. The flow rate was increased to 1 ml/min 

in the second 4 weeks. Acidic brine was flowed through an artificial fracture in the center of 1 in 

by 2 in core under unconfined stress conditions. Micro-CT images, shown in Figure 4.30, 

showed one fold porosity increase in pores greater than 10 µm from Region I to Region III. 

Region I has no porosity. Region III, which was directly exposed to acidic brine, had 2% of 

porosity which is larger than the value calculated for the low and high pressure experiments 

(0.47% and 0.2% respectively). Consequently, observations show that macro porosity tends to 

increase with the duration of the experiment.  
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Table 4.8: Quantitative XRD Analysis for Preliminary Study (Spring 2009) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.30: Micro-CT Image of 1 in by 2 in Core from Preliminary Study (Spring 2009) 

 

 

 

 

Sample Identity Calcite 
(weight %) 

Portlandite 
(weight %) 

Calcium Silicate 
(weight %) 

Control cement (unreacted) 4 87 6 
After 4 weeks of 1.65 ml/day 2 88 8 
After 8 weeks of 1.65 ml/day 12 63 12 
After 4 weeks of 1.65 ml/day 

plus 4 weeks of 1 ml/min 59 3 22 

I 
II 

III 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Summary of Findings and Conclusions 

Two sets of experiments were conducted in order to study the effect of CO2 saturated brine 

on cement fractures to mimic the fractured wellbore cement sheath exposed to flowing acidic 

brine. A low pressure experiment was carried out for 30 days whereas a high pressure 

experiment was terminated after 10 days due to experimental problems. The first objective was 

to determine the change in the fracture aperture and the second objective was to evaluate the 

alterations in porosity of the reacted cement.  

Fracture widening was determined from both CT images and pressure drop calculations 

suggesting microfractures inside the wellbore cement sheath will constitute a risk for safe and 

long-term CO2 containment in the subsurface. 

The low pressure experiment resulted in a lower total porosity as a result of carbonation 

dominant reactions. The high pressure experiment caused a slight increase in the porosity due to 

short duration of the experiment. These experiments confirmed that leaching and carbonation 

take place simultaneously. Leaching appears to be the driving force for the carbonation reaction 

as it initially takes place when cement is exposed to an acidic fluid. It is proven that Micro-CT 

enables similar porosity estimation for macropores and serves as a confirmation tool for MIP 

measurements as well as elucidating the change in the spatial distribution of the pore throat 

network. 

Preliminary experiments were run for 4 and 8 weeks in spring 2009. Four weeks of 

experimentation did not cause any mineralogical change but 8 weeks of experimentation caused 

consumption of Portlandite and calcite precipitation.  
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5.2 Recommendations for Future Work  

These experiments should be repeated under HPHT condition in order to make reliable long-

term projections for the field conditions. Confining and net overburden stresses should be similar 

to downhole conditions since their effect on the behavior of cement fracture would be different. 

Under high pressure and temperature, solubility of CO2 will be different which results in having 

different chemical kinetics between cement and acidic brine.  

The effect of flowing acidic brine can be tested on the formation-cement and/or 

casing/cement interfaces since different formations can have a different impact on the cement 

and acidic brine interaction.  
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APPENDIX A 
Cement Sections Prepared For Material Characterization Techniques 

 

 
Figure A.1: Cement Core (1 in by 12 in) 

 

 

Figure A.2: Dissected Cement Core (Top View) 

  

Figure A.3: Side View of Dissected Cement 

 

Figure A.4: Top View of the Fracture  

Fracture 
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Figure A.5: Section Prepared for XRD analysis (cut from the fracture surface) 

 

 

Figure A.6: Section Prepared for MIP analysis (circled region) 

 

         

Figure A.7: Section Prepared for Micro-CT analysis (drilled from the fracture surface) 

ESEM analysis- 
Fracture Surface 
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APPENDIX B 
Micro-CT Images of the Reacted LP_7-8 (Inlet) Sample 

 

 
 Figure B.1: Cross-sectional view of Micro-CT image (1.93 ×1.93 × 7.5 mm3) along the length of 

mini-core  
 

 
Figure B.2: Micro-CT image (axial slices) for reacted cores for the low pressure experiment 

(inlet section) 
 
 

Table B.1: Image Based Porosity for the low pressure experiment (inlet section) 
for the low pressure experiment (outlet section)  

 

   
a) Slice#2711, Region I b) Slice#2530, Transition c) Slice#2128, Region I 

Unreacted-Low Pressure Reacted-Low Pressure 
Porosity Porosity-Region I Porosity-Region II 
0.25 % 2.15 % (Threshold-35) 0.75% (Threshold-70) 

I 

II 
Inner Part of the core 

Fracture Surface 

II 
~ 3 mm 

I 

Y X 

Z 
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APPENDIX C 
 Additional ESEM Images 

 

          
Figure C.1: Portlandite Mineral and its EDS analysis  

 

         
Figure C.2: Fracture Surface of the Reacted LP_1-2 (Outlet) 

 

Element  Wt %  At % 
 O K 47.94 68.25 
 AlK 05.75 04.86 
 SiK 01.00 00.81 
 ClK 04.56 02.93 
 CaK 40.74 23.15 

Element  Wt %  At % 
 O K 24.07 48.46 
 SiK 03.02 03.47 
 ClK 00.47 00.42 
 K K 00.52 00.43 
 CaK 27.19 21.85 

  
a) Unreacted core b) Reacted LP_3-4, calcite precipitation 

Portlandite 
(Ca(OH)2) 

III 

I 
II 

Ca2+: 46.72 % 
Si4+: 08.28 % 
Ca/Si : 5.64 

Ca2+: 33.56% 
Si4+: 02.81% 
Ca/Si : 11.94 

Figure C.3: Fracture Surface of the Reacted LP_3-4  
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Figure C.4: Fracture Surface of the Reacted LP_3-4 

 
Figure C.5: Fracture Surface of the Reacted LP_4-5 

 
Figure C.6: Fracture Surface of the Reacted LP_7-8 (Inlet) 

 

Element  Wt %  At % 
 O K 39.63 63.28 
 MgK 00.69 00.73 
 SiK 01.83 01.66 
 ClK 01.24 00.89 
 CaK 41.92 26.72 
 FeK 14.69 06.72 

Element  Wt %  At % 
 O K 41.79 64.67 
 MgK 00.84 00.86 
 SiK 01.23 01.08 
 ClK 00.90 00.63 
 CaK 47.40 29.28 
 FeK 07.83 03.47 

Element  Wt %  At % 
 O K 30.63 53.72 
 AlK 01.83 01.90 
 SiK 01.83 01.83 
 ClK 01.23 00.98 
 CaK 46.48 32.54 
 FeK 17.99 09.04 

EDS of the entire image 

EDS of the needle shape structure (C-S-H) 
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