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Abstract 

This research work investigates physiological signals based human emotion and its 

incorporation in an affective system architecture for real-time tracking of persons in 

distress phase situations to prevent the occurrence of casualties. In a casualty 

situation, a mishap has already occurred leading to life, limb and valuables being in a 

state of peril. However, in a distress phase situation, there is a high likelihood that a 

tragedy is about to occur unless an immediate assistance is rendered. The distress 

phase situations include the spate of kidnapping, human trafficking and terrorism 

related crimes that could lead to casualty such as loss of lives, properties, finances and 

destruction of infrastructure. These situations are of global concern and worldwide 

phenomenon that necessitate a system that could mitigate the alarming trend of social 

crimes. The novel idea of deploying a combination of data and knowledge driven 

approaches using wearable sensor devices supported by machine learning methods 

could prove useful as a preventive mechanism in a distress phase situation. Such a 

system could be achieved through modelling human emotion recognition, including the 

harvesting and recognising human emotion physiological signals. Different methods 

have been applied in emotion recognition domain because the extraction of relevant 

discriminating features has been identified as an unresolved and one of the most 

daunting aspects of physiological signals based human emotion recognition system. In 

this thesis, emotion physiological signals, image processing technique and shallow 

learning based on radial basis function neural network were used to construct a system 

for real-time tracking of persons in distress phase situations. The system was tested 

using the Database for Emotion Analysis using Physiological Signal (DEAP) to 

ascertain the recognition performance that could be achieved. Emotion representations 

such as Arousal, Valence, Dominance and Liking have been creatively mapped to 

different conditions of human safety and survival state like happy phase, distress phase 

and casualty phase in a real-time system for  tracking of persons. The constructed 

system can practically benefit security agencies, emergency services, rescue teams 
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and restore confidence to both the potential victims and their family by proactively 

providing assistance in an emergency event of a distress phase situation. Moreover, 

the system would prove beneficial in stemming the tide of the identified societal crimes 

and tragedies by thwarting the successful progress of a distress phase situation 

through an application of information communication technology to address critical 

societal challenges. The performance of the recognition algorithmic component of the 

constructed system gives accuracy that outperforms the state of the art results based 

on deep learning techniques. 
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CHAPTER ONE 

Introduction 

The spate of abductions or kidnappings, human trafficking and terrorism related crimes 

leading to loss of lives, properties, financial loss and grounding of infrastructure is of 

global concern as these crimes are now a worldwide phenomenon (Harrendorf, 

Heiskanen and Malby 2010; Maldwyn 2012; Curry and Hughes 2014; Vannini, Detotto 

and Mccannon 2015; NYA 2016; Zen 2018), thus necessitating a system that could 

mitigate this alarming trend. 

This research work proposes a system towards a real-time tracking of persons in 

distress phase situations based on human emotional state recognition of physiological 

signals. In a distressed and casualty situation, a mishap has already occurred leading to 

life, limb, valuables or properties being in a state of peril. However, in a distress phase 

situation, there is a high chance that an emotional state might lead to the occurrence of 

a tragedy, including accident (vehicle or fire), person slumping, suicide, murder, 

kidnapping or abducting a person scenario, if not thwarted by offering immediate and 

useful assistance to the potential emotional imbalance victim, might result in a distressed 

or casualty situation. Thus, human emotion recognition, human activity recognition and 

location information are three broad domains that could be explored separately or 

holistically in order to provide an emergency assistance service to people in challenging 

and critical situations.  

The novel idea of deploying a combination of data and knowledge driven 

approaches to help address this situation, could prove useful in a distress phase situation. 

This could be achieved through the modelling of human emotion and activity recognitions, 

including the harvesting of physiological data, ambulatory data, location and 

environmental state information of a person in a distress phase and offering a real-time 

triggering of rescue teams to pro-actively thwart a potential event that could lead to 

distress.  

The Database for Emotion Analysis using Physiological Signal (DEAP) (Koelstra et 

al. 2012) emotional dataset is used for the experimentations conducted in this study while 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Koelstra,%20S..QT.&searchWithin=p_Author_Ids:37321690300&newsearch=true
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applying our proposed methodology. The DEAP dataset was developed by Koelstra et al. 

(2012) using video clips stimuli to elicit human emotions from 32 subjects (16 females) 

and their physiological data such as the Electroencephalogram (EEG), Electro-oculogram 

(EOG), Electromyogram (EMG), Galvanic Skin Response (GSR), Respiration (RESP), 

Blood Volume Pulse (BVP) and Temperature (TEMP) were concurrently collected as they 

watched 40 one–minute extracts of music video clips. These clips are capable of eliciting 

the target or reported felt emotions of anger, contempt, disgust, elation, envy, fear, guilt, 

hope, interest, joy, pride, relief, sadness, satisfaction, shame and surprise. The 

physiological signals as well as frontal face videos of 22 subjects were acquired using 

various sensors and active electrodes with the Biosemi Active II system. 

Thus, the goal of this research is to apply digital image processing based techniques to 

extract features from emotion physiological signals of DEAP (Koelstra et al. 2012) data 

set and compare performance with other techniques and extracted features in the 

literature as feature extraction is still an open issue in pattern recognition studies (Nweke 

et al. 2018). This is because; emotion recognition performance obtained relies heavily on 

features extracted. Thus, the quality of the discriminating features extracted and 

recognition performance obtained will further enhance efficient communication and 

decision making using critical body signals collected from a person in a distress phase 

situation and a prototype affective system.  

The proposed system can practically benefit security agencies, emergency services 

and rescue teams, and restore confidence to both the potential distressed victims and 

their families by significantly reducing casualties in an event of distress. 

 

1.1 Background 

Some of the real life challenges, including the context within which this research study 

can be proactively situated and applied, are snappishly discussed below bearing in mind 

that the required emotion physiological signals to be harvested for human emotion 

recognition are especially of the victims of an act capable of causing accident and 

tragedies that could trigger a distress phase or casualty situation. 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Koelstra,%20S..QT.&searchWithin=p_Author_Ids:37321690300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Koelstra,%20S..QT.&searchWithin=p_Author_Ids:37321690300&newsearch=true
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  Keeping illegal custody of, taking away or holding, a person against his/her will is 

a serious crime anywhere in the world. The practice of kidnapping/abduction, terrorism, 

human trafficking and piracy, which are all direct violations of a victim’s human rights, is 

however gaining tremendous ground across the globe. Nigeria and South Africa are 

indeed emerging as countries with the highest prevalence in Africa, according to Moor 

(2008) with the rise of kidnappings in South Africa stemming from the explosive growth in 

crimes since the 1990s. Nigeria and West Africa ranked number four among the top ten 

kidnapping countries in the world (Maldwyn 2012). The abduction of more than 270 school 

girls in Nigeria (Curry and Hughes 2014) readily comes to mind here, while the figures 

from the South African Police indicate that the country has a critical contact and other 

contact related crime challenges (Harrendorf, Heiskanen and Malby 2010; SAPS 2017). 

Contact crimes are committed against a person and it involves direct physical contact 

between the victim(s) and the perpetrator(s). Abduction is one of such examples. 

From the Middle East - Afghanistan, Iraq, Pakistan; to Asia - China, India; Africa - 

Nigeria, South Africa; and America - Mexico, Argentina; kidnapping or abduction and 

terrorism crimes are now a global phenomenon (Moor 2008; Vannini, Detotto and 

Mccannon 2015; NYA 2016; Zen 2018). This is challenging the freedom, security and 

safety of people, infrastructures, political stability and service delivery across the globe 

with the tendencies of the crimes spreading across various nations’ borders coupled with 

the attendant negative and disruptive impacts, thereby necessitating cooperation among 

nations. 

These crimes are occurring as they are being investigated, and it was estimated 

in 1999 by Hiscox Group, an American based insurance company that 92% of abduction 

crimes takes place in just ten countries of the world. The group also recorded in December 

2013, a 13.1% growth in kidnappings and ransom premiums to 6% of the group’s total 

control income for the year 2013 coming from kidnapping and ransom insurance covers 

(Hiscox 2014). 

Many factors, ranging from financial, political and religious motives, are 

responsible for the increasing rates of these crimes and the direct negative impact on the 
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society is huge, challenging the security, safety and lifestyles of people who are the main 

drivers of the world activities such as sports, agriculture, economy, information and 

communication, education, and transportation among others. These crimes diminish 

peoples’ sense of security and could result in a brain drain arising from the victims 

relocating abroad for perceived safety reasons in order to avoid living through the 

terrifying experience. Kidnapping for Ransom (KFR) is a fall out of the financial aspect of 

these crimes, as it is an avenue for a quick, lucrative and a low risk source of income for 

the perpetrators while also serving as a source of terrorism funding across the globe.  

KFR is now considered the most significant terrorist financing threat today (Cohen 

2012) and according to Hiscox Group – a main purveyor of KFR insurance, about $310 

million per year as estimated, is taken out as KFR insurance coverage worldwide (Hiscox 

2014). Countries that are significantly susceptible to crises and liable to internal and 

external shocks or find it extremely difficult performing its basic security and 

developmental functions exhibit the characteristics of a fragile/failed state. Such 

(fragile/failed) states witnessing social unrests, disorganized legal systems and 

government instability suffer a high risk of occurrence of these crimes, as the political 

objectives of the crimes emanate from kidnappings or abductions of foreigners as a 

weapon of putting pressure on foreign governments for a specific demand to be met. 

Other avoidable tragedies of global proportion and attention are vehicular, flood 

and fire related accidents. As stated by the World Health Organization (WHO 2015) every 

year, about 1.3 million people die in road crashes with an average of 3,287 deaths per 

day. From the records, someone is being killed every 30 seconds while 19 others are 

injured on roadways worldwide (WHO 2015).  

An additional 20 million are disabled or injured per year, while more than 90% of 

all road traffic fatalities occur in middle and low-income countries, including Nigeria and 

South Africa. These deaths are, however preventable. It was further stated that, unless 

urgent action is taken to prevent and reduce road traffic deaths through injuries sustained, 

by prompt rescue and emergency services efforts to people in the identified distress 

phase, it was predicted that road traffic crashes would become the fifth leading cause of 
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death by the year 2030. Of significant interest are lone vehicular accidents not witnessed 

and where no information is known of its occurrence by anyone and as such emergency 

services could not be prompted in this distress phase scenario to save lives.  

Fire outbreak in residences and workplaces is also a global health problem. As 

stated by the World Health Organization (WHO 2014) fact sheet, burns resulting from 

such outbreaks account for about 265,000 global deaths every year. Low and middle-

income countries, including South Africa and Nigeria, constitute where the majority of 

these deaths occur while about half ensue in the South-East Asia Region according to 

WHO. In addition, nonfatal burns cause deaths. Prolonged hospitalization treatment, 

disability, scars and impairments, often resulting in stigma and societal rejection 

characterisation. It is noted that most of the victims are sometimes trapped indoors when 

the accident occurs and due to a lack of detailed information regarding the number of 

occupiers, as a result of the state of confusion with everyone scampering to his or her 

own safety first, the absence of a well ordered and coordinated procedural rescue effort, 

might often result in more casualties than expected. Proactively harvesting physiological 

signal information vis–a-vis the emotional state as well as the location and activity 

information of a trapped victim could prevent these deaths. 

In South Africa, for instance, about US$ 26 million is estimated to be spent annually 

for the care of burns sustained from kerosene (paraffin) cook stove related mishaps 

according to World Health Organization  (WHO 2014) report. Indirect financial costs of 

lost man-hour wages, protracted care for disfigurements and emotional trauma, and 

spending of meagre financial resources of the families is also among the socioeconomic 

impacts of fire accidents.  

Examining distress state concept and how it is related to a process flow involving 

human emotions is therefore essential in order for a system to determine how casualties 

can be averted. The distress is a state of extreme necessity, the condition of being in 

need of immediate assistance. It causes pain, strain, anxiety, suffering, trouble and 

severe danger. A person in distress state is therefore in need of immediate rescue to 

avoid the severe unpleasant experience and feelings capable of leading to loss of lives, 
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limbs, properties and valuables. More often than not, the type, manner and urgency with 

which the assistance is sought and rendered could determine the magnitude of the 

damage caused or averted. 

However, before a distress phase situation occurs, it is usually preceded by series 

of spontaneous human emotions and actions/activities that could trigger the seeking of 

assistance in order to avert the danger. Such human emotions could include fear, anger, 

contempt, disgust and sadness. Human actions in the form of ambulatory activities might 

include walking, shouting, running, pulling, pushing, struggling and falling, which are all 

critical signs of an impending disaster in a distress situation scenario. All these are 

occurring within a distress phase situation and if assistance is rendered, probably by way 

of rescue or emergency efforts, then the distress chain shown in Figure 1.1 as a linear 

transition in a distress phase process flow is aborted from progressing to casualty phase 

such that lives, properties and valuables are protected from the looming threat. 

 

Figure 1. 1: Linear transition process flow from normal/happy to distress, to casualty phase. 

A distress phase, as defined in this study, implies situations where a person, who 

might fall into an imminent danger as a result of his/her own emotional state or activity or 

is threatened by an external imminent or severe danger which will also definitely impact 

his emotional state or human activity and thus requires immediate assistance. The tuple 

– critical/severe, imminent danger and immediate assistance characterizes a distress 

phase situation.  
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1.2 Research Problem  

New emerging technologies such as mobile devices, wearable sensors, social media, 

emails, location aware devices and services, digital images, smart phones, records 

retention and the internet, as offered by Information Communication Technologies (ICT), 

are now an integral part of everyday living and shaping our lifestyles. These technologies 

have made it feasible for collection and distribution of very large data set including 

physiological signals for machine learning. Several pattern recognition problems, 

including human emotion recognition, human activity recognition, image classification, 

location, and object detection have therefore emerged over the past few decades. Pattern 

recognitions and machine learning solutions particularly to human emotion recognition 

problems thus have direct impact on real-life applications including security/surveillance, 

Smart Home (SH), computer games, intelligent tutoring, telemedicine and 

psychopathology, depression detector and management, multimedia sector, social and 

emotion development research, safe driving, mother-infant interaction, customer 

services, call centre s, fitness tracking, affective computing and human computer 

interaction applications (Wagner, Jonghwa and Andre 2005; Fried 1976; Cohn and 

Tronick 1988; Ekman, Matsumoto and Friesen 1997; Larson and Rodriguez 1999; 

Roisman, Tsai and Chiang 2004; Ekman and Rosenberg 2005).   

Emotion is a complex state of human mind. It is influenced by body physiological 

changes and interdependent external events thus making an automatic recognition of 

emotional state a challenging task. In the literature, human emotions have been 

measured and recognised using physiological signals, audiovisual methods of facial 

expression, gestures and speech (Wagner, Jonghwa and Andre 2005; Chanel et al. 2006; 

Koelstra et al. 2012; Noppadon, Setha and Pasin 2013a). Though, in the recent past, the 

physiological signals based human emotion recognition has received relatively less 

attention in comparison to the other stated methods, however, researchers are now 

trending in the physiological signals based human emotion recognition domain because 

of the emerging technologies earlier stated above and the availability of mobile devices, 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Koelstra,%20S..QT.&searchWithin=p_Author_Ids:37321690300&newsearch=true
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affordable wearable sensors as well as equipment that enable the seamless collection of 

physiological signals.  Meanwhile, the audiovisual methods have been criticized due to 

some of their intrinsic drawbacks. They are capable of being easily faked and the subject 

needs to be within a perimeter defined by the camera or must always listen to an audio 

signal. Conversely, physiological signals evolve automatically and spontaneously. They 

are human reactions over which they have less controls and are less influenced by social, 

language and cultural differences (Chanel et al. 2006; Eun-Hye et al. 2012; Heng et al. 

2013; Noppadon, Setha and Pasin 2013a). These factors, among others informed the 

decision to adopt the physiological signals based emotion recognition system for the 

research reported in this dissertation. 

A number of recognition methods have been applied in recent years to recognize 

human emotion as the trend towards making significant contributions now lies around 

features extracted as well as the methods applied. However, while noticeable, but varied 

recognition accuracy results were recorded with these methods (Wagner, Jonghwa and 

Andre 2005; Koelstra et al. 2012; Maaoui and Pruski 2010; Noppadon, Setha and Pasin 

2013a), part of the unresolved issues in mobile and wearable sensor-based pattern 

recognition domain is the extraction of relevant discriminating features (Nweke et al. 

2018) which has also been identified as one of the most daunting aspects of physiological 

signals based human emotion recognition system (Maaoui and Pruski 2010; Noppadon, 

Setha and Pasin 2013a). In addition, opinion still varies about which set of emotion 

features and recognition methods would give the best result of an emotion recognition 

system while it also remains an open challenge in affective computing research to fix an 

agreed recognition accuracy for an affective recognition system (Jerritta et al. 2011; 

Noppadon, Setha and Pasin 2013a). This is because of the wide disparities in the number 

of emotions to be recognised, the number and types of bio-signals measured, data set 

used and its quality, number of subjects sampled, emotional stimulus, modality 

considered, emotion models employed, pattern recognizers used and features extracted 

from physiological signals among others (Chanel et al. 2009; Jerritta et al. 2011; Heng et 

al. 2013; Noppadon, Setha and Pasin 2013a). 

Therefore, this study attempt to experimentally discover discriminating emotion 

features on which a recognition method can be applied, using the physiological signals 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Koelstra,%20S..QT.&searchWithin=p_Author_Ids:37321690300&newsearch=true
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5759912&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5759912&tag=1
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harvested from individuals while experiencing an emotion as contained in the DEAP 

(Koelstra et al. 2012) dataset, to build an efficient emotion recognizer model that can be 

embedded in an affective system towards a real-time tracking of an individual in distress 

phase situations. 

The techniques of deep learning neural networks were jettisoned for the 

experimentations conducted in this study because during extensive literature review of 

classification methods and techniques, the results obtained by (Yin et al. 2017; Wang and 

Shang 2013; Li et al. 2015; Jirayucharoensak, Pan-Ngum and Israsena 2014) with deep 

learning approaches using the DEAP (Koelstra et al. 2012) data set that was also utilised 

in this study can definitely be improved upon. This is despite the deep learning approach’s 

strengths in automatically extracting features from raw data as well as learning from 

labelled or unlabeled data (Nweke et al. 2018). This confirms the weak quality of 

discriminating features engineered by the deep learning approaches reported in (Yin et 

al. 2017; Wang and Shang 2013; Li et al. 2015; Jirayucharoensak, Pan-Ngum and 

Israsena 2014) and the need for new discriminatory features discovery as carried out in 

this study.  

In addition, deep learning methods can also be computationally intensive because 

of the required high parameter initialization, tuning and update (Nweke et al. 2018) as 

well as a higher number of layers which can run to tens or hundreds of successive layers 

of representation (Chollet and Allaire 2017) rather than just the only one or two layers of 

representation available in other classical shallow machine learning and pattern 

recognition algorithms such as Support Vector Machine (SVM), k-nearest neighbour and 

variants of Multilayer Perceptron Artificial Neural Networks (MLP-ANN) and the Radial 

Basis Function Neural Networks (RBFNN). Since, the layered representation in deep 

learning via models that are called neural networks (Chollet and Allaire 2017), this also 

guided this study’s choice of a neural network pattern recognition algorithm called the 

RBFNN, which is a shallow learning approach with an input layer, a single hidden layer 

and an output layer but with the capability of yielding good performance. 

 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Koelstra,%20S..QT.&searchWithin=p_Author_Ids:37321690300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Koelstra,%20S..QT.&searchWithin=p_Author_Ids:37321690300&newsearch=true
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1.3 Study Aim and Objectives 

The major aim of this research is to apply a machine learning approach to realize an 

intelligent system that can recognize human emotional state, which could be used to track 

a person in an emotionally induced distress phase situation. 

The under-listed research objectives are structured in order to achieve the aim of this 

research study: 

(i) To discover a set of physiological properties that are suitable for identifying an 

individual’s emotional state. 

(ii) To explore existing methods that could help to develop an intelligent system to 

identify an individual’s emotional state. 

(iii) To enhance detection of and matching between body signals and an 

individual’s emotional state. 

(iv) To test the reliability of the automated identification of an individual’s emotional 

state by the intelligent system using data from an existing database. 

 

  

1.4 Research Questions 

Flowing from the aim and objectives as well as the problem statement of this study, the 

following research questions were investigated: 

i. What physiological properties are suitable for identifying an individual’s emotional 

state? 

ii. How are existing methods used to develop an intelligent system to identify an 

individual’s emotional state? 

iii. How can detection of and matching between body signals and an individual’s 

emotional state be enhanced? 
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iv. How reliable in terms of recognition performance achieved, is an automated 

system of identification of an individual’s emotional state using data from existing 

databases? 

The relevant distress phase scenarios where an intelligent system like this could be 

deployed include abductions, fire and vehicular accidents, earthquakes and other natural 

disasters, (violent) rape, collapsing of buildings and missing person scenarios. 

 

1.5 Rationale for the Research 

As a result of the ever-growing world population and the strain on resources to cope with 

this growth, there is a need to have emergency plans in place to mitigate the effect of 

disasters (fire, flood, abduction, traffic accident, terrorism) on people and their valuables. 

A proposed system relying on human emotional states to determine an individual in a 

distress phase scenario such that emergency services could be triggered is therefore 

crucial for prompting a coordinated, effective and efficient real-time response to avert the 

occurrence of casualties or salvage the disaster when it occurs. The real-life purpose in 

application areas of such systems is primarily to save lives, valuables and persons 

suffering. 

This research work is therefore of tremendous significance in view of the need to enhance 

safety by providing automated surveillance/tracking of individuals even in public places 

(Hassan et al. 2018) using emotion physiological signals as well as detecting emotional 

states capable of threatening the safety and behaviour of the individual or other people.   

This can be used to either detect the occurrence or predict crimes that could be happening 

in the near future (Hassan et al. 2018). It is also essential to note the increasing global 

crime rates leading to loss of lives, revenues and valuables among others. The 

continuous devising of means by the perpetrators to stop anyone that wants to prevent 

them from committing crimes through raising their expertise while taking note of the 

important roles that data and signals play in crime prevention, detection and investigation 

hence the focus of this study on physiological signals and emotions. This is because 
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physiological signals are described as human reactions that evolve automatically and are 

less influenced by social, language and cultural differences (Chanel et al. 2006; Eun-Hye 

et al. 2012; Heng et al. 2013; Noppadon, Setha and Pasin 2013a) while emotions are 

also present in every individual (Al-Shawaf et al. 2016). 

The other importance of the research include enhancing real time communications 

via data signals collection between an individual – a potential perpetrator or victim and 

the proposed remote tracking system. In addition, it includes providing logistics and 

support information to security agencies and rescue teams as well as the victims’ family 

toward drastically reducing the scourge of some identified crimes. In addition, it involves 

promoting individual’s confidence in terms of safety and reducing brain drain because of 

accidents and crimes while also managing the emotional stress of the victim’s family 

members caught in the distress phase and casualty phase scenarios with a broad view 

of preventing casualties. 

The other motivation for this research is the open and unresolved issues of feature 

engineering in pattern recognition and machine learning problems especially as the 

trending deep learning approaches in machine learning classification problems which are 

designed to automatically extract salient discriminatory features from raw data without 

relying on strenuously handcrafted features (Nweke et al. 2018) but are yielding results 

(Yin et al. 2017; Wang and Shang 2013; Li et al. 2015; Jirayucharoensak, Pan-Ngum and 

Israsena 2014) that could be improved upon, even with the DEAP(Koelstra et al. 2012) 

data set that is utilised in this study. 

1.6 Study Contributions  

An intensive literature review of Human Emotion Recognition (HER) through physiological 

signals is performed in this study. After this exercise, the distinctive contributions of this 

study are enumerated as follows: 

(a) The first apparent unique contribution of this study in comparison to the previous 

research is the representation of human emotion physiological signals as 

hyperspectral images through inverse Fisher transformation. The hyperspectral 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Koelstra,%20S..QT.&searchWithin=p_Author_Ids:37321690300&newsearch=true
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imaging takes dozens to several contiguous narrow wave band images and have 

capabilities for vast quantities of data because of these high numbers of bands 

that are simultaneously imaged (Yuen and Richardson 2010). The hyperspectral 

image pixels in this context are vectors representing the spectral characteristics of 

the physiological signals in each channel. Because of its strong discriminatory 

ability between materials, though hyperspectral imaging technique was originally 

developed for geological and mining applications, it has since been extended to 

other areas including material identification, anomaly detection, target detection 

and recognition of target patterns (Yuen and Richardson 2010). The hyperspectral 

imaging techniques have also been used for remote sensing and detection of 

physical and emotional stress using facial expressions (Yuen and Richardson 

2010). This is indeed a novel idea for counterterrorism operations, a notion that 

was leveraged on in this study by using physiological signals because they are 

auto-evolving and less influenced by humans, cultures and languages rather than 

face (audiovisual) expressions because of their inherent faking drawback (Chanel 

et al. 2006; Eun-Hye et al. 2012; Heng et al. 2013; Noppadon, Setha and Pasin 

2013a). It is also of critical importance to note that terrorism and other related 

crimes are capable of being detected through human behaviours, activity, gestures 

and facial expressions (Yuen and Richardson 2010) while physiological signals 

can also be employed to assess the intent of an individual including perpetrator 

and the victim of a crime. 

 

(b) The second unique contribution of this study is the novel discovery of highly intra-

class image similarity and inter-class image dissimilarity features based on state 

of the art inverse Fisher transform (IFT), histogram of oriented gradient descriptors, 

local binary pattern descriptor, histogram of images and Eigen vector 

decomposition. Feature discovery remains an important task in image processing, 

computer vision and machine learning researches (Nweke et al. 2018; Wang et al. 

2018). Through this novelty, nine new features have been discovered for human 

emotion recognition. These features are listed under each modality which include; 

(i) Peripheral physiological signal modality: Histogram of Oriented Gradient 
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PEripheral Physiological Signal (HOGPEPS), Local Binary Pattern PEripheral 

Physiological Signal (LBPPEPS), Histogram of Images PEripheral Physiological 

Signal (HIMPEPS); (ii) Electroencephalogram (EEG) modality: Histogram of 

Oriented Gradient Physiological Signal (HOGPS), Local Binary Pattern 

Physiological Signal (LBPPS), Histogram of Images Physiological Signal (HIMPS); 

and (iii)  Fused (EEG+Peripherals) modality: HOG Human Emotion Signal 

(HOGHES), LBP Human Emotion Signal (LBPHES) and Histogram of Images 

Human Emotion Signal (HIMHES) respectively. 

 

(c) The application of the newly discovered human emotion physiological signals to 

recognize human emotion with a binary output variable based on two-class 

classification problems mapped under the Valence, Arousal, Dominance and 

Liking emotion representations in the DEAP (Koelstra et al. 2012) corpus using the 

Radial Basis Function Neural Network (RBFNN) machine learning algorithm. A 

three-class classification problem based on a novel modelling of emotion to suit 

the stated distress phase state in terms of the above mentioned four 

representations of emotions was also designed. 

 

(d) A qualitative and quantitative evaluation of the inverse Fisher transforms algorithm 

with which the discriminating features were extracted was carried out. The image 

representations of the different channels and modalities after applying the feature 

descriptors were presented to qualitatively analyse and compare the inherent 

differences and similarities. The quantitative evaluation is realised with the 

performance metrics of accuracy and mean square error obtained for each of the 

features and the three modalities considered. 

This study builds on the use of an existing pattern recognition algorithm - the RFBNN 

and provides answers to how effective the algorithm could be in recognition of human 

emotion in a distress phase state with a view to specifically develop an intelligent system 

towards a real-life tracking of an individual. The research also explores and investigate 

the use of emerging technologies for deploying a pervasive emotion recognition/tracking 

and activity monitoring service.  

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Koelstra,%20S..QT.&searchWithin=p_Author_Ids:37321690300&newsearch=true
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1.7 Research outputs 

This research study has led to the publications of the articles listed below: 

A. Abayomi, O.O. Olugbara, D. Heukelman and E. Adetiba. 2019. Physiological Signals 

Based Automobile Drivers’ Stress Levels Detection Using Shape and Texture Feature 

Descriptors: An Experimental Study. In: J. Mizera-Pietraszko et al. (eds.), Lecture Notes 

in Real-Time Intelligent Systems: RTIS 2017, AISC 756, 436-447.  

A. Abayomi, O.O. Olugbara and D. Heukelman. 2018. An Architecture Utilizing Human 

Emotions and Activities Recognition for Remote Monitoring. In IEEE Xplore, 2018 

International Conference on Advances in Big Data, Computing and Data Communication 

Systems (icABCD, August 2018). 

A. Abayomi, O.O. Olugbara, Delene Heukelman. 2018. Prevention of Road Traffic 

Accidents using Physiological Signals to Detect Automobile Drivers’ Emotion. Abstract 

proceedings of the 3rd Interdisciplinary Research and Innovation Conference (IRIC 

2018), Durban. South Africa. 

A. Abayomi, O.O. Olugbara, E. Adetiba and D. Heukelman. 2016. Training Pattern 

Classifiers with Physiological Cepstral Features to Recognize Human Emotion. In: Pillay 

N., Engelbrecht A., Abraham A., du Plessis M., Snášel V., Muda A. (eds.), Advances in 

Nature and Biologically Inspired Computing. Advances in Intelligent Systems and 

Computing, vol. 419. Springer, Cham.  

The following journal manuscripts are being edited for publication: 

A. Abayomi, O.O. Olugbara and D. Heukelman. 2019. Recognition of Human Emotion 

using Radial Basis Function Neural Networks of Inverse Fisher Transformed 

Physiological Signals. 

A. Abayomi, O.O. Olugbara and D. Heukelman. 2019. Recognition of Distress Phase 

Situation using Inverse Fisher Transformed Human Physiological Emotion Signals with 

Radial Basis Function Neural Networks.  
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1.8 Synopsis 

The outline of this dissertation is as follows. 

Chapter 1 of this thesis covers the introduction, background of the study as well as 

the research problems to be solved, including some previous works, what have been 

addressed and what is left unresolved in the field of human emotion recognition, 

especially as it relates monitoring persons in distress phase while its link to human activity 

recognition and location information is also explored.   

In Chapter 2, relevant literature and related works about this study: Towards real-

time tracking of persons in distress phase situations is presented. Emotion recognition 

studies and how it can be integrated with Human Activity Recognition (HAR) as well as 

location information and sensors were thoroughly explored. 

The components of emergency response systems and management is presented in 

Chapter 3. An architecture for combining human emotions and human activities 

recognition is proposed. Various signals that could be measured for human emotions and 

activities are explored. 

The mathematical models and design of the proposed feature extraction algorithm 

based on the inverse Fisher transform is presented in Chapter 4. 

In Chapter 5, the human emotion recognition methodology and designs of 

experimentations conducted as well as the application software coding are discussed. 

Several feature extractions techniques such as the histogram of oriented gradient, local 

binary patterns and histogram of image features of physiological signals relying on the 

designed inverse Fisher based data transformation algorithm were applied to the DEAP 

(Koelstra et al. 2012) emotion physiological signals for analysis.  The Gaussian radial 

basis function artificial neural network pattern recognition algorithm was used for the 

various experiments conducted and reported in this thesis. 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Koelstra,%20S..QT.&searchWithin=p_Author_Ids:37321690300&newsearch=true
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The experimental results, evaluation metric, interpretations of results as well as 

discussions are presented in Chapter 6 of this thesis while the study’s summary, 

conclusions, recommendations, limitations and future works are presented in Chapter 7. 

 

1.9 Research Scope 

This study only covers the use of emotion laced physiological signals harvested from 

individuals as contained in the DEAP (Koelstra et al. 2012) data set to detect human 

emotion. This data set which is renowned in human emotion recognition and affective 

computing domains was used to detect and classify emotions into two/three classes to 

reflect the designed distress phase emotion model using the four emotion representations 

of valence, arousal, dominance and liking. No emotion physiological signals were directly 

collected in this study and human activities recognition experiments were not carried out. 

Only an architecture that could combine human emotion, human activities and location 

information using various sensors was presented for effective emotional tracking of an 

experiment subject especially in a distress phase situation.  

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Koelstra,%20S..QT.&searchWithin=p_Author_Ids:37321690300&newsearch=true
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CHAPTER TWO  

Related Works  

This chapter offers a synopsis of the latest topics, avant-garde practices, challenges and 

issues in emotion recognition studies using wearable sensors with a view to tracking an 

individual in a distress phase situation. Researches in activity recognition and location 

detection domains are also discussed with their capabilities to be combined with human 

emotions for tracking of people in distress phase scenarios. 

2.1 Emotions Context 

Emotion is a very complex, somewhat intangible human state and a challenging task to 

define as a lot of definitions have been proposed. This is supported by the famous coinage 

by Beverley and Russell (1984) that “everyone knows what an emotion is until asked to 

give a definition. Then, it seems no one knows”. Consensus on the various definitions 

due to debates among contemporary theoreticians and researchers on the best way to 

theorize emotion as well as interpreting its roles in human life, is therefore not currently 

to be found. 

Efforts to provide definitions of emotion started as far back as the era of the early 

philosophers Plato and Aristotle as well as psychologists McDougall, Wundt and James. 

Emotion has been considered as a mental event (Wundt 1924), behaviour (Watson 1919), 

physiological activities triggered by the autonomic nervous system (Wenger 1950) and 

also as a group of muscular and glandular reactions or facial behaviours (Tomkins 1980). 

However, many psychologists have dismissed the idea of stringently confining 

emotion definition to only mental, only behavioural or only physiological activities. They 

argued the possibility of occurrence of certain emotions without distinct behavioural or 

physiological signs while these signs can also occur in other activities not linked to 

emotion such as in the workout and acting. This necessitated the merging by Izard (1972) 

of mental, physiological and behavioural events into a single definition of emotion and 

proposed as “a complex process that has neurophysiological, motor-expressive and 

phenomenological aspects”.  
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It has been stated that emotion involves behaviour, feelings, physiological change 

as well as cognitions and always occurs within a particular context, which powers it. Its 

major function is to offer support and information for decision making to the individual with 

respect to interaction with the ecosphere. The behavioural aspect of this definition 

includes vocal/verbal, gestures, facial and postural responses of the individual. On the 

other hand, the feeling component comprises the glaring changes observed in an 

emotionally aroused person and are readily associated with an emotional drive, which 

stirs the physiological change component (Heng et al. 2013). The nervous system is 

activated in the physiological change component as electrochemical activities are 

triggered for a fight or flight response. 

Emotion is part and parcel of human’s everyday living and constitute an essential 

part of his/her survival and existence (Izard 1972; Izard 1977). Emotional feelings and 

expressions are very germane to the enhancement and regulation of human interpersonal 

relationships. This is because (verbal, facial and gesture) communications between 

people are often laced with anticipated changes in the emotional state of the parties either 

to express agreements or disagreements with opinions or to clarify spoken words or 

gestures. Human beings, therefore continuously express and perceive emotions and do 

not switch off their minds as revealed by the brainwave activities obtained from the scalp. 

The terms “affect”, “emotions” and “moods” have often been misused 

interchangeably by people. Affect is a general term representing diverse feelings that 

people experience and it incorporates both emotions and moods. Emotions, on the other 

hand consists of passionate feelings aimed at an object or individual. Moods are less 

passionate feelings than emotions and most frequently devoid a contextual stimulus. 

According to Ekman and Davidson (1994), moods and emotions are distinct from each 

other in terms of their duration of occurrence or time course. Moods usually last longer 

than emotions and could take hours or days while emotions can be very brief, occurring 

within a second or at most minutes (Ekman 1984). It has also been posited by Ekman 

and Davidson (1994) that a mood state that stands for weeks or months is an affective 

disorder and no longer a mood.  
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Emotions (such as happy, fear and disgust) are associated with unique facial expressions 

while neither affective disorder, moods, irritability nor emotional traits have facial 

expressions mapped to them. 

 

2.2 Theories of Emotion 

Different theories of emotion can be appositely distinguished by their choice of emotion 

definition and interpretations concerning the cognitive, expressive, feelings, physiological 

and motivational components of emotions. Some of the known theories of emotion are 

described below. 

 

2.2.1 Evolutionary Theories 

The evolutionary theories describe the historical background relating to the evolution of 

human emotions by considering natural selection that occurred in the past and its nexus 

with the manifestation of emotions in humans today (Johnson 2009). Changes in traits 

across generational time and space are considered; as genetic drift, natural selection and 

chance are possible candidates of the traits’ changes. Natural selection triggered traits 

are called adaptation and Richardson (1996) opined that adaptation is traits’ prevalence 

that conferred a greater fitness, while others have argued that fitness could be conferred 

by a trait without necessarily making the trait an adaptation.  Despite this argument, many 

theories have emerged that describe emotions as adaptations. Keltner, Haidt and Shiota 

(2006) stated that emotions are well-organized and synchronized human reactions that 

aid reproduction, avoid physical threats and embrace survival, offer protection to young 

ones and maintain cooperative associations with others, thus conferring the seals of 

adaptation.  
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2.2.2 Social theories 

This approach views emotion as social constructs, which are derived from human 

cultures, traditions and societies and are acquired by people through experience. 

Some of the ideas that inspired this approach include; 

(i) Different words are used for emotions across cultures and languages. Since 

people experience an emotion, for which they have words, different emotions 

are in existence and experienced across cultures. For example, there is no 

precise translation in Polish for the emotion of disgust and the emotion amae, 

representing affective dependency upon another's love, only exists among the 

Japanese. It is analogous to infants’ feelings toward their mothers; however, 

this emotion also exists in adults (Morsbach and Tyler 1986). 

(ii) Emotions are present during interpersonal and social relationships, but are 

rather interactions between people and their environments. Interpersonal 

factors are thus what triggered emotion and either make humans participate or 

withdraw from specific interpersonal contacts. 

(iii) Societal norms, practices, values and beliefs do regulate emotions and 

contribute largely to which events lead to what emotion and how that emotion 

is expressed. 

 

2.2.3 Transitory Social Roles 

Emotions have been described here as a socially constituted syndrome involving human’s 

evaluation of a situation such that it is construed as a passion rather than an action (Averill 

1980). The syndrome as well as transitory social roles is produced by beliefs and societal 

norms, which governs human emotions. Syndromes are aggregation of all emotional 

responses for a particular emotion, but none of them is essential for that emotion 

syndrome (Averill 1980). All elements, including the eliciting stimuli and other non-social 

elements contributing to an emotional response are included in the syndrome. 
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2.2.4 Emotion Process Theories 

This approach is centred on the emotion process proper. The process includes stimuli 

elicitation and perception, which may include thoughts or recalling, which is followed by 

activities between the perception and generation of a body response, while the last stages 

are the facial and physiological responses, such as increased heartbeat, skin 

temperature, skin conductivity, respiration etc. The stimuli elicitation and perception, 

which is considered in an emotion process as the early portion, is very germane, because 

the nature of the emotion experienced and expressed by humans, is determined at this 

stage.  

 

2.3 Emotions Recognition Research 

Various researchers in diverse scientific fields, including affective computing, psychiatry, 

speech analysis, computer vision, biology, linguistics, sociology, neuroscience, 

anthropology, psychology and information and communication technology have crisply 

acknowledged more than 300 emotions. Nevertheless, not all these emotions are 

experienced in human day-to-day life and researchers have tried to narrow the number 

of emotions down to six basic emotions, introduced by Ekman (1982) and argued, in 

support of Palette theory, that “any other emotion is the composition of the six basic 

emotions. 

However, the emotion types that have been recognised with the various elicitation 

stimuli include: amusement, anger, annoyance, anxiety, boredom, calm, confusion, 

contempt, contentment, disbelief, disgust, distress, elation, embarrassment, emphatic, 

engagement, fatigue, fear, frustration, grief, happiness, hate, helpless, hot/cold anger, 

interest, ironic, joy, laughter, motherese, neutral, relaxed, sadness, shame, stress, 

surprise, panic, platonic love, pleasure, pride, puzzlement, rebelliousness, reprimanding, 

rest, reverence, romantic love, touchy, uncertainty. Classes of arousal – low, medium and 

high; and valence – positive, negative, pleased and displeased (Chanel et al. 2009; 

Zhihong et al. 2009; Jerritta et al. 2011; Soleymani et al. 2012) have also been identified. 
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Studies using physiological signals to recognize emotional states have been on the rise 

in the past one decade.  Some of these research studies are described below and the 

improvement of accuracy using different combinations of signals and methods can be 

seen. 

 

2.3.1 Physiological Signals 

Six emotions, namely amusement, contentment, disgust, fear, neutral and sadness were 

classified with an accuracy of 90% and 92%, using the Support Vector machine (SVM) 

and Linear Discriminant Analysis (LDS) classifiers respectively, along the subject 

dependent approach as reported by Maaoui and Pruski (2010). Time domain statistical 

features such as mean, standard deviation of raw signals, absolute values of first and 

second differences of raw signals were extracted from Blood Volume Pulse (BVP), 

Electromyography (EMG), skin conductance, respiration rate and skin temperature 

physiological signals, acquired from subjects induced by the International Affective 

Picture System (IAPS) stimuli. 

The study reported by the Soleymani et al. (2012) utilised physiological signals, 

including respiration amplitude, skin temperature, Galvanic Skin Response (GSR) and 

Electrocardiograph (ECG), harvested from experiment, subjects induced with video clips 

to classify emotion into the arousal (calm, medium and excited) and valence (unpleasant, 

neutral and pleasant) states. Time domain statistical features, including average, 

standard deviation of raw signals, as well as the absolute values of the first and second 

derivative, were extracted and trained with an SVM classifier. A classification accuracy of 

46.2% was obtained in the arousal state while 45.5% was recorded for the valence state 

both of them using a subject independent approach. The study was also extended to 

using Electroencephalography (EEG) signals from where Power Spectral Density (PSD) 

and spectral power asymmetry features were extracted and trained using an SVM 

classifier. Using the subject independent approach, a classification accuracy of 52.4% 

and 57.0% was obtained from the three states of arousal and valence respectively. 
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This study did not meet the required level of accuracy to be implemented in a real-

time environment. However, Noppadon, Setha and Pasin (2013b) extracted PSD features 

from EEG signals acquired from pictures induced experimental subjects and obtained a 

classification accuracy result of 85.4% along two valence states with an SVM classifier 

and subject independent approach. This result was much more promising.  

In the research study conducted by Mimma et al. (2015), Heart Rate Variability 

(HRV) derived from ECG physiological signals acquired from IADS stimulated healthy 

volunteers were utilised in recognizing emotional state along four and two classes of 

arousal and valence respectively. The Autonomic Nervous System (ANS) dynamics 

estimated through the standard and nonlinear analysis as well as the Lagged Poincare 

Plots of the HRV were used as features. A leave-one-subject-out validation approach was 

employed and a quadratic discriminant classifier was applied to the extracted features. 

The arousal dimension gave a recognition accuracy of 84.2%, while the valence approach 

posted 84.7%. 

Ateke, Ataollah and Atefeh (2016), who utilised images as stimuli to acquire Heart 

Rate Variability (HRV) physiological signals from college students, obtained the next level 

of accuracy. They extracted 17 standard and non-linear features from the intrinsic mode 

functions decomposition of the HRV signals. A probabilistic neural network algorithm was 

applied to the extracted features to classify emotions into four classes of fearfulness, 

happiness, sadness and peacefulness. A classification accuracy of 99.09% was obtained. 

Jun-Wen et al. (2016) separated ten groups of emotional pictures separated into 

five classes based on the valence and arousal dimensions. Facial EMG of 113 

experimental subjects consisting of young and senior adults stimulated with these 

pictures was acquired for each of the mapped classes and 16 sets of features relating to 

the frequency, amplitude, variability and predictability of the EMG signals were extracted. 

An SVM classifier was applied to these features and a classification accuracy ranging 

from 75.6 to 100% was obtained for the five affective classes and the baseline for all 

individuals. 
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2.3.2 Facial expressions and speech 

In a similar vein, various studies have been conducted using facial expression and 

speeches for emotion recognition. The Cohn-Kanade corpus (Kanade, Cohn and Tian 

2000) was utilised as elicitation material by Uroš and Božidar (2015) and extracted 1232 

facial images of 106 experiments, subjects to classify human emotions into six classes 

consisting of anger, disgust, fear, happiness, sadness and surprise. The histogram of 

oriented gradient (HOG) difference features was extracted from these emotional facial 

expression images and obtained a recognition accuracy of 95.6%, with the subject 

independent approach based on the SVM classifier. 

In another study, the seven emotions of angry, disgust, fear, happy, sad, surprise, 

neutral were classified by Yunan, Yali and Shengjin (2015) using the Japanese Female 

Facial Expression Database (JAFFE) corpus as stimuli and the fusion of HOG and 

uniform local binary patterns (uLBP) as features. Coarse-to-fine classifiers were applied 

to the extracted features and a classification accuracy of 95.3% was achieved. 

The Linear Prediction Coefficients (LPC), Mel Frequency Cepstral Coefficient 

(MFCC), Linear Prediction Cepstral Coefficient (LPCC) and Perceptual Linear Prediction 

(PLP) were extracted from speech signals by Palo, Mohanty and Chandra (2015). The 

multilayer perceptron artificial neural network classifier algorithm was applied to the 

features and recognition accuracies of  80.0%, 48.6%, 54.5% and 70.0% respectively 

were obtained for four emotion classes namely angry, bore, sad and surprise. 

 

2.4 Applications of Emotions  

The research niche of human emotion is fundamentally a multidisciplinary domain 

comprising assorted fields such as linguistics, speech analysis, medicine, human 

computer interaction, business management, psychology, behavioural science, computer 

vision, psychiatry, marketing, safe transportation, advertising and security, as well as 

machine intelligence.  
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An automatic emotion recognition tool can be successfully deployed in various 

application domains, including social and emotion development research, multimedia 

sector, depression detector and management, customer services, tutoring and learning, 

telemedicine and psychopathology, studies on affective expressions such as deception, 

safe driving and tracking of people’s well-being and safety, mother-infant interaction and 

call centre s (Fried 1976; Cohn and Tronick 1988; Ekman, Matsumoto and Friesen 1997; 

Larson and Rodriguez 1999; Roisman, Tsai and Chiang 2004; Ekman and Rosenberg 

2005; Jonghwa and Andre 2008). 

 

2.5 Emotion Representations 

As a result of the variations involved in how an individual experiences and expresses 

emotions, various approaches have been utilised to represent human emotions. These 

emotion representation models include the discrete and dimensional or continuous 

models. 

 

2.5.1 Discrete Emotion Model 

The discrete emotion model was inspired by the notion of considering human emotions 

as necessary for survival, as postulated by Charles Darwin. The naming of the emotions 

originated from the everyday usage of words by human beings in order to convey his/her 

emotional feelings. It is arguably the earliest model used by a psychologist (Ekman 1982) 

while it also takes into consideration the existence of some universal and basic emotions. 

These basic emotions include anger, sadness, fear, happiness, disgust and surprise 

(Ekman 1982).  The universal characteristic of these basic emotions is supported by using 

facial expressions (Ekman 1982). It is believed that despite the racial or cultural 

differences among people, many people can still perceive emotions that correspond to a 

specific human facial expression. Other emotions mixes have also been argued to be 

derived from a blend of the core discrete emotions; sadness and surprise, for instance, 

can result in a different emotion namely disappointment, while happiness and contempt 

can result in smugness. Some of the characteristics that clearly distinguish the basic 
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emotions include distinctive universal signals, universal antecedent events, emotion 

specific physiology and automatic appraisal mechanisms (Ekman 1999). 

The distinctive universal signals combine all the emotion evolution phases, 

including physiological changes and memories that occurred in a person, to bring an 

emotional expression and what is expected to follow next, including consequences and 

coping. Also, the appraisal mechanism is concerned with determining or measuring the 

stimuli that pertains to a specific emotion and this mechanism could be automatic or 

extended. On the other hand, the physiological characteristics provide information 

regarding the physiological changes in a human that prepares himself/herself to respond 

in different ways to the diverse emotions being experienced (Ekman 1999). It has been 

observed in the literature that unique patterns of Autonomic Nervous System (ANS) 

activity connect to the emotions of Disgust, Fear and Anger (Ekman, Davidson and 

Friesen 1990). The characteristics, the universal antecedent event are related to the 

presence of common elements in the perspectives in which emotions occur, while some 

other characteristics of basic emotions, such as quick onset of emotions, brief duration 

and their presence in other primates, have also been added by another author (Reeves 

1993). It should also be noted that these characteristics serve as a guide and should not 

be considered as indispensable and essential conditions that must be present in all basic 

emotions.  

The discrete model, despite its easy understandable, popularity and wide usage, 

is however challenged by the fact that there exists a variation in the naming of an 

experienced emotion across different cultures, because emotion words do not have 

precise translations in diverse languages and cultures. To support this fact Russell (1991) 

stated that the Disgust emotion, for instance, does not have a corresponding word in 

Polish language that can convey the meaning of the emotion experienced. 

 

2.5.2 Dimensional Emotion Model 

The dimensional model of emotion representation uses a continuous space to represent 

emotion, so as to cater for the inherent cross-lingual interpretation challenge of the 
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discrete model. It originated from the cognitive theories and utilises n-dimensional space 

to represent an emotional state (Hanjalic and Xu 2005). The most popular are the 2- or 

3-dimensional spaces, in which the emotions experienced are mapped to the bipolar 

valence and arousal scales. The valence scale measures the pleasantness, pleasureness 

or otherwise of an emotion, while the activation level and intensity experienced in an 

emotion is captured by the arousal scale (Hanjalic and Xu 2005). The arousal level could 

be calm/low, average/medium and excited/high, whereas the negative (unpleasant), 

neutral and positive (pleasant) valence levels can be attributed to an experienced emotion 

(Uhrig et al. 2016). The sadness emotion, for example, has a low arousal but negative 

valence; fear has a negative valence but high arousal; surprise has a low arousal and 

positive valence, while happiness has positive valence but high arousal. 

The third scale in the 3-dimensional space is called dominance, which measures 

the level of control an individual has over the felt emotion and ranges from submissive 

(without control) to dominant (empowered). The 3D space popularly named Pleasure- 

Arousal-Dominance (PAD) was described by Russell and Mehrabian (1977) and has also 

been recently validated by Iris et al. (2014) to replace the 2D space. A fourth dimension 

called predictability was also proposed by Fontaine et al. (2007) in addition to the PAD 

dimensions. The level of certainty or likelihood of occurrence of a sequence of event being 

watched by a subject is measured by the predictability dimension.  It is essential to 

mention that though the dimensional model has the advantage of people being able to 

situate emotional content in comparison to a reference point, this does not make the 

model superior to the discrete model. Both emotion models are popular in emotion 

recognition studies and are transformable to each other, while their contributions and 

applicability differs with variabilities introduced by contexts, subjects, time and stimuli 

among others (Soleymani et al. 2014). 

 

2.6 Emotional Stimuli Datasets 

The elicitation of emotional responses from subjects in experiments is a very challenging 

task and requires the selection of the most effective stimuli to achieve a valid response. 
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In the course of eliciting an emotion in a subject under experimental conditions, many 

external stimuli have been used by different researchers, depending on the contexts and 

the subjects. These external stimuli include pictures, static images and vignettes, robot 

actions, voice, games, audiovisuals, films/movies/video clips, audio music, music videos, 

odour, self-elicitation and the recall paradigm (Lan and Ji-hua 2006; Noppadon, Setha 

and Pasin 2013a).  

OASIS -The Open Affective Standardized Image Set (Benedek, Shayn and 

Mahzarin 2017), Geneva Affective PicturE Database (GAPED) (Dan-Glauser and 

Scherer 2011), International Affective Picture System (IAPS) (Lang, Bradley and Cuthbert 

2008), International Affective Digitized Sounds (IADS) and the Affective Norms for English 

Words (ANEW) (Bradley and Lang, 1999a; Bradley and Lang 1999b; Bradley and Lang 

2007) are among the popular stimuli datasets for emotion elicitation, while in other 

studies, subjects have been asked to personally obtain various stimulus materials 

capable of inducing a target emotional state in themselves by survey or otherwise 

(Panagiotis and Leontios 2010; Xu and Plataniotis 2012).  

The OASIS stimulus data set (Benedek, Shayn and Mahzarin 2017) contains 900 

images carefully organized under four themes: scenes, animals, humans and objects, 

along with normative scoring on the arousal and valence affective dimensions. It is an 

online open-access dataset, collected in the year 2015 and therefore contains recent 

images as well as current valence and arousal ratings than other stimulus datasets. The 

data set is also not under any copyright restrictions, allows free download and usage 

while the huge number of images under the four themes allows the users to interactively 

reconnoiter the images by its categories. Image stimuli reflect both the social and physical 

worlds and could use its pixel characteristics to represent scenes, animals, humans and 

objects that are capable of eliciting emotional reactions, including anger, contentment, 

disgust, love, amusement, fear or happiness. Anthony and Seth (2018) and, Alarcao˜ and 

Fonsec (2017) have utilised the OASIS data set for research studies. 

The GAPED (Dan-Glauser and Scherer 2011) was developed in order to escalate 

the obtainability of visual emotion stimuli to the research world and resolves the IAPS’ 

data set limitation of inadequate number of pictures under specific themes. The data set 
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contains 730 pictures that contains both negative and positive contents capable of 

eliciting different emotions in subjects participating in the experiment. Some of the 

negative content pictures include snakes and scenes relating to violation of moral and 

legal norms, such that the negative emotions can readily be elicited. The positive contents 

on the other hand contains human pictures and animal babies, while the neutral pictures 

contain non-living objects. The ratings of arousal and valence were done for all the 

pictures and the results obtained are presented. The GAPED data set has been utilised 

in (Lakens et al. 2013; Zhao et al. 2014; Stöckli et al. 2017). 

The IAPS (Lang, Bradley and Cuthbert 2008) since inception has contributed 

immensely to the advancement of research and it is perhaps one of the most frequently 

used emotion stimulus datasets with several thousands of research papers published 

using the IAPS images. The data set contains 1,195 emotionally evocative colored 

images, normatively rated on the 3D – arousal, valence and dominance scale. Despite its 

success, the data set is criticized for being developed during the pre-internet research 

period and does not contain recent images and normative affective ratings, as well as a 

limited number of images under specific themes of interest. The data set has been used 

in studies reported in (Yisi and Olga 2013; Brouwer et al. 2013; Lachezar et al. 2015; 

Betella and Verschure 2016; Martin et al. 2018). 

The IADS (Bradley and Lang 2007) contains 167 naturally occurring sounds, 

mapped to a number of contexts that elicit a wide range of emotional responses in 

subjects participating in experiments. The data set contains a non-verbal emotional set 

of sounds, which is analogous to the emotional facial expression. It is rated on the 

affective dimensions of arousal, valence and dominance. These sounds can be mapped 

to musical instruments, human sounds, means of transport, objects, animals and other 

scenarios. Research studies have used this data set for emotion recognition studies 

classifying emotions along the discrete and dimensional scales. Some of the studies that 

have utilised the IADS data set include (Brouwer et al. 2013; Soares et al. 2013; Yisi and 

Olga 2013) 

The Affective Norms for English Words (ANEW) is another emotion eliciting data set 

that offers a group of normative emotional ratings for a huge number of words in the 
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English language (Bradley and Lang 1999b). The ratings of these verbal materials are 

done using the arousal, valence and the dominance scale as the data set complements 

the IAPS and IADS emotional rated stimulus datasets. Montefinese et al. (2014) and 

Soares et al. (2012) are some studies that have utilised the ANEW data set of 

experimentations. 

As a result of some glaring limitations associated with the pictures or static images, 

emotional stimulus materials, many research studies have considered using audiovisuals 

or films as emotional stimuli (Schaefer et al. 2010) for eliciting discrete emotions such as 

amusement, happiness, anger, disgust, sadness and fear, including both negative and 

positive emotions. As compared to the use of other methods of emotion elicitation 

stimulus, the film clips offer numerous benefits, which include the provision of strong 

emotional context, dynamic and biologically appropriate stimuli within a relatively short 

duration as well as the ease of standardization. The integration of auditory, visual and 

sometimes pictorial information on the films offers the added advantage of meaningful 

and seamless information, communication across the sensory modalities (Schaefer et al. 

2010).  In addition, as opposed to the experimental and laboratory-like models of emotion 

elicitation stimuli, which are considered rather manipulative, film clips/videos are relatively 

observed by the viewers as a pleasurable and conversant activity undertaken by people 

in their day-to-day living and are less manipulative by the viewers (Gross and Levenson 

1995). All these benefits, among others, motivated the choice of using film clips/videos 

as the emotion elicitation materials in this research study. 

 

2.6.1 Film Emotion Stimuli Datasets 

The FilmStim film clips database was developed by Schaefer et al. (2010) as an emotion 

stimuli data set for affective related experiments. It is made up of 70 film clips of between 

1 – 7 minute duration, with 10 films each catalogued under 7 human emotions, which are 

fear, anger, tenderness, sadness, neutral, disgust and amusement. Each of the film clips 

was rated by 364 subjects participating in the experiment, along 24 classification norms, 

such as positive and negative affect, subjective arousal, the positive and negative affect 

scores obtained from the Differential Emotions Scale, 15 mixed feelings scores and six 
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emotion discreteness scores. Despite the number of videos utilised, the data set is 

criticized for global labelling of the videos, which is considered inadequate to construct 

ground truth data for induced emotion labels (Baveye et al. 2015) especially as emotions 

are known to last only a few seconds from onset to offset (Rottenberg, Ray and Gross 

2007). 

The Emotional Movie Database (EMDB) is another emotion elicitation stimuli data 

set and consists of 52 non-auditory film clips. The data set was introduced by Carvalho 

et al. (2012) with each film clip lasting 40 seconds and extracted from commercially 

produced films. The arousal, valence and dominance ratings of the clips were done on a 

9-point scale of the experiment subjects. Although the non-auditory nature of the clips 

offer the advantage of future experimental manipulations of the clips, the data set has a 

drawback of introducing a certain degree of artificiality as well as the inability of 

multimodal processing when using the clips, especially in speech based emotion studies, 

since only the visuals are available and not the audio (Carvalho et al. 2012). 

LIRIS-ACCEDE was introduced by Baveye et al. (2015) and contains 9,800 

segmented short video clips, lasting 8 to 12 seconds, which translate to about 26:57:8 

hours for all the 9,800 clips, with each segment considered large enough to obtain 

consistent excerpts for specific emotions to be readily elicited in the experimental 

subjects. The segmented clips were annotated using the valence arousal 2D space; it is 

freely available and shared under the Creative Commons licenses. The 9800 excerpts 

were extracted from 160 films obtained from the video platform VODO and the database 

is reputed to be the largest video database currently available. Animation, comedy, action, 

horror, thriller, romance, documentary, adventure and drama are the 9 genres under 

which the 160 movies are classified. The excerpts reflect a wide range of scenes such as 

violence, murders, landscapes, sexuality and some other positive scenes. Sabyasachee, 

Rahul and Shrikanth (2017) and Leimin et al. (2017) have used the LIRIS-ACCEDE data 

set of experimentations.  

Some of the multimodal and physiological signals based emotion datasets that 

have been developed using videos/films for elicitation of experimental subjects are hereby 

discussed. The MAHNOB-HCI data set (Soleymani et al. 2012) utilised 20 short emotional 
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videos, shown to 30 experimental subjects as stimuli to elicit emotions in them, while 

harvesting peripheral physiological data, Electroencephalograph (EEG) readings, audio 

recordings, eye gaze and facial videos from the subjects. The subjects rated the videos 

using emotional keywords, valence, arousal, dominance and predictability. This 

emotional stimulus data set was used for the study described in this dissertation. The list 

of the 20 videos utilised as well as their sources are provided in (Soleymani et al. 2012).   

The Database for Emotion Analysis using Physiological Signals (DEAP) is a 

multimodal data set developed by Koelstra et al. (2012) for the investigation of human 

affective states. An aggregate of 40, one-minute duration each, of music videos was used 

as emotion elicitation stimuli for 32 experimental subjects whose peripheral physiological 

signals as well as EEG readings were harvested as they experienced the affect (Koelstra 

et al. 2012). The videos were rated by the experimental subjects along the valence, 

arousal, dominance, familiarity and like/dislike spaces. Classification results were 

obtained by utilizing the peripheral physiological and EEG modalities along the valence, 

arousal and like/dislike ratings while a decision fusion of the classification results was also 

performed. Some recent research studies that have utilised the DEAP data set include 

Xiang et al. (2018) and Thammasan (2017), Yin et al. (2017), Wang and Shang (2013), 

Li et al. (2015), Jirayucharoensak, Pan-Ngum and Israsena 2014.  

These emotional stimuli datasets have varied characteristics such as the number 

of subjects from whom data were collected, emotion channels and stimuli (audio, gesture, 

visual, audio-visual, and physiological), nature of expressions (acted, simulated or 

spontaneously) and whether these emotions were induced/elicited or naturally 

expressed.  

Out of the emotional databases stated above only the DEAP and MAHNOB-HCI 

contain physiological emotion datasets, are publicly available for experimentation and 

have been used to recognize emotions, while other research studies have developed 

several in-house corpuses that are not publicly available. 
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2.7 Identifying Emotions 

Different methods may be used to identify the emotions felt by subjects from whom an 

emotion is elicited while participating in an affective experiment. 

 

2.7.1 Self-reporting 

In emotion recognition research studies, it is essential that an individual’s experienced 

emotion is the same one being analysed and reported, in order to give proper credence 

to the results obtained and arguments posited. Knowing the emotion experienced is 

mainly achieved by the subject participating in the experiment reporting his/her emotion, 

while the researcher compares the emotion with the ground truth.  

Both the dimensions and discrete models of emotion representations have been 

employed in self-reporting emotion. The subject participating in the experiment either 

liberally uses emotional keywords to state his/her emotion experienced, or is asked 

specific questions, or to choose from a pre-determined list of emotions, keywords, range 

of values or symbols (Soleymani et al. 2014). Several methods have been adopted for 

emotional self-reporting, which involve the collection of subjective affective ratings from 

experimental subjects. These include the use of the Affective Slider (AS), the Geneva 

Emotion Wheel (GEW), Positive and Negative Affect Schedule (PANAS) and Self-

Assessment Manikin (SAM), among others. These methods are briefly discussed below. 

 

2.7.1.1 Affective Slider 

The Affective Slider (AS) is a tool that was introduced by Betella and Verschure (2016) 

for emotion self-reporting. The AS is digital in nature and uses two slider controls to 

achieve a quick assessment of pleasure and arousal in human emotions. The results 

achieved by the authors suggested that the AS matches the SAM on the pleasure and 

arousal scales of emotional self-reporting. It can also be readily reproduced in the modern 

day’s digital devices, such as tablets and smartphones, while it also does not require 

written instructions.  
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2.7.1.2 Geneva Emotion Wheel 

The Geneva Emotion Wheel (GEW) method is a semantical self-reporting tool that was 

developed by Scherer (2005), using 20 emotions distributed in a circular manner to 

combine both the discrete and dimensional approaches of emotion representations. Each 

of the 20 emotions arranged around the wheel, has five circles of increasing sizes from 

the centre outwards. The circle size indicates the activation level of the emotion 

experienced. Subjects participating in the experiment are required to choose two 

emotions considered to be the closest to their experienced emotion and also report the 

activation level by marking the corresponding circle size. The emotions have been 

carefully arranged in the circle in such a manner that the high-control emotions are placed 

at the top while the low-control emotions are at the bottom with the horizontal axis 

representing the pleasure/displeasure dimension.   

 

2.7.1.3 Positive and Negative Affect Schedule 

Watson, Clark and Tellegen (1988) developed the Positive and Negative Affect Schedule 

(PANAS) emotional self-reporting method. The method is made up of two scales that 

measure the positive and negative affect, while it shows the relationship between the two. 

10 affect descriptors each were used for both the negative and positive affect as 

experimental subjects were asked to what extent they feel at the present moment or over 

a week. They responded to this 20-item affect descriptors test by scoring each on a 5-

point scale with values of very slightly to extremely i.e. 1 to 5 points. This study was later 

expanded by Watson and Clark (1994) by reporting up to 11 discrete emotion groups, 

using about 60 emotional keywords. The work reported by Crawford and Henry (2004) 

validated and confirmed that PANAS is a dependable assessment of the constructs being 

measured, while rejecting the hypothesis of the complete independence between the 

positive affect and the negative affect. PANAS method was considered unsuitable for 

experiments of short time duration and multiple stimuli, due to the long duration required 

to answer the questionnaire.  
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2.7.1.4 Self-Assessment Manikin 

The Self-Assessment Manikin (SAM) is made up of manikin-like shapes, which depict 

expressed emotions and is popularly used by psychologists as an emotional self-reported 

tool. The Pleasure-Arousal-Dominance 3D scale is normally used to represent the 

expressed emotions (Soleymani et al. 2014), while other studies have also used the 

picture of the shape of a human thumb to express likeness or dislikeness to emotions 

(Jirayucharoensak, Pan-Ngum and Israsena 2014). The Manikins are pictorial and 

designed in such a simple way as to make easy understanding of experimental subjects 

to facilitate their choice of manikins best expressing their emotion, as well as values that 

can be attached to arousal and valence levels. The SAM method is constrained by its 

inability to support the expression of co-occurring emotions, though the tool is language-

independent and does not require experimental subjects to verbally state or write down 

expressed emotions (Soleymani et al. 2014). For the purpose of emotional self-reported 

by subjects in the research study reported in this dissertation, in addition to other 

instruments utilised, the SAM method was adopted by Soleymani et al. (2012) in 

constructing the MAHNOB-HCI dataset. This is because of its popularity, ease of 

understanding by experimental subjects and language independence. It is also preferred 

over the AS because of the 3D PAD scales rather than the 2D pleasure-arousal scales of 

AS. 

 

2.7.2 Emotion Measurement 

In the literature, emotions have been measured, analysed and recognised using facial 

expressions, gestures, visuals, voices and physiological signals. Facial expression 

emotion measurement applies different techniques such as Facial Action Codings 

(FACS), Facial Detection Parameter (FDP) and Facial Animation Parameter (FAP) on the 

emotional facial images. The parameters including positions, outlines and movements, 

thus determine readings such as nose, mouth and eye positions, as well as eyelid and 

head movements, pupil diameter, eye blinking, gaze distance and coordinates amongst 

others (Kollias and Karpouzis 2005). 
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Emotional speech signals bear lexical, gestural and textual information. Various 

parameters such as pitch/intonation, intensity, speech quality, duration - speaking rate 

and pauses have therefore been measured in the speech based emotion analysis and 

recognition (Ramakrishnan 2012). Desired features are extracted from these readings for 

consequent analysis and recognition. On the other hand, gesture based emotion 

recognition systems, such as the hand tracking systems have measured users’ 

movements, including speed, direction, acceleration and variation, from which desired 

feature vectors were extracted/selected for emotion recognition. 

However, the peripheral and autonomic central nervous system’s signals that have 

been collected, according to the literature, were centred on the human body systems, 

such as the cardiovascular, electrodermal activity, respiratory, muscular and the brain 

activity/nervous systems. The physiological signals include blood pressure (BP), Galvanic 

Skin Response (GSR), skin glucometer, Blood Volume Pulse (BVP), skin temperature, 

Electrocardiogram (ECG), Heart Rate (HR), Electrodermal Activity (EDA), 

Electroencephalogram (EEG), Electromyogram (EMG), Electro-oculogram (EOG), 

respiration, spirometer and Heart Rate Variability (HRV) (Chun-yan, Hai-xin and Wang 

2013). These variable signals can be pooled to extract a group of discriminating features 

to train a pattern recognizer in a physiological based emotion recognition system. 

In the next sections, Human Activity Recognition (HAR) and location detection are 

presented as the duo has capabilities that can be combined with physiological signals 

based emotion recognition procedure with a view to tracking an individual in a distress 

phase situation. 

 

2.8 Human Activity Recognition 

This section will discuss Human Activity Recognition (HAR), since the study reported in 

this thesis focuses on emotion recognition with a view to utilizing it with activity recognition 

as well as location information for an individual tracking. 

The essential features of very high computational power, affordable cost, small, 

lightweight, portable sizes offered by sensors and mobile devices, allow people to 
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manipulate and communicate with the devices as an integral part of their lifestyle and 

daily living. This has given birth to ubiquitous sensing, which is now a vibrant research 

area concerned with the extraction of knowledge from data acquired through pervasive 

sensors (Perez, Labrador and Barbeau 2010). 

The need to recognize and classify human ambulatory activities, such as running, 

walking, sitting, cycling or riding a bus, has become quite germane in offering evaluative 

responses to medical doctors about a particular patient’s behaviour. Accurate information 

(remotely harvested from sensors) on the soldier’s activities in addition to their locations 

and health conditions through acquired vital signs or physiological signals, including heart 

rate and temperature, are significant for their remote monitoring, safety and performance 

evaluation. 

Some very earlier research on Human Activity Recognition (HAR) began in the late 

1990’s (Schlmilch et al. 1999; Foerster, Smeja and Fahrenberg 1999). Various inherent 

challenges during this early stage have given birth to the emergence of new technologies 

to address and improve the accuracy under more feasible conditions using algorithms. 

These challenges include among others, the construction of miniaturized, affordably 

cheap and small sized data acquisition systems; the collection of data under practicable 

conditions; identification, pruning and selection of attributes to be evaluated; 

implementation in mobile devices satisfying processing and energy requirements; and 

reusability that does not require re-training the system (Kim, Helal and Cook 2010). 

 

2.8.1 External Sensors in Human Activity Recognition 

Human Activity Recognition can largely be investigated using two distinct approaches, 

namely through external sensors and wearable sensors. Sensors are the primary sources 

for raw data collection in activity recognition. External sensors are made up of devices 

that are placed in a location of interest that are pre-defined, such that inference and 

decision making are purely based on the deliberate interaction of the subject being 

monitored with the sensors. Some external sensors include the laser range finders, 
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cameras, wireless networking infrastructure, infrared and ultrasound sensors (Hightower 

and Borriello 2001). 

The Smart Home (SH) (Sarkar et al. 2010; Kasteren, Englebienne and Krse 2010; 

Tolstikov et al. 2011; Yang, Lee and Choi 2011) provides another very good example of 

what external sensors are. SH technologies capable of automatic detection of need for 

assistance and sending/delivery of alerts (Short Message Service (SMS) and emails) 

through mobile devices could, for instance, significantly reduce the costs of elderly care 

or patients diagnosed chronic diseases such as memory loss disease (dementia) among 

others. The ability to recognize human activities, such as washing clothes, cooking, 

opening the door, making tea and eating, by the system is fairly complicated, because 

data acquisition is achieved via a number of external sensors placed on target objects 

such as the stove, washing machine, door, tap and the individual being monitored is 

expected to interact physically with these objects for the required data to be acquired. 

Among the limitations associated with external sensors and restricting its wider adoption 

is the inability to read or acquire data the moment the user is not within the reach of the 

sensors or deliberately does not carry out activities that interact with the objects on which 

the sensors are placed. The maintenance of the sensors as well as their installation also 

comes with a high cost to the system (Oscar and Labrador 2013). 

A camera provides another typical example of the external sensors for an HAR. 

Activity recognition is achieved via the device from the video sequences being offered to 

track a user’s daily life activities. The video sequences are ideal in military and security 

systems for intrusion detection, surveillance and interactive applications. The use of video 

sequences in HAR has the glaring limitations of privacy, complexity and pervasiveness 

(Oscar and Labrador 2013). It is not every individual that would readily allow being tracked 

or monitored and recorded by cameras. In addition, video processing techniques are also 

quite expensive, thereby challenging the scalability of a real time HAR. In addition, video 

recording devices pose the difficulty of attaching them to a target individual for obtaining 

images of the whole-body frame during the performance of activities of daily living, 

coupled with the challenge of the individual being monitored to continuously be in a 

predefined perimeter covered by the location and proficiencies of the camera device. 
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These weaknesses in the use of external sensors brought the emergence of 

wearable sensors with a view to overcoming the observed limitations. 

 

2.8.2 Wearable Sensors 

Most research works in smart wearable systems have been engrossed with smart mobile 

devices and other intelligent environments which constitute wearable computing, thus 

moving the interface for computational environments from the (smart) home to individual 

users’ bodies, though the wearable, implantable and swallow-able means (Ciuti, 

Mencassi and Dario 2011), clothes - smart clothing (Smith 2007) and also as portable 

accessories or body jewellery like wearable sensors. 

A wearable sensor device and system is essential in security tracking and 

monitoring, healthcare, military and sporting. It has features capable of tolerating the 

deployment of miniaturized portable and  wearable sensors around the human body or 

clothing to instinctively collect location, activity, mobility and physiological data of 

individuals and transmit them over a secure network to a device or application for 

processing. Leveraging on these features enables the wearable sensor to be suitable for 

tracking of individuals in a distress phase situation, such as vehicular or fire accidents 

and abduction phase scenarios. Because of impressive progress recorded in the field of 

computing and mobile sensing, wearable computing has brought forth very innovative 

approaches using various activity recognition algorithms to recognize, classify, label 

human actions and environmental conditions automatically (Roggen et al. 2011). 

Some physiological sensors monitoring vital signs (heart beat rate, SpO2, body 

temperature), environmental sensors (that measure humidity, air temperature, sound, 

light) and a location tracker sensor can all be coupled into a wearable sensor network 

(WSN) system, but the obtrusiveness factor and weight of the device must be taken into 

consideration for ease of use, carriage and mobility of the individuals being monitored. 

The progress made with wearable devices, particularly watches, has brought this type of 

monitoring device within reach of a very large section of the population.  



41 

 

The attributes of interest to be measured in a wearable sensor system are defined 

by the user’s ambulation or activity movements using accelerometers and location 

information via GPS devices; environmental variables like air temperature, wind speed, 

precipitation and humidity; and physiological signals including heart beat rate or 

electrocardiogram and body temperature all using various sensors for measurement. 

Broadly categorized, the types of activities recognised by an HAR system include; 

walking, running, sitting, standing, climbing/descending stairs, riding an elevator, riding 

an escalator, pulling, pushing and struggling). Riding a bus, cycling and driving are 

grouped under transportation, while phone usage activity includes text messaging and 

making/receiving a call. Furthermore, activities of daily living are made up of brushing 

teeth, drinking, reading, eating, TV viewing, scrubbing and vacuuming. Sporting exercise 

and fitness include activities such as rowing, lifting weights, spinning, fast walking, doing 

press-ups, while military operational activities are classified as crawling, kneeling and 

opening a door among others. Upper body movement activities include moving the head, 

swallowing, sighing, speaking and chewing (Oscar and Labrador 2013). 

 

2.8.3 Architecture of a Typical Human Activity Recognition System  

In an attempt to recognize human activities, specific wearable sensors are affixed to the 

individual’s body (see Figure 2.1) in order to acquire desired attributes, including location 

(Iglesias et al. 2011), temperature (Choujaa and Dulay 2008) and ambulatory movement 

(Shotton et al. 2011). These wearable sensors are calibrated, initialized, synchronized, 

configured and programmed to communicate with an Integrated Device (ID) such as a 

laptop (Parkka et al. 2006; Oh, Park and Cho 2010), mobile phone (Jatoba et al. 2008; 

Brezmes, Gorricho and Cotrina 2009) or a customized embedded system (Tapia et al. 

2007; Kao, Lin and Wang 2009).  
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Figure 2. 1: Generic Architecture of a HAR System (Oscar and Labrador 2013). 

 

The ID is primarily tasked with strategically pre-processing the data acquired from 

the wearable sensors and could in some systems transmit the acquired data to a 

dedicated application server to enable real-time monitoring, analysis and visualization 

(Parkka et al. 2006; Maurer et al. 2006). The data transfer communication protocol used 

to transmit the data might be the User Datagram Protocol (UDP) or Internet Protocol using 

the TCP/IP. 

Generally, each HAR system differs from the other. Sensor data were collected 

offline in Bao and Intille (2004), Hanai, Nishimura and Kuroda (2009) and Lara et al. 

(2011), therefore, real time communication or server processing was not required. He and 

Jin (2008), He and Jin (2009), Berchtold et al. (2010a) and Riboni and Bettini (2011) 

incorporated sensors within the integration device, while some other studies directly 

executed the inference process on the ID instead of the server (Brezmes, Gorricho and 

Cotrina 2009; Berchtold et al. 2010b). 

 

2.8.4 Related Works in Human Activity Recognition 

Earlier systems used different approaches and technology to identify activities for various 

purposes. Environmental attributes such as air temperature and humidity can also be 
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measured to give contextual information with respect to the user’s immediate 

environments or surroundings and enhance the knowledge driven capability of the 

system. For instance, a low audio volume or low light intensity might indicate that the 

individual being monitored is probably taking a nap. 

A health care system was developed by Jovanov et al. (2005) based on wearable 

biomedical sensors with the architecture made up of distinct layers of biomedical sensors, 

personal server and the health care server respectively. The system offered low-cost, 

small weight, miniatures and an intelligent sensor platform for integration into a body area 

network for health monitoring. Real time sensors’ data are processed by the system while 

providing feedback to the user as well as generating information on the user's 

state, level of activity and environmental conditions. 

Maurer et al. (2006), using various sensors, worn on different body parts, 

developed a eWatch system to monitor users’ daily activity and classify these activities. 

Using multiple sampling rates and time domains, features were collected and analysed. 

Computational complexity and accuracy of recognised activity were compared and a 

trade-off established between the classification accuracy obtained by wearing the 

electronic devices on various body positions and the computational complexity. 

Jung et al. (2008) proposed a ubiquitous healthcare system deploying vital signs 

and environmental sensor devices. These devices received data that the system 

intelligently used to monitor health conditions of patients and administer treatment in real-

time, saving the medical costs of rendering such services in physical hospitals and 

treatment rooms. 

Atallah et al. (2009) investigated activity recognition, using a lightweight ear-worn 

device and other wireless ambient sensors for recognizing common Activities of Daily 

Living (ADL) using two-stage Bayesian classifiers with data acquired from both types of 

sensors. Choujaa and Dulay (2008) and;  Kao, Lin and Wang (2009) who designed some 

early HAR systems used microphones, light sensors, thermometer and humidity sensors 

to measure environmental attributes. Most of these sensors that monitor environmental 

attributes were largely coupled with accelerometers and other sensors (Yin, Yang and 
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Pan 2008) to measure other attributes of interest and integrating the data acquired with 

those of the environmental sensors for efficient and accurate decision making in the 

system. 

Pung et al. (2009), introduced context-aware middleware for pervasive elderly 

home care, using a peer-to-peer based context query processing, context reasoning for 

activity recognition and context-aware service management for patient monitoring, 

emergency response service based on location, abnormal activity detection, social 

networking and ubiquitous medical data access. 

Narayanan et al. (2010) implemented a wearable tri-axial accelerometer system 

using data acquired from one waist-held tri-axial accelerometer for classifying various 

human movements in real time. The system performed signal processing using a 

wearable unit platform and intelligently differentiated periods of rest and activity. 

Expended metabolic energy was calculated against recognised activity such as fall and 

orientation posture of users.  

A mobile application based on context-awareness was used by Iglesias et al. 

(2011) to proactively determine and evaluate the activity being performed by a subject 

during a daily living activity. This application applied fusion method to estimate movement 

and location by combining acceleration and radio data from in-device and external 

sensors. The aim was to offer substantial context-aware notifications by making the user 

aware of his level of activity. 

Olugbara, Ojo and Adigun (2011) developed a ubiquitous healthcare service 

system using a grid-enabled framework, aiming at an improved healthcare service 

provisioning at a minimum cost. The research focused on distributed healthcare resource 

provision with more inclinations for resource sharing and re-use through grid computing 

and mobile technology. 

Ogunduyile, Olugbara and Lall (2013) implemented a prototype wearable 

ubiquitous healthcare system to monitor physiological vital signs of an elderly person. The 

system consisted of an integrated biomedical sensor, including an accelerometer and 

SpO2, which collected physiological signals of the elderly and then sent the data to the 
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Intelligent Base Node (IBN) via wireless transmission, from where the data was uploaded 

to the health server for managing the health status of the elderly. 

An automated fall detection prototype system was developed by Ozdemir and 

Barshan (2014) using wearable motion sensor units fitted on six different locations to the 

body of the user. Each unit consisted of 3 tri-axial accelerometers. Voluntary falls and 

various Activities of Daily Living (ADL) were measured. Data were analysed with activities 

classified using various machine learning methods, such as Artificial Neural Networks 

(ANNs), Least Square Method (LSM), Bayesian Decision Making (BDM), k-Nearest 

Neighbour (k-NN), Support Vector Machine (SVM) and Dynamic Time Warping (DTW). 

This work introduced the glaring obtrusiveness of HAR systems, making it unsuitable for 

the research area of application proposed in this study, even though similar machine 

learning techniques could be adopted in the proposed affective system. 

Similarly, the research work carried out in this current study on emotion recognition 

for utilization with human activity recognition significantly differs from this early work in 

terms of the algorithms tested for data preprocessing, feature extraction, selection and 

classification for emotion recognition, which are obviously not adequately covered in the 

prototype. 

Physiological signals in an HAR system consist of vital signs data including, 

galvanic skin response, heart rate, SpO2, body temperature and pulse. In measuring the 

physiological signals, other additional sensors are required. To measure the heart rate of 

an individual being tracked, a heart rate monitor and accelerometers are required. This 

system increases the costs and thereby introducing obtrusiveness (Choujaa and Dulay 

2008).  

Major research issues in the design and implementation of the specific HAR 

system are classified as obtrusiveness, data collection processes, activity recognition 

performance, methods of data processing, energy consumption by the system, flexibility 

(reusability) and selection of attributes. Attributes of interest for selection in HAR are 

mainly environmental attributes; ambulation/acceleration, location and physiological 
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signals. These are collected and measured using sensors worn by the individual to be 

monitored in an emotion recognition and HAR system.   

 

2.8.5 Design Considerations 

Obtrusiveness is a critical factor for consideration in the design of HAR systems. Wearing 

many sensors at the same time should not be required in HAR systems or interacting too 

often with the application, such as in the use of external sensors thereby contributing to 

their limitations. Though, if the available sources of data from sensors are many, the 

processed information would be richer, but HAR systems that demand a user being 

monitored to wear four or more accelerometers (Oh, Park and Cho 2010; Lara et al. 2011; 

Vergara-Laurens and Labrador 2011) may make configurations of sensors to be complex, 

invasive, and expensive, which would render them unsuitable for activity recognition, 

especially in an abduction phase scenario, where professional abductors aim at first 

dispossessing potential victims of valuables, such as a mobile phone, and conspicuous 

personal effects. 

A data collection protocol is also of huge importance in the design of HAR systems. 

It involves the step-by-step procedures followed by an individual while collecting data. 

Features such as the number of individuals for whom testing or training data would be 

collected, their physical characteristics and demographics such as age, gender, height, 

weight and other varied health conditions are all significant in the data collection methods. 

HAR systems that are person dependent suffer reusability limitations. Though data 

collected from an individual should be huge enough to cater for intra person variability in 

the data signals collection and activity performance, a model should be trained that allows 

person independent activity performance and recognition. Such system model will allow 

reusability and reduce cost of having to train the system for different users over and again. 

The accuracy and recognition performance in a specific HAR system rests on 

several interrelated factors like the activity data set, the quality and size of the training 

data set, feature selection and extraction algorithms deployed and the learning algorithms 

to be used. 
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The issue of energy consumption should also be considered vital in HAR systems. 

Wireless networks such as Wi-Fi and Bluetooth that are short ranged are preferred to 

long-range networks like WiMax or cellular networks as short-range wireless network 

need low power to function. However, consideration should be carefully made in respect 

of suitable transmission networks or models for a specific research. Some energy savings 

mechanisms being currently adopted in HAR systems are data aggregation and data 

compression without necessarily involving more computations that could hinder the 

application’s performance. To prevent raw signals being continuously streamed to the 

server, feature selection, extraction and classification are better carried out at the 

integration device stage (Maurer et al. 2006; Berchtold et al. 2010b) though consuming 

more energy and making the system expensive. In addition, not all sensors might 

necessarily be in use simultaneously. In saving energy, some of the sensors not in use 

might be turned off or their sampling rate transmission reduced. For a user’s activity of 

“standing still” as an example, turning off the GPS sensor could significantly save energy 

(Chen et al. 2008). 

Another important issue in HAR is the signals or data processing phase, this 

requires the signals to be processed for discriminatory features to be extracted for 

machine learning and for an activity to be consequently recognised. The HAR design 

should determine whether the activity recognition processing would take place on the ID 

or on the main server. Resource constraints in the form of processing capacity, storage 

and energy, hinder data processing on the ID. Feature selection and extraction as well 

as machine learning algorithms need careful blending in order to ensure a rational and 

realistic response time while also preserving the battery life of the device. 

 

2.9 Location Detection 

The location of a person/object is very essential in providing an assistive or emergency 

response when required. If the location information is not updated, then virtually no 

assistance can be rendered. 
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2.9.1 Overview of Existing Devices 

Over time, ICT has deployed solutions to address the problems of knowing the exact 

location of an individual. Closed Circuit Television (CCTV), cameras and satellites as 

monitoring devices also proved to have limitations in terms of physical attacks on the 

devices, a predefined perimeter coverage range of the devices and the fact that most of 

these technologies are data driven only while not knowledge driven, as they do not 

provide the actual environmental state and physiological health conditions of the person 

being trapped or held hostage. Though, knowing the exact location of an abducted or 

trapped victim is essential in providing rescue services, data relating to the physiological 

state of the victim, such as body temperature, heart beat rate, respiration, oxygen in the 

blood level, pulse and whether the victim is sitting, standing, crawling, walking, running, 

shouting or has fallen down are vital to the security agencies or rescue team for prompt 

decision making and logistic support. In medical health services, the ability to remotely 

identify the exact location of a patient and his/her environmental situation would also 

prove useful in the deployment of healthcare services and facilities at the optimal time, 

thus reducing fatalities and medical services cost. 

The Global Positioning System (GPS) plays a vital role in any location detection 

system by enabling various forms of location-oriented services. Most cellular phones 

today have GPS functionalities, thus enabling the sensor to be very appropriate for 

context aware applications, such as recognizing the transportation mode of the user 

(Chen et al. 2008). The exact location of a person using a GPS device could also be 

important in making decisions about his/her activity, using the ontological reasoning 

method (Berchtold et al. 2010a). For example, a person in a hall might probably be 

standing or sitting but not brushing his teeth. 

A GPS tracker harvests, analyses and saves location data acquired from weak 

GPS satellite signals, process this location information and stores the processed 

information for subsequent review or transmits it in real-time. For better performance and 

accuracy, the GPS tracking devices should directly access the open sky to enable 

efficient capturing of satellite signals and transmitting the signals to the cellular network.  
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The most common GPS tracking device is a smart phone, others include Garmin 

GTU10 bearing in mind that for almost every purpose, there exists a GPS tracker, as they 

enhance security and assist in tracking the location and possession of an individual. For 

a person tracking device to be efficient, it should be able to accurately track for long 

sequences, track without dependence on activity being performed, self-start, and be 

computationally efficient, while offering great robustness in drift changes and continuously 

track when brief but not permanent occlusions occur (Ramanan and Forsyth 2003).  

The tracking services offered by the Global System for Mobile Communication 

(GSM) service providers in the form of using GPS/GPRS (General Packet Radio 

Services) to know the exact location of individuals have some limitations. These include; 

having the individual with a GPS enabled mobile phone or watch to always turn it on, with 

the attendant draining of the device’s battery power (Chen et al. 2008), and the legal 

implications of not seeking the consent of the person being tracked in terms of his/her 

privacy rights being breached. GPS devices or sensors also do not work very well indoors 

and therefore require deployment of other sensors like accelerometers with them 

(Berchtold et al. 2010b) to aid activity recognition processes. The tracking technology 

being employed here, associates a mobile device to the nearby base station owned by 

the service provider. If the mobile device goes out of the coverage area of the service 

provider, then the tracking fails. Privacy issue concerns are associated with location data, 

because not all users are willing to be monitored. The concept of encryption, 

anonymisation and obfuscation are some techniques being deployed to significantly 

enhance location data privacy (Huang, Kanhere and Hu 2010; Christin et al. 2011). 

The advantages of the GPS tracking are that it can be readily accessed by users 

for varieties of applications, while very useful information on locations and places can 

easily be acquired through Google places web services (www.code.googlecom./ 

apis/maps).  

 

 

 

http://www.code.googlecom./
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2.9.2 Benefits of the Proposed System 

The idea of deploying a combination of a data driven and a knowledge driven approach, 

as offered by wearable sensor devices and supported by machine learning models, such 

as artificial neural networks and the Markovian Logic Network concepts for modelling 

emotion and activity recognitions, could prove to be a very good solution in the case of 

abduction events, counter terrorism, vehicular accidents, fire trappings and missing 

person scenarios. Machine learning algorithms for pattern recognition and classification 

are novel approaches to emotion and activity recognition. They have the capability to 

combine first order logic (common sense), which provides relational information of 

objects, together with the probability of uncertainty in knowledge, thereby improving the 

recognition capability of the system. 

Some models offer combinations of logic (common sense) and uncertainty in 

knowledge include the Bayesian Network Model, Naive Bayesian Model, k-Nearest 

Neighbours, Decision Trees, Markovian Logic Network, Neural Networks, Support Vector 

Machine and Hidden Markov Models (HMMs). Each of them has its limitations and 

strength in solving a specific problem relating to training a model for emotion/activity 

recognition as the strength of the models would be examined in order to discover the best 

approach. Emotion recognised in the system can however be utilised on its own or 

combined with human activity recognised as well as the location information of an 

individual to determine if an emergency response is indeed required to be prompted by 

the proposed system. In summary, the benefits of the proposed system includes: 

(1) The proposed system in this research work combines data driven and knowledge 

driven approaches while also applying machine learning techniques for modelling 

human emotion recognition. 

 

(2) Digital image processing techniques will also be utilised for data processing and 

feature extraction towards obtaining discriminative features and yielding 

impressive results. 
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(3) A traditional and shallow learning approach consisting of the artificial neural 

networks model will also be utilised in the proposed system and has capabilities 

of better performance than some of the state of the art results based on deep 

learning techniques, which are also associated with high complexity and 

computational costs. 

 

(4) The proposed system can also prove beneficial to security agencies, emergency 

services and rescue teams as well as potential victims and their families in 

proactively proffering solutions in an emergency event of emotionally induced 

distress situation. 
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CHAPTER THREE  

Theory of Emotion Recognition and Emergency Response 

This chapter introduces an architecture for an emergency response system for tracking 

persons in distress phase situations, including the physiological signals measured, the 

sensors utilised, methods and techniques used. 

 

3.1 Emotions in emergency system 

An emergency may be defined as a sudden and possibly harmful or dangerous situation 

that requires instantaneous attention and action. These situations differ and ranges from 

negligible, which could be personally handled by the subject without the intervention of 

emergency or rescue services, to neutral/medium emergencies involving the presence of 

principal emergency personnel, to monumental/major emergencies (Roche, Harney and 

McDowell 2004). 

An event can therefore be referred to as a major emergency if with or without little 

prompting, causes or threatens death or injury. Such events are also capable of causing 

substantial disruption of essential services, damage to infrastructures and the 

environment by outstretching the resource capacity of the principal emergency services. 

Specific additional procedures and resources therefore need to be activated to enhance 

a well-coordinated and effective rescue operation. It has been noted that accidents and 

injuries are critical health threats, which could result in permanent disability and or 

extended periods of hospitalization and convalescence, which further aggravates health 

problems (Krug, Sharma and Lozano 2000). The tracking of persons, using emotional 

information, activities and location properties, with a view to averting death or related 

injuries can thus be termed a major emergency system.  

Various advanced technologies, including mobile and wearable sensor technologies 

for emergency responses, are now readily available, but rescue efforts may nonetheless 

be constrained by issues relating to interaction among rescuers and rescue agencies, 

including firefighter, police, ambulances and paramedics. Humans, combined with 
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technology co-agency, are embedded in an emergency response system, as both human 

and technical artefacts’ interactions are needed to accomplish system goals (Staffan 

2011). This viewpoint requires that the emergency system performance necessarily 

depend on the understanding of core issues, including the design and utilization of 

artefacts for coping with the expected complexity within the system, management of time 

and improvement of control. The ability of an emergency response system to efficiently 

function and coordinate is inherently determined by its architecture. This further depends 

on the efficiency and effectiveness of tools and structures designated to information 

handling, communication within the system, as well as an effective information system. 

This is due to calamitous consequences often being associated with real incidents, 

coupled with limited likelihoods of mid-event learning. It is therefore essential for 

emergency response systems to have structures for training and learning embedded 

within the system. 

This study offers a solution towards tracking a person, capturing emotions-based 

physiological signals capable of being linked with the human activities being performed, 

with a view to alerting an emergency service, if the need arises, in order to avert a possible 

casualty or disaster. It is therefore imperative to consider the steps involved in the 

emergency system management, especially as it relates to the system architecture. 

Salasznyk and Lee (2006) divided the response stage into detection, preparation, 

response travel and clearance. Responses occur just before, during and directly after an 

emergency; the focus here in this study is on the “just before emergency” timing, so as to 

avert a casualty. The response stage, however, broadly includes activities such as search 

and rescue, emergency medical assistance and treatments, the extinguishing of fires, 

evacuation as well as the management and coordination of other support services. Chen 

et al. (2011) voiced the opinion that emergency management systems should involve four 

different stages, including preparation, mitigation, response and recovery. The response 

stage is specifically concerned with various actions being undertaken during 

rescue/evacuation operations, where concerted efforts are launched towards saving lives 

and reducing facilities/infrastructure damage. 
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On the other hand, Borges, Engelbrecht and Vivacqua (2011) characterized the 

recovery stage as involving activities being undertaken to return to normality; both for 

people and infrastructure. This includes immediate and long-term recovery. Activities 

such as cleaning of debris, restoration of normalcy, which includes essential services and 

supplies, and investigating the remote cause and effects, are classified under the 

immediate recovery. Conversely, activities such as support of casualties, reconstruction 

of collapsed infrastructure, buildings, services and further restoration of normalcy are 

grouped under the long-term recovery. In addition, actions taken to either eliminate or 

shrink the chances of occurrence of an accident or its effects on the people, infrastructure 

and the environment, are included in the mitigation stage. The preparation stage involves 

getting ready for expected future incidents and it entails systems development, resource 

procurement and management to underpin preparedness, developing scenarios, 

engaging in real-world learning and training, testing of systems, plans and procedures, 

maintenance, audit and assessments of preparedness. The harvesting of emotion 

physiological signals and data processing procedures in the emotional tracking system 

falls under the preparation stage while the emotion recognition results, which could trigger 

an emergency response, could be classified under the response stage.  

 

3.2 Proposed Emergency Response System 

The proposed architecture utilizing Human Emotion Recognition (HER), Human Activity 

Recognition (HAR) and location data is shown in Figure 3.1.  In the first module of the 

architecture as shown in Figure 3.1, the first step consists of elicitation of the emotion to 

be recognised while concurrently acquiring emotion physiological signals and activity data 

from the subjects using the appropriate sensors. The cooking hacks’ physiological 

sensors can offer a practical example of how the physiological signals may be captured. 

Some of the physiological signals that could be collected include pulse, oxygen in blood, 

GSR, skin temperature, airflow/respiration and ECG. These physiological signals have 

been shown in various studies to be related to human emotions (Healey and Picard 2005; 

Collet et al. 2009; Schneegaas et al. 2013; Karthik, Varghese and Chaitanya 2013; 
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Solovey et al. 2014; Salazar-Lopez et al. 2015; De Witte et al. 2016; Dawson, Schell and 

Filion 2017).  

However, in order to collect the emotion physiological data, emotions need to be 

first elicited in the subjects. The elicitation of emotional responses from experimental 

subjects is a challenging task and requires the selection of the most effective stimuli to 

achieve a valid response. In the course of eliciting an emotion in a subject under 

experimental conditions, many different external stimuli have been used by different 

research works, depending on the contexts and the subjects. These external stimuli 

include pictures, static images and vignettes, robot actions, voice, games, audiovisuals, 

films/movies/video clips, audio music, music videos, odour, self-elicitation and recall 

paradigm (Noppadon, Setha and Pasin 2013a). 
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Figure 3.1: Proposed architecture of HER, HAR and location data for remote monitoring (author’s own 
craft). 
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Films and video clips are popularly used because it offers numerous benefits, 

which include the provision of a strong emotional context, dynamic and biologically 

appropriate stimuli within a relatively short duration, as well as the ease of 

standardization. The integration of auditory, visual and sometimes pictorial information in 

films also allows the films/audiovisual stimulus to have the added advantage of 

meaningful and seamless information communication across the sensory modalities 

(Schaefer et al. 2010). The required physiological signals are collected as the subjects 

are watching these emotional video clips as it has been noted that carefully selected video 

clips are capable of eliciting the associated emotions (Soleymani et al. 2012).      

In addition to the emotion physiological signals’ collection in the first module of the 

architecture, human activity data could also be collected using the accelerometer sensor. 

Such human activities include sitting, standing, lying, walking, jogging, running and riding 

a bus. These activities' data may be collected as the subject is watching the video clips. 

Activities such as walking, jogging, running and cycling can be performed using a 

treadmill device and data are collected while the subject is watching the emotional video 

clips being projected. 

The second module in the architecture consists of processing the collected data. 

The steps in this module include data preprocessing, feature extraction and feature 

classification in order to be able to detect and recognize human emotions and human 

activities. Data pre-processing is necessary so as to remove raw signals’ artefacts that 

could affect the quality of features extracted as well as the computation time. 

Normalization and filtering may also be required in the preprocessing stage. This step is 

followed by feature extraction and classification into appropriate emotion or activity 

classes. 

However, it is essential to indicate that with respect to the emergency management 

system, the proposed architecture, shown in Figure 3.1, borrows from the Joint Cognitive 

System (JCS) (Staffan 2011) viewpoint in the design and implementation of response 

systems. It encompasses complex socio-technical systems wherein humans and 

Information Communication Technology (ICT) artefacts interact as a system. The JCS 

specifically recognises the responsibility of people to manage the subtleties of real-world 
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situations and that human cognition relies hugely on collaboration, cognitive artefacts and 

information among systems, people and/or rescue agencies. Response systems such as 

the one being proposed in this dissertation must thus be designed to enable smooth 

coordination and communication between the emergency system and the rescue 

agencies, for instance.                        

The architecture of response systems is intricately marked by diversity and knotted 

dependencies between the various components, involving varied configurations of 

technologies such as wearable sensors, mobile and affective computing. Response 

systems must be able to anticipate and trigger alerts in order to respond to a situation of 

concern. Since cognition is a shared process, a number of concepts have been identified 

by Louise (2007) to be critical in a response system. These are termed the three Cs of 

emergency response and include control, coordination and communication (from 

Cognition) (Louise 2007). These concepts are discussed below. 

 

3.2.1 Control 

The concept  of control in the proposed response system is germane in order to realize 

the goal of averting a casualty in a distress phase situation. This is addressed by 

Hollnagel and Woods (2005) in the Contextual Control Model (COCOM), which requires 

the operators to operate the process, create necessary feedbacks and maintain a 

dynamic interpretation of the current situation being handled. The control process covers 

the information integration, risk assessment, planning and monitoring processes (Louise 

2007). This obviously requires the response system to plan and take certain actions to 

achieve this goal (Bergström et al. 2010). Such actions as related to our study, include 

the timely merging of human emotion, human activity and location information with a view 

to arriving at a decision of prompting an emergency team response if needed. In the 

proposed emergency response system in Figure 3.1, various emotions and activities 

recognised will be considered and interpreted, whether it is a normal, distress phase or a 

casualty situation in order for the required alerts to be triggered or not.  
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The concept of situation awareness, which is described as the “knowledge of the 

state and the physical location of people within an area of interest”, aids 

understanding/recognition of the situation (Lass et al. 2008). The understanding of the 

processes in a response system, its history and likely future states – emotions and 

activities performed, is key to the control process to keep track of communications in the 

system (Lundberg and Asplund 2011). The states referred to in this study’s context are 

the human emotional states and the human activities being performed during those 

emotional states. Situation awareness is thus like a vigilance process that hugely relies 

on communication as well as information management within the response system. In 

addition, it is strongly linked to the ability of the emergency response system to predict 

future outcomes from the combination of emotional states and human activities. White et 

al. (2011) proposed that situation awareness can further be subdivided into the perception 

of the problems to be solved, predicting future events/outcomes (which could be achieved 

using machine learning methods) as well as understanding the implications, bearing in 

mind that timing is critical in an emergency response system while the stakes are often 

high and the conditions/circumstances do change. 

 

3.2.2 Coordination and Communication 

A well-designed response system should also support shared cognition. This requires 

tools and structures in the system to be thoroughly coordinated to enable the seamless 

functioning of technology and people. The architecture of the response system will largely 

determine its ability to handle coordination in the system while communication and 

information handling, including an active information system, requires efficient tools and 

structures in the system. Therefore, emergency response systems need to be carefully 

designed to handle coordination and communication. For coordination to be successfully 

achieved, an effective communication within the system is essential (Louise 2007). 

Sensor networks, mobile technology, Geographic Information Systems (GIS), 

peer-to-peer communication platforms, procedural programming and wireless technology 

are some of the ICT technologies that have evolved over the past years, aimed at 
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supporting coordination and communication in an emergency response system (Chen et 

al. 2011). Most of these technologies are involved in our proposed architecture shown in 

Figure 3.1. The harvesting of data, processing and communication of information is 

anchored by these technologies.   

However, the generic architecture for the design and implementation of the 

procedures for the 3 experimental models consisting of the 45 experiments that is 

conducted in this study is shown in Figure 3.2. The first step in the architecture is the 

DEAP data set that is used for the experimentations. Acquisition of the physiological 

signals as the experimental data from the DEAP data set constitute the next step which 

was followed by the data preprocessing procedure wherein the inverse Fisher transform 

algorithm and mapping of the transformed data to image space was conducted. Feature 

extraction using the signal and digital image processing algorithms, including the HOG, 

LBP and Histogram of Images was subsequently applied. The extracted features were 

passed to a RBFNN pattern classifier for training or testing and the training or testing 

result of human emotion recognition is obtained.  
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Figure 3.2: The generic architecture of the human emotion recognition model (author’s own craft). 

 

3.2.3 Human emotions and human activities 

Philosophers, neurologists and psychologists have investigated relationships between 

human emotions and actions taken, as a result of the experienced emotions.  It was 

discovered by De Sousa (1987) that human emotions hugely influence the action 

generation processes, including how these actions are executed and controlled. The 

speed of execution and efficiency were identified (De Sousa 1987) as benefits of the 

emotions based decision-making, since human emotions significantly contribute to and 

determine all the available actions for evaluation. Human emotions are not necessary 

actions, but cannot be isolated from understanding the nature of actions taken. As opined 

by Damasio (1999), human emotions lie between deliberate action and involuntary 

physiological processes of the body. The theory of emotion coherence was thus utilised 

by Thagard (2001) to develop an affective model that investigates emotion based actions, 

and human actions based on deliberate decision-making processes.  
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3.3 Signals Measurement 

The cooking hacks’ e-Health Sensor Platform V2.0 for Arduino and Raspberry Pi 

(Biometric/Medical Applications), as shown in Figure 3.3, is manufactured by Cooking 

Hacks (2017). It contains sensors to measure the electrocardiogram, body temperature, 

Galvanic Skin Response (GSR – sweating), airflow/breathing as well as the pulse and 

oxygen in the blood (Sp02). 

 

Figure 3.3: e-Health Sensor Platform V2.0 (Cooking Hacks 2017). 

The e-health platform, when mounted on the Arduino Uno processor, is as shown 

in Figure 3.4. 

 

Figure 3.4: e-Health Sensor Shield over Arduino (Cooking Hacks 2017). 
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The signals relating to the recognition of emotions include heart rate, the body 

temperature, airflow/breathing and Galvanic Skin Response (GSR – sweating) among 

others.  

In a study to identify a stress situation, Healey and Picard (2005) continuously 

recorded Electrocardiogram (ECG) signals, Electromyography (EMG), Heart Rate (HR), 

respiration and skin conductance data from drivers while performing a real-life driving 

task. The data were analysed using 5 minute data intervals collected at rest, city driving, 

and highway driving to recognize three different levels of a driver’s stress – low (rest), 

medium (highway), and high (city). A classification accuracy of 97.4% was recorded for 

multiple drivers and different driving days, using a linear discriminant classifier and a 

fisher projection matrix. A metric of observable stressors was also created for the driving 

duration, using features of the continuous physiological data calculated at 1s intervals to 

measure the correlations between the data. The authors observed that skin conductance 

and heart rates were the most correlated physiological data for drivers’ stress detection. 

In related research by Rigas (2011), a methodology for a driver’s stress and fatigue 

detection was presented along with driving performance prediction. Statistical features 

were extracted from the driver’s physiological signals, consisting of ECG, Electrodermal 

Activity (EDA) and respiration. Along with video recordings of drivers’ faces and 

environmental situations, a classification accuracy of 88% and 86% was obtained with 

three fatigue levels consisting of normal, low fatigue, and high fatigue; and an alternate 

classification of two fatigue levels namely normal and stress respectively.  

Lanatà et al. (2015) reported an Autonomic Nervous System (ANS) fluctuation 

amidst driving style modifications in response to stimulated incremental stress load during 

simulated driving. The driving sessions involved steady motorway driving and two other 

sessions consisting of added arithmetic questions and vehicle mechanical stimuli that 

induced an incremental stress load. The respiration activity, Heart Rate Variability (HRV) 

and EDA response physiological data of 15 participants were measured. The 

physiological data in addition to the vehicle’s velocity, steering wheel angle and time 

responses recorded significant changes in stress levels during the three driving sessions. 

A recognition accuracy of over 90% was obtained using a pattern classification algorithm. 
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Other signals such as ambulatory activities and location information may also be 

measured using the accelerometer sensor and GPS/GPRS devices. The signals 

measured and the relevance of these signals in human emotions, as well as the body 

organs, mainly connected to the signals is hereby discussed. 

 

3.3.1 Heart Rate 

The ECG sensor measures heart activities. The activity level of an individual can be read 

from his heart rate by monitoring the contractile activity of the heart. The organ in the 

human body that is charged with the responsibilities of supplying blood, oxygen and 

nutrients to all parts of the body is the heart (Tu, Inthavong and Loong 2015). It is 

surrounded in the chest region of the body by the pericardium, which is a double wall sac 

containing fluid.  

The heart is the centre  of the cardiovascular system pumping blood to the body’s 

vital organs as well as providing oxygen and nutrients, while also removing harmful 

chemicals and other waste products from the organs. It has also been described as the 

human emotional centre, because of the relevance and relationship of heart rate changes 

to human emotions. In fact, it wears a romantic “cloak” which links it to love, affection, 

hate, romance etc. all of which are human emotions. 

The neurotransmitters in the human body are chemicals that transmit messages 

between the cardiovascular and the nervous systems. These chemicals are capable of 

triggering a response in the specific tissue as they travel between the cells. 

Norepinephrine is synonymous to the adrenaline hormone in the human body. It is a 

neurotransmitter capable of constricting the blood vessels, enhancing the contraction 

force of the heart and also increasing the heart rate. While experiencing fear, for instance, 

adrenaline is supplied in huge quantities to enhance the pumping of more blood by the 

heart to the body muscles, thus preparing the human body for the fight or flight response. 

On the other hand, the heart rate can be slowed down by acetylcholine, which is another 

neurotransmitter in the body. 
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3.3.1.1 Link between heart rate and emotional states 

Emotional states such as fear, anger, stress, and fatigue have been shown to be closely 

linked to heart rate (Healey and Picard 2005; Collet et al. 2009; Schneegaas et al. 2013; 

Solovey et al. 2014). A lower heart rate can be noticed in subjects in a relaxed and happy 

emotional state while an increase can be associated with unpleasant feelings such as 

fear and anger. Therefore, monitoring the ECG signal is essential in detecting emotional 

stress levels.  

Research studies (Grossman et al.1996; McCraty and Childre 2004; De Witte et 

al. 2016) have shown that emotions and heart rates are inextricably entwined. The 

research by Grossman et al. (1996) investigated fluctuations in cardiac vagal control in 

patients with coronary heart diseases and reported cardiovascular responses to 

behavioural stress as responsible for the observed fluctuations in heart rate. Human 

emotions, including anxiety, fear and anger, have been shown by McCraty and Childre 

(2004) to cause irregular changes in heart rate while positive valence emotions such as 

appreciation and compassion result in a regular and orderly heart rate. The research 

study by Jonghwa and Andre (2008) also highlighted the inter-beat interval, heart rate 

variability and heart rate as common features of electrocardiogram signals. They stated 

that the heart rate mirrors emotional activity and utilised it to distinguish negative and 

positive valence emotions, while the heart rate variability was employed as an indicator 

of stress and mental workload in adults. 

Studies also indicate that regulating the heart rate could influence the emotional 

state. In a study by Peira, Pourtois and Fredrikson (2013), a learned heart rate regulation 

method with biofeedback transfers to emotional situations without biofeedback was 

investigated. Biofeedback was used to train participants to decrease their heart rate and 

thereafter they computed the inter-participant differences of the acquired skills to predict 

their expertise in decreasing heart rate reactivity to being stimulated with negative 

arousing pictures without feedback. It was proposed that the learned ability could be 

transferred to emotionally challenging conditions without biofeedback, thus enabling 

regulation of bodily aspects of human emotions when heart rate biofeedback is 

unavailable.   
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This means that the heart rate is an important indicator of specific emotions. In 

addition, Ménard et al. (2015) recognised six basic emotions, using heart rate and skin 

conductance signals that allowed the identification of emotional states with a good 

accuracy ratio in a market research context. A partial correlation was also observed by 

the authors between objective and subjective data. 

De Witte et al. (2016) proposed that an autonomic nervous system, such as a 

vagally mediated heart rate variability and interoceptive sensitivity could have an impact 

on human emotion regulation. In the study, the connection between self-reported 

emotional regulation methods and heart rate variability, when at rest, was investigated. A 

high heart rate variability was found to be related to an increased utilization of external 

emotional regulation methods.  

Dimitriev, Saperova and Dimitriev (2016) among other studies, demonstrated the 

impairment of heart rate variability in humans as a result of experiencing anxiety emotion. 

Changes in the state of anxiety were discovered as nonlinear dynamics of heart rate.  

These studies have confirmed that emotions and heart rate are strongly related, 

hence the choice of the heart rate as a physiological signal in this study, for the purpose 

of human emotion recognition to be used for the tracking of persons in a distress phase 

situation. 

 

3.3.1.2 Sensors for measuring heart rate 

The various methods and devices, include sound/acoustic, electrodes, pressure, and light 

sensors have been used to measure Heart Rate (HR). The observed fluctuations in the 

optical characteristics of human blood is used by the light sensor to measure the heart 

rate while the variations in the sounds produced around the heart were used by the 

acoustic sensor for the measurement. The pressure sensors on the other hand utilised 

vibrations produced by the heart to measure the HR. 
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(i) Acoustic sensors 

Phonocardiography (PCG) is a popular and non-invasive method adopted in HR 

measurement using sound technology by listening to the heart’s sounds. The PCG has 

been used in some cases to diagnose cardiac conditions. A full heart cycle is made up of 

two major sounds namely S1 and S2. The piezoelectric transducers are utilised in 

detecting vibrations and sounds produced by the heart, the muscles’ activities, blood flux 

and valves by placing sound sensors on the human chest where the audibility of the sound 

is the highest.  HR is computed from the PCG by detection of the first and second heart 

sounds (S1 and S2) having segmented the sound to heart cycles and identifying the 

different cardiac phases. A number of studies (Gamero and Watrous 2003; Brusco and 

Nazeran 2005; Yamacli, Dokur and Ölmez 2008; Zhang et al. 2010; Chen et al. 2011; 

Chen et al. 2015) used different approaches to classify S1 and S2 acoustically. 

A statistical method utilizing the Hidden Markov Model was used by Gamero and 

Watrous (2003) to classify S1 and S2 sounds while using a data set of 80 subject’s, 

consisting of 20 seconds recordings each, to achieve a 95% sensitivity result. In the study 

reported by Brusco and Nazeran (2005), different heart sounds were classified while 

utilizing the peaks obtained from the normalized Shannon energy. The distances between 

the peaks obtained were measured and classification was done using a threshold while 

the S1 and S2 heart sounds were appropriately segmented. Heart cycles were detected 

at a 79.3% overall accuracy. 

Data from 53 patients from whom 326 heart cycle’s samples were harvested were 

used by Yamacli, Dokur and Ölmez (2008) to classify the S1 and S2 heart sounds from 

energy peaks detected by varying thresholds. A wavelet decomposition of the normalized 

input signal was performed before a window integration movement of the energy signal. 

The results obtained showed an 88.9% sensitivity for the S2 and 91.4% for S1 

respectively. 

An air conductive microphone was utilised by Zhang et al. (2010) through 

harvesting sound signals from the device and applying a novel algorithm to it in order to 

estimate the HR of a subject without direct contact with the skin. The HR measurements 
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were obtained with the subject wearing the device while performing some activities such 

as coughing, jumping, sitting and reading. Results obtained indicated the suitability of the 

method in estimating cardiac heart sound in a natural environment. 

Chen et al. (2011) in another study, measured HR from PCG by utilizing a template 

extraction including the filtered input signals being matched with the templates. A root 

mean square (RMS) error of 2.4bpm (beats per minute) was obtained in the calculation 

of HR using this method and tested with three human subjects at rest position. 

In Chen et al. (2015), a small sensor was placed on the neck to acquire acoustic 

signals to which a novel algorithm was applied to detect the heart sounds - S1 and S2 

from which the HR signals was computed in a window of 60 seconds. The algorithm 

analysed the filtered input acoustic signal using Continuous Wavelet Transform (CWT) to 

harvest peak frequencies likely to be the S1 and S2 heart sounds. A classification 

accuracy of 90.73% and 90.69% respectively was achieved when compared and 

evaluated with HR values offered by PULSOX 300i pulse oximeter (Konica Minolta 2014) 

and SOMNOscreen by SomnoMedics (SOMNOmedics GmbH 2014). 

 

(ii) Electrode sensors  

The use of electrodes, combined with various conducting materials, for measuring HR 

has been documented by a number of researchers (Komensky et al. 2012; Nemati, Deen 

and Mondal 2012; Tseng et al. 2014; Lee et al. 2014; Andreoni, Standoli and Perego 

2015; Majumder, Mondal and Jamal Deen 2017). 

An ECG monitoring system was proposed by Komensky et al. (2012) without the 

driven right-leg (DRL) electrode circuit. A DRL electrode usually requires a long, wired 

connection as it is often positioned at a far distance from the measurement electrodes. 

The system proposed by Komensky et al. (2012) however, utilised two active capacitive 

sensors enclosed in a flexible band placed on the chest. The system offered good 

measurement of ECG signals from resting/stable participants even though the P waves 

were not distinguishable. This was traceable to the position on the body where the 

electrode was placed or the fact that the common electrode was not available. However, 
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during walking activity, the ECG measurements were badly impacted by artefacts from 

the movements, with the QRS complexes still recognizable. 

ECG was also measured using a cotton T-shirt integrated with a stretchable belt 

wherein three capacitive electrodes were embedded (Nemati, Deen and Mondal 2012). 

The monitoring system derived is compact, wireless and low-powered with the shirt 

functioning as the dielectric between the human skin and the capacitive electrodes. To 

achieve low power consumption in the system, electronic components with low power 

features were utilised while a two-layer printed circuit board was used as a mount on 

which the signal processing and communication modules were placed. An idle mode 

sampling method was utilised for the signal as well as a low-powered, short-range 

wireless technology for sensor networks and similar applications to further reduce power 

consumption. Inconveniences may however be experienced by users as a result of the 

stiffness of the electrodes with the potentials of corrupting the harvested signals by motion 

artefacts. 

Tseng et al. (2014) introduced a three-electrodes, elastic fabric based vest to 

measure the ECG signal. A data acquisition module is embedded in the vest and firm 

contact of the electrodes with the skin was established. A Ni/Cu (Nickel/Copper) coated 

compressed urethane polymer foam was used to fabricate the electrodes, which was then 

encased in an Au (gold), coated conductive taffeta fabric. The proposed system achieved 

a high correlation using the simulated signal while the electrode motion noise was greatly 

reduced as a result of the low electrode-skin impedance derived from the conductive 

characteristics of the substrate. 

A system involving flexible capacitive electrodes was developed and embedded in 

a chest belt to monitor ECG (Lee et al. 2014). The motion artefacts of the electrodes were 

greatly reduced in the system at the input of the pre-amplifier by utilizing a very high bias 

resistor. The HR and QRS complex were determined from the harvested raw ECG data 

by applying a peak detection and noise cancellation algorithm on the raw ECG data. 

The R-R interval, HR and ECG physiological signals were monitored in the study 

reported by Andreoni, Standoli and Perego (2015) using textile electrodes made from 
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silver rich conductive yarns. These electrodes were embedded in customized belts and 

T-shirts. Body sweat was used by the electrodes as an electrolyte medium for the 

enhancement of conductivity between the skin and the electrodes, as well as the 

physiological signals’ quality. A low powered Bluetooth 4.0 was utilised to send the data 

harvested by the device, while an SpO2 pulse oximeter sensor was also included in the 

device, as well as a trial axial accelerometer to detect fall. 

The Ag-AgCl electrodes are the most popularly used devices for measuring the 

HR. They consist of the hydrogel or wet ECG method, which involves placing the 

electrodes on some, identified parts of the body, especially the chest and the lower part 

of the abdomen. The conducting gel in the electrodes serves as a conduction medium 

between the electrodes and the skin. The likely irritating, toxic and staining effects of 

conducting gel are making it unsuitable for a long duration ambulatory monitoring system, 

though they are being popularly used in measuring HR in other systems that require less 

individual daily activities. Majumder, Mondal and Jamal Deen (2017) comprehensively 

reviewed some of the studies carried out by researchers to measure or monitor ECG 

signals using electrodes as the electrocardiogram sensor of the cooking hacks platform 

also measures HR. 

 

(iii) Light Sensors 

Detection of variation in the human blood volume has been utilised to measure HR by 

using light emitting diodes (LEDs) and photodiode at the near infrared region. This 

method of using a light source to measure HR, as well as blood oxygen volume, is 

considered non-invasive, easy to use and with a compact size device, hence its popularity 

in pulse oximetry research studies. 

Matsumura et al. (2014) investigated the measurement of Normalized Pulse 

Volume (NPV) and HR from reflection mode plethysmograms simultaneously obtained at 

the red, green and blue spectral regions. This was premised on the capability of utilizing 

the reflection mode photoplethysmography (PPG) to measure these physiological signals 
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by using the light sensors available in phone cameras and a light source embedded in a 

smartphone’s flash. 

The accuracy of the NPV and HR measurements when influenced by motion 

artefacts were analysed, while it was discovered that the signal-to-noise ratio (SNR) 

attained with the red-light PPG was lower than those of the green and blue light PPG. 

The green colour was suggested as the most suitable in measuring NPV and HR from 

the reflection mode PPG under motion artefact conditions. 

The Fitbit Charge HR was described in Dooley, Golaszewski and Bartholomew 

(2017) as a triaxial accelerometer based device offering estimates of HR among other 

parameters such as sleep quality, distance travelled and calories extended. LED lights 

were utilised to measure human HR by the device through a technology termed 

“PurePulse”. This requires the device to be worn on the wrist about 3 fingers above the 

wrist bone in order to enhance the accuracy achieved. 

The Garmin Forerunner 225 device (Garmin 2016) was similarly experimented by 

Dooley, Golaszewski and Bartholomew (2017) and described as consisting of an 

accelerometer that offers sleep time and HR measurements. An inbuilt optical sensor 

utilizing the Mio HR technology that monitors HR using proprietary algorithms for LED 

light sampling is used to measure the HR at the wrist. The device also includes a Global 

Position System (GPS).  

It was found out that the differences in measurement in the two devices Fitbit 

Charge HR and Garmin Forerunner 225 are not significant from the Polar HR monitor 

either during/start of moderate and vigorous intensities respectively. 

 

(iv) Pressure Sensors  

Many research studies have measured the HR using piezoelectric pressure sensors. 

These sensors detect the arterial pulse wave that is produced during the intermittent 

relaxation and contraction of the human heart. 
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A study reported by Wang, Jin and Li (2008) utilised pressure sensors to convert 

the vibrations caused by heartbeats into electric signals. ECG and Ballistocardiograph 

signals were harvested from 30 subjects and the heart rate signal was found to be 

synonymous with a one channel ECG. 

An ear-worn reflective photoplethysmography (PPG) sensor was introduced by 

Patterson, Mcllwraith and Yang (2009) and involved attaching the sensor to the skin 

surface while targeting an artefact reduction of ambient noise. Ambient light was 

effectively separated from the preferred photoplethysmography signal by reducing 

wideband noise through the appropriate modulation of LED and a distinct integrating 

photocurrent demodulator. The experimental results confirmed the robustness of the 

sensor sensitivity to location and pressure variations. 

In a similar study by Yoo and Lee (2011), the Pulse Rate Variability (PRV) obtained 

from the photoplethysmography signal was considered for measuring the Heart Rate 

Variability (HRV) in order to assess human stress. The practicality and accuracy achieved 

in using HRV obtained from the photoplethysmography, as well as fingertip PPG including 

the standard lead II ECG signals, were experimentally compared. The results obtained 

indicated the PRV obtained from PPG was a good alternative to HRV in stress 

assessment studies. 

A piezoelectric pressure sensor attached to the human wrist was used by Yoon 

and Cho (2014) to estimate the HR through the detection of the pulse wave in the human 

artery. A polyimide substrate was used to manufacture the pressure sensor as a 

polyvinylidene fluoride – a trifluoroethylene (P (VDF-TrFE)) piezoelectric layer was used 

to spin-coat a thermally evaporated silver electrode. A mechanical stress is triggered on 

the piezoelectric layer as a result of the fluctuation in the radial artery, thereby causing a 

likely change across the electrode. 

Park et al. (2015) developed a wireless HR monitoring device that used fluctuation 

in the pressure of the ear’s canal surface to measure the HR. The in-ear pulse waves 

(EPW) was detected using a piezoelectric film pressure and converted the detected 

waves to an electric current. After preprocessing the EPW signal, a microcontroller was 
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utilised in the implementation of a knowledge-based algorithm to discover in real time, the 

pulse peak. The method was constrained by the fact that body movements can badly 

impact the pressure variance, as well as the peak height of the pressure waves, thus 

introducing error in the measurement of the HR. 

In another study, a piezoresistive material was made by Tajitsu (2015), using an 

electro-spinning based non-woven acrylate-modified polytetrafluoroethylene (PTFE) 

fabric to measure HR. The sensor was inserted in a wristband while monitoring the HR, 

as the detected pulse wave signal pattern is synonymous with the electrocardiogram 

signal. The impact of body movements on the harvested signal was very little while a high 

accuracy was achieved.   

 

3.3.2 Body Temperature  

The human skin, shown in Figure 3.5, covers the entire area of the body, thus making it 

the largest and heaviest single organ of the body, with also the largest surface area of 

about 16m2  (Shimizu 2013). The organ consists of tissue layers and offers protection to 

the other organs and muscles beneath it. The dermis and epidermis are the two main 

layers of the skin and are the inner and outer layers respectively necessary for 

maintaining critical functions. A third layer of subcutaneous tissue/ hypodermis is included 

in the structure and it is made up of connective tissues and fat. The skin is further 

classified into two types, hairy and non-hairy. The hairy skin has hair follicles and 

sebaceous glands while the non-hairy skin on the other hand lacks hair follicles and has 

a thicker epidermis. 

The dermis provides softening, lubrication, water proofing and anti-bacterial 

functions while the epidermis maintains the skin moisture and guarding the body against 

pathogens, microbes and harmful external chemicals and influences. 

The value of the body temperature depends on the parts of the body the 

measurement is made including skin surface, mouth, armpit and anus. Body temperature 

is significant as several illnesses as well as the causes, can be detected from changes in 

the body temperature. Researches have shown strong relationships between human skin 
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temperature levels and emotions and this physiological signal plays an effective role in 

measuring human sensations. Some of these research works are mentioned below. 

 

Figure 3.5: The anatomy of human skin (https://www.myvmc.com/anatomy/human-skin/). 

A driver’s level of awareness was investigated by measuring facial skin 

temperature of healthy volunteers during a simulated driving activity (Yamakoshi et al. 

2008). The peripheral vasoconstriction and sympathetic nervous activity were discovered 

to be enhanced during a monotonous driving situation, thereby leading to a remarkable 

decrease in the skin temperature. 

Cooper et al. (2014) investigated the influence of physiological responses of body 

temperature on other persons during social interactions. Thirty-six subjects watched and 

rated eight 3 minutes duration videos showing actors’ left or right hands dipped in either 

cold or warm water. The temperature of observers’ hands was measured using a 

thermistor as they watched the videos. For control purposes, other videos showed actors 

placing hands in front of water. The results obtained indicated that the videos displaying 

hands that were immersed in cold water were rated by subjects as being suggestively 

cooler when compared with the hands immersed in warm water. In addition, subject’s 

hands were suggestively colder as they observed cold water videos than the hot water 

videos thus indicating a temperature contagion effect. This further suggests that the 
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emphatic consideration for primary low-level physiological challenges, including more 

complex emotions have somatic simulation fundamentals. 

Salazar-Lopez et al. (2015) investigated the cognitive neuropsychology of 

emotions as a somatic marker of subjective experience during emotional tasks by using 

thermography. The results obtained indicated significant correlations between a mental 

state and fluctuations in facial temperature. It was observed that the nasal temperature 

decreased with negative valence stimuli, while the positive valence and arousal emotions 

caused an increase. The face, cheeks, orofacial area and the forehead are other parts of 

the body that witnessed these temperature variations. The “in the experiment” subjects’ 

empathy scores and performance were observed to be positively correlated with the nasal 

temperature changes, which suggest connections of bodily sensations with various 

emotional feelings, including love. 

 

3.3.3 Respiration 

Breathing is an essential human activity that must be performed continuously in order to 

safely engage in tasks. Respiration is connected to emotional states such as stress, fear 

and anger emotions, and could be associated with deeper and faster breathing. This is to 

trigger a fight or flight response, while rest and relaxation can result in shallow and slow 

breathing.  

Physical kinetic exercise, increased mental workload or emotional excitement can 

also lead to faster and deeper breathing (Gorman 2004). It has been shown by (Karthik, 

Varghese and Chaitanya 2013) that breathing rate is correlated to stress levels hence its 

measurement is significant in stress detection. 

The respiration sensor is most often placed on a subject’s diaphragm or thorax and 

measures the breathing rate as well as the deepness of breath. This placement is 

premised on the fact that the diaphragm contraction inflates the lungs, thus enabling it to 

perform a vital role in human breathing.  
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3.3.4 Galvanic Skin Response   

The skin, as shown in Figure 3.5, has electrical properties that fluctuate relatively quickly 

and are strongly connected to the body physiological processes. It has also been shown 

that without applying an external current, electrical potential can be measured between 

two electrodes placed on human skin. 

Human skin helps in conveying harmful materials from the body and passing it 

outside the body while also preventing harmful materials from entering the body. The 

eccrine and the apocrine are the two sweat glands in the human body. They have different 

functions, both produce sweat with varied chemical compositions that greatly influence 

the skin smell, called body odour. 

The eccrine sweat glands in particular produce fluid called sweat containing water 

and electrolytes and are primarily responsible for thermoregulation. During hot conditions, 

sweat is released onto the skin surface and the body is cooled as the sweat evaporates. 

The glands are also present on the Palmar and Plantar surfaces and these glands are 

majorly triggered by emotional stress rather than body temperature (Hölzle 2002) with 

these surfaces much more reactive to observed psychological sweating than other parts 

of the body. 

The Galvanic Skin Response (GSR) otherwise known as the Electrodermal Activity 

(EDA) of the skin or the skin conductance activity, signifies the electrical conductivity of 

the skin, especially the sweat gland, as a result of a subject’s emotional state in response 

to his environmental events. It is a measure of emotion, attention and arousal in subjects 

and it is specifically associated with the sympathetic nervous system of the human body 

(Dawson, Schell and Filion 2017). The EDA as a physiological signal measure has been 

popularly studied and previously applied in anticipatory anxiety studies for determining 

stress levels, as a lie detector and in evaluating the difficulty of driving tasks (Helander 

1978). In a related research work by Rigas et al. (2011), a methodology for a driver’s 

stress and fatigue detection was presented along with driving performance prediction. 

Statistical features were extracted from the driver’s physiological signals consisting of 

ECG, EDA and respiration. Along with drivers face video recordings and environmental 
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situation, a classification accuracy of 88% and 86% was obtained with three fatigue levels 

consisting of normal, low fatigue, and high fatigue; and two fatigue levels namely normal 

and stress respectively. Fatigue level was also confirmed to be closely associated with 

driving performance. 

The eccrine sweating is regulated by the sympathetic Autonomic Nervous System 

(ANS), as the galvanic skin conductance physiological signal indicates the arousal of the 

sympathetic ANS, which is present in several psychological processes. The Galvanic Skin 

Response (GSR), Skin Conductance Response (SCR) and Electrodermal Activity (EDA) 

have been interchangeably used in various studies to indicate affective psychological 

processes, including habituation, cognitive effort, arousal and attention. The EDA 

indicates electrical occurrences in the skin with the SCR reflecting the capability of the 

skin to conduct electricity upon application of an external current of constant voltage.  

Lanatà et al. (2015) reported an Autonomic Nervous System (ANS) fluctuation 

amidst driving style modifications in response to stimulated incremental stress load during 

simulated driving. The driving sessions involved steady motorway driving and two other 

sessions consisting of added arithmetic questions and vehicle mechanical stimuli that 

induce incremental stress load. The respiration activity, Heart Rate Variability (HRV) and 

electrodermal activity response physiological data of 15 participants were measured. The 

physiological data in addition to the vehicle’s velocity, steering wheel angle and time 

responses recorded significant changes in stress levels during the three driving sessions. 

A recognition accuracy of over 90% was obtained using a pattern classification algorithm. 

A higher resistance is recorded by a dryer skin than wet skin as the psycho galvanic reflex 

of the body is measured by the skin conductance response sensor.  

The skin conductance measurement constitutes a component included in 

polygraph devices and the physiological signal has been used in emotional or 

physiological arousal research studies. Shock, excitement and stress are emotions that 

can cause fluctuations in skin conductivity. The unit of measurement of the Cooking 

Hacks’ eHealth GSR sensor is microvolt (µV) though the physiological signal is usually 

measured in micro Siemens. 
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Najstrom and Jansson (2007) investigated the predictive value of the skin 

conductance response (SCR) to pre-attentively perceived threatening pictures on 

emotional responses following stressful life events. The picture perception task was 

carried out on 136 police recruits while the skin conductance data were concurrently 

harvested. Psychological distress was measured after the recruits were exposed to 

emotionally stressful life events and tasks. The assessment was made by administering 

the impact of event scale of the subjects after 24 months of taking the SCR data. The 

results obtained showed that emotional responses to masked threatening pictures in 

relation to neutral pictures of stressful life events could be strongly predicted by enhanced 

SCR. 

Hein et al. (2011) suggested that people, when empathizing with the pains of 

another person, display autonomic responses. The authors painfully stimulated some 

participants or made them observe pains being inflicted on another person, while their 

SCRs physiological signals were measured concurrently, as well as their affective ratings. 

The results indicated the prediction of later decisions on costly helping that is, choosing 

to suffer pains yourself as a result of others experiencing pains, depends on the strength 

of empathy-related vicarious SCR. A person is also more likely to engage in costly helping 

if the match between SCR magnitudes while observing pain experienced by others and 

during self-pain inductions are higher. 

In a study by Walla, Brenner and Koller (2011), the hypothesis of the objective 

assessment of the occurrence of individual likes and dislikes with respect to brand attitude 

was tested. Individual rated common brands, in relation to subjective preferences. This 

was followed by the virtual display of the brand names liked and disliked by the 

individuals, while collecting their skin conductance, heart rate and electromyogram 

physiological signals, using the participants’ eye blinks to the acoustic startle probes as 

responses. Results obtained suggest that the SCR and HR were lower in the case of liked 

as opposed to disliked brand names, thus highlighting the existence of emotion related 

differences in the liked and disliked brands by individuals. 

Research on electrical variations experienced in human skin and its physiological 

effects have dated back a century. The possibility of measuring fluctuations in electrical 
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potentials between electrodes positioned on the surface of the human skin has been 

studied over time (Grimnes et al. 2011) as momentary variations in skin resistance could 

be noticed when elicited by various stimuli. The fluctuations in skin electrical potentials as 

measured by the galvanic skin response/skin conductance response is very important in 

emotion studies. The two databases of physiological data, collected during real-life driving 

tasks and publicly available, confirms the real life applications in which the GSR signals 

are measured.  

These datasets include the stress recognition in automobile drivers’ (physionet 

‘drivedb’) produced by the MIT Media Lab (Healey and Picard 2005) and the hciLab 

driving data set (Schneegaas et al. 2013). The hciLab driving data set consists of 

contextual data (GPS position, brightness and acceleration), video rating of the driving 

scenarios as well as physiological data of 10 participants comprising the skin 

conductance response, skin temperature and the Electrocardiogram (ECG) readings of 

heart rate and heart rate variability data of the driver. The stress recognition in automobile 

drivers’ (physionet ‘drivedb’) data set on the other hand consists of the Electrocardiogram 

(ECG), Electromyogram (EMG), heart rate, respiration and, the Galvanic Skin Response 

(GSR) of the hand and foot data respectively. These data sets have been utilised with 

good results in research studies as well as to indicate the relevance of the GSR/SCR for 

emotion recognition.  

However, rather than attempting to collect the various physiological signals to be 

used for experimentations in this study, since the quality and integrity of data and features 

are very essential in machine learning studies (Jonghwa and Andre 2008; Solovey et al. 

2014), it is opined that it would be ideal to first demonstrate the proposed techniques in 

this study with a renowned and publicly available standard data set such as the DEAP 

data set in order to determine the results that would be obtained. 

This will give an insight and leeway during real-time deployment on human beings 

while using the physiological data that would be eventually collected. It is often best 

practices as also demonstrated in biomedical and behavioural research studies to first 

undertake preclinical studies involving the use of animals before extending the studies to 

clinical phase involving human subjects (Hamdam et al. 2013; Redfern et al. 2017). 
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Hence, the leverage on this, to first conduct experiments offline and evaluate results using 

existing and standard physiological signals data set of DEAP. 

Some of the research studies that have utilised the DEAP physiological signal data 

set are briefly discussed below. However, it was observed that varied methods and results 

were recorded in these studies, as the issue of feature extraction which is germane for 

performance in a pattern recognition system still remain open. This necessitated an 

attempt in this study to undertake feature engineering using the DEAP physiological data 

set to compare the proposed method, features and results obtained with those in the 

literatures.  

Wang and Shang (2013) introduced a Deep Belief Networks (DBNs) based system 

that automatically extracts features from 4 channels raw physiological data consisting of 

2 EOG and 2 EMG channels respectively under an unsupervised scheme while building 

3 classifiers that predict human emotion along the arousal, valence and liking classes. 

The classification accuracies obtained were 60.9%, 51.2% and 68.4%, which compares 

favourably with the results achieved with the Naïve Bayes classifier. 

In another study, Li et al (2015) adopted a two hidden-layer Deep Belief Network 

architecture configured with visible and hidden nodes as 128-10-10 to classify EEG 

signals of the DEAP data set into a binary label scheme of valence, arousal, dominance 

and liking respectively using unsupervised training and future learning. Classification 

experiments were done along individual subjects as well as across all subjects. An SVM 

classifier was also applied to the power spectral density as well as the DBN features in 

order to compare the manually extracted features with the DBN features. Recognition 

accuracies of 58.2% (valence), 64.3% (arousal), 65.1% (dominance) and 66.3% (liking) 

was achieved with the PSD features across the all subjects while about 58.4% (valence), 

64.2% (arousal), 65.8% (dominance) and 66.9% (liking) was recorded for the DBN 

features. There is no significant difference between the results of the two features as the 

possibility of learning affective features through a deep learning and manually generated 

features approaches were explored. 



81 

 

Zhuang et al. (2017) utilised the DEAP data set and applied Empirical Mode 

Decomposition (EMD) method to extract first difference of time series, the first difference 

of phase, and the normalized energy features from EEG signals which were decomposed 

into Intrinsic Mode Functions (IMFs) and classification was done along the arousal and 

valence classes using the support vector machine classifier. Classification accuracies of 

71.99% and 69.10% were respectively, achieved for the arousal and valence classes 

using 8 EEG channels, which are Fp1, Fp2, F7, F8, T7, T8, P7, and P8, while 72.10% 

and 74.10% classification accuracies for arousal and valence was however achieved with 

32 EEG channels. These performances are better than the results obtained by the 

authors using other methods/features such as the fractal dimension, sample entropy, 

discrete wavelength transformations.  

EEG signal characteristics such as spatial, frequency domain and temporal were 

integrated by Li et al. (2017) and mapped to a two-dimensional image from which EEG 

multidimensional feature images were built to represent varied emotions in EEG signals. 

A deep learning approach named CLRNN involving hybriding the Convolution Neural 

Networks (CNN) and Long Short-Term-Memory (LSTM) Recurrent Neural Networks 

(RNN) was then applied to the EEG MFI obtained from the DEAP dataset. With each 

subject, an average emotion classification accuracy of 75.21% was achieved, which is 

reported as better than the current state of the art approaches in emotion recognition 

domain.  

However, the best result was achieved with a 2s time window frame as against the 

available 60s window size containing all the EEG data per sample. In addition, the results 

of other classification methods such as k-NN, random forest and support vector machine 

with the features and the method proposed by the authors are not up to the 75.21% 

recorded. But aside the computationally expensiveness of deep learning technique, a 

shallow machine learning approach opted for in this study because it is believed that the 

classification accuracy obtained by Li et al. (2017) can be improved upon if the 

discriminatory strength of features is enhanced through novel feature engineering 

methods attempted in this present study rather than relying on the auto-generation of 

features as obtained in deep learning approaches. 
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A multiple-fusion-layer based ensemble classifier of stacked autoencoder 

(MESAE) for recognizing human emotions was proposed by Yin et al. (2017) involving 

the identification of the deep structure based on physiological-data-driven approach. 

Stable feature representations of the physiological signals were obtained as the unwanted 

noise in the physiological signals’ features were filtered by three hidden layers in each 

stacked autoencoder. The stacked autoencoder ensembles were achieved by using an 

additional deep model and the physiological features are divided into many subsets based 

on various feature extraction methodologies with each subset separately encoded by a 

stacked autoencoder. The derived SAE abstractions were merged based on the 

physiological modality to create six sets of encodings which subsequently served as input 

to a three-layer, adjacent-graph-based network for feature fusion whose features were 

used for human emotion recognition along the binary arousal and valence emotion states.  

Average classification accuracies of 77.19% and 76.17% was achieved for the 

arousal and valence state respectively, using the MESAE scheme with deep learning 

classifier while the accuracies reached 84.18% (arousal) and 83.04% (valence) with 

ensemble classification schemes. 

Alhagry, Fahmy and El-khoribi (2017) applied Long-Short Term Memory recurrent 

deep neural network of the EEG physiological signals in the DEAP dataset. An average 

recognition accuracy of 85.65% was achieved for the arousal class while 85.45% and 

87.99% average accuracies were recorded for the valence and liking classes 

respectively.  

In the research study carried out and reported by Menezes et al. (2017), features 

were extracted from EEG signals for affective state modelling using the Russell’s 

Circumplex model. The support vector machine and random forest classifiers were 

applied to the EEG features of statistical measures, band power as well as higher order 

crossing extracted from the DEAP data set to classify human emotion into the valence 

and arousal classes. The highest classification accuracy was obtained with the 

bandwaves spectral power density features by the SVM classifier was 69.2% and 88.4% 

for the bipartite scheme of arousal and valence classes respectively while the tripartite 

scheme recorded 59.5% and 55.9%. However, the random forest classifier recorded its 
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best classification accuracy of 74.0% (arousal) and 88.4 %( valence) along the bipartite 

labeling scheme (high/low) with the statistical band waves features and 63.1% (arousal) 

and 58.8% (valence) with the same features but for the tripartite labeling scheme 

(high/medium/low). Diverse lower results were recorded for each and combined band 

waves (Delta (δ), Theta (𝜃), Alpha (α) and Beta (β)) by the SVM and random forest 

classifiers for the bipartite/tripartite labeling scheme and statistical band waves or spectral 

power density features. 

However, a framework to automatically search for the optimal subset of EEG 

features using Evolutionary Computation (EC) algorithms including the Particle Swam 

Optimization (PSO), Ant Colony Optimization (ACO), Genetic Algorithm (GA), Simulated 

Annealing (SA) and Differential Evolution (DE) was introduced by Nakisa et al. (2018). 

This is aimed at removing inefficiency and redundancy resulting from the high-

dimensionality, introduced by combining all possible EEG features. The framework used 

frequency, time and time-frequency domain features of EEG signals from which some 

discriminatory features were selected using the EC algorithm and the probabilistic neural 

network pattern classifier was applied to classify human emotions into four classes. The 

DE algorithm yielded the best recognition accuracies of 96.97% and 67.47% for the 

MAHNOB and DEAP datasets respectively, with the probabilistic neural network classifier 

over 100 iterations.  

Though the results obtained are promising, the challenge with this framework and 

method is its computational complexity as it takes about 80 hours to achieve 

convergence. This is not ideal for a real-time situation where efficient, prompt and 

accurate classification is required.  

The techniques including data transformation, feature extraction, feature selection 

and classification that are proposed in the research work conducted and being reported 

in this dissertation are hereby presented in Chapter 4.  
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CHAPTER FOUR 

Research Methods 

This chapter presents the development of a mathematical model for human emotion 

recognition, including processing of physiological signals for feature extraction and 

feature classification. The Radial Basis Function Neural Network (RBFNN) pattern 

recognizer as well as its various configurations that were applied in the experiments that 

were conducted using the physiological signals of the DEAP (Koelstra et al. 2012) data 

set is also introduced. The essential steps involved in the development of the emotion 

recognition model are hereby presented. 

 

4.1 Emotion Data set Acquisition 

The DEAP (Koelstra et al. 2012) data set was chosen for the experimentations reported 

in this dissertation, because of its multimodal characteristics, fairly high number of 

subjects (32) and emotional states (16) considered in building the dataset. The data set 

as well as the results achieved by Koelstra et al. (2012) provides a platform to measure 

any improvement that could be achieved with the data set and compare results, using 

various methodologies developed by researchers who used the same dataset.  

For the DEAP dataset, video clips were used as stimuli to elicit human emotions 

from the subjects and their physiological data were concurrently collected. These stimuli 

are essential and were carefully chosen to mimic natural inducement of the target emotion 

in the subject. This ensured the collection of good quality physiological data associated 

with the target emotion. The data set was developed from 32 voluntary healthy 

participants (16 females) with ages ranging between 19 and 37 (mean = 26.9) as they 

watched 40 music video clips capable of eliciting the target/reported felt emotions of 

anger, contempt, disgust, elation, envy, fear, guilt, hope, interest, joy, pride, relief, 

sadness, satisfaction, shame and surprise. 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Koelstra,%20S..QT.&searchWithin=p_Author_Ids:37321690300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Koelstra,%20S..QT.&searchWithin=p_Author_Ids:37321690300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Koelstra,%20S..QT.&searchWithin=p_Author_Ids:37321690300&newsearch=true
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These 40 validated emotional music video clips of one-minute duration each was chosen 

from an earlier pilot study containing 120 one-minute extracts of music videos rated by 

14-16 volunteers. 

The participants in the main experiment, who were induced with a target emotion 

at a time, did a self-report of their felt emotions across a discrete approach using an 

emotion wheel. They did so by selecting the appropriate emotion from the emotion wheel 

labels of anger, contempt, disgust, elation, envy, fear, guilt, hope, interest, joy, pride, 

relief, sadness, satisfaction, shame and surprise. The EEG, electrooculogram (EOG), 

electromyogram (EMG), Galvanic Skin Response (GSR), respiration amplitude, Blood 

Volume Pulse (BVP) and skin temperature physiological signals were acquired 

simultaneously while they were experiencing the affectionate. The physiological signals 

were acquired along with frontal face videos of 22 participants using various sensors and 

active electrodes with the Biosemi Active II system. However, only two modalities 

comprising the central nervous system, for instance the EEG, and the peripheral nervous 

system physiological signals consisting of the EOG, EMG, GSR, respiration amplitude, 

BVP and skin temperature data as well as a fusion of these two modalities were 

specifically considered in the study presented here. This is because; it has been shown 

in the literature that modality fusion is capable of improving the result of an emotion 

recognition/classification problem (Chanel et al. 2006; Chanel et al. 2009; Soleymani et 

al. 2012; Koelstra et al. 2012). 

During each trial, participants also undertook and reported a self-assessment of 

their degrees of valence, arousal, dominance and liking on a continuous 9-point scale 

using a SAM while familiarity was rated on a 5-point scale. For each participant, there 

were 40 trials, which gives a total of 1280 samples for all the 32 participants. 

 

4.2 Preprocessing of Emotion Physiological Signals 

The DEAP raw physiological signals sampled at 512Hz have 48 channels per 

experimental trial consisting of 32 EEG channels, 12 peripheral physiological channels, 

3 unused channels and 1 status channel. These channels were eventually reduced to 40 
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during preprocessing by merging the same channels such as EOG and EMG channels 

respectively, while eliminating the unused channels (Koelstra et al. 2012). Each sample 

of the physiological signals therefore contain 40 channels made up of 32 channels of EEG 

signals and 8 channels of peripheral physiological signals consisting of the EOG, EMG, 

GSR, respiration amplitude, BVP and skin temperature data which was down sampled to 

128Hz. The preprocessed data was segmented into 60-second trials with a 3-second pre-

trial baseline removed while the list of the 40 channels’ physiological signals is shown in 

Table 4.1. 

Table 4. 1: Channels’ details and categorization of the DEAP physiological data set. 

Channel           

Number Channel Name Channel Description/Location 

Signal 

Category 

1 Fp1 Left Anterior EEG 

2 AF3 Left Anterior EEG 

3 F3 Left Anterior EEG 

4 F7 Left Anterior EEG 

5 FC5 Left Anterior EEG 

6 FC1 Left Anterior EEG 

7 C3 Left hemisphere EEG 

8 T7 Left hemisphere EEG 

9 CP5 Left Posterior  EEG 

10 CP1 Left Posterior EEG 

11 P3 Left Posterior EEG 

12 P7 Left Posterior EEG 

13 PO3 Left Posterior EEG 

14 O1 Left Posterior EEG 

15 Oz Posterior Hemisphere EEG 

16 Pz Posterior Hemisphere EEG 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Koelstra,%20S..QT.&searchWithin=p_Author_Ids:37321690300&newsearch=true
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17 Fp2 Right Anterior EEG 

18 AF4 Right Anterior EEG 

19 Fz Anterior Hemisphere EEG 

20 F4 Right Anterior EEG 

21 F8 Right Anterior EEG 

22 FC6 Right Anterior EEG 

23 FC2 Right anterior EEG 

24 Cz Centre  EEG 

25 C4 Right hemisphere EEG 

26 T8 Right hemisphere EEG 

27 CP6 Right hemisphere EEG 

28 CP2 Right hemisphere EEG 

29 P4 Right posterior EEG 

30 P8 Right posterior EEG 

31 PO4 Right posterior EEG 

32 O2 Right posterior EEG 

33 hEOG Horizontal EOG (hEOG1-hEOG2) EOG 

34 vEOG Vertical EOG (vEOG1-vEOG2) EOG 

35 zEMG Zygomaticus major EMG (zEMG1-zEMG2) EMG 

36 tEMG Trapezius EMG (tEMG1-tEMG2) EMG 

37 GSR Galvanic skin response (left middle and 

ring finger) 

GSR 

38 Respiration Respiration amplitude belt Respiration 

39 Plethysmograph Blood volume pulse  BVP 

40 Temperature Temperature of left pinky Body 

temperature 
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To process the data, firstly, the raw physiological data is normalized. There are 

different normalization schemes available in the literature amongst which the Min-Max 

and Z-score are famous. In particular, the Z-score has been used in the study of 

physiological data (Chubb and Simpson 2012) because it has the capability to 

dramatically simplify clinical interpretations (Colan 2013). However, both the Min-Max and 

Z-score normalization have received criticisms as they are both sensitive to outliers and 

it is not always that their performance is excellent (Singh and Gupta 2007). In addition, 

the Min-Max normalisation scheme scales data to a fixed range of 0 to 1 thereby giving 

smaller standard deviations. But the Z-score normalization is often preferred to the Min-

Max scheme, especially when applied with Principal Component Analysis (PCA) 

procedure in order to compare similarities between features as the component that 

maximizes the variance is often the focus (Raschka 2014). The tanh estimator, therefore, 

has been suggested as a robust scheme in place of min-max and Z-score because of its 

robustness, efficiency and elegance (Singh and Gupta 2007). However, the tanh 

normalization which is adjudged better than the Z-score and Min-Max also has a limitation 

as the conventional tanh is scaled in the interval [-1,1], which is not desirable in the image 

processing domain where pixel values are usually between [0,L], where L ϵ (1, 255). The 

shifted tanh function is introduced in this thesis to correct the limitation of the tanh 

function. 

Therefore, as part of the distinctive contributions to knowledge, the shifted tanh 

function is introduced. The general tanh function which lies in the interval [-1, 1] is given 

as: 

 

 𝑡(𝑢(𝑥)) =
𝑒𝑢(𝑥) − 𝑒−𝑢(𝑥)

𝑒𝑢(𝑥) + 𝑒−𝑢(𝑥)
 

4.1 

where 

 𝑢(𝑥) =
(𝑥 − 𝑥 )

σ𝑥
 4.2 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Chubb%20H%5BAuthor%5D&cauthor=true&cauthor_uid=23129909
https://www.ncbi.nlm.nih.gov/pubmed/?term=Simpson%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=23129909
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is the Z-score that ensures a normalization process with a mean (𝑥 ) of zero and standard 

deviation (σ𝑥) of one. This approach allows the integration of the benefit of Z-score in the 

tanh function. 

The expression in Equation (4.1) can be further simplified by multiplying the right 

hand side by ex and at the same time divides it by ex to give; 

 𝑓(𝑢(𝑥)) =
𝑒2𝑢(𝑥) − 1

𝑒2𝑢(𝑥) + 1
 

4.3 

The expression in Equation (4.3) corresponds to the inverse Fisher transform that 

has the advantage that it is compressive and for large absolute values, the output is 

compressed to 1 at most while also removing low amplitude variations. The inverse Fisher 

transform is analogous to edge sharpening in digital image processing. Moreover, it is the 

exact solution of the standard Fractional Riccati Differential Equation (FRDE) (Salehi and 

Darvishi 2016) of the form; 

 𝐷(𝛼)𝑓(𝑡) + 𝑦2(𝑡) − 1 = 0;  𝑡 > 0,  0 < 𝛼 ≤ 1 
4.4 

where 

 𝛼 = 1, f (0)  = 0 4.5 

The values of f (u(x)) in equation (4.3) still lie in the interval [-1, 1], but it is desired 

to have a normaliser that computes values in the interval [0, L], where L is the maximum 

greyscale value such as 255. The addition of 1 to both sides of Equation (4.3) will give:  

 1 + 𝑓(𝑢(𝑥)) =
2

1 + 𝑒−2𝑥
 

4.6 

The expression given by Equation (4.6) will compute values in the interval [0, 2]. 

To achieve the desired goal of having a normaliser that compute values in the interval [0, 

L], we multiply both sides of Equation (4.6) by L and at the same time divide by 2 to have: 

 
𝐿(1 + 𝑓(𝑢(𝑥))

2
=

𝐿

1 + 𝑒−2𝑢(𝑥)
 

4.7 
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By substituting Equation (4.2) into Equation (4.7) and dividing the left hand side of 

Equation (4.7), a more robust normaliser is obtained as follows: 

 𝐹(𝑢(𝑥)) =
𝐿

1 + 𝑒
−k(𝑥−𝑥 )

σ𝑥

 4.8 

Equation (4.8) is the desired normaliser, which is a particular form of the growth function 

with L being the modifier, 𝑥  is the data mean, σ𝑥 is the data standard deviation and 

k=2,3,4,5… while the value of F(u(x)) lies in the interval [0, L].  This function corresponds 

to the inverse Fisher normaliser with k=2. 

After the normalization and applying the inverse Fisher transform of the 

physiological data, the transformed data were thereafter mapped to greyscale image 

space while forming hyperspectral images. This is to enhance the digital image 

processing techniques which are intended to be applied to feature extraction. The 

Histogram of Oriented Gradient (HOG), Local Binary Pattern (LBP) and Histogram of the 

Images (HIM) features were then extracted from the inverse Fisher transformed 

physiological data. These features are called ‘local’ features as they were extracted from 

each channel of each sample.  

The step by step procedure for the preprocessing stage and extraction of the 

features is listed below.  

Step 1: Read the raw physiological data from the DEAP dataset 

Step 2: Determine physiological data class using emotion representation 

Step 3: Preprocess the physiological data by applying inverse Fisher transformation 

Step 4: Map the transformed physiological data to hyperspectral images  

Step 5: Extract features from the hyperspectral images using different standard algorithms         

           of digital image processing techniques – HOG, LBP and HIM 

 

  Step 6: Apply principal component analysis on the extracted features to compute         

              dimensionally reduced Eigen features  
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Step 7: Select the desired Eigen features using the Kaizer criterion of Eigenvalues greater   

            than one 

 

Step 8: Use pattern recognizer to recognize the selected Eigen features as Happy,     

            Distress and Casualty  

This preprocessing and feature extraction procedure in conjunction with the 

implementation are some of the contributions of this study. The program codes, running 

or execution and implementation was done using MATLAB 2018a environment. 

 

4.3 Emotion Class Representation  

In the DEAP dataset, there are 32 participants who undertook 40 trials each thus making 

a total of 1280 physiological samples/observations available for analysis. Each sample of 

the physiological signals was labelled by the participants along the dimensional approach 

for emotion representations, including valence, arousal, dominance and liking on a 9-

point continuous scale ranging from 1-9 using a Self-Assessment Manikin (SAM). These 

four emotion representations quantitatively describe emotions. The valence scale ranges 

from happy/joyful/positive/pleasure to unhappy/sad/negative/displeasure; arousal scale 

ranges from calm/bored/low to excited/stimulated/high; dominance scale from 

submissive/without control/overpowered to dominant/in control/empowered; and liking 

ranges from like to dislike (Soleymani et al. 2012; Koelstra et al. 2012). 

Valence scale measures the pleasantness or unpleasantness feelings of an emotion 

and can include happy, joy, peaceful and cheerful emotions for the pleasant/positive 

emotions and sad, fear, stress and angry emotions for the unpleasant/negative emotions 

(Soleymani et al. 2012; Koelstra et al. 2012). On the other hand, the arousal scale 

measures the intensity of emotional feelings and, such measures include both for positive 

and negative valence emotions. For instance, both pleasure and joy emotions have a 

positive valence, but low and high arousal respectively, while both sadness and anger 

have negative valence but low and high arousal respectively. The valence and arousal 

scales may be represented either way on the vertical/horizontal axis in the valence-

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Koelstra,%20S..QT.&searchWithin=p_Author_Ids:37321690300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Koelstra,%20S..QT.&searchWithin=p_Author_Ids:37321690300&newsearch=true
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arousal representation plane. This is to enable an easy four quadrants categorisation, 

including Low Arousal, Positive Valence; High Arousal, Positive Valence; Low Arousal, 

Negative Valence and High Arousal, Negative Valence as shown in Figure 4.1. But to 

map the ratings of participants in the DEAP data set with the quadrant, since the 

quantitative score ranges from 1-9 and no negative figures recorded, we therefore map 

and represent Negative Valence (NV) as Low Valence and Positive Valence (PV) with 

High Valence as shown in Figure 4.2. 

Dominance denotes the control ability expressed by an individual under a certain 

emotional state. Dominance and liking emotion models can occur in any emotion type, 

whether it is a positive(high) or negative(low) valence or low/high arousal emotions 

(Koelstra et al. 2012). For instance, an individual experiencing joy emotion may have a 

weak feeling or helpless indicating that he is not in control or has been overpowered by 

the emotion while another individual experiencing an anger or sadness emotion may still 

have a strong feeling and be in control. Furthermore, the liking scale does not also always 

connote a positive valence scale because an individual may like a sadness or anger 

emotion, which are both negative valence emotions, as well as any materials capable of 

eliciting these emotions and vice-versa (Koelstra et al. 2012) even when negative valence 

emotions are described to be characterized with unpleasantness/displeasure. 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Koelstra,%20S..QT.&searchWithin=p_Author_Ids:37321690300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Koelstra,%20S..QT.&searchWithin=p_Author_Ids:37321690300&newsearch=true
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Figure 4.1: The valence-arousal plane in HANV, HAPV, LANV and LAPV dimensions. 

 

 

Figure 4.2: Participants’ ratings mapped to HALV, HAPV, LALV and LAHV dimensions. 
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Therefore, a model of human emotion recognition in a distress phase situation 

problem is proposed along the four emotion representation labels of valence, arousal, 

dominance and liking as well as a fifth label tagged Distress Phase, which is obtained 

from the combination of the four emotion representation labels namely valence, arousal, 

dominance and liking. This entails tackling five classification problems, four of which are 

binary classifications including low/high valence, low/high arousal, submissive or in 

control dominance as well as like/dislike for the four labels, all of which recognition results 

were subsequently obtained. However, the Distress Phase representation has three 

emotion classes, which are Happy Phase, Distress Phase and Casualty Phase, which 

were built from the valence, arousal, dominance and liking labels’ ratings in the DEAP 

physiological signals dataset. In addition, the discrete emotions were appropriately 

mapped to the identified three classes of happy, distress and casualty phases of the 

emotion model. This was achieved by drawing inspirations from the target/felt emotion 

wheel namely anger, contempt, disgust, elation, envy, fear, guilt, hope, interest, joy, pride, 

relief, sadness, satisfaction, shame and surprise reported in the DEAP data set to enable 

an insight to appropriately categorize these discrete emotions along the valence-arousal-

dominance-liking dimensional space while also utilizing the participants’ ratings.  

Since many people use different words to mean the same emotional feeling, in 

order to enhance the generalization capability of the Distress Phase emotion model in 

terms of definitions and meanings of emotions, the emotion wheel in the DEAP data set 

was extended to the Funto Emotion and Feeling Wheel (Chadha 2016) as shown in Figure 

4.3, which contains some other words, meanings, characteristics and features of different 

emotional feelings. The Funto Emotion and Feeling Wheel (Chadha 2016) was 

considered over others as a complement to the one utilised in the DEAP data set because 

it attempt to resolve some inherent challenges in other past emotion wheels that contains 

more negative emotions than positive ones. In addition, many scientifically identified 

feelings and emotional words were not on the other emotion wheels and from real world 

experience, there are many "emotions" that people are identifying but were not included 

in any, or most, of the other emotion wheels (Chadha 2016). Furthermore, apart from 

offering a huge number of emotions/affective words to choose from, to compare and 

http://blog.thejuntoinstitute.com/author/raman-chadha
http://blog.thejuntoinstitute.com/author/raman-chadha
http://blog.thejuntoinstitute.com/author/raman-chadha
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relate to those in the DEAP dataset, the Funto emotion and feeling wheel also have all 

the six basic human emotions. 

Thus, a leverage on Russell (1980) mapping of human emotions and affective 

words to the valence-arousal dimensional plane as shown in Figure 4.4 was done so as 

to enable the Distress Phase emotion model, after taking due cognizance of the 

participants’ ratings to appropriately map a detected human emotion into the valence-

arousal dimensional plane. 

 

Figure 4.3: Emotion and feeling wheel. Adapted from Funto Institute of Entrepreneurial Leadership, 
Chadha 2016). 
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Figure 4.4: Mapping of various emotions and affective words into valence-arousal space. Adapted from 
Russel’s circumplex affect model, Russell (1980). 

 

Therefore, having thresholded the participants’ ratings for each of the valence, 

arousal, dominance and liking scales along two classes, which are low/high by placing 

the threshold in the middle as also done in (Koelstra et al. 2012) such that all ratings 

above 4.5 score are respectively mapped to high arousal, high valence, high/in control 

dominance and like while ratings below 4.5 scores are mapped to the respective lower 

dimension/dislike emotion representations, the Distress Phase emotion representation is 

modelled as follows. The happy phase in the emotion model as shown in Table 4.3, will 

consist of physiological signals of all positive/high valence emotion scores as rated by the 

participants in the DEAP dataset. This is steered by the human emotions and the 

hedonism theory that people are motivated to seek pleasure and avoid pain (Franken 

1994) as happy phase involves maximizing the positive effects of the various human 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Koelstra,%20S..QT.&searchWithin=p_Author_Ids:37321690300&newsearch=true
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sensory system. Positive valence emotions include elation, joy, glad, delighted, 

satisfaction, pride, happiness, relief, amusement, love, satisfaction, pleased, satisfied, 

calm, serene, relaxed, at ease, and jubilation, as these are pleasurable and desired by 

people (Franken 1994). Individuals with these positive valence emotions are 

characterized with humour, self-confidence, optimism, cheerful, gratitude, sense of 

accomplishment, creativity and a sense of personal control traits. Therefore, in this study, 

it is concluded that whatever the arousal, dominance and liking scores are, the most 

important emotion representation index for the happy phase is the positive/high valence 

as shown in Table 4.2, which indicate pleasure, generally desired with no harm/threat and 

thus would not require any emergency assistance to be prompted/provided. 

Table 4. 2: Emotion representation scores to determine Happy phase, Distress phase and Casualty phase. 

Phase Emotion 

Types 

Emotion representation scores 

Valence Arousal Dominance Liking 

Happy Amusement, 

Joy, Love, 

Satisfaction, 

Happiness 

etc. 

+ 

(positive/pleasant 

valence emotions) 

+/- 

(low/high 

arousal) 

+/- 

(low/high 

dominance) 

+/- 

(like/dislike) 

Distress Fear, Anger, 

Distress, 

Annoyed, 

Alarmed etc. 

- 

(negative/unpleasant 

valence emotions) 

+ 

(high 

arousal) 

+ 

(high 

dominance) 

+/- 

(like/dislike 

Casualty Sadness, 

Shame, 

Grief, 

Sorrow, 

Depressed 

etc. 

- 

(negative/unpleasant 

valence emotions) 

- 

(low 

arousal) 

- 

(low 

dominance) 

+/- 

(like/dislike) 
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The other two phases to consider in the emotion model are the distress and the 

casualty phases. The intention is to build an affective model that can trigger emergency 

assistance once the danger is imminent, so as to avoid a casualty phase where a loss 

would be suffered. These two phases will both therefore have a low/negative valence 

score since humans are motivated to avoid pain (Franken 1994) thus requiring prompting 

an emergency services whenever there is a threat to pleasure.  

Negative valence indicates unpleasantness, displeasure and aversiveness 

feelings of an emotion. They are characterised by suffering, insecure, pain - which may 

include physical and mental pain; panic, nervousness and helplessness (Chadha 2016). 

Negative valence discrete emotions include sadness, anger, fear, disgust, distressed, 

shameful, guilty, depressed, agony, hate, frustrated, distressed, contempt etc. 

Since both the distress phase and casualty phase have low/negative valence 

emotions, the arousal and dominance ratings are utilised to separate these two phases. 

This is because the arousal rating quantifies heightened physiological activity and provide 

emotional responses in terms of “fight”, “freeze” or “flight” to daily life experiences being 

confronted. 

High arousal rating indicates more will and determination to fight or flight, it 

connotes that an individual can still muster strength to face the impending threat and thus 

in control. The distress phase is therefore mapped with a high arousal rating as similarly 

done by Russell (1980) because it is exactly at this point that an emergency service is 

intended to be prompted not when the emotional arousal is very low, indicating an 

overpowered or helpless situation characterized with freeze, less willingness and 

determination to confront the threat thus possibly leading to a casualty phase. 

Out of the negative valence emotions earlier listed, relying on Russell (1980) as 

well as the emotion wheel adopted in the DEAP dataset, the discrete emotions and 

affective words that could be mapped to the distress phase include fear, angry, 

distressed, tensed, hope, contempt, disgust, envy, aroused, alarmed and annoyed. The 

distress phase is characterised by hope, acknowledging that there is impending trouble 

but with a conviction that things can turn out fine and well, though fearing the worst but 

http://blog.thejuntoinstitute.com/author/raman-chadha
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always expecting the best. It is believed that with prompt emergency assistance and all 

depths of individual efforts, a positive outcome is expected to be achieved. 

The casualty phase is what the distress phase emotion model wants to avert as it 

is not desired because, a tragedy has already occurred leading to loss of probably life, 

limb, valuables, successful kidnaping, rape, fire burns among others, thus necessitating 

the mapping of the casualty phase to low arousal and negative valence emotions/affective 

words. The casualty phase is characterized with not in control/overpowered, 

helplessness, irrevocable loss, dejection, defeat and sorrow. The discrete emotions and 

affective words mapped in this phase include sadness, regret, shame, hurt, disappointed, 

displeased, suffering, grief, despair, depress, miserable and droopy (Russell 1980; 

Chadha 2016). 

Following the proposed Distress Phase emotion model earlier highlighted, the 

respective DEAP data set physiological signals that has been appropriately mapped to 

the happy phase, distress phase and casualty phase labels would then be passed as a 

tripartite labeling scheme under the Distress Phase model emotion representation for 

human emotion classification and compared with the results to be obtained from the 

binary classification problems of valence, arousal, dominance and liking respectively in 

order to determine the best obtainable result. 

 

4.4 Feature Engineering  

The feature-engineering concept is the process of using domain knowledge of a modality 

data set to generate features from it that are capable of enhancing the performance of 

machine learning classifiers. The classification results of a machine learning algorithm 

therefore rests among others, on the quality of features engineered from the raw data as 

well as how the features are presented to the model. Thus, if the feature engineering is 

done excellently the predictive power of the pattern classifier will be positively impacted. 

Part of the steps involved in feature engineering, including transforming of raw data 

into discriminatory features for a better representation of the fundamental problem and 

http://blog.thejuntoinstitute.com/author/raman-chadha
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presentation of the predictive models for an enhanced model’s accuracy are captured as 

feature extraction and feature selection, which are hereby discussed below. 

 

4.4.1 Feature Extraction 

Raw physiological data are often of higher dimensions and are accompanied by various 

errors and other artefacts. This makes directly analysing and processing the raw data for 

decision making not ideal as it may lead to unacceptable results and wrong 

interpretations. Therefore, anomalies have to be identified and removed. Feature 

extraction, thus involves converting the raw physiological data into a series of feature 

vectors that bears characteristic and useful information inherent in the raw data. These 

feature vectors are often of smaller dimensions than the raw physiological data, because 

associated errors and artefacts have been significantly removed. 

Feature extraction in human emotion recognition and other pattern recognition 

studies such as human activity recognition, using physiological signals and 

accelerometers data respectively occur in time, frequency domains, sub-band spectra, 

multiscale entropy and geometric analysis (Picard, Vyzas and Healey 2001; Jonghwa and 

Andre 2008). These features are statistical in nature and include the mean absolute 

values of the first differences of the raw signals, RMS of the mean squared differences, 

mean of the absolute values of the first differences of the normalized signals, mean and 

standard deviation of the raw signals, mean square error, range and spectral power in the 

band (Picard, Vyzas and Healey 2001; Jonghwa and Andre 2008; Soleymani et al. 2012). 

The Fast Fourier Transform (FFT) technique is often utilised in calculating frequency 

domain features. This method reduces the processed signals into features that are 

discriminating for the required emotions or activities of interests.  

However, the strength of statistical features is that they can easily be calculated in 

an online manner (Vyzas, and Picard 1999) but they have the disadvantage of not 

exploiting the knowledge about the physical sources of the physiological signals (Picard, 

Vyzas and Healey 2001). To circumvent the intrinsic drawbacks of statistical features, 

different researchers have used varying feature extraction techniques such as the 



101 

 

Empirical Mode Decomposition (EMD), Hilbert Huang Transform (HHT), Wavelet 

transforms, Fourier transforms and Robust Singular Spectrum Transform (RSST) (Cong 

and Chetouani 2009). In the literature, some feature extraction techniques that have been 

applied for human emotion recognition based on physiological signals are Fourier 

transform, Hilbert-Huang transform (fission and fusion), six scale Daubechies wavelet 

transform, thresholding peak detection, time domain statistical features, spectral power 

density, entropy, Fisher projection, wavelet transform, sequential floating forward search 

and Maximum a Posteriori (MAP) (Jonghwa and Andre 2008; Cong and Chetouani 2009; 

Maaoui and Pruski 2010). 

Mathematically, the feature extraction problem can be defined as follows. If there 

exists a feature space xiRN, derive a mapping function that transforms RN such that 

 𝑌 = 𝑓(𝑥): 𝑅𝑁   → 𝑅𝑀 
4.9 

where M<N giving a transformed feature vector: yiRM   that retains a huge amount of the 

information or structure in RN. Feature extraction is therefore limited to linear 

transformation of the type y = Wx as shown in Equation 4.10. 

 

 

4.10 

   

4.4.2 Feature Selection 

Contingent on the modality of the physiological signals, only a subset of the features 

extracted is required for human emotion recognition (Picard, Vyzas and Healey 2001; 

Soleymani et al. 2012), while the quality of the features employed significantly contributes 

to the recognition accuracy attained (Jonghwa and Andre 2008). 
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Thus, feature selection entails obtaining only the discriminatory features of the extracted 

features. This is because not all the extracted features significantly represent the inherent 

characteristics in the acquired signals. 

This is achieved by selecting a subset of the extracted features without necessarily 

transforming them as shown in Equation 4.11. After the feature extraction process, 

applying dimensionality reduction algorithms, including the Principal Component Analysis 

(PCA) and the subsequent selection of the Eigenvectors as applied in this study constitute 

the feature selection procedure reported in this dissertation. The PCA is preferred among 

the other dimensionality reduction methods, including the Linear Discriminant Analysis 

(LDA) and the kernel PCA because it has been shown to be capable of yielding better 

result above the others (Goshvarpour, Abbasi and Goshvarpour 2017).  Feature selection 

is essential because a high dimensional feature space can be computationally expensive, 

increases the curse of dimensionality as well as leading to poor classification results. 

Feature selection subsets are obtained through searches for a subset that minimizes 

some cost function such as test error. Feature selection involves reducing the data set 

dimension by analysing and understanding the impact of its features of the model. 

 

 

4.11 

Mathematically, feature selection can be represented as: 

Given a feature set:  

 x =  {xi | i =  1, … , n}  4.12 

finding a subset 

 xm   = {xi1, xi2, …, xim}    with m<n 4.13 

that could optimize an objective function (feature extraction function) is required on the 

set of segments containing feature vectors Xi. 
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The objective function here could use the k-fold cross-validation technique 

necessary in selecting the optimal parameters for modelling an activity or emotion 

classification problem and performance evaluation of the selected model.  

In the study reported in this dissertation, the HOG, LBP and Histogram of Images 

(HIM) were extracted from the channel images obtained from the inverse fisher 

transformed physiological signals of DEAP dataset. These features are called ‘local’ 

features as they were extracted from each of the 40 channels of each sample, such that 

for each channel, the HOG descriptor has 81-feature vector size while the LBP and HIM 

descriptors have 256-feature vector size each, extracted per channel.   

Therefore, to extract the whole features from the 40 channels for each of the trial 

sample, for the HOG descriptor, the feature vector of 81 dimensions for each channel is 

to be combined such that each sample of the physiological signal has a vector size of 

81x40= 3,240. For the LBP and HIM descriptors as well, the feature vector size of 256 

per channel gives a vector size of 256x40=10,240 for each sample after concatenating 

the 40 channels.  

However, it has been shown that utilizing dimensionally reduced feature vectors of 

a transformed standardized data or features rather than on a non-standardized data gives 

better results (Raschka 2014) as the dimensionally reduced feature vectors are capable 

of improving classifier performance as reported in the literature (Adetiba and Olugbara 

2015). This fact was therefore leveraged on as the Principal Component Analysis (PCA) 

was applied to the extracted features of each channel before the concatenation. The PCA 

is aimed at standardizing data using inherent relationship existing in the data, which are 

often linear or almost linear thus making the data responsive to the analysis. PCA rotates 

original data to new coordinates by finding a low-dimensional linear subspace such that 

when the data is projected, information loss is minimized while making the computation 

of eigenvalues and eigenvectors of the covariance matrix achievable. The process 

involved in obtaining the principal components (Ada and Kau 2013) in a feature include; 

 

 



104 

 

(a) Compute the mean and standard deviation of the feature data 

(b) Centres and scaling of the feature by subtracting the sample mean from each 

observation in the feature and subsequently dividing by the sample standard 

deviation. 

(c) The coefficients of the principal components are obtained as well as the 

associated variances by computing the Eigen function of the sample 

covariance matrix. 

(d) The coefficients for the principal components is stored in the covariance matrix 

with the diagonal elements representing the variance of the respective principal 

components. 

(e) The maximum variance obtained in the feature data contains the dominant 

information content, which is needed for improved recognition result. 

Hence, a simple dimensionality reduction algorithm based on the Principal 

Component Analysis (PCA) with the associated eigenvectors indicating the most 

dominant or principal component elements of the feature vectors respectively was 

adopted. 

For each feature vector Ii extracted by a pattern descriptor i.e. HOG, LBP and the 

HIM from N samples, I  is an m x n matrix of each extracted feature vector where i = 1, 2, 

3, …, N. The matrices for N samples are averaged and represented as Iavg, the covariance 

matrix C is thus computed (Abdelrahman and Abdelwahab 2018) as shown in Equation 

4.14; 

 𝐶 =∑(𝐼𝑖 − 𝐼𝑎𝑣𝑔)
′

𝑁

𝐼=1

(𝐼𝑖 − 𝐼𝑎𝑣𝑔) 
4.14 

The covariance matrix C is evaluated to obtain the eigenvalues and the 

corresponding eigenvectors; y eigenvectors are selected based on the principal 

eigenvalues. The size of the matrix D containing the selected y eigenvectors is n x y such 

that the extracted feature Fi of each sample is obtained by projecting the feature vector I 

on the matrix D as shown in Equation 4.15;  
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 𝐹𝑖 = 𝐼𝑖. 𝐷 4.15 

After applying the PCA and obtaining the eigenvectors, the local HOG, LBP and 

HIM features of each channel for the EEG modality for instance, are reduced from 81, 

256 and 256 feature vector sizes respectively to 10, 31 and 31 most dominant features 

respectively. By this step, for each sample of the physiological signals to be trained by 

the RBFNN pattern recognizer, as shown in Table 4.3, the feature vector sizes of the 

HOG, LBP and HIM features are now 320, 992 and 992 respectively after concatenating 

features for all the 32 channels available in each sample under the EEG modality for 

instance. By this procedure, the new feature size was realised with about 90% 

dimensionality reduction. 

On the other hand, the peripheral physiological modality has 8 channels and the 

feature vector sizes of each channel after applying the PCA algorithm have 6, 7 and 7 

dominant features respectively, for the HOG, LBP and HIM descriptor thus giving 48, 56 

and 56 feature vector sizes respectively for each sample of the physiological signals. 

Also, the fused modality consisting of the EEG and peripheral physiological data have 4, 

36 and 39 PCA dimensionally reduced feature vector sizes, which gives 160, 1440 and 

1560 feature vector elements for each sample of the physiological signals for the HOG, 

LBP and HIM descriptors respectively.  

Table 4. 3: Size of the original extracted and PCA dimensionally reduced feature vectors. 

Modality 
Number of 

channels 

 

Size of original feature vectors 

of each sample for each 

pattern descriptor 

Size of PCA dimensionally reduced  

feature vectors of each sample for 

each pattern descriptor 

HOG LBP Histogram HOG LBP Histogram 

EEG 32 2592 8192 8192 320A 992B 992C 

Peripherals 8 648 2048 2048 48D 56E 56F 

EEG+Peripherals 40 3240 10240 10240 160G 1440H 1560I 

In sum, the dimensionally reduced feature vectors of each channel were 

subsequently concatenated to form the respective HOG, LBP and HIM features of each 

sample. This feature selection and dimension reduction technique employed with the PCA 
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will significantly reduce the computation cost and time as the dimensions of the feature 

vectors have been greatly trimmed (even to about 95% with the HOG features of the 

fused modality) while also retaining the dominant and discriminatory properties inherent 

in the original features.  

The nine different dimensionally reduced features extracted from the inverse Fisher 

transformed DEAP physiological data set namely the HOGPS, LBPPS, HIMPS; 

HOGPEPS, LBPPEPS, HIMPEPS; and HOGHES, LBPHES and HIMHES as stated in 

section 1.6 (b) are represented as A,B,C,D,E,F,G,H and I respectively in Table 4.3. 

 

4.5 Feature Descriptors 

The HOG and LBP feature extraction techniques of the digital image processing domain 

as well as the HIM features adopted for experimentations to be carried out and reported 

in this dissertation are hereby presented. These digital image processing techniques were 

adopted because of the success and high performances recorded by them in pattern 

recognition problems.   

 

4.5.1 Histogram of Oriented Gradient  

The Histogram of Oriented Gradient (HOG) is an image processing procedure developed 

for human recognition and object detection, considering that local object appearance and 

shape of an image can be represented by the distribution of intensity gradients or edge 

orientations (Dalal and Triggs 2005; Dipankar 2014). It was originally used for data 

compression as well as detecting edges around an object with a strong performance as 

an appearance, shape and feature extraction technique. 

The implementation of HOG involves dividing an image into evenly sized 

overlapping cells and compiling the histogram of gradient directions for the pixels within 

the cells. The gradient vector is calculated by using the changes in pixel intensity values 

within a given cell from the x and y axis. Thus, the magnitude and direction of the gradient 

vector can also be computed from the fluctuation in the pixel intensity values. An 
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increased brightness or magnitude may alter the pixel values, however the relative 

difference between the pixels stand. This relative difference is utilised to distinguish the 

edges of objects within an image and it is invariant to the magnitude. The magnitude of a 

block of cells is computed and the value obtained is applied to all the pixels within the 

particular block. The aggregation of the histogram of gradient represents the HOG 

features. To compute the HOG feature from a given image, four essential steps are 

required, which are masking, orientation binning, local normalization and block 

normalization. Research work reported in Dalal and Triggs (2005) contains detailed 

information regarding the computations and characteristics of the HOG features. 

A 3x3 block of cells and 9 bins were utilised in the original implementation of the 

HOG algorithm in generating a feature vector size of 81 elements from a greyscale image. 

In the research study being conducted and reported in this dissertation, the HOG feature 

was extracted from the inverse Fisher transformed physiological signals of the DEAP data 

set and passed to the RBFNN pattern classifier for human emotion recognition. 

 

4.5.2 Local Binary Pattern 

The Local Binary Pattern (LBP) descriptor was originally developed by Ojala, Pietikainen 

and Harwood (1996). It describes the texture of an image and has been widely applied in 

diverse applications (Ojala, Pietikainen and Harwood 1996; Ojala and Pietikäinen 1999; 

Ojala et al. 2001; Ojala, Pietikäinen and Mäenpää 2002). It assigns numeric label for the 

block of pixels of an image through a thresholding process that uses a 3x3 neighbourhood 

of the centre pixel value while treating the result obtained as a binary number. 

Since the neighbourhoods to the centre pixel consist of 8 pixels, the texture 

descriptor is derived from the histogram of the 28 = 256 different labels. The LBP operator 

offers impressive performance in unsupervised texture segmentation when used together 

with a simple local contrast measure. It was later revised and extended to a more generic 

form to accommodate neighbourhoods of various sizes including a circular 

neighbourhood. 
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The LBP value is computed following the steps described in (Ojala, Pietikainen 

and Harwood 1996). We chose the LBP descriptor because of its proficiency in 

appropriately describing the texture of an image (Ojala, Pietikainen and Harwood 1996; 

Garcia-Olalla et al. 2013). In addition, it has a modest theoretical definition, which is the 

foundation of its status as a computationally efficient image texture descriptor in the digital 

image processing field of study (Ahonen et al. 2006; Rahim et al. 2013).   

 

4.5.3 Histogram of Images (HIM)  

Digital image processing involves procedure of obtaining useful information from images 

by determining an image pixel property and variation for the purpose of analysis, 

classification and recognition/identification. Histogram of an image represents the 

histogram of the intensity values of pixels in the image. It is a graphical representation 

that covers all the various intensity values in the image. 

Thus, after preprocessing and applying inverse Fisher transform on the DEAP 

dataset, the data obtained for each sample is converted and mapped into a greyscale 

image representation with pixel intensity values ranging from 0-255. As an image 

processing algorithm, the histogram features representing the pixel intensity values in the 

various greyscale images are computed using an automatic binning algorithm that yields 

bins with a uniform breadth which are selected to cover the range of pixel intensity 

elements thus revealing the underlying unique shape and patterns of the distribution.  

Histogram as features has strong capabilities for identification and differentiation of 

patterns and was therefore employed as features for human emotion recognition along 

the valence, arousal, dominance, liking and distress phase class labels. Histogram based 

features have been used for image processing and in several pattern classification 

studies with promising results (Mohamad, Manaf and Chuprat 2011; Iman et al. 2017; 

Thamizhvani et al. 2018) thus necessitating the choice of the histogram feature as the 

third option to the HOG and LBP feature descriptors. 
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4.6 Feature Classification  

Feature classification involves the cataloguing of the extracted features into appropriate 

classes/states using a pattern matching/classification algorithm. Such pattern classifier is 

always trained to learn the inherent characteristics in the different extracted features and 

attempt to match features with similar patterns in the same class. The radial basis function 

is the pattern classifier that was utilised for the various experiments conducted in this 

study and reported in this dissertation. 

The Radial Basis Function Neural Network (RBFNN) is a feed forward artificial 

neural network for solving problems of pattern recognition and function approximation 

(Bors 2001; McCormick 2013). The concepts of RBF are ingrained in earlier pattern 

recognition techniques such as clustering, spline interpolation, mixture of models and 

function approximation (Bors 2001; Ugur 2004). 

A typical RBF neural network as shown in Figure 4.5, consists of an input layer, one 

hidden layer consisting of RBF neurons and an output layer of artificial neuron/node for 

each class/category to be classified (Bors 2001; Ugur 2004; Xianhai 2011; McCormick 

2013). Each neuron in the hidden layer implements a radial basis activation function that 

represents an arbitrary basis for the input vectors, while the network output is a linear 

combination of radial basis functions of the input and neuron parameters. 

The classification task performed by a RBFNN measures the input similarity to 

samples from the training data set (McCormick 2013). A “prototype” representing one of 

the samples in the training data set is stored in each RBFNN neuron as classification of 

a new input involves each neuron computing the Euclidean distance between the new 

input and its prototype. The new input is classified as belonging to Class 1 prototypes if it 

resembles Class 1 than Class 2 prototypes. The prototypes are indeed cluster centres 

computed as the average of all the data points in the cluster. 
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Figure 4.5: The architecture of Radial Basis Function Neural Network. Adapted from McCormick 2013). 

 

Each of the n-dimensional feature vector, which are the HOGPS, LBPPS, HIMPS; 

HOGPEPS, LBPPEPS, HIMPEPS; and HOGHES, LBPHES and HIMHES extracted from 

the DEAP data set is respectively fed into the network through the input layer for 

classification. This n-dimensional feature vector is displayed for each of the RBF neurons 

in the hidden layer.  

A ‘prototype’ feature vector obtained from one of the feature vectors in the training 

data set is stored in each RBF neuron which compares an input feature vector with its 

prototype and a measure of similarity with values of 0 or 1 is the output. If the new input 

matches the prototype, the output of that particular RBF neuron will be 1 otherwise 0. The 

RBF neuron’s response has a bell curve shape as shown in Figure 4.5 and the value of 

the neuron’s response is termed its activation value. The prototype feature vector is also 

called the neuron’s centre because it is located at the centre of the bell curve.  
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There are various types of similarity functions with which the similarity between an 

input vector and its prototype can be computed by an RBF neuron. These include the 

Gaussian, thin plate spline, quadratic, inverse quadratic, shifted logarithm, linear and 

cubic functions. The most popular similarity/activation function is the Gaussian radial 

function which yields a bell curve with a mean value located at the centre of the curve. 

Because of its popularity and good performance, the Gaussian radial activation function 

was also employed in this study as a one dimensional input vector in the RBFNN classifier 

configurations for the various experimentations conducted. More details about the 

RBFNN can be obtained in the literature (Bors 2001; McCormick 2013). 

Furthermore, in the experiments conducted and reported in this dissertation, the 

RBFNN classifier was utilised to recognize human emotion because of its ability to 

approximate continuous functions arbitrarily. In addition, it has faster training process 

because of its local mapping attribute as compared to other neural networks and it is very 

robust to noise (Leonard and Kramer 1991; Cha and Kassam 1995; Andina and Pham 

2007) while it is also capable of yielding at least 10% higher accuracy than can be 

obtained by the traditional back propagation ANN algorithm (Chapman et al. 1991). 

The various classification experiments conducted in this study are hereby presented 

in Chapter 5 of this dissertation. 
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CHAPTER FIVE  

Experimentations  

The personal computer utilised for implementing the experimental models contained an 

Intel core i7 processor with 3.4GHz CPU and 4GB of RAM running 64 bits Windows 8 

operating system. The experimental setups were conducted on three modalities available 

in the DEAP data set namely the EEG, peripheral physiological and a fusion of EEG and 

peripheral physiological signals (Chanel et al. 2006; Chanel et al. 2009). Three 

experimental models were explored in this research study to determine which of the 

physiological signals extracted feature based on the digital image processing techniques 

and inverse Fisher transformation with the RBFNN pattern classifier would give the best 

result of human emotion recognition using the DEAP physiological signals dataset. 

The RBFNN classifier was applied to the HOGPEPS, LBPPEPS, HIMPEPS; 

HOGPS, LBPPS, HIMPS; and HOGHES, LBPHES and HIMHES features extracted from 

the inverse Fisher transformed DEAP data set while comparing the results achieved to 

determine the combinations that would give the best  performance in recognizing human 

emotional states across the valence, arousal, dominance, liking and distress phase 

labels.  

In all, 45 different experiments were performed such that five groups each, of 

experiments based on the five emotion representation labels, which are arousal, valence, 

dominance, liking and distress phase, were performed using the nine highlighted different 

features from the three modalities. For instance, for the arousal class, three features, 

which are HOGPEPS, LBPPEPS, HIMPEPS extracted from the peripheral modality; 

another three features namely the HOGPS, LBPPS, HIMPS extracted from the EEG 

modality and three other features namely the HOGHES, LBPHES and HIMHES extracted 

from the fused (EEG+peripheral) modalities were experimented along the five emotion 

dimensions. 
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5.1 Experimental Models 

The generic architecture as shown in Figure 3.2 is employed in the design and 

implementation of the procedures for the 3 experimental models consisting of 45 

experiments in this study.  

The first experimental model in this study was conducted on the 8 channels 

peripheral physiological data consisting of the electrooculogram, electromyogram, 

galvanic skin response, respiration, blood volume pulse and skin temperature data of the 

DEAP data set from which the HOG, LBP and HIM features namely the HOGPEPS, 

LBPPEPS and HIMPEPS respectively were extracted. There are 1,280 

samples/instances in the data set which was obtained from the 32 participants’ 63s (60 

second trial and 3 second pre-trial) duration physiological signals of 40 trials per 

participant. The physiological signals were down sampled to 128Hz. These experiments 

were conducted to determine how best the combined peripheral physiological data could 

accurately recognize human emotions along the arousal, valence, dominance, liking and 

distress phase class labels. Therefore, under the peripheral physiological modality, 15 

experiments in all were conducted using the HOGPEPS, LBPPEPS, HIMPEPS features 

for each of 5 emotion representation labels/classes.   

The RBFNN classifier was first applied to the arousal class of the extracted 

HOGPEPS features, followed by the LBPPEPS features and then the HIMPEPS features 

in the MATLAB R2018a environment. For each sample of the 1,280-input dataset, as 

earlier indicated in Table 4.3, the HOGPEPS feature vector contains 48 elements per 

sample of the training data. This serves as the input data to the RBF network and 

therefore has 48 neurons in the input layer while the output layer has 2 neurons for the 2 

emotion classes indicating the low and high arousal binary classes for classification. 

To train an RBFNN network, determining the number of neurons in the hidden layer 

is very essential as this affects the result that can be obtained.  According to McCormick 

(2013), the prototypes as well as the beta coefficient of the RBF neurons and the matrix 

of output weights between the RBF neurons and the output node are the parameters that 

must be carefully selected in the course of determining the number of neurons in the 
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hidden layer. There exists no strict rule in the literature for selecting the prototypes for the 

RBF neurons. One approach is to create an RBF neuron for each training sample (Adetiba 

and Olugbara 2015) such that for the problem at hand, we would have 1280 neurons; 

while the other is to randomly select k prototypes from the training samples (McCormick 

2013). These requirements are slack because with adequate number of neurons, an 

RBFNN can outline any random complex decision boundary and recognition accuracy 

can always be improved upon by adding more RBF neurons in the hidden layer. However, 

a trade-off between the efficiency of the RBF network and the accuracy parameters 

should be considered because more RBF neurons will indicate more computation cost as 

it is essential that an excellent accuracy is obtained with the possible minimum number 

of RBF neurons. 

A novel method for selecting the prototypes is to perform k-Means clustering of the 

training sample while selecting the cluster centres as the prototypes (McCormick 2013). 

The average of all the data points in the cluster is computed as the cluster centres. In 

addition, while utilizing the k-Means algorithm, the training samples are clustered 

according to classes such that samples from multiple classes are not included in the same 

cluster. 

The RBFNN Matlab code provided by McCormick (2013) was adopted for the 

classification experimentations. In order to enhance the network’s efficiency and reduce 

computation costs, instead of using all the available 1280 neurons in the hidden layer, the 

optimal number of neurons in the hidden layer of the RBFNN was determined by varying 

the number of clusters between 50-250 per emotion class. For instance, for the arousal 

class with 2 classes (high/low), and with 50 clusters per class, this translates to 100 

neurons in the hidden layer for the 1280 training samples. A 50-250 number of clusters 

were chosen which indicate 100-500 neurons as similar to Adetiba and Olugbara (2015) 

where the same 100-500 neurons were chosen for each hidden layer in the MLP-ANN 

configuration consisting of 534 training samples, 2 hidden layers and 14 classes while the 

authors also utilised all the available 534 neurons in the hidden layer for the RBF network 

configuration in their study. The RBF network being hereby configured is therefore much 

simpler and more efficient than the MLP-ANN and RBF configurations reported in Adetiba 
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and Olugbara (2015) as a maximum fewer hidden neurons (39.06%) were utilised out of 

the available 1,280 neurons. Thus, the results obtained with the varied number of clusters 

for the HOGPEPS feature were chronicled. This experiment was further extended to using 

the LBPPEPS and HIMPEPS features of the peripheral physiological modality and 

classification was also done along the arousal classes (high/low). 

The input feature vectors for the LBPPEPS as well as the HIMPEPS features have 

56 elements each, representing the input neurons in the RBF network. The number of 

neurons in the hidden layer was experimentally determined as earlier done for the 

HOGPEPS features while the number of output neurons remains 2 representing high and 

low arousal classes. The differences between these three sets of experiments in this first 

model lie in the number of input neurons, the features employed and the optimal number 

of hidden neurons with which the best recognition results were attained. 

The first experimental model was concluded by separately utilizing the three 

features HOGPEPS, LBPPEPS and HIMPEPS extracted from the peripheral 

physiological modality for classification of human emotion along the outstanding 4 

emotion representation classes namely valence, dominance, liking and distress phase. 

The respective number of input neurons and the features employed are the same with 

those used for the arousal class, but the number of optimal neurons in the hidden layer 

vary as well as the number of neurons in the output layer which is 3 for the distress phase 

class representing the three classes of Happy, Distress and Casualty phases vary. In all, 

15 experiments were conducted in the first experimental model mapped to the peripheral 

physiological modality data. 

The second experimental model utilises the EEG modality data. The inverse Fisher 

transformed 32 EEG channels of the DEAP data set was used and the HOG, LBP and 

HIM feature descriptors was applied as explained in section 4.3 to extract corresponding 

features which is named Histogram of Oriented Gradient Physiological Signal (HOGPS), 

Local Binary Pattern Physiological Signal (LBPPS) and the Histogram of Images 

Physiological Signal (HIMPS) features respectively. 
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The first experiment conducted in this second experimental model is also on the 

arousal class just as was started with, in the first experimental model. The HOGPS 

features were  utilised and the RBFNN classifier was applied in order to classify the 

extracted features into the High/Low arousal classes. The HOGPS features has 320 

elements for each of the 1280 training samples that was fed into the RBF network. The 

number of neurons in the input layer is thus 320 while the output layer has 2 neurons, 

each one representing the High/Low arousal emotion class.   

As also done with the experiments in the first experimental model, the optimal 

number of neurons in the hidden layer was experimentally determined as it was intended 

to reduce the complexity and computational costs of the RBF network by not utilizing all 

the available 1280 neurons of the total input samples. The number of clusters per class 

which eventually determines the number of neurons in the hidden layer was thus varied 

between 50-250 until the best recognition result was attained. 

This experiment is different from the sets of experiments in the first experimental 

model in terms of the number of neurons in the input layer, the features employed, 

modality and possibly the optimal number of neurons in the hidden layer with which the 

best recognition result is attained. This experiment was extended to separately using the 

LBP features (LBPPS) and also the HIM features (HIMPS) of the EEG modality data. The 

total number of training samples is 1280 just as obtained in all the other experiments. The 

number of neurons in the input layer is 992 each for both the LBP features and the HIM 

features because the feature vectors of these descriptors have 992 elements in each of 

its 1280 training samples. This huge number of input neurons is as a result of the higher 

number of channels (32) and dominant components in the EEG modality data above that 

of the peripheral physiological data. However, the output layer has 2 neurons consisting 

of the High/Low arousal class as also obtained in the earlier experiments. Thus, three 

sets of experiments yielding three results were performed with the features extracted from 

EEG modality with the arousal emotion class (High/Low).  

In concluding the second experimental model, the outstanding 4 emotion 

representation classes of valence, dominance, liking and distress phase were each and 

separately used with each of the HOGPS, LBPPS and HIMPS features of the EEG 
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modality data. The same parameters as utilised in the arousal class experiments in the 

second experimental model are adopted. In sum, 15 experiments were performed in the 

second experimental model mapped to the EEG modality data. 

The third experimental model which is the last sets of experiment to be performed, 

utilised the fused modality (EEG+peripheral physiological) data of the DEAP data set from 

which the HOG, LBP and HIM features named HOGHES, LBPHES and HIMHES were 

extracted as explained in section 4.3, for  the recognition task of human emotion. The 

fused modality has 40 channels per data sample and has a total number of 1280 samples. 

The RBFNN was first applied to the extracted HOGHES features for classifying the 

arousal class. There are 160 elements in each feature vector indicating that the input 

layer of the RBF network has 160 neurons and the output layer has 2 neurons. The 

number of clusters per class which determines the number of optimal neurons in the 

hidden layer was varied between 50-250 until the best recognition result was attained. 

This experiment as also done in the first and the second experimental model, was 

extended to the LBP and HIM descriptors by utilizing the LBPHES and HIMHES extracted 

features respectively for classifying human emotions along the arousal class. The feature 

vectors of the LBPHES and HIMHES features have 1440 and 1560 elements respectively. 

The RBF network, therefore, has 1440 input neurons for the LBPHES features and 1560 

input neurons for the HIMHES features. The output neurons are 2 for the arousal label of 

each of the feature descriptors and the number of optimal neurons in the hidden layer is 

as experimentally determined as in the first and second experimental models. 

The valence, dominance, liking and distress phase emotional representation 

classes are subsequently used for human emotion recognition under the fused modality 

data as the HOGHES, LBPHES and HIMHES features were each and separately used 

for classification along each of the four stated emotional classes. Moreover, in this third 

experimental model, a total of 15 experiments were performed with 3 experiments per 

each of the 5 classes using the HOGHES, LBPHES and HIMHES features. 

The general differences in the three experimental models lie in the modality data 

used, hence the features extracted, the number of input neurons fed to the network and 
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the optimal number of neurons in the hidden layers. The number of output neurons is 

however the same for all the experimental models as 2 neurons were utilised for the 

arousal, valence, dominance and liking classes because each of them consist of 2 states 

(High/Low) while 3 neurons are used in the output layer for the distress phase 

representation consisting of the happy, distress and casualty phases.   

The results indicate the trend of performance of the various modalities, features and 

representation labels including the combination that posted the highest recognition 

performance in the 45 experiments conducted are presented and discussed in Chapter 6 

of this dissertation. 
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CHAPTER SIX  

Experimental Results and Discussion 

The results of the various emotion recognition experiments discussed in Chapter 5 are 

presented in this chapter, with some discussions. The results achieved with the various 

HOG, LBP and HIM features are presented in the order of peripheral physiological, EEG 

and fused (EEG+peripheral physiological) modalities. The various results were compared 

with one another within a specific modality and across modalities for all the four emotion 

dimensions of arousal, valence, dominance and liking as well as the development of the 

distress phase emotion model. The best results within and across the modalities for these 

dimensions and features were noted and recommended as an applicable combination for 

human emotion recognition in an affective system. 

The qualitative comparative results of the inverse Fisher transformation of the 

emotion physiological data are first presented in order to ascertain the similarities across 

subjects’ emotional responses despite the variation in individual’s emotional experiences 

(Siemer, Mauss and Gross 2007). Out of the 40 experimental trials of each subject, 8 

trials were randomly selected such that the trials selected for each of the 32 subjects (S1-

S32) are unique to enable an appropriate trial mix towards enhancing the generalisation 

and reliability of inferences drawn and results obtained. From the 32 EEG channels, the 

Fp1, F7, T7, P7, Fp2, F8, T8 and P8 channels were identified and selected for the EEG 

modality are reported in literature to be directly related to human emotions (Davidson, 

Jackson and Kalin 2000; Niemic 2002; Petrantonakis and Hadjileontiadis 2010; 

Noppadon, Setha and Pasin 2013a; Noppadon, Setha and Pasin 2013b; Menezes et al. 

2017; Nakisa et al. 2018). The greyscale image plots of the inverse Fisher transformed 

physiological data on each subject for 8 random trials and identified channels are shown 

in Figure 6.1 showing the similarities in the patterns of the images across the subjects. 

Figure 6.1 shows that there seems to be a similar pattern in the majority of the images 

across the subjects despite the individual variability that do exist in emotional experiences 

which necessitates the little variations noticed in the few image patterns of one or two 

channels per subject.  
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Figure 6.1: Images of inverse Fisher transformed EEG physiological data. 

The texture similarities in the images across the subjects is observed in the dense 

and coarse patterns of the images with observed varied brightness/darkness as a result 

of the different pixel intensity values and distributions in each image. Thus the strength of 

the physiological data transformation method that was applied revealed the inherent 

similarity between the subjects’ emotional experiences and responses towards ensuring 

a subject-independent based inferences and results. 

In addition to the greyscale image plot of the transformed physiological data from 

which the respective features are extracted, the histograms representing accurate 

distributions of the pixel intensity values for each of the greyscale images in Figure 6.1 

are presented in Figure 6.2. The range of pixel intensity values was binned to 256 that is 

0-255, which represent the greyscale image pixel intensity distribution. The importance 

of the histogram data is that it reveals the density of the underlying distribution of the 

transformed physiological data and can be employed for probability density function 

estimation of the underlying variable especially by a pattern classifier. Histograms have 

been utilised in digital image processing for image analysis, brightness, equalisation, 

stretching and thresholding. There is no ideal image’ histogram shape, but the notable 

patterns include the unimodal, multimodal, bimodal, skewed right, skewed left and 

symmetric. As observed, the multimodal pattern dominates the histogram plots in Figure 

6.2. The multimodal pattern distribution has multiple peaks and could indicate that the 

physiological emotional responses of subjects have several patterns of responses and  
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Figure 6.2: Histogram plot of the inverse Fisher transformed EEG physiological data. 

preferences that support the literature position that the emotional experiences and 

responses of different subjects may not be the same (Siemer, Mauss and Gross 2007).   

As shown in Figure 6.2, for all the selected channels and across subjects, the pixel 

count evenly covers a wide range of pixel intensity which indicate a good contrast 

properties of the image as well as a similarity in the contrast property among the subjects. 

In addition, the shape of the histogram plots for some of the channels are similar for each 

subject while some similarities can also be observed across many subjects. It is from 

these pixel intensity values that the respective features are computed for a subject-

independent emotion recognition task that is employed in this dissertation.   

 For instance, the Histogram features of the EEG signal modality of the dominance 

dimension for the 8 channels and trials are presented in Figure 6.3. Mathematically, the 

extracted features shown in Figure 6.3 are said to be similar across subjects as they have 

the same shape, but usually of varied sizes as a result of the varied feature value 

otherwise termed amplitude/intensity of the signal. This is an indication of the robustness 

of the inverse Fisher transformation method that was applied as well as the feature 

extraction algorithm in revealing the similarities inherent in the physiological data of the 

various subjects.  

Furthermore, for the Distress Phase model emotion representation using the EEG 

modality data, the Histogram features for the 8 selected channels and random trials are 

also presented in Figure 6.4. Despite utilising the same EEG modality data and Histogram 
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features, the shape and patterns of the features of the Distress Phase model differ from 

that of the dominance dimension as observed in the dense nature of the Distress Phase 

model features with varied amplitude/intensity values. However, as observed in Figure 

6.4, there exist a strong similarity in the patterns of the features across each subject, 

channel and trial thus indicating the robustness of the data transformation technique as 

well as the Histogram features employed by revealing the similar characteristics inherent 

in the signal across the subjects thereby enhancing classification performance. 
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Figure 6.3: Sample Histogram features of dominance dimension of EEG modality data. 
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Figure 6.4: Sample Histogram features of distress phase model of EEG modality data. 

 

On the other hand, using the peripheral physiological modality data comprising of 

the EOG, EMG, GSR, Respiration, Plethysmograph and temperature data, the HOG 

features extracted along the dominance dimension, the LBP features extracted along the 

liking dimension as well as the HOG features of the Distress Phase model emotion 

representation are shown in Figures 6.5, 6.6 and 6.7 respectively. The aim is to show the 

differences in shapes and patterns between the different modalities as well as the feature 

descriptors while also revealing the similarities across the subjects and channels within a 

particular feature. The strength of the data transformation technique and features 

employed thus confirm the various impressive results obtained with the peripheral  
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Figure 6.5: Sample HOG features of dominance dimension of peripheral modality data. 
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Figure 6.6: Sample LBP features of liking dimension of peripheral modality data. 
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Figure 6.7: Sample HOG features of distress phase model of peripheral modality data. 

physiological modality and the HOG features as revealed in the features’ similarity across 

the subjects. 

Lastly, the shapes and patterns of the HOG as well as the Histogram features of the 

fused modality data for the dominance dimension and the Distress Phase model are 

presented in Figures 6.8 and 6.9 respectively. Having been stated earlier to be connected 

to human emotions, only the feature plots of 8 channels comprising of 4 EEG channels – 

Fp1, F7, Fp2 and T8 and 4 peripheral physiological channels, which are the GSR, 

Respiration, Plethysmograph and temperature for the 8 random trials are shown for each 

subject. As observed in the figures, the shape and patterns are unique for each of the 
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dimensions. However, within each dimension, there is a huge similarity in the shape and 

pattern of the feature across each subject and channels, thus following the earlier 

identified trend capable of yielding impressive results as the strength of the data 

transformation method and feature descriptor employed revealed the inherent similarities 

thus enhancing the subject-independent classification task.  

The various methods, including cross correlation coefficient, cross approximate 

entropy and mutual information have been applied in detecting similarities in signals’ 

features. However, in this study, the respective features for each modality and dimension 

are fed directly into a RBFNN pattern classifier in order to determine the performances of 

each feature and modality by obtaining a classification result of the subject-independent 

based emotion recognition task. 
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Figure 6.8: Sample HOG features of valence dimension of fused modality data. 
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Figure 6.9: Sample Histogram features of distress phase model of fused modality data. 

 

The subjective evaluations carried out are however, complemented as the 

quantitative analysis and results obtained using the RBFNN pattern classifier and the 

respective feature descriptors are hereby presented. 
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6.1 Experimental results of peripheral modality 

For the arousal scale results, which consist of classifying human emotion along the 

high/low arousal classes, the RBFNN classifier using the HOGPEPS features with 50 

clusters per class which represents 100 neurons in the hidden layer, achieved a 

recognition accuracy of 72.11% with a Mean Square Error (MSE) of 0.7187. Since the 

number of neurons utilised is far below the available and possible 1280 neurons that can 

be used, therefore the number of clusters which determines the number of neurons that 

is used in the hidden layer was varied, between 50-250 in a step of 50. It was noticed as 

shown in Table 6.1, that as more clusters/neurons are added, the recognition accuracy 

increases until it peaked at 85.16% with 250 clusters after which the accuracy starts to 

decline. Thus the best recognition accuracy attained using the HOG features of the 

peripheral physiological data (HOGPEPS) is 85.16% (MSE=0.0398). This result is indeed 

very promising and better than the best result of 69.2% obtained with the SVM classifier 

by Menezes et al. (2017) that used the band waves spectral power density features 

extracted from the DEAP physiological signals dataset. 

The LBPPEPS features which represent the LBP features extracted from the 

peripheral physiological modality data recorded a recognition accuracy of 73.36% 

(MSE=0.3300) with 50 clusters per class or 100 neurons in the hidden layer. As the 

number of neurons is increasingly varied, the accuracy obtained increases. 

Table 6. 1: Results of the arousal dimension for the peripheral modality. 

 

The best recognition accuracy of 84.92% (MSE=0.4973) was however achieved with 200 

clusters as the network performance suffers a decline with subsequent increase in the 
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number of hidden layer neurons as shown in Table 6.1. With the 73.36% (MSE=0.3300) 

accuracy achieved with just 50 clusters, as against the 72.11% (MSE=0.7187) recorded 

with the corresponding HOGPEPS features, it initially appeared as if the LBPPEPS will 

outperform the HOGPEPS because of its higher number of feature vector size which 

could connote more inherent discriminatory information. However, the best recognition 

accuracy of 84.92% (MSE=0.4973) achieved with the LBPPEPS is marginally lower by 

just 0.24% to the result of 85.16% (MSE=0.0398) posted by the HOGPEPS. In terms of 

network’s efficiency, the LBPPEPS result is preferred because, it was achieved with a 

lower number of neurons in the hidden layer as an increase of 100 neurons yielding just 

0.24% marginal accuracy is considered not efficient enough.  

The HIMPEPS features which represent the Histogram of Images of the peripheral 

physiological modality data recorded the best recognition accuracy of 83.98% 

(MSE=0.2089) using 250 clusters or 500 neurons in the hidden layer as shown in Table 

6.1. This result is lower by 1.18% and 0.94% respectively to the best results posted by 

the HOGPEPS and LBPPEPS indicating that for the peripheral physiological signal 

modality of the DEAP data set with the method proposed in this study, the pixel intensity 

values as features for classification is not better than the HOGPEPS and LBPPEPS 

features.  

However, despite the seeming lower performance of the HIM features, the 

recognition accuracies achieved by the HOGPEPS, LBPPEPS and HIMPEPS are all 

better than the arousal class best results of 77.19% (Yin et al. 2017), 69.2% by the SVM 

and 74.0% by the random forest classifiers (Menezes et al. 2017), 71.99% (Zhuang et al. 

2017), and 60.9% (Wang and Shang 2013) posted in these various research studies. 

As noticed in Table 6.2, the classification results along the valence class for the 

peripheral physiological modality data follows a similar trend with that of the arousal class, 

thus indicating the similarity and consistency of the patterns in the features employed in 

these two classes. With the valence class, the HOGPEPS features achieved a recognition 

accuracy of 85.94% (MSE=0.4246) with 500 neurons in the hidden layer as shown in 

Table 6.2. This result is marginally better than the 85.16% (MSE=0.0398) posted by the 

same features under the arousal class label.  
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In the same vein, a recognition accuracy of 83.20% (MSE=0.3057) was recorded 

by the LBPPEPS features with the valence class of the peripheral physiological modality 

data. This was achieved with 400 neurons in the hidden layer of the RBFNN and the 

performance declined with more additional neurons. This result is lower than the results 

of the HOGPEPS features of the valence class, including also the corresponding 

LBPPEPS result posted under the arousal class as well as the results of the HOGPEPS 

and HIMPEPS features of the arousal class.  

Also, as shown in Table 6.2, a recognition accuracy of 82.66% (MSE=0.4792) was 

achieved with the HIMPEPS features with the valence class using 500 neurons in the 

RBFNN hidden layer. The import of the various results posted by the various features for 

the valence class of the peripheral modality data is that, the HOGPEPS features have the 

most informative and discriminatory properties for this modality with which human 

emotion can be recognised using the DEAP dataset. This is because, the highest results 

are posted by the HOGPEPS features across the valence and arousal classes as shown 

in Tables 6.2 and 6.1 respectively. Though, the 84.92% (MSE=0.4973) recorded by the 

LBPPEPS features could be preferred, if efficiency is to be considered above accuracy 

as a 100 fewer neurons were expended by the RBFNN for the LBPPEPS features of the 

arousal class labels of the peripheral physiological modality. 

Table 6. 2: Results of the valence dimension for the peripheral modality. 

 

However, these best results achieved for the peripheral physiological modality 

using the HOGPEPS, LBPPEPS and HIMPEPS features for the valence class are better 

than the 69.10% (Zhuang et al. 2017), 76.17% (Yin et al. 2017), 51.2% (Wang and Shang 
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2013) and 58.2% (Li et al 2015) reported in various recent studies that utilised the DEAP 

data set with classification done along the valence class, thus indicating the robustness 

of the proposed data transformation method and the feature extractors applied in this 

study. 

As contained in Table 6.3, the results obtained by the dominance emotion 

representation class with the peripheral physiological modality data are as follows. A 

classification accuracy of 87.34% (MSE=0.3775) was achieved with 500 neurons in the 

hidden layers of the RBFNN using the HOGPEPS features. This is the highest result 

achieved so far in this modality across all the features employed. However, with 100 

neurons less in the hidden layer, a classification accuracy of 87.03% (MSE=0.1609) was 

recorded. In terms of comparing efficiency and accuracy, the 87.03% recognition results 

could be preferred because of its associated lesser network complexity and computation 

time. 

From the result obtained, the respective HOG features of the high and low 

dominance classes was further investigated to determine some of the inherent 

characteristics in the features and classes that could have imparted this impressive result. 

As shown in Figure 6.10, 6 subjects (S4, S8, S12, S18, S22 and S27) were uniformly 

selected and, the plots of the HOG features for the high and low dominance classes 

revealed different feature values otherwise termed amplitude or intensity in this study. It 

was observed that the high dominance class has a higher amplitude than the low 

dominance class, thereby enhancing easy classification by the pattern recognizer. For 

instance, amplitude values of 197, 187, 179, 203 and 177 respectively, were recorded for 

the high dominance class for subjects S8, S12, S18, S22 and S27. Conversely, the low 

dominance class has amplitudes of 195, 173, 152, 198 and 157 respectively in the 

subjects mentioned and only subject S4 has a higher amplitude for the low dominance 

class than the high dominance class. However, the trend of a high amplitude value for 

high dominance dimension and low amplitude value for low dominance dimension is 

predominant among all the subjects and further contributes to the classification result 

obtained.   
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In emotional signal processing, including speech signal, an amplitude is otherwise 

referred to as intensity and can be computed in various ways which are a measure of the 

maximum change in a quantity that occurs when the signal is being transmitted (Glenn 

2010) as a peak amplitude is a measure of emotional intensity. It has also been 

established in the literature that as a general rule, the larger the amplitude, the greater is 

the intensity of the signal (Glenn 2010) including emotional speech and physiological 

data. In addition, an increase in emotional intensity will trigger an increase in performance 

up to an optimal point (Nasoz et al. 2004).  However, human emotions are associated 

with amplitude fluctuations and a highly significant effect of amplitude of various emotions 

does exist (Burkhardt 2005; Hammerschmidt and Jurgens 2007; Hartmut and Christian 

2008). Emotions such as fear, sadness, disgust, joy and boredom have been detected 

with high, medium and low amplitudes expressed by various subjects (Hartmut and 

Christian 2008; Lech et al. 2018). 

On the other hand, the LBPPEPS features recorded the best recognition accuracy 

of 84.92% (MSE=0.1271) using 400 neurons in the hidden layer. A decline in recognition 

performance was recorded as more neurons are added. However, both the results of 

87.34% (MSE=0.3775) and 87.03% (MSE=0.1609) posted for the dominance class by 

the HOGPEPS features as shown in Table 6.3 is better than the 84.92% (MSE=0.1271) 

of the LBPPEPS features and also agrees with the trend earlier recorded in both the 

arousal and valence classes where the HOGPEPS features also outperforms the 

LBPPEPS features. This further confirms that the HOGPEPS features contain more 

useful information and discriminatory qualities for human emotion recognition using the 

DEAP physiological signal data set with classification done along valence, arousal and 

dominance labels. 

With the Histogram of Image features, the best recognition accuracy of 84.14% 

(MSE=0.1700) was recorded by the dominance class using 500 neurons in the hidden 

layer of the RBFNN classifier. This performance, though falls short of the HOGPEPS and 

LBPPEPS features’ results under the dominance class, but it is better than the 83.98% 

(MSE=0.2089) and 82.66% (MSE=0.4792) respectively recorded by the HIMPEPS 

features of the arousal and valence classes respectively. So far, the HOGPEPS features 
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and the dominance class are the best combination that yielded the highest recognition 

accuracy for the peripheral physiological modality using the DEAP dataset. This indicates 

clearly that the level of submissiveness/in-control of participants as contained in their 

physiological signals in response to emotional feelings using the 40 emotion elicitation 

music videos is high. In addition, this indicates the ability of the participants to correctly 

quantitatively report their emotional feelings. The various best recognition accuracies 

achieved by the HOGPEPS, LBPPEPS and HIMPEPS features of the peripheral 

physiological modality with classification done along the dominance dimension are all 

better than the 65.1% recorded for the dominance dimension by Wang and Shang (2013) 

who also used the DEAP dataset.  

 

Table 6. 3: Results of the dominance dimension for the peripheral modality. 

 



158 

 

 

Figure 6.10:  Images of sampled HOG features of dominance dimension of peripheral modality data. 
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Liking is the next emotion class that was considered. As shown in Table 6.4, for 

the HOGPEPS features, the best recognition accuracy of 83.52% (MSE=0.1647) was 

achieved by the RBFNN pattern classifier with 400 neurons in the hidden layer as a 

decline in performance was noticed as more neurons are added. This performance falls 

short of the results obtained with the same features under the arousal, valence and 

dominance labels. However, with a cluster size of 150, the LBPPEPS features posted 

86.33% (MSE=0.0645) as its best recognition performance, which is more than all the 

results achieved with the respective features under the arousal, valence, dominance and 

liking class except the 87.34% (MSE=0.3775) result of the HOGPEPS features with 

classification applied along the dominance class. This might suggest that more textural 

discriminatory and useful information is inherent in this LBPPEPS feature set of the liking 

dimension for the peripheral modality.  

This LBP result of the liking dimension was further investigated to determine the 

inherent distinctiveness in the features and class among the subjects that necessitated 

the recognition’s performance. As shown in Figure 6.11 and as earlier done with the HOG 

result of the dominance dimension, the 6 subjects (S4, S8, S12, S18, S22 and S27) 

uniformly selected to post different feature values otherwise called amplitude for the like 

and dislike classes. For instance, subjects S4, S8, S12, S18 and S27 posted feature 

values of 1911, 4278, 4656, 4239 and 694 respectively for the like class. These are higher 

than the feature values of 1873, 2771, 3368, 4154 and 474 recorded respectively by the 

subjects for the dislike class, thus revealing the pattern classifier’s prowess towards 

achieving the result obtained.  The result aligns with the earlier findings in literature that 

the larger the amplitude, the greater is the intensity of the signal (Glenn 2010) including 

emotional speech and physiological data as the like class has a higher intensity than the 

dislike class. 
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Table 6. 4: Results of the liking dimension for the peripheral modality. 

 

 

A recognition accuracy of 83.20% (MSE=0.7421) as shown in Table 6.4 was the 

best result posted by the HIMPEPS feature and this was achieved with 300 neurons in 

the RBFNN hidden layer. Furthermore, all the three best results of 83.52%, 86.33% and 

83.20% achieved for the liking dimension of the peripheral physiological modality data by 

the HOGPEPS, LBPPEPS and HIMPEPS features respectively, are better than the 68.4% 

and 66.3% classification results achieved by Wang and Shang (2013) and Li et al. (2015) 

along the liking dimension using the DEAP dataset. 

The Distress Phase emotion model developed as reported in this dissertation, 

while applying the RBFNN classifier recorded a recognition accuracy of 82.03% with 450 

neurons in the hidden layer as human emotions were classified along happy, distress and 

casualty phases using the HOGPEPS features. The aim is to incorporate this emotion 

dimension model in an affective system such that emergency services can be prompted 

once a distress phase is detected in order to thwart progression into the casualty phase. 

The attained recognition accuracy of 82.03% shown in Table 6.5, competes with the 

results posted by the HOGPEPS features along the emotion representation labels of 

arousal, valence, dominance and liking since it has been proved in the literature that the 

performance of a pattern classification system is affected as the number of classes to 

classify increases (Nguyen, Nguyen and Shimazu 2007; Adetiba and Olugbara 2015).  



161 

 

 

 Figure 6.11: Images of sampled LBP features of liking dimension of peripheral modality data. 
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The Distress Phase dimension model has three classes as opposed to the two 

classes of the other four emotional dimensions of arousal, valence, dominance and liking. 

Table 6. 5: Results of the distress phase dimension for the peripheral modality. 

 

In addition, the Distress Phase emotion dimension model was developed by 

drawing from the inherent characteristics of all the other four emotion dimensions, thereby 

making the result much more meaningful and reliable for effective decision making 

regarding the emotional state of an individual and whether there is a need to prompt 

emergency assistance. For instance, the result of the arousal label alone asserting that a 

low/high arousal is detected is not sufficient to determine whether the individual is under 

threat or not and whether an emergency assistance is required. The distress phase model 

is thus able to extract knowledge from the assorted emotional dimensions and combine 

with features data to make informed decisions in an affective system. 

This Distress Phase emotion model can be described as a feature fusion approach 

because the characteristics inherent in the four emotion dimensions are combined 

together and features are extracted from the pooled data to form a composite feature set 

which serves as the input to a pattern classifier. 

As earlier done for the best results achieved by a particular feature descriptor 

across all dimensions for this modality, the image plots of the HOG features of the happy, 

distress and casualty classes of the distress phase emotion model under the peripheral 

physiological modality were also investigated. This is to examine the peculiarities in the 

features among the tripartite classes that necessitated the impressive result obtained by 

the HOG descriptor. As shown in Figure 6.12, unique patterns are noticed among the 
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classes. While a dense pattern and coarse texture are observed for the happy class, the 

distress and casualty classes have sparse patterns and soft textures and these observed 

characteristics permeate the 6 uniformly selected subjects as shown in Figure 6.12 

indicating subject-independence. In addition, different amplitudes or intensities are also 

noticed among the three classes. It was observed that the happy class has the highest 

amplitude, followed by the distress class and then the casualty class thereby enhancing 

easy classification by the pattern recognizer. For instance, among the uniformly selected 

subjects, these was observed for subjects S8, S12, S18 and S22, while for S4 and S27, 

the amplitude values for the happy class was only able to surpass those of the distress 

class while those of the casualty classes are higher. This still confirm that the classes are 

separable and can be classified accordingly. Furthermore, this trend of decreasing 

succeeding amplitude/intensity values for happy, distress and casualty in that order for 

the HOGPEPS features of the Distress Phase model is predominant among the subjects 

investigated in this study.   
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Figure 6.12: Images of sampled HOG features of distress phase model of peripheral modality data. 
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On the other hand, the best recognition result of 79.45% attained with the 

LBPPEPS features is shown in Table 6.5. This result falls below the result achieved with 

the HOGPEPS feature while the number of neurons used is 300 as the result also further 

confirms that despite its higher feature vector size as compared with the HOGPEPS, more 

useful and discriminatory information is contained in most of the HOGPEPS features. 

The HIMPEPS features on its part, as shown in Table 6.5, yielded its best 

recognition result of 77.50% with 300 neurons in its hidden layer as classification is done 

along the Distress Phase emotion dimension label. The results achieved with the Distress 

Phase label with the peripheral physiological modality data are promising and are similarly 

trended with those of the arousal, valence, dominance and liking while the HOGPEPS 

features often produced the best results among the three features utilised. 

In sum, for the peripheral physiological modality, the best recognition accuracy of 

87.34% (MSE=0.3775) was achieved with the HOGPEPS features for the dominance 

class representation. The HOGPEPS features, thus contain more useful information than 

the other features utilised for the modality while the submissiveness/control feelings 

experienced and rated by the participants in the DEAP physiological data set were more 

significant than those of the other emotional dimensions. 

The liking dimension and LBPPEPS features posted the next highest performance 

of 86.33% (MSE=0.0645). It is however, felt that apart from demonstrating the potential 

of the data transformation and feature extraction methods introduced in this study, this 

result is a subjective measure since the likeness scale rating is a measure of the taste of 

an individual about an emotion and not necessarily an emotional feeling (Koelstra et al. 

2012). The combination of the HOGPEPS feature and dominance dimension or Distress 

Phase representation model for the peripheral physiological modality data of the DEAP 

data set is therefore recommended. This is because, the dominance dimension posted 

the best recognition result for this modality while the Distress Phase model possesses 

useful information and embedded knowledge that could be deployed as an emergency 

prompt while also posting a competitive result. The results of the EEG modality are the 

next to be presented and analysed. 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Koelstra,%20S..QT.&searchWithin=p_Author_Ids:37321690300&newsearch=true
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6.2 Experimental results of EEG modality 

As stated in Chapters 5, section 5.1 and 4, section 4.1.1, the EEG physiological modality 

data in the DEAP data set has 32 channels as against the 8 channels of the peripheral 

physiological modality data hence more data points from which feature sets were built. 

The features with which experiments were performed were named, Histogram of Oriented 

Gradient Physiological Signal (HOGPS), Local Binary Pattern Physiological Signal 

(LBPPS) and Histogram of Images Physiological Signal (HIMPS) as the results’ analysis 

are done along the five emotion dimensions namely arousal, valence, dominance, liking 

and distress phase. 

First, the arousal class is considered. As shown in Table 6.6, the HOGPS features 

on which the RBFNN pattern classifier was applied yielded a recognition accuracy of 

74.77% (MSE=0.3817) with 100 neurons in the hidden layer. The number of clusters was 

also varied in a step of 50 between 50-250, as earlier done in the peripheral physiological 

modality experiments in order to determine the best result that would be posted with the 

varied range of number of clusters/neurons. 

As observed in Table 6.6, the recognition accuracy obtained increases as more 

neurons are added until the best result of 88.28% (MSE = 0.1851) was achieved with 500 

neurons. This result is better than all the results recorded by all the three different features 

along all the five emotion dimensions with the peripheral physiological modality data. This 

confirms the literature position that the EEG modality is capable of producing a better 

result than the peripheral physiological modality (Soleymani et al. 2012). This 

performance is also better than the results recently reported in the literature by other 

authors who also used the DEAP data set (Menezes et al. 2017, Nakisa et al. 2018).  

Along the arousal dimension of the EEG modality, the LBPPS features recorded its 

best recognition result of 83.20% (MSE=0.4066) with the RBFNN using 400 neurons in 

its hidden layer as shown in Table 6.6. This performance matches the 83.20% also 

reported using the LBPPEPS features for the valence dimension as well as the HIMPEPS 

features of the liking dimension for the peripheral physiological modality data  as shown 

in Tables 6.2 and 6.4 respectively. However, the result falls short of the performance of 
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88.28% (MSE=0.1851) posted by the HOGPS features indicating that despite its huge 

feature vector size of 992 elements, the LBPPS features do not contain as many useful 

and discriminatory data as available in the 320 elements feature vectors of the HOGPS 

features. 

However, the HIMPS features which represent the pixel intensity values of images 

of the EEG modality data recorded its best recognition accuracy of 93.36% (MSE=0.2974) 

as shown in Table 6.6 while the RBFNN classifier utilised 500 neurons in its hidden layer. 

This result is very remarkable and surpasses all the results reported for the peripheral 

physiological modality and that of the HOGPS and LBPPS features of the EEG modality.  

Table 6. 6: Results of the arousal dimension for the EEG modality. 

 

This is an indication that with the proposed data preprocessing, inverse Fisher 

transformation and mapping to image technique, the histogram of images is a very potent 

feature for human emotion recognition as it has also yielded good performances in other 

field of studies (Mohamad, Manaf and Chuprat 2011; Iman et al. 2017; Thamizhvani et al. 

2018). The 93.36% (MSE=0.2974) recognition result is also better than the results 

obtained in different recent research studies that have utilised the DEAP data set (Li et 

al. 2017; Yin et al. 2017; Menezes et al. 2017, Nakisa et al. 2018). 

With this result obtained, as also done with the HOGPEPS and LBPPEPS result 

of the dominance, distress phase and liking dimensions for the peripheral physiological 

modality, the images of Histogram features of the low and high arousal dimensions was 

analysed with a view to determining some of the inherent characteristics in the features 

and classes that yielded this result. As shown in Figure 6.13, for the 6 subjects uniformly 
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selected, the plots of the Histogram features for the low and high arousal dimensions 

revealed different feature values or amplitude or intensity. It was observed that for all the 

uniformly selected subjects the high arousal dimension has a higher amplitude than the 

low arousal dimension for each of the subjects thereby enhancing easy classification by 

the pattern recognizer. For instance, amplitudes values of 246, 389, 232, 252, 234 and 

460 were recorded for the high arousal class for subjects S4, S8, S12, S18, S22 and S27 

respectively while the corresponding amplitude values for the low arousal class are 226, 

296, 142, 243, 217 and 313 respectively. This trend of high amplitude for high arousal 

dimension and low amplitude for low arousal dimension is predominant among the 

subjects and also agrees with the findings reported for the HOGPEPS and LBPPEPS 

features of the dominance and liking dimensions of the peripheral modality data as shown 

in Figures 6.10 and 6.11. 
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Figure 6.13: Images of sampled Histogram features of arousal dimension of EEG modality data. 
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The results of the valence dimension of the EEG modality with the HOGPS, LBPPS 

and HIMPS features are hereby presented. As shown in Table 6.7, the RBFNN classifier 

with the HOGPS features of the EEG modality posted its best recognition result of 88.05% 

(MSE=0.3022) along the valence dimension while utilizing 500 neurons in its hidden layer. 

This result is marginally lower than the 88.28% (MSE=0.1851) recorded for this modality 

by the HOGPS features with classification done along the arousal dimension but better 

than the LBPPS features’ performance of the arousal dimension as well as all the results 

reported under the peripheral physiological modality. 

On the other hand, the RBFNN classifier applied to the LBPPS features of the EEG 

modality physiological data recorded a recognition accuracy of 75.31% (MSE=0.4917) 

with 100 neurons in the hidden layer. As more neurons are added by varying the number 

of clusters up to 250 maximum as shown in Table 6.7, the recognition accuracy attained 

by the RBFNN classifier increases till the best recognition results of 85.31% 

(MSE=0.2523) was recorded using 500 neurons. Following a similar trend as noticed in 

the EEG results earlier reported, the 85.31% (MSE=0.2523) result is lower than the 

88.05% (MSE=0.3022) achieved with the HOGPS features using the same number of 

clusters/neurons. This further confirms that the HOGPS features, though consisting of 

fewer elements as compared to the LBPPS features are more discriminating and have 

useful information as it readily outperforms the LBPPS features. 

The last features that were experimented on with the EEG modality along the 

valence dimension is the HIMPS features. A recognition accuracy of 92.81% 

(MSE=0.3502) as shown in Table 6.7 was achieved with 400 neurons in the hidden layers 

of the RBFNN classifier. An additional 100 neurons were only able to marginally improve 

the result by 0.08% to 92.89% (MSE=0.0878). This was felt not significant enough, as the 

efficiency of the network is more relevant than the marginal accuracy obtained. 

Notwithstanding, the highest result obtained with the HIMPS features is better than the 

result of the HOGPS and LBPPS features of both the arousal and valence dimensions of 

the EEG modality. In addition, it is marginally lower by 0.47% to the highest result of 

93.36% (MSE=0.2974) achieved with the HIMPS feature along the arousal class. Thus, 
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for the EEG modality, the HIMPS features yielded the best recognition result for the 

valence dimension as also noticed with the arousal dimension. 

The dominance dimension is the next to be considered as the RBFNN pattern 

classifier was applied separately on the HOGPS, LBPPS and HIMPS features of the EEG 

modality physiological data. The HOGPS features were the first to be experimented on 

by the RBFNN pattern classifier. With a feature vector size of 320 and 1280 training 

samples, the best recognition accuracy of 89.53% (MSE=0.2345) was obtained along the 

dominance dimension with the EEG modality physiological data as shown in Table 6.8. 

This was achieved with 500 neurons as a decline was noticed in the RBFNN pattern 

classifier’s performance with subsequent addition of neurons. 

However, this result is better than those obtained by the HOGPS and LBPPS 

features for the arousal and valence dimensions of the EEG modality already considered. 

It is also observed that the results posted by any of the HOG, LBP and HIM features 

extracted from the EEG modality is often better than the corresponding results obtained 

with the peripheral physiological modality as the ability of the features extracted from the 

EEG modality to outperform the features extracted from the peripheral physiological 

modality is further proven and aligns with the literature (Soleymani et al. 2012). 

 

Table 6. 7: Results of the valence dimension for the EEG modality. 
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With the LBPPS features of the EEG modality classified along the dominance 

dimension, a recognition accuracy of 87.89% (MSE=0.0430) shown in Table 6.8 and 

achieved with 400 neurons of the RBFNN pattern classifier performs less than the 

corresponding HOGPS features. Though, this result is better than the results of the 

LBPPS features for the arousal and valence classes, it still confirms that the EEG modality 

of the DEAP physiological data is more responsive to the HOG descriptor than the LBP 

descriptor. It also shows that the edges and corners of the images from which these 

features are extracted are better captured than the local patterns of the images thereby 

resulting in better HOGPS features’ performances than the LBPPS features. 

While still classifying along the dominance scale, the HIMPS features of the EEG 

modality when experimented with the RBFNN pattern classifier achieved its best 

recognition accuracy of 93.36% (MSE=0.2623) using 300 neurons in its hidden layer as 

indicated in Table 6.8. This result is better than the 92.89% (MSE=0.0878) recorded by 

the same features when classified along the valence dimension while it also matches the 

93.36% (MSE=0.2974) obtained with the arousal dimension. Though the arousal 

dimension result was achieved while using 500 neurons, the result of the HIMS features 

with classification done along dominance dimension is preferred as it was achieved with 

just 300 neurons. 

Table 6. 8: Results of the dominance dimension for the EEG modality.   

     

This is also because; the cost, efficiency and simplicity of the RBF neural network in a 

human recognition system, especially for real-time deployment should often be 

considered above the accuracy. Again, the result of the HIMPS features is the best among 
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the three features utilised for the dominance class and it aligns with the trend earlier 

reported with the EEG modality physiological signals where the HIMPS, HOGPS and 

LBPPS features are listed in order of their performances attained. 

As done for the arousal dimension in Figure 6.13, the high performance of the 

Histogram features of the EEG modality for the dominance dimension was also 

investigated. The Histogram features of the 6 subjects uniformly selected for the low and 

high dominance dimension were examined as shown in Figure 6.14 to determine if there 

are similar properties inherent in the features and classes among these same uniformly 

selected subjects, which could indicate a subject-independent result as also shown in the 

arousal dimension of the EEG modality. 

The amplitude of the high dominance dimension for subject S12 is 119 while the 

low dominance dimension is 96. Similarly, subjects S18, S22 and S27 have amplitudes 

of 87, 84 and 107 respectively, for the high dominance dimension with 77, 47 and 88 

respectively for the low dominance dimension. With marginal values, only subjects S8 

and S4 did not align with this observation. However, the observed trend is predominant 

across the subjects and the same as also noticed in the Histogram features of arousal 

dimension signals of the EEG modality as the large amplitudes are associated with high 

dominance dimension and low amplitude values are attached to the low dominance 

dimension. The few signals that do not follow this trend may be due to some emotions 

and emotional responses of some subjects which may cover any amplitude range 

including high, medium and low (Lech et al. 2018) but these subjects are few out of the 

32 subjects considered in the DEAP data set that is utilised in this study. 
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Figure 6.14: Images of sampled Histogram features of dominance dimension of EEG modality data. 
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In another vein, the liking dimension of emotion is utilised with the HOGPS, LBPPS 

and HIMPS features extracted from the EEG modality data set and RBFNN pattern 

classifier applied for classification. According to the various results shown in Table 6.9, 

the HOGPS recorded its highest recognition accuracy of 88.83% (MSE=0.1101) with 400 

neurons in the hidden layer of the RBFNN classifier. This result is better than all the 

results posted by the LBPPS for the arousal, valence and dominance dimensions as well 

as marginally better than the HOGPS results of the arousal and valence dimensions.  

However, the best recognition result of 85.23% (MSE=0.1002) was achieved with 

the LBPPS features using 400 neurons and with this performance, the HOGPS features 

are more responsive to and yielded better performance with the RBFNN algorithm than 

the LBPPS features with the DEAP data set and data transformation method proposed. 

As the experiment was extended to the HIMPS features and classification done 

along the liking dimension, a recognition accuracy of 86.17% (MSE=0.4480) was 

recorded with 100 neurons. The recognition performance increases to its best result of 

93.13% (MSE=0.1136) which was achieved using 300 neurons after which performance 

declines with further neuron addition. Out of the HIMPS features’ results of the EEG 

modality data for the four emotional dimensions considered so far, this HIMPS features’ 

result is only marginally better than the 92.89% (MSE=0.0878) obtained with the valence 

dimension.  The fact is also reiterated that the results obtained along the liking dimensions 

are not necessarily emotional feelings, but subjective ratings of participants indicating 

their tastes of like/dislike of the various emotions/elicitation materials. Thus, the liking 

dimension ratings aside from assisting in the tagging of elicitation materials for human 

emotion recognition can also be used for predictive analytics, including addiction 

management, suicidal thoughts, crime control as well as marketing, advertisement and 

sales of materials with emotional contents.  

To conclude the experimental results of the HOGPS, LBPPS and HIMPS features 

with the EEG modality physiological data, the results obtained by the designed RBFNN 

with classification done along the Distress Phase emotion dimension scheme are hereby 

presented. 
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Table 6. 9: Results of the liking dimension for the EEG modality. 

 

The Distress Phase emotion scheme was modelled as earlier mentioned by 

utilising the characteristics extracted from the four emotional dimensions, which are 

arousal, valence, dominance and liking while mapping along three classes, which are 

happy, distress and casualty. The results obtained using the various features are shown 

in Table 6.10. 

The HOGPS features were the first to be experimented on with the EEG modality, 

as the RBFNN classifier was applied to classify the features along the Distress Phase 

model dimension. The recognition accuracy of 76.09% (MSE=0.6922) which was 

achieved using 50 clusters which represents 150 neurons here since three classes are 

involved in this dimension is shown in Table 6.10. With an increase in the number of 

neurons up to a maximum of 450 neurons, the best recognition accuracy of 84.14% 

(MSE=0.6721) was achieved using 300 neurons. This is obviously the lowest results 

recorded by the HOGPS with the EEG modality. However, as earlier mentioned, the 

performance of a pattern classification system is affected with higher number of classes, 

but this performance is still better than most of the results posted under the peripheral 

physiological modality across the three feature sets and emotion dimensions. This result 

is also more meaningful as the characteristics of all the other four emotion dimensions 

have been incorporated in an effective decision making in a distress phase situation, 

which involve an emergency assistance to be sought and responded to. 

The LBPPS features also yielded its best recognition result of 81.25% 

(MSE=0.6725) as shown in Table 6.10 under the Distress Phase dimension with the 
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RBFNN using 300 neurons in the hidden layer. This result also aligns with the trend earlier 

observed in our various experiments that the LBPPS results often fall below those of the 

HOGPS indicating its less responsiveness to the RBFNN algorithm. 

Table 6. 10: Results of the distress phase dimension for the EEG modality. 

 

The HIMPS features of the EEG modality data on the other hand recorded its best 

recognition result of 91.41% (MSE=0.5248) as shown in Table 6.10, using 300 neurons 

in the hidden layer of the RBFNN as its performance declines when more neurons are 

added. This result outperforms those of the HOGPS and LBPPS features under the 

Distress Phase dimension of the EEG modality, but falls below the results posted by the 

same features across each of the other four emotion dimensions. 

The images of the Histogram features of the three classes catalogued under the 

Distress Phase model, which are happy, distress and casualty for sampled uniformly 

selected subjects, are presented in Figure 6.15 to examine some inherent characteristics 

in these features among the subjects and the classes necessitating the results obtained. 

As observed with the HOG features of the peripheral physiological modality of the 

Distress Phase model, it was also observed in Figure 6.15 that different amplitudes or 

intensities are also noticed among the three classes. The happy class also has the highest 

amplitude, followed by the distress class and then the casualty class, thus enhancing 

easy classification by the pattern recognizer. Among the uniformly selected subjects, 

these were observed for subjects S4, S12 and S22, while for S8, S18 and S27, the 

amplitude values of the distress class is the lowest among the three. This confirms that 

the classes are separable and can be classified accordingly.  
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Figure 6.15: Images of sampled Histogram features of distress phase model of EEG modality data. 
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In summary, for all the EEG modality experiments conducted using the three 

features across the five different emotion dimensions, the highest recognition accuracy 

of 93.36% was recorded by the HIMPS features for both the arousal and dominance 

dimensions. However, the results of the dominance dimension are preferred having been 

attained with a lower number of neurons of 300 as against the 500 neurons of the arousal 

dimension. The HOGPS and LBPPS features also posted their best results of 89.53% 

(MSE=0.2345) and 87.89% (MSE=0.0430) respectively with the dominance dimension. 

Therefore, because they yielded the highest recognition results, for the EEG modality, the 

HIMPS features with classification done along the dominance and the distress phase 

model dimensions are recommended followed by the HOGPS and the LBPPS features in 

this order with respect to the high performances obtained. 

 

6.3 Experimental results of fused modality 

The fused modality is the last experiment conducted using the HOGHES, LBPHES and 

the HIMHES features extracted by the HOG, LBP and Histogram of Images descriptors 

when applied to the fused modality physiological data of the DEAP dataset. It has been 

shown in the literature that modality fusion is capable of yielding an improved 

classification result in a human emotion recognition system (Koelstra et al. 2012; 

Soleymani et al. 2012). This is because complementary characteristics in the different 

modalities are exploited with a view to detecting a unique pattern from which features are 

extracted with the primary aim of obtaining a higher performance.  

The RBFNN pattern classifier using the HOGHES features for classification along 

the arousal class achieved a recognition accuracy of 75.47% (MSE=0.7774) while using 

100 neurons in its hidden layer as shown in Table 6.11. With more neurons added, the 

recognition accuracy increases until the highest result of 87.11% (MSE=0.2134) was 

attained with 400 neurons in the hidden layer. The corresponding results of 85.16% (MSE 

=0.0398) in Table 6.1 and 88.28% (MSE=0.1851) in Table 6.6 achieved with the HOG 

features of the peripheral physiological and EEG modality data respectively under the 

arousal dimension are compared. This result (87.11%) is only better than the 85.16% 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Koelstra,%20S..QT.&searchWithin=p_Author_Ids:37321690300&newsearch=true
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(MSE =0.0398) accuracy of the peripheral physiological modality and falls short of the 

88.28% accuracy (MSE=0.1851) of the EEG modality. 

This result therefore implies that the fused modality did not always lead to a higher 

performance. This might be traced to the somewhat lower performance of the peripheral 

physiological data which negatively affect the 87.11% (MSE=0.2134) result that was 

obtained. However, this trend was also shown in the liking dimension F1-score result 

reported by Koelstra et al. (2012). According to the author, a fusion of EEG, peripheral 

and Multimedia Content Analysis (MCA) features yielded an F1-score of 61.8%, which is 

more than the 50.2% and 53.8% attained by the EEG and peripheral modalities 

respectively but falls short of the 63.4% obtained with the MCA features. In addition, the 

fused peripheral and MCA modalities only yielded an F1-score of 62.2%, which is also 

less than the 63.4% obtained by only the MCA modality. 

Furthermore, in the same study, with an F1-score of 58.3%, 53.3% and 61.8% 

recorded in the EEG, peripheral and MCA modalities respectively obtained with 

classification done along arousal dimension, a marginally low 61.6% F1-score was 

obtained when the three modalities were fused. These results are lower than the best 

single modality’s results recorded as noted under the arousal and liking dimensions, thus 

agreeing with the findings in this fused modality experiment using the HOGHES features 

as well as literature position that classification results might not always necessarily 

improve with fused modalities. Notwithstanding this fact, as also shown in the same study 

(Koelstra et al. 2012), the F1-score posted by the fused best two modalities for the arousal 

and valence dimensions respectively, are better than the result of any of the single 

modality of these dimensions. 

The LBPHES is the next features of the fused modality data that was experimented 

on by applying the RBFNN classifier for classification along the arousal dimension 

scheme. The best recognition accuracy of 81.80% (MSE=0.1968) obtained using 300 

neurons in the hidden layer is shown in Table 6.11. This result is lesser than the 83.20% 

(MSE=0.4066) and 84.92% (MSE=0.4973) achieved respectively, with the LBP features 

extracted from the EEG and peripheral single modalities as shown in Tables 6.2 and 6.7. 

Hence the fused modality result achieved does not indicate its superiority to those of the 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Koelstra,%20S..QT.&searchWithin=p_Author_Ids:37321690300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Koelstra,%20S..QT.&searchWithin=p_Author_Ids:37321690300&newsearch=true
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single modalities and it is also more computationally expensive as it contains a huge 

feature vector size of 1440 elements. 

 

Table 6. 11: Results of the arousal dimension for the fused modality. 

 

The HIMHES result of the hand recorded its best recognition result of 88.36% 

(MSE=0.3363) with 500 neurons and aligns with the trend earlier noticed in the HOGHES 

and LBPHES features wherein the fused modality data do not yield a better result than 

all of the results of the single modalities. 

The valence dimension is the next scheme that was considered for the fused 

modality data. The RBFNN classifier was applied to the HOGHES features and 90.08% 

(MSE=0.4309) was obtained as the best result as shown in Table 6.12. The number of 

neurons utilised in the hidden layer to achieve this best result was 500. This result is 

better than the 88.05% (MSE=0.3022) and 85.94% (MSE=0.4246) obtained by the 

corresponding HOG features of the EEG and peripheral physiological modality data 

respectively as shown in Tables 6.7 and 6.2. This clearly shows that the HOGHES 

features with classification done along the valence dimension confirms and aligns with 

the fact in the literature that modality fusion can indeed improve performance of a pattern 

classifier as the feature set is enriched with more useful and discriminatory information. 

The image plots of the HOG features for the high and low valence classes of some 

uniformly sampled subjects are presented in Figure 6.16 to examine the characteristics 

among these subjects and classes that resulted in this impressive performance of the 

HOGHES features. A 4-window signal shape representing HOG features of the fused 
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modality data is common among the uniformly selected subjects, suggesting a subject-

independent behaviour as the amplitude or feature values between the high and low 

valence classes varies. The high amplitude figures are mostly associated with 

high/positive valence class while corresponding lower amplitude are predominantly 

associated with the low/negative valence class thus enhancing the classification task. For 

instance, subjects S18, S22 and S27 have 221, 218 and 225 respectively as amplitude 

values for the high valence class while 213, 212 and 217 are amplitude values for the low 

valence class thus agreeing with the earlier findings. 

However, a best recognition result of 80.39% (MSE=0.2964) was achieved by the 

RBFNN with the LBPHES features with 400 neurons as shown in Table 6.12. This 

performance is lower than the 85.31% (MSE=0.2523) and 83.20% (MSE=0.3057) results 

respectively obtained with the corresponding LBP features of the EEG and peripheral 

modality data as shown in Tables 6.7 and 6.2. This similar trend is also recorded by the 

Table 6. 12: Results of the valence dimension for the fused modality.   

        

 

HIMHES features where its best recognition accuracy of 88.36% (MSE=0.3970) shown 

in Table 6.12 is only able to surpass the 82.66% (MSE=0.4792) of the peripheral modality 

data, but falls short of the 92.89% (MSE=0.0878) attained by the EEG modality data. 

Thus, it is only with the HOGHES features of the valence dimension that the modality 

fusion approach improved the classification result obtained by the RBFNN pattern 

classifier. 
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Figure 6.16: Images of sampled HOG features of valence dimension of fused modality data. 
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As observed in Table 6.13, the dominance emotion dimension, using the HOGHES 

features of the fused modality data by the RBFNN yielded the best recognition accuracy 

of 88.36% (MSE=0.1396) using 400 neurons in the hidden layer. The 89.53% accuracy 

(MSE=0.2345) in Table 6.8 and 87.34% accuracy (MSE=0.3775) in Table 6.3 as best 

results obtained with the EEG and peripheral physiological modality respectively, with 500 

neurons each indicates that the fused modality features performance cannot be a 

replacement to the single EEG modality. This trend is also demonstrated by the LBPHES 

features’ performance wherein the best recognition accuracy of 81.33% (MSE=0.2092) 

shown in Table 6.13 achieved with 200 neurons is below the 87.89% (MSE=0.0430) and 

84.92% (MSE=0.1271) achieved with the corresponding LBP features of the EEG and 

peripheral modalities. In the same vein, the HIMHES features with 89.97% best 

recognition accuracy and MSE of 0.1108 as shown in Table 6.13, was only able to 

surpass the 84.14% recognition accuracy and MSE of 0.1700 as shown in Table 6.3 of 

the peripheral modality. However, it falls short of the 93.36% (MSE=0.2623) of the EEG 

modality as shown in Table 6.8 and; thus cannot replace this single modality performance 

beside having more feature vector elements capable of increasing computation costs.   

In summary, for the dominance dimension, the best recognition performance of 

89.97% (MSE=0.1108) recorded with the fused modality data was achieved with the 

HIMHES features and as earlier explained, this result is not better than its corresponding 

EEG single modality result and cannot be recommended as a replacement. 

Table 6. 13: Results of the dominance dimension for the fused modality. 
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The fused modality data from which the HOGHES, LBPHES and HIMHES features 

were extracted and classification done along the liking dimension is the next scheme that 

is considered and the various results are shown in Table 6.14. The HOGHES features 

has its best recognition result of 88.59% (MSE=0.3303) which was attained by RBFNN 

using 400 neurons in its hidden layer. This performance was compared with the 

corresponding HOG features results of the EEG and peripheral physiological single 

modalities that recorded 88.83% (MSE=0.1101) and 83.52% (MSE=0.1647) respectively 

as shown in Tables 6.9 and 6.4. However, only the peripheral physiological modality was 

surpassed by the fused modality result, while it falls marginally below the EEG modality 

result by 0.24%, hence not a replacement to the single modality result. 

Also, with the LBPHES features, a similar trend is noticed where the best 

recognition result of 81.41% (MSE=0.0683) as shown in Table 6.14, with the fused 

modality data cannot match the 85.23% (MSE=0.1002) and 86.33% accuracy 

(MSE=0.0645) of the EEG and peripheral physiological single modalities shown in Tables 

6.9 and 6.4. In addition, the HIMHES features has its best result of 89.38% 

(MSE=0.0826). This is below the highest performance of 93.13% (MSE=0.1136) of the 

EEG modality as shown in Table 6.9 and, only better than the 83.20% of the peripheral 

modality as shown in Table 6.4, which aligns with the earlier position that the fused 

modality scheme cannot always replace the single modalities scheme in terms of 

classification performance. 

Table 6. 14: Results of the liking dimension for the fused modality. 
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The developed and proposed Distress Phase emotion model reported in this 

dissertation was also used for experimentations with the fused modality data. The four 

emotion dimensions, including arousal, valance, dominance and liking were utilised in 

developing the model. The HOGHES representing the HOG features extracted from the 

fused modality data with the RBFNN classifier applied while classification was done along 

the Distress Phase dimension consisting the tripartite happy, distress and casualty 

phases produced 81.41% (MSE=0.6991) as its best recognition accuracy as observed in 

Table 6.15. This was achieved with 450 neurons in the hidden layer. As compared with 

the results of the corresponding HOG features of the single modalities of EEG and 

peripheral physiological signals shown in Tables 6.10 and 6.5 respectively, this 

performance is lower than both the 82.03% (MSE=0.4542) of the peripheral modality and 

the 84.14% (MSE=0.6721) of the EEG modality. With this result, the fused modality 

performance cannot replace those of the single modalities. 

In addition, the RBFNN classifier when applied to the LBPHES features with 300 

neurons in the hidden layer recorded its best result of 78.98% (MSE=0.8827) as shown 

in Table 6.15 which is below the 81.41% (MSE=0.6991) result achieved with the 

HOGHES features of the same Distress Phase emotion dimension. This result followed 

the already established trend in the experimental results reported in this dissertation 

wherein the performance of the LBP features falls below those of the corresponding HOG 

features, thus indicating the stronger discriminatory capability of the HOG descriptor with 

respect to the method employed. Also, this 78.98% (MSE=0.8827) result does not match 

the 81.25% (MSE=0.4583) and 79.45% (MSE=0.6093) classification results of the EEG 

and peripheral single modalities respectively, which was achieved with the same number 

of hidden neurons as the results of the single modalities shown in Tables 6.10 and 6.5 

are therefore recommended over the fused modality’s result.  
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Table 6. 15: Results of the distress phase dimension for the fused modality. 

 

The last experiment to be conducted in this study as well as with the fused modality 

data utilised the HIMHES features on which the RBFNN classifier was applied and 

classification was done along the happy, distress and casualty phases as modeled in the 

Distress Phase dimension. The best recognition accuracy of 86.02% (MSE=0.3796) was 

recorded with 300 neurons utilised in the hidden layer as indicated in Table 6.15. This 

result is only better than the corresponding HIMS features results of 77.50% 

(MSE=0.6411) of the peripheral modality in Table 6.5 but falls below the 91.41% 

(MSE=0.5248) of the EEG modality in Table 6.10. This further affirms the literature 

position and the data processing, feature extraction, emotion modelling as well as 

classification methods employed, that the fused modality does not repeatedly outperform 

the single modality results. 

It was also noticed that the best human emotion recognition result of 86.02% 

(MSE=0.3796) with the Distress Phase dimension and fused modality data was attained 

by the HIMHES features. The overall best result of 90.08% (MSE=0.4309) for the fused 

modality data in this study was achieved with the valence dimension and the HOGHES 

features as shown in Table 6.12 as this combination is recommended for apparent 

inclusion in an emotion recognition system for the fused modality data. However, the 

combination lacks the knowledge representation and multidimensional characteristics 

embedded in the Distress Phase dimension which becomes handy and relevant for 

decision making in a distress phase situation that requires prompting of emergency 

services. Therefore, the HIMHES features with the best classification result of 86.02% 
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(MSE=0.3796) and Distress Phase dimension are recommended for the distress phase 

dimension using fused modality data. 

The trend observed with the HIM and HOG features of the EEG and peripheral 

physiological modalities respectively, for the Distress Phase model was also repeated for 

the HIM features of the fused modality using the Distress Phase model data.  As shown 

in Figure 6.17, different amplitudes or intensities are also noticed among the three 

classes. The happy class also has the highest amplitude, followed by the distress class 

and then the casualty class, thus enhancing easy classification by the pattern recognizer 

among the three. This confirms that the classes are separable and can be classified 

accordingly.  
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Figure 6.17: Sample histogram features of distress phase dimension using fused modality. 
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The summary of the best results obtained under each modality and the 

corresponding features is shown in Table 6.16. In the Table, the arousal class recorded 

85.16% (MSE=0.0398)  as its best recognition accuracy for the peripheral physiological 

modality using the HOG features while the EEG and the fused modalities recorded their 

best recognition results of 93.36% (MSE=0.2974) and 88.36% (MSE=0.3363) 

respectively using the HIM features. The peripheral physiological data has fewer data 

channels, hence fewer feature vector elements as compared with the other modalities. 

Thus, based on the results obtained, the peripheral physiological data are easily detected 

by texture, local appearance and shape of their mapped images as provided by the LBP 

and HOG feature descriptors. However, for the arousal class and across all the modalities 

considered, the HIM features and EEG modality produced the best result of 93.36% 

(MSE=0.2974) and this combination is hereby recommended. 

As shown in Table 6.16 for the valence class and across the three modalities, the 

best recognition results of 92.89% (MSE=0.0878) were achieved by the EEG modality 

using the HIM features. The fused modality’s result of 90.08% (MSE=0.4309) and 85.94% 

(MSE=0.4246) of the peripheral modality were achieved with the HOG features thus 

confirming only their unique shape and local appearances. Also, because of its superior 

performance, a combination of the EEG modality and the HIM features is recommended 

for the valence class in human emotion recognition using the DEAP dataset.  

The dominance class recorded as its best results, the recognition accuracies of 

89.77% (MSE=0.1183) and 87.34% (MSE=0.3775) for the fused and peripheral 

modalities respectively with the HIM and HOG features. Following the trend noticed in the 

arousal and valence classes, the best result of 93.36% (MSE=0.2623) was recorded by 

the EEG modality using the HIM features and the combination is also recommended. 

The summary of the best results obtained under each modality and the 

corresponding features while using the method proposed in this research work is 

presented in Table 6.16 while the results obtained by other authors who have used the 

same DEAP dataset that was utilised for experimentations in this study including the 

various methods applied by them are shown in Table 6.17 to enable an easy comparison 

of results obtained. 
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In summary, as contained in Table 6.16 and graphically represented in Figure 6.18, 

even for the liking class and distress phase emotion model, the best results of 93.13 

(MSE=0.8827) and 91.41% (MSE=0.5248) respectively were recorded by the EEG 

modality using the HIM features. The overall best recognition result is 93.36% which was 

obtained by arousal and dominance classes, but the dominance class has a lower mean 

square error of 0.2623 as well as the lower number of neurons utilised in the hidden layer. 

Table 6. 16: Summary of experimental results across dimensions, modalities and features. 

 Modalities 
Peripheral EEG Fused 

Emotional 
Dimension 

ACC 
(%) 

Feature ACC (%) Feature ACC (%) Feature 

Arousal 85.16 HOG 93.36 HIM 88.36 HIM 

Valence 85.94 HOG 92.89 HIM 90.08 HOG 

Dominance 87.34 HOG 93.36 HIM 89.77 HIM 

Liking 86.33 LBP 93.13 HIM 89.38 HIM 

Distress Phase 82.03 HOG 91.41 HIM 86.02 HIM 

  

 

Figure 6.18: Plots of experimental results summary across dimensions, modalities and features. 

However, because the aim of this study is to detect and track individuals in a 

distress phase situation, the distress phase emotion model and HIM feature of the EEG 

and fused modalities; as well as the HOG features of the peripheral modality are hereby 
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recommended for incorporation in an emotion recognition module of an affective system. 

Bearing in mind the cognizance that, for instance with the EEG modality, the best 

recognition accuracy of 91.41% (MSE=0.5248) was achieved by the distress phase 

emotion model as shown in Figure 6.18 and Table 6.10. This result competes with the 

results of other classes within the same and across modalities despite having more 

number of classes and containing the characteristics of all the other four classes 

combined. 

The various best results obtained by each of the three modalities and features are 

state of the art and better than the results obtained in recent research studies (Wang and 

Shang 2013; Li et al. 2015; Zhuang et al. 2017; Li et al. 2017; Yin et al. 2017; Alhagry, 

Fahmy and El-khoribi 2017; Menezes et al. 2017; Nakisa et al. 2018) including those 

reported by other authors as shown in Table 6.17 that utilised the DEAP dataset. These 

results obtained in the current research work conducted and reported in this dissertation 

are also better than those obtained by (Li et al. 2015; Li et al. 2017; Yin et al. 2017; 

Alhagry, Fahmy and El-khoribi 2017) despite the trending deep learning approaches 

applied in those studies, thereby making the developed distress phase model very novel 

with state of the art results obtained for human emotion recognition tasks. 
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Table 6. 17: Experimental results of other studies across dimensions, modalities and features. 

Method Arousal 

(%) 

Valence 

(%) 

Dominance 

(%) 

Liking 

(%) 

Features/Classifier/ 

Modality 

Koelstra et 

al. (2012) 

Peripherals 57.0 62.7 - 59.1 Statistical time- 

frequency domain 

features, power 

spectral features, 

difference between 

spectral power/Naïve 

Bayes 

EEG 62.0 57.6 - 55.4 

MCA 65.1 61.8 - 67.7 

Chung and 

Yoon (2012) 

2 classes 66.4 66.6 - - Power spectral 

density/ Bayes 

classifier/EEG 
3 classes 53.4 51.0 - - 

Rozgic et al. (2013)  69.1 76.9 73.9 75.3 Spectral power 

differences between 

symmetric channel 

pairs/RBF-SVM/EEG 

Wang and Shang (2013) 60.9 51.2 65.1 68.4 DBN generated 

features/DBNs/EOG+

EMG 

Chen et al. (2015) 76.2±6.8 73.6±7.9 - - EEG connectivity 

features/SVM/EEG 

Bahari and Janghorbani 

(2013) 

64.6±10.7 58.1±9.3 - 67.42 Recurrence 

Quantification/KNN/

EEG 

Naser and Saha (2013) 66.2 

  

64.3 68.9 70.2 Sub-band features of 

real and imaginary 

trees/SVM/EEG 

Zhuang et al. ( 2014) 68.4±12.1 76.9±6.4 73.9±11.1 75.3±10.6 Spectral power and 

spectral power 

differences/SVM/EEG 
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Li et al. (2015)  64.3 58.4 65.8 66.9 DBN features/Deep 

Belief Network/EEG 

Liu, Zheng and Lu (2016) 80.5 85.2 84.9 82.4 Bimodal Deep Auto 

Encoder (BDAE) high 

network RBM 

features/multimodal 

deep learning/EEG 

Menezes et 

al. (2017) 

2 classes 69.2 88.4 - - Bandwaves spectral 

power 

density/SVM/EEG 
3 classes 59.5 55.9 - - 

Chen et al. (2017) 77.57 43.57 - - Statistical and power 

spectral features/ 

Three-stage 

decision/EEG+Periph

erals 

Zhuang et al. (2017) 72.0±7.8 69.1±7.0 - - Intrinsic Mode 

Functions by 

Empirical Mode 

Decomposition/ 

SVM/EEG  

      

Arnau‐

González, 

Arevalillo‐

Herráez and 

Ramzan 

(2017) 

Naïve Bayes 65.6 68.0 - - Relative energy, 

spectral power and 

mutual 

information/Naïve 

Bayes, SVM/EEG 

SVM-RBF 67.7 69.6 - - 

Tang et al. (2017) 83.23±2.6 83.82±5.0 - - Differential 

Entropy/Bimodal 

LSTM/EEG+Periphera

ls 
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Yin et al. (2017) 77.19 76.17 - - 425 salient 

features/MESAE/EEG

+Peripherals 

Qiu, Li and Hu (2018) 84.79 86.45 - - Gated recurrent units 

features/ Correlated 

Attention Networks/ 

EEG + eye 

movements 

Choi and Kim 2018) 

 

74.65 78.0 - - Automatic feature 

extraction and 

selection/ LSTM 

model based Deep 

Learning 

/EEG+Peripherals 

Liu et al. (2018) 74.3±8.4 77.2±8.6 - - 14 different features 

extracted /Random 

Forest (EEG) 

72.4±8.8 76.1±7.4 - - 14 different features 

extracted /SVM (EEG) 
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CHAPTER SEVEN  

Summary, Conclusion and Future Works 

The safety of lives and properties are germane for national development and peaceful co-

existence. Human beings, who are the major operators of all the aspects of living, 

including health, sport, economy, education, transportation and agriculture among others, 

need to feel safe or secured to perform these basic functions. However, human beings 

are being faced with several threats to lives and properties through 

abductions/kidnappings, human trafficking, terrorism, road accidents, fire outbreaks, 

floods and various other emergency situations. 

To enhance safety, remotely monitoring an individual through any or a combination 

of his emotional state, human activity and location information could prove vital and useful 

as a threat to safety can easily be identified and curtailed. This study specifically focused 

on human emotion recognition tracking of an individual with a view to detecting negative 

emotions resulting from potential threat and capable of leading to imminent danger. A 

succinct architectural description of how human emotion can be combined with human 

activity and location information to thwart the escalation of the imminent dangers that 

characterizes a distress phase situation model was also presented. 

 

7.1 Summary 

A thorough literature review of human emotion and its detection was done to discover the 

different emotion types, representation models, dimensions, elicitation in a laboratory 

environment, sensors for harvesting physiological data, emotion application domains as 

well as emotion recognition techniques among others. Several experiments utilising the 

peripheral physiological, EEG and fused (EEG+peripheral physiological) modality data 

were performed, using the HOG, LBP and HIM features extracted from the DEAP 

physiological signals dataset. The RBFNN pattern classifier was applied to these features 

and classification done along the arousal, valence, dominance, liking and distress phase 
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model dimensions with a view to comparing methods and discovering the combination 

that gave the best result in recognizing human emotion using the DEAP dataset. 

The automatic recognition of human emotion remains very challenging in affective 

computing, as physiological data are continuously being researched to enhance emotion 

recognition accuracies. Different datasets and methods are continuously applied by 

various researchers hence the varied results that are obtained.  

In the experiments conducted on the peripheral physiological data of the DEAP data 

set reported in this thesis, the HOG, LBP and the HIM feature extraction techniques of 

the digital image processing domain were leveraged on to extract discriminating features 

of the peripheral physiological data consisting of electrooculogram (EOG), 

electromyogram (EMG), GSR, respiration amplitude, skin temperature, BVP and body 

temperature. The Gaussian RBFNN pattern classifier was applied to the extracted 

features and results were compared as the intrinsic ability of the neural network model to 

handle the non-linearity in data to achieve promising results was explored.  

With the peripheral physiological modality data, the best recognition result of 

87.34% was achieved with the dominance dimension using the HOG features. This 

combination is recommended in an affective system if just a single emotional dimension 

is desired since it gave the best result among the arousal, valence, liking and distress 

phase dimensions. However, under this modality, for the emotion tracking of individuals 

with a view to prompting an emergency services as it has been designed in this study, 

the 82.03% result achieved by the emotion model named the distress phase dimension 

is recommended since it was built from the other four dimensions and bears their 

characteristics. With the results obtained here, there is a strong prospect of its adoption 

of an automated emotion recognition paradigm in application domains. 

Similarly, in the various experiments conducted with the EEG modality, both the 

arousal and dominance dimensions recorded 93.36% performance accuracy achieved 

with the HIM features as their best recognition results but the dominance dimension has 

a lower MSE value. Nevertheless, for the reasons earlier highlighted under the peripheral 
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physiological modality, the 91.41% accuracy performance with the HIM features achieved 

by the distress phase dimension for the purpose of tracking an individual in a distress 

phase situation using EEG modality is hereby recommended.  

Furthermore, the fused modality data recorded 90.08% along the valence dimension 

with the HOG features as its best result across the four emotion dimensions while 86.02% 

highest result was obtained by the distress phase dimension with the HIM features and 

therefore recommended for the fused modality physiological data. 

 However, for the purpose of emotion tracking of an individual in a distress phase 

situation, as shown in the results of the various experiments conducted, across all 

modalities and features, the best result of 91.41% accuracy achieved with the HIM 

features along the distress phase dimension is recommended above the 93.36% of the 

dominance dimension.  

In order to analyse the architecture, experimentations and results obtained with 

respect to the aims and objectives of this study, the research questions of this study are 

re-stated below: 

i. What physiological properties are suitable for identifying an individual’s 

emotional state? 

ii. How can existing methods be used to develop an intelligent system to 

identify an individual’s emotional state? 

iii. How can detection of and matching between body signals and an 

individual’s emotional state be enhanced? 

iv. How reliable is an automated system of identification of an individual’s 

emotional state using data from an existing database? 

The research objectives are also re-stated below, including how they have been 

achieved and how the research questions were accordingly addressed and explained. 

The first research objective, as stated in section 1.3(i) was “to discover a set of 

physiological properties that are suitable for identifying an individual’s emotional state”. 
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This objective was addressed by an extensive literature survey. Links between 

some physiological signals and emotions were established and highlighted in Chapter 2 

of this dissertation. Skin temperature, ECG, EEG, EMG, EOG, Heart Rate, BVP, 

respiration, GSR were reported in literature to change with different emotional states 

(Soleymani et al. 2012; Karthik, Varghese and Chaitanya 2013; Schneegaas et al. 2013; 

Solovey et al. 2014; Salazar-Lopez et al. 2015; De Witte et al. 2016). This motivated this 

current study to choose and utilise most of these physiological signals, as contained in 

the DEAP data set for the experimentations. The state-of-the-art results that were 

obtained using these identified physiological properties, from which features were 

consequently extracted surpassed the results in recent studies reported in (Wang and 

Shang 2013; Li et al. 2015; Zhuang et al. 2017; Li et al. 2017; Yin et al. 2017; Alhagry, 

Fahmy and El-khoribi 2017; Menezes et al. 2017; Nakisa et al. 2018) that utilised the 

DEAP dataset. These results are also better than what was reported by (Li et al. 2015; Li 

et al. 2017; Yin et al. 2017; Alhagry, Fahmy and El-khoribi 2017) despite the trending 

deep learning approaches applied in those studies thus affirming the assertion of the 

suitability of these physiological properties in identifying an individual’s emotional state. 

Subsequently, “to explore existing methods that could help to develop an intelligent 

system to identify an individual’s emotional state” was the second objectives stated for 

this research. This objective was realised by extracting various features including the 

HOG, LBP and HIM from a standard and publicly available physiological signals emotion 

datasets, namely the Database for Emotion Analysis using Physiological Signals (DEAP).  

In comparison with other methods, unique data preprocessing steps were 

developed in this study based on the tanh normalizer and a simplified form of inverse 

Fisher transformation was consequently applied in the pre-processed data. This is toward 

the extraction of local features with subsequent dimension reduction and feature selection 

using the PCA algorithm, which yielded discriminatory features that were eventually 

concatenated to give an improved result. The performances of the RBF-ANN pattern 

recognition algorithm with varied configurations applied to different extracted features of 

HOG, LBP and HIM along the five emotional dimensions of arousal, valence, dominance, 

liking and the developed distress phase emotion model was rigorously compared. The 
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best results along the various dimensions for each modality were noted while the best 

results of the distress phase emotion model, which was achieved with the HIMS features, 

were recommended for human emotion recognition for tracking of individual in a distress 

phase situation. 

The study’s third research objective, which was “to enhance detection of and 

matching between body signals and an individual’s emotional state”, was addressed by 

this section. The proposed architecture in chapter 3 postulated the capability of harvesting 

human physiological signals, using wearable sensors with a view to utilizing these signals 

for emotion recognition. Emotion detection is enhanced through appropriate and quality 

data collection, feature extraction procedures and classification algorithms. The 

incorporation of human activity recognition systems, involving the collection of human 

activity data using the accelerometer sensors and synching the recognised activity and 

emotion with the location information provided by the GPS, is appropriate for tracking of 

an individual in a distress phase situation. A procedural programming procedure can 

utilise the Bayesian, HMM and other machine learning algorithms for dynamic situation 

prediction and classify it accordingly to normal/happy, distress and casualty phases. An 

emergency response is only needed for the distress and casualty situations, but the aim 

is to thwart the progression from distress phase to casualty phase 

However, the fourth research objective, which was “to test the reliability of the 

automated identification of an individual’s emotional state by the intelligent system using 

data from an existing database”, was addressed as this thesis describes evaluation 

metrics, including the MSE and accuracy (Domingo 2015) to validate and measure the 

reliability of the methods applied in the study. The classification accuracy is a measure of 

the ratio of correct predictions of the total number of samples. On the other hand, the 

MSE measures the mean of the square of the difference between the expected output 

and the actual output of a pattern classifier. The highest values obtained for the accuracy 

and lowest values for the MSE metrics are an indication of the excellent reliability of the 

automated emotion identification system. A testing module was also incorporated in the 

generic architecture of the human emotion recognition model. This was to test the various 
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models with ‘seen’ and ‘unseen’ physiological data as impressive test results were 

obtained indicating the models’ high performance with the experimental data. 

 

7.2 Conclusion 

Taking full advantage of the tanh normalizer and the inverse Fisher transform algorithm 

applied to emotion laden physiological signals while utilizing various digital image 

processing domain feature descriptors, a data pre-processing method, extracted 

discriminatory features as well as a human emotion model developed for emergency 

assistance, distinctive state of the art results for human emotion recognition was obtained.  

Some of these results surpassed those achievements with the deep learning approaches 

while also extending the research horizon, as the methods that have been applied 

including the features generated constitute a swerve from the traditional method. 

 

7.3 Limitations 

The experiments conducted in this thesis are only on physiological signals collected from 

the DEAP emotion corpus. The prospect of combining human emotions, human activity 

and location information of an individual was discussed in this study and only an 

architecture for its implementation was presented. Various experiments conducted were 

limited to emotion physiological signals while a field-testing using the proposed 

architecture has not been implemented. 

 

7.4 Future Works 

In future, the utilization of more other emotion based physiological signals corpuses, such 

as the MAHNOB-HCI and SJTU Emotion EEG Datasets (SEED) (Zheng and Lu 2017) 

physiological signals corpuses as well as human activities corpuses in order to perform 
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intensive experiments with other features and machine learning methods will be 

considered. This will enhance a robust implementation and field-testing of the proposed 

architecture of the HER, HAR and location detection system reported in this thesis for the 

purpose of real life deployment. The incorporation of an audio signal with physiological 

signals to enable a robust system will also be undertaken in future works while 

acknowledging the rigorous task to be done in order to fully, further develop and deploy 

an efficient real time emotion recognition module that can be incorporated in an affective 

system. 
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