
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2009

Realtime reservoir characterization and beyond:
cyber-infrastructure tools and technologies
Yaakoub Youssef El-Khamra
Louisiana State University and Agricultural and Mechanical College, yelkhamra@gmail.com

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Petroleum Engineering Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
El-Khamra, Yaakoub Youssef, "Realtime reservoir characterization and beyond: cyber-infrastructure tools and technologies" (2009).
LSU Master's Theses. 1413.
https://digitalcommons.lsu.edu/gradschool_theses/1413

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1413&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1413&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1413&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1413&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/245?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1413&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/1413?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1413&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

REALTIME RESERVOIR CHARACTERIZATION
AND BEYOND:

CYBER-INFRASTRUCTURE TOOLS AND TECHNOLOGIES

A Thesis

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Master of Science in Petroleum Engineering

in

The Department of Petroleum Engineering

by
Yaakoub Y. El Khamra

B.E. American University of Beirut, 2002
December 2009

Dedication

To my parents.

ii

Acknowledgments

This thesis would not have been possible without the encouragement and support of my
advisor, Professor Chris White, who challenged me to be a better engineer. It is a pleasure
to thank Professors Mayank Tyagi, Richard Hughes and Shantenu Jha for teaching me
more about engineering and science than I would have ever thought possible. This work
was motivated and partly funded the Ubiquitous Computing and Monitoring System for
Discovery and Management of Energy Resources (UCoMS project, Department of Energy
award No. DE-FG02- 04ER46136). I would also like to acknowledge the support of my
friends and colleagues at the Texas Advanced Computing Center; in particular Prof.
Kent Milfeld, Dr. Carlos Rosales and Mr. Bob Garza for his patience while reviewing
my manuscript . It is a pleasure to thank my friends and former colleagues at the Center
for Computation & Technology CCT, the developers of some of the infrastructure I used
in this work, as well as the faculty and personnel of the Craft and Hawkins Department
of Petroleum Engineering for putting up with me through all of those years.

iii

Table of Contents

Dedication . ii

Acknowledgements . iii

List of Figures . vi

Abstract . viii

Nomenclature . ix

Chapter
1 Introduction . 1

1.1 Motivation . 1
1.2 The Reservoir Simulators: BlackOil and Defiant 3
1.3 The EnKF: Blanc and Valiant . 4
1.4 The Workflow Manager: Lazarus and Relentless 4

2 The Reservoir Simulators . 6
2.1 Applications of Reservoir Simulation . 6
2.2 BlackOil Reservoir Simulator . 6

2.2.1 The CactusCode Framework . 6
2.2.2 Numerical Discretization: Finite Difference 7
2.2.3 BlackOil Implementation: Discretization 8
2.2.4 Capability . 12
2.2.5 Performance . 12

2.3 Defiant . 14
2.3.1 Governing Equations . 14
2.3.2 Two Phase IMPES . 16
2.3.3 Three Phase Newton–Raphson . 19
2.3.4 Approach: PETSc . 22

iv

2.3.5 Capability . 23
2.3.6 Validation . 24
2.3.7 Performance . 29

2.4 Practical Considerations . 30

3 The Ensemble Kalman Filter . 32
3.1 Approach . 32
3.2 Test Case . 35

4 The Workflow Manager . 37
4.1 About SAGA . 37
4.2 Approach . 38
4.3 Control Flow . 39
4.4 Autonomy . 41
4.5 Failure Modes . 41
4.6 Fault Tolerance . 43
4.7 Grid Awareness . 44

5 Integration and the Closed Loop . 45
5.1 Unifying the IO . 45
5.2 Integration of Sensor Data . 45

6 Conclusions and Future Work . 47
6.1 Defiant . 47
6.2 Valiant . 48
6.3 Relentless . 48

Bibliography . 49

Vita . 54

v

List of Figures

1.1 Tools developed . 2

2.1 Streamline simulation water saturation plot 13

2.2 Weak scaling of BlackOil . 14

2.3 Buckley–Leverett convergence test . 25

2.4 Five–spot pattern reserovir at T=15 days 26

2.5 Five–spot pattern reserovir at T=25 days 26

2.6 Five–spot pattern reserovir at T=40 days 27

2.7 Test Case 1 from Aziz and Settari, 10 grid points 27

2.8 Test Case 1 from Aziz and Settari, 20 grid points 28

2.9 Strong Scaling for Defiant . 28

2.10 Strong Scaling for Defiant with AMG . 29

3.1 Water saturation after EnKF assimilation 35

3.2 Water saturation without EnKF assimilation 36

4.1 Lazarus architecture diagram . 39

vi

4.2 Control flow in Lazarus . 40

4.3 Time to completion with Lazarus . 44

5.1 Sensor side LabVIEW vi . 46

vii

Abstract

The advent of the digital oil field and rapidly decreasing cost of computing creates oppor-
tunities as well as challenges in simulation based reservoir studies, in particular, real-time
reservoir characterization and optimization. One challenge our efforts are directed to-
ward is the use of real-time production data to perform live reservoir characterization
using high throughput, high performance computing environments. To that end we de-
veloped the required tools of parallel reservoir simulator, parallel ensemble Kalman filter
and a scalable workflow manager.

When using this collection of tools, a reservoir modeler is able to perform large
scale reservoir management studies in short periods of time. This includes studies with
thousands of models that are individually complex and large, involving millions of degrees
of freedom. Using parallel processing, we are able to solve these models much faster than
we otherwise would on a single, serial machine. This motivated the development of a fast
parallel reservoir simulator. Furthermore, distributing those simulations across resources
leads to a smaller total time to completion by making use of distributed processing.
This allows the development of a scalable high throughput workflow manager. Finally,
with thousands of models, each with millions of degrees of freedom, we end up with a
superfluity of model parameters. This translates directly to billions of degrees of freedom
in the reservoir study. To be able to use the ensemble Kalman filter on these models, we
needed to develop a parallel implementation of the ensemble Kalman filter.

This thesis discusses the enabling tools and technologies developed to address a spe-
cific problem: how to accurately characterize reservoirs, using large numbers of complex
detailed models. For these characterization studies to be helpful in making production
decisions, the time to solution must be feasible. To that end, our work is focused on
developing and extending these tools, and optimizing their performance.

viii

Nomenclature

K Permeability tensor

∆Smax The maximum permissible rate of change in saturation over the entire
domain

∆t Time step

∆tp Time step for the pressure solve

∆tS Time step for the saturation update

δ Kronecker delta

γl Specific gravity of phase l

λl = kkrl
µlBl

Transmissibility for phase l

µl Viscosity for phase l

φ Porosity of the porous media

φ0 Reference porosity for rock compressibility calculation

Ψk ensemble of augmented state vectors at time step k

ρl Density of phase l

J̃ Well index

εk Observation errors at time step k

A1, A2, A3 The cross sectional areas of the grid blocks in the x1, x2 and x3

directions

Ak State transition model which is applied to the previous state xk1

ix

Bl Formation volume factor for phase l

cR Rock compressibility factor

dobs,k Observations at time step k

G Gravitational constant

gk,i Simulated data from the model state xk,i at timestep k for ensemble
member i

H Measurement operator, to extracts the simulated data from the state
vector yf

h1, h2, h3 Distance between grid block centers in the x1, x2 and x3 directions

k11, k22, k33 Principle directional components of the permeability tensor

krl Relative permeability for phase l

Ne Number of ensemble members

p0 Reference pressure for rock compressibility calculation

Pcog Capillary pressure for the oil–gas contact

Pcow Capillary pressure for the oil–water contact

pl Pressure for phase l

ql Production/injection rate for phase l

Re Effective well radius

RSO Gas oil solubility

Sl Saturation for phase l

t Time

Tl,i Transmissibility for phase l in direction i

wk Model errors at time step K

x1, x2, x3 The three Cartesian axes

xk State vector at time step k

x

xk,i Vector containing variables for rock properties and flow system in
every grid block for ensemble member i

BQP Batch Queue Prediction

EnKF Ensemble Kalman Filter

EnOpt Ensemble optimization filter

EnRML Ensemble Randomized Maximum Likelihood filter

IMPES Implicit Pressure Implicit Saturation

SAGA Simple API for Grid Applications

xi

Chapter 1

Introduction

1.1 Motivation

Given a reservoir where the quantities of oil, gas and water, the locations and transmis-
sivities of faults, porosity and permeability and the multiphase flow properties such as
relative permeability and capillary pressure at all locations are known, it is conceptu-
ally possible to develop a mathematical model of the reservoir such that the outcome of
any action can be predicted. In other words, if all the model variables are known, the
outcome can be predicted (within tolerances of errors: formulaic, algorithmic, numeric),
typically with the use of a reservoir simulator that solves partial differential equations
numerically. This is called the forward problem.

In real life, we rarely have full, accurate knowledge of the reservoir. Direct obser-
vations are limited to the actual well locations that are sometimes thousands of feet
apart. Indirect observations are typically made at the surface, either at the well head
(production rates and pressures) or at distributed locations (e.g., seismic). In the in-
verse problem, the observations are used to determine the variables that describe the
system. Our efforts are directed at solving the inverse problem using ensemble Kalman
filters, thus obtaining a reliable reservoir characterization, and updating the reservoir
characterization using real-time direct and indirect observations. Furthermore, with the
new reservoir characterization, production parameters can be modified to increase per-
formance. This is the Closed Loop (Chen 2007; Jansen et al. 2009; Chen, Oliver, and
Zhang 2008; Wang, Li, and Reynolds 2007) scenario.

We developed a fast parallel reservoir simulator, a parallel ensemble Kalman filter
and a high throughput workflow manager with sensor data integration. The parallel
reservoir simulator allows us to run large (over 33 million grid points with Defiant)
simulations in short periods of time. The parallel ensemble Kalman filter allows us to

1

Figure 1.1: Tools developed. These tools are used in reservoir characterization and the “Closed
Loop” scenario

2

perform data assimilation of large numbers of ensembles of problems of that size. Finally,
the workflow manager runs the simulations in parallel, distributed across many resources
and optimized for a reduced total time to completion. Using these tools together (figure
1.1) we can run real time history matching and reservoir forecast studies involving large
numbers of detailed, complex models.

We will start by covering the basic tools and technologies developed that will enable
us to perform real-time reservoir characterization. The basic building blocks include a
reservoir simulator, an ensemble Kalman filter and a workflow-manager. These tools are
built on top of various computational frameworks, file format libraries, grid infrastructure
libraries and tools.

1.2 The Reservoir Simulators: BlackOil and Defiant

Reservoir simulators are typically used to answer questions such as where to place pro-
duction and injection wells, where to perforate the wells, how much oil will be produced
and at what time is the reservoir depleted. Other uses for reservoir simulators include
calculating the fraction of water produced (water cut) and how it varies over time, gas-oil
ratios, productive capacities and well treatment/workover possibilities.

Black oil models (sometimes referred to as β-models) are reservoir models that typi-
cally contain three distinct phases: oleic, aqueous and vapor, and three components: oil,
water and gas. Water and oil are assumed to be immiscible and do not exchange mass
or change phase. Gas is assumed to be soluble in oil but usually not in water (Aziz and
Settari 1979; Chen 2007). Furthermore, in black oil models, fluids are assumed to be
at a constant temperature and in thermodynamic equilibrium throughout the reservoir
(Aziz and Settari 1979; Chen 2007; Carlson 2003; Fanchi 2005).

We first developed a parallel reservoir simulator using the Cactus Code high per-
formance scientific computing framework. The BlackOil reservoir simulator is a basic
reservoir simulator that implements the implicit pressure explicit saturation (IMPES)
formulation for two phases (oil and water). The focus in BlackOil is on simplicity,
performance, scalability and portability rather than abstraction.

The second generation parallel reservoir simulator, Defiant (El-Khamra 2009a), is
a PETSc (Balay et al. 2001) based reservoir simulator that is both a library of tools for
developing reservoir simulators and a fully functional simulator. The Defiant platform
is as a general purpose reservoir simulation platform that is abstract and extensible.
Using Defiant, several reservoir simulators can be built with simple function calls; this
includes IMPES 2 and 3 phase simulator and a fully implicit 2 and 3 phase Newton-
Raphson solver.

3

1.3 The EnKF: Blanc and Valiant

Ensemble Kalman filters (EnKF) methods, Monte Carlo implementations of the Kalman
filter method, are widely used in science and engineering (Evensen 2006; Kalman 2005).
EnKF methods, first introduced by Evensen (Evensen 2006), are recursive filters that
can be used to handle large, noisy data; the data can be the results and parameters of
ensembles of models that are sent through the Kalman filter to obtain updated versions
of the state, model, and observation vectors.

Running the EnKF involves two steps (Evensen 2006; Oliver and Liu 2008): the
forecast where we run the forward model (or reservoir simulator) on an ensemble of
initial models (that are generated consistently with prior knowledge) and subsequently
assimilating actual reservoir production data.

Using abstract linear algebra tools from the PETSc (Balay et al. 2001) libraries, we
implemented a parallel ensemble Kalman filter method for BlackOil inside the Blanc
thorn and for Defiant in Valiant (El-Khamra 2009d). As is the case with Defiant,
Valiant is implemented as both a library of routines for loading state vectors and ob-
servations from Defiant in parallel, observational error generation and utility routines
as well as a parallel implementation of the ensemble Kalman filter. This allows us to
modularly extend Valiant to include ensemble randomized maximum likelihood filters
(EnRML; Oliver and Liu 2008) to handle stiff, non-linear data as well as ensemble opti-
mization for production parameter optimization. Valiant also includes a single processor
prototype EnRML code that is a precursor to yet–to–be–developed parallel EnRML code.

1.4 The Workflow Manager: Lazarus and Relentless

Lazarus (El-Khamra and Jha 2009; Jha et al. 2007; Lazarus3) is a small, portable
framework written in the Python scripting language that handles job-launching and data
migration. Lazarus uses the BigJob (Luckow et al. 2009) abstraction to launch reser-
voir simulations, the Simple API for Grid Applications: SAGA (Goodale and Shantenu
2005) file adapter Python bindings to move files from one machine to another and BQP
(Brevik, Nurmi, and Wolski 2006) data from the BQP command line tool to retrieve
the optimal location and number of big jobs required to satisfy the computation power
required. Lazarus also has a self–healing ability that allows it to run a user–defined test
on the data to make sure it is not corrupt, missing, or otherwise defective. If a simulation
is found to be defective it is resubmitted to be run again. This self–healing or “resurrec-
tion” ability overcomes some of the errors encountered when running large numbers of
jobs such as exceeding wall clock time, running out of disk space (resubmit on a different
machine) and of course node hardware failure. Lazarus cannot resolve simulator failure
caused by numerical problems or incorrect input data to the simulator. It will abort

4

the entire workflow when simulations fail repeatedly and flag these simulations for user
inspection. This prevents wasting service units with faulty simulations.

Lazarus is under constant development and has recently been moved to a new work-
flow management platform: Relentless (El-Khamra 2009b). Relentless, is a scalable
workflow manager, that can handle EnRML and EnOpt scenarios and is capable of
launching forecast studies after the history matching is complete, including geothermal,
gas shale and CO2 sequestration studies. It can also poll a sensor data spool (for ex-
ample: a simple MySQL database; AB MySQL 1995) for the availability of new sensor
data and perform data assimilation after its retrieval.

5

Chapter 2

The Reservoir Simulators

2.1 Applications of Reservoir Simulation

Correctly applied, reservoir simulators are powerful tools. Using reservoir simulators
as predictive tools is now a standard in the oil industry (Mattax 1990; Carlson 2003).
Reservoir simulators can be used to obtain performance predictions of formations under
different operating conditions. Operating conditions and selected development strategies
directly affect production, thereby revenue. Typically, hydrocarbon recovery projects
involve capital investments. Since reservoirs are large complex systems with irregular
geometries that are deep underneath the surface, it is not uncommon to have sporadic,
uncertain, limited information about their structure and behavior (Holstein 2007). These
uncertainties contribute to a risk factor associated with the investment made in recovering
the hydrocarbon. Therefore reservoir simulators can be used as risk assessment tools
to predict the behavior of the reservoir and optimize its performance (Fanchi 2005).
Simulators can also be used in reservoir characterization by solving the inverse problem,
before moving forward with the forecast. This improves our knowledge of the reservoir
and reduces the uncertainty in its future behavior (Oliver and Liu 2008). Other uses
for reservoir simulators (with extensions) include their use in CO2 sequestration studies,
underground water movement simulations and geothermal energy.

2.2 BlackOil Reservoir Simulator
2.2.1 The CactusCode Framework

As mentioned earlier, the BlackOil reservoir simulator is based on the Cactus Code
(Seidel 1999) framework. Cactus Code is a framework for high performance scientific
computing designed for scientists and engineers to develop and run codes for solv-
ing complex problems. Developing code for high performance parallel machines has

6

many challenges including scalability, efficiency (for computation, communication and
input/output), portability and flexibility. Frameworks such as Cactus allow scientists
and engineers to develop modules which can then be used together with modules written
by other researchers to solve complex computational problems. The framework provides
tools ranging from basic computational building blocks to complete toolkits that can be
used to solve complex problems in astrophysics, computational fluid dynamics or other
disciplines. Tools developed in the Cactus Code framework run on a wide range of archi-
tectures including desktop PCs, supercomputers and computational Grids. Cactus and
its associated toolkits are publicly available for download from the Cactus Code website
(Seidel 1999).

From an architectural standpoint, the Cactus Code framework consists of a central
part (the “flesh”) and code modules (“thorns”). The flesh serves as a module manager,
scheduling the routines of the thorns and passing data between thorns. Thorns perform
tasks ranging from setting up the computational grid (e.g., the CartGrid3D thorn),
decomposing the computational grid for parallel processing (e.g., the PUGH thorn),
providing boundary conditions (e.g., the Boundary thorn) and so on.

While all the actual code in the BlackOil reservoir simulator lives in a set of thorns
in Cactus, BlackOilEvolve and IDBlackOil, the routines that solve the linear system
of equations in parallel are called from the PETSc (Balay et al. 2001) library. This gives
BlackOil access to a large variety of Krylov subspace solvers (Saad 2003; Balay et al.
2001) and preconditioners that are otherwise unavailable natively in the Cactus Code
framework.

Since the most evolved drivers in the Cactus Code are those of the structured Carte-
sian mesh, it was convenient to implement BlackOil using a finite difference approxi-
mation (Patankar 1980). More specifically, a second order accurate central difference
scheme in space (for constant ∆x), first order in time.

2.2.2 Numerical Discretization: Finite Difference

Finite difference methods (Patankar 1980) are numerical methods that solve partial
differential equations. A full treatment of both theory and applications of finite differ-
ences can be found in numerical analysis references and numerical solution of differential
equations (e.g., Forsythe and Wasow 1960, Lapipus and Seinfeld 1971, Hilderbrand
1968).

When solving partial differential equations, we seek to find a function (or some dis-
crete approximation thereof) that satisfies certain constraints. These constraints can be
relationships between its various derivatives on a given region of space or time, and/or
behavior at the boundaries of the domain (Kreyszig 1998). The methods approximate
the solution derivatives with approximate discretized difference quotients (Chapra and
Canale 2000).

7

To approximate the first derivative which is, by definition:

f ′ (α) = lim
h→0

f (α+ h)− f (α)
h

(2.1)

we use a truncated Taylor polynomial that takes the form:

f ′ (α) ≈ lim
h→0

f (α+ h)− f (α)
h

(2.2)

Equation 2.2 is a first order approximation of the first derivative, as the higher
order terms of the Taylor polynomial are truncated. It is also a forward differencing
scheme that uses the function f evaluated at α+ h . Using the same Taylor polynomial
expansion, we can find second order accurate approximations to the first derivative:

f ′ (α) ≈ lim
h→0

f (α+ h)− f (α− h)
2h

(2.3)

Equation 2.3 is a centered difference discretization as we use the function f evaluated
at α+ h and α− h but not at α.

The second order accurate, centered, second derivative of function f evaluated at α
is given by:

f ′′ (α) ≈ lim
h→0

f (α+ h)− 2f (α) + f (α− h)
h2

(2.4)

This is the approximation we will use for discretizing the spatial second derivative of
the pressure terms in the partial differential equations that govern the flow through the
reservoir.

2.2.3 BlackOil Implementation: Discretization

The black oil (or β) model, used in both BlackOil and Defiant, assumes there are at
most three distinct phases: oil, water and gas (Aziz and Settari 1979). We make the
following assumptions:

• Oil has intermediate wettability

• Gas is the non–wetting phase

• Water and oil are immiscible and do not exchange mass or change phase

• Gas is soluble in oil but not in water

• All fluids are in constant temperature and in thermodynamic equilibrium

8

• Darcy’s law applies

With the assumptions made so far, the governing equations for water, oil and gas are
as follows:

∂

∂t

(
φSw
Bw

)
=

∂

∂x1

(
Tw1

(
∂Pw
∂x1

− γw
∂z

∂x1

))
+

∂

∂x2

(
Tw2

(
∂Pw
∂x2

− γw
∂z

∂x2

))
+

∂

∂x2

(
Tw3

(
∂Pw
∂x3

− γw
∂z

∂x3

))
+ q̃Ws (2.5)

∂

∂t

(
φSo
Bo

)
=

∂

∂x1

(
To1

(
∂Po
∂x1
− γo

∂z

∂x1

))
+

∂

∂x2

(
To2

(
∂Po
∂x2
− γo

∂z

∂x2

))
+

∂

∂x2

(
To3

(
∂Po
∂x3
− γo

∂z

∂x3

))
+ q̃Os (2.6)

9

and

∂

∂t

[
φ

(
Sg
Bg

+
RsoSo
Bo

)]
=

∂

∂x1

(
Tg1

(
∂Pg
∂x1
− γg

∂z

∂x1

))
+

∂

∂x2

(
Tg2

(
∂Pg
∂x2
− γg

∂z

∂x2

))
+

∂

∂x2

(
Tg3

(
∂Pg
∂x3
− γg

∂z

∂x3

))
+

∂

∂x1

(
RsoTo1

(
∂Po
∂x1
− γo

∂z

∂x1

))
+

∂

∂x2

(
RsoTo2

(
∂Po
∂x2
− γo

∂z

∂x2

))
+

∂

∂x2

(
RsoTo3

(
∂Po
∂x3
− γo

∂z

∂x3

))
+ q̃Gs (2.7)

the reservoir rates and standard rates (e.g., q̃Ws) are related by:

q̃Ws =
qWs

Bw
(2.8)

q̃Os =
qOs
Bo

(2.9)

q̃Gs =
qGs
Bg

+
qOsRso
Bo

(2.10)

the effective transmissibility of phase α is:

Tα =
krαK

µαBα
(2.11)

Since BlackOil considers only two-phases, we restrict ourselves to working with
equations 2.5 and 2.6. Also, in the BlackOil implementation of the two-phase IMPES
formulation we follow the nomenclature and methodology in Aziz and Settari (Aziz and
Settari 1979) very closely; however we solve for water pressure and saturation (Sw and
Pw) as opposed to oil pressure and saturation (So and Po). Therefore, the reduced set

10

of differential equations will have the following form:

∑
i

∂

∂xi

[
λw

(
∂pw
∂xi
− γw

∂z

∂xi

)]
=

∂

∂t

(
φ
Sw
Bw

)
+ qw (2.12)

∑
i

∂

∂xi

[
λo

(
∂po
∂xi
− γo

∂z

∂xi

)]
=

∂

∂t

(
φ
So
Bo

)
+ qo (2.13)

The oil saturation is related to the water saturation through the saturation constraint:
Sw + So = 1 and the oil pressure is related to the water pressure through the capillary
pressure constraint: Pcow(Sw) = Po−Pw, where the capillary pressure Pcow is a function
of water saturation.

C2o

C1w

[
∆Tw

(
∆Pn+1 − γw∆z

)]
+
[
∆To

(
∆Pn+1 + ∆Pncow − γo∆z

)]
=
C2o

C1w
C1p∆tP

n +
C2o

C1w
C1pQw + C2p∆tP

n +Qo (2.14)

where

C1w =
V

∆t
(φ/Bw)n+1 (2.15)

C2o =
V

∆t
(φ/Bo)n+1 (2.16)

C1p =
V

∆t
[(Swφ)nb′w + Snwb

n+1
w φ′] (2.17)

C2p =
V

∆t
[(Soφ)nb′o + Snwb

n+1
o φ′] (2.18)

Since there are two equations relating the saturations of oil and water (equations 2.12
and 2.13) to their pressures, we can algebraically manipulate these equations to “cancel
out” the saturations and obtain a single equation in the oil and water phase pressures;
the oil pressure is subsequently eliminated using the oil-water capillary pressure. The
resulting equation is equation 2.14.

This equation can be discretized using finite difference methods and solved implicitly
for the water pressure with an iterative solver and preconditioner from the PETSc
library. The saturation can be calculated by substituting the newly calculated pressure

11

back into the discretized form of:

∑
i

∂

∂xi

[
λw

(
∂pw
∂xi
− γw

∂z

∂xi

)]
=

∂

∂t

(
φ
Sw
Bw

)
+ qw (2.19)

Other physical/fluid property variables depend on the reservoir model parameters
such as porosity (affected by pressure through rock compressibility), density/volume
factor (affected by pressure), relative permeability (affected by saturation). Initial values
for these variables are set in IDBlackOil and their updated values are calculated at every
IMPES iteration.

2.2.4 Capability

The BlackOil reservoir simulator can handle regular, Cartesian–gridded, heterogeneous
reservoirs. Currently it supports only two phases (oil and water). It can also handle
multiply connected wells semi–implicitly and uses the directional, anisotropic Peaceman
(Peaceman 1977) well model. Since BlackOil is based on Cactus it cannot easily make
use of advanced PETSc features such as numerical Jacobian calculation. This makes
implementing fully implicit Newton–Raphson methods a difficult, major undertaking.

An important feature of the BlackOil reservoir simulator is its extensibility. Using
the Cactus Code computational framework allows us to organize the code base into
modules which we can swap, add or modify with ease. A good example of this is the
Streamline thorn, a streamline simulator based on BlackOil that shares most of the
code base of BlackOil but adds a streamline based saturation updating routine.

Figure 2.1 is a simple visualization using MatLAB of the streamlines traced across
a quarter of a five–point pattern reservoir simulated using BlackOil. The streamlines
are traced using the velocity fields, computed from the pressure field. The water satura-
tion (a nonlinear transform of time–of–flight, related via the slope of the fractional flow
curve; Datta-Gupta and King 2007) is computed using functional analysis inside the
Streamline thorn in Cactus.

2.2.5 Performance

In terms of performance, the BlackOil reservoir simulator has been designed to be a fast
reservoir simulator, reflected by the optimized code, run–time switching of solvers and
preconditioners, and optimized use of PETSc Mat, Vec and KSP functions to minimize
memory copy overhead. However, since we use Cactus Code drivers for parallelization
(which are incompatible with PETSc vectors) we are forced to make a direct copy (in
most cases across processors) to and from Cactus arrays to PETSc arrays. This can get
very costly, especially when it has to be done at every IMPES iteration.

12

Figure 2.1: Streamline simulation water saturation plot. Water Saturation is derived from time
of flight, calculated from BlackOil visualized with MatLAB

In addition to basic optimization, some OpenMP shared memory optimization prag-
mas were added throughout the BlackOil code. This added another layer of parallelism
to the existing MPI (distributed memory) parallelism and enables hybrid parallel runs.
The Streamline thorn was the first to receive the OpenMP (Chapman, Jost, and
van der Pas 2007) treatment which resulted in slight (less than 10%) but promising per-
formance gains. This was accomplished by adding multithreading support to the stream
tracing routine and the time–of–flight update routine.

As mentioned earlier, BlackOil is a parallel reservoir simulator; this means that the
execution time of the simulation is reduced significantly by running on more than just
one processor. In the case of BlackOil, we have successfully run the code on more than
a few thousand processors. Figure 2.2 shows the results of a weak scaling test with
BlackOil. In a weak scaling test, the problem size increases with the number of proces-
sors. Ideally, the time to completion should be a flat line. Due to increasing time spent
in communication between processors, the time to completion tends to increase. The
operational limits exist in the memory copy to–and–fro with PETSc, which contributes
to a large portion of the increase in time to completion. This places the performance of
BlackOil as average amongst other PETSc based applications (Salawdeh et al. 2008;
Anderson et al. 1999) and Cactus applications (Kamil, S. et al 2006).

13

Figure 2.2: Weak scaling of BlackOil. These runs were made with a constant local problem size
of 50x50x50 grid blocks, on Ranger and Kraken

2.3 Defiant

2.3.1 Governing Equations

Armed with experience from writing BlackOil, we set out to write an easy to understand,
develop and maintain reservoir simulator in Defiant. This being the case, special care
has been taken in making the code as readable and obvious as possible. To that end, we
adopted the notation and formulation used by Chen (Chen 2007).

The differential form of the equations we are trying to solve is still the same as in
BlackOil, effectively equations 2.5, 2.6, 2.7. In compact form:

∂

∂t
(
φSw
Bw

) = ∇ · (Tw[∇pw − γw∇z]) +
qWs

Bw
(2.20)

∂

∂t
(
φSo
Bo

) = ∇ · (T o[∇po − γo∇z]) +
qOs
Bo

(2.21)

∂

∂t
(φ(

Sg
Bg

+
RsoSo
Bo

)) = ∇ · (T g[∇pw − γw∇z]

+RsoT o[∇po − γo∇z]) +
qGs
Bg

+
RsoqOs
Bo

(2.22)

14

Where:

T α =
krα
µαBα

K, α = w, o, g (2.23)

and

γα = ραG, α = w, o, g (2.24)

Equations 2.20, 2.21 and 2.22 are in standard volumes. The volumetric flow rates
at the wells are as follows:

qWs = J̃
krw
µw

[pbh − pw − γw(zbh − z)] δ(x− xwell) (2.25)

qOs = J̃
kro
µo

[pbh − po − γo(zbh − z)] δ(x− xwell) (2.26)

qGs = J̃
krg
µg

[pbh − pg − γg(zbh − z)] δ(x− xwell) (2.27)

where the well index Windex is given by:

J̃ =
2πh1

√
k22k33

ln(re/rw) + s
(2.28)

For wells in the x1 direction. For wells in the x2 and x3 directions, the well indices
are respectively:

J̃ =
2πh2

√
k11k33

ln(re/rw) + s
(2.29)

J̃ =
2πh3

√
k11k22

ln(re/rw) + s
(2.30)

15

The effective well radius re in the x1, x2 and x3 directions is:

re =
0.14((k33/k22)1/2h2

2 + (k22/k33)1/2h2
3)1/2

0.5((k33/k22)1/4 + (k22/k33)1/4)
(2.31)

re =
0.14((k33/k11)1/2h2

1 + (k11/k33)1/2h2
3)1/2

0.5((k33/k11)1/4 + (k11/k33)1/4)
(2.32)

re =
0.14((k22/k11)1/2h2

1 + (k11/k22)1/2h2
2)1/2

0.5((k11/k22)1/4 + (k22/k11)1/4)
(2.33)

These equations (2.25, 2.26, 2.27) are known as the Peaceman model equations (Aziz
and Settari 1979; Chen 2007) for anisotropic wells.

2.3.2 Two Phase IMPES

The approach in solving the two phase IMPES formulation of the black oil equations in
Defiant is considerably different from the same formulation in BlackOil. In Defiant
the oil pressure: po is the pressure we are solving for, and is used interchangeably with p
in our equations. We follow the approach in (Chen 2007), starting with equations 2.20
and 2.21 and using the saturation and capillary pressure constraints:

Sw + So = 1, pw,i,j,k = po,i,j,k + pc,i,j,k (2.34)

We can eliminate the left hand sides and with some algebra arrive at the equation:

−∇· (Kλ∇p) = q̃ −∇· (K(λw∇pc + (λwγw + λoγo)∇z) (2.35)

Using finite difference discretization and some algebraic manipulation we can derive
the block–centered seven–point stencil scheme for the pressure equation (equation 2.35):

16

λ = λo + λw (2.36)
γ = λoγo + λwγw (2.37)

−(
A1λk11

h1Bo
)i+1/2,j,k(pi+1,j,k − pi,j,k) + (

A1λk11

h1Bo
)i−1/2,j,k(pi,j,k − pi−1,j,k)

−(
A2λk22

h2Bo
)i,j+1/2,k(pi,j+1,k − pi,j,k) + (

A2λk22

h2Bo
)i,j−1/2,k(pi,j,k − pi,j−1,k)

−(
A3λk33

h3Bo
)i,j,k+1/2(pi,j,k+1 − pi,j,k) + (

A3λk33

h3Bo
)i,j,k−1/2(pi,j,k − pi,j,k−1)

= −(
A1λwk11

h1Bw
)i+1/2,j,k(pc,i+1,j,k − pc,i,j,k) + (

A1λwk11

h1Bw
)i−1/2,j,k(pc,i,j,k − pc,i−1,j,k)

−(
A2λwk22

h2Bw
)i,j+1/2,k(pc,i,j+1,k − pc,i,j,k) + (

A2λwk22

h2Bw
)i,j−1/2,k(pc,i,j,k − pc,i,j−1,k)

−(
A3λwk33

h3Bw
)i,j,k+1/2(pc,i,j,k+1 − pc,i,j,k) + (

A3λwk33

h3Bw
)i,j,k−1/2(pc,i,j,k − pc,i,j,k−1)

−(
A1λoγok11

h1Bo
)i+1/2,j,k(zi+1,j,k − zi,j,k) + (

A1λoγok11

h1Bo
)i−1/2,j,k(zi,j,k − zi−1,j,k)

−(
A2λoγok22

h2Bo
)i,j+1/2,k(zi,j+1,k − zi,j,k) + (

A2λoγok22

h2Bo
)i,j−1/2,k(zi,j,k − zi,j−1,k)

−(
A3λoγok33

h3Bo
)i,j,k+1/2(zi,j,k+1 − zi,j,k) + (

A3λoγok33

h3Bo
)i,j,k−1/2(zi,j,k − zi,j,k−1)

−(
A1λwγwk11

h1Bw
)i+1/2,j,k(zi+1,j,k − zi,j,k) + (

A1λwγwk11

h1Bw
)i−1/2,j,k(zi,j,k − zi−1,j,k)

−(
A2λwγwk22

h2Bw
)i,j+1/2,k(zi,j+1,k − zi,j,k) + (

A2λwγwk22

h2Bw
)i,j−1/2,k(zi,j,k − zi,j−1,k)

−(
A3λwγwk33

h3Bw
)i,j,k+1/2(zi,j,k+1 − zi,j,k) + (

A3λwγwk33

h3Bw
)i,j,k−1/2(zi,j,k − zi,j,k−1)

+Q̃w,i,j,k + Q̃o,i,j,k (2.38)

As is evident from equation 2.38 we need to interpolate properties at the block–faces.
To interpolate relative permeabilities, we use two–point upstream weighting:

krw,i−1/2,j,k =
{

(1 + βi−1)krw,i−1,j,k − βi−1krw,i−2,j,k if ∆Φw,i−1/2,j,k < 0
(1 + β′i)krw,i,j,k − β′ikrw,i+1,j,k if ∆Φw,i−1/2,j,k > 0

(2.39)

17

βi−1 = hi−1/(2hi−3/2) (2.40)

β′i = hi/(2hi+1/2) (2.41)

Similar expressions can be derived for all grid–block faces and all phases. The two–
point upstream weighting is second order accurate, and gives sharp solutions to fronts
on a small number of grid–blocks (Chen 2007).

The (kA/h) term is treated as a harmonic (series) mean:

(
A1k11

h1
)i±1/2,j,k =

2(A1k11)i,j,k(A1k11)i±1,j,k

(A1k11)i,j,k(h1)i±1,j,k + (A1k11)i±1,j,k(h1)i,j,k
(2.42)

and similar expressions can be derived for the x2 and x3 directions.
The density by viscosity term: (ρ/ µ) is interpolated using pore volume fraction as

follows:

β =
φi,j,kh1,i,j,kh2,i,j,kh3,i,j,k

(φi,j,kh1,i,j,kh2,i,j,kh3,i,j,k + φi±1,j,kh1,i±1,j,kh2,i±1,j,kh3,i±1,j,k)

(
ρ

µ
)i±1/2,j,k = β(

ρ

µ
)(pi,j,k) + (1− β)(

ρ

µ
)(pi±1,j,k) (2.43)

This is a weighted evaluation described in Chen 2007. We use compressibility equa-
tions for all fluids and the porous media

φ = φ0(1 + cR(p− p0)) (2.44)

The implicit solution of the pressure equation is typically the most expensive op-
eration (Chen 2007). Since the pressure changes in porous media are less rapid than
saturation changes, we can take a larger time step for pressure than we do for satura-
tion. In Defiant, this is implemented as an adaptive time step improved IMPES (Chen
2007). The formulation is straightforward: for a positive integer N let 0 = t0 < t1 < t2 <
. . . < tN = T be the time domain partitions for the pressure solve. Let time partition:
Jn = [tn, tn+1] be the time partition for the saturation updates, and let Jn be partitioned
into M saturation update partitions such that Jn,0 → Jn,M span Jn, i.e. at time tn,m

we are operating with the tn pressure solution and the mth saturation update.
In improved adaptive–time step IMPES, the aim is to calculate δtn,m+1

s such that:

(
∂Sn,m

∂t
)max = max

i,j,k
(
Sn,m+1 − Sn,m

δt
) < ∆Smax (2.45)

where ∆Smax is the maximum permissible rate of change in saturation over the entire

18

domain. Therefore:

δtn,m+1 = ∆Smax/(Sn,m+1 − Sn,m) (2.46)

In terms of actual implementation, we use the saturation update equation to find
the maximum rate of change of saturation across the domain, then divide the maximum
permissible rate of change by that value. The resulting value would be the new δtn,m+1

and we can use that to update the saturation. A more detailed analysis of the improved
adaptive time–step IMPES formulation can be found in (Chen 2007).

2.3.3 Three Phase Newton–Raphson

Since Defiant was designed with extensibility and flexibility as primary features, it was
an easy task to re–use most of the subroutines written for the two phase IMPES solver
for a three phase IMPES formulation as well as two and three phase Newton–Raphson
fully implicit solvers. Since we will be working with coupled nonlinear equations we chose
to use a Newton–Raphson formulation (Kreyszig 1998; Chapra and Canale 2000; Chen
2007). The residuals are as follows:

Rlw,i,j,k =
1
δt

(V [(
φSw
Bw

)l − (
φSw
Bw

)n])i,j,k

− T lw1,i+1/2,j,k(p
l
w,i+1,j,k − plw,i,j,k)− T lw1,i−1/2,j,k(p

l
w,i,j,k − plw,i−1,j,k)

− T lw2,i,j+1/2,k(p
l
w,i,j+1,k − plw,i,j,k)− T lw2,i,j−1/2,k(p

l
w,i,j,k − plw,i,j−1,k)

− T lw3,i,j,k+1/2(plw,i,j,k+1 − plw,i,j,k)− T lw3,i,j,k−1/2(plw,i,j,k − plw,i,j,k−1)

− (Twγw)l1,i+1/2,j,k(zw,i+1,j,k − zw,i,j,k)− (Twγw)l1,i−1/2,j,k(zw,i,j,k − zw,i−1,j,k)

− (Twγ − w)l2,i,j+1/2,k(zw,i,j+1,k − zw,i,j,k)− (Twγw)l2,i,j−1/2,k(zw,i,j,k − zw,i,j−1,k)

− (Twγ − w)l3,i,j,k+1/2(zw,i,j,k+1 − zw,i,j,k)− (Twγw)l3,i,j,k−1/2(zw,i,j,k − zw,i,j,k−1)

− Q̃lWs,i,j,k (2.47)

19

Rlo,i,j,k =
1
δt

(V [(
φSo
Bo

)l − (
φSo
Bo

)n])i,j,k

− T lo1,i+1/2,j,k(p
l
o,i+1,j,k − plo,i,j,k)− T lo1,i−1/2,j,k(p

l
o,i,j,k − plo,i−1,j,k)

− T lo2,i,j+1/2,k(p
l
o,i,j+1,k − plo,i,j,k)− T lo2,i,j−1/2,k(p

l
o,i,j,k − plo,i,j−1,k)

− T lo3,i,j,k+1/2(plo,i,j,k+1 − plo,i,j,k)− T lo3,i,j,k−1/2(plo,i,j,k − plo,i,j,k−1)

− (Toγo)l1,i+1/2,j,k(zo,i+1,j,k − zo,i,j,k)− (Toγo)l1,i−1/2,j,k(zo,i,j,k − zo,i−1,j,k)

− (Toγo)l2,i,j+1/2,k(zo,i,j+1,k − zo,i,j,k)− (Toγo)l2,i,j−1/2,k(zo,i,j,k − zo,i,j−1,k)

− (Toγo)l3,i,j,k+1/2(zo,i,j,k+1 − zo,i,j,k)− (Toγo)l3,i,j,k−1/2(zo,i,j,k − zo,i,j,k−1)

− Q̃lOs,i,j,k (2.48)

Rlo,i,j,k =
1
δt

(V [(
φSg
Bg

+
RsoφSo
Bo

)l − (
φSg
Bg

+
RsoφSo
Bo

)n])i,j,k

− T lg1,i+1/2,j,k(p
l
g,i+1,j,k − plg,i,j,k)− T lg1,i−1/2,j,k(p

l
g,i,j,k − plg,i−1,j,k)

− T lg2,i,j+1/2,k(p
l
g,i,j+1,k − plg,i,j,k)− T lg2,i,j−1/2,k(p

l
g,i,j,k − plg,i,j−1,k)

− T lg3,i,j,k+1/2(plg,i,j,k+1 − plg,i,j,k)− T lg3,i,j,k−1/2(plg,i,j,k − plg,i,j,k−1)

− (Tgγg)l1,i+1/2,j,k(zg,i+1,j,k − zg,i,j,k)− (Tgγg)l1,i−1/2,j,k(zg,i,j,k − zg,i−1,j,k)

− (Tgγg)l2,i,j+1/2,k(zg,i,j+1,k − zg,i,j,k)− (Tgγg)l2,i,j−1/2,k(zg,i,j,k − zg,i,j−1,k)

− (Tgγg)l3,i,j,k+1/2(zg,i,j,k+1 − zg,i,j,k)− (Tgγg)l3,i,j,k−1/2(zg,i,j,k − zg,i,j,k−1)

− (RsoTo)lo1,i+1/2,j,k(p
l
o,i+1,j,k − plo,i,j,k)− (RsoTo)lo1,i−1/2,j,k(p

l
o,i,j,k − plo,i−1,j,k)

− (RsoTo)lo2,i,j+1/2,k(p
l
o,i,j+1,k − plo,i,j,k)− (RsoTo)lo2,i,j−1/2,k(p

l
o,i,j,k − plo,i,j−1,k)

− (RsoTo)lo3,i,j,k+1/2(plo,i,j,k+1 − plo,i,j,k)− (RsoTo)lo3,i,j,k−1/2(plo,i,j,k − plo,i,j,k−1)

− (RsoToγo)l1,i+1/2,j,k(zo,i+1,j,k − zo,i,j,k)− (RsoToγo)l1,i−1/2,j,k(zo,i,j,k − zo,i−1,j,k)

− (RsoToγo)l2,i,j+1/2,k(zo,i,j+1,k − zo,i,j,k)− (RsoToγo)l2,i,j−1/2,k(zo,i,j,k − zo,i,j−1,k)

− (RsoToγo)l3,i,j,k+1/2(zo,i,j,k+1 − zo,i,j,k)− (RsoToγo)l3,i,j,k−1/2(zo,i,j,k − zo,i,j,k−1)

− Q̃lGs,i,j,k (2.49)

where the l subscript denotes the value at the lth Newton–Raphson iteration between

20

the n and n+ 1 time–steps. We define the unknown and residual vectors:

y = (p, Sw, So)T , Rl
i,j,k = (Rlw,i,j,k, R

l
o,i,j,k, R

l
g,i,j,k)

T (2.50)

The superscript T indicates a transpose. The application of the Newton–Raphson iter-
ation to equations: 2.47, 2.48 and 2.49, yields a linear system of equations in terms of
δyl+1:

∂Rl
i,j,k

∂yli,j,k−1

δyl+1
i,j,k−1 +

∂Rl
i,j,k

∂yli,j−1,k

δyl+1
i,j−1,k

+
∂Rl

i,j,k

∂yli−1,j,k

δyl+1
i−1,j,k +

∂Rl
i,j,k

∂yli+1,j,k

δyl+1
i+1,j,k

+
∂Rl

i,j,k

∂yli,j+1,k

δyl+1
i,j+1,k +

∂Rl
i,j,k

∂yli,j,k+1

δyl+1
i,j,k+1 = −Rl

i,j,k+1 (2.51)

which is the block seven-point stencil in the increment δyl+1 and Jacobian:

∂R

∂y
=


∂Rw
∂p

∂Rw
∂So

∂Rw
∂Sw

∂Ro
∂p

∂Ro
∂So

∂Ro
∂Sw

∂Rg

∂p
∂Rg

∂So

∂Rg

∂Sw

 (2.52)

We solve the following system of equations for δyl+1:

∂R

∂y
δy = −R (2.53)

The solution to the system of equations is updated:

yl+1 = yl + δyl+1 (2.54)

until yl+1 is equal to yl. In Defiant we use a matrix coloring routine (Balay et al. 2001;
Hossaina and Steihaug 2004), modified from a built–in finite difference coloring routine,
to compute the Jacobian numerically. While computationally more expensive than a
symbolic calculation of the Jacobian, it allows us to handle table–based interpolated
values for capillary pressures and relative permeabilities.

21

2.3.4 Approach: PETSc

PETSc (Balay et al. 2001), the “Portable Extensible Toolkit for Scientific Computing”
is a suite of data structures and routines for the scalable (parallel) solution of scientific
applications modeled by partial differential equations. PETSc contains scalable parallel
preconditioners, Krylov subspace solvers, parallel Newton–based nonlinear solvers, par-
allel time–stepping (ODE) solvers as well as parallel linear algebra routines and data
structures. Since PETSc solvers and data structures use the standard message passing
interface (MPI) for parallel computing allowing it to scale well on thousands of proces-
sors, it made a logical choice as an underlying infrastructure for a high performance
reservoir simulator.

PETSc supports distributed meshes and arrays: parallel data–structures that are
very useful for geometric domain–decomposition (divide and conquer) based parallelism.
Therefore we made a design decision to exclusively use PETSc building blocks in Defiant.
PETSc also contains many vector, matrix and array routines that allow us to write dense,
short code that is very close in formulation to the reference material (Chen 2007) that is
easy to read, understand and maintain. Finally, PETSc also contains interfaces to other
packages that provide everything from algebraic multigrid (AMG through BoomerAMG
and HYPRe; Falgout, Jones, and Yang 2006) to visualization through VTK (Moore
1998).

Extensibility, flexibility and scalability are at the core of Defiant, as well as ab-
stractions. As PETSc internal functionality improves (solvers, preconditioners, data
structures), the improvements will percolate to Defiant without any code modification.
This includes graph based matrix coloring algorithms (Hossaina and Steihaug 2004;
Balay et al. 2001) for efficient Jacobian calculations (as opposed to our modified finite
difference coloring routine). The coloring routines assign the same color to columns of
a matrix that do not share rows (i.e. have no non–zero elements in that row; Hwang
and Cai 2005). The Jacobian terms of columns with the same color can be computed
simultaneously, which is faster than computing the Jacobian element by element across
the entire matrix.

Using PETSc native distributed meshes and arrays removes the performance issue
of memory copies to and from solver routines that BlackOil suffered from: the PETSc
distributed meshes and arrays are fully compatible with the matrix and vector data
structures that we use for solving the linear system of equations. Those are the same
parallel/distributed matrix and vector data structures that we use in the parallel imple-
mentation of the ensemble Kalman filter thus unifying communication between ensembles
and the EnKF implementation.

Common file formats, memory to memory copies and data streaming/fetching are
possible data transfer options. We can pass vector pointers from ensemble members
to the EnKF for direct memory access, provide local files or remote files (compressed

22

or uncompressed) through ftp/http as well as stream data through sockets. With this
variety of options, it is possible to perform history matching studies in various modes of
simulation coupling: tight, medium and loosely coupled simulations and varied levels of
distribution: local, shared file–system and remote.

2.3.5 Capability

As it stands, Defiant has all the functionality required to solve 2 and 3 phase black oil
systems, through both IMPES and fully implicit Newton–Raphson formulations. De-
fiant also has improved adaptive time–step IMPES, linearized coupled well systems,
monitoring well, coupling hooks to hydraulic well models (more on that in the future
work section), as well as coupled reservoir simulation capabilities. The object–oriented
design allows us to couple two or more reservoir simulations into one larger system that
can be solved implicitly through any common parameter.

In short, Defiant is:

• An abstract, extensible, parallel, scalable, high performance reservoir simulation
platform

• Supports non–uniform geometry, possible extension to adaptive mesh refinement
through SAMRAI (Wissink et al. 2001)

• Has advanced interpolation routines: two–point weighted upstreaming for relative
permeability to resolve sharp features with a low number of grid blocks

• Contains several built–in example simulators: 2/3 phase adaptive time–step im-
proved IMPES and 2/3 fully implicit Newton Raphson simulators

• Numerically computes the Jacobian allowing full nonlinear treatment of table–
based PVT relations

• Includes directional, anisotropic, non–uniform Peaceman well models, extensible to
other well models with hooks to hydraulic models

• Supports geometric multigrid with current restrictions on well and perforation han-
dling

• Supports algebraic multigrid with the BoomerAMG preconditioner in HYPRe (Fal-
gout, Jones, and Yang 2006)

• Supports implicit treatment of perforated grid blocks connected through wells,
which should allowthe incorporation of fish–spine and multi–lateral wells (Thuwaini,
Shenawi, and Yuen 2009)

23

• Has built in support for tables including PVT tables and capillary–pressure and
saturation tables

• Includes several 2 and 3 phase relative permeability models: Corey, Narr and
Henderson, Narr and Wygal, Stones models I and II (Chen 2007)

• Contains the computational kernel to compute the Jacobian for compositional flow,
and work is progressing on finishing the compositional model support

• Uses PETSc vector data structures and distributed arrays, which allows for fast
local and remote IO, checkpointing and memory–to–memory copies as well as full
compatibility with the parallel EnKF in Valiant

• Follows the exact variable naming notation in Chen’s “Reservoir Simulation: Math-
ematical Techniques in Oil Recovery” (Chen 2007), making the book the effective
manual and documentation for the code

• Provides support to coupling analysis simulations: coupling to the OpenFOAM
(OpenCFD Corporation 2000) computational fluid dynamics package for CFD well
modelling and to OpenLB (Latt 2006) for lattice Boltzmann simulations of perfo-
rations, gravel–packs, and sand control(more on this in the future work section)

This is not to say Defiant does not have limitations. We have a very high number
of collective operations in MPI, which is a major bottleneck that needs to be addressed.
Defiant cannot support unstructured meshes, it needs an outer layer of boundary grid
points that increases as the problem size increases, wasting valuable memory space. This
cost will increase significantly when we start working with multicomponent systems.
Defiant also does not have any initial data generation routines, nor does it have any
aquifer support models or complex boundary conditions. Those are all missing features
that are being implemented.

2.3.6 Validation

To validate Defiant we ran a series of canonical cases, including a convergence study
of the Buckley–Leverett problem (Buckley and Leverett 1942) with varying grid block
numbers and time–steps. The same experiment was conducted in the x1, x2 and x3

directions (after turning off gravity) to ensure no programming errors or index errors
were introduced and that the formulation is consistent in all directions. The results in
figure 2.3 show excellent convergence as well as the ability of the two–point upstream
weighting interpolation of relative permeability to resolve the sharp front. This confirms
that we get the same answer as we change the number of grid blocks and change the
time–step. This is important as we run larger and more complex problems. Figure 2.3

24

Figure 2.3: Buckley–Leverett convergence test. This problem is solved using Defiant on 11, 21
and 41 grid blocks at Tp = 4000 days and compared against analytical solution

also includes the analytical solution for comparison. The analytical solution was kindly
provided by Professor Chris White.

We also ran a quarter five–spot pattern reservoir in three planes x1, x2, x1, x3 and
x2, x3. The results at different times are in figures 2.4, 2.5, 2.6.

To compare against a standard implementation, we ran “Test Case 1” from Aziz
and Settari (Aziz and Settari 1979). This is a simple Buckley–Leverett problem of a
reservoir 1000 ft long, 10,000 ft cross–sectional area, and 426.5 cubic feet injection and
production rates. The water saturation profile for the 10 and 20 grid point problems at
T = 1500 days are presented in figures 2.7 and 2.8 respectively. We managed to capture
the correct front location using adaptive time step improved IMPES.

25

Figure 2.4: Five–spot pattern reserovir at T=15 days. Here we show the water saturation,
captured well by the two–point upstream weighting method

Figure 2.5: Five–spot pattern reserovir at T=25 days

26

Figure 2.6: Five–spot pattern reserovir at T=40 days

Figure 2.7: Test Case 1 from Aziz and Settari, 10 grid points

27

Figure 2.8: Test Case 1 from Aziz and Settari, 20 grid points

Figure 2.9: Strong Scaling for Defiant. These runs were made on Ranger with a 256x256x256
problem

28

Figure 2.10: Strong Scaling for Defiant with AMG. These runs were made on Ranger with a
128x128x128 problem with and without algebraic multigrid

2.3.7 Performance

Early benchmarks of Defiant are promising. With an optimized compilation of PETSc
we are able to scale up to 8192 cores without considerable difficulty. Figures 2.9 and
2.10 show the results of strong scaling benchmarks run on Ranger (TACC UT Austin
2006). In strong scaling benchmarks, the size of the problem remains constant as we
increase the number of cores. Plotting the results on a log–log scale, the ideal scaling
case would appear as a straight line with a −1 slope.

For these benchmarks, we used a block Jacobi preconditioner and a conjugate gra-
dient Krylov subspace solver. We also tried using the HYPRe (Falgout, Jones, and
Yang 2006) BoomerAMG preconditioner to solve the system of equations with an al-
gebraic multigrid preconditioner and a Richardson iterative solver (figure 2.10). The
performance improvements were considerable for low core counts but as the number of
cores increased, the time spent in communication increased. Our experience thus far
shows that BoomerAMG is best suited for smaller problems running on smaller number
of cores.

There are some interesting statistics regarding communication: on a sample 256x256x256
problem run on 512 cores we encountered an inordinately high number of calls to the
function MPI Allreduce, a total of 2.71928e + 07 calls, making up 94.73% of the time
spent in MPI communication and 27.24% of the total time in the simulation. While the

29

function MPI Allreduce is optimized in the mvapich2 (MVAPICH Development Team,
OHU 2002) implementation of MPI (MPI Forum Standards Committee 1994) used on
Ranger (TACC UT Austin 2006), this many function calls is indicative of a bottleneck
that will be investigated. We also noticed a relatively small number of grid points that
we could fit in the 2GB/core: 33,554,432 in a 256x256x512 was the largest size problem
we could fit in 1024 cores. Using memory profiling tools and event logging in PETSc, it
should be possible to determine the cause of the increase in memory footprint.

2.4 Practical Considerations

A 100x100x100 grid point problem run for one iteration with Defiant takes 32.73 seconds
to complete on 8 cores with Boomer algebraic multigrid and HYPRe. The same problem
run with BlackOil takes 1 minute 19 seconds with a conjugate gradient solver and a
block Jacobi preconditioner. Defiant has performance advantages over BlackOil, and as
PETSc, Boomer and HYPRe improve, the Defiant will make use of these improvements
with no changes to the source code, which is not the case with BlackOil. At the moment,
Defiant has a larger memory footprint than BlackOil. This is another performance
issue that will be addressed when the optimization development cycle starts.

Consider our 32.73 seconds per iteration 1 million grid point problem. Using a one
day ∆tp, we can finish a one year simulation of the reservoir in 3.2 hours (in, for instance,
an ensemble inversion or optimization method; EnKF, EnOpt, or EnRML) with Defiant
(7.8 hours with BlackOil) running on 8 cores. Running 128 simulations concurrently
with Lazarus, we would need 1024 cores. If Lazarus requests 1024 cores for 48 hours (a
typical job duration on Ranger), it would be able to perform a history matching study
of the reservoir over 14.8 years, or a forecast of 128 ensemble members for the next 14.8
years (provided we have assimilated all the previous historical data).

Consider a hypothetical scenario where we start with a ten day deadline before a
development decision is due. To make this decision, detailed reservoir management
studies spanning production forecast for the next fifteen years need to be performed.
With Defiant, the reservoir modeler would finish the study in two days and have eight
days for production optimization studies or certainty analysis. Using BlackOil, running
the same fifteen years worth of forecasts will take 4.8 days, leaving slightly over five
days for certainty analysis and optimization. If the reservoir modeler were to start from
scratch and generate new models and perform history matching, of the past fifteen years
in addition to the forecasts, a total of four days would be required with Defiant and
with BlackOil, the deadline would be missed.

The few days saved when running a faster simulator give the reservoir modeler a sub-
stantial advantage in reservoir management and optimization, especially in cases where
initial studies indicate the need for more detailed simulations, or for critical scenarios

30

where multiple studies need to be performed. These simulations will naturally be more
detailed and require longer time to solution that would be only be available with fast
reservoir simulators.

31

Chapter 3

The Ensemble Kalman Filter

3.1 Approach

The state of the model xk can be described as a linear/linearized function of its previous
state xk−1. The state vector xk consists of variables for rock and fluid properties in every
grid block. This includes grid block permeabilities, porosities, saturations, pressures and
PVT properties. g(xk) is the simulated data from the model state xk. The measurements,
dobs are related to the state variables through g(xk). This is described in equation 3.1.

xk = Akxk−1 + wk−1

dobs = g(xk) + εk
(3.1)

In the case of a two phase reservoir, the state vector xk is as follows:

xk = [φ, ln(k11), ln(k22), ln(k33), Sw, Pw] (3.2)

The collection of ensemble state vectors can be placed into a single column of an
ensemble matrix as follows:

Ψk = {yk,1, yk,2, yk,3, . . . , yk,Ne}
yk,i = [(xk,i)T , g(xk,i)T]T

(3.3)

In the forecast stage, we run the reservoir simulator. Effectively, we are advancing
forward in time for all ensemble members:

yfk,i = f(yk−1,i) ∀i ∈ {1, . . . , Ne} (3.4)

32

where f(.) is the reservoir simulator.
In the data assimilation stage: we update the variables describing the state of the

system to honor the observations:

yj = yfj +Ke(dj −Hyfj) ∀j ∈ {1, . . . , Ne} (3.5)

Where Ke is the ensemble Kalman gain, and H is the measurement operator that
extracts the simulated data from the state vector yf : Hk = [0 I]. dj is a vector of ob-
servational data that has been perturbed with random errors from the same distribution
as the measurement error: dj = dobs + εj ∀j ∈ {1, . . . , Ne}.

The ensemble Kalman gain is given by:

Ke = CΨ,eH
T (HCΨ,eH

T + CD)−1 (3.6)

To compute the Kalman gain matrix, we use the following formulation:

Le =
1√

Ne − 1
(Ψ− ȳf)

Ke = Le(HLe)T [(HLe)(HLe)T + CD]−1

(3.7)

There are at least two distinct approaches to implementing the data assimilation
stage. The serial approach is where for all ensemble members, the state vector is read
from disk, the mean vector updated and the HLe matrix computed (this is done to
reduce memory overhead of having to load all state vectors). The parallel approach
treats the entire problem as a linear algebra problem that is written into C code using
PETSc vectors and matrices, and PLAPACK (Alpatov et al. 1997) for the dense matrix
inversion. Using a parallel layout for the state vectors, the observations, and all the
matrices, allows us to load a larger number of significantly larger ensembles. The parallel
implementation of the EnKF, the PEnKF, has been implemented in the Blanc thorn,
and uses the Bleu thorn for IO. The Bleu thorn is also used by the BlackOil reservoir
simulator for IO.

The second implementation of the PEnKF is the Valiant (El-Khamra 2009d) plat-
form. Building on the success of the architecture in Defiant, we set out to implement
a similar platform in Valiant: a library and an implementation with reusable modu-
lar components with flexibility and extensibility at its core, highest practical level of
abstraction as well as strict adherence to a clear, concise notation and documentation.
The reference material for Valiant in this case is “Inverse Theory for Petroleum Reser-
voir Characterization and History Matching” by Oliver and Liu 2008. Valiant contains
functions to read state vectors and observations from Defiant (compatible with NetCDF
and ADCIRC formats; Unidata 1984; Luettich and Scheffner 1992), functions to forward
scatter and gather state vectors into ensemble columns and, of course, the scalable imple-

33

mentation of the parallel ensemble Kalman filter. In Valiant, the dense ensemble matrix
is kept in RAM, (as opposed to read and written from and to disk), and is partitioned
across cores column–wise and row–wise (equation 3.8).

Ψk =



x0,procid=0 x1,procid=0 . . . xNe−1,procid=nprocs−4 xNe,procid=nprocs−4

x0,procid=0 x1,procid=0 . . . xNe−1,procid=nprocs−4 xNe,procid=nprocs−4

x0,procid=0 x1,procid=0 . . . xNe−1,procid=nprocs−4 xNe,procid=nprocs−4

x0,procid=1 x1,procid=1 . . . xNe−1,procid=nprocs−3 xNe,procid=nprocs−3

x0,procid=1 x1,procid=1 . . . xNe−1,procid=nprocs−3 xNe,procid=nprocs−3

x0,procid=2 x1,procid=2 . . . xNe−1,procid=nprocs−2 xNe,procid=nprocs−2

x0,procid=2 x1,procid=2 . . . xNe−1,procid=nprocs−2 xNe,procid=nprocs−2

x0,procid=2 x1,procid=2 . . . xNe−1,procid=nprocs−2 xNe,procid=nprocs−2

x0,procid=2 x1,procid=2 . . . xNe−1,procid=nprocs−2 xNe,procid=nprocs−2

x0,procid=3 x1,procid=3 . . . xNe−1,procid=nprocs−1 xNe,procid=nprocs−1

x0,procid=3 x1,procid=3 . . . xNe−1,procid=nprocs−1 xNe,procid=nprocs−1

x0,procid=4 x1,procid=4 . . . xNe−1,procid=nprocs xNe,procid=nproc



(3.8)

In equation 3.8 we assemble the ensemble member state vectors xk into the full
ensemble matrix Ψk. For example, x0 is the state vector of the first ensemble member
and resides in the first column of the Ψ matrix. Ψk is then partitioned row–wise and
column–wise across the available processors, leading to chunks of the ensemble state
vector xk,procid residing on processors with rank procid. In our example x0 is partitioned
across processors 0,1,2,3 and 4.

Valiant has the capability to handle large systems containing millions of degrees
of freedom. This should not be the sole motivation to assimilating large numbers of
ensemble members frequently. According to Li (2008), the EnKF can become unstable
when the error covariance is:

• Underestimated: magnitude of variances were reduced as more data were assimi-
lated

• Overestimated: the observations are in a distance dependent manner where the
noise (the error) of the observations is larger than the signal (magnitude of the
covariance)

These issues can be addressed to some extent with covariance inflation and localization
(Li 2008).

34

Figure 3.1: Water saturation after EnKF assimilation. These are the profiles of an ensemble of
20 members, with progressive observation data assimilation from the base case using Valiant

3.2 Test Case

To test Valiant, we conducted a small history matching study of a perturbed Buckley
Leverett problem. Using a random number generator from the SPRNG (Mascagni
and Srinivasan 2000) routines in PETSc, we added noise to the porosity and natural
logarithm of permeability. We then proceed to run the ensembles along with the base
case, assimilating observations from the base case every 10 iterations (Figure 3.1). For
comparison we also run the original perturbed models without data assimilation (Figure
3.2).

Comparing figures (Figure 3.1) and (Figure 3.2), we can see a narrower spread
across the front. In this test study, Valiant and Defiant were run in parallel on the
Ranger supercomputer using Relentless. While the problem is not impressive in size
or complexity (1090x20 degrees of freedom) , it paves the way to running larger, more
complex problems now that the infrastructure is in place.

35

Figure 3.2: Water saturation without EnKF assimilation. These are the water saturation profiles
of the original perturbed ensemble members

36

Chapter 4

The Workflow Manager

To submit simulations of ensemble members to supercomputing resources and collect
their data for the data assimilation stage, we need a reliable job manager that is lightweight,
portable and capable of handling various computational resources: grids, Condor pools
and clouds. To that end we developed Lazarus.

Lazarus has advanced autonomic features such as built in fault tolerance: it checks
the output files of the reservoir simulations for errors and resubmits failed jobs. It also
has an integrated interface to the Batch Queue Prediction “BQP” tools. This allows
Lazarus to find out which supercomputer/queue combination has the least waiting time
for simulations of a given size and duration hence significantly reducing the total time to
completion. Lazarus is also scalable: it has submitted tens of thousands of simulations
to several supercomputers and Condor pools.

In its current form, Lazarus runs EnKF workflows, and will be integrated in a wider
range of workflow management tools: Relentless (El-Khamra 2009b). Relentless is a
set of common workflow scripts that include ensemble Kalman filter workflows, ensemble
randomized maximum likelihood filter workflows, ensemble optimization workflows and
ensemble reservoir operational lifetime workflows (CO2 sequestration studies). Relent-
less will also make use of various SAGA adapters including globus, Condor and cloud
adapters

4.1 About SAGA

The Simple API for Grid Applications (SAGA) (Goodale and Shantenu 2005) is an
API standardization effort within the Open Grid Forum (OGF) an international stan-
dards development body concerned primarily with standards for distributed computing.
The specification and implementations of the SAGA API has been guided by detailed
examination of the requirements expressed by existing and emerging distributed com-

37

puting applications in order to find common themes and motifs that can be reused across
more than one use–case. The main governing design principle for the SAGA API is the
80:20 Rule: “Design an API with 20% complexity that serves 80% of the application use
cases”. They are intended to cover the most common application–level distributed com-
puting programming constructs such as file transfer, and job management. In general,
SAGA embodies the most commonly required features derived from a broad survey of
the community and provides the most common grid programming abstractions that were
identified by several use cases.

SAGA provides several capabilities that we use extensively through its Python bind-
ings: the file transfer capability to move data files across machines and the job submission
capability that we use to submit jobs to supercomputers. Lazarus (El-Khamra and Jha
2009) submits reservoir simulation jobs to supercomputers, collects the data files they
produce on a single resource to run the EnKF, submits the EnKF job to be run, then
launches the next stage of reservoir simulations.

4.2 Approach

To reliably launch hundreds of reservoir simulations and collect the data they produce
repeatedly across different machines, we needed a fast, easy to use abstraction: this led
to the development of the BigJob abstraction (Luckow et al. 2009). Lazarus builds upon
earlier work, and extends the BigJob abstraction to explicitly use autonomic decision
making based upon BQP, as well as fault–tolerance. This is the basis of the general
purpose autonomic framework Lazarus.

After losing many jobs to various errors such as running out of allocated disk space,
hardware failure and file–copy failure, we concluded that autonomy and self–healing are
important features that we needed to incorporate in Lazarus to ensure all large scale
history matching runs complete successfully. With fault tolerance, we no longer wasted
thousands of Service Units (SU) running simulations with missing/corrupt ensemble
members, as they are resurrected. On the other hand, the autonomy incorporated in
Lazarus, while basic, ensures that we optimize the job sizes to have a higher chance of
getting through the queue without delay.

For the current implementation, we use simple, portable scripts – based upon SAGA,
to handle job–launching and data migration. Lazarus uses the BigJob abstraction to
launch simulations, the SAGA file adapter Python bindings to move files from one ma-
chine to another and BQP data from a small Python wrapper around the BQP command
line tool to retrieve the optimal location and number of BigJobs required to satisfy the
computation power required (figure 4.1).

Lazarus’s healing ability is based on user–defined tests on the data to make sure it
is not corrupt, missing, or otherwise defective. If a simulation is found to be defective

38

Figure 4.1: Lazarus architecture diagram. The “Resource Mapping” Strategy input is provided
by BQP. Given the size of the individual tasks, the “Historical Benchmarks” help determine the
size of the sub–jobs. (For the specific workload chosen, it so happens that the size of each sub–job
is 16).

it is resubmitted to be run again. This self resurrection ability overcomes some of the
catastrophic errors encountered when running large numbers of jobs such as exceeding
wall clock time, running out of disk space (resubmit on a different machine) and of course
node hardware failure.

4.3 Control Flow

Figure 4.2 outlines a typical EnKF history matching study managed by Lazarus. To
prepare for launching Lazarus, a model generator is required to create the initial data
(initial state vectors) for all the ensemble members. This is typically done before running
Lazarus, and performed on one resource then synchronized against all others to ensure
consistency.

Before launching Lazarus, some input parameters need to be specified. These are the
executable names, working root directory, simulation directories, number of simulations
per stage, number of stages, simulation size and so on. The current implementation
supports varying simulation sizes across a single stage and from stage to stage.

Given the number of jobs per stage, and historical benchmark information available
on various resources, an estimate for the total SUs required is computed and sent to the

39

Figure 4.2: Control flow in Lazarus

40

Lazarus resource manager. The resource manager queries BQP for the optimal sizes and
durations and creates a list of BigJobs, their sizes, durations and the resource/queue
where they will be submitted. If we have more than one resource available, the SU
requirement is satisfied based on a round–robin algorithm, iterating over resources and
adding BigJobs until no more BigJobs need to be submitted.

Once the resource list is formulated, Lazarus uses the BigJob abstraction to submit
jobs to all BigJobs in the resource list. The status of the jobs and BigJobs is reported
on regular intervals through a logging mechanism. Upon completion of all the subjobs,
Lazarus performs a calibration test where it runs the user–specified output–check on
a pre–validated file, to ensure all the tools are in place and in working order. It then
proceeds to check the output from all simulations to ensure sanity of output. Simulations
that have faulty output are then collected into a list and resubmitted. The output is again
checked for sanity: if all is well we proceed with the EnKF run (i.e. the analysis) and if
not Lazarus will abort with a detailed log file of the error. This is mainly to safeguard
against wasting SUs on corrupt runs. Once the analysis is complete, Lazarus repeats
the forecast iteration with the newly modified state vectors and the history matching
continues.

4.4 Autonomy

The Lazarus framework contains several aspects of autonomy: it has self–configuration
(deployment on resources), self optimization (using BQP data), self monitoring (checking
its own output) and of course self healing (resubmission of faulty simulations). These
aspects have been implemented with varying levels of intelligence: the self optimization
for example is a basic algorithm that uses BQP data to assign big–jobs to resources,
but does not take into consideration bandwidth requirement and the cost of copying
files across machines. The self–healing on another hand can typically resurrect jobs that
fail due to node failure as opposed to software failure. Many autonomic features of
Lazarus will find their way into the FAUST framework, where they will be improved to
incorporate sophisticated inherent intelligence.

4.5 Failure Modes

As early as the first nontrivial Lazarus run we encountered failures. They varied in nature
(hardware/environment) and severity. As Lazarus progressively used more resources,
many more failure modes were encountered. Many were errors that were irrecoverable and
resulted in a cold restart from scratch; others were recoverable with a simple simulation
result–checking fault tolerant component built into Lazarus.

41

Representative hardware failures encountered:

• Lost a compute node from the pool

• Lost a network connection to a machine, BQP or the advert service

• Could not write to /scratch because it was taken down for maintenance

Amongst the modes of failure, we found that we reliably recovered from node failure and
failure to write data to disk, but not network failure. The status of any given job is
reported in a one–way poll for current state.

Representative software environment failures encountered:

• Missing or wrong shared libraries

• Wrong or inadequate environment variables

• Run out of quota on disk, wrote too many files to the same directory

• Run out of SU’s in the allocation

• No internet connection to the compute nodes (no BQP, no advert service)

• MPI error that causes a simulation to stall (this happened because of a faulty
installation and was corrected)

In software environment failures, typically jobs terminated with errors or were killed,
before the simulations’ results were written to disk. Unsurprisingly we ran into all of
these failures while developing Lazarus, and were able to recover from all of them except
for the network connectivity in the compute nodes, as this would register the job’s
state as “unknown”. This would be solved with the soon–to–be–implemented heart–
beat monitoring system.

Representative simulation failures encountered:

• Missing parameter files or executable

• Wrong/Non–existent parameters, parameter files, or erroneous setup of parameter
files

• Divergence in the solver, causing NaN shuffling and leading to exceeding the re-
quested wall clock time

• Under–estimation of the required wall clock time

42

• Hitting /scratch or /home too often (because of checkpointing), leading to very low
access speeds and exceeding the requested wall clock time

• Numerical errors resulting in unintended behavior or bad results, NaN’s or Inf’s
(this can be caused by wrong model parameters or divergence in the solver)

Some of the simulation failures are relatively easy to guard against, namely the wrong
parameter file or missing executable. The other errors are harder to detect and rectify.

At every stage, we run a user–defined number of ensembles on HPC and HTC re-
sources. As the ensemble members of a given stage run to completion, a second set of
error–checking jobs are launched that ensure all the ensemble members ran to comple-
tion before the Kalman gain calculation is performed. This error–checking mechanism
attempts to resubmit the failed jobs, and if met with failure a second time, the stage is
halted to allow for user intervention. This seemingly un–important feature safeguards
against runaway failed simulations that consume service units with no good reason.

The numerical errors are hard to detect: result files full of wrong values will have
the same size as result files with useful data. With some customization, the output file
check can be extended to scan for NaN’s and Inf’s in the result file. This is a minor
improvement and will be IO intensive (therefore costly). A better solution would be to
add sanity checks in the actual simulation code through the liberal and extensive use
of error and warning messages. These messages are collected by Lazarus in the output
and error files. For example in Defiant, all calls made to PETSc use the “CHKERRQ”
and “CHKMEMQ” functions to check for computational and memory errors. The error
checking functionality can be turned on and off through command line options that are
specified in Lazarus. It is possible to run the first few stages of the EnKF with full error
checking then switch it off after experience shows it is not needed, to avoid computational
overhead.

4.6 Fault Tolerance

Given the many different failure modes, fault–tolerance provides Lazarus with built in
self–healing capabilities. These capabilities rely on a tool–check/calibration test and
output file checks. After simulations have finished and their output files are copied,
Lazarus proceeds to perform a tool–check on an undamaged file. The purpose of the
tool–check is to ensure the tools that will be used in checking the output files from the
simulations are available and behave as expected. This is important as we move from one
machine to another with a different environment, tool versions and tool output. Once
the tools are verified, they are used to check the output of all the simulations. If a
simulation is found to have missing, incomplete or otherwise faulty output, it is flagged

43

Figure 4.3: Time to completion with Lazarus. From Left to Right: (i) Ranger (ii) Ranger when
using BQP, (iii) QueenBee, (iii) Ranger and QueenBee, (iv) Ranger, QueenBee and Abe, (v)
Ranger, QueenBee and Abe when using BQP.

for resubmission. After all output is checked, the faulty simulations are resubmitted and
upon termination, all output is checked again, and upon success, Lazarus proceeds.

4.7 Grid Awareness

Since Lazarus uses the SAGA Python bindings, it is natively grid–aware, Condor–aware
and cloud–aware, if the globus, Condor and cloud adaptors are present. All jobs can
be submitted to different supercomputers and Condor pools, all files can be transferred
from one resource to another, and each EnKF stage can be distributed across multiple
resources. The Lazarus script can run on any machine, say a researcher’s workstation and
monitor the status of submitted jobs. Figure 4.3 outlines the total time to completion for
five stages of 100 ensemble members running on single and multiple resources, with and
without BQP optimization. Optimizing job launching with BQP leads to a reduction of
up to 50% of total time to completion. This translates to the reservoir modeler spending
50% less time waiting for results of history matching, or running twice as many history
matching studies.

44

Chapter 5

Integration and the Closed Loop

5.1 Unifying the IO

One of the major tasks undertaken in this effort is to unify the input and output formats
when working with different programs and different packages. To that end we chose
to use the PETSc file input/output functions. This provides direct control over the
format (HDF5, NetCDF or PETSc native format) through parameters that are passed at
runtime. Since the reservoir simulator Defiant and the ensemble Kalman filter (Valiant)
both use PETSc data structures directly, it was was an obvious and convenient choice.
PETSc input/output routines also allow for remote reads and writes as well as socket
interfaces for streaming.

5.2 Integration of Sensor Data

With a high performance reservoir simulator, a parallel, scalable ensemble Kalman filter,
and a workflow manager that provides access to an abundance of high performance and
high throughput resources optimized for lowest total–time–to–completion, we are well
equipped to perform live, real–time reservoir characterization based on direct sensor
data. To that end we implemented a communication layer based on data streaming from
the data acquisition (sensor) platforms to a data spool (MySQL database). The EnKF
application (Valiant or Blanc) queries the data spool for the latest available sensor
platform (field observations) data. Once the new field observations are retrieved they
are labeled as “assimilated” to differentiate them from the next–in–line observations.

The use of an intermediate data–spool is necessary for many reasons: it is difficult
to guarantee resource availability and synchronization with the EnKF. It is also pro-
hibitively costly to maintain an active EnKF session throughout the life–time of the
reservoir. With a data–spool we can also adjust the update rate at the EnKF session

45

Figure 5.1: Sensor side LabVIEW vi. To stream data from sensor platforms to data spools we
use a LabVIEW vi that makes calls to a shared library containing an interface to the database
(MySQL). Initial tests were conducted using a Wii mote 3–axis accelerometer. Image courtesy
of Richard G. Duff

without losing any data from the reservoir. Updates to the models can be as immediate
as the moment data is broadcast from the sensors in the field, or as late as when the
reservoir is being abandoned. With immediate model updates, we can run forecast and
optimization studies. Lazarus, with its BQP optimization and reduced total time to
completion, will make this possible.

Special care had to be taken when interfacing to sensor platforms: there is no uni-
fied specification for communicating abstract sensor information. The simplest approach
was to develop an interface to a common data acquisition application: LabVIEW from
National Instruments (National 2009). To that end we developed a virtual instrument
(vi) that makes function calls to a shared library which in turn interfaces to the MySQL
database (Figure 5.1). The vi has an adjustable streaming rate for polling sensor infor-
mation and relaying it to the database, and is modular so it can be integrated in existing
vi’s as a sub–vi. This translates to painless integration with existing field and laboratory
sensor platforms, in particular, the UCoMs sand tank experiment (Lei et al. 2006).

It is worth mentioning that the intention here was to develop an abstract interface to
sensor data that can accommodate everything from drill–string modelling (Duff), well–
heads, weather stations and buoys. This is one of the reasons why a ProdML (ProdML
) was not the first choice of interfaces. However, should the need arise, we can develop
a direct ProdML to PETSc interface which will have no significant impact on the closed
loop performance.

46

Chapter 6

Conclusions and Future Work

6.1 Defiant

As a finished product, Defiant will be able to handle non–isothermal, multicomponent
multiphase flow and serve as a research platform for reservoir simulation, geothermal
energy, CO2 sequestration and enhanced recovery. Due to its PETSc based implementa-
tion, Defiant is also an interesting applied mathematics engine that can be used as a test
platform for new solvers and preconditioners and adaptive mesh refinement algorithms.
Finally, Defiant is interesting from a computer science perspective in its ability to run
multiple, coupled simulations with varying degrees of granularity. For these reasons,
special care has been taken in making Defiant as extensible and flexible as possible,
without sacrificing utility. As it stands today, the stable branch of Defiant contains
over 8,000 lines of code, and the development branch well over 15,000. Development at
the moment is focused on:

• General black oil reservoir simulation test case: A Defiant based reservoir simu-
lator with XML input support for convenient problem specification

• Multicomponent support (through PETSc degrees–of–freedom interface in dis-
tributed arrays)

• Newton–Raphson solver support for multicomponent reservoir simulation

• Non–isothermal reservoir simulation

• Support for fracture mechanics models

• Support for multicomponent reservoir simulation in the Valiant interface

• Better use of the geometric multigrid routines in PETSc (the DMMG), removing
current well handling restrictions

47

• Identifying the performance bottleneck with the MPI Allreduce function calls

• Identifying the cause of the large memory consumption

• Coupling with the PVT modelling package: Reliant (El-Khamra 2009c) that is
under development to facilitate model preparation

6.2 Valiant

The ultimate aim behind Valiant is to have a parallel ensemble Kalman filter imple-
mentation that is publicly available, scalable, fast, able to handle a large number of file
formats and interoperable with the reservoir simulator. Building on the success of the
initial trials, Valiant will be extended to handle ensemble optimization (Oliver and
Liu 2008), iterative ensemble Kalman filters (Oliver and Liu 2008; Evensen 2006) and
ensemble randomized maximum likelihood filters (Oliver and Liu 2008). Furthermore,
Valiant has a wealth of features to inherit from implementations of local expertise (Li
et al. 2007) including support for normalization and localization. These filters and fea-
tures will use the same IO and scattering routines that exist today in Valiant, and will
enable us to handle highly nonlinear simulations (Oliver and Liu 2008). We will also
maintain the neutrality of Valiant and attempt to use the parallel ensemble Kalman
filter with other simulators such as atmospheric simulation and weather forecasting.

Other planned extensions to Valiant include parallel model generation routines. At
the moment we have to rely on external packages, which do not share a compatible
IO layer with Defiant. This presents a major limitation in model preparation. The
solution is simple: include model generation routines in Valiant. This will guarantee IO
compatibility and make automated reservoir management studies possible.

6.3 Relentless

With ensemble optimization and ensemble randomized likelihood filters under develop-
ment, the workflow manager design will undergo a thorough over–haul to accommodate
these new workflows. Relentless will continue to be developed with the SAGA Python
bindings and with the FAUST (Weidner and Jha 2008) framework. The Lazarus frame-
work will be fully integrated in Relentless (El-Khamra 2009b), which will retain au-
tonomics, fault tolerance and abstraction as defining qualities. Relentless will also
support running coupled simulations for hydraulic well models and coupled reservoir
simulations.

48

Bibliography

AB MySQL. 1995. MySQL: A relational database management system.
http://www.mysql.com/.

Alpatov, Philip, Greg Baker, Carter Edwards, John Gunnels, Greg Morrow, James
Overfelt, Robert van de Geijn, and Yuan-Jye J. Wu. 1997. “PLAPACK: parallel
linear algebra package design overview.” Supercomputing ’97: Proceedings of the
1997 ACM/IEEE conference on Supercomputing (CDROM). New York, NY, USA:
ACM, 1–16.

Anderson, W. K., W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith. 1999.
“Achieving high sustained performance in an unstructured mesh CFD application.”
Supercomputing ’99: Proceedings of the 1999 ACM/IEEE conference on Supercom-
puting (CDROM). New York, NY, USA: ACM, 69.

Aziz, K., and A. Settari. 1979. Petroleum Reservoir Simulation. Society of Petroleum
Engineers.

Balay, Satish, Kris Buschelman, William D. Gropp, Dinesh Kaushik, Matthew G. Kne-
pley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. 2001. PETSc Web
page. http://www.mcs.anl.gov/petsc.

Brevik, John, Daniel Nurmi, and Rich Wolski. 2006. “Predicting bounds on queuing de-
lay for batch-scheduled parallel machines.” PPoPP ’06: Proceedings of the eleventh
ACM SIGPLAN symposium on Principles and practice of parallel programming.
New York, NY, USA: ACM, 110–118.

Buckley, and Leverett. 1942. “Mechanism of fluid displacements in sands.” Transactions
of the AIME (146): 107116.

Carlson. 2003. Practical Reservoir Simulation. Tulsa: PennWell.

Chapman, Barbara, Gabriele Jost, and Ruud van der Pas. 2007, October. Using
OpenMP: Portable Shared Memory Parallel Programming (Scientific and Engineer-
ing Computation). The MIT Press.

49

Chapra, Steven, and Raymond Canale. 2000. Numerical Methods for Engineers.
McGraw-Hill.

Chen, Yan, Dean S. Oliver, and Dongxiao Zhang. 2008. “Efficient Ensemble-Based
Closed-Loop Production Optimization.” SPE/DOE Symposium on Improved Oil
Recovery.

Chen, Zhangxin. 2007. Reservoir Simulation: Mathematical Techniques in Oil Recovery.
Philadelphia: Society for Industrial and Applied Mathematics.

Datta-Gupta, Akhil, and M. J. King. 2007. Streamline Simulation: Theory and Practice.
Society of Petroleum Engineers, Textbook Series.

Duff, Richard G. Drilling Lab: Drillstring Vibration Experiments. Available online at
http://www.youtube.com/drillinglab.

El-Khamra, Yaakoub, and Shantenu Jha. 2009. “Title: Developing Autonomic Dis-
tributed Scientific Applications: A Case Study From History Matching Using En-
semble Kalman-Filters.” Sixth International Conference on Autonomic Computing,
2009. ICAC ’09 (Barcelona). IEEE.

El-Khamra, Yaakoub Y. 2009a. Defiant: A High-Performance Reservoir Simulation
Platform. http://github.com/yye00/Defiant.

. 2009b. Relentless: High-Throughput, High-Performance Autonomic Workflow
Management Tools. http://github.com/yye00/Relentless.

. 2009c. Reliant: Lightweight PVT Solver. http://github.com/yye00/Reliant.

. 2009d. Valiant: A Generic Parallel Statiscal Ensemble Method Tools Platform.
http://github.com/yye00/Valiant.

Evensen, Geir. 2006. Data Assimilation: The Ensemble Kalman Filter. Secaucus, NJ,
USA: Springer-Verlag New York, Inc.

Falgout, R.D., J.E. Jones, and U.M. Yang. 2006. “The Design and Implementation of
hypre, a Library of Parallel High Performance Preconditioners,.” Numerical Solu-
tion of Partial Differential Equations on Parallel Computers, A.M. Bruaset and A.
Tveito, eds.

Fanchi, John. 2005. Principles of Applied Reservoir Simulation, Third Edition. City:
Gulf Professional Publishing.

Forsythe, G.E., and W.R. Wasow. 1960. Finite Difference Methods for Partial Differ-
ential Equations. New York: Wiley.

Goodale, Tom, and Jha Shantenu. 2005. “SAGA: A Simple API for Grid Applica-
tions, High-Level Application Program- ming on the Grid.” Computational Methods
in Science and Technology, Special Issue, Grid Applications: New Challenges for
Computational Methods, Volume 8.

50

Hilderbrand, F.B. 1968. Finite Difference Equations and Simulations. Prentice Hall.

Holstein, Edward D. 2007. Petroleum Engineering Handbook, Vol. 5 Reservoir and
Petrophysics. City: Society of Petroleum.

Hossaina, Shahadat, and Trond Steihaug. 2004. “Graph coloring in the estimation of
sparse derivative matrices: Instances and applications.” ISMP 2003.

Hwang, Feng-Nan, and Xiao-Chuan Cai. 2005. “A parallel nonlinear additive Schwarz
preconditioned inexact Newton algorithm for incompressible Navier-Stokes equa-
tions.” J. Comput. Phys. 204 (2): 666–691.

Jansen, J.D., S.D. Douma, P.M.J. Van den Hof, O.H. Bosgra, and A.W. Heemink. 2009.
“Closed Loop Reservoir Management.” SPE Reservoir Simulation Symposium.

Jha, Shantenu, Hartmut Kaiser, Yaakoub El-Khamra, and Ole Weidner. 2007. “Design
and Implementation of Network Performance Aware Applications Using SAGA and
Cactus.” Accepted for 3rd IEEE Conference on eScience2007 and Grid Computing,
Bangalore, India.

Kalman, R.E. 2005. “A New Approach to Linear Filtering and Prediction Problems.”

Kamil, S. et al. 2006. “Reconfigurable Hybrid Interconnection for Static and Dynamic-
Scientific Applications.” International Conference for High PerformanceComputing,
Networking, Storage and Analysis. Tampa, FL.

Kreyszig, Erwin. 1998. Advanced Engineering Mathematics. Wiley.

Lapipus, L., and J. H. Seinfeld. 1971. Numerical Solution of Ordinary Differential
Equations.

Latt, Jonas. 2006. Open source lattice Boltzmann code. http://www.openlb.org/.

Lazarus3. Lazarus/Relentless webpage. http://www.github.com/Lazarus.

Lei, Zhou, Dayong Huang, Archit Kulshrestha, Santiago Pena, Gabrielle Allen, Xin Li,
Christopher White, Richard Duff, John R. Smith, and Subhash Kalla. 2006, May.
“ResGrid: A Grid-aware Toolkit For Reservoir Uncertainty Analysis.” Proceedings
of the Sixth IEEE International Symposium on Cluster Computing and the Grid
(CCGrid06). Singapore.

Li, Xin. 2008. “Continuous Reservoir Model Updating by Ensemble Kalman Filter on
Grid Computing Architectures.” Ph.D dissertation, Louisiana State University.

Li, Xin, Christopher White, Zhou Lei, and Gabrielle Allen. 2007, August. “Reser-
voir Model Updating by Ensemble Kalman Filter-Practical Approaches Using Grid
Computing Technology.” Petroleum Geostatistics 2007. Cascais,Portugal.

Luckow, Andre, Shantenu Jha, Joohyun Kim, Andre Merzky, and Bettina Schnor. 2009.
“Adaptive Distributed Replica-Exchange Simulations.” Theme Issue of the Philo-
sophical Transactions of the Royal Society A: Crossing Boundaries: Computational

51

Science, E-Science and Global E-Infrastructure Proceedings of the UK e-Science All
Hands Meeting 2008, vol. 367.

Luettich, R.A., Jr. J.J. Westerink, and N.W. Scheffner. 1992. “DCIRC: an advanced
three-dimensional circulation model for shelves coasts and estuaries, report 1: the-
ory and methodology of ADCIRC-2DDI and ADCIRC-3DL.” Dredging Research
Program Technical Report DRP-92-6, U.S. Army Engineers Waterways Experiment
Station. http://www.unc.edu/ims/adcirc/.

Mascagni, M., and A. Srinivasan. 2000. “Algorithm 806: SPRNG: A Scalable Library for
Pseudorandom Number Generation.” ACM Transactions on Mathematical Software.

Mattax, Calvin. 1990. Reservoir Simulation. City: Society of Petroleum.

Moore, James C. 1998. “Visualizing with VTK.” Linux Journal, p. 5.

MPI Forum Standards Committee. 1994. “Message Passing Interface Standard.”
http://www.mpi-forum.org/.

MVAPICH Development Team, OHU. 2002. MVAPICH: MPI over InfiniBand and
10GigE/iWARP. http://mvapich.cse.ohio-state.edu/.

National, Instruments. 2009. “LabVIEW: A graphical programming environment used
by engineers and scientists to develop sophisticated measurement, test, and control
systems.” http://www.ni.com/labview/.

Oliver, Dean S., Albert C. Reynolds, and Ning Liu. 2008. Inverse Theory for Petroleum
Reservoir Characterization and History Matching. Cambridge University Press.

OpenCFD Corporation. 2000. Open Field Operation and Manipulation CFD Toolbox.
http://www.opencfd.co.uk/openfoam/.

Patankar, Suhas. 1980. Numerical Heat Transfer And Fluid Flow. Taylor And Francis.

Peaceman, Donald W. 1977. Practical Reservoir Simulation. Amsterdam and New
York: Elsevier Scientific Pub. Co. : distributors for the U.S. and Canada, Elsevier
North-Holland.

ProdML. Production Markup Language. Energistics: The Energy Standards Resource
Centre http://www.prodml.org/prodml/Default.asp.

Saad, Yousef. 2003, April. Iterative Methods for Sparse Linear Systems, Second Edition.
Society for Industrial and Applied Mathematics.

Salawdeh, I., E. César, A. Morajko, T. Margalef, and E. Luque. 2008. “Performance
Model for Parallel Mathematical Libraries Based on Historical Knowledgebase.”
Euro-Par ’08: Proceedings of the 14th international Euro-Par conference on Parallel
Processing. Berlin, Heidelberg: Springer-Verlag, 110–119.

52

Seidel, Edward. 1999. “Technologies for Collaborative, Large Scale Simulation in As-
trophysics and a General Toolkit for solving PDE’s in Science and Engineering.” In
Forschung und wissenschaftliches Rechnen, edited by T. Plesser and P. Wittenburg.
Max-Planck-Gesselschaft, München.

TACC UT Austin. 2006. Ranger Sun Constellation Supercomputer.
http://www.tacc.utexas.edu/resources/hpc/#constellation.

Thuwaini, Jamil, Shamsuddin Shenawi, and Bevan Yuen. 2009. “SS: Simulation Opti-
mization of Wells with Complex Architecture.” Offshore Technology Conference.

Unidata, NetCDF Development Team. 1984. “NetCDF: Network Common Data Form.”
http://www.unidata.ucar.edu/software/netcdf/.

Wang, Chunhong, Gaoming Li, and Albert Coburn Reynolds. 2007. “Production Op-
timization in Closed-Loop Reservoir Management.” SPE Annual Technical Confer-
ence and Exhibition.

Weidner, Ole, and Shantenu Jha. 2008. Famework for Adaptive Ubquitious
Scalable Tasks (FAUST). http://saga.cct.lsu.edu/index.php?option=com content
&task=view&id=98&Itemid=174.

Wissink, Andrew M., Richard D. Hornung, Scott R. Kohn, Steve S. Smith, and Noah
Elliott. 2001. “Large scale parallel structured AMR calculations using the SAMRAI
framework.” Supercomputing ’01: Proceedings of the 2001 ACM/IEEE conference
on Supercomputing (CDROM). New York, NY, USA: ACM, 6–6.

53

Vita

Yaakoub El–Khamra received his Bachelor of Engineering degree from the American
University of Beirut in 2002. In 2003 he became a staff member of the Center for
Computation & Technology CCT at Louisiana State University. He later joined the
graduate program at the Craft and Hawkins Petroleum Engineering Department.

54

	Louisiana State University
	LSU Digital Commons
	2009

	Realtime reservoir characterization and beyond: cyber-infrastructure tools and technologies
	Yaakoub Youssef El-Khamra
	Recommended Citation

	tmp.1483774927.pdf.8ryfY

