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ABSTRACT 

 

 

 The understanding of geological characteristics and heterogeneity of a reservoir  

 

enables better decisions for reservoir development. Statistical methods use universally  

 

available injection and production rate data to help evaluate reservoir characteristics and  

 

behavior. 

 

 In this research project, statistical methods typically used to infer communication  

 

between injector-producer well pairs in a waterflood reservoir using only production and  

 

injection rate data are applied to a CO2 flood. The multivariate linear regression (MLR)  

 

technique computes weighting coefficients possibly related to the fraction of the flow in a  

 

producer that comes from each of the injectors (Albertoni and Lake, 2002). MLR was  

 

applied to the Phase 2 portion of the Little Creek field, Mississippi CO2 flood. Albertoni  

 

and Lake use “diffusivity filters” to model the time lag and attenuation between the  

 

stimulus (injection) and the response (production), and further modify the model by   

 

successive elimination of negative weighting coefficients (SEN) and successive  

 

elimination of positive coefficients larger than 1 (SEP). Diffusivity filters do not improve  

 

the results for the Little Creek Field. The statistical implications of the SEN and SEP  

 

procedures were compared with a less complex simple linear model (SLM) which  

 

eliminates the need to make ad hoc assumptions.   

 

 A statistical hypothesis test (P-Value test) was carried out to determine the  

 

significance of each injector-producer well pair relationship. Well pairs with non- 

 

significant relationships are then eliminated from the model. This avoids making  

 

statistically questionable assumptions to eliminate injector-producer well pairs with  

 

connection strengths (i.e., connections not in the range [0,1]). Recommendations to  



 xi

 

improve sweep were made using results from the Simple Linear Model with the  

 

application of the statistical significance test. Suggestions for future work are also  

 

presented. 
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CHAPTER 1: INTRODUCTION 

 

 

Predicting the amount of oil and gas that will be recovered from a reservoir is an  

 

important task to solve as a petroleum engineer.  The process of reservoir characterization  

 

is critical to this process and requires information from various data  sources such as core  

 

analysis, construction of reservoir models, 3D seismic interpretation, geology, well  

 

logging, well and fluid testing, identification of reserve growth potential and many others  

 

to improve strategies for the development of early and mature fields.  

 

For an effective reservoir development plan, a sound reservoir description and a  

 

better knowledge and understanding of how the field was and is still being operated is  

 

essential. The acquisition and processing of some of this information throughout the life  

 

of the reservoir is expensive and, in many cases the information required is unavailable.   

 

The resources for building and using various modeling methods such as numerical  

 

simulation and the lack of important information make the process of reservoir  

 

characterization  difficult.  

 

Methods using production data have been developed to determine the recovery of  

 

a field undergoing CO2 or waterflooding. Recorded monthly production and injection  

 

rates are the most accessible data in any field. The analysis of production data is being  

 

used to determine reservoir characteristics, completion effectiveness and hydrocarbons- 

 

in-place. More frequently, injection and production rates along with reservoir description  

 

and characterization are used to qualitatively determine the influence of injectors on  

 

producers in a field. Plots showing cumulative injection rates, cumulative production  

 

rates, water-oil ratios, gas-oil ratios, total production and oil recoveries, all usually as a  

 

function of time are a few of the plots used to better understand waterflood or CO2   flood  
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performance.  

 

 In an enhanced oil recovery or secondary recovery system where the production  

 

rates of individual wells are affected by injection rates in that system, an understanding of  

 

the interwell communication would maximize the performance of an existing flood.  

 

Various production and recovery analysis methods have been used to better understand  

 

flood performance, but these techniques do not use the production and injection rate data  

 

to quantitatively determine injector-producer well pair connectivity. In recent years, the  

 

quest to quantitatively assess the relationship between injectors and producers to  better  

 

understand sweep efficiency has seen increasing interest. Large sets of production and  

 

injection rate data of the various wells are required to evaluate the influence each injector  

 

has on each producer. Various statistical approaches have been used to ascertain the  

 

physical relationship between injector-producer well pairs. These methods are not nearly  

 

as costly as the sophisticated models that are typically used for reservoir engineering in  

 

the oil industry.  The knowledge gained from these statistical approaches can yield  

 

improved operating practices to improve  oil recovery in active CO2 floods, and to form  

 

strategies for implementing new CO2 floods. Although statistical approaches have been  

 

used to infer the  relationships between injector-producer well pairs, there is nothing that  

 

says these statistical approaches are the most accurate way to do so. The intent in these  

 

cases is to apply statistical approaches which are generally used to infer relationships  

 

between dependent and  independent variables to a reservoir system where the available  

 

injection rate data is the dependent variable and the production rate data is the  

 

independent variable. Therefore, the use of these statistical approaches to attempt to infer  

 

possible relationships between injector-producer well pairs would be a much faster and  
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less costly method to help in the evaluation of the effectiveness of the displacement  

 

process of a system since no additional testing or lengthy characterization process would  

 

be necessary. 

 

 In this research project, the application of statistical methods to infer  

 

communication between injector-producer well pairs in a CO2 flood using only  

 

production and injection rate data is presented. The remainder of this first chapter  

 

presents the main objectives of this research project and provides a review of previous  

 

work related to this topic. The second chapter presents a mathematical review of the two  

 

approaches presented by Albertoni (2002) for use in waterfloods.  Chapter 2 also  

 

describes the use of diffusivity filters, the assumptions used when applying this method  

 

and the possible sources of error that may occur.  The concept and effects of the  

 

overdetermination coefficient, which indicates how the number of effective data points  

 

included in the linear regression calculation process affects the quality of the results  

 

along with the statistical implications associated with the implementation of the  

 

successive elimination of negative weighting coefficients (SEN) and the successive  

 

elimination of positive coefficients larger than 1 (SEP) procedures to the multivariate  

 

linear regression (MLR) method with and without diffusivity filters are also discussed in  

 

Chapter 2. Chapter 3 shows the application of these approaches to the Phase 2 portion of  

 

the Little Creek Field Mississippi. Chapter 4 introduces an alternative statistical method  

 

with fewer ad hoc assumptions that can be used to infer the connectivity between  

 

injector-producer pairs.  Chapter 5 discusses the inflow performance relationships for the  

 

selected wells in Phase 2.  Finally, Chapter 6 presents conclusions and recommendations  

 

for future work. 
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1.1       OBJECTIVE 

 

The objective of the project is to present and apply a method for evaluating  

 

the  interwell connectivity of Denbury Resources Little Creek Field in Mississippi using  

 

linear regression analysis.  Results will provide a better understanding of  the flow of  

 

fluid in the reservoir, which may in turn lead to  recommendations to improve operating  

 

practices. These insights may help improve oil recovery in other active CO2 floods and  

 

form strategies for monitoring new CO2 floods. 

 

 

1.2       LITERATURE REVIEW 

 

Several methods have been developed to evaluate the rate performance of an  

 

existing well with that of the surrounding injectors. The Spearman rank correlation  

 

method tests the relationship between variables regardless of the shape of the populations  

 

from which the samples are drawn has been used in recent years to infer  relationships  

 

between injector-producer wellpairs. Heffer et al. (1995) showed that these correlations  

 

are somewhat related to the local orientation of horizontal stresses in a waterflood.  

 

According to Heffer et al. (1995), the signals passed between wells which were measured  

 

by the rank correlations had at least some component coupled to geomechanics. Heffer et  

 

al (1995) used coupled geomechanical-fluid flow numerical modeling to simulate  

 

reservoir behavior and suggested that it could be used as a predictive tool for planning  

 

and managing waterfloods and determining optimal locations for infill drilling. 

 

Refunjol (1996) utilized the Spearman rank correlation analysis to determine  

 

preferential flow  trends in a reservoir. Refunjol (1996) correlated the ranks of time series  

 

of injection and production rates from pairs composed of each injection well and all  

 

adjacent producers.  Different time lags were used to find the extreme rank correlation  
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coefficient values of all injectors and then utilized these values to infer preferential flow  

 

directions.  This was done by grouping the injector-producer well pairs based on their  

 

Spearman rank correlation, then constructing a histogram based on the orientation of well  

 

pairs with maximum correlation.  The technique was applied to a field and the Spearman  

 

rank correlation coefficient, tracer response and reservoir geology were used to determine  

 

preferential flow trends in a reservoir. Refunjol (1996) concluded that the Spearman rank  

 

correlation coefficient technique was successfully applied but recommended that for  

 

future work, a linear model that related each production well to all the other injectors and  

 

the other producers be implemented. 

 

 Panda and Chopra (1998) introduced an integrated approach to determine  

 

injector-producer interaction. In their work a multi-variate data set consisting of  

 

production, injection, sand/shale, and well location information was first generated, then  

 

an artificial neural network (ANN) was trained to estimate the interaction between  

 

injector-producer well pairs. The method was successfully applied to numerical  

 

simulations of a waterflood and then the well interactions between different injection and  

 

production wells in a heterogeneous permeability field was computed. Panda and Chopra  

 

(1998) suggest that the application of their method to a stochastically generated synthetic  

 

permeability field, “which is a realistic replication of an actual field” indicates that true  

 

field data can be used to determine interaction between wells which in turn can indicate  

 

the presence of sealing faults, pinchouts and theif zones assisting operators to decide the  

 

placement of  infill wells, redesign fluid injection schemes and targeting remaining  

 

floodable oil. 

 

 DeSant’ Anna Pizarro (1998) used the Spearman rank coefficient to estimate  
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autocorrelation using production and injection rates and validated this technique with  

 

numerical simulations. The results attained from this analysis provided more insight to  

 

the advantages of the Spearman rank technique as well as its limitations such as how  

 

dependent the results are on reservoir parameters. 

 

 Soeriawinata and Kelkar (1999) utilized the Spearman rank to relate injectors to  

 

their adjacent producers. According to Soeriawinata and Kelkar (1999), the basic  

 

assumption in this analysis is that if good communication exists between two injectors  

 

and a producer, the cross correlation of the water injection rates to the liquid production  

 

rates is higher than the cross correlation of each single injector. Soeriawinata and Kelkar  

 

(1999) also accounted for the superposition effect in the reservoir caused by the influence  

 

of multiple injection wells on a producing well. According to Soeriawinata and Kelkar  

 

(1999), the fact that there are a number of injectors and producers operating  

 

simultaneously causes both superposition and noise, which must be accounted for in  

 

analyzing the data. The drawback to this method is that “it is practically impossible  

 

to distinguish whether a slight increase in cross correlation is due to superposition effect  

 

or due to noise in field rate data” (Soeriawinata and Kelkar, 1999). However, “if there is  

 

a significant jump in cross correlation value when the rate from an injector is added, it is  

 

most probably caused by constructive interference in injection rates rather than caused by  

 

noise” (Soeriawinata and Kelkar, 1999). This method was applied to a mature waterflood  

 

and strong connectivities and potential barriers in the field were identified. 

  

A method that calculates the fraction of the flow in a producer was developed by  

 

Albertoni (2002).  Albertoni (2002) presented two different statistical methods used to  

 

evaluate the connectivity between injectors and producers in a waterflood. These were  
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called the Multivariate Linear Regression (MLR) and the Balanced Multivariate Linear  

 

Regression (BMLR) method. Albertoni (2002) views the reservoir as a system that  

 

processes a stimulus (injection) and returns a response (production). The methods  

 

presented by Albertoni use liquid (water and oil) production and injection rates in  

 

reservoir volumes of every well in a waterflood system. Albertoni (2002) suggests that  

 

gas rates should be disregarded in the analysis; periods with no significant free gas  

 

production must be selected for the analysis.  The reservoir effect on the input signal  

 

(injection) and the output signal (production) is dependent on the location and the  

 

orientation of each injector-producer pair in that system. This technique uses different  

 

statistical methods based on constrained multivariate linear regression to quantitatively  

 

determine the communication between wells in the system.  Diffusivity filters are also  

 

used in this method to account for the time lag and attenuation that occurs between the  

 

injector and producer.  The methods were applied to a synthetic field generated by  

 

numerical simulation with five-spot injection patterns and also to a waterflood in  

 

Argentina. Results were very difficult to validate, but seemed to agree with the presence  

 

of known geological features  (Albertoni, 2002). 

 

 Dinh (2003) used the multivariate linear regression techniques along with the  

 

diffusivity filter concept suggested by Albertoni (2002) to quantify communication  

 

between well pairs in a reservoir using injection and production rate data. The method  

 

was tested on a synthetic reservoir model using the BOAST98 numerical simulator and  

 

then was applied to a waterflood field in northeastern Oklahoma. The results obtained by  

 

Dinh (2003) from the tested reservoir models reflected the characteristics of anisotropy,  

 

vertical heterogeneity, sealing faults and flow channels. Dinh (2003) applied the  
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MLR approach with and without diffusivity filters to the field data and found that the  

 

application  of the MLR approach without diffusivity filters yielded better results than the  

 

other cases.  Dinh (2003) concluded that for a media with small dissipation, a short  

 

diffusivity filter function should be considered and further analysis to determine how  

 

frequently the flowrates being used in these type of models should be  measured.   

 

Dinh and Tiab (2007) used the MLR approach introduced by (Albertoni and Lake,  

 

2002) to determine the interwell connectivity between injector and producer well-pairs  

 

in a waterflood system using bottom-hole pressures of injectors and producers. They 

 

suggested that the use of bottom-hole pressures eliminated the need to apply diffusivity  

 

filters to flowrate data to account for the time lag and attenuation that occurred between  

 

injector-producer well pairs, making this approach a much simpler method to infer  

 

injector-producer connectivity. Dinh and Tiab (2007) also stated that for their method, an  

 

overdetermination factor (which indicates how the number of effective data points  

 

included in the linear calculation process effects the quality of the results) greater than 1  

 

can be used to obtain good results. This suggested that in comparison to past studies  

 

conducted by Albertoni (2002) and Dinh (2003) with numerous flowrate data, minimal  

 

data can be used to achieve good results for this method. This also eliminated the need to  

 

include shut-in-periods which are usually “unavoidable when a large number of data  

 

points are used, creating significant errors in the analysis” (Dinh and Tiab, 2007).This  

 

new approach was compared to the same case studied by Dinh (2003) applying the MLR  

 

approach without diffusivity filters to flowrate data for the same field. Dinh and Tiab  

 

(2007) concluded from their results that better results were obtained with the  

 

implementation of the new approach in comparison to the previous case. 
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Dinh and Tiab (2008) conducted an extended study of the new approach they  

 

introduced in 2007 using bottom hole pressure data of injectors and producers to  

 

determine interwell connectivity. The new method introduced by Dinh and Tiab (2007)  

 

included constraints such as constant production rates and constant injection rates. Dinh  

 

and Tiab (2008) noted that the constraints placed on the new approach made it difficult to  

 

apply the technique to a real field study where production rates vary and are hardly kept  

 

constant. Dinh and Tiab (2008) analyzed systems with constant injection rates and  

 

varying production rates. According to Dinh and Tiab (2008), results from this analysis  

 

proved to be almost exactly similar to the case with constant production rates and varying  

 

injection rates. Dinh and Tiab (2008) concluded “signal wells could either be  

 

producers or injectors.” Dinh and Tiab (2008) also concluded that the response wells  

 

could either be flowing or shut-in”. Dinh and Tiab (2008) suggested that further  

 

investigations on characteristics of interwell relative permeability and the effect of  

 

interwell flow on the interwell permeability should be conducted. Also, the extension of  

 

the study to include wells with different wellbore conditions such as horizontal wells and  

 

hydraulic fractured wells was suggested.  

 

Sayarpour et al. (2008) used a capacitance resistive model (CRM) to provide  

 

further knowledge about waterflood performance. According to Sayarpour et al. (2008),  

 

“unlike conventional analytical tools, the CRM  can rapidly attain a performance match  

 

without having to build an independent geologic model”. The “estimation of the fraction  

 

of injected water directed from an injector to various producers and the time taken for an  

 

injection signal to reach a producer are the key elements in performance assessment”  

 

(Sayarpour, et al. 2008).  Sayarpour, et al (2008) conducted four case studies using CRMs  
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in complex reservoirs to show CRMs ability to “determine connectivity between injector- 

 

producer well pairs and to understand flood efficiencies for the entire or a portion of a  

 

field.”  Sayarpour, et al. (2008) concluded that “the rapid history matching capability of  

 

the capacitance resistive model would serve as a great tool for any grid based modeling  

 

study.” 

 

The goal of this study is to determine the connectivity between injector-producer  

 

well pairs in the Phase 2 portion of Denbury Resources Little Creek Field CO2 flood. The   

 

field data provided by Denbury Resources is limited to injection and production rates.  

 

The application of statistical approaches to the Little Creek Field data would enable  

 

us to quantitatively determine the connectivity between injector-producer well pairs in  

 

the system without having to use simulation models which require information from other  

 

data sources which are unavailable at Little Creek. As discussed earlier, the Spearman  

 

rank correlation method has been used to relate pairs of wells, each pair consisting of an  

 

injector and a producer. In comparison to the Spearman rank correlation, the MLR and  

 

BMLR statistical approaches introduced by Albertoni (2002) allow for the quantitative  

 

determination of the communication between wells in a waterflood in a single step. This  

 

should be a faster way to determine interwell connectivity especially in a large field with  

 

numerous injectors and producers such as the Little Creek Field in comparison to the  

 

Spearman rank model which would require analyzing the data for each well pair. Also,  

 

the application of diffusivity filters may be able to account for any time lag and  

 

attenuation that occurs between injector and producer well pairs in the system. With that  

 

being said, the statistical approach introduced by Albertoni (2002) will be applied to  

 

the Little Creek Field. 
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CHAPTER 2:  STATISTICAL ANALYSIS PROCEDURE 
 

 

Knowledge of the relationship between injector-producer well pairs and an  

 

estimate of the fraction of  flow caused by each injector in a producer would enable a  

 

better understanding of the sweep efficiency of a field undergoing waterflood or CO2  

 

injection. This information could allow for suggestions to be made for operational  

 

changes that might be made to optimize recovery such as flood pattern changes,  

 

recompletion of wells and drilling of infill wells.  

 

Various statistical approaches have been used to infer a physical relationship  

 

between injector-producer well pairs in a waterflood or CO2 flood as discussed earlier.  

 

Two statistical techniques presented by Albertoni (2002) which were used to assess the  

 

connectivity between injectors and producers in a waterflood are reviewed in this chapter.   

 

These techniques were called the Multivariate Linear Regression (MLR) and the  

 

Balanced Multivariate Linear Regression (BMLR) method.  Albertoni (2002) also  

 

defined diffusivity filters which were used to account for the potential time lag and  

 

attenuation of changes that occur between the injectors and producers. These will also be  

 

discussed as will the statistical implications of the suggestions made by Albertoni and  

 

Lake (2002) to improve the results obtained from the application of the MLR method  

 

with and without diffusivity filters.  

 

 

2.1.    MULTIVARIATE LINEAR REGRESSION (MLR) 

 

According to Sachs (1984) multivariate analysis is the development of general  

 

mathematical models for analyzing multiple dependent variables. The MLR method  

 

relates the variations in a response variable to the variations of hypothesized predictors.   
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Parameters in the model are estimated and relations among the variables are determined.   

 

An important assumption of the MLR method is that the predictor variables are linearly  

 

independent, i.e. no linear relationship exists between the predictor variables.  If the  

 

predictor variables covary, the model may produce spurious results. 

 

A field undergoing a flood has multiple injectors and producers acting at the same  

 

time. Applying the multivariate linear regression model to a flood, the liquid production  

 

rate of a well will be the dependent variable while the injection rates  for every injector in  

 

the field are modeled as independent variables. Because the model assumes that no linear  

 

relationship exists between active injectors in the system, injector rate variations should  

 

only influence the production rates values in the system and not the other injection rates.  

 

For fields where the injection and production rates are balanced (total injection and  

 

production rates are equal), this assumption seems reasonable. For unbalanced systems,  

 

this assumption is questionable. Once all the parameters are determined, the model  

 

quantifies how each injector influences each producer.   

 

 

2.1.1.    Mathematical Development 

 

Albertoni (2002), suggests that a linear model can be expressed as follows  

        

∑
=

++=
K

K

kko xy
1

εββ                                                                                                     (2.1)                   

 

where y is the dependent variable, kx  are the independent variables, and ε is a random  

 

error term used to account for imbalances, measurement and fitting errors in the model.  

 

According to Lake et al. (1997), the error term is assumed to be normally distributed with  

 

a zero mean (E (ε) = 0) . The oβ  and the kβ  terms are the coefficients to be determined  
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by regression.  

 

To use the MLR method to estimate the production rate of a producer well  j,  

 

Equation 2.1 can be written as       

 

( ) ∑
=

∧

+=
I

i

iijojj titq
1

)(ββ      (j = 1, 2 …N)                                                                        (2.2) 

 

where N is the total number of producers and I is the total number of injectors. This  

 

equation states that for any given time period, the total production rate of well j ( q j

∧

(t) )   

is a linear combination of the rates of every injector in the field ( )(tii

∧

) plus a constant  

 

ojβ term.  The ojβ term is a constant that tries to account for the unbalance in the field.   

 

This unbalance will include liquid production not associated with injected fluid (primary 

 

production), as well as injection losses (injection not affecting producers).   If  0
1

=∑
=

N

j

ojβ   

then the total field is balanced. Using field data, Equation 2.2 suggests that injection rate  

 

changes in the model cause instantaneous production rate changes which would imply  

 

steady state flow in the reservoir. In many cases, there are time lags and attenuation that  

 

occur as fluid flows from injectors to producers. Diffusivity filters which are further  

 

discussed in Section 2.3 were proposed to account for the time lag and attenuation in the  

 

system. The sij 'β are the weighting coefficient terms. The ijβ terms represent the effect  

 

each injector i has on each producer j. Thus, the larger ijβ , the greater the effect.  If the  

 

injection rate and production rates are given, the constant term ojβ and the weighting  

 

factors ijβ can be estimated. Using the given production and injection rates, the variance  

 

in the production rate can be determined as the difference between the observed  

 

production rate and the modeled production rate calculated from  
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The constant term ojβ and the weighting parameter ijβ can be determined by minimizing  

 

this variance. This will lead to the following set of linear equations 
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The left hand side square matrix in Equation 2.4, is the injector-injector covariance  

 

matrix and the right hand side vector terms are the covariance values between the  

 

injectors and each producer.  There are then N equations of the form in Eqn. 2.4; one for  

 

each producer in the system. The weighting coefficients ijβ can be determined by  

 

standard linear solution methods.  After the matrix is solved for the ijβ terms, the  

 

constant term ojβ can be determined by 

    

∑
=

−−

−=
I

i

iijjoj iq
1

ββ                                                                                                         (2.5)  

 

The over bar symbol in Equation 2.5 represent mean values. A set of I+1 equations and  

 

I+1 unknowns must be solved for each producer in the system. 

 

 After the parameters in the model are estimated and relations among the variables  

 

are determined, the modeled production rate can be compared to the actual production  

 

rate using a coefficient of determination value ( 2R ). The coefficient of determination  
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represents how accurately two data populations are correlated (Albertoni, 2002).  

 

Therefore, this measures the quality of the correlation between modeled and observed  

 

production for the case under study.  It is defined as                            
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where m is the number of data values. For this thesis, m is the number of months of data. 

 

The overdetermination coefficient ( dO ) introduced by Albertoni (2002) is defined  

 

as “ the number of effective data points divided by the number of unknowns”  (Albertoni  

 

and Lake , 2002), or  

                              

( )1+
=

I

M
O e

d                                                                                                                     (2.7) 

                                                                                                            

where I represents the number of injectors and eM  is the total number of effective data  

 

points.  The dO  coefficient indicates how the number of effective data points included  

 

in the linear regression calculation process affects the quality of the results. For this case,  

 

the use of more data points (more rate data) and fewer injectors in the analysis represents  

 

a larger overdetermination of the problem.  According to Albertoni (2002), greater  

 

overdetermination leads to more reliable results. Albertoni (2002) suggests that good  

 

results can be obtained with overdetermination coefficients larger than 6. An 

 

overdetermination coefficient smaller than one indicates that the system is  

 

underdetermined, with the number of observations less than the number of unknown  

 

coefficients. 
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2.1.2 Uses of MLR 

 

A field which has undergone a flood is considered to be unbalanced when  

 

the total fluid injection rate in the field is significantly different from fieldwide liquid  

 

production rate (at reservoir conditions).  The possible unbalance in the field is accounted  

 

for by the ojβ term in the MLR model so Albertoni (2002) suggests that the MLR  

 

approach be used  to quantitatively estimate the communication  between injector- 

 

producer well pairs.  Albertoni (2002) also suggests that when analyzing a section of a  

 

flood, the MLR method must be used without making any changes to the injection rates  

 

to account for the imbalance caused by flow across the open boundaries of the section of  

 

the flood being analyzed; but, “since the water rate crossing the boundaries may not be  

 

actually constant, the production wells close to the boundaries may suffer some boundary  

 

effects” (Albertoni, 2002).  

 

 

2.2. BALANCED MULTIVARIATE LINEAR REGRESSION (BMLR) 

 

 

2.2.1    Balanced Condition 

 

            If  the sum of  the injection rates in a field is approximately equal to the sum of  

 

the production rates in the field, the flood is said to be balanced. In this case, Albertoni  

 

(2002) suggests that the BMLR approach should be used.  Therefore the constant term  

 

ojβ in Eq 2.2 will be zero.  The production rate for a well j in this model can be defined  

 

as  

 

( ) ( )titq i

I

i

ijj ∑
=

∧

=
1

λ                  (j= 1, 2 … N)                                                                   (2.8)                                                     

 

This equation states that the production rate can be modeled as a linear combination of  
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the injection rate values. The weighting coefficient terms ijλ   account for the imbalance  

 

within the system. In the BMLR model, the coefficient terms ijλ  replace the coefficient  

 

terms ijβ  used in the MLR model to differentiate between the balanced and the  

 

unbalanced models.  The ijλ  terms and the ijβ  terms mean the same thing with the  

 

exception of  the ojβ term. 

 

The balanced condition is given by      

 

∑∑∑∑
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j

j iiq
1111

λ                                                                                           (2.9) 

 

This condition suggests that the average liquid production rate is a linear combination of  

 

the average injection rates.  Therefore liquid production rates are a result of the average  

 

fluid rates injected at the injectors. If the ojβ term is zero, Equation 2.5 is identical to  

 

Equation 2.9 

 

 

2.2.2  Mathematical Development 

 

To determine the weighting coefficients in the Balanced Multivariate Linear  

 

Regression model, the squared error of the predicted value must be minimized. 
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The combination of Equations 2.8 and 2.9 with the minimization of the variance in  

 

Equation 2.10 leads to the matrix system of linear equations for the BMLR method  

 

shown below 
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The jµ term in the matrix is the Lagrange multiplier used in the derivation process to  

 

account for the predicted rate for each producer which must be equal to the average  

 

production rate.  The ijλ and jµ can be determined from the set of I +1 linear equations  

 

and I+1 unknowns in Equation (2.11) using any matrix solving method.  The weighting  

 

coefficients ijλ  obtained from Equation 2.11 account for the effect of each injector i on  

 

each producer j.  

 

 

2.2.3 Uses of BMLR 

 

The Balanced Multivariate Linear Regression model is used when the total  

 

amount of field-wide injection is about equal to the total amount of production.  

 

Thus, the flood is balanced.  According to Albertoni (2002), the field production and  

 

injection data may show occasional differences between these rates but they must be  

 

balanced most times.  This model assumes that fluid injected into the field is produced by  

 

the producers and there is no fluid flow across boundaries.  

 

 

2.3     DIFFUSIVITY FILTERS 

 

In the case of a field undergoing a flood, the flow regimes change continuously  

 

from transient flow to flow patterns that approximate steady state flow. So, the assumed  

 

steady state flow model from the application of the MLR statistical approach to the  
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provided production and injection rate data  is used for simplicity and diffusivity filters  

 

were proposed to correct for the effect of transient flow. 

 

Diffusivity filters are used to account for the time lag and attenuation that occurs  

 

between the stimulus (injection) and the response (production) (Albertoni, 2002).  The  

 

filters transform the injection rates of an injector i affecting a producer j for an injector- 

 

producer pair so that they take the form of an equivalent injection rate acting in an  

 

incompressible medium, which results in an effective injection rate at a certain time.  

 

In cases where there are large distances between injector and producer pairs and large  

 

dissipation in the medium, the use of diffusivity filters becomes very important.  

 

The diffusivity constant is defined by 

 

tc

k

φµ
η =                                                                                                                       (2.12) 

 

 Dissipation is the reciprocal of the diffusivity constant  

 

k

c
d tφµ

η
==

1
                                                                                                               (2.13) 

 

The dissipation definition above suggests that a large dissipation would exist in a  

 

system with  a small permeability, a large porosity,  viscosity,  and total compressibility.   

 

If dissipation did not exist in the reservoir, a change in the rate of injection for an injector  

 

i , would cause a corresponding and immediate change in the rate of production for a  

 

producer  j.  That change would be independent of the distances between injectors and  

 

producers.  A time lag and attenuation of the signal between the injector and producer  

 

exists in most reservoirs.  In comparison to a less dissipated reservoir, a dissipated  

 

reservoir should experience a more significant time lag between the time at which a  

 

change in injection rate occurs and the time at which a corresponding change in the  
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production rate is observed.  According to Albertoni (2002), when diffusivity filters  

 

are applied to the MLR and BMLR  procedures, the diffusivity filters are applied only to  

 

injection rates.  

 

 

2.3.1    Mathematical Development 

 

            Albertoni (2002) states that “the pressure change ( P∆ ) at any point of an  

 

infinite, homogeneous reservoir with constant thickness, caused by a change in an  

 

injection rate ( i∆ ), can be expressed as” (Albertoni, 2002): 
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The 1C  term in Equation 2.14 is a constant, iE  is the exponential integral function, t is  

 

time, r is the distance from the point to the injection well and d which was defined  

 

previously in Equation 2.13 is the dissipation of the medium.  Albertoni (2002) states that  

 

when the superposition principle is applied, the change in pressure caused by an impulse  

 

over a unit time can be expressed as: 
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Consider a linear model of the form  

 

 














−×=

−

wfPPJq                                                                                                           (2.16) 

 

for the production rate of a well at a distance r from an injector.  A combination of   



 21 

 

Equations 2.15 and 2.16 results in a change in production rate caused by a unit injection  

 

impulse which can be written as  
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                                              (2.17)        

 

 

The 2C  term in Equation 2.17 is a new proportionality constant, which is unknown.   

 

Equation 2.17 is referred to as a continuous filter function.  The injection rate of an  

 

injector i  is the sum of different injection impulses caused by previous rates. According  

 

to Albertoni (2002) “This equation is only used to correct the proposed steady state  

 

models for transient effects” (Albertoni, 2002).  Equation 2.17 can be used to generate a  

 

filter function that can be used to determine the production rate of a producer j at any  

 

given distance r and time t given an injection history.  For an injector-producer pair, the  

 

filter function can be used to change the injection rate of an injector i so that the response  

 

at the producer j is equal to the response of that same producer j in an incompressible  

 

medium.  The linear regression model approaches presented previously can then be  

 

applied using the new filtered injection rates and the original production rates to  

 

determine the weighting coefficients.  In order to eliminate the unknown proportionality  

 

constant 2C  from the equation, a normalized filter function is defined as: 
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The 2C  term then cancels because of the q∆  term is in the numerator and denominator. 
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Albertoni (2002) proposed a discrete filter function of one to twelve months. For a 12  

 

month effect, the 12 normalized filter coefficients of the discrete filter function are : 
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The number of filter coefficients can be more or less than the proposed 12 months  

 

depending on how large the dissipation is.  The normalized diffusivity coefficients )(nα   

 

calculated using Eq. 2.19 does not depend on the 2C  term .  According to Albertoni  

 

(2002) they are less than or equal to one, and they should sum to a value of one. In a   

 

dissipative medium, the sum of the normalized diffusivity coefficients should equal 1.  

 

Equation 2.17 suggests that the discrete filter function depends on the distance from the  

 

injector, r, the time, t and the dissipation, d.   

 

The convoluted or effective injection rate expressed in terms of diffusivity filters  

 

of an injector i influencing a producer j at a time t is expressed as: 
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Equation 2.20 implies that the effect injector i  has on producer j can be determined not  

 

only by the current injection rate of injector i at time t ( n=0), but also by the rates of the  

 

previous 11 months.  For example incorporating diffusivity filters for the MLR method  

 

(Eq. 2.2), the modeled production rate in a well j is given as: 

 

( ) ∑
=

∧

+=
I

i

c

ijijojj titq
1

)(ββ                                                                                                 (2.21) 

 

Also, for the BMLR method (Eq. 2.9), the modeled production rate for a producer j  

 

using a diffusivity filter would be given by: 
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2.3.2 Illustrative Examples of the Application of Diffusivity Filters 

 

In the case of a reservoir with no dissipation, a change in injection rate from an  

 

injector i would lead to an instantaneous production rate change from a producer j. An  

 

illustrative example of this is shown in Figure  2.1 
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 Figure 2.1 Injection and equivalent production rate change in a reservoir with no dissipation (after 

Albertoni, 2002). 

 

 

The case where there is some dissipation in a reservoir is shown in  

 

Figure 2.2, where a change in injection rate at time zero causes a slight change in the  

 

production rate instantaneously.  As shown, the effect of this change in injection rate is  

 

attenuated over the next 11 months.  In the span of 12 months, the areas under the  

 

production and injection rate curve are equal.  The diffusivity filter functions indicate the  

 

fractions of the injection rate change  that affect the production rate at time zero.   

 

The diffusivity filter function at time zero )0(α  is not equal to one and the other 11  
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coefficients are greater than zero. This implies that a change in production is not only  

 

influenced  by the injection impulse at time zero but also by impulses from the previous  

 

12 months.  
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Figure 2.2 The injection rate change and equivalent change in production rate between an injector-

producer pair in a reservoir with small dissipation (after Albertoni, 2002). 
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 Figure 2.3 Corresponding filter function showing large coefficient at time zero, while the rest are much 

smaller (after Albertoni, 2002). 
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2.4 FURTHER IMPROVEMENT OF THE MLR MODEL 

 

Albertoni (2002) applied the MLR and BMLR approach with and without  

 

diffusivity filters to numerically simulated fields. For the first case, a single layered  

 

homogeneous reservoir was used. The waterflood was balanced so ideally, the BMLR  

 

model was the appropriate approach to be used; but for the sake of comparison, Albertoni  

 

applied both methods with and without diffusivity filters to the model. Results from the  

 

application of these approaches suggest that only positive relationships existed between  

 

injector-producer well pairs in the system. Both approaches generated similar  

 

conclusions. The weighting coefficients were larger for near well pairs and smaller for  

 

well pairs with more separation.  

  

Albertoni (2002) ran two cases of  reservoirs with sealing faults in the simulated  

 

model. In the first case, the sealing fault divided the entire reservoir into two separate  

 

regions.   The BMLR approach with diffusivity filters was used for this model.  The  

 

results obtained indicated that very small negative relationships existed between well  

 

pairs on opposite sides of the fault. According to Albertoni (2002) these results were  

 

expected. He suggested that the negative coefficients that were obtained between well  

 

pairs on each side of the fault represented the presence of a transmissibility barrier.  

 

Albertoni (2002) states that these negative coefficients have no physical interpretation  

 

and were considered as zeros, indicating  that no communication exists between those  

 

well pairs.  In the second case, a sealing fault partially crosses the reservoir and did not  

 

divide the field into two parts as in the previous model. Negative weighting coefficients  

 

were not obtained in this case. However, the magnitude of the weighting coefficients for  

 

injector-producer well pairs separated by the fault were very small. Albertoni (2002)  
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suggested that this implied that there was virtually no connectivity between those wells  

 

and inferred that the results represented the fault that was present in the model. 

 

Albertoni then applied the statistical approaches to two waterflooded fields in  

 

Argentina: The Chihuido de la Sierra Negra (ChSN) field and the Bloque I field.    

 

Albertoni, applied MLR with diffusivity filters since only a portion of the ChSN field  

 

was being analyzed, rates were not balanced and open boundaries existed in the model.   

 

There were many negative weighting coefficients for this model. Weighting coefficients  

 

greater than one were also shown in the results. Albertoni stated that these negative  

 

coefficients and coefficients greater than one were to be expected because of the small  

 

overdetermination, open boundaries and the change in production/injection conditions  

 

present in this case which did not satisfy the assumptions on which the method was  

 

based. Albertoni (2002) stated that the negative weighting coefficients “are just statistical  

 

results that minimize the error but they have no meaning” and the weighting coefficients  

 

greater than one  are also unrealistic. The results suggested that three injectors in the  

 

model showed very little connectivity with inner producers which Albertoni (2003) found  

 

to be in agreement with the presence of an inferred fault. However, results also showed  

 

connectivity between these same injectors and other producers in the model. Albertoni   

 

suggested that either some error existed in the model due to the  boundary effects or due  

 

to the small overdetermination factor , or, the fault is not completely sealing. 

 

Excluding the injector-producer well pairs with the ijβ coefficients less than 0  

 

and greater than 1 would imply that there is no relationship between those injector- 

 

producer well pairs. Therefore, the injector has no effect on the producer.  This is a  

 

surprising methodology since the elimination of the largest coefficients in a typical  

 



 27 

multivariate linear regression model would be eliminating the variables that have the  

 

largest effect on the dependent variable (Edwards, 1984). 

 

The results obtained by Albertoni (2002) from the implementation of the MLR  

 

approach with and without diffusivity filters to the field data that were analyzed,  

 

motivated a new approach by Albertoni  to improve models. Albertoni (2002) introduced  

 

an approach for eliminating the negative weighting coefficients called the successive  

 

elimination of negative weighting coefficients (SEN). First, the most negative  

 

ijβ weighting coefficient is set to zero which eliminates that well pair from  

 

consideration. Next, the regression method is performed again recalculating the  

 

entire set of weighting coefficients with one fewer injector-producer well pairs. If there  

 

are additional negative weighting coefficients, the new most negative weighting  

 

coefficient is set to zero, and the ijβ weighting coefficients are again recalculated. This  

 

procedure is repeated until no negative coefficients remain (Albertoni, 2002). The SEN  

 

procedure was extended by Albertoni (2002). Large positive weighting coefficients  

 

(those greater than 1) were also eliminated following the same type of elimination  

 

procedure. This process is called the successive elimination of physically non-significant  

 

weighting coefficients (SEP). 

 

2.4.1 Statistical Implications associated with the application of SEN and SEP 

procedure to the MLR model with and without diffusivity filters. 

 

Albertoni introduced the SEN and SEP procedure to improve the results obtained  

 

from the implementation of the MLR model to field data because physical explanations  

 

could not be inferred from the negative weighting coefficients and the positive weighting  

 

coefficients that were greater than one . It is important to note that the MLR method  
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is essentially a statistical approach that is being used to infer a physical relationship  

 

between injector-producer well pairs. For most practical cases injection and production  

 

rates are not completely independent therefore, attributing physical meaning to negative  

 

ijβ coefficients and positive coefficients greater than one obtained from the MLR  

 

approach may not be appropriate. Traditional MLR techniques provide tests to indicate  

 

the significance of the weighting factors.  In this work these significance tests will be  

 

used to evaluate the weighting coefficients and a comparison will be made to the SEN  

 

and SEP techniques. 

 

According to Edwards (1984) “if the relationship between two variables X and Y   

 

is linear, then when the value of b (the slope)  is positive, the relationship is also  

 

described as positive; that is, an increase in X is accompanied by an increase in Y and a  

 

decrease in X is accompanied by a decrease in Y” (Edwards, 1984).  When the value of b  

 

is negative, the relationship is also described as negative. Also, according to Edwards  

 

(1984) “a negative relationship means that an increase in X is accompanied by a decrease  

 

in Y, and a decrease in X is accompanied by an increase in Y” (Edwards, 1984). For the  

 

MLR method, using similar arguments implies that negative weighting coefficients  

 

ijβ represent a negative linear relationship that exists between an injector-producer well  

 

pair; that is, an increase in injection rate is accompanied by a decrease in production rate  

 

and  a decrease in injection rate is accompanied by an increase in production rate.  

 

Positive weighting coefficients represent a positive linear relationship that exists between  

 

an injector-producer well pair; that is, an increase in injection rate is accompanied by an  

 

increase in production rate and a decrease in injection rate is accompanied by a decrease  

 

in injection rate.  In the SEN and SEP procedures, the weighting coefficients with the  
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largest magnitudes are eliminated first from the model. This method is performed again,  

 

eliminating the coefficients with the largest magnitude from the model if the weighting  

 

coefficients are either negative or positive and larger than one. Application of the SEN  

 

and SEP procedure to the MLR model with and without diffusivity filter would therefore  

 

eliminate the well pairs with the largest influence in the model and account only for the  

 

well pairs with lower influence.  

 

The primary objective of using the regression techniques is to evaluate the  

 

interwell connectivity between injector-producer well pairs which would in turn provide  

 

a better understanding of sweep in the reservoir and serve as a guide for suggestions for  

 

operational changes which could be made for  improving recovery in a  waterflood or  

 

CO2 flood. The elimination of injector-producer well pairs with the largest influence on  

 

the predicted production rate is counter-intuitive to this objective.  

 

 According to Albertoni (2002), results obtained after the SEN procedure showed  

 

that 45% of the weighting coefficients had been set to zero. After the SEN procedure, not  

 

only were the negative coefficients set to zero but some of the large positive weighting  

 

coefficients became smaller. Even though these large coefficients had become smaller,  

 

they were still larger than one and Albertoni considered this to be incorrect. The 2R   

 

value for this model also decreased after this application.  

 

Next, Albertoni applied the MLR technique with diffusivity filters to the Bloque I  

 

field located in southern Argentina. The results obtained from this analysis suggested that  

 

47% of the weights were negative.  There were also large positive weighting coefficients  

 

greater than one. Results obtained from the application of the SEP procedure showed a  

 

decrease in the 2R  value after the application of the SEP procedure.  Albertoni (2002)  
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concluded that “this procedure is non-unique but physically more significant.” He also  

 

concludes, “better physical results were obtained at the expense of poorer statistical  

 

results.”  It is debatable whether, this procedure is “physically more significant” rather  

 

than conceptually more satisfying.  

 

Dinh (2003) applied the MLR and ABMLR approach with and without  

 

diffusivity filters to a synthetic reservoir using the Boast98 numerical simulator. Several  

 

cases were studied by Dinh (2003) using this model. For the first case study, the  

 

MLR and ABMLR techniques were applied to an ideal homogeneous reservoir with zero  

 

compressibility. Results showed both cases to have an 2R  value of one. For the next case,  

 

compressibility factors were added to the homogeneous reservoir. Since the  

 

compressibility was no longer zero, this indicates that some dissipation between well  

 

pairs should be expected and the application of diffusivity filters to the model was  

 

needed. The results for the MLR case with and without diffusivity filters looked similar  

 

but the coefficients were generally larger than those obtained without filtering. Here the  

 
2R  value increased when the diffusivity filters were applied. The BMLR approach was  

 

then applied to the same data from the simulation. Here also the results were better for  

 

the case with diffusivity filters than the case without filters. The 2R  value increased after  

 

the application on the diffusivity filters. Only positive weighting coefficients were  

 

obtained in this work.  

 

Similar to Albertoni (2002), Dinh (2003) also analyzed two cases of reservoirs  

 

with transmissibility  barriers simulated in the synthetic field. In the first case the  

 

transmissibility barrier divided the entire reservoir into two separate regions. In the  

 

second case, the transmissibility barrier only partially divided the field. The MLR  
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approach with diffusivity filters was used for this analysis. Dinh (2003) concluded that   

 

the results for the first case showed  the presence of a transmissibility barrier. According  

 

to Dinh (2003) negative weighting coefficients between injector-producer well pairs   

 

indicated the non-connectivity across the transmissibility barrier. Dinh (2003) also  

 

concluded that the results obtained for the second case also indicated the presence of the  

 

transmissibility barrier. Similar to Albertoni’s (2002) results for a similar case, the results  

 

obtained did not show any negative relationships between the injector-producer well pairs  

 

located across the boundary but the weighting coefficients of those well pairs were very  

 

small. 

 

Dinh (2003) used actual field data to analyze the Delaware-Childers field. The  

 

MLR approach with 12-month, 6-month, 3-month, 2-month and no diffusivity filters  

 

and the SEP method was used in this analysis. Dinh (2003) concluded that applying the  

 

SEP procedure to every case eliminated the negative coefficients and positive coefficients  

 

larger than one which were considered physically meaningless. Dinh (2003) concluded  

 

that the results of the application of the MLR approach with and without diffusivity filters  

 

showed that better results were obtained for the MLR case without filters.  The MLR case  

 

without filters had a higher dO  and 2R  value in comparison to the other models.  

 

 

2.5 ASSUMPTIONS OF MODEL AND POSSIBLE SOURCES OF ERROR 

 

 

This section describes the general assumptions and possible sources of error for the 

 

presented regression techniques. According to Albertoni (2002), the general assumption  

 

for this model includes constant injection and production conditions and also, constant  

 

reservoir conditions. To maintain constant injection and production conditions,  
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new wells cannot be drilled during the time period selected for the analysis. Note that if  

 

new wells are drilled, they would have to be included into the regression analysis  

 

resulting in the application of a completely new analysis, which in turn results in a new  

 

set of weighting coefficients for the MLR and BMLR methods. Also, since the regression  

 

methods assume that changes occurring in production rates are solely due to injection rate  

 

changes, the production bottomhole pressure must be constant for the selected time  

 

period for the analysis. The regression methods assume constant reservoir conditions for  

 

the selected time period for the analysis. This suggests that the reservoir has constant  

 

reservoir and fluid properties such as permeability’s, porosity, fluid viscosity and total  

 

compressibility.  

 

 

2.5.1    Possible Sources of Error 

 

Errors may occur if the assumptions of the model stated above are violated or too  

 

few data are available.The model assumes constant total compressibility. To maintain  

 

total compressibility, the rock, oil, water and gas compressibilities, along with the oil  

 

water and gas saturations have to be constant. Gas is highly compressible while water and  

 

oil have lower compressibility’s; so a change in gas compressibility would have a greater  

 

impact on the total compressibility in comparison to changes in oil and water  

 

compressibility.  Changes in gas saturation can be identified looking at the gas oil ratio  

 

(GOR). In waterfloods, “the GOR is constant when all the free gas has been produced or  

 

redissolved in the oil, so that the gas saturation is equal to the residual gas saturation”  

 

(Albertoni, 2002). If we are producing with a high GOR, this would indicate that we have  

 

not reached solution gas and our gas saturation is not constant. Albertoni (2002) suggests  

 

that for a waterflood, selecting a time period with constant and minimum GOR (equal to  
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dissolve gas-oil ratio,) would be equivalent to periods where the total compressibility is  

 

approximately constant (periods where the gas saturation is relatively small and  

 

constant). The Little Creek field is undergoing a CO2  flood, is producing gas and does  

 

not have a constant GOR. This means that the gas compressibility and total  

 

compressibility are not constant, possibly causing errors.  

 

As mentioned earlier, Albertoni (2002) suggests that better results can be  

 

expected from the statistical models if the overdetermination coefficient is greater than or  

 

equal to six. The regression process is very iterative and can be time consuming. Also, in  

 

the case of an open boundary, the ojβ term which accounts for the possible unbalance in  

 

the field is constant in the MLR model for each injector-producer well pair.  This could  

 

lead to possible error in the analysis because the change in flowrates of the injectors  

 

outside the boundary are not being accounted for.  
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CHAPTER 3: APPLICATION OF MLR METHOD TO LITTLE CREEK FIELD      

DATA 

 

 

The Little Creek Field in Mississippi currently being operated by Denbury  

 

Resources has been under CO2 flood since 1974. It is a  heterogeneous reservoir which  

 

violates the assumptions made by Albertoni (2002) for the MLR model.  Nonetheless,  

 

MLR could help us quantitatively describe continuity at Little Creek without having to  

 

use other costly sophisticated models that are typically used for reservoir engineering  

 

analysis in the oil industry. This chapter presents a brief field description and the results  

 

of MLR analysis with and without diffusivity filters applied to Little Creek data. It  

 

examines the SEN and SEP procedures. The results shown in this chapter suggests that  

 

diffusivity filters are not needed for Little Creek models. 

 

 

3.1. DENBURY RESOURCES LITTLE CREEK FIELD 

 

 

3.1.1. Field Description 

 

The Little Creek field in Mississippi was discovered by Shell in January, 1958.   

 

The original oil in place in the reservoir was estimated to be 101.9 million barrels  

 

(Cronquist, 1968, Hanson, 1977b) of which approximately 25 million barrels of oil  

 

(MMBO) was recovered from primary production. According to Cronquist (1965), a line- 

 

drive waterflood was started in 1962 in the Little Creek Field and  an additional 21.7  

 

MMBO was produced. A pilot CO2  flood was conducted between February, 1974 and  

 

February, 1977.  According to Hanson (1977) about 120,000 barrels of oil were produced  

 

from the pilot area.  The field was purchased by J.P. Oil Company from Shell in 1996 and  

 

then acquired by Denbury Resources in September, 1999 (Senocak, 2008). 
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3.1.2. Phase 2 Area 

 

One of the assumptions of the MLR models is that the injection and production  

 

conditions are constant. Periods where the producers are shut-in should be excluded from  

 

the analysis according to Albertoni (2002). The Phase 2 portion of the field shown in  

 

Figure 3.2 includes the producers and injectors shown in Table 3.1  

 
Well Type Well Name Well Number

Producers 27-11 P1

27-13 P2

27-14 P3

27-15 P4

28-16 P5

33-01 P6

34-03 P7

34-05 P8

34-06 P9

34-07 P10

34-11 P11

27-16 P12

34-08 P13

34-16 P14

34-01 P15

33-08 P16

Injectors 27-12 I1

34-02 I2

34-04 I3

34-10 I4  
 

Table 3.1 List of wells in the Phase 2 Area of Little Creek Field 

 

 

The selected time period for the analysis was between January, 1989 to December 31
 
,  

 

1991. For this period, there are injection and production rate data for all producer wells  

 

except producer wells P8, P10 and P16. Well P8 does not have rates for December, 1989;  

 

producer well P10 does not have rate values reported for September, 1990; producer well  

 

P16 has no recorded production rate data for the entire selected time period for the  

 

analysis. When there is no recorded production rate data the assumption that the well was  

 

shut-in during that time period is made.  Since there is no recorded production rate during  
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the selected time frame for producer well P16, it was not included in the analysis.  

 

 

 
Figure 3.2 Shows location of wells in Phase 2 Area of Little Creek Field (from Denbury Resources Inc., 

2007) 
 

 

The selected time period for the analysis was between January 1
st
, 1989 to December 31

st  

 

, 1991. For this selected period, there is recorded injection and production rate data for all  

 

producer wells except producer wells P8, P10 and P16. Producer well P8 does not have  

 

recorded rate values for the month of December, 1989; producer well P10 does not have  

 

rate values reported for the month of September, 1990; producer well P16 has no  

 

recorded production rate data for the entire selected time period for the analysis. When  

 

there is no recorded production rate data the assumption that the well was shut-in during  

 

that time period is made.  Since there is no recorded production rate during the selected  

 

time frame for producer well P16, it was not included in the analysis.  

 

Producer wells P5, P6, P16, P8, P9 and P11 are also included in patterns 28-15,  

 

33-7 and 34-12 in the Phase 3 area of the field.  Producer wells P12, P13, P14 and P15  

 

are also included in Patterns 34-9/35-12, 35-4 and 26-12 in the Phase 1 area.  Adjacent  

 

injectors and producers in those patterns were intermittently on or off production during  

 

the time selected for the analysis and so will influence the production rates of the wells  

 

included in both the Phase 1 and 2 area. This may lead to the possibility of error in our  

 

 

Figure 3.1 Shows location of wells in Phase 2 Area of Little Creek Field (from Denbury 

Resources Inc., 2007) 

 

 

Producer wells P5, P6, P8, P9, P11 and P16 are also included in patterns 28-15,  

 

33-7 and 34-12 in the Phase 3 area of the field.  Producer wells P12, P13, P14 and P15  

 

I1 PI 

P5 P2 P3 
P4 P12 

I3 I2 
P15 

P6 

P8 P9 P10 

P13 

P11 
I4 

P14 
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are also included in Patterns 34-9/35-12, 35-4 and 26-12 in the Phase 1 area.  Adjacent  

 

injectors and producers in those patterns were intermittently on or off production during  

 

the time selected for the analysis and so may influence the production rates of the wells  

 

included in both the Phase 1 and 2 area. This may lead to errors in modeling. Due to this,  

 

the producer wells P12, P13, P14 and P15 were not included in the analysis. Therefore,  

 

11 producers and 4 injectors in Phase 2 were analyzed for the selected time period. 

 

The total injection rate in reservoir barrels (RB) for each injector during the  

 

selected time period for the analysis (Table 3.2) indicates a small variation in the total  

 

injection between the wells. The injection rate data was provided in surface units  

 

(MSCF).  A constant carbon dioxide formation volume factor of 1.8 Mscf/rb was used to  

 

compute the reservoir injection rates. 

 

 

DATE I1 (RB) I2 (RB) I3 (RB) I4 (RB) 

01/1/89-01/31/91 

 

5,887,666 

 

6,942,968 

 

6,833,725 

 

7,807,380 
 

Table 3.2 Total injection amount of CO2 injection in reservoir barrels during the time period 

analyzed. 

 

 

The total monthly injection rates in reservoir barrels for injector wells I1,  

 

I2, I3, I4 for the selected time period (Figure 3.2) shows that all of the wells have an  

 

initial period where the monthly injection increases.  The injection rates for three of the  

 

wells plateau while one declines.   
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Figure 3.2 Monthly injection rates for injector wells for the selected time period. 
 

 

The surface rates for the oil production were provided in stock tank barrels (STB),  

 

gas production rates (assumed to be all CO2 ) were in MSCF and water production rates  

 

were in STB. The production rates were converted to reservoir barrels using an oil  

 

formation volume factor of 1.32 rb/stb, a gas formation factor of 0.556 bbl/MSCF and a  

 

water formation volume factor of 1.1 rb/stb. Table 3.3 shows the total production for each  

 

producer during the selected time period. As shown in Table 3.3, producers P1 and P11  

 

are an order of magnitude smaller than all of the other wells in the system for the selected  

 

time period in this analysis. Even before applying the MLR approach to this system, the  

 

production rates of producers P1 and P11 shown in Table 3.3 suggests that in comparison  

 

to the other wells in this system, producers P1 and P11 are not being influenced much by  

 

the injectors in the system. 
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Well Type Well Name Well Number Total Production Rate (RB)

Producers 27-11 P1 353,140

27-13 P2 3,567,339

27-14 P3 3,082,363

27-15 P4 2,394,668

28-16 P5 2,396,054

33-01 P6 1,515,952

34-03 P7 3,060,219

34-05 P8 1,129,449

34-06 P9 1,119,470

34-07 P10 2,944,077

34-11 P11 338,465  
 

Table 3.3 Total production rate for each producer during the selected time period for the analysis 
 

 

Figure 3.3 shows the total monthly production rates for the production wells for  

 

the selected time period.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Monthly production rates for producer wells for the selected time period. 
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The total injection and production values for the system during the period of analysis is  

 

27,471,739 RB and 21,901,196 RB respectively. The cumulative injection to withdrawal  

 

ratio (IWR) is then 1.25. Figure 3.4 shows the total injection and production rates for the  

 

selected time period being analyzed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4   Total injection and production rates for the selected time period 

 

3.2       Application of MLR Method  

 

Since only a portion of the field is being analyzed, the boundaries are open and  

 

the injection and production rates for the selected period of analysis are not balanced. The  

 

multivariate linear regression (MLR) method is then the suggested method  for this  

 

analysis (Albertoni, 2002). 

 

 

3.2.1 Results 

 

The application of the MLR approach without diffusivity filters to the Phase 2  

 

portion of Denbury’s Little Creek Field gives the weighting coefficients shown in Table  
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3.4. The overdetermination coefficient is 7.4 which is greater than the value of 6  

 

suggested by Albertoni (2002) to ensure good results. The weighting coefficients indicate  

 

that there are both  positive and negative linear relationships between the injectors and  

 

producers in the system.  

 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 

R
2
 0.40 0.64 0.35 0.85 0.60 0.93 0.56 0.88 0.84 0.20 0.10 

βoj -9392 47522 48618 -181762 -19857 -28419 24580 -10063 2119 26243 165 

I1 0.03 0.51 0.01 0.17 0.67 -0.36 0.00 -0.46 -0.25 0.14 0.03 

I2 0.09 -0.65 0.18 2.93 -0.04 0.24 -0.06 0.35 -0.18 0.09 0.02 

I3 0.02 0.42 0.03 -1.37 0.03 0.46 0.36 0.29 0.49 0.07 -0.01 

I4 -0.04 0.06 -0.02 -0.39 -0.09 -0.03 0.01 -0.02 0.05 0.01 0.01 

 

Table 3.4 Weighting coefficients ijβ for Little Creek Field Phase 2 data. MLR without 

Diffusivity filters, with dO =7.4 

 

One way to show the weighting coefficients in Table 3.4 is as a rose  

 

diagram (Figure 3.5). The weighting coefficients ijβ  are represented by inverted arrows 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5   Representation of the weighting coefficients ijβ for Little Creek Field Phase 2 data. 

MLR without Diffusivity filters, with dO =7.4. Left graph shows positive weighting coefficients; 

right graph shows negative weighting coefficients 
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that start from an injector i and point to a producer j where the size of the arrow is  

 

proportional to the value of ijβ .  The positive and negative values for ijβ  are shown in  

 

Figure 3.5. If it is assumed that the negative weighting coefficients have no meaning,  

 

then what the left graph in Figure 3.5 shows is  that, injector I1 has the strongest  

 

influence on producers P2 and P5 as opposed to the other producers. Injector well I1 has  

 

a larger positive effect on producer wells P2 and P5 in comparison to the other producer  

 

wells in the system. Thus, as the injection rate for injector well I1 increases, a larger  

 

effect from this injector is mostly seen  in producers P2 and P5. Considering the location  

 

of injector I1 relative to the sand boundary, there may be  some of the injection fluid that  

 

flows out of the boundary which reduces the effect it is likely to have on the rest of the  

 

producers. Injector well I1 shows one of the smallest weighting coefficient values with  

 

producer well P1 which has a much shorter injector-producer well pair distance in  

 

comparison to the other wells in the system.  Injector I1 and producer P1 are located on  

 

the boundary so there is a possibility that some of the injected fluid from I1 is being lost  

 

to non-productive layers in the fields; thereby reducing the effect injector I1 has on  

 

producer P1. Producer P1 is the second lowest producer in the system which verifies that  

 

there is little or no connectivity between P1 and the injectors in the system.  

 

Injector well I1 also shows very little connectivity with producer well P3,  

 

considering P3 is approximately the same distance from I1 as the P2 and P5 wells which  

 

show a high degree of connectivity with I1. Results shown in Table 3.4 and Figure 3.5  

 

suggest that P3 in general is not being influenced much by injectors in the system.  

 

What is interesting about this though is that P3 is the second largest producer in the  
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system. This raises the question whether this MLR model resolves the true connectivity  

 

between P3 and injectors in the system. In comparison to the other producers in the  

 

system, producer P3 has a low 2R  which suggests that the MLR model and the actual  

 

rates for P3 are not  strongly correlated.  Figure 3.6 shows a plot of the modeled rate  

 

versus actual rate for producer P3 for the time period selected for this analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6.  Plot of modeled rate versus actual rate for Producer 27-14 (P3) 

 

 

The plot shows a weak correlation between the modeled and actual rates for the time  

 

period of January 1989 to February 1990 when actual rates vary considerably. A better  

 

correlation is seen between rates from the time period of March 1990 to October 1991  

 

when rates are more stable.  

 

Producer P11 also has a small positive coefficient with injector I1 which could be  

 

due to the fact that it is of the furthest distance from injector I1 in comparison to the other  

 

producers in the system and so may take a longer time for the effect of an injection rate  
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change in I1 to show in producer P11. Interestingly, injector well I1 has negative  

 

coefficients with producer wells P6, P8 and P9 which are all south of injector well I3 in  

 

the field. Paring these results with those seen in the work of Albertoni and Dinh suggests  

 

that injector I2 may be acting as a barrier, thereby preventing the flow of fluid from  

 

Injector I1 in the northern part of Phase 2 to the producers P6, P8 and P9. In contrast,  

 

producer P11 (also located south of injector I3) shows a positive relationship with  

 

injector I1. This contradicts the above discussion; this inconsistency raises questions  

 

as to the true meaning of the weighting coefficients under these circumstances. 

 

The injector-producer well pair I2 and P4 has a positive weighting coefficient that  

 

is greater than one. The coefficient is much larger than the other weighting  

 

coefficients. This implies that injector I2 has a greater influence on producer P4 in  

 

comparison to the other producers in the model. Injector well I2 has a negative  

 

relationship with producer wells P2, P5, P7 and P9. Similar to the results for injector I1,  

 

negative weighting coefficients are obtained for injector I2 between producers P2, P5  

 

which are either close to or past nearby injectors with the exception of P7 and P9.  

 

Producer wells P1 and P10 have the same magnitude of influence from injector well I2.   

 

Injector well I3 has positive relationships with all producers in the system  

 

except wells P4 and P11. This indicates greater connectivity between I3 and the  

 

producers in the system which suggests I3 has a more effective sweep than the other  

 

injectors. Again, I3, shows negative weighting coefficients for producers close to or past  

 

another injector except for producer P11 which is adjacent to the reservoir boundary and  

 

has extremely low production relative to the other wells. 

 

Finally, injector well I4 has the highest injection rate for the selected time period  

 



 45 

and has the lowest weighting coefficient for many of the producers indicating that it has  

 

the least influence on the producers in the system. This indicates that MLR cannot  

 

discern where the injection fluid is going. Nearby producers P12 and P13 are included in  

 

both patterns 34-10 and 34-9 and were producing for this time period. Due to this  

 

creating a possibility of error, they  were not included in the analysis. Possibly, injector I4  

 

has a stronger effect on producers P12 and P13 and therefore has a weaker displacement  

 

effect on the nearby producers. Also, similar to I1 and P1, injector I4 and producer P11  

 

are located close to a reservoir boundary. Some of the injection fluid may be flowing out  

 

of the pattern, which would reduce the effect of I4 on the rest of the producers. I4 has a  

 

negative relationship with producer wells P1, P3, P4, P5, P6 and P8. Producers P9, P10  

 

and P11 are located southeast of  injector I3 and are closer in location to injector I4 in  

 

comparison to producer P8 which could explain why they have a positive relationship  

 

with injector I4. These wells could be collecting the fluid from I4 and preventing flow to  

 

P8 resulting in the small negative coefficient. 

 

Generally, closer well pairs would be expected to have larger coefficients than  

 

well pairs that are further apart. As shown in Figure 3.7, several of the largest values for  

 

the beta coefficients are at the lower values for the separation distance. However, there  

 

are also a number of very low beta coefficient values at these smaller well pair distances  

 

as well and most of the negative values are in the middle to large distance values. This  

 

shows that the general assumption made relating the high connectivity of an injector- 

 

producer pair to the short distance between them is not necessarily always true. 
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Figure 3.7  Weighting coefficients ijβ vs injector-producer distance for Little Creek Field 

Phase 2 data. MLR without Diffusivity filters, with dO =7.4.    

 
 

Figure 3.8 shows a comparison between the total modeled liquid production  

 

rate and the total observed liquid production rate. The coefficient of determination 2R   

 

 
 

Figure 3.8 Comparison between total modeled liquid production rate and the total observed 

liquid production rate for Little Creek Field Phase 2 data. MLR without Diffusivity filters, with 

dO =7.4. 

 

 

83.02 =R
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value which represents how accurate the MLR model and the real production rate data are  

 

correlated is 0.83. An 2R  value of one would suggest that there is a perfect correlation  

 

between the total modeled and total actual production rates for the system which would  

 

indicate that the MLR model has been able to accurately capture rate fluctuations in the  

 

reservoir. The 2R  value of 0.83 would imply that the model results have not perfectly  

 

captured what is going on in the reservoir but the correlation is reasonably good. These  

 

results are also lower than those seen in Albertoni (2002) and Dinh (2003) for their field  

 

cases. Figure 3.8 shows a closer correlation between the total modeled liquid production  

 

rate and the total observed liquid production rate for the time period of May, 1989 to  

 

August, 1991. Earlier data fluctuate considerably. The data suggest that there maybe a  

 

one to four month lag period which cannot be included in the MLR model without  

 

diffusivity filters.  

 

 

3.2.2   Application of the SE-N and SE-P procedure to MLR results 

 

Albertoni (2002) introduced the successive elimination of negative weighting  

 

coefficients (SEN) and the successive elimination of positive weighting coefficients  

 

greater than one (SEP) procedure to improve the results obtained from the  

 

implementation of the MLR model to field data. Excluding these injector-producer well  

 

pairs implies that there is no relationship between those injector-producer well pairs. As  

 

stated earlier in Section 2.4.1, there is no statistical justification for eliminating well pairs  

 

with negative coefficients or positive weighting coefficients that are greater than one but,  

 

the SEN and SEP procedure will be applied to the MLR results to evaluate the impact of  

 

the application of this procedure.  

 

 Table 3.5 shows the results obtained after the application of the SEN and SEP  
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procedure to the MLR results shown in Table 3.3. Comparing the results shown in Table  

 
  

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 

R
2
 0.38 0.48 0.35 0.12 0.58 0.74 0.55 0.56 0.60 0.20 0.11 

βoj -11422.9 23921.14 48618.19 47289.94 -37834.81 -66567.1 23595.78 -58310.16 -27977.27 26243.49 259.41 

I1 0.03 0.46 0.01 0.58 0.64 0.00 0.00 0.00 0.00 0.14 0.03 

I2 0.06 0.00 0.16 0.00 0.00 0.15 0.00 0.23 0.00 0.09 0.01 

I3 0.03 0.00 0.03 0.00 0.00 0.41 0.32 0.22 0.30 0.07 0.00 

I4 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.01 

 

Table 3.5   Weighting coefficients ijβ  after application of SEN and SEP procedures for Little 

Creek Field Phase 2 data. MLR without Diffusivity filters, with dO =7.4 

 

3.5 to those shown previously in Table 3.4 shows that after the successive elimination of  

 

both negative weighting coefficients and positive weighting coefficients greater than one,  

 

there has been an overall reduction in the evaluated connectivity between injector- 

 

producer pairs. In general, the minimum weighting coefficient converges to zero as more  

 

weighting coefficients are eliminated. Results show that after the application of the SEN  

 

and SEP procedure 13 negative weighting coefficients were eliminated and 6 positive  

 

weighting coefficients were eliminated. Out of 44 injector-producer well pairs  

 

coefficients in the original model, only 25 of them will be accounted for with this new  

 

model. Only two of these 25 coefficients increased, while 9 remained the same and the  

 

remaining 14 decreased in magnitude. 

 

  As shown in Table 3.5, the 2R  values for producers P3 and P10 were unchanged  

 

and the 2R  value for P11 increased slightly after the application of the SEN and SEP  

 

procedure. The rest of the wells had lower 2R  values after applying the SEN and SEP  

 

procedures.  
  
 

  In Figure 3.9, the rose diagram of the weighting coefficients ijβ  determined after  
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the application of the SEN and SEP procedure indicate that injector well I1 has a strong  

 

 

 
 

Figure 3.9   Representation of the positive weighting coefficients ijβ  after the SEN and SEP 

procedure is applied to the Little Creek Field Phase 2 data. MLR without Diffusivity filters, with 

dO =7.4. 

 

 connectivity with wells P2, P4 and P5 whereas in the case without the application of the  

 

SEN and SEP procedure, well I1 showed a strong connectivity with wells P2 and P5 but  

 

the connectivity to P4 was much weaker. Similar to the previous case, I4 still has the least  

 

influence on the producers in the system. I3 has the strongest influence on producers to  

 

the south of the injector unlike the previous case where a strong connectivity was also  

 

seen between injector I3 and producer P2. Similar to the previous case, wells P1, P3,  

 

P10, P11 are not being influenced much by the four injectors in the system. After the  

 

application of the SEN and SEP procedure, producer wells P2, P4 and P5 only show  

 

connectivity with injector well I1. Using the SEN and SEP results to evaluate sweep  

 

improvement options would likely be only slightly different than using the unmodified  

 

MLR results. For example, the SEN and SEP results would suggest that increasing the  
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influence of  I3 on P2 should increase recovery while the MLR results suggest that this  

 

connection has already been established. In addition, the SEN and SEP results indicate  

 

that I2 has a minor influence on recovery in this area while the MLR results show that, at  

 

least for several of the wells this influence is present especially toward the P4 well. 

 

A plot showing the weighting coefficients ijβ  versus distance for the MLR model   

 

after the application of the SEN and SEP procedure again showed that the general  

 

assumption made relating the high connectivity of an injector-producer pair to the short  

 

distance between them is not necessarily true. 
 

Figure 3.10 shows a comparison between total modeled liquid production rate and  
 

 

 
 

Figure 3.10  Comparison between total modeled liquid production rate and the total observed 

liquid production rate after the SE-N and SE-P procedure is applied to the Little Creek Field 

Phase 2 data. MLR without Diffusivity filters, with dO =7.4.  

 

the total observed liquid production rate after the application of the SEN and SEP  

 

procedure. The effect of the application of the SEN and SEP procedure can be seen by  

67.02 =R
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comparing Figure 3.8 to Figure 3.10. The comparison of the plots suggest that there is a  

 

noticeable decrease in the total modeled production rate in comparison to the total  

 

observed liquid production rate after the application of the SEN and SEP procedures to  

 

the system. As shown, the 2R  value decreased from 0.83 to 0.67 after the SEN and SEP  

 

procedure was  applied. This implies that the application of the SEN and SEP procedures  

 

did not improve the prediction of production well flow rates as would be expected with  

 

fewer degrees of freedom. A closer correlation between the total modeled liquid  

 

production rate and the total observed liquid production rate for the time period of April,  

 

1989 to December, 1991 is shown in Figure 3.10. This suggests that there may be a four  

 

month lag period which is not accounted for by the MLR model with the application of  

 

the SEN and SEP procedures without diffusivity filters is present in this model.  

 

 

3.3   APPLICATION OF MLR METHOD WITH DIFFUSIVITY FILTERS 

 

 

As noted in Section 2.3, the production rate value at a particular time is the response  

 

to injection rate changes over the time of the filter. As presented in Albertoni (2002), this  

 

was 12 months. The actual time it takes for the production rate value of a producer j to  

 

respond to an injection rate change of an injector i  will be applied to the MLR model. 6- 

 

month and 12-month  diffusivity filters suggested by Albertoni (2002) and Dinh (2003)  

 

will also be applied to the MLR model to compare results. A quick calculation using a  

 

radius-of-investigation-type time of the form (Lee, 1997) 

 

k

rc
t it

2948φµ
=                                                                                                          (3.1) 

 

can be used to calculate an approximate time it takes for the production rate value of a  
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producer j to respond to an injection rate change of an injector i.  A total compressibility  

 

value (Ct) value of 0.00012687 and a viscosity ( µ) value of 0.035 (CO2 values) were  

 

used in Equation 3.1 to calculate time. The rt

2  value in Equation 3.1 represents the  

 

distance between the injector-producer well pair. The k value represents the permeability  

 

and φ  represents the porosity of the well. Table 3.6 below shows the average porosity  

 

and permeability values from core data provided by Denbury Resources for the wells in  

 

Phase 2. The average porosity and permeability data was not provided for producers P6,  

 

P7, P8 and injectors I3 and I4. Field average reservoir permeability of 33 md and   

 

porosity of 0.234 provided by Denbury Resources was used for those wells.  

 

 

  AVG POROSITY AVG PERMEABILITY 

P1 27-11 27.36 36.98 

P2 27-13 26.41 296.04 

P3 27-14 27.02 631.67 

P4 27-15 28.95 34.60 

P5 28-16 28.96 87.25 

P9 34-06 24.26 50.06 

P10 34-07 19.13 118.7 

P11 34-11 29.75 177.13 

I01 27-12 25.28 39.02 

I02 34-02 17.54 8.04 

 

Table 3.6 shows the average porosity and permeability values 

 

Table 3.7 shows the time it takes in days for the production rate value of a  

 

producer j to respond to an injection rate change of an injector i. The result of this  

 

 

Table 3.7 Time (days) calculation for injector-producer well pairs in Phase 2 of the Little Creek 

Field 

 P1(t,days) P2(t,days) P3(t,days) P4(t,days) P5(t,days) P6(t,days) P7(t,days) P8(t,days) P9(t,days) P10(t,days) P11(t,days) 

I1 2.0 0.0 1.1 8.6 3.2 10.6 7.4 12.9 11.5 7.9 14.0 

I2 15.3 0.1 0.9 3.1 25.7 34.9 4.1 17.7 7.6 1.7 13.2 

I3 8.6 0.0 0.8 9.8 2.0 2.8 1.5 2.1 2.7 3.8 5.0 

I4 33.0 0.2 4.1 19.4 25.4 25.3 9.9 11.2 5.1 1.0 2.9 
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analysis suggests that apart from producer P1 which takes approximately 33 days to  

 

respond to an injection rate change in injector I4, the rest of the producers in the system  

 

take less than a month to respond to the injection rate changes of surrounding injectors in  

 

the system. This suggests that this is a low dissipation system so a 1 month diffusivity  

 

filter would be the most that should be applied to the MLR model  for the Phase 2 portion  

 

of the Little Creek Field.  

 

 

3.3.1    MLR with 1 Month Diffusivity Filter 

 

 

 Rather than having 37 months of data to work with in this case, the number of  

 

data points is reduced to 36 with 1-month diffusivity filters. The over determination  

 

factor dO  for this case is then 7.2. As stated earlier Albertoni (2002) suggests that very  

 

good results can be obtained with an overdetermination coefficient larger than 6.  

 

The application of MLR with 1-month diffusivity filters to the Phase 2 portion of  

 

Denbury’s Little Creek Field gives the weighting coefficients shown in Table 3.8. Similar  

 

to the case without diffusivity filters,  the results shown in Table 3.8 have both positive  

 

and negative linear relationships between the injector-producer well pairs. 

 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 

 
 0.41 0.68 0.35 0.86 0.66 0.93 0.60 0.88 0.83 0.23 0.07 

βoj -7731 78981 41236 -205806 -27771 -30285 10203 -10197 -4491 11546 2103 

I1 0.04 0.43 0.06 0.30 0.74 -0.33 0.05 -0.45 -0.22 0.20 0.02 

I2 0.14 -0.77 0.02 3.17 -0.37 0.32 -0.34 0.50 -0.28 -0.16 -0.01 

I3 0.00 0.39 0.14 -1.60 0.15 0.44 0.49 0.23 0.54 0.19 0.00 

I4 -0.08 0.12 0.02 -0.39 0.07 -0.08 0.18 -0.11 0.11 0.14 0.02 

 

Table 3.8 Weighting coefficients ijβ  for Little Creek Field Phase 2 data. MLR with 1 month 

diffusivity filters, with dO =7.2 

 
The weighting coefficients shown in Table 3.8 are represented in Figure 3.11.  

2
R
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Figure 3.11 Weighting coefficients ijβ  for Little Creek Field Phase 2 data. MLR with 1-month 

diffusivity filters, with dO =7.2. Left graph shows positive weighting coefficients; right graph 

shows negative weighting coefficients 

 

 

Similar to the MLR case without Diffusivity Filters, Figure 3.11 shows that  

 

injector I1 has the strongest influence on producers P2 and P5 as opposed to other  

 

producers in the system. Injector I1 still shows very little connectivity with producer P1.  

 

This model also suggests that producer P3 in general is not being influenced much by  

 

injectors in the system. Producer P4 still shows a high connectivity with injector I2.  

 

 Figure 3.11 shows that contrary to the MLR case without diffusivity filters,  

 

injector I3 shows a positive relationship with all producers in the model except producer  

 

P4. This suggests greater connectivity between I3 and the producers in the system. 

 

Injector I4 shows an increase in connectivity with nearby producers in the model.  

 

In general, application of the 1 month diffusivity filters results in a slight decrease in the  

 

number of  negative weighting coefficients between injector producer well pairs from 15  

 

(for the case without diffusivity filters) to 14. Also, the magnitude of connectivity  

 

between injector producer well pairs increased as did the 2R  values of all but two  
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producers with two remaining constant. 

 

 

 A plot showing the values of the weighting coefficients versus distance was  

 

generated and results show that the general assumption made relating the high  

 

connectivity of an injector producer pair to the short distance between them is not always  

 

true. 

   

 Figure 3.12 shows a comparison between the total modeled liquid production rate  

 

and the total observed liquid production rate. In comparison to the MLR case without  

 

 
 

Figure 3.12  Denbury Resources Little Creek Field. MLR with 1-month diffusivity filters, with 

dO =7.2. Comparison between total modeled liquid production rate and the total observed liquid 

production rate.  

 

 

diffusivity filters, Figure 3.12 shows that the coefficient of determination 2R  value  

 

increased from 0.83 to 0.86 after the application of the 1-month diffusivity filter. This  

 

suggests that a closer correlation between the total modeled liquid production rate and  

 

total observed liquid production rate has been achieved with the application of the 1- 
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month diffusivity filter to the MLR model. This 2R  value is also higher than the 2R   

 

value of 0.67 for the MLR case after the application of the SEN and SEP procedure. 

 

 

3.3.2     Application of the SE-N and SE-P procedure to MLR with 1-month       

Diffusivity Filters   

 

 

Table 3.9 shows the results obtained after the application of the SEN and SEP  

 

procedure to the MLR model with 1 month diffusivity filters. Comparing the results 

 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 

 
 0.37 0.33 0.35 0.17 0.62 0.78 0.56 0.58 0.60 0.23 0.13 

Boj -12985 45993 41236 -48746 -45096 -72681 15178 -67686 -31087 13833 -5357 

I1 0.04 0.34 0.06 0.71 0.69 0.00 0.03 0.00 0.00 0.19 0.01 

I2 0.07 0.00 0.02 0.00 0.00 0.15 0.00 0.27 0.00 0.00 0.00 

I3 0.02 0.00 0.14 0.00 0.00 0.46 0.31 0.25 0.33 0.11 0.02 

I4 0.00 0.00 0.02 0.00 0.00 0.00 0.03 0.00 0.00 0.07 0.04 

 

Table 3.9  Weighting coefficients ijβ  after the SEN and SEP procedure for the Little Creek 

Field. MLR with 1 month Diffusivity filters, with dO =7.2 

 

shown in Table 3.9 to those shown previously in Table 3.8 shows that after the successive  

 

elimination of both negative  weighting coefficients and positive weighting coefficients  

 

greater than one, 14 negative weighting coefficients and 5 positive weighting coefficients  

 

were eliminated. Therefore, out of 44 injector-producer wellpairs in the original model,  

 

only 25 have positive weights after the application of the SEN and SEP procedure. In  

 

addition, the 2R  values for 10 producers decreased after the implementation of the SEN  

 

and SEP procedure. Producer 11 shows a slight increase in 2R  value from 0.07 to 0.13.  

 

This implies that the SEN and SEP procedure did not help improve the prediction of flow  

 

rates for almost all the wells.  

 

The weighting coefficients ijβ  determined from the application of the SEN and  

 

2R
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SEP procedure are shown in Figure 3.13. Figure 3.13 shows that the application 

 

 

 
 

Figure 3.13.  Positive weighting coefficients ijβ  after the SE-N and SE-P procedure is applied 

to the Little Creek Field Phase 2 data. MLR with 1-month diffusivity filters, with dO =7.2 

 

 

of the SEN and SEP procedures to the MLR model reduced the connectivity between  

 

injector I4 and producers in the system. Injector I3 shows a reduced connectivity with  

 

producers in the system and injector I1 shows an increase in the magnitude of  

 

connectivity with producer P4. In general, Figure 3.13 suggests that the sweep of fluid in  

 

the reservoir is not that efficient because the individual injectors are not influencing the  

 

producers in the area much.  
 

Figure 3.14 shows a comparison between total modeled liquid production rate and  
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Figure 3.14 Comparison between total modeled liquid production rate and the total observed 

liquid production rate after the SE-N and SE-P procedure is applied to Little Creek Field Phase 2 

data. MLR with 1-month diffusivity filters, with dO =7.2. 

 

 

the total observed liquid production rate after the application of the SEN and SEP  

 

procedure.  The 2R  value decreased from 0.86 to 0.74 after the SEN and SEP procedure  

 

was  applied.  

 

 

3.3.3    MLR with 6 Month Diffusivity Filter 

 

The number of data points in the case of 6 month filters is reduced to 31 and the  

 

dO  is 6.2.  Although the dO  factor is lesser than the case with 1-month filters, Albertoni  

 

(2002) suggests that very good results can be obtained with an dO  factor larger than 6.  

 

The application of MLR with 6-month diffusivity filters gives the weighting coefficients  

 

shown in Table 3.10. Results show both positive and negative linear relationships  

 

between the injector-producer well pairs. 
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  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 

R
2
 0.33 0.83 0.10 0.94 0.86 0.91 0.50 0.87 0.69 0.09 0.19 

βoj -11352 193633 100505 -371302 96604 -64864 -10939 -19647 -20852 61814 -85291 

I01 0.08 0.16 -0.07 0.93 0.51 -0.13 0.19 -0.34 -0.18 0.15 0.18 

I02 0.08 -0.36 0.39 2.26 -0.2 0.3 -0.92 0.95 -0.38 -0.17 -0.47 

I03 0.07 -0.23 -0.27 -1.22 -0.66 0.53 0.66 0.17 0.63 -0.09 0.64 

I04 -0.1 0.01 -0.1 0.35 0.28 -0.12 0.56 -0.49 0.17 0.24 0.15 

Table 3.10 Weighting coefficients ijβ  for Little Creek Field Phase 2 data. MLR with 6 month 

diffusivity filters, with dO =6.2 

 

The weighting coefficients shown in Table 3.10 are represented in Figure 3.15.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15  Weighting coefficients ijβ  for Little Creek Field Phase 2 data. MLR with 6-month 

diffusivity filters, with dO =6.2. Left graph shows positive weighting coefficients; right graph 

shows negative weighting coefficients 

 

 

Figure 3.15 shows that in contrast to the northern part of Phase 2, fluid flow in the  

 

southern part of the Phase 2 area now appears to be uniform. Figure 3.15 also shows that  

 

in contrast to the MLR case with 1-month filters, fluid from injector I3 appears to be  

 

moving away from the line of producers, P2, P3, P4 and P5, just to the north of I3.  

 

Injector I3 strongly influences producers P6, P7, P9 and P11 which are all south of its  
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well location. In contrast to the MLR case with 1-month filters, injector I1 shows  

 

very little connectivity with producers directly to the south of its location. This suggests  

 

the possibility of a barrier preventing flow from injector I1 to producers to the south of its  

 

location. Injector I4 shows an increase in magnitude of connectivity with producers.  

 

Injector I1 and producer P4 also show an increase in magnitude of connectivity. Similar  

 

to the previous MLR cases with 1-month filters and without filters, injector I1 shows  

 

strong connectivity with producer P5. Coefficients for injector I2 are similar to the  

 

previous MLR models with and without filters.  

 

 Application of the 6 month diffusivity filters results in an increase in the number  

 

of negative weighting coefficients between injector producer well pairs from 15 (for the  

 

case without diffusivity filters) and 14 (for the case with 1 month filters) to 19.   

 

Figure 3.16 shows a comparison between the total modeled liquid production  

 

 
 

Figure 3.16  Denbury Resources Little Creek Field. MLR with 6-month diffusivity filters, with 

dO =6.2. Comparison between total modeled liquid production rate and the total observed liquid 

production rate . 

 

 

rate and the total observed liquid production rate.  In comparison to the MLR case  

 

78.02 =R  
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without diffusivity filters, the coefficient of determination 2R  value decreased from 0.83  

 

to  0.78. This 2R  value is also lower than the case with 1 month filters which suggests  

 

that the application of the 6 month filter did not help improve the rate predictions of the  

 

MLR model. 
 

 

3.3.4     Application of the SE-N and SE-P procedure to MLR with 6-month       

Diffusivity Filters   

  
 

 Table 3.11 shows the results obtained after the application of the SEN and SEP  

 

procedure to the MLR with 6-month diffusivity filters results shown in Table 3.11.  

 
 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 

R
2
 0.29 0.20 0.06 0.49 0.45 0.90 0.20 0.79 0.30 0.05 0.07 

βoj -23572 52781 65390 -138393 -38971 -104559 49761 -123560 -44543 61626 -44500 

I1 0.11 0.29 0.02 0.00 0.66 0.00 0.00 0.00 0.00 0.14 0.04 

I2 0.00 0.00 0.09 0.00 0.00 0.05 0.00 0.11 0.00 0.00 0.00 

I3 0.08 0.00 0.00 0.38 0.00 0.68 0.00 0.69 0.40 0.00 0.24 

I4 0.00 0.00 0.00 0.65 0.00 0.04 0.19 0.00 0.00 0.00 0.00 

 

Table 3.11  Weighting coefficients ijβ  after the SEN and SEP procedure for the Little Creek 

Field. MLR with 6 month Diffusivity filters, with dO =6.2 

 

Comparing the results shown in Table 3.11 to those shown previously in Table 3.10  

 

shows that after the successive elimination of both negative  weighting coefficients and  

 

positive weighting coefficients greater than one, 17 negative weighting coefficients and 8  

 

positive weighting coefficients were eliminated. Therefore out of 44 injector-producer  

 

wellpairs in the original model, only 19 of them have positive weights after the  

 

application of the SEN and SEP procedure. In addition, the 2R  values for all 11  

 

producers decreased. The SEN and SEP procedure did not help improve the prediction of  

 

flow rates. This is expected because, a less saturated model will have higher prediction  

 

errors.   
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 The weighting coefficients ijβ  determined from the application of the SEN and  

 

SEP procedure is shown in Figure 3.17. 

 

 
 

Figure 3.17.  Positive weighting coefficients ijβ  after the SE-N and SE-P procedure is applied 

to the Little Creek Field Phase 2 data. MLR with 6-month diffusivity filters, with dO =6.2.  

 

 

Figure 3.17 shows that the application of the SEN and SEP procedures changed  

 

the estimated connectivity between injector I2 and producers in the system. In  

 

comparison to the MLR model with 6 month diffusivity filters, injector wells I2 and I4  

 

show the least connectivity with producers in the system. Injector well I1 has a strong  

 

connectivity with producer well P5 whereas in the case without the application of the  

 

SEN and SEP procedure, injector well I1 showed a strong connectivity with both  

 

producers P4 and P5. Injector I3 has stronger influences on producers P4, P6 , P8, P9 and  

 

P11. In general, Figure 3.17 shows that the sweep of fluid in the reservoir is not that  
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efficient because the individual injectors are not influencing the producers in the area  

 

much as shown in Table 3.11. 
 

Figure 3.20 shows a comparison between total modeled liquid production rate and  

 

 
 

Figure 3.18  Comparison between total modeled liquid production rate and the total observed 

liquid production rate after the SE-N and SE-P procedure is applied to Little Creek Field Phase 2 

data. MLR with 6-month diffusivity filters, with dO =6.2. 

 

the total observed liquid production rate after the application of the SEN and SEP  

 

procedure.  The 2R  value decreased from 0.78 to 0.57 after the SEN and SEP procedure  

 

was  applied. The largest differences appear to be at the early and late times. 

 

 

3.4     Chapter Summary  

 

 The application of the multiple linear regression techniques proposed by  

 

Albertoni (2002) to data from the Phase 2 Area of the Little Creek Field, Mississippi for  

 

the time period 1/1/1989 to 1/31/1991 yielded much more scattered results than those  

 

shown in Albertoni (2002) and in Dinh (2003). For this particular case there is a  

 

significant decrease in correlation coefficients for the longer diffusivity coefficients  

 

suggested by both Albertoni (2002) and Dinh (2003). A simple radius of investigation  

57.02 =R  
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calculation similar to that found in well testing indicated that the diffusivity filter should  

 

be no more than one month and appears to provide a good estimate of the value to use  

 

with the highest 2R  value for the total production rate match and having fewer negative  

 

weighting coefficients. 6-month and 12-month (shown in Appendix A) diffusivity filters  

 

provide significantly worse results than either the no diffusivity filter or the one month  

 

diffusivity filter cases. Interpreted fluid flow in the reservoir varies significantly  

 

depending on whether the unrestricted weighting coefficient method is used or whether  

 

the SEN and SEP procedures are used. Considering that all of the producers and injectors  

 

except P1 and P11 show high flow rates with reasonably good pressure support  

 

throughout the area, it would appear that the unrestricted weighting coefficient method  

 

provides the better result with all of the injectors broadcasting their fluid out with fewer  

 

interpreted barriers or boundaries. 
 

 An important assumption of the MLR method is that the predictor variables are  

 

linearly independent, that is, no linear relationship exists between the predictor variables.   

 

If the predictor variables carry common information, problems could occur in the model  

 

causing spurious results.  A statistical phenomenon in which two or more predictor  

 

variables in a multiple regression model are highly correlated is called multicollinearity  

 

which could cause the negative weighting coefficients seen in the results. If  

 

multicolinearity does exist in these models, then the results obtained from the MLR  

 

model with and without diffusivity filters may be  providing spurious results which  

 

should not be used for further interpretation of the sweep of fluid in the reservoir.  For  

 

future work, a more detailed statistical analysis to determine if multicollinearity exists in  

 

the system can be conducted for better understanding of the MLR results. 
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As discussed earlier, Albertoni (2002) suggests that these negative weighting  

 

coefficients should be set to zero thereby eliminating those injector-producer well pairs  

 

from the analysis. Since there is no statistical justification behind Albertoni’s  

 

recommendation, to avoid the need for making ad hoc assumptions, an alternative  

 

method called the Simple Linear Model will be used in Chapter 4 to evaluate  

 

injector-producer well pair connectivity. 
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CHAPTER 4: SIMPLE LINEAR MODEL APPLICATION 

 

 

 Inferring the inter-well connectivity between injector and producer  

 

well pairs to evaluate the effectiveness of a displacement process when reservoir  

 

information is limited to just injection and production rate data has been shown to be a  

 

difficult task. The limited data provided for the 11 wells being analyzed in the Phase 2  

 

area of Denbury’s Little Creek Field limits the various methods that can be used to  

 

determine the effectiveness of the displacement  process and how it might be improved.  

 

Using injection and production rate data only, the MLR method with and without  

 

diffusivity filters along with the implementation of the SEN and SEP procedure was  

 

applied to the Little Creek Field phase 2 data.  The results in Chapter 3 show that the  

 

implementation of diffusivity filters did not significantly improve results for this system.  

 

The implementation of the SEN and SEP procedure to the MLR model showed weaker  

 

correlations between the modeled and actual production rates  

 

The Simple Linear Model, which is a much less complicated method in  

 

comparison to the MLR model with the application of the SEN and SEP procedure, is  

 

used in this chapter to infer injector-producer well pair relationships. 

 

The significance of the relationship between each injector-producer well pair can  

 

be determined by a statistical significance hypothesis test. It is important to note that  

 

although the Simple Linear Model is to be used to infer  a physical relationship  

 

between each injector-producer well pair, like the MLR approach, there is no physical  

 

reason for  actually using this type of statistical model to propose such a relationship  

 

other than to imply that there is some correlation in the data. But, with provided  
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data being limited to just injection and production rates, the use of a statistical  

 

approach to attempt to infer the physical relationships between injector-producer  

 

well pairs could help in evaluating the effectiveness of the displacement process of the  

 

system. 

 

 

4.1 Simple Linear Model 

 

The simple linear model for a production well j is 

 

ij biaq +=                                                                                                                    (4.1)   

                                                                      

where the liquid production rate of a well  j , is jq ,  ii   is the injection rate of an  

 

injector i.  The constant term b is simply the rate at which jq  changes with a change in  

 

ii  (Edwards, 1984) and a is a constant that is added to the product between  

 

the constant b and ii . When the value of b is positive, the relationship between  

 

the two variables is positive; that is, an increase in ii   is accompanied by an increase in  

 

jq  and a decrease in ii  is accompanied by a decrease in jq  (Edwards, 1984) .   

 

A negative relationship means that an increase in ii  is accompanied by a decrease in jq ,  

 

and a decrease in ii   is accompanied by an increase in jq (Edwards, 1984 ).  

 

The application of the simple linear model to the 11 producers and 4 injectors in  

 

the Phase 2 portion of Denbury Little Creek’s Field gives the b values shown in Table  

 

4.1a. Interestingly, similar to the MLR case without diffusivity filters, results shown in  

 

Tale 4.1a indicate a negative relationship between injector I1 and producers P8 and P9.  

 

Also, similar to the MLR case without diffusivity filters, injector I2 has a positive  

 

weighting coefficient greater than one for this system. However, in comparison to the  
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MLR case, which had 15 negative weighting coefficients, only 2 negative weighting  

 

coefficients are obtained with the application of the SLM method to the Little Creek  

 

Phase 2 data. Table 4.1.b shows the 2R  value of each injector-producer well pair for the  

 

Little Creek Field Phase 2 data.  
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Table 4.1a SLM showing b values of each injector-producer well pair for the Little Creek Field 

Phase 2. data.  
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Table 4.1b  SLM showing the 
2R  value of each injector-producer well pair for the Little Creek 

Field Phase 2 data.  

 

 

4.1.1 Hypothesis testing 
 

A hypothesis results from speculation concerning an observed behavior.  

 

As stated earlier, the significance of the relationship between each injector-producer well  

 

pair can be determined by a statistical significance hypothesis test. 
 

The types of statistical hypotheses are the null hypothesis Ho and the alternative  

 

hypothesis  H1.  The null hypothesis is the hypothesis which requires no action to be  

 

taken. That is, no changes need be made. When trying to determine the significance  

 

between each injector-producer well pair, the null hypotheses for the statistical model is  

 

that there is no significant relationship between each injector- producer well pairs. The  
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alternative hypothesis  H1, is a statement that does not agree with the null hypothesis.  

 

The alternative hypothesis is accepted if the null hypothesis is to be rejected. In the SLM  

 

model, the alternative hypothesis states that the injector-producer well pair relationship is  

 

significant. 

 

The choices of decisions to be made for the statistical significance hypothesis test  

 

will be to reject the null hypothesis Ho (and conclude H1) or to not reject the null  

 

hypothesis.  The types of errors of a hypothesis test are the type I and type II errors.  

 

The α (P-value) term accounts for the probability of making a type I error which occurs  

 

when Ho is incorrectly rejected. Historically, the most frequently used α value has been  

 

0.05. The P-value can be used to test the significance level of the relationship between  

 

each injector-producer well pair. A P-value less than 0.05 would then indicate that the  

 

relationship between the injector-producer well pair is significant and a P-value greater  

 

than 0.05 indicates that the relationship between the injector producer well pair is non- 

 

significant. After determining the significant b value these values can be checked to see if  

 

they provide  further information about the effectiveness of the displacement which  

 

should  help in the provision of recommendations for operational changes that might  

 

improve the displacement. 

 

 

4.1.2  Results 

 

Table 4.2 shows the results of the hypothesis test. Well pairs with significant  

 

relationships are represented with  b values greater than 0 and the non-significant  

 

injector-producer relationships are represented with b values equal to 0. There are 11 well  

 

pairs with insignificant relationships. Two wells are only correlated with injector I1 and  
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injector I1 has no correlation with 6 producers (P3, P6, P7, P8, P9, and P11). Similar to  

 

the cases with and without diffusivity filters, well pair I2 and P4 have a weighting  

 

coefficient greater than 1 and  this relationship is statistically significant. 
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Table 4.2 Shows significant b values and non-significant b values that have been set to zero. 

 

 

Figure 4.1 is a representation of the data shown in Table 4.2. Figure 4.1 shows the  

 

magnitude of the relationship between each injector-producer well pair represented  with  

 

the significant b values. As shown in Figure 4.1, injector I1 appears to have a stronger  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Representation of the significant b values for the Little Creek Field Phase 2 data. 

 

connectivity with producers P2, P4 and P5 in comparison to the other producers in the  

 

model. Similar to the previous MLR models with and without diffusivity filters, injector  
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I1 shows a smaller magnitude of connectivity with producers. Again, looking at the  

 

relative rates in P1, all of the injectors appear to be influencing  P1 at about the same  

 

level. Considering the proximity of P1 to the injectors, one would expect that I1 and I2  

 

would have much stronger influence over P1.  

 

Unlike the previous MLR models with and without diffusivity filters, in this SLM  

 

model, injector I2 shows connectivity with all but two producers in the system. In the  

 

previous cases, injector I2 showed little to no connectivity with most of the producers in  

 

the system. This would imply that the area around I2 has a more effective sweep than  

 

would be suggested by the MLR models. 

 

  Producer wells P2 and P5 are only being influenced by injector I1. Producer P3 is  

 

not being influenced by injector I1 and the magnitude of connectivity between producer  

 

P3 and the surrounding injectors is low. Similar to the previous MLR models (except the  

 

case with 1-month filters)  the results of this SLM model also suggests that there is  

 

something preventing flow from injector I3 to the north. One possibility is a barrier or  

 

fault in the portion of the field where producers P2, P3 and P5 are located. The suggested  

 

barrier or fault seems to be preventing the injection fluid of I1 from sweeping south of  

 

these well locations and  preventing the injection fluid of I3 from sweeping upwards  

 

to the north towards these well locations. No barrier or fault appears on any of the  

 

geologic maps provided by Denbury. 

 

Injector I4 seems to be having the highest influence on producer P4 which is  

 

much further away from it in comparison to nearby producers of which it is barely  

 

influencing such as producers P10 and P11. Considering the location of injector I4  

 

and producer P11 relative to the sand boundary, there is a possibility that some of the  
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injection fluid is flowing out of boundary which reduces the effect I4 is likely to have on  

 

P11 and the rest of the producers in the system.  But that still does not explain why there  

 

seems to be a stronger connectivity with producer P4 and injector I4 in comparison to the  

 

other producers in the system especially P10 which is much closer to I4, but has a lower b  

 

value. 
 

 

 4.2     THE MLR APPROACH WITH SIGNIFICANT INJECTOR-PRODUCER 

WELL PAIRS 

 

 

 Now that the injector-producer well pairs with significant relationships have  

 

been determined without making any ad hoc assumptions for the elimination of negative  

 

weighting coefficients and positive weighting coefficients greater than one, the MLR  

 

approach can be used to determine inter-well connectivity between injector-producer well  

 

pairs. The results from the application of the significance hypothesis test using P-values  

 

to the SLM method suggests that the injector-producer well pairs with significant  

 

relationships have positive relationships with each other. That is, an increase in the  

 

injection rate of an injector i results in an increase in the production rate of a producer j.  

 

Hopefully, the application of the MLR approach to the Little Creek Phase 2 data using  

 

these significant well pairs will show similar positive relationships between injector- 

 

producer well pairs. 

 

 

4.2.1   Results 

 

Table 4.3 shows the results of the application of the MLR model to Little Creek  

 

Phase 2 data after the application of the significance hypothesis test using P-values to the  

 

SLM method.  
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  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 p11 

R
2
 0.40 0.48 0.35 0.85 0.58 0.74 0.56 0.56 0.62 0.20 0.10 

βoj -9392 23921 49235 -181762 -37835 -66567 24808 -58310 -23718 26243 3042 

I1 0.03 0.46 0.00 0.17 0.64 0.00 0.00 0.00 0.00 0.14 0.00 

I2 0.09 0.00 0.19 2.93 0.00 0.15 -0.06 0.23 -0.24 0.09 -0.003 

I3 0.02 0.00 0.03 -1.37 0.00 0.41 0.36 0.22 0.45 0.07 0.00 

I4 -0.04 0.00 -0.02 -0.39 0.00 0.01 0.01 0.01 0.07 0.01 0.01 

 

Table 4.3. Weighting coefficients ijβ for Little Creek Field Phase 2 data. MLR with significant 

well pairs, and  dO =7.2 

 

The SLM model suggested that producer P1 had a small positive relationship with the  

 

injectors in the system but when input in the MLR model, the results suggests that there  

 

is a small negative connectivity between injector I4 and producer P1.  After the  

 

elimination of the non-significant injector-producer well pairs, the SLM model suggested  

 

that, producer P3 had a positive relationship with injectors I2, I3, and I4 but the results  

 

from the MLR model suggest that producer P3 has a negative relationship with injector 

I4.  

 

Also, the SLM model suggested that producers P7 and P9 had positive relationships with  

 

injector I2 but results from the MLR model suggest that this relationship is negative. The  

 

MLR model also suggests a negative relationship between injector I3 and producer P11  

 

while the SLM model suggested that this relationship is positive. The SLM model  

 

suggests that a significant positive relationship exists between producer P4 and the  

 

surrounding injectors in the system but the MLR results shown in Table  4.3 suggest  

 

otherwise. The results suggest that Producer P4 has a negative relationship with injectors  

 

I3 and I4. Also the magnitude of the weighting coefficients increases for the injector I2  

 

and producer P4 well pair in comparison to the SLM results.  

 

Figure 4.2 shows the representation of the positive weighting coefficients shown  

 

in Table 4.3. 
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Figure 4.2.  Weighting coefficients ijβ  for Little Creek Field  MLR with significant well pairs, 

and  dO =7.2. Left graph shows positive weighting coefficient; right graph shows negative 

weighting coefficients. 

 

 

 Similar to the MLR case without diffusivity filters shown in Figure 3.6, Results  

 

shown in Figure 4.2 suggest that injector I1 has very little connectivity with producer P1. 

 

Also, Injector I1 shows a higher connectivity with producers P2 and P5 in comparison  

 

with the other producers in the system. Again, this could be because of  the loss of  

 

injection fluid from I1 out of boundary to non-productive layers in the reservoir; thereby  

 

reducing the effect I1 has on producers in the system. With the exception of Producer P11  

 

which injector I2 shows little connectivity with, similar to the MLR case without  

 

diffusivity filters, Injector I2 shows connectivity with producers P1, P3, P4, P6, P8 and  

 

P10 with the exception of P2 and P5 whose relationship was determined as insignificant.  

 

Similar to the MLR case without diffusivity filters, Injector I3 shows connectivity with  

 

producers P1, P3, P6, P7, P8, P9 and P10.  Injector I4 shows very little connectivity with  
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producers in the system which is also similar to the MLR case without diffusivity filters. 

 

In general, evaluation of the movement of fluids in the reservoir from the results  

 

of the MLR model without diffusivity filters and the MLR approach with significant  

 

injector-producer well pairs seem to be similar. Even after the elimination of the  

 

nonsignificant injector-producer well pairs, the results from the MLR model suggest that  

 

there are still 7 negative weighting coefficients. However, of the 7 negative coefficients  

 

only 3 are larger than –0.06. The original MLR technique had 8 negative coefficients  

 

larger than -0.06. This significant reduction in the number of large negative coefficients  

 

is encouraging in that small negative coefficients may be indicators of barriers (as shown  

 

by both Albertoni (2002) and Dinh (2003)), but there is no clear physical explanation for  

 

large negative coefficients.  This shows that it may be possible to use the combination of  

 

the SLM and MLR methods to obtain some physical understanding of fluid movement.   

 

 

4.3      RELATIONSHIPS BETWEEN b VALUES AND RESERVOIR 

CHARACTERISTICS 

 

When the significant relationships between injector-producer well pairs  

 

have been determined, the b values can be used in an attempt to infer further  information  

 

about the effectiveness of the displacement process which should  help to provide  

 

recommendations for operational changes that might improve the displacement.  

 

Various plots showing the relationship between the b values for each injector-producer  

 

well pair and their cumulative recovery, average production, and other reservoir  

 

characteristics such as permeability and porosity for each producer can be used to  

 

evaluate those relationships. 

 

As shown in Figure 4.3, the distribution of the b values is approximately Log-  
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Normal. So plots of the natural log of the b values for each producer and their cumulative 
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Figure 4.3 Log Normal Distribution of b values 

 

 

recovery, average production, and other reservoir characteristics should better show  

 

the desired relationships. While the correlations were better for the natural log of the b  

 

values than using the values themselves, the correlation coefficients were very small.  

 

Significance tests were performed and the slopes were found not to be significant. 

 

Figure 4.4 shows an example plot showing the relationship between ln(b) values  

 

for each producer and the square of the distance between each injector-producer well  

 

pair. As shown in Figure 4.4 the relationship is negative which is expected because, at  

 

least in a homogeneous environment, as the distance between each injector-producer well  

 

pair increases, there should be a decrease in the effect an injector has on a producer. The  
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R
2
 value for this relationship is very low which indicates a weak correlation. The  

 

significance hypothesis test on the slope of this relationship was found to be 0.44  

 

which lies between the interval of -1.65 and 1.65 necessary to reject the hypothesis that  

 

the slope is significant. 
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Figure 4.4 showing a weak relationship between the Log Normal b values and distance. 
 

 

Plots of ∑b for each producer and the average oil rate and the cumulative recovery as  

 

well as plots of the  ln(b) versus the permeability, Dykstra-Parsons coefficient and  

 

Lorenz coefficients also yielded low correlation coefficients and insignificant slopes.  

 

These results are shown in Appendix B. 

 
 

 

4.4     THE MLR APPROACH WITH APPLICATION OF HYPOTHESIS TEST  

 

The hypothesis test (described in Appendix B) was next applied to the MLR model to  
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determine the significance of each injector-producer well pair and the results are shown  

 

in Table 4.4. The non-significant injector-producer well pairs are represented with   

 

weighting coefficients equal to zero.  

 

 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 

 
 0.3678 0.6329 0.347 0.845566 0.58136 0.93328 0.5547 0.8743 0.8235 0.1757 0.069 

Boj -12503 60507 50131 -181762 -42522 -33929 27141 -15348 12990 41808 5647.3 

I1 0.03 0.51 0.00 0.17 0.67 -0.36 0.00 -0.46 -0.25 0.14 0.00 

I2 0.09 -0.65 0.18 2.93 0.00 0.24 -0.06 0.35 -0.18 0.09 0.02 

I3 0.00 0.42 0.00 -1.37 0.00 0.46 0.36 0.29 0.49 0.00 0.00 

I4 0.00 0.00 0.00 -0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

Table 4.4. Weighting coefficients ijβ for Little Creek Field Phase 2 data. MLR with significant 

well pairs after hypothesis test, with  dO =7.2 

 

 Figure 4.5 is a representation of the data shown in Table 4.4. Similar to the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Weighting coefficients ijβ  for Little Creek Field  MLR with significant well pairs 

after hypothesis test, with  dO =7.2  Left graph shows positive weighting coefficients; right graph 

shows negative weighting coefficients.  

 

previous MLR models, Figure 4.5 shows both positive and negative relationships  

 

between injector-producer well pairs. The overall flow of fluid in this model looks similar  

2R
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to both of the MLR case without diffusivity filters. Injector I4 showed very little  

 

connectivity with producers in the model for the MLR case without filters and  

 

the hypothesis test suggests that injector I4 does not have a significant positive  

 

relationship with any producer in the model. I4 shows a negative relationship with P4 and  

 

results suggest that this relationship is significant. This model also suggests that the large  

 

negative connectivity between I2 and P4 is significant. In general, this model did not  

 

provide more insight that will lead to a better understanding of where fluid is flowing in  

 

the reservoir. There are still injector-producer well pairs with significant negative  

 

coefficients that cannot be explained. With that being said, this model does serve as  

 

a more statistically valid approach for eliminating non-significant well pairs than the SEN  

 

and SEP procedures  suggested by Albertoni (2002) because significance tests drive the  

 

elimination of well pairs. 

 

 

4.5  RESULT SUMMARY OF THE MLR CASES 

 

 

MLR MODELS O d
R

2

CASE 1 MLR with 0 filters 7.4 0.83

CASE 2 MLR with 1 month filter 7.2 0.86

CASE 3 MLR with 6 month filter 6.2 0.78

CASE 4 MLR with 12 month filter 5 0.72

CASE 5 MLR with SLM resuils 7.4 0.79

CASE 6 MLR with hypothesis test 7.4 0.82  
 

Table 4.5.  Result summary of the MLR models applied to the Little Creek Field Phase 2 data.  

 

 

 Table 4.5 shows that based on the 2R  values much better results are obtained  

 

from the implementation of the MLR approach with 1 month diffusivity filters to the  

 

Phase 2 portion of Denbury’s  Little Creek Field in Mississippi.  

 

 Although the 2R  value can be used to determine how closely correlated the  
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modeled production rate and  actual production rates are for the system, the objective of  

 

this analysis is to determine injector-producer well connectivity. The difficulty in this  

 

analysis becomes how do we evaluate which model is a “better” model? Albertoni (2002)  

 

and Dinh (2003) used the 2R  value obtained for each model to determine which model is  

 

“better”.  The use of only 2R  values would suggest that a better model is chosen 

 

based solely on how well fluid rates can be predicted rather than the movement of fluid in  

 

the reservoir. 

 

 An F-test was applied to the various MLR model cases. The F-test is used to  

 

detect the significance of a shift in the standard deviations, i.e., the likelihood in making a  

 

mistake in saying the standard deviations are different or the hypothesis that the proposed  

 

MLR models fit the actual data. The F-test analysis indicates if there is a (1- 

 

pvalue)x100% confidence that the variance between the models are not equal. Results  

 

from this test are shown in Table 4.6 and the results shown in Table 4.6 suggests that the  

 

variance between the standard deviations of the model and actual rates are not equal. 

 
MLR MODELS CONFIDENCE (%)

CASE 1 MLR with 0 filters 54

CASE 2 MLR with 1 month  filters 55

CASE 3 MLR with 6 month filters 48

CASE 4 MLR with 12 month filters 69

CASE 5 MLR with SLM results 50

CASE 6 MLR with hypothesis test 67  
 

Table 4.6.  F-test Result summary of the MLR models applied to the Little Creek Field Phase 

data.  

 

This suggests that the MLR models are not very different from each other. Also, the use  

 

of  the F-test would suggest that a “better” model is being chosen based solely on how  

 

well  fluid rates can be predicted rather than the movement of fluid in the reservoir.   

 

Again, even though the time calculation suggests that there is a maximum of a 1 month  
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lag between injector-producer response, the MLR models still shows significant negative  

 

coefficients and coefficients greater than one for those cases.  It is difficult to ascertain  

 

which model is correct because  all the models have significant negative coefficients that  

 

we do not understand. The use of hypothesis testing helped reduce the number of  

 

negative weighting coefficients but not all of them. Results from the simple linear model  

 

showed positive relationships between all the injector-producer well pairs so this model  

 

will be used in Chapter 5 to provide recommendations to improve well performance in  

 

Phase 2. 
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CHAPTER 5:  WELL PERFORMANCE EVALUATION 

 

 

 Once the flow directions in a reservoir have been obtained, the next question to be  

 

answered is “can these flow patterns be modified to improve sweep and recovery?.” As  

 

shown in Chapter 4, it is not statistically clear which of the models represents flow in  

 

Little Creek. For most of this chapter, results from the Simple Linear Model will be used  

 

to evaluate performance improvements in the Phase 2 portion of Denbury Resources  

 

Little Creek field in Mississippi.  

 

At any given time in the life of a reservoir, the static pressure or the average  

 

reservoir pressure is approximately fixed and the flow into the well depends on the  

 

pressure drawdown. Well deliverability can be represented with well inflow and wellbore  

 

outflow performance relationships.  The inflow performance relationship (IPR) of a well  

 

is represented as the production rate of a well as a function of its flowing bottomhole  

 

pressure. It describes the deliverability of the reservoir. The vertical lift performance or  

 

tubing performance relationship (TPR) of a well represents the ability of fluid to flow  

 

from the bottomhole through the pipelines and surface facilities to the surface storage  

 

tank (Suk Kyoon Choi et. al. , 2008). 

 

 

5.1 Inflow Performance Relationships 

 

  “In a vertical geometry with single-phase oil under steady state, Darcy proposed  

 

a constitutive equation that describes the flow of a fluid through a porous medium. Darcy  

 

can be expressed in various forms according to reservoir geometries. The following form  

 

represents the steady state radial flow in a circular drainage area with potential skin effect  

 

in the near wellbore” (Suk Kyoon Choi et. al. , 2008). Inflow performance of an oil well  
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can be expressed with the productivity index (Jo). 
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where, 

 

=oJ  productivity index 

=oq  inflow rate, STB/day 

=k  effective oil permeability, md 

=h  reservoir thickness, ft 

=ep  pressure at err = , psia 

=wfp  wellbore flowing pressure at wrr = , psia 

=er  wells drainage radius, ft 

=wr  wellbore radius, ft 

=oµ  oil viscosity, cp 

=oB  oil formation volume factor bbl/STB 

            

In a depletion drive system, the standard method to improve the productivity of a well is  

 

to increase the pressure drawdown by reducing the flowing bottomhole pressure of the  

 

well.  The flowing bottomhole pressure of a well can be decreased by reducing the  

 

pressure losses between the bottomhole and the separation facility, either by optimizing  

 

tubing sizes or by implementing or improving artificial lift procedures (Economidies et  

 

al, 1994). Another method of improving the productivity of a well is by reducing the skin  

 

effect(s) which accounts for near-wellbore damage. This can be done through matrix  

 

stimulation and removal of near-wellbore damage (Economidies et al, 1994). 

 

 For wells that flow mostly water, Equation 5.1 also holds with the knowledge that  

 

the oil properties in the equation are now water properties (i.e www KB µ,, and wq ). For  

 

wells flowing mostly gas, Equation 5.1 does not generally hold. Because of the small gas  

 

viscosity value and the high compressibility, inertial effects are significant unless  
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flowrates are small. The productivity index then is highly non-linear and not nearly as  

 

approximately constant over the reservoir  life as is typically assumed for oil or water  

 

systems. 

 

 Standard nodal analysis techniques (Beggs, 2003) can be used to provide an  

 

understanding of the effects that changing reservoir and flowing bottomhole pressure  

 

values would have on production or injection rates. Because there was no pressure data  

 

provided for the study area, approximate methods should provide insight into the effect  

 

that changing flowrates in one well might have on flow rates in another well. Therefore,  

 

Equation 5.1 will be used with the reservoir flow rates shown in Figures 3.2 and 3.3. For  

 

pressures, it is known that the miscibility pressure in Little Creek is approximately  

 

4500 psi (Senocack et. al, 2008). In addition, data from the operator for recent operations  

 

indicate that the surface injection pressures are around 1300 psi. This yields an injection  

 

well pressure of approximately 5025psi using standard tubing flow correlations (API  

 

RP14B, 1976).  For rates similar to those in the data set, wellhead pressures are slightly  

 

higher at around 1800 psi yielding a flowing bottomhole pressure of around 4830psi. This  

 

suggests an average reservoir pressure of around 4925 psi. 

 

Results from the SLM model indicates that producers P1 and P11 show the  

 

least connectivity with injectors in the system. Well P3 and P10 show low connectivity  

 

despite having two of the largest production rates in the system. Producer P4 shows a  

 

very strong  connectivity with injector I2 and Injector I4 shows little connectivity with its  

 

surrounding producers. Fluid from injector I3 seems to only be moving towards wells to  

 

the south leaving areas between I3 and wells to the north of it unswept. 

 

Producers P1 and P11 both have the lowest production rates in the system which  
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could be because of their location relative to the sand boundary.  Low productivity in  

 

these wells could also be due to high flowing bottomhole pressures or low reservoir  

 

pressure in the area. To increase well productivity for these wells, typically an increase in  

 

the pressure drawdown would be required and would be implemented by reducing the  

 

flowing bottomhole pressures since the wells in Phase 2 are currently flowing and not on  

 

artificial lift. Because this is a CO2  flood, bottomhole pressures need to be held above the  

 

miscibility pressure (4500 psi) and flowing surface pressures should be higher than  

 

1200 psi in order to keep the CO2  in a supercritical state. 

 

 Based on the flowing bottomhole pressure indicated at 4830 psi, it appears there  

 

might be an additional 300 psi of drawdown that could be utilized. This additional 300  

 

psi cannot be attained by changing tubing size in the well, but may be possible if a  

 

transfer pump could be utilized at the surface. The assumption here is that the 1800 psi of  

 

back pressure is not due to wellhead chokes. If it is, opening the choke would be the  

 

easiest way to increase drawdown. 

 

 Once drawdown has been increased in a well, that wells area of influence will  

 

change and average bottomhole pressure will likely fall unless another well is held back  

 

(kept from producing as much as “allowed”). From the SLM results, wells P4, P6, P7 and  

 

P9 should be held back (flow rate should be decreased) and wells P2, P3, P5 and P10  

 

should be increased. In addition, wells P1 and P11 should have drawdown increases if  

 

possible. Because these wells produce set rates that are so much lower than the other  

 

wells, it is not clear at all what to do with them. A pressure transient test may be required  

 

to evaluate their productivities. 

 

Table 5.1 shows the productivity index for each producer and the injectivity index  
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for each injector calculated from the average flow rate over the time period divided by  

 

 

Wells II or PI (bpd/psi) Oil Rate  

I1 78.5   

I2 91.35   

I3 89.92   

I4 102.73   

P1 4.89 174.24 

P2 49.41 1139.16 

P3 42.69 1824.24 

P4 33.17 702.24 

P5 33.19 1511.4 

P6 21 2566.08 

P7 42.39 1813.68 

P8 15.64 1209.12 

P9 15.51 3288.12 

P10 40.78 2060.52 

P11 4.68 63.36 

 

Table 5.1 Productivity index for wells in the Phase 2 portion of Denbury Resources Little 

Creek field in Mississippi.  

 

 

the pressure difference suggested previously as being somewhat representative of field  

 

operations (5025 psi Pwf for injectors, 4830 psi for producers and 4925 psi for average  

 

reservoir pressure). 

 

 From Eqn. 5.1 an estimate of the new flow rate in each well can be obtained if  

 

there is some idea of how the bottomhole flowing pressure and average reservoir  

 

pressures change. The estimate can be obtained from 
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This equation can be used either to estimate the new flowrate and/or Pwf combination in  

 

a single well or in different wells. 
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The SLM model also suggests that injector I4 has little connectivity with  

 

surrounding producers in the model. Interestingly, for the time period being analyzed,  

 

injector I4 has the highest injection rate. This reduced effect between I4 and producers in  

 

the system could be a result of its location relative to the reservoir boundary. To check if  

 

the SLM model is truly capturing fluid flow from I4 to producers in the model, the  

 

injector I4 should be shut-in and nearby producers should be monitored to see the effect  

 

in production rate on nearby producers. If there is no rate change observed in nearby  

 

producers, then injector I4 should be shut-in permanently because there is no use for this  

 

injector in the system. However, if the effect of shutting-in I4 is seen in nearby producers,  

 

then the injection rate for I4 should be increased. The average monthly injection rate for  

 

I4 is 216,872 RB. This amount could be doubled and the production rates for nearby  

 

producers should be monitored to see the effect this rate change has on the system.  

 

Alternatively, if the fluid flow in the reservoir did not show any areas where oil  

 

was being left behind, the best option to improve recovery would be to try to increase the  

 

amount of the displacing fluid going to those parts of the reservoir with the highest oil cut  

 

or simply the highest oil rate. A low oil cut may mean that CO2 is cycling between the  

 

injector and the producer reducing efficiency of the flood.  

 

All of the producers in the Phase II portion of the Little Creek Field have very low  

 

oil cut.  Most are between 0 and 2%.  Wells P6, P9 and P10 are the highest oil producers  

 

in the area and also have oil cuts over 2.5%.  Wells P3, P7 and P8 also have reasonably  

 

high oil rates and oil cuts in excess of 2%.  In general, Table 5.1 shows lower oil rates for  

 

wells in the northern region of Phase 2 in comparison to wells in the southern part of the  

 

area.  This would indicate that efforts to improve recovery from this area should be  
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concentrated on directing more CO2 to injectors I2, I3 and I4 and production from wells  

 

P1, P4, P5 and P11 should be reduced. This would be especially true if the test previously  

 

described to evaluate injector I4 was found to be effective at improving recovery from the  

 

southern-most wells in the area.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 89 

 

 

CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

 

 

The determination of the connectivity between injector-producer well pairs to  

 

evaluate the effectiveness of the displacement process is a difficult task if reservoir  

 

information is limited to injection and production rate data. Various statistical methods  

 

have been used to quantify connectivities to guide operational changes to improve the  

 

displacement process.   

 

 Compared to the Multivariate Linear Regression Model with SEN and SEP, the  

 

Simple Linear Model is less complicated and requires fewer ad hoc assumptions. SLM   

 

can be used to evaluate the relationship between each injector-producer well pair for a  

 

selected time period.   

 

The significance of the b values which represents the relationship between each  

 

injector-producer well pair obtained from the Simple Linear Model was determined by t- 

 

test.  Plots showing the relationships between the significant b values for each injector- 

 

producer well pair and their cumulative recovery, average production, and other reservoir  

 

characteristics were inconclusive based both on statistical hypothesis testing (t-test) and  

 

on the low correlation coefficients obtained. 

 

 The Simple Linear Model and hypothesis test (Figure 4.1) suggests that  

 

producers P1, P11 and P3 show the least connectivity with injectors in the system.  

 

Producer P4 shows a very strong  connectivity with injector I2 and Injector I4 shows little  

 

connectivity with its surrounding producers. To improve sweep in the northern part of the  

 

Phase 2 area, the surface pressure for well P1 should be reduced if possible. The increase  

 

in pressure drawdown should increase the productivity for this well. Cutting back on the  
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production from well P4 which shows a strong connectivity with nearby injectors I2 and  

 

I3 may help increase reservoir pressure in the area and allow for fluid to flow from  

 

Injectors I2 and I3 to producers to the north of their well location. By increasing the  

 

surface pressure for well P4, the operating flow rate for this well should decrease and  

 

more fluid will be directed away from this area.  SLM results suggest that producer P3  

 

has very little connectivity with injectors in the system while, the actual production data  

 

shows that well P3 has the second highest production rate in the model with one of the  

 

higher gas-oil-ratios. This information suggests that the area has high heterogeneity,  

 

gravity override problems or viscous fingering problems . Cutting back on the production  

 

from well P3 should help increase reservoir pressure in the area and allow for more CO2   

 

may be forced through the apparently bypassed region and the oil would be pushed to the  

 

nearby producers. This area may be a good candidate for mobility control test. 

 

In the southern part of the Phase 2 area, injectors I2, I3 seem to have a greater  

 

effect on nearby producers in comparison to  injector I4. Injector I4 has the highest total  

 

injection rate for the time period being analyzed and this raises a concern as to where that  

 

injection fluid is going.  Injector I4 should be shut-in and nearby producers should be  

 

monitored to see the effect in production rate on nearby producers. If there is no rate  

 

change observed then injector I4 should be shut-in permanently. If the effect of shutting- 

 

in I4 is seen in nearby producers, then to improve sweep the Injection rate for I4 should  

 

be increased. The average monthly injection rate for I4 is 216,872 RB. This amount could  

 

be doubled and the production rates for nearby producers should be monitored to see the  

 

effect this rate change has on the system. As this injection rate is increased, nearby  

 

producers P12 and P13 included in both patterns 34-10 and 34-9 which were producing  
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for this time period but not included in the analysis should be monitored. If more  

 

response is seen in producers P12 and P13, then a production cap can be set on  

 

one or both wells to increase reservoir pressure in the area; thereby allowing flow of fluid  

 

from injector I4 to its surrounding producers in Phase 2. 

 

 For monitoring this flood, the best results (in terms of matching predictions to  

 

observed rates) were obtained from the Multiple Linear Regression techniques with a one  

 

month diffusivity filter or the MLR technique without diffusivity filters. This implies low  

 

formation dissipation in Denbury’s Little Creek Field: a change in injection rate should  

 

quickly cause a response in the production rate of nearby producers. This effect could not  

 

be captured in the current work because the production and injection rate information  

 

were at one month intervals.  Analysis with daily or weekly rate data should be  

 

considered in the future.  

 

 In the future, daily production and injection rate data can be used in the SLM  

 

model to determine the connectivity between injector-producer well pairs and a  

 

hypothesis test can be used to test the significance of the relationships seen. Various plots  

 

showing the relationships between the significant b values for each injector-producer well  

 

pair and their cumulative recovery, average production, and other reservoir characteristics  

 

can be generated. If results attained suggest a significant relationship, this could  provide  

 

further  information about the effectiveness of the displacement process. For the case  

 

presented here, these plots did not provide any insight. 
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APPENDIX A: MLR WITH 12 MONTH DIFFUSIVITY 

FILTERS 
 

A.1      MLR with 12 Month Diffusivity Filters 

 

The dO   factor for this case is 5 which is outside the stated range suggested by  

 

Albertoni. We should expect that predictions for this case will be less correlated  

 

than in the case with no filters. 

 

The application of MLR with 12-month diffusivity filters to the Phase 2 portion of  

 

Denbury Little Creek’s Field gives the weighting coefficients shown in Table A.1.  

 

In the results shown in Table A.1, there are both positive and negative linear  

 

relationships between the injector-producer pairs. The weighting coefficients shown in  

 

Table A.1 are shown in Figure A.1   

 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 

R
2
 0.23 0.66 0.38 0.96 0.76 0.75 0.29 0.72 0.76 0.17 0.23 

βoj -9444 191118 208 -245658 171247 -192675 99576 -214986 -107367 -103565 -98815 

I1 0.1 0.07 0.01 0.5 0.34 0.28 -0.12 0.2 0.13 0.9 0.27 

I2 -0.01 -0.49 0.49 3.86 0.23 -0.71 -0.09 -0.23 -1.38 -2.02 -0.77 

I3 0.11 -0.04 0.14 -3.51 -1.23 1.06 -0.18 1.3 1.28 1.32 0.82 

I4 -0.08 0.01 -0.2 0.69 0.19 0.59 0.31 0.03 0.66 0.83 0.24 

 

Table A.1 Weighting coefficients ijβ  for Little Creek Field. MLR with 12 month Diffusivity 

filters, with dO = 5 

 

 
 

 

 

 

 

 

 

 

 

 

Figure A.1 Weighting coefficients ijβ  for Little Creek Field. MLR with 12-month diffusivity 

filters, with dO =5. Left graph shows positive weighting coefficients; right graph shows negative 

weighting coefficients.  
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Figure A.1 looks similar to Figure 3.15. The major difference is that Figure A.1  

 

generally shows a larger magnitude of connectivity between injectors I1, I3, I4 and the  

 

producers in the system. Similar to the application of 6 month diffusivity filters, injector  

 

well I3 seems to be strongly influencing the producers located to the south except for  

 

producer P3, with which it has very little connectivity. Again, similar to the case with the  

 

application of a 6-month diffusivity filter, injector I3 shows a negative relationship with  

 

the producers P2, P4 and P5 above it. These negative coefficients could be indicating the  

 

presence of a barrier or fault  in between Injector I3 and producers P2, P3 and P5 which  

 

is preventing flow from the injector I3 to the north or producers P6,P8, P9 and P10 are at  

 

much lower pressures than the  P2, P5 and P3 wells drawing fluid south. Interestingly,  

 

unlike the previous cases, injector I1 shows the strongest connectivity with producer P10  

 

which is a large distance away. 

 

Figure A.1 shows positive connectivity between injector I4 and all the producers  

 

in the system except producers P1 and P3. Also, the magnitude of connectivity increased  

 

between injector I4 and the surrounding producers in the system when the 12 month  

 

diffusivity filters were applied.  

 

In comparison to the MLR with 6 month diffusivity filter model, the 2R  values  

 

for all producers in this model have decreased.  This would suggest that the application of  

 

the 12-month diffusivity filter did not improve the results of the MLR model as suggested  

 

by Albertoni (2002).  

 

Figure A.2 shows a comparison between the total modeled liquid production  

 

rate and the total observed liquid production rate. In comparison to the MLR case with 1  

 

month filters, 6 month filters and without filters, the coefficient of determination 2R   
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value decreased to  0.72.   Although this 2R  value is also lower than the MLR case with  

 

6-month diffusivity filters, Figure A.2 looks more like Figure 3.17 in the sense that for  

 

both plots, the MLR model rates do not seem to be closely correlating with the actual  

 

monthly rates. The modeled rates are smoother than the actual values. 
 

 

  
 

Figure A.2  Comparison between total modeled liquid production rate and the total observed 

liquid production rate for the Little Creek Field Phase 2 data. MLR with 12-month diffusivity 

filters, with dO =5. 

 

 

A.2.     Application of the SE-N and SE-P procedure to MLR with 12-month       

Diffusivity Filters   

 
 

 Table A.2 shows the results obtained after the application of the SEN and SEP  

 

procedure to the MLR with 12-month diffusivity filters. Comparing the results in Table  

 

A.2 to those in Table A.1 shows that after the SEN and SEP procedures there has been a  

 

reduction in the number of  injector-producer well pairs to be accounted for in the system. 

 

 

 

 

.02 =R 72 
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  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 p11 

R
2
 0.22 0.07 0.37 0.00 0.00 0.72 0.13 0.00 0.43 0.03 0.12 

βoj -23930 77692 -41219 88182 64302 -82088 46219 43714 -60072 51862 -38089 

I1 0.14 0.11 0.14 0.00 0.00 0.07 0.00 0.00 0.00 0.15 0.06 

I2 0.00 0.00 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

I3 0.06 0.00 0.33 0.00 0.00 0.55 0.00 0.00 0.48 0.00 0.18 

I4 0.00 0.00 0.00 0.00 0.00 0.07 0.2 0.00 0.00 0.04 0.00 

 

Table A.2  Weighting coefficients ijβ  after the SE-N and SE-P procedure is applied to the Little 

Creek Field Phase 2 data. MLR with 12 month Diffusivity filters, with dO = 5 

 

 

After the application of the SEN and SEP procedure, 15 negative weighting coefficients  

 

and 13  positive weighting coefficients were eliminated leaving 16 injector-producer  

 

relationships. 

 

 As shown in Table A.2, the 2R  values for all the 11 producers after the  

 

implementation of the SEN and SEP procedure have decreased in comparison to the   

 

MLR case with 12 month diffusivity filters.  This implies that the SEN and SEP  

 

procedure did not help improve results.   
 

 The weighting coefficients determined after the application of the SEN and SEP  

 

procedure are shown in Figure A.3. Both the magnitude and the directionality of the  

 

weighting coefficients between injector-producer well pairs are significantly altered  

 

relative to Figure A.1. The representation of the weighting coefficients in Figure A.3  

 

shows that,  there is barely any computed connectivity between injector-producer well  

 

pairs after the application of the SEN and SEP procedure.  

 

 



 99 

 
 

Figure A.3  Representation of the positive weighting coefficients ijβ  after the SE-N and SE-P 

procedure is applied to the Little Creek Field Phase 2 data. MLR with 12-month diffusivity 

filters, with dO =5. 

 

 Figure A.4 shows a comparison between total modeled liquid production rate  

 

and the total observed liquid production rate after the application of the SEN and SEP  

 

procedure to the MLR case with 12-moth diffusivity filters. The 2R  value decreased from  

 

0.72 to 0.19 after the SEN and SEP procedure was applied.  

 

 
 

Figure A.4 Comparison between total modeled liquid production rate and the total observed 

liquid production rate after the SE-N and SE-P procedure is applied to the Little Creek Field 

Phase 2 data. MLR with 12-month diffusivity filters, with dO =5.  

.02 =R 19 
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APPENDIX B: APPLICATION OF THE HYPOTHESIS 

TEST ON THE SLOPE OF VARIOUS CORRELATIONS 
 

 

B.1      T statistic- Hypothesis test discussion 

 

The 2R  values shown in Figures B.1-B.3 represent how accurately the two data  

 

populations are correlated.  The 2R  values are very low indicating weakness or nearly  

 

nonexistence in the relationships. A statistical hypothesis test (t-test) on the slope can be  

 

used to determine the significance of the  slopes shown in Figures B.1-B.3. The null  

 

hypotheses Ho states that the slope of the figures are zero and so therefore the relationship  

 

are insignificant. The alternative hypothesis H1, states that the slope is not equal to zero  

 

implying that the relationship is significant. According to Geaghan (2005), the t-value  

 

can be determined using   
 

xxS

MSE

b
T

01 −
=∗                                                                                                                  (B.1)           

 

where,   

 

1b is the least squares estimate of the slope 

      

MSE  is the estimate of the common variance around the slope 

 

xxS  is the sum of squares 

 

Choices of decisions 

 

According to Geaghan (2009), the choices of decisions to be made for the t  

 

statistic hypothesis test for the slope of the figures, will be to reject the null hypothesis Ho   

 

(and therefore conclude H1) if  the t value is  in the interval of -1.65 and 1.65 or to not  

 

reject the null hypothesis H0.   
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The relationship between the summation of the b values for each producer and the  

 

average oil production (BOPM) for each producer is shown in Figure B.1 and is positive  

 

as expected.  A greater ∑b value for a producer  j would imply that there is a larger  

 

effect of the injectors acting on that producer which would result in an increase in the  

 

average production (oil) from that well. It is important to note that although this is a  

 

positive trend, the hypothesis test for the slope of Figure B.1 was found to be 0.44 which  

 

lies between the interval of -1.65 and 1.65; This implies that the slope is insignificant. 

 

The 2R  value is also very low which shows very low correlation. 
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Figure B.1 showing a weak relationship between the average oil production for each producer 

and summed b values for each producer. 

 

A similar relationship between the cumulative oil recovery for each producer and  

 

the ∑b values for each producer was found. The 2R  value is 0.0207 which is very low  

 

indicating very low correlation and the hypothesis test resulted in a t-value of 9.73x10 
-7  

 

which indicates that the slope is insignificant.  

 

The most common measures of heterogeneity in the industry are the Dykstra- 

 

Parsons coefficient, VDP  and the Lorenz coefficient, LC.  Both measures range from zero  
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to one where higher values scaled between about one-half and one correspond to higher  

 

heterogeneity (Lake and Jensen, 1991). Therefore, a value of zero is for a completely  

 

homogeneous reservoir while a value of one is for an infinitely heterogeneous reservoir.   

 

The Dykstra-Parsons coefficient is based on permeability distribution and is calculated as  

 

follows  

 

50

1.8450

k

kk
V DP

−
=                                                                                                   (B.2) 

 

where the k50  term in equation B.2 “is the median permeability and the k84.1  term is the  

 

permeability one standard deviation above k50 on a log-normal plot” (Dykstra and  

 

Parsons, 1950; Jensen and Lake, 1991). A high Dykstra-Parsons coefficient would  

 

imply heterogeneity in the  reservoir which may cause an increase or decrease in the  

 

effect an injector i has on a producer j. Figure B.2 shows a negative relationship between  

 

the natural log of the b values for each producer and the Dykstra Parsons coefficient for  

 

each injector-producer well pair. This suggests that there is a decrease in the magnitude  

 

of connectivity between injector-producer well pairs in the more heterogeneous parts of  

 

the reservoir. Since the Dykstra-Parsons coefficient is based on permeability distribution,  

 

the decrease in magnitude of connectivity would suggest that due to the variability in  

 

permeability in the heterogeneous parts of the field, movement of fluid would be directed  

 

towards areas with higher permeabilities; thereby causing a decrease in connectivity  

 

between producer-injector well pairs in areas with lower permeability. Figure B.2 shows   

 

the coefficient of determination value for this correlation  is very  low and the  

 

significance test found the slope to be insignificant with a T-value of -1.08. 
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Figure B.2 showing a weak relationship between the log normal b values for each producer and 

the Dykstra Parsons coefficient  for each injector-producer well pair. 
 

 

The Lorenz coefficient is computed from a plot of cumulative flow capacity, Fj  

 

versus storage capacity Cj. According to  Jensen, et al. (2000), the flow capacity and  

 

storage capacity can be obtained using equations B.3 and B.4 below 

 

F j =

k j h j

j = 1

J

∑

k i h i

i

N

∑
                                                                                       (B.3) 

 

C j =

φ j h j

j = 1

J

∑

φ i h i

i= 1

N

∑
                                                                                         (B.4) 

 

 

A high Lorenz coefficient, Lc would imply heterogeneity in the reservoir which  
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could cause an increase or decrease in the effect an injector i has on a producer j .   

 

Figure B.3 shows a positive relationship between the natural log of the b values  

 

for each  producer and the Lorenz coefficient for each injector-producer well pair. 

 

This suggests that more connectivity is seen in areas of the reservoir with higher  

 

heterogeneity. This does not agree with the results shown in Figure B.2. As stated earlier,  

 

Figure B.2 suggests that in the more heterogeneous parts of the reservoir, there is a  

 

decrease in the magnitude of connectivity between injector-producer well pairs which  

 

makes sense because injection fluid would flow to the more permeable areas in the  

 

reservoir as opposed to the areas with lesser permeability thereby resulting in a lesser  

 

magnitude of connectivity between injector-producer well pairs in the lesser permeable  

 

areas. The difference in the results shown between the Dykstra-Parsons and the Lorenz   

 

Coefficient measures could be due to the fact that the Dykstra-parsons model only  

 

accounts for variability in permeability while the Lorenz model accounts for the  

 

variability in permeability and porosity  in  a heterogeneous reservoir. In the Lorenz  

 

coefficient case, the high heterogeneity is as a function of  the flow capacity and storage  

 

capacity in the reservoir. With that being said, Figure B.3 shows a very low coefficient of  

 

determination value and the significance test found the slope to be insignificant with a  

 

t-value of  1.34. 
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Figure B.3 showing the relationship between the log normal beta values for each producer and the Lorenz 

Coefficient for each injector-producer well pair. 
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