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NOMENCLATURE 

•  - capillary number 

•  -  velocity  

•   -  viscosity   

•   -  oil-water interfacial tension (IFT)  

•   - contact angle  

• ∆   -  pressure drop 

•  -  rate of oil production 

•  -  permeability 

•  - oil relative permeability  

•  - water relative permeability  

•  -  initial water saturation 

•  - residual oil saturation  

•  - oil viscosity 

•  -  area of reservoir  

•  -  pay zone thickness  

• φ -  porosity 

•  -  pore volume 

•  – saturation behind the front at breakthrough time  

•  – cumulative oil at breakthrough time 
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ABSTRACT 

Surfactants have a variety of applications in the petroleum industry due to their remarkable ability 

to lower the oil-water interfacial tension and alter wettability. However, surfactant adsorption on rock 

surfaces has severely crippled this means of improving oil recovery due to the high cost associated with 

the large quantities of surfactant needed. A previous experimental study by Ayirala (2002) reported the 

development of mixed wettability using a nonionic surfactant. At this mixed-wet state he was able to 

recover about 94% of the original oil in place. The underlying motivation of this study was to achieve 

such high recoveries without using large quantities of surfactants. A new surfactant enhanced waterflood 

method is proposed as the means to accomplish this task. This improved waterflood method consists of 

soaking the area around the production or injection well with an optimally concentrated surfactant slug 

prior to conducting a waterflood. Four variations of this novel process were investigated. The first two 

variations examined two surfactant slug sizes (0.2PV and 0.3PV) soaked around the production well prior 

to conducting a waterflood. The third variation explored the idea of soaking the area around the injection 

well instead of the production well prior to a waterflood. After soaking the area around the production 

well with a surfactant slug, the fourth variation used a low concentration (LC) surfactant solution to flood 

the reservoir instead of water.  

The main objective of this study was to evaluate whether these proposed improved waterflood 

methods are technically feasible, and also determine their effectiveness when compared to a conventional 

waterflood. In addition, simple cost analysis calculations were carried out to show the economic 

feasibility of the proposed improved waterflood variations, especially when compared to a conventional 

waterflood. All the experiments utilized the same rock and fluid properties, as those used by Ayirala in 

his coreflood experiments. A surfactant (Tomadol™ 91-8) with similar properties and recovery to that 

used by Ayirala was used in this project. This project was divided in four sets of experiments.  

This study found that all four improved waterflooding variations were technically feasible, and 

were more effective in improving oil recovery than a conventional waterflood. In addition, the proposed 
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improved waterflood variations accomplished the task of significantly improving oil recovery with small 

quantities of surfactant. 
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1. INTRODUCTION 

1. 1 Background 

Since the beginning of the oil and gas industry, petroleum companies have tried to produce more 

oil by either maximizing oil recovery or by finding new reserves. With much of the easy oil already 

produced, petroleum companies have entered an era where they have to push the bounds of technology, 

and think outside the box on how to produce the large quantities of remaining oil in place (ROIP), 

unconventional resources, and from remote regions. To do so, fascinating and unconventional means of 

oil production are being developed, while the conventional methods are being optimized to increase their 

effectiveness. The technology gaps that exist in enhancing oil recovery provide exciting and fascinating 

research problems for the petroleum industry. 

 In recent years, the field of enhanced oil recovery has grown to become more popular due to a 

combination of the world’s rising energy consumption, stagnant oil production, and low recoveries by 

conventional methods. On average, both the primary and secondary oil recovery phases account for about 

one-third of the original oil in place (OOIP). The rest of the oil is trapped in the rock due to high capillary 

forces that prevent oil from flowing through the rock and into the wellbore for production. The field of 

enhanced oil recovery focuses on overcoming these competing forces in order to recover large and 

economical quantities of the remaining oil in place. Any process that involves injection of fluid(s) to 

supplement natural reservoir energy by interacting with the rock-oil-brine system to create favorable 

conditions for maximum oil recovery is known as an enhanced oil recovery (EOR) process (Willhite et 

al., 1998). These favorable interactions to maximize oil recovery may be oil swelling, lowering the 

interfacial tension, rock wettability modification, oil viscosity reduction, and favorable phase behavior. In 

the U.S alone, out of the 536 billion barrels of original oil in place (OOIP) there still remains about 350 

billion barrels of oil trapped in onshore producing reservoirs. In addition, the deepwater Gulf of Mexico 

region remaining oil in place is estimated to be in the 40 billion barrel range (KR, 2009).  These large 

reserves of remaining oil in place illustrate the gigantic EOR target in the US alone. Therefore, there is a 
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need to develop more efficient, effective, and economical EOR techniques, as the conventional methods 

are being improved.   

EOR processes offer prospects for ultimately producing 30-60% or more of the reservoir’s OOIP 

(ARI, 2006). There are three major enhanced oil recovery applications: chemical flooding, gas flooding, 

and thermal recovery. Chemical flooding uses surfactants, alkali, and/or polymers to increase oil 

recovery. Surfactants are used to lower the oil-water interfacial tension (IFT) and modify the wettability 

of the reservoir rock. Surfactants can either be water based (chemically enhanced waterflooding) or gas 

based (foam). Polymers are used to increase and control the mobility of water. Alkaline chemicals are 

used to react with crude oil to generate soap and increase pH. Either of these chemicals can be combined 

to complement each other in various forms of recovery methods. Despite the high potential of chemical 

EOR in increasing recovery, it only accounts for less than 1% of the US EOR production (ARI, 2006). 

This limited use of chemical EOR is a reflection of the technology gaps in a number of failed projects. 

1. 2 Objective 

 Waterflooding is the most widely used improved oil recovery method both in onshore as well as 

in offshore regions. However, when water saturation increases oil is trapped due to capillary forces that 

cause water to collect at pore throats, and thus blocking the movement of oil. As a result, production 

declines as more oil becomes trapped. On the other hand, surfactants are effective in decreasing these 

capillary forces by lowering interfacial tension and favorably altering the wettability. However, the major 

disadvantage faced by surfactant flooding is the cost associated with using large quantities of surfactants 

due to surfactant adsorption on the rock.  

 A previous experimental study by Ayirala (2002) reported the development of mixed wettability 

using a nonionic surfactant (NEODOL™), Yates oil, and Yates synthetic brine in a Berea core. At this 

mixed-wet state he was able to recover about 94% of the original oil in place (OOIP) after flooding the 

reservoir with 3500ppm surfactant solution for 2 pore volumes. This study explores how to achieve such 

high recoveries in the field without using large quantities of surfactants. Figure 1 illustrates the proposed 
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surfactant enhanced waterflood method. This proposed method consists of soaking the area around the 

production or injection well with optimally concentrated surfactant slug prior to conducting a waterflood. 

Four variations of this novel process were tested. The first two variations varied the size of the surfactant 

slug injected around the production well. The third variation explored the concept of soaking the area 

around the injection well instead of the production well. This process was named the water alternating 

surfactant process (WASP) and is illustrated in the right schematic in Figure 1. The fourth variation 

tested, explored the idea of soaking the area around the production well but instead of executing a 

conventional waterflood, a low concentration surfactant flood was conducted. This process was named as 

the improved low concentration surfactant flood.  

  

Figure 1: Improved waterflood process: left figure has a surfactant soaked production zone and the right 
figure has a surfactant soaked injection zone - water alternating surfactant process (WASP) 

 

 The main objective of this study was to evaluate whether these proposed improved waterflooding 

techniques are technically feasible, and also determine their effectiveness when compared to a 

conventional waterflood. The motivation behind the improved waterflood method is to get recoveries as 

high as those achieved in a mixed-wet state, but with using less surfactant.    



  4 
 

1. 3 Methodology  

 This experimental study is divided into four sets of experiments where each set of experiments 

builds on the previous one. The first three sets were used to optimize different facets of the proposed 

improved waterflooding process. The first set determined the optimal surfactant concentration in two 

rock-fluid systems (reactive and non-reactive). The second set of experiments determined the ideal 

soaking period for 0.2PV of surfactant slug size. The third set of experiments evaluated the effects of 

varying the size of surfactant slug injected. Lastly, the fourth set tested the four improved waterflooding 

variations and compared them to a conventional waterflood, a low concentration surfactant flood 

(1000ppm), and an ideal surfactant (3000ppm) flood where mixed wettability was developed.  

 Since this project was based on Ayirala’s findings, the same rock fluid systems were used, which 

included Berea sandstone, Yates oil, Yates synthetic brine, and decane (for non-reactive system). Every 

experiment was run under Yates reservoir conditions of 700psi and 82°F. Thereafter, the coreflood 

simulator was used to generate relative permeability curves and fractional flow curves, using the recovery 

and pressure data collected for the coreflood experiments. Each experiment was evaluated based on its 

recovery, pressure drop, fractional flow curves, saturations, and relative permeability.  
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2. LITERATURE REVIEW 

2. 1 Waterflooding 

A predominant fraction of the world’s oil reservoirs is produced by the solution gas drive 

mechanism (Gulick and William, 1998). This drive mechanism has low energy and thus leaves behind 

large quantities of oil when the production reaches its economic limit. In addition, all reservoirs are 

heterogeneous which contributes to the problem of leaving behind huge reserves of unproduced oil. One 

of the cheapest and most popular means of maintaining and restoring reservoir energy is waterflooding. 

Waterflooding is the most predominant improved recovery process in both onshore and offshore regions. 

This recovery method consists of injecting water through an injector well to push oil to the producing 

wellbore.  

The history of waterflooding dates back to the 1860s, however, the use of waterflooding as a 

means of recovery was not widely accepted until the 1950’s (Gulick and William, 1998). In the 1950’s, 

there was a significant expansion of the oil and gas industry in West Texas due to the discovery of a 

number of gigantic reservoirs (i.e. Wasson, Slaughter, Levelland, North and South Cowden, Means, and 

Seminole). These reservoirs were found in highly heterogeneous shallow shelf carbonates and had a 

solution gas drive mechanism. As a result, the reservoir energy depleted within a few years and producing 

rates rapidly dropped. Consequently, it was crucial to find a way to restore and maintain the reservoir 

energy, hence the wide use of water injection.  

Some of the lessons learned in industry on how to conduct a successful waterflood operation are 

described below.  

1. Implementation of water injection early in the life of a reservoir has proved to be critical in the 

success of a waterflood. From the start of primary depletion, the reservoir energy drops to the bubble 

point where gas comes out of solution and creates a gas cap. The loss of solution gas from oil 

increases the crude oil viscosity, thereby lowering the flow rate of oil, and negatively impacting the 
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mobility ratio which in turn decreases the areal sweep efficiency. Therefore, the start of an early 

waterflood operation in a field’s life, even in very large offshore fields, has been successful in the past  

(Gulick and William, 1998). 

2. The understanding of the field’s geology is fundamental to the success of a waterflood operation. A 

full suite of openhole logs, areal distribution of whole cores, bottom-hole sampling of produced 

fluids, bottom-hole pressure measurements, pressure drawdown tests, production history, and a 

multidisciplinary team of engineers and geologists, are all essential and necessary components in 

having a good and detailed understanding of a field’s geology (Namba and Hiraoka, 1995).  

3. Infill drilling to reduce lateral pay discontinuities also aides the success of water injection especially 

in highly heterogeneous reservoirs (Wu et al. 1989).   

4. Water injection with a pattern waterflood is critical especially if there is a preferential permeability 

direction, natural fracturing, or a combination of in-situ stresses and rock properties that would cause 

the formation to fracture in a particular direction during stimulation or injection above parting 

pressure (Pande et al., 1994). 

5. Both production and injection wells must be completed in the entire hydrocarbon productive zones 

(Gulick and William, 1998). 

6. It is also imperative to keep the production wells pumped off in order to minimize the bottom-hole 

pressure and therefore maximizing the production. For injectors, it is important to inject below the 

formation parting pressure in order not to fracture the formation and introduce thief zones (Stiles, 

1976). 

7. Water quality is also crucial to the success of a waterflood operation. There are four main problems 

associated with water injection quality: dissolved solids in the injection water can precipitate and 

form scale, oil and suspended solids that can plug wellbores, oxygen in the water can cause corrosion, 

and lastly, bacteria in the system can cause corrosion and suspended solids. Injection water can be 

cleaned either mechanically or chemically (Bennion et al., 1998). 

8. It is vital to have a strong surveillance program monitoring the waterflood (Talash, 1988).  
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All in all, water injection plays a significant role in restoring and maintaining reservoir pressure 

and therefore prolonging the economic limit of reservoir production. This process is dependable, well 

understood, and reliable. However, due to the capillary forces, the effectiveness of waterflooding is 

limited and thus the need to consider other processes such as the use of surfactants to combat the limiting 

capillary effects.  

2. 2 Surfactant 

 The term surfactant finds its origin from the term “surface active agent”. Surfactants are organic 

compounds that have an amphipathic nature, meaning they contain both a hydrophobic group (their tail) 

and hydrophilic group (their head) (Schramm, 2000). Therefore, they are soluble in both organic solvents 

and water. Surfactants reduce the interfacial tension between water and oil by adsorbing at their interface. 

They can also change the wettability of rock surfaces by adsorbing to the liquid-rock interface and 

therefore making the rock surface have a strong affinity towards one of the immiscible fluids, preferably 

water. Surfactants also assemble into aggregates that are known as micelles. The concentration at which 

surfactants begin to form micelles is known as the critical micelle concentration (CMC).  The relationship 

between surfactant monomer concentration and total surfactant concentration is shown in Figure 2. Above 

the CMC point, any further increase in surfactant concentration will cause an increase in the micelle 

concentration. Since CMCs are typically quiet small (about 10-5 to 10-4 kg-mole/m3) at nearly all 

concentration practical for surfactant flooding, the surfactant is predominantly in the micelle form (Lake, 

1989). Surfactants prefer the interface to the micelle, however, only a small fraction of the surfactant 

concentration is needed to saturate the interface.  

When micelles form in water their tails form a core that is like an oil droplet as shown in Figure 

3, and their ionic heads form an outer shell that maintains favorable contact with water. When surfactants 

assemble in oil, the opposite takes place, where the heads are in the core and the tails maintain favorable 

contact with oil. 
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Figure 2: Schematic definition of the critical micelle concentration adopted from (Lake, 1989) 
 

 

Figure 3: The figure on the left shows when micelles form in water, and the figure on the right shows 
when micelles form in oil  

   

Surfactants are classified in four groups depending on the nature of their hydrophilic group (Lake, 

1989 and Schramm, 2000).   

1. Anionics have a surface active portion that bears a negative charge. In an aqueous solution, the 

molecule ionizes in free cations and the anionic monomer. Anionic surfactants are the most common 

in surfactant-polymer flooding because they are relatively resistant to retention, stable, and can be 

made relatively cheaply.  Anionics are more resistant to adsorption due to their negative charge that 

repels from the negative charges of the clays.  
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2. Cationics have a surface active portion that bears a positive charge. In this case, the surfactant 

molecule contains an inorganic anion to balance the charge. This group of surfactants is rarely used 

because they are highly adsorbed by the anionic surfaces of interstitial clays. Cationics are less 

resistant to adsorption due to their positive charge that attracted to the negative charges of the clays. 

3. Nonionics have a surface active portion that bears no charge. This group of surfactants has been 

extensively used, mostly as a cosurfactant but increasingly as a primary surfactant. These surfactants 

do not form ionic bonds but when dissolved in aqueous solutions, they exhibit surfactant properties 

by electronegativity contrast between their constituents. Nonionics are much more tolerant of high 

salinities than anionics and historically have been considered as poorer surfactants.  

4. Amphoterics also known as zwitterionic have a surface active portion that may contain both positive 

and negative charges.  

2.2.1 Effect of surfactants on interfacial tension 

When a surfactant solution is injected to an oil water system, it mobilizes and banks the oil until 

the surfactant is diluted or otherwise lost due to adsorption by the rock. To achieve low residual oil 

saturations when neglecting wettability alteration by surfactants, the interfacial tension has to be reduced 

from oil-brine values of about 20-30 mN/m to 0.001-0.01 mN/m (Schramm, 2000). Research groups have 

found that ultra-low interfacial tension in the required range could be achieved by using petroleum 

sulfonate or alcohol surfactants (Hirasaki et al., 2008). It has been found that interfacial tension of an oil-

brine-surfactant system is a function of salinity, oil composition, surfactant type and concentration, 

cosurfactant, electrolytes, and temperature. In addition, the interfacial tension of a system is directly 

correlated to its phase behavior (Lake, 1989).  

  The surfactant-brine-oil phase behavior is strongly affected by the salinity of the brine. This 

phase behavior is represented by a ternary diagram, where 1 = brine, 2 = oil, and 3 = surfactant as shown 

in Figure 4. For low brine salinities, a typical surfactant flood will exhibit good aqueous phase solubility 

and poor oil-phase solubility. As shown by the left schematic in Figure 4, the overall composition near the 
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brine-oil boundary of the ternary diagram will split in two phases: a pure oil phase and a microemulsion 

phase that contains brine, surfactant, and some solubilized oil (Lake, 1989). The solubilized oil occurs 

when globules of oil occupy the central core of the swollen micelles. This lower phase microemulsion 

system is known as the Winsor Type II (-) system where II means no more than two phases can form, and 

(-) means the tie lines have a negative slope. For high brine salinities, the surfactant solubility is 

decreased in the aqueous phase by electrostatic forces. As shown by the middle schematic in Figure 4, an 

overall composition within the two phase region will split in two: a pure aqueous phase, and a 

microemulsion phase that contains most of the surfactant and some solubilized aqueous phase. This upper 

phase microemulsion system is known as the Winsor Type II (+) system. Between the low and high 

salinities, there is a range of salinities where a third surfactant rich phase is formed. An overall 

composition within the three phase region separates into excess oil and brine phases, as in the type II (-) 

and II (+) environments, and into a microemulsion phase whose composition is represented by an 

invariant point. This middle phase microemulsion system is known as a Winsor type (III) system. As 

shown by the right schematic in Figure 4, the upper right and left of the three phase region are type II (-) 

and type II (+) where two phases will form. Below the three phase system, there is a third two phase 

region whose extent is usually very small that is considered negligible. In this three phase region, there 

are now two interfaces between the microemulsion and oil, and the microemulsion and brine.  

   

Figure 4: Schematic representation of the: Type II (-) system (left), Type II (+) system (middle), and Type 
III system (right) (Lake, 1989) 
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The structure of a surfactant also determines its solubility in either brine or oil. Increasing the 

importance of the nonpolar end of the surfactant will increase oil solubility. This can be accomplished by 

increasing the nonpolar molecular weight, decreasing the tail branching, decreasing the number of polar 

groups, and decreasing the strength of the polar part of the surfactant (Lake, 1989). Wellington and 

Richardson (1997) showed that branched alkyl chains with propylene oxide (PO) and ethylene oxide (EO) 

groups could yield ultra-low interfacial tension and high oil recovery at very low concentrations. Wu et al. 

(2005) studied the effect of PO and EO in sulfated surfactants for enhanced oil recovery. Levitt et al. 

(2006) investigated branched alcohol propoxy sulfates with hydrophobes ranging from C12 to C24 and with 

three to seven PO groups with a Texas crude oil and concluded they are promising EOR surfactants for 

reservoirs with low temperatures. Jayanti et al. (2002) reported that branched alcohol propoxylated 

sulfates were excellent surfactants for removing organic liquid contaminants from soil.   

In addition, oil properties do affect the surfactant solubility to oil. High specific gravity crude oils 

tend to be rich in organic acids thus the surfactant-oil solubility is lower in high gravity oils. Some 

correlations have been found in the tendency for surfactant to dissolve in oil as the temperature increases. 

For most anionics higher temperatures mean better brine solubility. This trend is reversed for nonionics. 

On the other hand, surfactant solubility is not affected by pressure difference except for gassy crude oils. 

Lastly, cosurfactants can be used to modify solubility so that the transition from Type II (-) system to 

Type II (+) system can occur at different salinities.  

2.2.2 Surfactant flooding 

Primary and secondary recovery techniques usually recover about one-third of the original oil in 

place (OOIP) due to high capillary forces that trap oil in the porous media. Capillary forces are a result of 

the interfacial tension between the oil and water phases that resist externally applied viscous forces such 

as water injection. Early efforts of enhanced oil recovery strove to displace this oil by decreasing the oil-

water IFT. Though many techniques have been proposed and field tested, the predominant EOR technique 

for achieving low IFT is surfactant flooding (Zhang et al., 2007).  
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Surfactant flooding has appeared in literature under many names: detergent, low-tension, soluble 

oil, microemulsion, chemical, and micellar-polymer flood. Many variations of this method have been 

tried and the most successful one has been the surfactant-polymer combination. Figure 5 shows an 

idealized version of the surfactant-polymer flood sequence. The process is usually applied as a tertiary 

flood. The complete process consists of (Lake, 1989):  

1. Preflush injection of brine whose purpose is to change the salinity of the formation brine so that 

mixing with the surfactant will not cause loss of interfacial activity.  

2.  Surfactant slug injection follows and its purpose is to lower the IFT and favorably modify wettability 

in order to increase oil recovery.  

3. Mobility buffer injection follows in the form of a dilute polymer solution with the purpose of driving 

the surfactant slug and banked-up fluids to the production wells. This buffer is crucial to the recovery 

ability of the entire sequence. The target oil for the surfactant flood is the residual oil which is 

different from that of a polymer flood which is the movable oil.  

4.  Taper injection follows thereafter, as a volume of brine that contains polymer grading from that of 

the mobility buffer at the front end to zero concentration at the back end. The gradual decrease in 

concentration mitigates the effect of the adverse mobility ratio between the mobility buffer and the 

chase water. 

5. Chase water injection completes the cycle and its purpose is to simply reduce the expense of 

continually injecting polymer.  

 

Figure 5: Idealized cross section of a typical micellar-polymer flood 
 

 The limitation of most surfactants is usually related to high adsorption and the formation of high 

viscosity emulsions or microemulsions. It is critical to select surfactants that do not have these problems. 
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Once a good surfactant is selected, then surfactant modeling is carried out with only a few well designed 

experiments to provide the most important process parameters. The remaining challenges are proper 

reservoir characterization, and optimization. In the surfactant selection (disregarding wettability 

modification), anionic surfactants are preferred because they have low adsorption at neutral to high pH on 

both sandstones and carbonates. They can also be tailored to a wide range of conditions, and they are 

widely available at low cost and special cases. However, when focusing on altering the wettability of the 

rock, adsorption is needed and thus nonionic surfactants are also favorable (Ayirala, 2002).  

 Surfactant selection is a crucial process that affects the success of this enhanced oil recovery 

process. Prior to implementation of the process, extensive laboratory studies are needed in order to assure 

the surfactant chosen is right for the reservoir of interest. Also, parameters such as optimal concentration, 

injection rate, and surfactant behavior at reservoir conditions, have to be tested and determined. This 

grants the operator knowledge of the surfactant’s advantages and disadvantages with respect to the 

reservoir of interest, which can help in the oil recovery prediction. Some of the experiments that can be 

used in selecting a surfactant are: oil solubilization test, effect of electrolyte, microemulsion densities test, 

surfactant and microemulsion viscosity test, coalescence times test, identification of optimal surfactant-

cosolvent formulations, and identification of optimal formulation for coreflood experiments (Lake, 1989). 

Some of the key surfactant selection criteria are: high solubilization, favorable wettability alteration, low 

to no retention on reservoir rock in the case of negation of wettability modification, economics, branching 

needed in order to form low viscosity micelles and microemulsions, and minimal propensity to form 

liquid crystals, gels, and macroemulsions. 

 A crucial and interesting subject in surfactant flooding is surfactant adsorption, since it can easily 

make or break a surfactant flood project. Surfactant adsorption or retention is highly considered in any 

application where surfactants come in contact with a solid surface. Many surfactants adsorb on the rock 

grains due to the electrostatic interactions between charged sites on the solid surface and those of a 

surfactant. In the case of nonionic surfactants, the interactions involve hydrogen bonding and 

hydrophobic bonding (Schramm, 2000). Factors affecting the surfactant adsorption in a reservoir include 
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temperature, pH, salinity, surfactant type, and rock type. Usually, the only factor that can be manipulated 

for enhanced oil recovery purposes is the surfactant type, the rest are governed by reservoir conditions.  

 The mechanism driving surfactant adsorption is generally discussed in terms of a four region 

isotherm as shown in Figure 6 (Schramm, 2000). At low surfactant concentrations designated as region 1, 

the adsorption behavior can be described as linear with a slope of one. In this region, adsorption is due to 

electrostatic attraction between the charged surfactant ion and the electric double layer of the solid. In the 

case of a nonionic surfactant it is due to the hydrogen bonding and hydrocarbon bonding. In region 2, the 

mechanism dominating adsorption is the association of the adsorbed surfactants into patches at the solid-

liquid interface. In region 3 a decrease in slope compared to region 2 is observed. This has been attributed 

to the surfactant ions having filled all the surface sites by the end of region 2 with further adsorption 

being due to association between first and second layer hydrocarbon chains in region 3. In addition, it was 

also attributed to a reversal in surface charge due to the adsorbed surfactant ions. Region 4 beings at or 

near the CMC point and is characterized by little or no increase in adsorption with increasing surfactant 

concentration. 

 

Figure 6: Four region adsorption isotherms for a monoisomeric surfactant. Figure adopted from Schramm, 
2000. 

 

 Technical feasibility of surfactant flooding has already been established, however, the economic 

feasibility depends on complex factors such as oil prices, surfactant consumption, and surfactant cost. 
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Generally, the cost of the surfactant is the single most expensive item in the cost of a chemical flood. 

These costs include both the initial investment in purchasing the surfactant, as well as the cost of 

replacing surfactant which has been lost to adsorption. It is frequently found that the amount of surfactant 

adsorbed accounts for most of the cost of the surfactant. Since these surfactants are synthesized from 

petroleum, their cost will rise at least as fast as that of the oil they are used to produce. So simply waiting 

for oil prices to increase will not necessarily make surfactant flooding economically feasible. The revenue 

from the oil produced by surfactant flooding must at least pay for the cost of surfactant, additional 

engineering services, equipment, and operating costs during the several years the flood, in order to 

provide a reasonable return on investment. Producing more barrels of oil for each pound of surfactant 

injected into the reservoir is a technological problem that has direct bearing on the economics of this 

enhanced oil recovery process. Understanding and controlling the amount of surfactant adsorbed directly 

affects the economics 

2. 3 Wettability 

Wettability is the ability of one fluid to spread or adhere on a rock surface in the presence of 

another immiscible fluid. Subsequently, this parameter has a profound effect on multiphase rock fluid 

interactions. In porous media wettability affects: the efficiency of immiscible displacement, electrical 

properties, capillary pressure, relative permeability, saturation profiles, and determines the distribution of 

fluids in a reservoir.  Spreading of a liquid on a solid surface depends on the solid surface properties as 

well as the liquid properties. Therefore, by manipulating the properties of the rock and/or liquid, one can 

optimize the function or performance of either to achieve the desired wetting condition. Generally, most 

reservoirs are oil wet. Treibel et al. (1972) studied the wettability of petroleum reservoirs where they 

tested fifty-five core samples. Of the fifty-five core samples 27% were water-wet, 66% were oil wet, and 

7% were intermediate wet. Thirty of the fifty-five core samples were sandstone and 43% were water-wet, 

50% were oil-wet, and 7% were intermediate wet. Twenty-five of the fifty-five core samples were 

carbonate, 8% were water wet, 84% were oil wet, and 8% were intermediate wet.  A sandstone rock is 
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mostly made of quartz which is water wet. However, it changes its wettability to oil wet after being aged 

with oil at higher temperatures and pressures. Compounds are deposited on the surface of the rock 

changing its wettability to oil wet.  

 There are several methods of measuring the wettability of a system and each has its advantages 

and disadvantages (Anderson, 1986). The most common way of defining wettability is using the contact 

angle (θ) which is measured through the denser fluid. The three broad classification of homogenous 

wettability are: water-wet (θ <70°), intermediate-wet (70° < θ < 115°), and oil-wet (θ > 115°). In addition, 

there exists heterogeneous state of wettability which is mixed-wet state. Wettability plays an important 

role in the production of oil and gas as it not only determines the initial fluid distributions, but also is the 

main factor in the flow processes in the reservoir rock. Wettability affects primary recovery, residual oil 

saturation left after waterflooding, and the shape of the relative permeability curves.  Some of the 

parameters that affect the wettability of a porous medium are: surface roughness, brine composition, oil 

composition, the use of surfactants, etc. 

 In this study the concept of mixed wettability is one of great interest. The idea of mixed 

wettability was first proposed by Salathiel (1973) to explain the abnormally high oil recoveries in 

Woodbine floods in East Texas. In mixed wet conditions, the finer pores and grain contacts are water-wet 

and the surfaces of larger pores are strongly oil-wet. If these oil wet paths were continuous through the 

rock, water would displace oil from the larger pores so that the capillary forces would hold little or no oil 

in smaller pores or at grain contacts. Salathiel proposed the development of mixed wettability with the 

following explanation. As oil accumulates in a reservoir, water present in the initially water-wet rock is 

displaced from the larger pores while the capillary pressure retains water in smaller pores and at grain 

contacts. After extended periods of time, some organic materials from the oil may deposit on to those 

rock surfaces that are in direct contact with oil, making those surfaces strongly oil-wet. This phenomenon 

leads to the development of so called mixed wettability. The development of mixed wettability condition 

as proposed by Salathiel is shown in Figure 7. It is obvious from the literature that a steady increase in 
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initial water saturation, higher oil recoveries, lower residual oil saturations and shift to the right in relative 

permeability ratio curves are the clear indication for the development of mixed wettability. 

 

Figure 7: Schematic of mixed wettability (Salathiel, 1973) 

2.4.1 Effect of surfactants on wettability 

  Surfactant flooding schemes for recovering residual oil have been less satisfactory due to loss of 

surfactant by retention on reservoir rocks and precipitation. Adsorption and wettability changes are 

determined mainly by the surfactant structure, surface properties of the rock, composition of the oil and 

reservoir fluids, salinity, pH and temperature (Schramm, 2000). The mineralogical composition of 

reservoir rock and reservoir fluids properties, play an important role in determining surfactant interaction 

at their interface (Somasundaran and Zhang, 1997).  

  Wettability has been stated to be the most important factor in waterflood recovery after geology 

(Morrow, 1990). However, most of the previous work done in the area of surfactants focuses on its ability 

to lower IFT and has ignored wettability effects. Significant enhancements in oil recovery require several 

orders of magnitude reduction in IFT. The amount of surfactant capable of generating this large IFT 

reduction will be large and thus expensive. As a result, this could render a project uneconomical for field 

application. Wettability alteration can be induced by low cost surfactants at moderate concentrations. 
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Therefore, combining the effects of IFT reduction and favorable wetting conditions would make the use 

of surfactant more effective at lower concentrations.  

  Most importantly, the effect of surfactants on wettability depends not only on how much is 

adsorbed but also on how they adsorb on the rock. A water-wet rock surface that is beneficial for 

displacement of oil can be obtained by manipulating the orientation of the adsorbed layers (Somasundaran 

and Zhang, 1997).  

2. 4 Core cleaning 

There are two reasons for cleaning cores: the first is to remove all the liquids from the core so that 

porosity, permeability, and fluid saturations can be measured, and the second, is to clean the core in order 

to restore the wettability of the core to its initial state. Many special core analyses, including capillary 

pressure, relative permeability and saturation exponent are affected by the wettability of the core. The 

most accurate measurements are made on native state cores, where special precautions are taken to 

minimize the changes in the reservoir wettability. Native state refers only to core taken with suitable oil 

based drilling mud, while the term fresh state refers to a core with unaltered wettability (Gant and 

Anderson, 1988). Due to cost factors, cores will continue to be cut using oil based mud, however, this 

type of mud tends to contain surfactants that alter the wettability of the core and as a result the original 

reservoir wettability is not maintained.  

 Some of the several methods in core cleaning are: distillation/extraction (Dean-Stark and 

soxhlet), flow through core cleaning, centrifuge flushing, gas driven solvent extraction, and super critical 

fluid extraction and critical point drying (Gant and Anderson, 1988). So far, distillation/extraction and 

flow through core cleaning methods are usually the ones frequently used especially in wettability 

restoration. 

 Distillation/extraction methods are the most commonly used in the industry, and they are fairly 

slow and gentle on the core. In this method, a sample is placed in a soxhlet or Dean Stark apparatus and 

cleaned with hot, refluxing solvent. In the Dean Stark apparatus, the solvent is continuously distilled, 
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condensed, and then distributed over the top of the sample. In the soxhlet apparatus, the samples soak in 

the hot solvent, which is periodically siphoned off, distilled, condensed and distributed back to the 

extractors. The benefit of using this cleaning method is that the fluid saturation can be determined during 

core cleaning.  A challenge associated with this method is that the solvent may not contact the entire core. 

Another challenge associated with this method is that it is possible to change an originally water wet rock 

to an oil wet one. This is attributed to the solvent (usually toluene) boiling away the water before 

extracting the crude oil (Gant and Anderson, 1988). In the absence of adsorbed water, crude oil 

components become strongly adsorbed on the mineral surfaces at sites that normally would be occupied 

by water. Subsequent contact of the surfaces with water may not displace adsorbed crude oil components 

to restore the wettability.  

Flow through core cleaning methods place the sample in a core holder and solvents are injected 

under pressure into the core. The solvent injection can be continuous or maybe halted periodically to let 

the core soak in the solvent. This method of cleaning has been found to be more effective than the 

distillation/extraction method since the cleaning solvents are injected under pressure and thus are in 

contact with more of the core, especially when back pressure is applied (Cuiec, 1975).  

The gas driven solvent extraction method cleans the core by repeated cycles of internally 

dissolved gas drive. A solvent (usually toluene) is saturated with CO2 and injected into the core under 

pressure. The pressure is reduced rapidly, allowing the CO2 to expand and flush the solvent though the 

pore spaces to remove the oil and water. The core may be heated to increase the cleaning efficiency. The 

recommended cycles are about 5–10 and the core should be essentially oil free, and the remaining 

solvents and water are removed by vaporization. This process is effective, however, it may separate or 

fracture unconsolidated or poorly consolidated cores (Cuiec, 1975). In addition, reaction of some crude 

oils with CO2 can cause precipitation of asphaltenes and resins, rendering the core more oil-wet.  

Super critical fluid extraction and critical point drying have been extensively used to clean 

sensitive clay and biological samples without causing structural damage from drying. In this method, the 

sample is flushed with a series of miscible fluids to remove fluids from the core. Because the fluids are 
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miscible, interfaces between the displacing and displaced phases are avoided, preventing surface tension 

effects and allowing all the fluids originally in the core to be removed (Gant and Anderson, 1988). The 

last step is drying the core without forming any liquid/vapor interfaces in the core by using a super critical 

liquid, typically supercritical CO2. The liquid CO2 is injected into the core and then the temperature is 

raised above the critical point. Other cleaning methods include steam cleaning and firing the core in the 

presence of oxygen.  

 Gant and Anderson (1988) and Cuiec (1975) found that toluene was an ineffective solvent in 

restoring wettability. However, when combined with other solvents, such as methanol (CH3OH) or 

ethanol (CH3CH2OH), toluene proved to be very effective. Toluene is effective in removing the 

hydrocarbons, including asphaltenes and some of the weakly polar compounds while the more strongly 

polar methanol or ethanol removes the strongly adsorbed polar compounds that are often responsible for 

altering wettability. Some of the successful mixtures used to clean the core are: toluene/methanol, 

toluene/ethanol, chloroform/acetone, and chloroform/methanol. Therefore, when choosing cleaning 

solvents it is important to consider: (1) the best choice of solvents depends heavily on crude oil and the 

mineral surfaces, and (2) mixtures or series of solvents are generally more effective than a single solvent 

(Gant and Anderson, 1988). The crude oil and mineral surfaces in the core are important because they 

help determine the amount and type of wettability altering materials adsorbed. It is also important to note 

that solvents that may one for one type of core may not be ideal for another. 

  Gant and Anderson (1988) tested different solvents for cleaning Berea cores that were 

contaminated with drilling mud that contained surfactant. Figure 8 illustrates the effectiveness of the 

solvents used in restoring wettability in a sandstone core. The special solvent is a mixture of 49.5% 

toluene, 49.5% methanol, and 1% ammonium hydroxide proved to be the most effective. A 50/50 

toluene/methanol mixture cleaned with essentially the same effectiveness. The three step process 

consisted of three successive Dean-Stark extractions, first with toluene, then with glacial acetic acid, and 

lastly ethanol. Each process lasted twelve hours each, but unfortunately the entire process was found to be 

poor. The least effective solvent used was toluene. Figure 9 illustrates the effectiveness of the solvents 
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used in restoring wettability in a limestone core. Similar to the sandstone case, the special solvent and the 

50/50 toluene/methanol mixture are the most effective solvents, however, toluene proved to be more 

effective in cleaning limestones. 

 

Figure 8: Effectiveness of the solvents used in restoring wettability in a sandstone core samples.  Figure 
adopted from Gant and Anderson (1988) 

 

 

Figure 9: Effectiveness of the solvents used in restoring wettability in a limestone core samples. Figure 
adopted from Gant and Anderson (1988) 

  



  22 
 

3. EXPERIMENTAL APPARATUS AND PROCEDURE 

3. 1 Experimental setup  

Figure 10 shows a schematic of the whole laboratory set up. There are three parts to this setup: 

the coreflood apparatus system, the data acquisition system, and the cleaning system.  

 

Figure 10: Schematic of coreflood experimental setup 

 

Coreflood Apparatus: Figure 11 shows the actual coreflood setup built to run all the experiments in this 

project. The syringe pump in Figure 13 was used to inject fluids (oil, brine and surfactant) into the core. 

Two back pressure regulators were used to control and maintain the pressure at 700psi. A heater was used 

to control and maintain the temperature at 820F. Two pressure transducers linked to the data acquisition 

system were placed at the inlet and outlet of the coreholder.  This coreflood system is designed in such a 

way that either side of the coreholder can serve as an injector or producer. This is especially useful during 

the cleaning process, where chemicals are flushed in the forward and backward direction.  
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Figure 11: Coreflood apparatus   
 

Data acquisition system: This system uses the output signals from the two pressure transducers placed at 

the inlet and outlet of the coreholder. The signals are converted to pressure values and recorded at the set 

time interval (every 5 seconds) in a Microsoft Excel® worksheet. Figure 12 presents the data acquisition 

system. 

 

Figure 12: Data acquisition system 
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Cleaning system: Two methods are used to clean the core, and therefore, two systems were built. The 

first system is illustrated by Figure 13 and this consists of four cleaning fluids that are injected into the 

core by a pulsing pump. The type of cleaning system used is the flow through the core method.  The 

cleaning solvents used in this system are: dilute brine, methylene chloride, isopropyl alcohol, toluene, and 

methanol. The second system illustrates the soxhlet extraction cleaning system. This system uses the 

soxhlet extraction core cleaning method. The solvent used in this system is toluene and methanol mixture.    

Core: Berea sandstone cores from Cleveland Quarries were used in this study. The dimensions of the 

core were: one-foot long, one and a half inches in diameter, permeabilities ranged from 40 – 70mD, and 

porosity ranged from 16 -17%.  

Oil and brine:  The two types of oil used were decane and Yates crude oil. The Yates crude oil used in 

all the experiments was from the same batch that Ayirala (2002) used in his work. Additional Yates crude 

oil was provided by Kinder Morgan Inc. for future experiments. The Yates brine used was fashioned after 

the Yates brine composition provided by Marathon Oil Company.  

 

Figure 13: Core cleaning system – flow through core cleaning method  
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Figure 14: Soxhlet extraction cleaning system 
 

Surfactant: Four nonionic surfactants were provided by Interstate Chemical Company and Sasol 

Chemical Company. The four nonionic surfactants were tested to find the surfactant that produced similar 

recoveries to that used by Ayirala (2002). Table 1 illustrates the four nonionic surfactants and their 

properties.   

Table 1: Surfactant properties 

Company 
Surf. used by 

Ayirala 

Interstate 

Chemical 
Sasol Chemical 

Chemical Name NEODOL 
Tomadol™  

91-8 

NOVEL® 

23E7 

NOVEL® 

23E9 

NOVEL® 

23E30 

EO Group/Avg 8.4 8.3 7 9 30 

Molecular weight 527 524 501 589 1512 

Carbon Chain  C9 - C11 C9/C10/C11 C12 - C13 C12 - C13 C12 - C13 

Sp. Gravity 1 1.008 1 1 1 

3. 2 Experimental procedure 

1. Pore volume and porosity determination: The core was loaded into the coreholder and vacuum was 

applied using a vacuum pump. After vacuum was achieved the pump was shut off and the system was 
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left to sit for a few hours under vacuum. After several hours, the pressures were evaluated to check if 

vacuum had been maintained. If not, there was a leak in the system. The leak would be fixed and the 

previous step would be repeated until the vacuum was maintained. Brine was then injected at a very 

low rate 0.1cc/min and the injected volume was noted. When the core was completely filled with 

brine, the pressure would rapidly increase. At this point, the volume injected would be recorded and 

the following calculations were made. 

• Pore volume  Volume injected Dead volume 

• Bulk volume Area of core length of core 

Porosity  P  
B  

                                                                                                                Equation 1 

2. Absolute permeability determination: Brine was injected through the core using 3 different rates 

(q) for 1 pore volume each. The stabilized pressure drops (ΔP) were averaged for each rate, which 

was then used to calculate the absolute permeability (Kabs) using Darcy’s law. The 3 rates and their 

pressure drops would all give the same permeability.  

Darcy s law q KA
µ

∆P
∆

 K  µ
A

∆
∆P

                                                                               Equation 2 

3. Establishing initial condition: After the completion of the absolute permeability test, the core was 

saturated with brine and was ready for oil saturation. Oil was injected at 2 cc/min for 3 pore volumes. 

At this point the core would be at connate water saturation, therefore, brine would not be observed in 

the effluent produced by the second to third pore volume of oil injection. In order to calculate the 

effective permeability (Keff), the rate was changed to 3 cc/min and 4 cc/min and injected for 1 pore 

volume each in order to get the stabilized pressure drop for each rate. The effective permeability was 

calculated using Darcy’s equation. Having both the effective and absolute permeabilities, the 

endpoint oil relative permeability was then calculated.  In addition, the brine produced was measured 

and used to calculate the connate water saturation. At this point, the oil was left to age prior to the 

coreflood experiments.  
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End point relative permeability  K K
K

                                                                    Equation 3 

4. Waterflood or surfactant flood: After the initial conditions had been established, the core was ready 

for a waterflood or surfactant flood. Prior to the injection of brine or surfactant, all the lines were 

flushed with the fluid about to be injected. This avoided contamination and reduced the dead volume. 

After flushing all the lines, the valves, data acquisition system, back pressure regulators were double 

checked to make sure everything was at its proper position. Once everything was readied, brine or 

surfactant injection was began and likewise, the data acquisition system. Each brine flood or 

surfactant flood was conducted for 2 pore volumes at 2 cc/min. In order to calculate the effective 

permeability (Keff), the rate was changed to 3 cc/min and 4 cc/min and injected for 1 pore volume 

each in order to get the stabilized pressure drop for each rate. The effective permeability is calculated 

using Darcy’s equation. Having both the effective and absolute permeabilities, the endpoint water 

relative permeability was calculated.  In addition, the oil produced would be measured and used to 

calculate the total oil recovery and the residual oil saturation. At this point, the core was ready to be 

cleaned and restored to its initial state prior to the next coreflood experiment.  

Improved waterflood procedure: After initial conditions were achieved, a slug of surfactant of a 

specified size was injected in the production end as shown in Figure 15. It was observed that the 

surfactant slug could not be injected without producing oil on the injector side due to the high 

pressure build up. The coreflood apparatus used in this project has a pressure limit of 5000psi. After 

the surfactant slug had been injected and some oil had been produced on the other end, a new initial 

water saturation and oil in place were calculated. Thereafter, the surfactant was left to soak for the 

required period of time. 

 

Figure 15: Schematic of an improved waterflood or improved LC surfactant flood in the core 
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At this point, waterflooding or LC surfactant flood would be executed for 2 pore volumes at 2 cc/min 

as shown in Figure 15. In the case of WASP, the surfactant slug was injected around the injection 

well instead of the production well as shown in Figure 16. The surfactant was left to soak for the 

required period of time. A waterflood was then carried out for 2 pore volumes at 2 cc/min. 

 

Figure 16: Schematic of the water alternating surfactant process (WASP) in the core 
 

After the waterflood or LC surfactant flood, the effective permeability (Keff) was calculated. Having 

both the effective and absolute permeabilities, the endpoint water relative permeability was then 

calculated.  In addition, the oil produced was measured and used to calculate the total oil recovery and 

the residual oil saturation. The new initial water saturation and oil in place calculated after the 

injection of surfactant slug, accounted for the new initial condition where water saturation had been 

increased and oil saturation decreased. Therefore, the recovery measured after the waterflood or LC 

surfactant flood only accounted for the effectiveness of the waterflood after surfactant slug injection.  

At this point, the core was ready to be cleaned and restored to its initial state prior to the next 

coreflood experiment.  

5. Core cleaning procedure: Establishing a core cleaning procedure that was both effective and 

efficient proved to be a challenging and significant part of this project. Table 2 lists the cleaning 

solvent properties used in the following procedures. The following sections will describe the three 

cleaning procedures used in this project. 
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Fresh core procedure – flow through core method   

Fresh cores were cleaned since there was no previous knowledge of what fluids the core had been 

exposed to. Prior to cleaning a fresh core the pore volume would first be measured using brine. The 

procedure that was found to be most efficient and effective is described below: 

Table 2: Cleaning solvent properties 

Cleaning solvent 
Density  

(g/cm3) 

Viscosity 

(cP) @ 20°C 

Boiling point 

(°F) 
Solubility in water 

Methylene Chloride 1.327  0.437 104.0 13 g/L at 20 °C 

Toluene 0.867  0.590 231.1 0.47 g/l (20–25°C) 

Methanol 0.791  0.590 148.4 Miscible 

Isopropyl alcohol 0.786  2.410 181.0 Miscible 

Acetone 0.792  0.307 134.0 Miscible 

 

1. Methylene chloride – was injected for about 1.5PV in each direction in order to displace the brine 

and dissolve impurities in the core. At this point only methylene chloride would be left in the core. 

2. Dilute brine –was flushed for about 2 – 3 pore volumes in each direction to displace methylene 

chloride. If methylene chloride was observed in the effluent produced, injection of dilute brine would 

be continued until the effluent is free of methylene chloride. With injection of dilute brine, the 

pressure drop would increase gradually and stabilize at a higher pressure drop than the previous step. 

This is due to the less dense fluid (dilute brine) displacing a denser fluid, coupled with the rock-fluid 

interactions. 

3. Vacuum – the core was vacuumed for a minimum of 2 hours. This step was most effective when the 

core was vacuumed for longer periods of time (about 6 hours). This step is significant because it 

decreased the pressure drop of the core, meaning that the permeabilities were being improved. This 

may be because vacuuming dislodges whatever may be blocking the fluid pathways. Also, traces of 

methylene chloride left in system would be drawn out by the vacuum pump.  

4. Brine – was flushed for about 2-3 pore volumes in order to saturate the core with brine. The pressure 

drops at this point would be lower than the ones observed during the dilute brine step.   
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5. Absolute permeability test – see section 3.2.2 

Oil and surfactant exposed core – flow through core method 

  At the end of each surfactant flood, oil and brine containing surfactant were left in the core. Prior 

to starting a new coreflood, the core needs to be thoroughly cleaned and restored to its initial state. It was 

observed that the absolute permeability would inevitably decrease with each cleaning cycle. The objective 

was to find an efficient and effective procedure that would minimize this drop in permeability. At the end 

of the coreflood, the pressure drop in the core was typically high especially if emulsions were formed in 

the system. This high pressure drop indicates that the permeability had been severely affected. Therefore, 

by cleaning the core the pressure drop is decreased indicating that the permeability is being restored to its 

initial state. After testing different combinations of chemicals at different sequences, the most effective 

and efficient core cleaning procedure is described below. 

1. Brine – inject about 1.5 pore volumes in both the forward and backward direction. The purpose of 

this step is to dilute the surfactant concentration present in the core. At this step the pressure drop was 

observed to remain high. 

2. Dilute brine - inject 2 pore volumes in the forward direction to dilute the concentration of brine. If 

the brine concentration is low, this process was found to be unnecessary. Instead, the volume of brine 

injected in the previous step can be increased from 1.5PV to 2PV. The pressure drop still remains 

high at this stage as observed in Figure 17.  

3. Methylene chloride – inject this solvent in the forward direction until the effluent clearer in color. 

Same applies for the backward direction. Methylene chloride is used as a buffer between the brine 

and the cleaning fluids in order to avoid precipitation of salts. Methylene chloride is an organic 

solvent that dissolves oil and therefore creates an emulsive state. As a result, when methylene 

chloride is injected in the core, the pressure drop gradually increases because this emulsive state is 

being formed in the core. After this emulsive mixture breaks through, the pressure drop rapidly 

decreases. This can be observed in Figure 17 and Figure 18. The drastic decrease in pressure drop by 
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the end of this step is a result of brine and a large fraction remaining oil being displaced. At the end of 

this step, methylene chloride, connate water, and a small percentage of oil are left in the core.  

4. Isopropyl alcohol (IPA) – inject this solvent in the forward direction until connate water is produced 

and effluent is clear. IPA is used as a dehydrating agent and it also displaces some of the left over oil 

in the core as evidenced by the coloring of the effluent. When IPA is first injected, it displaces 

methylene chloride, then connate water, followed by IPA tinted with left over oil. At the end of this 

step only IPA and a very small fraction of oil are left in the core. IPA is a less dense fluid compared 

to methylene chloride, thus it is important to apply backpressure for effective cleaning. As IPA is 

injected into the core, the pressure drop gradually increases as observed in Figure 17. The reason is 

still unknown but it is hypothesized to be the interaction between IPA and the rock grains that causes 

this phenomenon to happen. As a result, only enough IPA should be injected to get rid of connate 

water. The better dehydrating solvent was observed to be acetone. However, it could not be used in 

this project because it was not compatible with the Viton core sleeve. To solve this problem, teflon 

heat shrink tubing was used to isolate the core from the Viton core sleeve. This worked very well for 

two cleaning runs until the core sleeve failed. This was because there was a slight section in the core 

sleeve that was exposed to acetone. Even though acetone proved to be more effective, it does pose the 

danger of causing failure to the Viton sleeve. To use acetone effectively, a teflon core sleeve should 

be used. Figure 18 illustrates the pressure profile when acetone was used instead of IPA which is 

shown in Figure 17.  

5. Methylene chloride – inject about 1PV in each direction in order to displace the IPA in the core. As 

methylene chloride is displacing IPA the pressure drop does decrease. At the end of this step, only 

methylene chloride and a small fraction of oil is left in the core.  

6. 50% toluene and 50% methanol – flush this solvent until clear effluent is produced. For this 

project, about 3-4 pore volumes were used in each direction especially when cleaning Yates crude oil. 

This mixture of chemicals is used to dissolve residual oleic phase in the core. Toluene used alone was 

found to be the least effective solvent when the core is cleaned for wettability restoration (Gant and 
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Anderson, 1988). However, when combined with other solvents such as methanol, it was found to be 

very effective. This is because toluene is effective in removing the hydrocarbons, including 

asphaltenes and some of the weakly polar compounds. However, methanol effectively removes the 

strongly adsorbed polar compounds that are often responsible for altering wettability. At the end of 

this step, only toluene/methanol solvent should be left in the core.  

7. Methylene chloride – inject about 2PV in each direction in order to displace the toluene/methanol 

solvent in the core. At this point only methylene chloride should be left in the core and the pressure 

drop should be low.  

8. Dilute brine – flush about 2 – 3 pore volumes in each direction to displace methylene chloride. If 

methylene chloride can still be observed in the effluent produced, continue flushing the core with 

dilute brine until the effluent is free of methylene chloride. At this point, the pressure drop gradually 

increases. This is due to the lighter fluid (dilute brine) displacing a denser fluid.  With injection of 

dilute brine, the pressure drop does increase gradually and stabilizes at a higher pressure drop than the 

previous step.  

9. Vacuum – vacuum the core for a minimum of 2 hours. This step is most effective when the core is 

vacuumed for longer periods of time (about 6 hours). This step is effective in that it decreases the 

pressure drop of the core, meaning that the permeabilities are being improved. This may be because 

vacuuming dislodges whatever may be blocking the fluid pathways. Also, traces of methylene 

chloride left in the system should be drawn out by the vacuum pump.  

10. Brine – flush about 2-3 pore volumes in order to saturate the core with brine. The pressure drop 

during this step should be lower than the ones observed during the dilute brine step.   

11. Absolute permeability test - see section 3.2.2 

Prior to any of these steps being executed, the incoming solvent needs to be flushed through the 

bypass lines in order to avoid contamination or precipitation of salts. For effective cleaning, the back 
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pressure needs to be applied at all times, especially when a less dense fluid is displacing denser fluid 

(methylene chloride) in order to avoid fingering when cleaning.    

 

Figure 17: Pressure drop profile of the core cleaning procedure using IPA as a dehydrant  
 
 

 

Figure 18: Pressure drop profile of the core cleaning procedure using Acetone as a dehydrant 
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Oil and surfactant exposed core – Soxhlet extraction method 

The soxhlet extraction method is relatively slow and gentle on the core. In this method, the 

contaminated core is placed in the soxhlet apparatus as shown in Figure 14 and is cleaned with hot, 

refluxing toluene and methanol mixture. The core is soaked in the hot toluene and methanol mixture, 

which is periodically siphoned off, distilled, condensed, and distributed back to the extractors. This 

method of cleaning would gently clean the core and restore the permeabilities to their initial state. It was 

observed that after using this method of cleaning the core was usually less water wet. Gant and Anderson 

(1988) attributed this phenomenon to the solvent (usually toluene) boiling away the water before 

extracting the crude oil. In the absence of adsorbed water, crude oil components become strongly 

adsorbed on the mineral surfaces at sites that normally would be occupied by water. Subsequent contact 

of the surfaces with water may not displace adsorbed crude oil components to restore the wettability. At 

the end of this soxhlet extraction cleaning process, the core is dried in the oven shown in Figure 13. The 

soxhlet system is especially useful when the core is contaminated with strong emulsions which cause very 

high pressure drops. Using the flow through core system can cause fractures in the core due to the high 

pressure drops.  

 All in all, three cores (A, B, and C) were used to run all the experiments in this project. Each core 

would be used for three to four experiments. After each experiment the flow through cleaning method 

would be used.  Afterwards, the core would be taken out of the core-holder and placed in the soxhlet 

system where it would be cleaned for about one week. Then the core would be placed in the oven to 

slowly dry for about a week. Therefore, when core A was in the coreholder, core B would in the soxhlet 

system getting cleaned, as core C would be in the oven drying. All three cores were rotated in this manner 

for the entire project. 
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3. 3 Experimental design  

The coreflood experiments in this project were used to evaluate the technical feasibility and 

effectiveness of the improved waterflooding process.  All the experiments were conducted at reservoir 

conditions of 82°F and 700psi.  

Prior to running the main sets of experiments three key components had to be established. The 

first component was to establish the surfactant that exhibited similar characteristics to those observed in 

Ayirala’s work. Three of the four nonionic surfactants were tested. NOVEL®23E7 was not tested because 

it is very similar to NOVEL®23E9. On the other hand, NOVEL®23E30 had very different properties to 

the other three surfactants and so it was tested to observe its behavior. As shown in Table 3, Tomadol™ 

91-8 had the same recovery as the surfactant used by Ayirala, however, emulsions were formed. The 

other two NOVEL® surfactants had lower recoveries and formed strong emulsions. From this test, 

Tomadol™ 91-8 was determined to be the most suitable surfactant for this project. 

Table 3: Surfactant selection results 

Surfactant type 3000ppm surfactant flood Other differences 

Surf. used by Ayirala  94% No emulsions formed 

Tomadol™ 91-8 94% Emulsions formed 

NOVEL® 23E09  74% Strong emulsions formed 

NOVEL® 23E30 50% 
Very strong emulsions formed – 

white solid at room temperature 

 

The next parameter determined was the aging time for Yates oil. The core was brought to initial 

conditions using Yates crude oil, and was aged for 24 hours and 2 weeks. A waterflood was then carried 

out and the recoveries were measured. As shown by Table 4 the recoveries of both Yates oil aging times 

are similar. The relative permeability ratio curves in Figure 19 show that the wettability of the system is 

more or less the same. Therefore, the minimum Yates oil aging period was established to be 24 hours.  
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Table 4: Yates crude oil aging period 

Aging time 
period 

Experimental Simulator 

Recovery  
(%OOIP) Swi Sor Kro Krw Swi Sor Kro Krw X-over 

Point 

2 weeks 57.14% 0.471 0.226 0.531 0.104 0.47  0.209  0.98  0.13  0.650 

24 hours 56.41% 0.413 0.251 0. 502 0.079 0.41  0.195  0.98  0.13  0.693 

 

  

Figure 19: Relative permeability ratio curves for the Yates crude oil aging period 
  

The last and most time consuming parameter to achieve was a suitable core cleaning procedure. 

The three core cleaning procedures developed and used in this project are described in section 3.2.  

All the experiments are divided in four sets as illustrated by Table 5. Set 1 was used to determine 

the ideal surfactant concentration in two rock fluid systems: reactive and non-reactive. Three 

concentrations (0, 1000, 3000ppm) were tested in both rock fluid systems. The concentration yielding the 

highest recovery was considered the ideal concentration. Surfactants improve recovery by lowering 

interfacial tension and changing the wettability. However, wettability is governed by factors such as 

brine, oil, surfactant, rock properties etc. All these variables are kept constant in both rock fluid systems 

except the type of oil used. In the non-reactive case, decane oil used which is considered non-reactive, 

and therefore it does not influence wettability. Hence, the increase in recovery due to wettability change is 
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strictly due to the use of surfactants. On the other hand, Yates crude oil is used since it influences 

wettability and therefore creating a reactive system. Thus, the increase in recovery observed is due to 

wettability change is a result of the combination of Yates crude oil and surfactant used. 

Table 5: Experimental design – 4 sets of experiments  

Set 1 

Reactive (Yates) rock fluid system 

0ppm 

1000ppm 

3000ppm 

Non-Reactive (decane) rock fluid system 

0ppm 

1000ppm 

3000ppm 

Set 2 Fixed surfactant slug size, varying soaking period 

1 hour 

12 hours 

24 hours 

Set 3 Fixed soaking period, varying surfactant slug size  

0.1PV 

0.2PV 

0.3PV 

Set 4 Seven IOR methods 

Conventional waterflood – 2PV 

Improved waterflood - 0.2PV surfactant slug soak around the 

production well 

Improved waterflood - 0.3PV surfactant slug soak around the 

production well 

LC (1000ppm) surfactant flood – 2PV 

Improved LC surfactant flood - 0.2PV surfactant slug soak around the 

production well 

Water alternating surfactant process (WASP) - 0.2PV surfactant slug 

soak around the production well 

Ideal (3000ppm) surfactant flood – 2PV 

 

Set 2 was used to determine the ideal surfactant slug soaking period prior to a waterflood. After 

the initial conditions were achieved in the core, a 0.2PV surfactant slug was injected around the producing 
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well and soaked for 1 hour, 12 hours, and 24 hours in separate experiments. After the soaking period was 

completed, a waterflood was performed.  

Set 3 investigated the effects of varying the surfactant slug size injected around the production 

well. After the initial condition was achieved in the core, the surfactant slug was injected, soaked for 12 

hours, then a waterflood was carried out. Three surfactant slug sizes were tested: 0.1PV, 0.2PV, and 

0.3PV in separate experiments.  

Set 4 used the established conditions from the three previous sets, and applied them to the four 

improved waterflood variations. The first and second improved waterflood variations used a 0.2PV and 

0.3PV surfactant slug, respectively, to soak the area around the production well prior to a waterflood. The 

third variation used a low concentration (LC) surfactant solution to flood the core after soaking the area 

around the production well with a 0.2PV surfactant slug. This method was named as the improved LC 

surfactant method. The fourth variation used a 0.2PV surfactant slug to soak the area around the injection 

well instead of production well prior to the waterflood. This method was named water alternating 

surfactant process (WASP). Each waterflood or LC surfactant flood was carried out for 2PV after the 

surfactant slug soaking period. The three baseline methods consisted of: a conventional waterflood, a LC 

(1000ppm) surfactant flood, and an ideal (3000ppm) surfactant flood. All baseline methods were also 

carried out for 2PV. 

3. 4 Coreflood simulator 

Obtaining accurate relative permeability curves from coreflood experiments is imperative for 

characterizing a reservoir and for estimating its production capability. This project is concerned with the 

unsteady state relative permeabilities that are obtained from waterflood and surfactant flood experiments 

conducted in a water wet medium. For each of the above experiments, recovery and pressure drop data 

were collected and used in a coreflood simulator. The coreflood simulator used is the academic version of 

CYDAR® (2010). Input parameters for the coreflood simulator were: rock and fluid properties, recovery 

data, pressure drop data, end point phase permeabilities, absolute permeability, injection rate, and the 
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breakthrough time of each run.  The coreflood simulator was used to calculate the oil-water relative 

permeabilities, fractional flow, and relative permeability ratios curves. This user friendly simulator 

calculates Corey type oil and water relative permeabilities that best fit the production and pressure data 

using the JBN method. The data must be smooth and continuous in its overall trend because the JBN 

method requires differential of either the total flow rate or the pressure drop. The JBN method uses an 

explicit numerical method of calculating relative permeability values using the effluent history. A 

disadvantage of explicit methods is that derivatives of measured data must be estimated. It is well known 

that the effect of small measurement errors become amplified when derivatives of measured data are to be 

estimated (Tao and Watson, 1983). Due to the idealized nature of the JBN method, the relative 

permeability ratio curves will be used qualitatively in this project to describe the change in wettability.  
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4. RESULTS AND DISCUSSION 

The objective of this project is to investigate the technical feasibility of the proposed improved 

waterflood variations and examine their effectiveness when compared to a conventional waterflood. In 

order to achieve this goal, a few parameters had to be established. Set 1 determined the ideal surfactant 

concentration in two rock fluid systems. Set 2 determined the ideal soaking period of a 0.2PV surfactant 

slug soak around the production well. Set 3 examined the effect of varying the injected surfactant slug 

size around the production well. After these three parameters were optimized, the four improved 

waterflood variations and the three baseline methods were tested in set 4. The experimental results of 

each set are presented and discussed in this section. The rules of thumb used to interpret the wettability 

alterations are presented in Table 6. These rules of thumb only apply to oil wet, water wet, and 

intermediate wet conditions. For each set of experiments, four key components were analyzed to show the 

effectiveness of the experiment. These key components are recovery, pressure drop, relative permeability 

ratios, and fractional flow trends. Recovery trends are straightforward to interpret since the higher the 

recovery the more effective the process at improving oil recovery. Pressure drop trends can be used to 

confirm whether emulsions were formed during the coreflood. Relative permeability ratio curves are used 

to interpret the effect of lowering interfacial tension and modifying wettability. Lastly, fractional flow 

curves, which are calculated from relative permeability and viscosity values, are used to describe the 

immiscible fluid displacement process and interpret wettability alterations. Yates oil viscosity of 12.8cp 

and a water viscosity of 1cp were used to calculate relative permeability and fractional flow values.  

Table 6: Craig’s rules of thumb used for wettability interpretation, adopted from Ayirala (2002) 

Criterion Water-wet Oil-wet 

Initial water saturation (Swi), fraction > 0.25 < 0.15 

Water saturation at cross-over point, fraction > 0.5 < 0.5 

End-point relative permeability to water at Sor, fraction < 0.3 > 0.5 

End-point relative permeability to oil at Swi, fraction > 0.95 < 0.7 – 0.8 
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Lastly, the recovery and pressure drop figures showing the history match between the simulated and 

experimental data are presented in the Appendix section.  

4. 1 Set 1: Ideal surfactant concentration determination 

  The objective of this set of experiments was to find the ideal surfactant concentration. This was 

achieved in two rock-fluid systems: non-reactive and reactive. The difference in these rock fluid systems 

is the oil used and its effect on wettability. Therefore, in the non-reactive case decane oil is considered 

non-reactive and therefore does not affect wettability. On the other hand, Yates crude oil is reactive 

meaning its interaction with the rock surface affects the wettability of the system. Any increase in 

recovery due to the use of surfactant can be attributed to lowering of the interfacial tension and wettability 

modification. However, in the reactive case, the observed wettability change is due to the combination of 

Yates crude oil and surfactant used. On the other hand, in the non-reactive case the change in wettability 

is strictly the result of using surfactant.  

4.1.1 Reactive rockfluid system (Yates crude oil) 

  In the reactive rock fluid system, stable oil-water emulsions were formed when surfactant was 

introduced in the system. The higher the surfactant concentration injected the stronger (more viscous) the 

emulsions formed. These emulsions were observed after 12 hours, 24 hours, and 2 weeks and they did not 

show signs of breaking up, therefore, indicating they are stable emulsions.   

Table 7: Experimental and simulation results for the reactive case at various surfactant concentrations 

Reactive 

case (Yates 

oil) 

Experimental Simulator 

Recovery  

(%OOIP) 
Swi Sor Kro Krw Swi Sor Kro Krw 

X-over 

Point 

0ppm 47% 0.175 0.431 0.943 0.097 0.175 0.430 0.980 0.091  0.414 

1000ppm 52% 0.175 0.395 0.734 0.033 0.175 0.394 0.987 0.102 0.427 

3000ppm 94% 0.480 0.027 0.980 0.088 0.480 0.095 0.980 0.050 0.819 
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Recovery: Figure 20 shows the relationship between recovery and injected pore volumes. The oil 

recovery significantly increases from 47% to 94% as the surfactant concentration is increased from 0ppm 

to 3000ppm. In the 0ppm flood, oil was not produced after breakthrough, while in the 1000ppm flood 

very little oil was produced after breakthrough. This behavior is indicative of water wet conditions.  

However, in the 3000ppm flood a significant amount of oil was produced after breakthrough leading to 

very high oil recovery of 94%. This indicates oil wet characteristics in the large pores where from oil is 

still produced after breakthrough. This positive oil recovery trend in the 3000ppm case indicates that 

100% recovery is possible if the reservoir is continuously flooded by water or surfactant solution. The 

3000ppm coreflood was repeated to confirm the high recovery phenomenon observed, and the same result 

was observed again in the repeated run. These high recoveries, significant oil production after 

breakthrough, and low residual oil saturations, indicate a system that is neither oil wet nor water wet but 

rather mixed wet as postulated by Salathiel (Salathiel, 1973).  

 

Figure 20: Experimental and simulation recovery curves of all surfactant concentrations in the reactive 
(Yates) system.  

 

At initial conditions (when the core is at initial water saturation and surfactant is not present) the core is 

water wet. Hence, the rock surface is covered with a film of water and oil exists in the form of globules in 

the middle of the larger pores. In the presence of surfactant, this film could become unstable due to the 
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extent of adsorption of surfactant molecules at the rock-water interface compared to that at the oil-water 

interface. Also, the orientation of surfactant molecules at these interfaces does add to the instability of the 

water film. This instability of liquid film at the interface, results in oil-water-rock interactions forming a 

continuous oil-wet path for favorable displacement of oil. This indicates the mixed wet state first 

proposed by Salathiel (Salathiel, 1973). 

Pressure drop: Figure 21 shows the relationship between pressure drop and injected pore volume. As 

observed, the pressure drop increases considerably as the surfactant concentration is increased. This is due 

to the formation of strong emulsions as the surfactant concentration is increased. In the 0ppm flood, 

emulsions were not formed hence the plateaued curve indicating that pressure drop had stabilized. 

However, as surfactant is introduced in the system, emulsions are formed resulting in increase of pressure 

drop with increasing injected pore volumes. Therefore, the steeper the pressure drop curve the stronger 

the emulsions formed. 

 

Figure 21: Experimental and simulation pressure drop curves of all surfactant concentrations in the 
reactive (Yates) system. 

 

Relative permeability: Figure 22 illustrates relative permeability ratio curves of the three surfactant 

floods. It is observed that the relative permeability ratio curves are gradually shifting to the right as the 

surfactant concentration is increased. Considering the initial water wet nature of Berea sandstone cores, 
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this type of shift in the relative permeability ratio curves usually indicates the core is becoming more 

water wet, if only homogenous wettability is considered. However, considering the very high oil recovery 

values and the continual increase in recovery after breakthrough, this shift indicates the development of 

mixed wettability condition by use of surfactant (Anderson, 1971 and Rao, 1992).  

 

Figure 22: Relative permeability ratio curves for various surfactant concentrations in the reactive (Yates) 
system. 

 

Fractional flow: Another practical approach to the assessment of the displacement efficiency of a 

coreflood is through fractional flow analysis. While the idealized nature of the fractional flow equation is 

recognized, it does provide insight into saturation distributions and wetting state of the core through the 

shape and position of the curve. Gravity and capillary effects are neglected in the fractional flow equation 

(equation 4) that is used to calculate the values used to plot Figure 23, Figure 24, and Figure 25. Figure 23 

illustrates the effect of increasing surfactant concentration and assumed water viscosity on the fractional 

water flow curves.   

F µ
µ

                                                                                                                            Equation 4 
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Figure 23: Fractional water flow curves of various surfactant concentrations and viscosities in the reactive 
(Yates) system. 

 

Fractional flow analysis is used in this set of experiments to evaluate the effect of increasing surfactant 

concentration and formation of emulsion on recovery. As observed in Figure 24, the increase in surfactant 

concentration causes residual oil saturation to decrease and thus shifting the fractional flow curve to the 

right.  

 

Figure 24: Fractional water flow curves of all surfactant concentrations in the reactive (Yates) system. 
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The decrease in residual oil saturation with increasing surfactant concentration is an indication of 

increasing oil recovery. The shift to the right in fractional flow curves indicates that wettability is 

changing with increasing surfactant concentration. All the above fractional flow curves start at the initial 

water saturation of 17.5%. However, as the surfactant concentration is increased the residual oil saturation 

decreases and therefore shifts the curve to the right. If homogeneous wettability is strictly considered, 

then this type of shift indicates that the rock fluid system is becoming more water wet. In a water wet 

system the Kro values are larger while the Krw values are lower than in an oil wet system, therefore larger 

fractional flow values are calculated which makes the shape of the curve less steep than in an oil wet case. 

In addition, a system that is shifting to more water wet conditions, the oil will be displaced from the 

smaller pores completely followed by the displacement of the larger pores. This renders the reservoir to 

have with less residual oil saturation than in an oil wet case. Due to this, the fractional flow curve for the 

oil wet case is much steeper than the water wet case. Consequently, the average saturation at the front 

(breakthrough saturation) is much higher for the strongly water wet system than the slightly water wet 

system as shown by Figure 24. Equation 5 calculates the cumulative oil produced at breakthrough time. 

 N PV S S                                                                                                                  Equation 5 
 

The cumulative oil produced at breakthrough time is calculated to be: 0.31PV at 0ppm, 0.33PV at 

1000ppm, and 0.46PV at 3000ppm. The calculated breakthrough volumes compare well to the measured 

breakthrough volume, which validates the accuracy of the fractional flow curves. The implication of this 

is that more oil was produced at the breakthrough time in a strongly water wet system than a slightly 

water wet system. However, in a water wet system, there is no further (significant) oil recovery after 

breakthrough. This was only observed in the 0ppm and 1000ppm case. However, in the 3000ppm case, 

small slugs of oil were still being produced which ultimately lead to very high recovery of 94%. Strongly 

water wet and strongly oil wet rocks can be flooded by water to unusually low oil saturations. However, if 

mixed wettability is developed by the use of surfactants, recoveries such as those observed in the 

3000ppm case can be achieved. In this condition the fine pores and grain contacts would be preferentially 
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water wet and the surfaces of the larger pores would be strongly oil wet.  If oil wet paths were continuous 

through the rock, water could displace oil from the large pores and little or no oil would be held by 

capillary forces in the small pores or at grain contacts. This type of mixed wettability condition could 

account for the very low residual oil saturations observed in the 3000ppm case. Therefore, the shift in 

fractional curves due to the increase in surfactant concentration is due to the gradual shift in wettability 

from less water wet to mixed wet.  

Another factor that influences the shape of the fractional flow curves is formation of emulsions 

which changes the viscosity of the displacing fluid, water. The coreflood simulator used to generate the 

fractional flow curves, does not have a way to account for the change in viscosity in the displacement 

fluid (water) due to the formation of emulsions. In order to illustrate the effect of emulsion formation, the 

viscosity of water was manually varied to 1cp, 3cp, 5cp, 9cp, and 13cp. As observed in Figure 25 with 

increasing water viscosity and a fixed residual oil saturation the shape of the fractional flow curve shifts 

to the right. As observed, with increasing water viscosity the average water saturation at breakthrough 

time is higher which implies higher oil production. Using equation 5, the cumulative oil at breakthrough 

is calculated to be 0.405PV at 3000ppm (1cp) and 0.51PV at 3000ppm (13cp).  

 

Figure 25: Fractional water flow curves of various viscosities at 3000ppm surfactant flood in the reactive 
(Yates) system. 
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The calculated cumulative oil at 3cp viscosity compared well to the measured breakthrough volume of the 

3000ppm coreflood. It is important to note that viscosity of the emulsions increased as more surfactant 

solution was injected. A more representative fractional flow curve of the 3000ppm coreflood would be 

one that factors in the increase in displacing fluid viscosity with increasing pore volume injected.   

4.1.2 Nonreactive rockfluid system (Decane) 

  The non-reactive rock fluid system consisted of Berea core, Yates synthetic brine, and decane oil. 

Emulsions were not formed in the 0ppm and 1000ppm surfactant floods, but weak emulsions were 

observed in the 3000ppm flood. Note that each flood was carried out for 2 pore volumes. Below are the 

results and discussions for the non-reactive experiments.  

Table 8: Experimental and simulation results for the non-reactive case at various surfactant concentrations 

Non-

Reactive 

(Decane) 

Experimental Simulation 

Recovery  

(%OOIP) 
Swi Sor Kro Krw Swi Sor Kro Krw 

X-over 

point 

0ppm 40% 0.283 0.428 0.764 0.101 0.283 0.429 0.981 0.101 0.439 

1000ppm 46% 0.283 0.381 0.778 0.118 0.283 0.382 0.981 0.115 0.452 

3000ppm 80% 0.580 0.083 1.000 0.006 0.580 0.085 0.981 0.130 0.751 

 

Recovery: Figure 26 shows the relationship between recovery and injected pore volumes. The oil 

recovery gradually increases from 40% to 80% as the surfactant concentration is increased from 0ppm to 

3000ppm. In the 0ppm flood there was a clean break in oil production after water breakthrough, and in the 

1000ppm flood there was a very slight increase in recovery after breakthrough. However, in the 3000ppm 

case there was a significant increase in oil recovery even after water breakthrough. As discussed in the 

reactive rock fluid system, this is an indication of the development of mixed wettability due to use of 

surfactants. The increase in recovery due to the use of surfactants is attributed to reduction in interfacial 

tension and wettability modification. The change in wettability in this rock fluid system is strictly due to 
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the use of surfactant. The decane oil used is non-reactive, and therefore does not play a role in changing 

wettability.   

 

Figure 26: Recovery curves for all surfactant concentrations in the non-reactive (decane) system. 
 

Pressure drop: Figure 27 shows the relationship between pressure drop and injected pore volume. As 

observed, the pressure drop decreases as the surfactant concentration is increased from 0ppm to 1000ppm 

indicating that no emulsions were formed. Thereafter, the pressure drop significantly increases as the 

surfactant concentration is increased from 1000ppm to 3000ppm indicating the formation of weak (lower 

viscosity) emulsions.  

 

Figure 27: Pressure drop curves for all surfactant concentrations in the non-reactive (decane) system. 
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Relative permeability: The oil-water relative permeability ratio curves of these experiments are 

presented in Figure 28. A gradual shift to the right as the surfactant concentration is increased is observed. 

Considering the initial water-wet nature of Berea sandstone cores, this usually indicates a shift to more 

water wet conditions, but this is only when considering homogeneous wettability. But when one considers 

the high oil recoveries, with the significant increase in oil production after water breakthrough, this shift 

indicates the development of mixed wettability. To fully substantiate the development of mixed 

wettability, a higher concentration (5000ppm) flood needs to be conducted. In addition, the interfacial 

tension and contact angle measurements need to be carried out.  

  

Figure 28: Oil-water relative permeability ratios with increasing surfactant concentration in a non-reactive 
system 

 

Fractional flow: Figure 29 illustrates the relationship between fractional flow and water saturation. With 

increasing surfactant concentration the curves shift to the right. The wettability effect observed in this 

case is strictly due to the use of surfactant. Fractional flow analysis supports the observations made on the 

recovery section where oil recovery increased with increasing surfactant concentration.   
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Figure 29: Fractional flow curves of all surfactant concentrations in the non-reactive (decane) system.  

  

Summary: The recoveries in the reactive system are significantly higher than those in the non-reactive 

system as shown by Table 9.  The difference in both rock fluid systems is the oil used and its influence on 

wettability. Therefore, in the non-reactive case decane oil is considered non-reactive and therefore does 

not affect wettability. On the other hand, Yates crude oil is reactive meaning its interaction with the rock 

affects the wettability of the system. Therefore, the additional recovery between the non-reactive and 

reactive rock fluid system can be attributed to the influence of oil on wettability.   

Table 9: Recoveries of non-reactive and reactive system at various surfactant concentrations 

Surfactant 

Flood 

Non-reactive system 

recovery (% OOIP) 

Reactive system 

recovery (%OOIP) 

Additional recovery  

(non-reactive – reactive) %OOIP 

0ppm 40% 47% 7% 

1000ppm 46% 52% 6% 

3000ppm 80% 94% 14% 
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4. 2 Set 2: Ideal soaking period 

The experiments in set 1 have established the optimal surfactant concentration to be 3000ppm. 

The second parameter investigated was the ideal soaking period for a 0.2PV surfactant slug injected 

around the producing well prior to a waterflood. The three soaking times tested were 1 hour, 12 hours and 

24 hours in separate experiments. These soaking times were compared to a conventional waterflood 

where there is no surfactant slug injection and therefore no soaking time needed. The results are discussed 

below. 

Table 10: Experimental and simulation results for the soaking time experiments 

Soaking 

period  

Experimental Simulation 

Recovery  

(%OOIP) 
Swi Sor Kro Krw Swi Sor Kro Krw 

X-over 

point 

No soaking 47% 0.175 0.431 0.943 0.097 0.175 0.430 0.980 0.090  0.470 

1 hour 47% 0.307 0.363 0.990 0.009 0.307 0.352 0.989 0.051 0.586 

12 hours 55% 0.463 0.242 0.980 0.060 0.463 0.232 0.980 0.085 0.682 

24 hours 56% 0.534 0.233 0.952 0.060 0.534 0.233 0.987 0.128 0.701 

 

Recovery: Figure 31 shows the relationship between recovery and injected pore volume. The oil recovery 

increases from 47% to 56% with increasing soaking time. The increase in oil recovery is proposed to be 

due to the surfactant slug changing the wettability of the soaked area around the production well. As 

observed in the reactive rock fluid system in set 1, when the core was injected with ideal surfactant 

concentration (3000ppm) solution, mixed wettability was developed. Therefore, wettability around the 

surfactant soaked area would have also changed from its initial water wet state to a mixed wet state. 

 

Figure 30: Schematic of an improved waterflood process in the core. 
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Therefore, when the waterflood is started, the injected water will displace the oil bank which will displace 

the surfactant slug as shown in Figure 30. Since the soaked area around the production well is mixed wet, 

when oil reaches this area it will travel by the continuous oil wet paths in the larger pores. However, if the 

wettability of the soaked area changed to oil wet conditions, then when the displaced oil bank arrives at 

that area it will travel through the small pores. If the wettability of the soaked area changed to more water 

wet conditions, the displaced oil bank will travel through the larger pores. An addition process that may 

aid the increase in recovery is the lowering of the interfacial tension and wettability alteration throughout 

the rest of the core due to surfactants diffusing from the surfactant slug to the rest of the core through the 

water film. This process can be verified by testing the water around the injector well prior to a waterflood 

and after the soaking period for the presence of surfactant. This would officially validate that the diffusion 

of surfactant from the surfactant slug to the rest of the core is taking place.  

As observed in Figure 31, there was no increment in recovery between the no surfactant flood 

(conventional waterflood) and the 1 hour soaking time coreflood. This lack of incremental recovery is 

expected since the surfactant slug injected had not had enough time to change the wettability around the 

soaked area (and/or diffuse to the rest of the core).  Due to this, the effect of recovery by the water 

injection following the surfactant slug soak was similar to that of a conventional waterflood. A 12 hour 

soaking period has an incremental recovery of about 8% when compared to the no surfactant coreflood 

case. This increment in recovery is a product of the wettability change around the production well and the 

presence of surfactant throughout most of core. A 24 hour soaking period resulted in an incremental 

recovery of about 9% from a waterflood. Since the increase in incremental recovery from 12 hours to 24 

hours is only 1%, it indicates that the ideal soaking time is 12 hours for a 0.2PV surfactant slug. Another 

crucial observation made by analyzing the recovery trends is that the longer the soaking period is the 

more time is available for the fluids to redistribute in the core, and therefore the smaller the volume of 

surfactant slug is produced prior to oil production.  
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Figure 31: Recovery curves of all soaking period experiments. 
 

Pressure drop: Figure 32 shows the relationship between pressure drop and injected pore volume. As 

observed, the pressure drop decreases with the soaking period. From the no surfactant case to the 1 hour 

soaking time case, the pressure drop significantly increases. The high pressure drop in the 1 hour soaking 

time is a result of the resistance in fluid flow due to the existence of two flood fronts created during the 

waterflood as duplicated in Figure 30. The first flood front is due to water displacing the oil bank, and the 

second flood front is the oil bank displacing the surfactant slug. In the 1 hour soaking coreflood, the 

surfactants have not had enough time to change the wettability and allow for the fluids to redistribute. 

Therefore, when the waterflood was started the entire volume of surfactant slug injected was first 

produced before the oil. This is clearly shown in the delay in oil production in the recovery trends. The 

longer the soaking period, the more time the fluids have to redistribute in the core, and therefore, the more 

the second front interface between the oil bank and surfactant slug fades and allows for less resistant flow 

to the wellbore.  In the case of 12 and 24 hour soaking periods, the surfactants have had time to alter the 

wettability of the area around the production well (and surfactant has had time to diffuse to most of the 

core through the water wet film coating the rock grains). In addition, the fluids have had time to 
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redistribute which is indicated by less surfactant being produced prior to the oil bank therefore indicating 

a diffuse front between the oil bank and surfactant slug.  

 

Figure 32: Pressure drop curves of all soaking period experiments. 
 

Relative permeability: The oil water relative permeability ratio curves are presented in Figure 33. A shift 

to the right with increased soaking period is observed indicating a shift in wettability to more water wet 

conditions.  

 

Figure 33: Oil-water relative permeability ratios of soaking period experiments. 
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Fractional flow: Figure 34 shows the relationship between fractional flow and water saturation. As 

observed, the curves shift to the right with increasing soaking time. This shift indicates a change in 

wettability to more water wet conditions.  

  

Figure 34: Fractional water flow curves of all soaking period experiments. 
 

Summary: As indicated by the above results, soaking time has a significant impact on recovery, pressure 

drops, relative permeabilities and fractional flow. The longer the soaking time the higher the recoveries as 

shown in Figure 35 and the lower the pressure drops. The ideal soaking time was determined to be 12 

hours for a 0.2PV surfactant slug injected around the production well.  

 

Figure 35: Recovery results at different soaking periods. 
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4. 3 Set 3: Effect of varying surfactant slug size on incremental oil recovery 

Set 1 and set 2 established the ideal surfactant concentration and the ideal surfactant slug soaking 

period to be 3000ppm and 12 hours, respectively. Set 3 examined the effects of varying the surfactant 

slug size. The surfactant slug injected around the producer well is at the ideal surfactant concentration of 

3000ppm and is soaked for 12 hours. The three surfactant slug sizes tested were 0.1PV, 0.2PV, and 

0.3PV. The results are presented below. 

Table 11: Experimental and simulation results for various surfactant slug sizes 

Surfactant 

slug size 

Experimental Simulation 

Recovery  

(%OOIP) 
Swi Sor Kro Krw Swi Sor Kro Krw 

X-over 

point 

0 PV 47% 0.175 0.569 0.943 0.097 0.175 0.570 0.980 0.090 0.470 

0.1 PV 47% 0.372 0.341 0.700 0.068 0.372 0.341 0.980 0.052 0.581 

0.2 PV 55% 0.463 0.242 0.980 0.060 0.463 0.232 0.980 0.085 0.758 

0.3 PV 62% 0.775 0.087 0.987 0.040 0.775 0.081 0.987 0.044 0.873 

 

Recovery: Figure 36 shows the relationship between recovery and injected pore volume. The oil recovery 

increases from 47% to 62% with increasing pore volume size of 0PV to 0.3PV.   

 

Figure 36: Recovery curves for various surfactant slug sizes. 
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As observed, there was no increment in recovery when 0.1PV of the core was soaked in surfactant. This is 

due to the small quantity of surfactant present in the core, meaning that a very small portion of the area 

around the production well has its wettability altered. The effect of this alteration is too small to increase 

the recovery. The 0.2PV and 0.3PV slug had an incremental recovery of 8% and 15%, respectively. The 

larger the surfactant slug size, the larger the area whose wettability is altered.   

Pressure drop: Figure 37 shows the relationship between pressure drop and injected pore volume. As 

observed, the pressure drop increases with increasing size of surfactant slug injected. In the case of 

0.1PV, the pressure drop is lower than a conventional waterflood. This is because the core used in the 

0.1PV coreflood had a permeability of about 30mD higher, thus decreasing the pressure drop. If the 

experiment had been conducted using the same core, it would probably have given a similar pressure drop 

to that of a conventional waterflood. In the case of 0.2PV the pressure drop increases due to the presence 

of two flood fronts and also due to the slight decrease in absolute permeability by about 10mD from core 

cleaning. In the 0.3PV coreflood experiment, the increase in pressure drop was due to the presence of two 

flood fronts, decrease in permeability from core cleaning by about 10mD, and lastly, the formation of 

emulsions. Emulsions were formed in the 0.3PV case due to large quantities of surfactants introduced to 

the core.    

 

Figure 37: Pressure drop curves for various surfactant slug sizes 
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Relative permeability: The oil water relative permeability ratio curves are presented in Figure 38. The 

shift to the right with increasing surfactant slug size indicates wettability change to more water wet 

conditions.  

   

Figure 38: Oil-water relative permeabilities ratios for various sizes of surfactant slug. 
 

Fractional flow: Figure 39 shows the relationship between fractional flow and water saturation. As 

observed, the curves shift to the right with increasing surfactant slug size. This indicates a shift in 

wettability to more water wet conditions.  

  

Figure 39: Fractional flow curves for various surfactant slug sizes. 
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Summary:  As indicated by the above results, the size of surfactant slug soaked has a significant effect 

on the recovery. A conventional waterflood resulted in a recovery of 47% while the whole core treated 

with an ideal surfactant flood (3000ppm injected for 2PV) gave a recovery of 94%. Thus, if the core is 

treated with pore volumes between 0 and 2PV, the recoveries are expected to fall between 47% and 94%. 

The observed results in this section followed this hypothesis well. In addition, the size of pore volume 

soaked and the soaking time are also related. The larger the soaked pore volume the shorter the ideal 

soaking time. As observed, the ideal soaking time for 0.2PV was measured to be 12 hours, meaning that 

0.1PV would need a longer soaking time as 0.3PV would need a shorter soaking time.  

 

Figure 40: Recovery results at different pore volume sizes 
 

4. 4 Set 4: Comparison of the four improved waterflood methods with three 
baseline cases 

 

The previous three sets of experiments have determined the ideal surfactant concentration to be 

3000ppm and soaking time to be 12 hours for a 0.2PV surfactant slug. It was also determined that 

increasing the surfactant slug size increases the recovery. Set 4 used the parameters established in the 

previous sections to investigate the four proposed improved waterflood variations relative to three 

baseline cases. The first and second improved waterflood variations used a 0.2PV and 0.3PV surfactant 
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slug, respectively, to soak the area around the production well prior to a waterflood. The third variation 

used a low concentration (LC) surfactant solution to flood the core after soaking the area around the 

production well with a 0.2PV surfactant slug. This method was named as the improved LC surfactant 

method. The fourth variation used a 0.2PV surfactant slug to soak the area around the injection well 

instead of production well prior to the waterflood. This method was named water alternating surfactant 

process (WASP). Each waterflood or LC surfactant flood was carried out for 2PV after the surfactant slug 

soaking period. The three baseline methods consisted of: a conventional waterflood, a LC (1000ppm) 

surfactant flood, and an ideal concentration surfactant flood (3000ppm). All baseline methods were also 

carried out for 2PV.  

Table 12 presents the experimental results of all the seven improved oil recovery processes. In 

this set of experiments, recovery is the only variable evaluated to show the effectiveness of each process. 

Table 12: Experimental results for the seven EOR processes 

EOR 
methods 

Experimental Simulator 
Recovery  
(%OOIP) Swi Sor Kro Krw Swi Sor Kro Krw X-over 

point 

Waterflood 47% 0.175 0.569 0.943 0.097 0.175 0.570 0.980 0.090 0.470 

Improved 
Waterflood 
(0.2PV) 

55% 0.463 0.242 0.980 0.060 0.463 0.232 0.980 0.085 0.758 

Improved 
Waterflood 
(0.3PV) 

62% 0.775 0.087 0.987 0.040 0.775 0.081 0.987 0.044 0.913 

LC surfactant 
flood  52% 0.175 0.605 0.734 0.033 0.175 0.606 0.987 0.202 0.490 

Improved LC 
surfactant 
flood  

58% 0.688 0.13 0.990 0.014 0.688 0.13 0.998 0.170 0.791 

WASP 67% 0.654 0.113 0.980 0.017 0.654 0.898 0.999 0.170 0.800 
Ideal 
surfactant 
flood 

94% 0.48 0.027 0.980 0.088 0.480 0.095 0.999 0.050 0.819 

 

Waterfloods: A conventional waterflood was conducted as a base case that can be used to evaluate the 

effectiveness of the proposed improved waterflood variations. The recovery of the conventional 
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waterflood was 47%. The improved waterflood variation with a soaked volume of 0.2PV gave a recovery 

of 55% and therefore has an incremental recovery of 8%. The improved waterflood variation with a larger 

soaked volume of 0.3PV gave a recovery of 62% and therefore has an incremental recovery of 15%. The 

water alternating surfactant slug process (WASP) gave a recovery of 67% and therefore has an increment 

of 20%.  

 

Figure 41: Recovery results for the six EOR processes 
 

 The WASP method is similar to the first improved waterflood variation using a 0.2PV surfactant slug 

around the production well. The only difference between the two variations is that the surfactant slug in 

the WASP method is injected around the injection well instead of the production well. However, with this 

minor difference between the two improved waterflood variations, there is a 12% recovery increase in 

recovery from soaking the production zone to soaking the injection zone. This indicates that treating the 

injection zone is more effective than treating the production zone prior to a waterflood. When the 

surfactant slug is injected around the production well it displaces the oil away from the production well. 

In addition, the only means to improve recovery is by the surfactant altering the wettability of the soaked 
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area and also by allowing time for the surfactants to diffuse to the rest of the core. The surfactant diffuses 

from the production side to the injector side (backwards), therefore, requiring a longer soaking period for 

the surfactant to be dispersed throughout the entire reservoir. On the other hand, when the surfactant slug 

is injected from the injector side the oil is displaced towards the production well. The injected surfactant 

slug alters the wettability of the soaked zone. Unlike the first two variations, the WASP method has two 

ways of dispersing surfactant to the rest of the reservoir. The first is by soaking the surfactant slug and 

letting surfactant diffuse to the rest of the reservoir. The second and most effective way is when the 

waterflood displaces the surfactant slug from the injection zone to the production well, and therefore 

exposing the whole reservoir to surfactant.  In summary, the improved waterflood variations are more 

effective in displacing oil than a conventional waterflood. However the WASP method is the most 

effective of the improved waterflood variations.   

Surfactant floods: A LC surfactant flood of 1000ppm was performed as a base case that can be used to 

evaluate the effectiveness of the improved LC surfactant flood. The recovery of the LC surfactant flood 

was 52%. The recovery from the improved LC surfactant flood was 58%, and therefore, has an 

incremental recovery of 6% when compared to the LC surfactant flood. When compared to a conventional 

waterflood, the improved LC surfactant flood had an increment of 11%. This indicates that the improved 

surfactant flood process is more effective in improving the recovery than a conventional waterflood and a 

LC surfactant flood.  

Overall: The above results indicate that all four improved waterflood variations are technically feasible 

and are more effective in improving oil recovery than a conventional waterflood. Of the four variations, 

the most effective is the WASP method, followed by the 0.3PV surfactant soak improved waterflood, the 

0.2PV surfactant soak improved waterflood, and finally, the improved LC surfactant flood. Lastly, the 

ideal surfactant (3000ppm) flood was conducted to set the target at which the improved waterflood 

variations can strive to achieve. This coreflood gave a recovery of 94% (47% increment) due to the 

development of mixed wettability. The underlying motivation of this study was to achieve such high 

recoveries without using large quantities of surfactants. The 94% recovery was achieved by flooding the 
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core with 2PV of 3000ppm surfactant solution. The WASP method gave a 67% recovery (20% increment) 

with using 0.2PV of 3000ppm surfactant solution. This indicates that it is possible to achieve high 

recoveries without using large quantizes of surfactant. 

4. 5 Economic consideration  

  The following material balance calculations were performed for the four improved waterflood 

variations and the three baseline methods. This simple cost analysis provides yet another tool to evaluate 

the effectiveness of these improved waterflood methods. The capital (CAPEX) and operation (OPEX) 

expenses are assumed to be the same for all seven improved oil recovery methods. It is also assumed that 

the recoveries achieved in the coreflood experiments would also be achieved in the assumed reservoir. 

The objective of this exercise is to investigate the profitability of all seven IOR methods after surfactant 

cost is accounted for, when all things are equal. Let us consider the application of these seven EOR 

methods in a sandstone reservoir with the following properties: 

• Reservoir area = A = 5 acres   

• Pay zone thickness = h = 20 ft 

• Porosity = φ = 20% 

• Initial water saturation = Swi = 55% 

• Oil price = $60/bbl. The low end oil price from 2008 to 2010 was chosen as the conservative oil price 

for these calculations.  

• Surfactant cost = $1.75/lb. This price quote was provided by Pride Solvents and Chemicals Co   

(Pride, 2010). 

• Pore volume PV A h 20 acre 20ft 20% .  155,152bbl 

• OOIP  Pore volume 1 S  155,152bbl 1 0.55 69,818 bbl 

• Oil produced bbl Pore volume bbl Recovery %  

• Gross income $ Oil produced bbl Oil price $  



  65 
 

• Surfactant used bbl PV bbl PV of surfactant injected Surfactant Concentration ppm

.  

• Surfactant cost $ Surfactant used bbl Surfactant price $  

• Profit $ Gross income $ Surfactant cost $   

• Increment profit compared to the waterflood method $ Profit $ waterflood s profit $   

Table 13 presents the cost analysis of the seven improved oil recovery processes. The rows 

containing the three baseline cases are shaded. 

Table 13: Cost analysis results for the seven IOR methods 

EOR methods 
Recovery 
(%OOIP) 

Oil-
Prod 
(bbl) 

Gross 
income 

($) 

Surf. 
Conc. 
(ppm) 

Surf. 
used 
(bbl) 

Surf. 
cost ($) 

Profit ($) 
Increment 
profit ($) 

Waterflood 47% 32,221 1,933,272 0 0 0 1,933,272 0 

Improved 

Waterflood 

(0.2PV) 

55% 38,288 2,297,305 3,000 32,631 57,105 2,240,200 306,928 

Improved 

Waterflood 

(0.3PV) 

62% 42,966 2,577,975 3,000 48,947 85,657 2,492,317 559,046 

LC surfactant 

flood 
52% 36,424 2,185,456 1,000 108,771 190,350 1,995,106 61,834 

Improved LC 

surfactant flood  
58% 40,725 2,443,504 1,000 141,403 247,455 2,196,050 262,778 

WASP 68% 47,127 2,827,645 3,000 32,631 57,105 2,770,540 837,269 

Ideal surfactant 

flood 
95% 65,978 3,958,703 3,000 326,314 571,049 3,387,654 1,454,383 

 

As observed in Table 13, Figure 42, and Figure 43, the preliminary cost analysis indicates all seven IOR 

methods are profitable. The conventional waterflood method nets the lowest profit due to its low 

recovery. On the other hand, the ideal surfactant flood consumes the largest quantities of surfactant 
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therefore increasing the cost of surfactant, however, due to the very high recovery (94%) the cost of 

surfactant is easily upset and therefore this method of oil recovery nets the highest profit of all IOR 

methods considered. The underlying motivation of this study was achieving such high recoveries and 

thereby profits without using large quantities of surfactants.  As observed in Figure 42 the four improved 

waterflood variations do accomplish this task. Even when the cost of surfactants is factored in, the WASP 

process nets the highest profit of all the improved waterflood variations. Another way to evaluate the 

effectiveness of these improved methods is by evaluating the incremental profit made over the waterflood 

profit. Likewise, of the improved waterflood variations the WASP method nets the highest incremental 

profit, followed by the 0.3PV improved waterflood, and lastly, the 0.2PV improved waterflood.  Of the 

four improved waterflood variations, the improved LC surfactant flood nets the lowest profit due to the 

large quantities of surfactant used. The LC surfactant flood nets the smallest increment in profit. For this 

IOR method to be more profitable than a waterflood, the price of oil has to be greater than $46/barrel.  

 

Figure 42: Calculated profits of the seven EOR methods 
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 Overall: In this section, all the improved waterflood variations are economically feasible and more 

profitable than a conventional waterflood, under the assumed conditions. Of the four improved waterflood 

variations, the most profitable method is the WASP method, followed by the 0.3PV improved waterflood, 

then by the 0.2PV improved waterflood, and lastly the improved LC surfactant flood.  

 

Figure 43: Incremental profit of each EOR method when compared to the waterflood profit 
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5. CONCLUSIONS AND RECOMMENDATIONS 

5.1 Summary of findings and conclusions  

 The objective of this study was to evaluate whether the proposed improved waterflooding 

variations are technically feasible, and also to determine their effectiveness when compared to a 

conventional waterflood. This task was accomplished by conducting four sets of coreflood experiments.  

The first three sets of experiments were used to optimize the improved waterflood process. The fourth set 

tested the four improved waterflood variations and compared them to three baseline improved oil 

recovery methods. The significant findings in this study are presented below.  

1. An effective and efficient core cleaning procedure for fresh and contaminated cores was developed. 

2. Tomadol™ 91-8 was used throughout the project and its optimal concentration was found to be 

3000ppm in two rock fluid systems, non-reactive (decane) and reactive (Yates). At this surfactant 

concentration mixed wettability was developed. In the first set of experiments, it was observed that 

the recoveries in the reactive rock-fluid system were significantly larger than those in the non-reactive 

rock-fluid system. The increment in recovery from the non-reactive to the reactive rock fluid system 

was attributed to the wettability alteration due to the oil used.  

3. In the second set of experiments, it was observed that the longer the soaking period the higher the oil 

recovery. The increase in recovery by soaking the production zone with a surfactant slug was 

primarily attributed to the wettability change in the soaked area. Secondly, diffusion of surfactant 

from the surfactant slug to the rest of the core through the water films may have also played a role in 

increasing recovery. The soaking period was examined for a 0.2PV surfactant slug and the ideal 

soaking period was found to be 12 hours.  

4. The third set of experiments, investigated the effect of varying the size of the surfactant slug soaked 

around the production zone.  It was observed that the larger the surfactant slug size the higher the oil 
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recovery. This was attributed to the change in wettability of a larger area around the production well, 

which therefore creates an area that is more conducive to oil flow towards the production well. 

5. The fourth set of experiments evaluated the four improved waterflood variations and the three 

baseline processes. All four improved waterflood variations were found to be technically feasible and 

more effective than a conventional waterflood. Of the four improved waterflood methods, the WASP 

method was the most effective oil recovery method while the improved low concentrated surfactant 

flood was found to be the least effective. The same result was observed in the cost analysis results.   

In summary, this project has accomplished its objective in testing the feasibility of the proposed 

improved waterflood method, and also in determining its effectiveness when compared to a conventional 

waterflood. The experimental results clearly established that the improved waterflood variations are 

feasible and are more effective than a conventional waterflood. 

5.2 Recommendations for future work  

  Further testing is imperative in order to fully understand the reservoir mechanics of the improved 

waterflood variations and fully optimize them with respect to the field. The following are suggested 

recommendations for future work. 

1. Contact angle and interfacial tension measurements are needed in order to quantify the effect of 

Tomadol™ 91-8 on wettability and lowering of interfacial tension. These measurements are to be 

carried out using both stock tank and live oil.  

2. The four improved waterflood methods need to be carried out using live oil and larger cores.  

3. The surfactant slug size and ideal soaking time needs to be further investigated. This would help 

develop a correlation between surfactant slug size and ideal soaking time. As a result, the soaking 

time for each surfactant slug can be properly upscaled to field conditions. 

4. Two experiments are needed to validate the hypothesis that surfactant diffuse from the surfactant slug 

to the rest of the core and thereby increasing oil recovery by changing wettability and lowering 
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interfacial tension. In addition, the effect of varying surfactant slug concentration on recovery needs 

to be investigated.  

5. Full reservoir scale simulations are needed to help understand the effectiveness of these improved 

waterflooding methods on a large scale.  

6. Other variations of this improved waterflood concept need to be explored, for example, soaking both 

the production and injection zone. 

  



  71 
 

REFERENCES 

1. Anderson, W. G.:  “Wettability Literature Survey - Part 2: Wettability Measurement,” Journal of 
Petroleum Technology, Vol. 38, No. 11, pp. 1246-1262, (November, 1986). 

2. Anderson, W. G.: “Wettability literature survey - Part 5: The effects of wettability on relative 
permeability,” Journal of Petroleum Technology, Vol. 39, No. 11, pp.1453-1664, (November, 1987). 

3. ARI: “Basin Oriented Strategies for CO2 Enhanced Oil Recovery: Onshore Gulf Coast,” prepared for 
U.S. Department of energy office of Fossil Energy – Office of Oil and Natural Gas by Advanced 
Resources International, (February, 2006). 

4. Ayirala, S.: “Surfactant induced relative permeability modifications for oil recovery enhancement,” 
MS Thesis, Louisiana State University, Baton Rouge, LA, (December, 2002). 

5. Bennion, D. B., Bennion, D. W., Thomas, F. B., Bietz, R. F.: “Injection water quality - A key factor 
to successful waterflooding”, Journal of Canadian Petroleum Technology 98-06-06, Vol. 37. No. 6, 
(June, 1998). 

6. Bang, V., Gary, P., Sharma, M., Baran, J., and Ahmmadi, M.: “A new solution to restore productivity 
of gas wells with condensate and water blocks,” SPE 116711 presented at the SPE 2008 SPE Annual 
Technical Conference and Exhibition held in Denver, Colorado, USA, (September, 2008) 

7. Cuiec, L. E.: “Restoration of the natural state of core samples” SPE 5634-MS, presented at the Fall 
Meeting of the Society of Petroleum Engineers of AIME, Dallas, Texas (October, 1975). 

8. CYDAR coreflood simulator, http://www.cydarex.fr/, (August, 2010). 

9. Gant, P.L., and Anderson, W.G.: “Core cleaning for restoration of native wettability,” SPE Formation 
Evaluation 14875, Vol. 3, No 1, pp. 131–138, (March, 1988). 

10. Goddard, D.: “Louisiana Wellbore Completion Schematics and Formation Tops,” Baton Rouge, 
Louisiana State University, (February, 2006). 

11. Gulick, K., and William, D.: “Waterflooding heterogeneous reservoirs: An overview of industry 
experiences and practices,” SPE 40044-MS, presented at the International Petroleum Conference and 
Exhibition of Mexico, Villahermosa, Mexico (March, 1998). 

12. Healy, R. N., Reed, R. L., and Stenmark, D. K.: “Multiphase microemulsion systems,” SPE 5565-PA, 
Vol. 16, No. 3, pp. 147-160, (June, 1976). 

13. Hirasaki, G. J., Miller, C. A., and Puerto, M.: “Recent advances in surfactant EOR,” SPE 115386 
presented at the SPE Annual Technical Conference and Exhibition held in Denver, Colorado, USA, 
21-24, (September, 2008). 

14. Hirasaki, G. J., Rohan, J. A., Dubey, S.T., Niko, H., and Mij. B.V.: “Wettability evaluation during 
restored state core analysis,” SPE 20506, presented at the 65th Annual Technical Conference and 
Exhibition of the SPE held in New Orleans, LA, (September, 1990).  



  72 
 

15. Ivonete, P. G., Maria, A., Luvizotto, J. M., Lucas, E.F.: “Polymer flooding: A sustainable enhanced 
oil recovery in the current scenario,” SPE 107727,  presented at the Latin American & Caribbean 
Petroleum Engineering Conference, Buenos Aires, Argentina, (April, 2007).  

16. Jayanti, S., Britton, L.N., Dwarakanath, V., and Pope, G.A.: “Laboratory evaluation of custom 
designed surfactants to remediate NAPL source zones,” Environmental Science Technology Vol. 36, 
No. 24, pp. 5491-5497, (December, 2002). 

17. Jadhunandan, P.P., and Morrow, N.R. “Effect of wettability on waterflood recovery for crude 
oil/brine/rock systems,” SPE Reservoir Engineering 22597, Vol. 10, No. 1, pp. 40-46,  (February, 
1995). 

18. Kewen, L., and Firoozabadi, A.: “Experimental Study of wettability alteration to preferential gas 
wetting in porous media and its effects,” SPE Reservoir Evaluation & Engineering 62515, Vol. 3, No. 
2, pp. 139-149, (April, 2002). 

19. Klins M. A.: “Carbon Dioxide Flooding - Basic Mechanism and project design,” International Human 
Resources Development Corporation, pp.189-198, (1984). 

20. Knowledge Reservoir: “"Size of the Prize" Improved oil recovery for deepwater Gulf of Mexico,” 
RPSEA mid-year report, (February, 2009). 

21. Kulkarni, M.: “Immiscible and Miscible Gas-Oil Displacements in Porous Media,” MS Thesis, 
Louisiana State University, Baton Rouge, LA, (August, 2003). 

22. Kumar, V., Pope, G.A., and Sharma, M.M.: “Improving the Gas and Condensate relative permeability 
using chemical treatments,” SPE 100529, presented at the SPE Gas Technology Symposium, Calgary, 
Alberta, Canada, (May, 2006). 

23. Lake, L. W.: “Enhanced oil recovery, Chapter 9-Micellar-Polymer flooding” Upper Saddle River, NJ, 
07458, Prentice-Hall Inc., (1989). 

24. Levitt, D.B.: “Experimental evaluation of high performance EOR surfactants for a dolomite oil 
reservoir” MS. Thesis, University of Texas, Austin, Texas, (May, 2006). 

25. Morrow, N. R.: “Wettability and its effect on oil recovery,” SPE 21621, Journal of Petroleum 
Technology, Vol. 42, No. 12,  pp. 1476-1484, (December, 1990).  

26. Namba, T., and Hiraoka, T., “Capillary Force barriers in a carbonate reservoir under waterflooding,” 
SPE 29773, presented at the SPE Middle East oil show Bahrain, (March, 1995). 

27. Pande, P. K., Clark, M.B., Blasingame, T.A., Kelkear, M, Vessell, R.K., and Hunt, P.E.: “Application 
of integrated reservoir management and reservoir characterization to optimize infill drilling,” SPE 
27657 presented at the 1994 SPE Permian basin oil and gas recovery conference, Midland, (March, 
1994). 

28. Pride Solvents and Chemicals Company, http://www.pridesol.com/index.html, 973-715-5453 
(September, 2010). 

29. Rao, D. N., Girard, M., and Sayegh, S.G. “Impact of miscible flooding on wettability, relative 
permeability, and oil recovery,” SPE Reservoir Engineering, Vol. 7, No. 2, pp. 204-212, (May, 1992). 



  73 
 

30. Rao, D. N., Ayirala, S. C., Abe, A.A., and Xu, W.: “Impact of low-cost dilute surfactants on 
wettability and relative permeability,” SPE 99609, presented at the SPE/DOE Symposium on 
Improved Oil Recovery, Tulsa, Oklahoma, USA, (April, 2006). 

31. Salathiel, R.A.: “Oil recovery by surface film drainage in Mixed-wettability rocks,” Journal of 
Petroleum Technology, Vol. 25, No. 10, pp. 1216-1224, (October, 1973). 

32. Schramm, L. L.: “Surfactants: Fundamentals and applications in the petroleum industry,” Cambridge 
University Press, Cambridge, UK, (2000). 

33. Sharma, M., Bang, V., Ahmadi, M and Linnemeyer, H.: “Improving the productivity of hydraulically 
fractured gas condensate wells,” SPE 19599, presented at the Offshore Technology Conference, 5-8 
May 2008, Houston, Texas, USA, (May, 2008). 

34. Somasundaran, P., and Zhang, L.: “Adsorption of surfactant on minerals for wettability control in 
improved oil recovery processes,” Journal of colloid and interface science, pp. 202-208, (March, 
1997) 

35. Stiles, L.H.: “Optimizing waterflood recovery in a mature waterflood, the Fullerton Clearfork unit,” 
SPE 6198, presented at the AIME Annual Fall Technical Conference and Exhibition, New Orleans, 
(October, 1976). 

36. Talash, A. W.: “An overview of waterflood surveillance and monitoring,” SPE 18740, Journal of 
Petroleum Technology, Vol. 40, No. 12, pp. 1539-1543, (December, 1988). 

37. Tao, T.M., and Watson, A. T.: “Accuracy of JBN Estimates of Relative Permeability: Part 1 - Error 
analysis,” SPE 11589, Vol. 24, No. 2, pp. 209-214, (April, 1984). 

38. Treibel, L.E., Archer, D.L., and Owen, W.W.: “A Laboratory Evaluation of the Wettability of Fifty 
Oil-Producing Reservoirs,” SPE 3526-PA, Vol. 12, No. 6, pp. 531-540, (December, 1972). 

39. Wellington, S.L., and Richardson, E. A.: “Low surfactant concentration enhanced waterflood,” SPE 
30748, presented at the Annual Technical Conference and Exhibition of the Society of Petroleum 
Engineers in Dallas, TX, (September, 1997). 

40. Willhite, D., Green, W., and Paul, G.: “Enhanced oil Recovery,” Henry L. Doherty Memorial Fund of 
AIME, Society of Petroleum Engineers, (1998) 

41. Wu, C., Laughlin, H., and Jardon, M.: “Infill drilling enhances waterflood recovery” SPE 17286, 
Journal of Petroleum Technology, Vol. 42, No. 10, pp. 10-1095, (October, 1989). 

42. Wu, Y. S., Blanco, P., Tang, Y., and Goddard, W.A.: “A study of branched alcohol propoxylate 
sulfate surfactants for improved oil recovery,” SPE 95404, presented at the SPE Annual Technical 
Conference and Exhibition, Dallas, Texas, (October, 2005). 

43. Zhang, Y.P., Sayegh, S.G., and Huang, S.: “The role of effective interfacial tension in 
alkaline/surfactant/ polymer flooding,” Journal of Petroleum Science and Engineering, presented at 
the Canadian International Petroleum Conference, Calgary, Alberta, (June, 2007). 

 



  74 
 

APPENDIX 

History matched oil recovery and pressure drop data.  

 

Figure 44: Experimental and simulation recovery curves of all surfactant concentrations in the non-
reactive (decane) system. 

 

 

Figure 45: Experimental and simulation pressure drop curves of all surfactant concentrations in the non-
reactive (decane) system. 
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Figure 46: Experimental and simulation recovery curves of all soaking period experiments. 

 

 

Figure 47: Experimental and simulation pressure drop curves of all soaking period experiments. 
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Figure 48: Experimental and simulation recovery curves for various surfactant slug sizes 

 

 

Figure 49: Experimental and simulation pressure drop curves for various surfactant slug sizes 
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