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Abstract 

Throughout the world, data plays a prominent role in making decisions relevant to the 

socio-economic growth of organizations. As organizations grow, they tend to use diverse 

technologies or platforms to collect data and make data readily available for quick 

decision-making. These technologies have resulted in exponential growth of data whereby 

the problem of managing this data in a limited time interval increases in complexity, 

starting from the preprocessing stage to the visualization stage. Apart from the issue of 

managing the huge growth of data, finding a suitable method to manage certain aspects of 

this frequently changed data has been overlooked. These frequent changes in data form 

the topic of interest of this thesis. Consequently, there is a need to develop a framework 

both to manage big data at different stages of processing, from preprocessing to 

visualization, and to handle frequently changed data. The need to develop such a 

framework arises because traditional methods/algorithms are limited to finding frequent 

patterns of frequently occurring items while overlooking frequently changed data, which 

has a numeric and time dimension that can provide interesting business insights. 

Additionally, traditional visualization methods are challenged with performance 

scalability and response time. This thesis looked at resolving this limitation by using a 

meta-heuristic/bio-inspired algorithm that is modelled based on observation of the 

behavior and characteristics of two different animals, namely the kestrel and the dung 

beetle. The motivation behind the use of these animals is their ability to explore, exploit 

and adapt to different situations in their natural environment. The development of the 

computational model and testing with actual data were formulated as a six-step procedure. 

Based on the six steps, the proposed computational model was evaluated against selected 

comparative algorithms, namely BAT, WSA-MP, PSO, Firefly and ACO. The main 

findings on optimal value/results suggest that, in handling frequently changed data during 

the data preprocessing, pattern discovery and visualization stages, the proposed 

computational models performed optimally against the comparative meta-heuristic 

algorithms on test datasets. Further statistical tests, using the Wilcoxon signed rank test, 

were conducted on optimal results from the comparative meta-heuristic algorithms. The 
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basis for using the statistical procedure was to select the best choice of algorithm without 

making any underlying assumption on accuracy of results from the comparative meta-

heuristic algorithms. Theoretically, the study contributes to enhancing frequency of item 

frameworks by including time and numeric dimensions of item occurrence. Practically, 

the contribution of the study lies in its finding frequently changed patterns in big data 

analytics. Additionally, the concept of half-life of substances/trails was applied as part of 

the computational model, and this also forms part of the unique contribution of this thesis. 

The half-life constitutes the lifetime of interestingness of recent patterns that were 

discovered. In summary, this thesis is about the mathematical formulation of animal 

behavior and characteristics into an implementable big data management algorithm and 

its application to frequently changed patterns.  
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CHAPTER 1: GENERAL INTRODUCTION AND SUMMARY 

1.1 Introduction 

The chapter starts with the background of the study on the current dispensation of big data. 

In subsequent sections, the general objectives of the study, specific objectives, research 

questions, problem statement, justification of the study, significance of the study and 

outline of the thesis are discussed. 

 

1.2 Background of the study 

Generally, large volumes of data are generated continuously from heterogeneous and 

autonomous sources (that is, when each data source collects information without relying 

on any centralized control) (Banupriya and Vijayadeepa 2015), where each source has a 

different set of data residing on its platforms, including data that is frequently changed. 

As lots of data is generated and collected, it needs to be analyzed to identify patterns, 

including those of special interest, such as frequently changed data. For instance, 

industries such as retail, financial services, and healthcare institutions have frequently 

changed data that needs specific handling to find interesting patterns/trends from the 

volume of data generated. Mostly, data repositories are unable to process demands from 

a big dataset that needs to be updated frequently within specified time (Rouse 2018). This 

frequent updating of data is because of frequent changes that occur in a specified dataset. 

It is significant that as data continues to increase in volume, exploring the evolving 

relationship in frequently changed data creates an opportunity for finding new methods of 

searching for interesting frequently changed patterns. The application of meta-heuristic 

search methods could help create new computational models that adapt to frequently 

changed data in order to discover actionable sequences from data for decision-making. 

This study seeks to research the application of meta-heuristic search methods (also 

referred to as bio-inspired search methods) for big data analytics and visualization of 

frequently changed patterns. The reason for carrying out a study into meta-heuristic search 
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methods is that the traditional methods (such as existing data mining algorithms, which 

will be discussed in Chapter Two) for exploring evolving relationships are not well 

adapted to processing update demands because of frequent change from large volumes of 

data. 

 

Massive amounts of data can be analyzed and interpreted using different techniques, 

algorithms, tools and models. Mostly, existing search algorithms for discovering patterns 

are focused on frequency of items without considering the frequently changed items. 

Often, existing data mining algorithms (such as the Apriori algorithm) are focused on the 

frequency of items without considering the numeric value and time dimensions. Basically, 

the frequency of items is computed by counting the occurrence of items in transaction 

(Rajasekaran and Song 2006) to determine a pattern without indicating the change that 

happened on an item, for instance considering buying behavior of consumers of a retail 

shop without considering the changing total value(s) of items bought (in terms of the price 

of items). 

 

Meanwhile, frequency counts on changing numeric value with time may give more 

meaning to a predicted pattern. Usually, in frequent item mining, an itemset is regarded 

as interesting if its occurrence frequency exceeds a user-specified threshold (Fung, Wang 

and Liu 2012). However, the use of frequency counts to measure pattern interestingness 

is insufficient (Tseng, Liang and Chu 2006) in selecting actionable sequences associated 

with expected quality and business impact. This is because the patterns identified under 

the frequency framework do not disclose the business value (such as profit) (Yin et al. 

2013). As businesses are interested in business value, the frequency framework should be 

expanded to cover both time and numeric value dimensions. Thus, a multiple-dimension 

approach for business value analysis may yield more interesting patterns and could be 

sufficient for a business to select actionable sequences. A meta-heuristic search algorithm 

could play a significant role in helping to select actionable sequences for business 

decision-making. Thus, this study seeks to research the application of meta-heuristic 
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search methods (also referred to as bio-inspired search methods) to discover frequently 

changed patterns from large datasets. The study also uses meta-heuristic search methods 

to visualize frequently changed patterns.  

 

1.3 Field of research 

The field of study is Information Technology, with a focus on meta-heuristic search 

methods for the analysis and visualization of frequently changed patterns in big data 

analytics.  

 

1.4 General objective 

This study seeks to develop a largely bio-inspired approach to manage and analyze big 

data, notably frequently changed patterns/items. This approach consists of the use of bio-

inspired algorithms that are implemented in three phases, namely data cleansing, data 

mining and data visualization. These phases are used to build a computational model that 

depicts the characteristics of animals for analysis and visualization of frequently changed 

patterns/items.  

 

The first phase, data cleansing, uses enhanced algorithms to extrapolate likely values on 

missing data, identify and eliminate duplicate text from frequently changed items, and 

select relevant features. During the first phase, an innovative search algorithm based on 

hunting behavior of a bird called the kestrel (a bio-inspired algorithm) is mathematically 

expressed to depict its characteristics. This mathematical expression is applied to 

extrapolate missing values at random, while an enhanced non-bio-inspired algorithm 

based on the Smith-Waterman algorithm is applied to identify and eliminate duplicate 

text. Finally, the mathematical formulation based on kestrels’ characteristics is combined 

with other search methods (that is, deep learning methods that will be discussed in Chapter 

Two in the literature review) for the selection of relevant features. Phase two is the data 

mining of frequently changed items with numeric value and time dimensions. During this 
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stage, the kestrel-based algorithm and closeness preference interestingness model is 

applied to find frequently changed patterns. Phase three is the data visualization of 

association rules from phase two.  A novel search algorithm based on behavior of dung 

beetles is applied to visualize data on the association rules.  

 

In each phase of the proposed computational model, mathematical formulations of the 

selected animal behavior are applied, which are translated into algorithmic structure and 

evaluated by comparing them with other comparative meta-heuristic search methods. The 

phases of the methodological framework are summarized in Table 1.1. 

 

Table 1.1: Methodological framework on Phases, stages and algorithms 

Phases Stages Proposed algorithm Comparative 

algorithms 

Phase 1: Data 

cleansing/preprocessing 

Stage 1: Identify and 

eliminate duplicate 

text 

Enhanced Smith-

Waterman algorithm 

Jaro-Winkler 

distance metrics 

 

 Stage 2: Extrapolating 

missing data values 

KSA WSA-MP, BAT 

and Firefly 

algorithms 

 Stage 3: Feature 

selection  

KSA WSA-MP, BAT, 

ACO and PSO 

algorithms 

Phase 2: Data mining - KSA ACO, BAT, PSO 

and WSA-MP 

algorithms 

Phase 3: Data 

visualization (using 

linear graph) 

- DBA ACO for data 

visualization, Bee 

algorithm 

Source: (Researcher 2018). 

 

The phases in Table 1.1 represents a methodological framework for this thesis that will be 

discussed in chapter 3. 

 

1.4.1 Specific objectives  
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The specific objectives of the study are to: 

 model a meta-heuristic/bio-inspired data preprocessing approach to extrapolate missing 

values, identify and remove duplicates text, and select features in subsets 

 model an association rule mining approach based on the hunting behavior of kestrel to 

discover patterns that are frequently changed with numeric value and time dimensions  

 based on the frequently changed rules, model a bio-inspired algorithm for visualization of 

frequently changed items 

 empirically validate the models and algorithmic structures against comparative meta-

heuristic methods using benchmark datasets. 

 

1.5 Research questions  

The importance of the research question is that it enables the researcher to make a claim 

about knowledge (referred as ontology) so as to understand a knowledge claim, the 

strategy that informs a procedure, and the method of data collection and analysis (Creswell 

2013). The researcher is thus able to take a different approach to solving the research 

problem. In this context the different approach relates to the search method and its 

underlying algorithmic structure that could be applied.  

 

The research questions were formulated as follows:   

 Can a largely meta-heuristic/bio-inspired data preprocessing approach be modelled to 

extrapolate missing values, identify and remove duplicate text, and select features in 

subsets? 

 Can a mathematical expression and subsequent algorithm be formulated based on the 

hunting behavior of the kestrel to discover association rules on frequently changed 

patterns within numeric value and time dimensions?  

 Based on the frequently changed rules, can a bio-inspired algorithm for the visualization 

of these association mining results be modelled? 
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 Can the model and algorithmic structure be empirically validated on a benchmark dataset 

and evaluated against comparative meta-heuristic algorithms? 

 

1.6 Problem statement 

Pattern interestingness suffers from the issues of inherent subjectivity and from the need 

to sort through large volumes of data and report on a huge number of potentially 

interesting patterns that meet predefined criteria (Vreeken and Tatti 2014). Tseng, Liang 

and Chu (2006) indicate that the use of frequency of occurrence of items, as a sole 

criterion, to measure pattern interestingness is insufficient in selecting actionable 

sequences for an organization (Yin et al. 2013). Similarly, Vreeken and Tatti (2014) 

describe the use of frequency of items as not a very good measure of interestingness. The 

main reason for this problem with using only the frequency of occurring items for pattern 

selection is that actionable patterns can change with time (Huynh 2010).  Thus, relying on 

frequency of occurring items alone for pattern selection – rather than on additional criteria 

such as frequency of change, which entails a time dimension within the data items of a 

pattern – is a limitation of current big data management approaches and a gap that this 

thesis hopes to address. Hence, there is a gap in the current occurrence framework since 

it does not address the time dimension of frequently changed data. 

 

Within the current dispensation of big data, when data becomes very large (that is, big 

data), it is possible that current approaches to data preprocessing/cleansing (to find 

missing values, identify duplicates and select relevant features) to find interesting patterns 

could lose its business value, in terms of having to determine in a timely manner (that is, 

speedily) the usefulness of an action. For this reason, new algorithms must be developed 

to accurately preprocess data and discover patterns that are interesting. The lack of 

accuracy in existing big data preprocessing frameworks is a problem that needs to be 

solved in order to improve on performance of the data processing aspect of big data 

platforms. 
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In view of the challenges of data preprocessing, this study seeks to fill the gaps identified 

by proposing a new computational model to find the best possible approach. The study 

uses the hunting behavior of kestrels (bio-inspired), which involves perch hunting (for 

exploitation of the search area) and hover hunting (for exploration of the search area). 

Hover hunting involves exploring very large search areas that were left unexploited during 

perch hunting. Again, hover hunting is quick and involves cross-territorial search for 

interesting patterns, while perched hunting involves thorough search in a local territory. 

This bio-inspired approach is a random search algorithm that is used to extrapolate 

missing values at random, select relevant feature subsets in the data cleansing phase and 

discover association rules to form a global schema of interesting patterns to disclose 

actionable sequences. The association rules, when used, can disclose relationships 

between subtle patterns and group patterns based on the nature of frequent change. In fact, 

no single pattern can prove to be interesting until all related patterns are grouped to 

disclose interesting frequently changed patterns. The disclosed pattern will provide 

meaningful insights when selecting actionable sequences for businesses, irrespective of 

the volume of data.  

 

Having disclosed the patterns, an actionable sequence could be visualized by using a 

simple and low computational cost visualization approach that takes into consideration 

volumes of data and that displays results in less computational time. This suggests that 

current approaches (such as dense pixel display, stacked display (Keim 2000) and cellular 

ant-based approaches (Moere, Clayden and Dong 2006)) to visualization, which are 

discussed in subsequent chapters, are computationally costly. The present approach 

applies the orientation and navigation mechanism of dung beetles in natural environments 

to provide a simple algorithm for data visualization with less computational time in a 

simple two-dimensional graph. 
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1.7 Justification of the study 

The justification is based on the fact that as data frequently changes, and businesses are 

interested in business value (in terms of disclosing action that should be undertaken within 

a time dimension). In view of this, the current frequency framework should be expanded 

to cover both time and numeric value dimensions of frequently changed items so as to 

bridge the gap identified in the occurrence of item frameworks. Thus, a kestrel behavior 

is an approach that uses flight and perch behavior to exploit and explore rules to disclose 

interesting patterns, which may be sufficient for a business to select actionable sequences 

from large volumes of data so as to add value to the business.  

 

1.8 Significance of the study 

This study expresses in mathematical terms the behavior of kestrels and dung beetles, and 

implements it as a search algorithm. The advantage of the kestrel-based approach is that 

there is a quick cross-boundary pattern search when there is limited knowledge on 

characteristics of data as it becomes large/small. This study proposes a novel search 

approach to data preprocessing that is based on the kestrel. The search approach referred 

to as the Kestrel-based Search Algorithm (KSA) looks across different search spaces for 

possible solutions in different aspects of big data analytics (such as volume, velocity and 

value). It is significant to note that as users of big data analytics acquire and have access 

to more data (large volume or quantity), they often become more interested in finding 

patterns that can perfectly explain a frequent change. In so doing, big data users could 

focus on making valuable conclusions from a large quantity of high-quality data. 

However, making valuable conclusions may require selection of relevant data from 

irrelevant data to ensure data is reliable and approximately accurate. The significance of 

the KSA is to provide a means of making approximately accurate estimations in different 

problem dimensions of concern as the same data item is collected over and over with 

different values based on different times. 
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Theoretically, the proposed meta-heuristic approach seeks to enhance the occurrence 

framework of items in data mining by generating basic rules from kestrels’ behavior. 

These basic rules are used to evaluate pattern interestingness of frequently changed 

data/items to select actionable sequences (Yin et al. 2013) in a form of patterns from large 

volumes of data. The outcome could be of practical significance to large stock market 

items analysis or similar domains in terms of disclosing patterns that have frequently 

changed within numeric value and time dimensions. The outcome may also be of practical 

significance to the retail industry for disclosing patterns that are frequently changed. In 

this context, items with numeric value (such as price) and a time dimension (for instance, 

in seconds or hours) can be discovered when this algorithm is built.  

 

Another theoretical significance is the use of navigation and orientation by dung beetles 

for data visualization of frequently changed patterns. The dung beetle is well adapted to 

navigate different environments to get its food to its home with less energy. As it navigates 

and orients, it leaves traces that can be seen. This navigation and orientation are 

mathematically modelled and translated into an algorithm for visualization of frequently 

changed patterns.  

 

This study contributes to knowledge in terms of the conceptualization of a big data 

analytics framework that is based on the unique behavior of animals (namely kestrels and 

dung beetles) and the half-life of trails to develop a search method. The search algorithm 

is used to find interesting patterns (within both numeric value and time dimensions) and 

for the visualization of frequently changed patterns/items in large datasets. The advantage 

of this search algorithm is its ability to self-tune its parameter(s) and select optimal or 

near-optimal results.   

 

1.9 Outline of the thesis 

The thesis is structured as follows: 
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Chapter 1: General introduction and summary. This chapter presents the general objective 

of the study, the specific objectives, the research questions, the problem statement, 

justification of the study, the significance of the study and structure of thesis. 

 

Chapter 2: Literature review. This chapter reviews the current relevant literature and 

theoretical underpinning of big data analytics frameworks, data cleansing, data mining 

and data visualization, in order to identify the current challenges and gaps in literature that 

need to be filled. Additionally, the review also finds innovative ways to address the 

challenges in aspects of big data analytics (that is, volume, velocity and value) within the 

context of data cleansing, data mining and data visualization of patterns that might be 

interesting and that may lead to an action being taken by a user of a big data analytics 

platform. 

 

Chapter 3: Methodology. This chapter presents the different methods of data cleansing, 

data mining and data visualization. A bio-inspired method based on selected behavior of 

chosen animals was mathematical modelled in order to address the gap in frequency 

frameworks and to propose innovative ways to address the challenges in big data analytics 

frameworks. Thus, data cleansing, data mining and data visualization form the three 

phases that constitute the structure of the proposed model for disclosing interesting 

patterns.  

 

Chapter 4: Developing, testing and evaluating data cleansing. The chapter demonstrates 

different algorithms for extrapolation of missing values, duplicate text detection with 

results compared with related algorithms, and selection of relevant features in subset. 

During the implementation, mathematical expressions were written and translated into an 

algorithm for testing. Test data was used by the algorithm, and different parameters were 

used to fine-tune the outcome of the algorithm to provide best results/optimal solutions.  
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Chapter 5: Developing, testing and evaluating data mining. The chapter presents different 

bio-inspired algorithms, namely ACO, PSO, BAT and WSA-MP, and compares the results 

from each algorithm with the proposed algorithm for data mining. During the testing of 

the newly proposed algorithm, different parameters were fine-tuned in order to generate 

the best possible solution. The results of data mining were tabulated for each comparative 

algorithm. 

 

Chapter 6: Developing, testing and evaluating data visualization. The chapter presents the 

method for data visualization based on the bio-inspired behavior of dung beetles. The 

dung beetle algorithm (DBA) was tested with different related algorithms, namely the Bee 

algorithm and ACO, for data visualization. Different parameters were applied to test the 

output of the algorithm on different datasets. The results of optimal value are tabulated 

and presented in two-dimension graphs.  

 

Chapter 7: Discussion, challenges and conclusions. The chapter presents how research 

questions were addressed, discusses experimental results, and outlines challenges of the 

proposed model. Conclusions are drawn and future work proposed. 

 

1.10 Definition of terms 

Meta-heuristic search method is a general algorithmic framework that is applied to 

different optimization problems with relatively few modifications (both on an algorithm 

and its parameters) so that the algorithm can be adapted to a specific problem (Iglesia and 

Reynolds 2005). 

 

Flocking is the phenomenon where individuals all move with approximately the same 

velocity, so that they remain together as a group (Sinkovits 2006).  

 

Pattern interestingness is defined as follows: it is (1) easily understood by humans, (2) 

valid on new or test data with some degree of certainty, (3) potentially useful and (4) 
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novel. Furthermore, a pattern is interesting if it validates a hypothesis that the user sought 

to confirm.  

 

Frequent itemset refers to a set of items that frequently appear together in a dataset (Han 

and Kamber 2006). 

 

Data mining is the process of finding hidden and complex relationships present in data 

so as to help businesses discover patterns for future use (Sumathi and Sivanandam 2006). 

 

Big data analytics (or big data mining) is the discovery of actionable knowledge patterns 

from quality data (Wu, Buyya and Ramamohanarao 2016).   

 

Volume is the amount/size of data that has to be processed. The size of this big amount 

of data ranges from thousands of terabytes to petabytes and exabytes (Devakunchari 

2014).  

 

Veracity is referred to in this research as the accuracy of results from a processing system 

(Garcia, Luengo and Herrera 2015).  

 

Value relates to what the user will gain or the benefit from the analysis results (such as 

new revenue opportunities, effective marketing strategies, better customer service 

strategies and competitive advantage over rival businesses). Devakunchari (2014) refers 

to value as a measure of the usefulness of data in making decisions.  

 

Variety is the different kinds of data being generated, such as structured or unstructured 

data (including unstructured text such as word documents, email messages, transcripts of 

call center interactions, posts from blogs and social media sites; images; audio; video files; 

and machine data such as log files from websites, servers, networks and applications from 

mobile systems) (Rouse 2018; Laney 2001). 
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Velocity is how fast incoming data is created, processed and updated and how quickly the 

user of information needs results from the processing system (Longbottom and Bamforth 

2013). 

 

Data visualization is the process of presenting data in pictorial or graphical format to help 

in the display of interesting patterns (Bikakis 2018). 

 

Agent-based search algorithm refers to the proposed algorithms (namely kestrel-based 

and dung beetle-based). 

 

Phase-based framework refers to the proposed methodological framework consisting of 

phases and corresponding agent-based search algorithm. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

This chapter reviews current literature on big data analytics frameworks, data cleansing, 

data mining algorithms and data visualization methods in line with the specific objectives 

of this study. Although this study is largely on bio-inspired/meta-heuristic approaches in 

analyzing data, other non-bio-inspired approaches to analyzing data are explored. The 

review of literature is significant for identifying gaps in literature that need to be filled 

regarding interestingness of frequently changed data.  

 

2.2 Big data analytics framework 

Big data arises when a large volume of data is produced and then collected from multiple 

autonomous data sources, without central control, (Banupriya and Vijayadeepa 2015); big 

companies quickly realized the value of analysis of this data for various spheres of their 

operation (Devakunchari 2014). The data coming from these different sources is 

characterized as having five Vs, as indicated by Longbottom and Bamforth (2013) and 

Laney (2001), although these characteristics may vary. These characteristics are used to 

describe big data analytics frameworks. 

 

Wu, Buyya and Ramamohanarao (2016) define big data analytics (or big data mining) as 

the discovery of actionable knowledge patterns from quality data. Quality is defined in 

terms of accuracy, completeness and consistency of patterns (Garcia, Luengo and Herrera 

2015). Wu, Zhu, Wu and Ding (2014) indicate that big data analytics is a quality 

improvement process where data is preprocessed and classified into a uniform format that 

could be useful in decision making. Several analysis frameworks and methods have been 

proposed to help with the quality improvement process, as presented by Tsai et al. (2015) 

and presented here in Table 2.1 as follows: 
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Table 2.1 Big data analysis frameworks and methods 

Perspective  Methods or 

platform/ 

framework 

Author(s) Year Goal of the study Taxonomy  

Analysis 

framework 

DOT Huai et al.  2011 Add more 

computation 

resources via a 

scale-out solution 

Framework 

Generalized 

linear 

aggregates 

distributed 

engine 

(GLADE)  

Rusu and Dobra 2011 Multi-level tree-

based system 

architecture 

Starfish  Wonner et al. 2012 Self-turning 

analytics system 

ODT-MDC  Laurila et al. 2012 Privacy issues 

MRAM  Essa, Attiya and El-

Sayed  

2013 Mobile agent 

technologies 

CBDMASP Ye et al.  2013 Statistical 

computation and 

data mining 

approaches 

Service-

oriented 

decision 

support 

system 

(SODSS)  

Demirkan and 

Delen 

2013 Decision support 

system issues 

Big data 

architecture 

framework 

(BDAF) 

Wonner et al. 2012 Data centric 

architecture 

HACE X. Wu, Zhu, G.-Q. 

Wu and Ding  

2014 Data mining 

approaches 

Hadoop  Apache Hadoop 2015 Parallel 

computing 

platform 

Platform 

Storm Apache Storm 2015 Parallel 

computing 

platform 

Pregel  Malewicz et al.  2010 Large-scale 

graph data 

analysis 

MLPACK Curtin et al.  2013 Scalable machine 

learning library 

Machine 

learning 
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Mahout  Apache Mahout 2015 Machine learning 

algorithms 

MLAS  Bu et al.  2012 Machine learning 

algorithms 

PIMRU  Bu et al.  2012 Machine learning 

algorithms 

Radoop  Radoop 2015 Data analytics, 

machine learning 

algorithms and R 

statistical tool 

Source: Tsai et al. (2015). 

 

In Table 2.1, the “Perspective” column explains the focus of the analysis framework 

perspective, which indicates the current research focus, namely the use of machine 

learning for analysis to help guarantee accurate results. The study by Tsai et al. (2015) on 

these analysis frameworks indicates that the key advantage of machine learning as search 

algorithm is the ability to reduce redundant computational cost. However, within the 

current dispensation of big data, which is still in its early stages (Tsai et al. 2015; Nolan 

1979), performance of algorithms may still be an issue/gap that can be looked at as part 

of the quality improvement process of big data analytics frameworks. Although, the 

quality improvement process, analysis framework “Perspective” and “Methods or platform/ 

framework” in Table 2.1 is not the focus of this thesis, it is presented to show the available 

frameworks, which are not mainly bio-inspired frameworks. Hence, a bio-inspired 

framework will be the main contribution of this thesis. 

 

In the next subsections, the various phases of data preprocessing (such as cleansing, 

integrating, transforming and reduction) (Srivastava 2014) are discussed. 

 

2.2.1. Phase 1: Data cleansing  

The concept of data cleansing relates to the detection and removal of errors (Mong et al. 

2002) in raw data to avoid inconsistency (that is, when data items referring to the same 

object contradict each other) that possibly reduces the quality of data analysis results with 

limited attention to volume of big datasets. In some instances, when raw data is extracted 
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from data repositories, it could contain errors (such as incorrect spelling of words or, in 

terms of numeric value, there could be decimal errors) or incomplete data (such as missing 

data, null values or no data stored for a current observed attribute) (Rahm and Do 2000; 

Elmagarmid, Ipeirotis and Verykios 2007). The following subsections examine the stages 

that constitute the data cleansing phase, namely extrapolating missing data values, 

identifying and removing duplicate text, and selecting relevant feature subsets. 

 

2.2.1.1 Stage 1: Extrapolating missing data values 

Missing data occurs when some values of variables are not stored in a dataset. Estimating 

the missing values is an important step in the data cleansing phase of a big data analytics 

approach. Narang (2013) describes missing data as data that exists in the real world but 

was not provided by a user. Narang’s (2013) method to address the missing data is to 

interpolate approximate values as missing data points from historical data (that is, real-

time stock trading datasets) with incorrect timestamps. Agbehadji et al. (2018) indicate 

that one of the reasons for missing data is non-response or omitted entries, which may 

relate to optional attributes. There are three categories of missing data: data missing 

completely at random (MCAR), missing at random (MAR) and missing not at random 

(MNAR) (Acock 2005; Nelwamondo, Mohamed and Marwala 2007), all of which require 

different methods of handling the missing data. Moreover, the missing data may be a 

missing text and/or missing value at random.  

 

The missing data category of MCAR occurs when the missing values are randomly 

distributed throughout a matrix such that a missing value in a row of a matrix is not 

dependent on any other row entry in a dataset (Acock 2005). In other words, neither the 

row entry, which is missing, nor any other row entry can predict whether a value is 

missing. When this happens the chances of the data being detected as missing are not 

dependent on either the missing or the complete value in the same row entry of a matrix. 

The list-wise method to handle MCAR is ideally used to remove all data that has one or 

more missing cases. However, by this removal, a problem is created in that the missing 

https://www.google.co.za/search?biw=1517&bih=692&tbm=bks&q=inauthor:%22Rishi+K.+Narang%22&sa=X&ved=0ahUKEwiq7uC38__NAhXHCcAKHcn4CtkQ9AgIGzAA
https://www.google.co.za/search?biw=1517&bih=692&tbm=bks&q=inauthor:%22Rishi+K.+Narang%22&sa=X&ved=0ahUKEwiq7uC38__NAhXHCcAKHcn4CtkQ9AgIGzAA
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values produce both biased parameters and incorrect estimates in analysis (Rubin 1977; 

Little and Rubin 1989). The pairwise method is another method of handling MCAR. This 

method seeks to address the missing value problem by computing the covariance estimates 

from all samples of cases observed on relevant variables. The pairwise deletion method 

assumes that all data is completely missing at random. Therefore, variables with missing 

data are then deleted during computation. This deletion could cause error in computation 

because each element in the covariance matrix may have a different group of attributes 

(Kline 1998; Carter 2006; Rubin et al. 2007).  

 

The MAR category occurs when the missing value in a row of a matrix depends on another 

known row entry in a dataset (Rubin et al. 2007). Due to dependency, the missing value 

can be predicted from a previously known value in a dataset. Thus, the missing value is 

dependent on the previously known value. When this happens, it becomes easy to trace a 

pattern of missing values in a row of a matrix through the traditional approach to handling 

MAR: the pairwise deletion method, as described previously. 

 

The MNAR (also known as non-ignorable nonresponse) category occurs when the missing 

value in a row of a matrix depends on the other missing values in the row entry (Rubin et 

al. 2007). Due to multiple dependencies, the known data cannot be used to estimate the 

missing value. Thus, the chances that the value in question is detected as missing is 

dependent on the detection of previous missing values.  

 

The traditional approaches to handling missing data are, however, not efficient at 

providing best optimal estimates for missing values. These approaches include list-wise 

deletion or case deletion, pairwise deletion and sample mean substitution (that is, 𝑘-NN 

and 𝑘-Means clustering) (Quinlan 1989; Acock 2005; Rubin et al. 2007). 

 

The sample mean of class method replaces the missing values with the group mean of all 

known values of the attribute. The mean of each group represents a target class with 
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attribute can belong. For instance, assume 𝑥𝑚𝑖𝑠𝑠𝑖𝑛𝑔,𝑖
𝑗

 is the 𝑗th missing attribute of the 𝑖th 

instance of the 𝑚th class (Sim, Lee and Kwon 2015) 

𝑥(𝑚𝑖𝑠𝑠𝑖𝑛𝑔,𝑖)
𝑗

= ∑
𝑥(𝑚𝑖𝑠𝑠𝑖𝑛𝑔,𝑘)

𝑗

𝑛| 𝐼( 𝑚𝑡ℎ 𝑐𝑙𝑎𝑠𝑠 𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)|
𝑘∈𝐼(𝑚𝑡ℎ 𝑐𝑙𝑎𝑠𝑠 𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)   Equation 2.1 

where (𝑚th class incomplete) is a set of indices that are not missing in 𝑥(𝑚𝑖𝑠𝑠𝑖𝑛𝑔,𝑖)
𝑗

 , and 

𝑛| 𝐼( 𝑚𝑡ℎ 𝑐𝑙𝑎𝑠𝑠 𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) is the total number of instances where the 𝑗th attribute of the 𝑚th 

class is not missing. 

 

The k-nearest neighbor (k-NN) method searches for attributes among non-missing 

attributes using the kth-NN method (Sim et al. 2015). This method imputes missing values 

based on the values of the attributes of the 𝑘 most similar instances, as expressed in 

Equation 2.2: 

𝑥𝑖
𝑗

= ∑ 𝑘 (𝑥𝑖
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

, 𝑥𝑃
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

) ∗ 𝑥𝑃
𝑗

𝑃 ∈𝑘−𝑁𝑁(𝑥𝑖)   Equation 2.2 

where k-NN (xi) represents the index set of the kth nearest neighbors of xi based on the 

non-missing attributes, k (which is by default equal to 4) represents a number that decides 

how many neighbors (where neighbors is defined based on the distance metric) are 

considered in a cluster, and k(xi, xj) is referred to as a kernel function that is proportional 

to the similarity between the two instances xi and xj. The similarity function computes an 

approximate value, which is used to indicate that two instances are the same. Thus, the 

smaller the similarity value between two instances, the more similar the two instances. 

Thirumuruganathan (2010) indicates that the k-NN method is non-parametric, meaning 

the k-NN algorithm does not make any underlying assumption on the distribution of data. 

However, the k-NN method makes a decision of the approximated value based on the 

entire training dataset.  

 

The k-Means clustering method (Hartigan and Wong 1979) partitions an entire dataset M 

with several dimensions N into k clusters so that within each cluster of missing values, the 

sum of squares is minimized against all partitions. This means, in the context of missing 
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values, that these partitions are categorized as clusters of the same attributes of missing 

values from other attributes with non-missing values. Based on these attributes, the 

algorithm based on k-Means finds missing values that have to be imputed (Sim et al. 2015). 

This k-cluster then forms two different clusters, namely homogeneous and heterogeneous 

clusters. The challenge with a k-cluster is that when there is large volume of data, it leads 

to a large number of clusters and the computational time thus increases (Hartigan and 

Wong 1979). The k-cluster is expressed as: 

𝑎𝑟𝑔 𝑚𝑖𝑛
𝑐ℎ(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

∑ ∑ || 𝑥𝑗
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

−  𝐶𝑖
ℎ(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

||2

(𝑥
𝑗
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

∈ 𝐶
𝑖
ℎ(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

)

𝑘

𝑖=1

 

Equation 2.3 

where 𝐶𝑖
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

 represents the centroid, and the union of all cluster is represented as 

𝐶𝑖
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

= 𝐶1
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

 ∪ … ∪ 𝐶𝑖
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

). For a missing value 𝑥𝑖
𝑗
, the mean value 

of the attribute for the instances in the same cluster with 𝑥𝑖
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

 is imputed as 

𝑥𝑖
𝑗

=
1

|𝐶
𝑖
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

|
∗  ∑ 𝑥𝑃

𝑗

(𝑥𝑃
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

∈ 𝐶𝑘
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

)
   Equation 2.4 

subject to: 𝑘 = arg min
𝑖

|𝑥𝑗
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

−  𝐶𝑖
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

| 

where 𝑥𝑗
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

 represents the value of an instance/attribute, and 𝐶𝑖
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

 

represents the centroid.  

 

The approach of Grzymala-Busse et al. (2005) to addressing missing data is to use the 

same attributes from similar cases to determine the approximate value of missing 

attributes through a closest fit algorithm. Based on the closest fit algorithm, the proximity 

between cases (such as case x and y) are calculated using the Manhattan distance, 

formulated as: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑦) = ∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥𝑖
𝑛
𝑖=1 , 𝑦𝑖)   Equation 2.5 

where: 
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𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑦)

= {

0                                                                                                     𝑖𝑓 𝑥 = 𝑦
1                  𝑖𝑓 𝑥 𝑎𝑛𝑑 𝑦 𝑎𝑟𝑒 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐 𝑎𝑛𝑑 𝑥 ≠ 𝑦, 𝑜𝑟 𝑥 = ? 𝑜𝑟 𝑦 = ?

|𝑥 − 𝑦|

𝑟
                                                 𝑖𝑓 𝑥 𝑎𝑛𝑑 𝑦 𝑎𝑟𝑒 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑎𝑛𝑑 𝑥 ≠ 𝑦

 

where r represents the differences between the maximum and minimum of the unknown 

values of numerical attributes with a missing value. A similar approach based on cases is 

the use of the hot-deck method (Sim et al. 2015), which is formulated as: 

𝑥𝑖
𝑗

= 𝑥𝑘
𝑗
, 𝑘 = 𝑎𝑟𝑔 𝑚𝑖𝑛

𝑃
√∑ 𝑠𝑑𝑗(𝑥𝑖

𝑗
− 𝑥𝑃

𝑗
)

2

𝑗 ∈𝐼 (𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)   Equation 2.6 

where sdj represents the standard deviation of the jth attribute that is not missing, and 𝑥𝑖
𝑗
 

and 𝑥𝑃
𝑗
 are two different attribute values. The challenge of both closest fit and hot-deck is 

non-similar cases are not considered. 

 

In summary, the sample mean substitution method requires that each data point clustered 

around a centroid needs computation to find the best estimates. Thus, the number of 

clusters, the number of data points and the dimensions involved to compute missing values 

make it inefficient. In pairwise deletion, since the method assumes all data is missing at 

random, it uses the average sample size to estimate its standard error, which either results 

in underestimation or overestimation of the standard error in the analysis of missing 

values, and this makes it inefficient. The computational time may be a challenge in finding 

missing data when there is a large volume of data. 

 

Other efficient methods have been proposed to handle MAR. They are the maximum 

likelihood (Allison 2012) and multiple imputation method (for MAR) (Lakshminarayan, 

Harp and Samad 1999), the Expectation-Maximization algorithm (Zhao, MacKinnon 

and Gallup 2005; Acock 2005), dynamic programming (Bellman 1957) machine 

learning approaches (such as autoencoder neural networks) (Bishop 1995), meta-heuristic 

algorithms (such as genetic algorithms (GA)) (Goldberg 1986), the Firefly algorithm 

(Yang 2010) and the Wolf algorithm (Tang et al. 2012). Other algorithms that combine 
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GA and machine learning approaches include GAs and auto-associative neural networks 

(Abdella and Marwala 2006; Goldberg 1986). The advantage of applying meta-heuristic 

algorithms to missing value approximation is the ability to escape from local optima by 

using randomization to help reduce high computation cost. 

 

The maximum likelihood method is a statistical method of estimating missing values based 

on likelihood of independent observation (Allison 2012). The process of estimation starts 

with the formulation of a likelihood function, which is expressed in terms of a probability 

of observed data and the missing value. Parameters are used in the function and when a 

parameter is assumed as true, it must maximize the probability of observed value. This is 

expressed in terms of likelihood in Equation 2.7 as: 

𝐿(𝜃|𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) = ∫ 𝑓(𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝑌𝑚𝑖𝑠𝑠𝑖𝑛𝑔|𝜃)𝑑𝑌𝑚𝑖𝑠𝑠𝑖𝑛𝑔  Equation 2.7 

where 𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 represents the observed data, 𝑌𝑚𝑖𝑠𝑠𝑖𝑛𝑔 is the missing data and Ө is the 

parameter of interest to be estimated (Little and Rubin 1987). Thus, the likelihood function 

is expressed in Equation 2.8 as: 

𝐿(𝜃) = ∏ 𝑓(𝑦𝑖|𝜃)𝑛
𝑖=1      Equation 2.8 

where f(y|ө) is the joint probability or probability density function of the observation y, 

while θ is the set of parameters that has to be estimated given n number of independent 

observations (Allison 2012). The maximum likelihood estimate is obtained by finding the 

value of θ, which then maximizes the likelihood function. The parameter θ is further 

expressed as a vector to indicate the variance and the mean of data distribution as: 

𝜃 = (𝑚, 𝜎2)𝑇     Equation 2.9 

where sigma (σ2) is a parameter that represents the variance and m is the mean. The 

variance is further expressed in Equation 2.10 as: 

 

𝜎2(𝑥) =
1

2 𝑁
∑ 𝑥𝑖

2𝑁
𝑖     Equation 2.10 

where N is total independent observation on data x (x1, x2, …, xk). The variable x is the 

sample of data being considered.   
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The estimated parameter θ̂ is expressed in Equation 2.11 as: 

𝜃 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝜎2∈𝑅+,𝑚∈𝑅

𝐿𝑛(𝜃: 𝑥)    Equation 2.11 

Thus, 

𝐿𝑛(𝜃; 𝑥) = −
𝑁

2
𝐼𝑛(𝜎2) −

𝑁

2
𝐼𝑛(2𝜋) −

1

2𝜎2
∑ (𝑥𝑖 − 𝑚)2𝑁

𝑖=1   Equation 2.12 

Given n independent observation on k variables (y1, y2, …, yk) with no missing data, the 

likelihood function is expressed in Equation 2.13 as  

𝐿 = ∏ 𝑓(𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑘 ; 𝜃)𝑛
𝑖=1    Equation 2.13 

When data is missing for individual observation i for y1 and y2, then the likelihood for the 

individual is expressed as the probability of observing the other remaining variables in the 

dataset such as y3, …, yk. There are two instances of individual observation on data: either 

data is discrete, or it is continuous. This means that if y1 and y2 are discrete, then the joint 

probability is the summation of all possible values of the two variables that have the 

missing values in the dataset. This joint probability is expressed in Equation 2.14 as: 

𝑓𝑖
∗(𝑦𝑖3, … , 𝑦𝑖𝑘 ; 𝜃) = ∑ ∑ 𝑓𝑖(𝑦𝑖1, … , 𝑦𝑖𝑘 ; 𝜃𝑦2𝑦1 )  Equation 2.14 

Again, if the missing variables are continuous, then the joint probability is the integral of 

all possible values of the two variables that have the missing values in the dataset. This 

joint probability is expressed in Equation 2.15 as: 

𝑓𝑖
∗(𝑦𝑖3, … , 𝑦𝑖𝑘 ; 𝜃) = ∫ ∫ 𝑓𝑖(𝑦𝑖1, 𝑦𝑖2  … , 𝑦𝑖𝑘)𝑑𝑦2𝑑𝑦1𝑦2𝑦1

  Equation 2.15 

Moreover, when each observation contributes to finding the likelihood function, then the 

summation or integral is performed over the missing values in the dataset. Then the overall 

likelihood is the product of all observations. For instance, if there are x observations with 

complete data and n-x observations with data missing on y1 and y2, the likelihood function 

for the full dataset is expressed in Equation 2.16 as: 

𝐿 = ∏ 𝑓(𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑘 ; 𝜃)𝑥
𝑖=1 ∏ 𝑓𝑖

∗(𝑦𝑖3, … , 𝑦𝑖𝑘 ; 𝜃)𝑛
𝑥+1   Equation 2.16 

The maximum likelihood estimation of missing values produce estimates that are 

consistent (that is, for a given large dataset, it produces the same or approximately 
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unbiased results), asymptotically efficient (meaning there is minimum sample variance, 

which indicates a high level of efficiency in the missing value dataset) and asymptotically 

normal (Allison 2012). 

 

The expectation and maximization method learns from input data (particularly for 

unlabeled data) by iteratively approximating parameters (Zhao, MacKinnon and Gallup 

2005) to indicate the close relationship between missing and observed data. This 

expectation and maximization method finds conditional expectation until a convergence 

(that is, most likely value) is reached on the missing data using the observed data and 

estimated parameters (Little and Rubin 1987). The distribution of a complete dataset Y is 

expressed using the function 

 

𝑓(𝑌|𝜃) = 𝑓(𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝑌𝑚𝑖𝑠𝑠𝑖𝑛𝑔|𝜃) = 𝑓(𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑|𝜃)𝑓(𝑌𝑚𝑖𝑠𝑠𝑖𝑛𝑔 |𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝜃) 

Equation 2.17 

where 𝑓(𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝑌𝑚𝑖𝑠𝑠𝑖𝑛𝑔|𝜃) represents the probability density of the observed data and 

𝑓(𝑌𝑚𝑖𝑠𝑠𝑖𝑛𝑔 |𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝜃) is the probability density of the missing data in a given dataset. 

The log-likelihood is then expressed in Equation 2.18 as 

𝐿(𝜃|𝑌) = 𝐿(𝜃|𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝑌𝑚𝑖𝑠𝑠𝑖𝑛𝑔 ) = 𝐿(𝜃|𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) + 𝐼𝑛(𝑓(𝑌𝑚𝑖𝑠𝑠𝑖𝑛𝑔| 𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝜃))
 Equation 2.18 

where θ represents the parameter of interest, which is controlled iteratively in two steps 

such that an optimized result is produced. The steps are Expectation (E) and Maximization 

(M) and are expressed as follows: 

 

Expectation step: 

This step indicates the expected log-likelihood of the data such that the parameter is the 

true current estimate θt. The expected estimate is expressed in Equation 2.19 as: 

 

𝐸𝑀(𝜃|𝜃(𝑡)) = ∫ 𝐿(𝜃|𝑌)𝑓(𝑌𝑚𝑖𝑠𝑠𝑖𝑛𝑔 |𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝜃) = 𝜃𝑡𝑑𝑌𝑚𝑖𝑠𝑠𝑖𝑛𝑔  Equation 2.19 
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Maximization step: 

This step finds θ(t+1) by maximizing the expectation, which is expressed as follows: 

 

𝐸𝑀(𝜃(𝑡+1)|𝜃(𝑡)) ≥ 𝐸𝑀(𝜃|𝜃(𝑡)), ⋁𝜃   Equation 2.20 

 

The dynamic programming method is based on step-wise calculation such that each 

reoccurring value is tracked to avoid recalculation and obtain an optimum result as a 

sequence of decisions. This concept of dynamic programming, when applied to missing 

values, allows the separation of a large problem space into sub-problems such that missing 

data in each sub-problem can be calculated until the best optimal estimate of missing data 

is obtained (Bellman 1957). This approach avoids repeating the calculation of missing 

values when similar problems are encountered by storing the results from each sub-

problem. The formulation for dynamic programming can be expressed in Equation 2.21 

as follows (Bellman 1957):  

𝐽(𝑡) = ∑ 𝛾𝑘𝑈(𝑡 + 𝑘)𝑖𝑛𝑡
𝑘=0    Equation 2.21 

where γ is the discount factor where 0 < γ < 1, and U is the utility function. Dynamic 

programming is viewed as an optimization problem aimed at minimizing objective 

function for the best optimal estimates. This optimization problem is formulated 

(Bertsekas 2005) in equation 2.22 as follows: 

𝑥𝑘+1 = 𝑓𝑘(𝑥𝑘, 𝑈𝑘, 𝑟𝑘), 𝑘 = 0,1, … , 𝑁 − 1  Equation 2.22 

where k represents the discrete time, xk represents the observed data (known data), Uk is 

the sequence of decisions to be made from the known data, N is the number of times a 

control parameter is applied, and rk is the error introduced in making a decision. When a 

cost function g() is added to the formation (Bertsekas 2005), it is then expressed in 

Equation 2.23 by: 

𝐸{𝑔𝑁(𝑥𝑁) + ∑ 𝑔𝑘(𝑥𝑘, 𝑈𝑘, 𝑟𝑘)} 𝑁−1
𝑘=0    Equation 2.23 

where g() is the cost function. The assumption is that Uk is selected based on the 

knowledge of xk for the model to be feasible. Thus, 
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||𝐸|| = ∑ (𝐽[𝑌(𝑡)] −  𝛾 𝐽[𝑌(𝑡 + 1)] − 𝑈(𝑡))
2

𝑡   Equation 2.24 

where Y(t) is an observed vector, γ is the discount factor where 0 < γ < 1, and U is the 

utility function. 

 

The autoencoder neural network method or auto-associative multi-layer perceptron 

method for missing data estimation identifies approximate parameters given a sparse 

representation of input space as a result of the cross-coupling of hidden units (Marwala 

2006). The architecture of a multi-layer perceptron is such that mathematical functions 

are used to establish a relationship between input spaces through the hidden units to output 

space. The tangent basis function is used in the hidden units, while linear functions are 

used for output space. The non-linear mathematical relation is applied to map the output 

y (which is the estimated parameter or weight) and the input x in the neural network. It is 

expressed in Equation 2.25 (Bishop 1995) as   

𝑦𝑘 = 𝑓𝑜𝑢𝑡𝑒𝑟(∑ 𝑤𝑘𝑗
(2)

𝑓𝑖𝑛𝑛𝑒𝑟 (∑ 𝑤𝑗𝑖
(1)

𝑥𝑖
𝑑
𝑖=1

𝑀
𝑗=1 + 𝑤𝑗0

(1)
) +  𝑤𝑘0

(2)
) Equation 2.25 

where 𝑤𝑗𝑖
(1)

 and 𝑤𝑘𝑗
(2)

 represent the respective weights in the first and second layers. For 

instance, moved from input i to hidden unit j or the output unit k, M is the number of 

hidden units, and d is the number of output units, while 𝑤𝑗0
(1)

 represents the bias for the 

hidden unit j, and 𝑤𝑘0
(2)

 represents the biases for the output unit k. The  𝑓𝑜𝑢𝑡𝑒𝑟(∗) represents 

a logistic function, while 𝑓𝑖𝑛𝑛𝑒𝑟is the hyperbolic tangent function.  

Whereas fouter is expressed in Equation 2.26 as 

𝑓𝑜𝑢𝑡𝑒𝑟(𝑣) =
1

1+𝑒−𝑣    Equation 2.26 

finner is expressed in Equation 2.27 as 

𝑓𝑖𝑛𝑛𝑒𝑟(𝑣) = 𝑡𝑎𝑛 ℎ(𝑣)    Equation 2.27 

The bias parameters in first layer are weights from extra input with a fixed value of x0  = 1, 

while the bias parameter in the second layer are weights from an extra hidden unit with 

activation, which is fixed at z0 = 1.  
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The weight parameter in the neural network is approximated using Bayesian methods. 

Given a dataset in matrix form, the weights are adjusted based on a probability function 

to find an approximate weight to represent the missing data. This function is expressed in 

Equation 2.28 as 

𝑃({𝑤}|𝐷) =
𝑃(𝐷|{𝑤})𝑃({𝑤})

𝑃(𝐷)
   Equation 2.28 

where P(w|D) is the probability distribution of weights called the posterior probability of 

{w} given dataset D. P(D|{w}) is the likelihood function, that is, the conditional 

probability that shows the occurrence of D given {w}. P({w}) is the prior probability of 

occurrence of {w}, independent of whether {w} occurs or not. P(D) represents the evidence 

and represents the normalized posterior probability distribution function.   

The matrix dataset is expressed in Equation 2.29 as: 

|𝐷| = ( 𝑥𝑃, … , 𝑥𝑁 , 𝑦𝑃, … , 𝑦𝑁)    Equation 2.29 

where the vector {x} is the input vector and the vector {y} is the output vector. Since the 

model is an auto-associative neural network, the assumption is that the input vector {x} is 

the same as the output vector {y}. The posterior probability distribution function of the 

weight from given matrix data can be formulated using the Gibbs distribution, given the 

input data (Marwala 2007). 

 

The probability distribution of weight, given the input data, may be expanded in terms of 

the likelihood function, as in Equation 2.30: 

𝑃({𝑤}| [𝐷]) =
1

𝑍𝑠
 𝑒𝑥𝑝 (−𝛽 ∑ ∑ { 𝑡𝑛𝑘 − 𝑦𝑛𝑘}2 −

𝛼

2
∑ 𝑤𝑗

2𝑊
𝑗

𝐾
𝑘=1

𝑁
𝑛=1 )  Equation 2.30 

 

The first term in the formulation represents the likelihood function, that is, 

1

Zs
 exp (−β ∑ ∑ { tnk − ynk}2K

k=1
N
n=1 . Data contributing to error is represented by β 

(expressed using sum of square error), n represents the index for training patterns, tnk is 

the observed output, ynk is the estimated output, and k is the index for the output units 

(Bishop 1995). The second term, 
α

2
∑ wj

2W
j , represents the prior information, which is the 
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generalization parameter (or weight decay) for smooth mapping of function in the training 

process such that large weight magnitudes are penalized. The coefficient α represents the 

training error with the assumption that if α is a high value, then the generalization 

parameter over-smooths the weights (that is, in the neural network), thereby producing 

inaccurate results. Meanwhile, with a lower α value, the effect of the generalization 

parameter is negligible, so a stopping criterion can be defined to reduce the computational 

complexity of the model. 

 

Moreover, 𝑍𝑠 is further expressed in Equation 2.31 and Equation 2.32 as: 

 

𝑍𝑠(𝛼, 𝛽) = ∫ 𝑒𝑥𝑝(−𝛽 ∑ ∑ { 𝑡𝑛𝑘 − 𝑦𝑛𝑘}2 −
𝛼

2
∑ 𝑤𝑗

2𝑊
𝑗

𝐾
𝑘=1

𝑁
𝑛=1 )𝑑𝑤   Equation 2.31 

= (
2𝜋

𝛽
)𝑁/2 +  (

2𝜋

𝛼
)𝑊/2        Equation 2.32 

The optimal weight vector corresponds to the maximum likelihood. The number of layers 

in the hidden unit is chosen on a trial-and-error basis. A small number of layers may 

introduce insufficient flexibility, leading to poor generalization because of high bias, 

while a large number of layers may introduce unnecessary flexibility, leading to poor 

generalization or over-fitting caused by high variance.  

 

The advantage of the Bayesian approach is that it penalizes complex models by selecting 

the optimal model without using independent models (such as cross-validation). 

Additionally, it gives reliable output estimates of missing values in a dataset (Marwala 

2006).   

 

A genetic algorithm (GA) is an evolutionary approach on survival of the fittest. This 

survival depends on the mechanism of “natural selection” (Darwin 1868 cited in 

Agbehadji 2011), where species considered weak and unable to adapt to the conditions of 

the habitat are eliminated, while species considered strong and able to adapt to the habitat 

survive. Thus, natural selection is based on the notion that strong species have a greater 
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chance of passing on their genes to future generations, while weaker species are eliminated 

by natural selection. Sometimes random changes occur in genes due to changes in species’ 

external environments, which will cause new future species that are produced to inherit 

different genetic characteristics. Thus, successive generations are able to adapt to the 

habitat in respect of time. 

 

The terminology used in GAs to refer to population members is “string” or 

“chromosomes”. These chromosomes are made of discrete units called genes (Railean et 

al. 2013), which are binary representations such as 0 and 1. A GA is an adaptive search 

procedure (Agbehadji 2011) that depicts the mechanism of natural selection of 

populations. There are rules to steer the combination of parents to form children. These 

rules are referred as operators, namely crossover, mutation and selection methods. The 

notion of crossover consists of interchanging solution values of particular variables, while 

mutations consists of random value changes to a single parent. The children produced by 

the mating of parents are tested, and only children that pass the survival test are then 

chosen as parents for the next generation. The survival test acts as a filter for selecting the 

best species. 

 

The computational approach to depicting the mechanism of natural selection or search 

procedure starts with an initial guess and attempts to improve the guess through evolution 

(Agbehadji 2011) by comparing the fitness of the initial generation of the population with 

the fitness obtained after application of operators to the current population, until the final 

optimal value is produced.  

 

Another example of an algorithm is Firefly algorithm (Yang 2008). Firefly algorithm is 

modelled on the behavior of fireflies, specifically their ability to produce short and 

rhythmic flashing light to communicate with other fireflies. The flashing light is used to 

attract mating partners and potential prey, and it serves as warning mechanism. The firefly 

signaling system consists of rhythmic flash, frequency of flashing light and time period of 
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flashing (Yang 2010). This signaling system is controlled by simplified basic rules 

underlying the randomness of behavior of fireflies, which can be summarized as follows: 

one firefly will be attracted to the other; attractiveness is proportional to brightness; and 

brightness is affected by landscape. 

 

The attraction formulation is based on the following assumptions: 

a. Each firefly draws any other fireflies with weaker flashes. 

b. This draw is based on the brightness of the firefly’s flash, which is inversely  

proportional to proximity to each other. 

c. The firefly with the brightest flash is not attracted to any other firefly and its fligh

t is random. 

 

Fireflies follow the genetic/meta-heuristic approach of an initial randomization of 

individual fireflies in space, after which the brighter fireflies attract those closest to them. 

The fireflies whose flashes fall below a given threshold are then removed from the 

population, and the brightest fireflies form the next generation. The generations/iterations 

continue until a select criterion is reached or until a maximum number of generations is 

reached. 

  

The firefly’s flashes may also be used to extrapolate missing values. The variation of light 

intensity and the attractiveness are two major aspects of the firefly. Regarding these two 

aspects, attractiveness (β) is indicated as proportional to light intensity (γ), which is seen 

by other fireflies. Thus, the formula for the attractiveness between two fireflies is given in 

Equation 2.33 as follows: 

𝛽(𝑟) = 𝛽𝑜𝑒−𝛾𝑟2
     Equation 2.33 

where 𝛽𝑜 denotes the initial attractiveness, r denotes the Euclidean distance between two 

fireflies 𝑥𝑗  𝑎𝑛𝑑 𝑥𝑖., and attractiveness (β) is denoted as proportional to light intensity (γ), 

which is seen by other fireflies. The variation of attractiveness is calculated by γ, which 

affects firefly behavior and convergence.   
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The distance between two fireflies is calculated using the Euclidean distance, which is 

expressed in Equation 2.34 as:  

𝑟 = √∑ (𝑥𝑗 − 𝑥𝑖  )
2𝑛

𝑖=1       Equation 2.34 

where n indicates the total number of fireflies. If firefly xi is attracted to brighter firefly xj, 

it is denoted as in Equation 2.35: 

𝑥𝑡+1
𝑘 = 𝑥𝑡

𝑘 + 𝛽(𝑥𝑗 − 𝑥𝑖) + 𝛼 (𝑟𝑎𝑛𝑑 −
1

2
)   Equation 2.35 

where 𝛽(𝑥𝑗 − 𝑥𝑖)  indicates the attractiveness between the two fireflies xi and xj, 

𝛼 (𝑟𝑎𝑛𝑑 −
1

2
)  indicates the randomization, α is a randomization parameter (used to 

control the random movements of a firefly if there are no other fireflies) that governs the 

step length, and rand is a random number generator that produces random numbers from 

0 to 1 (Leke and Marwala 2016). Similarly, 𝑥𝑗   represents the observed data, and 𝑥𝑖  is the 

estimated value. The optimized value obtained after several iterations is then used to 

estimate missing data in a dataset.  

 

Another example of an algorithm is Wolf algorithm (Tang et al. 2012). Wolf algorithm is 

a meta-heuristic algorithm based on social animals that hunt for prey and watch out for 

predators in their habitat. Wolves have semi-cooperative characteristics that allow them 

to move in a loosely coupled group but hunt their prey individually. This natural behavior 

makes each wolf find its best position and then continuously move to a global best position 

and watch out for predators during hunting (Tang et al. 2012; Agbehadji, Millham and 

Fong 2016). The preying behavior of wolves is as a search for the best possible position 

for a successful hunt. The four basic rules formulated from the preying behavior of wolves 

are: preying initiatively, preying passively, escape from predators and scent marks.  

 

During preying initiatively, a step is used to check the visual perimeter, and this indicates 

whether the wolf should change its current position with the highest value or after a 
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random step in a random walk. Preferably a wolf moves to the highest best position within 

its visual perimeter. This is expressed in Equation 2.36 as: 

𝑥𝑡+1
𝑘 = 𝑥𝑡

𝑘 + 𝛽(𝑥𝑗 − 𝑓(𝑥𝑖)) + 𝑒𝑠𝑐𝑎𝑝𝑒    Equation 2.36 

where 𝑥𝑗 represents a peer with better position, 𝑥𝑖 is a current position of a wolf, r is the 

distance between the wolf and its peer 𝑥𝑐  with the better location within its visual 

perimeter 𝑉𝑝. The escape function calculates a random position to escape with a constraint 

of minimum length. Step size is less than visual distance. The attractiveness β of wolves 

to each other is expressed in Equation 2.37 as: 

𝛽 = 𝛽𝑜𝑒−𝑟2
      Equation 2.37 

where βo  represents initial attractiveness, and r denotes the distance. This distance is 

expressed in Equation 2.38 as: 

𝑉𝑝 ≤ 𝑟(𝑥𝑗 , 𝑥𝑐) = (∑ |𝑥𝑗,𝑘 − 𝑥𝑐,𝑘|𝜆)𝑛
𝑘=1

1

𝜆   Equation 2.38 

where λ is the order (1 or 2). 

 

Each wolf in a best position leaves a scent mark. This scent mark shows the number of 

times a mark is indicated in a given boundary by each wolf  (Agbehadji et al. 2016). The 

mark helps other wolves in the group to note best positions that were marked by their 

peers in the search space. The higher the frequency, the more attractive the position, which 

leads to a successful hunt. Scent mark is formulated in Equation 2.39 as: 

𝑆𝑚 = 𝑥(𝑖) ∗ ∑ 𝑓𝑛
𝑖=0      Equation 2.39 

When preying passively, a wolf does not find food or a better position where its group 

members are from the previous step. It then positions itself in alert mode so as to move to 

a better position in comparison with the position of its peers in the group. This is expressed 

in Equation 2.40 as: 

𝑥𝑡+1
𝑘 = 𝑥𝑡

𝑘 + 𝛼 ∗ 𝑟 ∗ 𝑟𝑎𝑛𝑑()     Equation 2.40 

where α and r are constants that represent velocity and distance, while rand is a random 

value from uniform distribution between 0 to 1. 
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Escape happens when a wolf detects an incoming predator. It then moves at random from 

its current position to a new position that is greater than its visual perimeter vp or distance. 

Escape is an important step that allows wolves to avoid being stuck in local optima. The 

escape is expressed in Equation 2.41 as 

𝑥𝑡+1
𝑘 = 𝑥𝑡

𝑘 + 𝛼 ∗ 𝑠 ∗ 𝑒𝑠𝑐𝑎𝑝𝑒()    Equation 2.41 

where s is step size, which is less than visual distance vp, 𝛼 is the velocity, and escape () 

is a function that randomly generates a new position greater than vp. 

 

2.2.1.2 Stage 2: Identifying and eliminating duplicate text 

The aim of the second stage of the data preprocessing model is to identify, match and 

eliminate duplicate text from data sources. Elmagarmid et al. (2007) define duplicate as 

when different strings refer to the same real-world entity. Naumann (2013) defines a 

framework for duplicate detection that is categorized into identity, similarity measure, 

algorithm used and evaluation aspects.  

 

The aspect of identity with respect to the framework for duplicate detection indicates the 

source of data (e.g. relational database, XML, etc.) that would be fed into the duplicate 

detection process (Naumann 2013). The focus of the review is not on whether data comes 

from single or multiple source, however, but on whether the source of data is authentic so 

as to ensure features that are defined (for the similarity measure) to correspond to the 

nature of data being considered for duplicate detection (such as text/string). 

 

The aspect of similarity measure with respect to the framework for duplicate detection 

compares two strings to find out if the strings are similar or not, hence the use of a string 

similarity measure to compute the similarity of strings (also known as character-based 

similarity metrics). A string similarity measure is the use of basic mathematical 

expressions to compute the distance between two strings (Moere 2004). The significance 

of this measure is that it shows the quality of strings of letters being compared in terms of 
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the similarity value computed between a pair of strings. During the computation of the 

distance between a pair of strings, similar strings are assigned a large score while 

dissimilar strings (that is, strings that are not the same) are assigned a low score. In 

contrast, the distance measure assigns low weight to similar strings and high weight to 

dissimilar strings within the range (0, 1). For instance, given a distance measure with a 

weight in the range (0, 1), the translation to the similarity measure can be performed by 

using the basic mathematical formulation in Equation 2.42:  

𝑠𝑖𝑚(𝑎, 𝑏)  =  1 − 𝑑𝑖𝑠𝑡(𝑎, 𝑏)     Equation 2.42 

where a, b are strings that are compared. The translation from similarity measure to 

distance measure is computed in Equation 2.43 as 

𝑑𝑖𝑠𝑡(𝑎, 𝑏) =  1 − 𝑠𝑖𝑚(𝑎, 𝑏)     Equation 2.43 

where a, b are strings that are compared. 

 

The two methods that can be applied to duplicate detection of words in order to find the 

similarity measure include the pairwise method and the partition-based method (Matsakis 

2010). The pairwise method was developed to find matches between two files or data 

sources (Matsakis 2010). The steps in computing a similarity measure in the pairwise 

method (Matsakis 2010) is as follows: First, the similarity function is expressed and used 

to scale the real-world dataset into a set of matched data. Secondly, a threshold is set for 

matched data. Mostly, in setting the threshold, the nature of data from the data source 

determines what threshold to set to define the “sensitive” nature of the data. For instance, 

data coming from a health institution may require non-disclosure on the kind of illness of 

a person, so in this context a threshold may be set to show records that are very close to 

each other in order to suggest who the data refers to and prevent it from being disclosed 

outside. Third, an algorithm links matched data together by computing a transitive closure 

of the match items. Afterwards, a binary representation is used to indicate the matched 

values of paired items or combine multiple attributes into a single value. Once paired items 

are found, a supervised learning algorithm could be used to build a classifier from labeled 

items to indicate whether the pair is a match (duplicate items). For instance, consider a 
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problem of duplicate detection in a relational database where multiple library databases 

with publication and author records are to be merged. A likely way to achieve the match 

is to declare publication records as co-referent, which implies that related author(s) 

record(s) would also be co-referent. The co-referent decision enables the matching of 

related records so as to find duplicates. The limitation of the pairwise method is that it is 

unable to identify global constraints because it is likely for an entity to have a small 

number of distinct values for a field (e.g. email address) but unlikely for there to be several 

(Matsakis 2010).  

 

During duplicate word/text detection, two strings/words are compared and either the first 

string is correct and the other string is considered as erroneous data that could be cleansed, 

or each matched string is considered as partial duplicate data that must be merged to 

produce a complete string (Monge 2000). Two strings are the same or equivalent if they 

are equal semantically, meaning strings obey the properties of transitivity, symmetry and 

reflectivity (Monge 2000). The transitive property states that for all real numbers x, 

y and z, if x=y and y=z, then x=z. The symmetric property states that for all real 

numbers x and y, if x=y, then y=x. The reflexive property states that for every real 

number x, x=x.  

 

The partition-based method is used when a dataset is large (Naumann 2013). This method 

assigns a score to a candidate partition based on how close it is to the true partition 

(Matsakis 2010). There are different approaches for generating scores for each partition, 

such as the use of the generative Bayesian model and discriminative models. While the 

Bayesian model uses conditional probability distributions to model uncertainties in 

unobserved duplicates, discriminative models assign scores to partitions without having 

strict conditional independence assumptions on the model.  

 

Identifying same real-world objects is achieved by the use of similarity measures in the 

data preprocessing stage in large datasets. The importance of the similarity measure is that 
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it enables the identification of exact and approximate duplicates of real-world objects 

(Sauleau, Paumier and Buemi 2005). Also, the similarity measure helps identify 

misspelled words in large datasets. Several similarity measures that have been proposed, 

and they can be categorized into the edit-based method, token-based method, domain 

dependent method and hybrid-based method (Naumann 2013).  

 

The edit-based method uses the distance between two words (in a record), which 

represents the same real-world object, to find a similarity value to suggest that two words 

are similar or incorrectly spelt. Examples of algorithms based on edit-based methods (also 

referred to as character-based methods) are Jaro-Winkler, Smith-Waterman, Hamming 

and Damerau–Levenshtein.  

 

The token-based method forms words from sequences of characters in a string (words) 

and assigns different weights to characters. An example of an algorithm based on the 

token-based method is n-gram (i.e. substrings of length n) (Cohen, Ravikumar and 

Fienberg 2003). Bilenko et al. (2003) compared the effectiveness of character-based and 

token-based method used by the Monge-Elkan metric and indicate that algorithms based 

on the character-based and token-based methods have the highest average performance 

across datasets and across character-based distance metrics. However, metrics that are 

robust and show high average performance may perform poorly on different datasets 

because performance of similarity measures is affected by characteristics such as the 

length of text, accuracy of spelling, presence of abbreviations, etc. (Gali, Mariescu-Istodor 

and Fränti 2016).  

 

The hybrid-based method applies both token-based and internal similarity function for 

tokens. An example of this algorithm is Monge-Elkan (Monge and Elkan 1997) and Soft 

Frequency-Inverse Document Frequency (TF-IDF). Monge and Elkan’s (1997) algorithm 

is a variant of the hybrid-based method that takes records as alphanumeric strings and uses 

the Smith-Waterman algorithm to compute the edit distance between two strings. This 
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algorithm is used in applications where the key field values of records are alphanumeric 

strings (Tian et al. 2002). Although the algorithm is accurate in performing comparisons 

when there are abbreviations and minor syntactical differences, including typographical 

mistakes, the running time is proportional to the length of string, which is problematic 

when there is a high volume of records to be compared (Monge 2000).  

The Soft TF-IDF is a hybrid-based method that combines the cosine distance with TF-

IDF weighted vectors and the Jaro-Winkler algorithm to compute the distance metric for 

name-matching, such as first name, middle name and surname (Gali et al. 2016). Initially, 

the Jaro-Winkler algorithm is applied to all pairs of tokens that appear between two 

strings, after which the TF-IDF measure is applied to tokens that have a similarity score 

above the threshold (θ ≥ 0.9) based on the newly evaluated Jaro-Winkler distance (Gali 

et al. 2016). However, cosine similarity measures may fail to correctly determine 

similarity if two records are similar because of differences in the representation of 

characters in words as a result of re-ordering of words or misspelling (Gali et al. 2016).  

 

The domain dependent method compares two numerical attributes and calculates their 

difference in order to find the absolute similarity value to suggest that two numbers are 

duplicate. Since the present study focuses on words that could be duplicates, more 

prominence is given to the edit-based method and the token-based method.  

 

The concept of edit distance is based on insertion, deletion or substitution of characters in 

words (referred as edit operation) (Tian et al. 2002). Approximately 80% of all misspelled 

words (Tian et al. 2002) contain a single instance of one of the following types of error: 

insertion, deletion, substitution and transposition. Thus, edit operations enable the 

identification of these types of errors. An insertion error occurs when a character is 

mistakenly inserted in a different position of a word. This makes the length of the mistaken 

word longer than the equivalent correct word. A deletion error occurs when a character is 

omitted from a word that makes the length of the mistaken word shorter than the correct 

word, while a substitution error occurs when a character is erroneously replaced by 
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another character. A transposition error erroneously interchanges the positions of two 

adjacent characters. Tian et al. (2002) indicate that the way to identify erroneous words is 

by comparing words. While similar words have the same similarity value, incorrectly spelt 

words have different similarity values, thus making the words far apart.  

 

Tian et al.’s (2002) approach on duplicate record detection splits records into clusters and 

then map record numbers based on the n-gram of field value. Tian et al. (2002) aimed to 

address data quality challenges that arise from syntactic and typographical errors, and to 

resolve the complex semantic inconsistency among data values. Using the approach of 

Tian et al. (2002), the numbers obtained are put in clusters, and records within each cluster 

are taken as potential duplicate records. Thereafter, records in each cluster are compared 

with other clusters to identify true duplicate records. The advantage of this approach is 

that it does not require preprocessing to correct syntactic or typographical errors in the 

source data, thus helping to achieve highly accurate detection. Also, the approach ensures 

only a fixed number of database scans, thus making the algorithm more time efficient. The 

challenge with the clustering approach is that as the volume of data increases, separating 

records into clusters could result in a number of shared n-grams (Kondrak 2005), where 

an error present in one cluster tends to affect only a limited number of parts, leaving the 

other cluster intact (Cavnar and Trenkle 1994). However, when a large number of clusters 

are involved, it may overlook duplicate words as an error in a cluster may be 

underestimated while showing results in a limited amount of time, so duplicate words 

might be missed if many.  

 

Hernandez and Stolfo (1995) apply equational theory, which consists of a set of rules to 

find whether two records are duplicates. The equational theory identifies equivalent 

records by a complex domain-dependent matching process, meaning the approach 

depends on the type of application being used. Although the approach achieves high 

accuracy of detection, it is application dependent. Hernandez and Stolfo (1998) apply 

equational theory and transitive closure to detect potential customer names in a direct 
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marketing-type application. The approach uses the transitive closure to combine 

independent results after multiple database passes in order to produce accurate results in 

finding duplicate records in massive amounts of data at lower computational cost. 

 

The framework used by Naumann (2013) indicates that one important aspect of the use of 

algorithms is that it links matched data together to show whether there are duplicate 

records/words or not. In order to find out whether strings are duplicate or not, several 

duplicate text detection techniques have been proposed, namely standard approach, sorted 

neighborhood, edit distance, and adaptive duplicate detection. These are discussed in the 

following subsections.  

i. Standard approach  

Monge (2000) indicates that the standard approach to detecting duplicates is to sort the 

data and perform pairwise comparison. When this is done, data is consecutively arranged, 

and duplicate data may be located in nearby or opposite extreme positions with increased 

index size of data (Kołcz and Chowdhury 2008).  

 

ii. Sorted neighborhood technique  

The sorted neighborhood technique uses merge and purge to find duplicate text 

(Hernandez and Stolfo 1995). The algorithmic process of the sorted neighborhood 

technique starts by creating key attributes, sorting the data based on key attributes and 

then merging the data.  

 

iii. Adaptive duplicate detection technique 

Adaptive duplicate detection (Monge 2000) is based on the concept of transitive closure 

such that duplicates are connected with each order to form an undirected graph. An 

undirected edge connecting each duplicate is found when each string corresponds to each 

order through a pairwise comparison method. This connection is then represented by a 

union and find approach (Cormen, Leiserson and Rivest 1990; Hopcroft and Ullman 
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1973). However, the adaptive approach can expand and shrink the cluster, depending on 

the data size by using priority queue of duplicate data instead of window size.  

 

iv. Edit-distance technique 

The edit distance technique uses the idea of the minimum number of operations (such as 

insert operations and update operations) performed on an individual alphabet to transform 

one string to another (Elmagarmid et al. 2007). The algorithm is domain independent and 

final collective matched results are displayed using the Union/Find algorithm (which 

keeps track of cluster of duplicates) instead of graph structure. For instance, the edit 

distance dist between to two strings s1 and s2 is matched to a minimum value ɛ. The two 

string attributes are required to be less than ɛ, formulated in Equation 2.44 as 

{(𝑥, 𝑦, 𝑑𝑖𝑠𝑡(𝑥, 𝑦)) | 𝑥 ∈ 𝑠1 ∧ 𝑦 ∈ 𝑠2 ∧ 𝑑𝑖𝑠𝑡(𝑥, 𝑦) ≤ 𝜀}   Equation 2.44 

 

An optimized mapping function f (which finds the letters of a string) over s1 and s2 with 

a new distance function ndist much less than initial dist is defined such that: 

 (∀𝑥, ∀𝑦, 𝑛𝑑𝑖𝑠𝑡(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝑑𝑖𝑠𝑡(𝑥, 𝑦)    Equation 2.45 

 

The determined f and ndist is used to compute the pairs (x, y) such that: 

𝑛𝑑𝑖𝑠𝑡(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝜀    Equation 2.46 

where 𝜀 represents the minimum value that ensures that the distance between pairs does 

not exceed the control parameter.  

 

The strength of each pair of string in terms of the distance between two strings/words can 

be achieved by calculating distances (in terms of score or weight between 0 and 1) between 

pairs (Elmagarmid et al. 2007) using algorithmic techniques such as Damerau–

Levenshtein (Damerau 1964), Hamming (Hamming 1950), the Jaro-Winkler distance 

metric (Jaro 1995, 1989; Winkler 1999), the Smith-Waterman algorithm (Smith and 

Waterman 1981) and the Basic Local Alignment Search Technique (BLAST) (Altschul et 
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al. 1990). In the following subsections, the study explores further algorithms that have 

been developed based on the edit-based methods as these form a significant portion of the 

study. 

 

a. Damerau–Levenshtein  

The Damerau–Levenshtein algorithm (Damerau 1964) is a modified version of the 

Levenshtein algorithm that considers the transposing of two adjacent characters. The 

challenge with the Damerau–Levenshtein algorithm is that when characters are 

transposed, there is additional computation cost. The Levenshtein (1966) algorithm counts 

the number of edits, such as insertion, deletion and substitution, that are needed to change 

a string another.  

 

b. Hamming distance  

The Hamming distance method (Hamming 1950; Bard 2007) allows only substitution of 

words with the same/fixed length. In comparing different lengths that not only involve 

substitution but also insertion or deletion, the Hamming distance method is not appropriate 

as datasets in the real world have different lengths of words.  

 

c. Jaro distance metric  

The Jaro distance is used to compute the distance between two strings (A and B) and is 

based on matching and transposition of short strings (Jaro 1995, 1989; Winkler 1999) 

instead of long strings. The Jaro distance (Jaro 1989) and Jaro-Winkler distance allow 

only transposition of characters and, consequently, it is more suited for comparing short 

strings like words and names, even though the length of the shortness is not universally 

defined. The Jaro distance metric compares a short string (such as first and last names) to 

find the match of characters, then computes a metric based on the two strings. A character 

is transposed if it occurs immediately after the expected location of a character in a string. 

The transposition of a character is included in the Jaro distance value calculation only if 

it occurs in both strings. The letter transposition used in Jaro distance metrics makes it 
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robust at finding similarity measures in short letters. The distance value is computed using 

the following steps:  

 

Step 1: computation of length |s1| and |s2| of the two strings. 

Step 2: search matched (common) character k in strings s1[i] and s2[i] such that 

s1[i]=s2[j] and |𝑖 − 𝑗| ≤
1

2
min {|s1|, |s2|} 

Step 3: compute the number of transpositions t, by comparing the ith common character 

in s1 with the ith common character in s2. Thus, each non-matched character is a 

transposition.  

The distance value is computed in Equation 2.47 as 

𝐷𝑗 =
1

3
∗ (

𝑘

|𝑠1|
+

𝑘

|𝑠2|
+

𝑘−
𝑡

2

𝑘
)     Equation 2.47 

The Jaro distance was enhanced by William E. Winkler (1999) on the basis that two 

comparing strings are given a higher score if they start with the same letters. The reason 

being that mistypes of letters are not usually seen in the start of strings (Ilyankou 2014). 

This suggests that mistype errors mostly occur in the middle or at the end of words. The 

strings that have longer sets of characters in common at the start of comparison are given 

a higher similarity score (Ilyankou 2014). The final Jaro-Winkler score is obtained from 

the expression in Equation 2.48 as  

𝐷𝐽𝑎𝑟𝑜−𝑊𝑖𝑛𝑘𝑙𝑒𝑟 = 𝐷𝑗 + 𝑙 ∗ 𝑝 ∗ (1 − 𝐷𝑗)   Equation 2.48 

where 𝐷𝑗  is the Jaro distance value for a pair of strings, l is number of repeating words at 

the start of two words, and p is the coefficient between [0, 1] which is define by a user. In 

this case, if p is arbitrarily set as 5, then it means two strings which start with 3 identical 

characters can be regarded as the same, thus coefficient p=1/3. After several experiments 

to define a standard coefficient value for p, a value of 0.1 was defined as the most 

appropriate standard value (Ilyankou 2014). The disadvantage of the Jaro-Winkler 

algorithm is that it works best with short strings or words such as personal names.  
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d. Smith-Waterman algorithm  

The Smith-Waterman algorithm (Smith and Waterman 1981) is a dynamic programming 

that applies the pairwise method to compare sequence of two strings in order to find the 

best matching piecewise (local alignment). The Smith-Waterman algorithm performs 

deletion, updating or insertion (Smith and Waterman 1981) of characters in words, and it 

is more suited for performing local alignment of words. Generally, alignment is an 

arrangement of characters in a word. The significance of local alignment is that it either 

compares a short sequence to a large sequence or a partial sequence to a whole sequence, 

or it identifies newly determined sequences. Aligning sequences of words helps discover 

the relationship between the two words. This relationship is expressed as the minimum 

distance, so the more minimum a distance is, the better the chances to avoid missing 

matches that guarantees an optimal local alignment and gives the best performance on 

accuracy of results (Pearson 1991; 1995). 

 

With the Smith-Waterman algorithm, instead of comparing the total sequence of strings 

as a whole, the algorithm group compares strings into sub-groups or local alignments (that 

is, sequences with maximum level of similarity) until the search for optimal alignment of 

strings within each group is complete. The change in alignment is expressed using 

deletion, updating or insertion of characters in a string (Monge 2000). During string 

matching, the algorithm considers the gap between two strings and then computes the 

alignment of strings using a matrix formulation. Three parameters used in the matrix 

formulation are: the score matrix E of the match of each symbol (that is, space, comma 

and period) in the alphabet, the cost of starting (s) a gap and the cost of continuing (c) a 

gap. The ratio of these parameters determines the efficiency of the algorithm. The 

approximate match in the optimal alignment is the maximum similarity between each 

string computed in Equation 2.49 as follows:  

𝑀[𝑖][𝑗] = 𝑚𝑎𝑥 {

𝑀[𝑖 − 1][𝑗 − 1] +  𝑠(𝑎𝑖 , 𝑏𝑗)

𝑀[𝑖 − 1][𝑗] − 𝑐;   𝑖𝑓 (𝑎𝑖 , −)

𝑀[𝑖][𝑗 − 1] − 𝑐;   𝑖𝑓 (−, 𝑏𝑗)

    Equation 2.49 
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where an entry into the matrix E(i,j) will produce the best possible match m of the prefix 

of two strings. When the prefixes match, their alignment a is found along the diagonal. 

The best possible score of the matrix is computed in Equation 2.50 as: 

𝑆𝑐𝑜𝑟𝑒 = 𝑀𝑎𝑥𝑖,𝑗=1
𝑛 (𝑀𝑎𝑡𝑟𝑖𝑥[𝑖][𝑗])    Equation 2.50 

 

A change on an item can be as a result of deletion, updating the characters in a string. 

Although computational time and complexity is a challenge with the Smith-Waterman 

algorithm, the search process tends to minimize the distance or maximize the similarity 

between the compared strings (Altschul et al. 1990) and gives the best performance on 

accuracy of results. 

 

e. Basic Local Alignment Search Technique 

The BLAST algorithm (Altschul et al. 1990; Shpaer et al. 1996) is a heuristic method that 

finds the highest score of local optimal alignments between a query sequence and a 

database. Basically, the BLAST for sequence alignment is based on computational 

biology for protein and DNA analysis (Guo, Wang and Devabhaktuni 2011). The BLAST 

algorithm is based on the assumption that a good alignment often contains short lengths 

of same matches (Altschul et al. 1990). This suggests that when two sequences of words 

are similar, there is a shorter length that results in high similarity. 

 

The algorithm operates in three steps: the first step is to accept a word length and find the 

score; in the second step, the database is searched; and the third step finds each hit if it is 

within the threshold score for the Maximal Segment Pair. The BLAST algorithm was 

developed from the Smith-Waterman algorithm. The difference between the BLAST 

algorithm and the Smith-Waterman algorithm is that the BLAST algorithm finds short 

matches between sequences of string for optimal alignment without considering an entire 

sequence of string, so less computation time is involved. The Smith-Waterman algorithm 

also considers an entire sequence of strings to find local optimal alignments. Therefore, 

high computational time is involved. The advantage of Smith-Waterman is the accuracy 
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of the entire sequence local alignment (Altschul et al. 1990). Thus, the Smith-Waterman 

algorithm avoids missing important data in the string of data. Heuristic methods are 

random search methods that help reduce the time and computational cost to speed up the 

local alignment search (Rajasekaran et al. 2001). Although the BLAST algorithm provides 

search results in a short time, it may not guarantee accurate results as compared to the 

Smith-Waterman algorithm (Shpaer et al. 1996).   

 

In summary, application tools developed from the Smith-Waterman algorithm include 

FAST All (FASTA) (which works with any alphabet (Pearson 1991)) and FASTP 

(Lipman and Pearson 1985) for protein and DNA sequence alignment in a database 

(Pearson 2014). Smith-Waterman has also been applied in the development of hardware 

devices. An example of such a development is the “Fast data finder”, which matches the 

accuracy of software versions while greatly speeding up its execution (Shpaer et al. 1996). 

Pearson (1995) compares the accuracy of BLAST, FASTA and Smith-Waterman on 

protein sequences, and the results suggest that both FASTA and Smith-Waterman are 

more sensitive than BLAST. Pearson (2014) indicates that the application of BLAST and 

FASTA can be challenged by today’s very large protein databases. Thus, search sensitivity 

(in terms of accuracy) can be improved by searching smaller comprehensive databases for 

complete protein sets where a slight mismatch is not acceptable, which might be applied 

to datasets considered to contain “sensitive” information (e.g. health records). 

 

CLC bio (2007) indicates that the current dispensation of big data requires fast and 

effective data analysis. Algorithms like BLAST have replaced the Smith-Waterman 

algorithm as demands for time to handle large amounts of data are stronger and more 

prevalent. However, the concern about the risk of missing important information, if not 

using the most sensitive algorithm for database searches, becomes even more relevant. 

Thus, the use of the Smith-Waterman algorithm is significant when accuracy of 

information is key. Moreover, the use of the Smith-Waterman algorithm is becoming more 

and more widespread when high accuracy is needed (CLC bio 2007). In the sense that 
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Smith-Waterman search guarantees to find optimal local alignments and returns only one 

result per comparison, however, the search process performs a larger number of 

computations than BLAST. Therefore, the Smith-Waterman algorithm may be enhanced 

to perform accurate comparison with less computing time when large volumes of data are 

required. Meanwhile, in principle, all pairs of records/words in a dataset should be 

compared, which is highly infeasible when a large volume of data is used in a big data 

analytics framework (Naumann and Herschel 2010). 

 

CLC bio (2007) indicates that the Smith-Waterman algorithm should be used when 

obtaining exact search results on comparison is more important than time. This 

proposition was as a result of an empirical study that used the Smith-Waterman algorithm 

to compare query sequences and the sequences in the database on a character-to-character 

level. The study by CLC bio (2007) demonstrates that Smith-Waterman was able to find 

optimal local alignment instead of global alignment considering segments of all possible 

lengths by allowing deletion and insertion of arbitrary lengths to optimize the similarity 

measure (CLC bio 2007). The deletion and insertion process led to longer time to compute 

the optimal local alignment. However, this suggests that with the ever-increasing scale of 

data, enhancing the Smith-Waterman algorithm to improve both accuracy and time to 

compute deletion and insertion becomes relevant in duplicate detection.  

 

Monge (2000) suggests that the accuracy of duplicate detection algorithms can be 

improved by defining a small window size where results of several database passes for 

duplicates are combined for the same cost, rather than one pass over the database with a 

large window size. One way to combine the results of multiple passes on words is by 

computing the transitive closure of all discovered pairwise alignments using an “is a 

duplicate of” relationship. However, in typical databases, duplicate words tend to be 

distributed sparely over the space of possible records, and the propagation of error is rare 

(Monge 2000).  
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This discussion above presented a review of related work on duplicate detection 

algorithms and their associated challenges. The review showed the following distinctions: 

while Jaro distance (Jaro 1989) allows only transposition of characters, the Smith-

Waterman algorithm allows deletion, updating or insertion of characters (Smith and 

Waterman 1981). The challenge with the Smith-Waterman algorithm is that it is unable to 

perform global alignment of characters to reveal accurate duplicate words, whereas the 

Jaro-Winkler algorithm is used to compare short words such as names. The reason for 

choosing the Jaro-Winkler and Smith-Waterman algorithms is to demonstrate the 

accuracy of pairwise comparison of words in large datasets and determine whether 

pairwise comparison may lead to information loss if large amounts of data are involved. 

The Naumann’s (2013) framework for duplicate detection as explained ealier will be 

adopted for this study because of its simplified process that is identity, similarity measure, 

algorithm used and evaluation aspects. 

 

2.2.1.3 Stage 3: Data transformation  

Data transformation is the process of converting or consolidating data through 

normalization, hierarchical representation of attributes (generalization) and attribute 

construction into a suitable format for mining and visualization (Panda, Nag and Jana 

2014).  

 

Data normalization resolves differences in choice of measurement by assigning equal 

weights to all data attributes considered for transformation. Normalization is significant 

for data classification algorithms because it puts attributes within a small and specified 

range (0.0, 1.0) for easy analysis of items. The approaches used in data normalization are 

min-max, z-score (zero-mean) and decimal scaling (Panda et al. 2014).  

 

The min-max approach does linear transformation of the original data value and preserves 

the relationship with the original data through mapping. Given an observed value vi of an 
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attribute A, the mapping onto v in the new range [Newmin(A), Newmax (A)] is computed in 

Equation 2.51 by:  

𝑣𝑖
, =

𝑣𝑖−𝑚𝑖𝑛(𝐴)

𝑚𝑎𝑥(𝐴)−𝑚𝑖𝑛(𝐴)
(𝑛𝑒𝑤𝑚𝑎𝑥(𝐴) − 𝑛𝑒𝑤𝑚𝑖𝑛(𝐴)) + 𝑛𝑒𝑤𝑚𝑖𝑛(𝐴)  Equation 2.51 

where 𝑣𝑖
,
 contains the min-max values.  

 

Instances where the min-max values of attributes are unknown, the z-score approach is 

most suitable. This approach uses the mean and standard deviation (σ) of numeric attribute 

A. The observed numeric value vi is then normalized using the expression in Equation 2.52 

as: 

𝑣𝑖
, = (𝑣𝑖 − 𝑚𝑒𝑎𝑛) /𝜎    Equation 2.52 

 

The standard deviation (σ) for the population is expressed in Equation 2.53 as: 

 



N

i

i meanv
N 1

21
      Equation 2.53 

where N is the total population. When population standard deviation is unknown, samples 

are small. 

 

The decimal scaling (Panda et al. 2014) is normalized by moving decimal points based on 

the absolute value of the attribute A. A numeric value vi is normalized to 𝑣𝑖
,
 as in Equation 

2.54: 

𝑣𝑖
, =

𝑣𝑖

10𝑗     Equation 2.54 

where j is the smallest integer with the max (|𝑣𝑖
, |) < 1, vi is the range values, 𝑣𝑖

,
is the 

scale value, and the range of decimal scale is between (-1, 1). 

 

The data transformation helps better understand data distribution and also results in data 

discretization in range.  
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2.2.1.4 Stage 4: Data reduction  

Data reduction is the process of reducing volumes of data from original data sources 

(Rehman 2016). During the search process, relevant features are selected and condensed 

into groups/subsets by removing redundant features and condensing the size of data into 

subsets. The significance of this process is that relevant features are selected with less 

computational time (Crone, Lessmann and Stahlbock 2006) as a result of the efficient 

search process.  

 

The approaches to data reduction when velocity and volumes matter are: dimensionality 

reduction, numerosity reduction and data compression (Rehman 2016). Dimensionality 

reduction is the removal of attributes that are considered not important. Although what 

constitutes “not important” is subjective, meaning it refers to users’ discretion, techniques 

used to implement dimensionality reduction include Principal Components Analysis 

(PCA) and random forests/decision tree ensembles. PCA is a data preprocessing technique 

that combines similar or correlated attributes together and creates new attributes that are 

superior to the original attributes (Janecek and Gansterer 2008). The random 

forests/decision tree ensemble (Breiman 2001) approach to dimensionality reduction is 

useful in generating large and carefully constructed sets of trees against a target attribute 

and then use each attribute’s usage statistics to find the most informative subset of 

features. The random forest approach is related to nearest neighbor predictors due to the 

set of trees emanating from a single neighbor. Thus, if a single attribute is often selected 

(based on the rate/frequency/calculated score) as best split, then that particular feature is 

selected and retained into a respective subset as the relevant feature. The split which forms 

an ensemble method is based on the divide-and-conquer approach. Random split selection 

(Dietterich 1998) is applied to split each selected node at random from among several K 

best splits (Breiman 2001). During the ensemble process, each iteration generates an 

output set of features. These outputs constitute new training sets, which are further 

randomized in the original training set used for the feature selection (Breiman 1999).  
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In contrast, numerosity reduction uses statistical techniques such as regression and log-

linear models, sampling and clustering to reduce the size of data, while data compression 

techniques compress the original data (either string or video) into approximated data 

(Ramya and Pushpa 2016). In respect of these approaches, the following subsections 

review the methods of feature selection.  

 

i. Methods of feature selection 

Generally, features may be characterized as relevant, irrelevant or redundant. A feature 

may be considered as an attribute of data (e.g., a person has an attribute such as name). A 

feature is said to be a relevant feature when it has an influence on output features and its 

role cannot be assumed by other features in a dataset. A feature is irrelevant when it does 

not have any influence on output features and its values are generated at random. Finally, 

a redundant feature is one that assumes a role of another feature. The characteristic of a 

feature leads to the use of different methods for feature selection. These methods are 

categorized into the filter method (which is classifier-independent), the wrapper method 

(which is classifier-dependent) (Liu et al. 2017) and the embedded method (Elisseeff and 

Guyon 2003).  

 

The filter method finds the relevance of a feature (Liu et al. 2017) in a class by evaluating 

each feature without the use of a learning algorithm. A feature classification algorithm 

that adopts the filter model evaluates the goodness of each feature and ranks features by 

distance measure (Almuallim and Dietterich 1994), information measure (Ben-Bassat 

1982) and dependency measure (Hall 2000).  

 

The distance measure (Almuallim and Dietterich 1994) finds the difference in value 

between two features. If the difference is equal to zero, then the features are 

indistinguishable, otherwise the features are distinguishable. Hence, features are separated 

into different subsets based on the distance computed. In contrast, the information measure 

finds the information gain of a feature. The information gain is expressed as the difference 
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between uncertainties, defined as a situation where a decision to select a feature is based 

on the prior amount of information gain on each feature and the expected amount of 

information gain of each feature.  

 

The dependency measure (also referred to as the correlation measure) predicts the value 

of one feature from the value of another feature. The prediction of a feature is based on 

how strongly the feature is associated with/dependent on a class/subset of features. A high 

dependency value could suggest that a feature is strongly associated with a subset, 

otherwise a feature is weakly associated with a subset. The measured values are ranked in 

terms of relative importance to select the relevant feature. Moreover, these measures used 

for evaluating and ranking features are the basis for not using a learning algorithm in the 

selection of features in the filter method. Since the filter method does not use a learning 

algorithm, less computational time is spent on selecting individual features. The challenge 

with the filter method is that it ignores the combination of features because it is unable to 

learn from features.  

 

The wrapper method (Kohavi and John 1996) uses a learning algorithm to learn from 

every possible feature subset, trains the selected subset and evaluate its usefulness (Liu et 

al. 2017; Uncu and Turksen 2007). Selected features are ranked according to their 

usefulness and predictive power of the classification algorithm, which is measured in 

terms of performance of the classification algorithm (Fong, Yang and Deb 2013). The 

wrapper method uses a statistical re-sampling technique called Cross Validation and 

measures the accuracy of classification results. The approach to learning methods includes 

the artificial neural network and the support vector machine, which are discussed in 

subsequent paragraphs. The search strategies used in the wrapper search method are 

categorized into sequential search (forward selection and backward elimination search), 

exhaustive search and random search (Dash and Liu 1997). The sequential search strategy 

includes the use of forward and backward techniques to iteratively add or remove features. 

On the one hand, the forward selection algorithm starts an iteration with an empty set and 
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uses specified objective functions to select features into subsets. On the other hand, the 

backward selection algorithm starts with a full set of features and uses a specified 

objective function to remove least significant features that do not met the set criteria 

(Marill 1963).  

 

An exhaustive search performs a complete search of the entire feature subset and then 

selects the possible optimal result (Waad, Ghanzi and Mohamed 2013). When the number 

of features grow exponentially, the search takes more computational time (Aboudi and 

Benhlima 2016), thus leading to low performance during search. The random search 

strategy (also referred to as population-based search) is a meta-heuristic optimization 

approach based on the principle of evolution in search for a better solution. The advantage 

of the random search strategy over sequential and exhaustive search is the reduction in 

computation cost and time. 

 

The third category of the feature selection method is the embedded method, which selects 

features by putting data into two sets, namely training and validation sets. When variables 

that define features are selected for training, retraining a predictor variable for every 

variable subset is avoided (Kumar and Minz 2014), and this makes the embedded method 

reach solutions fast. However, predictor variable selection is model specific.  

 

As mentioned earlier, among the traditional approaches to learning methods/machine 

learning methods are the artificial neural network (ANN) and support vector machine 

(SVM). The neural network is an interconnected group of nodes (neurons) where each 

node receives inputs from other nodes and assigns weights between nodes to adapt so that 

the whole network learns to perform useful computations (Bishop 2006). The challenge 

with algorithms based on ANN is that it requires many iterations over the training set 

before choosing its parameter (Aamodt 2015), leading to high computation. The neural 

network structure and learning algorithms use the perceptron neural network (that is, an 

algorithm for supervised classification) and back-propagation. The advantage of a 
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learning algorithm is that it helps in adapting weights of a neural network by minimizing 

error between a desired output and an actual output. The aim of the back-propagation 

algorithm is to train multi-layer neural networks by computing error derivatives in hidden 

activities and updating weights accordingly (Kim 2013). The back-propagation algorithm 

uses gradient descent to adjust the connections between units within the layers such that 

any given input tends to produce a corresponding output (Marcus 2018).  

 

Another traditional approach to learning is the use of an SVM. The SVM performs 

classification by constructing an N-dimensional hyper-plane that optimally separates data 

into two categories (Boser, Guyon and Vapnik 1992). However, when large volumes of 

data are involved, it results in high computational cost in training and selection of features 

(Lin, 2006) and may not be efficient in providing optimal results. These challenges led to 

the concept of deep learning, which historically originated from ANNs (Deng and Yu 

2013). 

 

Deep learning as a method for feature selection is defined as a sub-field of machine 

learning that is based on learning several levels of representation, corresponding to a 

hierarchy of features where higher-level features are defined from lower-level ones, and 

the same lower-level features can help define many higher-level features (Deng and Yu 

2013). Marcus (2018) indicates that deep learning is a statistical technique that helps 

classify patterns based on sampled data using neural networks with multiple layers. The 

neural networks used in deep learning consist of a set of input units that stand for things 

like pixels or words, multiple hidden layers (the more such layers, the deeper a network 

is said to be) containing hidden units (also known as nodes or neurons), and a set of output 

units, with connections running between those nodes (Marcus 2018) to form a mapped 

structure between inputs and outputs. This mapped structure that is formed between the 

input and output nodes gives an indication of how nodes are connected to form a complex 

representation of large data. In this regard, providing an efficient way to optimize a 

complex representation of data could ensure that the test dataset used in neural networks 
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loosely resembles the training set. This close resemblance suggests a minimization of 

deviations between test and training sets in large datasets. Therefore, deep learning is a 

way to optimize complex systems to map inputs and outputs, given a sufficient amount of 

data (Marcus 2018). 

 

In principle, deep learning uses multiple hidden layers of non-linear processing that is 

hierarchical, as well as parameters to learn from hidden layers using different algorithms 

(such as back-propagation algorithms) with large amounts of available training data (Patel, 

Nguyen and Baraniuk 2015). Based on these two principles, deep learning methods for 

classifying patterns are deep discriminative models/supervised-learning models (e.g. deep 

neural networks or DNNs, recurrent neural networks or RNNs, convolutional neural 

networks or CNNs, etc.) and generative/unsupervised models (e.g. deep belief networks 

or DBNs, deep Boltzmann machines or DBMs, etc.).  

 

A deep neural network (DNN), sometimes referred to as DBN, is a multilayer network 

with many hidden layers, whose weights are fully connected and initialized (pre-trained) 

using stacked RBMs or DBN (Deng and Yu 2013). A recurrent neural network (RNN) is 

a discriminative model but has also been used as a generative model where “output” 

results from a model represent the predicted input data. When an RNN is used as a 

discriminative model, the output result from the model is assigned a label, which is 

associated with an input data sequence (Deng and Yu 2013). Recurrent nets (RNNs) have 

been applied on sequential data such as text and speech (LeCun, Bengio and Hinton 2015) 

to scale up large text and speech recognition. RNNs have been found to be very good at 

predicting the next character in the text or the next word in a sequence, but they can also 

be used for more complex tasks (LeCun et al. 2015). 

 

Learning of parameters in RNN has been improved through the use of information flow 

in bi-directional RNNs and a cell of LSTM (long short-term memory). The challenge is 

that when training neural networks for deep learning classification problems, the back-
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propagated gradients approach often used either grows or shrinks (that is, decays 

exponentially in the number of layers (Schmidhuber 2014)) at each time step, so over 

many time steps it typically explodes or vanishes (that is, increases out of bounds or 

decreases at each iteration) (LeCun et al. 2015). Several methods to solve the exploding 

and shrinking of a learned parameter include the primal-dual training method, cross 

entropy (Deng and Chen 2014), echo state networks and sigmoid as activation functions 

(Sohangir et al. 2018), among others. While the primal-dual training method was 

formulated as an optimization problem, the cross entropy is maximized, subject to the 

condition that the infinity norm of the recurrent matrix of the RNN is less than a fixed 

value to guarantee the stability of RNN dynamics (Deng and Yu 2013). In the echo state 

network, the output layers are fixed to be linear instead of nonlinear, and the recurrent 

matrices are designed, not learned. Similarly, the input matrices are also fixed and not 

learned, due partly to the difficulty of learning. The sigmoid functions are mathematical 

expressions that define the output of a neural network given a set of data inputs. 

Meanwhile, the use of LSTM enables networks to remember inputs for a long time using 

a memory cell that acts like an accumulator, which has a connection to itself at the next 

time step (iteration) and has a weight, so it copies its own real-valued state and temporal 

weights. But this self-connection is multiplicatively gated by another unit that learns to 

decide when to clear the content of the memory (LeCun et al. 2015). LSTM networks 

have subsequently proved to be more effective, especially when they have several layers 

for each time step (LeCun et al. 2015). 

 

A convolutional neural network (CNN) shares many weights, and pools outputs from 

different layers, thereby reducing the data rate from the lower layers of the network. 

Abdel-Hamid et al. (2014) indicate that time sharing and frequency are the two 

dimensions used in CNN that are useful in time delay neural networks, such as for speech 

recognition. The CNN has been found highly effective in computer vision, image 

recognition (LeCun et al. 1998; Krizhevsky, Sutskever and Hinton 2012) and speech 

recognition (Abdel-Hamid et al. 2014; Deng and Yu 2013) in order to analyze the internal 
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structure of complex data through convoluted layers. The CNN has also gained attention 

in text data, such as sentence modeling, search engines, in systems for tagging (Weston, 

Chopra and Adams 2014), sentiment analysis (Sohangir et al. 2018) and stock market 

price prediction (Aamodt 2015).  

 

The Deep Boltzmann machine (DBM) is a special Boltzmann machine where the hidden 

units are organized in a deep, layered manner. Only adjacent layers are connected, and 

there are no visible-visible or hidden-hidden connections within the same layer. A deep 

belief network (DBN) is a probabilistic generative model composed of multiple layers of 

stochastic, hidden variables. The top two layers of deep belief networks have undirected, 

symmetric connections between them, whereas the lower layers receive top-down, 

directed connections from the layer above. Table 2.2 shows a summary of related work 

on deep learning: 

Table 2.2 Deep learning methods and problem domains 

Deep learning method Search/problem domain Author(s) 

Convolutional Deep Belief 

Networks 

Unsupervised feature 

learning for audio 

classification  

Lee, Largman, Pham and Ng 

Convolutional Deep Belief 

Networks 

Scalable unsupervised 

learning of hierarchical 

representations. 

Lee, Grosse, Ranganath and 

Ng (2009) 

Deep Convolutional Neural 

Networks (DCNN) 

Huge number of high-

resolution images  

Krizhevsky et al. (2012) 

Deep Convolutional Neural 

Networks 

Event-Driven Stock 

Prediction 

Ding et al. (2015) 

Deep Neural Networks Classification of stock and 

prediction of prices 

Batres-Estrada (2015) 

Deep Neural 

Network-Hidden Markov 

Models (DNN-HMMs) 

Discovering features in 

speech signals 

Jaitly (2014) 

Training the CNN 

architecture based on the 

back-propagation algorithm 

Character recognition in 

sequential text 

LeCun et al. (1998) 

Convolutional Neural 

Network 

Stock trading Siripurapu (2015) 
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From Table 2.2, it can be observed that recent research has applied deep learning to 

different search domains such as image processing, stock trading and character 

recognition in sequential text analysis, among others that demonstrate the unique 

capabilities of deep learning methods for classification of features in large dataset 

analysis. 

 

The distinction between supervised and unsupervised learning is that, in supervised 

learning, a pre-classified example of features is available for learning and the task is to 

build a (classification or prediction) model that will work on unseen examples. In 

unsupervised learning, meanwhile, there are neither pre-classified examples nor feedback 

to the learning model (this technique is suitable for clustering and segmentation tasks) 

(Barto and Sutton 1997; Kotsiantis 2007). These networks are generally trained by a 

gradient descent algorithm designated back-propagation. The back-propagation algorithm 

computes the gradient (a vector of partial derivatives) of an objective function with respect 

to the parameters in a neural network (Le 2015). However, for deep networks, back-

propagation alone has the problem of being trapped in local optima in the non-convex 

objective function (Patel et al. 2015).  

 

Building classifiers from deep learning techniques integrated with meta-heuristic search 

methods (also referred to as random search strategy, as mentioned earlier) enhances 

computational efficiency and the quality of selecting useful and relevant features (Li et al. 

2017). The advantage of meta-heuristic search methods is that they use random search 

strategies to avoid being trapped in local optima when the search space grows 

exponentially. Meta-heuristic algorithms that have been integrated with traditional 

machine learning methods include the following, as indicated by Fong et al. (2013) and 

summarized in Table 2.3: 

 

Table 2.3:  Meta-heuristics algorithms integrated with traditional method  
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Author(s) Traditional methods of 

classification 

Meta-heuristics/bio-

inspired algorithm 

Search domain 

Ferchichi, Laabidi 

and Zidi (2009) 

Support vector machine Tabu search, GA Urban transport 

Unler and Murat 

(2010) 

Logistic regression Particle swarm 

optimization (PSO), 

Scatter search, Tabu 

search 

General 

Unler, Murat and 

Chinnam (2011) 

Support vector machine PSO General 

Abd-Alsabour, 

Randall and Lewis 

(2012) 

Support vector machine ACO General  

J. Wang, Hedar, S. 

Wang and Ma (2012) 

Rough set Scatter search Credit scoring 

Fong et al. (2013) Neural Network Wolf Search 

Algorithm 

General 

 

It can be observed from Table 2.3 that research is focused on traditional machine learning 

methods with meta-heuristic search methods. However, with the current dispensation of 

very large volumes of data, traditional machine learning methods are not suitable because 

of the risk of being stuck in local optima and the likelihood that the same results might be 

recorded as more data is generated, which might not give an accurate result on feature 

selection for a classification problem. Among the meta-heuristics-based algorithms used 

are GA, Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), the Wolf 

Search Algorithm (WSA), Multiple Species Flocking (MSF) model and the Bat 

Algorithm.  

 

a. Genetic Algorithm 

GAs are an evolutionary approach based on survival of the fittest. This survival 

mechanism, as explained earlier, helps formulate adaptive search procedures to select 

feature subsets by optimizing an objective function/fitness function in any given search 

problem. 
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b. Ant Colony Optimization (ACO)  

Ant Colony Optimization (ACO) (Dorigo and Cambardella 1997) is a meta-heuristic 

inspired by the foraging behavior of real ants in their search for the shortest paths to food 

sources. When a source of food is found, ants deposit a pheromone to mark their path for 

other ants to traverse. A pheromone is an odorous substance used as a medium of indirect 

communication between ants. The quantity of pheromone depends on the distance, 

quantity and quality of the food source (Al-Ani 2007). However, the pheromone substance 

tends to decay or evaporate with time, which prevents ants from converging to sub-optimal 

positions (Stützle and Dorigo 2002). When a lost ant that moves at random detects a laid 

pheromone, it is likely that it will follow the path to reinforce the pheromone trails. Thus, 

ants make probabilistic decisions by updating their pheromone trail and local heuristic 

information (Al-Ani 2007) to explore larger search areas.  

 

Dorigo and Cambardella (1997) define a trail as the formation and maintenance a line. 

Ants use trails or pheromone trails both to trace a path to a food source and to prevent 

themselves from getting trapped in a single food source (Agbehadji 2011). Each time an 

ant searches, trails are drawn and pheromone substances are deposited in the trail. This 

substance helps ants to communicate with each other about the location of food sources. 

Therefore, other ants continuously follow this path and also deposit substances for the trail 

to remain fresh. Computational systems that depict ant pheromone behavior creates local 

and global trail-updating formulations. This updating strategy constitutes the property of 

a meta-heuristic method (Blum and Roli 2003), thus an ant colony is regarded as a meta-

heuristic algorithm.  

The local trail updating formula is motivated by trail evaporation or trail decay in real ants 

(Dorigo and Cambardella 1997), and this formula is expressed in Equation 2.55 as 

𝜏(𝑟, 𝑠) ← (1 − 𝛼) ∗ 𝜏(𝑟, 𝑠) + 𝛼 ∗ 𝜏0    Equation 2.55 

where 𝜏0 is a parameter, 𝑟(𝑟, 𝑠) is the edge on a line, and α is a control parameter. 

 

The following probabilities formula was applied to find s in Equation 2.56: 
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𝑠 = {
𝑎𝑟𝑔 𝑚𝑎𝑥

𝑢∉𝑀
{[𝜏(𝑟, 𝑢) ∗ 𝜂(𝑟, 𝑢)]𝛽}   𝑖𝑓 𝑞 < 𝑞0

𝑆                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    Equation 2.56 

where 𝜏(𝑟, 𝑠) is the amount of pheromone trail on the edge (r,u), 𝜂(𝑟, 𝑢) is a heuristic 

function that is the inverse of the distance between two edges r and u, β is a parameter that 

represents the relative importance of the pheromone trail and of closeness, q is the random 

probability between 0 and 1 and  S is a random variable selected according to the following 

probability distribution, which favors edges that are shorter and have a higher level of 

pheromone trail (Dorigo and Cambardella 1997). This is expressed in Equation 2.57 as 

𝑝𝑘(𝑟, 𝑠) = {
[𝜏(𝑟,𝑠)]∗[𝜂(𝑟,𝑠)]𝛽

∑ [𝑢∉𝑀 𝜏(𝑟,𝑢)]∗[𝜂(𝑟,𝑠)]𝛽
             𝑖𝑓 𝑠 ∉ 𝑀

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   Equation 2.57 

where 𝑝𝑘(𝑟, 𝑠) is the probability with which ant k chooses to move from one edge r to 

another edge s. 

 

Global trail updating is an approach used to emulate the property of differential 

pheromone trail accumulation, which is an interplay between length of path and continuity 

of time (Dorigo and Cambardella 1997). Global trail updating is expressed in Equation 

2.58 as 

𝜑(𝑟, 𝑠) ← (1 − 𝛼) ∗ 𝜑(𝑟, 𝑠) + 𝛼 ∗ ∆𝜑(𝑟, 𝑠)    Equation 2.58 

where ∆𝜑(𝑟, 𝑠) is the amount of pheromone deposited on edge φ (r, s), and α is a control 

parameter. 

 

Trail evaporation is used in ant colony optimization as a strategy to avoid getting stuck in 

local optima. (Agbehadji 2011). This trail evaporation is an update process where trails 

seen are expressed in Equation 2.59 as: 

𝜏 = 𝜏 + ∆𝜏      Equation 2.59 

 

Trails that leave the surrounding are expressed in Equation 2.60 as: 

𝜏 = 𝜏 − ∆𝜏      Equation 2.60 
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The value ∆ is a constant determined by input parameters such as the size of the 

population q, minimum or initial pheromone level τinit and maximum pheromone level 

τmax (Guntsch and Middendorf 2002). Thus,  

∆=(τmax − τinit)/q     Equation 2.61 

 

Given that ants move at approximately the same speed and deposit their pheromone trail 

at the same rate (Dorigo and Cambardella 1997), it is possible that these trails emit 

substances into the environment. The intensity of substances emitted can serve as a point 

of attraction to other animals within a habitat. Therefore, the rate of decay of a trail, or 

trail evaporation, plays an important role in determining newness or oldness of a trail. The 

disadvantages of ACO is, firstly, that the time to convergence to optimality is uncertain 

even though convergence is guaranteed. Secondly, the probability distribution changes by 

iteration, which leads to sequences of random decisions (not independent). Although the 

random decision could be seen as a challenge, the advantage is that it can be used in 

dynamic applications (e.g. adapting to changes such as new distances) (Shekhawat, 

Poddar and Boswal 2009). 

 

The behavior of ants has been applied to solve many optimization-related problems, 

including data mining, where it was shown to be efficient in finding best possible 

solutions. When applied to feature selection ACO improves on the performance of feature 

selection by finding the best possible path in terms of the path with the least amount of 

error.   

c. Wolf Search Algorithm 

The WSA is a meta-heuristic optimization algorithm based on wolf preying behavior 

(Tang et al. 2012). The behavior of wolves, as described earlier, includes the ability to 

hunt independently by remembering their own trait (meaning wolves have memory); the 

ability to only merge with their peer when the peer is in a better position (meaning there 

is trust among wolves to never prey on each other); the ability to escape randomly upon 

the appearance of a hunter (Tang et al. 2012); and the use of scent marks as a way of 
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demarcating their territory and communicating with other wolves (Agbehadji et al. 2016). 

This behavior enables wolves to randomly adapt to their environment when hunting. If a 

wolf finds a new, better position, it deposits a scent mark that is sensed by other wolves, 

and this helps communicate the best position already inhabited by a companion wolf.  

 

Grey wolves is another kind of social animal that belongs to the family of wolves. Grey 

wolves are regarded as apex predators because it is found on top of its food chain whiles 

other wolves are found below the food chain. This forms a social hierarchy in its social 

structure of hunting. Mostly, grey wolves found on top of the food chain (referred to as 

leaders, male or female, are called alphas) are able to identify location of a prey and 

encircle them. The alphas are responsible to make decision about hunting. Other wolves 

below the food chain are referred to as subordinate that is beta, or omega. In this regard, 

omega wolves have to submit to betas and alphas in the hierarchy. This social structure 

enables grey wolves to search for prey according to the position of the alpha, beta, and 

omega. Thus, grey wolves can diverge from each other to search for fitter prey and 

converge to attack prey (Mirjalili, Mirjalili and Lewis 2014).  

 

The wolf search is an iterative search process that starts by the setting of initial parameters, 

random initialization of the population, evaluation and updating of a current population 

using a fitness test, and continuing to create new generations/iterations until some 

stopping criterion is met. Unlike GA, which uses operators such as mutation, crossover 

and selection methods, the WSA uses attractiveness of prey within its visual range, 

instinctively flocking together in a pack that is collective, randomly escaping from its 

enemy, and organizing individual searches. Therefore, the swarming behavior of the WSA 

is delegated to each individual wolf, and this could form multiple leaders swarming from 

multiple directions towards the best solution rather than a single flock searching for an 

optimum in one direction at a time (Tang et al. 2012). However, the performance depends 

heavily on the manually chosen parameters values (Song, Fong and Tang 2016). This 

could be resolved through self-adaptive methods in parameter value selection. 
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d. Particle Swarm Optimization 

A particle swarm is a bio-inspired method based on swarm behavior in nature, such as fish 

and bird schooling (Kennedy and Eberhart 1995). The swarm behavior is expressed in 

terms of how particles adapt, exchange information and make decisions on change of 

velocity and position within a space, based on the position of other neighboring particles. 

The search characteristics of a particle swarm involves the initialization of particles, and 

several iterations are performed to update the position of each particle, depending on the 

value assigned to its velocity, and they are combined to the best previous own position 

and the position of the best element among the global population of particles (Aboudi and 

Benhlima 2016). The advantage of swarm behavior is that as an individual particle makes 

a decision, it leads to an emergent behavior (Krause et al. 2013). This emergent behavior 

is as a result of local interaction among individual particles in a population of particles. 

Particle swarm methods are computationally less expensive, which makes them more 

attractive and effective for feature selection. Again, each particle discovers the best feature 

combination as it moves in a population. 

 

When applying particle swarm methods to any feature selection problem, it is important 

to define threshold value during initialization so as to decide which feature is selected or 

discarded. Often, it is difficult for a user to explicitly set a threshold since it might 

influence the performance of the algorithm (Aboudi and Benhlima 2016). Xue, Bing and 

Zhang (2014) suggest an initialization strategy that adopts a sequential selection algorithm 

that guarantees accuracy of classification and provides the number of feature subsets that 

are selected (Aboudi and Benhlima 2016). The advantage of particle swarm is that during 

the initialization/generation of particles, only the most optimist particle can transmit 

information onto the other particles, and the speed of researching a search space is very 

fast (Bai 2010). However, the method easily suffers from partial optimism, which makes 

it less exact in regulating the speed and the direction of each particle in the search space 

(Bai 2010).  
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e. Multiple Species Flocking 

The MSF model is a bio-inspired approach that mimics the social behavior of birds (Yang 

2010). The social behavior is exhibited through continuous exchange of information 

within a flock to align its position in the same direction as nearby birds. The birds might 

make the decision to move from one position to another without communicating with each 

other (Eberhart, Shi and Kennedy 2001). The decision to move is steered by three basic 

rules, namely alignment, separation and cohesion. These rules are mathematically 

expressed and described as follows:  

 

The alignment rule (or velocity matching rule) is when a boid moves in the same direction 

of the nearby boids where the velocity vector is aligned with the average velocity vector 

of the neighboring local flocks. The alignment rule is expressed in Equation 2.62 as 

 𝑑(𝐹𝑖, 𝐴𝑐) ≤  𝑟1  ∧ 𝑑(𝐹𝑖, 𝐴𝑐) ≥  𝑟2  ⇒ 𝑣⃗𝑎𝑟  =
1

𝑛
∑ 𝑣⃗𝑖

𝑛
𝑖   Equation 2.62 

where r1 and r2, with r1 > r2, represents the radius r of the visibility range of the boids and 

minimum distance among them respectively, and d(Fi, Ac) represents distance between 

current boid Ac and its flockmate. Further, Fi. 𝑣⃗𝑖  is the velocity of the boid Fi, and n 

represents the number of neighbors.  

 

The separation rule (or collision avoidance) avoids closeness between the boids, and is 

formulated in Equation 2.63 as 

 𝑑(𝐹𝑖, 𝐴𝑐) ≤ 2𝑟2  ⇒ 𝑣⃗𝑠𝑝 = ∑
𝑣⃗⃗𝑖+𝑣⃗⃗𝑐

𝑑(𝐹𝑖,𝐴𝑐)

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑛
𝑖     Equation 2.63 

where 𝑣⃗𝑠𝑝 represents the separation velocity, and 𝑣⃗𝑐 and 𝑣⃗𝑖 represent the velocities of the 

current boid and ith flockmate. 

 

The cohesion rule (or flock centering) moves a boid towards the center of the flock or 

towards other nearby boids. The rule is formulated in Equation 2.64 as 

 𝑑(𝐹𝑖, 𝐴𝑐) ≤  𝑟1  ∧ 𝑑(𝐹𝑖, 𝐴𝑐) ≥  𝑟2  ⇒ 𝑣⃗𝑐𝑟 = ∑ (𝑃𝑖 − 𝑃𝑐)𝑛
𝑖    Equation 2.64 
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where 𝑣⃗𝑐𝑟 represents the cohesion velocity, Pi and Pc represent the position of current boid 

Ac and a neighbor boid Fi, and (𝑃𝑖 − 𝑃𝑐) calculates the directional vector point. 

 

The feature similarity rule checks the closeness of each boid using the strength of 

closeness to ensure that similar boids are close to each other. This feature similarity is 

expressed in Equation 2.65 as 

𝑣𝑠𝑖𝑚  =  ∑ (𝑆𝑖𝑚 (𝐹𝑖, 𝐴𝑐
𝑛
𝑖 ) ∗ 𝑑(𝑃𝑖, 𝑃𝑐))     Equation 2.65 

where vsim represents the velocity as a result of similarity of features, Sim(Fi,Ac) represents 

the similarity value between features of boids Fi and Ac, and d(Pi,Pc) represents the 

distance between their position. 

 

The feature dissimilarity rule applies when boids do not have similar features and thus 

stay away from each other. Therefore, dissimilarity is inversely proportional to the 

similarity features formulated in Equation 2.66 as: 

𝑣𝑑𝑠𝑖𝑚  =  ∑
1

𝑆𝑖𝑚(𝐹𝑖,𝐴𝑐)∗𝑑(𝑃𝑖,𝑃𝑐)

𝑛
𝑖     Equation 2.66 

where vdsim is the velocity as a result of dissimilarity of features. The final flocking 

behavior is expressed as the sum of calculated velocities and weighted action of rules to 

represent the net velocity vector 𝑣 of a boid in space. The net velocity 𝑣⃗ is expressed in 

Equation 2.67 as: 

𝑣 = 𝑤𝑎𝑟 ∗ 𝑣⃗𝑎𝑟 + 𝑤𝑠𝑝 ∗ 𝑣⃗𝑠𝑝 + 𝑤𝑐𝑟 ∗ 𝑣⃗𝑐𝑟 + 𝑤𝑠𝑖𝑚 ∗ 𝑣𝑠𝑖𝑚 − 𝑤𝑑𝑠𝑖𝑚 ∗ 𝑣𝑑𝑠𝑖𝑚  Equation 2.67 

where v is the boid’s velocity in the virtual space and 𝑤𝑎𝑟,𝑤𝑠𝑝,𝑤𝑐𝑟,𝑤𝑑𝑠𝑖𝑚, 𝑤𝑠𝑖𝑚 are pre-

defined weight values per boid in respect of the alignment rule, separation rule, cohesion 

rule, dissimilarity rule and similarity rule respectively. 
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The feature similarity rule allows a boid to stay close to boids with similar features and 

stay away from other boids that have dissimilar features (Cui and Potok 2006). This 

feature similarity rule is expressed in Equation 2.68 as 

𝑣𝑓𝑟 = ∑
(𝑆(𝐵,𝑋)−𝑇)∗ (𝑃𝑖−𝑃𝑐

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)

𝑑(𝐹𝑖,𝐴𝑐)
𝑛
𝑖       Equation 2.68 

where 𝑑(𝐹𝑖, 𝐴𝑐) is the distance between boid B and its neighbor X, n is the total number 

of the boid B’s local neighbors, (𝑃𝑖 − 𝑃𝑐)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  calculates a directional vector point, Sim(B,X) is 

the similarity value between the features of boid B and X, and T is the threshold for 

separating similarity and dissimilarity boids.  

 

The strength of the attracting force for similar boids and the repulsion force for dissimilar 

boids is inversely proportional to the distance between the boids and the similarity value 

between the boids’ features. The flocking behavior of multiple species is determined by 

weighting actions of all four rules and summing to give the net velocity v for an active 

boid, as expressed in Equation 2.69: 

𝑣 = 𝑤𝑎𝑟 ∗ 𝑣⃗𝑎𝑟 + 𝑤𝑠𝑝 ∗ 𝑣⃗𝑠𝑝 + 𝑤𝑐𝑟 ∗ 𝑣⃗𝑐𝑟 + 𝑤𝑓𝑟 ∗ 𝑣𝑓𝑟    Equation 2.69 

where v is the boid’s velocity in the virtual space and 𝑤𝑎𝑟 , 𝑤𝑠𝑝,  𝑤𝑐𝑟, 𝑤𝑓𝑟 are pre-defined 

weight values in respect of the alignment rule, separation rule, cohesion rule and feature 

similarity rule respectively. These four simplified rules help build classifiers on different 

problem domains that require random search. 

 

f. Bat algorithm 

The Bat algorithm (Yang 2010) is a bio-inspired method based on the behavior of micro-

bats in their natural environment. The unique behavior that characterizes bats is their 

echolocation mechanism. This mechanism helps bats orient themselves and find prey 

within their environment. The search strategy of bats is controlled by the pulse rate and 

loudness of their echolocation mechanism. While the pulse rate changes to improve on the 

position that was previously found, the loudness indicates to each other bat that the best 
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position is accepted/found (Fister et al. 2014). The bat behavior has been applied in several 

optimization problems to find the best optimal solution. The Bat algorithm search process 

starts with random initialization of the population, evaluation of the new population using 

a fitness function, and finding the best population. 

 

The advantage of the Bat algorithm is that the parameter control, which can vary the values 

of parameters as the iterations proceed. This provides a way to automatically switch from 

exploration to exploitation when the optimal solution approaches (Yang 2013). However, 

the challenge is how to speed up the convergence of the Bat algorithm to optimal solutions 

(Yang 2013). Secondly, there is no best control strategy that enables the Bat algorithm to 

switch from exploration to exploitation of a search space within a right/specified time 

(Yang 2013). 

 

2.2.2. Phase 2: Data mining algorithms 

Data mining is the application of an algorithm to a dataset to extract patterns or to 

construct a model to represent a higher level of knowledge about the data (Hand, Mannila 

and Smyth 2001; Kantardzic 2003). A model gives a general description of an original 

dataset and reflects the important characteristics of the data (Hand et al. 2001). The 

importance of a model is that it gives a clear understanding of data and helps predict new 

data patterns. One of the ways to predict new data patterns is by using basic mathematical 

formulation and translation into algorithm.  

 

A pattern is defined as an event or combination of events that occur more or less often 

than expected, that is, representing a significant difference from what would be expected 

of random variation or representing a significant variation from a trend (Iglesia and 

Reynolds 2005). A pattern may be a relatively small part of the data (Hand et al. 2001) 

that could be mined. Thus, a pattern, in its simplest form, may show a relationship between 

two variables (Hand et al. 2001), which might have interesting (that is, non-trivial, 

implicit, previously unknown and potentially useful) information that is relevant. A model 
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may contain patterns as well as other structures within the data. Therefore, boundaries 

between models and patterns are sometimes intertwined (Iglesia and Reynolds 2005).  

 

An example of a pattern is a frequent pattern, which includes frequent itemsets, frequent 

subsequences and frequent substructures. A frequent itemset refers to a set of items that 

frequently appear together in a relational dataset, such as sugar and coffee. A frequently 

occurring subsequence refers to the pattern where users tend to obtain an item first, 

followed by another item, and then a series of items. This is a (frequent) sequential pattern 

(Han and Kamber 2006). A frequent substructure can refer to different structural forms, 

such as graphs, trees or lattices, which may be combined with itemsets or subsequences 

(Han and Kamber 2006). If a substructure occurs frequently, it is called a (frequent) 

structured pattern. Thus, mining frequent patterns results in the discovery of interesting 

associations in data. 

 

The data mining algorithms reviewed include sequential pattern mining and closed 

sequential patterns. 

 

i. Sequential pattern mining 

A sequential pattern is a sequence with support (that is, proportion of occurrence of a 

sequence) not less than the minimum support threshold (Zhenxin and Jiaguo 2009). 

Aggarwal and Han (2014) consider sequential pattern mining as an association rule mining 

over a temporal relational dataset, as emphasis is placed on ordering of items. In the 

process of ordering items, some general principles are applied in respect to the property 

of sequential patterns. The property of a sequential pattern algorithm is that every non-

empty subsequence of a sequential pattern must be frequent to show the anti-monotonic 

(or downward closure) property of the algorithm (Aggarwal and Han 2014). Thus, a 

pattern that is considered frequent has subsequences that are also frequent (that is, anti-

monotonic). The drawback of sequential pattern mining is that it mines the complete set 

of frequent subsequences that satisfy a minimum support threshold (Raju and Varma 
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2015). Since mining frequent long sequences may contain several frequent subsequences, 

it leads to an explosive number of frequent subsequences for long patterns, which is 

computationally expensive in both time and memory space (Yan, Han and Afshar 2003).  

 

The algorithms that have been developed based on the concept of sequential pattern 

mining (Agrawal and Srikant 1995) include apriori-based methods, pattern-growth 

methods and vertical format based methods (Raju and Varma 2015). These algorithms are 

described in the following subsections. 

 

a. Apriori-based method 

The apriori-based method is a level-wise approach for generating frequent itemsets in 

data. Basically, the principle of Apriori is that every subset of a frequent pattern is also 

frequent, that is, referred at downward closure. Later, all patterns are put together through 

the use of “joins” (Aggarwal and Han 2014). The joins enable the union of all patterns 

into a holistic pattern. During the implementation of the apriori algorithm, a set of patterns 

are generated as a candidate representation of frequent patterns and tested so as to prune 

unnecessary candidates or non-frequent patterns, which is often referred to as the 

candidate-generation-and-test strategy. Hence, apriori-based methods could be referred to 

as candidate-generation-and-test strategies. However, a candidate-generation-and-test 

strategy produces a large number of candidate sequences and requires more database scan 

when there are long patterns (Tu and Koh 2010). The consequence is that counting and 

pruning a large set involves high computational cost in terms of computational resource 

usage and high computational time (Raju and Varma 2015). Therefore, the major 

challenge with the candidate-generation-and-test strategy is high computational time and 

cost involved. Moreover, once frequent itemsets are obtained as output results, association 

rules with confidence (that is, ratio of number of occurrences that are classified and 

occurrences in dataset) larger than or equal to a user-specified minimum threshold (Kumar 

et al. 2007) are generated. The challenge is finding the optimal threshold, which must be 

set by a user (Yin et al. 2013), because too small a support value may produce thousands 
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of patterns that need further filtering, whereas too big a one may lead to no findings (Yin 

et al. 2013). Although pattern compression approaches such as RPglobal and RPlocal 

(Han, Cheng, Xin and Yan 2007) have been used to address this problem, performing 

filtering also requires the use of filtering algorithms which could be costly in terms of 

computation cost involved. The candidate-generation-and-test strategy and user setting of 

minimum support and minimum confidence are the major challenge of the Apriori 

algorithm.  

 

The Apriori algorithm can be summarized into the following steps: 

Step 1: Find all frequent itemsets. 

Step 2: Get frequent items (items whose occurrence in the dataset is greater than or equal 

to the minimum support threshold). 

Step 3: Get frequent itemsets. 

Step 4: Generate candidates from frequent items. 

Step 5: Prune the results to find frequent itemsets. 

Step 6: Generate strong association rules from frequent itemsets (that is, rules which 

satisfy both the minimum support threshold value and minimum confidence threshold 

value). 

 

b. Pattern-growth methods 

The pattern-growth method is based on the concept of depth-first search to generate 

frequent patterns from a search space or dataset. During the process of growing patterns, 

a frequent-pattern tree (FP-tree) is constructed based on the concept of divide and conquer 

(Rajasekaran and Song 2006). Thus, a pattern tree is divided into two and one is selected 

as the best branch. The selected best branch is further grown by mining other frequent 

patterns. The frequent pattern growth approach, FP-growth (Han, Pei and Yu 2000), mines 

frequent patterns without generating candidates of FP-trees (Yongmei and Yong 2008). 

The challenge is that when a user fails to specify a minimum support threshold value, it 

takes a longer time to mine frequent patterns. The two advantages of FP-trees are, first, 
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that the FP-tree is a highly compressed data structure making the dataset much smaller 

than original dataset, thereby reducing costly database scans (Tu and Koh 2010). 

Secondly, it avoids candidate generation and test by combining frequent items and using 

a frequent pattern tree to remove unnecessary candidates (Tu and Koh 2010). The 

algorithms that are based on pattern growth include FreeSpan (Han, Pei, Mortazavi-Asl, 

Chen, Dayal and Hsu 2000) and PrefixSpan (Pei et al. 2001).   

 

ii. Closed sequential pattern mining  

Closed sequential pattern mining is an extension of sequential pattern mining (Lin, Hsueh, 

and Chang 2008). The advantage of closed sequential pattern mining is threefold. Firstly, 

there is an efficient use of the search space pruning technique, and it significantly reduces 

the number of patterns produced (Huang et al. 2006). Secondly, more interesting patterns 

are found, thus reducing the burden of a user having to explore too many patterns (Raju 

and Varma 2015) within the same minimum support threshold. Thirdly, it retains all 

information on the complete pattern set in a more compact form (Cong, Han and Padua 

2005). A closed sequential pattern is a frequent sequence that has no frequent super-

sequence (that is, no larger itemset) with the same minimum support threshold value (that 

is, occurrence frequency) (Yan et al. 2003). Examples of algorithms based on closed 

sequential pattern mining include Bi-Directional Extension (BIDE) (Wang, Han and Li 

2007), Closed sequential pattern mining using a Bi-phase Reduction Approach (COBRA) 

(Huang et al. 2006) and ClaSP (Raju and Verma 2015).  

 

Current research focuses on frequent pattern mining because data analysis problems are 

important in finding hidden relationships. It may be established that the data mining 

algorithms have been designed for a parallel computing based platform (Tsai et al. 2015). 

Furthermore, these platforms rely on machine learning-based methods to reduce 

computational cost in data mining algorithms. It is also established that traditional 

methods (e.g. neural networks, etc.) are applied to emerging 

problems/platforms/environments to reduce computation cost when a very large amount 
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of data is required. This indicates that the performance in terms of computational cost 

needs to be improved for big data analytics frameworks to help guarantee accurate and 

useful information. 

 

When mathematical models are formulated, it is possible to extract and disclose 

interesting patterns from frequently changed datasets to avoid user setting minimum 

support threshold value during the mining of patterns/rules and reduce the pruning space 

using a meta-heuristic search method. The following subsection reviews the association 

rules and meta-heuristics algorithms: 

 

i. Association rule 

Association rules are rules that steer a mining algorithm to disclose patterns from data to 

a user (Han and Kamber 2006). The rules whose support and confidence values are below 

a user-specified threshold are considered uninteresting (Han and Kamber 2006), while 

rules whose value are above a user-specified threshold are considered interesting.  

 

The challenge of association rule mining could be categorized into two parts. The first is 

finding frequent itemsets with a support above the minimum support threshold. The 

second is using frequent itemsets found in the first step to generate association rules that 

have a confidence level above the minimum confidence threshold (Shih and Kuo 2007). 

Therefore, many studies on association rule mining concentrate on designing an efficient 

algorithm on frequent itemset discovery.  

 

Generally, a rule is defined as a conditional statement that specifies an action for a certain 

set of conditions (Iglesia and Reynolds 2005). The association rule is an implication of 

the form K→P, where precondition K is referred to as antecedent and the action P is called 

consequent where both K and P are frequent itemsets. The discovered rule is expressed in 

an “If …Then…” statement. Thus, If K then P.  
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Two different methods may be used to measure association rules. Firstly, the support of a 

rule measure is defined as the proportion of appearance in the dataset (Gupta and Sikka 

2013; Agbehadji et al. 2016). In order words, it is the number of transactions which 

contains itemsets (K and P) over the number of transactions in the database. This is 

expressed in Equation 2.70 as 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝐾 → 𝑃) =
𝜎(𝐾 ∪ 𝑃)

 𝜎(𝑁)
     Equation 2.70 

where (N) is the total number of transactions in a database and (K∪P) is the number of 

transactions which contains both K and P. Frequent itemsets that are found using the 

support measure to generate association rules have a confidence value above the minimum 

confidence threshold specified by a user.  

 

Secondly, confidence of a rule measure is defined as a ratio of the number of occurrences 

in K that are classified as a decision class of P over the number of occurrences in K. In 

other words, it is a conditional probability of the consequent given the antecedent (Gupta 

and Sikka 2013). This is expressed in Equation 2.71 as  

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (𝐾 → 𝑃) =
𝜎(𝐾 ∪ 𝑃)

𝜎(𝐾)
    Equation 2.71 

where σ(K) is the number of transactions that contain K, while (K∪P) is the number of 

transactions that contain K and P. A higher confidence value suggests a strong association 

between the items K and P.  

 

These rules are used as quality measures to remove non-interesting rules. A rule is only 

considered interesting if its value is greater than or equal to the minimum support and 

minimum confidence criteria (Han and Kamber 2006) set by a user to reveal interesting 

patterns. According to Silberschatz and Tuzhilin (1995), a pattern is interesting if it is 

unexpected (that is, surprising to the user) and/or actionable (that is, the user can perform 

some action with the results to obtain value). This interestingness measure Intm is 

expressed (Ghosh and Nath 2004) in Equation 2.72 as: 
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 𝐼𝑛𝑡𝑚 (𝐾 → 𝑃) =
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐾∪𝑃)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝐾)
∗

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐾∪𝑝)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑃)
∗ (1 −

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐾∪𝑃)

𝜎(𝑁)
)   Equation 2.72 

where σ(N) represents the total number in the dataset. Although this expression for the 

interestingness measure of rules provides patterns as interesting, it does not take into 

consideration the time dimension.  

 

According to Piatetsky-Shapiro (1991), a rule is considered as interesting if its measure 

satisfies three basic properties. Firstly, the measure value should equal to 0 if K and P are 

statistically independent, that is, when P(K and P) = P(K) *P(P). Secondly, the measure 

should monotonically increase with P(K and P) when P(K) and P(P) remains the same. 

Thirdly, a measure should monotonically decrease with P(K) or P(P) when P(K and P) 

and P(P) or P(K) remains the same.  

 

Association rules are used for different categories of data attributes, namely categorical 

attributes and numerical attributes (Luna et al. 2011). A categorical attribute A of an 

association rule is defined as an attribute with discrete unordered domain D, such that A 

is a categorical attribute and u is a numeric value in the domain D of A. The difficulty with 

the categorical attribute is in terms of working with all possible numerical values. This 

difficulty is avoided in numerical attributes by defining a wide range of numerical values 

into different discrete intervals (Luna et al. 2011). Hong and Lee (2008) suggest 

partitioning numerical attributes into intervals rather than a single value on the antecedent 

rule. This is also supported by Luna et al. (2011). Srikant and Agrawal (1996) suggest an 

approach that partitions attributes and later maps each possible value into consecutive 

integers. Afterwards, a partial completeness factor, which is defined by the user, 

determines the completeness of each partition (Hong and Lee 2008). It is important to 

know the number of partitions and the interval that constitutes each partition. However, 

the challenge is how to minimize the level of information lost during partitioning.  

 

The partial completeness factor measures the level of information lost (Srikant and 

Agrawal 1996) and the level of deviation that is tolerated with respect to finest 
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discretization (Adamo 2001). In order words, partial completeness measures the 

maximum distance between rules obtained prior to partition and the closest generalization 

in rules obtained after partition (Srikant and Agrawal 1996). Srikant and Agrawal’s (1996) 

approach uses equi-depth (frequency) partitioning, which minimizes the number of 

intervals required to satisfy the partial completeness level. The measure of partial 

completeness is expressed taking into consideration the support of the rule as a measure 

on how far apart rules are. Given the level of partial completeness desired by the user, and 

the minimum support, the number of partitions required (assuming equi-depth 

partitioning) is calculated. In order to compute a partial completeness level Q, the support 

of any partition with more than one value should be less than 

𝑚𝑖𝑛𝑠𝑢𝑝 ∗ (𝑄 − 1)/(2 ∗ 𝑛)     Equation 2.73 

where n is the number of quantitative attributes. Assuming that equi-depth partitioning 

splits the support identically, then there should be 1/ maximum support (s) partitions in 

order to get the support of each partition to less than s. Thus, the number of intervals is 

expressed in Equation 2.74 as 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 =
2∗𝑛

𝑚𝑖𝑛𝑠𝑢𝑝∗(𝑄−1)
    Equation 2.74 

where minsup is the minimum support, and Q is the partial completeness level. Partial 

completeness Q is expressed in Equation 2.75 as: 

 

𝑄 = 1 +
2∗𝑛∗𝑠

𝑚𝑖𝑛𝑠𝑢𝑝
     Equation 2.75 

where n is the number of quantitative attributes, and s is the maximum support for a 

partition with more than one value among all the quantitative attributes. 

 

Although the partial completeness factor measures the level of deviation between rules, it 

does not take into consideration the time differences of deviation.   
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Railean et al. (2013) indicate that it is possible for rules to take into account the time 

difference between the antecedent and consequent of sequential rules. When this happens, 

an item can either occur at most once in an itemset of a sequence or occur in several 

itemsets of a sequence. The occurrence of rules (either complex or simple rules) in 

sequence is then counted, and the average value of time-closeness between the antecedent 

and consequent over the entire sequence is calculated (Railean et al. 2013). Thus, a greater 

average value indicates a stronger rule. Rules can be grouped into simple rules and 

complex rules (Railean et al. 2013). Simple rules are of the form Vi → Vn, and complex 

rules are of the form V1V2...Vn−1 → Vn  (Railean et al. 2013). In this instance, all rules of 

the simple form Vi → Vn were combined between all Vi itemsets. For example, given the 

rules A → Y, B → Y, and C → Y, complex rules are derived as AB → Y, AC → Y, BC → 

Y, ABC → Y.  In this context, two or more items (such as A, B, C) are combined together 

on the antecedent part of the rule to produce one or more items in the consequence part of 

the rule. 

 

A sequential rule 𝐴 → 𝐵 is defined as a relationship between two itemsets A and B that 

belong to the same sequence and where B occurs at the same time stamp 𝑡𝐵 ≥  𝑡𝐴 (Railean 

et al. 2013). This expression helps combine the time-difference between the antecedent 

and consequent of a rule. Railean et al. (2013) are of the view that it is desirable to have 

rules ranked at the same level if the time difference between the items is not greater than 

a certain time so that rules’ importance is decreased with time. This leads to the definition 

of closeness in time for sequential rules, as when given a time-interval 𝜔𝑡 and W time-

window of size 𝜔𝑡 . Itemset A and B with time-stamps tA and tB are 𝜔𝑡 − 𝑐𝑙𝑜𝑠𝑒  if  

|𝑡𝐴 – 𝑡𝐵| ≤  𝜔𝑡. When a sequential rule 𝐴 → 𝐵, thus 𝑡𝐵 ≥ 𝑡𝐴 where A and B are 𝜔𝑡-close 

if 𝑡𝐴 − 𝑡𝐵 ≤  𝜔𝑡. Also, the closeness measure for the 𝜔𝑡-close rule for 𝐴 → 𝐵 is defined 

as 𝑡𝐵 − 𝑡𝐴 and 1/𝜎𝑡 , such that if 𝑡𝐵 − 𝑡𝐴 ≤ 𝜎𝑡 then the measure should decrease slowly, 

while if 𝑡𝐵 − 𝑡𝐴 > 𝜎𝑡 then the closeness measure decreases rapidly. The parameter 𝜎𝑡 is 

used to differentiate the time in the window 𝜔𝑡. Thus, the closer a rule between antecedent 



77 

 

and consequent within [0, 𝜎𝑡], the more advantageous the rule is and it is ranked at same 

level. Consequently, if the time stamp [𝜎𝑡 , 𝜔𝑡 ] is larger, then the rule’s interest is 

decreased rapidly (Railean et al. 2013).  

 

The closeness measure not only is used as an approach to find rules in cases where the 

antecedent and consequent are frequent and random in databases (Railean et al. 2013), but 

also used to penalize very frequent itemsets. Thus, the higher the antecedent and 

consequent value, the lower the closeness measure. The Closeness Preference 

interestingness measure CP between 𝐴 → 𝐵  is defined in Equation 2.76 by: 

𝐶𝑃(𝐴 → 𝐵) =
𝐶𝜔𝑡,𝜎𝑡(𝐵/𝐴)

𝑅(𝐴)∗𝑅(𝐵)
      Equation 2.76 

where the strength of the closeness is denoted by 𝐶𝜔𝑡,𝜎𝑡
(𝐵/𝐴) between A and B. Thus, the 

closeness preference interestingness measure CP selects strong rules with respect to 

frequencies of antecedent A and consequent B in respect to the temporal closeness between 

itemsets of rules in databases. This is expressed in Equation 2.77 as 

𝐶𝑃(𝐴 → 𝐵) =

1

|𝐷𝐵|
∑ {

1

𝑛𝜔𝑡|𝑚
∑ [

1

𝑛𝑡𝐴|𝑘

∑ (
1

𝑛𝑡𝐵|𝐴𝑖

∑
1

1+𝑠
𝑡𝑗−𝜔𝑡

)]}
𝑛𝑡𝐵|𝐴𝑖
𝑗=1

𝑛𝑡𝐴|𝑘
𝑖=1

𝑛𝜔𝑡|𝑚
𝑘=1

𝑛𝐴𝐵𝜔
𝑚=1

𝑅(𝐴)∗𝑅(𝐵)
  Equation 2.77 

where R(AB) =
𝑛𝐴𝐵

|𝐷𝐵|
, 𝑛𝐴𝐵 is the number of sequences where the itemset 𝐴 → 𝐵 appears, 

and |DB| refers to the number of sequences in the database. The higher R(A)*R(B), the 

lower the closeness measure’s value. The parameter 𝜔𝑡 and s are defined according to 

user preferences. The parameter 𝜔𝑡  represents the maximum allowed time-distance 

between two itemsets to consider the rule 𝐴 → 𝐵 as a 𝜔𝑡-close candidate. Further, s is 

expressed in Equation 2.78 by 

𝑠 = √
1

𝑓(𝜎𝑡)
− 1

(𝜎𝑡−𝜔𝑡)

      Equation 2.78 

where 𝑓(𝜎𝑡)is a user preference time interval. 

 

If there is only one itemset A in the time-interval [0, 𝜔𝑡], then 𝑛𝑡𝐵|𝐴𝑖
 is the number of B 

inside the window, which is computed in Equation 2.79 as 
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𝐶𝑃𝐵|𝐴𝑖
=

1

𝑛𝑡𝑩|𝐴

∑
1

1+𝑠
𝑡𝐵𝑗−𝜔𝑡

𝑛𝑡𝐵|𝐴

𝑗=1
    Equation 2.79 

where 𝑛𝑡𝐵|𝐴𝑖
is the number of B between two consecutive A inside the same window, s is 

the slope of the plot (s > 1) and is directly proportional with the user-preference time-

interval 𝜎𝑡. However, a larger 𝜎𝑡 implies larger s, so a user may either set a threshold or 

use an expression to compute the threshold. The time distance of each B from the 

beginning of the window (starting from the first A) is represented by 𝑡𝐵𝑗.  

 

Additionally, when there is only one itemset A, then the number of A inside a window 𝜔𝑡 

is computed in Equation 2.80 as 

𝐶𝑃𝜔 =
1

𝑛𝑡𝐴

∑ 𝐶𝑃𝐵|𝐴𝑖

𝑛𝑡𝐴

𝑖=1
    Equation 2.80 

Thus, the strength of 𝐴 → 𝐵 in a sequence is expressed as the average value of all time-

windows of size 𝜔𝑡, which is expressed in Equation 2.81 as 

𝐶𝑃𝑆 =
1

𝑛𝜔𝑡

∑ 𝐶𝑃𝜔𝑘

𝑛𝜔𝑡

𝑘=1      Equation 2.81 

where 𝑛𝜔𝑡
 is the number of time-windows of size 𝜔𝑡 in a single sequence containing the 

rule 𝐴 → 𝐵, and 𝐶𝑃𝜔𝑘
 is the closeness preference value for each window k. 

 

Thus, the average strength of the rule 𝐴 → 𝐵  is calculated from all the sequences 

containing 𝐴 → 𝐵  to the entire database and the closeness index 𝐶𝜔𝑡,𝜎𝑡
(𝐵|𝐴) , which 

shows the frequency of closeness. This is expressed in Equation 2.82 as: 

𝐶𝜔𝑡,𝜎𝑡
(𝐵|𝐴)  =

1

|𝐷𝐵|
∑ 𝐶𝑃𝑠𝑚

𝑛𝐵𝐴𝜔
𝑚=1     Equation 2.82 

where 𝑛𝐵𝐴𝜔
is the total number of sequences where the rule 𝐴 → 𝐵 holds at least once in 

the interval [0, 𝜔𝑡], and 𝐶𝑃𝑠𝑚
is the expression for each sequence m.  

 

A sequential pattern in which each pattern of length n consists of n - 1 rules is extracted 

using Equation 2.83 by Railean et al. (2013): 



79 

 

𝐹𝑝𝑎𝑡𝑡𝑒𝑟𝑛 =
1

𝑛𝑟𝑟𝑢𝑙𝑒𝑠 𝑖𝑛 𝑝𝑎𝑡𝑡𝑒𝑟𝑛
∗ ∑  [ 

1

𝑛𝑡𝐴|𝑘

∑ (
1

𝑛𝑡𝐵|𝐴𝑖

∑
1

1+𝑠
𝑡𝑗−𝜔𝑡

)] 
𝑛𝑡𝐵|𝐴𝑖

𝑗=1

𝑛𝑡𝐴|𝑘

𝑖=1

𝑛𝑟𝑟𝑢𝑙𝑒𝑠 𝑖𝑛 𝑝𝑎𝑡𝑡𝑒𝑟𝑛

𝑘=1  

Equation 2.83 

where 𝑛𝑟𝑟𝑢𝑙𝑒𝑠 𝑖𝑛 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 represents the number of rules in a pattern. In order to avoid the 

user setting a threshold value for strong rules to be selected using trial and error, the 

threshold value 𝜃∗  to select rules is expressed as the average value of the weighted 

function f(t, s, 𝜔𝑘) over 𝜔𝑡  to show the area under the curve of the function and the x-

axis divided by 𝜔𝑡. Thus, the threshold value is expressed in Equation 2.84 as 

𝜃∗ =
𝜔𝑡+

𝑙𝑛(
𝑠−𝜔𝑡+1

2
 )

𝑙𝑛 (𝑠)

𝜔𝑡
     Equation 2.84 

where 𝜃∗  represents threshold value, 𝜔𝑡  represents the time windows of size, and s 

represents the slope of preference. The final threshold value is used to select the rules with 

very close itemsets. Conversely, this threshold value may be set by the user instead of 

using the expression on the threshold value. 

 

Although the approach of Railean et al. (2013) to finding rules that are optimal considers 

three parameters (time-interval, slope of preference function and threshold value), it is 

possible for a frequent pattern/item to also have discrete/continuous values that are 

frequently changed within a time interval that was not considered. The challenge is how 

to discover rules from frequently changed items within time-interval and numeric 

dimensions. 

 

ii. Meta-heuristic search method 

An aspect that has attracted the attention of researchers is the application of animal 

behavior (that is, bio-inspired/meta-heuristic approaches) to association rule mining or 

mining of frequent patterns. This was a result of the unique behavior exhibited by animals 

in steering movements from one location to another. A bio-inspired or meta-heuristic 

search strategy is based on the behavior of animals in their natural habitat. This behavior 

is simplified into mathematical expressions and used to form simplified rules that are 
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applied to association rule mining. Aggarwal and Rani (2013) indicate that having good 

quality rules is significant in making better decisions. The rule quality is viewed in terms 

of results accuracy and if it is understood by the user (Mangat 2010). Meta-heuristic 

methods can improve the quality of rules in association rule mining (Aggarwal and Rani 

2013).  

 

Meta-heuristic algorithms may be defined as an iterative process that steers subordinate 

heuristic processes by combining different search strategies to explore and exploit a large 

search space and to develop learning strategies to structure information in order to find 

efficiently optimal or near-optimal solutions (Osman and Laporte 1996).  

 

Blum and Roli (2003) outline the following fundamental properties of meta-heuristic 

algorithms: 

 They range from the use of simplified local search procedures to complex learning 

processes. Although local search procedures get trapped in a search domain, meta-

heuristic search methods are well adapted to avoid getting trapped, by using its 

random search mechanism. 

 The algorithm is approximate and usually non-deterministic. 

 The search methods are both in-breadth and in-depth searches to enable adequate 

exploration and exploitation of the search space. 

 The algorithm is not problem specific. It may make use of domain-specific 

knowledge in the form of heuristics that are controlled by the upper-level strategy 

(where “upper level” refers to higher or meta-heuristics).  

 

These fundamental properties enable meta-heuristic algorithms to efficiently explore 

search spaces to find optimal or near-optimal solutions within different problem domains, 

such as the discovery of association rules. The technique that helps with efficient 

exploration of search space and adaptability to different problems is the parameter tuning 
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technique. The advantage of parameter tuning is that it helps assign different weighting 

parameters to search problems in order to find the best parameter that fits a problem.  

 

Meta-heuristic algorithms are generally divided into three categories: evolutionary, swarm 

intelligence and differential evolution algorithms. The first is evolutionary algorithms, 

which are inspired by evolutionary theory and biological evolutionary processes such as 

selection, recombination, mutation and reproduction. Evolutionary algorithms include 

GAs (Goldberg and Holland 1988); evolutionary strategy algorithms (Hansen and 

Ostermeier 2001); swarm intelligence algorithms, which are inspired by the movements 

of large groups of animals; and differential evolution algorithms (Storn and Price 1997; 

Al-Ani, Alsukker and Khushaba 2012). Among these categories, evolutionary 

computation was shown to enhance accuracy and reduce computation time (Abdullah et 

al. 2013). 

 

The best-known swarm intelligence algorithm is the particle swarm optimization (PSO) 

algorithm (Kennedy 2011), which simulates the movement of animals to improve the 

capability of global searches. Other swarm optimization algorithms are the ant colony 

algorithm (Bonabeau, Dorigo and Theraulez 2000), bee algorithm (Karaboga 2005), 

Firefly algorithm (Yang 2008) and WSA (Tang et al. 2012). Meta-heuristic methods are 

able to extract more concise and accurate information on association rules than the 

conventional Apriori-based algorithm.  

 

Among the most popular meta-heuristic approaches to association rule mining are GAs 

(Goldberg and Holland 1988) and the ant colony algorithm (Dorigo and Cambardella 

1997). Other meta-heuristic approaches include Particle Swarm Optimization (Kennedy 

and Eberhart 1995) and the WSA (Agbehadji et al. 2016). Agbehadji et al. (2016) propose 

the WSA for numeric association rule mining by using simplified rules from wolves’ 

behavior to discretize numeric values into intervals without considering the aspect of time 

dimension. Agbehadji et al. (2016) also propose a bio-inspired algorithm (based on 
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kestrels’ behavior) for mining frequently changed patterns in large datasets. Moslehi et al. 

(2011) apply ant colony optimization on continuous data based on Gaussian functions to 

build numeric intervals for numeric attributes without indicating the minimum support 

and minimum confidence. Aggarwal and Rani’s (2013) approach used probabilistic 

methods to scan a database for frequent datasets and produce optimized results of the 

Apriori algorithm using the ACO algorithm so as to enhance the quality of rules and 

remove unnecessary rules. 

 

A GA, as explained previously, is an adaptive search procedure (Holland 1975 cited 

Agbehadji 2011). The search procedure helps find approximate missing values (Abdella 

and Marwala 2006) by optimizing an objective function/fitness function in any given 

search problem. The fitness function value of each generation is calculated in order to find 

the leading factor that determines the ability of a GA to find the optimal solution (Priya 

and Kuppuswami 2012). The adaptive search process has been applied to solve problems 

of association rules without setting minimum support and minimum confidence values. 

Qodmanan, Nasiri and Minaei-Bidgoli (2010) take a multi-stage approach that first finds 

frequent itemsets and then extracts association rules from those itemsets. The approach 

combines the Frequent Pattern (FP) tree algorithm and GA to form a multi-objective 

fitness function with support, confidence thresholds and the ability to obtain interesting 

rules. This approach enables a user to change the fitness function so that the order of items 

is considered in the importance of rules.  

 

Another meta-heuristic algorithm, called PSO, was proposed by Kennedy and Eberhart 

(1995). PSO is a bio-inspired method based on swarm behavior, such as fish and bird 

schooling in nature (Kennedy and Eberhart 1995). The swarm behavior is expressed in 

terms of how particles adapt and make a decision about changing position within a space 

based on the position of other neighboring particles. The advantage of swarm behavior is 

that as individual particles make decisions, it leads to an emergent behavior (Krause et al. 
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2013). This emergent behavior is a result of local interactions among particles in a problem 

space.  

 

Among the particle swarm algorithms for finding best possible solutions in a problem 

space are the Firefly algorithm (Yang 2008), Bats (Yang 2009) and the bee algorithm 

(Karaboga 2005). The successful characteristic of the firefly is the short and rhythmic 

flashes it produces (Yang 2008). This flashing light is used as a mechanism to attract 

mating partners, attract potential prey and serve as a warning to other fireflies. The 

signaling system of this flashing light mechanism is controlled by simplified basic rules 

underlying the behavior of fireflies. Unlike a GA, which uses operators such as mutation, 

crossover and selection, the Firefly algorithm uses attractiveness and brightness to 

improve certain individuals in its population. The similarity between GAs and the Firefly 

algorithm is that both generate initial populations and continue to update their initial 

population using fitness functions. The brighter fireflies attract those closest around them, 

and the fireflies whose flashes fall below a given threshold are removed from the 

population. The brightest fireflies form the next generation, and the generations/iterations 

continue until a select criterion is reached or a maximum number of generations is reached. 

The behavior where a bright firefly attracts another firefly with a weaker brightness has 

been applied in missing data imputation by finding estimates of values closest to known 

values and then replacing these missing values with these estimates (Agbehadji et al. 

2018).  

 

The behavior of the bee is that it waits in the dance area in order to make the decision to 

choose its food source (Karaboga 2005). There are different kinds of bees, including 

onlooker bees, scout bees and employed bees. The bees carrying out random searches are 

scout bees. The onlooker bees and scouts are also called unemployed bees, while 

employed bees are bees that re-visit their food source for further exploration (Karaboga 

2005). Bees are adapted to self-organize to enrich their food source (which could result in 

positive feedback) and to discard poor sources by scouting (causing negative feedback) 
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(Karaboga 2005). However, the process of discarding poor sources leads to premature 

convergence to optimality (Yan and Li 2011). 

 

Similarly, the behavior of particle swarms has also been applied to discrete optimization 

problems using binary PSO to find association rules. Sarath and Ravi (2013) have 

formulated a discrete/combinatorial global optimization approach that uses a binary PSO 

to mine association rules without specifying the minimum support and minimum 

confidence of items, unlike the Apriori algorithm. The quality of the rules is evaluated in 

term of fitness function, expressed as the product between the support and the confidence. 

The fitness function ensures the support and confidence are binary between 0 and 1. The 

proposed binary PSO algorithm consists of two parts: the preprocessing and the mining. 

The preprocessing part calculates the fitness values of the particle swarm so as to 

transform the data into binary format. The mining part of the algorithm uses the PSO 

algorithm to mine association rules. Sarath and Ravi (2013) indicate that binary PSO can 

be used as an alternative to the Apriori algorithm and the FP-growth algorithm as it allows 

the selection of rules that satisfy the minimum support threshold. However, if time is 

significant in finding how close the rules are, then the binary PSO is disadvantaged.  

 

The PSO has also been applied in high utility itemset mining to identify a high profit 

itemset, especially when that itemset rarely appears but has high profit value (Lin et al. 

2016). The concept of high utility was designed to discover the “useful” and “profitable” 

itemsets from quantitative databases. Thus, an item is of high utility if its utility value is 

no less than the user-specified minimum threshold for items to be mined (Lin et al. 2016). 

The concept of bio-inspired methods can be used to explore the search space for an optimal 

solution.  

 

Kuo, Chao and Chiu (2011) apply the PSO algorithm and binary data transformation 

technique (Wur and Leu 1998) to search for association rules when they are likely to 

produce large sets of rules. The advantage of using the binary transformation is that it 
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improves the computational efficiency of the search algorithm. However, in cases where 

a large range of rules is generated, the itemset range (IR) method is applied to search 

within that range of rules in order to decide on the length of rule generated. The itemset 

range is mathematically expressed in Equation 2.85 by 

𝐼𝑅 = 𝑙𝑜𝑔(𝑚𝑇𝑟𝑎𝑛𝑠𝑁𝑢𝑚(𝑚)) + 𝑙𝑜𝑔(𝑛𝑇𝑟𝑎𝑛𝑠𝑁𝑢𝑚(𝑚))
𝑇𝑟𝑎𝑛𝑠(𝑚,𝑛)

𝑇𝑜𝑡𝑎𝑙𝑇𝑟𝑎𝑛𝑠
  Equation 2.85 

where m≠n, m<n, m represents the length of the itemset, Trans(m) represents the number 

of transaction records containing m items, n is the length of itemsets, Trans(n) represents 

the number of transaction records containing n, Trans(m, n) represents the number of 

transactions containing m and n, and TotalTrans represents the total transaction. 

 

Dorigo and Cambardella (1997), propose another meta-heuristic algorithm called ant 

colony optimization (ACO). Ant colony optimization (ACO) (Dorigo and Cambardella 

1997) is a meta-heuristic inspired by the foraging behavior of real ants in their search for 

the shortest paths to food sources. When a source of food is found, ants deposit a 

pheromone to mark their path for other ants to traverse. A pheromone is an odorous 

substance that is used as a medium of indirect communication between ants. The quantity 

of pheromone depends on the distance, quantity and quality of the food source (Al-Ani 

2007). However, the pheromone substance tends to decay or evaporate with time, which 

prevents ants from converging to sub-optimal positions (Stützle and Dorigo 2002). When 

a lost ant, moving at random, detects a laid pheromone, it is likely that it will follow the 

path to reinforce the pheromone trails. Thus, ants make probabilistic decisions on updating 

their pheromone trail and local heuristic information (Al-Ani 2007) to explore larger 

search areas. 

 

ACO has been applied to solve many optimization-related problems, including data 

mining problems, where it was shown to be efficient in finding best possible solutions. In 

the field of data mining, an important issue for association rule generation is frequent 

itemset discovery, which is an important factor in implementing association rule mining. 

Kuo and Shih (2007) propose a model that uses the ant colony system to find the best 
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global pheromone before the generation of association rules. The model proposed by Kuo 

and Shih was applied to a health database where a user specifies more than one attribute 

and defines two or more search constraints on an attribute for association rule generation. 

Constraint-based mining enables users to extract rules of interest to their needs, and 

computational speed is faster, thus improving the efficiency of mining tasks. Kuo and Shih 

(2007) indicate that the constraint-based mining provides condensed rules, contrary to the 

Apriori method. Additionally, the computational time was reduced since the database was 

scanned only once to disclose the mined association results. The use of constraint 

conditions reduces search time during the mining stage. However, the challenge is how to 

merge many similar rules that are generated in the mining results. 

 

Kuo and Shih (2007) apply ACO to find association rules (between potential disease and 

early prevention in a health database) from a multi-dimensional constraint problem. In 

their study, multi-dimensional items were classified into two constraints, namely a single 

constraint against two constraints (such as, max(X, cost) ≤ (X, price)) and a conjunction 

or disjunction of multiple sub-constraints (C1: X, cost ≤ v1) ˄  (C2: X, price ≤ v2), where 

v1 and v2 are constant values respectively (Kuo and Shih 2007). Besides these two multi-

dimensional constraints, a frequency constraint is considered to find useful/interesting 

rules. The advantage of ACO over the Apriori method is that ACO condenses more rules 

and uses less computational time to generate association rules.   

  

Tang et al. (2012) propose another meta-heuristic algorithm called the WSA. The WSA 

is a bio-inspired heuristic optimization algorithm that is based on wolf preying behavior 

(Tang et al. 2012). The behavior of wolves includes the ability to hunt independently by 

remembering their own traits (meaning wolves have memory); the ability to only merge 

with their peer when the peer is in a better position (meaning there is trust among wolves 

to never prey on each other); only being attracted to prey within their visual range; the 

ability to escape randomly upon the appearance of a hunter (Tang et al. 2012); and the use 
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of scent marks as a way of demarcating their territory and communicating with any other 

wolf (Agbehadji et al. 2016). 

 

This behavior expressed by the wolf enables it to randomly adapt to its environment when 

hunting. If a wolf finds a new, better position, the incentive is stronger to assume this new 

position, provided that the position is not already inhabited by a companion wolf. 

Furthermore, each wolf instinctively flocks together in a pack that is a collective, and 

organizes individual searches of an individual wolf. Therefore, the swarming behavior of 

the WSA is delegated to each individual wolf, and this behavior could form multiple 

leaders swarming from multiple directions towards the best solution rather than a single 

flock searching for an optimum in one direction at a time (Tang et al. 2012).  The WSA is 

an iterative search process that starts with the setting of initial parameters, random 

initialization of the population, evaluation and updating a current population using a 

fitness test, and continuing to create new generations/iterations until some stopping 

criteria are met. A variant of WSA is the Wolf Search Algorithm with Minus Step Previous 

(WSA-MP) (Tang et al. 2012). The WSA-MP allows a wolf to remember a previous best 

position and avoid the old positions that do not produce a best solution.  

 

The Bat algorithm (Yang 2010) is another kind of meta-heuristic algorithm and is based 

on the behavior of micro-bats in their natural environment. The unique behavior that 

characterizes bats is their echolocation mechanism. This mechanism helps bats orient 

themselves and find prey within their environment. The search strategy of bats is 

controlled by the pulse rate and loudness of their echolocation mechanism. While the pulse 

rate changes to improve on the position that was previously found, the loudness indicates 

to each other bat that a best position has been accepted/found (Fister et al. 2014). Bat 

behavior has been applied in several optimization problems to find the best optimal 

solution. 
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The Bat algorithm search process starts with random initialization of the population, 

evaluation of the new population using a fitness function, and finding the best population. 

Unlike the Wolf algorithm, which uses attractiveness of prey to govern its search, the Bat 

algorithm uses the pulse rate and loudness to control the search for an optimal solution.  

 

These experiments on meta-heuristic algorithms were conducted using pre-fixed 

parameters that were pre-tuned or controlled by the bio-inspired behavior of the respective 

algorithm at each iteration process (Wei-yong et al. 2015). Although Kuo and Shih (2007) 

and Kuo et al. (2011) apply meta-heuristic algorithms to different problem domains, 

neither study considers the time and numeric dimension of frequently changed itemsets. 

It is possible to apply a meta-heuristic algorithm as a search strategy to perform 

randomization of search space to select optimal results when large volumes of data and 

velocity of frequently changed items are important for pattern discovery. When this is 

achieved, it is possible to improve on the runtime performance (Oweis et al. 2016) of 

searching for association rules in large datasets. Yang, Lin and Jin (2015) indicate that 

randomization is faster and reduces data size when large volumes of data are involved. 

Furthermore, Yang, Lin and Jin (2015) observe that having optimal results improves the 

convergence rate of data when speed (velocity) is significant. The combination of the 

benefits of randomization and approach to optimal solutions provides an efficient search 

algorithm (Yang, Lin and Jin 2015). It is possible to relate these properties of data 

attributes to the frequently changed or frequently used aspects of data. Thus, exploring the 

frequently changed or frequently used attributes through randomization and optimal 

solutions may provide interesting patterns. These interesting patterns may be provided 

through animal behavior, as animals can learn from their environment and adapt to 

different situations (such as in association rule mining). In the next subsection, the 

learning behavior of animals is discussed. 
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iii. Learning behavior of animals 

Learning is essential for social animals as it enables them to adapt to different 

environments in their search for food. During the process of adapting, social animals tend 

to imitate best behavior that enables it to survive. Social imitation learning is a skill used 

to achieve social adaptation, and the more an individual animal observes a behavior, the 

more likely it is to imitate that behavior and later engage in similar action. This suggests 

that each animal uses the social learning concept (Bandura 1971), which states that 

learning may be achieved by observing behavior, encoding best features and later 

imitating previously observed behavior. The key factor that could possibly lead to 

imitation is distance, as the closer the distance, the higher the chances of accurate 

imitation. Animals that are cooperative in hunts or that hunt in groups, are possibly 

adapted with natural abilities that allow them to adopt the social learning concept.  

 

Sakato, Ozeki and Oka’s (2012) method of imitating actions of well-adapted individuals 

within an environment uses the reinforcement learning method, which not only allows 

individuals to imitate best actions but also to behave autonomously in their environment 

(Sakato, Ozeki and Oka 2013). In this method, as an individual (referred to as an agent) 

imitates similar actions of another individual, a similarity value is computed to show the 

importance of features that were imitated in terms of the type of feature and location. 

Imitated actions are then selected using an action selection module. Agents learn through 

trial and error in a given environment what to imitate and how to evaluate the imitation 

until the correct value is determined and then maps it to a corresponding feature. Function 

approximates are used to calculate approximate value, which represents the similarity 

value of an action and the observed action. 

 

Although this approach uses a probability in calculating the similarity between an action 

and the observed action, it is possible to use a meta-heuristic search method that is adapted 

with randomization and optimization search strategies to imitate optimal or near-optimal 

solutions. 
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2.2.3. Phase 3: Data visualization  

Data visualization presents data in pictorial or graphical format and enables the display of 

interesting patterns for decision-making (Bikakis 2018). Han and Kamber (2006) provide 

the following as reasons for data visualization: Gain insight into information by mapping 

data onto graphical form; provide a qualitative overview of large datasets; search for 

patterns, trends and relationships among data; and help find interesting patterns for 

decision-making. Additionally, data visualization avoids data distortion by showing actual 

data using pictures for easy understanding (Ward, Grinstein and Keim 2010). In view of 

these reasons, data visualization faces the challenge that billions of records are condensed 

into a million pixels (Shneiderman 2008), and this results in distortion of data. Although 

distortion is a challenge in data visualization, the focus of the present thesis is on the 

representation of data in a systematic form with data attributes and variables, which helps 

display patterns in graphical format. The conventional approaches that are used to 

represent data in systematic format include the use of bar charts, scatter diagrams and 

maps (L. Wang, G. Wang and Alexander 2015). 

 

The conventional techniques of visualization that tie in with data visualization could 

consider visual performance scalability and response time during the visual analytics 

process (L. Wang, G. Wang and Alexander 2015). Among the techniques of visualization 

are dense pixel display, the stacked display technique (Keim 2000; Keim 2002; Leung, 

Kononov, Pazdor and Jiang 2016) and cellular ant-based methods (Moere et al. 2006). 

 

According to Keim (2000), the dense pixel technique maps the dimensions of values of 

both text and numeric data to colored pixels and then groups the pixels belonging to each 

dimension into adjacent areas using the circle segments technique. The principle of the 

circle segments technique is that, close to a center, all attributes close to each other 

enhance the visual comparison of values. The stacked display technique (Keim 2002; 

Leung, Kononov, Pazdor and Jiang 2016), meanwhile, displays sequential actions in a 
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hierarchical fashion. The basic idea of the stacked display technique is to integrate one 

coordinate system with another, that is, two attributes form the outer coordinate system 

and two other attributes are integrated into the outer coordinate system.  

 

When coordinate systems are integrated, it is possible to update these coordinate systems 

to be dynamic. Mittelstaedt and Mittelstaedt (1982) express this integration as summing 

up or adding coordinates together. Thus, positions on the coordinate systems are updated 

using the Cartesian system, where each rotation is categorized into two orthogonal (sine 

and cosine) components, and then the components are integrated (summed up) over the 

total path (Mittelstaedt and Mittelstaedt 1982). Thus, it is possible to apply path 

integration as a method of updating coordinate systems to be dynamic. Path integration is 

an incremental recursive process in which changes in current estimates of the position are 

added to position vectors of previous steps (Etienne, Maurer and Saucy 1988) through the 

use of rules for processing information (Etienne and Jeffery 2004). However, the major 

drawback is that computational performance degrades due to cumulative error after each 

update process.   

 

2.2.3.1 Bio-inspired approach to data visualization  

The animal behavior/bio-inspired approach to visualization includes the use of cellular 

ants based on any colony system (Moere et al. 2006) and flocking behavior of animals. 

Flocking behavior for data visualization (Moere 2004) focuses on simplified rules that 

model the dynamic behavior of objects in n-dimensional space. The spatial clustering 

technique helps group each dynamic behavior or similar features of data as a cluster that 

is viewed in n-dimensional space on a grid. In order to assist users of the visual data to 

understand patterns, a blob shape is used to represent groups of spatial clusters. This blob 

shape represents data plotted on grids.  

 

Moere et al. (2006) combine characteristics of ants and cellular automata to represent 

datasets in visual clusters. The cellular ants use the concept of self-organization to 
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autonomously detect data similarity patterns in multi-dimensional datasets and then 

determine the visual cues, such as position, color and shape size, of the visual objects. A 

cellular ant determines its visual cues autonomously, as it can move around or stay put, 

swap its position with a neighbor, and adapt a color or shape size where each color and 

shape size represents data objects. Data objects are denoted as individual ants placed 

within a fixed grid that creates visual attributes through a continuous iterative process of 

pairwise localized negotiations with neighboring ants in order to form a pattern that can 

be visualized on a data grid. When ants perform continuously pairwise localized 

negotiation, the position of one ant is swapped with another ant, which relates to swapping 

one color with another in a single cluster (Moere et al. 2006). In this instance, the swap in 

positions relates to interchange between data values that are plotted on a grid for 

visualization by users. 

 

Generally, there is no direct predefined mapping rule that interconnects data values with 

visual cues to create the visual format for users (Moere et al. 2006). Hence, the shape size 

scale adjustments are automatically adapted to data scale in an autonomous and self-

organizing manner (Moere et al. 2006). In view of this, instead of mapping a data value 

to a specific shape size, each ant in the ant colony system maps one of its data attributes 

onto its size by negotiating with its neighbors. During the shape size negotiation process, 

each ant compares randomly the similarity of its data value and circular radius size that is 

measured in screen pixels. It is possible that each ant can grow large or become small, 

therefore simplified rules from ant behavior are expressed and applied to check how ants 

can grow in their neighboring environment. These rules are significant in determining the 

scalability of visualized data, whereas the randomization process is significant in 

determining the adaptability of data value. The process of shape size scale negotiation 

may require extensive computational time in coordinating each ant into a cluster or single 

completed action.  
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2.2.3.2 Data visualization evaluation techniques 

Keim, Bergeron and Pickett (1994) indicate that data visualization evaluation techniques 

give an idea that could lead to improvement on data visualization methods. Although there 

is a lack of quantitative evidence measuring the effectiveness of data visualization 

techniques, Keim et al.’s (1994) approach to quantitatively measuring the effectiveness of 

visualization techniques was by generating arbitrary/artificial test datasets with similar 

characteristics such as different structures or semantics. When similar characteristics are 

grouped, statistical methods are used as a way of evaluation, and include the use of mean 

and variance of some dimensions such as location, size and shape of clusters. When some 

parameters (such as statistical parameters) that define the data characteristics are varied at 

a time within an experiment in a controlled manner, it helps in evaluating different 

visualization techniques to find where the point data characteristics are perceived for the 

first time or to find the point where characteristics are no longer perceived, in order to 

build more dynamic and realistic test data 

 

Another approach to evaluating data visualization was proposed by Keim et al. (1994). 

They indicate that data for visualization can be evaluated when the same test data is used 

in comparing different visualization techniques so as to determine the strengths and 

weaknesses of each technique. However, the limitation of the visualization approaches is 

that the evaluation is based only on users’ experience in the use of the visualization 

techniques. Marghescu (2008) notes that the effectiveness of a visualization technique is 

based on the user’s ability to read, understand and interpret the visual display easily, 

accurately, quickly, et cetera. Thus, effectiveness depends not only on the graphical design 

but also on the users’ visual capabilities (Marghescu 2008). Card, Mackinlay and 

Shneiderman (1999) define effectiveness as the capability of a human to view a display 

well, interpret the results faster and convey distinctions in the display with fewer errors. 

Mostly, effectiveness is measured in terms of time to complete a task or quality of the 

tasks’ solutions (Dull and Tegarden 1999; Risden and Czerwinski 2000).  
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Some visualization evaluation techniques include observation by users, the use of 

questionnaires, and graphic designers who critique visualized results (Santos 2008) and 

give an opinion. Although these visualization evaluation techniques are significant, they 

are subjective and qualitative, so a quantitative approach could provide an objective 

approach to measure visualization evaluation techniques. 

 

2.3 Summary 

This chapter provided a review of methods/concepts relating to data cleansing, 

extrapolating missing values from data sources, and data mining algorithms/big data 

mining algorithms and their challenges. Challenges with current data mining algorithms 

are the high computational time and cost, the user setting a minimum support threshold 

value, and not considering the time and numeric value dimension in frequent pattern/item 

discovery. Appendix 1 is a summary of the data mining algorithms, advantages and 

limitations. 

 

These challenges (as shown in Appendix 1) are the gaps that were identified, and although 

different search strategies have been applied to different problem-specific domains to find 

frequent patterns/items in respect of data mining algorithms, these applications have failed 

to disclose frequently changed patterns/items that might have interesting patterns based 

on which a user can take a sequence of actions. Additionally, challenges identified with 

duplicate detection techniques include the inability to perform global alignment of words 

(that is, using the Smith-Waterman algorithm) and the computational complexity of 

duplicate detection algorithms (that is, the using Smith-Waterman algorithm). Also, while 

the BLAST algorithm for duplicate detection takes less time, it may not guarantee accurate 

results as compared with the Smith-Waterman algorithm. Although, Naumann’s (2013) 

framework presents a process to be followed for duplicate detection, when the algorithm 

used in the process is unable to find accurate duplicates from any data source it influences 

the performance results. Hence, the algorithm used aspect will be the focus of this thesis. 
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Additionally, Appendix 2 shows a summary of the advantages and disadvantages of meta-

heuristic search methods. 

 

After reviewing what the key issues of concern are in respect of the challenges, it is 

important to know how to address these challenges, which still remains a gap. This thesis 

seeks to fill the gaps (Appendix 1 and Appendix 2) and propose a method on how to 

address the challenges by proposing a search algorithm for cleansing data and a data 

mining algorithm for frequently changed patterns/items that are characterized as having 

volume, velocity and value. Finally, the study also proposes an approach for data 

visualization in order to address scalability issues with data visualization when data is 

characterized as having velocity (that is, moving with speed).  
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CHAPTER 3: DEVELOPING METHODOLOGICAL 

FRAMEWORK 

3.1 Introduction  

This chapter illustrates how the research gaps identified in the previous chapter will be 

addressed in this thesis. In this chapter, the researcher applies mathematical formulation 

as a method to model certain behaviors of selected animals and then translate this model 

into algorithms. The modelled behaviors are, from the researcher’s perspective, the 

dominant features that represent unique characteristics that distinguish each animal. The 

unique characteristics that are mathematically expressed were translated into search 

algorithms (referred to as agent-based search algorithms) to find best possible solutions in 

different problem domains that are characterized as having large volumes and velocity. 

This agent-based search algorithm can be adapted to different problem dimensions and 

domains by parameter tuning to observe the results of each parameter. The next subsection 

discusses the methodological framework that helped guide this study and helped address 

the gaps identified in literature.  

 

3.2 Methodological framework for big data analytics  

Research methodology is defined as a way to collect data and to analyze and interpret 

results to either confirm or reject a claim (Creswell 2013). Creswell (2013) notes that there 

are four questions that help a researcher clearly understand a problem in a research design. 

The four questions are: What theory of knowledge is embedded in the theoretical 

perspective (referred to as epistemology) that informs the research (either objectivism or 

subjectivism)? What is the theoretical perspective (that is, what lies behind the 

methodology in question, e.g. positivism and post-positivism, interpretivism or critical 

theory)? What is the methodology (that is, strategy or plan of action that links methods to 

outcomes) that governs the choice and use of methods (e.g. experimental research, survey 

research, ethnography, etc.)? And what methods (that is, techniques and procedures) are 

used (e.g. questionnaire, interview, focus group, etc.)? 
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This philosophical process of knowledge claims are linked to four different schools of 

thought, namely positivism, constructivism, advocacy/participatory and pragmatism. The 

positivist knowledge claim helps make underlying knowledge claims that form a basis to 

understand the nature of a problem in the real world (Creswell 2013). This enables the 

researcher to formulate a strategy and appropriate method to solve the problem (Creswell 

2013). Knowledge claims use existing theory; strategy is the use of experimental design; 

and method is a way of measuring output (Creswell 2013). Given the nature of the study, 

the researcher adopted objectivism as epistemology (as the researcher deals with objective 

reality), positivism as theoretical perspective (as ideas are reduced into small subsets that 

can be tested, such as variables in hypotheses and theories, and the effects that these 

variables cause are identified), and experimental design as methodology (because with 

this design, it is possible to control numeric attributes and measure their causal effect) 

(Creswell, 2013). 

 

Using this methodology, the researcher followed the premise of this study, which is that 

data is frequently generated from different sources that are characterized as having 

velocity, volume, value and variety. As data is generated, its characteristics might 

frequently change and, based on this possibility, the thesis focuses on the aspect of 

disclosing interesting patterns from frequently changed data and on the visualization of 

these patterns. The proposed methodological framework consists of three phases: data 

preprocessing/data cleansing, data mining and data visualization. Table 3.1 shows the 

various phases, stages, proposed algorithms and the comparative algorithm that constitute 

the methodological framework. 
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 Table 3.1: Phases, stages and algorithms 

Phases Stages Proposed algorithm Comparative 

algorithms 

Phase 1: Data 

cleansing/preprocessing 

Stage 1: Identify and 

eliminate duplicate 

text 

Enhanced Smith-

Waterman algorithm 

Jaro-Winkler 

distance metrics 

 

 Stage 2: Extrapolating 

missing data values 

KSA WSA-MP, BAT 

and Firefly 

algorithms 

 Stage 3: Feature 

selection  

KSA WSA-MP, BAT, 

ACO and PSO 

algorithms 

Phase 2: Data mining - KSA ACO, BAT, PSO 

and WSA-MP 

algorithms 

Phase 3: Data 

visualization (using 

linear graph) 

- DBA ACO for data 

visualization, Bee 

algorithm 

Source: Researcher 

 

Table 3.1 consists of three phases. Phase 1 is data preprocessing/data cleaning, which 

consists of three stages, namely: extrapolating missing data; identifying and eliminating 

duplicates; and feature selection. The extrapolating stage estimates missing values at 

random in the observed data sample, as this may create inaccurate results in analysis. The 

method to extrapolate missing data was mathematically formulated from the random 

search characteristics of a bird in order to build a search algorithm that was used to 

extrapolate missing data. Duplicate text data may create inaccurate results, which is 

identified and eliminated using the Naumann’s (2013) framework and the enhanced 

Smith-Waterman algorithm is applied. Finally, the feature selection stage allows large 

volumes of data to be narrowed/reduced into smaller sets of relevant frequently changed 

data for a quick and easy feature selection process. The formulated mathematical 

expression for feature selection was combined with a deep learning network to form a 

classifier for feature subset selection. Although there are several traditional search 

methods (such as ANN, SVM, etc.) for building classifiers for feature selection, the 
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formulated search strategy was adopted as it related to how the bird being modelled shows 

a dominant behavior trait, such as maintaining a still position with eyes fixed in a forward-

looking direction to search through a series of overlapping areas (Shrubb 1982).  

 

The distinction between the proposed methodological framework and other framework 

(e.g. Srivastrva 2014) differs in terms of the approach adopted in each stage, such as data 

preprocessing or data mining. Even the various data mining frameworks, devoted to one 

phase of the data management process, lack uniformity (Khana, Mohamudally and 

Babajee 2013). Consequently, a comparison of the two frameworks or of any existing 

framework are not considered and, hence, benchmark testing proposed against existing 

frameworks are not focus of this thesis. The proposed methodological framework largely 

focuses on a bio-inspired behaviour modelling and implementation of KSA but to a minor 

extent, of the dung beetle as well in the stages of preprocessing, data mining, and 

visualisation. Other frameworks do not include these phases and, hence, this proposed 

framework forms an original contribution in this thesis. 

 

Phase two, data mining, uses the KSA to mine association rules to disclose interesting 

frequently changed patterns within time and numeric dimensions. The interesting patterns 

are measured in terms of their closeness to a user-specified time interval (Railean et al. 

2013), which is discussed in section 3.3.2. 

 

The third phase is the data visualization. This phase is used to view the data mining results 

using a simple linear graph with low computational cost. The DBA, which is based on ball 

rolling, dance and path integration behavior of dung beetles, was used as an approach to 

data visualization. The approach was mathematically formulated into simplified 

mathematical expressions (as indicated in section 3.4) for visualization of relevant and 

interesting frequently changed items with numeric value from the data mining phase. 
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In addition, the selected comparative algorithms that were described and discussed in 

literature review, as indicated in Table 3.1, were compared with the proposed bio-inspired 

algorithm to test the robustness of the algorithm proposed in this thesis. Moreover, the 

appropriate comparative meta-heuristic algorithms were selected for each phase of the 

proposed computational model.  

 

In the next sub-section, the behavior of the bird (the kestrel) is discussed, as well as some 

of its unique characteristics, the mathematical formulation depicting these characteristics, 

the assumptions underlining the mathematical formulation and the formulation of basic 

rules from each characteristic identified, as these constitute the steps in formulating the 

KSA algorithm. Similarly, these steps are applied in the formulation of a search algorithm 

for the proposed DBA for data visualization.   

 

3.2.1 Description of kestrel behavior 

The kestrel is a bird that hunts by hovering (that is, flight-hunting) or from a perch. This 

bird can defend its territory from other kinds of birds and can change its hunting technique 

based on type of prey, prevailing weather conditions (such as wind) and energy 

requirements (for gliding). Kestrels are well adapted to use their eyesight to watch small 

and agile prey on the ground. When kestrels are hovering, they can maintain a still position 

with forward-looking eyesight to encircle prey beneath. Frequently bobbing their head 

gives them a degree of magnified or binocular vision that helps in judging distance to 

locate prey from a remarkably far distance. Kestrels have an ultraviolet-sensitive 

characteristic to visually locate trails of prey such as voles, because trails of urine and 

feces reflect ultraviolet light, making them visible to kestrels (Viitala et al. 1995).  

 

Most frequently, an individual kestrel hunts a portion of an area and shifts entirely to 

another portion at regular time intervals to look for prey (Shrubb 1982). When kestrels 

live as social birds in a flock, it improves their chances of finding food sources, the risk 

of predation reduces and their roost serves as a place for communicating with others. 
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Although a group of kestrels can be seen moving together in a similar direction and staying 

as a group, this behavior is only temporary, since each will disperse to hunt individually 

(Zyl 2013).  

 

Varland (1991) indicates that during a hunt, kestrels are imitative rather than cooperative 

due to their solitary hunting in close proximity to each other. This suggests that kestrels 

prefer not to communicate with each other but rather imitate the behavior of other kestrels 

with better hunting techniques and improve on their hunting technique, even though the 

hunting technique can change based on type of prey, prevailing weather conditions and 

energy requirements (for gliding or diving) (Vlachos et al. 2003).  

 

During flight-hunting, the kestrel performs a random search, either by a series of hovers 

in a close pattern around a small area and then moving forward, or by a series of more 

widely spaced single hovers (Shrubb 1982). Village (1990: 66) indicates that “kestrels 

have incredible co-ordination required to maintain position in a constantly changing 

airstream. While the winds of kestrel and body are buffeted about like a flapping rag, its 

head stays fixed, as if pinned by invisible clamps.” This suggests that kestrels are able to 

maintain a still position with eyes fixed pointing in a specific direction. Kestrels are able 

to flap their wings and adjust their long tails to stay in place, referred to as a still position 

in changing airstreams. This enables kestrels to search for prey in wide circles centered 

beneath them (Shrubb 1982). Ákos et al. (2010) observe that birds can adjust their flight 

to weather conditions using speed-to-fly theory – a theory proposed by Paul MacCready. 

It may be inferred that when speed is approximately zero, then a stable position can be 

observed.  

 

Specifically, during perched hunting, kestrels are seen on high fixed structures constantly 

scanning the ground with their eyes. The benefit of a fixed high perch area is that it enables 

fairly large scans or use of a larger search area than low perch areas. The frequent bobbing 

of the head characterizes the behavior in perch. Shrubb (1982) observes that kestrels in 
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perch tend to look forward and search series of overlapping bands. When prey is found, 

kestrels either glide down to strike directly or fly out and hover over the spot area for a 

closer look and determination of the measurement of distance to travel. Mostly, the strike 

from kestrels, while in perch mode, is directed at small mammals closer to a perch than 

avian prey. This suggests that in perch mode, kestrels conserve some energy and direct 

their ultraviolet-sensitive characteristics at slowly moving prey on the ground and lift the 

prey. During active hunting, that is, in either hovering and perch mode, kestrels maintain 

upright posture, continually scan the ground and bob their head several times to better 

judge distance to prey.   

 

Kestrels are mostly known to flight-hunt if they are looking for small mammals and if the 

wind conditions are favorable. Thus, an increase in flight-hunting leads to a corresponding 

decline in perch-hunting, which reflects the capture rate in that the perch-hunt capture rate 

is lower. Flight-hunting is necessary if the yield from perch-hunting is too low, but this is 

usually done when the wind conditions make hovering most efficient. Perch-hunting is 

therefore a good way to meet daily food needs, as it requires little effort. Flight-hunting 

yields more strikes than perch-hunting, however, because flying kestrels are higher 

(searching directly overhead) and can move more rapidly, thereby scanning more ground 

in a given time (Village 2010). The characteristics of the kestrel are simplified as follows:  

 

1) Soaring: Gives a larger search space (global exploration) within the visual coverage 

area. 

a. separates from group assembly of kestrels in order to hunt individually    

b. still (motionless) position with eyesight fixed on prey 

c. encircles prey beneath with keen eyesight 

d. stepped descent to capture prey by surprise 

 

2) Perching: Each kestrel does a thorough search (local exploitation) within the visual 

coverage area. 
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a. positioned on high fixed structures 

b. frequent bobbing of head 

c. attracted to prey using seen trail, then glides to capture 

d. imitation of behavior 

 

3.2.1.1 Kestrel-based search algorithm 

The KSA is a meta-heuristic algorithm based on the hunting characteristics of the kestrel. 

The KSA is a meta-heuristic algorithm because the hunting behavior, as described, 

performs local exploration of domain-specific knowledge in the form of heuristics, which 

are controlled or guided by the upper-level search strategy (referred to as meta), global 

exploitation. The learning strategy of kestrels is mathematically expressed and used to 

structure information to find efficient near-optimal solutions. The behavior of the KSA 

relates to the fundamental properties of meta-heuristic algorithms as defined by Blum and 

Roli (2003).  

 

The hunting technique of kestrels changes based on type of prey, prevailing weather 

conditions and energy requirements (for gliding or diving) (Vlachos et al. 2003). In order 

to perform local exploration, the solution algorithm generates initial solutions and then 

tries to update with a better solution from a population. The challenge of local exploration 

is avoiding getting stuck in a local optimum (Iglesia and Reynolds 2005), which may be 

avoided by a random encircling formulation and the mechanism of trail evaporation 

strategy that is random. 

 

When hovering, kestrels perform a wider search (global exploration) across territories 

within a visual circling radius, maintain a motionless position with forward-looking eyes 

fixed on prey, and detect minute air disturbances from flying prey (particularly flying 

insects), which gives an indication to capture prey, and mostly move with precision 

through changing airstreams. While in perch, mostly from high fixed structures, kestrels 

perform a thorough search (local exploitation) of their local territory with fewer energy 
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requirements, and they use their ultraviolet-sensitive capabilities on mammals, such as 

voles, closer to perch area. Mostly, strikes are directed at mammals closer to the perch. 

This suggests that in perch, kestrels conserve some energy and direct their ultraviolet-

sensitive capabilities at slowly moving prey on the ground. It is significant to combine 

this search behavior because perch-hunting is thorough and directed at a variety of ground-

moving prey, while flight-hunting is rapid and depends on speed to dive. Again, flight-

hunting explores hunt areas that are beyond the scanning range of perches that would 

otherwise be unexploited (Agbehadji et al. 2016). 

 

Assumptions: 

 Kestrels hunt individually. 

 Kestrels are imitative rather than cooperative. Perhaps kestrels can imitate birds from far 

off. 

 The still position gives a near-perfect circle, thus frequent changes in circle direction 

depend on the position of a prey in shifting the center of circling direction. 

 Frequent bobbing of the head gives a degree of magnified or binocular vision that helps 

in judging distance to a prey and moving with speed to strike. 

 Perch is not likely to give a perfect circle. Thus, ultraviolet-sensitive capabilities are used 

to visually determine attractiveness of trails closer to the perch area and then glide to 

capture the prey. Attractiveness is proportional to light reflection, so the higher a distance, 

the less bright a trail. Additionally, new trails are more attractive than old trails.  

 An increase in flight-hunting leads to a corresponding decline in perch-hunting. 

 

3.2.1.2 Preliminary formulation of basic rules 

 Random encircling 

The encircling mechanism defines a circle-shaped neighborhood solution around a 

position with different random radii (Mirjalili, Mirjalili and Lewis 2014). The assumption 

is that as the prey moves at random to its current position, the kestrel randomly changes 

the center of circling direction randomly in order to recognize the current position of prey 
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to be encircled. This movement of prey determines the best possible position assumed by 

the kestrel. The mathematical model to depict encircling behavior 𝐷⃗⃗⃗ (Muro et al. 2011; 

Kumar 2015) is expressed as follows: 

𝐷⃗⃗⃗ = |𝐶 ∗ 𝑥𝑝⃗⃗⃗⃗⃗(𝑡) − 𝐴 ∗ 𝑥⃗(𝑡)|     Equation 3.1 

𝑥⃗(𝑡 + 1) = 𝑥𝑝⃗⃗⃗⃗⃗(𝑡) − 𝐴 ∗ 𝐷⃗⃗⃗     Equation 3.2 

where  

𝐴 = 2 ∗ 𝑧 ∗ 𝑟2⃗⃗⃗⃗⃗ − 𝑧     Equation 3.3 

𝐶 = 2 ∗ 𝑟1⃗⃗⃗⃗⃗      Equation 3.4 

where 𝐴  is the coefficient vector, 𝑥𝑝⃗⃗⃗⃗⃗(𝑡)  is the position vector of the prey, and 𝑥⃗(𝑡) 

indicates the position vector of a kestrel. Further, r1 and r2 are learning rates that assume 

a random value between 0 and 1, 𝑥⃗(𝑡 + 1)represents the current position of a kestrel, 𝑧 

represents a parameter to control the active mode, with 𝑧ℎ𝑖  as the parameter for flight 

mode and 𝑧𝑙𝑜𝑤 as the parameter for perched mode, which linearly decreases from 2 (high 

active mode value) to 0 (low active mode value) respectively during the iteration process. 

This is expressed in Equation 3.5 as 

𝑧 = 𝑧ℎ𝑖 − (𝑧ℎ𝑖 − 𝑧𝑙𝑜𝑤)
𝑖𝑡𝑟

𝑀𝑎𝑥_𝑖𝑡𝑟
    Equation 3.5 

where itr is the current iteration and Max_itr is the total number of iterations that are 

performed during the search.  

 

The encircling prey formulation, as adopted from grey wolves’ behavior (Muro et al. 

2011), which is a variant of wolf behavior, shows group hunting behaviors such as: 

tracking, chasing and approaching prey, as well as pursuing, encircling, attacking and 

harassing prey until it stops moving. Although grey wolves’ encircling behaviour is 

similar to kestrels, kestrels perform encircling of prey individually rather than in groups. 

This individual hunting behavior suggests that kestrels have the natural ability to track the 
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position of prey and to shift their center direction randomly to adjust their location and 

identify their prey. Hence, random encircling was adopted to depict the hunting 

characteristics of kestrels for a successful hunt.  

 

 Change in position 

The change in position of a kestrel helps it move toward its prey. The change in position 

of a kestrel depends on attractiveness and frequency of bobbing, which are explained 

below. A kestrel’s position is updated using Equation 3.6: 

𝑥𝑡+1
𝑘 = 𝑥𝑡

𝑘 + 𝛽𝑜𝑒−𝛾𝑟2
(𝑥𝑗 − 𝑥𝑖) ∗ 𝑓𝑡

𝑘    Equation 3.6 

where  𝑥𝑡+1
𝑘  is the current best position of the kestrel, which represents candidate solution, 

𝑥𝑖 is the previous position of the kestrel, 𝛽𝑜𝑒−𝛾𝑟2
represents the attractiveness of prey, 𝑥𝑗 

represents a kestrel with a better position, and 𝑓𝑖
𝑘 is the frequency of bobbing.  

 

The best candidate represents a candidate that has better knowledge about the potential 

position of a prey. The best candidate with better position is saved to oblige the other 

search agents (that is, kestrels) to change their positions according to the position of the 

best search agent. As kestrels hunt individually, search agents tend to imitate the best 

position of the other search agents and then update their velocity accordingly. 

 

 Velocity  

The velocity of a kestrel moving from its position is expressed in Equation 3.7 as 

𝑣𝑡+1
𝑘 = 𝑣𝑡

𝑘 + 𝑥𝑡
𝑘     Equation 3.7 

where vt+1
k  represents the current velocity of the kestrel, vt

k is the initial velocity, and 𝑥t
k 

is the position of the kestrel. The change in velocity is controlled by the inertia weight ω 

(which is also referred to as the convergent parameter) (Ahmed and Glasgow 2012). This 

inertia weight has a linearly decreasing value, as explained in the random encircling 

formulation in Equation 3.9. Thus, velocity is expressed in Equation 3.8 as 
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𝑣𝑡+1
𝑘 = 𝜔𝑣𝑡

𝑘 + 𝑥𝑡
𝑘     Equation 3.8 

where ω is expressed in Equation 3.9 as 

𝜔 = 𝜔ℎ𝑖 − (𝜔ℎ𝑖 − 𝜔𝑙𝑜𝑤)
𝑡

𝑇𝑚𝑎𝑥
    Equation 3.9 

where t refers to the iteration counter, ωhi and ωlow are the parameters on flight mode 

(higher bound) and perched mode (lower bound) respectively, and Tmax is the allowable 

number of iterations to terminate the search. 

 

 

 

 Frequency of bobbing  

Frequency of bobbing depends on the kestrel’s position on a fixed structure. This is 

expressed in Equation 3.10 as 

𝑓𝑡+1
𝑘  =  𝑓𝑚𝑖𝑛 +  (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝛼    Equation 3.10 

where, 𝛼 ∈  [0,1] is a random parameter between 0 and 1 to control the frequency. The 

maximum frequency fmax is set to 1, and the minimum frequency fmin is set to 0. The 𝑓𝑡+1
𝑘  

is the current frequency that indicates the frequency of bobbing at each step on a high 

fixed structure.  

 

When a kestrel is located at a current position, each bob of the head calculates all sight 

distances to pick the best possible sight distance. This bobbing of the head gives a degree 

of magnified or binocular vision for judging distance to a prey in hyper-space from 

different positions before it moves with a velocity to strike. An awareness of changing 

airstreams and signs of nearby enemies are attributes that dominate in hyperspace. Each 

kestrel has a visual coverage area with a circling radius defined by V for x, that is, radius 

V consisting of x sets of points representing potential solutions. Sight distance 𝑠(𝑥𝑖, 𝑥𝑐) is 

expressed using Minkowshi distance in Equation 3.11 as 

𝑠(𝑥𝑖, 𝑥𝑐) = (∑ |𝑥𝑖,𝑘 − 𝑥𝑐,𝑘|𝜆)𝑛
𝑘=1

1

𝜆    Equation 3.11 
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Thus, 

𝑉 ≤ 𝑠(𝑥𝑖 , 𝑥𝑐)      Equation 3.12 

where xi is the current sight measurement, xc is all potential neighboring sight 

measurements near xi, n is the total number of neighboring sights, and λ is the order (1 or 

2) that is assumed in this study to represent the maximum of two “degrees of freedom” to 

change its position.  

 

 Attractiveness  

Ultraviolet sensitivity is used to visually locate trails of ground-moving prey. Thus, a 

kestrel’s attraction (𝛽𝑜) to prey using the ultraviolet sensitivity is proportional to light 

reflection (or light intensity γ). Thus, the greater the distance r (which equals vision 

measurement), the less bright the trail. Kestrels are most attracted to new trails. The 

intensity of the trail 𝛾 varies with distance r, since light intensity decreases with distance 

from source, and light is absorbed in the medium on which the kestrel is found. For a 

given medium with a fixed light absorption coefficient γ, the light intensity I varies with 

the distance r. This is expressed in Equation 3.13 as 

𝐼 = 𝐼𝑜𝑒−𝛾𝑟      Equation 3.13 

where I0 is the original light intensity, γ is the absorption coefficient, and r is distance. The 

absorption is therefore approximated using the Gaussian equation, hence, attractiveness β 

is expressed in Equation 3.14 by 

𝛽(𝑟) = 𝛽𝑜𝑒−𝛾𝑟2
     Equation 3.14 

where 𝛽𝑜 , which equals  𝑙𝑜, is the attractiveness, and 𝛾 represents the variation of light 

intensity between [0, 1]. 

 

 Trail decay or trail evaporation 

A trail is described as formation and maintenance of a line (Dorigo and Cambardella 

1997). Usually, in the ant meta-heuristic algorithms, ants use trails to trace the path to a 
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food source and to prevent themselves from getting stuck relying on a single food source. 

Thus, using these trails, ants can search many food sources in their habitat (Agbehadji 

2011). As ants continue to search, trails are drawn and biological evaporative substances 

are deposited in trails to enable ants to communicate with each other about the location of 

food sources. Therefore, other ants continuously follow this path and also lay more 

biological substances for a trail to remain fresh. Similar to ants, kestrels use trails in search 

of food sources. However, these trails are rather deposited by prey, which provide an 

indication to kestrels on the availability of food sources. The assumption is that the 

biological substances deposited by this prey are similar to substances deposited on ants’ 

trail. Additionally, when the source of food depletes, kestrels no longer follow this path. 

Consequently, the trail substance begins to diminish with time at an exponential rate, 

causing trails to become old (Agbehadji et al. 2018). This diminishment denotes the 

unstable nature of the trail substances, which can be theoretically stated as: If there are N 

unstable elements with an exponential decay rate γ, then an equation can be formulated to 

describe how N substances decrease in time t (Spencer 2002). This equation is expressed 

in Equation 3.15 as 

𝑑𝑁

𝑑𝑡
= −𝛾𝑁      Equation 3.15 

In other words, since the substances are unstable, they introduce randomness in the decay 

process. Thus, decay rate 𝛾 with time t is re-expressed in Equation 3.16 as 

𝛾𝑡 = 𝛾𝑜𝑒−𝜆𝑡     Equation 3.16 

where γo is a random initial value of substance that is decreased at each iteration, and 

where t is the number of iterations or time steps. Further, t ∈ [0, Max_itr], where Max_itr 

is the maximum number of iterations. The decay rate γ𝑡 at time t to indicate a new trail or 

old trail is expressed in Equation 3.17 as 

𝑖𝑓 𝛾𝑡  →  {
     𝛾𝑡 > 1, 𝑡𝑟𝑎𝑖𝑙 𝑖𝑠 𝑛𝑒𝑤         

 
0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     

   Equation 3.17 

Again, the decay constant λ is expressed in Equation 3.18 by: 
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𝜆 =
𝜙𝑚𝑎𝑥−𝜙𝑚𝑖𝑛

𝑡1
2

    Equation 3.18 

where λ is the decay constant, 𝜙𝑚𝑎𝑥 is the maximum number of substances in the trail, 

𝜙𝑚𝑖𝑛 is the minimum number of substances in the trail, and 𝑡1

2

 is the half-life period of a 

trail, which shows that a trail is old and unattractive if less than ½ is not worth exploring 

(Agbehadji et al. 2018). 

 

 Imitative behavior 

Kestrels are territorial and hunt individually rather than collectively. As a consequence, a 

model by Cui and Potok (2006), which depicts the collective behavior of birds for feature 

similarity selection, could not be applied. However, individual hunting can be used for 

feature selection based on imitative behavior. Since kestrels are imitative, it implies that 

a well-adapted kestrel would perform actions appropriate to its environment, while other 

kestrels that are not well adapted imitate and remember the successful actions of the well-

adapted kestrel. The imitation behavior reduces learning and improves the skills of less 

adapted kestrels. A kestrel is most likely to take a random step that imitates a successful 

action for a global optimum rather than not imitating and, as a result, can become stuck in 

a local optimum that it alone discovered. 

 

Imitation learning is an approach to skill acquisition (Englert et al. 2013) where a function 

is expressed to transfer skills to lesser-adapted kestrels. This suggests that lesser-adapted 

kestrels feel more drawn to imitate while observing from a close distance (Penaloza et al. 

2012). Therefore, the short distance results in higher imitation. In the present approach, 

the position at which a kestrel can copy an action in a large search domain was imitated. 

The imitation behavior is mathematically expressed and applied to select similar features 

into a subset. A similarity value 𝑆𝑖𝑚𝑣𝑎𝑙𝑢𝑒 (𝑂,𝑇) that helps with the selection of similar 

features is expressed in Equation 3.19 by 
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𝑆𝑖𝑚𝑣𝑎𝑙𝑢𝑒 (𝑂,𝑇)  = 𝑒
(−

∑ |𝑂𝑖−𝐸𝑖|2

𝑛
)
    Equation 3.19 

where n is the total number of features, and |(𝑂𝑖 − 𝐸𝑖)| represents the deviation between 

two features where O is the observed, and 𝐸𝑖 is the estimated velocity of the kestrel. Since 

the deviation is calculated for each feature dimension, at each time step only the minimum 

deviation is selected (the rest of the dimension is discarded), thus enabling the kestrel to 

allow the handling of different problem dimensions of data (Englert et al. 2013). Speed of 

convergence of imitation of similar features is regulated by a control parameter where the 

higher the value of the control parameter, the lower the convergence speed of imitation, 

and hence a lower learning rate. Moreover, cases where features that were imitated are not 

similar (that is, dissimilarity) are expressed in Equation 3.20 as 

𝑑𝑖𝑠_𝑠𝑖𝑚𝑣𝑎𝑙𝑢𝑒 (𝑂,𝑇) = 1 − 𝑆𝑖𝑚𝑣𝑎𝑙𝑢𝑒 (𝑂,𝑇)  Equation 3.20 

The fitness function, which is similar to the fitness function formulation used by (Mafarja 

and Mirjalili 2018) and which evaluates each solution, is expressed in terms of 

classification error of the RNN and the similar value obtained from each solution. The 

fitness function is formulated using Equation 3.21: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  𝜌 ∗  𝑆𝑖𝑚𝑣𝑎𝑙𝑢𝑒 (𝑂,𝑇) + 𝑑𝑖𝑠_𝑠𝑖𝑚𝑣𝑎𝑙𝑢𝑒 (𝑂,𝑇) ∗ 𝜌  Equation 3.21 

where  𝜌 ∈ (0,1) is a parameter that controls the chances of imitating features that are 

dissimilar, 𝐶𝑒𝑟𝑟𝑜𝑟  is the classification error of an RNN classifier, and 𝑆𝑖𝑚𝑣𝑎𝑙𝑢𝑒 (𝑂,𝑇) refers 

to the feature similarity value obtained in feature imitation.  

 

 Slope of glide to capture 

The slope of glide to capture differentiates the time distance that each kestrel moves in 

time width 𝜔𝑡. When the time 𝜎𝑡 at which a kestrel moves is specified and a minimum 

value 𝑓(𝜎𝑡) in an interval [0, 𝜎𝑡] is determined, then the slope of glide s to the prey within 

a time width 𝜔𝑡 is computed using Equation 3.22: 

𝑠 = √
1

𝑓(𝜎𝑡)
− 1

(𝜎𝑡−𝜔𝑡)

      Equation 3.22 
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where 𝑓(𝜎𝑡) represents a function of the final velocity of the kestrel obtained within a 

time window width 𝜔𝑡 and specified time 𝜎𝑡 to move. Thus, a larger 𝜎𝑡 implies a larger 

slope s. The basis of the slope to glide is to help determine the time differences between 

the points at which a kestrel starts a glide to another intermediate point. The significance 

of slope to glide is that it helps in discovering association rules within each time interval. 

 

3.2.2 Description of dung beetle behavior 

The behavior of dung beetles for data visualization will be described in detail in section 

3.4 of this thesis. The characteristics and simplified rule formulation on the characteristics 

of dung beetles will also be discussed.  

 

3.3 Kestrel behavior that relates to big data characteristics  

Kestrel behaviors that relate to big data environment characteristics are velocity (that is, 

the speed to dive on prey with a time dimension), variety (different kinds of prey that 

require different attack methods), veracity (attractiveness, that is, accuracy of results from 

the processing system), value (what the user will gain (usefulness) from the analysis) and 

volume (larger search space referring to size of data). Prey represents a frequent item while 

movement (e.g. change in numeric data points, such as price data) among prey indicates 

frequently changed items among frequent items. Hence, frequent items can be classified 

by a kestrel’s view based on size of data, speed, accuracy and usefulness of pattern in 

respect of time. This behavior of kestrels is mathematically modelled to handle size, speed, 

accuracy and usefulness in order to handle the challenge of data cleansing and data mining.  

 

In respect of visualization of patterns, the present study looked at the role of dung beetles 

in data visualization without relating their behavior to aspects of big data characteristics. 

The role is to ensure large volumes of data can be viewed with limited computational cost 

and in short time (i.e. velocity) by data analytics platforms. In order to fulfil this role, the 

navigation and orientation behavior of dung beetles is applied to model an algorithm for 

data visualization (see section 3.4).  
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The following sub-sections contain a discussion of how to address the challenges of data 

cleansing and data mining in big data frameworks using the behavior of kestrels. 

 

3.3.1 Phase 1: Data cleansing 

3.2.1.3 Stage 1: Extrapolating missing data using the Kestrel-Based Search Algorithm 

The search is a random search strategy that is derived from the mathematical formulations 

on the characteristics of the kestrel. The mathematical modeling of the kestrel behavior 

(in section 3.2.1) was used to extrapolate missing data (that is, missing values at random). 

 

3.2.1.4 Stage 2: Identifying and eliminating duplicate texts 

During the second stage, the Smith-Waterman algorithm, as discussed in the literature 

review, was applied to identify, match and eliminate duplicate text from a single dataset. 

The importance of duplicate detection is that it avoids duplicate tuples from a dataset. 

Consequently, this algorithm was used to remove duplicate text that had been identified. 

An approach to removing duplicates is the use of the pairwise comparison method. 

Pairwise comparison of a sequence of characters of a text was applied to find the optimal 

local alignment of characters as follows. The local alignment is performed in the following 

steps: 

Let A and B represent the sequence of two texts by A={a1,a2,…an} and B={b1,b2,…,bm}, 

where n and m are the length of the two texts respectively. 

 

Step 1: Find the substitution matrix and compute the gap penalty in terms of the cost of 

starting s and ending a gap as:  

𝑠(𝑎𝑖, 𝑏𝑗) = ∑ 𝑠(𝑎𝑖, 𝑏𝑗)𝑘
𝑖,𝑗=1     Equation 3.23 

where s: (Σ ∪  {−})2 → ℝ represents the similarity function, and s (𝑎𝑖, 𝑏𝑗) >0, s(ai, -) < 0, 

s(-, bj) < 0, where the symbol “-” represents a gap that appears either after a character or 
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before a character. If there is a match, +1 is assigned, and if a mismatch, -1 is assigned. 

Thus, the substitution matrix is described in Equation 3.24 as: 

 

𝑠(𝑎𝑖, 𝑏𝑗) = {
+1, 𝑎𝑖 = 𝑏𝑗

−1, 𝑎𝑖  ≠ 𝑏𝑗
    Equation 3.24  

Step 2: Initialize scoring matrix M[i][j] such that M[i][0]=0 and M[0][j]=0 and the size 

of the score matrix is (1+length(A))*(1+length(B)). 

 

Step 3: Scoring matrix. Score each element of the M[i][j] from left to right, top to bottom 

matrix using the matrix equation in Equation 3.25: 

𝑀[𝑖][𝑗] = 𝑚𝑎𝑥 {

𝑀[𝑖 − 1][𝑗 − 1] +  𝑠(𝑎𝑖, 𝑏𝑗)

𝑀[𝑖 − 1][𝑗] − 𝑐;   𝑖𝑓 (𝑎𝑖, −)

𝑀[𝑖][𝑗 − 1] − 𝑐;   𝑖𝑓 (−, 𝑏𝑗)

   Equation 3.25  

where an entry into the matrix produces the best possible score for match or mismatch 

s(𝑎𝑖, 𝑏𝑗) on a prefix of two strings, and c is the cost of a single gap that is expressed in a 

linear gap penalty as Ck=kC1, where k is the gap length. 

 

Each element in the scoring matrix in Equation 3.25 can be represented in a matrix table 

as follows: 

 

 

 

 

Table 3.2: Element representation in tabular form 

 bj-1 bj 

ai-1 𝑀[𝑖 − 1][𝑗 − 1]

+ 𝑠(𝑎𝑖, 𝑏𝑗) 

1 

𝑀[𝑖 − 1][𝑗]-c1 

 

2 
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ai 𝑀[𝑖][𝑗 − 1]-c1 

3 

 

 

The best local alignment score is computed by: 

𝑆𝑐𝑜𝑟𝑒 = 𝑀𝑎𝑥𝑖,𝑗=1
𝑛 (𝑀[𝑖][𝑗])    Equation 3.26 

Step 4: Traceback. Start with elements with the highest score and end at a matrix cell with 

score equal to 0. The traceback starts at the bottom right and ends at the top left for best 

alignment. Traceback helps find best local alignment.  

 

The challenge with the Smith-Waterman algorithm is the large amount of time required 

to perform a similarity check on each character in a text (CLC bio 2007). In order to 

demonstrate how the Smith-Waterman algorithm compares two sequences using local 

alignment and identifies best alignments of high importance to both the reliability and 

relevance of the data obtained as duplicate, the following example was adapted from CLC 

bio (2007) to explain how the Smith-Waterman is used: 

Sequence in text A: CAGCCUCGCUUAG  

Sequence in text B: AAUGCCAUUGACGG 

parameters for the scoring matrix being:  

 match = 1  

 mismatch = −
1

3
 

 gap = ch =
1

3
∗ 𝑘), where k represents the gap extension number. 

Using Equation 3.26, the similarity matrix is filled as shown in Figure 3.1: 
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Figure 3.1: Scoring matrix 

Figure 3.1 represents the scoring matrix, where cell value represents the score of the 

optimal alignment ending at the cell coordinates, and the highest scoring position in the 

matrix reports the ending point of the highest scoring and thereby the optimal alignment 

between the two sequences compared (CLC bio 2007).  

 

To construct the optimal alignment, the starting point is the cell with the highest scoring 

value representing the last residue in this alignment. The complete alignment is identified 

by tracing back through the array from the highest scoring matrix cell until a cell scoring 

zero is reached. 

 

In Figure 3.1, the highest scoring cell in the diagonal is 3.3 and is traced back six steps. 

The search for local alignments allowing any position to be a starting point and any 

position to be an ending point means that the optimal alignment can be of any possible 

length and is thereby identified as the optimal local alignment. Finally, the alignment 

represented by the path shown in red in the similarity matrix is expressed as 
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Sequence in text B: G C C A U U G  

Sequence in text A: G C C - U C G 

Time cost may be important but, in some contexts, accuracy is more significant in a 

situation where the risk of missing very sensitive information could result in loss of life 

(CLC bio 2007). It is possible to perform global alignment by considering each string that 

has been locally aligned as a token.  

 

 Tokenization 

Generally, the concept of tokenization is used for lexical analysis, where different 

elements represent individual words. These different elements represent a segment on a 

sequence of strings, often called tokens (Thakker, Osman and Lakin 2009), which indicate 

words. Tian et al. (2002) suggest that the way to identify erroneous words is by comparing 

words, and words that are of similar value are considered identical. Originally, 

tokenization works best when words are transposed (Elmagarmid et al. 2006). Kannan 

and Gurusamy (2014) indicate that text data could be represented as blocks of letters, that 

is, words, that are stored in machine-readable formats. In the process of tokenization, 

tokenizers (identifiers) are used to identify meaningful keywords (Vijayarani and Janani 

2016) within documents so as to find the consistency of documents. Although document 

analysis is not the focus of this thesis, it is worth mentioning the concept of tokenization, 

which forms the basis of the present approach to duplicate detection. The advantage of the 

token-based method is that while it compensates for the character-based and n-gram 

similarity measures, it fails to capture the similarity of the strings when the order of words 

is changed (e.g. Forbit Café versus Café Forbit) (Gali et al. 2016). An example of an 

algorithm based on token-based methods is the n-gram (Cohen et al. 2003). The n-gram 

is an algorithm that enables the detection of error in words to suggest misspelt words, 

where n represents consecutive letters in a word (Tian et al. 2002). The n consecutive 

letters may be taken in twos (di-grams), threes (tri-grams) or fours (quad-grams). For 

instance, using the word “cardiogram”, di-grams can be formed as (ca-ar-rd-di-io-og-gr-

ra-am); tri-grams are formed as (car-ard-rdi-dio-iog-ogr-gra-ram); and quad-grams is 
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formed as (card-ardi-rdio-diog-iogr-ogra-gram) respectively. The example indicates the 

structural information of the word (Tian et al. 2002). Thus, n-grams of a word represent 

some structural information of the word. 

 

Each token is compared with other tokens to find the transitive, reflexive or symmetry 

property of equality. For a given binary relation R on A (records), the transitive, reflexive 

and symmetry properties that identify records as duplicate are expressed by the following 

definitions: 

 

Definition 1: Transitive property of equality of record  

The significance of the transitivity property is that it reduces the number of total 

comparisons that need to be made on words (Dănăilă et al. 2012). Transitivity is expressed 

as a binary relation R. For example, the relation R on {1,2,3} is given by R = {(1,1), (1,2), 

(2,1), (2,2), (2,3), (1,3)} under the assumption that the “is a duplicate of” (Hernandez and 

Stolfo 1995) relation R is transitive by constructing a similarity graph where duplicates 

amount to finding the connected components of the resulting graph, thereby avoiding 

unnecessary comparisons between already connected nodes and reducing computation 

cost (Dănăilă et al. 2012). This means that, for each word x, y, z in A, if x word relates to 

y word, and y word relates to z word, that implies x word relates to z word in an ordered 

pair. Thus, x, y, z are the same word within a record. In this case x, y, z are considered 

nodes in a connected graph. The transitive closure of R is defined as the binary relation Rt 

on A satisfying the following three properties:  

1. Rt is transitive. 

2. R is a subset of Rt.  

3. If S is any other transitive relation that contains R, then S contains Rt.  

In other words, the transitive closure of R is the smallest transitive relation containing R. 
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Definition 2: Reflexive property of equality of record  

A record is considered reflexive if every word x in the record A is related to itself 

(Borschev and Partee 2001). The reflexive property can be expressed as a binary relation 

R if for each 𝑥 ∈ 𝐴, (𝑥, 𝑥)  ∈ 𝑅, (𝑥, 𝑥) ∈ 𝑅, where the reflexive relation is the use of the 

“is-equal-to” relation. This means that, for every word x in A, x word relates to another x 

word. Similarly, a word in a record relates to the same word in another record. For 

example, the relation R on {x1, x2, x3} is given by R = {(x1, x1), (x2, x2), (x2, x3), (x3, 

x3)} and is reflexive. This means x1 is equal to another x1, and both x1 and x1 are therefore 

reflexive.  

 

Definition 3: Symmetry property of equality of record  

A binary R is symmetric if for each 𝑥, 𝑦 ∈  𝐴, (𝑥, 𝑦) ∈ 𝑅 implies (𝑦, 𝑥)  ∈ R. Meaning for 

all 𝑥, 𝑦 ∈  𝐴, x word relates to y word implies that y relates to x. For instance, the relation 

R on {1,2,3} is given by R = {(1,1), (1,2), (2,1), (1,3), (3,1)} and is symmetric. These 

definitions expressed adhere to the property of equality in the sense that a word in each 

record is transitive for each, thus if x=y, y=z, then z=x. The reflexive property is expressed 

as x=x while, the symmetry property is expressed as if x=y then y=x. The transitive, 

reflexive and symmetry properties’ adherence to the equality (or equivalence) property 

forms the basis for pairwise alignment between two health records. This equivalence is 

measured in terms of the degree between 0 and 1 (Monge 2000) where 1 is assigned if 

there is an equivalence, while 0 is assigned if there is no equivalence.  

 

 Pairwise alignment 

Pairwise alignment finds the best-matching sequence of strings such as words. Given two 

strings Y (y1, y2...yn) and X (x1x2...xm), a pairwise alignment between Y and X is defined 

as an ordered set of pairings of each (yi, xj) and of gaps (yi, −) and (−, xj), where i ≤ n., 

with the constraint that an alignment is reduced to two original strings when all gaps in 

the alignment are deleted. The symbol “−” represents a gap that appears either after a 

character/letter or before a character/letter. The gap penalty function penalizes alignment 
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of words and then either accepts a gap or inserts alignment to achieve a good/approximate 

alignment of words. The gap penalty function is expressed as w(k), where w is the cost of 

a gap and k is the length. The cost of a gap penalty, when carefully selected, avoids a high 

gap penalty that may lead to unmatched positions of letters. This can result in unequal 

intervals on the position of characters in a text, thus leading to inaccurate matches. Hence, 

the gap penalty gives an acceptable interval for good alignment. The matched letters are 

selected and optimized over the sum of both matched and unmatched words (Vingron and 

Waterman 1994).  

 

Agbehadji, Millham, Fong and Yang (2018a) method on duplicate word/text detection 

applies two concepts, namely word tokenization and a character-based method to detect 

duplicate words. In this context, tokens are referred to as segments of words that are 

grouped together as useful semantic units for processing by the Jaro-Winker and/or Smith-

Waterman algorithm. During the tokenization process, it is possible to have large volumes 

of datasets that can increase the computational time. To avoid this situation, the transitivity 

closure on words using the Union/Find technique, which has the property to reduce the 

number of total comparisons of words, is applied. Afterwards, the property of equality 

(that is, the symmetry property) is applied to perform pairwise word comparison. Finally, 

a character-based method, such as the Jaro-Winkler and/or the Smith-Waterman 

algorithm, is applied to perform pairwise comparison of characters in each word. 

 

3.2.1.5 Stage 3: Data reduction  

This is the process of reducing a large volume of data into a smaller set for an efficient 

data mining process (Rehmana et al. 2016). Data reduction is important because it helps 

build a model to classify datasets by selecting best features, avoids unbiased classification 

and avoids imbalances in the dataset so as to guarantee the same results. Clustering is one 

of the methods that helps put unlabeled data into similar subsets, and it is regarded as 

unsupervised classification (that is, no predefined classes) (Ullman et al. 2014). Although 
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data clustering is important for data reduction, it is outside the scope of this thesis. This 

thesis focuses on classification to help reduce data into relevant subsets. 

 

The application of an efficient search strategy to select optimal feature subsets in the 

classification of data into subsets is significant in reducing the computational cost when 

the volume of data is larger. In the present approach, to achieve optimal feature subset 

selection, the random encircling formulation and imitation behavior of kestrels was 

combined with an RNN (which was explained earlier) with a long short-term memory 

network to build a classifier for feature selection in big datasets. The KSA was applied to 

learning an optimized parameter from the original dataset, and the learned parameter was 

used as input into the RNN with LSTM network so as to select relevant features. 

Additionally, it helped evaluate the performance (in terms of accuracy) of the KSA as a 

feature selection algorithm. 

 

3.3.2 Phase 2: Data mining 

Data mining/big data mining is an approach used to find hidden and complex relationships 

present in data (Sumathi and Sivanandam 2006) with the objective to extract 

comprehensible, useful and non-trivial knowledge from large datasets (Luna et al. 2011). 

Although there are many hidden relationships to be discovered in data, this thesis focuses 

on association rule relationships, which are explored using association rule mining.  

 

 Association rule mining 

Association rules are rules that help disclose frequently changed patterns from a dataset. 

These changed patterns are measured in terms of support and confidence values set by a 

user as expressed in Equation 3.27 and 3.28 respectively. Rules with minimum support 

and minimum confidence value below a user-specified threshold are considered 

uninteresting (Han and Kamber 2006), while rules with minimum support and minimum 

confidence value above a user-specified threshold are considered interesting.  
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Generally, an association rule is measured in terms of support and confidence. The support 

of a rule is defined as the proportion of appearance in the dataset (Gupta and Sikka 2013; 

Agbehadji et al. 2016). In other words, it is the frequency of the rule in the dataset. A high 

value shows that the rule involves a great part of the dataset. Support is expressed in 

Equation 3.27 as 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝐾 → 𝑃) =
𝜎(𝐾 ∪ 𝑃)

 𝜎(𝑁)
     Equation 3.27 

where N is the total number of items in a dataset and K∪P is the number of attributes 

containing both K and P.  

 

Generally, confidence is used to measure the number of times an item in P appears in 

transactions that contain K. Confidence of a rule is when rules are applied to find the ratio 

of the number of occurrences in K and P over the number of occurrences in K. In other 

words, confidence of a rule is expressed as a conditional probability of the consequent 

given the antecedent (Gupta and Sikka 2013). This is expressed in Equation 3.28 as 

 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (𝐾 → 𝑃) =
𝜎(𝐾 ∪ 𝑃)

𝜎(𝐾)
    Equation 3.28 

where σ (K) is the number of occurrences that contain K. Typically, a higher confidence 

value suggests a strong association between K and P. 

 

The use of support and confidence measures is not, however, sufficient in selecting 

actionable sequences (Tseng, Liang and Chu 2006; Yin et al. 2013). This is because the 

actionable sequences form patterns that may be interesting to a user, but the challenge is 

when the user has to search exponentially many potentially interesting patterns that meet 

a defined criterion (Vreeken and Tatti 2014). Additionally, evaluating each pattern to 

disclose interestingness is quite tedious and infeasible, and mostly considered non-trivial 

(Vreeken and Tatti 2014).  
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The present approach to measuring interestingness of rules on frequently changed patterns 

uses closeness preference interestingness measure (Railean et al. 2013) that finds rules in 

cases where the antecedent and consequent are not just frequent or random (Railean et al. 

2013) but has a time dimension at which an actionable sequence is recorded. The 

advantage of the time dimension is that it could help determine the time to take an action 

when numeric items are frequently changed. The Closeness (user) Preference CP 

interestingness measure (Railean et al. 2013) was used to select strong rules with respect 

to frequencies of antecedent A and consequent B. Rules are said to be close based on three 

parameters, namely close time interval, slope of preferences and threshold value (Railean 

et al. 2013). The time closeness refers to the user-defined time difference in which items 

occur. Slope of preferences refers to the size between two itemsets or the size between 

two slides (window). Finally, threshold value is the user-specified value within which 

rules are extracted. These three parameters are used to select strong rules for patterns to 

be extracted.  

 

Railean et al. (2013) notes that time closeness plays a significant role in finding how close 

antecedents are to consequents of items. The time closeness shows the time difference 

between items over an entire sequence of changing items. The smaller the time 

differences, the closer the occurrence of frequently changed items. The support of a rule 

on an item is expressed in Equation 3.29 by 

𝑠𝑢𝑝𝑝𝑎𝑡𝑡𝑒𝑟𝑛 =
𝑛𝑟𝑝 𝑜

| 𝐷𝐵 |
     Equation 3.29 

where |DB| is the total size of the dataset, and 𝑛𝑟𝑝 𝑜 is the number of occurrences in a 

pattern of frequently changed numeric items. The Modified Closeness Preference with 

Support (MCPs) (Railean et al. 2013) function that fulfils the anti-monotone property (that 

is, the support of an itemset never exceeds the support of its subsets) of an item is 

expressed as the product of a function as 

𝑀𝐶𝑃𝑠 𝑓𝑢𝑛𝑐 = ∏ [
1

𝑛𝑟 𝑝 𝑖𝑛 𝐹𝑟𝑒𝑞 

𝑛𝑟 𝐹𝑟𝑒𝑞 𝑤𝑖𝑡ℎ 𝑝

𝑠=1
∑ 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑡

𝑛𝑟𝑝 𝑖𝑛 𝐹𝑟𝑒𝑞

𝑡=1 ]   Equation 3.30 
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where nrp in Freq is the number of how many times the pattern p is found in a given sequence 

to be frequently changed. Further,  fpattern is expressed in Equation 3.31 by: 

𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 =
1

𝑛𝑟2−𝑙𝑒𝑛𝑔𝑡ℎ 𝑠𝑢𝑏𝑝𝑎𝑡𝑡𝑒𝑟𝑛
∗

∑ [ 
1

𝑛𝑡𝑃𝑖,𝑘

∑
1

𝑛𝑃𝑖+1|𝑃𝑖,𝑘,𝑚

∑
1

1+𝑠
𝑡𝑃𝑖+1,𝑗

−𝜔𝑡.

𝑛𝑃𝑖+1|𝑃𝑖,𝑘,𝑚

𝑗=1

𝑛𝑡𝑃𝑖,𝑘

𝑚=1 ]
𝑛𝑟2−𝑙𝑒𝑛𝑔𝑡ℎ 𝑠𝑢𝑏𝑝𝑎𝑡𝑡𝑒𝑟𝑛

𝑘=1   Equation 3.31 

where 𝑛𝑡𝑃𝑖
is the number of Pi between the previous and next itemsets; 𝑡𝑃𝑖+1,𝑗

is the time 

distance of each Pi+1 from the beginning of the window (starting from the considered Pi); 

nr is the number of items; and s represents the slope of glide to capture, which was 

expressed in Equation 3.22 (in section 3.2). In items that are frequently changed with time, 

taking into consideration time differences between two consecutive frequently changed 

items, each pattern of length n is made of n-1 sub-patterns of length 2. In order to avoid 

patterns that are not frequently changed (i.e. that only occur a few times in the entire 

dataset), the support measure was included within the mathematical formulation such that 

the MCPs function with the support measure is expressed in Equation 3.32 as 

𝑀𝐶𝑃𝑠 𝑓𝑢𝑛𝑐 =
𝑛𝑟𝑝 𝑜

| 𝐷𝐵 |
∗ [0.9𝑛𝑟 + (0.9𝑛𝑟−1 − 0.9𝑛𝑟) ∗ ∏ [

1

𝑛𝑟𝑝 𝑖𝑛 𝑠𝑒𝑞
∑ 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛]]

𝑛𝑟𝑝 𝑖𝑛 𝑠𝑒𝑞

𝑡=1

𝑛𝑟𝑝 𝑜

𝑠=1  

Equation 3.32 

Finally, the MCPs function is expressed in Equation 3.33 by: 

𝑀𝐶𝑃𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =
𝑛𝑟𝑝 𝑜

| 𝐷𝐵 |
∗ 𝑓(𝑛𝑟, ∆𝑡𝑎𝑣𝑒𝑟𝑎𝑔𝑒)    Equation 3.33 

where f(nr, ∆taverage) is a weighting function that is defined to take into consideration the 

size of the pattern nr (that is, number of frequently changed numeric items) and the 

medium time interval ∆taverage in a pattern of frequently changed numeric items; nrpattern 

occurrences (nrp o) represents the number of occurrences of frequently changed numeric items; 

and |DB| is the total number of items in the dataset. The weighting function that shows the 

anti-monotone property is expressed by Railean et al. (2013) as in Equation 3.34:  

𝑓(𝑛𝑟, ∆𝑡𝑎𝑣𝑒𝑟𝑎𝑔𝑒) = 0.9𝑛𝑟 + (0.9𝑛𝑟−1 − 0.9𝑛𝑟) ∗  ∆𝑡𝑎𝑣𝑒𝑟𝑎𝑔𝑒  Equation 3.34 
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where ∆taverage is replaced by Equation 3.31. Where the co-efficient of 0.9 represents 90 

percent of rules that were selected. In addition, if ∆taverage is higher, it takes the upper value 

of the ceiling, otherwise, it takes the bottom value, but it never passes to the previous 

coefficient the values of its sub-patterns, which guarantees the Apriori principle (in this 

instance, if an itemset is frequently changed, then all of its subsets may also be frequently 

changed).  

 

The Modified Closeness Preferences with confidence (MCPc) are expressed in Equation 

3.35 by 

𝑀𝐶𝑃𝑐 =
𝑛𝑟𝑝 𝑜

𝑛𝑟𝑝 𝑜+𝑛𝑟𝑛 𝑝
      Equation 3.35 

where nrpattern occurrences (nrp o) represents pattern occurrence of frequently changed items, 

and nrnot freq. patterns (nrn p) represents patterns that are not frequently changed. The Modified 

Closeness Preferences with support and confidence (𝑀𝐶𝑃𝑠𝑐) for a pattern are defined as 

the interestingness measure of frequently changed numeric items, as expressed in 

Equation 3.36:  

𝑀𝐶𝑃𝑠𝑐 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 = ɸ ∗
𝑛𝑟𝑝 𝑜

𝑛𝑟𝑝 𝑜+𝑛𝑟𝑛 𝑝
∗

𝑛𝑟𝑝 𝑜

| 𝐷𝐵 |
∗ 𝑓(𝑛𝑟, ∆𝑡𝑎𝑣𝑒𝑟𝑎𝑔𝑒)   Equation 3.36 

where ɸ represents a control parameter between 0 and 1; nrpattern occurrences (nrp o) represents 

frequently changed items; nrnot freq. patterns (nrn p) represents patterns that are not frequently 

changed; |DB| is the total size of the dataset; and f(nr, ∆taverage) is a function that is defined 

to take into consideration the size of the pattern nr and the medium time-interval ∆taverage 

in a pattern.  

 

3.4 Data visualization 

In section 3.3, the kestrel’s behavior was described as it relates to big data, which forms 

Phase 1 and Phase 2 of the proposed methodological framework. In this section, the 

behavior of the dung beetle is described in detail as it relates to data visualization. This 

forms Phase 3. 
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3.4.1 Description of dung beetle behavior 

Data visualization presents data in pictorial or graphical format (e.g. two dimensionally) 

and enables the display of interesting patterns for decision-making activities (Bikakis 

2018). The present approach to data visualization uses the navigation and orientation 

behavior of dung beetles to present data in a graphical format. The dung beetle is an animal 

with a tiny brain (similar to a grain of rice) that feeds on the dung of herbivorous animals. 

The dung beetle is known to use minimal computation for navigation and orientation, 

which is the reason for its selection. Furthermore, during navigation, it uses an external 

reference point (referred to as a celestial polarization pattern) (Wits University 2013), 

which serves as a source of illumination to avoid being stuck. They also navigate by 

combining internal cues of direction and distance with external reference from their 

environment and then orient themselves using the celestial polarized pattern (that is, 

moon/skies) (Wits University 2013; Dell’Amore 2013). In other words, if a source of light 

is removed completely, the dung beetle stops moving and stays in a stable position (or 

unknown state) until the source of light is restored before it climbs on top of its dung ball 

to perform orientation (referred to as a dance), during which it locates the source of light 

and then begins to move toward its home. Thus, the beetle returns to its home using an 

internal sense of direction (derived from sensory sources, including vision).  

 

There are different forms of dung beetles, and these can be grouped into three types, 

namely rollers, tunnelers and dwellers. Rollers form dung into a ball and roll it to a safe 

location. In contrast, tunnelers land on a pile of dung and simply dig down to bury the 

dung, while dwellers stay on top of a dung pile to lay their eggs (Dell’Amore 2013). 

Although there are different behaviors that categorize each group of dung beetle, the 

present study focused on the category of ball roller behavior for data visualization 

purposes.  

 

In addition to the different categories of behavior of dung beetles, their feeding process is 

also a unique behavior that is worth mentioning. During the feeding process, each beetle 
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(of the type ball rollers) carries dung in the form of a ball and rolls it from the source of 

food to a remote destination (referred to as home). Dung beetles use the sun, moon and 

skies as a direction guide in carrying rolled ball (that is, its food) along a straight path 

from the dung pile (Dacke et al. 2011). Given that celestial bodies always remain constant 

relative to the dung beetle, the beetle keeps moving in a straight line (Wits University 

2013) until it reaches the final destination. 

 

Another interesting behavior is that given a burrow (home) and forage (food), the dung 

beetle is able to move in search of forage by counting its number of steps, and when 

returning home, the motion cues are used to integrate its path (that is, combine paths) in 

order to reduce the distance in moving. The path integration technique is significant in 

reducing the time and distance of moving to its home. Path integration leads to a home-

based global vector that repeatedly inform animals (such as dung beetles) about their 

current position relative to their starting point (Andel and Wehner 2004). When the starting 

points are determined, path integration provides a “signal” to reinforce the learning of 

visual landmarks within the environment of animals (Schatz et al. 1999). The dung beetle 

ignores landmarks (Smolka and Dacke 2017) because navigation using landmarks is very 

complex and may require complex perceptual and learning processes that may not always 

be available to animals such as dung beetles (Etienne et al. 1988). The reason for choosing 

the dung beetle is because of light-weight computational requirements. In view of this, 

animals that use the landmark navigation technique require extensive computational time, 

which may not be suitable within the context of this thesis.  

 

Golani, Benjamini and Eilam (1993) indicate that animals in a new environment center 

their exploration base on a reference point in order to integrate their path. The path 

integration (Mittelstaedt and Mittelstaedt 1982) is based on the assumption that movement 

from one position to another may be achieved by adding successive small changes in 

position incrementally, and by continuously updating the direction and distance from the 

initial point (Etienne and Jeffery 2004) using the motion cues. In other words, it allows 
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beetles to calculate a route from their initial position. Adding these successive small 

movements on a route creates a stack of moves in a hierarchical fashion. The basic steps 

of the path integration process are the continuous estimation of self-motion cues to 

compute changes in location (distance) and orientation (head direction) (Etienne and 

Jeffery 2004). In this regard, every displacement of forage that leads to path integration 

from a reference point creates an imaginary home, and this subsequently creates a stack 

of neighboring imaginary homes close to each other. In this context, these real or 

imaginary homes are circular holes (representing a data grid) where the rolled balls (that 

is, data values) are placed as pixels. 

 

A. Characteristics of dung beetles  

The dynamic behavior of dung beetles is characterized as follows: 

i. Ball rolling on a straight line 

ii. Dance: Combining internal cues of direction and distance with external reference from 

their environment and then orienting themselves using the celestial polarized pattern 

iii. Path integration: Sum of sequential change in position in hierarchical fashion and 

continuously updating direction and distance from the initial point to return home. 

 

B. Simplified rule formulation on characteristics of dung beetles 

i. Ball rolling: The distance d between two positions (𝑥𝑖, 𝑥𝑖+1) on a plane is calculated using 

the straight line equation in Equation 3.37: 

𝑑(𝑥𝑖, 𝑥𝑖+1 ) = √∑ (𝑥𝑖+1 − 𝑥𝑖  )2𝑛
𝑖=1     Equation 3.37 

where 𝑥𝑖  represents the initial position, 𝑥𝑖+1  represents the current position of a dung 

beetle on a straight line, and n is the number of discrete points on the line.  

ii. Path integration: Change in position is expressed in Equation 3.38 as 

𝑥𝑡+1
𝑘 = 𝑥𝑡

𝑘 + 𝛽𝑚( 𝑥𝑖+1 − 𝑥𝑖  )𝑡
𝑘 + ɛ   Equation 3.38 

where 𝑥𝑡+1
𝑘  represents the current position of a dung beetle, and 𝛽𝑚 represents motion 

cues. Since path integration is an incremental recursive process, error ɛ is introduced as a 
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random parameter in the formulation to account for cumulative error. Each frequent return 

to a home resets the path integrator to a zero state, so that each trip starts with an error-

free path integrator (Etienne and Jeffery 2004). Thus, total path is expressed as the sum of 

all paths, as expressed in Equation 3.39: 

𝑃𝑎𝑡ℎ = [∑ 𝑥𝑡+1
𝑘𝑛

𝑖=1 ]    Equation 3.39 

where current position is 𝑥𝑡+1
𝑘  and n represents the number of paths. In order to control 

the movement v between a “real home” and “imaginary home”, to ensure the current 

position 𝑥𝑡+1
𝑘  converges to the “real home” of a dung beetle during path integration, the 

following expression was applied, as shown in Equation 3.40: 

𝑣 = 𝑣𝑜 + 𝑝𝑎𝑡ℎ − (𝜇1𝑃 + 𝜇2𝐴)   Equation 3.40 

where 𝑣𝑜  represents the initial movement; 𝜇1 is a factoring co-efficient of repulsion P 

between each dung beetle; and 𝜇2 is a factoring co-efficient of attraction A between each 

dung beetle when a trace is detected on its path by another dung beetle. Furthermore, P 

and A are expressed by Mamduh et al. (2014) using Equation 3.41 and Equation 3.42: 

𝑃 = 1 − 𝑑(𝑥𝑖 , 𝑥𝑖+1 )𝜃/(𝑑(𝑥𝑖 , 𝑥𝑖+1 )𝑚𝑎𝑥 𝜋)    Equation 3.41 

𝐴 = 𝜃/𝜋      Equation 3.42 

where P is the repulsion between each dung beetle, 𝜃 is the angle of the dung beetle, 

𝑑(𝑥𝑖, 𝑥𝑖+1 ) is the distance between two dung beetles, 𝑑(𝑥𝑖, 𝑥𝑖+1 )𝑚𝑎𝑥  is the maximum 

distance recorded between two dung beetles, and 𝜋 represents the ratio of circumference 

to a diameter. 

 

iii. Dance: The internal cue (Iq) of distance and direction is less than the external reference 

point (Er) (that is, a random number). Thus, orientation (𝛿) after the dance is expressed as   

𝛿 = [𝐼𝑞(𝑑, 𝑀) ≤ 𝐸𝑟]      Equation 3.43 

𝛿 = 𝛼 ∗ [𝐸𝑟 − 𝐼𝑞(𝑑, 𝑀))]     Equation 3.44 
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where 𝛼 is a random parameter to control the dance, Er is a specified point of reference, d 

represents the distance of internal cues, and M represents the magnitude of direction 

expressed as a random number (between 0 and 1). 

 

3.5 General outline of procedure for bio-inspired/meta-heuristic model 

The outline procedure gives a general overview of the steps for the proposed bio-inspired 

model. As indicated in Table 3.1 on the proposed methodological framework of the bio-

inspired model, the steps outlined below were followed during the experiment at each 

phase. The significance of the experiment is that after analyzing the dataset, the best 

algorithm was selected as the algorithm with the optimal results. Although each bio-

inspired/meta-heuristic algorithm has initial parameters (that is, set by a user), the steps 

provide a guide on how the best algorithm was selected.  

 Step 1: Mathematical modeling as expressed in section 3.2. 

 Step 2: Translate the mathematical model into the proposed agent-based search 

algorithms (Chapters Four, Five and Six) 

 Step 3: Implementation of the proposed algorithm using the selected 

programming language (that is, MATLAB). The reason for the choice of 

programming language is explained in section 3.7. 

 Step 4: Conduct an experiment by testing the implemented algorithm against 

selected comparative algorithms (indicated in Table 3.1) on a selected dataset 

or set of datasets, as well as with various initial parameters that are fine-tuned 

by the algorithm at each iteration. The results of the experiment are presented 

in subsequent chapters.  

 Step 5: Analyze the performance results (in terms of accuracy using MAE, etc.) 

and use various statistical procedures (such as the Wilxocon-Signed rank test 

and Friedman test) in order to select the best bio-inspired algorithm. The 
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analysis results are presented in subsequent chapters. 

 Step 6: Analyze the internal implementation code of each algorithm through 

profiling (that is, extraction of function calls using built-in tools in MATLAB) 

to understand the underlying behavior of the comparative bio-inspired 

algorithms in terms of time to call function. Perform the analysis using simple 

statistical methods such as mean to select the best algorithm.  

   

3.6 Reason for choice of dataset 

The dataset used to test the proposed models was obtained from benchmarked datasets 

from the “classic UCI machine learning repository” (Lichman 2013) (such as stock market 

data and health-related data) and Arizona State University data repository.  The basis for 

using these datasets is because they represents a standard benchmark dataset for 

experimental research and they also do have large volume of continuous data, which is 

suitable for this research work.  

 

The data is downloaded/collected from the online data repositories for the experiment in 

this thesis. In view of the standard nature of the benchmark dataset, the preparation of data 

collected for the experiments were not considered. However, the attributes that define 

these data were taken into consideration. For instance, data attributes includes whether 

data is continuous or binary, the number of instance in data, the number of features, etc. 

In chapter 4, 5 and 6, the data attributes suitable for each experiment is indicated.  

 

3.7 Reasons for choice of preferred programming language 

The basic mathematical expressions that were formulated from the behavior of animals 

require the use of a software package that is suitable for the experiment in that it can 

translate the mathematical expressions into an algorithm that can be executed. The 
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software package chosen for this study is MATLAB. MATLAB has built-in functions and 

toolboxes to help solve a diverse range of tasks from mathematical operations to graphical 

display (in either two or three dimensions), which makes it easy to visualize information 

and gain meaningful insight (Attaway 2009). These built-in functions help perform basic 

numerical operations and matrix-based computations, encourages simple interactivity 

(that is, expressions entered by the user are immediately computed and results are 

displayed) and has complete set of programming constructs that help easily customize a 

program for a particular problem domain (Attaway 2009). The customized program (in 

the form of an algorithm) can be deployed within production systems of businesses. 

Additionally, it has the capability to analyze larger datasets and scale up data to clusters 

(MathWorks 2017). In view of MATLAB’s built-in functions and capabilities, it was thus 

chosen as an appropriate software package to express the computational mathematics of 

the proposed bio-inspired/meta-heuristic algorithm for big data analytics and for the 

display of insight on interesting patterns. Additionally, MATLAB has the built-in 

capability to support profiling of internal implementation codes of each algorithm to 

understand the underlying behavior of the algorithms. 

 

3.8 Comparative algorithms 

The proposed algorithms were evaluated against comparative algorithms suited for each 

step of each stage of big data management. Because the nature of different bio-inspired 

algorithms may make them better suited for certain tasks than other algorithms, these 

algorithms were included or excluded in the set of comparative algorithms. Consequently, 

due to this fact, the type and number of comparative algorithms at a specific step of a 

particular big data management stage may vary slightly. 

 

The experimental results, using a suitable selected set of metrics, generated by the 

comparative algorithms implemented in Matlab were output into a text file and/or on 

matlab output screen. These results were put into a table for easy evaluation and 
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comparison (e.g. using MAE etc). In addition to the experiment, further statistical analysis 

were conducted on the experimental results to find the most suitable algorithm as 

explained in subsequent chapters.  

 

3.9 Summary 

In this chapter, the knowledge claim used was based on positivist approach as it helps 

understand the theory behind the behavior of animals and how different mathematical 

expressions are used to model the behavior. The mathematical techniques enable dynamic 

formulation to depict the different behavioral aspect of the animals being considered. This 

aspect helped model the three-phase framework. The different animals and their behaviors 

were related to aspects of big data frameworks, namely velocity and volume 

characteristics. Basically, the velocity aspect relates to how animals move with speed to 

capture their prey aided by visual ability, while volume relates to how animals exploit a 

wide search area for prey. 

 

The ability of animals to capture their prey and exploit a search area for food are some 

dominant visible behaviors of animals such as the kestrel. Similarly, other animals, such 

as the dung beetle, show navigation and orientation behavior, and these were explored in 

this chapter to demonstrate how such behavior can be used to visualize patterns. The 

general outline provided a general guide in the form of steps to translate the mathematical 

formulation based on the bio-inspired behavior into the respective algorithms during each 

phase of the largely bio-inspired framework, as indicated in the methodological 

framework. MATLAB was chosen as an appropriate software package to implement the 

computational model because of the robust built-in functions and mathematical 

capabilities. 

 

In the next chapter, the general outline procedure (see section 3.5) will be followed to 

empirically test each algorithm using appropriate and diverse datasets characterized as 
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having both high volume and frequently changed items. The results will be tabulated and 

graphs will also be used to aid visual display and understanding by users.  
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CHAPTER 4: DEVELOPING, TESTING AND EVALUATING 

DATA CLEANSING 

4.1 Introduction 

The chapter validates the first phase of the proposed model, data cleansing, using actual 

data. The results from the validation process of the algorithms of the proposed model are 

presented using tables and graphs to aid understanding. During the process of validating 

the algorithmic structure, various parameters were used to observe the behavior of the 

model on challenging issues such as missing value estimation, duplicate text detection of 

health-related records and feature selection in classification of high-dimensional 

bioinformatics datasets.  

 

The general outline in section 3.5 was followed to model an algorithm for missing value 

estimation, duplicate data detection and feature selection, as indicated in the 

methodological framework in Table 3.1. The sub-sections in this chapter discuss missing 

value estimation, duplicate data detection and feature selection. 

 

4.2 Bio-inspired computational approach to missing value estimation  

The kestrel formulation also adopts aspects of swarm behavior in terms of individual 

searching, moving to better positions and fitness evaluation. However, what makes the 

kestrel distinctive is the individual hunt through its random encircling of prey and its 

imitation of the best individual kestrel. Since the kestrel hunts individually and imitates 

the best features of successful individual kestrels, it suggests that the kestrels is able to 

remember the best solution from a particular search space and continue to improve upon 

the initial solution until the near-best solution is reached.  

 

When comparing the unique characteristics of the KSA with the Firefly, Wolf and Bat 

algorithms, the following can be stated: The Firefly algorithm is based on attractiveness, 
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collective behavior and brightness; the Wolf algorithm is based on attractiveness, 

collective behavior and escape; the Bat algorithm is based on pulse rate and loudness; and 

the KSA is based on attractiveness, encircling and brightness of trail, which is dependent 

on its half-life period. This encircling behavior allows kestrels to be adaptable in searching 

multiple missing values within a particular search space. The basis for the comparison of 

algorithms is to assess the interesting behavior of the newly developed algorithm (that is, 

KSA) and show how different the newly developed algorithm is from previous algorithms 

in terms of accuracy of results on missing values from datasets. 

 

4.2.1 Fitness function evaluation of algorithms  

The fitness function is used to evaluate how well the meta-heuristic algorithm performs 

in terms of the quality of estimation. This performance is measured in terms of minimizing 

the deviation of data points from the estimated value without considering the direction 

(negative or positive) of the fitness value. Thus, the performance evaluation method used 

the mean of absolute error (MAE) as fitness function evaluation because it allows the 

model to fine-tune absolute values and improve on performance of values, leading to much 

finer positive values without consideration of negative values. The MAE is expressed in 

Equation 4.1 as follows:  

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑜𝑖 − 𝑥𝑖

𝑛
𝑖=1 |     Equation 4.1 

Thus, the fitness function is expressed in Equation 4.2 as 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (𝑥) =
1

𝑛
∑ |𝑜𝑖 − 𝑥𝑖|

𝑛
𝑖=1     Equation 4.2 

where 𝑜𝑖  is the observed data point at the ith position in the sampled dataset, 𝑥𝑖  is the 

estimated value at the ith position in the dataset, and n is the number of data points in the 

sampled dataset. 
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4.2.2 Experimental results 

An experiment was conducted to evaluate the meta-heuristic algorithms, namely the 

WSA-MP, BAT and Firefly algorithms as well as the proposed KSA. During the 

experimental setup, different parameters were defined for each meta-heuristic algorithm, 

as proposed by the authors of the algorithms, to guarantee optimal solution in any search 

problem. The experimental results are presented using figures, where the x-coordinate 

represents iteration and the y-coordinate represents the fitness value using MAE.  

 

Experimental setup A (WSA-MP to estimate missing values) 

The solution algorithm for the proposed meta-heuristic algorithm was implemented in 

MATLAB 2012A and the quality of estimation was evaluated with the MAE method. The 

WSA-MP algorithm was compared with the proposed meta-heuristic algorithm (that is, 

KSA). The basis for the comparison is to obtain results that can demonstrate how well 

each meta-heuristic algorithm produces the smallest error between the actual and 

estimated values. 

 

The initial parameters for KSA were set as 𝛽𝑜=1; visual range=1. The following arbitrary 

parameters were set for the lower and higher bound: zmin=0.2 and zmax=0.8 respectively. 

A representative dataset was used to test the proposed meta-heuristic algorithm, and a 

maximum of 500 iterations/generations were done to have a greater chance to further 

refine the best value in each run. A sample set of data (46 by 9 matrix) with multiple 

missing values in the row matrix was used in order to provide a thorough test of missing 

values in each row of a matrix. In WSA-MP, the randomness (σ) parameter was set to 

0.2, while escape from local minimum was also set to 0.25.  

 

The technique that is being proposed assumes that only the best estimate obtained by either 

the WSA-MP or KSA will give the smallest absolute error between the input and the 

output. 
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Results on experimental setup A 

Figure 4.1 shows the comparison of fitness evaluation of KSA and the WSA-MP 

algorithm, both using MAE as fitness function.  

 

Figure 4.1: Comparison of KSA with WSA-MP algorithm 

Figure 4.1 shows the curve on comparison of the fitness evaluation of KSA with WSA-

MP in 500 iterations/generations. The fitness curve gradually slopes down on the x-axis 

and maintains a constant fitness, indicating quick convergence at the start of the iteration 

along the x-axis. Table 4.1 indicates the fitness values of the curve of both KSA and WSA-

MP as follows: 

 

Table 4.1: Comparison results of KSA and WSA-MP 

Algorithm Fitness using MAE 

KSA 7.9912e-05 

WSA-MP 5.6978e-07 

 

Table 4.1 shows the comparative results of KSA with WSA-MP. The resultant fitness 

values show that WSA-MP has a minimum fitness value of 5.6978e-07, as compared with 

KSA, which has a fitness value of 7.9912e-05.  
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4.2.2.1 Conclusions: Experimental setup A 

In several iterations that were performed, WSA-MP maintained minimum fitness values 

compared to KSA. As demonstrated from the results, WSA-MP performed better than 

KSA, and this performance of WSA-MP suggests that the WSA-MP algorithm utilizes its 

characteristic good memory on previous best positions, which gives it an edge over 

random encircling for extrapolating missing values. 

 

Experimental Setup B (Firefly algorithm to estimate missing values) 

In the Firefly algorithm, the randomness (σ) and absorption coefficients (γ) were set to 0.2 

and 1.0 respectively. This setting allowed a small interval between the random numbers 

being generated. Meanwhile, randomness reduction was set to 0.97 (similar to an 

annealing schedule).  

 

Results on experimental setup B 

Figure 4.2 shows the comparison of fitness evaluation of KSA and the Firefly algorithm, 

both using MAE as fitness function.  

 

Figure 4.2: Comparison of KSA with Firefly algorithm 
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Figure 4.2 shows the comparison of KSA with the Firefly algorithm. The curve indicates 

that KSA converges to a global minimum after the end of the iterations along the x-axis. 

In contrast, the curve of the Firefly algorithm shows several local minimum curves during 

the start of the iterations, then the curve smoothes until the final iteration on the x-axis, 

suggesting that the curve moves from a local minimum and then gradually lessens to a 

global minimum. Table 4.2 indicates the fitness values on the y-axis of both KSA and the 

Firefly algorithm: 

Table 4.2: Comparison results of KSA and Firefly algorithm 

Algorithm Fitness using MAE 

KSA 0.0054204 

Firefly 1.0000 

 

Table 4.2 shows the comparative results of KSA with the Firefly algorithm. The fitness 

value of KSA converges along the x-axis to a value of 0.0054204, while the Firefly 

algorithm results in a fitness value of 1.0000. This suggests that KSA produces minimum 

error when estimating missing values. 

 

4.2.2.2 Conclusions: Experimental setup B 

The results indicate that KSA has a better performance than the Firefly algorithm. These 

results suggest that the KSA is best for random encircling and that this algorithm is one 

of the best in estimating missing values in any big data analysis environment. 

 

Experimental Setup C (Bat algorithm to estimate missing values) 

In the Bat algorithm, both the loudness and the pulse rate were set to 0.5 without fine-

tuning these parameters. Also, the arbitrary frequency range was set to a minimum of 0.2 

and maximum of 0.9. This frequency range determines the frequency scaling of a bat. The 

Bat algorithm was compared with KSA and the comparative curve of the fitness value on 

the y-axis is illustrated in Figure 4.3:   
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Figure 4.3: Comparison of KSA with Bat algorithm 

Figure 4.3 shows the curve on the comparison of the fitness evaluation of KSA with the 

Bat algorithm in 500 iterations/generations. The fitness curve for KSA peaked at the initial 

iteration, gradually sloped down along the x-axis and maintained a constant fitness value 

to convergence at 0.002916 along the x-axis. Table 4.3 indicates the fitness values and 

comparative results of KSA and the Bat algorithm: 

  

Table 4.3: Comparison results of KSA and Bat algorithm 

Algorithm Fitness using MAE 

KSA 0.0029716 

BAT 3.0326 

 

Results: Experimental setup C 

The resultant fitness values show that KSA has a fitness value of 0.0029716, while the 

Bat algorithm has a fitness value of 3.0326. The Bat algorithm, however, showed a 

horizontal line from the initial iteration to the end of the iterations.  
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4.2.2.3 Conclusions: C 

The results suggest that the Bat algorithm was unable to converge to a global minimum. 

Thus, using the Bat algorithm for estimating missing values at random results in a high 

error of estimation. In contrast, KSA showed minimum error in estimating missing values 

at random and it also converged to a global minimum. 

 

Different Problem dimensions/scales 

Different problem dimensions/scales of the dataset were applied to each algorithm, and 

the corresponding fitness value (that is, MAE) was computed. The dimensions that were 

selected helped observe the behavior of each meta-heuristic algorithm on a different 

problem scale. Table 4.4 show the results on MAE values obtained from the comparative 

meta-heuristic algorithms on different problem dimensions as follows: 

 

Table 4.4: MAE results from comparative algorithms on different problem scales 

Problem 

dimension 

KSA BAT Firefly WSA-MP 

MAE MAE MAE MAE 

40x9 7.09E-05 3.0326 0.90723 8.16E-07 

30x9 0.012553 3.0843 1 2.51E-07 

20x9 0.04752 3.0655 0.15362 9.22E-06 

25x9 0.023865 3.3836 1 1.34E-07 

10x9 0.39469 3.536 0.6943 1.73E-05 

Mean 7.98E-02 3.19E+00 7.93E-01 4.72E-06 

 

Table 4.4 further indicates that irrespective of problem scale, KSA obtained optimal 

results compared to the bat and Firefly algorithms. However, WSA-MP has the most 

optimal result. Secondly, the mean of MAE indicates that WSA-MP has the minimum 

value of 4.72E-06, compared to KSA (7.98E-02), firefly (7.93E-01) and bat (3.19E+00). 

The results suggest that in a frequently changed dataset, the WSA-MP algorithm produces 
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the most optimum values as estimates of missing values while the proposed KSA showed 

potential for finding optimal values.  

 

4.2.3 Statistical analysis of experimental results 

The basis for the statistical analysis of experimental results on the comparative algorithms 

is to find the significance of results obtained from each algorithm. In order to do this 

comparison in an accurate manner, a profile was used on all the test functions used in each 

of the algorithms and the MAE results (that is, the quality of estimation) in Table 4.4. A 

non-parametric statistical procedure was used to analyze the significance of the results. 

This statistical procedure was used as it does not make underlying assumptions about 

parameters, such as mean and variance of the algorithm being assessed. In contrast, 

parametric statistical procedures make assumptions on parameters that are being assessed. 

In this section, the profiling of test functions and the non-parametric statistical procedure 

adopted for the analysis are discussed. This section is divided into two parts: statistical 

analysis on profiling of test functions and statistical analysis on MAE results (quality of 

estimation).  

 

4.2.3.1 Statistical analysis on profiling of test functions  

Profiling is a technique used to extract functions and measure time spent on aspects of a 

program, such as a function (Sorensen et al. 2012). This technique helps optimize 

functions and improve on performance of the algorithms. During profiling, the following 

are considered: function name, the number of times a function was called upon (Calls), 

the total time spent on each function, including sub-functions (Total_Time), and total time 

spent on a function excluding the time spent on sub-functions (Self_Time). It is possible 

for functions that are less time intensive to call other functions that are more time 

intensive. Profiling technique is important as it determines which functions are responsible 

to call other functions. 
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Profiling was applied as a technique to extract functions and to group the functions into 

two categories, namely major functions and basic functions. While the major functions 

are functions that were written to implement the behavior of the algorithms, the basic 

functions are the in-built functions that work alongside the major functions. Table 4.5 

indicates how the functions are grouped during profiling on each comparative algorithm: 

 

Table 4.5: Major function names of the comparative algorithms 

 
Function name Calls Total_Time (s) 

Self_Time* 

(seconds (s)) 

 WSA-MP algorithm    

f2 WSA-MPnew>fnc_fitness_mae 172517 1.298  1.298 

f1 WSA-MPnew>main 1 14.426 12.993 

 Mean 86259   

 

 Firefly algorithm    

f2 fireflyApproachnew>fnc_fitness_MAE 4522 0.018 0.018  

f3 fireflyApproachnew>ffa_move 500 0.415  0.404  

f4 fireflyApproachnew>findrange 500 0.011  0.011  

f5 fireflyApproachnew>newalpha 500 0.002  0.002  

f1 fireflyApproachnew>main 1 47.811  29.291  

f6 fireflyApproachnew>init_fireflyalg 1 0.001  0.001 

 Mean 1004   

 

 KSA algorithm    

f2 KSAapproachnew>fnc_fitness_MAE 23046 0.094  0.094  

f3 KSAapproachnew>fnchalflife 500 0.002  0.002  

f4 KSAapproachnew>fncbobbing 500 0.011  0.011  

f1 KSAapproachnew>main 1 1.329  1.036 

 Mean 6011.8   

 

 BAT algorithm    

f2 BATApproachnew>fnc_fitness_MAE 23046 0.101 0.101  

f3 BATApproachnew>simplebounds 23000 0.317 0.317  

f1 BATApproachnew>main 1 1.353 0.718 

 Mean 15349   
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Table 4.5 shows the different test functions in each comparative algorithm. The WSA-MP 

has two major functions, categorized into the main function (represented by f1) and a sub-

function (represented by f2). All main functions are represented in each algorithm by f1. 

The Firefly algorithm has six major functions (one main function f1 and five sub-

functions). The Bat algorithm consists of three major functions (one main function f1 and 

2 sub-functions) while KSA consists of 4 major functions (one main function f1 and three 

sub-functions).  

 

In order to obtain a true reflection of the nature of in-built functions that were extracted, 

all in-built functions were considered for analysis. It was observed that when some in-

built functions were called, the total time was zero seconds, thus making those  in-built 

function calls inconsequential in terms of execution time. However, these inconsequential  

in-built functions were taken into consideration so as not to lose track of any function calls 

made.  

 

A statistical procedure was applied to analyze the significance of profile results obtained 

in Table 4.5. A non-parametric statistical test was conducted to assess which of the 

algorithms have better performance in terms of the behavior of test function call time. The 

basis for the statistical analysis is to find out the significance of the profiled results from 

each algorithm. García, Fernández, Benítez and Herrera (2007) state that non-parametric 

or distribution-free statistical procedures help perform pairwise comparison on related 

algorithms, even in the case where the sample size of a dataset is small, such as where 

sample size n < 30. In a multiple comparison situation, such as in this thesis, the Wilcoxon 

signed-rank test could be applied to rank and test how significant algorithms outperform 

each other in respect of detecting the differences in the mean time to call test functions 

(García, Fernández, Benítez and Herrera 2007) and to find the probability of an error by 

suggesting that the medians of two algorithms are equivalent. This probability is called p-

value (Zar 1999). The advantage of the Wilcoxon test is that there is no need to make 

assumptions about the population of functions being used for the experiment. Since the 
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Wilcoxon signed-rank test can guarantee about 95% of efficiency (that is, 0.05 level of 

significance) if the population is normally distributed. This suggests that if there are 500 

observations on test function calls, then Wilcoxon signed-rank is efficient to about 499 

observations on test function calls. 

 

García, Molina, Lozano and Herrera (2008) observe that the Wilcoxon signed-rank test is 

an alternative to the paired-sample t-test. The present study used the Wilcoxon test 

because the researcher did not wish to make the assumptions necessary for the t-test for 

sample distribution. Samples are related if one sample matches the other sample, while 

the rank is a number assigned to an individual sample according to its order in a list of 

algorithms. Thus, the Wilcoxon statistical technique helps assign ranks to algorithms in 

order to identify the best-ranked behavior of evolutionary algorithms (García, Molina, 

Lozano and Herrera 2008) and to determine the significance of each algorithm. The 

following steps were applied in computing the Wilcoxon signed-rank test: 

 

Step 1: Compute the difference D of paired samples in each algorithm. Any pairs with a 

difference of 0 are discarded 

Step 2: Find the absolute D. 

Step 3: Compute the rank of signs (R+ difference and R- difference) from lowest to 

highest. The sum of ranks is expressed in Equation 4.3 by 

∑ 𝑅+ + 𝑅− =
𝑛(𝑛+1)

2
      Equation 4.3 

where n is sample size. 

Step 4: Compute the test statistic T. Thus, T = min{R+, |R-|}. Thus, the test statistic T is 

the smallest value.  

Step 5: Find the critical values based on the sample size n. If T is less than or equal to the 

critical value at a level of significance (that is, α=0.05), then a decision is made that 

algorithms are significantly different (García, Fernández, Benítez and Herrera 2007). In 

order to accomplish this, the Wilcoxon signed-rank table is consulted, using the critical 
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value (α=0.05) and sample size n as parameters, to obtain the value within the table. If 

this value is less than the calculated value of the algorithmic comparison, this means that 

the algorithmic difference is significant.    

 

In order to apply the Wilcoxon signed-rank test, an analysis was performed on both the 

time to call and function name (both in-built functions and major functions) as follows: 

 

i. a. In-built functions calls time analysis 

The performance of the comparative algorithms was based on test function call time 

differences between the self time and total time of built-in functions in each algorithm. 

Based on the steps in computing the Wilcoxon signed-rank test, the time for the test 

function call per algorithm is shown in Table 4.6.  

 

Table 4.6: Wilcoxon rank on profile extracts of built-in-in function calls of algorithms 
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1 
WSA-

MP 
123 31 0.132 0.401 0.269 1 1 1 

2 Firefly 99780 229 49.228 160.73 111.503 1 4 4 

3 KSA 1043 34 0.184 0.471 0.287 1 2 2 

4 BAT 105 69 0.215 0.953 0.738 1 3 3 

 

In Table 4.6, D represents the difference between the sum of total time and the sum of self 

time. It is observed that the sum of signed positive ranks R+ is 10, while the sum of 

negative ranks R- is 0. Since the sample size n (4) is less than 30 and the Wilcoxon signed-

rank table shows that there is no critical region on the sub-function at  𝛼 = 0.05, the 
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Wilcoxon signed-rank table suggests that built-in-in functions are equivalent. In terms of 

ranking of algorithms, the WSA-MP was ranked first while KSA was ranked second.   

 

Since n is small, it is tedious to find a critical value for small values of n. Table 4.7 shows 

the mean and standard deviation on the sum of self time and sum of total time on the sub-

function.  

Table 4.7: Mean and standard deviation of built-in-in functions 

Sum N Mean Std. Deviation Minimum Maximum 

Self_time 4 12.4398 24.52552 .13 49.23 

Total_time 4 40.6387 80.06121 .40 160.73 

 

Table 4.7 shows sample size N, the mean of the sum of self time as 12.4398 and the sum 

of total time as 40.6387, with their corresponding standard deviations. The results show a 

standard deviation of 80.06121 on the total time, and this suggests a high deviation of total 

time on the built-in function calls as compared with the low standard deviation of 

24.52552 on self time built-in function calls. Therefore, there is a high total time spent on 

built-in function calls in the algorithms as compared to self time on built-in function calls. 

This means the algorithms spent an intensive amount of time on calling an average of 

40.6387 built-in functions and an average time of 12.4398 on excluding other built-in 

function calls.  Table 4.8 illustrates the Wilcoxon signed-rank test between total time and 

self time of built-in function calls computed using the Statistical Package for the Social 

Science (SPSS). Table 4.8 contains the sample size N, mean rank and sum of ranks. 
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Table 4.8: Wilcoxon signed ranks on built-in functions 

  N Mean rank Sum of ranks 

Sum of total_time – 
Sum of self_time 

Negative ranks 0a .00 .00 

Positive ranks 4b 2.50 10.00 

Ties 0c   

Total 4   

a. Sum of total_time < Sum of self_time    

b. Sum of total_time > Sum of self_time    

c. Sum of total_time = Sum of self_time    

 

Table 4.8 shows Wilcoxon signed ranks on the comparison of the sum of total time and 

the sum of self time. There were four samples between total time and self time. The basis 

was to find out if the differences between total time and self time are significantly different 

from zero and if the differences that were observed in the mean rank (0.00 versus 2.50) 

can be located in the population of built-in function calls. In order to locate the value 

between the mean rank (0.00 versus 2.50), the test of significance of time on performance 

of built-in functions was computed, as shown in Table 4.9.  

 

Table 4.9: Test statistics on built-in functions 

 Sum of total_time – Sum of self_time 

Z -1.826a 

Asymptotic Sig. (2-tailed) .068 

a. Based on negative ranks 

b. Wilcoxon signed-ranks test 

 

Table 4.9 shows the test statistic that was obtained. The Asymptotic Sig. (2-tailed) in the 

table represents the p-value for the test, while the Wilcoxon signed-ranks test was 

computed using the z statistic. Thus, the Wilcoxon signed-rank test, which was used on 

four samples to find out whether there is a significant change of total time with self time, 

shows z=-1.826 and p=0.068. Since p> 𝛼(0.05) within the mean rank (0.00 versus 2.50), 
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the value of 0.068 indicates that, statistically, time did not result in a significant change in 

performance of built-in function calls. 

 

ii. b. Major function calls time analysis 

Statistical analysis was also carried out to determine whether time might be significant in 

enhancing the performance of major function calls of each algorithm. Table 4.10 shows 

the summary of the Wilcoxon signed-rank test on major functions between self time and 

total time of each algorithm. 

  

Table 4.10: Wilcoxon rank on profile extracts of major function total time and self time of 

algorithms 

 

Algorithm 
Sum of 

calls 

Total 

number of 

major 

functions 

Sum of 

self_time 

Sum of 

total 

time 

D R+/R- Rank 
Signed 

rank 

1 WSA-MP 172518 2 14.291 15.724 1.433 1 1 1 

2 Firefly 6024 6 29.727 48.258 18.531 1 1 1 

3 KSA 24047 4 1.143 1.436 0.293 1 1 1 

4 BAT 46047 3 1.136 1.771 0.635 1 1 1 

 

Table 4.10 shows the difference D between the sum of total time and the sum of self time 

of each algorithm. It is observed that the sum of signed positive ranks R+ is 4, while the 

sum of negative ranks R- is 0. The sample size n (4) is less than 30, and from the Wilcoxon 

signed-rank table it is evident that there is no critical region on the significance level of 

𝛼 = 0.05 to suggest that the major functions are significantly different in terms of total 

time and self time of calling the major functions. All the major functions of each algorithm 

were ranked equally. The Wilcoxon signed-rank test was conducted to test if there was a 

significant difference. Firstly, Table 4.11 indicates the mean and standard deviation of 

both the sum of self time and the sum of total time of the major functions.  
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Table 4.11: Mean and standard deviation on major functions 

 N Mean Std. Deviation Minimum Maximum 

Sum of self_time 4 11.5742 13.59744 1.14 29.73 

Sum of total_time 4 16.7973 22.00520 1.44 48.26 

 

Table 4.11 shows sample size N, the mean of sum of self time as 11.5742 and the sum of 

total time as 16.7973 with their corresponding standard deviations. The results indicate a 

standard deviation for total time as 22.00520 and self time as 13.59744. Thus, there is a 

high variation in total time as compared with low variation in self time of major function 

calls. Table 4.12 illustrates the Wilcoxon signed-rank test between total time and self time 

of major function calls.  

 

Table 4.12: Wilcoxon signed ranks of major functions 

  N Mean rank Sum of ranks 

Sum of total_time –  

Sum of self_time 

Negative ranks 0a .00 .00 

Positive ranks 4b 2.50 10.00 

Ties 0c   

Total 4   

a. Sum of total_time < Sum of self_time 

b. Sum of total_time > Sum of self_time 

c. Sum of total_time = Sum of self_time 

 

Table 4.12 shows Wilcoxon signed ranks of the comparison of the sum of total time and 

the sum of self time. There were four samples between total time and self time. The reason 

for this comparison was to find out if the differences between total time and self time are 

significantly different and if the differences that were observed in the mean rank (0.00 

versus 2.50) can be located in the population of major function calls. In order to locate the 

value between the mean rank (0.00 versus 2.50), the test of significance of time on 

performance was computed, as shown in Table 4.13.  
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Table 4.13: Test statistics on major functions 

 Sum of total_time – Sum of self_time 

Z -1.826a 

Asymptotic Sig. (2-tailed) .068 

a. Based on negative ranks 

b. Wilcoxon signed-ranks test 

 

Table 4.13 shows the test statistic that was obtained. The Asymptotic Sign. (2-tailed) in 

the table represents the p-value for the test, while the Wilcoxon signed-rank test was 

computed using the z-statistic. The Wilcoxon signed-rank test was used to find out 

whether there is significant change in total time and self time at z=-1.826 and p=0.068. 

The results indicate that, statistically, time did not result in a significant change in 

performance of major functions calls.  

 

4.2.3.2 Statistical analysis of output results on quality of estimation 

The Wilcoxon signed-rank test was conducted on all the dimensions of results on quality 

of estimation, as shown in Table 4.14. 

 

Table 4.14: Results on accuracy from comparative algorithms using MAE 

Problem 

dimension 

KSA BAT Firefly WSA-MP 

MAE MAE MAE MAE 

46x9 7.99E-05 3.0326 1.000 5.70E-07 

40x9 7.09E-05 3.0326 0.90723 8.16E-07 

30x9 0.012553 3.0843 1.000 2.51E-07 

20x9 0.04752 3.0655 0.15362 9.22E-06 

25x9 0.023865 3.3836 1.000 1.34E-07 

10x9 0.39469 3.536 0.6943 1.73E-05 

Mean 7.98E-02 3.19E+00 7.93E-01 4.72E-06 
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Table 4.14 consists of all problem dimensions of each algorithm and the respective MAE. 

Although the null hypotheses were formulated based on the 46x9 dimension, the 

hypotheses on all problem dimensions of the MAE value were tested. Earlier, the analysis 

of the performance of each paired algorithm showed the following: 

 

1. WSA-MP outperformed KSA in terms of the minimum error (MAE) 

2. KSA outperformed the Bat algorithm in finding the optimal value. 

3. KSA produced minimum error when estimating missing values when compared with the 

Firefly algorithm. 

4. WSA-MP produced minimum error when estimating missing values, compared with the 

Bat algorithm. 

5. The Firefly algorithm outperformed the Bat algorithm in terms of minimum error. 

6. WSA-MP outperformed the Firefly algorithm in terms of minimum error. 

 

In order to test the significance of quality of estimation, the Wilcoxon test statistic was 

computed using SPSS, and the p-value is shown in Table 4.15.  

 

Table 4.15: Wilcoxon signed-rank test statistic on accuracy 

Comparative algorithm Asymp. Sig. (2-tailed) p-value 

KSA vs. WSA-MP .028 

KSA vs. Firefly .028 

KSA vs. Bat .028 

Firefly vs. Bat .028 

WSA-MP vs. Firefly  .028 

WSA-MP vs. Bat .028 

 

Table 4.15 shows the p-values that were obtained from each comparing algorithm. Since 

the p-values must be less than or equal to the level of significance of 0.05 in order to be 

significant, the results in Table 4.15 show that the quality of estimations were significant 

between the paired algorithms. In this case, the WSA-MP significantly outperformed KSA 

in terms of the MAE. 
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4.2.3.3 Multiple comparison of output results on accuracy 

Trawiński et al. (2012) note that the Wilcoxon signed-ranked test is best used for pairwise 

comparisons between two algorithms. In a multiple comparison situation, where two or 

more algorithms are compared, it is possible for errors to accumulate such that 

performance of algorithms is significant. García, Fernández, Benítez and Herrera (2007) 

state that performing multiple comparison enables the researcher to correct the Family-

Wise Error Rate (FWER), which occurs after multiple algorithms are combined. In order 

to do this comparison, García, Fernández, Benítez and Herrera (2007) use the results of 

accuracy obtained by algorithms to perform statistical analysis on algorithms. The 

statistical significance of combining pair of algorithms is computed using the following 

equations: 

𝑝 = 𝑃 (𝑅𝑒𝑗𝑒𝑐𝑡 𝐻𝑜|𝐻𝑜 𝑡𝑟𝑢𝑒)      Equation 4.4 

𝑝 = 1 − 𝑃 (𝐴𝑐𝑐𝑒𝑝𝑡 𝐻𝑜|𝐻𝑜 𝑡𝑟𝑢𝑒)     Equation 4.5 

𝑝 = 1 − 𝑃 (𝐴𝑐𝑐𝑒𝑝𝑡 𝐴𝑘 = 𝐴𝑖 , 𝑖 = 1, … , 𝑘 − 1|𝐻𝑜 𝑡𝑟𝑢𝑒)  Equation 4.6 

𝑝 = 1 − ∏ 𝑃 (𝐴𝑐𝑐𝑒𝑝𝑡 𝐴𝑘 = 𝐴𝑖|𝐻𝑜 𝑡𝑟𝑢𝑒𝑘−1
𝑖=1 )   Equation 4.7 

𝑝 = 1 − ∏ [1 − 𝑃 (𝑅𝑒𝑗𝑒𝑐𝑡 𝐴𝑘 = 𝐴𝑖|𝐻𝑜 𝑡𝑟𝑢𝑒)]𝑘−1
𝑖=1    Equation 4.8 

𝑝 = 1 − ∏ (1 − 𝑝𝐻𝑖)𝑘−1
𝑖=1      Equation 4.9 

Using Equation 4.9, p-values of each algorithm are computed to find the final p-value. If 

the p-value is less than the critical value (e.g. α =0.05), then it forms the basis for rejection 

of a hypothesis. However, a final decision cannot be made to fully reject or fail to reject 

(accept) a hypothesis based on an analysis result without performing a test on the possible 

errors that could have accumulated when comparing algorithms.  

 

In a multiple comparison situation, testing the differences between more than two 

evolutionary algorithms and avoiding the accumulation of error can be achieved through 

the Friedman test (Friedman 1940; 1937). The Friedman test is a two-way analysis of the 
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variations in the ranking of algorithms. The Friedman test is a non-parametric procedure 

that aims to compare the median of a distribution in order to find out if significant 

differences have occurred between the behavior of two or more algorithms. The null 

hypothesis of the Friedman test applies equality of medians (García, Luengo and Herrera 

2015), while the alternative hypothesis negates a null hypothesis. The Friedman test 

procedure can be summarized into the follow steps:  

Step 1: Rank algorithms separately for the dataset. 

Step 2: The best performing algorithm with least MAE gets the rank of 1, the second best 

the rank of 2, etc. 

Step 3: If there is a tie between ranks, assign the average rank. Let 𝑟𝑖
𝑗
 represent the rank 

of the jth of k algorithm on the ith of N dataset. 

Step 4: Compare the average ranks of the algorithm using Equation 4.10: 

𝑅𝑗 =
1

𝑁
∑ 𝑟𝑖

𝑗
𝑖       Equation 4.10 

where 𝑟𝑖
𝑗
 represents the rank of the jth of k algorithm on the ith of N dataset. The null 

hypothesis computes the equivalence and their ranks 𝑅𝑗, which is equal to the Friedman 

statistic (Friedman 1940; 1937), computed in Equation 4.11 as: 

𝑋𝐹
2 =

12

𝑛𝑘(𝑘+1)
[∑ 𝑅𝑗

2
𝑗 ] − 3𝑛(𝑘 + 1)    Equation 4.11 

where 𝑅𝑗  is the rank, 𝑋𝐹
2 is distributed with k-1 degrees of freedom, such that n and k 

should have a large sample size (n) (as a rule of a thumb, n >10 and k>5) (García, Luengo 

and Herrera 2015) since large sample sizes are significant in computing the degree of 

freedom on the rank of algorithms. Finally, k is the number of groups that are being 

compared. 

 

Step 5: The calculated value of 𝑋𝐹
2 must be larger than or equal to the appropriate critical 

table value of X2 or larger than or equal to the value of 𝑋𝐹
2 in the small samples table. 
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García, Luengo and Herrera (2015) indicate that to perform multiple comparison, two 

measures are used. The first is to check whether the results obtained from the algorithm 

have inequality and rank using the Friedman test. The Friedman test states that under a 

null hypothesis, all the algorithms are equivalent, so a rejection of a hypothesis indicates 

the existence of significant differences in performance of all the algorithms studied 

(García, Luengo and Herrera 2015).  

 

In the present approach to identify the best algorithm (deemed to be the algorithm with 

the lowest ranking value) that can be used as a control algorithm, the results in Table 4.14 

were applied and the Friedman test was conducted to identify the best algorithm. In order 

to rank the algorithms, the mean and standard deviation were computed, as shown in Table 

4.16. 

Table 4.16: Descriptive statistics 

 N Mean Std. Deviation Minimum Maximum 

KSA 6 .0000 .00001 .00 .00 

WSA-MP 6 .7925 .33471 .15 1.00 

BAT 6 .0798 .15528 .00 .39 

Firefly 6 3.1891 .21606 3.03 3.54 

 

The results n Table 4.16 indicate that the KSA has the least standard deviation among the 

comparative algorithms. The standard deviation measures the amount of variation in a set 

of data (Gordon and Gordon 1994). Thus, the larger the standard deviation, the greater the 

variation in the data, while the smaller the standard deviation, the smaller the amount of 

variation in the data. Since the KSA has minimum standard deviation of 0.00001, there is 

small variation in the KSA. Based on the results in Table 4.16, the Friedman test ranked 

the algorithms as shown in Table 4.17. 
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Table 4.17: Descriptive statistics 

 Mean Rank 

BAT 2.00 

Firefly 4.00 

WSA-MP 3.00 

KSA 1.00 

 

The ranks in Table 4.17 indicate that the KSA is the best algorithm among the comparative 

algorithms. The Friedman test statistic, with a sample size N, was then computed, as 

shown in Table 4.18. 

 

Table 4.18: Friedman test statistics   

N 6 

Chi-Square X2 
18.000 

df 3 

Asymp. Sig. (p-value) 
.000 

a. Friedman Test 

 

Table 4.18 shows the results of the Friedman test, where X2 obtained is 18.000, with 3 

degrees of freedom and a significance (Asymp Sig) level of 0.0000. Since the significance 

level is α (0.05), the computed value on X2 must be larger than or equal to the critical 

value for significance of 0.05. Since df is 3 at 0.05 level of significance, the value that was 

read from the critical value of the chi-square X2 distribution table (Hinton, 1995) is 7.82, 

thus 18 > 7.82 at α (0.05). There is a significant difference in the results on quality of 

estimation of missing values among the algorithms, meaning the algorithms are not the 

same.  
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4.2.4 Conclusion 

These results on the performance of accuracy of results from each algorithm were arrived 

at from the profiling conducted on the built-in function call time and major function call 

time on comparative algorithms. The reason for using the Wilcoxon signed-rank test was 

to rank the various evolutionary algorithms in respect of minimum error. The lowest 

minimum error of estimation is acceptable as the best output results. Statistical analysis 

(using the Wilcoxon signed-rank test) conducted on accuracy results using different 

dimensions of the same dataset indicated that the proposed KSA outperformed both the 

bat and Firefly algorithms. However, WSA-MP outperformed KSA in terms of the 

minimum error.  

 

Further statistical analysis (Friedman test) was conducted to test the error rate when two 

or more algorithms are combined. The reason for using the Friedman test was to compare 

the median of a distribution to find out if significant differences occurred between the 

behavior of two or more algorithms. Thus, the null hypothesis is that all comparative 

algorithms are equivalent at a confidence interval value of 0.05. The results (shown in 

Table 4.18) suggested that there is a significant difference in the quality of estimation 

among the algorithms, thus the meta-heuristic algorithms are not the same.  

 

4.3 Duplicate data (text data) detection 

With the ever-increasing volume of data generated every second, matching records to the 

name of a correct person becomes increasingly complicated as organizations share records 

electronically using different systems that may lead to an increased chance of identity 

error, particularly as electronic information becomes more prevalent. The healthcare 

sector is one of the sectors with widespread use of electronic information exchange of 

patient data (Morris et al. 2014). As the use of health systems increases exponentially, the 

accuracy of identifying and matching records has been recognized as a major challenge 

(Morris et al. 2014). In order to resolve this challenge, duplicate detection algorithms are 

used. This study discusses duplicate detection algorithms and compares the accuracy of 
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two frequently used algorithms, namely the Smith-Waterman and the Jaro-Winkler 

algorithms. Although either algorithm might be appropriate when a small dataset is used, 

it leads to a small amount of loss of data. However, large amounts of data can cause an 

issue because as the dataset grows large, the risk of data loss is increased. Hence, transitive 

and symmetry properties of both the Jaro-Winkler and Smith-Waterman algorithm are 

used to handle large amounts of data involved in the duplicate detection process. 

 

4.3.1 Experimental setup 

The experimental setup describes how the Jaro-Winkler algorithm and Smith-Waterman 

algorithm were implemented in MATLAB to demonstrate the transitivity and reflexive 

property. During the experimental setup, a 5x1 synthetic matrix dataset was created as a 

representative dataset with multiples of duplicate words. The basis of this experiment was 

to determine the best threshold for match words in both comparative algorithms. After 

several preliminary trial tests of the synthetic matrix dataset, as a basis for setting the gap 

penalty for the Smith-Waterman algorithm, two measures were taken into consideration 

in order to avoid setting too small or large values. While small values allow a previously 

accumulated local alignment to continue with an insertion in one of the sequences, large 

gap values lead to previous alignment scores being removed completely. The score on a 

matched word was set to 1, mismatched set to -1, and gap set to -1. In the case of Jaro-

Winkler distance, a distance value equal to 1 indicates a duplicate string, while a distance 

value less than 1 indicates non-duplicate strings. Thus, the higher the distance value, the 

higher the matched score. 

 

The proposed steps on the present approach to duplicate detection are summarized as 

follows: 

Step 1: Load data from repository. 

Step 2: Initialize penalty gaps. 

Step 3: Perform tokenization of words and pairwise comparison of words. 
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Step 4: Apply character-based methods to compute the similarity score (using both the 

Jaro-Winkler and the Smith-Waterman algorithm independently). 

Step 5: Check the reflexive property of equality.  

Step 6: Output results. 

 

Table 4.19 illustrates the proposed algorithm for duplicate detection. 

Table 4.19: Proposed algorithm 

Step 1: Load data from repository 

Step 2: Initialize penalty gap 

Step 3: Perform tokenization 

Get (current word); 

        Get (next word); 

      // Apply transitive property through the use of loops   

        WHILE each word 

         WHILE each word is not empty 

             Pick each character in a word 

         END WHILE 

                Get (next word); 

             // pairwise comparison of words using the equality property 

current word= next word 

        END WHILE 

Step 4: Compute similarity score 

Step 5: Check symmetry property of equality 

Step 6: Output results 

 

The proposed algorithm on duplicate text/word starts with input of data from the data 

source. Initially, the original Smith-Waterman algorithm and Jaro-Winkler algorithm 

allow the comparison between only two words to detect the similarity score. The current 

structures of these algorithms were not suitable to be used in this experiment as they could 

not allow comparison of multiple words in rows of a dataset. Thus, the approach in this 
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study applied Step 3 of the proposed algorithmic structure in Table 4.19. During Step 3, 

two words from the dataset are selected, where the current word is selected from position 

i in a row and the next word is selected from position i+1 in a row of the same dataset for 

initial comparison. For instance, current word (referred to as x): G C C A U U G and next 

word (referred to as y) G C C - U C G, with respective lengths x and y. After the lengths 

of x and y are compared, each character in a word is compared to find the pairwise 

alignment, as it is possible for words to be of equal length but different in terms of the 

characters in each word. After the pairwise alignment, Step 4 is applied, as indicated in 

the walkthrough examples presented earlier, on both the Smith-Waterman and Jaro-

Winkler algorithm to compute the similarity score. If words are similar, then both would 

have the same similarity score and the word is stored as duplicate (represented as z). 

During Step 5, the symmetry property of equality is applied, as illustrated earlier. 

Afterwards, the duplicate word z is assigned to the next comparison process with another 

word on the i+2 position in the row of the dataset. The iteration process continues until 

the entire search process ends. This iteration process constitutes the workflow of the 

proposed algorithm to enhance both the Smith-Waterman algorithm and the Jaro-Winkler 

algorithm.  

 

During the experimental setup, a program was written in MATLAB to implement the 

iteration process, and a preliminary 5x1 synthetic matrix dataset was created as a 

representative dataset with multiples of duplicate word to test the robustness of the 

solution algorithm. In the case of the Smith-Waterman algorithm, parameters for the cost 

of single gap c was set to -1, while the cost of a matched word was set to 1, and the 

mismatched was set to -1. Thus, a matrix score of 1 means words are duplicate; otherwise 

words are non-duplicate. In the case of Jaro-Winkler algorithm, a distance value of 1 

means words are duplicate, otherwise words are non-duplicate. Thus, the higher the 

distance value, the higher the chances of words being duplicate or similar. 
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After the preliminary test of the algorithm, the proposed steps of the algorithm were 

refined and executed on a 209x1 matrix health disease-related dataset extracted from a 

typical online data repository called “UCI machine learning data repository” (Lichman 

2013). This instance of the dataset was extracted and applied as it consists of different 

health diseases related to chest pain, with multiple duplicates that are suitable for this 

study. Although the matrix size may not be considered large, it reflects how the 

comparative algorithms can perform when a dataset with 209 words is applied. 

 

4.3.2 Experimental results 

In order to observe the accuracy of results after applying Step 3 and Step 4 of the proposed 

algorithmic structure, which forms part of the enhancement of both algorithms, for the 

purpose of clarity, the initial enhancements (that is, the use of Step 3 and Step 4) are 

referred to as a partially enhanced Smith-Waterman algorithm and a partially enhanced 

Jaro-Winkler algorithm. After a thorough test of the matrix dataset, the following 

observations were made, and the experimental results are displayed as follows: 

 

4.3.2.1 Results on Smith-Waterman algorithm 

Table 4.20 illustrates the experimental results obtained on the partially enhanced Smith-

Waterman algorithm. 

 

Table 4.20: Results of partially enhanced Smith-Waterman algorithm 

Algorithm 
Number of duplicate 

(match) words detected 

Number of mismatch 

words detected 

Partially enhanced 

Smith-Waterman 
101 109 

 

The results displayed in Table 4.20 indicate that the number of duplicate (match) words 

detected in the dataset was 101, and the number of mismatch words detected was 109. The 

rate of matched and mismatched words over number of words using the same algorithm 

is illustrated in Table 4.21. 
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Table 4.21: Results of partially enhanced Smith-Waterman algorithm rate of match and 

mismatch 

Algorithm 
Rate of pairwise match of 

word 

Rate of mismatch of 

word 

Partially enhanced 

Smith-Waterman 
0.48325 0.51675 

 

The results displayed in Table 4.21 show the rate of pairwise match as 0.4825 and the rate 

of mismatch as 0.51675. This shows a high rate of mismatched words compared to 

matched words. During pairwise comparison of words, the proposed algorithm selects the 

first word in a row and sequentially compares it with each other word using the transitive 

property. However, the second word in the row was not sequentially compared in the 

subsequent iterations, and this resulted in the high number of duplicate words detected. 

Figure 4.4 shows the nature of the undirected graph. 
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Figure 4.4: Nature of break in transitivity in Smith-Waterman algorithm 

 

Figure 4.4 shows a break “x” in sequential comparison within the next iteration from 

String 2 to String 3 and String 2 to String 4. The string number represents words where 

each word is considered a node. The undirected graph indicates that other strings were not 

compared in subsequent iterations; thus, other duplicate words were not detected. In order 

to solve this break in the pairwise word comparison, the property of equality (symmetry 

property), which includes Step 5 of the proposed algorithm structure, was applied at the 

end of each iteration. For the purpose of clarity of results, the final algorithm is referred 
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to as the fully enhanced Smith-Waterman algorithm. The results of the fully enhanced 

Smith-Waterman algorithm are displayed in Table 4.22. 

 

Table 4.22: Results of fully enhanced Smith-Waterman algorithm after break in sequential 

comparison 

Algorithm 
Number of duplicate 

(match) words detected 

Number of mismatch 

words detected 

Fully enhanced Smith-

Waterman 
74 135 

 

The results displayed in Table 4.22 show the number of duplicate (match) words detected 

as 74, and the number of mismatch words detected as 135. Table 4.23 shows the rate of 

matched and mismatched words over number of words (209), using the same algorithm. 

 

Table 4.23: Results of fully enhanced Smith-Waterman algorithm rate of match and mismatch 

after break in sequential comparison 

Algorithm 
Rate of pairwise 

match of word 
Rate of mismatch of word 

Fully enhanced 

Smith-Waterman 
0.35407 0.64593 

 

The results displayed in Table 4.23 show the rate of match words as 0.35407 and the rate 

of mismatch as 0.64593. Thus, 35% of words were detected as duplicate, while 64% of 

words were detected as mismatch. 

 

These results show that while there was a decrease in the rate of match from 0.48325 

(Table 4.21) of the partially enhanced algorithm to 0.35407 (Table 4.23) of the fully 

enhanced algorithm, there was also an increase in the rate of mismatch from 0.51675 

(Table 4.21) of the partially enhanced algorithm to 0.64593 (Table 4.23) of the fully 

enhanced algorithm. This indicates a reduction in the number of duplicate words detected, 

from 101 (Table 4.20) of the partially enhanced algorithm to 74 (Table 4.22) of the fully 
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enhanced algorithm, and an increase in the number of mismatch words detected from 109 

(Table 4.20) of the partially enhanced algorithm to 135 (Table 4.22) of the fully enhanced 

algorithm. This suggests that more mismatched words that are not duplicate words were 

further detected in the fully enhanced Smith-Waterman algorithm. 

 

4.3.2.2 Results of partially enhanced Jaro-Winkler algorithm 

The experimental results on the partially enhanced Jaro-Winkler algorithm are presented 

in Table 4.24. 

Table 4.24: Results of partially enhanced Jaro-Winkler algorithm 

Algorithm 
Number of duplicate 

(match) words detected 

Number of  pairwise 

mismatch words 

detected 

Partially enhanced 

Jaro-Winkler 
101 107 

 

The results displayed in Table 4.24 indicate that the number of duplicate (match) words 

detected was 101, and the number of pairwise mismatch of words detected was 107. Table 

4.25 shows the results on the rate of pairwise match and rate of pairwise mismatch. 

 

Table 4.25: Results of partially enhanced Jaro-Winkler algorithm rate of match and mismatch 

Algorithm Rate of pairwise match 
Rate of pairwise 

mismatch 

Partially enhanced Jaro-

Winkler 
0.48558 0.51442 

 

The results displayed in Table 4.25 show the rate of pairwise match as 0.48558 and the 

rate of pairwise mismatch as 0.51442. Thus, 48% of words were detected as duplicate 

while 51% of words were detected as mismatch. 

 

The experimental results demonstrate that the partially enhanced Jaro-Winkler algorithm 

considers a pair of strings (words/tokens) and performs pairwise comparison of two 

words. Since the algorithm considers words as paired, it does not perform a comparison 
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on the nth-1 instance (row) if the number of instances is an odd number. This suggests a 

loss of data in the dataset. 

 

The study tested the pairwise word comparison approach to observe how the partially 

enhanced Jaro-Winkler algorithm adheres to the property of equality (symmetry property) 

by assigning each second word to relate to the first word at the end of each iteration. The 

final algorithm is referred to as the fully enhanced Jaro-Winkler algorithm. The 

experimental results are displayed in the Table 4.26. 

 

Table 4.26: Results of fully enhanced Jaro-Winkler algorithm 

Algorithm 
Number of duplicate 

(match) words detected 

Number of  mismatch words 

detected 

Fully enhanced Jaro-

Winkler 
72 136 

 

The results displayed in Table 4.26 indicate that the number of instances in the matrix was 

208 instead of the original 209 instances, while the number of duplicate (match) words 

detected was 72 and the number of mismatches detected was 136. This suggests that there 

was a high number of mismatch words detected by the algorithm. Table 4.27 shows the 

results on the rate of pairwise match and rate of pairwise mismatch. 

 

Table 4.27: Results of fully enhanced Jaro-Winkler algorithm rate of match and mismatch 

Algorithm Rate of pairwise match Rate of pairwise mismatch 

Fully enhanced 

Jaro-Winkler 
0.34615 0.65385 

 

The results displayed in Table 4.27 show the rate of pairwise match as 0.34615 and the 

rate of pairwise mismatched as 0.65385. Thus, 34% of words were detected as duplicate 

while 65% of words were detected as mismatch. 
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The experimental results demonstrate that while the number of duplicate (match) words 

detected decreased from 101 in the partially enhanced Jaro-Winkler algorithm to 72 in the 

fully enhanced Jaro-Winkler algorithm, the number of pairwise mismatches words 

detected increased from 107 in the partially enhanced algorithm to 136 in the fully 

enhanced algorithm. Additionally, the rate of pairwise match of words decreased from 

0.48558 in the partially enhanced algorithm to 0.34615 in the fully enhanced algorithm, 

while there was an increase in the rate of pairwise mismatch words from 0.51442 in the 

partially enhanced algorithm to 0.65385 in the fully enhanced algorithm.  

 

Comparably, the number of duplicate (match) words detected in the enhanced Smith-

Waterman algorithm is 74, while that of the enhanced Jaro-Winkler algorithm is 72. In 

terms of the rate of pairwise match, the number of duplicate (match) words detected in the 

enhanced Smith-Waterman algorithm is 0.35407 (that is, 35%), and in the enhanced Jaro-

Winkler algorithm it is 0.34615 (that is, 34%). The experimental results suggest that the 

fully enhanced Smith-Waterman algorithm gives better results compared to the fully 

enhanced Jaro-Winkler algorithm.  

 

4.3.3 Conclusion 

The original Smith-Waterman algorithm and Jaro-Winkler algorithm in their current 

structure are limited in considering each word as token. The current structure is not 

suitable to be applied to duplicate detection of words when there are several rows of data 

to consider. The unique feature of the proposed algorithm is that, by applying the 

tokenization, transitive closure and property of equality (symmetry property) to a large 

dataset, duplicate words in a record can be identified, while mismatched words (misspelt 

words) can be detected and grouped together. The experimental results show that while 

the fully enhanced Smith-Waterman algorithm is accurate at pairwise word comparison 

without missing any, the fully enhanced Jaro-Winkler algorithm could not perform 

pairwise word comparison on the nth-1 instance (row) if the total number of instances (row) 

is an odd number. This indicates that the fully enhanced Jaro-Winkler algorithm accurately 
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performs a comparison if the number of instances (row) is even, but if the number of 

instances is odd, then it only computes the nth-1 instance (row), so some duplicate records 

can be missed. This suggests that the fully enhanced Jaro-Winkler algorithm is challenged 

in respect of accuracy of comparing each word in a dataset, and in large datasets, it could 

miss some words, leading to the loss of information. In contrast, the fully enhanced Smith-

Waterman algorithm performs accurate comparison without recourse to whether the 

number of instances is odd or even. Thus, the fully enhanced Smith-Waterman algorithm 

performs comparison without missing any words, and this suggests that in large datasets, 

the fully enhanced Smith-Waterman algorithm could perform better.  

 

4.4  Applying the bio-inspired method of learning parameter onto Long Short-

Term Memory (LSTM) network for feature selection in classification of 

high-dimensional bioinformatics datasets. 

 

The approach to feature selection uses a bio-inspired method (KSA) and RNN with Long 

Short Term Memory network (LSTM) (Agbehadji et al. 2018b). The KSA was used to 

find optimum parameters from the entire dataset, which are then used to pre-train the RNN 

with LSTM network. In respect of the random nature of the proposed algorithm, each 

optimum was evaluated using the specified equation to test the fitness of each solution 

and the level accuracy. The following algorithmic structure was used to implement the 

feature selection process (Table 4.28). 

 

 

 

 

Table 4.28: Proposed algorithmic structure for feature selection 

 Set parameters 

 Initialize population of n kestrels and evaluate fitness of population. 
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 Start iteration (loop until termination criterion is met) 

       Generate new population using random encircling  

       Evaluate fitness using imitation (Equation 3.12). 

       Evaluate selected subset using the classification algorithm 

       Update encircling position for each kestrel for all i=1 to n 

       Find the optimal feature subset 

 End loop 

 

4.4.1 Experimental setup 

The proposed algorithmic structure was implemented in MATLAB 2018A. For the 

purpose of ensuring that best solution (in terms of optimized parameters) is selected as 

best parameter for training the RNN with LSTM network classifier (which is configured 

with 100 hidden layers), 100 epochs were performed as suggested by Batres-Estrada 

(2015), as it guarantees optimum results on classification accuracy. At each time step, the 

LSTM network is updated with the optimal parameter from KSA and the LSTM is reset. 

Batres-Estrada (2015) observes that choosing a small value as learning rate makes the 

interactions in weight space smooth, but at the cost of a longer learning rate. Similarly, 

choosing a large learning rate parameter makes the adjustment too large, which makes the 

network unstable (that is, the deep learning network). To avoid network instability, all 

neurons in the input to output layers on a network should learn at the same rate (that is, 

with smaller learning rate) (Batres-Estrada 2015). The use of a small but optimized 

learning rate/parameter was ensured by the use of meta-heuristic algorithms such as the 

KSA.  

 

The optimized results from the meta-heuristic algorithms and the respective results on 

classification accuracy are the criteria to evaluate each meta-heuristic algorithm used in 

the experiment for classification of features. The optimized results from each meta-

heuristic algorithm are considered as best solution if they have higher classification 

accuracy of features (Mafarja and Mirjalili 2018).  
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The initial parameters for each meta-heuristic algorithm are defined in Table 4.29. These 

were suggested by the creators of the algorithms as best parameters that guarantee optimal 

solutions.  

Table 4.29: Algorithm and initial parameters 

Algorithm Initial parameter 

KSA pa=0.97; % Frequency of bobbing   

zmin=0.2; % perched parameter 

zmax=0.8; % flight parameter 

half-life=0.5; % half-life parameter 

     dissimilarity=0.2 % dissimilarity parameter 

Similarity=0.8 % similarity parameter 

PSO w=1; % Inertia Weight 

c1=2.5; % Personal/cognitive Learning Coefficient 

c2=2.0; % Global/social Learning Coefficient 

ACO α=1; % Pheromone Exponential Weight 

ρ=0.05; % Evaporation Rate 

BAT α=0.9; % constant parameter 

γ=0.9; % constant parameter 

β=1; % random vector which is drawn from a 

uniform distribution [0, 1] 

A=1; % Loudness (constant or decreasing) 

r=1; % Pulse rate (constant or decreasing) 

WSA-MP v=1; % radius of the visual range 

pa=0.25; % escape possibility; how frequently an 

enemy appears 

Tol=1.0e-3; % tolerance 

α=0.2; % velocity factor (α) of wolf  

 

To test the robustness of the proposed algorithm, nine benchmark datasets (that is, 

biological datasets from Arizona State University) were used. These datasets were chosen 

because they represent a standard benchmark dataset with continuous data for 

experimental research that are suitable for this research work. Table 4.30 shows the 

benchmark dataset and number of features in the original dataset. 

 

Table 4.30: Benchmark datasets and number of features in dataset 

 Dataset # of 

instances 

# of 

classes 

# of features in 

original dataset 
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1.  Allaml 72 2 7129 

2.  Carcinom 174 11 9182 

3.  Gli_85 85 2 22,283 

4.  Glioma 50 4 4434 

5.  Lung 203 5 3312 

6.  Prostate-GE 102 2 5966 

7.  SMK_CAN_187 187 2 19,993 

8.  Tox_171 171 4 5748 

9.  CLL_SUB_111 111 3        11340 

 

4.4.2 Experimental results 

The minimum learning parameter from the original dataset and classification accuracy 

helped evaluate and compare the different meta-heuristic algorithms. One hundred 

iterations where performed by each algorithm to refine parameters for the LSTM network 

classifier in each dataset (that is, the biological dataset from Arizona State University). 

Table 4.31 shows the learning parameters in terms of optimum value of each meta-

heuristic algorithm.  

 

Table 4.31: Results obtained on optimum learning parameters of algorithms after running 

comparative meta-heuristic algorithms 

Learning 

parameter 
KSA BAT WSA-MP ACO PSO 

Allaml 4.0051e-07 1.232e-07 1.7515e-07 3.3918e-07 1.9675e-06 

Carcinom 1.3557e-07 1.0401e-07 3.0819e-05 8.7926e-04 0.5123 

Gli_85 4.1011 0.032475 3.6925 0.0053886 2.2259 

Glioma 2.3177e-06 3.0567e-05 1.9852e-05 9.9204e-04 0.3797 

Lung 5.1417e-06 4.4197e-05 3.0857e-05 6.231e-04 0.3373 

Prostate-GE 1.6233e-07 4.5504e-06 1.0398e-06 3.4663e-05 0.1178 

SMK_CAN_187 0.015064 1.338e-05 4.7188e-05 2.7294e-05 2.5311 

Tox_171 0.16712 0.0002043 0.086214 0.0023152 2.2443 

CLL_SUB_111 0.82116 0.075597 0.76001 0.011556 9.6956 

 

Table 4.31 shows the optimum learning parameters obtained after executing each meta-

heuristic algorithm, with the best learning parameter for each meta-heuristic algorithm 
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highlighted in bold. It is observed from Table 4.31 that out of the nine datasets that were 

used, the KSA has the best learning parameter in five datasets. The learning parameters 

were fed into the LSTM network to determine the performance in terms of classification 

accuracy of each algorithm (that is, a way of knowing which algorithms outperform each 

other), and the results are shown in Table 4.32.  

 

Table 4.32: Best results on accuracy of classification for each algorithm 

Classification 

accuracy 
KSA BAT 

WSA-

MP 
ACO PSO 

Allaml 0.5633 0.6060 0.6130 0.5847 0.4459 

Carcinom 0.7847 0.7806 0.6908 0.7721 0.7282 

Gli_85 0.2000 0.4353 0.2004 0.4231 0.3335 

Glioma 0.7416 0.7548 0.5063 0.7484 0.7941 

Lung 0.5754 0.5754 0.5754 0.5754 0.7318 

Prostate-GE 0.6852 0.6718 0.6147 0.5444 0.7223 

SMK_CAN_187 0.6828 0.6759 0.6585 0.6111 0.2090 

Tox_171 0.7945 0.6925 0.7880 0.5889 0.2127 

CLL_SUB_111 0.7811 0.4553 0.7664 0.4259 0.2000 

Average  0.6454 0.6275 0.6015 0.586 0.4864 

 

Table 4.32 shows the classification accuracy using the full dataset and the learning 

parameter from each algorithm. The classification accuracy for the Allaml dataset using 

KSA is 0.56 and 0.6130 using WSA-MP. It is observed that the algorithm with the best 

parameter is not the best choice in some datasets. For instance, the KSA has the best 

parameter of 1.6233e-07 on the Prostate-GE dataset, but produced a classification 

accuracy of 0.6852, while the Bat algorithm has a worst parameter of 0.1178, but produced 

a classification accuracy of 0.7223. Hence, the results (as shown in Table 4.32) suggest 

that a minimum learning parameter is not always a guarantee of accuracy, as it depends 

on the dataset, particularly the number of features. It can be observed that KSA provided 

the highest classification accuracy on four out of nine datasets. This classification 

accuracy in Table 4.32 demonstrates that the proposed approach explores and exploits 

search space efficiently, and finds the best results that produce higher classification 
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accuracy in many types of datasets. In order to select features, Mafarja and Mirjalili (2018) 

indicate that the higher the classification accuracy, the better the solution and, hence, the 

smaller the number of features in a subset. Table 4.33 shows the dimensions of features 

selected by each algorithm.  

 

Table 4.33: Dimensions of features selected by each algorithm. 

Feature selected KSA BAT 
WSA-

MP 
ACO PSO 

Allaml 3113 2809 2759 2961 3950 

Carcinom 1977 2015 2839 2093 2496 

Gli_85 17826 12583 17817 12855 14852 

Glioma 1146 1087 2189 1116 913 

Lung 1406 1406 1406 1406 888 

Prostate-GE 1878 1958 2299 2718 1657 

SMK_CAN_187 6342 6480 6828 7775 15814 

Tox_171 1181 1768 1219 2363 4525 

CLL_SUB_111 2482 6177 2649 6510 9072 

 

Table 4.33 shows the features that were selected from the respective datasets by each 

algorithm. It is observed that KSA selected a smaller number of features from four 

datasets, namely Carcinom, SMK_CAN_187, Tox_171 and CLL_SUB_111; PSO 

selected fewer features from three datasets, namely Glioma, Lung and Prostate-GE; and 

BAT and WSA-MP selected a smaller number of features from the Gli_85 and Allaml 

datasets respectively.  

 

4.4.3 Statistical analysis of classification accuracy  

A statistical test was conducted on the classification accuracy of each algorithm to identify 

the best algorithm. In order not to prejudice which algorithms outperformed each other, 

the means of all the algorithms were considered as equal for the statistical analysis. The 

reason for the statistical analysis of experimental results is to determine the significance 

of results on classification accuracy obtained from each optimizer (KSA, BAT, WSA-MP, 
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ACO and PSO). In order to achieve this, a non-parametric statistical procedure was used 

as it does not make underlying assumptions about the distribution of parameters and 

underlying dataset for the evolutionary algorithm optimizers. In contrast, parametric 

statistical procedures make assumptions on parameters and distribution of datasets. A non-

parametric statistical test was conducted to assess which of the algorithms have better 

performance in terms of the classification accuracy. In multiple-comparison situations, 

such as in this thesis, the Wilcoxon signed-rank test was applied to test how significant 

algorithms outperform each other in respect of detecting the differences in the mean and 

to find the probability of an error in suggesting that the medians of two algorithms are 

equivalent. This probability is called the p-value (Zar 1999). The advantage of the 

Wilcoxon test is that there is no need to make assumptions about the population used, 

since the test can guarantee about 95% (that is, 0.05 level of significance) of efficiency if 

the population is normally distributed. The following steps are applied in computing the 

Wilcoxon signed-rank test: 

Step 1: Compute the difference D of paired samples in each algorithm. Any pairs with a 

difference of 0 are discarded. 

Step 2: Find the absolute D. 

Step 3: Compute the rank of signs (R+ difference and R- difference) from lowest to highest.  

The sum of ranks is expressed in Equation 4.12: 

∑ 𝑅+ + 𝑅− =
𝑛(𝑛+1)

2
     Equation 4.12  

where n is sample size. 

Step 4: Compute the test statistic T. Thus, T = min{R+, |R-|}. The test statistic T is 

therefore the smallest value.  

Step 5: Find the critical values based on the sample size n. If T is less than or equal to the 

critical value at a level of significance (that is, α=0.05), then a decision is made that 

algorithms are significantly different (García, Fernández, Benítez and Herrera 2007). In 

order to accomplish this, the Wilcoxon signed-rank table is consulted, using the critical 

value (α=0.05) and sample size n as parameters, to obtain the value within the table. If this 
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value is less than the calculated value of the algorithmic comparison, this means that the 

algorithmic difference is significant.  

   

In order to apply the Wilcoxon signed-rank test, an analysis was performed on 

classification accuracy, and the results are displayed in Table 4.34. 

 Table 4.34: Test statistics 

Comparative 

algorithms 

Z Asymp. Sig.  

(2-tailed) 

BAT – KSA -0.420 0.674 

WSA-MP – KSA -1.680 0.093 

ACO – KSA -0.980 0.327 

PSO – KSA -1.007 0.314 

 

The results on test statistics (p<0.05) shown in Table 4.34 show that the differences 

between the medians are not statistically significantly different in all the comparative 

algorithms. For instance, there are no statistically significant differences between the KSA 

and BAT at the level of significance of 0.05, because 0.674>0.05. Similarly, KSA 

compared to WSA-MP, ACO and PSO all have their p-values greater than the level of 

significance. This indicates that there are no statistically significant differences between 

KSA compared to WSA-MP, ACO, PSO and BAT. 

 

4.4.4 Conclusion 

The KSA has its own advantages in feature selection in classification. Compared to meta-

heuristic algorithms, classification accuracy of KSA is comparable to ACO, BAT, WSA-

MP and PSO. This suggests that the initial parameters that were chosen in KSA guarantee 

good solutions that are comparable to other meta-heuristic search methods on feature 

selection. The future work for KSA is to develop new versions of KSA with modifications 

and enhancements of code for feature selection in classification.  
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4.5 Summary 

In this chapter, the bio-inspired computation model was applied to the current challenge 

of finding missing values at random. The model was implemented and compared to related 

bio-inspired algorithms, as indicated in the methodological framework for this study. The 

stages that were implemented were missing value estimation, duplicate text detection and 

feature selection. The programming codes were written to help transform the algorithmic 

structure in order to test the dataset.  

 

The experimental results and statistical analysis conducted using the Wilcoxon signed-

rank test show that the proposed KSA outperformed the Bat and Firefly algorithms in 

finding the optimal value in a synthetic dataset that has different dimensions with 

multiples of missing values. Further statistical analysis was conducted to find out whether 

the built-in function time calls and major function time calls might be equivalent or not. 

The Friedman test was conducted and the null hypothesis was that the median of the 

distribution is equivalent at a confidence interval value of 0.05. The results suggested that 

there is a significant difference in the quality of estimation among the algorithms, thus the 

algorithms are not the same. The results also showed that the proposed algorithm should 

be enhanced by further fine-tuning of its parameter. 

 

The experimental results on the enhanced Smith-Waterman and Jaro-Winkler algorithms 

for duplicate detection of text in large datasets (that is, a health-related heart disease 

dataset) indicated that the enhanced Smith-Waterman algorithm is more accurate at 

detecting duplicate words than the enhanced Jaro-Winkler algorithm. This signifies that 

when both algorithms are applied on the same datasets, the Smith-Waterman algorithm is 

able to avoid any information loss, while the Jaro-Winkler algorithm results in an 

information loss. Thus, when there are large volumes of data to be analyzed for duplicate 

text, the Smith-Waterman algorithm will perform best without data loss because of the 

transitive closure and reflexive properties that were included as an enhancement. 
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Although deep learning methods have been applied to selection of features in the 

classification problem, current approaches to learning of a parameter for the classification 

process can either grow out of bound or shrink at each time step. This parameter resizing   

might result in inaccurate classification of features. To address this challenge, the study 

proposes an approach to learning parameters for the classification problem based on the 

behavior of kestrels, that is, random encircling from a hovering position and learning by 

imitating well-adapted behavior of individual kestrels to adjust learning rate. The 

proposed bio-inspired approach is integrated with a deep learning method (that is, 

recurrent neural network with long short term memory network). A benchmark dataset 

(with continuous data attributes) was chosen to test the proposed search algorithm. The 

results showed that KSA is comparable to BAT, ACO and PSO, as test statistics in Table 

4.34 (that is, the Wilcoxon signed rank test) show no statistically significant differences 

between the mean of classification accuracy at the level of significance of 0.05. 

Meanwhile, compared with WSA-MP, KSA shows a statistically significant difference in 

the mean of classification accuracy.  

 

The next chapter discusses the implementation and empirical testing of the proposed 

computational model of data mining on frequently changed patterns/items with time and 

numeric value dimensions. Test data that is characterized as having frequently changed 

items (that is, stock market data) is used to validate the proposed computational model.  
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CHAPTER 5: DEVELOPING, TESTING AND EVALUATING 

DATA MINING BASED ON KESTREL-BASED SEARCH 

ALGORITHM 

5.1 Introduction 

The chapter addresses the question of how to mathematically formulate and implement an 

associative data mining rule to extract frequently changed items with both numeric and 

time dimensions. The objective is to select interesting patterns/rules taking into 

consideration the time-closeness between the frequently changed items. In this chapter, a 

data mining model is provided to mine rules and disclose interesting patterns on frequently 

changed data. This chapter further shows how to apply the proposed model to tackle 

frequently changed items in stock market data. Stock market data has the characteristics 

of large scale and fast update of stock numerical values. The characteristics of stock data 

are similar to big data characteristics, such as having volume, velocity, value and variety 

(Longbottom and Bamforth 2013). 

 

As discussed in Chapter One and Chapter Two, when data becomes very large (volume 

characteristic), it is possible that current approaches to mining interesting patterns lose 

their value (value characteristic) in terms of having to determine in a timely (relating to 

speed) manner the usefulness of an action. This timeliness in determination is important 

because large rules are discovered that might not show interesting patterns. The massive 

amount of data can be analyzed and interpreted to show interesting patterns using different 

techniques on algorithms, tools and models that are different from existing search methods 

of analyzing and interpreting data. This was the motivation to propose an approach (in the 

form of an algorithm called KSA) based on how animals behave, and basic mathematical 

expression were formulated from their behavior to develop an algorithm to analyze data. 

During the analysis, the formulated mathematical expression of KSA was integrated with 

a mathematical model on closeness preference (Railean et al. 2013), as discussed in 

section 3.3.2. The basis for the integration is to enable the proposed model to take into 
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consideration both numeric and time dimensions for analysis of frequently changed items. 

The advantage of the closeness preference model is that it considers time interval and 

slope of preference. 

 

The proposed KSA model and closeness preference interestingness measure helped 

extract association rule mining of interesting patterns for interpretation by the researcher. 

The algorithm from the computational model was compared with other meta-heuristic 

algorithms, namely the PSO, ACO, BAT and WSA-MP algorithms. The comparative 

algorithms helped validate the tabulated results from the proposed model.  

 

The general outline in section 3.5 was followed by modeling an algorithm for data mining, 

as indicated in the methodological framework in Table 3.1. 

5.2 Association rule 

A rule is defined as a conditional statement that specifies an action for a certain set of 

conditions (Iglesia and Reynolds 2005). An association rule is an implication of the form 

K→P, where precondition K is referred to as the antecedent, the action P is called the 

consequent, and both K and P are itemsets with numeric value. The discovered rule is 

expressed in an “If … Then …” statement. Thus, If K, then P.  

 

There are two groups of rules: simple rules and complex rules (Railean et al. 2013). The 

simple rules are of the form Vi → Vn, and complex rules are of the form V1V2...Vn−1 → Vn 

(Railean et al. 2013). In this instance, all rules of the simple form Vi → Vn were combined 

between all Vi itemsets. For example, having the rules A → Y, B → Y and C → Y, a 

complex rule is derived as AB → Y, AC → Y, BC → Y, ABC → Y. 

 

The fitness function is used to evaluate the importance of each item and select interesting 

rules/patterns. The fitness function is expressed in Equation 5.1: 

𝑀𝐶𝑃𝑠𝑐 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 = ɸ ∗
𝑛𝑟𝑝 𝑜

𝑛𝑟𝑝 𝑜+𝑛𝑟𝑖 𝑝
∗

𝑛𝑟𝑝 𝑜

| 𝐷𝐵 |
∗ 𝑓(𝑛𝑟, ∆𝑡𝑎𝑣𝑒𝑟𝑎𝑔𝑒)   Equation 5.1 
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where ɸ represents a control parameter between 0 and 1; nrpattern occurrences (nrp o) represents 

frequently changed items; nrnot freq. patterns (nrn p) represents patterns that are not frequently 

changed; |DB| is the total size of the dataset; f(nr, ∆taverage) is a function that is defined to 

take into consideration the size of the pattern nr and the medium time interval ∆taverage in 

a pattern. 

 

Based on the mathematical formulation in Chapter Three (section 3.2), the proposed 

algorithm process for association rule mining is as follows: 

1) User sets time preference and stopping criteria  

2) Random initialization of each kestrel and of time dimension 

3) Perform search for best encircling position 

4) Compute the velocity 

5) Compute the slope of glide 

6) Evaluate fitness function (Equation 5.1) 

7) Update encircling position 

8) Check if the termination condition is met (if not, go back to Step 2) 

9) Output best minimum as the support threshold 

10) Mining of association rules 

11) Output the frequently changed items results 

  

The proposed computational algorithm is summarized in the form of pseudo-code and 

shown in Figure 5.1. 

Random initialization of each kestrel and  

Random initial time dimension;  

set user time preferences;  

set maximum confidence 

WHILE (t < stopping criteria not met) 

//Finds minimum support threshold 

   FOR i=1to k //for each kestrel in the population 
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       Compute the encircling position 

       Compute velocity, k=1,.., n  

       Compute the slope of glide 

       Evaluate fitness function //help filter rules 

       Replace f2(𝑀𝐶𝑃𝑠𝑐 𝑝𝑎𝑡𝑡𝑒𝑟𝑛) with f1(𝑀𝐶𝑃𝑠𝑐 𝑝𝑎𝑡𝑡𝑒𝑟𝑛) 

            Update encircling position 

       END IF 

END FOR  

END WHILE 

FOR each item n 

    Find difference of time dimension 

    IF difference of time <=user preferences 

         Compute the difference of numeric items  

         Count the numeric items 

         FOR each numeric item in a row 

             IF count of numeric items equal to zero 

                 Count not frequently changed numeric items 

            ELSE IF count of numeric items not equal to zero 

                 Count frequently changed numeric items 

            END IF 

        END FOR  

         Compute the MCPs  

         IF MCPs > minSup  

             Evaluate the MCP sc pattern (referred to as MCP conf) 

              IF f1(MCPsc pattern) > minConf 

                 Extract rules on frequently changed numeric items 

                END IF 

        END IF 

    END IF 
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END FOR 

Output rules of frequently changed items 

Figure 5.1: Proposed computational model for association rule mining 

 

Based on this proposed computational process, association rules were generated within 

the user-specified time preferences. The difference with this computational process 

compared to other existing computations is the addition of 𝑀𝐶𝑃𝑠𝑐 𝑝𝑎𝑡𝑡𝑒𝑟𝑛, as expressed in 

Equation 5.1. The time complexity (expressed in Equation 5.2 and Equation 5.3) of finding 

frequently changed itemsets was calculated using the expression in the calculation 

formulated by Minaei-Bidgoli, Barmaki and Nasiri (2013). Thus, the time complexity R 

is expressed as follows: 

𝑅 = 𝑂(𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑖𝑡𝑒𝑚𝑠𝑒𝑡) + 𝑂(𝑟𝑢𝑙𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛) Equation 5.2 

    Equation 5.3 

where d is the number of items/attributes being considered, k is the number of iterations, 

and N is the number of records in the dataset. 

 

5.3 Experimental setup 

The proposed algorithm was implemented in MATLAB. For the purpose of ensuring that 

good parameters are selected, several parameters (in terms of numeric parameters) were 

experimented. Table 5.1 presents the parameters and the corresponding parameters on the 

comparative algorithms (PSO, ACO, BAT and WSA-MP), as stated in the methodological 

framework (see Table 3.1). 

 

 

Table 5.1: Algorithm and initial parameters 
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Algorithm Initial parameters 

KSA pa=0.97; % Frequency of bobbing   

zmin=0.2; % perched parameter 

zmax=0.8; % flight parameter 

half-life=0.5; % half-life parameter 

PSO w=1; % Inertia Weight 

c1=2.5; % Personal/cognitive Learning Coefficient 

c2=2.0; % Global/social Learning Coefficient 

ACO α=1; % Pheromone Exponential Weight 

ρ=0.05; % Evaporation Rate 

BAT α=0.9; % constant parameter 

γ=0.9; % constant parameter 

β=1; % random vector which is drawn from a 

uniform distribution [0, 1] 

A=1; % Loudness (constant or decreasing) 

r=1; % Pulse rate (constant or decreasing) 

WSA-MP v=1; % radius of the visual range 

pa=0.25; % escape possibility; how frequently an 

enemy appears 

Tol=1.0e-3; % tolerance 

Velo=0.8; % velocity factor (α) of wolf  

 

Table 5.1 shows the initial parameters of the algorithms. In respect of PSO, the parameters 

c1 and c2 ∈ [0, 2] are called acceleration coefficients, namely the cognitive and social 

parameter, respectively (Alatas and Akin 2008). These parameters control how far a 

particle will move in a single iteration. As default values, Kennedy and Eberhart (1995) 

propose c1 =c2 =2. Recent work has suggested that it might be better to choose a larger 

cognitive parameter c1 (Alatas and Akin 2008) to allow adequate learning. On this basis, 

the personal/cognitive learning coefficient parameter was changed from 1.5 to 2.5. A 

larger inertia weight w achieves the global exploration, and a smaller inertia weight tends 

to facilitate the local exploration to fine-tune the current search area (Shi and Eberhart 

1998). Therefore, the inertia weight w is critical for the PSO’s convergence behavior. A 

suitable value for the inertia weight usually provides balance between global and local 

exploration abilities and consequently results in a better optimum solution. The initial 

weight was set to 1, as suggested by Kennedy and Eberhart (1995). 
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The parameter used in WSA-MP were set as indicated by Yamany, Emary and Hassanien 

(2014) to guarantee best performance results. Also, the initial parameters on ACO were 

experimentally tested by the authors of the algorithms as the parameters that guarantee 

best performance. With reference to Yang (2010), the parameters α and γ in the Bat 

algorithm were set to 0.9, and β was set to 1.  

 

In selecting a dataset to test the proposed model, there were two important considerations. 

First, the dataset must have a characteristic of frequently changed numeric attributes. 

Second, each numeric attribute dataset could have frequently changed time dimensions. 

In this context, each row element that represents an attribute has several multiples of 

numeric attributes and the respective different time dimensions. Based on the two 

characteristics, the stock market data was chosen from the classic “UCI machine learning 

repository” (Lichman 2013) as the appropriate dataset for testing the proposed model. The 

test dataset is a 10x3000 matrix, where 10 represents elements of the row matrix (that is, 

the stock items) and 3000 represents the numeric attributes of the column matrix. All 

simple and complex rules are applied on the test dataset. In the testing phase, the rules are 

considered to be valid if all of their itemsets occur in the time-window of length ωt 

(Railean et al. 2013). 

 

During the experimental setup, initial parameters for each algorithm were set as presented 

in Table 5.1. The stock market dataset was loaded and transposed, and each algorithm was 

executed independently on the dataset. The transposed dataset helps transform the original 

column attributes into row attributes with corresponding numeric values. In order to refine 

output results to obtain the minimum value, 100 iterations were performed. The minimum 

output value was used as the initial minimum support threshold to mine rules on frequently 

changed stock items. Thus, the stock item is considered frequently changed if the support 

is above the minimum support threshold. Although different user time preferences 

(measured in seconds) and MCP confidence (that is, MCPconf) could be set, a user time 
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preference was set as 0.7 seconds, and a minimal MCP confidence value was set as 0.9. 

Additionally, all time intervals are measure in seconds in this chapter. 

 

5.4 Experimental results 

The proposed model generated a minimum support threshold value of 1.4823e-14, and 

based on the minimum support threshold, the following association rules were generated 

and tabulated: 

 

Table 5.2: Association rules for stock market dataset using KSA 

Rule # MCPconf 

value 

Time 

interval in 

seconds 

# of rules 

extracted 

Example of rules extracted 

1 90.3246 0.15054 36 X1,X2,X3,X4,X5,X6,X8→ 

X7,X10 

2 99.1485 0.50753 1 X4→X1,X2,X3,X5,X6,X7, 

X9,X10 

3 94.5423 0.50753 26 X1,X4→X2,X3,X5,X7,X8, 

X9X10 

4 95.4177 0.50753 7 X1,X8→X2,X3,X4,X5,X7, 

X9, X10 

5 96.2931 0.50753 3 X2,X4→X1,X3,X5,X7,X8, 

X9, X10 

6 93.5961 0.5067 1 X2→X1,X3,X4,X9 

7 95.4094 0.5067 2 X1, X2→X3,X5,X8 

8 94.5341 0.5067 8 X1,X5→X2,X3,X8 

9 95.8549 0.47927 35 X1,X2 ,X4→X3,X5,X6,X7 

10 91.6942 0.22924 21 X1,X2,X3,X4, X6→X5,X8 

11 98.6783 0.10964 2 X9→X1,X2,X3,X4,X5,X6 

12 98.6607 0.10962 2 X1→X2,X9 

13 98.6607 0.10962 2 X9→X1,X2 

14 99.0389 0.058258 1 X4→X1,X3 

15 94.4377 0.0087442 2 X1,X3→X10 

16 92.7195 0.18544 28 X1,X2,X3,X4,X5,X6→X7,X9 

Mean 95.5632 0.31191   
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Table 5.2 shows the results obtained from the proposed model. Frequently changed stock 

items are anonymously represented by xi...xn, where n represents the number of stock 

items. A total number of 177 complex rules were extracted, which are of the form 

X1X2...Xn−1 → Xn  (Railean et al. 2013) and also of the form Xn →X1X2...Xn−1. There were 

no simple rules extracted from the stock dataset. 

 

For instance, at rule 1, with a user time interval of 0.1505 seconds and am MCPconf of 

90.3246%, a total of 36 different complex rules were extracted. Although all the complex 

rules were not shown, the example presented in Table 5.2 is an instance of the rule 

extracted, that is, X1,X2,X3,X4,X5,X6,X8→X7,X10 where X1,X2,X3,X4,X5,X6,X8 

represents the antecedent part of the rule, and X7,X10 represents the consequent part of 

the rule. Thus, if X1,X2,X3,X4,X5,X6,X8 are frequently changed stock items, then this 

leads to X7,X10 stock items that are also frequently changed. The MCPconf of 90.3246% 

helps select a high percentage of frequently changed rules.   

 

From Table 5.2, it is observed that the mean for the MCPconf value is 95.5632%, and the 

mean of time is 0.31191 seconds. This indicates that the KSA extracted an average of 

95.5% of rules within a 0.31-second time interval. 

 

Table 5.3 shows the experimental results obtained using the ACO, using the same user 

time preference of 0.7 seconds and MCPconf value to 0.9. The minimum support value 

obtained was 1.8168e-13. Based on the minimum support, the following association rules 

on frequently changed items were extracted, as shown in Table 5.3.  
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Table 5.3: Association rules for stock market dataset using ACO 

Rule # MCPconf 

value 

Time 

interval in 

seconds 

# of rules 

extracted 

Example of rules extracted 

1 92.9081 0.50565 25 X1,X2,X3,X4,X5,X6→X7,X9 

2 93.4948 0.49641 1 X2→X1,X3,X4, X9 

3 95.3061 0.49641 2 X1,X2→X3,X5,X8 

4 94.4317 0.49641 8 X1,X3→X2,X5,X8 

5 95.3061     0.49641 2 X1,X8→X2,X3,X5 

6 98.6503 0.49602 2 X1→X2, X9 

7 99.0285 0.49602 1 X4→X1,X3 

8 94.4278 0.49602 2 X1,X3→X10 

9 95.3022 0.49602 1 X1,X10→X3 

10 94.4278 0.49602 1 X3,X10→X1 

11 95.8196 0.49521 35 X1,X2,X3→X4,X5,X6 ,X7 

12 91.6604 0.49521 21 X1,X2,X3,X4,X5→X6,X8        

13 98.642 0.49521 2 X1→X2, X3,X4,X5,X6, X9 

Mean 95.3389 0.49669   

 

A total of 100 complex rules were extracted from the stock dataset. For instance, at rule 

11 with an MCPconf of 95.8196%, thirty-five complex rules were extracted. An example 

of such a rule is X1,X2,X3→X4,X5,X6,X7, where X1,X2,X3 is the antecedent part of the 

rule, while X4,X5,X6,X7 represents the consequent part of the rule. Thus, X1,X2,X3 are 

frequently changed stock items in a sequence that lead to X4,X5,X6,X7 stock items of 

frequently changed nature. Based on the output results, it was observed that no simple 

rules on frequently changed items were extracted.  

 

From Table 5.3, it is observed that the mean for the MCPconf value is 95.3389%, and the 

mean of time is 0.49669 seconds. This indicates that the ACO algorithm extracted an 

average of 95.3% of rules within a 0.49-second time interval. 

 

Table 5.4 shows the experimental results obtained using the PSO. The same user time 

preference of 0.7 seconds and MCPconf value of 0.9 were used. The minimum support 
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value obtained was 0.048569. Based on the minimum support threshold, the following 

association rules on frequently changed items were extracted, as shown in Table 5.4.  

Table 5.4: Association rules for stock market dataset using PSO 

Rule # MCPconf 

value 

Time interval 

in seconds 

# of rules 

extracted 

Example of rules extracted 

1 99.2603 0.50355 1 X7→X1,X2,X3,X4,X5,X6,X8 

2 90.5613 0.50204 1 X4→ X1  

3 94.9438 0.49673 1 X2→X1,X3 

4 90.5107 0.49673 1 X4→X1,X2 

5 90.5103 0.49668 1 X4→X1,X2,X3,X5,X6 

Mean 93.1573 0.49915   

 

As shown in Table 5.4, a total of five rules, both simple and complex, were extracted from 

the stock dataset as having interesting patterns upon which a user can take an action. For 

instance, a user may decide to invest in stock item X4 that certainly leads to stock item 

X1. From Table 5.4, it is observed that one simple rule was extracted, while four complex 

rules were extracted during the iteration. For instance, at rule 2 with MCPconf of 

90.5613%, a simple rule was extracted at time 0.5020 seconds as X4→X1, where X4 is the 

antecedent part of the rule, and X1 represents the consequent part of the rule. Thus, a 

frequently changed stock X4 leads to X1 stock items. At rule 4, a complex rule was 

extracted as X4→X1,X2, thus a frequently changed stock X4 leads to a sequence of X1,X2 

frequently changed stock items.  

 

From Table 5.4, it is observed that the mean for the MCPconf value is 93.1573% and the 

mean of time is 0.49915 seconds. This indicates that the PSO algorithm extracted an 

average of 93.1% of rules within a 0.49-second time interval. 

 

Table 5.5 shows the experimental results obtained using the Bat algorithm. The same user 

time preference of 0.7 seconds and MCPconf value of 0.9 were used. The minimum 

support value obtained was 3.0109e-07. Based on the minimum support, the following 

association rules on frequently changed items were extracted, as shown in Table 5.5.  
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Table 5.5: Association rules for stock market dataset using BAT 

Rule # MCPconf 

value 

Time interval in 

seconds 

# of rules 

extracted 

Example of rules extracted 

1 90.5716 0.50311 1 X4→X1 

2 99.2277 0.50042 1 X7→X1,X2,X3,X4,X5,X6,X8 

3 94.9603 0.49837 1 X2→X1,X3 

4 90.5264 0.49837 1 X4→X1,X2 

5 90.526 0.49833 1 X4→X1,X2,X3,X5,X6     

Mean 93.1624 0.49972   

 

As observed from Table 5.5, a total of five rules, both simple and complex, were extracted 

from the stock dataset as having interesting patterns upon which a user can take an action 

within a time frame. It is observed that one simple rule was extracted, while four complex 

rules were extracted. For instance, at rule 2 with an MCPconf of 99.2277%, a complex 

rule was extracted at time 0.50042 seconds as X7→X1,X2,X3,X4,X5,X6 X8, where X7 is 

the antecedent part of the rule, and X1,X2,X3,X4,X5,X6,X8 represents the consequent part 

of the rule. Thus, a frequently changed stock X7 leads to X1,X2,X3,X4,X5,X6,X8 stock 

items in sequence. At rule 1, a simple rule was extracted as X4→X1, thus a frequently 

changed stock X4 leads to frequently changed stock item X1.  

 

From Table 5.5, it is observed that the mean for the MCPconf value is 93.1624% and the 

mean of time is 0.49972 seconds. This indicates that the Bat algorithm extracted an 

average of 93.1% of rules within a 0.49-second time interval. 

 

The experimental results obtained using WSA-MP are shown in Table 5.6. A user time 

preference of 0.7 seconds and MCPconf value of 0.9 were used. The minimum support 

value obtained was 6.7486e-07. Based on the minimum support, the following association 

rules on frequently changed items were extracted, as presented in Table 5.6. 
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Table 5.6: Association rules for stock market dataset using WSA-MP 

Rule # MCPconf 

value 

Time interval 

in seconds 

# of rules 

extracted 

Example of rules extracted 

1 93.5951 0.5066 1 X2→X1,X3,X4,X9 

2 95.4084 0.5066 2 X1,X2→X3,X5,X8 

3 94.5331 0.5066 8 X1,X3→X2,X5,X8 

4 95.925 0.50566 35 X1,X2,X3→X4,X5,X6,X7 

5 91.7612 0.50566 21 X1,X2,X3,X4,X5→X6,X8 

6 98.7505 0.50566 2 X1→X2,X3,X4,X5,X6,X9 

7 92.8651 0.50124 25 X1,X2,X3,X4,X5,X6→X7,X9 

8 98.6756 0.49844 2 X1→X2,X9 

9 99.0538 0.49844 1 X4→X1,X3 

10 95.3265 0.49844 1 X1→X3,X10 

11 94.452 0.49844 2 X3,X10→X1 

Mean 95.486 0.50289   

 

From Table 5.6, a total of 100 complex rules were extracted from the stock dataset. 

However, no simple rule was extracted. For instance, rule 5 has an MCPconf value of 

95.925% with thirty-five complex rules that were extracted from the dataset. An example 

of such a rule is X1,X2,X3→X4,X5,X6,X7, where X1,X2,X3 is the antecedent part of the 

rule while X4,X5,X6,X7 represents the consequent part of the rule. Thus, X1,X2,X3, which 

frequently changes in sequence, leads to X4,X5,X6,X7 frequently changed stock items. 

 

From Table 5.6, it is observed that the mean for the MCPconf value is 95.486% and the 

mean of time is 0.50289 seconds. This indicates that the WSA-MP algorithm extracted an 

average of 95.4% of rules within a 0.50-second time interval. 

 

Table 5.7 shows the algorithms and summary of the number of rules, both complex and 

simple, extracted during the experiment. 
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Table 5.7: Algorithms and number of rules extracted 

Algorithm Best minimum 

value 

#of complex 

rules extracted 

# of simple rules 

extracted 

KSA 1.4823e-14 177 0 

ACO 1.8168e-13 100 0 

PSO 0.048569 4 1 

BAT 3.0109e-07 4 1 

WSA-MP 6.7486e-07 100 0 

 

Table 5.7 shows the number of complex and simple rules extracted after each iteration 

during the experiment. KSA, ACO and WSA-MP extracted complex rules of the form 

V1V2...Vn−1 → Vn (Railean, Lenca, Moga and Borda 2013), and no simple rules of the form 

Vi → Vn were extracted from the ten stock items in the original dataset. PSO and BAT 

extracted both simple rules of the form Vi → Vn and complex rules of the form V1V2...Vn−1 

→ Vn (Railean et al. 2013) from the ten stock items. Also, KSA has a total of 177 rules, 

both ACO and WSA-MP have 100 rules, and both PSO and BAT have 5 rules. It is 

observed that KSA has the highest number of rules extracted, which could be attributed 

to its best minimum value (minimum support threshold). Based on Table 5.7, it is observed 

that PSO has the highest minimum value (0.048569), while KSA has the lowest minimum 

value (1.48E-14). The significance of the minimum support threshold is that it helps with 

mining close interesting patterns. Thus, it could be inferred that when the minimum 

support threshold is smaller, it is possible to extract many complex rules. The nature of 

each algorithm (in terms of the behavior of the algorithm, as explained in Chapter Two, 

and parameters) could have contributed to the best minimum values that were obtained. 

The proposed algorithm is better in some aspects because it improves on the weaknesses 

of existing bio-inspired algorithms (see Appendix 2) so as to help improve on the 

performance of big data algorithms. In formulating this algorithm, the researcher 

improved on the quality of machine learning algorithms, which was identified by Tsai et 

al. (2015) as an issue of big data analysis platforms.  
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5.5 Conclusion 

The proposed KSA was used for association rule mining of frequently changed items with 

numeric attributes and a time dimension for stock market data. The proposed search 

algorithm (that is KSA) has the best minimum value (minimum support threshold) 

compared with the comparative algorithms (PSO, ACO, BAT, WSA-MP). The best 

minimum value obtained with KSA is attributed to the behavior and characteristics 

exhibited by kestrels, which the comparative algorithms could not exhibit. In terms of the 

number of rules discovered, the proposed KSA algorithm disclosed a high number of 

complex rules without any simple rules at an MCPconf value of 0.9 and time window of 

0.7 seconds. Although the proposed model (KSA and closeness preference) generated 

complex rules, a limited amount of time was used, and this makes the proposed model the 

preferred algorithm for frequently changed items, as evident from the experimental 

results. 

 

In addition, the experimental results showed that KSA had the best minimum value of 

1.48E-14, and an average of 95.56% of rules were extracted at a mean time interval of 0.3 

seconds. In comparison, ACO had a minimum value of 1.82E-13 and extracted an average 

of 95.33% rules at a mean time interval of 0.4 seconds; PSO had a minimum value of 

0.048569 with an average of 93.1573% rules extracted at a mean time interval of 0.4 

seconds; BAT had a minimum value of 3.01E-07, and an average of 93.1624% rules were 

extracted at a mean time interval of 0.4; and WSA-MP had a minimum value of 6.75E-07 

and extracted on average 95.486% of rules at a mean time interval of 0.5 seconds. Based 

on the mean MCPconf value and mean time interval, KSA analyzed data on frequently 

changed items and discovered a high number of patterns in the shortest possible time 

interval. What makes the proposed KSA different from other bio-inspired search-based 

methods is the use of random encircling and close user preferences model for mining 

frequently changed items. Based on the experimental results, it could be concluded that 

KSA has the best minimum value of 1.4823e-14, in which 95.56% of rules were extracted 

at a mean of time of 0.31 seconds, which is the best among the comparative algorithms.  
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5.6 Summary 

In summary, the chapter discussed the experimental setup suitable to implement the 

proposed computational model (based on KSA and closeness preference) on frequently 

changed items. The chapter discussed how the proposed computation model, which was 

mathematically formulated and expressed as a search algorithm, was implemented and 

tested. The algorithmic structure was implemented as a search algorithm that helped find 

frequently changed rules.  

 

The next chapter discusses how to implement the computational model for visualization of 

data via dung beetle behavior of moving dung as a ball rolled from one location to another. 

The points of movement of the balls are referred to as data points, which are then plotted 

on a data grid.  
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CHAPTER 6: DEVELOPING, TESTING AND EVALUATING 

DATA VISUALIZATION BASED ON DUNG BEETLE 

ALGORITHM 

6.1 Introduction 

This chapter is the third phase of the proposed model, which seeks to visualize frequently 

changed data from the big data environment. The big data environment is characterized 

as having large datasets that are dynamic and can change within a second. However, when 

large amounts of information from datasets are available, it makes it difficult for users to 

visualize interesting patterns. Therefore, modern approaches to visualization could assist 

users by reducing the effort needed, considering the different user preferences in respect 

of time that may be required (Bikakis 2018). As time taken to view data is significant, 

there is a motivation to find new ways to reduce computational time during data 

visualization. The present approach is inspired by the behavior of animals, particularly 

dung beetles. The significance of a bio-inspired behavior, such as dung beetle behavior, 

for big data visualization is the ability to navigate and perform path integration with 

minimal computational power. The dung beetle behavior, when expressed as an algorithm, 

can find the best possible approach to visualize discrete data using minimal computational 

power, which is suitable when data coming from different sources have to be visualized 

quickly with less computational time. 

 

Basic mathematical formulations were expressed and translated into algorithmic structure 

to depict the behavior of dung beetles and were then applied to help visualize frequently 

changed data in two-dimensional view to aid understanding. The general outline in section 

3.5 was followed to model an algorithm for data visualization in a two-dimensional graph, 

as indicated in phase three of the methodological framework in Table 3.1. 
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6.2 Data visualization 

Data visualization presents data in pictorial or graphical format and enables the display of 

interesting patterns for decision-making activities (Bikakis 2018). Usually, data a 

visualization tool (that is, software or an algorithm) is used to generate the graphical 

format. The basic mathematical expression was used to depict the dung beetle behavior 

and display interesting patterns in a graphical format. In creating the visual pattern, the 

self-adapting basic rules that were formulated to depict the dynamic behavior of dung 

beetles were applied to find an optimal solution to create a visual pattern of data points on 

a grid. The algorithm on the basic rules formulation is expressed as follows:  

Objective function f(x), x=(x1,x2,..xd)
T   

Initialization of parameters;  

Population of dung beetle xi(i=1,2,..,k);                 

Choose a random “real Home” 

WHILE ( t < stopping criteria not met) 

   FOR i=1: k //for each dung beetle in the population 

       Roll ball 

       Perform a dance 

       Integrate path 

       Evaluate position within external reference point 

       Compare positions to find minimum 

          IF position1 <position2 

           Swap position1 with position2 

          END IF  

    END FOR 

Update external reference point 

Check stopping criteria 

END WHILE 
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6.3 Evaluation of visualization technique 

In line with Dull and Tegarden’s (1999) and Risden and Czerwinski’s (2000) approach to 

measuring effectiveness of visualization, an evaluation technique was applied in terms of 

computational time to complete a visualization task, and the quality of the task’s optimal 

value was considered in terms of the optimal solution from the proposed bio-inspired 

visualization algorithm and the comparative visualization algorithms, namely the bee 

algorithm and ACO for data visualization. As explained in the literature review, bees are 

able to perform a dance in order to make a decision to choose their food source and revisit 

their food source for further exploration (Karaboga 2005). This self-organizing behavior 

of bees motivated the use of the bee algorithm for data visualization in this aspect of the 

thesis. Additionally, ACO was adopted as visualization method because of its ability to 

communicate the presence of a food source using its pheromone substance (Stützle and 

Dorigo 2002). This pheromone substance enables ants to converge and exploit the food 

source. Ants are also well adapted to reinforce the pheromone trail so that other ants can 

follow it. The unique behaviors of ants and bees were the reason for choosing the ant and 

bee algorithms as comparative algorithms for data visualization, instead of PSO, Firefly 

and WSA-MP.        

6.4 Experimental setup 

The algorithm for the proposed DBA was implemented in MATLAB and tested on a stock 

market dataset. The basic parameters for the DBA is defined as follows: error ɛ is 0.05, 

and 𝛽𝑚 represents motion cues and is set to 0.2. The reason for the error parameter of 0.05 

is to allow 95% accuracy in selecting the best path and a 5% chance of choosing an 

incorrect path that may lead to an “imaginary home”. The reason for the 0.2 motion cue 

(or 20%) is the fact that other factors (e.g. hills and other impediments that can lead dung 

beetles to getting stuck in one place) in the environment (that accounts for 80%) may 

obscure the view of dung beetles when moving dung from one location to another.  
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6.5 Experimental results 

The experiment was conducted in two stages: Firstly, association rules generated from 

Chapter 5  on stock market data were used with an initial modified closeness preference 

of support-confidence (MCPconf) (also referred to as modified closeness preference 

confidence) value of 0.9 and user time preference of 0.7. The reason for using a value of 

0.9 is to extract high confidence association rules between 90% and 100% and within a 

time interval of 0 to 0.7 seconds. Secondly, DBA was applied to create graphical displays 

of results on MCPconf values. The results of association rules from Chapter 5 were viewed 

using the proposed DBA for data visualization and compared with data visualization 

algorithms such as the bee algorithm and ACO for data visualization. The results are 

presented in three parts: Firstly, the use of DBA to visualize data mining results from bio-

inspired algorithms such as KSA, ACO, PSO, BAT and WSA-MP; secondly, the use of 

the bee algorithm to visualize data mining results from KSA, ACO, PSO, BAT and WSA-

MP; and thirdly, the use of ACO for data visualization to view data mining results from 

KSA, ACO, PSO, BAT and WSA-MP. The results on visualization are tabulated and 

presented using graphs (where the x-axis represents the iteration and the y-axis represents 

either best computational cost or MCPconf value). Where appropriate, a distinction is 

made on what the y-axis represents due to different graphs that were used. 

 

6.5.1 Visualization using DBA 

The first part involved the use of DBA for visualization of association rule mining results 

from KSA, ACO, PSO, BAT and WSA-MP. Table 6.1 shows the MCPconf values that 

were generated from the association rules as follows: 

 

Table 6.1: MCPconf values from KSA 

Rule # MCPconf  value (%) 

1 90.3246 

2 99.1485 

3 94.5423 

4 95.4177 
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5 96.2931 

6 93.5961 

7 95.4094 

8 94.5341 

9 95.8549 

10 91.6942 

11 98.6783 

12 98.6607 

13 98.6607 

14 99.0389 

15 94.4377 

16 92.7195 

 

It is observed from Table 6.1 that sixteen association rules were generated within the 

MCPconf value of 0.9. Based on Table 6.1, the nature of the graphical display using DBA 

is as follows (where the y–axis represents the best computational cost and the x-axis 

represents the iteration): 

 

Figure 6.1: Dung beetle display of best cost on path traversed by KSA 

 

Figure 6.1 shows a display of the computational cost in each iteration towards an optimal 

solution. The path descends gradually from the start of the iterations, although there are 

steep slopes along the path. The algorithm converges to an optimal value of 0.00011665 

with an elapsed time of 0.401061 seconds. The MCPconf values are plotted on the y-axis 

of the data grid in Figure 6.2 as follows: 
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Figure 6.2: Dung beetle display on MCPconf value for KSA 

Figure 6.2 shows the graphical view created using DBA from the MCPconf values in 

Table 6.1. The lowest MCPconf value was 90.3246%, while the highest was 99.1485%.  

 

Table 6.2 shows the MCPconf values that were generated using ACO to generate mining 

association rules. These are tabulated as follows: 

 

Table 6.2: MCPconf values from ACO 

Rule # MCPconf value (%) 

1 92.9081 

2 93.4948 

3 95.3061 

4 94.4317 

5 95.3061 

6 98.6503 

7 99.0285 

8 94.4278 

9 95.3022 

10 94.4278 

11 95.8196 

12 91.6604        

13 98.6420        

 

It is observed from Table 6.2 that thirteen association rules were generated within the 

MCPconf value of 0.9. Based on Table 6.2, the nature of the graphical display using DBA 

is as follows (where the y–axis represents the best computational cost and the x-axis 

represents the iteration): 
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Figure 6.3: Dung beetle display of best cost on path traversed by ACO 

Figure 6.3 shows the display of the best computational cost in each iteration towards an 

optimal solution. The path descends gradually from the start of iteration, maintains a steep 

slope and maintains a constant best cost between the 40th and 60th iterations before 

converging to an optimal value of 7.0315e-05 at an elapsed time of 0.485009 seconds. 

 

Figure 6.4: Dung beetle display of MCPconf value for ACO 

Figure 6.4 shows the graphical view created by DBA on the MCPconf values generated 

for ACO during each iteration. The lowest MCPconf value was 91.6604%, while the 

highest was 99.0285%. 

Table 6.3 shows the MCPconf values that were generated using PSO to mine association 

rules. These are tabulated as follows: 

 

Table 6.3: MCPconf values from PSO 
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Rule # MCPconf value (%) 

1 99.2603 

2 90.5613 

3 94.9438 

4 90.5107 

5 90.5103 

 

It is observed from Table 6.3 that five association rules were generated within the 

MCPconf value of 0.9. Based on Table 6.3, the nature of the graphical display using DBA 

is as follows (where the y–axis represents the best cost and the x-axis represents the 

iteration): 

 

Figure 6.5: Dung beetle display best cost on path traversed by PSO 

Figure 6.5 shows the display of the best computation cost (on the y-axis) for DBA in each 

iteration (on the x-axis) towards an optimal solution. The path descends gradually from 

the start of the iterations to the 20th iteration and then maintains a steep slope. The path 

also maintains a constant best cost (in terms of minimal value) before finally converging 

to an optimal value of 0.00016533 at an elapse time of 0.493069 seconds. 
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Figure 6.6: Dung beetle display on MCPconf value for PSO 

Figure 6.6 shows the graphical view created by DBA on the MCPconf values generated 

for PSO during each iteration. The lowest MCPconf value was 90.5103%, while the 

highest was 99.2603%. 

 

Table 6.4 shows the MCPconf values that were generated using BAT to mine association 

rules. These are tabulated as follows: 

 

Table 6.4: MCPconf values from BAT 

Rule # MCPconf value (%) 

1 90.5716 

2 99.2277 

3 94.9603 

4 90.5264 

5 90.5260 

 

It is observed from Table 6.4 that five association rules were generated within the 

MCPconf value of 0.9. Based on Table 6.4, the nature of the graphical display using DBA 

is as follows (where the y–axis represents the best computational cost and the x-axis 

represents the iteration): 

 

Figure 6.7: Dung beetle display best cost on path traversed by BAT 
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Figure 6.7 shows the display of the best computational cost (on the y-axis) for DBA in 

each iteration (on the x-axis) towards an optimal solution. The path descends gradually 

from the start of iteration, maintains a steep slope towards the 80th iteration, and maintains 

a constant best cost on the curve before converging to an optimal value of 0.00014318 at 

an elapse time of 0.589264 seconds. 

 

Figure 6.8: Dung beetle display of MCPconf value for BA 

Figure 6.8 shows the graphical view created by DBA of the MCPconf values (on the y-

axis), generated for BAT during each iteration interval (on the x-axis). The lowest 

MCPconf value was 90.5260% while the highest was 99.2277%. 

 

Table 6.5 shows the MCPconf values that were generated using WSA-MP to mine 

association rules. These are tabulated as follows: 

 

Table 6.5: MCPconf values from WSA-MP 

Rule # MCPconf value (%) 

1 93.5951 

2 95.4084 

3 94.5331 

4 95.9250 

5 91.7612 

6 98.7505 

7 92.8651 

8 98.6756 

9 99.0538 

10 95.3265 

11 94.4520 
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It is observed from Table 6.5 that eleven association rules were generated within the 

MCPconf value of 0.9. Based on Table 6.5, the nature of the graphical display using DBA 

is as follows (where the y–axis represents the best computational cost and the x-axis 

represents the iteration): 

 

Figure 6.9: Dung beetle display of best cost on path traversed by WSA-MP 

Figure 6.9 shows the display of the best computational cost (on the y-axis) in each iteration 

(on the x-axis) towards an optimal solution. The path descends gradually from the start of 

the iterations, maintains a constant best cost (in terms of minimal value) and converges to 

an optimal value of 9.1295e-05 in an elapsed time of 0.582776 seconds. 

 
Iteration 

Figure 6.10: Dung beetle display of MCPconf value for WSA-MP 

Figure 6.10 shows the graphical view created by DBA on the MCPconf values (on the y-

axis) generated for WSA-MP during each iteration (on the x-axis). The lowest MCPconf 

value was 91.7612%, while the highest was 99.0538%. 
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6.5.2 Visualization using the bee algorithm 

The bee algorithm for data visualization was also used to visualize results of association 

rules that were mined using KSA, ACO, PSO, BAT and WSA-MP. The MCPconf values 

in Table 6.1 were used to avoid repetition. In this sub-section, the x-coordinates of the 

graph represent iterations and the y-coordinates are the best cost. The nature of the 

graphical display using the bee algorithm on KSA is as follows: 

 

Figure 6.11: Bee algorithm display of best cost by KSA 

Figure 6.11 shows the display of the best cost for the bee algorithm in each iteration 

towards an optimal solution. The curve descends gradually from the start of the iterations, 

maintains a constant best cost (in terms of minimal value) between the 60th and 70th 

iterations before converging to an optimal value of 1.0844e-08. Elapsed time is 2.167966 

seconds. 

 

For ACO, the MCPconf values in Table 6.2 were used to avoid repetition. The nature of 

the graphical display using the bee algorithm on ACO results is as follows: 
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Figure 6.12: Bee algorithm display of best cost by ACO 

Figure 6.12 shows the display of the best computational cost for bee algorithm in each 

iteration towards an optimal solution. The curve descends gradually from the start of the 

iterations and converges to an optimal value of 6.1772e-08 at an elapsed time of 2.134924 

seconds.  

 

For PSO, the MCPconf values in Table 6.3 were used to avoid repetition. The nature of 

the graphical display using the bee algorithm on PSO is as follows: 

 

Figure 6.13: Bee algorithm display of best cost by PSO 
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Figure 6.13 shows the display of the best computational cost for the bee algorithm in each 

iteration towards an optimal solution. The curve descends gradually from the start of the 

iterations and converges to an optimal value of 1.2743e-08. Elapsed time is 2.186376 

seconds. 

 

For BAT, the MCPconf values in Table 6.4 were used to avoid repetition. The nature of 

the graphical display using the bee algorithm on BAT is as follows: 

 

Figure 6.14: Bee algorithm display of best cost by BAT 

Figure 6.14 shows the display of the best computational cost for the bee algorithm in each 

iteration towards an optimal solution. The curve descends gradually from the start of the 

iterations and maintains a constant best cost (in terms of minimal value) after the 20th 

iteration to the 40th iteration, until finally converging to an optimal value of 7.1857e-09. 

Elapsed time is 2.309688 seconds. 

 

For WSA-MP, the MCPconf values in Table 6.5 were used to avoid repetition. The nature 

of the graphical display using the bee algorithm on WSA-MP is as follows: 
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Figure 6.15: Bee algorithm display of best cost by WSA-MP 

Figure 6.15 shows the display of the best computational cost for the bee algorithm in each 

iteration towards an optimal solution. The curve descends gradually from the start of the 

iterations and converges to an optimal value of 1.8478e-08. Elapsed time is 2.150612 

seconds. 

 

6.5.3 ACO for data visualization  

Thirdly, ACO for data visualization was used to visualize the results on association rules 

that were mined from KSA, ACO, PSO, BAT and WSA-MP. In this sub-section, the x-

coordinate of a graph represents iterations and the y-coordinate is the best cost. 

 

For KSA, the MCPconf values in Table 6.1 were used to avoid repetition. The nature of 

the graphical display using ACO for data visualization on KSA is as follows: 
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Figure 6.16: ACO algorithm display on best cost by KSA 

Figure 6.16 shows the display of the best computational cost for the ACO algorithm in 

each iteration towards an optimal solution. The nature of the curve is linear or related to a 

straight line. However, the curve converges to an optimal value of 1.1458e-12 at an 

elapsed time of 1.020023 seconds. 

 

For ACO, the MCPconf values in Table 6.2 were used to avoid repetition. The nature of 

the graphical display using ACO for data visualization on ACO for mining results is as 

follows: 

 

Figure 6.17: ACO for visualization display of best cost by ACO from data mining phase 
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Figure 6.17 shows the display of the best computational cost for the ACO algorithm in 

each iteration towards an optimal solution. The nature of the curve is linear but maintains 

a constant best cost towards the 100th iteration before converging to an optimal value of 

1.2667e-12 at an elapsed time of 1.042381 seconds. 

 

For PSO, the MCPconf values in Table 6.3 were used to avoid repetition. The nature of 

the graphical display using ACO for data visualization on PSO mining results is as 

follows: 

 

Figure 6.18: ACO for visualization display of best cost using results on PSO from data mining 

phase 

Figure 6.18 shows the display of the best computational cost for the ACO in each iteration 

towards an optimal solution. The nature of the curve is linear. However, the curve 

converges to an optimal value of 8.9363e-14 with an elapsed time of 0.913326 seconds. 

 

For BAT, the MCPconf values in Table 6.4 were used to avoid repetition. The nature of 

the graphical display using ACO for data visualization on BAT mining results is as 

follows: 
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Figure 6.19: ACO for visualization display of best cost by BAT from data mining phase 

Figure 6.19 shows the display of the best computational cost for the ACO algorithm in 

each iteration towards an optimal solution. The nature of the curve is linear. However, the 

curve converges to an optimal value of 9.2904e-14. Elapsed time is 0.956751 seconds. 

 

For WSA-MP, the MCPconf values in Table 6.5 were used to avoid repetition. The nature 

of the graphical display using ACO for data visualization on WSA-MP mining results is 

as follows: 

 

Figure 6.20: ACO for visualization display of best cost using results of WSA-MP from data 

mining phase 
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Figure 6.20 shows the display of the best computational cost for the ACO algorithm in 

each iteration towards an optimal solution. The nature of the curve is linear. However, the 

curve converges to an optimal value of 7.6804e-13. Elapsed time is 0.958605 seconds.  

 

The nature of curves that were obtained from the bio-inspired data visualization 

algorithms, namely DBA, the bee algorithm and ACO for data visualization, indicates that 

while DBA and the bee algorithm maintained a curved path, ACO for data visualization 

is linear until it converges to a best optimal value. The high best computational cost 

observed at the initial iteration contributed to the nature of the graph in ACO for data 

visualization.  

6.6 Evaluation of data visualization algorithms 

The experimental results that were obtained on the computational time (that is, elapsed 

time) and optimum value (in terms of the best cost) are tabulated in Table 6.6 and Table 

6.7. The computation time is measured in seconds. Table 6.6 shows the tabulated results 

on the optimum value of data visualization algorithms, namely the proposed DBA, the bee 

algorithm and ACO for data visualization. Meanwhile, Table 6.7 shows the computational 

time required by the algorithm to output both optimum results and visualization of data 

mining results on a data grid. The bio-inspired data mining algorithms considered are 

KSA, ACO, PSO, BAT and WSA-MP. 

 

Table 6.6: Summary of optimum values from bio-inspired data visualization algorithms 

 Bio-inspired data visualization algorithms 

Bio-inspired  data 

mining algorithms 

Proposed DBA 

(s) 

Bee algorithm ACO for data 

visualization 

KSA 0.00011665 1.0844e-08 1.1458e-12 

ACO 7.0315e-05 6.1772e-08 1.2667e-12 

PSO 0.00016533 1.2743e-08. 8.9363e-14 

BAT 0.00014318 7.1857e-09 9.2904e-14 

WSA-MP 9.1295e-05 1.8478e-08 7.6804e-13 

Mean 0.00012 2.457E-08 6.7E-13 
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Table 6.6 illustrates the optimal value (in terms of best computational cost) required for 

each algorithm to compute and display the results in a graphical format. It is observed that 

ACO for data visualization has the least optimum values among the bio-inspired data 

visualization algorithms, as evident from each bio-inspired data mining algorithm. It is 

possible that the number of search agents in the ACO for data visualization may have 

contributed to the algorithm’s generating the fewest optimum values, as many parameters 

are tuned in the search space to produce each best optimal value.  

 

Table 6.7: Summary of computation time obtained from bio-inspired data visualization 

algorithms. 

 Bio-inspired data visualization algorithms 

Bio-inspired data 

mining algorithms 

Proposed DBA Bee algorithm ACO for data 

visualization 

KSA 0.401061 2.167966 1.020023 

ACO 0.485009 2.134924 1.042381 

PSO 0.493069 2.186376 0.913326 

BAT 0.589264 2.309688 0.956751 

WSA-MP 0.582776 2.150612 0.958605 

Mean 0.510236 2.189913 0.978217 

 

Table 6.7 illustrates the computational time (measured in seconds) required for each 

algorithm to compute and display results on a grid for users to view. The results shown in 

Table 6.7 indicate that the proposed DBA has the least computational time for each bio-

inspired data mining algorithm. The computational time could be attributed to the 

parameters used in the algorithm. In order to find the mean computational time spent by 

each bio-inspired data visualization algorithm, the mean computational time was 

computed over all five algorithms. The proposed DBA spent 0.510236 seconds, the bee 

algorithm spent 2.189913 seconds, and ACO for data visualization spent 0.978217 

seconds. The mean of the computational time shows that the computational time for ACO 

for data visualization is twice that of DBA, while the computational time for the bee 

algorithm is approximately four times that of DBA. Consequently, these computational 

time results indicate that the proposed DBA spent less computational time compared to 
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the bee algorithm and ACO for data visualization. Figure 6.21 shows a graph of the 

computational time for each bio-inspired data mining algorithm (where the x-coordinate 

represents the comparative bio-inspired algorithms for association rule mining and the y-

coordinate is the computational time measure in seconds with unit intervals of 0.5): 

 

Figure 6.21: Graphical display of computational time for each bio-inspired data mining 

algorithm 

In Figure 6.21, it is observed that the proposed DBA spent the least computational time in 

all the bio-inspired data mining algorithms. This computational time could be attributed 

to the nature of the algorithm in terms of the parameters that were used to enable it to 

converge at optimal solutions. Also, it is observed from Figure 6.21 that the bee algorithm 

has high computational time, which may be due to the nature of the algorithm’s search for 

the best possible parameters in the search space.   

 

6.7 Profile statistics on visualization algorithms 

The profile summary report showed the overall executing of functions underlying the 

behavior of each algorithm for data visualization. The aspect of profiling, which is a step 

in the general outline of procedures (see section 3.5), is explained in the following using 

the function calls, total time and self time. Table 6.8 illustrates the major function calls 

extracted during profiling of the algorithms.   
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Table 6.8 Major function names of the comparative algorithms 

 DBA “Calls” Total time Self time 

f1 DBAApproach>main 1 7.240 2.470 

f2 DBAApproach>Orient 22510 1.087 1.087 

f3 DBAApproach>PerformDance 17500 1.679 0.715 

 Mean 13337 3.33533 1.424 

 

 Bee algorithm    

f1 BeeApproach>main 1 1.901 s 0.724 s 

f2 BeePhase3>Sphere 4010 0.107 s 0.107 s 

f3 BeeApproach>PerformDance 3500 0.412 s 0.166 s 

 Mean 2503.67 0.80667 0.33233 

 

 ACO for visualization algorithm    

f1 ACOApproach>main 1 2.494 s 1.111 s 

f2 ACOPhase3>Sphere 3010 0.152 s 0.074 s 

f3 ACOphase3>RouletteWheelSelection 30000 0.696 s 0.696 s 

 Mean 11003.67 1.114 0.627 

 

Table 6.8 shows the different test functions (namely, function name, call, self time and 

total time) in each comparative visualization algorithm. The DBA, bee and ACO for 

visualization algorithms each have three major functions (one main- function f1 and two 

sub-functions).  

 

In order to ensure a true reflection of the nature of built-in functions that were extracted, 

all built-in functions were considered for analysis. It is observed that when some built-in 

functions were called, the total time was zero seconds, thus making those built-in function 

calls inconsequential in terms of execution time. However, these inconsequential built-in 

functions were taken into consideration so as not to lose track of any function calls made 

during the visualization of results. Table 6.9 shows the results on the built-in function of 

the visualization algorithms. 
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Table 6.9: Major functions, mean of total_time and self_time of comparative algorithms  

 Algorithm  

Number of 

major 

function 

“Calls” 

Sum of 

“Calls” on 

major 

functions 

Mean of 

major 

function 

“Calls” 

Mean of 

major 

function 

“total_time 

(s)” 

Mean of 

major 

function 

“self_time” 

(seconds 

(s)) 

Time 

difference 

(Td= 

(total_time 

- self_time) 

1.  
ACO for 

visualization 
3 33011 11003.67 1.114 0.627 0.487 

2.  Bee  3 7511 2503.67 0.80667 0.33233 0.47434 

3.  DBA  3 40011 13337 3.3353 1.424 1.9113 

 

It is observed from Table 6.9 that ACO for visualization has a time difference of 0.487, 

the bee algorithm has a time difference of 0.47434, and DBA has a time difference of 

1.9113. In terms of number of major function calls, ACO for visualization recorded 33011, 

the bee algorithm recorded 7511 and DBA recorded 40011. The results from Table 6.9 

reveal that ACO for visualization has the smallest time difference of 0.487 seconds to call 

a total of 33011 major functions; the bee algorithm spent 0.47434 seconds to call a total 

of 7511 major functions; and DBA spent 1.9113 seconds to call a total of 40011 major 

function calls.  

 

In order to ensure a true reflection of the nature of built-in functions that were extracted, 

all built-in functions were considered for analysis. Table 6.10 presents the comparative 

algorithms’ built-in functions. 

 

Table 6.10: In-built function calls on the comparative algorithms 

No. Algorithm 

Number of 

in- built 

functions  

Sum of 

built-in 

function 

“Calls” 

Sum  of 

“self_time” 

(s) 

Sum of 

“total_time”

(seconds (s)) 

1.  DBA  22 82559 4.357 3.007 

2.  ACO for visualization 45 896 0.831 1.03 

3.  Bee  45 6596 0.796 1.264 
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It is observed from Table 6.10 that, in terms of number of built-in functions, DBA has 22, 

ACO for visualization has 45 and Bee algorithm has 45. In terms of the sum of built-in 

function “calls”, DBA has 82,559, ACO for visualization has 896 and the bee algorithm 

has 6596. In terms of total time, DBA spent 3.007 seconds, ACO for visualization spent 

1.03 seconds and the bee algorithm spent 1.264 seconds.  

 
Table 6.11: Mean of built-in function calls on the comparative algorithms 

No. Algorithm 

Mean of 

built-in 

function 

“Calls” 

Mean  of 

“self_time” 

(s) 

Mean of 

“total_time 

“(seconds 

(s)) 

Td 

1.  DBA  14290.5 0.198045 0.136682 -0.06136 

2.  ACO  19.91111 0.018467 0.022889 0.004422 

3.  Bee  146.5778 0.017689 0.028089 0.0104 

 

It is observed from Table 6.11 that, although the mean of built-in functions in DBA was 

14290.5, there is a negative time difference (-0.06136 seconds). This suggests that the 

mean of time of built-in functions did not play a role in terms of the performance of DBA. 

In contrast, ACO for visualization has the time difference of 0.004422 seconds, while the 

bee algorithm has a time difference of 0.0104 seconds.   

 

In summary, firstly, DBA recorded a mean optimal value of 0.00012 with a mean 

computational time of 0.510236 seconds. The mean of time difference of the major 

function is 1.9113 seconds, and the mean of built-in function calls is -0.06136 seconds. 

This suggests that DBA spent less computational time on built-in functions and more time 

on major functions. This is possibly due to navigation and orientation at the major function 

in order to get an optimal value. Therefore, it is optimal rather to dance and find the nearly 

optimal value than to call other built-in functions. 

 

Secondly, the bee algorithm recorded a mean optimal value of 2.457E-08 with a mean 

computational time of 2.189913 seconds. The mean of time difference of the major 

functions is 0.47434 seconds, and the mean of built-in function calls is 0.0104 seconds. 
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This suggests that although the bee algorithm gave a mean optimal value that is better than 

DBA, the bee algorithm spent a computational time of 2.189913 seconds, which is 

significantly higher and not suitable for a data visualization algorithm that handles large 

volumes of data. 

 

Thirdly, ACO for data visualization recorded a mean optimal value of 6.7E-13 with a 

mean computational time of 0.978217 seconds. The mean of time difference of the major 

function is 0.487 seconds, and the mean of built-in function calls is 0.004422 seconds. 

This suggests that although the ACO for data visualization algorithm gave a mean optimal 

value that is better than both Bee and DBA, it spent a computational time of 0.978217 

seconds, which make it unsuitable for a data visualization algorithm that handles large 

volumes of data. 

6.8 Conclusion 

The test dataset for the DBA is based on the modified closeness preference support-

confidence (MCPsc or MCPconf) value obtained from the experimental results in 

Chapter 5. The DBA was compared with Bee and ACO for data visualization. In order to 

select the best algorithm, two criteria were used: firstly, the algorithm should have a 

minimum computational time; secondly, the algorithm should have an optimal value. 

However, an algorithm that meets the first criterion is given prominence. The results on 

average computational time (in seconds) showed that DBA had a minimum computational 

time of 0.510 seconds, Bee had a minimum computational time of 2.189 seconds, and 

ACO for data visualization had a minimum computational time of 0.978 seconds. 

Furthermore, the mean optimal value for DBA was 0.000117, for the bee algorithm was 

2.46E-08, and for ACO for data visualization was 6.73E-13. The results indicated that 

DBA used the least computation time while ACO for data visualization had the lowest 

optimal value. Since the study is interested in the algorithm with minimum computational 

time, DBA is considered the preferred algorithm for data visualization when large datasets 

are involved. The results from DBA confirmed the suggestion that dung beetles are known 
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to use minimal computational power for navigation and orientation using celestial 

polarization patterns (Wits University 2013).  

 

6.9 Summary 

In this chapter, mathematical formulations were expressed of the unique characteristics of 

dung beetles (that is, path integration with repulsion and attraction of trace, dance during 

orientation, and ball rolling on straight line) in creating imaginary homes after 

displacement of their food (dung) source. The mathematical formulations were translated 

into an algorithmic structure that searches for the best possible path and displays patterns 

using a simple two-dimensional view. The experimental results suggested that DBA uses 

minimum computation time to visualize data.  

 

The next chapter draws conclusions from the findings and discusses the experimental 

results in line with the research questions that were formulated, as well as concepts that 

were considered in the literature review chapter of this study. The purpose of the next 

chapter is to either confirm or refute propositions that were made by researcher in respect 

of missing value estimation, duplicate text detection, feature selection, association rule 

mining and data visualization of frequently changed items in large datasets.  
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CHAPTER 7: DISCUSSION, CHALLENGES AND 

CONCLUSIONS 

7.1 Introduction 

This chapter concludes the study by stating the research questions (as stated in Chapter 1) 

and giving responses to the questions, and by discussing experimental results, the 

challenges of the proposed computational model, conclusions and recommendations for 

future work.  

 

7.2 Research question  

In this section, an overview is given of the research questions and responses to these 

research questions. 

 

7.2.1 Research question 1:  

Can a largely meta-heuristic/bio-inspired data preprocessing approach be modelled to 

extrapolate missing values, identify and remove duplicate text, and select features in 

subsets? 

 

Response 

Mathematical models based on the characteristics of an animal (the kestrel) can be 

formulated to extrapolate missing values (as shown in section 3.2.1), to identify and 

remove duplicate text (as shown in section 3.2.1.4) and to select features in classification 

of subsets (using the equations as shown in section 3.3).  

 

The general outline of the procedure in section 3.5 was followed during the experiment 

on the data cleansing/preprocessing approach. 
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7.2.2 Research question 2:  

 Can a mathematical expression and subsequent algorithm be formulated based on the 

hunting behavior of the kestrel to discover association rules on frequently changed 

patterns with numeric value and time dimensions?  

 

Response 

A mathematical model can be formulated on the selected hunting behavior of the kestrel. 

The detailed formulation is shown in section 3.2.1 of this thesis.  

 

The general outline in section 3.5 was followed to model an algorithm for the discovery 

of association rules on frequently changed patterns, which include numeric value and time 

dimensions, as indicated in phase two of the methodological framework in Table 3.1. 

 

7.2.3 Research question 3:  

Based on the frequently changed rules, can a bio-inspired algorithm for the visualization 

of these association mining results be modelled? 

 

Response 

A mathematical model can be formulated on the behavior of the dung beetle for 

visualization of frequently changed items with numeric value, with less computational 

time in a two-dimensional graph. The detailed formulation is shown in section 3.4 of this 

thesis. Additionally, the general outline in section 3.5 was followed to model an algorithm 

for KSA and DBA, as indicated in the methodological framework in Table 3.1. 

 

7.2.4 Research question 4: 

Can a model and algorithmic structure be empirically validated on a benchmark dataset 

and evaluated against comparative meta-heuristic algorithms? 

 

Response 
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The model and algorithmic structure can be empirically validated on a benchmark dataset 

and be evaluated against comparative meta-heuristic algorithms (shown in Table 3.1). The 

detailed validation and evaluation were shown in Chapters 4, 5 and 6 of this thesis. 

 

7.3 Discussion of experimental results 

The experimental results are discussed below in line with the research questions and 

methodological framework (see Table 3.1). The experimental results are used to evaluate 

the phase-based methodological framework.   

 

7.3.1 Discussion of experimental results on extrapolating missing values 

The proposed KSA for extrapolating missing values, when tested on a synthetic dataset 

with different dimensions/scales with multiple missing values at random, demonstrated 

uniqueness in terms of minimal value over the comparative meta-heuristic algorithms, 

namely BAT, WSA-MP and Firefly. The WSA-MP had the best minimum value in all six 

dimensions/scales of the dataset that was used, while the proposed KSA outperformed 

both BAT and Firefly in all six dimensions/scales of the dataset. The concept of parameter 

tuning, which has similarly been used in the maximum likelihood method for estimating 

missing values, helps in selecting a set of parameters or values that provides the best value 

to estimate missing values at random. In other words, parameter tuning provides an 

approximate parameter that becomes closer to the missing value (Zhao, MacKinnon and 

Gallup 2005) when there is very limited knowledge about the optimal solution (Luke 

2015). Thus, the results from the proposed KSA point to the fact that there was limited 

knowledge on the nature of the proposed algorithm to adapt to different search problem 

domains. Since the proposed KSA could not perform better than WSA-MP, the idea of 

parameter tuning was applied to fine-tune the output results in subsequent phases of the 

proposed model.  

 

Although the proposed KSA could not perform as expected for data imputation, a study 
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was further conducted to examine the nature of the major function calls and built-in 

function calls in each algorithm. The concept of profiling (Sorensen et al. 2012) (that is, a 

function in MATLAB toolbox) was applied to extract the time of major function calls and 

inbuilt function calls for further tests. A statistical test was conducted on the major 

function calls and built-in function calls. The reason for this was to statistically test 

whether time of calling a function could change the performance of each function call in 

each algorithm. In order to achieve this, the Wilcoxon test was conducted to help rank 

each meta-heuristic algorithm, namely KSA, BAT, WSA-MP and Firefly, in terms of the 

major function calls and built-in function calls. 

 

The results ranked WSA-MP first, followed by KSA, which was ranked second in terms 

of the built-in function calls. In terms of the major function calls only, the results ranked 

all meta-heuristic algorithms equally. The results of the Wilcoxon test showed that the 

total time to call a function in each algorithm did not change the performance of major 

functions. In order words, total time could not result in significant change in performance 

of inbuilt function calls in each meta-heuristic algorithm. A further statistical test was 

conducted using the Friedman test to check which meta-heuristic algorithm could be used 

as a way to control any possible error if algorithms’ results were compared to each other. 

The results showed that KSA is the best algorithm to use as a control algorithm for 

multiple comparison of output results. This suggests that the combined results control 

(offset) the results from each meta-heuristic algorithm.  

 

The significance of extrapolating a missing value approach to the big data analytics 

framework is that it improves on the quality of data analysis results (Rahm and Do 2000; 

Elmagarmid et al. 2007). Narang’s (2013) description of missing data is, however, 

subjective in the sense that the user can best explain why data was missing. Nonetheless, 

this approach of attaching the missing value to reasons best known to the user (which can 

be either deliberate or not deliberate) can be minimized by using the proposed KSA for 

extrapolating missing values at random in big data. Big data is characterized by large 

https://www.google.co.za/search?biw=1517&bih=692&tbm=bks&q=inauthor:%22Rishi+K.+Narang%22&sa=X&ved=0ahUKEwiq7uC38__NAhXHCcAKHcn4CtkQ9AgIGzAA
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volume; it is likely that since there are many users in big data environments, there could 

be many missing data values that can best be explained by the exponential number of users 

in the real world, which can be minimized using the proposed KSA. 

 

7.3.2 Discussion of experimental results on duplicate text detection 

The Naumann’s (2013) framework provides a simplified process namely identity, 

similarity measure, algorithm used and evaluation. The study focuses on improving 

algorithm used and similarity measure. Two algorithms were evaluated and improved for 

duplicate word detection. The significance of duplicate detection of words/text is that it 

avoids inconsistency (that is, when data items referring to the same object contradict each 

other) in datasets, which might affect the quality of the analysis results (Elmagarmid et al. 

2007). The inconsistency may be further exacerbated when the volume of data is very 

large. Thus, the unique feature of the enhanced algorithms (that is, the Smith-Waterman 

and Jaro-Winkler algorithms) is that, by applying the transitive closure and property of 

equality (symmetry property) to the algorithms, large volumes of data with duplicate 

words/text in a dataset can be identified, while mismatched (misspelt) words can be 

detected. 

 

The experimental results showed that the Smith-Waterman algorithm guarantees accurate 

pairwise word comparison without missing any words in the dataset, while the Jaro-

Winkler algorithm can miss words/text, leading to information loss. The ability of the 

Smith-Waterman algorithm to avoid missing words is considered as the basis for it to have 

been used to develop the BLAST algorithm (Altschul et al. 1990). However, the challenge 

of the BLAST algorithm is that it could not guarantee accurate results on duplicate 

words/text (Shpaer et al. 1996). The advantage of the Smith-Waterman algorithm is that 

when there are no similar words, no matching is done (Altschul et al. 1990). 

 

In the experiment conducted using the heart disease dataset, the enhanced Smith-

Waterman algorithm used a time of 0.055746s, while the enhanced Jaro-Winkler 
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algorithm used a time of 0.140284 seconds to search for duplicate words/text. Thus, the 

enhanced Smith-Waterman algorithm has the lowest computational time to search for 

duplicate words. Altschul et al. (1990) indicate that the challenge with the Smith-

Waterman algorithm is the high computational time in searching for duplicate words. This 

thesis provided an enhanced algorithm that takes into consideration the current 

dispensation of large volumes of data by using the property of transitive closure and the 

symmetry property of equality, which were applied to reduce the computational time for 

detection of duplicate words/text. The enhanced Smith-Waterman algorithm also 

guarantees accurate results irrespective of how large the dataset is. The results on the 

Smith-Waterman algorithm are significant for the big data analytics framework because 

when the velocity (speed of data) of processing information matters, in terms of less time 

to search for duplicate words/text without losing any information being processed, then 

the enhanced Smith-Waterman algorithm can use less computational time and guarantee 

more accurate results than the enhanced Jaro-Winkler algorithm.       

 

7.3.3 Discussion of experimental results on feature selection 

The proposed algorithm was evaluated against comparative bio-inspired algorithms, 

namely PSO, ACO, WSA-MP and BAT. The findings (shown in section 4.4) indicate that 

KSA produces a minimum learning rate in five out of nine datasets. Meanwhile, KSA 

produces the highest classification accuracy in four out of nine datasets. In terms of 

comparison of classification accuracy using the Wilcoxon signed-rank test, the findings 

of the test statistics suggest that there are no statistically significant differences between 

the comparative algorithms and the proposed algorithm. This suggests that KSA could be 

used as an alternative approach to feature selection for a classification problem. Also, it 

suggests that the initial parameters that were chosen in KSA guarantee good solutions that 

are comparable to other meta-heuristic search methods on feature selection. Aside from 

the choice of parameters, it also indicates that the random encircling, half-life of decay, 

frequency of bobbing and imitative behavior of kestrels guarantees good results in high 

volumes of datasets. In all the findings on feature selection, KSA produced the best 
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classification accuracy (in terms of fewer errors) and the least number of features in a 

subset. This confirms the statement that for an algorithm to be considered the best, it 

should have higher classification accuracy and a smaller number of features in a subset 

(Mafarja and Mirjalili 2018). 

 

In summary, the proposed algorithm (KSA) was compared to other bio-inspired 

algorithms such as the wolf, bat and Firefly algorithms. The results of the comparison 

showed that the KSA demonstrated potential uniqueness in its search for optimal values. 

The uniqueness that was demonstrated can be attributed to parameters that were applied 

in fine-tuning the mathematical formulation in order to obtain optimal results. The  results 

from KSA are relevant because when presented with large volumes of data, KSA can 

extrapolate optimal results on numerical data that are considered missing. Statistical tests 

(Wilcoxon signed-rank test) conducted on the test function calls in respect of time showed 

that total time to call functions in the algorithms to extrapolate missing values could not 

result in significant changes in performance. The performance results are significant since 

algorithms written for big data analytics frameworks should not be constrained by time in 

executing a function to extrapolate missing values when speed of extrapolation (that is, 

the velocity characteristic of the big data analytics framework) is necessary. Thus, the 

proposed KSA would be suitable for handling velocity in big data analytic frameworks. 

Longbottom and Bamforth (2013) relate velocity to how fast incoming data is processed 

by algorithms and how quickly results are processed by algorithms. In this context, the 

results from function calls indicated that KSA could be applied since the algorithm is not 

constrained by time. 

 

In order to test the accuracy of results from the proposed algorithm (that is, the veracity 

aspect of big data analytics framework or quality in terms of accuracy (Garcia, Luengo 

and Herrera 2015)), multiple comparison (that is, the Friedman test rank) was performed 

with other bio-inspired algorithms (Wolf, Bat and Firefly algorithms). The reason for 

multiple comparison was to find an algorithm that can be used to control the error rate 
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from the comparative algorithms. The results of the Friedman test ranked KSA as the best 

control algorithm.  

 

The experimental approach, through the use of mathematical formulations, was applied to 

detect duplicate text in data. A health-related dataset with multiples of duplicate text data 

was used to test the computational model for duplicate detection. Two duplicate detection 

techniques, namely the Jaro-Winkler algorithm and the Smith-Waterman algorithm were 

applied. In order to adapt these two algorithms to characteristics of big data analytics 

frameworks (such as the volume characteristic), the researcher wrote a program in 

MATLAB to implement the transitive closure and property of equality (reflexive 

property) to detect duplicate words from a data source. The experimental results showed 

that while the enhanced Smith-Waterman algorithm is accurate at pairwise word 

comparison without missing any words/text, the enhanced Jaro-Winkler algorithm could 

not perform pairwise word comparison on the nth-1 instance (row) if the total number of 

instances (row) was an odd number, resulting in some data loss. The significance of these 

results is that the enhanced Smith-Waterman algorithm could perform accurate pairwise 

comparison when there is a large data volume with multiple duplicate words.  

 

The experimental approach, through the use of mathematical formulations, was also 

applied to select best features and reduce the large volumes of data without losing relevant 

data. The proposed algorithm guaranteed optimal results when tested on high-dimensional 

datasets (bioinformatics dataset).  

 

The researcher developed a data preprocessing model that could be adopted by big data 

analytics frameworks to extrapolate missing values, detect duplicate words/text and select 

relevant features when large volume is needed.  
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7.3.4 Discussion of experimental results on mining association rules  

Vreeken and Tatti (2014) indicate that the use of frequency of items is not a very good 

measure of interestingness because it is subjective in the sense that it relies on users’ 

evaluation of each pattern to disclose interestingness. This is problematic since a user has 

to search exponentially many potentially interesting patterns within predefined criteria 

and report on those patterns (Vreeken and Tatti 2014). Huynh (2010) indicates that action 

can change with time, thus making it tedious to search through large volumes of data. The 

challenge with the current frequency of items framework is that the time in which an action 

has taken place was not considered.   

 

This thesis revealed that time can be included as part of the frequency of items framework 

so as to make provision for changing time dimensions. Although time may change, the 

user should be allowed to focus his/her attention on a particular period of interest by pre-

defining the time interval criteria. After the criteria are defined, the proposed 

computational model searches for patterns within a close time dimension. Interestingly, 

from the experiment using the stock market dataset, the proposed KSA discovered patterns 

with a close time dimension of 0.058258 and 0.0087442. In this regard, Kaytoue, 

Kuznetsov and Napoli (2011) indicate that an item is close if it has the smallest time 

dimension for a set of items (Kaytoue et al. 2011) to occur together. Thus, the best time 

dimension of 0.0087442 produced an interesting pattern (X1, X3 → X10 from the stock 

market dataset), which represents a sequence of actions (where X1, X3 and X10 are 

anonymous stock items).  

 

In respect of time dimensions from other comparative meta-heuristic algorithms such as 

PSO (close time of 0.49668), ACO (close time of 0.49521), BAT (close time of 0.49833) 

and WSA-MP (close time of 0.49844), it is observed that all four meta-heuristic 

algorithms have time dimensions that were higher compared to the time dimension of the 

proposed KSA within a time interval of 0 to 0.7. Thus, time dimensions of the four meta-

heuristic algorithms were not less than the time dimension from the proposed KSA. 
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Further analysis was conducted using the mean of time of each algorithm (as shown in 

section 5.4). The results of the experimental analysis showed that KSA had a mean time 

interval of 0.3, whereas the comparative algorithms, namely ACO, PSO, BAT and WSA-

MP had mean time intervals of 0.4, 0.4, 0.4 and 0.5 respectively. Based on the mean 

MCPconf value and mean of time interval, KSA analyzed data on frequently changed 

items in the shortest possible time interval.  

 

Tseng, Liang and Chu (2006) propose that the use of occurrence of items to measure 

pattern interestingness is insufficient in selecting actionable sequences for an organization 

(see also Yin et al. 2013). The experimental results suggested that including the time 

dimension provides sufficient measure to identify sequences of action that a user could 

take. These sequences of action are represented in terms of the sequence of rules that 

represent a pattern. 

 

Additionally, the optimal value that was generated from the numeric value of the meta-

heuristic algorithms, namely the proposed KSA (optimal value of 1.4823e-14), ACO 

(optimal value of 1.8168e-13), PSO (optimal value of 0.048569), BAT (optimal value of 

3.0109e-07) and WSA-MP (optimal value of 6.7486e-07), showed that the proposed KSA 

had the best optimal value (in terms of minimum MCPconf) with 177 rules (complex 

rules) generated. Moreover, PSO and BAT both generated four complex rules and one 

simple rule, while WSA-MP and ACO both generated 100 complex rules.  The minimum 

MCP support value that was computed from the proposed KSA using the stock market 

dataset accounted for the number of rules that were generated. Thus, the lower the 

MCPsupport value, the higher the possible chance to generate more rules. 

 

Based on the experimental results on the mean time dimension, mean MCPconf and 

optimal value, it could be concluded that KSA had the best minimum value of 1.4823e-

14 in which an average of 95.56% of rules were extracted at a mean of time of 0.31 

seconds, which was the best among the comparative algorithms. 
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In summary, an experimental approach was adopted through the use of mathematical 

formulations to depict the behavior of kestrels. The mathematical expressions were 

translated into an algorithmic structure and tested on actual datasets. During the testing, 

two processes were followed: firstly, KSA was applied to automatically find the best 

minimum support threshold value from the numeric aspect of the dataset; and secondly, 

association rules were mined within the time dimension. The mathematical model was 

adopted from Railean et al. (2013) to address the aspect of time dimension.  

 

The proposed computational model was tested on an actual dataset characterized as having 

volume and velocity, that is, stock market data. The results indicated that KSA had the 

optimal minimum value (minimum support threshold) compared to other meta-heuristic 

algorithms, namely PSO, ACO, BAT and WSA-MP. The optimal minimum value obtained 

with KSA is attributed to the fine-tuned parameters that were applied and the use of 

simplified basic rules applied to discover interesting patterns in the dataset. Additionally, 

the proposed algorithm showed a short time dimension of 0.008 among the comparative 

algorithms. Kaytoue et al. (2011) indicate that an item is close if it has the smallest time 

dimension for a set of items to occur together. The significance is that if the time interval 

is key to determining the best stock market items that had frequently changed, then KSA 

should be the preferred algorithm over ACO, PSO, BAT and WSA-MP. In view of the 

inclusion of the time dimension and numeric value aspects to frequency of item 

frameworks for mining association rules, this study has filled the gap identified in 

literature on the occurrence framework.    

 

7.3.5 Discussion of experimental results on data visualization 

Moere et al. (2006) note that extensive computational time is required for the use of ants 

to perform continuously pairwise localized negotiation of colors, that is, swapping the 

position of one ant with another ant, which relates to swapping one color with another in 

a single cluster and shape size scale negotiation. Keim et al. (1994) indicate that there is 
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a lack of quantitative evidence of measuring the effectiveness of data visualization 

techniques. The quantitative measure uses a dataset and correlation coefficient of two 

dimensions, that is, the mean and variance of the dimensions, size and shape of clusters. 

Marghescu (2008) looks at the effectiveness of visualization techniques and observes that 

visualization is effective when it enables the user to read, understand and interpret the 

visual display easily, accurately, quickly, et cetera. Thus, effectiveness depends not only 

on the graphical design but also on the users’ visual capabilities (Marghescu 2008). The 

limitation of these approaches is that the evaluation is based on only the users’ experience 

and use of the visualization techniques. Card et al. (1999) indicate that effectiveness is the 

capability of a human to view a graphical display and interpret the results faster and 

convey distinctions in a display with fewer errors.  

 

Based on the research by Moere et al. (2006), Keim et al. (1994) and Marghescu (2008), 

the present study used a different approach that is based on the optimal value from the 

visualization techniques (namely DBA, the bee algorithm and ACO for data visualization), 

which provides a quantitative measure on the quality (in terms of minimal value) of 

visualization technique. Additionally, effectiveness of visualization techniques is 

measured in terms of required time to complete a visualization task, in line with the 

statements of Dull and Tegarden (1999) and Risden and Czerwinski (2000). Additionally, 

the reason for proposing the dung beetle is its ability to use minimal computation time for 

navigation and orientation so as to help draw a visual pattern on a data grid. Thus, the 

computational time and optimal value from each meta-heuristic algorithm was used as 

two parameters to evaluate the visualization techniques (the proposed DBA, the bee 

algorithm and ACO for data visualization). The basis for using these two parameters is 

that as rules frequently change, visualization algorithms should use less time to compute 

the near-optimal results and display the outcome to users. The results after the 

implementation of the proposed DBA showed that DBA is effective at visualizing data 

mining results with less computational time, while the quality of near-optimal 

results/solutions could be improved. The significance of the results on effectiveness for 
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big data analytics frameworks is that when limited computation time is required to 

visualize numeric data from large volumes of datasets, then the proposed DBA could be 

adopted in big data management when time taken to view volumes of data is important.  

  

In summary, the experimental approach used a mathematical formulation to depict the 

behavior of dung beetles. The mathematical expression was translated into an algorithmic 

structure, and this helped empirically validate how the algorithm was applied to visualize 

(using two-dimensional graphs) numeric value results from the data mining phase of the 

proposed methodological framework. Additionally, aspects of the comparative meta-

heuristic algorithms (bee algorithm and ACO for data visualization) were enhanced by the 

researcher to enable intake of the actual test dataset. The computational time and optimal 

results that were obtained were the two parameters that were used to help evaluate the 

effectiveness and quality of the data visualization techniques. The analysis results showed 

that DBA was effective at visualizing data mining results, while the quality of the optimum 

solution could be improved. The significance of the results on effectiveness for big data 

analytics frameworks is that when limited computation time is required to visualize 

numeric values in large volumes of datasets, DBA could be applied. Thus, DBA could be 

applied to improve on computational time required to view results in visual formats (that 

is, two-dimensional).  

 

7.4 Challenges of the proposed model 

The key challenge observed during the experiment was the quality of results on data 

visualization from DBA, and this can be enhanced and tested on different real-world 

problems to improve on the quality of results. In addition, the algorithm could be improved 

to help with the visualization of data in three-dimensional format.      

 

Although the datasets used during the experiment were considered to have characteristics 

of big data (such as volume, velocity and value), it is possible that when the proposed 

computational model on feature subset selection is tested on high volumes (such as 
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terabytes) of data, the computational performance may be one of the key challenges due to 

the reliance on a slow machine learning technique and complexity of design.   

 

Although the various approach/algorithms were executed and evaluated at each phase of 

the methodological framework, the entire phase-based framework that is proposed was not 

executed as a whole package on a single dataset that has duplicate text, missing values, 

different features etc. which would test each algorithm in every phase. In view of this, 

evaluating the efficiency of the entire phase-based framework and comparing with other 

frameworks is a challenge because of dissimilarity of framework. 

 

7.5 Conclusion and future work 

This section presents the conclusion in term of the advantages of the proposed model, 

summary of contributions, success of the study and future work. The sub-section starts 

with the conclusion as follows: 

 

7.5.1 Conclusion 

The thesis proposed a computational model to address the challenge of frequently changed 

items with numeric and time dimensions through a three-phase approach. This approached 

applied largely a bio-inspired algorithm to address the gaps in literature on the occurrence 

framework. The novel aspects of the thesis include the basic mathematical formulation on 

the behavior of kestrels, the enhancement of the Smith-Waterman and Jaro-Winkler 

algorithms for big data frameworks, and the use of dung beetle behavior for data 

visualization of frequently changed patterns.  

 

The experimental test conducted to validate the computational model indicates that KSA 

showed promising results that can be implemented in big data frameworks. Again, the 

minimal computation time of DBA also showed promising results for two-dimensional 

visualization of data (that is, numeric values) in big data frameworks. 
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In view of the largely bio-inspired nature of this thesis, the proposed model took into 

consideration the disadvantages of other bio-inspired algorithms (shown in Appendix 2) 

to arrive at the following conclusions on the advantages of the proposed model (KSA):  

 the ability to self-adapt parameter values during random encircling, which was a 

challenge with WSA (as indicated in Appendix 2) 

 the ability to move or switch the search space from exploration to exploitation 

within the right time or user-specified time, which was a challenge with BAT (as 

indicated in Appendix 2) 

 the ability to find both local and global optima because of the exploration and 

exploitation behavior, which hitherto was a challenge with the Firefly algorithm 

(as indicated in Appendix 2) 

 the ease and simplicity of implementation. 

 

These advantages make the proposed algorithm different from other meta-heuristic 

algorithms considered in this study. Additionally, the mathematical formulation of the 

concept of half-life of substances, hitherto an idea in other science disciplines such as 

chemistry, makes the proposed KSA algorithm different from other meta-heuristic 

algorithms. The advantage of half-life is that it gives a lifespan for data items and adds 

interestingness to any data item. 

 

Summary of contributions 

 The researcher developed a bio-inspired algorithm that outperformed the best 

meta-heuristic algorithms considered in this study for missing value extrapolation. 

 The researcher developed an enhanced algorithm that detected duplicate text from 

large data using the Smith-Waterman and Jaro-Winkler algorithms. The property 

of equality was applied to enhance these algorithms to enable more accurate 

duplicate detection from large datasets. 

 The researcher developed a bio-inspired algorithm for a learning parameter in 

selecting relevant features for deep learning networks. This learning parameter is 
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significant in reducing the amount of time needed to make the network more 

feasible. 

 The researcher developed a bio-inspired algorithm (KSA) for mining frequently 

changed patterns with a time and numeric dimension. This algorithm has 

adaptability for varying exploration and exploitation of pattern space.  

 The researcher developed a bio-inspired algorithm for data visualization (DBA) in 

which movement and direction are self-regulated to have either exact or 

approximate paths that offer a full path integration, in contrast to PSO (see 

Appendix 2). This is a light-weight, inexpensive computational visualization 

approach. 

 The uncooperative behavior of kestrels, which is part of swarm intelligence, was 

overcome by focusing on kestrels’ learning through successful imitative behavior. 

This learning was mathematically formulated and implemented to provide the 

other advantage of skill rate and to improve accuracy of data visualization.  

 

Success of the study 

 The mathematical formulations in section 3.3, the proposed algorithms (KSA and 

DBA) and the comparative algorithms were successfully implemented in 

MATLAB and tested on benchmarked datasets, namely a bioinformatics dataset 

and a stock market dataset. 

 

7.5.2 Future work 

The future work on KSA for feature selection in classification is to develop new versions 

of KSA with modifications and enhancements of code. Similarly, aspects of the code of 

DBA for visualization could be modified and enhanced, and applied to different problem 

dimensions of data analysis for possible publication in academic journals. 

 

Furthermore, based on the successful implementation of the proposed computational 

model on data mining, it is recommended that the proposed model (KSA) should be tested 
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on parallel processing environments for the discovery of frequently changed patterns. 

Future work on KSA also requires rigorous comparison of the algorithm using the 

latest/state-of-the-art versions of other techniques on data mining.  

 

Future work also requires the comparison of different frameworks (that is data cleansing, 

data mining and visualization) to identify the efficient framework for big data 

environment. Although, efficiency of framework is significant, it is not the focus of this 

thesis, and this could be explored provided that the proposed phases of the methodological 

framework is similar enough to others for an adequate comparison. Additionally, a 

possible benchmark with a threshold that shows the efficiency of the proposed phase-

based framework compared with other existing frameworks is recommended, once similar 

enough frameworks emerge. Moreover, most big data analytics framework uses Extract 

Transform Load (ETL) which encompassed only part of the proposed framework, notably 

the data cleansing part. Other parts of the proposed framework, such as data mining, and 

visualization could not be part of frameworks and hence, they can not be compared with 

each other. Thus, in future work, when similar frameworks emerges, they can be 

compared. In view of this, evaluating the efficiency of the entire phase-based framework 

with others is outside the scope of this thesis. 

 

Future work also requires the combination of KSA with the Smith-Waterman algorithm 

for duplicate text detection. The reason is that the Smith-Waterman algorithm is able to 

find duplicate text without losing any information, whereas KSA is able to find the best 

parameters in any given search problem space and is easy to implement. Additionally, 

future work requires the application of Naumann’s (2013) framework to identify duplicate 

text from multiple data sources.  

 

Future work also requires the application of KSA to emerging research fields such as fog 

computing to handle data preprocessing and analysis. Basically, fog computing 

framework is an intermediary layer that allow sensor-based devices to connect with cloud 
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computing environment. The objective of fog computing framework is to enable quick 

processing of raw data before being store on cloud environment. The proposed KSA could 

be explored on fog computing framework for data processing of sensor-based devices.  In 

this regard, emerging frameworks on data processing and analysis could consider the use 

of KSA in the design of their framework. 
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Appendix 1: Summary of data mining algorithms, advantages and limitations 

Author Algorithm Mining approach Approach used Advantages Limitations 

Aggarwal 

and Han 

(2014) 

 Apriori-based 

methods 

  A candidate-

generation-and-test 

strategy produces a 

large number of 

candidate sequences 

and also requires more 

database scans (Tu and 

Koh 2010) when there 

are long patterns 

Han, Pei, 

Mortazavi-

Asl, Chen, 

Dayal and 

Hsu (2000) 

 Pattern-growth 

methods 

 Compressed 

database 

structure that 

is smaller 

than original 

dataset 

 

Han, Pei, 

Mortazavi-

Asl, Chen, 

Dayal and 

Hsu (2000) 

FreeSpan Pattern-growth 

methods  

Sequential 

patterns by 

partitioning 

  

Pei, Han, 

Mortazavi-

Asl, Pinto, 

Chen, Dayal 

and Hsu 

(2001) 

PrefixSpan Pattern-growth 

methods  

Pseudo-

projection 

technique for 

constructing 

projected 

databases 

Generates 

and tests 

candidate 

sequences 

that exist in a 

projected 

database 

Projected database 

requires more storage 

space, and extra time 

is required to scan the 

projected database 

 Sequential 

Pattern Mining 

Vertical format 

based methods  

Fast 

computation 

of support 

counting 

 

Zaki (2001) SPADE  Sequential 

Pattern Mining 

Vertical format 

based methods; 

either breadth-

first or depth-

first manner 

 Consumes more 

memory space 

Ayres et al. 
(2002) 

SPAM Sequential 

Pattern Mining 

Vertical format 

based methods; 

traverses the 

sequence tree in 

a depth-first 

manner. 

A vertical 

bitmap of the 

database 

Consumes more 

memory space 
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Agrawal and 

Srikant 

(1995) 

AprioriAll Sequential 

Pattern Mining 

Horizontal 

format based 

method 

 Consumes more 

memory space 

 Closed sequential 

pattern mining  

 Efficient use 

of search 

space 

pruning, 

reduced 

number of 

patterns, 

finds more 

interesting 

patterns 

 

Yan et al. 

(2003) 

CloSpan Closed sequential 

pattern mining  

Prefix sequence 

lattice, post 

pruning 

 Huge search space for 

checking the closure 

of new patterns 

Wang, Han 

and Li 

(2007) 

BIDE Closed sequential 

pattern mining 

Depth-first 

search order; 

performs 

closure 

checking 

(BIDE) 

 Multiple database 

scans, more 

computational time 

 

Without candidate 

maintenance it does 

not keep track of 

historical closed 

sequential patterns 

Huang et al. 
(2006) 

COBRA Closed sequential 

pattern mining 

Bi-phase 

Reduction 

Approach, item 

encoding, 

pruning 

methods 

(LayerPruning 

and 

ExtPruning), 

vertical and 

horizontal 

database 

formats 

Reduces 

searching 

space 

Requires large 

memory space 

Raju and 

Varma 

(2015) 

ClaSP Closed sequential 

pattern mining 

Vertical 

database format, 

Frequent Closed 

Candidates, 

recursive post-

pruning 

(CheckAvoid-

able for pruning 

the search) 

 Requires more main 

memory 
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Han, Wang, 

Lu and 

Tzvetkov 

(2002) 

 Top-k Closed 

Sequential 

Pattern Mining 

 

Descending 

order of support 

Minimum 

support not 

specified 

User must decide the 

value of k; prior 

knowledge of database 

required 

Hirate et al. 
(2004) 

TF2P-

growth 

Top-k Closed 

Sequential 

Pattern Mining 

 

Descending 

order of support 

Does not 

require the 

user to set 

any threshold 

value k; 

output of 

frequent 

patterns to 

user 

sequentially 

and in 

chunks 

Time consuming to 

check all chunk sizes 

 

Wang, 

Zhang, Liu, 

Liu and 

Chen (2014) 

BI-TSP Top-k Closed 

Sequential 

Pattern Mining 

 

BI-Directional 

checking 

scheme, 

minimum length 

constraint, 

dynamically 

increase support 

of k 

  

Raju and 

Verma 

(2015) 

CSpan Top-k Closed 

Sequential 

Pattern Mining 

 

Depth-first 

search, 

occurrence 

checking 

method for early 

detection of 

closed 

sequential 

patterns, 

constructs the 

projected 

database 

 Projected database 

requires more storage 

space, and extra time 

is required to scan the 

projected database 
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Appendix 2: Summary of the advantages and disadvantages of meta-heuristic 

search methods 

Algorithm Advantages Disadvantages 

WSA 

 

Can remember previously visited 

position. 
The performance depends 

heavily on the manually chosen 

parameter values (Song, Fong 

and Tang 2016). 

PSO 1. The search can be carried out by the 

speed of the particle. During the 

development of several generations, 

only the most optimist particle can 

transmit information onto the other 

particles, and the speed of the 

researching is very fast (Bai 2010). 
2. It has a very simple computation 

process (Bai 2010) 
3. There is a limited number of 

parameters, including only the 

inertia weight factor and two 

acceleration coefficients in 

comparison with other competing 

heuristic optimization methods (Lee 

and Park 2006). 

The method easily suffers from 

partial optimism, which causes 

it to be less exact in the 

regulation of its speed and 

direction (Bai 2010). 

 

 

ACO Can be used in dynamic applications 

(adapts to changes such as new 

distances) (Shekhawat et al. Boswal 

2009). 

1. Time to convergence is 

uncertain (but convergence 

is guaranteed) (Shekhawat 
et al. 2009). 

2. Probability distribution 

changes by iteration 

(Shekhawat et al. 2009). 
3. Sequences of random 

decisions (not independent) 

(Shekhawat et al. 2009). 
Bat 1. Uses echolocation and frequency 

tuning to solve problems (Yang 

2013). 

2. Uses parameter control, which can 

vary the values of parameters as the 

iterations proceed. This provides a 

way to automatically switch from 

exploration to exploitation when the 

optimal solution approaches (Yang 

2013). 

1. How to speed up the 

convergence of an 

algorithm (Yang 2013). 

2. Lacks best control strategy 

so as to switch from 

exploration to exploitation 

within a right or specified 

time (Yang 2013). 

Bee Robustness, fast convergence, high 

flexibility and fewer setting parameters 

(Yan and Li 2011). 

Premature convergence in the 

later search period, and the 

accuracy of the optimal value 
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sometimes cannot meet the 

requirements (Yan and Li 

2011). 

Firefly Signaling mechanism to communicate 

with other fireflies. The signaling 

system consists of rhythmic flash, 

frequency of flashing light and time 

period of flashing (Yang 2010). 

There is the high probability of 

being trapped in local optima 

because they are local search 

algorithms (Zhang et al. 2016). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


