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ABSTRACT 
 
Managed pressure drilling is an innovative technique to precisely manage wellbore 

pressure. It is particularly applicable for reducing the risk of a kick or lost returns when 

drilling with a narrow window between pore pressure and fracture pressure. The constant 

bottomhole pressure method of managed pressure drilling uses annular frictional pressure 

and choke pressure in addition to mud hydrostatic pressure to achieve precise wellbore 

pressure control.  

This project investigated alternative initial responses to kicks to determine which 

would be most effective and reliable under different well scenarios when applying the 

constant bottomhole pressure method of managed pressure drilling. Three different initial 

responses to a kick, ‘shut-in the well’, ‘apply back pressure’ and ‘increase mud pump rate’ 

were studied using an interactive transient multiphase flow simulator. The kick scenarios 

were varied by changing the hole size, type of kick fluid, initial kick volume, pressure 

differential at the kick zone, and fracture injectivity index. 

No single best response was identified for the kick scenarios that were studied.  

Nevertheless, some conclusions were reached.  The validity of these conclusions may be 

limited to the range of scenarios studied.   

‘Increasing mud pump rate’ is advantageous when it increases bottomhole pressure 

enough to stop formation flow because it results in the minimum casing and shoe 

pressures. Therefore, it should minimize the risk of lost returns or surface equipment 

failure.  However, it is unlikely to be successful in large hole sizes.  

The ‘apply back pressure’ response has a similar but smaller advantage versus the 

‘shut-in’ option because circulation creates friction in the annulus. However, in cases 

 xiii



   

where lost returns occurred, no reliable way of identifying the loss of returns and avoiding 

unintentional formation flow to the surface was defined.    

The ‘shut-in’ reaction generally results in the highest casing and casing shoe 

pressures. Therefore, it may be most likely to cause loss of returns before stopping 

formation flow and consequently causing an underground transfer with continuous influx. 

Nevertheless, it is probably the least likely to unintentionally allow formation fluid flow to 

the surface or to cause loss of significant mud volume downhole. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 xiv



   

1. INTRODUCTION 

1.1 Drilling Challenges with Narrow Pore Pressure-Fracture Pressure Window 

Drilling with a narrow window between the pore pressure (PP) and the fracture 

pressure (FP) is always problematic as it is difficult to manage the wellbore pressure to fit 

within the window using conventional drilling techniques.  A simultaneous or alternating 

loss and kick scenario while drilling such wells with conventional methods is a common 

concern. Often wells where this occurs are abandoned because it was not possible to 

mitigate the problem.  

Conventional drilling relies solely on mud hydrostatic pressure to manage the 

wellbore pressure to fit the PP-FP window at all times during drilling of the well. In a 

successful conventional well design, sufficient trip and kick margins must be provided for 

well safety during drilling and tripping including well control operations in the event of a 

kick. Often, minimum trip and kick margins are prescribed by the regulatory agency to 

ensure safe operations. 

 Imposition of minimum safe trip and kick margins in an already narrow PP-FP 

window makes the available mud weight window even smaller. That results in drilling 

comparatively shorter hole intervals before being required to run casing to protect the 

wellbore from lost returns. As a result, the number of hole sections and protective casing 

strings required to reach the well target depth increases. Consequently, the cost of the well 

increases due to longer drilling time and the higher cost of casing and accessories. Often, 

in a conventional well design with a narrow PP-FP window, the size of the production 

casing becomes very small due to the requirement for a large number of protective 

intermediate casing strings in the well. The lower production rate consequent to the small 
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production casing size may be uneconomical in a high capital and operating cost 

environment. Furthermore, drilling a small diameter hole is difficult due to various 

technical and operational constraints such as high circulating pressure, difficulties in drill 

bit torque transmission, high drag in the open hole, susceptibility to drillstring sticking etc. 

Operations such as wireline logging, running and cementing casing, and running 

completion equipment also experience great difficulties in small size holes.  

Typically in deepwater prospects, pore pressures are abnormally high at relatively 

shallow depths below the sea floor due to rapid sedimentation and lack of compaction. On 

the other hand, the fracture pressures are typically low because of less overburden owing to 

large column of water instead of denser sediments. This results in a narrow window 

between the pore pressure and the fracture pressure. However, deepwater prospects are 

generally more rewarding in terms of the size of the field, rate of production and the net 

reserve in comparison to shallow water prospects40. Often, pressure depletion in a mature 

field reduces the effective mud weight window posing similar drilling challenges. 

1.2 Managed Pressure Drilling Concept 

3. The IADC definition of managed pressure drilling (MPD) is as follows

“MPD is an adaptive drilling process used to more precisely control the annular pressure 

profile throughout the wellbore. The objectives are to ascertain the downhole pressure 

environment limits and to manage the annular hydraulic pressure profile accordingly.” 

 MPD techniques for precise control of wellbore pressure are considered to be an 

acceptable solution in a downhole environment with a narrow window between pore 

pressure and fracture pressure, which, if successfully implemented can reduce trouble time 

and well cost substantially. This method endeavors to manipulate wellbore pressure in such 
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a way that a longer hole section can be drilled without fracturing overlying formations than 

possible with conventional drilling. 

The concept of MPD is related to underbalanced drilling (UBD), where the 

wellbore pressure is deliberately kept lower than the pore pressure during drilling. UBD is 

an applicable technology to successfully drill low productivity reservoirs without causing 

formation damage. Also, underbalanced drilling may produce hydrocarbon during drilling 

which needs to be handled at the surface requiring special equipment.  The underlying 

difference between MPD and UBD is that the MPD does not intend to cause formation 

fluid flow into the wellbore during drilling, and therefore, always seeks to maintain a slight 

overbalance in the wellbore.   

1.3 Constant Bottomhole Pressure (CBHP) Method of MPD 

Among the various forms of MPD methods, the CBHP method utilizes and 

manipulates choke pressure and wellbore frictional pressure in a closed drilling system to 

always maintain a constant bottomhole pressure (BHP), slightly above the pore pressure. 

The closed drilling system utilizes a rotating control head (RCH) and an adjustable drilling 

choke through which the return mud is circulated enabling back pressure to be applied to 

effectively control the BHP. A simple sketch illustrating the operation of a RCH is shown 

in Figure 1.1. 

 The BHP has three components: hydrostatic pressure, annulus frictional pressure 

(AFP) and choke pressure in a closed circulating system. The CBHP technique is intended 

to utilize the combination of these three pressure components for precise wellbore pressure 

management at all times during drilling. Figure 1.2 illustrates these three components of 

BHP and the variables that effect the magnitude of these pressure components.  
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Figure 1.1: Rotating control head 
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The variables such as mud flow rate which controls the AFP and choke pressure 

which controls the back pressure can be manipulated in real time during drilling allowing 

relatively quick changes in the wellbore pressure. Conversely, changing the magnitude of 

the mud properties, such as mud weight and viscosity, has a more delayed impact. The 

borehole annular geometry also has an important role in determining the AFP in the well, 

but cannot be changed without tripping the drillstring. The AFP losses will be higher as the 

clearance between the wellbore and the drillstring become smaller. 
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Figure 1.2: Components of wellbore pressure 

Figure 1.3 illustrates the conceptual differences in the wellbore pressure profile for 

the CBHP method of MPD versus conventional drilling. The wellbore pressure is 

maintained slightly higher than the pore pressure during drilling by a combination of mud 

hydrostatic pressure and the AFP or by a combination of mud hydrostatic pressure, AFP 

and back pressure applied through the choke in a typical CBHP operation. In this form of 

drilling, the mud hydrostatic pressure alone may not be sufficient to maintain an 

overbalance over the pore pressure as in case of conventional drilling. This implies that in 

CBHP well design, static mud weight (MW) is normally kept lower than the pore pressure 

gradient as opposed to conventional drilling. During pipe connections, when mud 

circulation is stopped, back pressure may be applied through the choke to compensate for 

the loss of annular frictional pressure component, so that an overbalance is maintained at 

all times.  
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Figure 1.3: CBHP method of MPD against conventional drilling 
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There are other forms of MPD namely dual gradient drilling, pressurized mud cap 

drilling, riserless drilling and zero discharge riserless drilling in addition to CBHP method 

of MPD; all seek to manage the wellbore pressure profile to fit the specific PP-FP window. 

The exact methodologies of these forms of MPD are not discussed here as being outside 

the scope of this research. 

1.4 Application of CBHP Method of MPD 

 The CBHP method of MPD can be useful in several applications in addition to the 

application in narrow mud weight window, which is common in deep water drilling. Some 

of these specific applications are described below. 
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 1.4.1 Slim-hole Drilling in Reentry Sidetrack Well 

 Due to the tight annular geometry in slim hole drilling, AFP is high, which results 

in a high equivalent circulation density (ECD). The hole sizes in reentry sidetrack wells 

with the objective of producing from deeper prospects are often small. These types of wells 

need precise wellbore pressure management in order to drill a stable wellbore without 

inducing a kick or fracturing a weak formation. In this type of MPD application, the MW 

is generally kept lower than the pore pressure gradient and the overbalance is maintained 

with ECD.  

1.4.2 Drilling through Depleted Zone 

 Conventional drilling through a depleted zone with an overlying high pressure 

formation in a typical PP-FP window may cause lost returns due to high wellbore pressure 

against the depleted zone while overbalance is maintained at the high pressure formation. 

This problem may be mitigated by controlling the wellbore pressure precisely by CBHP 

operation so that the fracture pressure at the depleted zone is not exceeded while 

overbalance at the high pressure zone is still maintained. Similarly, if a high pressure 

formation is penetrated with an overlying depleted zone, CBHP operation may be able to 

maintain the well bore pressure within the required window that doesn’t exceed the 

fracture pressure at the depleted zone and maintains overbalance at the high pressure zone. 

A proper combination of hydrostatic pressure, AFP and back pressure will be required for 

such precise control of the wellbore pressure. 

 The above applications of the CBHP method of MPD are a few common 

applications in typical wellbore pressure environments. However, this technique of MPD 
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can be planned in any drilling environment where precise wellbore pressure management is 

desired. 

1.5 Well Control Issues for the CBHP Method of MPD  

 The success of the CBHP method of MPD relies upon accuracy in pore pressure 

and fracture pressure predictions. Reliable pore pressure and fracture pressure data often 

are not available for an exploration prospect. In a producing field, reservoir pressure 

changes with time. Similarly, the pore pressure and the fracture pressure in a mature field 

are unlikely to remain constant over time. Therefore, an envelope of uncertainty of the pore 

pressure and the fracture pressure of the formations almost always exists while drilling a 

well.  

Presently, fracture pressure measurement is typically accomplished by conducting a 

leak off test (LOT) after drilling out the shoe of a casing string. Also, integrity of the 

formation can be tested dynamically to a pre-determined pressure during drilling if a 

pressure while drilling (PWD) tool is installed in the bottom hole assembly (BHA). With 

the latest advancement of logging while drilling (LWD) technology, pore pressure 

measurement is also possible during drilling. However, these tools can not predict the 

anticipated pore pressures and fracture pressures of the formations to be drilled. Therefore, 

the risk of a kick or lost returns during CBHP operation is significant, especially if the  PP-

FP window is narrow. 

 A narrow PP-FP window will often require drilling with a small kick tolerance,  

resulting in an increased risk of losing returns during a well control operation. Therefore, 

MPD wells may be more susceptible to under ground blowouts than conventional wells. 
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Consequently, the well control issues for CBHP operations need careful attention for 

successful implementation of this technology. 

1.6 Overall Research Objective 

 The overall objective of the project , of which this research is a part, is to establish 

comprehensive, reliable well control procedures for the CBHP method of MPD operations 

equivalent to or better than, those currently in use for conventional drilling operations. The 

project is financially and technically supported by a consortium, comprised of major oil 

companies and an established UBD consulting company. The tentative duration of this 

project is 3 years.  

 In order to accomplish the research objective, fundamental research will be carried 

out to determine (1) the best initial response to a kick, (2) an appropriate kick circulation 

procedure after stopping the formation influx, (3) a way to identify a threatened 

underground blowout, and (4) an appropriate initial response to a threatened underground 

blowout.  

 The validity of the results of this research is expected to be demonstrated in a real 

well at the LSU Petroleum Engineering Research and Technological Laboratory. 

 1.7 Specific Research Objective 

 The specific objective of the research described herein is to determine the best 

initial response to a kick under different well control scenarios as a part of the overall 

research objective. 

The conventional well control procedure, after a kick is taken into the wellbore, 

requires shutting-in the well for stopping the formation fluid influx into the wellbore. Since 

the CBHP type of MPD is undertaken in a closed circulating system with pressure 
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containment at the rotating control head, and return flow diverted through the drilling 

choke, alternative types of initial responses to a kick can possibly be undertaken without 

sacrificing the safety of the crew and the rig. The specific objective of this research is to 

study the effect of alternative initial responses to a kick taken during CBHP method of 

MPD in order to determine the best initial responses to different kick scenarios.  

The various alternative initial responses that will be studied under this research are 

discussed in chapter 4. 

1.8 Overview of Thesis 

 Chapter 1 introduces the concept of CBHP method of MPD and associated well 

control issues, explains the need for a detailed study of alternative well control procedures 

to determine the best practices under MPD applications and describes the work involved in 

the project.  

Chapter 2 reviews the existing literature on MPD and associated well control 

issues. 

 Chapter 3 gives an account of the research plan and describes the methodology to 

perform the research. This includes a description of various tasks performed during the 

research and the description of the software (simulator) used to simulate well control 

scenarios for studying the effect of various initial responses to an oil or gas kick in the 

well. The main features of this software, input data requirements, simulator evaluation and 

simulation method used in this study are also discussed in this chapter. 

 Chapter 4 describes the various initial responses subsequent to kick detection for 

stopping the formation fluid influx into the wellbore. The potential advantages and 
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disadvantages of various initial responses and their expected suitability for different kick 

scenarios are discussed.  

 Chapter 5 describes the simulation studies of representative well X. The results of 

simulations are analyzed and presented in this chapter. 

 Chapter 6 describes the simulation studies of representative well Z. The results of 

simulations are analyzed and presented in this chapter. 

 Chapter 7 analyzes the important results of simulations undertaken during this 

study. The effectiveness of each initial reaction in achieving the desired functions, 

specifically to stop formation feed-in, prevent lost returns, confirm stoppage of influx and 

identify lost returns, is discussed in this chapter. 

 Chapter 8 summarizes the study with overall conclusions including a discussion on 

the best initial reaction based on the simulation results and recommendations for future 

research. 
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2. LITERATURE REVIEW 

A literature review was performed to fully understand the concept of CBHP 

method of MPD and its applications. Since the MPD method originated from the concept 

of underbalanced drilling, relevant published literature on underbalanced drilling was also 

consulted. Special emphasis was placed on the well control aspects of CBHP method of 

MPD operations. No publication on research to devise proper well control procedures for 

CBHP method of MPD to make this form of drilling safe relative to conventional 

operations was found in the literature search. An overall summary of the findings from the 

literature review is included in the following sections. 

2.1 MPD General Concepts 

 Hannegan 3gave an overview of MPD as an emerging technology. He explained the 

conceptual difference between UBD, MPD and power drilling (PD) for ROP enhancement. 

The various forms of MPD as a means of wellbore pressure management such as dual 

gradient drilling, pressurized mud cap drilling, riserless drilling and zero discharge 

riserless drilling were explained. However, the well control issues associated with MPD 

were not discussed in this literature. 

 Fossil4 described controlled mud cap (CMC) MPD technology for deepwater 

offshore applications. The system utilizes an engineering simulator to calculate the 

dynamic pressure losses in the wellbore during drilling and controls the speed of the mud-

lift pump at the sea floor in real time to maintain the required mud level in the riser to 

control the BHP. In this system, during pipe connection, the effect of loosing friction 

during pipe connection is compensated by varying the level of fluid in the riser to maintain 

the same BHP same as during drilling.  
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Hannegan9 discussed the potential application of MPD to precisely manage 

wellbore pressure to avoid methane hydrate dissociation while drilling through hydrate 

reservoirs. 

Bern16 described the development of a prototype downhole ECD reduction tool for 

MPD application. However, well control aspects of managed pressure drilling were not 

discussed. 

17Johnson  discussed a methodology of riserless drilling, a form of MPD for the 

surface casing interval using low cost, sacrificial, weighted, dynamic kill drilling (DKDTM) 

fluids prepared with seawater.  The advantage of using the DKD system is the ability to 

drill a comparatively longer section of stable surface hole into abnormally pressured 

formations so that the depth of surface casing and the subsequent intermediate casings can 

be pushed deeper. In a narrow PP–FP window, ability to push the surface casing deeper 

may result in less number of intermediate casings and a comparatively larger size 

production casing to achieve a higher production rate. Well control methods that might be 

generally applicable to the CBHP method were not described.  

Cantu19 described the selection criteria, operational issues and maintenance of RCH 

in MPD application. Well control issues of MPD were not discussed in this literature. 

Quitzau28 introduced a concept of managing wellbore pressures by drilling with 

large-diameter liner as part of the drill string. In this concept, the hole is drilled with a 

conventional drillstring to traditional kick tolerance limit. The drill-in liner is then run, 

mud weight is reduced and drilling continues. Circulating friction pressure around the liner 

raises ECD near bottom of the hole while the ECD in the shallower section is smaller due 
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to larger annular clearance. The ECD profile may be managed within the pore pressure 

fracture pressure window by adjusting static mud weight and circulation rate. 

2.2 Well Control 

 Saponja1 addressed the question whether or not to close the BOP on a gas flow 

during UBD operations with surface facilities to handle the gas. Saponja refers to these as 

MPD operations. He has suggested a field specific flow control matrix (FCM) that would 

determine the severity of the well control hazard and recommend the well control measures 

to follow. The flow control matrix specific to the example well is reproduced here at Table 

2.1 for a better insight.  

Table 2.1: Flow control matrix (after Saponja1) 
WELLHEAD FLOWING PRESSURE 

  3447-4800 kP 4800+ kP0-3447 kPa a a

(0-594) 103 m3/day (0-21) 
MMscfd 

Adjust system to increase BHP     

Manageable - Increase liquid injection rate        Shut-in on 
- Decrease surface back Rig's BOP 
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33 (892+) 10 m /day (31.5+) 
MMscfd 

Shut-in on Shut-in on Rig's BOP Shut-in on Rig's BOP Rig's BOP 

 

The severity of the hazard is gauged by the return gas rate and flowing wellhead 

pressure. The well control measures are: change liquid injection rate, change surface back 

pressure, weighting up of drilling fluid or shut in the well. On the contrary, the Minerals 

Management Services (MMS)44 have proposed that GOM lessees be required to revert to 

conventional well control with the BOP and primary choke manifold if a kick is detected in 

a MPD operation. 
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7Bode  discussed well control methods and practices in slim-hole drilling. He 

explained the effectiveness of dynamic killing in slim hole drilling because of higher AFP. 

He recommended to routinely determine AFP during drilling to gain knowledge about hole 

wash-outs to determine whether dynamic killing will be effective or not. He recognized 

that for a large volume of gas influx, dynamic killing will be less effective because of less 

frictional pressure losses due to light density gas. He emphasized the use of sensitive 

quantitative electromagnetic flow meters for early kick detection in slim hole drilling. He 

described the technique of superimposing flow-out and flow-in plots as a means to identify 

kick in a computerized system.  

Codazzi 36 suggested an advanced early detection technique for gas kick based on 

measuring the travel time of sonic pressure wave generated by the mud pump. The 

algorithm behind this early gas detection technique is that the presence of gas significantly 

reduces the speed of sound in mud. The pressure pulses generated by the mud pump are 

measured by transducers installed in two locations, one in the standpipe and the other just 

below the bell nipple. The system detects and monitors the sonic travel time between these 

two transducers, which is fairly constant during normal drilling operation and changes 

exponentially when the density of mud reduces substantially with influx of gas into the 

wellbore.  The system can detect gas influx very early for both water-based and oil-based 

mud as in both cases the density of mud is reduced substantially effecting the sonic travel 

time. However, the system can not detect a liquid kick. The paper claimed to have detected 

gas influx as early as only one-half barrel of pit gain.  

Bryant37 described early detection of gas influx by measurement while drilling 

(MWD) using a similar acoustic principle of varying sonic travel time in different density 
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fluid. This technique can distinguish between drilled gas and gas influx caused by 

underbalanced situation with different signature of MWD pulses. 

The ability to detect the kick early is important to maintain an intact wellbore in a 

narrow PP-FP window with low kick tolerance during the well control operation. Surface 

detection of a kick by the conventional volumetric methods is not very conclusive for a 

small increase in return flow and / or pit volume because of low system accuracy. 

Therefore reliable and early down hole kick detection by an advanced tool could be very 

useful for MPD operations. 

20Shaughnessy  discussed the well control issues associated with ultra deep high-

temperature, high-pressure drilling. He has identified “swabbing on trips”, “ballooning 

formations”, “low permeability kicks”, “liner top failure”, “flow after cementing” and 

“casing wear” as the main problems that need to be addressed to minimize potential well 

control problems.  

31Ward  describes the capability of a pressure while drilling (PWD) tool to help 

identify and evaluate the severity of alternating losses and gains associated with formation 

ballooning. Also, the PWD tool will accurately determine equivalent mud weight (EMW) 

in a well, even when there is a non-homogeneous mud in the annulus. PWD tool can also 

accurately record pressures during a lost circulation event, and swab and surge pressure 

during tripping. 

2.3 Underbalanced Drilling 

10 Bourgoyne  gave an overview of the difference in well control procedures between 

conventional drilling and UBD and emphasized the requirement for training on UBD well 
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control procedures. However, the well control issues associated with MPD were not 

discussed in this literature. 

 Mykytiw12 discussed the use of UbitTSTM, the underbalanced multiphase transient 

flow simulator, for design and implementation of UBD by gas injection through concentric 

casing. However, use of UbitTSTM for study of MPD well control issues was not discussed 

in this literature. 

Sotherland21 described the usage of a downhole deployment valve (DDV) in 

underbalanced drilling. With incorporation of a DDV, the well need not to be killed before 

tripping. Conventional tripping in open system is possible with closed DDV, and a pipe 

light situation can be avoided. The drillstring must be stripped in and out below the DDV, 

but the requirement to strip a BHA, which is impractical due to its geometry, is avoided 

with a DDV installed. Another advantage is that a sand screen can be run with a DDV 

installed, which otherwise is not feasible in an underbalanced well. A special DDV 

equipped with downhole sensors and mono conductor braided wireline provides real time 

downhole pressure below the valve and the valve position. The paper did not discuss well 

control issues. 

2.4 MPD Case Histories 

 Calderoni38 described a case history of MPD operation in an exploratory well 

where uninterrupted circulation was maintained during drilling, pipe connections and 

tripping using the continuous circulation system (CCSTM). Earlier, conventional drilling 

was unable to make progress due to alternating gain and loss in a narrow PP-FP window. 

The well was re-entered to drill an 8-1/2” hole in balanced pressure mode at a constant 

ECD using CCSTM technology to avoid BHP fluctuation. The main unit of CCSTM is a 

 17



   

pressure container constructed from three BOP units, with a combination make/break 

power tong and snubber at the top and a drill pipe slip at the bottom. The unit is rigged up 

on the rig floor and located centrally at the rotary table of a top-drive rig. The average time 

to make a connection by this unit was 21 min.  

 In spite of maintaining continuous circulation avoiding pressure surges during 

connections, the ECD could not always be contained within the required mud weight 

window, and the well experienced alternating loss and gain during drilling. The planned 

reaction for kicks was to increase circulation rate, but this was not feasible because lost 

returns were occurring at the present rate. “Over the next 14 days the well was brought 

under control by a combination of LCM pills and circulating out gas through the chokes 

until the required mud weight could be established.” After regaining control of the well 

and running and cementing a 7” liner, a 5-7/8” hole was drilled into the target reservoir 

using the CCSTM. Increasing levels of gas at the surface required closing the annular 

preventor and bullheading through the drillpipe and bleeding gas from the annulus. 

Drilling resumed, but a subsequent gas flow required rigging up a rotating control head to 

allow drilling with continuous lost returns while holding 500 to 800 psi on the annulus. 

Drilling continued into the top of the target reservoir, and the openhole was then isolated 

with a cement plug extending up into the 7” liner. After two attempts to complete drilling 

of the well to target depth with a 5” drill-in liner were unsuccessful, the openhole was 

secured with cement plugs pending further work.  

 The above case history highlights the high risk factor associated with drilling in a 

narrow PP-FP window, even with extensive preparation and MPD equipment, and points 
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to the requirement for an established and reliable well control procedure for such 

operations.  

Wilson22 gave case histories of three wells in Pompano field, Gulf of Mexico 

(GOM) and addressed the issues of drilling depleted sands, wellbore instability at high 

angle, and the associated risks of drilling sub-salt extended reach wells. The author placed 

emphasis on the necessity of correct prediction of PP–FP window for extended reach 

drilling where water depth varies considerably between surface and bottomhole location of 

the well. According to the paper, the typical loss and gain situation resulting from cycling 

of the pump on for drilling and off for connections, which occurs frequently in deepwater 

drilling with narrow pore pressure fracture pressure margin, is attributed to induced 

fractures opening and closing in the wellbore. The literature did not specifically discuss 

any well control issues. 

2.5 New Technologies 

 Santos2,47 introduced “micro-flux control”, a new technology for constantly 

managing BHP within the PP-FP window by controlling back pressure as necessary 

through an automated choke system. The system continuously monitors mud flow-in 

versus mud flow-out to detect a loss or a kick in the well in real time. An alarm is 

automatically raised when the difference between the flow-in and the flow-out exceeds a 

certain specified value, and the control system adjusts the drilling choke to vary the back 

pressure until flow-in and flow-out equalizes. This equalization implies that influx or lost 

returns has been stopped, restoring the wellbore pressure within the PP-FP window. The 

technology claims to be capable of early kick detection with as low as 0.25 bbl of influx, 
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which is favorable for keeping the wellbore pressure low with minimal chance of 

formation break down during kick circulation. 

  The system uses a mass flow meter, which is more sensitive and accurate than 

conventional flow paddle type sensors for measuring return mud flow rate. Once the kick 

is detected, the system claims to circulate out the kick by automatic choke adjustment 

keeping the bottom hole pressure constant.  

The main challenge of MPD is maintaining bottom hole pressure within the desired 

range when the pump is turned-off for a pipe connection. The Dynamic Annular Pressure 

Control (DAPC)11,32 tool uses a system that can apply additional back pressure on the well 

with static mud to compensate for the loss of ECD when circulation is stopped. The system 

incorporates a specially manufactured choke manifold with automated choke control and 

an auxiliary pump to circulate mud through the choke to apply back pressure in the well. 

The system is computer controlled, and with the data input from rig monitoring system 

and/or PWD, a hydraulics calculator calculates the bottom hole pressure requirement and a 

logic controller automatically controls the auxiliary pump output and choke adjustment to 

apply the required back pressure to the well. The technology was applied successfully for 

automated bottom hole pressure control in a deepwater Gulf of Mexico well32. 

Iverson39 discussed the results of a simulation study of a MPD operation in a high 

pressure high temperature (HPHT) well to investigate the effect of (1) automatic choke 

regulation, (2) a continuous circulation device and (3) a mud heater. Application of a 

continuous circulation device or a mud heater has primarily a stabilization effect on the 

wellbore pressure profile, while automatic choke regulation is considered as a direct and 

fast response technique for back pressure application. The simulation results indicate that 
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in case of drilling in the marginal high temperature reservoir, application of a mud heater 

does not contribute significantly to stabilization of downhole pressure, regardless of the 

type of mud is used. Application of a continuous circulation device may give great benefit 

especially in combination with back pressure. During drilling, an automatic linear choke 

control may secure a nearly constant pressure at target depth. Surge and swab fluctuations 

will occur during tripping, but this may be significantly reduced by proper tuning of the 

choke control. 
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3. RESEARCH METHOD 

3.1 Introduction 

 The overall objective of this study is to develop an understanding of the behavior of 

both oil and / or gas kicks from the time the kick fluid enters the wellbore to the time the 

influx is stopped in order to determine the best initial response to a kick. An appropriate 

initial response to a kick is important for the subsequent well control measures to be 

effective and successful.  

3.2 Research Plan 

 To accomplish the research objective, work was performed following the plan as 

detailed below. 

1. Existing literature about MPD and associated well control issues was reviewed. 

2. Training was received on the underbalanced drilling interactive transient training 

simulator (UbitTSTM) to be used for the simulation studies of alternative initial responses 

to kick under MPD environment.   

3. Descriptions of four offshore wells from different geological areas that were drilled 

or planned to be drilled in a MPD mode were collected from the project sponsors. The 

water depth of these wells ranges from 120 ft to 3000 ft. The primary reason for MPD in 

these wells is a narrow PP-FP window. The high ECD in slimhole drilling and weak 

depleted zones are the other reasons for MPD in some of these wells. The candidate 

sections for MPD operations include a range of hole sizes from 6 to 17.5 inches. Out of 

four wells, one is vertical and three are deviated. The target horizons include both oil and 

gas reservoirs. The total depth of these wells ranges from 9446 ft to 20,598 ft. Collectively, 

these wells cover a wide range of well scenarios. However, availability of data from ultra-

 22



   

deep-water wells and deep, high pressure, high temperature, onshore wells would have 

constituted a more comprehensive spectrum of representative well scenarios.  

4. In a particular well geometry and formation characteristics with a defined PP-FP 

profile, kick scenarios in a well can be varied by changing a multitude of factors such as 

differential pressure at the kick zone, productivity index of the reservoir, injectivity index 

and fracture pressure of potential loss zones, type of reservoir fluid, and type of drilling 

mud. The kick volume will depend on the kick detection time and the various factors 

mentioned above. The post-kick well scenario will depend on the size of the kick, the type 

of drilling mud used in the well and whether lost returns occurred and the severity of 

losses.  Combinations of the above factors will make different well control scenarios 

possible in any given well.  

Various well control scenarios were identified for simulation studies after 

analyzing the well data received from the sponsors. Different kick scenarios are useful to 

observe variation of simulation results under different circumstances. In this study, kicks 

are simulated in one 6 inch slim hole and in one large 17-1/2 inch hole of two different 

MPD wells. Fictitious names are given for these wells as well: X and well: Z.  

 5. The main goal of an effective “initial reaction” after kick detection is to stop the 

formation fluid influx by equalizing the bottomhole pressure with the pore pressure. Two 

of the most important parameters to judge the effectiveness of an initial reaction to a kick 

are: additional influx after the initial reaction and the increase of casing pressure required 

to stop fluid influx. A lower magnitude of these two parameters is favorable for avoiding 

lost returns and the associated risk of an underground blowout. Two additional, and 

potentially more important considerations are whether the reaction allows conclusive 
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determination of  whether formation feed-in has stopped and whether the wellbore is intact 

or losses are occurring downhole. The other useful criteria to judge the effectiveness of the 

initial kick responses are:  

- Ability to determine hydrostatic pressure increment needed 

- Minimum kick volume to handle at surface. 

- Maximum time before casing pressure is excessive threatening to underground 

blowout 

- Impact of and / or need for special capabilities e.g. PWD tool and flow out metering.  

- Ability to identify a kick versus instrument error or formation breathing. 

The representative well control scenarios were simulated and different initial 

reactions were studied. The results of the simulations were analyzed to determine their 

effectiveness as discussed above. Simulation descriptions and simulation results are 

provided in chapter 5 for well X and chapter 6 for well Z. 

3.3 Well Control Simulator 

 Hypothetical kick scenarios for representative MPD wells can be simulated in a 

well control simulator, and the effect of different initial responses to a kick following the 

time it was detected can be studied. Since there will be multiphase flow of gas and liquid 

in the wellbore, especially for a gas kick, an advanced simulator with the capability to 

simulate multiphase flow behavior is required. Also, for a gas kick, as the pressure-

temperature-volume (PVT) properties of the gas will be constantly changing as the gas 

migrates up the wellbore, and the flow from the reservoir will decrease as the wellbore 

pressure increases, steady-state flow behavior will not be realized. Hence, an advanced, 
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multiphase, transient, well control simulator will be required to truly understand the effect 

of gas migration in the wellbore. 

3.3.1 Transient Multiphase Flow Simulator (UbitTSTM) 

 A transient, multiphase simulator – UbitTSTM TM, which runs on an OLGA 2000  

engine49 TM, is used for this study. OLGA 2000  was originally created for complex, 

transient pipeline flow problems and was later adapted for well control application by 

incorporating a new model called the “Advanced Well” module to increase its utility for 

modeling upstream activities of oil and gas exploration. OLGA 2000TM alone runs only in 

a batch mode, which means that the user control actions must be decided prior to running 

the simulation. However, pre-defining changes for well control operations is not 

practicable and therefore, direct application of OLGA 2000TM for well control simulation 

is cumbersome. UbitTSTM was developed to add the interactive input capability to OLGA 

2000TM for well control simulations, particularly for underbalanced drilling training12,49,50. 

TM 3.3.1.1 Features of UbitTS

 The Graphical User Interface (GUI) in UbitTSTM shown in Figure 3.1 supports the 

user with various interactive controls and a real time update of important parameters while 

the simulations are run by the OLGA engine. Since UbitTSTM was developed for 

simulating underbalanced drilling, it is designed for simulating drilling, circulating and 

tripping with a closed circulation system incorporating a RCH and a drilling choke at the 

surface. A MWD tool can be incorporated in the drill string in order to get a continuous 

update of bottom hole pressure during the simulation. Also, a drill pipe float can be 

included in the drill string to prevent a u-tubing effect during pipe connections. 
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TMFigure 3.1: UbitTS  - graphic user interface 

The circulating system in UbitTSTM can optionally include a four phase separator 

down stream of the drilling choke. In addition to the continuous update of useful drilling 

parameters, updated time-based plots and profile plots of important variables can be seen 

while running simulations. The variables that are continuously plotted against time include 

important well control parameters such as drillpipe pressure, bottomhole pressure, choke 

pressure, flow rate-in and flow rate-out. The various profile plots include the pressure 

profile, temperature profile, liquid hold-up profile, etc. Liquid injection rate, gas injection 

rate and the choke opening are the main controls that can be manipulated by the user 

during a simulation. 

3.3.1.2 Simulator Evaluation 

 Validation of the well control simulator is necessary to have confidence in a 

simulation study of the effect of various initial responses to kick. UbitTSTM runs on an 

OLGA engine, which was used earlier in the research on “Analysis of Alternative Well 
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Control Methods for Dual Density Deepwater Drilling” conducted by Stanislawek45 for his 

masters thesis at LSU. He has validated the simulator results against a full-scale 

experimental data performed by Lopes46 at LSU. The experiment consisted of injecting 

nitrogen through a gas injection line and drilling fluid through a separate injection line in a 

test well. The annular pressures at the bottom of the well were recorded during the 

unsteady state system behavior in two phase flow during the experiment. Stanislawek45 

found a good match of the transient annular pressure data between the simulator and the 

experimental results, with a maximum error of 2.5 %. 

 UbitTSTM was used by Mykytiw12 to understand the well slugging tendency during 

underbalanced drilling in order to optimize design of operational parameters to minimize 

the slugging tendency and pressure instability in the well when a concentric casing gas 

injection technique was employed. The simulator results were compared with real well 

data during periods of well slugging using the concentric casing injection method. The 

validation exercise results were not given, however, it was stated that an “acceptable level 

of confidence” was established with the model results.   

 Validation for this research began with simple functional checks. The drilling fluid 

injection pump of the simulator was tested with designated maximum pressure for a 

validation check. The pop-off valve of the pump blew out as the stand pipe pressure 

reached the maximum pressure limit. In another validation check, the drill pipe float was 

subjected to high pressure from below, and the float held. In a validation check for 

hydraulics under steady state single phase flow of water-based mud, discrepancies in AFP 

losses were noted between the simulator results and manual calculations. The results of the 
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simulations are tabulated in Table 3.1. A comparison of AFPs between the simulator 

results and manual calculations is shown in Table 3.2. 

Table 3.1: UbitTSTM simulation results for hydraulics validation 

Drillstring 
pressure (at bit) 

Annular 
Pressure 

Surface 
Pressure 

Flow-
out 

AFP 
(ΔP) MW Viscosity Flow-in SPP 

Remarks 

ppg cp Gpm Psi Psi Psi psi gpm psi 
13.2 38 0.3 0 9536 9536 11.34 0 0  
13.2 38 50.11 235 9601 9589 14.53 49.52 53  
13.2 38 100.06 750 9721 9670 14.78 100.9 134  
13.2 38 149.8 1510 9914 9798 15.17 150 262  
13.2 38 199.21 2496 10159 9950 15.84 200.3 414  
13.2 38 248.19 3659 10464 10136 16.44 250.1 600  
13.2 76 0.95 0 9550 9551 14.61 0-1.50 0 Temp: 100 deg F 
13.2 76 1.79 0 9538 9539 14.56 0 0 Temp: 123 deg F 
13.2 76 50.09 330 9663 9652 14.75 49.08 101 Temp: 100 deg F 
13.2 76 100.03 956 9811 9760 14.92 101.2 209 Temp: 100 deg F 
13.2 76 149.67 1829 9995 9879 15.21 150.5 340 Temp: 123 deg F 
13.2 76 198.95 2978 10265 10057 15.93 200.57 518 Temp: 123 deg F 
13.2 76 247.73 4379 10619 10294 16.55 250.5 755 Temp: 123 deg F 

 
Table 3.2: Comparison of AFP from UbitTSTM and LSU calculations 

Viscosity Flow-out (gpm) UbitTSTM 
AFP (psi) 

Calculated AFP 
(psi) 

38 cp 50 53 96 
38 cp 101 134 192 
38 cp 150 262 289 
38 cp 200 414 570 
38 cp 250 600 886 
76 cp 49 101 192 
76 cp 101 209 384 
76 cp 151 340 577 
76 cp 201 518 769 
76 cp 251 755 961 

 
From Table 3.2, we noticed that the friction factor in the simulation results 

appeared consistently low for all flow rates as compared to manual calculations based on 

initial fluid rheologies. A linear trend between ‘AFP’ and viscosity and ‘AFP’ and flow 

rate was observed only at a very low flow rate (50 to 100 gpm) suggesting earlier transition 

to turbulent flow than calculated manually based on a Reynolds number of 2100. The 
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developer of the simulator Scandpower Petroleum Technology has been notified of this 

discrepancy.  

The sensitivity of the shut in response time to different sizes of gas kicks was also 

considered. The results are provided in table 3.3. Figure 3.2 shows a plot of the initial kick 

volume versus the time after shut-in for the formation influx to stop. 

Table 3.3: UbitTSTM simulation results for shut-in response 
 

Initial Condition  Final Condition  
(at well shut-in time) (when formation influx stopped) 

 
Time to 

stop kick 
(min) 

Kick 
Size 

Gas Kick 
Vol (bbl) 

Annular 
Pressure 

(psi) 

Surface 
Pressure 

(psi) 

Influx 
Rate 
(lb/s) 

Annular 
Pressure (psi) 

Surface Pressure 
(psi) 

Small 6.34 12 9626.19 14.82 2.31 9902.58 342.01 
Medium 14.4 8.34 9545.10 14.73 2.99 9902.71 405.06 
Large1 18.97 5.2 9509.57 14.73 3.3 9900.2 452.25 
Large2 23.25 4 9468.97 14.74 3.62 9900.68 500.82 
Large3 28.68 3.3 9410.64 14.75 4.14 9901.84 563.39 
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Figure 3.2: Time to stop influx versus kick volume 

It may be seen that the ‘time to stop the influx’ was inversely proportional to the 

kick size as opposed to the expectation that it would be proportional due to the larger 

compressibility of larger kicks. In view of the complexity of transient multiphase flow 

during gas migration in a closed well, the question arises whether such results of 
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simulations are valid.  The resolution of this issue is currently the subject of consultation 

with the developer of the simulator.   

3.3.1.3 Simulator Input 

 The various input to the simulator includes drill string and casing data, cement tops, 

water depth and deviation data in order to define the geometry of the well and surface and 

bottom hole temperature, pore pressure, fracture pressure, formation gas oil ratio (GOR), 

percentage water cut, type of reservoir fluid, productivity index (PI), injectivity index, and 

formation hardness in order to characterize the reservoir and other open hole formations. 

Various operational parameters such as mud weight, mud viscosity, pump capacity, mud 

tank capacities, mud type, RCH pressure limit, maximum choke size, return line diameter 

and length are also specified as input data for running simulations. 

3.3.1.4 Simulation Method 

 Drilling is simulated in the well with an initial bit depth above the reservoir after 

entering all input data for an individual well control case. As drilling advances through the 

reservoir rock, the well becomes underbalanced, and the kick fluid enters the wellbore. In 

these simulation studies, kicks are identified by observing the increase in return mud flow 

rate. After a kick is identified, more kick fluid can be allowed to enter the wellbore in order 

to take a kick of pre-determined volume to simulate the range of kick detection and 

reaction times that might be achieved in practice in the field before taking action to stop 

the inflow. Thereafter, interactive controls are used to try out one of the different initial 

responses proposed to stop the formation fluid influx into the wellbore. The simulation 

results can then be compared as a basis for evaluating the different initial responses. 
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4. INITIAL RESPONSE TO KICK 

4.1 Introduction 

 The proper initial response to a kick is very important for successful well control 

operation. Early kick detection and a proper initial response are needed to keep the initial 

kick size small. When kick is taken, achieving the smallest possible kick size is important 

because a larger kick will result in higher wellbore and casing pressures implying 

increased risk of lost returns or of a surface equipment failure. A larger volume of kick 

fluid to handle at the surface also increases the risk of a surface equipment failure or 

overflow. In addition, the ability to diagnose problems during the initial response e.g. the 

ability to identify lost returns or determine the incremental mud weight needed for primary 

well control as referred in section 3.2, are important considerations. 

The procedure for initial kick response in conventional drilling is well established. 

It involves shutting-in the well after a positive flow check is recorded. This is followed by 

recording the shut-in drill pipe pressure, the shut-in casing pressure and the pit gain versus 

time. 

 However, in the CBHP method of MPD operation, the annulus is always closed at 

the RCH creating a closed circulation system. Therefore, there are several other options for 

initial responses to a kick. The various options for initial kick response are discussed 

below. 

4.2 Shut-in the Well 

 Shutting in the well is the established initial response to a kick taken during 

conventional drilling42. One advantage of this method is that the mud weight required for 

primary well control can be calculated from the recorded shut-in drill pipe pressure data. 
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However, if a drill pipe float is used, which is normally the case in MPD, determining 

shut-in drill pipe pressure is difficult. The pressure to bump the float by pumping slowly 

and recording the pressure when the float appears to open is used as an estimate of shut-in 

drillpipe pressure. Another advantage is that stopping the flow of all fluids to the surface 

conclusively prevents formation fluid flow to the surface, at least initially. For this option, 

the annulus may be closed with either the BOP or the RCH for pressure containment.  

4.3 Apply Back Pressure Through Choke  

 Increasing the back pressure applied to the well by adjusting the choke is another 

option. After a kick is identified by a noticeable increase in return mud flow rate, 

circulation is continued while back pressure is applied through the choke until the return 

mud flow rate becomes equal to the pumping rate, which would normally suggest the 

stoppage of formation fluid influx into the wellbore. At this point, the drillpipe pressure is 

read and used as the basis for further pressure control. In this type of initial response, pore 

pressure can not be calculated as directly as in case of the shut-in option. Nevertheless, the 

increase in drillpipe pressure is the pressure increase needed to balance the pore pressure. 

The magnitude of back pressure is limited by the maximum allowable casing pressure 

before formation breakdown, but the magnitude required is reduced by the AFP in the 

well. 

4.4 Increase Pump Rate  

 Increasing pump rate after the kick is detected to increase the frictional pressure 

losses in the wellbore and the bottom hole pressure is another option. If the bottom hole 

pressure can be increased enough to equal or exceed the pore pressure, the formation fluid 

influx into the wellbore will be stopped, indicated by return mud flow rate equal to the 
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mud flow rate-in. However, to a large extent, frictional pressure losses in the wellbore will 

depend on the annular clearance. A narrower clearance between the wellbore and the 

drillstring causes higher annular frictional pressure losses. In a slim hole geometry, this 

type of initial response may be effective provided mud pump capacity is not exceeded. In a 

big size hole with large annular clearance, this type of initial response is unlikely to be 

very effective.  

4.5 Increase Pump Rate and Increase Back Pressure 

 The pump rate may also be increased simultaneously with application of back 

pressure by adjusting the choke to cause a more rapid increase of bottom hole pressure to 

stop the influx after the kick is detected.   The combined approach may be desirable when 

either action alone is not sufficient to increase the bottom hole pressure to equalize the 

pore pressure. 

4.6 Additional Considerations 

 Normally, drilling will be discontinued after a kick is identified and before 

application of any of these initial reactions to a kick. After stopping the influx by 

equalizing the bottom hole pressure with the pore pressure, the kick fluid is expected to be 

circulated out maintaining a constant BHP, and thereafter drilling resumed. However, 

another possible option is to keep drilling while the drilling choke and / or mud pump is 

manipulated to increase the bottomhole pressure to stop the influx. This option has 

conceptual advantages of eliminating non-drilling time associated with kick control and 

taking advantage of the density added by cuttings in the annulus. 

 There are several concerns with this approach.  The increasing flow rate from 

additional penetration of the kick zone will result in a larger kick and may delay stoppage 
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of formation feed-in. The routine strategy of keeping stand pipe pressure constant while 

circulating will not maintain a constant BHP opposite the kick zone as in the driller’s 

method41 of kick circulation due to the increase in frictional pressure with increasing depth. 

One safety concern is that the better pressure containment offered by the BOP can not be 

used unless drilling is stopped. 

 Another complication is that if the mud pump is running close to its pressure limit, 

the mud flow rate must be reduced while applying back pressure through choke during 

initial reaction to kick to avoid tripping of the relief valve. 

4.7 Options Investigated 

 Only the shut-in, apply back pressure, and increase pump rate options will be 

considered in this study. The other options are adaptations or combinations of these and 

will be considered for future investigations. 
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5. SIMULATION OF REPRESENTATIVE WELL -X 

5.1 Back Ground of Well Design 

 A sponsor provided a well description that was selected as representative of slim 

hole applications for MPD. This description was used as a basis for simulations to 

investigate alternative initial responses to kicks taken while conducting MPD in a slim 

hole. The well is planned to be drilled from an offshore platform in about 3000 feet water 

depth. The objective of this well is to produce from a gas condensate reservoir after 

sidetracking from 7” casing of an existing well. The sidetrack is to be drilled using MPD 

methods. 

The main reason for MPD in this well is the desire to minimize overbalance 

opposite depleted zones in order to avoid lost returns or differential sticking. A high 

wellbore frictional pressure drop due to the slim hole geometry complicates this objective. 

The highest pore pressure gradient expected in this well is 13.6 ppge (pore pressure = 9901 

psi) from a possible gas sand at 15632 ft measured depth, total vertical depth (TVD) 14000 

ft, and therefore a minimum mud weight of 13.6 ppg (without considering trip margin) is 

required to ensure primary control of the well. However, at this mud weight, due to the 

high frictional pressure losses in the tight annulus, formation breakdown would possibly 

occur in the depleted zones below this sand during drilling. Therefore, a mud weight lower 

than 13.6 ppg is needed while drilling to provide an equivalent mud weight  slightly more 

than 13.6 ppg to just over-balance the formation pressure.  

During pipe connections, when there is no frictional pressure in the wellbore, the 

plan is to apply back pressure with a choke to maintain wellbore pressure greater than the 

pore pressure to avoid formation fluid influx. Also, this will help to maintain a stable 
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wellbore with a constant bottomhole pressure. Table 5.1 provides the relevant well data, 

and the well schematic, plots of inclination versus measured depth (MD), horizontal drift 

(HD) versus TVD and PP-FP profiles are shown in Figure 5.1, Figure 5.2, Figure 5.3 and 

Figure 5.4 respectively 

Table 5.1: Summary data of well-X 
WELL SUMMARY 

Well Name Well X 
Vertical / Inclined Inclined 
Type of Well Re-Entry Sidetrack 
Offshore / Onshore Offshore 
Water Depth ~ 3000 ft 
KB 170 ft 
TD (MD / TVD) 19000 / 15000  ft 
Objective Produce from Deeper Sand 
Reservoir Fluid Gas Condensate 
CGR 250 bbl / MMSCF 
Mud Type SBM 
Bottom Hole Temp 165 degree F 

 RKB

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Well-X sidetrack schematic 
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6” Hole
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9-5/8" Prod Riser 
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Figure 5.2: Well-X inclination versus MD 
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Figure 5.3: Well-X HD versus TVD 
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Figure 5.4: Well-X PP-FP profiles 

There is risk of lost returns in the depleted B sand below the gas sand shown in 

Figure 5.4. The high ECD due to the slim hole, low FP at 17400 ft in the depleted zone, 

and uncertainty in PP at 15632 ft represent a formidable drilling challenge requiring 

precise wellbore pressure management. 

5.2 Descriptions of Simulations  

 Three different initial responses, namely ‘shut-in the well’, ‘apply back pressure’ 

and ‘increase of pump rate’ were simulated for a range of possible well conditions to 

compare the results of the different initial responses. An overall summary of the reaction 

options and the controlling well conditions that were simulated in this study are presented 

in Table 5.2. A total of 36 simulations involving kicks while drilling into the over-

pressured sand at 15632 ft in this slim hole sidetrack were undertaken. Varying kick sizes, 
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type of drilling mud (water-based or oil-based), type of reservoir fluid (gas or oil) were 

considered for these simulations 

The drilling operations were simulated for all cases with weight on bit (WOB): 

20,000 lbf and rotary speed: 100 rpm. The WOB was chosen according to the available 

buoyed weight of the BHA. The rotary speed was chosen within the standard range 

normally used in rotary drilling. The pump rate was kept low, 150 gpm; for most cases due 

to high frictional pressure losses in the slim hole geometry.  

 A batch of 5 simulations, labeled 1M, were run where kicks were induced in the 

well from the high pressure gas sand while drilling through a deeper weak formation with 

partial losses. A higher flow rate, 225 gpm, was used in these simulations, so that the high 

pressure upper sand can be drilled through with a slight overbalance before penetrating the 

weak formation. 

A final simulation, S/No 42 was run to observe the system behavior when the 

increase back pressure response was taken to a false alarm. 

All simulations were conducted with a drilling mud represented with a Newtonian 

fluid rheological model.  

In general, three different options of initial responses were simulated for the same 

input data. Simulating each alternative initial response required only different run-time 

control inputs to the simulator. 

5.3 Simulations of Sub Group-1A, 1B and 1C 

A total of 9 simulations in three batches with three different kick sizes were run in 

these simulations to compare the effectiveness of three different initial reactions to a gas 

kick in water-based mud. 
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Table 5.2: Well-X simulation cases 

Kick Intensity Kick Volume (bbl) 
Type 

of 
Mud 

Sub 
Group S/No Case 

No Initial Kick response Mud 
weight 

Reservoir 
Fluid 

Static Dynamic 

Productivity 
Index 

(MMSCF/day-
psi) / 

(STB/day-psi) 
 High  Medium Low  

1 Case 1 Shut-in Well 13.2 Gas 0.4 ppg 68 psi 0.4286     0.64 WBM 
2 Case 2 Apply Back Pressure 13.2 Gas 0.4 ppg 68 psi 0.4286     0.72 WBM  1A 
3 Case 3 Increase Mud Flow Rate 13.2 Gas 0.4 ppg 68 psi 0.4286     0.76 WBM 
4 Case 4 Shut-in Well 13.2 Gas 0.4 ppg 68 psi 0.4286 16.4     WBM 
5 Case 5 Apply Back Pressure 13.2 Gas 0.4 ppg 68 psi 0.4286 16.35     WBM 1B 
6 Case 6 Increase Mud Flow Rate 13.2 Gas 0.4 ppg 68 psi 0.4286 16.35     WBM 
7 Case 7 Shut-in Well 13.2 Gas 0.4 ppg 68 psi 0.4286   4.83   WBM 
8 Case 8 Apply Back Pressure 13.2 Gas 0.4 ppg 68 psi 0.4286   4.89   WBM 1C 
9 Case 9 Increase Mud Flow Rate 13.2 Gas 0.4 ppg 68 psi 0.4286   4.89   WBM 

10 case 1A Shut-in Well 13.2 Oil 0.4 ppg 68 psi 87 15.49     WBM 
11 case 2A Apply Back Pressure 13.2 Oil 0.4 ppg 68 psi 87 15.35     WBM 1D 
12 case 3A Increase Mud Flow Rate 13.2 Oil 0.4 ppg 68 psi 87 15.35     WBM 
13 case 4A Shut-in Well 13.2 Oil 0.4 ppg 68 psi 87   5.71   WBM 
14 case 5A Apply Back Pressure 13.2 Oil 0.4 ppg 68 psi 87   5.84   WBM 1E 
15 case 6A Increase Mud Flow Rate 13.2 Oil 0.4 ppg 68 psi 87   5.84   WBM 
16 case 7A Shut-in Well 13.2 Oil 0.4 ppg 68 psi 87     0.96 WBM 
17 case 8A Apply Back Pressure 13.2 Oil 0.4 ppg 68 psi 87     1.03 WBM 1F 
18 case 9A Increase Mud Flow Rate 13.2 Oil 0.4 ppg 68 psi 87     1.03 WBM 
19 case 1B Shut-in Well 13.2 Gas 0.4 ppg 110 psi 0.4286 16.18     OBM 
20 case 2B Apply Back Pressure 13.2 Gas 0.4 ppg 110 psi 0.4286 15.98     OBM 1G 
21 case 3B Increase Mud Flow Rate 13.2 Gas 0.4 ppg 110 psi 0.4286 15.71     OBM 
22 case 4B Shut-in Well 13.2 Gas 0.4 ppg 110 psi 0.4286   6.5   OBM 
23 case 5B Apply Back Pressure 13.2 Gas 0.4 ppg 110 psi 0.4286   6.38   OBM 1H 
24 case 6B Increase Mud Flow Rate 13.2 Gas 0.4 ppg 110 psi 0.4286   6.27   OBM 
25 case 7B Shut-in Well 13.2 Gas 0.4 ppg 110 psi 0.4286      1.02 OBM 
26 case 8B Apply Back Pressure 13.2 Gas 0.4 ppg 110 psi 0.4286      1.12 OBM 1I 
27 case 9B Increase Mud Flow Rate 13.2 Gas 0.4 ppg 110 psi 0.4286      1.13 OBM 

Table 5.2 Cont. 
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28 case 1C Shut-in Well 13.2 Oil 0.4 ppg 110 psi 0.4286 15.55     OBM 
29 case 2C Apply Back Pressure 13.2 Oil 0.4 ppg 110 psi 0.4286 15.74     OBM 1J 
30 case 3C Increase Mud Flow 

Rate 13.2 Oil 0.4 ppg 110 psi 0.4286 16.24     OBM 

31 case 4C Shut-in Well 13.2 Oil 0.4 ppg 110 psi 0.4286   7.5   OBM 
32 case 5C Apply Back Pressure 13.2 Oil 0.4 ppg 110 psi 0.4286   7.31   OBM 1K 
33 case 6C Increase Mud Flow 

Rate 13.2 Oil 0.4 ppg 110 psi 0.4286   7.47   OBM 

34 case 7C Shut-in Well 13.2 Oil 0.4 ppg 110 psi 0.4286     1.36 OBM 
35 case 8C Apply Back Pressure 13.2 Oil 0.4 ppg 110 psi 0.4286     1.51 OBM 1L 
36 case 9C Increase Mud Flow 

Rate 13.2 Oil 0.4 ppg 110 psi 0.4286     1.49 OBM 

37 case 1D Apply Back Pressure 13.2 Gas 0.4 ppg - 0.4286   10   WBM 
case 1D-

Altternate-1 Apply Back Pressure 13.2 Gas 0.4 ppg - 0.4286   10   WBM 38 
In this simulation the return flow rate was forced to equal the pumping rate until the end of simulation 

case 1D-
Altternate-2 Apply Back Pressure 13.2 Gas 0.4 ppg - 0.4286   10   WBM 

39 In this simulation the return flow rate was forced to equal the pumping rate for about 23 minutes, and thereafter, attempted to 
maintain the drillpipe pressure constant by choke adjustments 

40 case 2D- Shut-in Well 13.2 Gas 0.4 ppg - 0.4286   10   WBM 

41 case 3D Increase Mud Flow 
Rate 13.2 Gas 0.4 ppg - 0.4286   10   WBM 

1M 

Remarks: This group of simulations involve kicks from upper sand because of  lost returns in a deeper weak formation 
- 42 case 0 Apply Back Pressure 13.2 Response to False Alarm  WBM 

 

 



   

The input data for these simulation cases is provided in Appendix: A1. Table 5.3 

describes the nomenclature for the various simulations undertaken under these sub-groups. 

The Table 5.4 summarizes the simulation results of these sub-groups. Note that gains are 

quantified in pounds because the simulator uses this unit rather than barrels. 

Table 5.3: Nomenclature of sub-group 1A, 1B and 1C simulations 
Kick Volume 

(bbl) Sub Group Simulation Option 

Case 1 Shut-in Well 
Case 2 Apply Back Pressure low            

(0.64 – 0.76) 1A 
Case 3 Increase Mud Flow Rate 

Shut-in Well Case 4 
Case 5 Apply Back Pressure high           

(16.35 – 16.40)1B 
Case 6 Increase Mud Flow Rate 

Shut-in Well Case 7 
Case 8 Apply Back Pressure medium        

(4.83 – 4.89) 1C 
Case 9 Increase Mud Flow Rate 
 

Table 5.4: Summary results of group 1A, 1B and 1C simulations 
Gas Kick Volume (bbl) 

Group 1A Group 1C Group 1B 
4.83-4.89(medium 

Volume) 0.64-0.76 (low volume) 16.35-16.4 (high volume) 
Initial 

Response 
to Kick 

Additional 
Gain after 
reaction 

until 
stoppage of 
influx (lb) 

Additional 
Gain after 
reaction 

until 
stoppage of 
influx (lb) 

Additional 
Gain after 
reaction 

until 
stoppage of 
influx (lb) 

Max 
Surface 
Pressure 

(psi) 

Max 
Surface 
Pressure 

(psi) 

Max 
Surface 
Pressure 

(psi) 
   

   
Shut-in 114.43 53.05 101.36 404 457 520 

   
Apply 
Back 
Pressure 

   
183.45 124.00 871.45 179 263 357 

   
Increase 
Mud Flow 
Rate 

   
14.01 56 33.14 52 150.03 54 

   
 
All three initial reactions were successful in stopping the formation fluid influx. It 

may be noted that larger the kick volume, the higher the surface pressure for all three 
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options. Also, for each kick volume category, surface pressure is highest for the ‘shut-in’ 

option and lowest for the ‘increase mud pump rate’ option. The mud pump rates were 

raised to 190 gpm, 200 gpm and 230 gpm to stop the formation fluid influx for ‘increase 

mud pump rate’ option for low, medium and high volume kicks respectively. These flow 

rates were easily achievable, and the increase in drillpipe pressure for higher circulation 

rate was within the pump pressure limit. 

No distinguishable pattern of the amount of additional influx after the initial 

reaction was noticed. The amount of additional influx will depend on several factors such 

as the influx feed-in rate at the start of the initial reaction, how quickly the choke was 

adjusted to increase the surface pressure, and how quickly the mud pump rate was 

increased to increase the ECD. For example for the ‘apply back pressure’ option, the choke 

was manually adjusted in small steps until the flow-out was equal to the flow-in. Similarly 

for the ‘increase flow rate option’, the mud pump rate was increased in steps until the flow-

out became equal to the flow-in. A human factor is also involved to an extent, especially 

regarding timing, for manual choke and mud pump operations. On the other hand in the 

‘shut-in’ option, the choke was closed almost instantaneously. Therefore, a true 

comparison of the effectiveness of different initial reactions in terms of additional gain 

before the stoppage of influx depends on the timing of manual actions and was not made.  

5.4 Simulations of Sub Group-1D, 1E and 1F 

The next three batches of simulations were run with oil as the reservoir fluid 

instead of gas. All other input data including drilling parameters were same. High, medium 

and low kick volumes were simulated in sub-group 1D, 1E and 1F respectively. In each 

sub-group, three different initial responses to kick were simulated, and the results were 
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compared. Table 5.5 describes the nomenclature for the various simulations undertaken 

under these sub-groups. Table 5.6 summarizes the simulation results of these sub-groups. 

All three initial responses were successful in stopping the formation fluid influx. The 

advantage of the ‘increase flow rate’ option is that the surface pressure was minimum, and 

therefore there was the least chance of formation breakdown during the initial reaction. 

Table 5.5: Nomenclature of sub-group 1D, 1E and 1F simulations 
Kick Volume 

(bbl) Sub Group Simulation  Option 

Case 1A Shut-in Well 

Case 2A Apply Back Pressure 
high            

(15.35-15.49)  1D 

Case 3A Increase Mud Flow Rate 

Case 4A Shut-in Well 

Case 5A Apply Back Pressure medium          
(5.71 - 5.84) 1E 

Case 6A Increase Mud Flow Rate 

Case 7A Shut-in Well 

Case 8A Apply Back Pressure low            
(0.96 - 1.03) 1F 

Case 9A Increase Mud Flow Rate 

   
Table 5.6: Summary results of group 1D, 1E and 1F simulations 

Oil Kick Volume (bbl) 
Group 1F Group 1E Group 1D 

0.96-1.03 (low volume) 5.71-5.84 (medium Volume) 15.35-15.49 (high volume) 
Initial 

Response 
to kick 

   Additional 
Gain after 

reaction until 
stoppage of 
influx (lb) 

Additional 
Gain after 

reaction until 
stoppage of 
influx (lb) 

Max 
Surface 
Pressure 

(psi) 

Additional Gain 
after reaction until 
stoppage of influx 

(lb) 

Max 
Surface 
Pressure 

(psi) 

Max 
Surface 
Pressure 

(psi) 
   

Shut-in 133.02  
 

54.24 139.68 379 408 438 
   
           

212 Apply Back 
Pressure 58.06 171.07 903 261 320 

   
Increase 
Mud Flow 
Rate 

   
19.64 44.97 114.94 54 40 55 
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As expected, the surface pressure was maximum for the shut-in option for all sizes 

of kicks, and a higher kick volume resulted in a higher surface pressure to stop the influx. 

The mud pump rates were raised to 180 gpm, 190 gpm and 200 gpm to stop the formation 

fluid influx for ‘increase mud flow rate’ option for low, medium and high volume kicks 

respectively.  

5.5 Simulations of Sub Group-1G, 1H and 1I 

The next three batches of simulations were run with gas as the reservoir fluid and 

oil-based mud as the drilling fluid. All other input data including drilling parameters were 

same. In each sub-group, three different initial responses to kick were simulated, and the 

results were compared. Table 5.7 describes the nomenclature for the various simulations 

undertaken under these sub-groups. Table 5.8 summarizes the simulation results of these 

sub-groups.  

Table 5.7: Nomenclature of sub-group 1G, 1H and 1I simulations 

Sub Group Kick Volume (bbl) Simulation  Option 

Case 1B Shut-in Well 

Case 2B Apply Back Pressure 
high              

(15.71-16.18)  1G 

Case 3B Increase Mud Flow Rate 

Case 4B Shut-in Well 

Case 5B Apply Back Pressure 
medium           

(6.27 - 6.50) 1H 

Case 6B Increase Mud Flow Rate 

Case 7B Shut-in Well 

Case 8B Apply Back Pressure 
low              

(1.02 - 1.13) 1I 

Case 9B Increase Mud Flow Rate 
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Table 5.8: Summary results of group 1G, 1H and 1I simulations 
 Gas Kick Volume (bbl) 

Group 1I Group 1H Group 1G 

1.02 – 1.13  (low  volume) 6.27-6.50 (medium Volume) 15.71-16.18 (high  volume) 
Initial 

Response 
to Kick 

Additional 
Gain after 

reaction till 
stoppage of 
influx (lb) 

Additional 
Gain after 

reaction till 
stoppage of 
influx (lb) 

Additional 
Gain after 

reaction till 
stoppage of 
influx (lb) 

Max Surface 
Pressure (psi) 

Max Surface 
Pressure (psi) 

Max Surface 
Pressure (psi) 

   

  
Shut-in 65.43 43.00 494 51.86 376 647  

    
Apply 
Back 
Pressure 

  
154.50 190 265.08 240 577.56  345 

   
Increase 
Mud Flow 
Rate 

   
66.99 35 35.72 54 363.51 55 

   

 
All three initial reactions were successful in stopping the formation fluid influx. 

Surface pressures were higher for shut-in options than ‘apply back pressure’ option for all 

sizes of kicks, and a higher kick volume resulted in a higher surface pressure to stop the 

influx. 

Compared to water base mud, a rapid increase in return mud flow rate was 

observed with oil base mud as the high pressure reservoir was penetrated. Although the 

mud weights were same for both mud types, the frictional pressure losses in the wellbore 

for oil base mud was less than for the water base mud. For the simulation cases with oil 

base mud, the bottom hole pressure at the time the kick was taken was 42 psi less than the 

simulation cases with water base mud, which caused the higher feed-in rate of formation 

fluid into the wellbore.  

The pump rates were raised to 210 gpm, 220 gpm and 270 gpm to stop the 

formation fluid influx for low, medium and high volume kicks respectively. 

Table 5.9 records the ‘mud flow rate’ required to stop formation fluid influx for the 

‘increase pump rate’ reaction for the group 1A through group 1I simulation runs. 
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Table 5.9: Mud pump rate for stopping formation fluid influx for group 1A -1I simulations 
Kick Size 

Kick Fluid Mud Type Simulation No Medium 
(gpm) Low (gpm) High (gpm) 

Case 3 190     

Case 6     230 Gas WBM 

Case 9   200   
Case 3A     200 
Case 6A    190   Oil WBM 
Case 9A 180     
Case 3B     270 
case 6B   220   Gas OBM 
Case 9B 210     

 
The data in table 5.9 shows that higher rate was required to stop the formation fluid 

influx for oil base mud than for water base mud for all three kick sizes. This is 

understandable as the borehole frictional pressure losses were lower in oil base mud than 

in water base mud. Also as expected, a higher pump rate was required to stop a larger 

formation fluid influx. 

5.6 Simulations of Sub Group-1J, 1K and 1L 

The next three batches of simulations were run with oil as the reservoir fluid and oil 

base mud as the drilling fluid. All other input data for simulations including drilling 

parameters were same. In each sub-group, three different initial responses to kick were 

simulated, and the results were compared. Table 5.10 describes the nomenclature for the 

various simulations undertaken under these sub-groups.  

Table 5.10: Nomenclature of sub-group 1J, 1K and 1L simulations 
Kick Volume 

(bbl) Simulation  Option Sub Group 

Case 1C Shut-in Well 
Case 2C Apply Back Pressure high             

(15.55-16.24)  1J 
Case 3C Increase Mud Flow Rate 
Case 4C Shut-in Well 
Case 5C Apply Back Pressure medium          

(7.31 - 7.50) 1K 
Case 6C Increase Mud Flow Rate 
Case 7C Shut-in Well 
Case 8C Apply Back Pressure low             

(1.36 - 1.51) 1L 
Case 9C Increase Mud Flow Rate 
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Table 5.11 summarizes the simulation results of these sub-groups. 

Table 5.11: Summary results of group 1L, 1K and 1J simulations 
 Oil Kick Volume (bbl) 

Group 1L Group 1K Group 1J 
7.31-7.5 1.36 -1.51 (low volume) (medium 

Volume) 
15.55 – 16.24 (high 

volume) Initial 
Response 

to Kick 
Additional 
Gain after 
reaction 

until 
stoppage of 
influx (lb) 

Additional 
Gain after 
reaction 

until 
stoppage of 
influx (lb) 

Additional 
Gain after 
reaction 

until 
stoppage of 
influx (lb) 

Max 
Surface 
Pressure 

(psi) 

Max 
Surface 

Pressure 
(psi) 

Max 
Surface 
Pressure 

(psi) 
   

   
Shut-in 137.96 119.68 71.72 359 389 480 

   
Apply 
Back 
Pressure 

   
90.92 228.99 323.64 166 233 405 

   
Increase 
Mud Flow 
Rate 

   
52.24 54 87.47 60 162.19 59 

   
 
All three initial reactions were successful in stopping the formation fluid influx. 

Surface pressures were higher for bigger size kicks for all three options. The maximum 

surface pressures were recorded for shut in options.  

The mud flow rates were raised to 200 gpm, 240 gpm and 260 gpm to stop the 

formation fluid influx for the ‘increase mud flow rate’ option for low, medium and high 

volume kicks respectively. The trend is similar to that for gas kicks in oil base mud. 

5.7 Discussions on Simulations of Sub Group 1A through 1L 

 The three initial reactions simulated to stop the influx resulting from gas and oil 

kicks of varying sizes from a high productivity reservoir in water-based as well as oil-

based mud systems were successful in a deep well with a slim hole geometry.  In a 

relatively large window with 15.1 ppge fracture gradient at the weakest formation at the 

depth of sidetrack and 13.6 ppge pore pressure gradient at the kick zone, the maximum 

surface pressure did not cause formation breakdown in any of these simulations. However, 
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in a narrow PP-FP window, the surface pressure is a very important factor that will 

determine the effectiveness of the initial reactions to kick. It has been observed that the 

surface pressure was maximum in the shut-in option irrespective of kick sizes, types of 

kick fluid and mud type. 

 In a slim hole geometry, the ‘increase pump rate’ option has a definite advantage 

of having the lowest surface pressure because an increased ECD is used to increase the 

bottomhole pressure to counterbalance the pore pressure.  

The additional gain after the initial reaction will impact the surface pressure 

required to stop the influx for the ‘shut-in’ and the ‘apply back pressure’ options. The 

impact is generally small if the reaction times are short. Since reaction times for choke 

adjustment in the ‘apply back pressure’ option, pump speed adjustment in the ‘increase 

pump rate’ option and closing the choke in the shut-in option are dependent on the 

individual operator’s actions in a manually controlled system, a comparison of additional 

gains taken during the initial reactions are not  meaningful in this study.  

Formation flow was stopped successfully in all of these simulations without losing 

returns. Therefore, a comparison of the cases from the perspective of identifying whether 

feed-in was successfully stopped or lost returns have occurred is not possible without 

conducting additional simulations. 

5.8 Simulations of Sub Group-1M 

 Lost returns in the depleted zone below the high pressure gas sand were a specific 

concern for the example well. The simulations in Sub Group 1M were set up with a 

fracture pressure of 10,000 psi, equivalent to 13.54 ppg at a depth of 16130 ft representing 

the depleted sand. This resulted in a very narrow window between that fracture gradient 
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and the pore pressure of 9901 psi, equivalent to 13.6 ppg in the gas sand. Consequently 

these simulations present a case with essentially a certainty that either the gas sand will be 

flowing or losses will be occurring in the zone at 16130 ft or both. These simulations are 

intended to provide a basis for comparing the effectiveness of different initial responses in 

this scenario.  

 The fracture pressure was changed in the input data at 16130 ft. to simulate fracture 

in the well. The injectivity at 16130 ft was changed to a higher value of 0.4 mmscfd / psi. 

All other input data for this group of simulations were kept same as the case where gas 

kicks were simulated before. The well was drilled with 13.2 ppg mud with a higher mud 

flow rate (225 gpm) compared to the previous simulations so that the high pressure sand 

could be drilled through with a dynamic overbalance preventing a kick.  

The simulation began by drilling the well below the high pressure zone at 15632 ft 

with dynamic overbalance, until losses were experienced at 16130 ft at about 265 minutes 

into the simulation, see Figure 5.5. Drilling continued, losses gradually increased, and the 

return flow rate declined to about 150 gpm versus the pumping rate of 225 gpm at about 

320 minutes into the simulation. Thereafter, the return flow rate began increasing, 

exceeding the pumping rate at about 350 minutes. 

Evidence of a kick occurring became stronger as drilling continued to 16287 ft, and 

a 10 bbl net gain after the flow-out started to exceed the flow-in was used as the starting 

condition for simulating reactions to this kick. In this case, the kick from the high pressure 

sand at 15632 ft was triggered by the loss of ECD due to the losses in the weak depleted 

zone at 16130 ft. The three options for initial reactions to a kick were simulated to control 
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the well, which are described below. Several variations of the ‘apply back pressure’ option 

were simulated to observe the sensitivity of the results to the specific approach used. 

5.8.1 Apply Back Pressure - Case 1D 

 Back pressure was applied through the choke to reduce the return flow rate 

gradually to the level of flow rate-in, see Figure 5.5 at about 360 minutes. At that stage, 

control was switched to maintain the drillpipe pressure constant by adjusting the choke to 

circulate out the kick maintaining a constant bottomhole pressure. However, the drillpipe 

pressure continuously declined despite further reduction in the choke opening in an attempt 

to keep the drillpipe pressure constant. Finally the well was completely closed on choke 

just before 380 minutes. The simulation was continued for about another 30 minutes to 

observe the trend of choke pressure and the drillpipe pressure. Figure 5.5 shows that the 

drillpipe pressure and the choke pressure were nearly constant after the well was closed 

with continued pumping implying no significant gas migration and total mud losses.  

 Figure 5.6 and Figure 5.7 show plots of formation fluid flow profile before the back 

pressure application and at the end of simulation when the choke was completely closed, 

respectively. From these two plots, it may be seen that there were simultaneous loss and 

kick in the well before back pressure application. Conversely at the end of simulation, the 

well was only experiencing lost returns in the fractured zone, and the influx had stopped. 

Pumping at a constant rate of 225 gpm while holding drillpipe pressure of 2250 – 2300 psi 

successfully stopped the formation flow, but resulted in total lost returns. 
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Figure 5.5: Well behavior versus time for well-x, sub-group 1M, case 1D – back pressure   
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Figure 5.6: Formation flow profile before applying back pressure 

   for well-x, sub-group 1M, case-1D – back pressure 
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No Kick 

Losses 

 
Figure 5.7: Formation flow profile at the end of simulation 

 for well-x, sub-group 1M, case-1D – back pressure 
 
5.8.1.1 Apply Back Pressure - Case 1D-Alternate-1 

A second variation of the ‘apply back pressure’ response was simulated to 

determine the effect of forcing flow rate-out to equal flow rate-in for an extended period of 

time. The choke was adjusted to keep the return flow rate same as the flow rate-in from 

350 minutes to the end of the simulation, see Figure 5.8. It may be seen that this resulted in 

gas flowing to the surface at a progressively higher rate until the end of simulation at about 

480 minutes. The well was flowing at 3767 scfm (5.42 mmscfd) at the end of simulation. 

The choke pressure also continued to increase during this period. The drillpipe pressure 

gradually declined from about 2250 psi to 2200 psi despite the increase in choke pressure. 

This approach resulted in a failure to prevent continuous formation flow to the surface 

despite drillpipe pressure being only 100 psi less than the previous case, however, the 

losses had ceased.  
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Figure 5.8: Well behavior versus time for well-x, 

 sub-group 1M, case 1D-Alternate-1 – back pressure  
 

5.8.1.2 Apply Back Pressure - Case 1D-Alternate-2 

 A third variation of the ‘apply back pressure’ reaction was simulated to try to more 

carefully select the drillpipe pressure to maintain constant. All of the input data for this 

simulation is same as the previous two simulations. The choke was adjusted to maintain 

the flow-out equal to flow-in for about 23 minutes, and thereafter, the control was switched 

to maintain the drillpipe pressure constant by choke adjustments. This resulted in 

maintaining a drillpipe pressure of about 2235 psi, see Figure 5.9. Figure 5.10 shows how 

more back pressure was applied to check the decline trend of the drillpipe pressure and an 

increasing rate of gas flowing at surface until about 445 minutes. This induced a higher 

rate of losses in the fracture. The return flow was reduced to 30 gpm when drillpipe 

pressure was nearly stabilized. The gas flow rate peaked and then slowly declined. The 

drillpipe pressure was maintained with little choke adjustment until the end of simulation 
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while loosing returns at a steady rate. The choke pressure gradually decreased as the rate of 

gas flow reduced.  

The simulation was run for prolonged duration until the gas flow rate-out was 

nearly reduced to zero. Figure 5.9 shows time-based composite plots of drillpipe pressure, 

choke opening, flow-in and flow-out from 360 to 400 minutes of simulation. Figure 5.10 

and Figure 5.11 show the composite plots of drillpipe pressure, choke pressure, choke 

opening, gas flow out, flow-in and flow-out  from 375 to 800 minutes and from 800 

minutes to the end of simulation respectively.  
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Figure 5.9: Well behavior versus time (360 to 400 minutes)  

for well-x, sub-group 1M, case 1D-Alternate-2 – back pressure  
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Figure 5.10: Well behavior versus time (375 to 800 minutes) for well-x, 

 sub-group 1M, case 1D-Alternate-2- back pressure 
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Figure 5.11: Well behavior versus time (800 minutes to the end of simulation) 

 for well-x, sub-group 1M, case 1D-Alternate-2 – back pressure  
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 Figure 5.12 is a time-based plot of choke pressure, drillpipe pressure, bottomhole 

pressure and gas flow-out from 360 minutes to the end of simulation. It may be seen that 

the bottomhole pressure was also constant along with a constant drillpipe pressure. 

Figure 5.13 shows the liquid holdup profile at the end of simulation. The liquid 

holdup at the kick zone at the end of simulation is 100 percent implying no influx into the 

wellbore.  The high holdup, greater than 98 percent, indicates that essentially all of the gas 

has been successfully removed from the well. The low flow rate-out in Figures 5.10 and 

5.11 confirm that significant losses are still occurring 

These simulations for a kick caused by lost returns in a deeper zone with a fracture 

pressure only 100 psi more than the kick zone formation pressure demonstrate the 

difficulty controlling this scenario. Completely successful well control, i.e. stopping 

formation feed-in and maintaining full returns was not possible. A variation of less than 

100 psi in wellbore pressure caused results ranging from essentially uncontrolled gas flow 

to the surface to complete lost returns.  

5.8.2 Shut-in Well - Case 2D 

 Another potential response that was simulated is shutting the well in. The well was 

shut-in after taking a 10 bbl kick, and the choke pressure and drillpipe pressure were 

monitored. In this simulation, the float was removed so that the drillpipe pressure could be 

monitored. Figure 5.14 is a time-based composite plot of flow rate-in, flow rate-out, choke 

opening, choke pressure and the drillpipe pressure during the simulation run. It is 

interesting to note that even without a float, the drillpipe pressure did not respond to the 

continuous increase in choke pressure that resulted due to gas migration in the closed well. 
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Figure 5.12: Choke, drillpipe and bottomhole pressure versus time from 360 minutes to the 

end of simulation for well-x, sub-group 1M, case1D-Alternate-2 – back pressure 
 

 
Figure 5.13: Liquid holdup profile at the end of simulation  

for well-x, sub-group 1M, case 1D-Alternate-2 – back pressure 
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This could be due to non-intact wellbore with losses below the kick zone, but is not 

consistent with the bottomhole pressure of 9,900 to 10,000 psi shown in Figure 5.15. This 

inconsistency has not been resolved. Figure 5.15 shows a time-based composite plot of 

choke pressure, drillpipe pressure and the bottomhole pressure during the simulation. It 

may be seen that the choke pressure and the bottomhole pressure were fluctuating after the 

well was closed. This may suggest a cyclic pattern of gain from the upper kick zone and 

loss from the lower weak zone in a closed well, experiencing gas migration. However, the 

short period of these rapid fluctuations is probably more related to the simulation code than 

to actual well behavior.  

Figure 5.16 shows the liquid holdup profile at the end of simulation. The profile 

suggests that the influx from 15632 ft is continuing as gas is migrating toward the surface.  

Lost returns in the zone at 16130 ft is probably also occurring, at least intermittently.  

5.8.3 Increase Mud Pump Rate - Case 3D 

The final response evaluated was increasing the mud pumping rate. The pump rate 

was increased gradually, after taking a 10 bbl gas kick, to increase the ECD in an attempt 

to stop the influx. The flow rate-out was monitored against the flow rate-in to identify 

stoppage of influx. When the pumping rate was increased to 395 gpm, the pump relief 

valve tripped as the pressure limit was reached. As shown at the end of the simulation in 

Figure 5.17, the flow-out was then nearly equal to the pumping rate. Because of losses, the 

pumping rate required to increase ECD to counterbalance the pore pressure is higher in this 

case than the previous simulations where the wellbores were intact and was never 

achieved.  
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Figure 5.14: Well behavior versus time for well-x, sub-group 1M, case 2D- shut-in 
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Figure 5.15: Choke pressure, bottomhole pressure and drillpipe pressure versus time of 

well-x, sub-group 1M, case-2D – shut-in 
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Figure 5.16: Liquid holdup profile at the end of simulation 

 for well-x, sub-group 1M, Case-2D – shut-in 
 

Figure 5.17 shows the composite time-based plot of flow rate-in, flow rate-out and 

drillpipe pressure. In this case, in spite of a slim hole geometry with narrow annular 

clearance, the ‘increase flow rate’ option to stop the formation influx was not effective 

because of losses in the wellbore below the kick zone. Figure 5.18 shows the formation 

fluid flow profile at the end of simulation. It may be seen that both losses and influx were 

occurring simultaneously, confirming that the increased pump rate was not adequate to 

stop the influx.  

5.8.4 Discussions on Sub Group 1M Simulations 

 It has been seen that in a narrow PP-FP window, continued drilling with losses into 

a weak zone may trigger a kick from an upper high pressure zone. While drilling with 

partial losses, the initiation of a kick from the high pressure zone may not be identified 

until the return flow rate increases significantly above the pumping rate. In actual drilling, 

it is likely that a decline in loss rate will be interpreted as bridging or sealing of fractures 
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rather than a threatened kick until the rate or volume of flow back is substantial. Successful 

well control was not achieved with any of the alternative reactions in this scenario.  
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Figure 5.17: Flow rate-in, flow rate-out and drillpipe pressure versus time  

for well-x, sub-group 1M, case-3D – increase mud flow rate 
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Figure 5.18: Formation fluid flow profile at the end of simulation 

 for well-x, sub-group 1M, case-3D – increase mud flow rate 
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Increasing mud flow rate to dynamically overbalance the kick zone pressure was 

not successful as the necessary additional ECD above the kick zone could not be 

generated. It is unlikely that this approach will be successful in any scenario with 

significant losses below the kick zone. Logically, however, it might be the preferred option 

for avoiding losses above the kick zone.   

Shutting in the well stopped flow at the surface and the loss of muds from the pits. 

However, a continuous increase of the choke pressure was observed. Conclusions about 

whether influx from the formation and downhole losses have stopped are difficult to reach. 

In the simulation, the formation fluid flow profile suggested that the influx continued.  The 

fluctuation of the choke pressure and the bottomhole pressure after the well was shut-in 

may be indicative of cyclical loss and gain in the well. In addition, the casing pressure 

versus time was generally the highest of all the simulated reactions. 

The ‘application of back pressure’ to control the well was comprehensively 

simulated for prolonged periods and with different specific strategies to understand the 

complex behavior of the well in a simultaneous loss-gain scenario.  

Although none of the back pressure reactions effectively controlled the well 

without lost returns, the cases where the control was switched to maintain the drillpipe 

pressure constant after the flow-out became equal to the flow-in were able to stop the 

influx. However, there are multiple complications with this approach. Both variations on 

this approach required pumping with complete or almost complete lost returns. The 

difference in drillpipe pressure between cases with no flow to the surface and the case that 

circulated out the kick was only 50 psi. A clear-cut conclusion that formation feed-in had 

been stopped was not possible in either case. Specifically, the criteria of flow-out equal to 
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flow-in is neither conclusive nor straight forward to apply to kicks initiated by lost returns. 

Given that this scenario requires a wellbore pressure at the kick zone almost equal to the 

fracture pressure in the zone below it, an approach similar to the pressurized mud cap 

drilling method might be the most appropriate well control approach.  

5.9 Simulation of Base Case for Detection of False Alarm – Case 0 

 A final simulation was run, where the back pressure was applied through the choke, 

for a case without any noticeable kick in the well. The purpose of this simulation was to 

establish a baseline well response for comparison to cases with kicks and investigate the 

ability to identify a false alarm of a kick. The basic input data for this simulation was same 

as the group 1 simulations. At 15620 ft (12 ft shallower than the kick zone), drilling was 

discontinued to check whether the well was active or not.  The well was circulated for 

about 5 minutes with only slight changes in flow-out. Thereafter, the choke was gradually 

closed to increase the bottomhole pressure by increasing the choke pressure as if in 

response to a kick. The choke pressure was raised to about 100 psi, and thereafter, the 

choke opening size was held constant at 46 percent for about 5 minutes before ending the 

simulation. The response of the return flow rate, drillpipe pressure and the choke pressure 

to the choke adjustments were monitored during the simulation.  

Figure 5.19 shows a composite plot of flow rate-in, flow rate-out, choke pressure 

and choke opening for this simulation. The return flow rate did not increase during drilling 

or circulation, indicating that that the well was not underbalanced. The overall return flow 

rate was decreased slightly during the period from 32 to 37 minutes due to fluid 

compressibility in response to the choke size reduction. However, the return flow rate 

equalized with the pump rate within three minutes, indicating no lost returns or kick. The 
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choke pressure also stabilized and remained constant when the choke position was held 

constant implying no gas influx and lost returns.  

Figure 5.20 shows the response of the drillpipe pressure and the choke pressure to 

the choke opening size. It may be seen that the drillpipe pressure had gradually increased 

with back pressure application from about 31 to 40 minutes and then remained constant 

like the choke pressure as the choke opening was held constant, showing no indication of 

an influx or a gas migration effect. The simulator does not provide pit gain as an output, 

but the only change in pit level should be a slight reduction in the pit volume due to the 

compressibility of the wellbore fluid. This behavior is as expected, but it does not provide 

as conclusive a basis for rejecting false alarms as a flow check does for conventional 

drilling. 
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Figure 5.19: Response of choke pressure and flow rate-out to choke adjustments, 

  well-x, case 0 - detection of false alarm 
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6. SIMULATION OF REPRESENTATIVE WELL -Z 

6.1 Back Ground of Well Design 

A sponsor provided a well description that was selected as representative of large 

hole applications of MPD. The well is a planned wildcat well in shallow water. The 

operator has identified this well as a potential candidate for MPD due to narrow margin 

between the pore pressure and fracture pressure in both the shallow and deeper sections of 

the well. Table 6.1 provides a summary of relevant well data, and the well schematic and 

the PP-FP profiles are shown in Figure 6.1 and Figure 6.2 respectively. 

The 17-1/2 inch hole section of this well is an interesting candidate for MPD being 

a big hole with a rapidly increasing pore pressure (from 8.8 ppge at 3280 ft to 13.94 ppge 

at 4756 ft), and a progressively decreasing margin between the pore pressure and the 

fracture pressure. Therefore, it is a good candidate for simulated kicks to see the 

effectiveness of different initial responses for a large hole geometry. To maintain 

hydrostatic balance over the entire section interval from 3280 to 4756 ft, a minimum of 

13.94 ppg mud is required without considering a trip margin.  For these simulations, the 

well was drilled with a 12.51 ppg mud in order to induce kick in the lower section of the 

hole with a substantial section of open hole.  

Table 6.1: Summary data of well-Z 
Well Summary 

Well Name Well Z 
Vertical / Inclined Vertical 
Type of Well Wildcat 
Offshore / Onshore Offshore 
Water Depth 115 ft 
KB 140 ft 
TD  11480 ft 
Objective To Produce Gas / Oil 
Mud Type WBM / OBM 
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Figure 6.1: Well-Z schematic 

20" Riser 

4756 ft  

         TD @ 11480 ft 

RKB 

7", 26 #, N-80, 
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The 17-1/2 inch hole section of the well was drilled with 80,000 lbf WOB, 100 

RPM and 984 gpm mud flow rate using water-based mud as the drilling fluid. All 

simulations were conducted with a drilling mud represented with a Newtonian fluid 

rheological model. 

6.2 Description of Simulations 

Three different initial responses, namely ‘shut-in the well’, ‘apply back pressure’ 

and ‘increase in pump rate,’ were simulated for a range of possible well control scenarios 

to compare the results of the different initial responses. An overall summary of the reaction 

options and the controlling well conditions that were simulated in this study are presented 
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A simulation was run to observe the system behavior when the ‘apply back 

pressure’ response was taken to a false alarm. 

One simulation, S/No 15 was run to observe the system behavior when the 

‘increase back pressure’ reaction was taken to a false alarm.  

in Table 6.2. A total of 14 simulations involving kicks while drilling 17-1/2 inch hole into 

a gas sand at 4500 ft were simulated. Varying kick sizes, differential pressures at the kick   

zone and fracture injectivity indices at the shoe were considered in these simulations.   
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Table 6.2: Well - Z simulation cases 

Kick Intensity 
Kick 

Volume 
(bbl) 

 
Sub 

Group 
 

S/No Case No Initial Kick response Mud 
weight 

Reservoir 
Fluid 

Static Dynamic 

Productivity 
(MMSCF/day-

psi) 

Injectivity 
(MMSCF/day-

psi) 

High Low 

Type 
of Mud Remarks 

1 Case 1 Increase Mud Flow 
Rate 12.51 Gas 0.49 ppg 32 psi 0.5564 0.0004   5.5 WBM   

2 Case 2 Shut-in Well 12.51 Gas 0.49 ppg 32 psi 0.5564 0.0004   5.5 WBM   1 

3 Case 3 Apply Back Pressure 12.51 Gas 0.49 ppg 32 psi 0.5564 0.0004   5.5 WBM   

4 Case 1A Increase Mud Flow 
Rate 12.51 Gas 1.49 ppg 266 psi 0.5564 0.0004   5.5 WBM   

5 Case 2A Apply Back Pressure 12.51 Gas 1.49 ppg 266 psi 0.5564 0.0004   5.5 WBM   2 

6 Case 3A Shut-in Well 12.51 Gas 1.49 ppg 266 psi 0.5564 0.0004   5.5 WBM   

7 case 2A 
(longer) 

Apply Back Pressure & 
circulate out kick 12.51 Gas 1.49 ppg 266 psi 0.5564 0.0004   5.5 WBM 

  
3 

8 
case 3A 

(longer)-no 
float 

Shut-in Well for longer 
duration 12.51 Gas 1.49 ppg 266 psi 0.5564 0.0004   5.5 WBM 

  
9 Case 2B Apply Back Pressure 12.51 Gas 1.49 ppg 266 psi 0.5564 0.4 50   WBM   4 

10 Case 3B Shut-in Well 12.51 Gas 1.49 ppg 266 psi 0.5564 0.4 50   WBM   
11 Case 2C Apply Back Pressure 12.51 Gas 1.49 ppg 266 psi 0.5564 0.4   5.5 WBM   
12 Case 3C Shut-in Well 12.51 Gas 1.49 ppg 266 psi 0.5564 0.4   5.5 WBM   

case 2C-
Alternate-1 Apply Back Pressure 12.51 Gas 1.49 ppg 266 psi 0.5564 0.4   5.5 WBM  13 
In this simulation, flow rate-out was forced to equal the flow rate-in by choke adjustment until the end of simulation. 

case 2C-
Alternate-2 Apply Back Pressure 12.51 Gas 1.49 ppg 266 psi 0.5564 0.4   5.5 WBM 

 

5 

14 
In this simulation, flow rate-out was forced to equal to the flow rate-in for about 15 minutes, and thereafter, attempted to maintain the drillpipe pressure 
constant by choke adjustments. 

 15 Case 0 Apply Back Pressure 12.51 Gas Base Case – No Kick 0.5564 0.0004 - - WBM To identify 
False Alarm 



   

6.3 Simulations of Group 1  

A kick was identified by an increase in return flow while drilling a gas sand at 4500 

ft. At this depth, the mud hydrostatic pressure was 2927 psi (12.51 ppge), and the 

circulating bottomhole pressure was 3010 psi. The formation pore pressure at 4500 ft was 

13 ppge, i.e. 3042 psi. The drilling was continued to 4532 ft in an underbalanced condition 

with 32 psi differential pressure until about 5.5 bbl of gas kick was taken in the well.  

At that point, it was considered that the kick was identified, and each of the three 

primary alternative initial responses to stop the influx was simulated. The hard copy of the 

simulator input file is placed at Appendix A2. The results of these simulations are 

discussed in the subsequent subsections.  

6.3.1 Increase Mud Flow Rate – Case 1 

 The mud flow rate in, pump rate was slowly increased after the kick was identified 

to increase the wellbore frictional pressure in an attempt to stop the influx. The difference 

between the mud flow rate in and out was monitored to identify stoppage of formation 

fluid influx. As the pump rate was increased, the drillpipe pressure also increased. At an 

1155 gpm flow rate, the standpipe pressure reached the pump pressure limit of 6285 psi for 

6 inch liners. At that time, the formation fluid influx had not stopped as evidenced by the 

return flow rate, which was 1169 gpm, 14 gpm higher than the pump rate. Figure 6.3 

shows the time-based plot of the pump rate versus the mud flow rate-out. Figure 6.4 shows 

the pump pressure reaching its limit, and the formation fluid influx declining but not 

ceasing. Consequently, this was not a successful response for stopping the kick. 
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Figure 6.3: Flow rate-in and flow rate-out versus time  

for well-z, group1, case1 – increase mud flow rate 
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Figure 6.4: Mud flow rate, pump pressure, formation fluid influx versus time  

for well-z, group1, case1 – increase mud flow rate 
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 The friction factors for annular pressure losses are low in a bigger hole with large 

annular clearance, and therefore, the increase of mud pump rate has a smaller impact on 

the bottomhole pressure. The mud flow rate has a much higher impact on pump pressure 

due to the more rapid increase in frictional pressure losses in the drillstring because of the 

smaller flow areas through the drillpipe and the bit nozzles. In this study, the mud pump 

pressure limit was reached before the bottomhole pressure could adequately be increased to 

equal the pore pressure to stop the influx. The rig mud pump capacity plays an important 

role in determining whether dynamic well control will be effective or not, especially for a 

large size hole. For dynamic well control, the rig circulation system should have the 

capacity to pump at high circulating rate with high circulation pressure. To increase the 

pressure rating of the mud pump, the liner size has to be reduced, which reduces the 

maximum pump rate.  

In this study, the simulator input data for the mud pump capacities was equivalent 

to having 3 National triplex mud pumps, model: 14P-220 with a pressure rating of 6285 psi 

for 6 inch liner and 540 gpm each pumping capacity (total: 1620 gpm with 100 percent 

volumetric efficiency), were used in the simulator input data.  

MPD operations in big hole would require detailed hydraulics calculations during 

well design to determine the pump capacity required to dynamically control the well in the 

event of a kick. The pressure rating of the surface equipments in the circulation system 

would also need to match the requirement for a dynamic kill. 

6.3.2 Apply Back Pressure – Case 2 

 The back pressure, i.e. choke or casing pressure, was gradually increased after the 

kick was identified with about 5.5 bbl of gain. The return flow rate was monitored to 
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identify the stoppage of influx. At a reduced choke opening of 87 percent and 53 psi back 

pressure, the influx stopped at about 36 minutes into the simulation, see Figure 6.5. This 

was recognized by observing the return flow rate being the same as the flow rate-in. The 

choke pressure and the drillpipe pressure steadily increased in response to the reduction of 

choke opening size suggesting no lost returns during back pressure application. Figure 6.5 

shows a composite time-based plot of formation influx rate, choke pressure, drillpipe 

pressure, bottomhole pressure and the choke opening. It may be seen that the choke 

pressure began slowly increasing at about 49 minutes due to gas migration effect after the 

formation fluid influx stopped.  
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Figure 6.5: Well behavior versus time for well-z, group-1, case-2 – back pressure 

6.3.3 Shut-in – Case 3 

 The well was shut-in after taking a 5.5 bbl gain. A conventional flow check was not 

carried out before shutting-in the well because the well was assumed to be strictly 
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underbalanced before the kick was taken. However, a peak in the influx rate of formation 

fluid is shown in Figure 6.6. This is attributed to loss of annulus frictional pressure during 

gradual shut down of the mud pump. This peak could have been avoided by increasing the 

choke pressure to offset the loss of friction. After shut in, the influx stopped at a casing 

pressure of 74 psi which is slightly more than the casing pressure in the ‘apply back 

pressure’ option, as expected. As seen from Figure 6.6, a negligible amount of influx 

entered the wellbore before the influx stopped at 50 minutes. Similar to the ‘back pressure’ 

option, there were no signs of any lost returns in the wellbore after shut-in. 
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Figure 6.6: Well behavior versus time for well-z, group-1, case-3 - shut-in 

6.3.4 Summary Discussions on Group 1 Simulations 

 The ‘increase mud flow rate’ reaction to a kick is not likely to be effective in large 

size holes due to low annulus frictional pressure loss in a large annular geometry. Rig mud 

pump capacity is therefore likely to be the limiting factor as to whether it is possible to 
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stop the influx by higher wellbore frictional pressure. MPD operations in a bigger hole size 

require detailed hydraulics calculations in the planning stage to determine the required mud 

pump liner size to be used if stopping the influx by increasing mud flow rate is a desired 

reaction to a kick. A logical contingency is that one of the other reactions must be taken if 

the increase flow rate reaction does not conclusively stop the formation fluid influx. Also, 

a circulation sub48 may be used in the BHA, so that the side port(s) may be opened to 

divert the flow in the annulus, bypassing the bit nozzles to reduce the pump pressure to 

achieve a higher circulation rate. Another method to increase the ECD is to reduce the 

annular clearance by using drillpipe with a larger OD and ID15.  

 The ‘back pressure’ and conventional ‘shut-in’ options were equally effective for 

stopping the formation fluid influx for this well scenario. The casing pressure was lower in 

the case of the ‘back pressure’ option compared to the ‘shut-in’ option. A higher peak 

influx rate was observed in the shut-in option, but this should be eliminated if a pump shut 

down procedure appropriate to the CBHP method of MPD was followed. Given that both 

of these approaches successfully stopped formation feed-in without causing lost returns, 

these simulations do not provide a basis for evaluating these options for ease of confirming 

stoppage of feed-in or occurrence of lost returns 

6.4 Simulation Results – Group 2 

 The purpose of these simulations was to determine whether any well control 

reaction would be effective with a narrow margin between the pore pressure and the 

fracture pressure. Therefore, this group of simulated gas kicks was conducted assuming a 

larger differential pressure at the kick zone compared to group 1 simulation cases. The 

pore pressure in the kick zone at 4500 ft was changed to 14 ppge from 13 ppge of the 
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group 1 simulations. Mud weight was kept the same at 12.51 ppg to simulate kicks with a 

higher kick intensity of 1.49 ppge. With 14.15 ppge fracture pressure at the previous casing 

shoe at 3280 ft, the margin between the pore pressure and the fracture pressure was further 

narrowed to 0.15 ppge compared to group 1 simulations. Other than changing the pore 

pressure data, all input data in this group of simulations were the same as for the group 1 

simulations.  

The simulations began by drilling into the kick zone. A kick was identified by an 

increase in return flow while drilling a gas sand at 4500 ft with the same drilling 

parameters as in group 1 simulations. The bottomhole pressure at that time was 3010 psi, 

which was 266 psi less than the pore pressure of 3276 psi. The mud hydrostatic pressure at 

4500 ft was 2927 psi, and the annular frictional pressure was 83 psi. The well was drilled 

to 4513 ft in an underbalanced condition until the kick volume reached 5.5 bbl as in group 

1 simulations. Due to the larger negative pressure differential at the kick zone, the influx 

rate was higher than in the group 1 simulations with the same reservoir productivity index. 

Simulations were run to verify the effectiveness of each of the three different initial 

reactions to a kick. The results of these simulations are described in the following sections. 

  6.4.1 Increase Mud Flow Rate – Case 1A 

The formation fluid influx could not be stopped by increasing mud pump rate due 

to pump pressure limitation described in section 6.3.1. Figure 6.7 shows the time-based 

plot of mud flow-in due to pump rate versus mud flow-out. From this plot, it may be seen 

that the increase in mud flow rate had hardly any effect on stopping the influx when the 

pump rate was increased from 994 gpm to 1140 gpm. This was due to the larger negative 

pressure differential pressure at the kick zone compared to group 1 simulations. 
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Figure 6.7: Flow rate-in and flow rate out versus time 
 for well-z, group-2, case-1A - increase mud flow rate 

 
6.4.2 Increase Back Pressure – Case 2A 

 A 5.5 bbl gas kick was taken in the well while drilling a gas sand at 4500 ft.  

Drilling was discontinued, and back pressure was gradually applied through the choke 

while monitoring and comparing the return flow rate with flow rate-in. Figure 6.8 shows a 

composite time-based plot of mud flow rate-in, mud flow rate-out, choke pressure and 

drillpipe pressure. From this plot, we noticed possible lost returns at about 41 minutes of 

simulation time, and at that time the choke pressure was 355 psi. The maximum casing 

pressure before formation fracture under static conditions with only mud above the shoe 

was 279 psi with 12.51 ppg mud weight and 14.15 ppge fracture pressure at the shoe. At 

279 psi surface pressure, the return flow rate was 1057 gpm, which is 73 gpm more than 

the flow rate-in. 
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Figure 6.8: Well behavior versus time for well-z, group-2, case-2A - back pressure 

 
This implied that stopping influx by application of back pressure was not 

successful. The subsequent increases in casing pressure exceeded the maximum allowable 

and probably caused formation fracture.  

Figure 6.9 shows a snapshot of the formation flow profile at 35 minutes into the 

simulation.  It confirms that simultaneous kick feed-in and losses were taking place 

downhole before the possible lost returns were observed at the surface at 41 minutes into 

the simulation. It was expected that lost returns would result when the total of choke 

pressure, hydrostatic pressure and annular frictional pressure losses caused the pressure at 

the shoe to exceed the 14.15 ppge fracture pressure. However, there is no clear indication 

of lost circulation from the choke pressure and drillpipe pressure in Figure 6.8 
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Loss 

Kick 

 
Figure 6.9: Snapshot of simultaneous kick and loss at 35 minutes  

for well-z, group-2, case-2A - back pressure  
 

6.4.3 Shut-in – Case 3A 

The well was shut-in after taking a 5.5 bbl kick while drilling a gas sand at 4500 ft. 

Figure 6.10 shows the time-based plot of choke pressure, formation total flow and choke 

opening size. With a float installed in the drillstring, the shut-in casing pressure is the only 

recordable parameter to indicate subsurface well behavior. In this case the increase of 

choke pressure after shut-in may be due to migration of initial kick or a combination of 

migration and continuous feed-in of formation fluid into the wellbore. Also, it was not 

possible to determine lost returns from the shut-in casing pressure. From the ‘formation 

total flow’ plot, it may be noticed that there is a net losses in the well after 35 minutes into 

the simulation. This indicates fracture in the wellbore. However, whether the formation 

fluid influx has stopped or not, can not be concluded.  
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Figure 6.10: Choke pressure, choke opening and formation total flow  

for well-z, group-2, case-3A - shut-in 
 

6.4.4 Summary Discussions of Group 2 Simulations 

 The ‘shut-in’ and ‘apply back pressure’ reactions to a kick are not favorable in an 

extremely low kick tolerance situation, because of susceptibility of formation fracture and 

lost returns. The ‘apply back pressure’ reaction undertaken on a 5.5 bbl gas kick in a 0.15 

ppge kick tolerance was not successful in stopping the influx because formation 

breakdown occurred at the casing shoe before the bottomhole pressure could be increased 

enough to stop formation feed-in.  

 Stoppage of formation feed-in and / or lost returns could not be concluded by shut-

in reaction with shut-in casing pressure as the only measurable parameter with a drillpipe 

float installed in the drillstring. 
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The ‘increase flow rate’ option has less risk of fracturing formation because it 

solely uses ECD over the mud hydrostatic pressure to increase the bottomhole pressure for 

counterbalancing the pore pressure. However, in a big hole, because of larger annular 

clearance, response of ECD to the increase in mud flow rate is relatively low. The mud 

flow rate required to adequately increase the ECD may not be achievable due to pump 

pressure limitation. Use of a circulating sub48 in the BHA and larger size drillpipe15 will 

help to increase the ECD.  

Therefore, for a big hole section with low kick tolerance, the well control issues 

need to be adequately addressed during MPD well design. 

6.5 Simulation Results – Group 3 

 Because short simulations did not allow conclusive interpretation of flow stoppage 

or lost returns, two simulations, one with ‘apply back pressure’ and the other with ‘shut-in’ 

as initial reactions were run in this group for a longer time (simulating about 3 hours) than  

the group 2 simulations. In this group of simulations, the drillpipe float was removed so 

that the drillpipe pressure could be monitored as an indicator of the bottomhole pressure 

after the well was shut-in. All other input data including the drilling parameters were kept 

same as in the group 2 simulations. The well was drilled to the same depth, and the same 

5.5 bbl of gas kick was taken as in case of group 2 simulations. The purpose of running 

simulations for a prolonged time in the ‘apply back pressure’ option was to ascertain 

whether the well can be controlled even after loosing returns and lost returns can be 

conclusively identified. For the shut-in option, the purpose was to see if lost returns can be 

identified by drillpipe and choke pressure response during a longer shut-in period. All 

cases were run with the same formation fracture injectivity of 0.0004 mmscfd / psi of the 
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previous cases for well Z. This low injectivity causes low rates of lost returns and adds to 

the difficulty in detecting the lost returns 

6.5.1 Apply Back Pressure - Case 2A-longer 

 An increasing back pressure was applied with the choke after a gas kick of 5.5 bbl 

was taken in the well, and the decreasing return flow rate was monitored. Immediately 

after equalizing the return flow rate with the pump rate, control was switched over to 

maintain constant drillpipe and bottomhole pressures by adjusting the choke. Figure 6.11, 

6.12, 6.13 and  6.14 show composite time-based plots of choke pressure, flow rate in, flow 

rate out, drillpipe pressure and bottomhole pressure from 30 to 45 minutes, 45 to 90 

minutes, 90 to 135 minutes and 135 to the end of the simulation  respectively. 
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Figure 6.11: Well behavior versus time (30 to 45 minutes) for well-z,  

group-3, case-2A-longer – back pressure 
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Figure 6.12: well behavior versus time (45 to 90 minutes) for well-z,  

group-3, case-2A-longer – back pressure 
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Figure 6.13: well behavior versus time (90 to 135 minutes) for well-z,  

group-3, case-2A- longer – back pressure 
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Figure 6.14: well behavior versus time (135 to 176 minutes) for well-z,  

group-3, case- 2A- longer – back pressure 
 

The kick was successfully circulated out in this simulation by maintaining a 

constant bottomhole pressure, despite loosing mud due to exceeding the fracture pressure 

below the casing shoe. Figure 6.11 through 6.14 show that after the initial reaction, the 

bottom hole pressure was maintained greater than the pore pressure of 3276 psi at the kick 

zone, and evidently there was no secondary kick during the kick circulation. Figure 6.15 

shows the formation fluid total flow during the simulation run and it can be seen that lost 

returns continued at a low rate during kick circulation. 

  Figure 6.16 presents the liquid holdup profile at the end of simulation, which 

shows that the liquid hold up is nearly 100 % meaning almost all the gas had been 

circulated out.  
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Figure 6.15: Formation total low versus time  

for well-z, group-3, case-2A-longer - back pressure 
 

 
Figure 6.16: Liquid holdup profile at the end of simulation 

 for well-z, group-3, case- 2A-longer - back pressure 
 

Figure 6.17 shows the pressure profiles at the end of simulation. From this plot, it 

may be seen that the well bore pressure was higher than the pore pressure at all depths and 

higher than the fracture pressure limit at several depths in the openhole section of the well, 

which is the reason that some losses were still being experienced. 
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Figure 6.17: Pressure profiles at the end of simulation  
for well-z, group-3, case-2A-longer - back pressure 

 
6.5.2 Shut-in - Case 3A-longer 

 The well was shut-in for a longer time after the kick was identified, and the changes 

in the drillpipe and the choke pressures were monitored. Figure 6.18, 6.19, 6.20 and 6.21 

show composite plots of drillpipe, choke and bottomhole pressures from 30 to 45 minutes, 

45 to 90 minutes, 90 to 135 minutes, and 135 to 180 minutes respectively. Both the 

drillpipe and the choke pressures increased during gas migration up to about 135 minutes, 

and thereafter, a continuous declining trend was observed. The maximum choke and 

drillpipe pressures observed were 818 psi and 756 psi (ignoring a pressure spike at 162 

min) during gas migration. The bottom hole pressure also increased gradually after shut-in 

and reached a maximum of 3680 psi during gas migration before starting to decline slowly 

from about 135 minutes until the end of the simulation.  The bottomhole pressure at the 

end of simulation was 3473 psi, which is more than the pore pressure suggesting no 

formation fluid influx into the wellbore. The decline of the choke pressure, drillpipe 

pressure and the bottomhole pressure probably had started when the gas migration was 
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essentially complete and nearly all the gas had accumulated at the surface.  The decline of 

pressures is probably due to losses in the induced fracture after the gas migration was 

completed. As seen from Figure 6.22, there were continuous losses in the well from about 

35 minutes after the choke was closed. However, initially this was masked by the 

increasing trend of the drillpipe and the choke pressure during gas migration up the 

wellbore. 
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Figure 6.18: Choke pressure, bottomhole pressure and drillpipe pressure from 30 to 45 

minutes for well-z, group-3, case-3A-longer -shut-in 
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Figure 6.19: Choke pressure, bottomhole pressure and drillpipe pressure from 45 to 90 

minutes, well-z, group-3, case-3A-longer - shut-in 
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Figure 6.20: Choke pressure, bottomhole pressure and drillpipe pressure from 90 to 135 

minutes, well-z, group-3, case-3A-longer - shut-in 
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Figure 6.21: Choke pressure, bottomhole pressure and drillpipe pressure from 135 to 180 

minutes, well-z, group-3, case-3A-longer - shut-in 
 

 
Figure 6.22: Formation total flow for well-z, group-3, case-3A-longer - shut-in 

 
Figure 6.23 shows the liquid holdup profile at the end of simulation. It may be seen 

that nearly all the gas had accumulated at the surface at the end of simulation. 
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Figure 6.23: – Liquid holdup profile at the end of simulation 

 for well-z, group-3, case-3A-longer - shut-in 
 

Figure 6.24, 6.25 and 6.26 show the liquid holdup profiles at 94 minutes, 127 

minutes and 165 minutes, respectively. From these plots, it may be seen that the liquid 

holdup at the kick zone remained 100 % from 94 minutes to the end of simulation 

suggesting stoppage of influx. Bottomhole pressures were also more than the pore pressure 

during this time. 

 
Figure 6.24: Liquid holdup profile at 94 minutes 

 for well-z, group-3, case-3A-longer - shut-in 
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Figure 6.25: Liquid holdup profile at 127 minutes 

 for well-z, group-3, case-3A-longer - shut-in 
 

 
Figure 6.26: Liquid holdup profile at 165 minutes 

 for well-z, group-3, case-3A-longer - shut-in 
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6.5.3 Summary Discussions on Group 3 Simulations 

 The result of the simulations of the ‘apply back pressure’ and shut-in options in this 

group suggests that in spite of formation fracture, it may be possible to stop formation flow 

with either method. Likewise, it was possible to circulate the kick out by maintaining the 

drillpipe pressure constant with choke adjustment while continuing to circulate at the same 

pump rate. However, these results are not expected to be generally applicable. The low 

formation fracture injectivity resulted in such low loss rate that the wellbore was 

essentially intact despite the lost returns. 

Conclusive evidence does not exist initially for either the stoppage of influx or the 

initiation of lost returns. The rate of lost returns is so small that losses are only evident late 

in the simulations by comparison of rates in and out for the ‘apply back pressure’ case and 

decline in surface pressure for the ‘shut-in’ case. Confirmation of successful stoppage of 

formation feed-in is even less conclusive. For the ‘apply back pressure’ case, this becomes 

really evident only after the gas flow rate at the surface declines to a negligible level. For 

the ‘shut-in’ case, it might be concluded based on the shut-in drillpipe and casing pressures 

having the same increasing trend versus time. However, this is conclusive only if no gas is 

allowed to enter the drillpipe. If that condition is met, then additional gas feed-in would 

cause the casing pressure to increase more rapidly than the drillpipe pressure. 

There is little obvious difference between the ‘apply back pressure’ and ‘shut-in’ 

options as on initial response for these cases. The ‘increase pump rate’ response, in 

contrast, was unsuccessful in stopping formation feed-in.  
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6.6 Simulation Results Group 4 

Two simulations were run in this group to study the effectiveness of the ‘apply 

back pressure’ and the ‘shut-in’ options for control of a larger kick volume with a higher 

assumed injectivity when the fracture pressure is exceeded. Consequently, the simulator 

input data for injectivity was changed from 0.0004 mmscfd / psi to 0.4 mmscfd / psi. A 50 

bbl kick was taken to represent a severe worst case of poor kick detection and response. 

 Other input data in the simulator were kept the same as for group 3 simulations. 

After penetrating into the high pressure zone at 4500 ft, kicks were identified by an 

increase in the return flow-rate. Drilling was continued to 4540 ft in underbalanced 

condition until a 50 bbl gas kick was taken into the wellbore, and thereafter, the well 

control action was initiated. Only the ‘apply back pressure’ and ‘shut-in’ were simulated 

because the ‘increase flow rate’ option was proven unsuccessful for this well geometry in 

the previous cases. 

6.6.1 Increase Back Pressure – Case 2B 

 An increasing back pressure was applied with the choke after a gas kick of 50 bbl 

was taken in the well, and the decreasing return flow rate was monitored. Immediately 

after equalizing the return flow rate with the pump rate at 91 minutes, control was switched 

over to maintain constant drillpipe and bottomhole pressures by adjusting the choke. 

Figure 6.27 shows the time-based plot of the return flow rate, pump rate, choke pressure, 

drillpipe pressure, choke opening and bottomhole pressure from 80 to 125 minutes. In fact, 

the drillpipe pressure continued to gradually decrease, and the choke opening had to be 

continuously reduced in an attempt to keep the drillpipe pressure constant. Consequently, 

the return flow rate also continued to decrease implying a higher rate of lost returns. By 99 
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minutes into the simulation, the choke was completely closed, but the drillpipe pressure 

continued to decrease.  

The simulation was continued to 309 minutes with total losses to study the well 

behavior during gas migration while pumping into the shut-in well by monitoring the 

changes in the drillpipe, choke and bottomhole pressures. Figure 6.28, 6.29 and 6.30 show 

the composite plots of choke pressure, drillpipe pressure, bottomhole pressure, choke 

opening, return flow rate and the pump rate from 125 to 170 minutes, 170 to 225 minutes 

and 225 to 309 minutes respectively. The choke pressure increased continuously signifying 

gas migration effect and accumulation in the casing drillpipe annulus. The choke pressure 

at the end of simulation was about 1830 psi.  The bottomhole pressure declined until about 

125 minutes and then stayed nearly constant at 2767 to 2832 psi, which is less than the 

pore pressure at the kick zone.  
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Figure 6.27: Well behavior versus time (80 to 125 minutes)  

for well-z, group-4, case-2B - back pressure 
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Figure 6.28: Well behavior versus time (125 to 170 minutes)  

for well-z, group-4, case-2B - back pressure 
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Figure 6.29: Well behavior versus time (170 to 225 minutes) 

 for well-z, group-4, case-2B - back pressure 
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Figure 6.30: Well behavior versus time (225 to 309 minutes) 

 for well-z, group-4, case-2B - back pressure 
 

This signified a continuous influx into the wellbore with complete loss of returns 

into the fractured formation. Drillpipe pressure also stayed nearly the same after 125 

minutes. It is understood that the significant lost returns caused the bottomhole pressure 

and drillpipe pressure to not respond to increases in the choke pressure. 

Figure 6.31 shows a plot of the pressure profiles in the well at the end of 

simulation. It may be seen that the wellbore pressure is less than the pore pressure at the 

kick zone and has exceeded the fracture pressure in shallow section of the openhole, 

implying that an underground blowout is in progress. The decreasing drillpipe pressure and 

the increasing choke pressure after the choke was completely closed are an apparent 

indicator of this problem. Fig 6.32 shows the formation flow profile at the end of 

simulation. It may be seen that the formation fluid influx and losses below the casing shoe 

were occurring at the end of simulation. 
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Figure 6.31: Pressure profiles at the end of simulation  

  for well-z, group-4, case-2B - back pressure 

Loss 

Gain 

 
Figure 6.32: Formation fluid flow profile at the end of simulation  

 for well-z, group-4, case-2B - back pressure 
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6.6.2 Shut-in – Case 3B 

 Circulation was stopped after taking a 50 bbl kick, and the well was shut-in. The 

changes in the choke pressure and the drillpipe pressure were monitored during the 

prolonged shut-in period to determine whether shutting-in would stop formation flow and 

whether subsurface conditions could be diagnosed using only surface pressures. 

The simulation was ended at 295 minutes. Figure 6.33, 6.34, 6.35 and 6.36 show 

the composite plots of drillpipe, choke and bottomhole pressures from 80 to 125 minutes, 

from 125 to 170 minutes and 170 to 215 minutes and from 215 to 295 minutes 

respectively. 
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Figure 6.33: choke pressure, bottomhole pressure and drillpipe pressure 

 from 80 to 125 minutes for well-z, group-4, case-3B - shut-in 
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Figure 6.34: Choke pressure, bottomhole pressure and drillpipe pressure  

from 125 to 170 minutes for well-z, group-4, case-3B - shut-in 
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Figure 6.35: Choke pressure, bottomhole pressure and drillpipe pressure 

 from 170 to 215 minutes for well-z, group-4, case-3B - shut-in 
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Figure 6.36: Choke pressure, bottomhole pressure and drillpipe pressure  

from 215 to 295 minutes for well-z, group-4, case-3B - shut-in 
 

It may be seen that the choke pressure had continuously increased during the gas 

migration after the shut-in at 91 minutes. The choke pressure at the end of simulation had 

increased to about 1900 psi. The bottomhole pressure decreased rapidly initially probably 

due to the loss of the hydrostatic pressure due to heavy losses in the fracture and then 

remained essentially constant from about 110 minutes until the end of simulation. The 

bottomhole pressure was always less than the pore pressure during the shut-in period 

implying a continuous influx into the wellbore. After the shut-in, the drillpipe pressure was 

zero from about 94 to 108 minutes of the simulation although the choke pressure was 

rising during this period. This corresponded to the time when the bottomhole pressure was 

decreasing. Thereafter, the drillpipe pressure followed an increasing trend until the end of 

simulation, whereas the bottomhole pressure stayed nearly constant. 
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 It seems that after the well was shut-in, the fluid level in the drillpipe fell due to 

the bottomhole pressure being less than the hydrostatic pressure in the drillpipe. Once the 

drillpipe hydrostatic pressure equalized with bottomhole pressure, gas could “swap” with 

mud falling out of the drillpipe. The increasing drillpipe pressure after 110 minutes is 

evidently due to gas migration. The zero drillpipe pressure after the well was shut-in is 

strong evidence that the bottomhole pressure was less than it was while drilling, indicating 

a reduction due to lost returns, formation fluid unloading the annulus or both. The rising 

choke pressure is indicative that low density fluids were migrating into and filling the 

annulus. The combination is a strong indication of simultaneous formation feed-in and lost 

returns. 

Figure 6.37 shows the liquid holdup profile at the end of simulation, which 

suggests a continuous influx into the wellbore as the liquid holdup at the kick zone was 

only about 5 percent. Figure 6.38 presents the formation flow profile at the end of 

simulation, and it can be seen that simultaneous losses and kick feed-in were taking place 

in the well. Figure 6.39 shows the pressure profiles at the end of simulation. It can be seen 

that the wellbore pressure at the kick zone was less than the pore pressure and the wellbore 

pressure has exceeded the fracture pressure at the shallower section of the openhole. 

6.6.3 Summary Discussions on Group 4 Simulations 

Both the ‘apply back pressure’ and the ‘shut-in’ options were ineffective in these 

simulations with larger kicks and higher fracture injectivity. In both cases, there was 

continuous influx into the wellbore and continuous downhole losses in the openhole below 

the casing shoe, i.e. an underground blowout. 
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Figure 6.37: Liquid holdup profile at the end of simulation   

 for well-z, group-4, case-3B - shut-in 
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Figure 6.38: Formation flow profile at the end of simulation   

for well-z, group-4, case-3B - shut-in 
 

 103



   

 
Figure 6.39: Pressure profiles at the end of simulation   

 for well-z, group-4, case-3B - shut-in 
 

This contrasts with the group 3 simulations where formation influx was stopped by 

either option. The major difference is the higher, 0.4 mmscfd / psi injectivity at the shoe.  

The back pressure case required the choke to be completely closed in order to try to 

keep the bottomhole pressure constant to stop the influx. Consequently, all of the mud 

pumped thereafter, almost 5000 bbl during this simulation was lost downhole.  

 The ‘shut-in’ option lost much less mud because no mud was pumped after 

shutting-in and less than 1400 bbl was in the well before losses began. However, the shut-

in option does not impose much bottomhole pressure as the back pressure option, and 

therefore allowed a somewhat higher formation feed-in rate as seen when comparing 

Figure 6.38 and 6.32. 

There are also differences in the ability to identify failure to prevent formation 

feed-in and to identify lost returns when using these responses. Loss of returns becomes 
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evident fairly quickly in the ‘apply back pressure’ case because there are no returns once 

the choke is closed. The failure to stop formation feed-in is less distinctive but could be 

inferred from the drillpipe pressure being less, by about 100 psi in this case, than when 

drilling with the same pump rate. Diagnosis of sub-surface conditions after shut-in is 

complicated by use of a drillstring float because drillpipe pressure can not be read directly. 

Bumping the float to check shut-in drillpipe pressure versus time is necessary to identify 

the decrease in bottomhole pressure and the divergence between drillpipe and casing 

pressure that are evidence of an underground blowout.  

6.7 Simulation Results Group 5 

 Four simulations were run in this group to study the effectiveness of the ‘apply 

back pressure’ and the ‘shut-in’ options for controlling a small volume of kick with high 

fracture injectivity at the shoe. The purpose of these simulations was to compare the results 

with group 4 simulations where higher volume kicks were taken and simultaneous loss and 

formation feed-in could not be controlled. A specific goal was to investigate whether either 

method might be more successful if the kick was identified more quickly and the kick 

volume was small. All input data in these simulations were same as the group 4 

simulations except kick size. The well was drilled into the over-pressure section and after 

the kick was identified, drilling continued until a 5.5 bbl kick was taken into the wellbore, 

and thereafter, the well control actions were initiated. 

6.7.1 Increase Back Pressure - Case 2C 

 Back pressure was gradually applied by reducing the choke size after taking a 5.5 

bbl gas kick into the wellbore, and the return flow rate was monitored. The return flow-rate 

gradually decreased to approximately the level of the pump rate. Therefore, beginning at 
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90 minutes the choke was adjusted to keep the drillpipe pressure constant assuming that 

the influx into the wellbore had been stopped. However, the drillpipe pressure could not be 

maintained and decreased while the choke pressure was increased and the return flow rate 

decreased. The bottomhole pressure therefore also decreased gradually. The choke opening 

was continuously reduced to apply more back pressure in an attempt to keep the drillpipe 

pressure constant until it was completely closed at 97 minutes. The simulation was 

continued until 180 minutes with total losses to study the trend of the choke, drillpipe and 

the bottomhole pressures. Figure 6.40 and 6.41 show the composite plots of choke 

pressure, drillpipe pressure, bottomhole pressure, choke opening, return flow rate and the 

pumping rate from 80 to 125 minutes and 125 to 180 minutes respectively. 
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Figure 6.40: Well behavior versus time (80 to 125 minutes) 

  for well-z, group-5, case-2C - back pressure 
 

It may be seen that the choke pressure increased continuously after the choke was 

closed probably due to the effect of migration above the casing shoe. The choke pressure at 

 106



   

the end of simulation was about 800 psi. The bottomhole pressure after following an initial 

decline trend stayed nearly constant at about 3000 psi, which was less than the pore 

pressure of the kick zone. This implied a continuous influx from the kick zone into the 

wellbore with complete loss of returns into the fractured formation.  
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Figure 6.41: Well behavior versus time (125 to 180 minutes)  

for well-z, group-5, case-2C - back pressure 
 

 Figure 6.42 shows the liquid holdup profile at the end of simulation. It may be seen 

that the liquid hold up at the kick zone is about 70 percent due to the influx into the 

wellbore. The holdup profile shows the presence of gas throughout the well and reinforces 

the interpretation that simultaneous feed-in and losses are occurring and an underground 

blow out has begun. 
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Figure 6.42: Liquid holdup profile at the end of simulation  

for well-z, group-5, case-2C - back pressure 
 

6.7.1.1 Increase Back Pressure - Case 2C-Alt-1 

This simulation is a modification of the previous simulation. In this simulation, the 

choke was adjusted to keep the flow rate-out equal to the flow rate-in for a longer period 

instead of trying to keep the drillpipe pressure constant once the flow rate-out equaled 

flow-in. In an intact wellbore, this would typically cause excessive wellbore pressure and 

risk of lost returns.  Although this is not considered a correct approach, it could be applied 

when the drillpipe pressure cannot be maintained and is often considered as prevention of 

additional feed-in. Figure 6.43 and Figure 6.44 show composite plots of choke pressure, 

drillpipe pressure, bottomhole pressure, flow rate-in, flow rate-out, gas flow-out and choke 

opening of this simulation from 80 to 125 minutes and from 125 to 180 minutes, 

respectively. 

 108



   

0

200

400

600

800

1000

1200

1400

1600

1800

2000

80 85 90 95 100 105 110 115 120 125

Olga Time (min)

 C
ho

ke
 P

re
ss

ur
e 

(p
si

) /
 P

um
p 

ra
te

 / 
Fl

ow
 ra

te
-o

ut
 (g

pm
) /

 
C

hk
e 

O
pe

ni
ng

 (%
) /

 G
as

 F
lo

w
 R

at
e-

ou
t (

sc
fm

*1
0)

0

1000

2000

3000

4000

5000

D
ril

lp
ip

e 
Pr

es
su

re
 / 

B
ot

to
m

ho
le

 P
re

ss
ur

e 
(p

si
)/ 

Choke Pressure
Flow rate-out
Pump rate
Choke Opening
Gas Flow-out (scfm*10)
Drillpipe Pressure
Bottomhole Pressure

Drillpipe Pressure

Choke Pressure

Kick

Choke applied

Flow rate-out 
Pump rate

Bottomhole 
Pressure

Gas flow out
Choke Opening

 
Figure 6.43: Well behavior versus time (80 to 125 minutes)  

 for well-z, group-5, case-2C-Alt-1 - back pressure 
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Figure 6.44: Well behavior versus time (125 to 180 minutes)  

for well-z, group-5, case-2C-Alt-1 - back pressure 
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It may be seen that, the gas flow rate at the surface increased to 14188 scfm (20.43 

mmscfd) by the end of simulation. After an initial decline, both the bottomhole and the 

drillpipe pressures were nearly constant, indicating an essentially steady-state condition.   

Figure 6.45 and Figure 6.46 show the formation flow profile and the liquid holdup 

profile, respectively, at the end of simulation. These plots confirm that the gas influx from 

the formation was still continuing at the end of simulation and that no downhole losses are 

occurring. Therefore, this procedure was not successful in controlling the well. However, 

allowing the continuous gas flow to the surface did halt the lost returns. 

6.7.1.2 Increase Back Pressure - Case 2C-Alt-2 

This simulation is another modification of the case 2C simulation. In this 

simulation, the choke was adjusted for extended period of time to keep the flow rate-out 

equal to flow rate-in, and thereafter at about 100 minutes, the control was switched to keep 

the drillpipe pressure constant. It was intended as an extended, or more cautious attempt 

then case 2C to define the drillpipe pressure to stop formation feed-in. 

 
Figure 6.45:  Formation fluid flow profile at the end of simulation  

 for well-z, group-5, case-2C-Alt-1 - back pressure 
 

 110



   

 
Figure 6.46: Liquid holdup profile at the end of simulation  

  for well-z, group-5, case-2C-Alt-1 - back pressure 
 

Figure 6.47 and Figure 6.48 show composite time-based plots of choke pressure, 

drillpipe pressure, botomhole pressure, flow-in, flow-out and choke opening for this 

simulation from 80 to 125 minutes and 125 to 235 minutes respectively. It may be seen 

that the choke size had to be continuously reduced to keep the drillpipe pressure constant 

after 100 minutes, and finally, it was completely closed at about 114 minutes. Because of 

lost returns, the drillpipe pressure did not respond to increasing choke pressure. The 

drillpipe and the bottomhole pressures declined during the entire period from 90 minutes to 

114 minutes despite reducing the choke size, presumably due to less wellbore frictional 

pressure due to losses. The casing pressure continued to increase with the choke closed, 

probably due to continued gas migration above the casing shoe, whereas, the bottomhole 

pressure and the drillpipe pressure were nearly constant as the well experienced total losses 

in the open hole below the casing shoe.  
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Figure 6.47: Well behavior versus time (80 to 125 minutes) 

 for well-z, group-5, case-2C-Alt-2 - back pressure 
 

Figure 6.49 shows the liquid holdup profile at the end of this simulation. The liquid 

holdup was about 70 to 72 percent at the kick zone suggesting continuous gas influx into 

the wellbore. Holdup less than 100 percent throughout the wellbore indicates this influx is 

migrating to the surface and displacing mud from the annulus into the formation. From 

Figure 6.47 and Figure 6.48, it may be seen that the bottomhole pressure was always less 

than the pore pressure causing continuous influx into the wellbore. 

6.7.2 Shut-in - Case 3C 

 The well was closed on choke after taking a 5.5 bbl kick into the wellbore. The 

changes in the choke pressure and the drillpipe pressure were monitored during a 

prolonged shut-in period. 
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Figure 6.48: Well behavior versus time (125 to 235 minutes) 

 for well-z, group-5, case-2C-Alt-2 - back pressure 
 

 
Figure 6.49: Liquid holdup profile at the end of simulation  

 for well-z, group-5, case-2C-Alt-2 - back pressure 
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The simulation ended at 180 minutes. Figure 6.50 and Figure 6.51 show the 

composite plots of drillpipe pressure, choke pressure and bottomhole pressures from 80 to 

125 minutes and from 125 to 180 minutes respectively. 
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Figure 6.50: Choke pressure, bottomhole pressure and drillpipe pressure from 80 to 125 

minutes for well-z, group-5, case-3C - shut-in 
 

The choke pressure continuously increased after shut-in due to feed-in and gas 

migration. The choke pressure at the end of simulation had increased to about 1015 psi. 

The bottomhole pressure decreased initially probably due to loss of hydrostatic pressure in 

the annulus due to heavy downhole mud losses and then almost stabilized at about 2600 psi 

after about 110 minutes. The bottomhole pressure was significantly less than the pore 

pressure during shut-in period, implying there was a continuous influx into the wellbore. 
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Figure 6.51: Choke pressure, bottomhole pressure and drillpipe pressure from 125 to 180 

minutes for well-z, group-5, case-3C - shut-in 
 

After shut-in, the drillpipe pressure was zero from about 99 to 125 minutes 

although the choke pressure was rising during this period. This corresponded to the time 

when the bottomhole pressure was also decreasing. Thereafter, the drillpipe pressure 

followed an increasing trend until the end of simulation. The similar trend of drill pipe 

pressure after the well was shut-in was noticed in case 3B with a bigger, 50 bbl kick. Rise 

of drillpipe pressure was presumably due to the migration of gas that entered into the 

drillpipe under the condition as described in section 6.6.2. The zero drillpipe pressure after 

the well was shut-in is indicative of lost return. The rising choke pressure is indicative of 

gas migration.  Figure 6.52 shows the liquid holdup at the end of simulation. Liquid hold 

up in the open hole at the end of simulation was only about 5 percent implying that gas 

flow from the kick zone had displaced almost all of the mud from the open hole into the 

loss zone. 
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Figure 6.52: Liquid holdup profile at the end of simulation  

 for well-z, group-5, case-3C - shut-in 
 

Figure 6.53 shows the formation fluid flow profile in the wellbore at the end of 

simulation. It shows that the gas flow from the kick zone had not been controlled and that 

simultaneous losses are occurring below the casing shoe. Hence, an underground blowout 

was in progress. 
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Figure 6.53: Formation fluid flow profile at the end of simulation  

for well-z, group-5, case-3C - shut-in 
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6.7.3 Summary Discussions on Group 5 Simulations 

 The results and trends observed in these simulations with small kick volumes were 

similar to group 4 simulations with similar well conditions but a larger kick volume. The 

larger kick volume in the group 4 simulations resulted in higher surface pressure during 

kick control. Therefore, earlier kick detection and response allows more time to diagnose 

the failure to control the well and formulate a better response. When the fracture pressure 

was exceeded, the high injectivity dominated the simulation results in both groups such 

that the well could not be controlled with either the ‘shut-in’ or ‘back pressure’ options. 

For the shut-in option, the zero drillpipe pressure during the initial shut-in period is 

indicative of a decrease in bottomhole pressure and probable lost returns in the open hole.   

 For both the ‘apply back pressure’ and ‘shut-in options, there was continuous 

formation influx into the wellbore, and both were therefore ineffective. The trend of 

increase in choke pressure after the choke was closed was similar in both options. In the 

‘shut-in’ option, much less mud was lost compared to the ‘back pressure’ option with 

continuous circulation. Since circulation was continued even after the choke was closed in 

‘back pressure’ reaction, the bottomhole pressure was higher than the shut-in option. This 

implied that the influx rate would be less in the ‘back pressure’ reaction than the ‘shut-in’ 

reaction. Additional analysis and comparisons are included in the following section. 

6.8 Overall Summary of Well Z Simulations 

 A total of 14 simulations were run to develop an insight into the effectiveness of 

different initial reactions to a gas kick in a large size hole drilled under the CBHP method 

of MPD operation. The severity of the well control scenarios were varied by changing pore 

pressure, kick size and fracture injectivity at the casing shoe. Some simulations were run 
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for a longer duration when formation breakdown occurred during the initial reaction to see 

the long term effect for comparative studies. Since keeping an intact wellbore is critically 

important to prevent an underground blow-out, the ability to detect formation fracture 

during well control is an important criteria to judge the effectiveness of initial reactions. 

The longer simulations were intended to evaluate whether the formation break down can 

be recognized by monitoring parameters such as choke pressure, drillpipe pressure, 

bottomhole pressure and return flow rate. 

 Stopping the influx by increasing the ECD with higher pumping rate was not 

successful for either of two simulations with kick intensities 0.49 ppge and 1.49 ppge and a 

small, 5.5 bbl, initial kick volume. The annular frictional pressure losses in a large annular 

geometry were not adequate within the limitation of pump capacity to over-balance the 

pore pressure. Further simulations with larger kick sizes would have even less successful 

and were deemed unnecessary. 

 Both application of ‘back pressure’ with a choke and ‘shutting-in’ the well were 

successful in stopping the influx for the lower kick intensity (0.49 ppge) due to keeping an 

intact wellbore. However, the formation fractured when these options were applied in 

simulations with kick intensity of 1.49 ppge due to there being almost no margin between 

the pore and fracture pressure gradients. Neither the ‘back pressure’ nor ‘shut-in’ reactions 

were successful in stopping formation feed-in under these circumstances.  

The simulation results of back pressure reaction maintaining flow-out equal to 

flow-in for longer period show that the formation feed-in can not be stopped and an 

uncontrolled flow of gas at the surface may result.  
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 In the ‘shut-in’ reaction, formation fracture resulted before the wellbore pressure 

was high enough to stop formation feed-in. A shut-in well will generally have upward 

migration of gas, the effect of which will be an increase in the choke pressure. In the case 

of simultaneous losses and feed-in, the casing pressure will also increase, usually more 

rapidly. Monitoring the drillpipe pressure during shut-in as an indicator of the bottomhole 

pressure can provide a basis for distinguishing simple migration from this more dangerous 

situation. In the simulations, this was done as described in section 6.6.2 because the 

drillpipe float was removed. In actual operations, a procedure to bump the float to check 

the drillpipe pressure is required.  

 Three different strategies of choke adjustments were considered in the applications 

of back pressure as a response. These were  (1) to maintain the drill pipe pressure constant 

after quickly, for about 3 minutes, forcing flow-out equal to flow-in case 2C-Alt, (2) to try 

to maintain the return flow equal to flow rate-in indefinitely in case 2C-Alt-1and (3) to 

maintain the return flow rate equal to flow rate-in for an extended time (about 15 minutes) 

in case 2C-Alt-2 and then switch control to maintain the drillpipe pressure constant. These 

long simulations were ended when an essentially steady state condition was reached and 

the expected future trend of choke pressure, drillpipe pressure, and gas flow rate could be 

implied.  

The results of the simulations where the shoe was fractured during the initial 

reactions are presented below in the form of flow charts to facilitate comparisons. Figure 

6.54, 6.55, 6.56, 6.57 and 6.58 show the results and comparison of group-2, group-3, 

group-4, group-5 (case-2C and case-3C) and group-5 (case-2C-Alt-1 and case-2C-Alt-2) 

simulations respectively. 
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Figure 6.54: Comparison of group-2 simulations  

Indication

Indication Yes, flow out less than 
flow-in 

No, choke pressure 
increases 

Shoe 
Fracture

Shoe 
Fracture

Group-2 simulations 
PP: 14 ppge 
FP: 14.25 ppge 
Kick Vol: 5.5 bbl 
Short Duration ~ 45 
min 
With drillpipe Float 

Case-3A 
Shut-in 

Case-2A 
Apply 
Back  
Pressure 

 
Figure 6.55:  Comparison of group-3 simulations 

Successfully stopped formation influx 
Choke pressure and drillpipe pressure 
declined from 135 min to end of 
simulation, implies minor continuous 
loss return 

- Max. choke pressure: 818 psi 
- Max. drillpipe pressure: 756 psi 
- BHP > PP 
- Influx stopped 

Successfully 
circulated out kick, 
but minor continuous  
lost returns  

- Max. choke pressure: 486 psi 
- Max. gas flow rate: 619 scfm 
- BHP > PP 
- Influx stopped 

Choke and 
Drillpipe pressure 
build up initially 
from 35 to 135 min 

switched control 
to maintain 
drillpipe pressure 
constant

lost 
return 

Case-3A 
(longer) 
Shut-in 

Case-2A 
(longer) 
Apply Back 
Pressure Group-3 simulations 

PP: 14 ppge 
FP: 14.25 ppge 
Kick Vol: 5.5 bbl 
Longer duration ~180 min 
Drillpipe Float removed 
Low fracture injectivity 
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Figure 6.56: Comparison of group-4 simulations 

Unsuccessful, 
choke had to be 
closed 
completely 

- Choke pressure increased continuously 
- Max. choke pressure: 1830 psi 
- Total losses after choke was closed 
- Bottomhole pressure less than pore pressure 
- Continuous influx 
- Drillpipe pressure constant after initial decline-
didn't respond to back pressure in leaky wellbore 
- No gas to surface 

- Unsuccessful
- Choke pressure increased continuously 
- Max choke pressure 1900 psi 
- Bottomhole pressure initially declined and then remained constant. 
- Drillpipe pressure was zero from 94-108 min and increased after 108 min 
- Continuous influx as bottomhole pressure was less than pore pressure 
- Continuous losses in the fracture 
- No gas to surface 

switched control 
to maintain 
drillpipe pressure 
constant 

lost 
return  Case-2B 

Apply Back 
Pressure 
(309 min) 

Group-4 simulations 
PP: 14 ppge 
FP: 14.25 ppge 
Kick Vol: 50 bbl 
High fracture Injectivity: 0.4 
mmscfd/psi 
Longer duration  
Drillpipe Float removed 

Case-3B 
Shut-in 
(295 min) 

 
Figure 6.57: Comparison of group-5 simulations (case-2C and case-3C)  

Unsuccessful, 
choke had to be 
closed completely 

- Choke pressure increased continuously 
- Max. choke pressure: 800 psi 
- Total losses after choke was closed 
- Bottomhole pressure less than pore pressure 
- Continuous influx 
- Drillpipe pressure initially declined and then 
remained nearly constant-didn't respond to back 
pressure in a leaky wellbore 
- No gas to surface 

- Unsuccessful
- Choke pressure increased continuously 
- Max choke pressure 1015 psi 
- Bottomhole pressure initially declined and then remained 
constant. 
- Drillpipe pressure was zero from 99-125 min and 
increased after 125 min 
- Continuous influx as bottomhole pressure was less than 
the pore pressure 
- Continuous losses in the fracture 
- No gas to surface

switched control to maintain 
drillpipe pressure constant 
after flow-out equal to flow-
in for 3 minutes 

lost 
return  Case-2C 

Apply Back 
Pressure 

Case-3C 
Shut-in 

Group-5 simulations 
PP: 14 ppge 
FP: 14.25 ppge 
Kick Vol: 5.5 bbl 
High Injectivity: 0.4 
mmscfd/psi 
Longer duration (180 min) 
Drillpipe Float removed 
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Figure 6.58: Comparison of group-5 simulations (case-2C-Alt-1 and case-2C-Alt-2) 

- Choke pressure increased continuously 
- Max. choke pressure: 1036 psi 
- Bottomhole pressure less than pore pressure 
- Continuous influx 
- After initial decline, Drillpipe pressure and 
bottomhole pressure nearly constant-didn't respond to 
back pressure in a leaky wellbore 
 

- Choke pressure increased continuously 
- Max choke pressure 1016 psi 
- Bottomhole pressure and drillpipe pressure 
initially declined and then remained nearly constant. 
- Continuous influx as bottomhole pressure was less 
than the pore pressure 
- Continuous losses in the fracture 
- No gas to surface 

Case-2C-Alt-2 
Apply Back Pressure 
(235 minutes) 

Extended time for flow-out 
equal to flow-in to 15 minutes 
and then switched control to 
keep the drillpipe pressure 
constant

lost 
return Unsuccessful, choke 

had to be closed 
completely 

Group-5 simulations 
PP: 14 ppge 
FP: 14.25 ppge 
Kick Vol: 5.5 bbl 
High Injectivity: 0.4 
mmscfd/psi 
Longer duration  
Drillpipe Float removed 
 

Unsuccessful, Gas flow at  
surface  increased continuously 
(20.43 mmscfd at the end), but 
losses checked 

Held flow-out 
equal to flow-
in indefinitely 

Case-2C-Alt-1 
Apply Back Pressure 
(180 min ) 

Lost 
return 

The highlights of these simulation results are as follows: 

1. The fracture injectivity at the shoe dominated the outcome of the initial reactions to 

a gas kick in a fractured wellbore. For higher fracture injectivity (0.4 mmscfd / psi) 

cases, bottomhole pressure could not be increased to equal the pore pressure by 

applying back pressure due to heavy losses in the fracture. Shutting-in the well with 

higher fracture injectivity also did not stop influx implying an underground 

blowout. Consequently, the influx continued in all simulations with high fracture 

injectivity. Conversely, a 5.5 bbl initial gas kick was successfully circulated out by 

keeping the drillpipe pressure constant in one simulation where the injectivity at 

shoe was small (0.0004 mmscfd / psi).  

 122



   

2. Using the choke to maintain the return flow equal to pumping rate over an extended 

period resulted in a continuous increase in gas flow rate at the surface representing 

surface blow-out in the case with high fracture injectivity. 

3. Shut-in cases that caused formation breakdown into a high injectivity fracture 

experienced bottomhole pressure less than the mud hydrostatic for some time. This 

resulted in a zero drillpipe pressure if no drillstring float was present. Therefore, 

drillpipe pressure could be used to identify a decrease in bottomhole pressure due 

to simultaneous feed-in and losses. The drill pipe pressure started to increase after 

some time, and increased gradually while the bottomhole pressure was nearly 

constant. It seems that gas had entered the drillpipe when the fluid level in the 

drillpipe had dropped and then migrated upwards resulting in an increase in the 

drillpipe pressure. 

4. Higher drillpipe pressure and choke pressure were observed for larger size kick 

during well control, as expected. 

5. In general, somewhat higher choke pressures were recorded versus time for the 

shut-in reaction than for the ‘apply back pressure’ option in these simulations. This 

is a result of the annulus frictional pressure during continuous circulation in the 

back pressure reaction. 

6.9 Simulation Results: Detection of False Alarm 

 A simulation was run, where back pressure was applied through the choke without 

any noticeable kick in the well. The purpose of this simulation was to observe the well 

behavior for establishing a baseline without a kick. It also provided the opportunity to 

investigate ways to identify a false alarm of a kick. The input data for this simulation was 

 123



   

same as the group 6 simulations. At 4475 ft (25 ft shallower than the kick zone), drilling 

was discontinued to check whether the well was underbalanced or not.  The well was 

circulated for about 5 minutes, and thereafter, the choke was gradually closed to increase 

the bottomhole pressure by increasing the choke pressure. The choke pressure was raised 

by about 100 psi, and thereafter, the choke opening size was held constant at 77 % for 

about 5 minutes before ending the simulation. The response of the return flow rate, 

drillpipe pressure and the choke pressure to the choke adjustments were monitored during 

the simulation.  

Figure 6.59 shows a composite plot of flow rate-in, flow rate-out, choke pressure 

and choke opening for this simulation run. Initially, the simulated return flow rate declined 

to a rate of about 994 gpm while circulating after drilling stopped, see label on Figure 6.62. 

The overall return flow rate then decreased slightly in response to raising the choke 

pressure. This response was expected due to fluid compressibility. Once a constant choke 

setting was reached, the return flow rate increased to about 994 gpm, the flow rate before 

the choke adjustment, indicating no lost returns. The choke pressure, as well as the return 

flow-rate stabilized and remained relatively constant when the choke position was held 

constant implying a steady state condition in the wellbore without any gas influx or lost 

returns.  

Figure 6.60 shows the response of the drillpipe pressure and the choke pressure to 

the choke opening size. The drillpipe pressure gradually increased with the increase in 

back pressure. It then remained constant when the choke pressure and the choke opening 

were held constant indicating there is no gas migrating. 
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Figure 6.59: Response of choke pressure and flow rate-out to choke adjustment  

(case-0, false alarm detection) 
 

This behavior is essentially as expected and lends credibility to the simulations. 

However, no conclusive diagnostic procedures for confirming the occurrence of a kick 

were identified like a flow check does in conventional drilling. 
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Figure 6.60: Response of drillpipe pressure and choke pressure to choke adjustment  

(case-0, false alarm detection) 
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7.  DISCUSSION OF SIMULATION RESULTS  

Additional discussion considering all of the simulations in the two preceding 

chapters is needed to draw more general conclusions about the effectiveness of each of the 

simulated initial reactions. 

7.1 Additional Influx after Initial Reaction 

 One criteria for comparing alternative reactions was expected to be minimizing the 

additional influx after the initial reactions. This criteria was not used in judging the 

effectiveness of the alternative initial reactions. Choke adjustments for the ‘apply back 

pressure’ and the mud pump speed adjustments for the ‘increase mud flow rate’ reactions 

are interactive with the change in the difference between the return flow rate and the 

pumping rate, making them dependent on the operator’s reaction. Conversely shutting-in 

the well is almost instantaneous except that a rapid increase in the formation feed-in rate 

was observed after the pump was shut-in because of decrease in bottomhole pressure 

consequent to loss of annular frictional pressures. In practice, this can be avoided if a pump 

shutdown procedure appropriate to the CBHP method of MPD is followed, but that is also 

operator dependent. No attempt was made to overcome this operator dependency for a 

consistent comparison, 

 7.2 Limitation of the ‘Increase Mud Flow Rate’ Reaction 

The ‘Increase mud flow rate’ reaction effectively stopped formation fluid influx in 

a 6 inch slim hole with an intact wellbore due to the high wellbore frictional pressures in 

the narrow annular clearance. However, despite a narrow annular geometry, this reaction 

was not successful in this hole in stopping the influx in a simulation with lost returns from 

below the kick zone. Because of losses, the required ECD to adequately increase the 
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wellbore pressure to overbalance the pore pressure was not achieved. Also, the ‘increase 

mud flow rate’ reaction is unlikely to be effective in a big size hole with larger annular 

clearance due to pump limitation. Frictional pressure losses due to turbulent flow in the 

annulus is nearly proportional to the square of the annular velocity and inversely 

proportional to the annular clearance43. The annular velocity is inversely proportional to 

the annular cross sectional area. Therefore a very large flow rate is required to adequately 

increase the annular frictional pressure to overbalance the pore pressure. Also, the big size 

holes are normally shallow, and therefore, effective increase in bottomhole pressures due 

to annulus frictional pressures is much less than in deeper small size holes.  

High standpipe pressure is the common limitation on increasing the pump rate for a 

dynamic kill because of large frictional pressure losses inside the drillstring. The frictional 

pressure losses inside the drillstring are nearly proportional to the square of the fluid 

velocity inside the pipe and inversely proportional to the inside diameter of the pipe43. The 

fluid velocity inside the pipe is significantly higher than in the large annulus because of 

smaller cross sectional area. Therefore, standpipe pressure rapidly increases with the 

increase in pump rate, and the pressure rating of the surface equipment or the mud pump 

becomes the limiting factor for adequately increasing the flow rate for a dynamic kill. In a 

big, 17-1/2 inch hole, this reaction was not successful, however, boundary for hole size for 

which this reaction would be successful was not determined in this study.  

7.3 Increase Back Pressure Reaction in a Non-Intact Wellbore 

Identifying occurrence of a formation fracture, causing lost returns during a kick is 

difficult during a back pressure reaction. In general, a return flow rate less than the 

pumping rate is indicative of lost returns. In an intact wellbore, the return flow rate being 
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equal to the pumping rate will indicate stoppage of influx. However, if the wellbore is not 

intact, then the decrease of return flow rate to equal with the pumping rate during back 

pressure application can not be considered as a positive indication of stoppage of the 

influx. During back pressure application, if the shoe pressure exceeds the fracture pressure 

before the bottomhole pressure is adequately increased to over balance the pore pressure, 

shoe breakdown will occur, which will induce lost returns in the well. A simultaneous loss 

and gain will begin in the well. The return flow rate will continue to be more than the 

pumping rate unless the loss rate exceeds the influx rate. Therefore, the losses will 

probably not be recognized immediately at surface. 

Depending on the wellbore fluid compressibility factor, the return flow rate may also 

be less than the pumping rate if a higher back pressure is applied than required after 

stoppage of influx in an intact wellbore. Therefore, the return flow rate being slightly less 

then the pumping rate (considering small effect of fluid compressibility) may not be 

indicative of lost returns.  

Hence, comparing return flow rate with the pumping rate will not conclusively 

distinguish between a stoppage of influx or formation breakdown or shrinkage if the 

wellbore is not intact. 

Two different strategies for the choke adjustments were considered in the simulations 

when the return flow rate was reduced to a value less than the pumping rate during back 

pressure application: (1) Adjusting the choke to try to equalize the return flow rate with the 

pumping rate and (2) Adjusting the choke to keep the drillpipe pressure constant following 

driller’s method41 of well control. In simulations with strategy 1, an uncontrolled flow of 

gas at the surface was observed. During this process, the average liquid return flow rate 
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was nearly equal to the pumping rate implying no lost returns in the well. In the 

simulations with the strategy 2, the lost returns were almost instantaneously confirmed by 

a rapid and continued decline in return flow rate as the back pressure was increased 

continuously, attempting to keep the drillpipe pressure constant.  

Strategy 1 is not advisable as the influx may continue into the wellbore with 

progressively higher rate and a surface blowout situation arises. Strategy 2 is perhaps a 

better option as it identifies a formation fracture, or if the wellbore is intact, presumably it 

can circulate out the gas by maintaining the bottomhole pressure constant without any 

additional influx.  

In the simulations with the strategy 2 in a non-intact wellbore, two different results 

were observed: (1) The complete closure of the choke while trying to maintain the 

continuously declining drillpipe pressure and (2) able to circulate out the gas influx with 

partial return. In situation 1, an underground blowout was initiated with a continuous 

formation feed-in and a total mud loss in the openhole.  The implication of an underground 

blowout versus an uncontrolled flow of gas at the surface in MPD needs to be assessed in 

each case to determine the better strategy.  

7.4 Shut-in Reaction in Non-Intact Wellbore 

Identifying lost returns in the shut-in option is also difficult as the choke pressure is 

the only observable parameter after the well is shut-in if the float is installed in the BHA. 

As seen in the simulations, the choke pressure continued to increase after closing the well 

in ‘shut-in’ reactions to gas kicks, and lost returns could not be conclusively detected from 

the choke pressure build up. In one simulation with lost returns below the kick zone, the 

float was removed from the BHA to observe the change in the drillpipe pressure after the 
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well was shut-in. It was observed that the drillpipe pressure did not respond to the choke 

pressure build up in a non-intact wellbore after the well was shut-in.  The drillpipe pressure 

was zero during the choke pressure build up, which may be considered as a strong 

evidence of lost returns in the well. 

A similar trend i.e. zero drillpipe pressure was observed in the simulation with 

‘shut-in’ reaction to a gas kick with lost returns above the kick zone. However, in this case, 

the drillpipe pressure subsequently began to increase, whereas the bottomhole pressure 

stayed nearly constant. This phenomenon may be attributed to the entry of gas inside the 

drillstring and subsequent migration up the drillstring for the reason explained in section 

6.6.2. 

Therefore, lost returns may be detectable by observing the trend in drillpipe 

pressure if a float is not installed in the BHA. However, use of float(s) is recommended in 

managed pressure drilling to prevent flow through the drillpipe during pipe connections. 

Therefore an effective procedure for repeatedly bumping the float is required to monitor 

drillpipe pressure 

7.5 Sensitivity to Formation Fracture Injectivity 

 The fracture injectivity index is a dominant factor in well control once lost returns 

occur. In simulations with a 17-1/2 inch hole and high fracture injectivity (0.4 mmscfd / 

psi) at the shoe, well control using the back pressure reaction was not successful for a 

small, 5.5 bbl gas kick.  In these simulations, the choke had to be completely closed while 

trying to maintain drillpipe pressure constant with increasing back pressure after flow-out 

equalized with flow-in. Conversely, in a simulation in the same hole size, with low fracture 
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injectivity at the shoe (0.0004 mmscfd / psi), a 5.5 bbl gas kick was successfully circulated 

out despite minor lost returns. 

7.6 Evaluation of Effectiveness of Initial Reactions 

 The effectiveness of initial reactions to address the basic well control issues i.e. 

ability to stop the formation feed-in, prevent lost returns, confirm stoppage of influx and 

identify lost returns is summarized in Table 7.1, 7.2, 7.3 and 7.4 respectively based on all 

of the simulation results. 

Table 7.1: Effectiveness of initial reactions to stop formation feed-in 
Shut-in Apply Back Pressure Increase Flow Rate 

Intact 
Wellbore 

Non-
intact 

Wellbore 

Intact 
Wellbore Non-intact Wellbore Intact 

Wellbore 
Non-intact 
Wellbore 

Effective 
Does not 

stop 
influx 

Effective 

Inconclusive, as both 
success and failure of 
stopping the influx were 
observed in the 
simulations. The results 
obtained were sensitive 
to fracture injectivity 
index and the strategy 
of choke adjustments 
e.g. attempting to 
maintain drillpipe 
pressure constant after 
flow-out equaled flow-
in versus forcing flow-
out equal to flow-in for 
extended duration.  

Effective in 
slim hole, 
but not in 
large hole as 
necessary 
ECD could 
not be 
generated 
due to pump 
limitation. 

Not 
successful 
for these 
simulations. 
Necessary 
ECD to over 
balance the 
formation 
pressure 
could not be 
generated 
due to pump 
limitation.   

 
Table 7.2: Effectiveness of initial reactions to prevent lost returns 

Shut-in Apply Back Pressure Increase Flow Rate 
Most susceptible to lost 
returns because of high 
casing pressure 

Less risk than shut-in option because 
of lower casing pressure. In these 
simulations, if flow-out is forced to 
equal flow-in for extended period, an 
uncontrolled flow of gas at surface 
may occur and lost returns may stop.  

Minimum risk of lost 
returns above the 
kick zone because of 
minimum surface 
pressure. 
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Table 7.3: Effectiveness of initial reactions to confirm stoppage of formation feed-in 
Shut-in Apply Back Pressure Increase Flow Rate 

Intact Wellbore Non-intact 
Wellbore Intact Wellbore Non-intact 

Wellbore 
Intact 

Wellbore 
Non-intact 
Wellbore 

A stabilized casing pressure after initial build up 
will indicate stoppage of influx.  However, this 
method is not straight forward because gas 
migration may start quickly after stoppage of 
influx resulting in increase in casing pressure. 
Drillpipe pressure increasing at the same rate as 
the casing pressure after initial build up apparently 
indicates stoppage of influx. Failure to stop influx 
can be concluded from a rising casing pressure and 
a constant drillpipe pressure. 

Does not stop 
influx 

Effective as 
flow-out equal 
to flow-in will 
indicate 
stoppage of 
influx.  

Not 
effective as 
explained 
at section 
7.3. 

Effective as 
flow-out 
equal to 
flow-in will 
indicate 
stoppage of 
influx. 

Not 
effective. 
Explanation 
at section 
7.3 also 
applicable 
for this 
reaction. 

 
Table 7.4: Effectiveness of initial reactions to identify lost returns 

Shut-in Apply Back Pressure Increase Flow Rate 

Effective by observing decreasing trend 
of drillpipe pressure if float is not 
installed or float is bumped regularly. 
See explanation at section 7.4 

Not effective for identifying 
lost returns exactly when it 
starts as explained in section 
7.3. However, lost returns can 
be identified when flow-out 
becomes less consistently than 
flow-in. 

Not effective for identifying lost return exactly 
when it starts. Explanation given in section 7.3 
about identifying lost returns by back pressure 
reaction based on simulation results is also 
applicable for this reaction. The lost return should 
be identified when flow-out is consistently less 
than flow-in. However, no simulations undertaken 
with this reaction resulted in flow-out less than 
flow-in.  



   

8. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 
 

8.1 Summary 

Managed pressure drilling, MPD, with a constant bottomhole pressure is a method 

that increases the feasibility of successfully drilling wells with a narrow margin between 

the pore pressure and the fracture pressure. However, the narrow margin can increase the 

likelihood of taking a kick and of causing lost returns while controlling the kick. The 

conventional well control method relies on mud hydrostatic pressure for primary control of 

the well. However, managed pressure drilling typically uses a mud weight that is less than 

the pore pressure gradient and utilizes the wellbore frictional pressures and / or back 

pressure to overbalance the pore pressure. Therefore, alternative well control procedures 

are required for managed pressure drilling.  

The objective of this project is to determine the best initial response, or reaction to 

a kick taken while conducting MPD operations. The effectiveness of the initial response to 

a kick was judged based on minimizing casing pressure, ability to stop formation feed-in 

with minimum additional gain, ability to verify that formation feed-in was stopped and 

ability to identify lost returns.  

A multiphase transient flow simulator, UbitTSTM was used to study the 

effectiveness of three different initial responses to a kick taken during managed pressure 

drilling operations, namely (1) shut-in the well (2) increase mud pump rate and (3) apply 

back pressure. Descriptions of actual or planned MPD wells were provided by the industry 

sponsors and used to build various representative simulation cases. Hole sections from two 

wells, one a large 17-1/2 inch and one a slim 6 inch, were selected. Kicks in these 

geometries were then simulated to study the effectiveness of alternative initial reactions in 
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different kick scenarios. The kick scenarios were varied by changing the kick volumes, the 

type of reservoir fluid (oil or gas), the type of drilling mud (water-based or oil-based), the 

differential pressure at the kick zone and the fracture injectivity.   

Gas and oil kicks were simulated while drilling through a high pressure sand in a 6 

inch slim hole. The sensitivity of casing pressures to initial kick volumes, types of 

reservoir fluid (oil or gas) and types of drilling fluid (water-based or oil-based) during 

initial reactions were studied. A well control scenario with a kick taken due to lost returns 

below the kick sand was simulated in this hole, and the effectiveness of the initial reactions 

was studied. A few simulations were run for longer duration to study the effect of the 

initial reactions on the feasibility of well control for this scenario   

Gas kicks were simulated in a 17-1/2 inch hole while drilling through a high 

pressure sand, and the effectiveness of each initial reaction in an intact wellbore was 

studied. Also, simulations were run in this hole section with kicks taken from a higher 

pressure sand that would result in an induced fracture at shoe during some initial reactions. 

Severity of the well control scenarios was also varied by changing the initial kick volume 

and the injectivity index at the fractured formation. Effectiveness and feasibility of well 

control with alternative initial reactions in a non-intact wellbore were studied with longer 

simulation runs.  

The effect of the length of time to maintain flow-out equal to flow-in in selecting 

the drillpipe pressure to hold constant while circulating out a kick was studied in longer 

simulations using the back pressure reaction. The ability to identify lost returns and 

underground transfers of formation fluid was also studied for the different initial reactions. 

 134



   

Base case simulations were also conducted in 17-1/2 inch and 6 inch hole without 

any noticeable increase in return flow rate during drilling to establish a baseline well 

response for comparison to cases with kicks and to investigate the ability to identify a false 

alarm of a kick. In these simulations, back pressures were applied by reducing the choke 

opening and changes in the return flow rates were monitored.  

8.2 Conclusions 

 The following conclusions are based on review and analysis of the simulations 

described in the preceding section. These conclusions may not apply to all MPD situations. 

1. The casing pressure versus time is higher for ‘shut-in’ reactions than for ‘back 

pressure’ and the ‘increase pump rate’ reactions to oil and gas kicks in an intact 

wellbore.  

2. Casing pressure versus time is the lowest for the ‘increase pump rate’ reaction 

to oil and gas kicks in an intact wellbore. 

3. A larger initial kick volume results in a higher casing pressure during the initial 

reactions. 

4. The ‘increase pump rate’ reaction is most likely to be effective for stopping 

formation fluid influx when applied to slim hole operations with an intact 

wellbore.  

5.  Stopping formation feed-in in a large size hole with increased pump rate is 

unlikely to be successful because pump and surface equipment capacities and 

the small AFP losses limit the increase in bottomhole pressure that can be 

achieved. 
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6.  Maintaining flow-out equal to flow-in for an extended time in the back pressure 

reaction to a gas kick in a non-intact wellbore may lead to uncontrolled flow of 

gas at the surface.  

7. Attempting to maintain drillpipe pressure constant after the flow-out becomes 

equal to the flow-in in the back pressure reaction may lead to underground 

blowout with continuous influx and total lost returns, if the wellbore is not 

intact. 

8.  Identifying lost returns by comparing flow-out with flow-in during the back 

pressure reaction may be difficult as explained in section 7.3. 

9. Lost returns may be identified in the shut-in reaction by a decreasing trend in 

drillpipe pressure after the well is shut-in provided a drillpipe float is not 

installed or an effective procedure for bumping the float is used. A zero 

drillpipe pressure after the well is shut-in is a strong indication of lost returns as 

explained in sections 6.6.2 and 7.4. 

10. The fracture injectivity index of a lost circulation zone or induced fractures is 

very important to the success of well control once lost returns have occurred. A 

low fracture injectivity index may allow the increase in bottomhole pressure 

needed to successfully circulate out a kick despite partial lost returns. 

8.2.1 Best Initial Reaction 

 The objective of defining the best initial reaction to a kick during MPD operations 

has not been achieved. There is no obvious best single reaction based on the work herein. 

Nevertheless the following tentative conclusions have been reached. 
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• The ‘increase mud flow rate’ has a major advantage for situations where it might 

provide enough increase in bottomhole pressure to stop formation flow because it 

results in the minimum casing and shoe pressures. Therefore, it should minimize 

the risk of lost returns or surface equipment failure.  

• The ‘apply back pressure’ response has a similar but smaller advantage versus the 

‘shut-in’ option because of the ECD due to circulation. However, in cases where 

the wellbore does not remain intact, reliable ways of identifying the loss of returns 

and avoiding unintentional formation flow to the surface have not been defined in 

this study.  

• The ‘shut-in’ reaction generally results in the highest casing and casing shoe 

pressures. Therefore, it may be most likely to cause loss of returns before stopping 

formation flow which could cause an underground transfer with continuous influx. 

Nevertheless, it is probably the least likely to unintentionally allow formation fluid 

flow to the surface or to cause loss of significant mud volume. 

8.3 Recommendations 

1. Additional simulations in common intermediate size holes, particularly 12-1/4” 

and 8-1/2”, of representative MPD wells should be conducted to study the 

effectiveness of different initial kick responses in different well geometry. 

Specifically, simulations should be undertaken to investigate the range of mud 

flow rates and standpipe pressures required for dynamic kills in these hole 

sizes. 

2. Simulations should be run to study the effect of simultaneous or sequential 

application of back pressure and increase of mud flow rate, especially when 
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increasing mud flow rate alone to the maximum pump discharge capacity is not 

successful in stopping the influx. The combination of back pressure, and 

increased pump rate should provide maximum bottomhole pressure, at least for 

some well geometries. 

 3. Simulations should be run to study the impact of the productivity index on the 

effectiveness of different initial reactions to kicks. 

4. Longer simulations with the ‘back pressure reaction’ should be undertaken with 

a gas kick in an intact wellbore to see if the gas can be circulated out while 

keeping the drillpipe pressure constant without taking additional influx or other 

complications. 

5. Simulations should be undertaken with oil kicks similar to gas kicks with an 

induced fracture (1) above the kick zone and (2) below the kick zone during 

initial reactions for identifying differences when no gas migration effect exists. 

6.  If the ‘increase mud pump rate’ reaction is desired for MPD well control, then 

detailed hydraulics calculations should be performed during the MPD well 

design to determine the required capacity of the mud pump and other surface 

equipment to provide the desired increase in bottomhole pressure. Use of a 

larger size drillpipe to reduce the annular clearance for generating higher 

annulus frictional pressure and reducing the frictional pressure losses inside the 

drillstring should be considered during the MPD well design. 

TM7. Several upgrades to the UbitTS  program are recommended. The program 

does not provide pit gain in real time. In this study, kick volumes were 

approximated from 5 minute average loss / gain real time data provided by the 
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program. Also, UbitTSTM does not allow a hole size greater than the internal 

diameter (ID) of the previous casing. Therefore, drilling with a bicenter bit or 

using an underreamer to drill a hole of bigger diameter than the previous casing 

ID can not be simulated in this program.  Drilling with a bicenter bit or an 

underreamer is a common practice in MPD wells. The UbitTSTM program uses 

a Newtonian drilling fluid rehological model for calculation of frictional 

pressures in the well, however, most drilling fluids are non-Newtonian. 

Therefore, it is recommended that UbitTSTM be upgraded to correct these 

shortcomings and that other well control simulation programs be evaluated for 

providing more accurate results in future simulations.  

8. The use of a circulation sub in the BHA for diverting the flow in the annulus 

through the side ports, bypassing the bit nozzles, should be investigated as a 

means to reduce the pump pressure and facilitate higher pump rates to increase 

the ability to achieve a successful kill with the increase pump rate method. 

9. The ‘shut-in’ and ‘increase pump rate’ responses should be applied in 

simulations when no kick exists to indicate whether either of these responses 

might provide a more conclusive basis for identifying a false kick alarm.  
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APPENDIX A1: SIMULATOR INPUT DATA FOR WELL X 
 
UNDERBALANCED DRILLING TRAINING SIMULATOR REPORT 
================================================ 
 
GENERAL 
Filename: C:\Documents and Settings\adas2\My Documents\Asis\UBD_AUX\WELL 
X\Case1\wellXcase1.ubd 
OLGA 2000 engine:  olga2000-4.16.exe 
DRILLSTRING 
 Average length of joint: 30 ft 
 Average length of stand: 90 ft 
 Bitnozzle area:  0.45 in2 
 DP 
  ID:   3.34 in 
  OD:   4 in 
  Length:  11500 ft 
  Weight/Length: 14 Lb/ft 
  Type:   Drillpipe 
 DP 
  ID:   2.764 in 
  OD:   3.5 in 
  Length:  5646 ft 
  Weight/Length: 13.3 Lb/ft 
  Type:   Drillpipe 
 HWT 
  ID:   2.25 in 
  OD:   3.5 in 
  Length:  360 ft 
  Weight/Length: 23.4 Lb/ft 
  Type:   Drillpipe 
 DC 
  ID:   2.25 in 
  OD:   4.75 in 
  Length:  360 ft 
  Weight/Length: 46.7 Lb/ft 
  Type:   Drillpipe 
 MWD 
  ID:   2.25 in 
  OD:   4.75 in 
  Length:  30 ft 
  Weight/Length: 46.7 Lb/ft 
  Type:   MWD 
 Float 
  ID:   2.25 in 
  OD:   4.75 in 
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  Length:  3 ft 
  Weight/Length: 46.7 Lb/ft 
  Type:   Floatsub 
 Bit 
  OD:   6 in 
  Length:  1 ft 
  Weight/Length: 46.7 Lb/ft 
  Type:   Bit 
WELL GEOMETRY 
 Water depth:   0 ft 
 Annular injection 
  Type:   NONE 
  Allow backflow: NO 
  Depth:   0 ft 
  Diameter:  0 in 
  Thickness:  0 in 
 Temperature at rigfloor: 70 F 
 Temperature at seabed: 32 F 
 Bottom hole temperature: 165 F 
CASING 
 Riser 
  ID:   8.755 in 
  OD:   9.625 in 
  Top:   0 ft 
  Bottom:  3032 ft 
  Cement top:  0 ft 
 csg 
  ID:   6.094 in 
  OD:   7 in 
  Top:   3032 ft 
  Bottom:  12160 ft 
  Cement top:  11800 ft 
 csg 
  ID:   6.1 in 
  OD:   7 in 
  Top:   12160 ft 
  Bottom:  14150 ft 
  Cement top:  12160 ft 
SURVEY DATA 
 Data 1 
  Measured depth: 8300 ft 
  TVD depth:  8300 ft 
  Inclination:  0 
  Azimuth:  0 
 Data 2 
  Measured depth: 11186 ft 
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  TVD depth:  10970.16 ft 
  Inclination:  22.3 
  Azimuth:  25.5 
 Data 3 
  Measured depth: 14033 ft 
  TVD depth:  13128.56 ft 
  Inclination:  40.7 
  Azimuth:  51 
 Data 4 
  Measured depth: 14150 ft 
  TVD depth:  13216.77 ft 
  Inclination:  41.07 
  Azimuth:  50.76 
 Data 5 
  Measured depth: 14190 ft 
  TVD depth:  13246.47 ft 
  Inclination:  42.06 
  Azimuth:  51.79 
 Data 6 
  Measured depth: 14350 ft 
  TVD depth:  13365.26 ft 
  Inclination:  42.06 
  Azimuth:  51.79 
 Data 7 
  Measured depth: 15014.5 ft 
  TVD depth:  13632.35 ft 
  Inclination:  66.3 
  Azimuth:  44.51 
 Data 8 
  Measured depth: 17021.87 ft 
  TVD depth:  14439.21 ft 
  Inclination:  66.3 
  Azimuth:  44.51 
 Data 9 
  Measured depth: 17398.41 ft 
  TVD depth:  14655.19 ft 
  Inclination:  55 
  Azimuth:  44.51 
 Data 10 
  Measured depth: 17638.96 ft 
  TVD depth:  14816.83 ft 
  Inclination:  47.78 
  Azimuth:  44.51 
 Data 11 
  Measured depth: 17791.75 ft 
  TVD depth:  14928.21 ft 

 147



   

  Inclination:  43.2 
  Azimuth:  44.51 
 Data 12 
  Measured depth: 17888.96 ft 
  TVD depth:  14999.07 ft 
  Inclination:  43.2 
  Azimuth:  44.51 
 Data 13 
  Measured depth: 17900 ft 
  TVD depth:  15007.12 ft 
  Inclination:  43.2 
  Azimuth:  44.51 
PUMP DATA 
 Suction tank 
  Min rate:  0 USgal/min 
  Max rate:  1000 USgal/min 
  Max pressure:  5360 psia 
  Volume per stroke: 0.122 bbl 
 Pill tank 
  Min rate:  0 USgal/min 
  Max rate:  1000 USgal/min 
  Max pressure:  5360 psia 
  Volume per stroke: 0.122 bbl 
 Drillstring injection 
  Min rate:  0 MMSCF/d 
  Max rate:  5 MMSCF/d 
  Max pressure:  3500 psia 
 Annular injection 
  Min rate:  0 MMSCF/d 
  Max rate:  0 MMSCF/d 
  Max pressure:  0 psia 
FLUID PROPERTIES 
 Suction tank 
  Base fluid:  Water 
  Fluid details:  NONE 
  Tank capacity:  5000 bbl 
  Density:  13.2 Lb/USgal 
  Viscosity:  38 cp 
 Pill tank 
  Base fluid:  Water 
  Fluid details:  NONE 
  Tank capacity:  5000 bbl 
  Density:  13.2 Lb/USgal 
  Viscosity:  38 cp 
 Drillstring 
  Base fluid:  Nitrogen 
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 Annulus 
  Base fluid:   
RESERVOIR 
 Form-1 
  Fluid type:  Gas 
  Rock strength:  Soft 
  Measured depth top: 14150 ft 
  Measured depth bottom:14410 ft 
  Pore pressure:  8041 psia 
  Std PI production: 0.4286 MMSCF/psi-d 
  GOR:   4000 SCF/STB 
  Watercut:  0 % 
  Initiation pressure: 10398 psia 
  Injection pressure: 10398 psia 
  Std PI injection: 0.0004 MMSCF/psi-d 
 Form-2 
  Fluid type:  Gas 
  Rock strength:  Soft 
  Measured depth top: 14410 ft 
  Measured depth bottom:14754 ft 
  Pore pressure:  8222.24 psia 
  Std PI production: 0.4286 MMSCF/psi-d 
  GOR:   4000 SCF/STB 
  Watercut:  0 % 
  Initiation pressure: 10556 psia 
  Injection pressure: 10556 psia 
  Std PI injection: 0.0004 MMSCF/psi-d 
 Form-3 
  Fluid type:  Gas 
  Rock strength:  Soft 
  Measured depth top: 14754 ft 
  Measured depth bottom:15135 ft 
  Pore pressure:  8627.84 psia 
  Std PI production: 0.4286 MMSCF/psi-d 
  GOR:   4000 SCF/STB 
  Watercut:  0 % 
  Initiation pressure: 10728 psia 
  Injection pressure: 10728 psia 
  Std PI injection: 0.0004 MMSCF/psi-d 
 Form-4 
  Fluid type:  Gas 
  Rock strength:  Soft 
  Measured depth top: 15135 ft 
  Measured depth bottom:15632 ft 
  Pore pressure:  8984.35 psia 
  Std PI production: 0.4286 MMSCF/psi-d 
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  GOR:   4000 SCF/STB 
  Watercut:  0 % 
  Initiation pressure: 10907 psia 
  Injection pressure: 10907 psia 
  Std PI injection: 0.0004 MMSCF/psi-d 
 Msand 
  Fluid type:  Gas 
  Rock strength:  Soft 
  Measured depth top: 15632 ft 
  Measured depth bottom:16130 ft 
  Pore pressure:  9901 psia 
  Std PI production: 0.4286 MMSCF/psi-d 
  GOR:   4000 SCF/STB 
  Watercut:  0 % 
  Initiation pressure: 11123 psia 
  Injection pressure: 11123 psia 
  Std PI injection: 0.0004 MMSCF/psi-d 
 Form-6 
  Fluid type:  Gas 
  Rock strength:  Soft 
  Measured depth top: 16130 ft 
  Measured depth bottom:16627 ft 
  Pore pressure:  9805.95 psia 
  Std PI production: 0.4286 MMSCF/psi-d 
  GOR:   4000 SCF/STB 
  Watercut:  0 % 
  Initiation pressure: 10000 psia 
  Injection pressure: 10000 psia 
  Std PI injection: 0.4286 MMSCF/psi-d 
 Form-7 
  Fluid type:  Gas 
  Rock strength:  Soft 
  Measured depth top: 16627 ft 
  Measured depth bottom:17106 ft 
  Pore pressure:  10003.96 psia 
  Std PI production: 0.4286 MMSCF/psi-d 
  GOR:   4000 SCF/STB 
  Watercut:  0 % 
  Initiation pressure: 11606 psia 
  Injection pressure: 11606 psia 
  Std PI injection: 0.0004 MMSCF/psi-d 
 Nsand(depltd) 
  Fluid type:  Gas 
  Rock strength:  Soft 
  Measured depth top: 17106 ft 
  Measured depth bottom:17394 ft 
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  Pore pressure:  9414 psia 
  Std PI production: 0.4286 MMSCF/psi-d 
  GOR:   4000 SCF/STB 
  Watercut:  0 % 
  Initiation pressure: 11494 psia 
  Injection pressure: 11494 psia 
  Std PI injection: 0.0004 MMSCF/psi-d 
 Osand(depltd) 
  Fluid type:  Gas 
  Rock strength:  Soft 
  Measured depth top: 17394 ft 
  Measured depth bottom:17490 ft 
  Pore pressure:  8590 psia 
  Std PI production: 0.4286 MMSCF/psi-d 
  GOR:   4000 SCF/STB 
  Watercut:  0 % 
  Initiation pressure: 11214 psia 
  Injection pressure: 11214 psia 
  Std PI injection: 0.0004 MMSCF/psi-d 
 Osand 
  Fluid type:  Gas 
  Rock strength:  Soft 
  Measured depth top: 17490 ft 
  Measured depth bottom:17792 ft 
  Pore pressure:  9959 psia 
  Std PI production: 0.4286 MMSCF/psi-d 
  GOR:   4000 SCF/STB 
  Watercut:  0 % 
  Initiation pressure: 12044 psia 
  Injection pressure: 12044 psia 
  Std PI injection: 0.0004 MMSCF/psi-d 
 Osand 
  Fluid type:  Gas 
  Rock strength:  Soft 
  Measured depth top: 17792 ft 
  Measured depth bottom:17900 ft 
  Pore pressure:  10202 psia 
  Std PI production: 0.4286 MMSCF/psi-d 
  GOR:   4000 SCF/STB 
  Watercut:  0 % 
  Initiation pressure: 12277 psia 
  Injection pressure: 12277 psia 
  Std PI injection: 0.0004 MMSCF/psi-d 
SURFACE EQUIPMENT 
 Response delay for valves: 1 s 
 Rotating control max pressure:3000 psia 
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 Return line diameter:  6 in 
 Return line length:  100 ft 
 Choke max diameter:  3 in 
 Return oil capacity:  0 bbl 
 Return water capacity: 0 bbl 
 Gas outlet diameter:  0 in 
 Gas outlet length:  0 ft 
 Gas outlet backpressure: 0 psia 
 UBD separator 
  Type:   NONE 
  Backpressure:  14.7 psia 
SPECIAL PROBLEMS  NONE 
SIMULATION OPTIONS 
 Liquid suction rate:  150 USgal/min 
 Liquid pill rate:  0 USgal/min 
 Drillstring gas rate:  0 MMSCF/d 
 Annular gas rate:  0 MMSCF/d 
 Bit depth:   15582 ft 
 PVT file name:  gas.tab 
 Restart file name:   
 Restart start time:  0 s 
 Screen time:   1 s 
 Sampling time:  5 s 
 Variables to track: 
     OLGA timestep 
     OLGA speed 
     Drillstring: Gas flow 
     Annular injection: Gas flow 
     Suction tank: Liquid flow 
     Pill tank: Liquid flow 
     Separator: Pressure 
     Separator: Liquid level 
     Bypass line: Total flow 
     Return choke: Opening 
     Suction tank: Volume 
     Pill tank: Volume 
     DrillBit: Depth 
     Drillstring inlet: Gas flow 
     Drillstring inlet: Liquid flow 
     Drillstring inlet: Pressure 
     Return choke: Upstream pressure 
     Separator: Inlet gas flow 
     Separator: Inlet liquid flow 
     Drillbit: Drillstring temperature 
     Drillbit: Annular pressure 
     Drillbit: Drillstring pressure 
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     Drillbit: Total volume flow 
     Drillbit: Penetration rate 
     Average: Gas rate injected 
     Average: Gas rate produced 
     Average: Gas rate gained/lost 
     Average: Oil rate injected 
     Average: Oil rate produced 
     Average: Oil rate gained/lost 
     Average: Water rate injected 
     Average: Water rate produced 
     Average: Water rate gained/lost 
     Formation: Total flow 
     Drillbit: Drilled depth 
     Bleed off: Valve opening 
     Drillbit: Annular section pressure 
     Annular injection: Surface pressure 
     Annular injection: Down hole pressure 
     Annular injection: Down hole gas flow 
     Separator: Setpoint pressure 
PRIVILEGES 
 User access level:  Student 
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APPENDIX A2: SIMULATOR INPUT DATA FOR WELL Z 
 
UNDERBALANCED DRILLING TRAINING SIMULATOR REPORT 
================================================ 
 
GENERAL 
Filename:C:\Documents and Settings\adas2\My Documents\Asis\UBD_AUX\WELL 
Z\13ppg_kickzone\case-1\17.5_hole.ubd 
OLGA 2000 engine:  olga2000-4.16.exe 
DRILLSTRING 
 Average length of joint: 30 ft 
 Average length of stand: 90 ft 
 Bitnozzle area:  0.75 in2 
 DP 
  ID:   4.276 in 
  OD:   5 in 
  Length:  4002 ft 
  Weight/Length: 19.5 Lb/ft 
  Type:   Drillpipe 
 HW 
  ID:   3 in 
  OD:   5 in 
  Length:  180 ft 
  Weight/Length: 50 Lb/ft 
  Type:   Drillpipe 
 DC 
  ID:   2.8 in 
  OD:   6.5 in 
  Length:  180 ft 
  Weight/Length: 100 Lb/ft 
  Type:   Drillpipe 
 DC 
  ID:   3 in 
  OD:   9 in 
  Length:  360 ft 
  Weight/Length: 196 Lb/ft 
  Type:   Drillpipe 
 MWD 
  ID:   3 in 
  OD:   9 in 
  Length:  30 ft 
  Weight/Length: 196 Lb/ft 
  Type:   MWD 
 Float 
  ID:   3 in 
  OD:   9 in 
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  Length:  3 ft 
  Weight/Length: 196 Lb/ft 
  Type:   Floatsub 
  Bit 
  OD:   17.5 in 
  Length:  1 ft 
  Weight/Length: 196 Lb/ft 
  Type:   Bit 
WELL GEOMETRY 
 Water depth:   0 ft 
 Annular injection 
  Type:   NONE 
  Allow backflow: NO 
  Depth:   0 ft 
  Diameter:  0 in 
  Thickness:  0 in 
 Temperature at rigfloor: 70 F 
 Temperature at seabed: 32 F 
 Bottom hole temperature: 130 F 
CASING 
 Casing 
  ID:   18.73 in 
  OD:   20 in 
  Top:   0 ft 
  Bottom:  3280 ft 
  Cement top:  0 ft 
SURVEY DATA 
 Data 1 
  Measured depth: 4756 ft 
  TVD depth:  4756 ft 
  Inclination:  0 
  Azimuth:  0 
PUMP DATA 
 Suction tank 
  Min rate:  0 USgal/min 
  Max rate:  1620 USgal/min 
  Max pressure:  6285 psia 
  Volume per stroke: 0.122 bbl 
 Pill tank 
  Min rate:  0 USgal/min 
  Max rate:  1620 USgal/min 
  Max pressure:  6285 psia 
  Volume per stroke: 0.122 bbl 
 Drillstring injection 
  Min rate:  0 MMSCF/d 
  Max rate:  5 MMSCF/d 
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  Max pressure:  3500 psia 
 Annular injection 
  Min rate:  0 MMSCF/d 
  Max rate:  0 MMSCF/d 
  Max pressure:  0 psia 
FLUID PROPERTIES 
 Suction tank 
  Base fluid:  Water 
  Fluid details:  NONE 
  Tank capacity:  5000 bbl 
  Density:  12.51 Lb/USgal 
  Viscosity:  38 cp 
 Pill tank 
  Base fluid:  Water 
  Fluid details:  NONE 
  Tank capacity:  5000 bbl 
  Density:  12.51 Lb/USgal 
  Viscosity:  38 cp 
 Drillstring 
  Base fluid:  Nitrogen 
 Annulus 
  Base fluid:   
RESERVOIR 
 Form-1 
  Fluid type:  Gas 
  Rock strength:  Soft 
  Measured depth top: 3280 ft 
  Measured depth bottom:3400 ft 
  Pore pressure:  1491 psia 
  Std PI production: 0.556456017 MMSCF/psi-d 
  GOR:   13761825.045634 SCF/STB 
  Watercut:  0 % 
  Initiation pressure: 2415 psia 
  Injection pressure: 2415 psia 
  Std PI injection: 0.0004 MMSCF/psi-d 
 Form-2 
  Fluid type:  Gas 
  Rock strength:  Soft 
  Measured depth top: 3400 ft 
  Measured depth bottom:3500 ft 
  Pore pressure:  1608 psia 
  Std PI production: 0.556456017 MMSCF/psi-d 
  GOR:   13761825.045634 SCF/STB 
  Watercut:  0 % 
  Initiation pressure: 2519 psia 
  Injection pressure: 2519 psia 
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  Std PI injection: 0.0004 MMSCF/psi-d 
 Form-3 
  Fluid type:  Gas 
  Rock strength:  Soft 
  Measured depth top: 3500 ft 
  Measured depth bottom:3600 ft 
  Pore pressure:  1729 psia 
  Std PI production: 0.556456017 MMSCF/psi-d 
  GOR:   13761825.045634 SCF/STB 
  Watercut:  0 % 
  Initiation pressure: 2611 psia 
  Injection pressure: 2611 psia 
  Std PI injection: 0.0004 MMSCF/psi-d 
 Form-4 
  Fluid type:  Gas 
  Rock strength:  Soft 
  Measured depth top: 3600 ft 
  Measured depth bottom:3700 ft 
  Pore pressure:  1834 psia 
  Std PI production: 0.556456017 MMSCF/psi-d 
  GOR:   13761825.045634 SCF/STB 
  Watercut:  0 % 
  Initiation pressure: 2695 psia 
  Injection pressure: 2695 psia 
  Std PI injection: 0.0004 MMSCF/psi-d 
 Form-5 
  Fluid type:  Gas 
  Rock strength:  Soft 
  Measured depth top: 3700 ft 
  Measured depth bottom:3800 ft 
  Pore pressure:  1962 psia 
  Std PI production: 0.556456017 MMSCF/psi-d 
  GOR:   13761825.045634 SCF/STB 
  Watercut:  0 % 
  Initiation pressure: 2780 psia 
  Injection pressure: 2780 psia 
  Std PI injection: 0.0004 MMSCF/psi-d 
 Form-6 
  Fluid type:  Gas 
  Rock strength:  Soft 
  Measured depth top: 3800 ft 
  Measured depth bottom:3900 ft 
  Pore pressure:  2094 psia 
  Std PI production: 0.556456017 MMSCF/psi-d 
  GOR:   13761825.045634 SCF/STB 
  Watercut:  0 % 
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  Initiation pressure: 2865 psia 
  Injection pressure: 2865 psia 
  Std PI injection: 0.0004 MMSCF/psi-d 
 Form-7 
  Fluid type:  Gas 
  Rock strength:  Soft 
  Measured depth top: 3900 ft 
  Measured depth bottom:4000 ft 
  Pore pressure:  2210 psia 
  Std PI production: 0.556456017 MMSCF/psi-d 
  GOR:   13761825.045634 SCF/STB 
  Watercut:  0 % 
  Initiation pressure: 2960 psia 
  Injection pressure: 2960 psia 
  Std PI injection: 0.0004 MMSCF/psi-d 
 Form-8 
  Fluid type:  Gas 
  Rock strength:  Soft 
  Measured depth top: 4000 ft 
  Measured depth bottom:4100 ft 
  Pore pressure:  2350 psia 
  Std PI production: 0.556456017 MMSCF/psi-d 
  GOR:   13761825.045634 SCF/STB 
  Watercut:  0 % 
  Initiation pressure: 3057 psia 
  Injection pressure: 3057 psia 
  Std PI injection: 0.0004 MMSCF/psi-d 
 Form-9 
  Fluid type:  Gas 
  Rock strength:  Soft 
  Measured depth top: 4100 ft 
  Measured depth bottom:4200 ft 
  Pore pressure:  2473 psia 
  Std PI production: 0.556456017 MMSCF/psi-d 
  GOR:   13761825.045634 SCF/STB 
  Watercut:  0 % 
  Initiation pressure: 3144 psia 
  Injection pressure: 3144 psia 
  Std PI injection: 0.0004 MMSCF/psi-d 
 Form-10 
  Fluid type:  Gas 
  Rock strength:  Soft 
  Measured depth top: 4200 ft 
  Measured depth bottom:4300 ft 
  Pore pressure:  2609 psia 
  Std PI production: 0.556456017 MMSCF/psi-d 
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  GOR:   13761825.045634 SCF/STB 
  Watercut:  0 % 
  Initiation pressure: 3243 psia 
  Injection pressure: 3243 psia 
  Std PI injection: 0.0004 MMSCF/psi-d 
 Form-11 
  Fluid type:  Gas 
  Rock strength:  Soft 
  Measured depth top: 4300 ft 
  Measured depth bottom:4400 ft 
  Pore pressure:  2772 psia 
  Std PI production: 0.556456017 MMSCF/psi-d 
  GOR:   13761825.045634 SCF/STB 
  Watercut:  0 % 
  Initiation pressure: 3331 psia 
  Injection pressure: 3331 psia 
  Std PI injection: 0.0004 MMSCF/psi-d 
 Form-12 
  Fluid type:  Gas 
  Rock strength:  Soft 
  Measured depth top: 4400 ft 
  Measured depth bottom:4500 ft 
  Pore pressure:  2894 psia 
  Std PI production: 0.556456017 MMSCF/psi-d 
  GOR:   13761825.045634 SCF/STB 
  Watercut:  0 % 
  Initiation pressure: 3432 psia 
  Injection pressure: 3432 psia 
  Std PI injection: 0.0004 MMSCF/psi-d 
 Form-13 
  Fluid type:  Gas 
  Rock strength:  Soft 
  Measured depth top: 4500 ft 
  Measured depth bottom:4600 ft 
  Pore pressure:  3042 psia 
  Std PI production: 0.556456017 MMSCF/psi-d 
  GOR:   13761825.045634 SCF/STB 
  Watercut:  0 % 
  Initiation pressure: 3521 psia 
  Injection pressure: 3521 psia 
  Std PI injection: 0.0004 MMSCF/psi-d 
 Form-14 
  Fluid type:  Gas 
  Rock strength:  Soft 
  Measured depth top: 4600 ft 
  Measured depth bottom:4700 ft 
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  Pore pressure:  3193 psia 
  Std PI production: 0.556456017 MMSCF/psi-d 
  GOR:   13761825.045634 SCF/STB 
  Watercut:  0 % 
  Initiation pressure: 3611 psia 
  Injection pressure: 3611 psia 
  Std PI injection: 0.0004 MMSCF/psi-d 
 Form-15 
  Fluid type:  Gas 
  Rock strength:  Soft 
  Measured depth top: 4700 ft 
  Measured depth bottom:4756 ft 
  Pore pressure:  3348 psia 
  Std PI production: 0.556456017 MMSCF/psi-d 
  GOR:   13761825.045634 SCF/STB 
  Watercut:  0 % 
  Initiation pressure: 3769 psia 
  Injection pressure: 3769 psia 
  Std PI injection: 0.0004 MMSCF/psi-d 
SURFACE EQUIPMENT 
 Response delay for valves: 1 s 
 Rotating control max pressure:3000 psia 
 Return line diameter:  6 in 
 Return line length:  100 ft 
 Choke max diameter:  3 in 
 Return oil capacity:  0 bbl 
 Return water capacity: 0 bbl 
 Gas outlet diameter:  0 in 
 Gas outlet length:  0 ft 
 Gas outlet backpressure: 0 psia 
 UBD separator 
  Type:   NONE 
  Backpressure:  14.7 psia 
SPECIAL PROBLEMS  NONE 
SIMULATION OPTIONS 
 Liquid suction rate:  800 USgal/min 
 Liquid pill rate:  0 USgal/min 
 Drillstring gas rate:  0 MMSCF/d 
 Annular gas rate:  0 MMSCF/d 
 Bit depth:   4340 ft 
 PVT file name:  gas.tab 
 Restart file name:   
 Restart start time:  0 s 
 Screen time:   1 s 
 Sampling time:  5 s 
 Variables to track: 
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     OLGA timestep 
     OLGA speed 
     Drillstring: Gas flow 
     Annular injection: Gas flow 
     Suction tank: Liquid flow 
     Pill tank: Liquid flow 
     Separator: Pressure 
     Separator: Liquid level 
     Bypass line: Total flow 
     Return choke: Opening 
     Suction tank: Volume 
     Pill tank: Volume 
     DrillBit: Depth 
     Drillstring inlet: Gas flow 
     Drillstring inlet: Liquid flow 
     Drillstring inlet: Pressure 
     Return choke: Upstream pressure 
     Separator: Inlet gas flow 
     Separator: Inlet liquid flow 
     Drillbit: Drillstring temperature 
     Drillbit: Annular pressure 
     Drillbit: Drillstring pressure 
     Drillbit: Total volume flow 
     Drillbit: Penetration rate 
     Average: Gas rate injected 
     Average: Gas rate produced 
     Average: Gas rate gained/lost 
     Average: Oil rate injected 
     Average: Oil rate produced 
     Average: Oil rate gained/lost 
     Average: Water rate injected 
     Average: Water rate produced 
     Average: Water rate gained/lost 
     Formation: Total flow 
     Drillbit: Drilled depth 
     Bleed off: Valve opening 
     Drillbit: Annular section pressure 
     Annular injection: Surface pressure 
     Annular injection: Down hole pressure 
     Annular injection: Down hole gas flow 
     Separator: Setpoint pressure 
PRIVILEGES 
 User access level:  Student 
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