
i

Meta-heuristic search methods for big data analytics and
visualization of frequently changed patterns.

Submitted in fulfilment of the requirements of the degree of

Doctor of Philosophy in Information Technology (IT) in the

Faculty of Accounting and Informatics at Durban University of

Technology, Durban - South Africa.

Student Name: Israel Edem Agbehadji

Date Submitted:

Signature: Date: March 20, 2019

Prof. Richard Charles Millham

(Supervisor)

Signature: Date: March 20, 2019

Prof. Hongji Yang

(Co-Supervisor)

ii

Abstract

Throughout the world, data plays a prominent role in making decisions relevant to the

socio-economic growth of organizations. As organizations grow, they tend to use diverse

technologies or platforms to collect data and make data readily available for quick

decision-making. These technologies have resulted in exponential growth of data whereby

the problem of managing this data in a limited time interval increases in complexity,

starting from the preprocessing stage to the visualization stage. Apart from the issue of

managing the huge growth of data, finding a suitable method to manage certain aspects of

this frequently changed data has been overlooked. These frequent changes in data form

the topic of interest of this thesis. Consequently, there is a need to develop a framework

both to manage big data at different stages of processing, from preprocessing to

visualization, and to handle frequently changed data. The need to develop such a

framework arises because traditional methods/algorithms are limited to finding frequent

patterns of frequently occurring items while overlooking frequently changed data, which

has a numeric and time dimension that can provide interesting business insights.

Additionally, traditional visualization methods are challenged with performance

scalability and response time. This thesis looked at resolving this limitation by using a

meta-heuristic/bio-inspired algorithm that is modelled based on observation of the

behavior and characteristics of two different animals, namely the kestrel and the dung

beetle. The motivation behind the use of these animals is their ability to explore, exploit

and adapt to different situations in their natural environment. The development of the

computational model and testing with actual data were formulated as a six-step procedure.

Based on the six steps, the proposed computational model was evaluated against selected

comparative algorithms, namely BAT, WSA-MP, PSO, Firefly and ACO. The main

findings on optimal value/results suggest that, in handling frequently changed data during

the data preprocessing, pattern discovery and visualization stages, the proposed

computational models performed optimally against the comparative meta-heuristic

algorithms on test datasets. Further statistical tests, using the Wilcoxon signed rank test,

were conducted on optimal results from the comparative meta-heuristic algorithms. The

iii

basis for using the statistical procedure was to select the best choice of algorithm without

making any underlying assumption on accuracy of results from the comparative meta-

heuristic algorithms. Theoretically, the study contributes to enhancing frequency of item

frameworks by including time and numeric dimensions of item occurrence. Practically,

the contribution of the study lies in its finding frequently changed patterns in big data

analytics. Additionally, the concept of half-life of substances/trails was applied as part of

the computational model, and this also forms part of the unique contribution of this thesis.

The half-life constitutes the lifetime of interestingness of recent patterns that were

discovered. In summary, this thesis is about the mathematical formulation of animal

behavior and characteristics into an implementable big data management algorithm and

its application to frequently changed patterns.

iv

Declaration

Name: ISRAEL EDEM AGBEHADJI

Student Number: 21648757

Ph.D. (Information Technology)

I hereby declare that this research project is the result of my own work, except for

quotations and summaries that have been duly acknowledged.

Signature: Date: March 20, 2019.

(Author)

APPROVED FOR FINAL SUBMISSION

 March 20, 2019.

NAME DATE

v

Dedication

I dedicate this piece of work to the Almighty God, my brother, Selom Coffie Agbehadzi,

my father, Thomas Kwashie Agbehadzi, and my mother, Mary Dagodzo, for their support

and encouragement during this journey to greatness.

The journey to greatness always starts with a step, but without sacrifice it is impossible.

If you decide to take a step, then you need diligence, an open mind, perseverance, patience,

networking with people, forgiveness and courage. In all your endeavor, be confident,

believe in yourself and have faith in God.

“I speak not of you all: I know whom I have chosen: but that the scripture may be fulfilled,

He that eateth bread with me hath lifted up his heel against me.” John 13:18 (King James

Version).

vi

Acknowledgements

I wish to thank the Almighty God for his infinite mercies and guidance in the completion

of this research work. I am deeply grateful to my supervisor, Prof. Richard Charles

Millham of Durban University of Technology, and my co-supervisor, Prof. Hongji Yang

of Leicester University, for their immense support and guidance during the past two years.

Prof. Millham guided every aspect of my Ph.D. study and I am deeply grateful for his

guidance during the face-to-face meeting on the progress of my studies. His perspective

and mindset have made me an independent researcher ready to confront the challenges of

the world. Without his guidance and support I could not have completed this thesis. I am

most grateful for the assistance of Prof. Fong, of the University of Macau, with the thesis

and publications emanating from this thesis.

I am deeply grateful to my parents, Mary Dagodzo and Thomas Kwashie Agbehadzi, for

their love and continuous encouragement and prayers. Many thanks go to my lovely

brother Selom Coffie Agbehadzi for the financial support, love, care and encouragements.

Many thanks also go to my niece, Elorm Osei for her constant love and prayers. I am very

thankful to Londiwe Purity Mndaba, a very good and supportive friend who assisted me

in time of difficulties. I also thank Dr. Hillar Addo and Mr. Daniel Obuobi (Central

University of Ghana, Miotso Campus) for their support and guidance. I also thank Mr.

Evan Dogbe for his assistance. Many thanks go to Suzzana Agbehadzi, Sis Ama and her

family, brother Steven and his family, brother Fieldgate and his family, Mr. George

Stephenson, Mr. Richard Kwame Asare and his family, Mr. Jude N. Danbo and his family,

Mr. Emmanuel Freeman, Mr. Daniel Nettey etc. I also thank all my loved ones for their

words of encouragement. Your sacrifices have enabled me to pursue this path of greatness

to completion.

vii

Research emanating from this thesis

Conference papers:

 Agbehadji, I. E., Millham, R. and Fong, S. 2016. Wolf search algorithm for

numeric association rule mining. 2016 IEEE International Conference on Cloud

Computing and Big Data Analysis (ICCCBDA 2016). Chengdu, China. doi:

10.1109/ICCCBDA.2016.7529549

 Agbehadji, I. E., Millham, R. and Fong, S. 2016. Kestrel-based search algorithm

for association rule mining and classification of frequently changed items. IEEE

International Conference on Computational Intelligence and Communication

Networks, Dehadrun, India. doi:10.1109/CICN.2016.76

 Agbehadji, I. E., Millham, R., Fong, S. J. and Yang, H. 2018. The comparative

analysis of Smith-Waterman algorithm with Jaro-Winkler algorithm for the

detection of duplicate health related records. IEEE International Conference on

Advances in Big Data, Computing and Data Communication Systems (icABCD

2018), Durban, South Africa. 1-10. Available:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8465458

 Agbehadji, I. E., Millham, R., Fong, S. J. and Yang, H. 2018. Kestrel-based Search

Algorithm (KSA) and Long Short Term Memory (LSTM) Network for feature

selection in classification of high-dimensional bioinformatics datasets. Federation

Conference of Computer Science and Information systems (FedCSIS). Poznan,

Poland, Poland. 15:15-20. Available:

https://ieeexplore.ieee.org/document/8511220

Journal publications:

 Agbehadji, I. E., Millham, R., Fong, S. J. and Yang, H. 2018. Bioinspired

computational approach to missing value estimation. Mathematical Problems in

Engineering-Hindawi. doi.org/10.1155/2018/9457821

viii

 Agbehadji, I. E., Millham, R., Surendra, T., Yang, H. and Addo, H. 2018.

Visualization of frequently changed patterns based on the behaviour of dung

beetle. Fourth International Conference on Soft Computing in Data Science 2018

(SCDS2018), Chulalongkorn University, Bangkok, Thailand from 15-16 August

2018: Communications in Computer and Information Science, Springer Nature

Singapore. 937: 230-245. Available:

https://link.springer.com/chapter/10.1007/978-981-13-3441-2_18

 Agbehadji, I. E., Millham, R., Fong, S. J. and Yang, H. (In press). Integration of

Kestrel-based search algorithm with Artificial Neural Network (ANN) for feature

subset selection in classification. (Accepted for publication: International Journal

of Bio-inspired computation).

 Agbehadji, I. E., Millham, R., Fong, S. J. and Yang, H. 2018. Dung beetle-based

search algorithm for missing value estimation in variable dimensions of dataset.

(Under review: International Journal of Bio-Inspired Computation).

 Eight book chapters in Research Trends in Bioinspired Algorithms for Bigdata

Analytics, Taylor and Francis, UK (under review)

ix

Table of contents

Abstract ... ii

Declaration ... iv

Dedication ... v

Acknowledgements .. vi

Research emanating from this thesis ... vii

Table of contents .. ix

List of Figures ... xii

List of Tables ... xiii

Abbreviations .. xv

CHAPTER 1: GENERAL INTRODUCTION AND SUMMARY ... 1

1.1 Introduction ... 1

1.2 Background of the study ... 1

1.3 Field of research .. 3

1.4 General objective... 3

1.4.1 Specific objectives .. 4

1.5 Research questions .. 5

1.6 Problem statement ... 6

1.7 Justification of the study ... 8

1.8 Significance of the study ... 8

1.9 Outline of the thesis... 9

1.10 Definition of terms .. 11

CHAPTER 2: LITERATURE REVIEW .. 14

2.1 Introduction ... 14

2.2 Big data analytics framework .. 14

2.2.1. Phase 1: Data cleansing .. 16

2.2.2. Phase 2: Data mining algorithms .. 67

2.2.3. Phase 3: Data visualization ... 90

2.3 Summary ... 94

CHAPTER 3: DEVELOPING METHODOLOGICAL FRAMEWORK ... 96

3.1 Introduction ... 96

3.2 Methodological framework for big data analytics ... 96

3.2.1 Description of kestrel behavior ... 100

3.2.2 Description of dung beetle behavior ... 112

3.3 Kestrel behavior that relates to big data characteristics ... 112

3.3.1 Phase 1: Data cleansing .. 113

x

3.3.2 Phase 2: Data mining .. 121

3.4 Data visualization .. 125

3.4.1 Description of dung beetle behavior ... 126

3.5 General outline of procedure for bio-inspired/meta-heuristic model 130

3.6 Reason for choice of dataset .. 131

3.7 Reasons for choice of preferred programming language ... 131

3.8 Comparative algorithms .. 132

3.9 Summary ... 133

CHAPTER 4: DEVELOPING, TESTING AND EVALUATING DATA CLEANSING 135

4.1 Introduction ... 135

4.2 Bio-inspired computational approach to missing value estimation 135

4.2.1 Fitness function evaluation of algorithms ... 136

4.2.2 Experimental results ... 137

4.2.3 Statistical analysis of experimental results ... 143

4.2.4 Conclusion .. 158

4.3 Duplicate data (text data) detection ... 158

4.3.1 Experimental setup ... 159

4.3.2 Experimental results ... 162

4.3.3 Conclusion .. 167

4.4 Applying the bio-inspired method of learning parameter onto Long Short-Term Memory

(LSTM) network for feature selection in classification of high-dimensional bioinformatics datasets. . 168

4.4.1 Experimental setup ... 169

4.4.2 Experimental results ... 171

4.4.3 Statistical analysis of classification accuracy ... 173

4.4.4 Conclusion .. 175

4.5 Summary ... 176

CHAPTER 5: DEVELOPING, TESTING AND EVALUATING DATA MINING BASED ON

KESTREL-BASED SEARCH ALGORITHM ... 178

5.1 Introduction ... 178

5.2 Association rule ... 179

5.3 Experimental setup .. 182

5.4 Experimental results .. 185

5.5 Conclusion... 192

5.6 Summary ... 193

CHAPTER 6: DEVELOPING, TESTING AND EVALUATING DATA VISUALIZATION BASED ON

DUNG BEETLE ALGORITHM .. 194

6.1 Introduction ... 194

6.2 Data visualization .. 195

xi

6.3 Evaluation of visualization technique ... 196

6.4 Experimental setup .. 196

6.5 Experimental results .. 197

6.5.1 Visualization using DBA .. 197

6.5.2 Visualization using the bee algorithm .. 205

6.5.3 ACO for data visualization ... 208

6.6 Evaluation of data visualization algorithms .. 212

6.7 Profile statistics on visualization algorithms ... 214

6.8 Conclusion... 218

6.9 Summary ... 219

CHAPTER 7: DISCUSSION, CHALLENGES AND CONCLUSIONS.. 220

7.1 Introduction ... 220

7.2 Research question .. 220

7.2.1 Research question 1: ... 220

7.2.2 Research question 2: ... 221

7.2.3 Research question 3: ... 221

7.2.4 Research question 4: ... 221

7.3 Discussion of experimental results .. 222

7.3.1 Discussion of experimental results on extrapolating missing values 222

7.3.2 Discussion of experimental results on duplicate text detection 224

7.3.3 Discussion of experimental results on feature selection ... 225

7.3.4 Discussion of experimental results on mining association rules 228

7.3.5 Discussion of experimental results on data visualization ... 230

7.4 Challenges of the proposed model .. 232

7.5 Conclusion and future work .. 233

7.5.1 Conclusion .. 233

7.5.2 Future work .. 235

References ... 238

Web references .. 290

Appendix 1: Summary of data mining algorithms, advantages and limitations .. 291

Appendix 2: Summary of the advantages and disadvantages of meta-heuristic search methods 294

xii

List of Figures

Figure 3.1: Scoring matrix ... 116
Figure 4.1: Comparison of KSA with WSA-MP algorithm .. 138
Figure 4.2: Comparison of KSA with Firefly algorithm ... 139
Figure 4.3: Comparison of KSA with Bat algorithm ... 141
Figure 4.4: Nature of break in transitivity in Smith-Waterman algorithm .. 163
Figure 5.1: Proposed computational model for association rule mining ... 182
Figure 6.1: Dung beetle display of best cost on path traversed by KSA .. 198
Figure 6.2: Dung beetle display on MCPconf value for KSA ... 199
Figure 6.3: Dung beetle display of best cost on path traversed by ACO .. 200
Figure 6.4: Dung beetle display of MCPconf value for ACO ... 200
Figure 6.5: Dung beetle display best cost on path traversed by PSO .. 201
Figure 6.6: Dung beetle display on MCPconf value for PSO .. 202
Figure 6.7: Dung beetle display best cost on path traversed by BAT .. 202
Figure 6.8: Dung beetle display of MCPconf value for BA ... 203
Figure 6.9: Dung beetle display of best cost on path traversed by WSA-MP .. 204
Figure 6.10: Dung beetle display of MCPconf value for WSA-MP ... 204
Figure 6.11: Bee algorithm display of best cost by KSA ... 205
Figure 6.12: Bee algorithm display of best cost by ACO .. 206
Figure 6.13: Bee algorithm display of best cost by PSO .. 206
Figure 6.14: Bee algorithm display of best cost by BAT .. 207
Figure 6.15: Bee algorithm display of best cost by WSA-MP ... 208
Figure 6.16: ACO algorithm display on best cost by KSA ... 209
Figure 6.17: ACO for visualization display of best cost by ACO from data mining phase 209
Figure 6.18: ACO for visualization display of best cost using results on PSO from data mining phase 210
Figure 6.19: ACO for visualization display of best cost by BAT from data mining phase 211
Figure 6.20: ACO for visualization display of best cost using results of WSA-MP from data mining phase
... 211
Figure 6.21: Graphical display of computational time for each bio-inspired data mining algorithm 214

xiii

List of Tables

Table 1.1: Methodological framework on Phases, stages and algorithms ... 4
Table 2.1 Big data analysis frameworks and methods .. 15
Table 2.2 Deep learning methods and problem domains .. 56
Table 2.3: Meta-heuristics algorithms integrated with traditional method ... 57
Table 3.1: Phases, stages and algorithms ... 98
Table 3.2: Element representation in tabular form ... 114
Table 4.1: Comparison results of KSA and WSA-MP .. 138
Table 4.2: Comparison results of KSA and Firefly algorithm ... 140
Table 4.3: Comparison results of KSA and Bat algorithm .. 141
Table 4.4: MAE results from comparative algorithms on different problem scales 142
Table 4.5: Major function names of the comparative algorithms ... 144
Table 4.6: Wilcoxon rank on profile extracts of built-in-in function calls of algorithms 147
Table 4.7: Mean and standard deviation of built-in-in functions .. 148
Table 4.8: Wilcoxon signed ranks on built-in functions ... 149
Table 4.9: Test statistics on built-in functions ... 149
Table 4.10: Wilcoxon rank on profile extracts of major function total time and self time of algorithms . 150
Table 4.11: Mean and standard deviation on major functions ... 151
Table 4.12: Wilcoxon signed ranks of major functions .. 151
Table 4.13: Test statistics on major functions ... 152
Table 4.14: Results on accuracy from comparative algorithms using MAE .. 152
Table 4.15: Wilcoxon signed-rank test statistic on accuracy ... 153
Table 4.16: Descriptive statistics ... 156
Table 4.17: Descriptive statistics ... 157
Table 4.18: Friedman test statistics... 157
Table 4.19: Proposed algorithm .. 160
Table 4.20: Results of partially enhanced Smith-Waterman algorithm .. 162
Table 4.21: Results of partially enhanced Smith-Waterman algorithm rate of match and mismatch 163
Table 4.22: Results of fully enhanced Smith-Waterman algorithm after break in sequential comparison
... 164
Table 4.23: Results of fully enhanced Smith-Waterman algorithm rate of match and mismatch after break
in sequential comparison .. 164
Table 4.24: Results of partially enhanced Jaro-Winkler algorithm.. 165
Table 4.25: Results of partially enhanced Jaro-Winkler algorithm rate of match and mismatch 165
Table 4.26: Results of fully enhanced Jaro-Winkler algorithm .. 166
Table 4.27: Results of fully enhanced Jaro-Winkler algorithm rate of match and mismatch.................... 166
Table 4.28: Proposed algorithmic structure for feature selection ... 168
Table 4.29: Algorithm and initial parameters ... 170
Table 4.30: Benchmark datasets and number of features in dataset ... 170
Table 4.31: Results obtained on optimum learning parameters of algorithms after running comparative
meta-heuristic algorithms ... 171
Table 4.32: Best results on accuracy of classification for each algorithm ... 172
Table 4.33: Dimensions of features selected by each algorithm. .. 173
Table 4.34: Test statistics .. 175
Table 5.1: Algorithm and initial parameters ... 182
Table 5.2: Association rules for stock market dataset using KSA .. 185
Table 5.3: Association rules for stock market dataset using ACO ... 187

xiv

Table 5.4: Association rules for stock market dataset using PSO .. 188
Table 5.5: Association rules for stock market dataset using BAT .. 189
Table 5.6: Association rules for stock market dataset using WSA-MP .. 190
Table 5.7: Algorithms and number of rules extracted ... 191
Table 6.1: MCPconf values from KSA ... 197
Table 6.2: MCPconf values from ACO .. 199
Table 6.3: MCPconf values from PSO .. 200
Table 6.4: MCPconf values from BAT .. 202
Table 6.5: MCPconf values from WSA-MP .. 203
Table 6.6: Summary of optimum values from bio-inspired data visualization algorithms 212
Table 6.7: Summary of computation time obtained from bio-inspired data visualization algorithms. 213
Table 6.8 Major function names of the comparative algorithms .. 215
Table 6.9: Major functions, mean of total_time and self_time of comparative algorithms 216
Table 6.10: In-built function calls on the comparative algorithms .. 216
Table 6.11: Mean of built-in function calls on the comparative algorithms ... 217

xv

Abbreviations

ACO Ant Colony Optimization

BIDE Bi-Directional Extension

BI-TSP Top-k closed sequential patterns with Bi-Directional checking scheme

BLAST Basic Local Alignment Search Technique

COBRA Closed sequential pattern mining using a Bi-phase Reduction Approach

DBA Dung Beetle-based Search algorithm

FASTA FAST All

FP Frequent-pattern

GA Genetic algorithm

KSA Kestrel-Based Search algorithm

MAR Missing At Random

MCAR Missing Completely At Random

MCPsc Modified Closeness Preference Confidence value

MNAR Missing Not At Random

MSF Multiple species flocking

Par-CSP Parallel Closed Sequential Pattern mining

PCA Principal components analysis

PSO Particle Swarm Optimization

SIBA Sampling Improved Bat Algorithm

SPADE Sequential Pattern Discovery

SPAM Sequential Pattern Mining using bitmap representation

SODSS Service-Oriented Decision Support System

SOM- MBP Self-Organizing Map-Multiple Back-Propagation

TF-IDF Frequency-Inverse Document Frequency

WSA Wolf Search Algorithm

WSA-MP Wolf Search Algorithm with Minus step Previous

𝑘-NN kth Nearest Neighbor

1

CHAPTER 1: GENERAL INTRODUCTION AND SUMMARY

1.1 Introduction

The chapter starts with the background of the study on the current dispensation of big data.

In subsequent sections, the general objectives of the study, specific objectives, research

questions, problem statement, justification of the study, significance of the study and

outline of the thesis are discussed.

1.2 Background of the study

Generally, large volumes of data are generated continuously from heterogeneous and

autonomous sources (that is, when each data source collects information without relying

on any centralized control) (Banupriya and Vijayadeepa 2015), where each source has a

different set of data residing on its platforms, including data that is frequently changed.

As lots of data is generated and collected, it needs to be analyzed to identify patterns,

including those of special interest, such as frequently changed data. For instance,

industries such as retail, financial services, and healthcare institutions have frequently

changed data that needs specific handling to find interesting patterns/trends from the

volume of data generated. Mostly, data repositories are unable to process demands from

a big dataset that needs to be updated frequently within specified time (Rouse 2018). This

frequent updating of data is because of frequent changes that occur in a specified dataset.

It is significant that as data continues to increase in volume, exploring the evolving

relationship in frequently changed data creates an opportunity for finding new methods of

searching for interesting frequently changed patterns. The application of meta-heuristic

search methods could help create new computational models that adapt to frequently

changed data in order to discover actionable sequences from data for decision-making.

This study seeks to research the application of meta-heuristic search methods (also

referred to as bio-inspired search methods) for big data analytics and visualization of

frequently changed patterns. The reason for carrying out a study into meta-heuristic search

2

methods is that the traditional methods (such as existing data mining algorithms, which

will be discussed in Chapter Two) for exploring evolving relationships are not well

adapted to processing update demands because of frequent change from large volumes of

data.

Massive amounts of data can be analyzed and interpreted using different techniques,

algorithms, tools and models. Mostly, existing search algorithms for discovering patterns

are focused on frequency of items without considering the frequently changed items.

Often, existing data mining algorithms (such as the Apriori algorithm) are focused on the

frequency of items without considering the numeric value and time dimensions. Basically,

the frequency of items is computed by counting the occurrence of items in transaction

(Rajasekaran and Song 2006) to determine a pattern without indicating the change that

happened on an item, for instance considering buying behavior of consumers of a retail

shop without considering the changing total value(s) of items bought (in terms of the price

of items).

Meanwhile, frequency counts on changing numeric value with time may give more

meaning to a predicted pattern. Usually, in frequent item mining, an itemset is regarded

as interesting if its occurrence frequency exceeds a user-specified threshold (Fung, Wang

and Liu 2012). However, the use of frequency counts to measure pattern interestingness

is insufficient (Tseng, Liang and Chu 2006) in selecting actionable sequences associated

with expected quality and business impact. This is because the patterns identified under

the frequency framework do not disclose the business value (such as profit) (Yin et al.

2013). As businesses are interested in business value, the frequency framework should be

expanded to cover both time and numeric value dimensions. Thus, a multiple-dimension

approach for business value analysis may yield more interesting patterns and could be

sufficient for a business to select actionable sequences. A meta-heuristic search algorithm

could play a significant role in helping to select actionable sequences for business

decision-making. Thus, this study seeks to research the application of meta-heuristic

3

search methods (also referred to as bio-inspired search methods) to discover frequently

changed patterns from large datasets. The study also uses meta-heuristic search methods

to visualize frequently changed patterns.

1.3 Field of research

The field of study is Information Technology, with a focus on meta-heuristic search

methods for the analysis and visualization of frequently changed patterns in big data

analytics.

1.4 General objective

This study seeks to develop a largely bio-inspired approach to manage and analyze big

data, notably frequently changed patterns/items. This approach consists of the use of bio-

inspired algorithms that are implemented in three phases, namely data cleansing, data

mining and data visualization. These phases are used to build a computational model that

depicts the characteristics of animals for analysis and visualization of frequently changed

patterns/items.

The first phase, data cleansing, uses enhanced algorithms to extrapolate likely values on

missing data, identify and eliminate duplicate text from frequently changed items, and

select relevant features. During the first phase, an innovative search algorithm based on

hunting behavior of a bird called the kestrel (a bio-inspired algorithm) is mathematically

expressed to depict its characteristics. This mathematical expression is applied to

extrapolate missing values at random, while an enhanced non-bio-inspired algorithm

based on the Smith-Waterman algorithm is applied to identify and eliminate duplicate

text. Finally, the mathematical formulation based on kestrels’ characteristics is combined

with other search methods (that is, deep learning methods that will be discussed in Chapter

Two in the literature review) for the selection of relevant features. Phase two is the data

mining of frequently changed items with numeric value and time dimensions. During this

4

stage, the kestrel-based algorithm and closeness preference interestingness model is

applied to find frequently changed patterns. Phase three is the data visualization of

association rules from phase two. A novel search algorithm based on behavior of dung

beetles is applied to visualize data on the association rules.

In each phase of the proposed computational model, mathematical formulations of the

selected animal behavior are applied, which are translated into algorithmic structure and

evaluated by comparing them with other comparative meta-heuristic search methods. The

phases of the methodological framework are summarized in Table 1.1.

Table 1.1: Methodological framework on Phases, stages and algorithms

Phases Stages Proposed algorithm Comparative

algorithms

Phase 1: Data

cleansing/preprocessing

Stage 1: Identify and

eliminate duplicate

text

Enhanced Smith-

Waterman algorithm

Jaro-Winkler

distance metrics

 Stage 2: Extrapolating

missing data values

KSA WSA-MP, BAT

and Firefly

algorithms

 Stage 3: Feature

selection

KSA WSA-MP, BAT,

ACO and PSO

algorithms

Phase 2: Data mining - KSA ACO, BAT, PSO

and WSA-MP

algorithms

Phase 3: Data

visualization (using

linear graph)

- DBA ACO for data

visualization, Bee

algorithm

Source: (Researcher 2018).

The phases in Table 1.1 represents a methodological framework for this thesis that will be

discussed in chapter 3.

1.4.1 Specific objectives

5

The specific objectives of the study are to:

 model a meta-heuristic/bio-inspired data preprocessing approach to extrapolate missing

values, identify and remove duplicates text, and select features in subsets

 model an association rule mining approach based on the hunting behavior of kestrel to

discover patterns that are frequently changed with numeric value and time dimensions

 based on the frequently changed rules, model a bio-inspired algorithm for visualization of

frequently changed items

 empirically validate the models and algorithmic structures against comparative meta-

heuristic methods using benchmark datasets.

1.5 Research questions

The importance of the research question is that it enables the researcher to make a claim

about knowledge (referred as ontology) so as to understand a knowledge claim, the

strategy that informs a procedure, and the method of data collection and analysis (Creswell

2013). The researcher is thus able to take a different approach to solving the research

problem. In this context the different approach relates to the search method and its

underlying algorithmic structure that could be applied.

The research questions were formulated as follows:

 Can a largely meta-heuristic/bio-inspired data preprocessing approach be modelled to

extrapolate missing values, identify and remove duplicate text, and select features in

subsets?

 Can a mathematical expression and subsequent algorithm be formulated based on the

hunting behavior of the kestrel to discover association rules on frequently changed

patterns within numeric value and time dimensions?

 Based on the frequently changed rules, can a bio-inspired algorithm for the visualization

of these association mining results be modelled?

6

 Can the model and algorithmic structure be empirically validated on a benchmark dataset

and evaluated against comparative meta-heuristic algorithms?

1.6 Problem statement

Pattern interestingness suffers from the issues of inherent subjectivity and from the need

to sort through large volumes of data and report on a huge number of potentially

interesting patterns that meet predefined criteria (Vreeken and Tatti 2014). Tseng, Liang

and Chu (2006) indicate that the use of frequency of occurrence of items, as a sole

criterion, to measure pattern interestingness is insufficient in selecting actionable

sequences for an organization (Yin et al. 2013). Similarly, Vreeken and Tatti (2014)

describe the use of frequency of items as not a very good measure of interestingness. The

main reason for this problem with using only the frequency of occurring items for pattern

selection is that actionable patterns can change with time (Huynh 2010). Thus, relying on

frequency of occurring items alone for pattern selection – rather than on additional criteria

such as frequency of change, which entails a time dimension within the data items of a

pattern – is a limitation of current big data management approaches and a gap that this

thesis hopes to address. Hence, there is a gap in the current occurrence framework since

it does not address the time dimension of frequently changed data.

Within the current dispensation of big data, when data becomes very large (that is, big

data), it is possible that current approaches to data preprocessing/cleansing (to find

missing values, identify duplicates and select relevant features) to find interesting patterns

could lose its business value, in terms of having to determine in a timely manner (that is,

speedily) the usefulness of an action. For this reason, new algorithms must be developed

to accurately preprocess data and discover patterns that are interesting. The lack of

accuracy in existing big data preprocessing frameworks is a problem that needs to be

solved in order to improve on performance of the data processing aspect of big data

platforms.

7

In view of the challenges of data preprocessing, this study seeks to fill the gaps identified

by proposing a new computational model to find the best possible approach. The study

uses the hunting behavior of kestrels (bio-inspired), which involves perch hunting (for

exploitation of the search area) and hover hunting (for exploration of the search area).

Hover hunting involves exploring very large search areas that were left unexploited during

perch hunting. Again, hover hunting is quick and involves cross-territorial search for

interesting patterns, while perched hunting involves thorough search in a local territory.

This bio-inspired approach is a random search algorithm that is used to extrapolate

missing values at random, select relevant feature subsets in the data cleansing phase and

discover association rules to form a global schema of interesting patterns to disclose

actionable sequences. The association rules, when used, can disclose relationships

between subtle patterns and group patterns based on the nature of frequent change. In fact,

no single pattern can prove to be interesting until all related patterns are grouped to

disclose interesting frequently changed patterns. The disclosed pattern will provide

meaningful insights when selecting actionable sequences for businesses, irrespective of

the volume of data.

Having disclosed the patterns, an actionable sequence could be visualized by using a

simple and low computational cost visualization approach that takes into consideration

volumes of data and that displays results in less computational time. This suggests that

current approaches (such as dense pixel display, stacked display (Keim 2000) and cellular

ant-based approaches (Moere, Clayden and Dong 2006)) to visualization, which are

discussed in subsequent chapters, are computationally costly. The present approach

applies the orientation and navigation mechanism of dung beetles in natural environments

to provide a simple algorithm for data visualization with less computational time in a

simple two-dimensional graph.

8

1.7 Justification of the study

The justification is based on the fact that as data frequently changes, and businesses are

interested in business value (in terms of disclosing action that should be undertaken within

a time dimension). In view of this, the current frequency framework should be expanded

to cover both time and numeric value dimensions of frequently changed items so as to

bridge the gap identified in the occurrence of item frameworks. Thus, a kestrel behavior

is an approach that uses flight and perch behavior to exploit and explore rules to disclose

interesting patterns, which may be sufficient for a business to select actionable sequences

from large volumes of data so as to add value to the business.

1.8 Significance of the study

This study expresses in mathematical terms the behavior of kestrels and dung beetles, and

implements it as a search algorithm. The advantage of the kestrel-based approach is that

there is a quick cross-boundary pattern search when there is limited knowledge on

characteristics of data as it becomes large/small. This study proposes a novel search

approach to data preprocessing that is based on the kestrel. The search approach referred

to as the Kestrel-based Search Algorithm (KSA) looks across different search spaces for

possible solutions in different aspects of big data analytics (such as volume, velocity and

value). It is significant to note that as users of big data analytics acquire and have access

to more data (large volume or quantity), they often become more interested in finding

patterns that can perfectly explain a frequent change. In so doing, big data users could

focus on making valuable conclusions from a large quantity of high-quality data.

However, making valuable conclusions may require selection of relevant data from

irrelevant data to ensure data is reliable and approximately accurate. The significance of

the KSA is to provide a means of making approximately accurate estimations in different

problem dimensions of concern as the same data item is collected over and over with

different values based on different times.

9

Theoretically, the proposed meta-heuristic approach seeks to enhance the occurrence

framework of items in data mining by generating basic rules from kestrels’ behavior.

These basic rules are used to evaluate pattern interestingness of frequently changed

data/items to select actionable sequences (Yin et al. 2013) in a form of patterns from large

volumes of data. The outcome could be of practical significance to large stock market

items analysis or similar domains in terms of disclosing patterns that have frequently

changed within numeric value and time dimensions. The outcome may also be of practical

significance to the retail industry for disclosing patterns that are frequently changed. In

this context, items with numeric value (such as price) and a time dimension (for instance,

in seconds or hours) can be discovered when this algorithm is built.

Another theoretical significance is the use of navigation and orientation by dung beetles

for data visualization of frequently changed patterns. The dung beetle is well adapted to

navigate different environments to get its food to its home with less energy. As it navigates

and orients, it leaves traces that can be seen. This navigation and orientation are

mathematically modelled and translated into an algorithm for visualization of frequently

changed patterns.

This study contributes to knowledge in terms of the conceptualization of a big data

analytics framework that is based on the unique behavior of animals (namely kestrels and

dung beetles) and the half-life of trails to develop a search method. The search algorithm

is used to find interesting patterns (within both numeric value and time dimensions) and

for the visualization of frequently changed patterns/items in large datasets. The advantage

of this search algorithm is its ability to self-tune its parameter(s) and select optimal or

near-optimal results.

1.9 Outline of the thesis

The thesis is structured as follows:

10

Chapter 1: General introduction and summary. This chapter presents the general objective

of the study, the specific objectives, the research questions, the problem statement,

justification of the study, the significance of the study and structure of thesis.

Chapter 2: Literature review. This chapter reviews the current relevant literature and

theoretical underpinning of big data analytics frameworks, data cleansing, data mining

and data visualization, in order to identify the current challenges and gaps in literature that

need to be filled. Additionally, the review also finds innovative ways to address the

challenges in aspects of big data analytics (that is, volume, velocity and value) within the

context of data cleansing, data mining and data visualization of patterns that might be

interesting and that may lead to an action being taken by a user of a big data analytics

platform.

Chapter 3: Methodology. This chapter presents the different methods of data cleansing,

data mining and data visualization. A bio-inspired method based on selected behavior of

chosen animals was mathematical modelled in order to address the gap in frequency

frameworks and to propose innovative ways to address the challenges in big data analytics

frameworks. Thus, data cleansing, data mining and data visualization form the three

phases that constitute the structure of the proposed model for disclosing interesting

patterns.

Chapter 4: Developing, testing and evaluating data cleansing. The chapter demonstrates

different algorithms for extrapolation of missing values, duplicate text detection with

results compared with related algorithms, and selection of relevant features in subset.

During the implementation, mathematical expressions were written and translated into an

algorithm for testing. Test data was used by the algorithm, and different parameters were

used to fine-tune the outcome of the algorithm to provide best results/optimal solutions.

11

Chapter 5: Developing, testing and evaluating data mining. The chapter presents different

bio-inspired algorithms, namely ACO, PSO, BAT and WSA-MP, and compares the results

from each algorithm with the proposed algorithm for data mining. During the testing of

the newly proposed algorithm, different parameters were fine-tuned in order to generate

the best possible solution. The results of data mining were tabulated for each comparative

algorithm.

Chapter 6: Developing, testing and evaluating data visualization. The chapter presents the

method for data visualization based on the bio-inspired behavior of dung beetles. The

dung beetle algorithm (DBA) was tested with different related algorithms, namely the Bee

algorithm and ACO, for data visualization. Different parameters were applied to test the

output of the algorithm on different datasets. The results of optimal value are tabulated

and presented in two-dimension graphs.

Chapter 7: Discussion, challenges and conclusions. The chapter presents how research

questions were addressed, discusses experimental results, and outlines challenges of the

proposed model. Conclusions are drawn and future work proposed.

1.10 Definition of terms

Meta-heuristic search method is a general algorithmic framework that is applied to

different optimization problems with relatively few modifications (both on an algorithm

and its parameters) so that the algorithm can be adapted to a specific problem (Iglesia and

Reynolds 2005).

Flocking is the phenomenon where individuals all move with approximately the same

velocity, so that they remain together as a group (Sinkovits 2006).

Pattern interestingness is defined as follows: it is (1) easily understood by humans, (2)

valid on new or test data with some degree of certainty, (3) potentially useful and (4)

12

novel. Furthermore, a pattern is interesting if it validates a hypothesis that the user sought

to confirm.

Frequent itemset refers to a set of items that frequently appear together in a dataset (Han

and Kamber 2006).

Data mining is the process of finding hidden and complex relationships present in data

so as to help businesses discover patterns for future use (Sumathi and Sivanandam 2006).

Big data analytics (or big data mining) is the discovery of actionable knowledge patterns

from quality data (Wu, Buyya and Ramamohanarao 2016).

Volume is the amount/size of data that has to be processed. The size of this big amount

of data ranges from thousands of terabytes to petabytes and exabytes (Devakunchari

2014).

Veracity is referred to in this research as the accuracy of results from a processing system

(Garcia, Luengo and Herrera 2015).

Value relates to what the user will gain or the benefit from the analysis results (such as

new revenue opportunities, effective marketing strategies, better customer service

strategies and competitive advantage over rival businesses). Devakunchari (2014) refers

to value as a measure of the usefulness of data in making decisions.

Variety is the different kinds of data being generated, such as structured or unstructured

data (including unstructured text such as word documents, email messages, transcripts of

call center interactions, posts from blogs and social media sites; images; audio; video files;

and machine data such as log files from websites, servers, networks and applications from

mobile systems) (Rouse 2018; Laney 2001).

13

Velocity is how fast incoming data is created, processed and updated and how quickly the

user of information needs results from the processing system (Longbottom and Bamforth

2013).

Data visualization is the process of presenting data in pictorial or graphical format to help

in the display of interesting patterns (Bikakis 2018).

Agent-based search algorithm refers to the proposed algorithms (namely kestrel-based

and dung beetle-based).

Phase-based framework refers to the proposed methodological framework consisting of

phases and corresponding agent-based search algorithm.

14

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

This chapter reviews current literature on big data analytics frameworks, data cleansing,

data mining algorithms and data visualization methods in line with the specific objectives

of this study. Although this study is largely on bio-inspired/meta-heuristic approaches in

analyzing data, other non-bio-inspired approaches to analyzing data are explored. The

review of literature is significant for identifying gaps in literature that need to be filled

regarding interestingness of frequently changed data.

2.2 Big data analytics framework

Big data arises when a large volume of data is produced and then collected from multiple

autonomous data sources, without central control, (Banupriya and Vijayadeepa 2015); big

companies quickly realized the value of analysis of this data for various spheres of their

operation (Devakunchari 2014). The data coming from these different sources is

characterized as having five Vs, as indicated by Longbottom and Bamforth (2013) and

Laney (2001), although these characteristics may vary. These characteristics are used to

describe big data analytics frameworks.

Wu, Buyya and Ramamohanarao (2016) define big data analytics (or big data mining) as

the discovery of actionable knowledge patterns from quality data. Quality is defined in

terms of accuracy, completeness and consistency of patterns (Garcia, Luengo and Herrera

2015). Wu, Zhu, Wu and Ding (2014) indicate that big data analytics is a quality

improvement process where data is preprocessed and classified into a uniform format that

could be useful in decision making. Several analysis frameworks and methods have been

proposed to help with the quality improvement process, as presented by Tsai et al. (2015)

and presented here in Table 2.1 as follows:

15

Table 2.1 Big data analysis frameworks and methods

Perspective Methods or

platform/

framework

Author(s) Year Goal of the study Taxonomy

Analysis

framework

DOT Huai et al. 2011 Add more

computation

resources via a

scale-out solution

Framework

Generalized

linear

aggregates

distributed

engine

(GLADE)

Rusu and Dobra 2011 Multi-level tree-

based system

architecture

Starfish Wonner et al. 2012 Self-turning

analytics system

ODT-MDC Laurila et al. 2012 Privacy issues

MRAM Essa, Attiya and El-

Sayed

2013 Mobile agent

technologies

CBDMASP Ye et al. 2013 Statistical

computation and

data mining

approaches

Service-

oriented

decision

support

system

(SODSS)

Demirkan and

Delen

2013 Decision support

system issues

Big data

architecture

framework

(BDAF)

Wonner et al. 2012 Data centric

architecture

HACE X. Wu, Zhu, G.-Q.

Wu and Ding

2014 Data mining

approaches

Hadoop Apache Hadoop 2015 Parallel

computing

platform

Platform

Storm Apache Storm 2015 Parallel

computing

platform

Pregel Malewicz et al. 2010 Large-scale

graph data

analysis

MLPACK Curtin et al. 2013 Scalable machine

learning library

Machine

learning

16

Mahout Apache Mahout 2015 Machine learning

algorithms

MLAS Bu et al. 2012 Machine learning

algorithms

PIMRU Bu et al. 2012 Machine learning

algorithms

Radoop Radoop 2015 Data analytics,

machine learning

algorithms and R

statistical tool

Source: Tsai et al. (2015).

In Table 2.1, the “Perspective” column explains the focus of the analysis framework

perspective, which indicates the current research focus, namely the use of machine

learning for analysis to help guarantee accurate results. The study by Tsai et al. (2015) on

these analysis frameworks indicates that the key advantage of machine learning as search

algorithm is the ability to reduce redundant computational cost. However, within the

current dispensation of big data, which is still in its early stages (Tsai et al. 2015; Nolan

1979), performance of algorithms may still be an issue/gap that can be looked at as part

of the quality improvement process of big data analytics frameworks. Although, the

quality improvement process, analysis framework “Perspective” and “Methods or platform/

framework” in Table 2.1 is not the focus of this thesis, it is presented to show the available

frameworks, which are not mainly bio-inspired frameworks. Hence, a bio-inspired

framework will be the main contribution of this thesis.

In the next subsections, the various phases of data preprocessing (such as cleansing,

integrating, transforming and reduction) (Srivastava 2014) are discussed.

2.2.1. Phase 1: Data cleansing

The concept of data cleansing relates to the detection and removal of errors (Mong et al.

2002) in raw data to avoid inconsistency (that is, when data items referring to the same

object contradict each other) that possibly reduces the quality of data analysis results with

limited attention to volume of big datasets. In some instances, when raw data is extracted

17

from data repositories, it could contain errors (such as incorrect spelling of words or, in

terms of numeric value, there could be decimal errors) or incomplete data (such as missing

data, null values or no data stored for a current observed attribute) (Rahm and Do 2000;

Elmagarmid, Ipeirotis and Verykios 2007). The following subsections examine the stages

that constitute the data cleansing phase, namely extrapolating missing data values,

identifying and removing duplicate text, and selecting relevant feature subsets.

2.2.1.1 Stage 1: Extrapolating missing data values

Missing data occurs when some values of variables are not stored in a dataset. Estimating

the missing values is an important step in the data cleansing phase of a big data analytics

approach. Narang (2013) describes missing data as data that exists in the real world but

was not provided by a user. Narang’s (2013) method to address the missing data is to

interpolate approximate values as missing data points from historical data (that is, real-

time stock trading datasets) with incorrect timestamps. Agbehadji et al. (2018) indicate

that one of the reasons for missing data is non-response or omitted entries, which may

relate to optional attributes. There are three categories of missing data: data missing

completely at random (MCAR), missing at random (MAR) and missing not at random

(MNAR) (Acock 2005; Nelwamondo, Mohamed and Marwala 2007), all of which require

different methods of handling the missing data. Moreover, the missing data may be a

missing text and/or missing value at random.

The missing data category of MCAR occurs when the missing values are randomly

distributed throughout a matrix such that a missing value in a row of a matrix is not

dependent on any other row entry in a dataset (Acock 2005). In other words, neither the

row entry, which is missing, nor any other row entry can predict whether a value is

missing. When this happens the chances of the data being detected as missing are not

dependent on either the missing or the complete value in the same row entry of a matrix.

The list-wise method to handle MCAR is ideally used to remove all data that has one or

more missing cases. However, by this removal, a problem is created in that the missing

https://www.google.co.za/search?biw=1517&bih=692&tbm=bks&q=inauthor:%22Rishi+K.+Narang%22&sa=X&ved=0ahUKEwiq7uC38__NAhXHCcAKHcn4CtkQ9AgIGzAA
https://www.google.co.za/search?biw=1517&bih=692&tbm=bks&q=inauthor:%22Rishi+K.+Narang%22&sa=X&ved=0ahUKEwiq7uC38__NAhXHCcAKHcn4CtkQ9AgIGzAA

18

values produce both biased parameters and incorrect estimates in analysis (Rubin 1977;

Little and Rubin 1989). The pairwise method is another method of handling MCAR. This

method seeks to address the missing value problem by computing the covariance estimates

from all samples of cases observed on relevant variables. The pairwise deletion method

assumes that all data is completely missing at random. Therefore, variables with missing

data are then deleted during computation. This deletion could cause error in computation

because each element in the covariance matrix may have a different group of attributes

(Kline 1998; Carter 2006; Rubin et al. 2007).

The MAR category occurs when the missing value in a row of a matrix depends on another

known row entry in a dataset (Rubin et al. 2007). Due to dependency, the missing value

can be predicted from a previously known value in a dataset. Thus, the missing value is

dependent on the previously known value. When this happens, it becomes easy to trace a

pattern of missing values in a row of a matrix through the traditional approach to handling

MAR: the pairwise deletion method, as described previously.

The MNAR (also known as non-ignorable nonresponse) category occurs when the missing

value in a row of a matrix depends on the other missing values in the row entry (Rubin et

al. 2007). Due to multiple dependencies, the known data cannot be used to estimate the

missing value. Thus, the chances that the value in question is detected as missing is

dependent on the detection of previous missing values.

The traditional approaches to handling missing data are, however, not efficient at

providing best optimal estimates for missing values. These approaches include list-wise

deletion or case deletion, pairwise deletion and sample mean substitution (that is, 𝑘-NN

and 𝑘-Means clustering) (Quinlan 1989; Acock 2005; Rubin et al. 2007).

The sample mean of class method replaces the missing values with the group mean of all

known values of the attribute. The mean of each group represents a target class with

19

attribute can belong. For instance, assume 𝑥𝑚𝑖𝑠𝑠𝑖𝑛𝑔,𝑖
𝑗

 is the 𝑗th missing attribute of the 𝑖th

instance of the 𝑚th class (Sim, Lee and Kwon 2015)

𝑥(𝑚𝑖𝑠𝑠𝑖𝑛𝑔,𝑖)
𝑗

= ∑
𝑥(𝑚𝑖𝑠𝑠𝑖𝑛𝑔,𝑘)

𝑗

𝑛| 𝐼(𝑚𝑡ℎ 𝑐𝑙𝑎𝑠𝑠 𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)|
𝑘∈𝐼(𝑚𝑡ℎ 𝑐𝑙𝑎𝑠𝑠 𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) Equation 2.1

where (𝑚th class incomplete) is a set of indices that are not missing in 𝑥(𝑚𝑖𝑠𝑠𝑖𝑛𝑔,𝑖)
𝑗

 , and

𝑛| 𝐼(𝑚𝑡ℎ 𝑐𝑙𝑎𝑠𝑠 𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) is the total number of instances where the 𝑗th attribute of the 𝑚th

class is not missing.

The k-nearest neighbor (k-NN) method searches for attributes among non-missing

attributes using the kth-NN method (Sim et al. 2015). This method imputes missing values

based on the values of the attributes of the 𝑘 most similar instances, as expressed in

Equation 2.2:

𝑥𝑖
𝑗

= ∑ 𝑘 (𝑥𝑖
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

, 𝑥𝑃
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

) ∗ 𝑥𝑃
𝑗

𝑃 ∈𝑘−𝑁𝑁(𝑥𝑖) Equation 2.2

where k-NN (xi) represents the index set of the kth nearest neighbors of xi based on the

non-missing attributes, k (which is by default equal to 4) represents a number that decides

how many neighbors (where neighbors is defined based on the distance metric) are

considered in a cluster, and k(xi, xj) is referred to as a kernel function that is proportional

to the similarity between the two instances xi and xj. The similarity function computes an

approximate value, which is used to indicate that two instances are the same. Thus, the

smaller the similarity value between two instances, the more similar the two instances.

Thirumuruganathan (2010) indicates that the k-NN method is non-parametric, meaning

the k-NN algorithm does not make any underlying assumption on the distribution of data.

However, the k-NN method makes a decision of the approximated value based on the

entire training dataset.

The k-Means clustering method (Hartigan and Wong 1979) partitions an entire dataset M

with several dimensions N into k clusters so that within each cluster of missing values, the

sum of squares is minimized against all partitions. This means, in the context of missing

20

values, that these partitions are categorized as clusters of the same attributes of missing

values from other attributes with non-missing values. Based on these attributes, the

algorithm based on k-Means finds missing values that have to be imputed (Sim et al. 2015).

This k-cluster then forms two different clusters, namely homogeneous and heterogeneous

clusters. The challenge with a k-cluster is that when there is large volume of data, it leads

to a large number of clusters and the computational time thus increases (Hartigan and

Wong 1979). The k-cluster is expressed as:

𝑎𝑟𝑔 𝑚𝑖𝑛
𝑐ℎ(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

∑ ∑ || 𝑥𝑗
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

− 𝐶𝑖
ℎ(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

||2

(𝑥
𝑗
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

∈ 𝐶
𝑖
ℎ(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

)

𝑘

𝑖=1

Equation 2.3

where 𝐶𝑖
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

 represents the centroid, and the union of all cluster is represented as

𝐶𝑖
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

= 𝐶1
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

 ∪ … ∪ 𝐶𝑖
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

). For a missing value 𝑥𝑖
𝑗
, the mean value

of the attribute for the instances in the same cluster with 𝑥𝑖
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

 is imputed as

𝑥𝑖
𝑗

=
1

|𝐶
𝑖
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

|
∗ ∑ 𝑥𝑃

𝑗

(𝑥𝑃
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

∈ 𝐶𝑘
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

)
 Equation 2.4

subject to: 𝑘 = arg min
𝑖

|𝑥𝑗
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

− 𝐶𝑖
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

|

where 𝑥𝑗
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

 represents the value of an instance/attribute, and 𝐶𝑖
𝐼(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

represents the centroid.

The approach of Grzymala-Busse et al. (2005) to addressing missing data is to use the

same attributes from similar cases to determine the approximate value of missing

attributes through a closest fit algorithm. Based on the closest fit algorithm, the proximity

between cases (such as case x and y) are calculated using the Manhattan distance,

formulated as:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑦) = ∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥𝑖
𝑛
𝑖=1 , 𝑦𝑖) Equation 2.5

where:

21

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑦)

= {

0 𝑖𝑓 𝑥 = 𝑦
1 𝑖𝑓 𝑥 𝑎𝑛𝑑 𝑦 𝑎𝑟𝑒 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐 𝑎𝑛𝑑 𝑥 ≠ 𝑦, 𝑜𝑟 𝑥 = ? 𝑜𝑟 𝑦 = ?

|𝑥 − 𝑦|

𝑟
 𝑖𝑓 𝑥 𝑎𝑛𝑑 𝑦 𝑎𝑟𝑒 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑎𝑛𝑑 𝑥 ≠ 𝑦

where r represents the differences between the maximum and minimum of the unknown

values of numerical attributes with a missing value. A similar approach based on cases is

the use of the hot-deck method (Sim et al. 2015), which is formulated as:

𝑥𝑖
𝑗

= 𝑥𝑘
𝑗
, 𝑘 = 𝑎𝑟𝑔 𝑚𝑖𝑛

𝑃
√∑ 𝑠𝑑𝑗(𝑥𝑖

𝑗
− 𝑥𝑃

𝑗
)

2

𝑗 ∈𝐼 (𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) Equation 2.6

where sdj represents the standard deviation of the jth attribute that is not missing, and 𝑥𝑖
𝑗

and 𝑥𝑃
𝑗
 are two different attribute values. The challenge of both closest fit and hot-deck is

non-similar cases are not considered.

In summary, the sample mean substitution method requires that each data point clustered

around a centroid needs computation to find the best estimates. Thus, the number of

clusters, the number of data points and the dimensions involved to compute missing values

make it inefficient. In pairwise deletion, since the method assumes all data is missing at

random, it uses the average sample size to estimate its standard error, which either results

in underestimation or overestimation of the standard error in the analysis of missing

values, and this makes it inefficient. The computational time may be a challenge in finding

missing data when there is a large volume of data.

Other efficient methods have been proposed to handle MAR. They are the maximum

likelihood (Allison 2012) and multiple imputation method (for MAR) (Lakshminarayan,

Harp and Samad 1999), the Expectation-Maximization algorithm (Zhao, MacKinnon

and Gallup 2005; Acock 2005), dynamic programming (Bellman 1957) machine

learning approaches (such as autoencoder neural networks) (Bishop 1995), meta-heuristic

algorithms (such as genetic algorithms (GA)) (Goldberg 1986), the Firefly algorithm

(Yang 2010) and the Wolf algorithm (Tang et al. 2012). Other algorithms that combine

22

GA and machine learning approaches include GAs and auto-associative neural networks

(Abdella and Marwala 2006; Goldberg 1986). The advantage of applying meta-heuristic

algorithms to missing value approximation is the ability to escape from local optima by

using randomization to help reduce high computation cost.

The maximum likelihood method is a statistical method of estimating missing values based

on likelihood of independent observation (Allison 2012). The process of estimation starts

with the formulation of a likelihood function, which is expressed in terms of a probability

of observed data and the missing value. Parameters are used in the function and when a

parameter is assumed as true, it must maximize the probability of observed value. This is

expressed in terms of likelihood in Equation 2.7 as:

𝐿(𝜃|𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) = ∫ 𝑓(𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝑌𝑚𝑖𝑠𝑠𝑖𝑛𝑔|𝜃)𝑑𝑌𝑚𝑖𝑠𝑠𝑖𝑛𝑔 Equation 2.7

where 𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 represents the observed data, 𝑌𝑚𝑖𝑠𝑠𝑖𝑛𝑔 is the missing data and Ө is the

parameter of interest to be estimated (Little and Rubin 1987). Thus, the likelihood function

is expressed in Equation 2.8 as:

𝐿(𝜃) = ∏ 𝑓(𝑦𝑖|𝜃)𝑛
𝑖=1 Equation 2.8

where f(y|ө) is the joint probability or probability density function of the observation y,

while θ is the set of parameters that has to be estimated given n number of independent

observations (Allison 2012). The maximum likelihood estimate is obtained by finding the

value of θ, which then maximizes the likelihood function. The parameter θ is further

expressed as a vector to indicate the variance and the mean of data distribution as:

𝜃 = (𝑚, 𝜎2)𝑇 Equation 2.9

where sigma (σ2) is a parameter that represents the variance and m is the mean. The

variance is further expressed in Equation 2.10 as:

𝜎2(𝑥) =
1

2 𝑁
∑ 𝑥𝑖

2𝑁
𝑖 Equation 2.10

where N is total independent observation on data x (x1, x2, …, xk). The variable x is the

sample of data being considered.

23

The estimated parameter θ̂ is expressed in Equation 2.11 as:

𝜃 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝜎2∈𝑅+,𝑚∈𝑅

𝐿𝑛(𝜃: 𝑥) Equation 2.11

Thus,

𝐿𝑛(𝜃; 𝑥) = −
𝑁

2
𝐼𝑛(𝜎2) −

𝑁

2
𝐼𝑛(2𝜋) −

1

2𝜎2
∑ (𝑥𝑖 − 𝑚)2𝑁

𝑖=1 Equation 2.12

Given n independent observation on k variables (y1, y2, …, yk) with no missing data, the

likelihood function is expressed in Equation 2.13 as

𝐿 = ∏ 𝑓(𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑘 ; 𝜃)𝑛
𝑖=1 Equation 2.13

When data is missing for individual observation i for y1 and y2, then the likelihood for the

individual is expressed as the probability of observing the other remaining variables in the

dataset such as y3, …, yk. There are two instances of individual observation on data: either

data is discrete, or it is continuous. This means that if y1 and y2 are discrete, then the joint

probability is the summation of all possible values of the two variables that have the

missing values in the dataset. This joint probability is expressed in Equation 2.14 as:

𝑓𝑖
∗(𝑦𝑖3, … , 𝑦𝑖𝑘 ; 𝜃) = ∑ ∑ 𝑓𝑖(𝑦𝑖1, … , 𝑦𝑖𝑘 ; 𝜃𝑦2𝑦1) Equation 2.14

Again, if the missing variables are continuous, then the joint probability is the integral of

all possible values of the two variables that have the missing values in the dataset. This

joint probability is expressed in Equation 2.15 as:

𝑓𝑖
∗(𝑦𝑖3, … , 𝑦𝑖𝑘 ; 𝜃) = ∫ ∫ 𝑓𝑖(𝑦𝑖1, 𝑦𝑖2 … , 𝑦𝑖𝑘)𝑑𝑦2𝑑𝑦1𝑦2𝑦1

 Equation 2.15

Moreover, when each observation contributes to finding the likelihood function, then the

summation or integral is performed over the missing values in the dataset. Then the overall

likelihood is the product of all observations. For instance, if there are x observations with

complete data and n-x observations with data missing on y1 and y2, the likelihood function

for the full dataset is expressed in Equation 2.16 as:

𝐿 = ∏ 𝑓(𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑘 ; 𝜃)𝑥
𝑖=1 ∏ 𝑓𝑖

∗(𝑦𝑖3, … , 𝑦𝑖𝑘 ; 𝜃)𝑛
𝑥+1 Equation 2.16

The maximum likelihood estimation of missing values produce estimates that are

consistent (that is, for a given large dataset, it produces the same or approximately

24

unbiased results), asymptotically efficient (meaning there is minimum sample variance,

which indicates a high level of efficiency in the missing value dataset) and asymptotically

normal (Allison 2012).

The expectation and maximization method learns from input data (particularly for

unlabeled data) by iteratively approximating parameters (Zhao, MacKinnon and Gallup

2005) to indicate the close relationship between missing and observed data. This

expectation and maximization method finds conditional expectation until a convergence

(that is, most likely value) is reached on the missing data using the observed data and

estimated parameters (Little and Rubin 1987). The distribution of a complete dataset Y is

expressed using the function

𝑓(𝑌|𝜃) = 𝑓(𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝑌𝑚𝑖𝑠𝑠𝑖𝑛𝑔|𝜃) = 𝑓(𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑|𝜃)𝑓(𝑌𝑚𝑖𝑠𝑠𝑖𝑛𝑔 |𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝜃)

Equation 2.17

where 𝑓(𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝑌𝑚𝑖𝑠𝑠𝑖𝑛𝑔|𝜃) represents the probability density of the observed data and

𝑓(𝑌𝑚𝑖𝑠𝑠𝑖𝑛𝑔 |𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝜃) is the probability density of the missing data in a given dataset.

The log-likelihood is then expressed in Equation 2.18 as

𝐿(𝜃|𝑌) = 𝐿(𝜃|𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝑌𝑚𝑖𝑠𝑠𝑖𝑛𝑔) = 𝐿(𝜃|𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) + 𝐼𝑛(𝑓(𝑌𝑚𝑖𝑠𝑠𝑖𝑛𝑔| 𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝜃))
 Equation 2.18

where θ represents the parameter of interest, which is controlled iteratively in two steps

such that an optimized result is produced. The steps are Expectation (E) and Maximization

(M) and are expressed as follows:

Expectation step:

This step indicates the expected log-likelihood of the data such that the parameter is the

true current estimate θt. The expected estimate is expressed in Equation 2.19 as:

𝐸𝑀(𝜃|𝜃(𝑡)) = ∫ 𝐿(𝜃|𝑌)𝑓(𝑌𝑚𝑖𝑠𝑠𝑖𝑛𝑔 |𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝜃) = 𝜃𝑡𝑑𝑌𝑚𝑖𝑠𝑠𝑖𝑛𝑔 Equation 2.19

25

Maximization step:

This step finds θ(t+1) by maximizing the expectation, which is expressed as follows:

𝐸𝑀(𝜃(𝑡+1)|𝜃(𝑡)) ≥ 𝐸𝑀(𝜃|𝜃(𝑡)), ⋁𝜃 Equation 2.20

The dynamic programming method is based on step-wise calculation such that each

reoccurring value is tracked to avoid recalculation and obtain an optimum result as a

sequence of decisions. This concept of dynamic programming, when applied to missing

values, allows the separation of a large problem space into sub-problems such that missing

data in each sub-problem can be calculated until the best optimal estimate of missing data

is obtained (Bellman 1957). This approach avoids repeating the calculation of missing

values when similar problems are encountered by storing the results from each sub-

problem. The formulation for dynamic programming can be expressed in Equation 2.21

as follows (Bellman 1957):

𝐽(𝑡) = ∑ 𝛾𝑘𝑈(𝑡 + 𝑘)𝑖𝑛𝑡
𝑘=0 Equation 2.21

where γ is the discount factor where 0 < γ < 1, and U is the utility function. Dynamic

programming is viewed as an optimization problem aimed at minimizing objective

function for the best optimal estimates. This optimization problem is formulated

(Bertsekas 2005) in equation 2.22 as follows:

𝑥𝑘+1 = 𝑓𝑘(𝑥𝑘, 𝑈𝑘, 𝑟𝑘), 𝑘 = 0,1, … , 𝑁 − 1 Equation 2.22

where k represents the discrete time, xk represents the observed data (known data), Uk is

the sequence of decisions to be made from the known data, N is the number of times a

control parameter is applied, and rk is the error introduced in making a decision. When a

cost function g() is added to the formation (Bertsekas 2005), it is then expressed in

Equation 2.23 by:

𝐸{𝑔𝑁(𝑥𝑁) + ∑ 𝑔𝑘(𝑥𝑘, 𝑈𝑘, 𝑟𝑘)} 𝑁−1
𝑘=0 Equation 2.23

where g() is the cost function. The assumption is that Uk is selected based on the

knowledge of xk for the model to be feasible. Thus,

26

||𝐸|| = ∑ (𝐽[𝑌(𝑡)] − 𝛾 𝐽[𝑌(𝑡 + 1)] − 𝑈(𝑡))
2

𝑡 Equation 2.24

where Y(t) is an observed vector, γ is the discount factor where 0 < γ < 1, and U is the

utility function.

The autoencoder neural network method or auto-associative multi-layer perceptron

method for missing data estimation identifies approximate parameters given a sparse

representation of input space as a result of the cross-coupling of hidden units (Marwala

2006). The architecture of a multi-layer perceptron is such that mathematical functions

are used to establish a relationship between input spaces through the hidden units to output

space. The tangent basis function is used in the hidden units, while linear functions are

used for output space. The non-linear mathematical relation is applied to map the output

y (which is the estimated parameter or weight) and the input x in the neural network. It is

expressed in Equation 2.25 (Bishop 1995) as

𝑦𝑘 = 𝑓𝑜𝑢𝑡𝑒𝑟(∑ 𝑤𝑘𝑗
(2)

𝑓𝑖𝑛𝑛𝑒𝑟 (∑ 𝑤𝑗𝑖
(1)

𝑥𝑖
𝑑
𝑖=1

𝑀
𝑗=1 + 𝑤𝑗0

(1)
) + 𝑤𝑘0

(2)
) Equation 2.25

where 𝑤𝑗𝑖
(1)

 and 𝑤𝑘𝑗
(2)

 represent the respective weights in the first and second layers. For

instance, moved from input i to hidden unit j or the output unit k, M is the number of

hidden units, and d is the number of output units, while 𝑤𝑗0
(1)

 represents the bias for the

hidden unit j, and 𝑤𝑘0
(2)

 represents the biases for the output unit k. The 𝑓𝑜𝑢𝑡𝑒𝑟(∗) represents

a logistic function, while 𝑓𝑖𝑛𝑛𝑒𝑟is the hyperbolic tangent function.

Whereas fouter is expressed in Equation 2.26 as

𝑓𝑜𝑢𝑡𝑒𝑟(𝑣) =
1

1+𝑒−𝑣 Equation 2.26

finner is expressed in Equation 2.27 as

𝑓𝑖𝑛𝑛𝑒𝑟(𝑣) = 𝑡𝑎𝑛 ℎ(𝑣) Equation 2.27

The bias parameters in first layer are weights from extra input with a fixed value of x0 = 1,

while the bias parameter in the second layer are weights from an extra hidden unit with

activation, which is fixed at z0 = 1.

27

The weight parameter in the neural network is approximated using Bayesian methods.

Given a dataset in matrix form, the weights are adjusted based on a probability function

to find an approximate weight to represent the missing data. This function is expressed in

Equation 2.28 as

𝑃({𝑤}|𝐷) =
𝑃(𝐷|{𝑤})𝑃({𝑤})

𝑃(𝐷)
 Equation 2.28

where P(w|D) is the probability distribution of weights called the posterior probability of

{w} given dataset D. P(D|{w}) is the likelihood function, that is, the conditional

probability that shows the occurrence of D given {w}. P({w}) is the prior probability of

occurrence of {w}, independent of whether {w} occurs or not. P(D) represents the evidence

and represents the normalized posterior probability distribution function.

The matrix dataset is expressed in Equation 2.29 as:

|𝐷| = (𝑥𝑃, … , 𝑥𝑁 , 𝑦𝑃, … , 𝑦𝑁) Equation 2.29

where the vector {x} is the input vector and the vector {y} is the output vector. Since the

model is an auto-associative neural network, the assumption is that the input vector {x} is

the same as the output vector {y}. The posterior probability distribution function of the

weight from given matrix data can be formulated using the Gibbs distribution, given the

input data (Marwala 2007).

The probability distribution of weight, given the input data, may be expanded in terms of

the likelihood function, as in Equation 2.30:

𝑃({𝑤}| [𝐷]) =
1

𝑍𝑠
 𝑒𝑥𝑝 (−𝛽 ∑ ∑ { 𝑡𝑛𝑘 − 𝑦𝑛𝑘}2 −

𝛼

2
∑ 𝑤𝑗

2𝑊
𝑗

𝐾
𝑘=1

𝑁
𝑛=1) Equation 2.30

The first term in the formulation represents the likelihood function, that is,

1

Zs
 exp (−β ∑ ∑ { tnk − ynk}2K

k=1
N
n=1 . Data contributing to error is represented by β

(expressed using sum of square error), n represents the index for training patterns, tnk is

the observed output, ynk is the estimated output, and k is the index for the output units

(Bishop 1995). The second term,
α

2
∑ wj

2W
j , represents the prior information, which is the

28

generalization parameter (or weight decay) for smooth mapping of function in the training

process such that large weight magnitudes are penalized. The coefficient α represents the

training error with the assumption that if α is a high value, then the generalization

parameter over-smooths the weights (that is, in the neural network), thereby producing

inaccurate results. Meanwhile, with a lower α value, the effect of the generalization

parameter is negligible, so a stopping criterion can be defined to reduce the computational

complexity of the model.

Moreover, 𝑍𝑠 is further expressed in Equation 2.31 and Equation 2.32 as:

𝑍𝑠(𝛼, 𝛽) = ∫ 𝑒𝑥𝑝(−𝛽 ∑ ∑ { 𝑡𝑛𝑘 − 𝑦𝑛𝑘}2 −
𝛼

2
∑ 𝑤𝑗

2𝑊
𝑗

𝐾
𝑘=1

𝑁
𝑛=1)𝑑𝑤 Equation 2.31

= (
2𝜋

𝛽
)𝑁/2 + (

2𝜋

𝛼
)𝑊/2 Equation 2.32

The optimal weight vector corresponds to the maximum likelihood. The number of layers

in the hidden unit is chosen on a trial-and-error basis. A small number of layers may

introduce insufficient flexibility, leading to poor generalization because of high bias,

while a large number of layers may introduce unnecessary flexibility, leading to poor

generalization or over-fitting caused by high variance.

The advantage of the Bayesian approach is that it penalizes complex models by selecting

the optimal model without using independent models (such as cross-validation).

Additionally, it gives reliable output estimates of missing values in a dataset (Marwala

2006).

A genetic algorithm (GA) is an evolutionary approach on survival of the fittest. This

survival depends on the mechanism of “natural selection” (Darwin 1868 cited in

Agbehadji 2011), where species considered weak and unable to adapt to the conditions of

the habitat are eliminated, while species considered strong and able to adapt to the habitat

survive. Thus, natural selection is based on the notion that strong species have a greater

29

chance of passing on their genes to future generations, while weaker species are eliminated

by natural selection. Sometimes random changes occur in genes due to changes in species’

external environments, which will cause new future species that are produced to inherit

different genetic characteristics. Thus, successive generations are able to adapt to the

habitat in respect of time.

The terminology used in GAs to refer to population members is “string” or

“chromosomes”. These chromosomes are made of discrete units called genes (Railean et

al. 2013), which are binary representations such as 0 and 1. A GA is an adaptive search

procedure (Agbehadji 2011) that depicts the mechanism of natural selection of

populations. There are rules to steer the combination of parents to form children. These

rules are referred as operators, namely crossover, mutation and selection methods. The

notion of crossover consists of interchanging solution values of particular variables, while

mutations consists of random value changes to a single parent. The children produced by

the mating of parents are tested, and only children that pass the survival test are then

chosen as parents for the next generation. The survival test acts as a filter for selecting the

best species.

The computational approach to depicting the mechanism of natural selection or search

procedure starts with an initial guess and attempts to improve the guess through evolution

(Agbehadji 2011) by comparing the fitness of the initial generation of the population with

the fitness obtained after application of operators to the current population, until the final

optimal value is produced.

Another example of an algorithm is Firefly algorithm (Yang 2008). Firefly algorithm is

modelled on the behavior of fireflies, specifically their ability to produce short and

rhythmic flashing light to communicate with other fireflies. The flashing light is used to

attract mating partners and potential prey, and it serves as warning mechanism. The firefly

signaling system consists of rhythmic flash, frequency of flashing light and time period of

30

flashing (Yang 2010). This signaling system is controlled by simplified basic rules

underlying the randomness of behavior of fireflies, which can be summarized as follows:

one firefly will be attracted to the other; attractiveness is proportional to brightness; and

brightness is affected by landscape.

The attraction formulation is based on the following assumptions:

a. Each firefly draws any other fireflies with weaker flashes.

b. This draw is based on the brightness of the firefly’s flash, which is inversely

proportional to proximity to each other.

c. The firefly with the brightest flash is not attracted to any other firefly and its fligh

t is random.

Fireflies follow the genetic/meta-heuristic approach of an initial randomization of

individual fireflies in space, after which the brighter fireflies attract those closest to them.

The fireflies whose flashes fall below a given threshold are then removed from the

population, and the brightest fireflies form the next generation. The generations/iterations

continue until a select criterion is reached or until a maximum number of generations is

reached.

The firefly’s flashes may also be used to extrapolate missing values. The variation of light

intensity and the attractiveness are two major aspects of the firefly. Regarding these two

aspects, attractiveness (β) is indicated as proportional to light intensity (γ), which is seen

by other fireflies. Thus, the formula for the attractiveness between two fireflies is given in

Equation 2.33 as follows:

𝛽(𝑟) = 𝛽𝑜𝑒−𝛾𝑟2
 Equation 2.33

where 𝛽𝑜 denotes the initial attractiveness, r denotes the Euclidean distance between two

fireflies 𝑥𝑗 𝑎𝑛𝑑 𝑥𝑖., and attractiveness (β) is denoted as proportional to light intensity (γ),

which is seen by other fireflies. The variation of attractiveness is calculated by γ, which

affects firefly behavior and convergence.

31

The distance between two fireflies is calculated using the Euclidean distance, which is

expressed in Equation 2.34 as:

𝑟 = √∑ (𝑥𝑗 − 𝑥𝑖)
2𝑛

𝑖=1 Equation 2.34

where n indicates the total number of fireflies. If firefly xi is attracted to brighter firefly xj,

it is denoted as in Equation 2.35:

𝑥𝑡+1
𝑘 = 𝑥𝑡

𝑘 + 𝛽(𝑥𝑗 − 𝑥𝑖) + 𝛼 (𝑟𝑎𝑛𝑑 −
1

2
) Equation 2.35

where 𝛽(𝑥𝑗 − 𝑥𝑖) indicates the attractiveness between the two fireflies xi and xj,

𝛼 (𝑟𝑎𝑛𝑑 −
1

2
) indicates the randomization, α is a randomization parameter (used to

control the random movements of a firefly if there are no other fireflies) that governs the

step length, and rand is a random number generator that produces random numbers from

0 to 1 (Leke and Marwala 2016). Similarly, 𝑥𝑗 represents the observed data, and 𝑥𝑖 is the

estimated value. The optimized value obtained after several iterations is then used to

estimate missing data in a dataset.

Another example of an algorithm is Wolf algorithm (Tang et al. 2012). Wolf algorithm is

a meta-heuristic algorithm based on social animals that hunt for prey and watch out for

predators in their habitat. Wolves have semi-cooperative characteristics that allow them

to move in a loosely coupled group but hunt their prey individually. This natural behavior

makes each wolf find its best position and then continuously move to a global best position

and watch out for predators during hunting (Tang et al. 2012; Agbehadji, Millham and

Fong 2016). The preying behavior of wolves is as a search for the best possible position

for a successful hunt. The four basic rules formulated from the preying behavior of wolves

are: preying initiatively, preying passively, escape from predators and scent marks.

During preying initiatively, a step is used to check the visual perimeter, and this indicates

whether the wolf should change its current position with the highest value or after a

32

random step in a random walk. Preferably a wolf moves to the highest best position within

its visual perimeter. This is expressed in Equation 2.36 as:

𝑥𝑡+1
𝑘 = 𝑥𝑡

𝑘 + 𝛽(𝑥𝑗 − 𝑓(𝑥𝑖)) + 𝑒𝑠𝑐𝑎𝑝𝑒 Equation 2.36

where 𝑥𝑗 represents a peer with better position, 𝑥𝑖 is a current position of a wolf, r is the

distance between the wolf and its peer 𝑥𝑐 with the better location within its visual

perimeter 𝑉𝑝. The escape function calculates a random position to escape with a constraint

of minimum length. Step size is less than visual distance. The attractiveness β of wolves

to each other is expressed in Equation 2.37 as:

𝛽 = 𝛽𝑜𝑒−𝑟2
 Equation 2.37

where βo represents initial attractiveness, and r denotes the distance. This distance is

expressed in Equation 2.38 as:

𝑉𝑝 ≤ 𝑟(𝑥𝑗 , 𝑥𝑐) = (∑ |𝑥𝑗,𝑘 − 𝑥𝑐,𝑘|𝜆)𝑛
𝑘=1

1

𝜆 Equation 2.38

where λ is the order (1 or 2).

Each wolf in a best position leaves a scent mark. This scent mark shows the number of

times a mark is indicated in a given boundary by each wolf (Agbehadji et al. 2016). The

mark helps other wolves in the group to note best positions that were marked by their

peers in the search space. The higher the frequency, the more attractive the position, which

leads to a successful hunt. Scent mark is formulated in Equation 2.39 as:

𝑆𝑚 = 𝑥(𝑖) ∗ ∑ 𝑓𝑛
𝑖=0 Equation 2.39

When preying passively, a wolf does not find food or a better position where its group

members are from the previous step. It then positions itself in alert mode so as to move to

a better position in comparison with the position of its peers in the group. This is expressed

in Equation 2.40 as:

𝑥𝑡+1
𝑘 = 𝑥𝑡

𝑘 + 𝛼 ∗ 𝑟 ∗ 𝑟𝑎𝑛𝑑() Equation 2.40

where α and r are constants that represent velocity and distance, while rand is a random

value from uniform distribution between 0 to 1.

33

Escape happens when a wolf detects an incoming predator. It then moves at random from

its current position to a new position that is greater than its visual perimeter vp or distance.

Escape is an important step that allows wolves to avoid being stuck in local optima. The

escape is expressed in Equation 2.41 as

𝑥𝑡+1
𝑘 = 𝑥𝑡

𝑘 + 𝛼 ∗ 𝑠 ∗ 𝑒𝑠𝑐𝑎𝑝𝑒() Equation 2.41

where s is step size, which is less than visual distance vp, 𝛼 is the velocity, and escape ()

is a function that randomly generates a new position greater than vp.

2.2.1.2 Stage 2: Identifying and eliminating duplicate text

The aim of the second stage of the data preprocessing model is to identify, match and

eliminate duplicate text from data sources. Elmagarmid et al. (2007) define duplicate as

when different strings refer to the same real-world entity. Naumann (2013) defines a

framework for duplicate detection that is categorized into identity, similarity measure,

algorithm used and evaluation aspects.

The aspect of identity with respect to the framework for duplicate detection indicates the

source of data (e.g. relational database, XML, etc.) that would be fed into the duplicate

detection process (Naumann 2013). The focus of the review is not on whether data comes

from single or multiple source, however, but on whether the source of data is authentic so

as to ensure features that are defined (for the similarity measure) to correspond to the

nature of data being considered for duplicate detection (such as text/string).

The aspect of similarity measure with respect to the framework for duplicate detection

compares two strings to find out if the strings are similar or not, hence the use of a string

similarity measure to compute the similarity of strings (also known as character-based

similarity metrics). A string similarity measure is the use of basic mathematical

expressions to compute the distance between two strings (Moere 2004). The significance

of this measure is that it shows the quality of strings of letters being compared in terms of

34

the similarity value computed between a pair of strings. During the computation of the

distance between a pair of strings, similar strings are assigned a large score while

dissimilar strings (that is, strings that are not the same) are assigned a low score. In

contrast, the distance measure assigns low weight to similar strings and high weight to

dissimilar strings within the range (0, 1). For instance, given a distance measure with a

weight in the range (0, 1), the translation to the similarity measure can be performed by

using the basic mathematical formulation in Equation 2.42:

𝑠𝑖𝑚(𝑎, 𝑏) = 1 − 𝑑𝑖𝑠𝑡(𝑎, 𝑏) Equation 2.42

where a, b are strings that are compared. The translation from similarity measure to

distance measure is computed in Equation 2.43 as

𝑑𝑖𝑠𝑡(𝑎, 𝑏) = 1 − 𝑠𝑖𝑚(𝑎, 𝑏) Equation 2.43

where a, b are strings that are compared.

The two methods that can be applied to duplicate detection of words in order to find the

similarity measure include the pairwise method and the partition-based method (Matsakis

2010). The pairwise method was developed to find matches between two files or data

sources (Matsakis 2010). The steps in computing a similarity measure in the pairwise

method (Matsakis 2010) is as follows: First, the similarity function is expressed and used

to scale the real-world dataset into a set of matched data. Secondly, a threshold is set for

matched data. Mostly, in setting the threshold, the nature of data from the data source

determines what threshold to set to define the “sensitive” nature of the data. For instance,

data coming from a health institution may require non-disclosure on the kind of illness of

a person, so in this context a threshold may be set to show records that are very close to

each other in order to suggest who the data refers to and prevent it from being disclosed

outside. Third, an algorithm links matched data together by computing a transitive closure

of the match items. Afterwards, a binary representation is used to indicate the matched

values of paired items or combine multiple attributes into a single value. Once paired items

are found, a supervised learning algorithm could be used to build a classifier from labeled

items to indicate whether the pair is a match (duplicate items). For instance, consider a

35

problem of duplicate detection in a relational database where multiple library databases

with publication and author records are to be merged. A likely way to achieve the match

is to declare publication records as co-referent, which implies that related author(s)

record(s) would also be co-referent. The co-referent decision enables the matching of

related records so as to find duplicates. The limitation of the pairwise method is that it is

unable to identify global constraints because it is likely for an entity to have a small

number of distinct values for a field (e.g. email address) but unlikely for there to be several

(Matsakis 2010).

During duplicate word/text detection, two strings/words are compared and either the first

string is correct and the other string is considered as erroneous data that could be cleansed,

or each matched string is considered as partial duplicate data that must be merged to

produce a complete string (Monge 2000). Two strings are the same or equivalent if they

are equal semantically, meaning strings obey the properties of transitivity, symmetry and

reflectivity (Monge 2000). The transitive property states that for all real numbers x,

y and z, if x=y and y=z, then x=z. The symmetric property states that for all real

numbers x and y, if x=y, then y=x. The reflexive property states that for every real

number x, x=x.

The partition-based method is used when a dataset is large (Naumann 2013). This method

assigns a score to a candidate partition based on how close it is to the true partition

(Matsakis 2010). There are different approaches for generating scores for each partition,

such as the use of the generative Bayesian model and discriminative models. While the

Bayesian model uses conditional probability distributions to model uncertainties in

unobserved duplicates, discriminative models assign scores to partitions without having

strict conditional independence assumptions on the model.

Identifying same real-world objects is achieved by the use of similarity measures in the

data preprocessing stage in large datasets. The importance of the similarity measure is that

36

it enables the identification of exact and approximate duplicates of real-world objects

(Sauleau, Paumier and Buemi 2005). Also, the similarity measure helps identify

misspelled words in large datasets. Several similarity measures that have been proposed,

and they can be categorized into the edit-based method, token-based method, domain

dependent method and hybrid-based method (Naumann 2013).

The edit-based method uses the distance between two words (in a record), which

represents the same real-world object, to find a similarity value to suggest that two words

are similar or incorrectly spelt. Examples of algorithms based on edit-based methods (also

referred to as character-based methods) are Jaro-Winkler, Smith-Waterman, Hamming

and Damerau–Levenshtein.

The token-based method forms words from sequences of characters in a string (words)

and assigns different weights to characters. An example of an algorithm based on the

token-based method is n-gram (i.e. substrings of length n) (Cohen, Ravikumar and

Fienberg 2003). Bilenko et al. (2003) compared the effectiveness of character-based and

token-based method used by the Monge-Elkan metric and indicate that algorithms based

on the character-based and token-based methods have the highest average performance

across datasets and across character-based distance metrics. However, metrics that are

robust and show high average performance may perform poorly on different datasets

because performance of similarity measures is affected by characteristics such as the

length of text, accuracy of spelling, presence of abbreviations, etc. (Gali, Mariescu-Istodor

and Fränti 2016).

The hybrid-based method applies both token-based and internal similarity function for

tokens. An example of this algorithm is Monge-Elkan (Monge and Elkan 1997) and Soft

Frequency-Inverse Document Frequency (TF-IDF). Monge and Elkan’s (1997) algorithm

is a variant of the hybrid-based method that takes records as alphanumeric strings and uses

the Smith-Waterman algorithm to compute the edit distance between two strings. This

37

algorithm is used in applications where the key field values of records are alphanumeric

strings (Tian et al. 2002). Although the algorithm is accurate in performing comparisons

when there are abbreviations and minor syntactical differences, including typographical

mistakes, the running time is proportional to the length of string, which is problematic

when there is a high volume of records to be compared (Monge 2000).

The Soft TF-IDF is a hybrid-based method that combines the cosine distance with TF-

IDF weighted vectors and the Jaro-Winkler algorithm to compute the distance metric for

name-matching, such as first name, middle name and surname (Gali et al. 2016). Initially,

the Jaro-Winkler algorithm is applied to all pairs of tokens that appear between two

strings, after which the TF-IDF measure is applied to tokens that have a similarity score

above the threshold (θ ≥ 0.9) based on the newly evaluated Jaro-Winkler distance (Gali

et al. 2016). However, cosine similarity measures may fail to correctly determine

similarity if two records are similar because of differences in the representation of

characters in words as a result of re-ordering of words or misspelling (Gali et al. 2016).

The domain dependent method compares two numerical attributes and calculates their

difference in order to find the absolute similarity value to suggest that two numbers are

duplicate. Since the present study focuses on words that could be duplicates, more

prominence is given to the edit-based method and the token-based method.

The concept of edit distance is based on insertion, deletion or substitution of characters in

words (referred as edit operation) (Tian et al. 2002). Approximately 80% of all misspelled

words (Tian et al. 2002) contain a single instance of one of the following types of error:

insertion, deletion, substitution and transposition. Thus, edit operations enable the

identification of these types of errors. An insertion error occurs when a character is

mistakenly inserted in a different position of a word. This makes the length of the mistaken

word longer than the equivalent correct word. A deletion error occurs when a character is

omitted from a word that makes the length of the mistaken word shorter than the correct

word, while a substitution error occurs when a character is erroneously replaced by

38

another character. A transposition error erroneously interchanges the positions of two

adjacent characters. Tian et al. (2002) indicate that the way to identify erroneous words is

by comparing words. While similar words have the same similarity value, incorrectly spelt

words have different similarity values, thus making the words far apart.

Tian et al.’s (2002) approach on duplicate record detection splits records into clusters and

then map record numbers based on the n-gram of field value. Tian et al. (2002) aimed to

address data quality challenges that arise from syntactic and typographical errors, and to

resolve the complex semantic inconsistency among data values. Using the approach of

Tian et al. (2002), the numbers obtained are put in clusters, and records within each cluster

are taken as potential duplicate records. Thereafter, records in each cluster are compared

with other clusters to identify true duplicate records. The advantage of this approach is

that it does not require preprocessing to correct syntactic or typographical errors in the

source data, thus helping to achieve highly accurate detection. Also, the approach ensures

only a fixed number of database scans, thus making the algorithm more time efficient. The

challenge with the clustering approach is that as the volume of data increases, separating

records into clusters could result in a number of shared n-grams (Kondrak 2005), where

an error present in one cluster tends to affect only a limited number of parts, leaving the

other cluster intact (Cavnar and Trenkle 1994). However, when a large number of clusters

are involved, it may overlook duplicate words as an error in a cluster may be

underestimated while showing results in a limited amount of time, so duplicate words

might be missed if many.

Hernandez and Stolfo (1995) apply equational theory, which consists of a set of rules to

find whether two records are duplicates. The equational theory identifies equivalent

records by a complex domain-dependent matching process, meaning the approach

depends on the type of application being used. Although the approach achieves high

accuracy of detection, it is application dependent. Hernandez and Stolfo (1998) apply

equational theory and transitive closure to detect potential customer names in a direct

39

marketing-type application. The approach uses the transitive closure to combine

independent results after multiple database passes in order to produce accurate results in

finding duplicate records in massive amounts of data at lower computational cost.

The framework used by Naumann (2013) indicates that one important aspect of the use of

algorithms is that it links matched data together to show whether there are duplicate

records/words or not. In order to find out whether strings are duplicate or not, several

duplicate text detection techniques have been proposed, namely standard approach, sorted

neighborhood, edit distance, and adaptive duplicate detection. These are discussed in the

following subsections.

i. Standard approach

Monge (2000) indicates that the standard approach to detecting duplicates is to sort the

data and perform pairwise comparison. When this is done, data is consecutively arranged,

and duplicate data may be located in nearby or opposite extreme positions with increased

index size of data (Kołcz and Chowdhury 2008).

ii. Sorted neighborhood technique

The sorted neighborhood technique uses merge and purge to find duplicate text

(Hernandez and Stolfo 1995). The algorithmic process of the sorted neighborhood

technique starts by creating key attributes, sorting the data based on key attributes and

then merging the data.

iii. Adaptive duplicate detection technique

Adaptive duplicate detection (Monge 2000) is based on the concept of transitive closure

such that duplicates are connected with each order to form an undirected graph. An

undirected edge connecting each duplicate is found when each string corresponds to each

order through a pairwise comparison method. This connection is then represented by a

union and find approach (Cormen, Leiserson and Rivest 1990; Hopcroft and Ullman

40

1973). However, the adaptive approach can expand and shrink the cluster, depending on

the data size by using priority queue of duplicate data instead of window size.

iv. Edit-distance technique

The edit distance technique uses the idea of the minimum number of operations (such as

insert operations and update operations) performed on an individual alphabet to transform

one string to another (Elmagarmid et al. 2007). The algorithm is domain independent and

final collective matched results are displayed using the Union/Find algorithm (which

keeps track of cluster of duplicates) instead of graph structure. For instance, the edit

distance dist between to two strings s1 and s2 is matched to a minimum value ɛ. The two

string attributes are required to be less than ɛ, formulated in Equation 2.44 as

{(𝑥, 𝑦, 𝑑𝑖𝑠𝑡(𝑥, 𝑦)) | 𝑥 ∈ 𝑠1 ∧ 𝑦 ∈ 𝑠2 ∧ 𝑑𝑖𝑠𝑡(𝑥, 𝑦) ≤ 𝜀} Equation 2.44

An optimized mapping function f (which finds the letters of a string) over s1 and s2 with

a new distance function ndist much less than initial dist is defined such that:

 (∀𝑥, ∀𝑦, 𝑛𝑑𝑖𝑠𝑡(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝑑𝑖𝑠𝑡(𝑥, 𝑦) Equation 2.45

The determined f and ndist is used to compute the pairs (x, y) such that:

𝑛𝑑𝑖𝑠𝑡(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝜀 Equation 2.46

where 𝜀 represents the minimum value that ensures that the distance between pairs does

not exceed the control parameter.

The strength of each pair of string in terms of the distance between two strings/words can

be achieved by calculating distances (in terms of score or weight between 0 and 1) between

pairs (Elmagarmid et al. 2007) using algorithmic techniques such as Damerau–

Levenshtein (Damerau 1964), Hamming (Hamming 1950), the Jaro-Winkler distance

metric (Jaro 1995, 1989; Winkler 1999), the Smith-Waterman algorithm (Smith and

Waterman 1981) and the Basic Local Alignment Search Technique (BLAST) (Altschul et

41

al. 1990). In the following subsections, the study explores further algorithms that have

been developed based on the edit-based methods as these form a significant portion of the

study.

a. Damerau–Levenshtein

The Damerau–Levenshtein algorithm (Damerau 1964) is a modified version of the

Levenshtein algorithm that considers the transposing of two adjacent characters. The

challenge with the Damerau–Levenshtein algorithm is that when characters are

transposed, there is additional computation cost. The Levenshtein (1966) algorithm counts

the number of edits, such as insertion, deletion and substitution, that are needed to change

a string another.

b. Hamming distance

The Hamming distance method (Hamming 1950; Bard 2007) allows only substitution of

words with the same/fixed length. In comparing different lengths that not only involve

substitution but also insertion or deletion, the Hamming distance method is not appropriate

as datasets in the real world have different lengths of words.

c. Jaro distance metric

The Jaro distance is used to compute the distance between two strings (A and B) and is

based on matching and transposition of short strings (Jaro 1995, 1989; Winkler 1999)

instead of long strings. The Jaro distance (Jaro 1989) and Jaro-Winkler distance allow

only transposition of characters and, consequently, it is more suited for comparing short

strings like words and names, even though the length of the shortness is not universally

defined. The Jaro distance metric compares a short string (such as first and last names) to

find the match of characters, then computes a metric based on the two strings. A character

is transposed if it occurs immediately after the expected location of a character in a string.

The transposition of a character is included in the Jaro distance value calculation only if

it occurs in both strings. The letter transposition used in Jaro distance metrics makes it

42

robust at finding similarity measures in short letters. The distance value is computed using

the following steps:

Step 1: computation of length |s1| and |s2| of the two strings.

Step 2: search matched (common) character k in strings s1[i] and s2[i] such that

s1[i]=s2[j] and |𝑖 − 𝑗| ≤
1

2
min {|s1|, |s2|}

Step 3: compute the number of transpositions t, by comparing the ith common character

in s1 with the ith common character in s2. Thus, each non-matched character is a

transposition.

The distance value is computed in Equation 2.47 as

𝐷𝑗 =
1

3
∗ (

𝑘

|𝑠1|
+

𝑘

|𝑠2|
+

𝑘−
𝑡

2

𝑘
) Equation 2.47

The Jaro distance was enhanced by William E. Winkler (1999) on the basis that two

comparing strings are given a higher score if they start with the same letters. The reason

being that mistypes of letters are not usually seen in the start of strings (Ilyankou 2014).

This suggests that mistype errors mostly occur in the middle or at the end of words. The

strings that have longer sets of characters in common at the start of comparison are given

a higher similarity score (Ilyankou 2014). The final Jaro-Winkler score is obtained from

the expression in Equation 2.48 as

𝐷𝐽𝑎𝑟𝑜−𝑊𝑖𝑛𝑘𝑙𝑒𝑟 = 𝐷𝑗 + 𝑙 ∗ 𝑝 ∗ (1 − 𝐷𝑗) Equation 2.48

where 𝐷𝑗 is the Jaro distance value for a pair of strings, l is number of repeating words at

the start of two words, and p is the coefficient between [0, 1] which is define by a user. In

this case, if p is arbitrarily set as 5, then it means two strings which start with 3 identical

characters can be regarded as the same, thus coefficient p=1/3. After several experiments

to define a standard coefficient value for p, a value of 0.1 was defined as the most

appropriate standard value (Ilyankou 2014). The disadvantage of the Jaro-Winkler

algorithm is that it works best with short strings or words such as personal names.

43

d. Smith-Waterman algorithm

The Smith-Waterman algorithm (Smith and Waterman 1981) is a dynamic programming

that applies the pairwise method to compare sequence of two strings in order to find the

best matching piecewise (local alignment). The Smith-Waterman algorithm performs

deletion, updating or insertion (Smith and Waterman 1981) of characters in words, and it

is more suited for performing local alignment of words. Generally, alignment is an

arrangement of characters in a word. The significance of local alignment is that it either

compares a short sequence to a large sequence or a partial sequence to a whole sequence,

or it identifies newly determined sequences. Aligning sequences of words helps discover

the relationship between the two words. This relationship is expressed as the minimum

distance, so the more minimum a distance is, the better the chances to avoid missing

matches that guarantees an optimal local alignment and gives the best performance on

accuracy of results (Pearson 1991; 1995).

With the Smith-Waterman algorithm, instead of comparing the total sequence of strings

as a whole, the algorithm group compares strings into sub-groups or local alignments (that

is, sequences with maximum level of similarity) until the search for optimal alignment of

strings within each group is complete. The change in alignment is expressed using

deletion, updating or insertion of characters in a string (Monge 2000). During string

matching, the algorithm considers the gap between two strings and then computes the

alignment of strings using a matrix formulation. Three parameters used in the matrix

formulation are: the score matrix E of the match of each symbol (that is, space, comma

and period) in the alphabet, the cost of starting (s) a gap and the cost of continuing (c) a

gap. The ratio of these parameters determines the efficiency of the algorithm. The

approximate match in the optimal alignment is the maximum similarity between each

string computed in Equation 2.49 as follows:

𝑀[𝑖][𝑗] = 𝑚𝑎𝑥 {

𝑀[𝑖 − 1][𝑗 − 1] + 𝑠(𝑎𝑖 , 𝑏𝑗)

𝑀[𝑖 − 1][𝑗] − 𝑐; 𝑖𝑓 (𝑎𝑖 , −)

𝑀[𝑖][𝑗 − 1] − 𝑐; 𝑖𝑓 (−, 𝑏𝑗)

 Equation 2.49

44

where an entry into the matrix E(i,j) will produce the best possible match m of the prefix

of two strings. When the prefixes match, their alignment a is found along the diagonal.

The best possible score of the matrix is computed in Equation 2.50 as:

𝑆𝑐𝑜𝑟𝑒 = 𝑀𝑎𝑥𝑖,𝑗=1
𝑛 (𝑀𝑎𝑡𝑟𝑖𝑥[𝑖][𝑗]) Equation 2.50

A change on an item can be as a result of deletion, updating the characters in a string.

Although computational time and complexity is a challenge with the Smith-Waterman

algorithm, the search process tends to minimize the distance or maximize the similarity

between the compared strings (Altschul et al. 1990) and gives the best performance on

accuracy of results.

e. Basic Local Alignment Search Technique

The BLAST algorithm (Altschul et al. 1990; Shpaer et al. 1996) is a heuristic method that

finds the highest score of local optimal alignments between a query sequence and a

database. Basically, the BLAST for sequence alignment is based on computational

biology for protein and DNA analysis (Guo, Wang and Devabhaktuni 2011). The BLAST

algorithm is based on the assumption that a good alignment often contains short lengths

of same matches (Altschul et al. 1990). This suggests that when two sequences of words

are similar, there is a shorter length that results in high similarity.

The algorithm operates in three steps: the first step is to accept a word length and find the

score; in the second step, the database is searched; and the third step finds each hit if it is

within the threshold score for the Maximal Segment Pair. The BLAST algorithm was

developed from the Smith-Waterman algorithm. The difference between the BLAST

algorithm and the Smith-Waterman algorithm is that the BLAST algorithm finds short

matches between sequences of string for optimal alignment without considering an entire

sequence of string, so less computation time is involved. The Smith-Waterman algorithm

also considers an entire sequence of strings to find local optimal alignments. Therefore,

high computational time is involved. The advantage of Smith-Waterman is the accuracy

45

of the entire sequence local alignment (Altschul et al. 1990). Thus, the Smith-Waterman

algorithm avoids missing important data in the string of data. Heuristic methods are

random search methods that help reduce the time and computational cost to speed up the

local alignment search (Rajasekaran et al. 2001). Although the BLAST algorithm provides

search results in a short time, it may not guarantee accurate results as compared to the

Smith-Waterman algorithm (Shpaer et al. 1996).

In summary, application tools developed from the Smith-Waterman algorithm include

FAST All (FASTA) (which works with any alphabet (Pearson 1991)) and FASTP

(Lipman and Pearson 1985) for protein and DNA sequence alignment in a database

(Pearson 2014). Smith-Waterman has also been applied in the development of hardware

devices. An example of such a development is the “Fast data finder”, which matches the

accuracy of software versions while greatly speeding up its execution (Shpaer et al. 1996).

Pearson (1995) compares the accuracy of BLAST, FASTA and Smith-Waterman on

protein sequences, and the results suggest that both FASTA and Smith-Waterman are

more sensitive than BLAST. Pearson (2014) indicates that the application of BLAST and

FASTA can be challenged by today’s very large protein databases. Thus, search sensitivity

(in terms of accuracy) can be improved by searching smaller comprehensive databases for

complete protein sets where a slight mismatch is not acceptable, which might be applied

to datasets considered to contain “sensitive” information (e.g. health records).

CLC bio (2007) indicates that the current dispensation of big data requires fast and

effective data analysis. Algorithms like BLAST have replaced the Smith-Waterman

algorithm as demands for time to handle large amounts of data are stronger and more

prevalent. However, the concern about the risk of missing important information, if not

using the most sensitive algorithm for database searches, becomes even more relevant.

Thus, the use of the Smith-Waterman algorithm is significant when accuracy of

information is key. Moreover, the use of the Smith-Waterman algorithm is becoming more

and more widespread when high accuracy is needed (CLC bio 2007). In the sense that

46

Smith-Waterman search guarantees to find optimal local alignments and returns only one

result per comparison, however, the search process performs a larger number of

computations than BLAST. Therefore, the Smith-Waterman algorithm may be enhanced

to perform accurate comparison with less computing time when large volumes of data are

required. Meanwhile, in principle, all pairs of records/words in a dataset should be

compared, which is highly infeasible when a large volume of data is used in a big data

analytics framework (Naumann and Herschel 2010).

CLC bio (2007) indicates that the Smith-Waterman algorithm should be used when

obtaining exact search results on comparison is more important than time. This

proposition was as a result of an empirical study that used the Smith-Waterman algorithm

to compare query sequences and the sequences in the database on a character-to-character

level. The study by CLC bio (2007) demonstrates that Smith-Waterman was able to find

optimal local alignment instead of global alignment considering segments of all possible

lengths by allowing deletion and insertion of arbitrary lengths to optimize the similarity

measure (CLC bio 2007). The deletion and insertion process led to longer time to compute

the optimal local alignment. However, this suggests that with the ever-increasing scale of

data, enhancing the Smith-Waterman algorithm to improve both accuracy and time to

compute deletion and insertion becomes relevant in duplicate detection.

Monge (2000) suggests that the accuracy of duplicate detection algorithms can be

improved by defining a small window size where results of several database passes for

duplicates are combined for the same cost, rather than one pass over the database with a

large window size. One way to combine the results of multiple passes on words is by

computing the transitive closure of all discovered pairwise alignments using an “is a

duplicate of” relationship. However, in typical databases, duplicate words tend to be

distributed sparely over the space of possible records, and the propagation of error is rare

(Monge 2000).

47

This discussion above presented a review of related work on duplicate detection

algorithms and their associated challenges. The review showed the following distinctions:

while Jaro distance (Jaro 1989) allows only transposition of characters, the Smith-

Waterman algorithm allows deletion, updating or insertion of characters (Smith and

Waterman 1981). The challenge with the Smith-Waterman algorithm is that it is unable to

perform global alignment of characters to reveal accurate duplicate words, whereas the

Jaro-Winkler algorithm is used to compare short words such as names. The reason for

choosing the Jaro-Winkler and Smith-Waterman algorithms is to demonstrate the

accuracy of pairwise comparison of words in large datasets and determine whether

pairwise comparison may lead to information loss if large amounts of data are involved.

The Naumann’s (2013) framework for duplicate detection as explained ealier will be

adopted for this study because of its simplified process that is identity, similarity measure,

algorithm used and evaluation aspects.

2.2.1.3 Stage 3: Data transformation

Data transformation is the process of converting or consolidating data through

normalization, hierarchical representation of attributes (generalization) and attribute

construction into a suitable format for mining and visualization (Panda, Nag and Jana

2014).

Data normalization resolves differences in choice of measurement by assigning equal

weights to all data attributes considered for transformation. Normalization is significant

for data classification algorithms because it puts attributes within a small and specified

range (0.0, 1.0) for easy analysis of items. The approaches used in data normalization are

min-max, z-score (zero-mean) and decimal scaling (Panda et al. 2014).

The min-max approach does linear transformation of the original data value and preserves

the relationship with the original data through mapping. Given an observed value vi of an

48

attribute A, the mapping onto v in the new range [Newmin(A), Newmax (A)] is computed in

Equation 2.51 by:

𝑣𝑖
, =

𝑣𝑖−𝑚𝑖𝑛(𝐴)

𝑚𝑎𝑥(𝐴)−𝑚𝑖𝑛(𝐴)
(𝑛𝑒𝑤𝑚𝑎𝑥(𝐴) − 𝑛𝑒𝑤𝑚𝑖𝑛(𝐴)) + 𝑛𝑒𝑤𝑚𝑖𝑛(𝐴) Equation 2.51

where 𝑣𝑖
,
 contains the min-max values.

Instances where the min-max values of attributes are unknown, the z-score approach is

most suitable. This approach uses the mean and standard deviation (σ) of numeric attribute

A. The observed numeric value vi is then normalized using the expression in Equation 2.52

as:

𝑣𝑖
, = (𝑣𝑖 − 𝑚𝑒𝑎𝑛) /𝜎 Equation 2.52

The standard deviation (σ) for the population is expressed in Equation 2.53 as:

 



N

i

i meanv
N 1

21
 Equation 2.53

where N is the total population. When population standard deviation is unknown, samples

are small.

The decimal scaling (Panda et al. 2014) is normalized by moving decimal points based on

the absolute value of the attribute A. A numeric value vi is normalized to 𝑣𝑖
,
 as in Equation

2.54:

𝑣𝑖
, =

𝑣𝑖

10𝑗 Equation 2.54

where j is the smallest integer with the max (|𝑣𝑖
, |) < 1, vi is the range values, 𝑣𝑖

,
is the

scale value, and the range of decimal scale is between (-1, 1).

The data transformation helps better understand data distribution and also results in data

discretization in range.

49

2.2.1.4 Stage 4: Data reduction

Data reduction is the process of reducing volumes of data from original data sources

(Rehman 2016). During the search process, relevant features are selected and condensed

into groups/subsets by removing redundant features and condensing the size of data into

subsets. The significance of this process is that relevant features are selected with less

computational time (Crone, Lessmann and Stahlbock 2006) as a result of the efficient

search process.

The approaches to data reduction when velocity and volumes matter are: dimensionality

reduction, numerosity reduction and data compression (Rehman 2016). Dimensionality

reduction is the removal of attributes that are considered not important. Although what

constitutes “not important” is subjective, meaning it refers to users’ discretion, techniques

used to implement dimensionality reduction include Principal Components Analysis

(PCA) and random forests/decision tree ensembles. PCA is a data preprocessing technique

that combines similar or correlated attributes together and creates new attributes that are

superior to the original attributes (Janecek and Gansterer 2008). The random

forests/decision tree ensemble (Breiman 2001) approach to dimensionality reduction is

useful in generating large and carefully constructed sets of trees against a target attribute

and then use each attribute’s usage statistics to find the most informative subset of

features. The random forest approach is related to nearest neighbor predictors due to the

set of trees emanating from a single neighbor. Thus, if a single attribute is often selected

(based on the rate/frequency/calculated score) as best split, then that particular feature is

selected and retained into a respective subset as the relevant feature. The split which forms

an ensemble method is based on the divide-and-conquer approach. Random split selection

(Dietterich 1998) is applied to split each selected node at random from among several K

best splits (Breiman 2001). During the ensemble process, each iteration generates an

output set of features. These outputs constitute new training sets, which are further

randomized in the original training set used for the feature selection (Breiman 1999).

50

In contrast, numerosity reduction uses statistical techniques such as regression and log-

linear models, sampling and clustering to reduce the size of data, while data compression

techniques compress the original data (either string or video) into approximated data

(Ramya and Pushpa 2016). In respect of these approaches, the following subsections

review the methods of feature selection.

i. Methods of feature selection

Generally, features may be characterized as relevant, irrelevant or redundant. A feature

may be considered as an attribute of data (e.g., a person has an attribute such as name). A

feature is said to be a relevant feature when it has an influence on output features and its

role cannot be assumed by other features in a dataset. A feature is irrelevant when it does

not have any influence on output features and its values are generated at random. Finally,

a redundant feature is one that assumes a role of another feature. The characteristic of a

feature leads to the use of different methods for feature selection. These methods are

categorized into the filter method (which is classifier-independent), the wrapper method

(which is classifier-dependent) (Liu et al. 2017) and the embedded method (Elisseeff and

Guyon 2003).

The filter method finds the relevance of a feature (Liu et al. 2017) in a class by evaluating

each feature without the use of a learning algorithm. A feature classification algorithm

that adopts the filter model evaluates the goodness of each feature and ranks features by

distance measure (Almuallim and Dietterich 1994), information measure (Ben-Bassat

1982) and dependency measure (Hall 2000).

The distance measure (Almuallim and Dietterich 1994) finds the difference in value

between two features. If the difference is equal to zero, then the features are

indistinguishable, otherwise the features are distinguishable. Hence, features are separated

into different subsets based on the distance computed. In contrast, the information measure

finds the information gain of a feature. The information gain is expressed as the difference

51

between uncertainties, defined as a situation where a decision to select a feature is based

on the prior amount of information gain on each feature and the expected amount of

information gain of each feature.

The dependency measure (also referred to as the correlation measure) predicts the value

of one feature from the value of another feature. The prediction of a feature is based on

how strongly the feature is associated with/dependent on a class/subset of features. A high

dependency value could suggest that a feature is strongly associated with a subset,

otherwise a feature is weakly associated with a subset. The measured values are ranked in

terms of relative importance to select the relevant feature. Moreover, these measures used

for evaluating and ranking features are the basis for not using a learning algorithm in the

selection of features in the filter method. Since the filter method does not use a learning

algorithm, less computational time is spent on selecting individual features. The challenge

with the filter method is that it ignores the combination of features because it is unable to

learn from features.

The wrapper method (Kohavi and John 1996) uses a learning algorithm to learn from

every possible feature subset, trains the selected subset and evaluate its usefulness (Liu et

al. 2017; Uncu and Turksen 2007). Selected features are ranked according to their

usefulness and predictive power of the classification algorithm, which is measured in

terms of performance of the classification algorithm (Fong, Yang and Deb 2013). The

wrapper method uses a statistical re-sampling technique called Cross Validation and

measures the accuracy of classification results. The approach to learning methods includes

the artificial neural network and the support vector machine, which are discussed in

subsequent paragraphs. The search strategies used in the wrapper search method are

categorized into sequential search (forward selection and backward elimination search),

exhaustive search and random search (Dash and Liu 1997). The sequential search strategy

includes the use of forward and backward techniques to iteratively add or remove features.

On the one hand, the forward selection algorithm starts an iteration with an empty set and

52

uses specified objective functions to select features into subsets. On the other hand, the

backward selection algorithm starts with a full set of features and uses a specified

objective function to remove least significant features that do not met the set criteria

(Marill 1963).

An exhaustive search performs a complete search of the entire feature subset and then

selects the possible optimal result (Waad, Ghanzi and Mohamed 2013). When the number

of features grow exponentially, the search takes more computational time (Aboudi and

Benhlima 2016), thus leading to low performance during search. The random search

strategy (also referred to as population-based search) is a meta-heuristic optimization

approach based on the principle of evolution in search for a better solution. The advantage

of the random search strategy over sequential and exhaustive search is the reduction in

computation cost and time.

The third category of the feature selection method is the embedded method, which selects

features by putting data into two sets, namely training and validation sets. When variables

that define features are selected for training, retraining a predictor variable for every

variable subset is avoided (Kumar and Minz 2014), and this makes the embedded method

reach solutions fast. However, predictor variable selection is model specific.

As mentioned earlier, among the traditional approaches to learning methods/machine

learning methods are the artificial neural network (ANN) and support vector machine

(SVM). The neural network is an interconnected group of nodes (neurons) where each

node receives inputs from other nodes and assigns weights between nodes to adapt so that

the whole network learns to perform useful computations (Bishop 2006). The challenge

with algorithms based on ANN is that it requires many iterations over the training set

before choosing its parameter (Aamodt 2015), leading to high computation. The neural

network structure and learning algorithms use the perceptron neural network (that is, an

algorithm for supervised classification) and back-propagation. The advantage of a

53

learning algorithm is that it helps in adapting weights of a neural network by minimizing

error between a desired output and an actual output. The aim of the back-propagation

algorithm is to train multi-layer neural networks by computing error derivatives in hidden

activities and updating weights accordingly (Kim 2013). The back-propagation algorithm

uses gradient descent to adjust the connections between units within the layers such that

any given input tends to produce a corresponding output (Marcus 2018).

Another traditional approach to learning is the use of an SVM. The SVM performs

classification by constructing an N-dimensional hyper-plane that optimally separates data

into two categories (Boser, Guyon and Vapnik 1992). However, when large volumes of

data are involved, it results in high computational cost in training and selection of features

(Lin, 2006) and may not be efficient in providing optimal results. These challenges led to

the concept of deep learning, which historically originated from ANNs (Deng and Yu

2013).

Deep learning as a method for feature selection is defined as a sub-field of machine

learning that is based on learning several levels of representation, corresponding to a

hierarchy of features where higher-level features are defined from lower-level ones, and

the same lower-level features can help define many higher-level features (Deng and Yu

2013). Marcus (2018) indicates that deep learning is a statistical technique that helps

classify patterns based on sampled data using neural networks with multiple layers. The

neural networks used in deep learning consist of a set of input units that stand for things

like pixels or words, multiple hidden layers (the more such layers, the deeper a network

is said to be) containing hidden units (also known as nodes or neurons), and a set of output

units, with connections running between those nodes (Marcus 2018) to form a mapped

structure between inputs and outputs. This mapped structure that is formed between the

input and output nodes gives an indication of how nodes are connected to form a complex

representation of large data. In this regard, providing an efficient way to optimize a

complex representation of data could ensure that the test dataset used in neural networks

54

loosely resembles the training set. This close resemblance suggests a minimization of

deviations between test and training sets in large datasets. Therefore, deep learning is a

way to optimize complex systems to map inputs and outputs, given a sufficient amount of

data (Marcus 2018).

In principle, deep learning uses multiple hidden layers of non-linear processing that is

hierarchical, as well as parameters to learn from hidden layers using different algorithms

(such as back-propagation algorithms) with large amounts of available training data (Patel,

Nguyen and Baraniuk 2015). Based on these two principles, deep learning methods for

classifying patterns are deep discriminative models/supervised-learning models (e.g. deep

neural networks or DNNs, recurrent neural networks or RNNs, convolutional neural

networks or CNNs, etc.) and generative/unsupervised models (e.g. deep belief networks

or DBNs, deep Boltzmann machines or DBMs, etc.).

A deep neural network (DNN), sometimes referred to as DBN, is a multilayer network

with many hidden layers, whose weights are fully connected and initialized (pre-trained)

using stacked RBMs or DBN (Deng and Yu 2013). A recurrent neural network (RNN) is

a discriminative model but has also been used as a generative model where “output”

results from a model represent the predicted input data. When an RNN is used as a

discriminative model, the output result from the model is assigned a label, which is

associated with an input data sequence (Deng and Yu 2013). Recurrent nets (RNNs) have

been applied on sequential data such as text and speech (LeCun, Bengio and Hinton 2015)

to scale up large text and speech recognition. RNNs have been found to be very good at

predicting the next character in the text or the next word in a sequence, but they can also

be used for more complex tasks (LeCun et al. 2015).

Learning of parameters in RNN has been improved through the use of information flow

in bi-directional RNNs and a cell of LSTM (long short-term memory). The challenge is

that when training neural networks for deep learning classification problems, the back-

55

propagated gradients approach often used either grows or shrinks (that is, decays

exponentially in the number of layers (Schmidhuber 2014)) at each time step, so over

many time steps it typically explodes or vanishes (that is, increases out of bounds or

decreases at each iteration) (LeCun et al. 2015). Several methods to solve the exploding

and shrinking of a learned parameter include the primal-dual training method, cross

entropy (Deng and Chen 2014), echo state networks and sigmoid as activation functions

(Sohangir et al. 2018), among others. While the primal-dual training method was

formulated as an optimization problem, the cross entropy is maximized, subject to the

condition that the infinity norm of the recurrent matrix of the RNN is less than a fixed

value to guarantee the stability of RNN dynamics (Deng and Yu 2013). In the echo state

network, the output layers are fixed to be linear instead of nonlinear, and the recurrent

matrices are designed, not learned. Similarly, the input matrices are also fixed and not

learned, due partly to the difficulty of learning. The sigmoid functions are mathematical

expressions that define the output of a neural network given a set of data inputs.

Meanwhile, the use of LSTM enables networks to remember inputs for a long time using

a memory cell that acts like an accumulator, which has a connection to itself at the next

time step (iteration) and has a weight, so it copies its own real-valued state and temporal

weights. But this self-connection is multiplicatively gated by another unit that learns to

decide when to clear the content of the memory (LeCun et al. 2015). LSTM networks

have subsequently proved to be more effective, especially when they have several layers

for each time step (LeCun et al. 2015).

A convolutional neural network (CNN) shares many weights, and pools outputs from

different layers, thereby reducing the data rate from the lower layers of the network.

Abdel-Hamid et al. (2014) indicate that time sharing and frequency are the two

dimensions used in CNN that are useful in time delay neural networks, such as for speech

recognition. The CNN has been found highly effective in computer vision, image

recognition (LeCun et al. 1998; Krizhevsky, Sutskever and Hinton 2012) and speech

recognition (Abdel-Hamid et al. 2014; Deng and Yu 2013) in order to analyze the internal

56

structure of complex data through convoluted layers. The CNN has also gained attention

in text data, such as sentence modeling, search engines, in systems for tagging (Weston,

Chopra and Adams 2014), sentiment analysis (Sohangir et al. 2018) and stock market

price prediction (Aamodt 2015).

The Deep Boltzmann machine (DBM) is a special Boltzmann machine where the hidden

units are organized in a deep, layered manner. Only adjacent layers are connected, and

there are no visible-visible or hidden-hidden connections within the same layer. A deep

belief network (DBN) is a probabilistic generative model composed of multiple layers of

stochastic, hidden variables. The top two layers of deep belief networks have undirected,

symmetric connections between them, whereas the lower layers receive top-down,

directed connections from the layer above. Table 2.2 shows a summary of related work

on deep learning:

Table 2.2 Deep learning methods and problem domains

Deep learning method Search/problem domain Author(s)

Convolutional Deep Belief

Networks

Unsupervised feature

learning for audio

classification

Lee, Largman, Pham and Ng

Convolutional Deep Belief

Networks

Scalable unsupervised

learning of hierarchical

representations.

Lee, Grosse, Ranganath and

Ng (2009)

Deep Convolutional Neural

Networks (DCNN)

Huge number of high-

resolution images

Krizhevsky et al. (2012)

Deep Convolutional Neural

Networks

Event-Driven Stock

Prediction

Ding et al. (2015)

Deep Neural Networks Classification of stock and

prediction of prices

Batres-Estrada (2015)

Deep Neural

Network-Hidden Markov

Models (DNN-HMMs)

Discovering features in

speech signals

Jaitly (2014)

Training the CNN

architecture based on the

back-propagation algorithm

Character recognition in

sequential text

LeCun et al. (1998)

Convolutional Neural

Network

Stock trading Siripurapu (2015)

57

From Table 2.2, it can be observed that recent research has applied deep learning to

different search domains such as image processing, stock trading and character

recognition in sequential text analysis, among others that demonstrate the unique

capabilities of deep learning methods for classification of features in large dataset

analysis.

The distinction between supervised and unsupervised learning is that, in supervised

learning, a pre-classified example of features is available for learning and the task is to

build a (classification or prediction) model that will work on unseen examples. In

unsupervised learning, meanwhile, there are neither pre-classified examples nor feedback

to the learning model (this technique is suitable for clustering and segmentation tasks)

(Barto and Sutton 1997; Kotsiantis 2007). These networks are generally trained by a

gradient descent algorithm designated back-propagation. The back-propagation algorithm

computes the gradient (a vector of partial derivatives) of an objective function with respect

to the parameters in a neural network (Le 2015). However, for deep networks, back-

propagation alone has the problem of being trapped in local optima in the non-convex

objective function (Patel et al. 2015).

Building classifiers from deep learning techniques integrated with meta-heuristic search

methods (also referred to as random search strategy, as mentioned earlier) enhances

computational efficiency and the quality of selecting useful and relevant features (Li et al.

2017). The advantage of meta-heuristic search methods is that they use random search

strategies to avoid being trapped in local optima when the search space grows

exponentially. Meta-heuristic algorithms that have been integrated with traditional

machine learning methods include the following, as indicated by Fong et al. (2013) and

summarized in Table 2.3:

Table 2.3: Meta-heuristics algorithms integrated with traditional method

58

Author(s) Traditional methods of

classification

Meta-heuristics/bio-

inspired algorithm

Search domain

Ferchichi, Laabidi

and Zidi (2009)

Support vector machine Tabu search, GA Urban transport

Unler and Murat

(2010)

Logistic regression Particle swarm

optimization (PSO),

Scatter search, Tabu

search

General

Unler, Murat and

Chinnam (2011)

Support vector machine PSO General

Abd-Alsabour,

Randall and Lewis

(2012)

Support vector machine ACO General

J. Wang, Hedar, S.

Wang and Ma (2012)

Rough set Scatter search Credit scoring

Fong et al. (2013) Neural Network Wolf Search

Algorithm

General

It can be observed from Table 2.3 that research is focused on traditional machine learning

methods with meta-heuristic search methods. However, with the current dispensation of

very large volumes of data, traditional machine learning methods are not suitable because

of the risk of being stuck in local optima and the likelihood that the same results might be

recorded as more data is generated, which might not give an accurate result on feature

selection for a classification problem. Among the meta-heuristics-based algorithms used

are GA, Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), the Wolf

Search Algorithm (WSA), Multiple Species Flocking (MSF) model and the Bat

Algorithm.

a. Genetic Algorithm

GAs are an evolutionary approach based on survival of the fittest. This survival

mechanism, as explained earlier, helps formulate adaptive search procedures to select

feature subsets by optimizing an objective function/fitness function in any given search

problem.

59

b. Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO) (Dorigo and Cambardella 1997) is a meta-heuristic

inspired by the foraging behavior of real ants in their search for the shortest paths to food

sources. When a source of food is found, ants deposit a pheromone to mark their path for

other ants to traverse. A pheromone is an odorous substance used as a medium of indirect

communication between ants. The quantity of pheromone depends on the distance,

quantity and quality of the food source (Al-Ani 2007). However, the pheromone substance

tends to decay or evaporate with time, which prevents ants from converging to sub-optimal

positions (Stützle and Dorigo 2002). When a lost ant that moves at random detects a laid

pheromone, it is likely that it will follow the path to reinforce the pheromone trails. Thus,

ants make probabilistic decisions by updating their pheromone trail and local heuristic

information (Al-Ani 2007) to explore larger search areas.

Dorigo and Cambardella (1997) define a trail as the formation and maintenance a line.

Ants use trails or pheromone trails both to trace a path to a food source and to prevent

themselves from getting trapped in a single food source (Agbehadji 2011). Each time an

ant searches, trails are drawn and pheromone substances are deposited in the trail. This

substance helps ants to communicate with each other about the location of food sources.

Therefore, other ants continuously follow this path and also deposit substances for the trail

to remain fresh. Computational systems that depict ant pheromone behavior creates local

and global trail-updating formulations. This updating strategy constitutes the property of

a meta-heuristic method (Blum and Roli 2003), thus an ant colony is regarded as a meta-

heuristic algorithm.

The local trail updating formula is motivated by trail evaporation or trail decay in real ants

(Dorigo and Cambardella 1997), and this formula is expressed in Equation 2.55 as

𝜏(𝑟, 𝑠) ← (1 − 𝛼) ∗ 𝜏(𝑟, 𝑠) + 𝛼 ∗ 𝜏0 Equation 2.55

where 𝜏0 is a parameter, 𝑟(𝑟, 𝑠) is the edge on a line, and α is a control parameter.

The following probabilities formula was applied to find s in Equation 2.56:

60

𝑠 = {
𝑎𝑟𝑔 𝑚𝑎𝑥

𝑢∉𝑀
{[𝜏(𝑟, 𝑢) ∗ 𝜂(𝑟, 𝑢)]𝛽} 𝑖𝑓 𝑞 < 𝑞0

𝑆 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 Equation 2.56

where 𝜏(𝑟, 𝑠) is the amount of pheromone trail on the edge (r,u), 𝜂(𝑟, 𝑢) is a heuristic

function that is the inverse of the distance between two edges r and u, β is a parameter that

represents the relative importance of the pheromone trail and of closeness, q is the random

probability between 0 and 1 and S is a random variable selected according to the following

probability distribution, which favors edges that are shorter and have a higher level of

pheromone trail (Dorigo and Cambardella 1997). This is expressed in Equation 2.57 as

𝑝𝑘(𝑟, 𝑠) = {
[𝜏(𝑟,𝑠)]∗[𝜂(𝑟,𝑠)]𝛽

∑ [𝑢∉𝑀 𝜏(𝑟,𝑢)]∗[𝜂(𝑟,𝑠)]𝛽
 𝑖𝑓 𝑠 ∉ 𝑀

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 Equation 2.57

where 𝑝𝑘(𝑟, 𝑠) is the probability with which ant k chooses to move from one edge r to

another edge s.

Global trail updating is an approach used to emulate the property of differential

pheromone trail accumulation, which is an interplay between length of path and continuity

of time (Dorigo and Cambardella 1997). Global trail updating is expressed in Equation

2.58 as

𝜑(𝑟, 𝑠) ← (1 − 𝛼) ∗ 𝜑(𝑟, 𝑠) + 𝛼 ∗ ∆𝜑(𝑟, 𝑠) Equation 2.58

where ∆𝜑(𝑟, 𝑠) is the amount of pheromone deposited on edge φ (r, s), and α is a control

parameter.

Trail evaporation is used in ant colony optimization as a strategy to avoid getting stuck in

local optima. (Agbehadji 2011). This trail evaporation is an update process where trails

seen are expressed in Equation 2.59 as:

𝜏 = 𝜏 + ∆𝜏 Equation 2.59

Trails that leave the surrounding are expressed in Equation 2.60 as:

𝜏 = 𝜏 − ∆𝜏 Equation 2.60

61

The value ∆ is a constant determined by input parameters such as the size of the

population q, minimum or initial pheromone level τinit and maximum pheromone level

τmax (Guntsch and Middendorf 2002). Thus,

∆=(τmax − τinit)/q Equation 2.61

Given that ants move at approximately the same speed and deposit their pheromone trail

at the same rate (Dorigo and Cambardella 1997), it is possible that these trails emit

substances into the environment. The intensity of substances emitted can serve as a point

of attraction to other animals within a habitat. Therefore, the rate of decay of a trail, or

trail evaporation, plays an important role in determining newness or oldness of a trail. The

disadvantages of ACO is, firstly, that the time to convergence to optimality is uncertain

even though convergence is guaranteed. Secondly, the probability distribution changes by

iteration, which leads to sequences of random decisions (not independent). Although the

random decision could be seen as a challenge, the advantage is that it can be used in

dynamic applications (e.g. adapting to changes such as new distances) (Shekhawat,

Poddar and Boswal 2009).

The behavior of ants has been applied to solve many optimization-related problems,

including data mining, where it was shown to be efficient in finding best possible

solutions. When applied to feature selection ACO improves on the performance of feature

selection by finding the best possible path in terms of the path with the least amount of

error.

c. Wolf Search Algorithm

The WSA is a meta-heuristic optimization algorithm based on wolf preying behavior

(Tang et al. 2012). The behavior of wolves, as described earlier, includes the ability to

hunt independently by remembering their own trait (meaning wolves have memory); the

ability to only merge with their peer when the peer is in a better position (meaning there

is trust among wolves to never prey on each other); the ability to escape randomly upon

the appearance of a hunter (Tang et al. 2012); and the use of scent marks as a way of

62

demarcating their territory and communicating with other wolves (Agbehadji et al. 2016).

This behavior enables wolves to randomly adapt to their environment when hunting. If a

wolf finds a new, better position, it deposits a scent mark that is sensed by other wolves,

and this helps communicate the best position already inhabited by a companion wolf.

Grey wolves is another kind of social animal that belongs to the family of wolves. Grey

wolves are regarded as apex predators because it is found on top of its food chain whiles

other wolves are found below the food chain. This forms a social hierarchy in its social

structure of hunting. Mostly, grey wolves found on top of the food chain (referred to as

leaders, male or female, are called alphas) are able to identify location of a prey and

encircle them. The alphas are responsible to make decision about hunting. Other wolves

below the food chain are referred to as subordinate that is beta, or omega. In this regard,

omega wolves have to submit to betas and alphas in the hierarchy. This social structure

enables grey wolves to search for prey according to the position of the alpha, beta, and

omega. Thus, grey wolves can diverge from each other to search for fitter prey and

converge to attack prey (Mirjalili, Mirjalili and Lewis 2014).

The wolf search is an iterative search process that starts by the setting of initial parameters,

random initialization of the population, evaluation and updating of a current population

using a fitness test, and continuing to create new generations/iterations until some

stopping criterion is met. Unlike GA, which uses operators such as mutation, crossover

and selection methods, the WSA uses attractiveness of prey within its visual range,

instinctively flocking together in a pack that is collective, randomly escaping from its

enemy, and organizing individual searches. Therefore, the swarming behavior of the WSA

is delegated to each individual wolf, and this could form multiple leaders swarming from

multiple directions towards the best solution rather than a single flock searching for an

optimum in one direction at a time (Tang et al. 2012). However, the performance depends

heavily on the manually chosen parameters values (Song, Fong and Tang 2016). This

could be resolved through self-adaptive methods in parameter value selection.

63

d. Particle Swarm Optimization

A particle swarm is a bio-inspired method based on swarm behavior in nature, such as fish

and bird schooling (Kennedy and Eberhart 1995). The swarm behavior is expressed in

terms of how particles adapt, exchange information and make decisions on change of

velocity and position within a space, based on the position of other neighboring particles.

The search characteristics of a particle swarm involves the initialization of particles, and

several iterations are performed to update the position of each particle, depending on the

value assigned to its velocity, and they are combined to the best previous own position

and the position of the best element among the global population of particles (Aboudi and

Benhlima 2016). The advantage of swarm behavior is that as an individual particle makes

a decision, it leads to an emergent behavior (Krause et al. 2013). This emergent behavior

is as a result of local interaction among individual particles in a population of particles.

Particle swarm methods are computationally less expensive, which makes them more

attractive and effective for feature selection. Again, each particle discovers the best feature

combination as it moves in a population.

When applying particle swarm methods to any feature selection problem, it is important

to define threshold value during initialization so as to decide which feature is selected or

discarded. Often, it is difficult for a user to explicitly set a threshold since it might

influence the performance of the algorithm (Aboudi and Benhlima 2016). Xue, Bing and

Zhang (2014) suggest an initialization strategy that adopts a sequential selection algorithm

that guarantees accuracy of classification and provides the number of feature subsets that

are selected (Aboudi and Benhlima 2016). The advantage of particle swarm is that during

the initialization/generation of particles, only the most optimist particle can transmit

information onto the other particles, and the speed of researching a search space is very

fast (Bai 2010). However, the method easily suffers from partial optimism, which makes

it less exact in regulating the speed and the direction of each particle in the search space

(Bai 2010).

64

e. Multiple Species Flocking

The MSF model is a bio-inspired approach that mimics the social behavior of birds (Yang

2010). The social behavior is exhibited through continuous exchange of information

within a flock to align its position in the same direction as nearby birds. The birds might

make the decision to move from one position to another without communicating with each

other (Eberhart, Shi and Kennedy 2001). The decision to move is steered by three basic

rules, namely alignment, separation and cohesion. These rules are mathematically

expressed and described as follows:

The alignment rule (or velocity matching rule) is when a boid moves in the same direction

of the nearby boids where the velocity vector is aligned with the average velocity vector

of the neighboring local flocks. The alignment rule is expressed in Equation 2.62 as

 𝑑(𝐹𝑖, 𝐴𝑐) ≤ 𝑟1 ∧ 𝑑(𝐹𝑖, 𝐴𝑐) ≥ 𝑟2 ⇒ 𝑣⃗𝑎𝑟 =
1

𝑛
∑ 𝑣⃗𝑖

𝑛
𝑖 Equation 2.62

where r1 and r2, with r1 > r2, represents the radius r of the visibility range of the boids and

minimum distance among them respectively, and d(Fi, Ac) represents distance between

current boid Ac and its flockmate. Further, Fi. 𝑣⃗𝑖 is the velocity of the boid Fi, and n

represents the number of neighbors.

The separation rule (or collision avoidance) avoids closeness between the boids, and is

formulated in Equation 2.63 as

 𝑑(𝐹𝑖, 𝐴𝑐) ≤ 2𝑟2 ⇒ 𝑣⃗𝑠𝑝 = ∑
𝑣⃗⃗𝑖+𝑣⃗⃗𝑐

𝑑(𝐹𝑖,𝐴𝑐)

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑛
𝑖 Equation 2.63

where 𝑣⃗𝑠𝑝 represents the separation velocity, and 𝑣⃗𝑐 and 𝑣⃗𝑖 represent the velocities of the

current boid and ith flockmate.

The cohesion rule (or flock centering) moves a boid towards the center of the flock or

towards other nearby boids. The rule is formulated in Equation 2.64 as

 𝑑(𝐹𝑖, 𝐴𝑐) ≤ 𝑟1 ∧ 𝑑(𝐹𝑖, 𝐴𝑐) ≥ 𝑟2 ⇒ 𝑣⃗𝑐𝑟 = ∑ (𝑃𝑖 − 𝑃𝑐)𝑛
𝑖 Equation 2.64

65

where 𝑣⃗𝑐𝑟 represents the cohesion velocity, Pi and Pc represent the position of current boid

Ac and a neighbor boid Fi, and (𝑃𝑖 − 𝑃𝑐) calculates the directional vector point.

The feature similarity rule checks the closeness of each boid using the strength of

closeness to ensure that similar boids are close to each other. This feature similarity is

expressed in Equation 2.65 as

𝑣𝑠𝑖𝑚 = ∑ (𝑆𝑖𝑚 (𝐹𝑖, 𝐴𝑐
𝑛
𝑖) ∗ 𝑑(𝑃𝑖, 𝑃𝑐)) Equation 2.65

where vsim represents the velocity as a result of similarity of features, Sim(Fi,Ac) represents

the similarity value between features of boids Fi and Ac, and d(Pi,Pc) represents the

distance between their position.

The feature dissimilarity rule applies when boids do not have similar features and thus

stay away from each other. Therefore, dissimilarity is inversely proportional to the

similarity features formulated in Equation 2.66 as:

𝑣𝑑𝑠𝑖𝑚 = ∑
1

𝑆𝑖𝑚(𝐹𝑖,𝐴𝑐)∗𝑑(𝑃𝑖,𝑃𝑐)

𝑛
𝑖 Equation 2.66

where vdsim is the velocity as a result of dissimilarity of features. The final flocking

behavior is expressed as the sum of calculated velocities and weighted action of rules to

represent the net velocity vector 𝑣 of a boid in space. The net velocity 𝑣⃗ is expressed in

Equation 2.67 as:

𝑣 = 𝑤𝑎𝑟 ∗ 𝑣⃗𝑎𝑟 + 𝑤𝑠𝑝 ∗ 𝑣⃗𝑠𝑝 + 𝑤𝑐𝑟 ∗ 𝑣⃗𝑐𝑟 + 𝑤𝑠𝑖𝑚 ∗ 𝑣𝑠𝑖𝑚 − 𝑤𝑑𝑠𝑖𝑚 ∗ 𝑣𝑑𝑠𝑖𝑚 Equation 2.67

where v is the boid’s velocity in the virtual space and 𝑤𝑎𝑟,𝑤𝑠𝑝,𝑤𝑐𝑟,𝑤𝑑𝑠𝑖𝑚, 𝑤𝑠𝑖𝑚 are pre-

defined weight values per boid in respect of the alignment rule, separation rule, cohesion

rule, dissimilarity rule and similarity rule respectively.

66

The feature similarity rule allows a boid to stay close to boids with similar features and

stay away from other boids that have dissimilar features (Cui and Potok 2006). This

feature similarity rule is expressed in Equation 2.68 as

𝑣𝑓𝑟 = ∑
(𝑆(𝐵,𝑋)−𝑇)∗ (𝑃𝑖−𝑃𝑐

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)

𝑑(𝐹𝑖,𝐴𝑐)
𝑛
𝑖 Equation 2.68

where 𝑑(𝐹𝑖, 𝐴𝑐) is the distance between boid B and its neighbor X, n is the total number

of the boid B’s local neighbors, (𝑃𝑖 − 𝑃𝑐)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ calculates a directional vector point, Sim(B,X) is

the similarity value between the features of boid B and X, and T is the threshold for

separating similarity and dissimilarity boids.

The strength of the attracting force for similar boids and the repulsion force for dissimilar

boids is inversely proportional to the distance between the boids and the similarity value

between the boids’ features. The flocking behavior of multiple species is determined by

weighting actions of all four rules and summing to give the net velocity v for an active

boid, as expressed in Equation 2.69:

𝑣 = 𝑤𝑎𝑟 ∗ 𝑣⃗𝑎𝑟 + 𝑤𝑠𝑝 ∗ 𝑣⃗𝑠𝑝 + 𝑤𝑐𝑟 ∗ 𝑣⃗𝑐𝑟 + 𝑤𝑓𝑟 ∗ 𝑣𝑓𝑟 Equation 2.69

where v is the boid’s velocity in the virtual space and 𝑤𝑎𝑟 , 𝑤𝑠𝑝, 𝑤𝑐𝑟, 𝑤𝑓𝑟 are pre-defined

weight values in respect of the alignment rule, separation rule, cohesion rule and feature

similarity rule respectively. These four simplified rules help build classifiers on different

problem domains that require random search.

f. Bat algorithm

The Bat algorithm (Yang 2010) is a bio-inspired method based on the behavior of micro-

bats in their natural environment. The unique behavior that characterizes bats is their

echolocation mechanism. This mechanism helps bats orient themselves and find prey

within their environment. The search strategy of bats is controlled by the pulse rate and

loudness of their echolocation mechanism. While the pulse rate changes to improve on the

position that was previously found, the loudness indicates to each other bat that the best

67

position is accepted/found (Fister et al. 2014). The bat behavior has been applied in several

optimization problems to find the best optimal solution. The Bat algorithm search process

starts with random initialization of the population, evaluation of the new population using

a fitness function, and finding the best population.

The advantage of the Bat algorithm is that the parameter control, which can vary the values

of parameters as the iterations proceed. This provides a way to automatically switch from

exploration to exploitation when the optimal solution approaches (Yang 2013). However,

the challenge is how to speed up the convergence of the Bat algorithm to optimal solutions

(Yang 2013). Secondly, there is no best control strategy that enables the Bat algorithm to

switch from exploration to exploitation of a search space within a right/specified time

(Yang 2013).

2.2.2. Phase 2: Data mining algorithms

Data mining is the application of an algorithm to a dataset to extract patterns or to

construct a model to represent a higher level of knowledge about the data (Hand, Mannila

and Smyth 2001; Kantardzic 2003). A model gives a general description of an original

dataset and reflects the important characteristics of the data (Hand et al. 2001). The

importance of a model is that it gives a clear understanding of data and helps predict new

data patterns. One of the ways to predict new data patterns is by using basic mathematical

formulation and translation into algorithm.

A pattern is defined as an event or combination of events that occur more or less often

than expected, that is, representing a significant difference from what would be expected

of random variation or representing a significant variation from a trend (Iglesia and

Reynolds 2005). A pattern may be a relatively small part of the data (Hand et al. 2001)

that could be mined. Thus, a pattern, in its simplest form, may show a relationship between

two variables (Hand et al. 2001), which might have interesting (that is, non-trivial,

implicit, previously unknown and potentially useful) information that is relevant. A model

68

may contain patterns as well as other structures within the data. Therefore, boundaries

between models and patterns are sometimes intertwined (Iglesia and Reynolds 2005).

An example of a pattern is a frequent pattern, which includes frequent itemsets, frequent

subsequences and frequent substructures. A frequent itemset refers to a set of items that

frequently appear together in a relational dataset, such as sugar and coffee. A frequently

occurring subsequence refers to the pattern where users tend to obtain an item first,

followed by another item, and then a series of items. This is a (frequent) sequential pattern

(Han and Kamber 2006). A frequent substructure can refer to different structural forms,

such as graphs, trees or lattices, which may be combined with itemsets or subsequences

(Han and Kamber 2006). If a substructure occurs frequently, it is called a (frequent)

structured pattern. Thus, mining frequent patterns results in the discovery of interesting

associations in data.

The data mining algorithms reviewed include sequential pattern mining and closed

sequential patterns.

i. Sequential pattern mining

A sequential pattern is a sequence with support (that is, proportion of occurrence of a

sequence) not less than the minimum support threshold (Zhenxin and Jiaguo 2009).

Aggarwal and Han (2014) consider sequential pattern mining as an association rule mining

over a temporal relational dataset, as emphasis is placed on ordering of items. In the

process of ordering items, some general principles are applied in respect to the property

of sequential patterns. The property of a sequential pattern algorithm is that every non-

empty subsequence of a sequential pattern must be frequent to show the anti-monotonic

(or downward closure) property of the algorithm (Aggarwal and Han 2014). Thus, a

pattern that is considered frequent has subsequences that are also frequent (that is, anti-

monotonic). The drawback of sequential pattern mining is that it mines the complete set

of frequent subsequences that satisfy a minimum support threshold (Raju and Varma

69

2015). Since mining frequent long sequences may contain several frequent subsequences,

it leads to an explosive number of frequent subsequences for long patterns, which is

computationally expensive in both time and memory space (Yan, Han and Afshar 2003).

The algorithms that have been developed based on the concept of sequential pattern

mining (Agrawal and Srikant 1995) include apriori-based methods, pattern-growth

methods and vertical format based methods (Raju and Varma 2015). These algorithms are

described in the following subsections.

a. Apriori-based method

The apriori-based method is a level-wise approach for generating frequent itemsets in

data. Basically, the principle of Apriori is that every subset of a frequent pattern is also

frequent, that is, referred at downward closure. Later, all patterns are put together through

the use of “joins” (Aggarwal and Han 2014). The joins enable the union of all patterns

into a holistic pattern. During the implementation of the apriori algorithm, a set of patterns

are generated as a candidate representation of frequent patterns and tested so as to prune

unnecessary candidates or non-frequent patterns, which is often referred to as the

candidate-generation-and-test strategy. Hence, apriori-based methods could be referred to

as candidate-generation-and-test strategies. However, a candidate-generation-and-test

strategy produces a large number of candidate sequences and requires more database scan

when there are long patterns (Tu and Koh 2010). The consequence is that counting and

pruning a large set involves high computational cost in terms of computational resource

usage and high computational time (Raju and Varma 2015). Therefore, the major

challenge with the candidate-generation-and-test strategy is high computational time and

cost involved. Moreover, once frequent itemsets are obtained as output results, association

rules with confidence (that is, ratio of number of occurrences that are classified and

occurrences in dataset) larger than or equal to a user-specified minimum threshold (Kumar

et al. 2007) are generated. The challenge is finding the optimal threshold, which must be

set by a user (Yin et al. 2013), because too small a support value may produce thousands

70

of patterns that need further filtering, whereas too big a one may lead to no findings (Yin

et al. 2013). Although pattern compression approaches such as RPglobal and RPlocal

(Han, Cheng, Xin and Yan 2007) have been used to address this problem, performing

filtering also requires the use of filtering algorithms which could be costly in terms of

computation cost involved. The candidate-generation-and-test strategy and user setting of

minimum support and minimum confidence are the major challenge of the Apriori

algorithm.

The Apriori algorithm can be summarized into the following steps:

Step 1: Find all frequent itemsets.

Step 2: Get frequent items (items whose occurrence in the dataset is greater than or equal

to the minimum support threshold).

Step 3: Get frequent itemsets.

Step 4: Generate candidates from frequent items.

Step 5: Prune the results to find frequent itemsets.

Step 6: Generate strong association rules from frequent itemsets (that is, rules which

satisfy both the minimum support threshold value and minimum confidence threshold

value).

b. Pattern-growth methods

The pattern-growth method is based on the concept of depth-first search to generate

frequent patterns from a search space or dataset. During the process of growing patterns,

a frequent-pattern tree (FP-tree) is constructed based on the concept of divide and conquer

(Rajasekaran and Song 2006). Thus, a pattern tree is divided into two and one is selected

as the best branch. The selected best branch is further grown by mining other frequent

patterns. The frequent pattern growth approach, FP-growth (Han, Pei and Yu 2000), mines

frequent patterns without generating candidates of FP-trees (Yongmei and Yong 2008).

The challenge is that when a user fails to specify a minimum support threshold value, it

takes a longer time to mine frequent patterns. The two advantages of FP-trees are, first,

71

that the FP-tree is a highly compressed data structure making the dataset much smaller

than original dataset, thereby reducing costly database scans (Tu and Koh 2010).

Secondly, it avoids candidate generation and test by combining frequent items and using

a frequent pattern tree to remove unnecessary candidates (Tu and Koh 2010). The

algorithms that are based on pattern growth include FreeSpan (Han, Pei, Mortazavi-Asl,

Chen, Dayal and Hsu 2000) and PrefixSpan (Pei et al. 2001).

ii. Closed sequential pattern mining

Closed sequential pattern mining is an extension of sequential pattern mining (Lin, Hsueh,

and Chang 2008). The advantage of closed sequential pattern mining is threefold. Firstly,

there is an efficient use of the search space pruning technique, and it significantly reduces

the number of patterns produced (Huang et al. 2006). Secondly, more interesting patterns

are found, thus reducing the burden of a user having to explore too many patterns (Raju

and Varma 2015) within the same minimum support threshold. Thirdly, it retains all

information on the complete pattern set in a more compact form (Cong, Han and Padua

2005). A closed sequential pattern is a frequent sequence that has no frequent super-

sequence (that is, no larger itemset) with the same minimum support threshold value (that

is, occurrence frequency) (Yan et al. 2003). Examples of algorithms based on closed

sequential pattern mining include Bi-Directional Extension (BIDE) (Wang, Han and Li

2007), Closed sequential pattern mining using a Bi-phase Reduction Approach (COBRA)

(Huang et al. 2006) and ClaSP (Raju and Verma 2015).

Current research focuses on frequent pattern mining because data analysis problems are

important in finding hidden relationships. It may be established that the data mining

algorithms have been designed for a parallel computing based platform (Tsai et al. 2015).

Furthermore, these platforms rely on machine learning-based methods to reduce

computational cost in data mining algorithms. It is also established that traditional

methods (e.g. neural networks, etc.) are applied to emerging

problems/platforms/environments to reduce computation cost when a very large amount

72

of data is required. This indicates that the performance in terms of computational cost

needs to be improved for big data analytics frameworks to help guarantee accurate and

useful information.

When mathematical models are formulated, it is possible to extract and disclose

interesting patterns from frequently changed datasets to avoid user setting minimum

support threshold value during the mining of patterns/rules and reduce the pruning space

using a meta-heuristic search method. The following subsection reviews the association

rules and meta-heuristics algorithms:

i. Association rule

Association rules are rules that steer a mining algorithm to disclose patterns from data to

a user (Han and Kamber 2006). The rules whose support and confidence values are below

a user-specified threshold are considered uninteresting (Han and Kamber 2006), while

rules whose value are above a user-specified threshold are considered interesting.

The challenge of association rule mining could be categorized into two parts. The first is

finding frequent itemsets with a support above the minimum support threshold. The

second is using frequent itemsets found in the first step to generate association rules that

have a confidence level above the minimum confidence threshold (Shih and Kuo 2007).

Therefore, many studies on association rule mining concentrate on designing an efficient

algorithm on frequent itemset discovery.

Generally, a rule is defined as a conditional statement that specifies an action for a certain

set of conditions (Iglesia and Reynolds 2005). The association rule is an implication of

the form K→P, where precondition K is referred to as antecedent and the action P is called

consequent where both K and P are frequent itemsets. The discovered rule is expressed in

an “If …Then…” statement. Thus, If K then P.

73

Two different methods may be used to measure association rules. Firstly, the support of a

rule measure is defined as the proportion of appearance in the dataset (Gupta and Sikka

2013; Agbehadji et al. 2016). In order words, it is the number of transactions which

contains itemsets (K and P) over the number of transactions in the database. This is

expressed in Equation 2.70 as

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝐾 → 𝑃) =
𝜎(𝐾 ∪ 𝑃)

 𝜎(𝑁)
 Equation 2.70

where (N) is the total number of transactions in a database and (K∪P) is the number of

transactions which contains both K and P. Frequent itemsets that are found using the

support measure to generate association rules have a confidence value above the minimum

confidence threshold specified by a user.

Secondly, confidence of a rule measure is defined as a ratio of the number of occurrences

in K that are classified as a decision class of P over the number of occurrences in K. In

other words, it is a conditional probability of the consequent given the antecedent (Gupta

and Sikka 2013). This is expressed in Equation 2.71 as

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (𝐾 → 𝑃) =
𝜎(𝐾 ∪ 𝑃)

𝜎(𝐾)
 Equation 2.71

where σ(K) is the number of transactions that contain K, while (K∪P) is the number of

transactions that contain K and P. A higher confidence value suggests a strong association

between the items K and P.

These rules are used as quality measures to remove non-interesting rules. A rule is only

considered interesting if its value is greater than or equal to the minimum support and

minimum confidence criteria (Han and Kamber 2006) set by a user to reveal interesting

patterns. According to Silberschatz and Tuzhilin (1995), a pattern is interesting if it is

unexpected (that is, surprising to the user) and/or actionable (that is, the user can perform

some action with the results to obtain value). This interestingness measure Intm is

expressed (Ghosh and Nath 2004) in Equation 2.72 as:

74

 𝐼𝑛𝑡𝑚 (𝐾 → 𝑃) =
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐾∪𝑃)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝐾)
∗

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐾∪𝑝)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑃)
∗ (1 −

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐾∪𝑃)

𝜎(𝑁)
) Equation 2.72

where σ(N) represents the total number in the dataset. Although this expression for the

interestingness measure of rules provides patterns as interesting, it does not take into

consideration the time dimension.

According to Piatetsky-Shapiro (1991), a rule is considered as interesting if its measure

satisfies three basic properties. Firstly, the measure value should equal to 0 if K and P are

statistically independent, that is, when P(K and P) = P(K) *P(P). Secondly, the measure

should monotonically increase with P(K and P) when P(K) and P(P) remains the same.

Thirdly, a measure should monotonically decrease with P(K) or P(P) when P(K and P)

and P(P) or P(K) remains the same.

Association rules are used for different categories of data attributes, namely categorical

attributes and numerical attributes (Luna et al. 2011). A categorical attribute A of an

association rule is defined as an attribute with discrete unordered domain D, such that A

is a categorical attribute and u is a numeric value in the domain D of A. The difficulty with

the categorical attribute is in terms of working with all possible numerical values. This

difficulty is avoided in numerical attributes by defining a wide range of numerical values

into different discrete intervals (Luna et al. 2011). Hong and Lee (2008) suggest

partitioning numerical attributes into intervals rather than a single value on the antecedent

rule. This is also supported by Luna et al. (2011). Srikant and Agrawal (1996) suggest an

approach that partitions attributes and later maps each possible value into consecutive

integers. Afterwards, a partial completeness factor, which is defined by the user,

determines the completeness of each partition (Hong and Lee 2008). It is important to

know the number of partitions and the interval that constitutes each partition. However,

the challenge is how to minimize the level of information lost during partitioning.

The partial completeness factor measures the level of information lost (Srikant and

Agrawal 1996) and the level of deviation that is tolerated with respect to finest

75

discretization (Adamo 2001). In order words, partial completeness measures the

maximum distance between rules obtained prior to partition and the closest generalization

in rules obtained after partition (Srikant and Agrawal 1996). Srikant and Agrawal’s (1996)

approach uses equi-depth (frequency) partitioning, which minimizes the number of

intervals required to satisfy the partial completeness level. The measure of partial

completeness is expressed taking into consideration the support of the rule as a measure

on how far apart rules are. Given the level of partial completeness desired by the user, and

the minimum support, the number of partitions required (assuming equi-depth

partitioning) is calculated. In order to compute a partial completeness level Q, the support

of any partition with more than one value should be less than

𝑚𝑖𝑛𝑠𝑢𝑝 ∗ (𝑄 − 1)/(2 ∗ 𝑛) Equation 2.73

where n is the number of quantitative attributes. Assuming that equi-depth partitioning

splits the support identically, then there should be 1/ maximum support (s) partitions in

order to get the support of each partition to less than s. Thus, the number of intervals is

expressed in Equation 2.74 as

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 =
2∗𝑛

𝑚𝑖𝑛𝑠𝑢𝑝∗(𝑄−1)
 Equation 2.74

where minsup is the minimum support, and Q is the partial completeness level. Partial

completeness Q is expressed in Equation 2.75 as:

𝑄 = 1 +
2∗𝑛∗𝑠

𝑚𝑖𝑛𝑠𝑢𝑝
 Equation 2.75

where n is the number of quantitative attributes, and s is the maximum support for a

partition with more than one value among all the quantitative attributes.

Although the partial completeness factor measures the level of deviation between rules, it

does not take into consideration the time differences of deviation.

76

Railean et al. (2013) indicate that it is possible for rules to take into account the time

difference between the antecedent and consequent of sequential rules. When this happens,

an item can either occur at most once in an itemset of a sequence or occur in several

itemsets of a sequence. The occurrence of rules (either complex or simple rules) in

sequence is then counted, and the average value of time-closeness between the antecedent

and consequent over the entire sequence is calculated (Railean et al. 2013). Thus, a greater

average value indicates a stronger rule. Rules can be grouped into simple rules and

complex rules (Railean et al. 2013). Simple rules are of the form Vi → Vn, and complex

rules are of the form V1V2...Vn−1 → Vn (Railean et al. 2013). In this instance, all rules of

the simple form Vi → Vn were combined between all Vi itemsets. For example, given the

rules A → Y, B → Y, and C → Y, complex rules are derived as AB → Y, AC → Y, BC →

Y, ABC → Y. In this context, two or more items (such as A, B, C) are combined together

on the antecedent part of the rule to produce one or more items in the consequence part of

the rule.

A sequential rule 𝐴 → 𝐵 is defined as a relationship between two itemsets A and B that

belong to the same sequence and where B occurs at the same time stamp 𝑡𝐵 ≥ 𝑡𝐴 (Railean

et al. 2013). This expression helps combine the time-difference between the antecedent

and consequent of a rule. Railean et al. (2013) are of the view that it is desirable to have

rules ranked at the same level if the time difference between the items is not greater than

a certain time so that rules’ importance is decreased with time. This leads to the definition

of closeness in time for sequential rules, as when given a time-interval 𝜔𝑡 and W time-

window of size 𝜔𝑡 . Itemset A and B with time-stamps tA and tB are 𝜔𝑡 − 𝑐𝑙𝑜𝑠𝑒 if

|𝑡𝐴 – 𝑡𝐵| ≤ 𝜔𝑡. When a sequential rule 𝐴 → 𝐵, thus 𝑡𝐵 ≥ 𝑡𝐴 where A and B are 𝜔𝑡-close

if 𝑡𝐴 − 𝑡𝐵 ≤ 𝜔𝑡. Also, the closeness measure for the 𝜔𝑡-close rule for 𝐴 → 𝐵 is defined

as 𝑡𝐵 − 𝑡𝐴 and 1/𝜎𝑡 , such that if 𝑡𝐵 − 𝑡𝐴 ≤ 𝜎𝑡 then the measure should decrease slowly,

while if 𝑡𝐵 − 𝑡𝐴 > 𝜎𝑡 then the closeness measure decreases rapidly. The parameter 𝜎𝑡 is

used to differentiate the time in the window 𝜔𝑡. Thus, the closer a rule between antecedent

77

and consequent within [0, 𝜎𝑡], the more advantageous the rule is and it is ranked at same

level. Consequently, if the time stamp [𝜎𝑡 , 𝜔𝑡] is larger, then the rule’s interest is

decreased rapidly (Railean et al. 2013).

The closeness measure not only is used as an approach to find rules in cases where the

antecedent and consequent are frequent and random in databases (Railean et al. 2013), but

also used to penalize very frequent itemsets. Thus, the higher the antecedent and

consequent value, the lower the closeness measure. The Closeness Preference

interestingness measure CP between 𝐴 → 𝐵 is defined in Equation 2.76 by:

𝐶𝑃(𝐴 → 𝐵) =
𝐶𝜔𝑡,𝜎𝑡(𝐵/𝐴)

𝑅(𝐴)∗𝑅(𝐵)
 Equation 2.76

where the strength of the closeness is denoted by 𝐶𝜔𝑡,𝜎𝑡
(𝐵/𝐴) between A and B. Thus, the

closeness preference interestingness measure CP selects strong rules with respect to

frequencies of antecedent A and consequent B in respect to the temporal closeness between

itemsets of rules in databases. This is expressed in Equation 2.77 as

𝐶𝑃(𝐴 → 𝐵) =

1

|𝐷𝐵|
∑ {

1

𝑛𝜔𝑡|𝑚
∑ [

1

𝑛𝑡𝐴|𝑘

∑ (
1

𝑛𝑡𝐵|𝐴𝑖

∑
1

1+𝑠
𝑡𝑗−𝜔𝑡

)]}
𝑛𝑡𝐵|𝐴𝑖
𝑗=1

𝑛𝑡𝐴|𝑘
𝑖=1

𝑛𝜔𝑡|𝑚
𝑘=1

𝑛𝐴𝐵𝜔
𝑚=1

𝑅(𝐴)∗𝑅(𝐵)
 Equation 2.77

where R(AB) =
𝑛𝐴𝐵

|𝐷𝐵|
, 𝑛𝐴𝐵 is the number of sequences where the itemset 𝐴 → 𝐵 appears,

and |DB| refers to the number of sequences in the database. The higher R(A)*R(B), the

lower the closeness measure’s value. The parameter 𝜔𝑡 and s are defined according to

user preferences. The parameter 𝜔𝑡 represents the maximum allowed time-distance

between two itemsets to consider the rule 𝐴 → 𝐵 as a 𝜔𝑡-close candidate. Further, s is

expressed in Equation 2.78 by

𝑠 = √
1

𝑓(𝜎𝑡)
− 1

(𝜎𝑡−𝜔𝑡)

 Equation 2.78

where 𝑓(𝜎𝑡)is a user preference time interval.

If there is only one itemset A in the time-interval [0, 𝜔𝑡], then 𝑛𝑡𝐵|𝐴𝑖
 is the number of B

inside the window, which is computed in Equation 2.79 as

78

𝐶𝑃𝐵|𝐴𝑖
=

1

𝑛𝑡𝑩|𝐴

∑
1

1+𝑠
𝑡𝐵𝑗−𝜔𝑡

𝑛𝑡𝐵|𝐴

𝑗=1
 Equation 2.79

where 𝑛𝑡𝐵|𝐴𝑖
is the number of B between two consecutive A inside the same window, s is

the slope of the plot (s > 1) and is directly proportional with the user-preference time-

interval 𝜎𝑡. However, a larger 𝜎𝑡 implies larger s, so a user may either set a threshold or

use an expression to compute the threshold. The time distance of each B from the

beginning of the window (starting from the first A) is represented by 𝑡𝐵𝑗.

Additionally, when there is only one itemset A, then the number of A inside a window 𝜔𝑡

is computed in Equation 2.80 as

𝐶𝑃𝜔 =
1

𝑛𝑡𝐴

∑ 𝐶𝑃𝐵|𝐴𝑖

𝑛𝑡𝐴

𝑖=1
 Equation 2.80

Thus, the strength of 𝐴 → 𝐵 in a sequence is expressed as the average value of all time-

windows of size 𝜔𝑡, which is expressed in Equation 2.81 as

𝐶𝑃𝑆 =
1

𝑛𝜔𝑡

∑ 𝐶𝑃𝜔𝑘

𝑛𝜔𝑡

𝑘=1 Equation 2.81

where 𝑛𝜔𝑡
 is the number of time-windows of size 𝜔𝑡 in a single sequence containing the

rule 𝐴 → 𝐵, and 𝐶𝑃𝜔𝑘
 is the closeness preference value for each window k.

Thus, the average strength of the rule 𝐴 → 𝐵 is calculated from all the sequences

containing 𝐴 → 𝐵 to the entire database and the closeness index 𝐶𝜔𝑡,𝜎𝑡
(𝐵|𝐴) , which

shows the frequency of closeness. This is expressed in Equation 2.82 as:

𝐶𝜔𝑡,𝜎𝑡
(𝐵|𝐴) =

1

|𝐷𝐵|
∑ 𝐶𝑃𝑠𝑚

𝑛𝐵𝐴𝜔
𝑚=1 Equation 2.82

where 𝑛𝐵𝐴𝜔
is the total number of sequences where the rule 𝐴 → 𝐵 holds at least once in

the interval [0, 𝜔𝑡], and 𝐶𝑃𝑠𝑚
is the expression for each sequence m.

A sequential pattern in which each pattern of length n consists of n - 1 rules is extracted

using Equation 2.83 by Railean et al. (2013):

79

𝐹𝑝𝑎𝑡𝑡𝑒𝑟𝑛 =
1

𝑛𝑟𝑟𝑢𝑙𝑒𝑠 𝑖𝑛 𝑝𝑎𝑡𝑡𝑒𝑟𝑛
∗ ∑ [

1

𝑛𝑡𝐴|𝑘

∑ (
1

𝑛𝑡𝐵|𝐴𝑖

∑
1

1+𝑠
𝑡𝑗−𝜔𝑡

)]
𝑛𝑡𝐵|𝐴𝑖

𝑗=1

𝑛𝑡𝐴|𝑘

𝑖=1

𝑛𝑟𝑟𝑢𝑙𝑒𝑠 𝑖𝑛 𝑝𝑎𝑡𝑡𝑒𝑟𝑛

𝑘=1

Equation 2.83

where 𝑛𝑟𝑟𝑢𝑙𝑒𝑠 𝑖𝑛 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 represents the number of rules in a pattern. In order to avoid the

user setting a threshold value for strong rules to be selected using trial and error, the

threshold value 𝜃∗ to select rules is expressed as the average value of the weighted

function f(t, s, 𝜔𝑘) over 𝜔𝑡 to show the area under the curve of the function and the x-

axis divided by 𝜔𝑡. Thus, the threshold value is expressed in Equation 2.84 as

𝜃∗ =
𝜔𝑡+

𝑙𝑛(
𝑠−𝜔𝑡+1

2
)

𝑙𝑛 (𝑠)

𝜔𝑡
 Equation 2.84

where 𝜃∗ represents threshold value, 𝜔𝑡 represents the time windows of size, and s

represents the slope of preference. The final threshold value is used to select the rules with

very close itemsets. Conversely, this threshold value may be set by the user instead of

using the expression on the threshold value.

Although the approach of Railean et al. (2013) to finding rules that are optimal considers

three parameters (time-interval, slope of preference function and threshold value), it is

possible for a frequent pattern/item to also have discrete/continuous values that are

frequently changed within a time interval that was not considered. The challenge is how

to discover rules from frequently changed items within time-interval and numeric

dimensions.

ii. Meta-heuristic search method

An aspect that has attracted the attention of researchers is the application of animal

behavior (that is, bio-inspired/meta-heuristic approaches) to association rule mining or

mining of frequent patterns. This was a result of the unique behavior exhibited by animals

in steering movements from one location to another. A bio-inspired or meta-heuristic

search strategy is based on the behavior of animals in their natural habitat. This behavior

is simplified into mathematical expressions and used to form simplified rules that are

80

applied to association rule mining. Aggarwal and Rani (2013) indicate that having good

quality rules is significant in making better decisions. The rule quality is viewed in terms

of results accuracy and if it is understood by the user (Mangat 2010). Meta-heuristic

methods can improve the quality of rules in association rule mining (Aggarwal and Rani

2013).

Meta-heuristic algorithms may be defined as an iterative process that steers subordinate

heuristic processes by combining different search strategies to explore and exploit a large

search space and to develop learning strategies to structure information in order to find

efficiently optimal or near-optimal solutions (Osman and Laporte 1996).

Blum and Roli (2003) outline the following fundamental properties of meta-heuristic

algorithms:

 They range from the use of simplified local search procedures to complex learning

processes. Although local search procedures get trapped in a search domain, meta-

heuristic search methods are well adapted to avoid getting trapped, by using its

random search mechanism.

 The algorithm is approximate and usually non-deterministic.

 The search methods are both in-breadth and in-depth searches to enable adequate

exploration and exploitation of the search space.

 The algorithm is not problem specific. It may make use of domain-specific

knowledge in the form of heuristics that are controlled by the upper-level strategy

(where “upper level” refers to higher or meta-heuristics).

These fundamental properties enable meta-heuristic algorithms to efficiently explore

search spaces to find optimal or near-optimal solutions within different problem domains,

such as the discovery of association rules. The technique that helps with efficient

exploration of search space and adaptability to different problems is the parameter tuning

81

technique. The advantage of parameter tuning is that it helps assign different weighting

parameters to search problems in order to find the best parameter that fits a problem.

Meta-heuristic algorithms are generally divided into three categories: evolutionary, swarm

intelligence and differential evolution algorithms. The first is evolutionary algorithms,

which are inspired by evolutionary theory and biological evolutionary processes such as

selection, recombination, mutation and reproduction. Evolutionary algorithms include

GAs (Goldberg and Holland 1988); evolutionary strategy algorithms (Hansen and

Ostermeier 2001); swarm intelligence algorithms, which are inspired by the movements

of large groups of animals; and differential evolution algorithms (Storn and Price 1997;

Al-Ani, Alsukker and Khushaba 2012). Among these categories, evolutionary

computation was shown to enhance accuracy and reduce computation time (Abdullah et

al. 2013).

The best-known swarm intelligence algorithm is the particle swarm optimization (PSO)

algorithm (Kennedy 2011), which simulates the movement of animals to improve the

capability of global searches. Other swarm optimization algorithms are the ant colony

algorithm (Bonabeau, Dorigo and Theraulez 2000), bee algorithm (Karaboga 2005),

Firefly algorithm (Yang 2008) and WSA (Tang et al. 2012). Meta-heuristic methods are

able to extract more concise and accurate information on association rules than the

conventional Apriori-based algorithm.

Among the most popular meta-heuristic approaches to association rule mining are GAs

(Goldberg and Holland 1988) and the ant colony algorithm (Dorigo and Cambardella

1997). Other meta-heuristic approaches include Particle Swarm Optimization (Kennedy

and Eberhart 1995) and the WSA (Agbehadji et al. 2016). Agbehadji et al. (2016) propose

the WSA for numeric association rule mining by using simplified rules from wolves’

behavior to discretize numeric values into intervals without considering the aspect of time

dimension. Agbehadji et al. (2016) also propose a bio-inspired algorithm (based on

82

kestrels’ behavior) for mining frequently changed patterns in large datasets. Moslehi et al.

(2011) apply ant colony optimization on continuous data based on Gaussian functions to

build numeric intervals for numeric attributes without indicating the minimum support

and minimum confidence. Aggarwal and Rani’s (2013) approach used probabilistic

methods to scan a database for frequent datasets and produce optimized results of the

Apriori algorithm using the ACO algorithm so as to enhance the quality of rules and

remove unnecessary rules.

A GA, as explained previously, is an adaptive search procedure (Holland 1975 cited

Agbehadji 2011). The search procedure helps find approximate missing values (Abdella

and Marwala 2006) by optimizing an objective function/fitness function in any given

search problem. The fitness function value of each generation is calculated in order to find

the leading factor that determines the ability of a GA to find the optimal solution (Priya

and Kuppuswami 2012). The adaptive search process has been applied to solve problems

of association rules without setting minimum support and minimum confidence values.

Qodmanan, Nasiri and Minaei-Bidgoli (2010) take a multi-stage approach that first finds

frequent itemsets and then extracts association rules from those itemsets. The approach

combines the Frequent Pattern (FP) tree algorithm and GA to form a multi-objective

fitness function with support, confidence thresholds and the ability to obtain interesting

rules. This approach enables a user to change the fitness function so that the order of items

is considered in the importance of rules.

Another meta-heuristic algorithm, called PSO, was proposed by Kennedy and Eberhart

(1995). PSO is a bio-inspired method based on swarm behavior, such as fish and bird

schooling in nature (Kennedy and Eberhart 1995). The swarm behavior is expressed in

terms of how particles adapt and make a decision about changing position within a space

based on the position of other neighboring particles. The advantage of swarm behavior is

that as individual particles make decisions, it leads to an emergent behavior (Krause et al.

83

2013). This emergent behavior is a result of local interactions among particles in a problem

space.

Among the particle swarm algorithms for finding best possible solutions in a problem

space are the Firefly algorithm (Yang 2008), Bats (Yang 2009) and the bee algorithm

(Karaboga 2005). The successful characteristic of the firefly is the short and rhythmic

flashes it produces (Yang 2008). This flashing light is used as a mechanism to attract

mating partners, attract potential prey and serve as a warning to other fireflies. The

signaling system of this flashing light mechanism is controlled by simplified basic rules

underlying the behavior of fireflies. Unlike a GA, which uses operators such as mutation,

crossover and selection, the Firefly algorithm uses attractiveness and brightness to

improve certain individuals in its population. The similarity between GAs and the Firefly

algorithm is that both generate initial populations and continue to update their initial

population using fitness functions. The brighter fireflies attract those closest around them,

and the fireflies whose flashes fall below a given threshold are removed from the

population. The brightest fireflies form the next generation, and the generations/iterations

continue until a select criterion is reached or a maximum number of generations is reached.

The behavior where a bright firefly attracts another firefly with a weaker brightness has

been applied in missing data imputation by finding estimates of values closest to known

values and then replacing these missing values with these estimates (Agbehadji et al.

2018).

The behavior of the bee is that it waits in the dance area in order to make the decision to

choose its food source (Karaboga 2005). There are different kinds of bees, including

onlooker bees, scout bees and employed bees. The bees carrying out random searches are

scout bees. The onlooker bees and scouts are also called unemployed bees, while

employed bees are bees that re-visit their food source for further exploration (Karaboga

2005). Bees are adapted to self-organize to enrich their food source (which could result in

positive feedback) and to discard poor sources by scouting (causing negative feedback)

84

(Karaboga 2005). However, the process of discarding poor sources leads to premature

convergence to optimality (Yan and Li 2011).

Similarly, the behavior of particle swarms has also been applied to discrete optimization

problems using binary PSO to find association rules. Sarath and Ravi (2013) have

formulated a discrete/combinatorial global optimization approach that uses a binary PSO

to mine association rules without specifying the minimum support and minimum

confidence of items, unlike the Apriori algorithm. The quality of the rules is evaluated in

term of fitness function, expressed as the product between the support and the confidence.

The fitness function ensures the support and confidence are binary between 0 and 1. The

proposed binary PSO algorithm consists of two parts: the preprocessing and the mining.

The preprocessing part calculates the fitness values of the particle swarm so as to

transform the data into binary format. The mining part of the algorithm uses the PSO

algorithm to mine association rules. Sarath and Ravi (2013) indicate that binary PSO can

be used as an alternative to the Apriori algorithm and the FP-growth algorithm as it allows

the selection of rules that satisfy the minimum support threshold. However, if time is

significant in finding how close the rules are, then the binary PSO is disadvantaged.

The PSO has also been applied in high utility itemset mining to identify a high profit

itemset, especially when that itemset rarely appears but has high profit value (Lin et al.

2016). The concept of high utility was designed to discover the “useful” and “profitable”

itemsets from quantitative databases. Thus, an item is of high utility if its utility value is

no less than the user-specified minimum threshold for items to be mined (Lin et al. 2016).

The concept of bio-inspired methods can be used to explore the search space for an optimal

solution.

Kuo, Chao and Chiu (2011) apply the PSO algorithm and binary data transformation

technique (Wur and Leu 1998) to search for association rules when they are likely to

produce large sets of rules. The advantage of using the binary transformation is that it

85

improves the computational efficiency of the search algorithm. However, in cases where

a large range of rules is generated, the itemset range (IR) method is applied to search

within that range of rules in order to decide on the length of rule generated. The itemset

range is mathematically expressed in Equation 2.85 by

𝐼𝑅 = 𝑙𝑜𝑔(𝑚𝑇𝑟𝑎𝑛𝑠𝑁𝑢𝑚(𝑚)) + 𝑙𝑜𝑔(𝑛𝑇𝑟𝑎𝑛𝑠𝑁𝑢𝑚(𝑚))
𝑇𝑟𝑎𝑛𝑠(𝑚,𝑛)

𝑇𝑜𝑡𝑎𝑙𝑇𝑟𝑎𝑛𝑠
 Equation 2.85

where m≠n, m<n, m represents the length of the itemset, Trans(m) represents the number

of transaction records containing m items, n is the length of itemsets, Trans(n) represents

the number of transaction records containing n, Trans(m, n) represents the number of

transactions containing m and n, and TotalTrans represents the total transaction.

Dorigo and Cambardella (1997), propose another meta-heuristic algorithm called ant

colony optimization (ACO). Ant colony optimization (ACO) (Dorigo and Cambardella

1997) is a meta-heuristic inspired by the foraging behavior of real ants in their search for

the shortest paths to food sources. When a source of food is found, ants deposit a

pheromone to mark their path for other ants to traverse. A pheromone is an odorous

substance that is used as a medium of indirect communication between ants. The quantity

of pheromone depends on the distance, quantity and quality of the food source (Al-Ani

2007). However, the pheromone substance tends to decay or evaporate with time, which

prevents ants from converging to sub-optimal positions (Stützle and Dorigo 2002). When

a lost ant, moving at random, detects a laid pheromone, it is likely that it will follow the

path to reinforce the pheromone trails. Thus, ants make probabilistic decisions on updating

their pheromone trail and local heuristic information (Al-Ani 2007) to explore larger

search areas.

ACO has been applied to solve many optimization-related problems, including data

mining problems, where it was shown to be efficient in finding best possible solutions. In

the field of data mining, an important issue for association rule generation is frequent

itemset discovery, which is an important factor in implementing association rule mining.

Kuo and Shih (2007) propose a model that uses the ant colony system to find the best

86

global pheromone before the generation of association rules. The model proposed by Kuo

and Shih was applied to a health database where a user specifies more than one attribute

and defines two or more search constraints on an attribute for association rule generation.

Constraint-based mining enables users to extract rules of interest to their needs, and

computational speed is faster, thus improving the efficiency of mining tasks. Kuo and Shih

(2007) indicate that the constraint-based mining provides condensed rules, contrary to the

Apriori method. Additionally, the computational time was reduced since the database was

scanned only once to disclose the mined association results. The use of constraint

conditions reduces search time during the mining stage. However, the challenge is how to

merge many similar rules that are generated in the mining results.

Kuo and Shih (2007) apply ACO to find association rules (between potential disease and

early prevention in a health database) from a multi-dimensional constraint problem. In

their study, multi-dimensional items were classified into two constraints, namely a single

constraint against two constraints (such as, max(X, cost) ≤ (X, price)) and a conjunction

or disjunction of multiple sub-constraints (C1: X, cost ≤ v1) ˄ (C2: X, price ≤ v2), where

v1 and v2 are constant values respectively (Kuo and Shih 2007). Besides these two multi-

dimensional constraints, a frequency constraint is considered to find useful/interesting

rules. The advantage of ACO over the Apriori method is that ACO condenses more rules

and uses less computational time to generate association rules.

Tang et al. (2012) propose another meta-heuristic algorithm called the WSA. The WSA

is a bio-inspired heuristic optimization algorithm that is based on wolf preying behavior

(Tang et al. 2012). The behavior of wolves includes the ability to hunt independently by

remembering their own traits (meaning wolves have memory); the ability to only merge

with their peer when the peer is in a better position (meaning there is trust among wolves

to never prey on each other); only being attracted to prey within their visual range; the

ability to escape randomly upon the appearance of a hunter (Tang et al. 2012); and the use

87

of scent marks as a way of demarcating their territory and communicating with any other

wolf (Agbehadji et al. 2016).

This behavior expressed by the wolf enables it to randomly adapt to its environment when

hunting. If a wolf finds a new, better position, the incentive is stronger to assume this new

position, provided that the position is not already inhabited by a companion wolf.

Furthermore, each wolf instinctively flocks together in a pack that is a collective, and

organizes individual searches of an individual wolf. Therefore, the swarming behavior of

the WSA is delegated to each individual wolf, and this behavior could form multiple

leaders swarming from multiple directions towards the best solution rather than a single

flock searching for an optimum in one direction at a time (Tang et al. 2012). The WSA is

an iterative search process that starts with the setting of initial parameters, random

initialization of the population, evaluation and updating a current population using a

fitness test, and continuing to create new generations/iterations until some stopping

criteria are met. A variant of WSA is the Wolf Search Algorithm with Minus Step Previous

(WSA-MP) (Tang et al. 2012). The WSA-MP allows a wolf to remember a previous best

position and avoid the old positions that do not produce a best solution.

The Bat algorithm (Yang 2010) is another kind of meta-heuristic algorithm and is based

on the behavior of micro-bats in their natural environment. The unique behavior that

characterizes bats is their echolocation mechanism. This mechanism helps bats orient

themselves and find prey within their environment. The search strategy of bats is

controlled by the pulse rate and loudness of their echolocation mechanism. While the pulse

rate changes to improve on the position that was previously found, the loudness indicates

to each other bat that a best position has been accepted/found (Fister et al. 2014). Bat

behavior has been applied in several optimization problems to find the best optimal

solution.

88

The Bat algorithm search process starts with random initialization of the population,

evaluation of the new population using a fitness function, and finding the best population.

Unlike the Wolf algorithm, which uses attractiveness of prey to govern its search, the Bat

algorithm uses the pulse rate and loudness to control the search for an optimal solution.

These experiments on meta-heuristic algorithms were conducted using pre-fixed

parameters that were pre-tuned or controlled by the bio-inspired behavior of the respective

algorithm at each iteration process (Wei-yong et al. 2015). Although Kuo and Shih (2007)

and Kuo et al. (2011) apply meta-heuristic algorithms to different problem domains,

neither study considers the time and numeric dimension of frequently changed itemsets.

It is possible to apply a meta-heuristic algorithm as a search strategy to perform

randomization of search space to select optimal results when large volumes of data and

velocity of frequently changed items are important for pattern discovery. When this is

achieved, it is possible to improve on the runtime performance (Oweis et al. 2016) of

searching for association rules in large datasets. Yang, Lin and Jin (2015) indicate that

randomization is faster and reduces data size when large volumes of data are involved.

Furthermore, Yang, Lin and Jin (2015) observe that having optimal results improves the

convergence rate of data when speed (velocity) is significant. The combination of the

benefits of randomization and approach to optimal solutions provides an efficient search

algorithm (Yang, Lin and Jin 2015). It is possible to relate these properties of data

attributes to the frequently changed or frequently used aspects of data. Thus, exploring the

frequently changed or frequently used attributes through randomization and optimal

solutions may provide interesting patterns. These interesting patterns may be provided

through animal behavior, as animals can learn from their environment and adapt to

different situations (such as in association rule mining). In the next subsection, the

learning behavior of animals is discussed.

89

iii. Learning behavior of animals

Learning is essential for social animals as it enables them to adapt to different

environments in their search for food. During the process of adapting, social animals tend

to imitate best behavior that enables it to survive. Social imitation learning is a skill used

to achieve social adaptation, and the more an individual animal observes a behavior, the

more likely it is to imitate that behavior and later engage in similar action. This suggests

that each animal uses the social learning concept (Bandura 1971), which states that

learning may be achieved by observing behavior, encoding best features and later

imitating previously observed behavior. The key factor that could possibly lead to

imitation is distance, as the closer the distance, the higher the chances of accurate

imitation. Animals that are cooperative in hunts or that hunt in groups, are possibly

adapted with natural abilities that allow them to adopt the social learning concept.

Sakato, Ozeki and Oka’s (2012) method of imitating actions of well-adapted individuals

within an environment uses the reinforcement learning method, which not only allows

individuals to imitate best actions but also to behave autonomously in their environment

(Sakato, Ozeki and Oka 2013). In this method, as an individual (referred to as an agent)

imitates similar actions of another individual, a similarity value is computed to show the

importance of features that were imitated in terms of the type of feature and location.

Imitated actions are then selected using an action selection module. Agents learn through

trial and error in a given environment what to imitate and how to evaluate the imitation

until the correct value is determined and then maps it to a corresponding feature. Function

approximates are used to calculate approximate value, which represents the similarity

value of an action and the observed action.

Although this approach uses a probability in calculating the similarity between an action

and the observed action, it is possible to use a meta-heuristic search method that is adapted

with randomization and optimization search strategies to imitate optimal or near-optimal

solutions.

90

2.2.3. Phase 3: Data visualization

Data visualization presents data in pictorial or graphical format and enables the display of

interesting patterns for decision-making (Bikakis 2018). Han and Kamber (2006) provide

the following as reasons for data visualization: Gain insight into information by mapping

data onto graphical form; provide a qualitative overview of large datasets; search for

patterns, trends and relationships among data; and help find interesting patterns for

decision-making. Additionally, data visualization avoids data distortion by showing actual

data using pictures for easy understanding (Ward, Grinstein and Keim 2010). In view of

these reasons, data visualization faces the challenge that billions of records are condensed

into a million pixels (Shneiderman 2008), and this results in distortion of data. Although

distortion is a challenge in data visualization, the focus of the present thesis is on the

representation of data in a systematic form with data attributes and variables, which helps

display patterns in graphical format. The conventional approaches that are used to

represent data in systematic format include the use of bar charts, scatter diagrams and

maps (L. Wang, G. Wang and Alexander 2015).

The conventional techniques of visualization that tie in with data visualization could

consider visual performance scalability and response time during the visual analytics

process (L. Wang, G. Wang and Alexander 2015). Among the techniques of visualization

are dense pixel display, the stacked display technique (Keim 2000; Keim 2002; Leung,

Kononov, Pazdor and Jiang 2016) and cellular ant-based methods (Moere et al. 2006).

According to Keim (2000), the dense pixel technique maps the dimensions of values of

both text and numeric data to colored pixels and then groups the pixels belonging to each

dimension into adjacent areas using the circle segments technique. The principle of the

circle segments technique is that, close to a center, all attributes close to each other

enhance the visual comparison of values. The stacked display technique (Keim 2002;

Leung, Kononov, Pazdor and Jiang 2016), meanwhile, displays sequential actions in a

91

hierarchical fashion. The basic idea of the stacked display technique is to integrate one

coordinate system with another, that is, two attributes form the outer coordinate system

and two other attributes are integrated into the outer coordinate system.

When coordinate systems are integrated, it is possible to update these coordinate systems

to be dynamic. Mittelstaedt and Mittelstaedt (1982) express this integration as summing

up or adding coordinates together. Thus, positions on the coordinate systems are updated

using the Cartesian system, where each rotation is categorized into two orthogonal (sine

and cosine) components, and then the components are integrated (summed up) over the

total path (Mittelstaedt and Mittelstaedt 1982). Thus, it is possible to apply path

integration as a method of updating coordinate systems to be dynamic. Path integration is

an incremental recursive process in which changes in current estimates of the position are

added to position vectors of previous steps (Etienne, Maurer and Saucy 1988) through the

use of rules for processing information (Etienne and Jeffery 2004). However, the major

drawback is that computational performance degrades due to cumulative error after each

update process.

2.2.3.1 Bio-inspired approach to data visualization

The animal behavior/bio-inspired approach to visualization includes the use of cellular

ants based on any colony system (Moere et al. 2006) and flocking behavior of animals.

Flocking behavior for data visualization (Moere 2004) focuses on simplified rules that

model the dynamic behavior of objects in n-dimensional space. The spatial clustering

technique helps group each dynamic behavior or similar features of data as a cluster that

is viewed in n-dimensional space on a grid. In order to assist users of the visual data to

understand patterns, a blob shape is used to represent groups of spatial clusters. This blob

shape represents data plotted on grids.

Moere et al. (2006) combine characteristics of ants and cellular automata to represent

datasets in visual clusters. The cellular ants use the concept of self-organization to

92

autonomously detect data similarity patterns in multi-dimensional datasets and then

determine the visual cues, such as position, color and shape size, of the visual objects. A

cellular ant determines its visual cues autonomously, as it can move around or stay put,

swap its position with a neighbor, and adapt a color or shape size where each color and

shape size represents data objects. Data objects are denoted as individual ants placed

within a fixed grid that creates visual attributes through a continuous iterative process of

pairwise localized negotiations with neighboring ants in order to form a pattern that can

be visualized on a data grid. When ants perform continuously pairwise localized

negotiation, the position of one ant is swapped with another ant, which relates to swapping

one color with another in a single cluster (Moere et al. 2006). In this instance, the swap in

positions relates to interchange between data values that are plotted on a grid for

visualization by users.

Generally, there is no direct predefined mapping rule that interconnects data values with

visual cues to create the visual format for users (Moere et al. 2006). Hence, the shape size

scale adjustments are automatically adapted to data scale in an autonomous and self-

organizing manner (Moere et al. 2006). In view of this, instead of mapping a data value

to a specific shape size, each ant in the ant colony system maps one of its data attributes

onto its size by negotiating with its neighbors. During the shape size negotiation process,

each ant compares randomly the similarity of its data value and circular radius size that is

measured in screen pixels. It is possible that each ant can grow large or become small,

therefore simplified rules from ant behavior are expressed and applied to check how ants

can grow in their neighboring environment. These rules are significant in determining the

scalability of visualized data, whereas the randomization process is significant in

determining the adaptability of data value. The process of shape size scale negotiation

may require extensive computational time in coordinating each ant into a cluster or single

completed action.

93

2.2.3.2 Data visualization evaluation techniques

Keim, Bergeron and Pickett (1994) indicate that data visualization evaluation techniques

give an idea that could lead to improvement on data visualization methods. Although there

is a lack of quantitative evidence measuring the effectiveness of data visualization

techniques, Keim et al.’s (1994) approach to quantitatively measuring the effectiveness of

visualization techniques was by generating arbitrary/artificial test datasets with similar

characteristics such as different structures or semantics. When similar characteristics are

grouped, statistical methods are used as a way of evaluation, and include the use of mean

and variance of some dimensions such as location, size and shape of clusters. When some

parameters (such as statistical parameters) that define the data characteristics are varied at

a time within an experiment in a controlled manner, it helps in evaluating different

visualization techniques to find where the point data characteristics are perceived for the

first time or to find the point where characteristics are no longer perceived, in order to

build more dynamic and realistic test data

Another approach to evaluating data visualization was proposed by Keim et al. (1994).

They indicate that data for visualization can be evaluated when the same test data is used

in comparing different visualization techniques so as to determine the strengths and

weaknesses of each technique. However, the limitation of the visualization approaches is

that the evaluation is based only on users’ experience in the use of the visualization

techniques. Marghescu (2008) notes that the effectiveness of a visualization technique is

based on the user’s ability to read, understand and interpret the visual display easily,

accurately, quickly, et cetera. Thus, effectiveness depends not only on the graphical design

but also on the users’ visual capabilities (Marghescu 2008). Card, Mackinlay and

Shneiderman (1999) define effectiveness as the capability of a human to view a display

well, interpret the results faster and convey distinctions in the display with fewer errors.

Mostly, effectiveness is measured in terms of time to complete a task or quality of the

tasks’ solutions (Dull and Tegarden 1999; Risden and Czerwinski 2000).

94

Some visualization evaluation techniques include observation by users, the use of

questionnaires, and graphic designers who critique visualized results (Santos 2008) and

give an opinion. Although these visualization evaluation techniques are significant, they

are subjective and qualitative, so a quantitative approach could provide an objective

approach to measure visualization evaluation techniques.

2.3 Summary

This chapter provided a review of methods/concepts relating to data cleansing,

extrapolating missing values from data sources, and data mining algorithms/big data

mining algorithms and their challenges. Challenges with current data mining algorithms

are the high computational time and cost, the user setting a minimum support threshold

value, and not considering the time and numeric value dimension in frequent pattern/item

discovery. Appendix 1 is a summary of the data mining algorithms, advantages and

limitations.

These challenges (as shown in Appendix 1) are the gaps that were identified, and although

different search strategies have been applied to different problem-specific domains to find

frequent patterns/items in respect of data mining algorithms, these applications have failed

to disclose frequently changed patterns/items that might have interesting patterns based

on which a user can take a sequence of actions. Additionally, challenges identified with

duplicate detection techniques include the inability to perform global alignment of words

(that is, using the Smith-Waterman algorithm) and the computational complexity of

duplicate detection algorithms (that is, the using Smith-Waterman algorithm). Also, while

the BLAST algorithm for duplicate detection takes less time, it may not guarantee accurate

results as compared with the Smith-Waterman algorithm. Although, Naumann’s (2013)

framework presents a process to be followed for duplicate detection, when the algorithm

used in the process is unable to find accurate duplicates from any data source it influences

the performance results. Hence, the algorithm used aspect will be the focus of this thesis.

95

Additionally, Appendix 2 shows a summary of the advantages and disadvantages of meta-

heuristic search methods.

After reviewing what the key issues of concern are in respect of the challenges, it is

important to know how to address these challenges, which still remains a gap. This thesis

seeks to fill the gaps (Appendix 1 and Appendix 2) and propose a method on how to

address the challenges by proposing a search algorithm for cleansing data and a data

mining algorithm for frequently changed patterns/items that are characterized as having

volume, velocity and value. Finally, the study also proposes an approach for data

visualization in order to address scalability issues with data visualization when data is

characterized as having velocity (that is, moving with speed).

96

CHAPTER 3: DEVELOPING METHODOLOGICAL

FRAMEWORK

3.1 Introduction

This chapter illustrates how the research gaps identified in the previous chapter will be

addressed in this thesis. In this chapter, the researcher applies mathematical formulation

as a method to model certain behaviors of selected animals and then translate this model

into algorithms. The modelled behaviors are, from the researcher’s perspective, the

dominant features that represent unique characteristics that distinguish each animal. The

unique characteristics that are mathematically expressed were translated into search

algorithms (referred to as agent-based search algorithms) to find best possible solutions in

different problem domains that are characterized as having large volumes and velocity.

This agent-based search algorithm can be adapted to different problem dimensions and

domains by parameter tuning to observe the results of each parameter. The next subsection

discusses the methodological framework that helped guide this study and helped address

the gaps identified in literature.

3.2 Methodological framework for big data analytics

Research methodology is defined as a way to collect data and to analyze and interpret

results to either confirm or reject a claim (Creswell 2013). Creswell (2013) notes that there

are four questions that help a researcher clearly understand a problem in a research design.

The four questions are: What theory of knowledge is embedded in the theoretical

perspective (referred to as epistemology) that informs the research (either objectivism or

subjectivism)? What is the theoretical perspective (that is, what lies behind the

methodology in question, e.g. positivism and post-positivism, interpretivism or critical

theory)? What is the methodology (that is, strategy or plan of action that links methods to

outcomes) that governs the choice and use of methods (e.g. experimental research, survey

research, ethnography, etc.)? And what methods (that is, techniques and procedures) are

used (e.g. questionnaire, interview, focus group, etc.)?

97

This philosophical process of knowledge claims are linked to four different schools of

thought, namely positivism, constructivism, advocacy/participatory and pragmatism. The

positivist knowledge claim helps make underlying knowledge claims that form a basis to

understand the nature of a problem in the real world (Creswell 2013). This enables the

researcher to formulate a strategy and appropriate method to solve the problem (Creswell

2013). Knowledge claims use existing theory; strategy is the use of experimental design;

and method is a way of measuring output (Creswell 2013). Given the nature of the study,

the researcher adopted objectivism as epistemology (as the researcher deals with objective

reality), positivism as theoretical perspective (as ideas are reduced into small subsets that

can be tested, such as variables in hypotheses and theories, and the effects that these

variables cause are identified), and experimental design as methodology (because with

this design, it is possible to control numeric attributes and measure their causal effect)

(Creswell, 2013).

Using this methodology, the researcher followed the premise of this study, which is that

data is frequently generated from different sources that are characterized as having

velocity, volume, value and variety. As data is generated, its characteristics might

frequently change and, based on this possibility, the thesis focuses on the aspect of

disclosing interesting patterns from frequently changed data and on the visualization of

these patterns. The proposed methodological framework consists of three phases: data

preprocessing/data cleansing, data mining and data visualization. Table 3.1 shows the

various phases, stages, proposed algorithms and the comparative algorithm that constitute

the methodological framework.

98

 Table 3.1: Phases, stages and algorithms

Phases Stages Proposed algorithm Comparative

algorithms

Phase 1: Data

cleansing/preprocessing

Stage 1: Identify and

eliminate duplicate

text

Enhanced Smith-

Waterman algorithm

Jaro-Winkler

distance metrics

 Stage 2: Extrapolating

missing data values

KSA WSA-MP, BAT

and Firefly

algorithms

 Stage 3: Feature

selection

KSA WSA-MP, BAT,

ACO and PSO

algorithms

Phase 2: Data mining - KSA ACO, BAT, PSO

and WSA-MP

algorithms

Phase 3: Data

visualization (using

linear graph)

- DBA ACO for data

visualization, Bee

algorithm

Source: Researcher

Table 3.1 consists of three phases. Phase 1 is data preprocessing/data cleaning, which

consists of three stages, namely: extrapolating missing data; identifying and eliminating

duplicates; and feature selection. The extrapolating stage estimates missing values at

random in the observed data sample, as this may create inaccurate results in analysis. The

method to extrapolate missing data was mathematically formulated from the random

search characteristics of a bird in order to build a search algorithm that was used to

extrapolate missing data. Duplicate text data may create inaccurate results, which is

identified and eliminated using the Naumann’s (2013) framework and the enhanced

Smith-Waterman algorithm is applied. Finally, the feature selection stage allows large

volumes of data to be narrowed/reduced into smaller sets of relevant frequently changed

data for a quick and easy feature selection process. The formulated mathematical

expression for feature selection was combined with a deep learning network to form a

classifier for feature subset selection. Although there are several traditional search

methods (such as ANN, SVM, etc.) for building classifiers for feature selection, the

99

formulated search strategy was adopted as it related to how the bird being modelled shows

a dominant behavior trait, such as maintaining a still position with eyes fixed in a forward-

looking direction to search through a series of overlapping areas (Shrubb 1982).

The distinction between the proposed methodological framework and other framework

(e.g. Srivastrva 2014) differs in terms of the approach adopted in each stage, such as data

preprocessing or data mining. Even the various data mining frameworks, devoted to one

phase of the data management process, lack uniformity (Khana, Mohamudally and

Babajee 2013). Consequently, a comparison of the two frameworks or of any existing

framework are not considered and, hence, benchmark testing proposed against existing

frameworks are not focus of this thesis. The proposed methodological framework largely

focuses on a bio-inspired behaviour modelling and implementation of KSA but to a minor

extent, of the dung beetle as well in the stages of preprocessing, data mining, and

visualisation. Other frameworks do not include these phases and, hence, this proposed

framework forms an original contribution in this thesis.

Phase two, data mining, uses the KSA to mine association rules to disclose interesting

frequently changed patterns within time and numeric dimensions. The interesting patterns

are measured in terms of their closeness to a user-specified time interval (Railean et al.

2013), which is discussed in section 3.3.2.

The third phase is the data visualization. This phase is used to view the data mining results

using a simple linear graph with low computational cost. The DBA, which is based on ball

rolling, dance and path integration behavior of dung beetles, was used as an approach to

data visualization. The approach was mathematically formulated into simplified

mathematical expressions (as indicated in section 3.4) for visualization of relevant and

interesting frequently changed items with numeric value from the data mining phase.

100

In addition, the selected comparative algorithms that were described and discussed in

literature review, as indicated in Table 3.1, were compared with the proposed bio-inspired

algorithm to test the robustness of the algorithm proposed in this thesis. Moreover, the

appropriate comparative meta-heuristic algorithms were selected for each phase of the

proposed computational model.

In the next sub-section, the behavior of the bird (the kestrel) is discussed, as well as some

of its unique characteristics, the mathematical formulation depicting these characteristics,

the assumptions underlining the mathematical formulation and the formulation of basic

rules from each characteristic identified, as these constitute the steps in formulating the

KSA algorithm. Similarly, these steps are applied in the formulation of a search algorithm

for the proposed DBA for data visualization.

3.2.1 Description of kestrel behavior

The kestrel is a bird that hunts by hovering (that is, flight-hunting) or from a perch. This

bird can defend its territory from other kinds of birds and can change its hunting technique

based on type of prey, prevailing weather conditions (such as wind) and energy

requirements (for gliding). Kestrels are well adapted to use their eyesight to watch small

and agile prey on the ground. When kestrels are hovering, they can maintain a still position

with forward-looking eyesight to encircle prey beneath. Frequently bobbing their head

gives them a degree of magnified or binocular vision that helps in judging distance to

locate prey from a remarkably far distance. Kestrels have an ultraviolet-sensitive

characteristic to visually locate trails of prey such as voles, because trails of urine and

feces reflect ultraviolet light, making them visible to kestrels (Viitala et al. 1995).

Most frequently, an individual kestrel hunts a portion of an area and shifts entirely to

another portion at regular time intervals to look for prey (Shrubb 1982). When kestrels

live as social birds in a flock, it improves their chances of finding food sources, the risk

of predation reduces and their roost serves as a place for communicating with others.

101

Although a group of kestrels can be seen moving together in a similar direction and staying

as a group, this behavior is only temporary, since each will disperse to hunt individually

(Zyl 2013).

Varland (1991) indicates that during a hunt, kestrels are imitative rather than cooperative

due to their solitary hunting in close proximity to each other. This suggests that kestrels

prefer not to communicate with each other but rather imitate the behavior of other kestrels

with better hunting techniques and improve on their hunting technique, even though the

hunting technique can change based on type of prey, prevailing weather conditions and

energy requirements (for gliding or diving) (Vlachos et al. 2003).

During flight-hunting, the kestrel performs a random search, either by a series of hovers

in a close pattern around a small area and then moving forward, or by a series of more

widely spaced single hovers (Shrubb 1982). Village (1990: 66) indicates that “kestrels

have incredible co-ordination required to maintain position in a constantly changing

airstream. While the winds of kestrel and body are buffeted about like a flapping rag, its

head stays fixed, as if pinned by invisible clamps.” This suggests that kestrels are able to

maintain a still position with eyes fixed pointing in a specific direction. Kestrels are able

to flap their wings and adjust their long tails to stay in place, referred to as a still position

in changing airstreams. This enables kestrels to search for prey in wide circles centered

beneath them (Shrubb 1982). Ákos et al. (2010) observe that birds can adjust their flight

to weather conditions using speed-to-fly theory – a theory proposed by Paul MacCready.

It may be inferred that when speed is approximately zero, then a stable position can be

observed.

Specifically, during perched hunting, kestrels are seen on high fixed structures constantly

scanning the ground with their eyes. The benefit of a fixed high perch area is that it enables

fairly large scans or use of a larger search area than low perch areas. The frequent bobbing

of the head characterizes the behavior in perch. Shrubb (1982) observes that kestrels in

102

perch tend to look forward and search series of overlapping bands. When prey is found,

kestrels either glide down to strike directly or fly out and hover over the spot area for a

closer look and determination of the measurement of distance to travel. Mostly, the strike

from kestrels, while in perch mode, is directed at small mammals closer to a perch than

avian prey. This suggests that in perch mode, kestrels conserve some energy and direct

their ultraviolet-sensitive characteristics at slowly moving prey on the ground and lift the

prey. During active hunting, that is, in either hovering and perch mode, kestrels maintain

upright posture, continually scan the ground and bob their head several times to better

judge distance to prey.

Kestrels are mostly known to flight-hunt if they are looking for small mammals and if the

wind conditions are favorable. Thus, an increase in flight-hunting leads to a corresponding

decline in perch-hunting, which reflects the capture rate in that the perch-hunt capture rate

is lower. Flight-hunting is necessary if the yield from perch-hunting is too low, but this is

usually done when the wind conditions make hovering most efficient. Perch-hunting is

therefore a good way to meet daily food needs, as it requires little effort. Flight-hunting

yields more strikes than perch-hunting, however, because flying kestrels are higher

(searching directly overhead) and can move more rapidly, thereby scanning more ground

in a given time (Village 2010). The characteristics of the kestrel are simplified as follows:

1) Soaring: Gives a larger search space (global exploration) within the visual coverage

area.

a. separates from group assembly of kestrels in order to hunt individually

b. still (motionless) position with eyesight fixed on prey

c. encircles prey beneath with keen eyesight

d. stepped descent to capture prey by surprise

2) Perching: Each kestrel does a thorough search (local exploitation) within the visual

coverage area.

103

a. positioned on high fixed structures

b. frequent bobbing of head

c. attracted to prey using seen trail, then glides to capture

d. imitation of behavior

3.2.1.1 Kestrel-based search algorithm

The KSA is a meta-heuristic algorithm based on the hunting characteristics of the kestrel.

The KSA is a meta-heuristic algorithm because the hunting behavior, as described,

performs local exploration of domain-specific knowledge in the form of heuristics, which

are controlled or guided by the upper-level search strategy (referred to as meta), global

exploitation. The learning strategy of kestrels is mathematically expressed and used to

structure information to find efficient near-optimal solutions. The behavior of the KSA

relates to the fundamental properties of meta-heuristic algorithms as defined by Blum and

Roli (2003).

The hunting technique of kestrels changes based on type of prey, prevailing weather

conditions and energy requirements (for gliding or diving) (Vlachos et al. 2003). In order

to perform local exploration, the solution algorithm generates initial solutions and then

tries to update with a better solution from a population. The challenge of local exploration

is avoiding getting stuck in a local optimum (Iglesia and Reynolds 2005), which may be

avoided by a random encircling formulation and the mechanism of trail evaporation

strategy that is random.

When hovering, kestrels perform a wider search (global exploration) across territories

within a visual circling radius, maintain a motionless position with forward-looking eyes

fixed on prey, and detect minute air disturbances from flying prey (particularly flying

insects), which gives an indication to capture prey, and mostly move with precision

through changing airstreams. While in perch, mostly from high fixed structures, kestrels

perform a thorough search (local exploitation) of their local territory with fewer energy

104

requirements, and they use their ultraviolet-sensitive capabilities on mammals, such as

voles, closer to perch area. Mostly, strikes are directed at mammals closer to the perch.

This suggests that in perch, kestrels conserve some energy and direct their ultraviolet-

sensitive capabilities at slowly moving prey on the ground. It is significant to combine

this search behavior because perch-hunting is thorough and directed at a variety of ground-

moving prey, while flight-hunting is rapid and depends on speed to dive. Again, flight-

hunting explores hunt areas that are beyond the scanning range of perches that would

otherwise be unexploited (Agbehadji et al. 2016).

Assumptions:

 Kestrels hunt individually.

 Kestrels are imitative rather than cooperative. Perhaps kestrels can imitate birds from far

off.

 The still position gives a near-perfect circle, thus frequent changes in circle direction

depend on the position of a prey in shifting the center of circling direction.

 Frequent bobbing of the head gives a degree of magnified or binocular vision that helps

in judging distance to a prey and moving with speed to strike.

 Perch is not likely to give a perfect circle. Thus, ultraviolet-sensitive capabilities are used

to visually determine attractiveness of trails closer to the perch area and then glide to

capture the prey. Attractiveness is proportional to light reflection, so the higher a distance,

the less bright a trail. Additionally, new trails are more attractive than old trails.

 An increase in flight-hunting leads to a corresponding decline in perch-hunting.

3.2.1.2 Preliminary formulation of basic rules

 Random encircling

The encircling mechanism defines a circle-shaped neighborhood solution around a

position with different random radii (Mirjalili, Mirjalili and Lewis 2014). The assumption

is that as the prey moves at random to its current position, the kestrel randomly changes

the center of circling direction randomly in order to recognize the current position of prey

105

to be encircled. This movement of prey determines the best possible position assumed by

the kestrel. The mathematical model to depict encircling behavior 𝐷⃗⃗⃗ (Muro et al. 2011;

Kumar 2015) is expressed as follows:

𝐷⃗⃗⃗ = |𝐶 ∗ 𝑥𝑝⃗⃗⃗⃗⃗(𝑡) − 𝐴 ∗ 𝑥⃗(𝑡)| Equation 3.1

𝑥⃗(𝑡 + 1) = 𝑥𝑝⃗⃗⃗⃗⃗(𝑡) − 𝐴 ∗ 𝐷⃗⃗⃗ Equation 3.2

where

𝐴 = 2 ∗ 𝑧 ∗ 𝑟2⃗⃗⃗⃗⃗ − 𝑧 Equation 3.3

𝐶 = 2 ∗ 𝑟1⃗⃗⃗⃗⃗ Equation 3.4

where 𝐴 is the coefficient vector, 𝑥𝑝⃗⃗⃗⃗⃗(𝑡) is the position vector of the prey, and 𝑥⃗(𝑡)

indicates the position vector of a kestrel. Further, r1 and r2 are learning rates that assume

a random value between 0 and 1, 𝑥⃗(𝑡 + 1)represents the current position of a kestrel, 𝑧

represents a parameter to control the active mode, with 𝑧ℎ𝑖 as the parameter for flight

mode and 𝑧𝑙𝑜𝑤 as the parameter for perched mode, which linearly decreases from 2 (high

active mode value) to 0 (low active mode value) respectively during the iteration process.

This is expressed in Equation 3.5 as

𝑧 = 𝑧ℎ𝑖 − (𝑧ℎ𝑖 − 𝑧𝑙𝑜𝑤)
𝑖𝑡𝑟

𝑀𝑎𝑥_𝑖𝑡𝑟
 Equation 3.5

where itr is the current iteration and Max_itr is the total number of iterations that are

performed during the search.

The encircling prey formulation, as adopted from grey wolves’ behavior (Muro et al.

2011), which is a variant of wolf behavior, shows group hunting behaviors such as:

tracking, chasing and approaching prey, as well as pursuing, encircling, attacking and

harassing prey until it stops moving. Although grey wolves’ encircling behaviour is

similar to kestrels, kestrels perform encircling of prey individually rather than in groups.

This individual hunting behavior suggests that kestrels have the natural ability to track the

106

position of prey and to shift their center direction randomly to adjust their location and

identify their prey. Hence, random encircling was adopted to depict the hunting

characteristics of kestrels for a successful hunt.

 Change in position

The change in position of a kestrel helps it move toward its prey. The change in position

of a kestrel depends on attractiveness and frequency of bobbing, which are explained

below. A kestrel’s position is updated using Equation 3.6:

𝑥𝑡+1
𝑘 = 𝑥𝑡

𝑘 + 𝛽𝑜𝑒−𝛾𝑟2
(𝑥𝑗 − 𝑥𝑖) ∗ 𝑓𝑡

𝑘 Equation 3.6

where 𝑥𝑡+1
𝑘 is the current best position of the kestrel, which represents candidate solution,

𝑥𝑖 is the previous position of the kestrel, 𝛽𝑜𝑒−𝛾𝑟2
represents the attractiveness of prey, 𝑥𝑗

represents a kestrel with a better position, and 𝑓𝑖
𝑘 is the frequency of bobbing.

The best candidate represents a candidate that has better knowledge about the potential

position of a prey. The best candidate with better position is saved to oblige the other

search agents (that is, kestrels) to change their positions according to the position of the

best search agent. As kestrels hunt individually, search agents tend to imitate the best

position of the other search agents and then update their velocity accordingly.

 Velocity

The velocity of a kestrel moving from its position is expressed in Equation 3.7 as

𝑣𝑡+1
𝑘 = 𝑣𝑡

𝑘 + 𝑥𝑡
𝑘 Equation 3.7

where vt+1
k represents the current velocity of the kestrel, vt

k is the initial velocity, and 𝑥t
k

is the position of the kestrel. The change in velocity is controlled by the inertia weight ω

(which is also referred to as the convergent parameter) (Ahmed and Glasgow 2012). This

inertia weight has a linearly decreasing value, as explained in the random encircling

formulation in Equation 3.9. Thus, velocity is expressed in Equation 3.8 as

107

𝑣𝑡+1
𝑘 = 𝜔𝑣𝑡

𝑘 + 𝑥𝑡
𝑘 Equation 3.8

where ω is expressed in Equation 3.9 as

𝜔 = 𝜔ℎ𝑖 − (𝜔ℎ𝑖 − 𝜔𝑙𝑜𝑤)
𝑡

𝑇𝑚𝑎𝑥
 Equation 3.9

where t refers to the iteration counter, ωhi and ωlow are the parameters on flight mode

(higher bound) and perched mode (lower bound) respectively, and Tmax is the allowable

number of iterations to terminate the search.

 Frequency of bobbing

Frequency of bobbing depends on the kestrel’s position on a fixed structure. This is

expressed in Equation 3.10 as

𝑓𝑡+1
𝑘 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝛼 Equation 3.10

where, 𝛼 ∈ [0,1] is a random parameter between 0 and 1 to control the frequency. The

maximum frequency fmax is set to 1, and the minimum frequency fmin is set to 0. The 𝑓𝑡+1
𝑘

is the current frequency that indicates the frequency of bobbing at each step on a high

fixed structure.

When a kestrel is located at a current position, each bob of the head calculates all sight

distances to pick the best possible sight distance. This bobbing of the head gives a degree

of magnified or binocular vision for judging distance to a prey in hyper-space from

different positions before it moves with a velocity to strike. An awareness of changing

airstreams and signs of nearby enemies are attributes that dominate in hyperspace. Each

kestrel has a visual coverage area with a circling radius defined by V for x, that is, radius

V consisting of x sets of points representing potential solutions. Sight distance 𝑠(𝑥𝑖, 𝑥𝑐) is

expressed using Minkowshi distance in Equation 3.11 as

𝑠(𝑥𝑖, 𝑥𝑐) = (∑ |𝑥𝑖,𝑘 − 𝑥𝑐,𝑘|𝜆)𝑛
𝑘=1

1

𝜆 Equation 3.11

108

Thus,

𝑉 ≤ 𝑠(𝑥𝑖 , 𝑥𝑐) Equation 3.12

where xi is the current sight measurement, xc is all potential neighboring sight

measurements near xi, n is the total number of neighboring sights, and λ is the order (1 or

2) that is assumed in this study to represent the maximum of two “degrees of freedom” to

change its position.

 Attractiveness

Ultraviolet sensitivity is used to visually locate trails of ground-moving prey. Thus, a

kestrel’s attraction (𝛽𝑜) to prey using the ultraviolet sensitivity is proportional to light

reflection (or light intensity γ). Thus, the greater the distance r (which equals vision

measurement), the less bright the trail. Kestrels are most attracted to new trails. The

intensity of the trail 𝛾 varies with distance r, since light intensity decreases with distance

from source, and light is absorbed in the medium on which the kestrel is found. For a

given medium with a fixed light absorption coefficient γ, the light intensity I varies with

the distance r. This is expressed in Equation 3.13 as

𝐼 = 𝐼𝑜𝑒−𝛾𝑟 Equation 3.13

where I0 is the original light intensity, γ is the absorption coefficient, and r is distance. The

absorption is therefore approximated using the Gaussian equation, hence, attractiveness β

is expressed in Equation 3.14 by

𝛽(𝑟) = 𝛽𝑜𝑒−𝛾𝑟2
 Equation 3.14

where 𝛽𝑜 , which equals 𝑙𝑜, is the attractiveness, and 𝛾 represents the variation of light

intensity between [0, 1].

 Trail decay or trail evaporation

A trail is described as formation and maintenance of a line (Dorigo and Cambardella

1997). Usually, in the ant meta-heuristic algorithms, ants use trails to trace the path to a

109

food source and to prevent themselves from getting stuck relying on a single food source.

Thus, using these trails, ants can search many food sources in their habitat (Agbehadji

2011). As ants continue to search, trails are drawn and biological evaporative substances

are deposited in trails to enable ants to communicate with each other about the location of

food sources. Therefore, other ants continuously follow this path and also lay more

biological substances for a trail to remain fresh. Similar to ants, kestrels use trails in search

of food sources. However, these trails are rather deposited by prey, which provide an

indication to kestrels on the availability of food sources. The assumption is that the

biological substances deposited by this prey are similar to substances deposited on ants’

trail. Additionally, when the source of food depletes, kestrels no longer follow this path.

Consequently, the trail substance begins to diminish with time at an exponential rate,

causing trails to become old (Agbehadji et al. 2018). This diminishment denotes the

unstable nature of the trail substances, which can be theoretically stated as: If there are N

unstable elements with an exponential decay rate γ, then an equation can be formulated to

describe how N substances decrease in time t (Spencer 2002). This equation is expressed

in Equation 3.15 as

𝑑𝑁

𝑑𝑡
= −𝛾𝑁 Equation 3.15

In other words, since the substances are unstable, they introduce randomness in the decay

process. Thus, decay rate 𝛾 with time t is re-expressed in Equation 3.16 as

𝛾𝑡 = 𝛾𝑜𝑒−𝜆𝑡 Equation 3.16

where γo is a random initial value of substance that is decreased at each iteration, and

where t is the number of iterations or time steps. Further, t ∈ [0, Max_itr], where Max_itr

is the maximum number of iterations. The decay rate γ𝑡 at time t to indicate a new trail or

old trail is expressed in Equation 3.17 as

𝑖𝑓 𝛾𝑡 → {
 𝛾𝑡 > 1, 𝑡𝑟𝑎𝑖𝑙 𝑖𝑠 𝑛𝑒𝑤

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Equation 3.17

Again, the decay constant λ is expressed in Equation 3.18 by:

110

𝜆 =
𝜙𝑚𝑎𝑥−𝜙𝑚𝑖𝑛

𝑡1
2

 Equation 3.18

where λ is the decay constant, 𝜙𝑚𝑎𝑥 is the maximum number of substances in the trail,

𝜙𝑚𝑖𝑛 is the minimum number of substances in the trail, and 𝑡1

2

 is the half-life period of a

trail, which shows that a trail is old and unattractive if less than ½ is not worth exploring

(Agbehadji et al. 2018).

 Imitative behavior

Kestrels are territorial and hunt individually rather than collectively. As a consequence, a

model by Cui and Potok (2006), which depicts the collective behavior of birds for feature

similarity selection, could not be applied. However, individual hunting can be used for

feature selection based on imitative behavior. Since kestrels are imitative, it implies that

a well-adapted kestrel would perform actions appropriate to its environment, while other

kestrels that are not well adapted imitate and remember the successful actions of the well-

adapted kestrel. The imitation behavior reduces learning and improves the skills of less

adapted kestrels. A kestrel is most likely to take a random step that imitates a successful

action for a global optimum rather than not imitating and, as a result, can become stuck in

a local optimum that it alone discovered.

Imitation learning is an approach to skill acquisition (Englert et al. 2013) where a function

is expressed to transfer skills to lesser-adapted kestrels. This suggests that lesser-adapted

kestrels feel more drawn to imitate while observing from a close distance (Penaloza et al.

2012). Therefore, the short distance results in higher imitation. In the present approach,

the position at which a kestrel can copy an action in a large search domain was imitated.

The imitation behavior is mathematically expressed and applied to select similar features

into a subset. A similarity value 𝑆𝑖𝑚𝑣𝑎𝑙𝑢𝑒 (𝑂,𝑇) that helps with the selection of similar

features is expressed in Equation 3.19 by

111

𝑆𝑖𝑚𝑣𝑎𝑙𝑢𝑒 (𝑂,𝑇) = 𝑒
(−

∑ |𝑂𝑖−𝐸𝑖|2

𝑛
)
 Equation 3.19

where n is the total number of features, and |(𝑂𝑖 − 𝐸𝑖)| represents the deviation between

two features where O is the observed, and 𝐸𝑖 is the estimated velocity of the kestrel. Since

the deviation is calculated for each feature dimension, at each time step only the minimum

deviation is selected (the rest of the dimension is discarded), thus enabling the kestrel to

allow the handling of different problem dimensions of data (Englert et al. 2013). Speed of

convergence of imitation of similar features is regulated by a control parameter where the

higher the value of the control parameter, the lower the convergence speed of imitation,

and hence a lower learning rate. Moreover, cases where features that were imitated are not

similar (that is, dissimilarity) are expressed in Equation 3.20 as

𝑑𝑖𝑠_𝑠𝑖𝑚𝑣𝑎𝑙𝑢𝑒 (𝑂,𝑇) = 1 − 𝑆𝑖𝑚𝑣𝑎𝑙𝑢𝑒 (𝑂,𝑇) Equation 3.20

The fitness function, which is similar to the fitness function formulation used by (Mafarja

and Mirjalili 2018) and which evaluates each solution, is expressed in terms of

classification error of the RNN and the similar value obtained from each solution. The

fitness function is formulated using Equation 3.21:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝜌 ∗ 𝑆𝑖𝑚𝑣𝑎𝑙𝑢𝑒 (𝑂,𝑇) + 𝑑𝑖𝑠_𝑠𝑖𝑚𝑣𝑎𝑙𝑢𝑒 (𝑂,𝑇) ∗ 𝜌 Equation 3.21

where 𝜌 ∈ (0,1) is a parameter that controls the chances of imitating features that are

dissimilar, 𝐶𝑒𝑟𝑟𝑜𝑟 is the classification error of an RNN classifier, and 𝑆𝑖𝑚𝑣𝑎𝑙𝑢𝑒 (𝑂,𝑇) refers

to the feature similarity value obtained in feature imitation.

 Slope of glide to capture

The slope of glide to capture differentiates the time distance that each kestrel moves in

time width 𝜔𝑡. When the time 𝜎𝑡 at which a kestrel moves is specified and a minimum

value 𝑓(𝜎𝑡) in an interval [0, 𝜎𝑡] is determined, then the slope of glide s to the prey within

a time width 𝜔𝑡 is computed using Equation 3.22:

𝑠 = √
1

𝑓(𝜎𝑡)
− 1

(𝜎𝑡−𝜔𝑡)

 Equation 3.22

112

where 𝑓(𝜎𝑡) represents a function of the final velocity of the kestrel obtained within a

time window width 𝜔𝑡 and specified time 𝜎𝑡 to move. Thus, a larger 𝜎𝑡 implies a larger

slope s. The basis of the slope to glide is to help determine the time differences between

the points at which a kestrel starts a glide to another intermediate point. The significance

of slope to glide is that it helps in discovering association rules within each time interval.

3.2.2 Description of dung beetle behavior

The behavior of dung beetles for data visualization will be described in detail in section

3.4 of this thesis. The characteristics and simplified rule formulation on the characteristics

of dung beetles will also be discussed.

3.3 Kestrel behavior that relates to big data characteristics

Kestrel behaviors that relate to big data environment characteristics are velocity (that is,

the speed to dive on prey with a time dimension), variety (different kinds of prey that

require different attack methods), veracity (attractiveness, that is, accuracy of results from

the processing system), value (what the user will gain (usefulness) from the analysis) and

volume (larger search space referring to size of data). Prey represents a frequent item while

movement (e.g. change in numeric data points, such as price data) among prey indicates

frequently changed items among frequent items. Hence, frequent items can be classified

by a kestrel’s view based on size of data, speed, accuracy and usefulness of pattern in

respect of time. This behavior of kestrels is mathematically modelled to handle size, speed,

accuracy and usefulness in order to handle the challenge of data cleansing and data mining.

In respect of visualization of patterns, the present study looked at the role of dung beetles

in data visualization without relating their behavior to aspects of big data characteristics.

The role is to ensure large volumes of data can be viewed with limited computational cost

and in short time (i.e. velocity) by data analytics platforms. In order to fulfil this role, the

navigation and orientation behavior of dung beetles is applied to model an algorithm for

data visualization (see section 3.4).

113

The following sub-sections contain a discussion of how to address the challenges of data

cleansing and data mining in big data frameworks using the behavior of kestrels.

3.3.1 Phase 1: Data cleansing

3.2.1.3 Stage 1: Extrapolating missing data using the Kestrel-Based Search Algorithm

The search is a random search strategy that is derived from the mathematical formulations

on the characteristics of the kestrel. The mathematical modeling of the kestrel behavior

(in section 3.2.1) was used to extrapolate missing data (that is, missing values at random).

3.2.1.4 Stage 2: Identifying and eliminating duplicate texts

During the second stage, the Smith-Waterman algorithm, as discussed in the literature

review, was applied to identify, match and eliminate duplicate text from a single dataset.

The importance of duplicate detection is that it avoids duplicate tuples from a dataset.

Consequently, this algorithm was used to remove duplicate text that had been identified.

An approach to removing duplicates is the use of the pairwise comparison method.

Pairwise comparison of a sequence of characters of a text was applied to find the optimal

local alignment of characters as follows. The local alignment is performed in the following

steps:

Let A and B represent the sequence of two texts by A={a1,a2,…an} and B={b1,b2,…,bm},

where n and m are the length of the two texts respectively.

Step 1: Find the substitution matrix and compute the gap penalty in terms of the cost of

starting s and ending a gap as:

𝑠(𝑎𝑖, 𝑏𝑗) = ∑ 𝑠(𝑎𝑖, 𝑏𝑗)𝑘
𝑖,𝑗=1 Equation 3.23

where s: (Σ ∪ {−})2 → ℝ represents the similarity function, and s (𝑎𝑖, 𝑏𝑗) >0, s(ai, -) < 0,

s(-, bj) < 0, where the symbol “-” represents a gap that appears either after a character or

114

before a character. If there is a match, +1 is assigned, and if a mismatch, -1 is assigned.

Thus, the substitution matrix is described in Equation 3.24 as:

𝑠(𝑎𝑖, 𝑏𝑗) = {
+1, 𝑎𝑖 = 𝑏𝑗

−1, 𝑎𝑖 ≠ 𝑏𝑗
 Equation 3.24

Step 2: Initialize scoring matrix M[i][j] such that M[i][0]=0 and M[0][j]=0 and the size

of the score matrix is (1+length(A))*(1+length(B)).

Step 3: Scoring matrix. Score each element of the M[i][j] from left to right, top to bottom

matrix using the matrix equation in Equation 3.25:

𝑀[𝑖][𝑗] = 𝑚𝑎𝑥 {

𝑀[𝑖 − 1][𝑗 − 1] + 𝑠(𝑎𝑖, 𝑏𝑗)

𝑀[𝑖 − 1][𝑗] − 𝑐; 𝑖𝑓 (𝑎𝑖, −)

𝑀[𝑖][𝑗 − 1] − 𝑐; 𝑖𝑓 (−, 𝑏𝑗)

 Equation 3.25

where an entry into the matrix produces the best possible score for match or mismatch

s(𝑎𝑖, 𝑏𝑗) on a prefix of two strings, and c is the cost of a single gap that is expressed in a

linear gap penalty as Ck=kC1, where k is the gap length.

Each element in the scoring matrix in Equation 3.25 can be represented in a matrix table

as follows:

Table 3.2: Element representation in tabular form

 bj-1 bj

ai-1 𝑀[𝑖 − 1][𝑗 − 1]

+ 𝑠(𝑎𝑖, 𝑏𝑗)

1

𝑀[𝑖 − 1][𝑗]-c1

2

115

ai 𝑀[𝑖][𝑗 − 1]-c1

3

The best local alignment score is computed by:

𝑆𝑐𝑜𝑟𝑒 = 𝑀𝑎𝑥𝑖,𝑗=1
𝑛 (𝑀[𝑖][𝑗]) Equation 3.26

Step 4: Traceback. Start with elements with the highest score and end at a matrix cell with

score equal to 0. The traceback starts at the bottom right and ends at the top left for best

alignment. Traceback helps find best local alignment.

The challenge with the Smith-Waterman algorithm is the large amount of time required

to perform a similarity check on each character in a text (CLC bio 2007). In order to

demonstrate how the Smith-Waterman algorithm compares two sequences using local

alignment and identifies best alignments of high importance to both the reliability and

relevance of the data obtained as duplicate, the following example was adapted from CLC

bio (2007) to explain how the Smith-Waterman is used:

Sequence in text A: CAGCCUCGCUUAG

Sequence in text B: AAUGCCAUUGACGG

parameters for the scoring matrix being:

 match = 1

 mismatch = −
1

3

 gap = ch =
1

3
∗ 𝑘), where k represents the gap extension number.

Using Equation 3.26, the similarity matrix is filled as shown in Figure 3.1:

116

Figure 3.1: Scoring matrix

Figure 3.1 represents the scoring matrix, where cell value represents the score of the

optimal alignment ending at the cell coordinates, and the highest scoring position in the

matrix reports the ending point of the highest scoring and thereby the optimal alignment

between the two sequences compared (CLC bio 2007).

To construct the optimal alignment, the starting point is the cell with the highest scoring

value representing the last residue in this alignment. The complete alignment is identified

by tracing back through the array from the highest scoring matrix cell until a cell scoring

zero is reached.

In Figure 3.1, the highest scoring cell in the diagonal is 3.3 and is traced back six steps.

The search for local alignments allowing any position to be a starting point and any

position to be an ending point means that the optimal alignment can be of any possible

length and is thereby identified as the optimal local alignment. Finally, the alignment

represented by the path shown in red in the similarity matrix is expressed as

117

Sequence in text B: G C C A U U G

Sequence in text A: G C C - U C G

Time cost may be important but, in some contexts, accuracy is more significant in a

situation where the risk of missing very sensitive information could result in loss of life

(CLC bio 2007). It is possible to perform global alignment by considering each string that

has been locally aligned as a token.

 Tokenization

Generally, the concept of tokenization is used for lexical analysis, where different

elements represent individual words. These different elements represent a segment on a

sequence of strings, often called tokens (Thakker, Osman and Lakin 2009), which indicate

words. Tian et al. (2002) suggest that the way to identify erroneous words is by comparing

words, and words that are of similar value are considered identical. Originally,

tokenization works best when words are transposed (Elmagarmid et al. 2006). Kannan

and Gurusamy (2014) indicate that text data could be represented as blocks of letters, that

is, words, that are stored in machine-readable formats. In the process of tokenization,

tokenizers (identifiers) are used to identify meaningful keywords (Vijayarani and Janani

2016) within documents so as to find the consistency of documents. Although document

analysis is not the focus of this thesis, it is worth mentioning the concept of tokenization,

which forms the basis of the present approach to duplicate detection. The advantage of the

token-based method is that while it compensates for the character-based and n-gram

similarity measures, it fails to capture the similarity of the strings when the order of words

is changed (e.g. Forbit Café versus Café Forbit) (Gali et al. 2016). An example of an

algorithm based on token-based methods is the n-gram (Cohen et al. 2003). The n-gram

is an algorithm that enables the detection of error in words to suggest misspelt words,

where n represents consecutive letters in a word (Tian et al. 2002). The n consecutive

letters may be taken in twos (di-grams), threes (tri-grams) or fours (quad-grams). For

instance, using the word “cardiogram”, di-grams can be formed as (ca-ar-rd-di-io-og-gr-

ra-am); tri-grams are formed as (car-ard-rdi-dio-iog-ogr-gra-ram); and quad-grams is

118

formed as (card-ardi-rdio-diog-iogr-ogra-gram) respectively. The example indicates the

structural information of the word (Tian et al. 2002). Thus, n-grams of a word represent

some structural information of the word.

Each token is compared with other tokens to find the transitive, reflexive or symmetry

property of equality. For a given binary relation R on A (records), the transitive, reflexive

and symmetry properties that identify records as duplicate are expressed by the following

definitions:

Definition 1: Transitive property of equality of record

The significance of the transitivity property is that it reduces the number of total

comparisons that need to be made on words (Dănăilă et al. 2012). Transitivity is expressed

as a binary relation R. For example, the relation R on {1,2,3} is given by R = {(1,1), (1,2),

(2,1), (2,2), (2,3), (1,3)} under the assumption that the “is a duplicate of” (Hernandez and

Stolfo 1995) relation R is transitive by constructing a similarity graph where duplicates

amount to finding the connected components of the resulting graph, thereby avoiding

unnecessary comparisons between already connected nodes and reducing computation

cost (Dănăilă et al. 2012). This means that, for each word x, y, z in A, if x word relates to

y word, and y word relates to z word, that implies x word relates to z word in an ordered

pair. Thus, x, y, z are the same word within a record. In this case x, y, z are considered

nodes in a connected graph. The transitive closure of R is defined as the binary relation Rt

on A satisfying the following three properties:

1. Rt is transitive.

2. R is a subset of Rt.

3. If S is any other transitive relation that contains R, then S contains Rt.

In other words, the transitive closure of R is the smallest transitive relation containing R.

119

Definition 2: Reflexive property of equality of record

A record is considered reflexive if every word x in the record A is related to itself

(Borschev and Partee 2001). The reflexive property can be expressed as a binary relation

R if for each 𝑥 ∈ 𝐴, (𝑥, 𝑥) ∈ 𝑅, (𝑥, 𝑥) ∈ 𝑅, where the reflexive relation is the use of the

“is-equal-to” relation. This means that, for every word x in A, x word relates to another x

word. Similarly, a word in a record relates to the same word in another record. For

example, the relation R on {x1, x2, x3} is given by R = {(x1, x1), (x2, x2), (x2, x3), (x3,

x3)} and is reflexive. This means x1 is equal to another x1, and both x1 and x1 are therefore

reflexive.

Definition 3: Symmetry property of equality of record

A binary R is symmetric if for each 𝑥, 𝑦 ∈ 𝐴, (𝑥, 𝑦) ∈ 𝑅 implies (𝑦, 𝑥) ∈ R. Meaning for

all 𝑥, 𝑦 ∈ 𝐴, x word relates to y word implies that y relates to x. For instance, the relation

R on {1,2,3} is given by R = {(1,1), (1,2), (2,1), (1,3), (3,1)} and is symmetric. These

definitions expressed adhere to the property of equality in the sense that a word in each

record is transitive for each, thus if x=y, y=z, then z=x. The reflexive property is expressed

as x=x while, the symmetry property is expressed as if x=y then y=x. The transitive,

reflexive and symmetry properties’ adherence to the equality (or equivalence) property

forms the basis for pairwise alignment between two health records. This equivalence is

measured in terms of the degree between 0 and 1 (Monge 2000) where 1 is assigned if

there is an equivalence, while 0 is assigned if there is no equivalence.

 Pairwise alignment

Pairwise alignment finds the best-matching sequence of strings such as words. Given two

strings Y (y1, y2...yn) and X (x1x2...xm), a pairwise alignment between Y and X is defined

as an ordered set of pairings of each (yi, xj) and of gaps (yi, −) and (−, xj), where i ≤ n.,

with the constraint that an alignment is reduced to two original strings when all gaps in

the alignment are deleted. The symbol “−” represents a gap that appears either after a

character/letter or before a character/letter. The gap penalty function penalizes alignment

120

of words and then either accepts a gap or inserts alignment to achieve a good/approximate

alignment of words. The gap penalty function is expressed as w(k), where w is the cost of

a gap and k is the length. The cost of a gap penalty, when carefully selected, avoids a high

gap penalty that may lead to unmatched positions of letters. This can result in unequal

intervals on the position of characters in a text, thus leading to inaccurate matches. Hence,

the gap penalty gives an acceptable interval for good alignment. The matched letters are

selected and optimized over the sum of both matched and unmatched words (Vingron and

Waterman 1994).

Agbehadji, Millham, Fong and Yang (2018a) method on duplicate word/text detection

applies two concepts, namely word tokenization and a character-based method to detect

duplicate words. In this context, tokens are referred to as segments of words that are

grouped together as useful semantic units for processing by the Jaro-Winker and/or Smith-

Waterman algorithm. During the tokenization process, it is possible to have large volumes

of datasets that can increase the computational time. To avoid this situation, the transitivity

closure on words using the Union/Find technique, which has the property to reduce the

number of total comparisons of words, is applied. Afterwards, the property of equality

(that is, the symmetry property) is applied to perform pairwise word comparison. Finally,

a character-based method, such as the Jaro-Winkler and/or the Smith-Waterman

algorithm, is applied to perform pairwise comparison of characters in each word.

3.2.1.5 Stage 3: Data reduction

This is the process of reducing a large volume of data into a smaller set for an efficient

data mining process (Rehmana et al. 2016). Data reduction is important because it helps

build a model to classify datasets by selecting best features, avoids unbiased classification

and avoids imbalances in the dataset so as to guarantee the same results. Clustering is one

of the methods that helps put unlabeled data into similar subsets, and it is regarded as

unsupervised classification (that is, no predefined classes) (Ullman et al. 2014). Although

121

data clustering is important for data reduction, it is outside the scope of this thesis. This

thesis focuses on classification to help reduce data into relevant subsets.

The application of an efficient search strategy to select optimal feature subsets in the

classification of data into subsets is significant in reducing the computational cost when

the volume of data is larger. In the present approach, to achieve optimal feature subset

selection, the random encircling formulation and imitation behavior of kestrels was

combined with an RNN (which was explained earlier) with a long short-term memory

network to build a classifier for feature selection in big datasets. The KSA was applied to

learning an optimized parameter from the original dataset, and the learned parameter was

used as input into the RNN with LSTM network so as to select relevant features.

Additionally, it helped evaluate the performance (in terms of accuracy) of the KSA as a

feature selection algorithm.

3.3.2 Phase 2: Data mining

Data mining/big data mining is an approach used to find hidden and complex relationships

present in data (Sumathi and Sivanandam 2006) with the objective to extract

comprehensible, useful and non-trivial knowledge from large datasets (Luna et al. 2011).

Although there are many hidden relationships to be discovered in data, this thesis focuses

on association rule relationships, which are explored using association rule mining.

 Association rule mining

Association rules are rules that help disclose frequently changed patterns from a dataset.

These changed patterns are measured in terms of support and confidence values set by a

user as expressed in Equation 3.27 and 3.28 respectively. Rules with minimum support

and minimum confidence value below a user-specified threshold are considered

uninteresting (Han and Kamber 2006), while rules with minimum support and minimum

confidence value above a user-specified threshold are considered interesting.

122

Generally, an association rule is measured in terms of support and confidence. The support

of a rule is defined as the proportion of appearance in the dataset (Gupta and Sikka 2013;

Agbehadji et al. 2016). In other words, it is the frequency of the rule in the dataset. A high

value shows that the rule involves a great part of the dataset. Support is expressed in

Equation 3.27 as

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝐾 → 𝑃) =
𝜎(𝐾 ∪ 𝑃)

 𝜎(𝑁)
 Equation 3.27

where N is the total number of items in a dataset and K∪P is the number of attributes

containing both K and P.

Generally, confidence is used to measure the number of times an item in P appears in

transactions that contain K. Confidence of a rule is when rules are applied to find the ratio

of the number of occurrences in K and P over the number of occurrences in K. In other

words, confidence of a rule is expressed as a conditional probability of the consequent

given the antecedent (Gupta and Sikka 2013). This is expressed in Equation 3.28 as

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (𝐾 → 𝑃) =
𝜎(𝐾 ∪ 𝑃)

𝜎(𝐾)
 Equation 3.28

where σ (K) is the number of occurrences that contain K. Typically, a higher confidence

value suggests a strong association between K and P.

The use of support and confidence measures is not, however, sufficient in selecting

actionable sequences (Tseng, Liang and Chu 2006; Yin et al. 2013). This is because the

actionable sequences form patterns that may be interesting to a user, but the challenge is

when the user has to search exponentially many potentially interesting patterns that meet

a defined criterion (Vreeken and Tatti 2014). Additionally, evaluating each pattern to

disclose interestingness is quite tedious and infeasible, and mostly considered non-trivial

(Vreeken and Tatti 2014).

123

The present approach to measuring interestingness of rules on frequently changed patterns

uses closeness preference interestingness measure (Railean et al. 2013) that finds rules in

cases where the antecedent and consequent are not just frequent or random (Railean et al.

2013) but has a time dimension at which an actionable sequence is recorded. The

advantage of the time dimension is that it could help determine the time to take an action

when numeric items are frequently changed. The Closeness (user) Preference CP

interestingness measure (Railean et al. 2013) was used to select strong rules with respect

to frequencies of antecedent A and consequent B. Rules are said to be close based on three

parameters, namely close time interval, slope of preferences and threshold value (Railean

et al. 2013). The time closeness refers to the user-defined time difference in which items

occur. Slope of preferences refers to the size between two itemsets or the size between

two slides (window). Finally, threshold value is the user-specified value within which

rules are extracted. These three parameters are used to select strong rules for patterns to

be extracted.

Railean et al. (2013) notes that time closeness plays a significant role in finding how close

antecedents are to consequents of items. The time closeness shows the time difference

between items over an entire sequence of changing items. The smaller the time

differences, the closer the occurrence of frequently changed items. The support of a rule

on an item is expressed in Equation 3.29 by

𝑠𝑢𝑝𝑝𝑎𝑡𝑡𝑒𝑟𝑛 =
𝑛𝑟𝑝 𝑜

| 𝐷𝐵 |
 Equation 3.29

where |DB| is the total size of the dataset, and 𝑛𝑟𝑝 𝑜 is the number of occurrences in a

pattern of frequently changed numeric items. The Modified Closeness Preference with

Support (MCPs) (Railean et al. 2013) function that fulfils the anti-monotone property (that

is, the support of an itemset never exceeds the support of its subsets) of an item is

expressed as the product of a function as

𝑀𝐶𝑃𝑠 𝑓𝑢𝑛𝑐 = ∏ [
1

𝑛𝑟 𝑝 𝑖𝑛 𝐹𝑟𝑒𝑞

𝑛𝑟 𝐹𝑟𝑒𝑞 𝑤𝑖𝑡ℎ 𝑝

𝑠=1
∑ 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑡

𝑛𝑟𝑝 𝑖𝑛 𝐹𝑟𝑒𝑞

𝑡=1] Equation 3.30

124

where nrp in Freq is the number of how many times the pattern p is found in a given sequence

to be frequently changed. Further, fpattern is expressed in Equation 3.31 by:

𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 =
1

𝑛𝑟2−𝑙𝑒𝑛𝑔𝑡ℎ 𝑠𝑢𝑏𝑝𝑎𝑡𝑡𝑒𝑟𝑛
∗

∑ [
1

𝑛𝑡𝑃𝑖,𝑘

∑
1

𝑛𝑃𝑖+1|𝑃𝑖,𝑘,𝑚

∑
1

1+𝑠
𝑡𝑃𝑖+1,𝑗

−𝜔𝑡.

𝑛𝑃𝑖+1|𝑃𝑖,𝑘,𝑚

𝑗=1

𝑛𝑡𝑃𝑖,𝑘

𝑚=1]
𝑛𝑟2−𝑙𝑒𝑛𝑔𝑡ℎ 𝑠𝑢𝑏𝑝𝑎𝑡𝑡𝑒𝑟𝑛

𝑘=1 Equation 3.31

where 𝑛𝑡𝑃𝑖
is the number of Pi between the previous and next itemsets; 𝑡𝑃𝑖+1,𝑗

is the time

distance of each Pi+1 from the beginning of the window (starting from the considered Pi);

nr is the number of items; and s represents the slope of glide to capture, which was

expressed in Equation 3.22 (in section 3.2). In items that are frequently changed with time,

taking into consideration time differences between two consecutive frequently changed

items, each pattern of length n is made of n-1 sub-patterns of length 2. In order to avoid

patterns that are not frequently changed (i.e. that only occur a few times in the entire

dataset), the support measure was included within the mathematical formulation such that

the MCPs function with the support measure is expressed in Equation 3.32 as

𝑀𝐶𝑃𝑠 𝑓𝑢𝑛𝑐 =
𝑛𝑟𝑝 𝑜

| 𝐷𝐵 |
∗ [0.9𝑛𝑟 + (0.9𝑛𝑟−1 − 0.9𝑛𝑟) ∗ ∏ [

1

𝑛𝑟𝑝 𝑖𝑛 𝑠𝑒𝑞
∑ 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛]]

𝑛𝑟𝑝 𝑖𝑛 𝑠𝑒𝑞

𝑡=1

𝑛𝑟𝑝 𝑜

𝑠=1

Equation 3.32

Finally, the MCPs function is expressed in Equation 3.33 by:

𝑀𝐶𝑃𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =
𝑛𝑟𝑝 𝑜

| 𝐷𝐵 |
∗ 𝑓(𝑛𝑟, ∆𝑡𝑎𝑣𝑒𝑟𝑎𝑔𝑒) Equation 3.33

where f(nr, ∆taverage) is a weighting function that is defined to take into consideration the

size of the pattern nr (that is, number of frequently changed numeric items) and the

medium time interval ∆taverage in a pattern of frequently changed numeric items; nrpattern

occurrences (nrp o) represents the number of occurrences of frequently changed numeric items;

and |DB| is the total number of items in the dataset. The weighting function that shows the

anti-monotone property is expressed by Railean et al. (2013) as in Equation 3.34:

𝑓(𝑛𝑟, ∆𝑡𝑎𝑣𝑒𝑟𝑎𝑔𝑒) = 0.9𝑛𝑟 + (0.9𝑛𝑟−1 − 0.9𝑛𝑟) ∗ ∆𝑡𝑎𝑣𝑒𝑟𝑎𝑔𝑒 Equation 3.34

125

where ∆taverage is replaced by Equation 3.31. Where the co-efficient of 0.9 represents 90

percent of rules that were selected. In addition, if ∆taverage is higher, it takes the upper value

of the ceiling, otherwise, it takes the bottom value, but it never passes to the previous

coefficient the values of its sub-patterns, which guarantees the Apriori principle (in this

instance, if an itemset is frequently changed, then all of its subsets may also be frequently

changed).

The Modified Closeness Preferences with confidence (MCPc) are expressed in Equation

3.35 by

𝑀𝐶𝑃𝑐 =
𝑛𝑟𝑝 𝑜

𝑛𝑟𝑝 𝑜+𝑛𝑟𝑛 𝑝
 Equation 3.35

where nrpattern occurrences (nrp o) represents pattern occurrence of frequently changed items,

and nrnot freq. patterns (nrn p) represents patterns that are not frequently changed. The Modified

Closeness Preferences with support and confidence (𝑀𝐶𝑃𝑠𝑐) for a pattern are defined as

the interestingness measure of frequently changed numeric items, as expressed in

Equation 3.36:

𝑀𝐶𝑃𝑠𝑐 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 = ɸ ∗
𝑛𝑟𝑝 𝑜

𝑛𝑟𝑝 𝑜+𝑛𝑟𝑛 𝑝
∗

𝑛𝑟𝑝 𝑜

| 𝐷𝐵 |
∗ 𝑓(𝑛𝑟, ∆𝑡𝑎𝑣𝑒𝑟𝑎𝑔𝑒) Equation 3.36

where ɸ represents a control parameter between 0 and 1; nrpattern occurrences (nrp o) represents

frequently changed items; nrnot freq. patterns (nrn p) represents patterns that are not frequently

changed; |DB| is the total size of the dataset; and f(nr, ∆taverage) is a function that is defined

to take into consideration the size of the pattern nr and the medium time-interval ∆taverage

in a pattern.

3.4 Data visualization

In section 3.3, the kestrel’s behavior was described as it relates to big data, which forms

Phase 1 and Phase 2 of the proposed methodological framework. In this section, the

behavior of the dung beetle is described in detail as it relates to data visualization. This

forms Phase 3.

126

3.4.1 Description of dung beetle behavior

Data visualization presents data in pictorial or graphical format (e.g. two dimensionally)

and enables the display of interesting patterns for decision-making activities (Bikakis

2018). The present approach to data visualization uses the navigation and orientation

behavior of dung beetles to present data in a graphical format. The dung beetle is an animal

with a tiny brain (similar to a grain of rice) that feeds on the dung of herbivorous animals.

The dung beetle is known to use minimal computation for navigation and orientation,

which is the reason for its selection. Furthermore, during navigation, it uses an external

reference point (referred to as a celestial polarization pattern) (Wits University 2013),

which serves as a source of illumination to avoid being stuck. They also navigate by

combining internal cues of direction and distance with external reference from their

environment and then orient themselves using the celestial polarized pattern (that is,

moon/skies) (Wits University 2013; Dell’Amore 2013). In other words, if a source of light

is removed completely, the dung beetle stops moving and stays in a stable position (or

unknown state) until the source of light is restored before it climbs on top of its dung ball

to perform orientation (referred to as a dance), during which it locates the source of light

and then begins to move toward its home. Thus, the beetle returns to its home using an

internal sense of direction (derived from sensory sources, including vision).

There are different forms of dung beetles, and these can be grouped into three types,

namely rollers, tunnelers and dwellers. Rollers form dung into a ball and roll it to a safe

location. In contrast, tunnelers land on a pile of dung and simply dig down to bury the

dung, while dwellers stay on top of a dung pile to lay their eggs (Dell’Amore 2013).

Although there are different behaviors that categorize each group of dung beetle, the

present study focused on the category of ball roller behavior for data visualization

purposes.

In addition to the different categories of behavior of dung beetles, their feeding process is

also a unique behavior that is worth mentioning. During the feeding process, each beetle

127

(of the type ball rollers) carries dung in the form of a ball and rolls it from the source of

food to a remote destination (referred to as home). Dung beetles use the sun, moon and

skies as a direction guide in carrying rolled ball (that is, its food) along a straight path

from the dung pile (Dacke et al. 2011). Given that celestial bodies always remain constant

relative to the dung beetle, the beetle keeps moving in a straight line (Wits University

2013) until it reaches the final destination.

Another interesting behavior is that given a burrow (home) and forage (food), the dung

beetle is able to move in search of forage by counting its number of steps, and when

returning home, the motion cues are used to integrate its path (that is, combine paths) in

order to reduce the distance in moving. The path integration technique is significant in

reducing the time and distance of moving to its home. Path integration leads to a home-

based global vector that repeatedly inform animals (such as dung beetles) about their

current position relative to their starting point (Andel and Wehner 2004). When the starting

points are determined, path integration provides a “signal” to reinforce the learning of

visual landmarks within the environment of animals (Schatz et al. 1999). The dung beetle

ignores landmarks (Smolka and Dacke 2017) because navigation using landmarks is very

complex and may require complex perceptual and learning processes that may not always

be available to animals such as dung beetles (Etienne et al. 1988). The reason for choosing

the dung beetle is because of light-weight computational requirements. In view of this,

animals that use the landmark navigation technique require extensive computational time,

which may not be suitable within the context of this thesis.

Golani, Benjamini and Eilam (1993) indicate that animals in a new environment center

their exploration base on a reference point in order to integrate their path. The path

integration (Mittelstaedt and Mittelstaedt 1982) is based on the assumption that movement

from one position to another may be achieved by adding successive small changes in

position incrementally, and by continuously updating the direction and distance from the

initial point (Etienne and Jeffery 2004) using the motion cues. In other words, it allows

128

beetles to calculate a route from their initial position. Adding these successive small

movements on a route creates a stack of moves in a hierarchical fashion. The basic steps

of the path integration process are the continuous estimation of self-motion cues to

compute changes in location (distance) and orientation (head direction) (Etienne and

Jeffery 2004). In this regard, every displacement of forage that leads to path integration

from a reference point creates an imaginary home, and this subsequently creates a stack

of neighboring imaginary homes close to each other. In this context, these real or

imaginary homes are circular holes (representing a data grid) where the rolled balls (that

is, data values) are placed as pixels.

A. Characteristics of dung beetles

The dynamic behavior of dung beetles is characterized as follows:

i. Ball rolling on a straight line

ii. Dance: Combining internal cues of direction and distance with external reference from

their environment and then orienting themselves using the celestial polarized pattern

iii. Path integration: Sum of sequential change in position in hierarchical fashion and

continuously updating direction and distance from the initial point to return home.

B. Simplified rule formulation on characteristics of dung beetles

i. Ball rolling: The distance d between two positions (𝑥𝑖, 𝑥𝑖+1) on a plane is calculated using

the straight line equation in Equation 3.37:

𝑑(𝑥𝑖, 𝑥𝑖+1) = √∑ (𝑥𝑖+1 − 𝑥𝑖)2𝑛
𝑖=1 Equation 3.37

where 𝑥𝑖 represents the initial position, 𝑥𝑖+1 represents the current position of a dung

beetle on a straight line, and n is the number of discrete points on the line.

ii. Path integration: Change in position is expressed in Equation 3.38 as

𝑥𝑡+1
𝑘 = 𝑥𝑡

𝑘 + 𝛽𝑚(𝑥𝑖+1 − 𝑥𝑖)𝑡
𝑘 + ɛ Equation 3.38

where 𝑥𝑡+1
𝑘 represents the current position of a dung beetle, and 𝛽𝑚 represents motion

cues. Since path integration is an incremental recursive process, error ɛ is introduced as a

129

random parameter in the formulation to account for cumulative error. Each frequent return

to a home resets the path integrator to a zero state, so that each trip starts with an error-

free path integrator (Etienne and Jeffery 2004). Thus, total path is expressed as the sum of

all paths, as expressed in Equation 3.39:

𝑃𝑎𝑡ℎ = [∑ 𝑥𝑡+1
𝑘𝑛

𝑖=1] Equation 3.39

where current position is 𝑥𝑡+1
𝑘 and n represents the number of paths. In order to control

the movement v between a “real home” and “imaginary home”, to ensure the current

position 𝑥𝑡+1
𝑘 converges to the “real home” of a dung beetle during path integration, the

following expression was applied, as shown in Equation 3.40:

𝑣 = 𝑣𝑜 + 𝑝𝑎𝑡ℎ − (𝜇1𝑃 + 𝜇2𝐴) Equation 3.40

where 𝑣𝑜 represents the initial movement; 𝜇1 is a factoring co-efficient of repulsion P

between each dung beetle; and 𝜇2 is a factoring co-efficient of attraction A between each

dung beetle when a trace is detected on its path by another dung beetle. Furthermore, P

and A are expressed by Mamduh et al. (2014) using Equation 3.41 and Equation 3.42:

𝑃 = 1 − 𝑑(𝑥𝑖 , 𝑥𝑖+1)𝜃/(𝑑(𝑥𝑖 , 𝑥𝑖+1)𝑚𝑎𝑥 𝜋) Equation 3.41

𝐴 = 𝜃/𝜋 Equation 3.42

where P is the repulsion between each dung beetle, 𝜃 is the angle of the dung beetle,

𝑑(𝑥𝑖, 𝑥𝑖+1) is the distance between two dung beetles, 𝑑(𝑥𝑖, 𝑥𝑖+1)𝑚𝑎𝑥 is the maximum

distance recorded between two dung beetles, and 𝜋 represents the ratio of circumference

to a diameter.

iii. Dance: The internal cue (Iq) of distance and direction is less than the external reference

point (Er) (that is, a random number). Thus, orientation (𝛿) after the dance is expressed as

𝛿 = [𝐼𝑞(𝑑, 𝑀) ≤ 𝐸𝑟] Equation 3.43

𝛿 = 𝛼 ∗ [𝐸𝑟 − 𝐼𝑞(𝑑, 𝑀))] Equation 3.44

130

where 𝛼 is a random parameter to control the dance, Er is a specified point of reference, d

represents the distance of internal cues, and M represents the magnitude of direction

expressed as a random number (between 0 and 1).

3.5 General outline of procedure for bio-inspired/meta-heuristic model

The outline procedure gives a general overview of the steps for the proposed bio-inspired

model. As indicated in Table 3.1 on the proposed methodological framework of the bio-

inspired model, the steps outlined below were followed during the experiment at each

phase. The significance of the experiment is that after analyzing the dataset, the best

algorithm was selected as the algorithm with the optimal results. Although each bio-

inspired/meta-heuristic algorithm has initial parameters (that is, set by a user), the steps

provide a guide on how the best algorithm was selected.

 Step 1: Mathematical modeling as expressed in section 3.2.

 Step 2: Translate the mathematical model into the proposed agent-based search

algorithms (Chapters Four, Five and Six)

 Step 3: Implementation of the proposed algorithm using the selected

programming language (that is, MATLAB). The reason for the choice of

programming language is explained in section 3.7.

 Step 4: Conduct an experiment by testing the implemented algorithm against

selected comparative algorithms (indicated in Table 3.1) on a selected dataset

or set of datasets, as well as with various initial parameters that are fine-tuned

by the algorithm at each iteration. The results of the experiment are presented

in subsequent chapters.

 Step 5: Analyze the performance results (in terms of accuracy using MAE, etc.)

and use various statistical procedures (such as the Wilxocon-Signed rank test

and Friedman test) in order to select the best bio-inspired algorithm. The

131

analysis results are presented in subsequent chapters.

 Step 6: Analyze the internal implementation code of each algorithm through

profiling (that is, extraction of function calls using built-in tools in MATLAB)

to understand the underlying behavior of the comparative bio-inspired

algorithms in terms of time to call function. Perform the analysis using simple

statistical methods such as mean to select the best algorithm.

3.6 Reason for choice of dataset

The dataset used to test the proposed models was obtained from benchmarked datasets

from the “classic UCI machine learning repository” (Lichman 2013) (such as stock market

data and health-related data) and Arizona State University data repository. The basis for

using these datasets is because they represents a standard benchmark dataset for

experimental research and they also do have large volume of continuous data, which is

suitable for this research work.

The data is downloaded/collected from the online data repositories for the experiment in

this thesis. In view of the standard nature of the benchmark dataset, the preparation of data

collected for the experiments were not considered. However, the attributes that define

these data were taken into consideration. For instance, data attributes includes whether

data is continuous or binary, the number of instance in data, the number of features, etc.

In chapter 4, 5 and 6, the data attributes suitable for each experiment is indicated.

3.7 Reasons for choice of preferred programming language

The basic mathematical expressions that were formulated from the behavior of animals

require the use of a software package that is suitable for the experiment in that it can

translate the mathematical expressions into an algorithm that can be executed. The

132

software package chosen for this study is MATLAB. MATLAB has built-in functions and

toolboxes to help solve a diverse range of tasks from mathematical operations to graphical

display (in either two or three dimensions), which makes it easy to visualize information

and gain meaningful insight (Attaway 2009). These built-in functions help perform basic

numerical operations and matrix-based computations, encourages simple interactivity

(that is, expressions entered by the user are immediately computed and results are

displayed) and has complete set of programming constructs that help easily customize a

program for a particular problem domain (Attaway 2009). The customized program (in

the form of an algorithm) can be deployed within production systems of businesses.

Additionally, it has the capability to analyze larger datasets and scale up data to clusters

(MathWorks 2017). In view of MATLAB’s built-in functions and capabilities, it was thus

chosen as an appropriate software package to express the computational mathematics of

the proposed bio-inspired/meta-heuristic algorithm for big data analytics and for the

display of insight on interesting patterns. Additionally, MATLAB has the built-in

capability to support profiling of internal implementation codes of each algorithm to

understand the underlying behavior of the algorithms.

3.8 Comparative algorithms

The proposed algorithms were evaluated against comparative algorithms suited for each

step of each stage of big data management. Because the nature of different bio-inspired

algorithms may make them better suited for certain tasks than other algorithms, these

algorithms were included or excluded in the set of comparative algorithms. Consequently,

due to this fact, the type and number of comparative algorithms at a specific step of a

particular big data management stage may vary slightly.

The experimental results, using a suitable selected set of metrics, generated by the

comparative algorithms implemented in Matlab were output into a text file and/or on

matlab output screen. These results were put into a table for easy evaluation and

133

comparison (e.g. using MAE etc). In addition to the experiment, further statistical analysis

were conducted on the experimental results to find the most suitable algorithm as

explained in subsequent chapters.

3.9 Summary

In this chapter, the knowledge claim used was based on positivist approach as it helps

understand the theory behind the behavior of animals and how different mathematical

expressions are used to model the behavior. The mathematical techniques enable dynamic

formulation to depict the different behavioral aspect of the animals being considered. This

aspect helped model the three-phase framework. The different animals and their behaviors

were related to aspects of big data frameworks, namely velocity and volume

characteristics. Basically, the velocity aspect relates to how animals move with speed to

capture their prey aided by visual ability, while volume relates to how animals exploit a

wide search area for prey.

The ability of animals to capture their prey and exploit a search area for food are some

dominant visible behaviors of animals such as the kestrel. Similarly, other animals, such

as the dung beetle, show navigation and orientation behavior, and these were explored in

this chapter to demonstrate how such behavior can be used to visualize patterns. The

general outline provided a general guide in the form of steps to translate the mathematical

formulation based on the bio-inspired behavior into the respective algorithms during each

phase of the largely bio-inspired framework, as indicated in the methodological

framework. MATLAB was chosen as an appropriate software package to implement the

computational model because of the robust built-in functions and mathematical

capabilities.

In the next chapter, the general outline procedure (see section 3.5) will be followed to

empirically test each algorithm using appropriate and diverse datasets characterized as

134

having both high volume and frequently changed items. The results will be tabulated and

graphs will also be used to aid visual display and understanding by users.

135

CHAPTER 4: DEVELOPING, TESTING AND EVALUATING

DATA CLEANSING

4.1 Introduction

The chapter validates the first phase of the proposed model, data cleansing, using actual

data. The results from the validation process of the algorithms of the proposed model are

presented using tables and graphs to aid understanding. During the process of validating

the algorithmic structure, various parameters were used to observe the behavior of the

model on challenging issues such as missing value estimation, duplicate text detection of

health-related records and feature selection in classification of high-dimensional

bioinformatics datasets.

The general outline in section 3.5 was followed to model an algorithm for missing value

estimation, duplicate data detection and feature selection, as indicated in the

methodological framework in Table 3.1. The sub-sections in this chapter discuss missing

value estimation, duplicate data detection and feature selection.

4.2 Bio-inspired computational approach to missing value estimation

The kestrel formulation also adopts aspects of swarm behavior in terms of individual

searching, moving to better positions and fitness evaluation. However, what makes the

kestrel distinctive is the individual hunt through its random encircling of prey and its

imitation of the best individual kestrel. Since the kestrel hunts individually and imitates

the best features of successful individual kestrels, it suggests that the kestrels is able to

remember the best solution from a particular search space and continue to improve upon

the initial solution until the near-best solution is reached.

When comparing the unique characteristics of the KSA with the Firefly, Wolf and Bat

algorithms, the following can be stated: The Firefly algorithm is based on attractiveness,

136

collective behavior and brightness; the Wolf algorithm is based on attractiveness,

collective behavior and escape; the Bat algorithm is based on pulse rate and loudness; and

the KSA is based on attractiveness, encircling and brightness of trail, which is dependent

on its half-life period. This encircling behavior allows kestrels to be adaptable in searching

multiple missing values within a particular search space. The basis for the comparison of

algorithms is to assess the interesting behavior of the newly developed algorithm (that is,

KSA) and show how different the newly developed algorithm is from previous algorithms

in terms of accuracy of results on missing values from datasets.

4.2.1 Fitness function evaluation of algorithms

The fitness function is used to evaluate how well the meta-heuristic algorithm performs

in terms of the quality of estimation. This performance is measured in terms of minimizing

the deviation of data points from the estimated value without considering the direction

(negative or positive) of the fitness value. Thus, the performance evaluation method used

the mean of absolute error (MAE) as fitness function evaluation because it allows the

model to fine-tune absolute values and improve on performance of values, leading to much

finer positive values without consideration of negative values. The MAE is expressed in

Equation 4.1 as follows:

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑜𝑖 − 𝑥𝑖

𝑛
𝑖=1 | Equation 4.1

Thus, the fitness function is expressed in Equation 4.2 as

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (𝑥) =
1

𝑛
∑ |𝑜𝑖 − 𝑥𝑖|

𝑛
𝑖=1 Equation 4.2

where 𝑜𝑖 is the observed data point at the ith position in the sampled dataset, 𝑥𝑖 is the

estimated value at the ith position in the dataset, and n is the number of data points in the

sampled dataset.

137

4.2.2 Experimental results

An experiment was conducted to evaluate the meta-heuristic algorithms, namely the

WSA-MP, BAT and Firefly algorithms as well as the proposed KSA. During the

experimental setup, different parameters were defined for each meta-heuristic algorithm,

as proposed by the authors of the algorithms, to guarantee optimal solution in any search

problem. The experimental results are presented using figures, where the x-coordinate

represents iteration and the y-coordinate represents the fitness value using MAE.

Experimental setup A (WSA-MP to estimate missing values)

The solution algorithm for the proposed meta-heuristic algorithm was implemented in

MATLAB 2012A and the quality of estimation was evaluated with the MAE method. The

WSA-MP algorithm was compared with the proposed meta-heuristic algorithm (that is,

KSA). The basis for the comparison is to obtain results that can demonstrate how well

each meta-heuristic algorithm produces the smallest error between the actual and

estimated values.

The initial parameters for KSA were set as 𝛽𝑜=1; visual range=1. The following arbitrary

parameters were set for the lower and higher bound: zmin=0.2 and zmax=0.8 respectively.

A representative dataset was used to test the proposed meta-heuristic algorithm, and a

maximum of 500 iterations/generations were done to have a greater chance to further

refine the best value in each run. A sample set of data (46 by 9 matrix) with multiple

missing values in the row matrix was used in order to provide a thorough test of missing

values in each row of a matrix. In WSA-MP, the randomness (σ) parameter was set to

0.2, while escape from local minimum was also set to 0.25.

The technique that is being proposed assumes that only the best estimate obtained by either

the WSA-MP or KSA will give the smallest absolute error between the input and the

output.

138

Results on experimental setup A

Figure 4.1 shows the comparison of fitness evaluation of KSA and the WSA-MP

algorithm, both using MAE as fitness function.

Figure 4.1: Comparison of KSA with WSA-MP algorithm

Figure 4.1 shows the curve on comparison of the fitness evaluation of KSA with WSA-

MP in 500 iterations/generations. The fitness curve gradually slopes down on the x-axis

and maintains a constant fitness, indicating quick convergence at the start of the iteration

along the x-axis. Table 4.1 indicates the fitness values of the curve of both KSA and WSA-

MP as follows:

Table 4.1: Comparison results of KSA and WSA-MP

Algorithm Fitness using MAE

KSA 7.9912e-05

WSA-MP 5.6978e-07

Table 4.1 shows the comparative results of KSA with WSA-MP. The resultant fitness

values show that WSA-MP has a minimum fitness value of 5.6978e-07, as compared with

KSA, which has a fitness value of 7.9912e-05.

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

Iterations

F
it
n
e
s
s
 v

a
lu

e
 u

s
in

g
 M

A
E

Comparative results of fitness function

WSAMP

KSA

139

4.2.2.1 Conclusions: Experimental setup A

In several iterations that were performed, WSA-MP maintained minimum fitness values

compared to KSA. As demonstrated from the results, WSA-MP performed better than

KSA, and this performance of WSA-MP suggests that the WSA-MP algorithm utilizes its

characteristic good memory on previous best positions, which gives it an edge over

random encircling for extrapolating missing values.

Experimental Setup B (Firefly algorithm to estimate missing values)

In the Firefly algorithm, the randomness (σ) and absorption coefficients (γ) were set to 0.2

and 1.0 respectively. This setting allowed a small interval between the random numbers

being generated. Meanwhile, randomness reduction was set to 0.97 (similar to an

annealing schedule).

Results on experimental setup B

Figure 4.2 shows the comparison of fitness evaluation of KSA and the Firefly algorithm,

both using MAE as fitness function.

Figure 4.2: Comparison of KSA with Firefly algorithm

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

Iterations

F
it
n
e
s
s
 v

a
lu

e
 u

s
in

g
 M

A
E

Comparative results of fitness function

Firefly

KSA

140

Figure 4.2 shows the comparison of KSA with the Firefly algorithm. The curve indicates

that KSA converges to a global minimum after the end of the iterations along the x-axis.

In contrast, the curve of the Firefly algorithm shows several local minimum curves during

the start of the iterations, then the curve smoothes until the final iteration on the x-axis,

suggesting that the curve moves from a local minimum and then gradually lessens to a

global minimum. Table 4.2 indicates the fitness values on the y-axis of both KSA and the

Firefly algorithm:

Table 4.2: Comparison results of KSA and Firefly algorithm

Algorithm Fitness using MAE

KSA 0.0054204

Firefly 1.0000

Table 4.2 shows the comparative results of KSA with the Firefly algorithm. The fitness

value of KSA converges along the x-axis to a value of 0.0054204, while the Firefly

algorithm results in a fitness value of 1.0000. This suggests that KSA produces minimum

error when estimating missing values.

4.2.2.2 Conclusions: Experimental setup B

The results indicate that KSA has a better performance than the Firefly algorithm. These

results suggest that the KSA is best for random encircling and that this algorithm is one

of the best in estimating missing values in any big data analysis environment.

Experimental Setup C (Bat algorithm to estimate missing values)

In the Bat algorithm, both the loudness and the pulse rate were set to 0.5 without fine-

tuning these parameters. Also, the arbitrary frequency range was set to a minimum of 0.2

and maximum of 0.9. This frequency range determines the frequency scaling of a bat. The

Bat algorithm was compared with KSA and the comparative curve of the fitness value on

the y-axis is illustrated in Figure 4.3:

141

Figure 4.3: Comparison of KSA with Bat algorithm

Figure 4.3 shows the curve on the comparison of the fitness evaluation of KSA with the

Bat algorithm in 500 iterations/generations. The fitness curve for KSA peaked at the initial

iteration, gradually sloped down along the x-axis and maintained a constant fitness value

to convergence at 0.002916 along the x-axis. Table 4.3 indicates the fitness values and

comparative results of KSA and the Bat algorithm:

Table 4.3: Comparison results of KSA and Bat algorithm

Algorithm Fitness using MAE

KSA 0.0029716

BAT 3.0326

Results: Experimental setup C

The resultant fitness values show that KSA has a fitness value of 0.0029716, while the

Bat algorithm has a fitness value of 3.0326. The Bat algorithm, however, showed a

horizontal line from the initial iteration to the end of the iterations.

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8

Iterations

F
it
n
e
s
s
 v

a
lu

e
 u

s
in

g
 M

A
E

Comparative results of fitness function

BAT

KSA

142

4.2.2.3 Conclusions: C

The results suggest that the Bat algorithm was unable to converge to a global minimum.

Thus, using the Bat algorithm for estimating missing values at random results in a high

error of estimation. In contrast, KSA showed minimum error in estimating missing values

at random and it also converged to a global minimum.

Different Problem dimensions/scales

Different problem dimensions/scales of the dataset were applied to each algorithm, and

the corresponding fitness value (that is, MAE) was computed. The dimensions that were

selected helped observe the behavior of each meta-heuristic algorithm on a different

problem scale. Table 4.4 show the results on MAE values obtained from the comparative

meta-heuristic algorithms on different problem dimensions as follows:

Table 4.4: MAE results from comparative algorithms on different problem scales

Problem

dimension

KSA BAT Firefly WSA-MP

MAE MAE MAE MAE

40x9 7.09E-05 3.0326 0.90723 8.16E-07

30x9 0.012553 3.0843 1 2.51E-07

20x9 0.04752 3.0655 0.15362 9.22E-06

25x9 0.023865 3.3836 1 1.34E-07

10x9 0.39469 3.536 0.6943 1.73E-05

Mean 7.98E-02 3.19E+00 7.93E-01 4.72E-06

Table 4.4 further indicates that irrespective of problem scale, KSA obtained optimal

results compared to the bat and Firefly algorithms. However, WSA-MP has the most

optimal result. Secondly, the mean of MAE indicates that WSA-MP has the minimum

value of 4.72E-06, compared to KSA (7.98E-02), firefly (7.93E-01) and bat (3.19E+00).

The results suggest that in a frequently changed dataset, the WSA-MP algorithm produces

143

the most optimum values as estimates of missing values while the proposed KSA showed

potential for finding optimal values.

4.2.3 Statistical analysis of experimental results

The basis for the statistical analysis of experimental results on the comparative algorithms

is to find the significance of results obtained from each algorithm. In order to do this

comparison in an accurate manner, a profile was used on all the test functions used in each

of the algorithms and the MAE results (that is, the quality of estimation) in Table 4.4. A

non-parametric statistical procedure was used to analyze the significance of the results.

This statistical procedure was used as it does not make underlying assumptions about

parameters, such as mean and variance of the algorithm being assessed. In contrast,

parametric statistical procedures make assumptions on parameters that are being assessed.

In this section, the profiling of test functions and the non-parametric statistical procedure

adopted for the analysis are discussed. This section is divided into two parts: statistical

analysis on profiling of test functions and statistical analysis on MAE results (quality of

estimation).

4.2.3.1 Statistical analysis on profiling of test functions

Profiling is a technique used to extract functions and measure time spent on aspects of a

program, such as a function (Sorensen et al. 2012). This technique helps optimize

functions and improve on performance of the algorithms. During profiling, the following

are considered: function name, the number of times a function was called upon (Calls),

the total time spent on each function, including sub-functions (Total_Time), and total time

spent on a function excluding the time spent on sub-functions (Self_Time). It is possible

for functions that are less time intensive to call other functions that are more time

intensive. Profiling technique is important as it determines which functions are responsible

to call other functions.

144

Profiling was applied as a technique to extract functions and to group the functions into

two categories, namely major functions and basic functions. While the major functions

are functions that were written to implement the behavior of the algorithms, the basic

functions are the in-built functions that work alongside the major functions. Table 4.5

indicates how the functions are grouped during profiling on each comparative algorithm:

Table 4.5: Major function names of the comparative algorithms

Function name Calls Total_Time (s)

Self_Time*

(seconds (s))

 WSA-MP algorithm

f2 WSA-MPnew>fnc_fitness_mae 172517 1.298 1.298

f1 WSA-MPnew>main 1 14.426 12.993

 Mean 86259

 Firefly algorithm

f2 fireflyApproachnew>fnc_fitness_MAE 4522 0.018 0.018

f3 fireflyApproachnew>ffa_move 500 0.415 0.404

f4 fireflyApproachnew>findrange 500 0.011 0.011

f5 fireflyApproachnew>newalpha 500 0.002 0.002

f1 fireflyApproachnew>main 1 47.811 29.291

f6 fireflyApproachnew>init_fireflyalg 1 0.001 0.001

 Mean 1004

 KSA algorithm

f2 KSAapproachnew>fnc_fitness_MAE 23046 0.094 0.094

f3 KSAapproachnew>fnchalflife 500 0.002 0.002

f4 KSAapproachnew>fncbobbing 500 0.011 0.011

f1 KSAapproachnew>main 1 1.329 1.036

 Mean 6011.8

 BAT algorithm

f2 BATApproachnew>fnc_fitness_MAE 23046 0.101 0.101

f3 BATApproachnew>simplebounds 23000 0.317 0.317

f1 BATApproachnew>main 1 1.353 0.718

 Mean 15349

145

Table 4.5 shows the different test functions in each comparative algorithm. The WSA-MP

has two major functions, categorized into the main function (represented by f1) and a sub-

function (represented by f2). All main functions are represented in each algorithm by f1.

The Firefly algorithm has six major functions (one main function f1 and five sub-

functions). The Bat algorithm consists of three major functions (one main function f1 and

2 sub-functions) while KSA consists of 4 major functions (one main function f1 and three

sub-functions).

In order to obtain a true reflection of the nature of in-built functions that were extracted,

all in-built functions were considered for analysis. It was observed that when some in-

built functions were called, the total time was zero seconds, thus making those in-built

function calls inconsequential in terms of execution time. However, these inconsequential

in-built functions were taken into consideration so as not to lose track of any function calls

made.

A statistical procedure was applied to analyze the significance of profile results obtained

in Table 4.5. A non-parametric statistical test was conducted to assess which of the

algorithms have better performance in terms of the behavior of test function call time. The

basis for the statistical analysis is to find out the significance of the profiled results from

each algorithm. García, Fernández, Benítez and Herrera (2007) state that non-parametric

or distribution-free statistical procedures help perform pairwise comparison on related

algorithms, even in the case where the sample size of a dataset is small, such as where

sample size n < 30. In a multiple comparison situation, such as in this thesis, the Wilcoxon

signed-rank test could be applied to rank and test how significant algorithms outperform

each other in respect of detecting the differences in the mean time to call test functions

(García, Fernández, Benítez and Herrera 2007) and to find the probability of an error by

suggesting that the medians of two algorithms are equivalent. This probability is called p-

value (Zar 1999). The advantage of the Wilcoxon test is that there is no need to make

assumptions about the population of functions being used for the experiment. Since the

146

Wilcoxon signed-rank test can guarantee about 95% of efficiency (that is, 0.05 level of

significance) if the population is normally distributed. This suggests that if there are 500

observations on test function calls, then Wilcoxon signed-rank is efficient to about 499

observations on test function calls.

García, Molina, Lozano and Herrera (2008) observe that the Wilcoxon signed-rank test is

an alternative to the paired-sample t-test. The present study used the Wilcoxon test

because the researcher did not wish to make the assumptions necessary for the t-test for

sample distribution. Samples are related if one sample matches the other sample, while

the rank is a number assigned to an individual sample according to its order in a list of

algorithms. Thus, the Wilcoxon statistical technique helps assign ranks to algorithms in

order to identify the best-ranked behavior of evolutionary algorithms (García, Molina,

Lozano and Herrera 2008) and to determine the significance of each algorithm. The

following steps were applied in computing the Wilcoxon signed-rank test:

Step 1: Compute the difference D of paired samples in each algorithm. Any pairs with a

difference of 0 are discarded

Step 2: Find the absolute D.

Step 3: Compute the rank of signs (R+ difference and R- difference) from lowest to

highest. The sum of ranks is expressed in Equation 4.3 by

∑ 𝑅+ + 𝑅− =
𝑛(𝑛+1)

2
 Equation 4.3

where n is sample size.

Step 4: Compute the test statistic T. Thus, T = min{R+, |R-|}. Thus, the test statistic T is

the smallest value.

Step 5: Find the critical values based on the sample size n. If T is less than or equal to the

critical value at a level of significance (that is, α=0.05), then a decision is made that

algorithms are significantly different (García, Fernández, Benítez and Herrera 2007). In

order to accomplish this, the Wilcoxon signed-rank table is consulted, using the critical

147

value (α=0.05) and sample size n as parameters, to obtain the value within the table. If

this value is less than the calculated value of the algorithmic comparison, this means that

the algorithmic difference is significant.

In order to apply the Wilcoxon signed-rank test, an analysis was performed on both the

time to call and function name (both in-built functions and major functions) as follows:

i. a. In-built functions calls time analysis

The performance of the comparative algorithms was based on test function call time

differences between the self time and total time of built-in functions in each algorithm.

Based on the steps in computing the Wilcoxon signed-rank test, the time for the test

function call per algorithm is shown in Table 4.6.

Table 4.6: Wilcoxon rank on profile extracts of built-in-in function calls of algorithms

 A
lg

o
ri

th
m

s

S
u
m

 o
f

ca
ll

s

T
o
ta

l
n
u
m

b
er

 o
f

b
u
il

t-
in

-i
n
 f

u
n
ct

io
n
s

S
u
m

 o
f

se
lf

_
T

im
e

S
u
m

 o
f

to
ta

l_
T

im
e

D

R
+

/R
-

R
an

k

S
u
m

 o
f

si
g
n
ed

 r
an

k

1
WSA-

MP
123 31 0.132 0.401 0.269 1 1 1

2 Firefly 99780 229 49.228 160.73 111.503 1 4 4

3 KSA 1043 34 0.184 0.471 0.287 1 2 2

4 BAT 105 69 0.215 0.953 0.738 1 3 3

In Table 4.6, D represents the difference between the sum of total time and the sum of self

time. It is observed that the sum of signed positive ranks R+ is 10, while the sum of

negative ranks R- is 0. Since the sample size n (4) is less than 30 and the Wilcoxon signed-

rank table shows that there is no critical region on the sub-function at 𝛼 = 0.05, the

148

Wilcoxon signed-rank table suggests that built-in-in functions are equivalent. In terms of

ranking of algorithms, the WSA-MP was ranked first while KSA was ranked second.

Since n is small, it is tedious to find a critical value for small values of n. Table 4.7 shows

the mean and standard deviation on the sum of self time and sum of total time on the sub-

function.

Table 4.7: Mean and standard deviation of built-in-in functions

Sum N Mean Std. Deviation Minimum Maximum

Self_time 4 12.4398 24.52552 .13 49.23

Total_time 4 40.6387 80.06121 .40 160.73

Table 4.7 shows sample size N, the mean of the sum of self time as 12.4398 and the sum

of total time as 40.6387, with their corresponding standard deviations. The results show a

standard deviation of 80.06121 on the total time, and this suggests a high deviation of total

time on the built-in function calls as compared with the low standard deviation of

24.52552 on self time built-in function calls. Therefore, there is a high total time spent on

built-in function calls in the algorithms as compared to self time on built-in function calls.

This means the algorithms spent an intensive amount of time on calling an average of

40.6387 built-in functions and an average time of 12.4398 on excluding other built-in

function calls. Table 4.8 illustrates the Wilcoxon signed-rank test between total time and

self time of built-in function calls computed using the Statistical Package for the Social

Science (SPSS). Table 4.8 contains the sample size N, mean rank and sum of ranks.

149

Table 4.8: Wilcoxon signed ranks on built-in functions

 N Mean rank Sum of ranks

Sum of total_time –
Sum of self_time

Negative ranks 0a .00 .00

Positive ranks 4b 2.50 10.00

Ties 0c

Total 4

a. Sum of total_time < Sum of self_time

b. Sum of total_time > Sum of self_time

c. Sum of total_time = Sum of self_time

Table 4.8 shows Wilcoxon signed ranks on the comparison of the sum of total time and

the sum of self time. There were four samples between total time and self time. The basis

was to find out if the differences between total time and self time are significantly different

from zero and if the differences that were observed in the mean rank (0.00 versus 2.50)

can be located in the population of built-in function calls. In order to locate the value

between the mean rank (0.00 versus 2.50), the test of significance of time on performance

of built-in functions was computed, as shown in Table 4.9.

Table 4.9: Test statistics on built-in functions

 Sum of total_time – Sum of self_time

Z -1.826a

Asymptotic Sig. (2-tailed) .068

a. Based on negative ranks

b. Wilcoxon signed-ranks test

Table 4.9 shows the test statistic that was obtained. The Asymptotic Sig. (2-tailed) in the

table represents the p-value for the test, while the Wilcoxon signed-ranks test was

computed using the z statistic. Thus, the Wilcoxon signed-rank test, which was used on

four samples to find out whether there is a significant change of total time with self time,

shows z=-1.826 and p=0.068. Since p> 𝛼(0.05) within the mean rank (0.00 versus 2.50),

150

the value of 0.068 indicates that, statistically, time did not result in a significant change in

performance of built-in function calls.

ii. b. Major function calls time analysis

Statistical analysis was also carried out to determine whether time might be significant in

enhancing the performance of major function calls of each algorithm. Table 4.10 shows

the summary of the Wilcoxon signed-rank test on major functions between self time and

total time of each algorithm.

Table 4.10: Wilcoxon rank on profile extracts of major function total time and self time of

algorithms

Algorithm
Sum of

calls

Total

number of

major

functions

Sum of

self_time

Sum of

total

time

D R+/R- Rank
Signed

rank

1 WSA-MP 172518 2 14.291 15.724 1.433 1 1 1

2 Firefly 6024 6 29.727 48.258 18.531 1 1 1

3 KSA 24047 4 1.143 1.436 0.293 1 1 1

4 BAT 46047 3 1.136 1.771 0.635 1 1 1

Table 4.10 shows the difference D between the sum of total time and the sum of self time

of each algorithm. It is observed that the sum of signed positive ranks R+ is 4, while the

sum of negative ranks R- is 0. The sample size n (4) is less than 30, and from the Wilcoxon

signed-rank table it is evident that there is no critical region on the significance level of

𝛼 = 0.05 to suggest that the major functions are significantly different in terms of total

time and self time of calling the major functions. All the major functions of each algorithm

were ranked equally. The Wilcoxon signed-rank test was conducted to test if there was a

significant difference. Firstly, Table 4.11 indicates the mean and standard deviation of

both the sum of self time and the sum of total time of the major functions.

151

Table 4.11: Mean and standard deviation on major functions

 N Mean Std. Deviation Minimum Maximum

Sum of self_time 4 11.5742 13.59744 1.14 29.73

Sum of total_time 4 16.7973 22.00520 1.44 48.26

Table 4.11 shows sample size N, the mean of sum of self time as 11.5742 and the sum of

total time as 16.7973 with their corresponding standard deviations. The results indicate a

standard deviation for total time as 22.00520 and self time as 13.59744. Thus, there is a

high variation in total time as compared with low variation in self time of major function

calls. Table 4.12 illustrates the Wilcoxon signed-rank test between total time and self time

of major function calls.

Table 4.12: Wilcoxon signed ranks of major functions

 N Mean rank Sum of ranks

Sum of total_time –

Sum of self_time

Negative ranks 0a .00 .00

Positive ranks 4b 2.50 10.00

Ties 0c

Total 4

a. Sum of total_time < Sum of self_time

b. Sum of total_time > Sum of self_time

c. Sum of total_time = Sum of self_time

Table 4.12 shows Wilcoxon signed ranks of the comparison of the sum of total time and

the sum of self time. There were four samples between total time and self time. The reason

for this comparison was to find out if the differences between total time and self time are

significantly different and if the differences that were observed in the mean rank (0.00

versus 2.50) can be located in the population of major function calls. In order to locate the

value between the mean rank (0.00 versus 2.50), the test of significance of time on

performance was computed, as shown in Table 4.13.

152

Table 4.13: Test statistics on major functions

 Sum of total_time – Sum of self_time

Z -1.826a

Asymptotic Sig. (2-tailed) .068

a. Based on negative ranks

b. Wilcoxon signed-ranks test

Table 4.13 shows the test statistic that was obtained. The Asymptotic Sign. (2-tailed) in

the table represents the p-value for the test, while the Wilcoxon signed-rank test was

computed using the z-statistic. The Wilcoxon signed-rank test was used to find out

whether there is significant change in total time and self time at z=-1.826 and p=0.068.

The results indicate that, statistically, time did not result in a significant change in

performance of major functions calls.

4.2.3.2 Statistical analysis of output results on quality of estimation

The Wilcoxon signed-rank test was conducted on all the dimensions of results on quality

of estimation, as shown in Table 4.14.

Table 4.14: Results on accuracy from comparative algorithms using MAE

Problem

dimension

KSA BAT Firefly WSA-MP

MAE MAE MAE MAE

46x9 7.99E-05 3.0326 1.000 5.70E-07

40x9 7.09E-05 3.0326 0.90723 8.16E-07

30x9 0.012553 3.0843 1.000 2.51E-07

20x9 0.04752 3.0655 0.15362 9.22E-06

25x9 0.023865 3.3836 1.000 1.34E-07

10x9 0.39469 3.536 0.6943 1.73E-05

Mean 7.98E-02 3.19E+00 7.93E-01 4.72E-06

153

Table 4.14 consists of all problem dimensions of each algorithm and the respective MAE.

Although the null hypotheses were formulated based on the 46x9 dimension, the

hypotheses on all problem dimensions of the MAE value were tested. Earlier, the analysis

of the performance of each paired algorithm showed the following:

1. WSA-MP outperformed KSA in terms of the minimum error (MAE)

2. KSA outperformed the Bat algorithm in finding the optimal value.

3. KSA produced minimum error when estimating missing values when compared with the

Firefly algorithm.

4. WSA-MP produced minimum error when estimating missing values, compared with the

Bat algorithm.

5. The Firefly algorithm outperformed the Bat algorithm in terms of minimum error.

6. WSA-MP outperformed the Firefly algorithm in terms of minimum error.

In order to test the significance of quality of estimation, the Wilcoxon test statistic was

computed using SPSS, and the p-value is shown in Table 4.15.

Table 4.15: Wilcoxon signed-rank test statistic on accuracy

Comparative algorithm Asymp. Sig. (2-tailed) p-value

KSA vs. WSA-MP .028

KSA vs. Firefly .028

KSA vs. Bat .028

Firefly vs. Bat .028

WSA-MP vs. Firefly .028

WSA-MP vs. Bat .028

Table 4.15 shows the p-values that were obtained from each comparing algorithm. Since

the p-values must be less than or equal to the level of significance of 0.05 in order to be

significant, the results in Table 4.15 show that the quality of estimations were significant

between the paired algorithms. In this case, the WSA-MP significantly outperformed KSA

in terms of the MAE.

154

4.2.3.3 Multiple comparison of output results on accuracy

Trawiński et al. (2012) note that the Wilcoxon signed-ranked test is best used for pairwise

comparisons between two algorithms. In a multiple comparison situation, where two or

more algorithms are compared, it is possible for errors to accumulate such that

performance of algorithms is significant. García, Fernández, Benítez and Herrera (2007)

state that performing multiple comparison enables the researcher to correct the Family-

Wise Error Rate (FWER), which occurs after multiple algorithms are combined. In order

to do this comparison, García, Fernández, Benítez and Herrera (2007) use the results of

accuracy obtained by algorithms to perform statistical analysis on algorithms. The

statistical significance of combining pair of algorithms is computed using the following

equations:

𝑝 = 𝑃 (𝑅𝑒𝑗𝑒𝑐𝑡 𝐻𝑜|𝐻𝑜 𝑡𝑟𝑢𝑒) Equation 4.4

𝑝 = 1 − 𝑃 (𝐴𝑐𝑐𝑒𝑝𝑡 𝐻𝑜|𝐻𝑜 𝑡𝑟𝑢𝑒) Equation 4.5

𝑝 = 1 − 𝑃 (𝐴𝑐𝑐𝑒𝑝𝑡 𝐴𝑘 = 𝐴𝑖 , 𝑖 = 1, … , 𝑘 − 1|𝐻𝑜 𝑡𝑟𝑢𝑒) Equation 4.6

𝑝 = 1 − ∏ 𝑃 (𝐴𝑐𝑐𝑒𝑝𝑡 𝐴𝑘 = 𝐴𝑖|𝐻𝑜 𝑡𝑟𝑢𝑒𝑘−1
𝑖=1) Equation 4.7

𝑝 = 1 − ∏ [1 − 𝑃 (𝑅𝑒𝑗𝑒𝑐𝑡 𝐴𝑘 = 𝐴𝑖|𝐻𝑜 𝑡𝑟𝑢𝑒)]𝑘−1
𝑖=1 Equation 4.8

𝑝 = 1 − ∏ (1 − 𝑝𝐻𝑖)𝑘−1
𝑖=1 Equation 4.9

Using Equation 4.9, p-values of each algorithm are computed to find the final p-value. If

the p-value is less than the critical value (e.g. α =0.05), then it forms the basis for rejection

of a hypothesis. However, a final decision cannot be made to fully reject or fail to reject

(accept) a hypothesis based on an analysis result without performing a test on the possible

errors that could have accumulated when comparing algorithms.

In a multiple comparison situation, testing the differences between more than two

evolutionary algorithms and avoiding the accumulation of error can be achieved through

the Friedman test (Friedman 1940; 1937). The Friedman test is a two-way analysis of the

155

variations in the ranking of algorithms. The Friedman test is a non-parametric procedure

that aims to compare the median of a distribution in order to find out if significant

differences have occurred between the behavior of two or more algorithms. The null

hypothesis of the Friedman test applies equality of medians (García, Luengo and Herrera

2015), while the alternative hypothesis negates a null hypothesis. The Friedman test

procedure can be summarized into the follow steps:

Step 1: Rank algorithms separately for the dataset.

Step 2: The best performing algorithm with least MAE gets the rank of 1, the second best

the rank of 2, etc.

Step 3: If there is a tie between ranks, assign the average rank. Let 𝑟𝑖
𝑗
 represent the rank

of the jth of k algorithm on the ith of N dataset.

Step 4: Compare the average ranks of the algorithm using Equation 4.10:

𝑅𝑗 =
1

𝑁
∑ 𝑟𝑖

𝑗
𝑖 Equation 4.10

where 𝑟𝑖
𝑗
 represents the rank of the jth of k algorithm on the ith of N dataset. The null

hypothesis computes the equivalence and their ranks 𝑅𝑗, which is equal to the Friedman

statistic (Friedman 1940; 1937), computed in Equation 4.11 as:

𝑋𝐹
2 =

12

𝑛𝑘(𝑘+1)
[∑ 𝑅𝑗

2
𝑗] − 3𝑛(𝑘 + 1) Equation 4.11

where 𝑅𝑗 is the rank, 𝑋𝐹
2 is distributed with k-1 degrees of freedom, such that n and k

should have a large sample size (n) (as a rule of a thumb, n >10 and k>5) (García, Luengo

and Herrera 2015) since large sample sizes are significant in computing the degree of

freedom on the rank of algorithms. Finally, k is the number of groups that are being

compared.

Step 5: The calculated value of 𝑋𝐹
2 must be larger than or equal to the appropriate critical

table value of X2 or larger than or equal to the value of 𝑋𝐹
2 in the small samples table.

156

García, Luengo and Herrera (2015) indicate that to perform multiple comparison, two

measures are used. The first is to check whether the results obtained from the algorithm

have inequality and rank using the Friedman test. The Friedman test states that under a

null hypothesis, all the algorithms are equivalent, so a rejection of a hypothesis indicates

the existence of significant differences in performance of all the algorithms studied

(García, Luengo and Herrera 2015).

In the present approach to identify the best algorithm (deemed to be the algorithm with

the lowest ranking value) that can be used as a control algorithm, the results in Table 4.14

were applied and the Friedman test was conducted to identify the best algorithm. In order

to rank the algorithms, the mean and standard deviation were computed, as shown in Table

4.16.

Table 4.16: Descriptive statistics

 N Mean Std. Deviation Minimum Maximum

KSA 6 .0000 .00001 .00 .00

WSA-MP 6 .7925 .33471 .15 1.00

BAT 6 .0798 .15528 .00 .39

Firefly 6 3.1891 .21606 3.03 3.54

The results n Table 4.16 indicate that the KSA has the least standard deviation among the

comparative algorithms. The standard deviation measures the amount of variation in a set

of data (Gordon and Gordon 1994). Thus, the larger the standard deviation, the greater the

variation in the data, while the smaller the standard deviation, the smaller the amount of

variation in the data. Since the KSA has minimum standard deviation of 0.00001, there is

small variation in the KSA. Based on the results in Table 4.16, the Friedman test ranked

the algorithms as shown in Table 4.17.

157

Table 4.17: Descriptive statistics

 Mean Rank

BAT 2.00

Firefly 4.00

WSA-MP 3.00

KSA 1.00

The ranks in Table 4.17 indicate that the KSA is the best algorithm among the comparative

algorithms. The Friedman test statistic, with a sample size N, was then computed, as

shown in Table 4.18.

Table 4.18: Friedman test statistics

N 6

Chi-Square X2
18.000

df 3

Asymp. Sig. (p-value)
.000

a. Friedman Test

Table 4.18 shows the results of the Friedman test, where X2 obtained is 18.000, with 3

degrees of freedom and a significance (Asymp Sig) level of 0.0000. Since the significance

level is α (0.05), the computed value on X2 must be larger than or equal to the critical

value for significance of 0.05. Since df is 3 at 0.05 level of significance, the value that was

read from the critical value of the chi-square X2 distribution table (Hinton, 1995) is 7.82,

thus 18 > 7.82 at α (0.05). There is a significant difference in the results on quality of

estimation of missing values among the algorithms, meaning the algorithms are not the

same.

158

4.2.4 Conclusion

These results on the performance of accuracy of results from each algorithm were arrived

at from the profiling conducted on the built-in function call time and major function call

time on comparative algorithms. The reason for using the Wilcoxon signed-rank test was

to rank the various evolutionary algorithms in respect of minimum error. The lowest

minimum error of estimation is acceptable as the best output results. Statistical analysis

(using the Wilcoxon signed-rank test) conducted on accuracy results using different

dimensions of the same dataset indicated that the proposed KSA outperformed both the

bat and Firefly algorithms. However, WSA-MP outperformed KSA in terms of the

minimum error.

Further statistical analysis (Friedman test) was conducted to test the error rate when two

or more algorithms are combined. The reason for using the Friedman test was to compare

the median of a distribution to find out if significant differences occurred between the

behavior of two or more algorithms. Thus, the null hypothesis is that all comparative

algorithms are equivalent at a confidence interval value of 0.05. The results (shown in

Table 4.18) suggested that there is a significant difference in the quality of estimation

among the algorithms, thus the meta-heuristic algorithms are not the same.

4.3 Duplicate data (text data) detection

With the ever-increasing volume of data generated every second, matching records to the

name of a correct person becomes increasingly complicated as organizations share records

electronically using different systems that may lead to an increased chance of identity

error, particularly as electronic information becomes more prevalent. The healthcare

sector is one of the sectors with widespread use of electronic information exchange of

patient data (Morris et al. 2014). As the use of health systems increases exponentially, the

accuracy of identifying and matching records has been recognized as a major challenge

(Morris et al. 2014). In order to resolve this challenge, duplicate detection algorithms are

used. This study discusses duplicate detection algorithms and compares the accuracy of

159

two frequently used algorithms, namely the Smith-Waterman and the Jaro-Winkler

algorithms. Although either algorithm might be appropriate when a small dataset is used,

it leads to a small amount of loss of data. However, large amounts of data can cause an

issue because as the dataset grows large, the risk of data loss is increased. Hence, transitive

and symmetry properties of both the Jaro-Winkler and Smith-Waterman algorithm are

used to handle large amounts of data involved in the duplicate detection process.

4.3.1 Experimental setup

The experimental setup describes how the Jaro-Winkler algorithm and Smith-Waterman

algorithm were implemented in MATLAB to demonstrate the transitivity and reflexive

property. During the experimental setup, a 5x1 synthetic matrix dataset was created as a

representative dataset with multiples of duplicate words. The basis of this experiment was

to determine the best threshold for match words in both comparative algorithms. After

several preliminary trial tests of the synthetic matrix dataset, as a basis for setting the gap

penalty for the Smith-Waterman algorithm, two measures were taken into consideration

in order to avoid setting too small or large values. While small values allow a previously

accumulated local alignment to continue with an insertion in one of the sequences, large

gap values lead to previous alignment scores being removed completely. The score on a

matched word was set to 1, mismatched set to -1, and gap set to -1. In the case of Jaro-

Winkler distance, a distance value equal to 1 indicates a duplicate string, while a distance

value less than 1 indicates non-duplicate strings. Thus, the higher the distance value, the

higher the matched score.

The proposed steps on the present approach to duplicate detection are summarized as

follows:

Step 1: Load data from repository.

Step 2: Initialize penalty gaps.

Step 3: Perform tokenization of words and pairwise comparison of words.

160

Step 4: Apply character-based methods to compute the similarity score (using both the

Jaro-Winkler and the Smith-Waterman algorithm independently).

Step 5: Check the reflexive property of equality.

Step 6: Output results.

Table 4.19 illustrates the proposed algorithm for duplicate detection.

Table 4.19: Proposed algorithm

Step 1: Load data from repository

Step 2: Initialize penalty gap

Step 3: Perform tokenization

Get (current word);

 Get (next word);

 // Apply transitive property through the use of loops

 WHILE each word

 WHILE each word is not empty

 Pick each character in a word

 END WHILE

 Get (next word);

 // pairwise comparison of words using the equality property

current word= next word

 END WHILE

Step 4: Compute similarity score

Step 5: Check symmetry property of equality

Step 6: Output results

The proposed algorithm on duplicate text/word starts with input of data from the data

source. Initially, the original Smith-Waterman algorithm and Jaro-Winkler algorithm

allow the comparison between only two words to detect the similarity score. The current

structures of these algorithms were not suitable to be used in this experiment as they could

not allow comparison of multiple words in rows of a dataset. Thus, the approach in this

161

study applied Step 3 of the proposed algorithmic structure in Table 4.19. During Step 3,

two words from the dataset are selected, where the current word is selected from position

i in a row and the next word is selected from position i+1 in a row of the same dataset for

initial comparison. For instance, current word (referred to as x): G C C A U U G and next

word (referred to as y) G C C - U C G, with respective lengths x and y. After the lengths

of x and y are compared, each character in a word is compared to find the pairwise

alignment, as it is possible for words to be of equal length but different in terms of the

characters in each word. After the pairwise alignment, Step 4 is applied, as indicated in

the walkthrough examples presented earlier, on both the Smith-Waterman and Jaro-

Winkler algorithm to compute the similarity score. If words are similar, then both would

have the same similarity score and the word is stored as duplicate (represented as z).

During Step 5, the symmetry property of equality is applied, as illustrated earlier.

Afterwards, the duplicate word z is assigned to the next comparison process with another

word on the i+2 position in the row of the dataset. The iteration process continues until

the entire search process ends. This iteration process constitutes the workflow of the

proposed algorithm to enhance both the Smith-Waterman algorithm and the Jaro-Winkler

algorithm.

During the experimental setup, a program was written in MATLAB to implement the

iteration process, and a preliminary 5x1 synthetic matrix dataset was created as a

representative dataset with multiples of duplicate word to test the robustness of the

solution algorithm. In the case of the Smith-Waterman algorithm, parameters for the cost

of single gap c was set to -1, while the cost of a matched word was set to 1, and the

mismatched was set to -1. Thus, a matrix score of 1 means words are duplicate; otherwise

words are non-duplicate. In the case of Jaro-Winkler algorithm, a distance value of 1

means words are duplicate, otherwise words are non-duplicate. Thus, the higher the

distance value, the higher the chances of words being duplicate or similar.

162

After the preliminary test of the algorithm, the proposed steps of the algorithm were

refined and executed on a 209x1 matrix health disease-related dataset extracted from a

typical online data repository called “UCI machine learning data repository” (Lichman

2013). This instance of the dataset was extracted and applied as it consists of different

health diseases related to chest pain, with multiple duplicates that are suitable for this

study. Although the matrix size may not be considered large, it reflects how the

comparative algorithms can perform when a dataset with 209 words is applied.

4.3.2 Experimental results

In order to observe the accuracy of results after applying Step 3 and Step 4 of the proposed

algorithmic structure, which forms part of the enhancement of both algorithms, for the

purpose of clarity, the initial enhancements (that is, the use of Step 3 and Step 4) are

referred to as a partially enhanced Smith-Waterman algorithm and a partially enhanced

Jaro-Winkler algorithm. After a thorough test of the matrix dataset, the following

observations were made, and the experimental results are displayed as follows:

4.3.2.1 Results on Smith-Waterman algorithm

Table 4.20 illustrates the experimental results obtained on the partially enhanced Smith-

Waterman algorithm.

Table 4.20: Results of partially enhanced Smith-Waterman algorithm

Algorithm
Number of duplicate

(match) words detected

Number of mismatch

words detected

Partially enhanced

Smith-Waterman
101 109

The results displayed in Table 4.20 indicate that the number of duplicate (match) words

detected in the dataset was 101, and the number of mismatch words detected was 109. The

rate of matched and mismatched words over number of words using the same algorithm

is illustrated in Table 4.21.

163

Table 4.21: Results of partially enhanced Smith-Waterman algorithm rate of match and

mismatch

Algorithm
Rate of pairwise match of

word

Rate of mismatch of

word

Partially enhanced

Smith-Waterman
0.48325 0.51675

The results displayed in Table 4.21 show the rate of pairwise match as 0.4825 and the rate

of mismatch as 0.51675. This shows a high rate of mismatched words compared to

matched words. During pairwise comparison of words, the proposed algorithm selects the

first word in a row and sequentially compares it with each other word using the transitive

property. However, the second word in the row was not sequentially compared in the

subsequent iterations, and this resulted in the high number of duplicate words detected.

Figure 4.4 shows the nature of the undirected graph.

String1

Score1

String3
Score2

String4

Score3

String2

Score1

String4

Score2

String3

Figure 4.4: Nature of break in transitivity in Smith-Waterman algorithm

Figure 4.4 shows a break “x” in sequential comparison within the next iteration from

String 2 to String 3 and String 2 to String 4. The string number represents words where

each word is considered a node. The undirected graph indicates that other strings were not

compared in subsequent iterations; thus, other duplicate words were not detected. In order

to solve this break in the pairwise word comparison, the property of equality (symmetry

property), which includes Step 5 of the proposed algorithm structure, was applied at the

end of each iteration. For the purpose of clarity of results, the final algorithm is referred

164

to as the fully enhanced Smith-Waterman algorithm. The results of the fully enhanced

Smith-Waterman algorithm are displayed in Table 4.22.

Table 4.22: Results of fully enhanced Smith-Waterman algorithm after break in sequential

comparison

Algorithm
Number of duplicate

(match) words detected

Number of mismatch

words detected

Fully enhanced Smith-

Waterman
74 135

The results displayed in Table 4.22 show the number of duplicate (match) words detected

as 74, and the number of mismatch words detected as 135. Table 4.23 shows the rate of

matched and mismatched words over number of words (209), using the same algorithm.

Table 4.23: Results of fully enhanced Smith-Waterman algorithm rate of match and mismatch

after break in sequential comparison

Algorithm
Rate of pairwise

match of word
Rate of mismatch of word

Fully enhanced

Smith-Waterman
0.35407 0.64593

The results displayed in Table 4.23 show the rate of match words as 0.35407 and the rate

of mismatch as 0.64593. Thus, 35% of words were detected as duplicate, while 64% of

words were detected as mismatch.

These results show that while there was a decrease in the rate of match from 0.48325

(Table 4.21) of the partially enhanced algorithm to 0.35407 (Table 4.23) of the fully

enhanced algorithm, there was also an increase in the rate of mismatch from 0.51675

(Table 4.21) of the partially enhanced algorithm to 0.64593 (Table 4.23) of the fully

enhanced algorithm. This indicates a reduction in the number of duplicate words detected,

from 101 (Table 4.20) of the partially enhanced algorithm to 74 (Table 4.22) of the fully

165

enhanced algorithm, and an increase in the number of mismatch words detected from 109

(Table 4.20) of the partially enhanced algorithm to 135 (Table 4.22) of the fully enhanced

algorithm. This suggests that more mismatched words that are not duplicate words were

further detected in the fully enhanced Smith-Waterman algorithm.

4.3.2.2 Results of partially enhanced Jaro-Winkler algorithm

The experimental results on the partially enhanced Jaro-Winkler algorithm are presented

in Table 4.24.

Table 4.24: Results of partially enhanced Jaro-Winkler algorithm

Algorithm
Number of duplicate

(match) words detected

Number of pairwise

mismatch words

detected

Partially enhanced

Jaro-Winkler
101 107

The results displayed in Table 4.24 indicate that the number of duplicate (match) words

detected was 101, and the number of pairwise mismatch of words detected was 107. Table

4.25 shows the results on the rate of pairwise match and rate of pairwise mismatch.

Table 4.25: Results of partially enhanced Jaro-Winkler algorithm rate of match and mismatch

Algorithm Rate of pairwise match
Rate of pairwise

mismatch

Partially enhanced Jaro-

Winkler
0.48558 0.51442

The results displayed in Table 4.25 show the rate of pairwise match as 0.48558 and the

rate of pairwise mismatch as 0.51442. Thus, 48% of words were detected as duplicate

while 51% of words were detected as mismatch.

The experimental results demonstrate that the partially enhanced Jaro-Winkler algorithm

considers a pair of strings (words/tokens) and performs pairwise comparison of two

words. Since the algorithm considers words as paired, it does not perform a comparison

166

on the nth-1 instance (row) if the number of instances is an odd number. This suggests a

loss of data in the dataset.

The study tested the pairwise word comparison approach to observe how the partially

enhanced Jaro-Winkler algorithm adheres to the property of equality (symmetry property)

by assigning each second word to relate to the first word at the end of each iteration. The

final algorithm is referred to as the fully enhanced Jaro-Winkler algorithm. The

experimental results are displayed in the Table 4.26.

Table 4.26: Results of fully enhanced Jaro-Winkler algorithm

Algorithm
Number of duplicate

(match) words detected

Number of mismatch words

detected

Fully enhanced Jaro-

Winkler
72 136

The results displayed in Table 4.26 indicate that the number of instances in the matrix was

208 instead of the original 209 instances, while the number of duplicate (match) words

detected was 72 and the number of mismatches detected was 136. This suggests that there

was a high number of mismatch words detected by the algorithm. Table 4.27 shows the

results on the rate of pairwise match and rate of pairwise mismatch.

Table 4.27: Results of fully enhanced Jaro-Winkler algorithm rate of match and mismatch

Algorithm Rate of pairwise match Rate of pairwise mismatch

Fully enhanced

Jaro-Winkler
0.34615 0.65385

The results displayed in Table 4.27 show the rate of pairwise match as 0.34615 and the

rate of pairwise mismatched as 0.65385. Thus, 34% of words were detected as duplicate

while 65% of words were detected as mismatch.

167

The experimental results demonstrate that while the number of duplicate (match) words

detected decreased from 101 in the partially enhanced Jaro-Winkler algorithm to 72 in the

fully enhanced Jaro-Winkler algorithm, the number of pairwise mismatches words

detected increased from 107 in the partially enhanced algorithm to 136 in the fully

enhanced algorithm. Additionally, the rate of pairwise match of words decreased from

0.48558 in the partially enhanced algorithm to 0.34615 in the fully enhanced algorithm,

while there was an increase in the rate of pairwise mismatch words from 0.51442 in the

partially enhanced algorithm to 0.65385 in the fully enhanced algorithm.

Comparably, the number of duplicate (match) words detected in the enhanced Smith-

Waterman algorithm is 74, while that of the enhanced Jaro-Winkler algorithm is 72. In

terms of the rate of pairwise match, the number of duplicate (match) words detected in the

enhanced Smith-Waterman algorithm is 0.35407 (that is, 35%), and in the enhanced Jaro-

Winkler algorithm it is 0.34615 (that is, 34%). The experimental results suggest that the

fully enhanced Smith-Waterman algorithm gives better results compared to the fully

enhanced Jaro-Winkler algorithm.

4.3.3 Conclusion

The original Smith-Waterman algorithm and Jaro-Winkler algorithm in their current

structure are limited in considering each word as token. The current structure is not

suitable to be applied to duplicate detection of words when there are several rows of data

to consider. The unique feature of the proposed algorithm is that, by applying the

tokenization, transitive closure and property of equality (symmetry property) to a large

dataset, duplicate words in a record can be identified, while mismatched words (misspelt

words) can be detected and grouped together. The experimental results show that while

the fully enhanced Smith-Waterman algorithm is accurate at pairwise word comparison

without missing any, the fully enhanced Jaro-Winkler algorithm could not perform

pairwise word comparison on the nth-1 instance (row) if the total number of instances (row)

is an odd number. This indicates that the fully enhanced Jaro-Winkler algorithm accurately

168

performs a comparison if the number of instances (row) is even, but if the number of

instances is odd, then it only computes the nth-1 instance (row), so some duplicate records

can be missed. This suggests that the fully enhanced Jaro-Winkler algorithm is challenged

in respect of accuracy of comparing each word in a dataset, and in large datasets, it could

miss some words, leading to the loss of information. In contrast, the fully enhanced Smith-

Waterman algorithm performs accurate comparison without recourse to whether the

number of instances is odd or even. Thus, the fully enhanced Smith-Waterman algorithm

performs comparison without missing any words, and this suggests that in large datasets,

the fully enhanced Smith-Waterman algorithm could perform better.

4.4 Applying the bio-inspired method of learning parameter onto Long Short-

Term Memory (LSTM) network for feature selection in classification of

high-dimensional bioinformatics datasets.

The approach to feature selection uses a bio-inspired method (KSA) and RNN with Long

Short Term Memory network (LSTM) (Agbehadji et al. 2018b). The KSA was used to

find optimum parameters from the entire dataset, which are then used to pre-train the RNN

with LSTM network. In respect of the random nature of the proposed algorithm, each

optimum was evaluated using the specified equation to test the fitness of each solution

and the level accuracy. The following algorithmic structure was used to implement the

feature selection process (Table 4.28).

Table 4.28: Proposed algorithmic structure for feature selection

 Set parameters

 Initialize population of n kestrels and evaluate fitness of population.

169

 Start iteration (loop until termination criterion is met)

 Generate new population using random encircling

 Evaluate fitness using imitation (Equation 3.12).

 Evaluate selected subset using the classification algorithm

 Update encircling position for each kestrel for all i=1 to n

 Find the optimal feature subset

 End loop

4.4.1 Experimental setup

The proposed algorithmic structure was implemented in MATLAB 2018A. For the

purpose of ensuring that best solution (in terms of optimized parameters) is selected as

best parameter for training the RNN with LSTM network classifier (which is configured

with 100 hidden layers), 100 epochs were performed as suggested by Batres-Estrada

(2015), as it guarantees optimum results on classification accuracy. At each time step, the

LSTM network is updated with the optimal parameter from KSA and the LSTM is reset.

Batres-Estrada (2015) observes that choosing a small value as learning rate makes the

interactions in weight space smooth, but at the cost of a longer learning rate. Similarly,

choosing a large learning rate parameter makes the adjustment too large, which makes the

network unstable (that is, the deep learning network). To avoid network instability, all

neurons in the input to output layers on a network should learn at the same rate (that is,

with smaller learning rate) (Batres-Estrada 2015). The use of a small but optimized

learning rate/parameter was ensured by the use of meta-heuristic algorithms such as the

KSA.

The optimized results from the meta-heuristic algorithms and the respective results on

classification accuracy are the criteria to evaluate each meta-heuristic algorithm used in

the experiment for classification of features. The optimized results from each meta-

heuristic algorithm are considered as best solution if they have higher classification

accuracy of features (Mafarja and Mirjalili 2018).

170

The initial parameters for each meta-heuristic algorithm are defined in Table 4.29. These

were suggested by the creators of the algorithms as best parameters that guarantee optimal

solutions.

Table 4.29: Algorithm and initial parameters

Algorithm Initial parameter

KSA pa=0.97; % Frequency of bobbing

zmin=0.2; % perched parameter

zmax=0.8; % flight parameter

half-life=0.5; % half-life parameter

 dissimilarity=0.2 % dissimilarity parameter

Similarity=0.8 % similarity parameter

PSO w=1; % Inertia Weight

c1=2.5; % Personal/cognitive Learning Coefficient

c2=2.0; % Global/social Learning Coefficient

ACO α=1; % Pheromone Exponential Weight

ρ=0.05; % Evaporation Rate

BAT α=0.9; % constant parameter

γ=0.9; % constant parameter

β=1; % random vector which is drawn from a

uniform distribution [0, 1]

A=1; % Loudness (constant or decreasing)

r=1; % Pulse rate (constant or decreasing)

WSA-MP v=1; % radius of the visual range

pa=0.25; % escape possibility; how frequently an

enemy appears

Tol=1.0e-3; % tolerance

α=0.2; % velocity factor (α) of wolf

To test the robustness of the proposed algorithm, nine benchmark datasets (that is,

biological datasets from Arizona State University) were used. These datasets were chosen

because they represent a standard benchmark dataset with continuous data for

experimental research that are suitable for this research work. Table 4.30 shows the

benchmark dataset and number of features in the original dataset.

Table 4.30: Benchmark datasets and number of features in dataset

 Dataset # of

instances

of

classes

of features in

original dataset

171

1. Allaml 72 2 7129

2. Carcinom 174 11 9182

3. Gli_85 85 2 22,283

4. Glioma 50 4 4434

5. Lung 203 5 3312

6. Prostate-GE 102 2 5966

7. SMK_CAN_187 187 2 19,993

8. Tox_171 171 4 5748

9. CLL_SUB_111 111 3 11340

4.4.2 Experimental results

The minimum learning parameter from the original dataset and classification accuracy

helped evaluate and compare the different meta-heuristic algorithms. One hundred

iterations where performed by each algorithm to refine parameters for the LSTM network

classifier in each dataset (that is, the biological dataset from Arizona State University).

Table 4.31 shows the learning parameters in terms of optimum value of each meta-

heuristic algorithm.

Table 4.31: Results obtained on optimum learning parameters of algorithms after running

comparative meta-heuristic algorithms

Learning

parameter
KSA BAT WSA-MP ACO PSO

Allaml 4.0051e-07 1.232e-07 1.7515e-07 3.3918e-07 1.9675e-06

Carcinom 1.3557e-07 1.0401e-07 3.0819e-05 8.7926e-04 0.5123

Gli_85 4.1011 0.032475 3.6925 0.0053886 2.2259

Glioma 2.3177e-06 3.0567e-05 1.9852e-05 9.9204e-04 0.3797

Lung 5.1417e-06 4.4197e-05 3.0857e-05 6.231e-04 0.3373

Prostate-GE 1.6233e-07 4.5504e-06 1.0398e-06 3.4663e-05 0.1178

SMK_CAN_187 0.015064 1.338e-05 4.7188e-05 2.7294e-05 2.5311

Tox_171 0.16712 0.0002043 0.086214 0.0023152 2.2443

CLL_SUB_111 0.82116 0.075597 0.76001 0.011556 9.6956

Table 4.31 shows the optimum learning parameters obtained after executing each meta-

heuristic algorithm, with the best learning parameter for each meta-heuristic algorithm

172

highlighted in bold. It is observed from Table 4.31 that out of the nine datasets that were

used, the KSA has the best learning parameter in five datasets. The learning parameters

were fed into the LSTM network to determine the performance in terms of classification

accuracy of each algorithm (that is, a way of knowing which algorithms outperform each

other), and the results are shown in Table 4.32.

Table 4.32: Best results on accuracy of classification for each algorithm

Classification

accuracy
KSA BAT

WSA-

MP
ACO PSO

Allaml 0.5633 0.6060 0.6130 0.5847 0.4459

Carcinom 0.7847 0.7806 0.6908 0.7721 0.7282

Gli_85 0.2000 0.4353 0.2004 0.4231 0.3335

Glioma 0.7416 0.7548 0.5063 0.7484 0.7941

Lung 0.5754 0.5754 0.5754 0.5754 0.7318

Prostate-GE 0.6852 0.6718 0.6147 0.5444 0.7223

SMK_CAN_187 0.6828 0.6759 0.6585 0.6111 0.2090

Tox_171 0.7945 0.6925 0.7880 0.5889 0.2127

CLL_SUB_111 0.7811 0.4553 0.7664 0.4259 0.2000

Average 0.6454 0.6275 0.6015 0.586 0.4864

Table 4.32 shows the classification accuracy using the full dataset and the learning

parameter from each algorithm. The classification accuracy for the Allaml dataset using

KSA is 0.56 and 0.6130 using WSA-MP. It is observed that the algorithm with the best

parameter is not the best choice in some datasets. For instance, the KSA has the best

parameter of 1.6233e-07 on the Prostate-GE dataset, but produced a classification

accuracy of 0.6852, while the Bat algorithm has a worst parameter of 0.1178, but produced

a classification accuracy of 0.7223. Hence, the results (as shown in Table 4.32) suggest

that a minimum learning parameter is not always a guarantee of accuracy, as it depends

on the dataset, particularly the number of features. It can be observed that KSA provided

the highest classification accuracy on four out of nine datasets. This classification

accuracy in Table 4.32 demonstrates that the proposed approach explores and exploits

search space efficiently, and finds the best results that produce higher classification

173

accuracy in many types of datasets. In order to select features, Mafarja and Mirjalili (2018)

indicate that the higher the classification accuracy, the better the solution and, hence, the

smaller the number of features in a subset. Table 4.33 shows the dimensions of features

selected by each algorithm.

Table 4.33: Dimensions of features selected by each algorithm.

Feature selected KSA BAT
WSA-

MP
ACO PSO

Allaml 3113 2809 2759 2961 3950

Carcinom 1977 2015 2839 2093 2496

Gli_85 17826 12583 17817 12855 14852

Glioma 1146 1087 2189 1116 913

Lung 1406 1406 1406 1406 888

Prostate-GE 1878 1958 2299 2718 1657

SMK_CAN_187 6342 6480 6828 7775 15814

Tox_171 1181 1768 1219 2363 4525

CLL_SUB_111 2482 6177 2649 6510 9072

Table 4.33 shows the features that were selected from the respective datasets by each

algorithm. It is observed that KSA selected a smaller number of features from four

datasets, namely Carcinom, SMK_CAN_187, Tox_171 and CLL_SUB_111; PSO

selected fewer features from three datasets, namely Glioma, Lung and Prostate-GE; and

BAT and WSA-MP selected a smaller number of features from the Gli_85 and Allaml

datasets respectively.

4.4.3 Statistical analysis of classification accuracy

A statistical test was conducted on the classification accuracy of each algorithm to identify

the best algorithm. In order not to prejudice which algorithms outperformed each other,

the means of all the algorithms were considered as equal for the statistical analysis. The

reason for the statistical analysis of experimental results is to determine the significance

of results on classification accuracy obtained from each optimizer (KSA, BAT, WSA-MP,

174

ACO and PSO). In order to achieve this, a non-parametric statistical procedure was used

as it does not make underlying assumptions about the distribution of parameters and

underlying dataset for the evolutionary algorithm optimizers. In contrast, parametric

statistical procedures make assumptions on parameters and distribution of datasets. A non-

parametric statistical test was conducted to assess which of the algorithms have better

performance in terms of the classification accuracy. In multiple-comparison situations,

such as in this thesis, the Wilcoxon signed-rank test was applied to test how significant

algorithms outperform each other in respect of detecting the differences in the mean and

to find the probability of an error in suggesting that the medians of two algorithms are

equivalent. This probability is called the p-value (Zar 1999). The advantage of the

Wilcoxon test is that there is no need to make assumptions about the population used,

since the test can guarantee about 95% (that is, 0.05 level of significance) of efficiency if

the population is normally distributed. The following steps are applied in computing the

Wilcoxon signed-rank test:

Step 1: Compute the difference D of paired samples in each algorithm. Any pairs with a

difference of 0 are discarded.

Step 2: Find the absolute D.

Step 3: Compute the rank of signs (R+ difference and R- difference) from lowest to highest.

The sum of ranks is expressed in Equation 4.12:

∑ 𝑅+ + 𝑅− =
𝑛(𝑛+1)

2
 Equation 4.12

where n is sample size.

Step 4: Compute the test statistic T. Thus, T = min{R+, |R-|}. The test statistic T is

therefore the smallest value.

Step 5: Find the critical values based on the sample size n. If T is less than or equal to the

critical value at a level of significance (that is, α=0.05), then a decision is made that

algorithms are significantly different (García, Fernández, Benítez and Herrera 2007). In

order to accomplish this, the Wilcoxon signed-rank table is consulted, using the critical

value (α=0.05) and sample size n as parameters, to obtain the value within the table. If this

175

value is less than the calculated value of the algorithmic comparison, this means that the

algorithmic difference is significant.

In order to apply the Wilcoxon signed-rank test, an analysis was performed on

classification accuracy, and the results are displayed in Table 4.34.

 Table 4.34: Test statistics

Comparative

algorithms

Z Asymp. Sig.

(2-tailed)

BAT – KSA -0.420 0.674

WSA-MP – KSA -1.680 0.093

ACO – KSA -0.980 0.327

PSO – KSA -1.007 0.314

The results on test statistics (p<0.05) shown in Table 4.34 show that the differences

between the medians are not statistically significantly different in all the comparative

algorithms. For instance, there are no statistically significant differences between the KSA

and BAT at the level of significance of 0.05, because 0.674>0.05. Similarly, KSA

compared to WSA-MP, ACO and PSO all have their p-values greater than the level of

significance. This indicates that there are no statistically significant differences between

KSA compared to WSA-MP, ACO, PSO and BAT.

4.4.4 Conclusion

The KSA has its own advantages in feature selection in classification. Compared to meta-

heuristic algorithms, classification accuracy of KSA is comparable to ACO, BAT, WSA-

MP and PSO. This suggests that the initial parameters that were chosen in KSA guarantee

good solutions that are comparable to other meta-heuristic search methods on feature

selection. The future work for KSA is to develop new versions of KSA with modifications

and enhancements of code for feature selection in classification.

176

4.5 Summary

In this chapter, the bio-inspired computation model was applied to the current challenge

of finding missing values at random. The model was implemented and compared to related

bio-inspired algorithms, as indicated in the methodological framework for this study. The

stages that were implemented were missing value estimation, duplicate text detection and

feature selection. The programming codes were written to help transform the algorithmic

structure in order to test the dataset.

The experimental results and statistical analysis conducted using the Wilcoxon signed-

rank test show that the proposed KSA outperformed the Bat and Firefly algorithms in

finding the optimal value in a synthetic dataset that has different dimensions with

multiples of missing values. Further statistical analysis was conducted to find out whether

the built-in function time calls and major function time calls might be equivalent or not.

The Friedman test was conducted and the null hypothesis was that the median of the

distribution is equivalent at a confidence interval value of 0.05. The results suggested that

there is a significant difference in the quality of estimation among the algorithms, thus the

algorithms are not the same. The results also showed that the proposed algorithm should

be enhanced by further fine-tuning of its parameter.

The experimental results on the enhanced Smith-Waterman and Jaro-Winkler algorithms

for duplicate detection of text in large datasets (that is, a health-related heart disease

dataset) indicated that the enhanced Smith-Waterman algorithm is more accurate at

detecting duplicate words than the enhanced Jaro-Winkler algorithm. This signifies that

when both algorithms are applied on the same datasets, the Smith-Waterman algorithm is

able to avoid any information loss, while the Jaro-Winkler algorithm results in an

information loss. Thus, when there are large volumes of data to be analyzed for duplicate

text, the Smith-Waterman algorithm will perform best without data loss because of the

transitive closure and reflexive properties that were included as an enhancement.

177

Although deep learning methods have been applied to selection of features in the

classification problem, current approaches to learning of a parameter for the classification

process can either grow out of bound or shrink at each time step. This parameter resizing

might result in inaccurate classification of features. To address this challenge, the study

proposes an approach to learning parameters for the classification problem based on the

behavior of kestrels, that is, random encircling from a hovering position and learning by

imitating well-adapted behavior of individual kestrels to adjust learning rate. The

proposed bio-inspired approach is integrated with a deep learning method (that is,

recurrent neural network with long short term memory network). A benchmark dataset

(with continuous data attributes) was chosen to test the proposed search algorithm. The

results showed that KSA is comparable to BAT, ACO and PSO, as test statistics in Table

4.34 (that is, the Wilcoxon signed rank test) show no statistically significant differences

between the mean of classification accuracy at the level of significance of 0.05.

Meanwhile, compared with WSA-MP, KSA shows a statistically significant difference in

the mean of classification accuracy.

The next chapter discusses the implementation and empirical testing of the proposed

computational model of data mining on frequently changed patterns/items with time and

numeric value dimensions. Test data that is characterized as having frequently changed

items (that is, stock market data) is used to validate the proposed computational model.

178

CHAPTER 5: DEVELOPING, TESTING AND EVALUATING

DATA MINING BASED ON KESTREL-BASED SEARCH

ALGORITHM

5.1 Introduction

The chapter addresses the question of how to mathematically formulate and implement an

associative data mining rule to extract frequently changed items with both numeric and

time dimensions. The objective is to select interesting patterns/rules taking into

consideration the time-closeness between the frequently changed items. In this chapter, a

data mining model is provided to mine rules and disclose interesting patterns on frequently

changed data. This chapter further shows how to apply the proposed model to tackle

frequently changed items in stock market data. Stock market data has the characteristics

of large scale and fast update of stock numerical values. The characteristics of stock data

are similar to big data characteristics, such as having volume, velocity, value and variety

(Longbottom and Bamforth 2013).

As discussed in Chapter One and Chapter Two, when data becomes very large (volume

characteristic), it is possible that current approaches to mining interesting patterns lose

their value (value characteristic) in terms of having to determine in a timely (relating to

speed) manner the usefulness of an action. This timeliness in determination is important

because large rules are discovered that might not show interesting patterns. The massive

amount of data can be analyzed and interpreted to show interesting patterns using different

techniques on algorithms, tools and models that are different from existing search methods

of analyzing and interpreting data. This was the motivation to propose an approach (in the

form of an algorithm called KSA) based on how animals behave, and basic mathematical

expression were formulated from their behavior to develop an algorithm to analyze data.

During the analysis, the formulated mathematical expression of KSA was integrated with

a mathematical model on closeness preference (Railean et al. 2013), as discussed in

section 3.3.2. The basis for the integration is to enable the proposed model to take into

179

consideration both numeric and time dimensions for analysis of frequently changed items.

The advantage of the closeness preference model is that it considers time interval and

slope of preference.

The proposed KSA model and closeness preference interestingness measure helped

extract association rule mining of interesting patterns for interpretation by the researcher.

The algorithm from the computational model was compared with other meta-heuristic

algorithms, namely the PSO, ACO, BAT and WSA-MP algorithms. The comparative

algorithms helped validate the tabulated results from the proposed model.

The general outline in section 3.5 was followed by modeling an algorithm for data mining,

as indicated in the methodological framework in Table 3.1.

5.2 Association rule

A rule is defined as a conditional statement that specifies an action for a certain set of

conditions (Iglesia and Reynolds 2005). An association rule is an implication of the form

K→P, where precondition K is referred to as the antecedent, the action P is called the

consequent, and both K and P are itemsets with numeric value. The discovered rule is

expressed in an “If … Then …” statement. Thus, If K, then P.

There are two groups of rules: simple rules and complex rules (Railean et al. 2013). The

simple rules are of the form Vi → Vn, and complex rules are of the form V1V2...Vn−1 → Vn

(Railean et al. 2013). In this instance, all rules of the simple form Vi → Vn were combined

between all Vi itemsets. For example, having the rules A → Y, B → Y and C → Y, a

complex rule is derived as AB → Y, AC → Y, BC → Y, ABC → Y.

The fitness function is used to evaluate the importance of each item and select interesting

rules/patterns. The fitness function is expressed in Equation 5.1:

𝑀𝐶𝑃𝑠𝑐 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 = ɸ ∗
𝑛𝑟𝑝 𝑜

𝑛𝑟𝑝 𝑜+𝑛𝑟𝑖 𝑝
∗

𝑛𝑟𝑝 𝑜

| 𝐷𝐵 |
∗ 𝑓(𝑛𝑟, ∆𝑡𝑎𝑣𝑒𝑟𝑎𝑔𝑒) Equation 5.1

180

where ɸ represents a control parameter between 0 and 1; nrpattern occurrences (nrp o) represents

frequently changed items; nrnot freq. patterns (nrn p) represents patterns that are not frequently

changed; |DB| is the total size of the dataset; f(nr, ∆taverage) is a function that is defined to

take into consideration the size of the pattern nr and the medium time interval ∆taverage in

a pattern.

Based on the mathematical formulation in Chapter Three (section 3.2), the proposed

algorithm process for association rule mining is as follows:

1) User sets time preference and stopping criteria

2) Random initialization of each kestrel and of time dimension

3) Perform search for best encircling position

4) Compute the velocity

5) Compute the slope of glide

6) Evaluate fitness function (Equation 5.1)

7) Update encircling position

8) Check if the termination condition is met (if not, go back to Step 2)

9) Output best minimum as the support threshold

10) Mining of association rules

11) Output the frequently changed items results

The proposed computational algorithm is summarized in the form of pseudo-code and

shown in Figure 5.1.

Random initialization of each kestrel and

Random initial time dimension;

set user time preferences;

set maximum confidence

WHILE (t < stopping criteria not met)

//Finds minimum support threshold

 FOR i=1to k //for each kestrel in the population

181

 Compute the encircling position

 Compute velocity, k=1,.., n

 Compute the slope of glide

 Evaluate fitness function //help filter rules

 Replace f2(𝑀𝐶𝑃𝑠𝑐 𝑝𝑎𝑡𝑡𝑒𝑟𝑛) with f1(𝑀𝐶𝑃𝑠𝑐 𝑝𝑎𝑡𝑡𝑒𝑟𝑛)

 Update encircling position

 END IF

END FOR

END WHILE

FOR each item n

 Find difference of time dimension

 IF difference of time <=user preferences

 Compute the difference of numeric items

 Count the numeric items

 FOR each numeric item in a row

 IF count of numeric items equal to zero

 Count not frequently changed numeric items

 ELSE IF count of numeric items not equal to zero

 Count frequently changed numeric items

 END IF

 END FOR

 Compute the MCPs

 IF MCPs > minSup

 Evaluate the MCP sc pattern (referred to as MCP conf)

 IF f1(MCPsc pattern) > minConf

 Extract rules on frequently changed numeric items

 END IF

 END IF

 END IF

182

END FOR

Output rules of frequently changed items

Figure 5.1: Proposed computational model for association rule mining

Based on this proposed computational process, association rules were generated within

the user-specified time preferences. The difference with this computational process

compared to other existing computations is the addition of 𝑀𝐶𝑃𝑠𝑐 𝑝𝑎𝑡𝑡𝑒𝑟𝑛, as expressed in

Equation 5.1. The time complexity (expressed in Equation 5.2 and Equation 5.3) of finding

frequently changed itemsets was calculated using the expression in the calculation

formulated by Minaei-Bidgoli, Barmaki and Nasiri (2013). Thus, the time complexity R

is expressed as follows:

𝑅 = 𝑂(𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑖𝑡𝑒𝑚𝑠𝑒𝑡) + 𝑂(𝑟𝑢𝑙𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛) Equation 5.2

 Equation 5.3

where d is the number of items/attributes being considered, k is the number of iterations,

and N is the number of records in the dataset.

5.3 Experimental setup

The proposed algorithm was implemented in MATLAB. For the purpose of ensuring that

good parameters are selected, several parameters (in terms of numeric parameters) were

experimented. Table 5.1 presents the parameters and the corresponding parameters on the

comparative algorithms (PSO, ACO, BAT and WSA-MP), as stated in the methodological

framework (see Table 3.1).

Table 5.1: Algorithm and initial parameters

183

Algorithm Initial parameters

KSA pa=0.97; % Frequency of bobbing

zmin=0.2; % perched parameter

zmax=0.8; % flight parameter

half-life=0.5; % half-life parameter

PSO w=1; % Inertia Weight

c1=2.5; % Personal/cognitive Learning Coefficient

c2=2.0; % Global/social Learning Coefficient

ACO α=1; % Pheromone Exponential Weight

ρ=0.05; % Evaporation Rate

BAT α=0.9; % constant parameter

γ=0.9; % constant parameter

β=1; % random vector which is drawn from a

uniform distribution [0, 1]

A=1; % Loudness (constant or decreasing)

r=1; % Pulse rate (constant or decreasing)

WSA-MP v=1; % radius of the visual range

pa=0.25; % escape possibility; how frequently an

enemy appears

Tol=1.0e-3; % tolerance

Velo=0.8; % velocity factor (α) of wolf

Table 5.1 shows the initial parameters of the algorithms. In respect of PSO, the parameters

c1 and c2 ∈ [0, 2] are called acceleration coefficients, namely the cognitive and social

parameter, respectively (Alatas and Akin 2008). These parameters control how far a

particle will move in a single iteration. As default values, Kennedy and Eberhart (1995)

propose c1 =c2 =2. Recent work has suggested that it might be better to choose a larger

cognitive parameter c1 (Alatas and Akin 2008) to allow adequate learning. On this basis,

the personal/cognitive learning coefficient parameter was changed from 1.5 to 2.5. A

larger inertia weight w achieves the global exploration, and a smaller inertia weight tends

to facilitate the local exploration to fine-tune the current search area (Shi and Eberhart

1998). Therefore, the inertia weight w is critical for the PSO’s convergence behavior. A

suitable value for the inertia weight usually provides balance between global and local

exploration abilities and consequently results in a better optimum solution. The initial

weight was set to 1, as suggested by Kennedy and Eberhart (1995).

184

The parameter used in WSA-MP were set as indicated by Yamany, Emary and Hassanien

(2014) to guarantee best performance results. Also, the initial parameters on ACO were

experimentally tested by the authors of the algorithms as the parameters that guarantee

best performance. With reference to Yang (2010), the parameters α and γ in the Bat

algorithm were set to 0.9, and β was set to 1.

In selecting a dataset to test the proposed model, there were two important considerations.

First, the dataset must have a characteristic of frequently changed numeric attributes.

Second, each numeric attribute dataset could have frequently changed time dimensions.

In this context, each row element that represents an attribute has several multiples of

numeric attributes and the respective different time dimensions. Based on the two

characteristics, the stock market data was chosen from the classic “UCI machine learning

repository” (Lichman 2013) as the appropriate dataset for testing the proposed model. The

test dataset is a 10x3000 matrix, where 10 represents elements of the row matrix (that is,

the stock items) and 3000 represents the numeric attributes of the column matrix. All

simple and complex rules are applied on the test dataset. In the testing phase, the rules are

considered to be valid if all of their itemsets occur in the time-window of length ωt

(Railean et al. 2013).

During the experimental setup, initial parameters for each algorithm were set as presented

in Table 5.1. The stock market dataset was loaded and transposed, and each algorithm was

executed independently on the dataset. The transposed dataset helps transform the original

column attributes into row attributes with corresponding numeric values. In order to refine

output results to obtain the minimum value, 100 iterations were performed. The minimum

output value was used as the initial minimum support threshold to mine rules on frequently

changed stock items. Thus, the stock item is considered frequently changed if the support

is above the minimum support threshold. Although different user time preferences

(measured in seconds) and MCP confidence (that is, MCPconf) could be set, a user time

185

preference was set as 0.7 seconds, and a minimal MCP confidence value was set as 0.9.

Additionally, all time intervals are measure in seconds in this chapter.

5.4 Experimental results

The proposed model generated a minimum support threshold value of 1.4823e-14, and

based on the minimum support threshold, the following association rules were generated

and tabulated:

Table 5.2: Association rules for stock market dataset using KSA

Rule # MCPconf

value

Time

interval in

seconds

of rules

extracted

Example of rules extracted

1 90.3246 0.15054 36 X1,X2,X3,X4,X5,X6,X8→

X7,X10

2 99.1485 0.50753 1 X4→X1,X2,X3,X5,X6,X7,

X9,X10

3 94.5423 0.50753 26 X1,X4→X2,X3,X5,X7,X8,

X9X10

4 95.4177 0.50753 7 X1,X8→X2,X3,X4,X5,X7,

X9, X10

5 96.2931 0.50753 3 X2,X4→X1,X3,X5,X7,X8,

X9, X10

6 93.5961 0.5067 1 X2→X1,X3,X4,X9

7 95.4094 0.5067 2 X1, X2→X3,X5,X8

8 94.5341 0.5067 8 X1,X5→X2,X3,X8

9 95.8549 0.47927 35 X1,X2 ,X4→X3,X5,X6,X7

10 91.6942 0.22924 21 X1,X2,X3,X4, X6→X5,X8

11 98.6783 0.10964 2 X9→X1,X2,X3,X4,X5,X6

12 98.6607 0.10962 2 X1→X2,X9

13 98.6607 0.10962 2 X9→X1,X2

14 99.0389 0.058258 1 X4→X1,X3

15 94.4377 0.0087442 2 X1,X3→X10

16 92.7195 0.18544 28 X1,X2,X3,X4,X5,X6→X7,X9

Mean 95.5632 0.31191

186

Table 5.2 shows the results obtained from the proposed model. Frequently changed stock

items are anonymously represented by xi...xn, where n represents the number of stock

items. A total number of 177 complex rules were extracted, which are of the form

X1X2...Xn−1 → Xn (Railean et al. 2013) and also of the form Xn →X1X2...Xn−1. There were

no simple rules extracted from the stock dataset.

For instance, at rule 1, with a user time interval of 0.1505 seconds and am MCPconf of

90.3246%, a total of 36 different complex rules were extracted. Although all the complex

rules were not shown, the example presented in Table 5.2 is an instance of the rule

extracted, that is, X1,X2,X3,X4,X5,X6,X8→X7,X10 where X1,X2,X3,X4,X5,X6,X8

represents the antecedent part of the rule, and X7,X10 represents the consequent part of

the rule. Thus, if X1,X2,X3,X4,X5,X6,X8 are frequently changed stock items, then this

leads to X7,X10 stock items that are also frequently changed. The MCPconf of 90.3246%

helps select a high percentage of frequently changed rules.

From Table 5.2, it is observed that the mean for the MCPconf value is 95.5632%, and the

mean of time is 0.31191 seconds. This indicates that the KSA extracted an average of

95.5% of rules within a 0.31-second time interval.

Table 5.3 shows the experimental results obtained using the ACO, using the same user

time preference of 0.7 seconds and MCPconf value to 0.9. The minimum support value

obtained was 1.8168e-13. Based on the minimum support, the following association rules

on frequently changed items were extracted, as shown in Table 5.3.

187

Table 5.3: Association rules for stock market dataset using ACO

Rule # MCPconf

value

Time

interval in

seconds

of rules

extracted

Example of rules extracted

1 92.9081 0.50565 25 X1,X2,X3,X4,X5,X6→X7,X9

2 93.4948 0.49641 1 X2→X1,X3,X4, X9

3 95.3061 0.49641 2 X1,X2→X3,X5,X8

4 94.4317 0.49641 8 X1,X3→X2,X5,X8

5 95.3061 0.49641 2 X1,X8→X2,X3,X5

6 98.6503 0.49602 2 X1→X2, X9

7 99.0285 0.49602 1 X4→X1,X3

8 94.4278 0.49602 2 X1,X3→X10

9 95.3022 0.49602 1 X1,X10→X3

10 94.4278 0.49602 1 X3,X10→X1

11 95.8196 0.49521 35 X1,X2,X3→X4,X5,X6 ,X7

12 91.6604 0.49521 21 X1,X2,X3,X4,X5→X6,X8

13 98.642 0.49521 2 X1→X2, X3,X4,X5,X6, X9

Mean 95.3389 0.49669

A total of 100 complex rules were extracted from the stock dataset. For instance, at rule

11 with an MCPconf of 95.8196%, thirty-five complex rules were extracted. An example

of such a rule is X1,X2,X3→X4,X5,X6,X7, where X1,X2,X3 is the antecedent part of the

rule, while X4,X5,X6,X7 represents the consequent part of the rule. Thus, X1,X2,X3 are

frequently changed stock items in a sequence that lead to X4,X5,X6,X7 stock items of

frequently changed nature. Based on the output results, it was observed that no simple

rules on frequently changed items were extracted.

From Table 5.3, it is observed that the mean for the MCPconf value is 95.3389%, and the

mean of time is 0.49669 seconds. This indicates that the ACO algorithm extracted an

average of 95.3% of rules within a 0.49-second time interval.

Table 5.4 shows the experimental results obtained using the PSO. The same user time

preference of 0.7 seconds and MCPconf value of 0.9 were used. The minimum support

188

value obtained was 0.048569. Based on the minimum support threshold, the following

association rules on frequently changed items were extracted, as shown in Table 5.4.

Table 5.4: Association rules for stock market dataset using PSO

Rule # MCPconf

value

Time interval

in seconds

of rules

extracted

Example of rules extracted

1 99.2603 0.50355 1 X7→X1,X2,X3,X4,X5,X6,X8

2 90.5613 0.50204 1 X4→ X1

3 94.9438 0.49673 1 X2→X1,X3

4 90.5107 0.49673 1 X4→X1,X2

5 90.5103 0.49668 1 X4→X1,X2,X3,X5,X6

Mean 93.1573 0.49915

As shown in Table 5.4, a total of five rules, both simple and complex, were extracted from

the stock dataset as having interesting patterns upon which a user can take an action. For

instance, a user may decide to invest in stock item X4 that certainly leads to stock item

X1. From Table 5.4, it is observed that one simple rule was extracted, while four complex

rules were extracted during the iteration. For instance, at rule 2 with MCPconf of

90.5613%, a simple rule was extracted at time 0.5020 seconds as X4→X1, where X4 is the

antecedent part of the rule, and X1 represents the consequent part of the rule. Thus, a

frequently changed stock X4 leads to X1 stock items. At rule 4, a complex rule was

extracted as X4→X1,X2, thus a frequently changed stock X4 leads to a sequence of X1,X2

frequently changed stock items.

From Table 5.4, it is observed that the mean for the MCPconf value is 93.1573% and the

mean of time is 0.49915 seconds. This indicates that the PSO algorithm extracted an

average of 93.1% of rules within a 0.49-second time interval.

Table 5.5 shows the experimental results obtained using the Bat algorithm. The same user

time preference of 0.7 seconds and MCPconf value of 0.9 were used. The minimum

support value obtained was 3.0109e-07. Based on the minimum support, the following

association rules on frequently changed items were extracted, as shown in Table 5.5.

189

Table 5.5: Association rules for stock market dataset using BAT

Rule # MCPconf

value

Time interval in

seconds

of rules

extracted

Example of rules extracted

1 90.5716 0.50311 1 X4→X1

2 99.2277 0.50042 1 X7→X1,X2,X3,X4,X5,X6,X8

3 94.9603 0.49837 1 X2→X1,X3

4 90.5264 0.49837 1 X4→X1,X2

5 90.526 0.49833 1 X4→X1,X2,X3,X5,X6

Mean 93.1624 0.49972

As observed from Table 5.5, a total of five rules, both simple and complex, were extracted

from the stock dataset as having interesting patterns upon which a user can take an action

within a time frame. It is observed that one simple rule was extracted, while four complex

rules were extracted. For instance, at rule 2 with an MCPconf of 99.2277%, a complex

rule was extracted at time 0.50042 seconds as X7→X1,X2,X3,X4,X5,X6 X8, where X7 is

the antecedent part of the rule, and X1,X2,X3,X4,X5,X6,X8 represents the consequent part

of the rule. Thus, a frequently changed stock X7 leads to X1,X2,X3,X4,X5,X6,X8 stock

items in sequence. At rule 1, a simple rule was extracted as X4→X1, thus a frequently

changed stock X4 leads to frequently changed stock item X1.

From Table 5.5, it is observed that the mean for the MCPconf value is 93.1624% and the

mean of time is 0.49972 seconds. This indicates that the Bat algorithm extracted an

average of 93.1% of rules within a 0.49-second time interval.

The experimental results obtained using WSA-MP are shown in Table 5.6. A user time

preference of 0.7 seconds and MCPconf value of 0.9 were used. The minimum support

value obtained was 6.7486e-07. Based on the minimum support, the following association

rules on frequently changed items were extracted, as presented in Table 5.6.

190

Table 5.6: Association rules for stock market dataset using WSA-MP

Rule # MCPconf

value

Time interval

in seconds

of rules

extracted

Example of rules extracted

1 93.5951 0.5066 1 X2→X1,X3,X4,X9

2 95.4084 0.5066 2 X1,X2→X3,X5,X8

3 94.5331 0.5066 8 X1,X3→X2,X5,X8

4 95.925 0.50566 35 X1,X2,X3→X4,X5,X6,X7

5 91.7612 0.50566 21 X1,X2,X3,X4,X5→X6,X8

6 98.7505 0.50566 2 X1→X2,X3,X4,X5,X6,X9

7 92.8651 0.50124 25 X1,X2,X3,X4,X5,X6→X7,X9

8 98.6756 0.49844 2 X1→X2,X9

9 99.0538 0.49844 1 X4→X1,X3

10 95.3265 0.49844 1 X1→X3,X10

11 94.452 0.49844 2 X3,X10→X1

Mean 95.486 0.50289

From Table 5.6, a total of 100 complex rules were extracted from the stock dataset.

However, no simple rule was extracted. For instance, rule 5 has an MCPconf value of

95.925% with thirty-five complex rules that were extracted from the dataset. An example

of such a rule is X1,X2,X3→X4,X5,X6,X7, where X1,X2,X3 is the antecedent part of the

rule while X4,X5,X6,X7 represents the consequent part of the rule. Thus, X1,X2,X3, which

frequently changes in sequence, leads to X4,X5,X6,X7 frequently changed stock items.

From Table 5.6, it is observed that the mean for the MCPconf value is 95.486% and the

mean of time is 0.50289 seconds. This indicates that the WSA-MP algorithm extracted an

average of 95.4% of rules within a 0.50-second time interval.

Table 5.7 shows the algorithms and summary of the number of rules, both complex and

simple, extracted during the experiment.

191

Table 5.7: Algorithms and number of rules extracted

Algorithm Best minimum

value

#of complex

rules extracted

of simple rules

extracted

KSA 1.4823e-14 177 0

ACO 1.8168e-13 100 0

PSO 0.048569 4 1

BAT 3.0109e-07 4 1

WSA-MP 6.7486e-07 100 0

Table 5.7 shows the number of complex and simple rules extracted after each iteration

during the experiment. KSA, ACO and WSA-MP extracted complex rules of the form

V1V2...Vn−1 → Vn (Railean, Lenca, Moga and Borda 2013), and no simple rules of the form

Vi → Vn were extracted from the ten stock items in the original dataset. PSO and BAT

extracted both simple rules of the form Vi → Vn and complex rules of the form V1V2...Vn−1

→ Vn (Railean et al. 2013) from the ten stock items. Also, KSA has a total of 177 rules,

both ACO and WSA-MP have 100 rules, and both PSO and BAT have 5 rules. It is

observed that KSA has the highest number of rules extracted, which could be attributed

to its best minimum value (minimum support threshold). Based on Table 5.7, it is observed

that PSO has the highest minimum value (0.048569), while KSA has the lowest minimum

value (1.48E-14). The significance of the minimum support threshold is that it helps with

mining close interesting patterns. Thus, it could be inferred that when the minimum

support threshold is smaller, it is possible to extract many complex rules. The nature of

each algorithm (in terms of the behavior of the algorithm, as explained in Chapter Two,

and parameters) could have contributed to the best minimum values that were obtained.

The proposed algorithm is better in some aspects because it improves on the weaknesses

of existing bio-inspired algorithms (see Appendix 2) so as to help improve on the

performance of big data algorithms. In formulating this algorithm, the researcher

improved on the quality of machine learning algorithms, which was identified by Tsai et

al. (2015) as an issue of big data analysis platforms.

192

5.5 Conclusion

The proposed KSA was used for association rule mining of frequently changed items with

numeric attributes and a time dimension for stock market data. The proposed search

algorithm (that is KSA) has the best minimum value (minimum support threshold)

compared with the comparative algorithms (PSO, ACO, BAT, WSA-MP). The best

minimum value obtained with KSA is attributed to the behavior and characteristics

exhibited by kestrels, which the comparative algorithms could not exhibit. In terms of the

number of rules discovered, the proposed KSA algorithm disclosed a high number of

complex rules without any simple rules at an MCPconf value of 0.9 and time window of

0.7 seconds. Although the proposed model (KSA and closeness preference) generated

complex rules, a limited amount of time was used, and this makes the proposed model the

preferred algorithm for frequently changed items, as evident from the experimental

results.

In addition, the experimental results showed that KSA had the best minimum value of

1.48E-14, and an average of 95.56% of rules were extracted at a mean time interval of 0.3

seconds. In comparison, ACO had a minimum value of 1.82E-13 and extracted an average

of 95.33% rules at a mean time interval of 0.4 seconds; PSO had a minimum value of

0.048569 with an average of 93.1573% rules extracted at a mean time interval of 0.4

seconds; BAT had a minimum value of 3.01E-07, and an average of 93.1624% rules were

extracted at a mean time interval of 0.4; and WSA-MP had a minimum value of 6.75E-07

and extracted on average 95.486% of rules at a mean time interval of 0.5 seconds. Based

on the mean MCPconf value and mean time interval, KSA analyzed data on frequently

changed items and discovered a high number of patterns in the shortest possible time

interval. What makes the proposed KSA different from other bio-inspired search-based

methods is the use of random encircling and close user preferences model for mining

frequently changed items. Based on the experimental results, it could be concluded that

KSA has the best minimum value of 1.4823e-14, in which 95.56% of rules were extracted

at a mean of time of 0.31 seconds, which is the best among the comparative algorithms.

193

5.6 Summary

In summary, the chapter discussed the experimental setup suitable to implement the

proposed computational model (based on KSA and closeness preference) on frequently

changed items. The chapter discussed how the proposed computation model, which was

mathematically formulated and expressed as a search algorithm, was implemented and

tested. The algorithmic structure was implemented as a search algorithm that helped find

frequently changed rules.

The next chapter discusses how to implement the computational model for visualization of

data via dung beetle behavior of moving dung as a ball rolled from one location to another.

The points of movement of the balls are referred to as data points, which are then plotted

on a data grid.

194

CHAPTER 6: DEVELOPING, TESTING AND EVALUATING

DATA VISUALIZATION BASED ON DUNG BEETLE

ALGORITHM

6.1 Introduction

This chapter is the third phase of the proposed model, which seeks to visualize frequently

changed data from the big data environment. The big data environment is characterized

as having large datasets that are dynamic and can change within a second. However, when

large amounts of information from datasets are available, it makes it difficult for users to

visualize interesting patterns. Therefore, modern approaches to visualization could assist

users by reducing the effort needed, considering the different user preferences in respect

of time that may be required (Bikakis 2018). As time taken to view data is significant,

there is a motivation to find new ways to reduce computational time during data

visualization. The present approach is inspired by the behavior of animals, particularly

dung beetles. The significance of a bio-inspired behavior, such as dung beetle behavior,

for big data visualization is the ability to navigate and perform path integration with

minimal computational power. The dung beetle behavior, when expressed as an algorithm,

can find the best possible approach to visualize discrete data using minimal computational

power, which is suitable when data coming from different sources have to be visualized

quickly with less computational time.

Basic mathematical formulations were expressed and translated into algorithmic structure

to depict the behavior of dung beetles and were then applied to help visualize frequently

changed data in two-dimensional view to aid understanding. The general outline in section

3.5 was followed to model an algorithm for data visualization in a two-dimensional graph,

as indicated in phase three of the methodological framework in Table 3.1.

195

6.2 Data visualization

Data visualization presents data in pictorial or graphical format and enables the display of

interesting patterns for decision-making activities (Bikakis 2018). Usually, data a

visualization tool (that is, software or an algorithm) is used to generate the graphical

format. The basic mathematical expression was used to depict the dung beetle behavior

and display interesting patterns in a graphical format. In creating the visual pattern, the

self-adapting basic rules that were formulated to depict the dynamic behavior of dung

beetles were applied to find an optimal solution to create a visual pattern of data points on

a grid. The algorithm on the basic rules formulation is expressed as follows:

Objective function f(x), x=(x1,x2,..xd)
T

Initialization of parameters;

Population of dung beetle xi(i=1,2,..,k);

Choose a random “real Home”

WHILE (t < stopping criteria not met)

 FOR i=1: k //for each dung beetle in the population

 Roll ball

 Perform a dance

 Integrate path

 Evaluate position within external reference point

 Compare positions to find minimum

 IF position1 <position2

 Swap position1 with position2

 END IF

 END FOR

Update external reference point

Check stopping criteria

END WHILE

196

6.3 Evaluation of visualization technique

In line with Dull and Tegarden’s (1999) and Risden and Czerwinski’s (2000) approach to

measuring effectiveness of visualization, an evaluation technique was applied in terms of

computational time to complete a visualization task, and the quality of the task’s optimal

value was considered in terms of the optimal solution from the proposed bio-inspired

visualization algorithm and the comparative visualization algorithms, namely the bee

algorithm and ACO for data visualization. As explained in the literature review, bees are

able to perform a dance in order to make a decision to choose their food source and revisit

their food source for further exploration (Karaboga 2005). This self-organizing behavior

of bees motivated the use of the bee algorithm for data visualization in this aspect of the

thesis. Additionally, ACO was adopted as visualization method because of its ability to

communicate the presence of a food source using its pheromone substance (Stützle and

Dorigo 2002). This pheromone substance enables ants to converge and exploit the food

source. Ants are also well adapted to reinforce the pheromone trail so that other ants can

follow it. The unique behaviors of ants and bees were the reason for choosing the ant and

bee algorithms as comparative algorithms for data visualization, instead of PSO, Firefly

and WSA-MP.

6.4 Experimental setup

The algorithm for the proposed DBA was implemented in MATLAB and tested on a stock

market dataset. The basic parameters for the DBA is defined as follows: error ɛ is 0.05,

and 𝛽𝑚 represents motion cues and is set to 0.2. The reason for the error parameter of 0.05

is to allow 95% accuracy in selecting the best path and a 5% chance of choosing an

incorrect path that may lead to an “imaginary home”. The reason for the 0.2 motion cue

(or 20%) is the fact that other factors (e.g. hills and other impediments that can lead dung

beetles to getting stuck in one place) in the environment (that accounts for 80%) may

obscure the view of dung beetles when moving dung from one location to another.

197

6.5 Experimental results

The experiment was conducted in two stages: Firstly, association rules generated from

Chapter 5 on stock market data were used with an initial modified closeness preference

of support-confidence (MCPconf) (also referred to as modified closeness preference

confidence) value of 0.9 and user time preference of 0.7. The reason for using a value of

0.9 is to extract high confidence association rules between 90% and 100% and within a

time interval of 0 to 0.7 seconds. Secondly, DBA was applied to create graphical displays

of results on MCPconf values. The results of association rules from Chapter 5 were viewed

using the proposed DBA for data visualization and compared with data visualization

algorithms such as the bee algorithm and ACO for data visualization. The results are

presented in three parts: Firstly, the use of DBA to visualize data mining results from bio-

inspired algorithms such as KSA, ACO, PSO, BAT and WSA-MP; secondly, the use of

the bee algorithm to visualize data mining results from KSA, ACO, PSO, BAT and WSA-

MP; and thirdly, the use of ACO for data visualization to view data mining results from

KSA, ACO, PSO, BAT and WSA-MP. The results on visualization are tabulated and

presented using graphs (where the x-axis represents the iteration and the y-axis represents

either best computational cost or MCPconf value). Where appropriate, a distinction is

made on what the y-axis represents due to different graphs that were used.

6.5.1 Visualization using DBA

The first part involved the use of DBA for visualization of association rule mining results

from KSA, ACO, PSO, BAT and WSA-MP. Table 6.1 shows the MCPconf values that

were generated from the association rules as follows:

Table 6.1: MCPconf values from KSA

Rule # MCPconf value (%)

1 90.3246

2 99.1485

3 94.5423

4 95.4177

198

5 96.2931

6 93.5961

7 95.4094

8 94.5341

9 95.8549

10 91.6942

11 98.6783

12 98.6607

13 98.6607

14 99.0389

15 94.4377

16 92.7195

It is observed from Table 6.1 that sixteen association rules were generated within the

MCPconf value of 0.9. Based on Table 6.1, the nature of the graphical display using DBA

is as follows (where the y–axis represents the best computational cost and the x-axis

represents the iteration):

Figure 6.1: Dung beetle display of best cost on path traversed by KSA

Figure 6.1 shows a display of the computational cost in each iteration towards an optimal

solution. The path descends gradually from the start of the iterations, although there are

steep slopes along the path. The algorithm converges to an optimal value of 0.00011665

with an elapsed time of 0.401061 seconds. The MCPconf values are plotted on the y-axis

of the data grid in Figure 6.2 as follows:

199

Figure 6.2: Dung beetle display on MCPconf value for KSA

Figure 6.2 shows the graphical view created using DBA from the MCPconf values in

Table 6.1. The lowest MCPconf value was 90.3246%, while the highest was 99.1485%.

Table 6.2 shows the MCPconf values that were generated using ACO to generate mining

association rules. These are tabulated as follows:

Table 6.2: MCPconf values from ACO

Rule # MCPconf value (%)

1 92.9081

2 93.4948

3 95.3061

4 94.4317

5 95.3061

6 98.6503

7 99.0285

8 94.4278

9 95.3022

10 94.4278

11 95.8196

12 91.6604

13 98.6420

It is observed from Table 6.2 that thirteen association rules were generated within the

MCPconf value of 0.9. Based on Table 6.2, the nature of the graphical display using DBA

is as follows (where the y–axis represents the best computational cost and the x-axis

represents the iteration):

200

Figure 6.3: Dung beetle display of best cost on path traversed by ACO

Figure 6.3 shows the display of the best computational cost in each iteration towards an

optimal solution. The path descends gradually from the start of iteration, maintains a steep

slope and maintains a constant best cost between the 40th and 60th iterations before

converging to an optimal value of 7.0315e-05 at an elapsed time of 0.485009 seconds.

Figure 6.4: Dung beetle display of MCPconf value for ACO

Figure 6.4 shows the graphical view created by DBA on the MCPconf values generated

for ACO during each iteration. The lowest MCPconf value was 91.6604%, while the

highest was 99.0285%.

Table 6.3 shows the MCPconf values that were generated using PSO to mine association

rules. These are tabulated as follows:

Table 6.3: MCPconf values from PSO

201

Rule # MCPconf value (%)

1 99.2603

2 90.5613

3 94.9438

4 90.5107

5 90.5103

It is observed from Table 6.3 that five association rules were generated within the

MCPconf value of 0.9. Based on Table 6.3, the nature of the graphical display using DBA

is as follows (where the y–axis represents the best cost and the x-axis represents the

iteration):

Figure 6.5: Dung beetle display best cost on path traversed by PSO

Figure 6.5 shows the display of the best computation cost (on the y-axis) for DBA in each

iteration (on the x-axis) towards an optimal solution. The path descends gradually from

the start of the iterations to the 20th iteration and then maintains a steep slope. The path

also maintains a constant best cost (in terms of minimal value) before finally converging

to an optimal value of 0.00016533 at an elapse time of 0.493069 seconds.

202

Figure 6.6: Dung beetle display on MCPconf value for PSO

Figure 6.6 shows the graphical view created by DBA on the MCPconf values generated

for PSO during each iteration. The lowest MCPconf value was 90.5103%, while the

highest was 99.2603%.

Table 6.4 shows the MCPconf values that were generated using BAT to mine association

rules. These are tabulated as follows:

Table 6.4: MCPconf values from BAT

Rule # MCPconf value (%)

1 90.5716

2 99.2277

3 94.9603

4 90.5264

5 90.5260

It is observed from Table 6.4 that five association rules were generated within the

MCPconf value of 0.9. Based on Table 6.4, the nature of the graphical display using DBA

is as follows (where the y–axis represents the best computational cost and the x-axis

represents the iteration):

Figure 6.7: Dung beetle display best cost on path traversed by BAT

203

Figure 6.7 shows the display of the best computational cost (on the y-axis) for DBA in

each iteration (on the x-axis) towards an optimal solution. The path descends gradually

from the start of iteration, maintains a steep slope towards the 80th iteration, and maintains

a constant best cost on the curve before converging to an optimal value of 0.00014318 at

an elapse time of 0.589264 seconds.

Figure 6.8: Dung beetle display of MCPconf value for BA

Figure 6.8 shows the graphical view created by DBA of the MCPconf values (on the y-

axis), generated for BAT during each iteration interval (on the x-axis). The lowest

MCPconf value was 90.5260% while the highest was 99.2277%.

Table 6.5 shows the MCPconf values that were generated using WSA-MP to mine

association rules. These are tabulated as follows:

Table 6.5: MCPconf values from WSA-MP

Rule # MCPconf value (%)

1 93.5951

2 95.4084

3 94.5331

4 95.9250

5 91.7612

6 98.7505

7 92.8651

8 98.6756

9 99.0538

10 95.3265

11 94.4520

204

It is observed from Table 6.5 that eleven association rules were generated within the

MCPconf value of 0.9. Based on Table 6.5, the nature of the graphical display using DBA

is as follows (where the y–axis represents the best computational cost and the x-axis

represents the iteration):

Figure 6.9: Dung beetle display of best cost on path traversed by WSA-MP

Figure 6.9 shows the display of the best computational cost (on the y-axis) in each iteration

(on the x-axis) towards an optimal solution. The path descends gradually from the start of

the iterations, maintains a constant best cost (in terms of minimal value) and converges to

an optimal value of 9.1295e-05 in an elapsed time of 0.582776 seconds.

Iteration

Figure 6.10: Dung beetle display of MCPconf value for WSA-MP

Figure 6.10 shows the graphical view created by DBA on the MCPconf values (on the y-

axis) generated for WSA-MP during each iteration (on the x-axis). The lowest MCPconf

value was 91.7612%, while the highest was 99.0538%.

205

6.5.2 Visualization using the bee algorithm

The bee algorithm for data visualization was also used to visualize results of association

rules that were mined using KSA, ACO, PSO, BAT and WSA-MP. The MCPconf values

in Table 6.1 were used to avoid repetition. In this sub-section, the x-coordinates of the

graph represent iterations and the y-coordinates are the best cost. The nature of the

graphical display using the bee algorithm on KSA is as follows:

Figure 6.11: Bee algorithm display of best cost by KSA

Figure 6.11 shows the display of the best cost for the bee algorithm in each iteration

towards an optimal solution. The curve descends gradually from the start of the iterations,

maintains a constant best cost (in terms of minimal value) between the 60th and 70th

iterations before converging to an optimal value of 1.0844e-08. Elapsed time is 2.167966

seconds.

For ACO, the MCPconf values in Table 6.2 were used to avoid repetition. The nature of

the graphical display using the bee algorithm on ACO results is as follows:

206

Figure 6.12: Bee algorithm display of best cost by ACO

Figure 6.12 shows the display of the best computational cost for bee algorithm in each

iteration towards an optimal solution. The curve descends gradually from the start of the

iterations and converges to an optimal value of 6.1772e-08 at an elapsed time of 2.134924

seconds.

For PSO, the MCPconf values in Table 6.3 were used to avoid repetition. The nature of

the graphical display using the bee algorithm on PSO is as follows:

Figure 6.13: Bee algorithm display of best cost by PSO

207

Figure 6.13 shows the display of the best computational cost for the bee algorithm in each

iteration towards an optimal solution. The curve descends gradually from the start of the

iterations and converges to an optimal value of 1.2743e-08. Elapsed time is 2.186376

seconds.

For BAT, the MCPconf values in Table 6.4 were used to avoid repetition. The nature of

the graphical display using the bee algorithm on BAT is as follows:

Figure 6.14: Bee algorithm display of best cost by BAT

Figure 6.14 shows the display of the best computational cost for the bee algorithm in each

iteration towards an optimal solution. The curve descends gradually from the start of the

iterations and maintains a constant best cost (in terms of minimal value) after the 20th

iteration to the 40th iteration, until finally converging to an optimal value of 7.1857e-09.

Elapsed time is 2.309688 seconds.

For WSA-MP, the MCPconf values in Table 6.5 were used to avoid repetition. The nature

of the graphical display using the bee algorithm on WSA-MP is as follows:

208

Figure 6.15: Bee algorithm display of best cost by WSA-MP

Figure 6.15 shows the display of the best computational cost for the bee algorithm in each

iteration towards an optimal solution. The curve descends gradually from the start of the

iterations and converges to an optimal value of 1.8478e-08. Elapsed time is 2.150612

seconds.

6.5.3 ACO for data visualization

Thirdly, ACO for data visualization was used to visualize the results on association rules

that were mined from KSA, ACO, PSO, BAT and WSA-MP. In this sub-section, the x-

coordinate of a graph represents iterations and the y-coordinate is the best cost.

For KSA, the MCPconf values in Table 6.1 were used to avoid repetition. The nature of

the graphical display using ACO for data visualization on KSA is as follows:

209

Figure 6.16: ACO algorithm display on best cost by KSA

Figure 6.16 shows the display of the best computational cost for the ACO algorithm in

each iteration towards an optimal solution. The nature of the curve is linear or related to a

straight line. However, the curve converges to an optimal value of 1.1458e-12 at an

elapsed time of 1.020023 seconds.

For ACO, the MCPconf values in Table 6.2 were used to avoid repetition. The nature of

the graphical display using ACO for data visualization on ACO for mining results is as

follows:

Figure 6.17: ACO for visualization display of best cost by ACO from data mining phase

210

Figure 6.17 shows the display of the best computational cost for the ACO algorithm in

each iteration towards an optimal solution. The nature of the curve is linear but maintains

a constant best cost towards the 100th iteration before converging to an optimal value of

1.2667e-12 at an elapsed time of 1.042381 seconds.

For PSO, the MCPconf values in Table 6.3 were used to avoid repetition. The nature of

the graphical display using ACO for data visualization on PSO mining results is as

follows:

Figure 6.18: ACO for visualization display of best cost using results on PSO from data mining

phase

Figure 6.18 shows the display of the best computational cost for the ACO in each iteration

towards an optimal solution. The nature of the curve is linear. However, the curve

converges to an optimal value of 8.9363e-14 with an elapsed time of 0.913326 seconds.

For BAT, the MCPconf values in Table 6.4 were used to avoid repetition. The nature of

the graphical display using ACO for data visualization on BAT mining results is as

follows:

211

Figure 6.19: ACO for visualization display of best cost by BAT from data mining phase

Figure 6.19 shows the display of the best computational cost for the ACO algorithm in

each iteration towards an optimal solution. The nature of the curve is linear. However, the

curve converges to an optimal value of 9.2904e-14. Elapsed time is 0.956751 seconds.

For WSA-MP, the MCPconf values in Table 6.5 were used to avoid repetition. The nature

of the graphical display using ACO for data visualization on WSA-MP mining results is

as follows:

Figure 6.20: ACO for visualization display of best cost using results of WSA-MP from data

mining phase

212

Figure 6.20 shows the display of the best computational cost for the ACO algorithm in

each iteration towards an optimal solution. The nature of the curve is linear. However, the

curve converges to an optimal value of 7.6804e-13. Elapsed time is 0.958605 seconds.

The nature of curves that were obtained from the bio-inspired data visualization

algorithms, namely DBA, the bee algorithm and ACO for data visualization, indicates that

while DBA and the bee algorithm maintained a curved path, ACO for data visualization

is linear until it converges to a best optimal value. The high best computational cost

observed at the initial iteration contributed to the nature of the graph in ACO for data

visualization.

6.6 Evaluation of data visualization algorithms

The experimental results that were obtained on the computational time (that is, elapsed

time) and optimum value (in terms of the best cost) are tabulated in Table 6.6 and Table

6.7. The computation time is measured in seconds. Table 6.6 shows the tabulated results

on the optimum value of data visualization algorithms, namely the proposed DBA, the bee

algorithm and ACO for data visualization. Meanwhile, Table 6.7 shows the computational

time required by the algorithm to output both optimum results and visualization of data

mining results on a data grid. The bio-inspired data mining algorithms considered are

KSA, ACO, PSO, BAT and WSA-MP.

Table 6.6: Summary of optimum values from bio-inspired data visualization algorithms

 Bio-inspired data visualization algorithms

Bio-inspired data

mining algorithms

Proposed DBA

(s)

Bee algorithm ACO for data

visualization

KSA 0.00011665 1.0844e-08 1.1458e-12

ACO 7.0315e-05 6.1772e-08 1.2667e-12

PSO 0.00016533 1.2743e-08. 8.9363e-14

BAT 0.00014318 7.1857e-09 9.2904e-14

WSA-MP 9.1295e-05 1.8478e-08 7.6804e-13

Mean 0.00012 2.457E-08 6.7E-13

213

Table 6.6 illustrates the optimal value (in terms of best computational cost) required for

each algorithm to compute and display the results in a graphical format. It is observed that

ACO for data visualization has the least optimum values among the bio-inspired data

visualization algorithms, as evident from each bio-inspired data mining algorithm. It is

possible that the number of search agents in the ACO for data visualization may have

contributed to the algorithm’s generating the fewest optimum values, as many parameters

are tuned in the search space to produce each best optimal value.

Table 6.7: Summary of computation time obtained from bio-inspired data visualization

algorithms.

 Bio-inspired data visualization algorithms

Bio-inspired data

mining algorithms

Proposed DBA Bee algorithm ACO for data

visualization

KSA 0.401061 2.167966 1.020023

ACO 0.485009 2.134924 1.042381

PSO 0.493069 2.186376 0.913326

BAT 0.589264 2.309688 0.956751

WSA-MP 0.582776 2.150612 0.958605

Mean 0.510236 2.189913 0.978217

Table 6.7 illustrates the computational time (measured in seconds) required for each

algorithm to compute and display results on a grid for users to view. The results shown in

Table 6.7 indicate that the proposed DBA has the least computational time for each bio-

inspired data mining algorithm. The computational time could be attributed to the

parameters used in the algorithm. In order to find the mean computational time spent by

each bio-inspired data visualization algorithm, the mean computational time was

computed over all five algorithms. The proposed DBA spent 0.510236 seconds, the bee

algorithm spent 2.189913 seconds, and ACO for data visualization spent 0.978217

seconds. The mean of the computational time shows that the computational time for ACO

for data visualization is twice that of DBA, while the computational time for the bee

algorithm is approximately four times that of DBA. Consequently, these computational

time results indicate that the proposed DBA spent less computational time compared to

214

the bee algorithm and ACO for data visualization. Figure 6.21 shows a graph of the

computational time for each bio-inspired data mining algorithm (where the x-coordinate

represents the comparative bio-inspired algorithms for association rule mining and the y-

coordinate is the computational time measure in seconds with unit intervals of 0.5):

Figure 6.21: Graphical display of computational time for each bio-inspired data mining

algorithm

In Figure 6.21, it is observed that the proposed DBA spent the least computational time in

all the bio-inspired data mining algorithms. This computational time could be attributed

to the nature of the algorithm in terms of the parameters that were used to enable it to

converge at optimal solutions. Also, it is observed from Figure 6.21 that the bee algorithm

has high computational time, which may be due to the nature of the algorithm’s search for

the best possible parameters in the search space.

6.7 Profile statistics on visualization algorithms

The profile summary report showed the overall executing of functions underlying the

behavior of each algorithm for data visualization. The aspect of profiling, which is a step

in the general outline of procedures (see section 3.5), is explained in the following using

the function calls, total time and self time. Table 6.8 illustrates the major function calls

extracted during profiling of the algorithms.

0

0.5

1

1.5

2

2.5

 KSA ACO PSO BAT WSA-MP

Proposed DBA Bee algorithm

ACO for data visualisation

215

Table 6.8 Major function names of the comparative algorithms

 DBA “Calls” Total time Self time

f1 DBAApproach>main 1 7.240 2.470

f2 DBAApproach>Orient 22510 1.087 1.087

f3 DBAApproach>PerformDance 17500 1.679 0.715

 Mean 13337 3.33533 1.424

 Bee algorithm

f1 BeeApproach>main 1 1.901 s 0.724 s

f2 BeePhase3>Sphere 4010 0.107 s 0.107 s

f3 BeeApproach>PerformDance 3500 0.412 s 0.166 s

 Mean 2503.67 0.80667 0.33233

 ACO for visualization algorithm

f1 ACOApproach>main 1 2.494 s 1.111 s

f2 ACOPhase3>Sphere 3010 0.152 s 0.074 s

f3 ACOphase3>RouletteWheelSelection 30000 0.696 s 0.696 s

 Mean 11003.67 1.114 0.627

Table 6.8 shows the different test functions (namely, function name, call, self time and

total time) in each comparative visualization algorithm. The DBA, bee and ACO for

visualization algorithms each have three major functions (one main- function f1 and two

sub-functions).

In order to ensure a true reflection of the nature of built-in functions that were extracted,

all built-in functions were considered for analysis. It is observed that when some built-in

functions were called, the total time was zero seconds, thus making those built-in function

calls inconsequential in terms of execution time. However, these inconsequential built-in

functions were taken into consideration so as not to lose track of any function calls made

during the visualization of results. Table 6.9 shows the results on the built-in function of

the visualization algorithms.

216

Table 6.9: Major functions, mean of total_time and self_time of comparative algorithms

 Algorithm

Number of

major

function

“Calls”

Sum of

“Calls” on

major

functions

Mean of

major

function

“Calls”

Mean of

major

function

“total_time

(s)”

Mean of

major

function

“self_time”

(seconds

(s))

Time

difference

(Td=

(total_time

- self_time)

1.
ACO for

visualization
3 33011 11003.67 1.114 0.627 0.487

2. Bee 3 7511 2503.67 0.80667 0.33233 0.47434

3. DBA 3 40011 13337 3.3353 1.424 1.9113

It is observed from Table 6.9 that ACO for visualization has a time difference of 0.487,

the bee algorithm has a time difference of 0.47434, and DBA has a time difference of

1.9113. In terms of number of major function calls, ACO for visualization recorded 33011,

the bee algorithm recorded 7511 and DBA recorded 40011. The results from Table 6.9

reveal that ACO for visualization has the smallest time difference of 0.487 seconds to call

a total of 33011 major functions; the bee algorithm spent 0.47434 seconds to call a total

of 7511 major functions; and DBA spent 1.9113 seconds to call a total of 40011 major

function calls.

In order to ensure a true reflection of the nature of built-in functions that were extracted,

all built-in functions were considered for analysis. Table 6.10 presents the comparative

algorithms’ built-in functions.

Table 6.10: In-built function calls on the comparative algorithms

No. Algorithm

Number of

in- built

functions

Sum of

built-in

function

“Calls”

Sum of

“self_time”

(s)

Sum of

“total_time”

(seconds (s))

1. DBA 22 82559 4.357 3.007

2. ACO for visualization 45 896 0.831 1.03

3. Bee 45 6596 0.796 1.264

217

It is observed from Table 6.10 that, in terms of number of built-in functions, DBA has 22,

ACO for visualization has 45 and Bee algorithm has 45. In terms of the sum of built-in

function “calls”, DBA has 82,559, ACO for visualization has 896 and the bee algorithm

has 6596. In terms of total time, DBA spent 3.007 seconds, ACO for visualization spent

1.03 seconds and the bee algorithm spent 1.264 seconds.

Table 6.11: Mean of built-in function calls on the comparative algorithms

No. Algorithm

Mean of

built-in

function

“Calls”

Mean of

“self_time”

(s)

Mean of

“total_time

“(seconds

(s))

Td

1. DBA 14290.5 0.198045 0.136682 -0.06136

2. ACO 19.91111 0.018467 0.022889 0.004422

3. Bee 146.5778 0.017689 0.028089 0.0104

It is observed from Table 6.11 that, although the mean of built-in functions in DBA was

14290.5, there is a negative time difference (-0.06136 seconds). This suggests that the

mean of time of built-in functions did not play a role in terms of the performance of DBA.

In contrast, ACO for visualization has the time difference of 0.004422 seconds, while the

bee algorithm has a time difference of 0.0104 seconds.

In summary, firstly, DBA recorded a mean optimal value of 0.00012 with a mean

computational time of 0.510236 seconds. The mean of time difference of the major

function is 1.9113 seconds, and the mean of built-in function calls is -0.06136 seconds.

This suggests that DBA spent less computational time on built-in functions and more time

on major functions. This is possibly due to navigation and orientation at the major function

in order to get an optimal value. Therefore, it is optimal rather to dance and find the nearly

optimal value than to call other built-in functions.

Secondly, the bee algorithm recorded a mean optimal value of 2.457E-08 with a mean

computational time of 2.189913 seconds. The mean of time difference of the major

functions is 0.47434 seconds, and the mean of built-in function calls is 0.0104 seconds.

218

This suggests that although the bee algorithm gave a mean optimal value that is better than

DBA, the bee algorithm spent a computational time of 2.189913 seconds, which is

significantly higher and not suitable for a data visualization algorithm that handles large

volumes of data.

Thirdly, ACO for data visualization recorded a mean optimal value of 6.7E-13 with a

mean computational time of 0.978217 seconds. The mean of time difference of the major

function is 0.487 seconds, and the mean of built-in function calls is 0.004422 seconds.

This suggests that although the ACO for data visualization algorithm gave a mean optimal

value that is better than both Bee and DBA, it spent a computational time of 0.978217

seconds, which make it unsuitable for a data visualization algorithm that handles large

volumes of data.

6.8 Conclusion

The test dataset for the DBA is based on the modified closeness preference support-

confidence (MCPsc or MCPconf) value obtained from the experimental results in

Chapter 5. The DBA was compared with Bee and ACO for data visualization. In order to

select the best algorithm, two criteria were used: firstly, the algorithm should have a

minimum computational time; secondly, the algorithm should have an optimal value.

However, an algorithm that meets the first criterion is given prominence. The results on

average computational time (in seconds) showed that DBA had a minimum computational

time of 0.510 seconds, Bee had a minimum computational time of 2.189 seconds, and

ACO for data visualization had a minimum computational time of 0.978 seconds.

Furthermore, the mean optimal value for DBA was 0.000117, for the bee algorithm was

2.46E-08, and for ACO for data visualization was 6.73E-13. The results indicated that

DBA used the least computation time while ACO for data visualization had the lowest

optimal value. Since the study is interested in the algorithm with minimum computational

time, DBA is considered the preferred algorithm for data visualization when large datasets

are involved. The results from DBA confirmed the suggestion that dung beetles are known

219

to use minimal computational power for navigation and orientation using celestial

polarization patterns (Wits University 2013).

6.9 Summary

In this chapter, mathematical formulations were expressed of the unique characteristics of

dung beetles (that is, path integration with repulsion and attraction of trace, dance during

orientation, and ball rolling on straight line) in creating imaginary homes after

displacement of their food (dung) source. The mathematical formulations were translated

into an algorithmic structure that searches for the best possible path and displays patterns

using a simple two-dimensional view. The experimental results suggested that DBA uses

minimum computation time to visualize data.

The next chapter draws conclusions from the findings and discusses the experimental

results in line with the research questions that were formulated, as well as concepts that

were considered in the literature review chapter of this study. The purpose of the next

chapter is to either confirm or refute propositions that were made by researcher in respect

of missing value estimation, duplicate text detection, feature selection, association rule

mining and data visualization of frequently changed items in large datasets.

220

CHAPTER 7: DISCUSSION, CHALLENGES AND

CONCLUSIONS

7.1 Introduction

This chapter concludes the study by stating the research questions (as stated in Chapter 1)

and giving responses to the questions, and by discussing experimental results, the

challenges of the proposed computational model, conclusions and recommendations for

future work.

7.2 Research question

In this section, an overview is given of the research questions and responses to these

research questions.

7.2.1 Research question 1:

Can a largely meta-heuristic/bio-inspired data preprocessing approach be modelled to

extrapolate missing values, identify and remove duplicate text, and select features in

subsets?

Response

Mathematical models based on the characteristics of an animal (the kestrel) can be

formulated to extrapolate missing values (as shown in section 3.2.1), to identify and

remove duplicate text (as shown in section 3.2.1.4) and to select features in classification

of subsets (using the equations as shown in section 3.3).

The general outline of the procedure in section 3.5 was followed during the experiment

on the data cleansing/preprocessing approach.

221

7.2.2 Research question 2:

 Can a mathematical expression and subsequent algorithm be formulated based on the

hunting behavior of the kestrel to discover association rules on frequently changed

patterns with numeric value and time dimensions?

Response

A mathematical model can be formulated on the selected hunting behavior of the kestrel.

The detailed formulation is shown in section 3.2.1 of this thesis.

The general outline in section 3.5 was followed to model an algorithm for the discovery

of association rules on frequently changed patterns, which include numeric value and time

dimensions, as indicated in phase two of the methodological framework in Table 3.1.

7.2.3 Research question 3:

Based on the frequently changed rules, can a bio-inspired algorithm for the visualization

of these association mining results be modelled?

Response

A mathematical model can be formulated on the behavior of the dung beetle for

visualization of frequently changed items with numeric value, with less computational

time in a two-dimensional graph. The detailed formulation is shown in section 3.4 of this

thesis. Additionally, the general outline in section 3.5 was followed to model an algorithm

for KSA and DBA, as indicated in the methodological framework in Table 3.1.

7.2.4 Research question 4:

Can a model and algorithmic structure be empirically validated on a benchmark dataset

and evaluated against comparative meta-heuristic algorithms?

Response

222

The model and algorithmic structure can be empirically validated on a benchmark dataset

and be evaluated against comparative meta-heuristic algorithms (shown in Table 3.1). The

detailed validation and evaluation were shown in Chapters 4, 5 and 6 of this thesis.

7.3 Discussion of experimental results

The experimental results are discussed below in line with the research questions and

methodological framework (see Table 3.1). The experimental results are used to evaluate

the phase-based methodological framework.

7.3.1 Discussion of experimental results on extrapolating missing values

The proposed KSA for extrapolating missing values, when tested on a synthetic dataset

with different dimensions/scales with multiple missing values at random, demonstrated

uniqueness in terms of minimal value over the comparative meta-heuristic algorithms,

namely BAT, WSA-MP and Firefly. The WSA-MP had the best minimum value in all six

dimensions/scales of the dataset that was used, while the proposed KSA outperformed

both BAT and Firefly in all six dimensions/scales of the dataset. The concept of parameter

tuning, which has similarly been used in the maximum likelihood method for estimating

missing values, helps in selecting a set of parameters or values that provides the best value

to estimate missing values at random. In other words, parameter tuning provides an

approximate parameter that becomes closer to the missing value (Zhao, MacKinnon and

Gallup 2005) when there is very limited knowledge about the optimal solution (Luke

2015). Thus, the results from the proposed KSA point to the fact that there was limited

knowledge on the nature of the proposed algorithm to adapt to different search problem

domains. Since the proposed KSA could not perform better than WSA-MP, the idea of

parameter tuning was applied to fine-tune the output results in subsequent phases of the

proposed model.

Although the proposed KSA could not perform as expected for data imputation, a study

223

was further conducted to examine the nature of the major function calls and built-in

function calls in each algorithm. The concept of profiling (Sorensen et al. 2012) (that is, a

function in MATLAB toolbox) was applied to extract the time of major function calls and

inbuilt function calls for further tests. A statistical test was conducted on the major

function calls and built-in function calls. The reason for this was to statistically test

whether time of calling a function could change the performance of each function call in

each algorithm. In order to achieve this, the Wilcoxon test was conducted to help rank

each meta-heuristic algorithm, namely KSA, BAT, WSA-MP and Firefly, in terms of the

major function calls and built-in function calls.

The results ranked WSA-MP first, followed by KSA, which was ranked second in terms

of the built-in function calls. In terms of the major function calls only, the results ranked

all meta-heuristic algorithms equally. The results of the Wilcoxon test showed that the

total time to call a function in each algorithm did not change the performance of major

functions. In order words, total time could not result in significant change in performance

of inbuilt function calls in each meta-heuristic algorithm. A further statistical test was

conducted using the Friedman test to check which meta-heuristic algorithm could be used

as a way to control any possible error if algorithms’ results were compared to each other.

The results showed that KSA is the best algorithm to use as a control algorithm for

multiple comparison of output results. This suggests that the combined results control

(offset) the results from each meta-heuristic algorithm.

The significance of extrapolating a missing value approach to the big data analytics

framework is that it improves on the quality of data analysis results (Rahm and Do 2000;

Elmagarmid et al. 2007). Narang’s (2013) description of missing data is, however,

subjective in the sense that the user can best explain why data was missing. Nonetheless,

this approach of attaching the missing value to reasons best known to the user (which can

be either deliberate or not deliberate) can be minimized by using the proposed KSA for

extrapolating missing values at random in big data. Big data is characterized by large

https://www.google.co.za/search?biw=1517&bih=692&tbm=bks&q=inauthor:%22Rishi+K.+Narang%22&sa=X&ved=0ahUKEwiq7uC38__NAhXHCcAKHcn4CtkQ9AgIGzAA

224

volume; it is likely that since there are many users in big data environments, there could

be many missing data values that can best be explained by the exponential number of users

in the real world, which can be minimized using the proposed KSA.

7.3.2 Discussion of experimental results on duplicate text detection

The Naumann’s (2013) framework provides a simplified process namely identity,

similarity measure, algorithm used and evaluation. The study focuses on improving

algorithm used and similarity measure. Two algorithms were evaluated and improved for

duplicate word detection. The significance of duplicate detection of words/text is that it

avoids inconsistency (that is, when data items referring to the same object contradict each

other) in datasets, which might affect the quality of the analysis results (Elmagarmid et al.

2007). The inconsistency may be further exacerbated when the volume of data is very

large. Thus, the unique feature of the enhanced algorithms (that is, the Smith-Waterman

and Jaro-Winkler algorithms) is that, by applying the transitive closure and property of

equality (symmetry property) to the algorithms, large volumes of data with duplicate

words/text in a dataset can be identified, while mismatched (misspelt) words can be

detected.

The experimental results showed that the Smith-Waterman algorithm guarantees accurate

pairwise word comparison without missing any words in the dataset, while the Jaro-

Winkler algorithm can miss words/text, leading to information loss. The ability of the

Smith-Waterman algorithm to avoid missing words is considered as the basis for it to have

been used to develop the BLAST algorithm (Altschul et al. 1990). However, the challenge

of the BLAST algorithm is that it could not guarantee accurate results on duplicate

words/text (Shpaer et al. 1996). The advantage of the Smith-Waterman algorithm is that

when there are no similar words, no matching is done (Altschul et al. 1990).

In the experiment conducted using the heart disease dataset, the enhanced Smith-

Waterman algorithm used a time of 0.055746s, while the enhanced Jaro-Winkler

225

algorithm used a time of 0.140284 seconds to search for duplicate words/text. Thus, the

enhanced Smith-Waterman algorithm has the lowest computational time to search for

duplicate words. Altschul et al. (1990) indicate that the challenge with the Smith-

Waterman algorithm is the high computational time in searching for duplicate words. This

thesis provided an enhanced algorithm that takes into consideration the current

dispensation of large volumes of data by using the property of transitive closure and the

symmetry property of equality, which were applied to reduce the computational time for

detection of duplicate words/text. The enhanced Smith-Waterman algorithm also

guarantees accurate results irrespective of how large the dataset is. The results on the

Smith-Waterman algorithm are significant for the big data analytics framework because

when the velocity (speed of data) of processing information matters, in terms of less time

to search for duplicate words/text without losing any information being processed, then

the enhanced Smith-Waterman algorithm can use less computational time and guarantee

more accurate results than the enhanced Jaro-Winkler algorithm.

7.3.3 Discussion of experimental results on feature selection

The proposed algorithm was evaluated against comparative bio-inspired algorithms,

namely PSO, ACO, WSA-MP and BAT. The findings (shown in section 4.4) indicate that

KSA produces a minimum learning rate in five out of nine datasets. Meanwhile, KSA

produces the highest classification accuracy in four out of nine datasets. In terms of

comparison of classification accuracy using the Wilcoxon signed-rank test, the findings

of the test statistics suggest that there are no statistically significant differences between

the comparative algorithms and the proposed algorithm. This suggests that KSA could be

used as an alternative approach to feature selection for a classification problem. Also, it

suggests that the initial parameters that were chosen in KSA guarantee good solutions that

are comparable to other meta-heuristic search methods on feature selection. Aside from

the choice of parameters, it also indicates that the random encircling, half-life of decay,

frequency of bobbing and imitative behavior of kestrels guarantees good results in high

volumes of datasets. In all the findings on feature selection, KSA produced the best

226

classification accuracy (in terms of fewer errors) and the least number of features in a

subset. This confirms the statement that for an algorithm to be considered the best, it

should have higher classification accuracy and a smaller number of features in a subset

(Mafarja and Mirjalili 2018).

In summary, the proposed algorithm (KSA) was compared to other bio-inspired

algorithms such as the wolf, bat and Firefly algorithms. The results of the comparison

showed that the KSA demonstrated potential uniqueness in its search for optimal values.

The uniqueness that was demonstrated can be attributed to parameters that were applied

in fine-tuning the mathematical formulation in order to obtain optimal results. The results

from KSA are relevant because when presented with large volumes of data, KSA can

extrapolate optimal results on numerical data that are considered missing. Statistical tests

(Wilcoxon signed-rank test) conducted on the test function calls in respect of time showed

that total time to call functions in the algorithms to extrapolate missing values could not

result in significant changes in performance. The performance results are significant since

algorithms written for big data analytics frameworks should not be constrained by time in

executing a function to extrapolate missing values when speed of extrapolation (that is,

the velocity characteristic of the big data analytics framework) is necessary. Thus, the

proposed KSA would be suitable for handling velocity in big data analytic frameworks.

Longbottom and Bamforth (2013) relate velocity to how fast incoming data is processed

by algorithms and how quickly results are processed by algorithms. In this context, the

results from function calls indicated that KSA could be applied since the algorithm is not

constrained by time.

In order to test the accuracy of results from the proposed algorithm (that is, the veracity

aspect of big data analytics framework or quality in terms of accuracy (Garcia, Luengo

and Herrera 2015)), multiple comparison (that is, the Friedman test rank) was performed

with other bio-inspired algorithms (Wolf, Bat and Firefly algorithms). The reason for

multiple comparison was to find an algorithm that can be used to control the error rate

227

from the comparative algorithms. The results of the Friedman test ranked KSA as the best

control algorithm.

The experimental approach, through the use of mathematical formulations, was applied to

detect duplicate text in data. A health-related dataset with multiples of duplicate text data

was used to test the computational model for duplicate detection. Two duplicate detection

techniques, namely the Jaro-Winkler algorithm and the Smith-Waterman algorithm were

applied. In order to adapt these two algorithms to characteristics of big data analytics

frameworks (such as the volume characteristic), the researcher wrote a program in

MATLAB to implement the transitive closure and property of equality (reflexive

property) to detect duplicate words from a data source. The experimental results showed

that while the enhanced Smith-Waterman algorithm is accurate at pairwise word

comparison without missing any words/text, the enhanced Jaro-Winkler algorithm could

not perform pairwise word comparison on the nth-1 instance (row) if the total number of

instances (row) was an odd number, resulting in some data loss. The significance of these

results is that the enhanced Smith-Waterman algorithm could perform accurate pairwise

comparison when there is a large data volume with multiple duplicate words.

The experimental approach, through the use of mathematical formulations, was also

applied to select best features and reduce the large volumes of data without losing relevant

data. The proposed algorithm guaranteed optimal results when tested on high-dimensional

datasets (bioinformatics dataset).

The researcher developed a data preprocessing model that could be adopted by big data

analytics frameworks to extrapolate missing values, detect duplicate words/text and select

relevant features when large volume is needed.

228

7.3.4 Discussion of experimental results on mining association rules

Vreeken and Tatti (2014) indicate that the use of frequency of items is not a very good

measure of interestingness because it is subjective in the sense that it relies on users’

evaluation of each pattern to disclose interestingness. This is problematic since a user has

to search exponentially many potentially interesting patterns within predefined criteria

and report on those patterns (Vreeken and Tatti 2014). Huynh (2010) indicates that action

can change with time, thus making it tedious to search through large volumes of data. The

challenge with the current frequency of items framework is that the time in which an action

has taken place was not considered.

This thesis revealed that time can be included as part of the frequency of items framework

so as to make provision for changing time dimensions. Although time may change, the

user should be allowed to focus his/her attention on a particular period of interest by pre-

defining the time interval criteria. After the criteria are defined, the proposed

computational model searches for patterns within a close time dimension. Interestingly,

from the experiment using the stock market dataset, the proposed KSA discovered patterns

with a close time dimension of 0.058258 and 0.0087442. In this regard, Kaytoue,

Kuznetsov and Napoli (2011) indicate that an item is close if it has the smallest time

dimension for a set of items (Kaytoue et al. 2011) to occur together. Thus, the best time

dimension of 0.0087442 produced an interesting pattern (X1, X3 → X10 from the stock

market dataset), which represents a sequence of actions (where X1, X3 and X10 are

anonymous stock items).

In respect of time dimensions from other comparative meta-heuristic algorithms such as

PSO (close time of 0.49668), ACO (close time of 0.49521), BAT (close time of 0.49833)

and WSA-MP (close time of 0.49844), it is observed that all four meta-heuristic

algorithms have time dimensions that were higher compared to the time dimension of the

proposed KSA within a time interval of 0 to 0.7. Thus, time dimensions of the four meta-

heuristic algorithms were not less than the time dimension from the proposed KSA.

229

Further analysis was conducted using the mean of time of each algorithm (as shown in

section 5.4). The results of the experimental analysis showed that KSA had a mean time

interval of 0.3, whereas the comparative algorithms, namely ACO, PSO, BAT and WSA-

MP had mean time intervals of 0.4, 0.4, 0.4 and 0.5 respectively. Based on the mean

MCPconf value and mean of time interval, KSA analyzed data on frequently changed

items in the shortest possible time interval.

Tseng, Liang and Chu (2006) propose that the use of occurrence of items to measure

pattern interestingness is insufficient in selecting actionable sequences for an organization

(see also Yin et al. 2013). The experimental results suggested that including the time

dimension provides sufficient measure to identify sequences of action that a user could

take. These sequences of action are represented in terms of the sequence of rules that

represent a pattern.

Additionally, the optimal value that was generated from the numeric value of the meta-

heuristic algorithms, namely the proposed KSA (optimal value of 1.4823e-14), ACO

(optimal value of 1.8168e-13), PSO (optimal value of 0.048569), BAT (optimal value of

3.0109e-07) and WSA-MP (optimal value of 6.7486e-07), showed that the proposed KSA

had the best optimal value (in terms of minimum MCPconf) with 177 rules (complex

rules) generated. Moreover, PSO and BAT both generated four complex rules and one

simple rule, while WSA-MP and ACO both generated 100 complex rules. The minimum

MCP support value that was computed from the proposed KSA using the stock market

dataset accounted for the number of rules that were generated. Thus, the lower the

MCPsupport value, the higher the possible chance to generate more rules.

Based on the experimental results on the mean time dimension, mean MCPconf and

optimal value, it could be concluded that KSA had the best minimum value of 1.4823e-

14 in which an average of 95.56% of rules were extracted at a mean of time of 0.31

seconds, which was the best among the comparative algorithms.

230

In summary, an experimental approach was adopted through the use of mathematical

formulations to depict the behavior of kestrels. The mathematical expressions were

translated into an algorithmic structure and tested on actual datasets. During the testing,

two processes were followed: firstly, KSA was applied to automatically find the best

minimum support threshold value from the numeric aspect of the dataset; and secondly,

association rules were mined within the time dimension. The mathematical model was

adopted from Railean et al. (2013) to address the aspect of time dimension.

The proposed computational model was tested on an actual dataset characterized as having

volume and velocity, that is, stock market data. The results indicated that KSA had the

optimal minimum value (minimum support threshold) compared to other meta-heuristic

algorithms, namely PSO, ACO, BAT and WSA-MP. The optimal minimum value obtained

with KSA is attributed to the fine-tuned parameters that were applied and the use of

simplified basic rules applied to discover interesting patterns in the dataset. Additionally,

the proposed algorithm showed a short time dimension of 0.008 among the comparative

algorithms. Kaytoue et al. (2011) indicate that an item is close if it has the smallest time

dimension for a set of items to occur together. The significance is that if the time interval

is key to determining the best stock market items that had frequently changed, then KSA

should be the preferred algorithm over ACO, PSO, BAT and WSA-MP. In view of the

inclusion of the time dimension and numeric value aspects to frequency of item

frameworks for mining association rules, this study has filled the gap identified in

literature on the occurrence framework.

7.3.5 Discussion of experimental results on data visualization

Moere et al. (2006) note that extensive computational time is required for the use of ants

to perform continuously pairwise localized negotiation of colors, that is, swapping the

position of one ant with another ant, which relates to swapping one color with another in

a single cluster and shape size scale negotiation. Keim et al. (1994) indicate that there is

231

a lack of quantitative evidence of measuring the effectiveness of data visualization

techniques. The quantitative measure uses a dataset and correlation coefficient of two

dimensions, that is, the mean and variance of the dimensions, size and shape of clusters.

Marghescu (2008) looks at the effectiveness of visualization techniques and observes that

visualization is effective when it enables the user to read, understand and interpret the

visual display easily, accurately, quickly, et cetera. Thus, effectiveness depends not only

on the graphical design but also on the users’ visual capabilities (Marghescu 2008). The

limitation of these approaches is that the evaluation is based on only the users’ experience

and use of the visualization techniques. Card et al. (1999) indicate that effectiveness is the

capability of a human to view a graphical display and interpret the results faster and

convey distinctions in a display with fewer errors.

Based on the research by Moere et al. (2006), Keim et al. (1994) and Marghescu (2008),

the present study used a different approach that is based on the optimal value from the

visualization techniques (namely DBA, the bee algorithm and ACO for data visualization),

which provides a quantitative measure on the quality (in terms of minimal value) of

visualization technique. Additionally, effectiveness of visualization techniques is

measured in terms of required time to complete a visualization task, in line with the

statements of Dull and Tegarden (1999) and Risden and Czerwinski (2000). Additionally,

the reason for proposing the dung beetle is its ability to use minimal computation time for

navigation and orientation so as to help draw a visual pattern on a data grid. Thus, the

computational time and optimal value from each meta-heuristic algorithm was used as

two parameters to evaluate the visualization techniques (the proposed DBA, the bee

algorithm and ACO for data visualization). The basis for using these two parameters is

that as rules frequently change, visualization algorithms should use less time to compute

the near-optimal results and display the outcome to users. The results after the

implementation of the proposed DBA showed that DBA is effective at visualizing data

mining results with less computational time, while the quality of near-optimal

results/solutions could be improved. The significance of the results on effectiveness for

232

big data analytics frameworks is that when limited computation time is required to

visualize numeric data from large volumes of datasets, then the proposed DBA could be

adopted in big data management when time taken to view volumes of data is important.

In summary, the experimental approach used a mathematical formulation to depict the

behavior of dung beetles. The mathematical expression was translated into an algorithmic

structure, and this helped empirically validate how the algorithm was applied to visualize

(using two-dimensional graphs) numeric value results from the data mining phase of the

proposed methodological framework. Additionally, aspects of the comparative meta-

heuristic algorithms (bee algorithm and ACO for data visualization) were enhanced by the

researcher to enable intake of the actual test dataset. The computational time and optimal

results that were obtained were the two parameters that were used to help evaluate the

effectiveness and quality of the data visualization techniques. The analysis results showed

that DBA was effective at visualizing data mining results, while the quality of the optimum

solution could be improved. The significance of the results on effectiveness for big data

analytics frameworks is that when limited computation time is required to visualize

numeric values in large volumes of datasets, DBA could be applied. Thus, DBA could be

applied to improve on computational time required to view results in visual formats (that

is, two-dimensional).

7.4 Challenges of the proposed model

The key challenge observed during the experiment was the quality of results on data

visualization from DBA, and this can be enhanced and tested on different real-world

problems to improve on the quality of results. In addition, the algorithm could be improved

to help with the visualization of data in three-dimensional format.

Although the datasets used during the experiment were considered to have characteristics

of big data (such as volume, velocity and value), it is possible that when the proposed

computational model on feature subset selection is tested on high volumes (such as

233

terabytes) of data, the computational performance may be one of the key challenges due to

the reliance on a slow machine learning technique and complexity of design.

Although the various approach/algorithms were executed and evaluated at each phase of

the methodological framework, the entire phase-based framework that is proposed was not

executed as a whole package on a single dataset that has duplicate text, missing values,

different features etc. which would test each algorithm in every phase. In view of this,

evaluating the efficiency of the entire phase-based framework and comparing with other

frameworks is a challenge because of dissimilarity of framework.

7.5 Conclusion and future work

This section presents the conclusion in term of the advantages of the proposed model,

summary of contributions, success of the study and future work. The sub-section starts

with the conclusion as follows:

7.5.1 Conclusion

The thesis proposed a computational model to address the challenge of frequently changed

items with numeric and time dimensions through a three-phase approach. This approached

applied largely a bio-inspired algorithm to address the gaps in literature on the occurrence

framework. The novel aspects of the thesis include the basic mathematical formulation on

the behavior of kestrels, the enhancement of the Smith-Waterman and Jaro-Winkler

algorithms for big data frameworks, and the use of dung beetle behavior for data

visualization of frequently changed patterns.

The experimental test conducted to validate the computational model indicates that KSA

showed promising results that can be implemented in big data frameworks. Again, the

minimal computation time of DBA also showed promising results for two-dimensional

visualization of data (that is, numeric values) in big data frameworks.

234

In view of the largely bio-inspired nature of this thesis, the proposed model took into

consideration the disadvantages of other bio-inspired algorithms (shown in Appendix 2)

to arrive at the following conclusions on the advantages of the proposed model (KSA):

 the ability to self-adapt parameter values during random encircling, which was a

challenge with WSA (as indicated in Appendix 2)

 the ability to move or switch the search space from exploration to exploitation

within the right time or user-specified time, which was a challenge with BAT (as

indicated in Appendix 2)

 the ability to find both local and global optima because of the exploration and

exploitation behavior, which hitherto was a challenge with the Firefly algorithm

(as indicated in Appendix 2)

 the ease and simplicity of implementation.

These advantages make the proposed algorithm different from other meta-heuristic

algorithms considered in this study. Additionally, the mathematical formulation of the

concept of half-life of substances, hitherto an idea in other science disciplines such as

chemistry, makes the proposed KSA algorithm different from other meta-heuristic

algorithms. The advantage of half-life is that it gives a lifespan for data items and adds

interestingness to any data item.

Summary of contributions

 The researcher developed a bio-inspired algorithm that outperformed the best

meta-heuristic algorithms considered in this study for missing value extrapolation.

 The researcher developed an enhanced algorithm that detected duplicate text from

large data using the Smith-Waterman and Jaro-Winkler algorithms. The property

of equality was applied to enhance these algorithms to enable more accurate

duplicate detection from large datasets.

 The researcher developed a bio-inspired algorithm for a learning parameter in

selecting relevant features for deep learning networks. This learning parameter is

235

significant in reducing the amount of time needed to make the network more

feasible.

 The researcher developed a bio-inspired algorithm (KSA) for mining frequently

changed patterns with a time and numeric dimension. This algorithm has

adaptability for varying exploration and exploitation of pattern space.

 The researcher developed a bio-inspired algorithm for data visualization (DBA) in

which movement and direction are self-regulated to have either exact or

approximate paths that offer a full path integration, in contrast to PSO (see

Appendix 2). This is a light-weight, inexpensive computational visualization

approach.

 The uncooperative behavior of kestrels, which is part of swarm intelligence, was

overcome by focusing on kestrels’ learning through successful imitative behavior.

This learning was mathematically formulated and implemented to provide the

other advantage of skill rate and to improve accuracy of data visualization.

Success of the study

 The mathematical formulations in section 3.3, the proposed algorithms (KSA and

DBA) and the comparative algorithms were successfully implemented in

MATLAB and tested on benchmarked datasets, namely a bioinformatics dataset

and a stock market dataset.

7.5.2 Future work

The future work on KSA for feature selection in classification is to develop new versions

of KSA with modifications and enhancements of code. Similarly, aspects of the code of

DBA for visualization could be modified and enhanced, and applied to different problem

dimensions of data analysis for possible publication in academic journals.

Furthermore, based on the successful implementation of the proposed computational

model on data mining, it is recommended that the proposed model (KSA) should be tested

236

on parallel processing environments for the discovery of frequently changed patterns.

Future work on KSA also requires rigorous comparison of the algorithm using the

latest/state-of-the-art versions of other techniques on data mining.

Future work also requires the comparison of different frameworks (that is data cleansing,

data mining and visualization) to identify the efficient framework for big data

environment. Although, efficiency of framework is significant, it is not the focus of this

thesis, and this could be explored provided that the proposed phases of the methodological

framework is similar enough to others for an adequate comparison. Additionally, a

possible benchmark with a threshold that shows the efficiency of the proposed phase-

based framework compared with other existing frameworks is recommended, once similar

enough frameworks emerge. Moreover, most big data analytics framework uses Extract

Transform Load (ETL) which encompassed only part of the proposed framework, notably

the data cleansing part. Other parts of the proposed framework, such as data mining, and

visualization could not be part of frameworks and hence, they can not be compared with

each other. Thus, in future work, when similar frameworks emerges, they can be

compared. In view of this, evaluating the efficiency of the entire phase-based framework

with others is outside the scope of this thesis.

Future work also requires the combination of KSA with the Smith-Waterman algorithm

for duplicate text detection. The reason is that the Smith-Waterman algorithm is able to

find duplicate text without losing any information, whereas KSA is able to find the best

parameters in any given search problem space and is easy to implement. Additionally,

future work requires the application of Naumann’s (2013) framework to identify duplicate

text from multiple data sources.

Future work also requires the application of KSA to emerging research fields such as fog

computing to handle data preprocessing and analysis. Basically, fog computing

framework is an intermediary layer that allow sensor-based devices to connect with cloud

237

computing environment. The objective of fog computing framework is to enable quick

processing of raw data before being store on cloud environment. The proposed KSA could

be explored on fog computing framework for data processing of sensor-based devices. In

this regard, emerging frameworks on data processing and analysis could consider the use

of KSA in the design of their framework.

238

References

Aamodt, T. 2015. Predicting stock markets with neural networks: A comparative

study. Master’s dissertation. University of Oslo. Available:

https://www.duo.uio.no/bitstream/handle/10852/44765/aamodt-

master.pdf?sequence=7 (Accessed 8 March 2017).

Abd-Alsabour, N., Randall, M. and Lewis, A. 2012. Investigating the effect of

fixing the subset length using ant colony optimization algorithms for feature

subset selection problems. In: 13th International Conference on Parallel and

Distributed Computing, Applications and Technologies. IEEE. DOI:

10.1109/PDCAT.2012.84 (Accessed 5 September 2018).

Abdel-Hamid, O., Mohamed, A.-R., Jiang, H., Deng, L., Penn, G. and Yu, D.

2014. Convolutional neural networks for speech recognition. IEEE/ACM

Transactions on Audio, Speech and Language Processing, 22(10): 1533–1545.

DOI: 10.1109/TASLP.2014.2339736 (Accessed 5 September 2018).

Abdella, M. and Marwala, T. 2006. The use of genetic algorithms and neural

networks to approximate missing data in database. Computing and Informatics,

24: 77–589. Available:

http://www.cai.sk/ojs/index.php/cai/article/viewFile/401/320 (Accessed 8 May

2018).

Abdullah, A., Deris, S., Anwar, S. and Arjunan, S. N. V. 2013. An evolutionary

firefly algorithm for the estimation of nonlinear biological model parameters.

Available: https://doi.org/10.1371/journal.pone.0056310 (Accessed 8 May 2018).

Aboudi, N. E. and Benhlima, L. 2016. Review on wrapper feature selection

approaches. Available: DOI: 10.1109/ICEMIS.2016.7745366 (Accessed 8 May

2018).

https://www.duo.uio.no/bitstream/handle/10852/44765/aamodt-master.pdf?sequence=7
https://www.duo.uio.no/bitstream/handle/10852/44765/aamodt-master.pdf?sequence=7
https://doi.org/10.1109/PDCAT.2012.84
https://doi.org/10.1109/TASLP.2014.2339736
http://www.cai.sk/ojs/index.php/cai/article/viewFile/401/320
https://doi.org/10.1371/journal.pone.0056310
https://doi.org/10.1109/ICEMIS.2016.7745366

239

Acock, A. C. 2005. Working with missing values. Journal of Marriage and

Family, 67: 1012–1028. Available:

http://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/ReferencesPap

ers.aspx?ReferenceID=1719773 (Accessed 8 May 2018).

Adamo, J-M. 2001. Data mining for association rules and sequential patterns.

New York: Springer-Verlag. Available: DOI: 10.1007/978-1-4613-0085-4

(Accessed 5 February 2017).

Agbehadji, I. E. 2011. Solution to the travel salesman problem, using omicron

genetic algorithm. Case study: tour of national health insurance schemes in the

Brong Ahafo region of Ghana. M.S.c (Industrial Mathematics). Kwame

Nkrumah University of Science and Technology. Available: DOI:

10.13140/RG.2.1.2322.7281 (Accessed 4 February 2017).

Agbehadji, I. E., Millham, R. and Fong, S. 2016. Wolf search algorithm for

numeric association rule mining. In: 2016 IEEE International Conference on

Cloud Computing and Big Data Analysis (ICCCBDA 2016), Chengdu, China.

146-151. DOI: 10.1109/ICCCBDA.2016.7529549 (Accessed 4 March 2018).

Agbehadji, I. E., Millham, R., Fong, S. J. and Yang, H. 2018. Bio-inspired

computational approach to missing value estimation. Mathematical Problems in

Engineering-Hindawi, 2018: 16.b Available:

https://doi.org/10.1155/2018/9457821 (Accessed: 19 February 2018).

Agbehadji, I. E., Millham, R., Fong, S. J. and Yang, H. 2018a. The comparative

analysis of Smith-Waterman algorithm with Jaro-Winkler algorithm for the

detection of duplicate health related records. In: Proceedings of International

Conference on Advances in Big Data, Computing and Data Communication

Systems, IEEE. 1-10. Available:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8465458

http://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/ReferencesPapers.aspx?ReferenceID=1719773
http://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/ReferencesPapers.aspx?ReferenceID=1719773
https://doi.org/10.1109/ICCCBDA.2016.7529549
https://doi.org/10.1155/2018/9457821
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8465458

240

Agbehadji, I. E., Millham, R., Fong, S. J. and Yang, H. 2018b. Kestrel-based

Search Algorithm (KSA) for parameter tuning onto Long Short Term Memory

(LSTM) Network for feature selection in classification of high-dimensional

bioinformatics datasets. Federation Conference of Computer Science and

Information systems (FedCSIS). 15:15-20. https://annals-

csis.org/proceedings/2018/drp/pdf/52.pdf

Aggarwal, C. C. and Han, J. 2014. Frequent pattern mining. Springer Available:

DOI: 10.1007/978-3-319-07821-2_3 (Accessed 10 August 2017).

Aggarwal, S. and. Rani, B. 2013. Optimization of association rule mining

process using apriori and ant colony optimization algorithm. International

Journal of Current Engineering and Technology, 3 (2): 623. Available:

http://inpressco.com/wp-content/uploads/2013/06/Paper73620-623.pdf

(Accessed 10 August 2017).

Agrawal. R. and Srikant, R. 1995. Mining sequential patterns. In: Proceedings of

International Conference on Data Engineering (ICDE ’95). Department of

Computer Science, University of Wisconsin, Madison. pp. 3–14. Available:

https://pdfs.semanticscholar.org/d6a0/e0b04a020ac6422b98b8e63027a6178060f

d.pdf (Accessed 10 August 2018).

Ahmed, H. and Glasgow, J. 2012. Swarm intelligence: Concepts, models and

applications. Technical Report 2012-585. School of Computing, Queen’s

University, Kingston, Ontario, Canada. pp. 1-51. Available:

https://pdfs.semanticscholar.org/116b/67cf2ad2c948533e6890a9fccc5543dded89.

pdf (Accessed 10/8/2018).

Ákos, Z., Nagy, M., Leven, S. and Vicsek, T. 2010. Thermal soaring flight of

birds and unmanned aerial vehicle. Bioinspiration and Biomimetics. 5: 12.

Available: https://arxiv.org/ftp/arxiv/papers/1012/1012.0434.pdf (Accessed 10

https://annals-csis.org/proceedings/2018/drp/pdf/52.pdf
https://annals-csis.org/proceedings/2018/drp/pdf/52.pdf
http://inpressco.com/wp-content/uploads/2013/06/Paper73620-623.pdf
https://pdfs.semanticscholar.org/d6a0/e0b04a020ac6422b98b8e63027a6178060fd.pdf
https://pdfs.semanticscholar.org/d6a0/e0b04a020ac6422b98b8e63027a6178060fd.pdf
https://pdfs.semanticscholar.org/116b/67cf2ad2c948533e6890a9fccc5543dded89.pdf
https://pdfs.semanticscholar.org/116b/67cf2ad2c948533e6890a9fccc5543dded89.pdf
https://arxiv.org/ftp/arxiv/papers/1012/1012.0434.pdf

241

August 2018).

Al-Ani, A. 2007. Ant colony optimization for feature subset selection. World

Academy of Science, Engineering and Technology International Journal of

Computer, Electrical, Automation, Control and Information Engineering, 4(1): 1–

4. Available:

https://pdfs.semanticscholar.org/bb34/e4ba7cc9a90bb937c13daff76cdfc5b01ee4.

pdf (Accessed 10 August 2018).

Al-Ani, A., Alsukker, A. and Khushaba, R. N. 2012. Feature subset selection

using differential evolution and a wheel based search strategy. Swarm and

Evolutionary Computation, 9: 15–26. Available:

http://dx.doi.org/10.1016/j.swevo.2012.09.003 (Accessed 10 August 2018).

Alatas, B. and Akin, E. 2006. An efficient genetic algorithm for automated

mining of both positive and negative quantitative association rules. Soft

Computing, 10(3): 230–237. Available:

http://sci2s.ugr.es/keel/pdf/algorithm/articulo/2006%20-%20SC%20-%20Alatas

%20-%20An%20efficient%20genetic%20algorithm%20for%20automated%20m

ining%20of%20both%20positive.pdf (Accessed 10 August 2018).

Alatas, B., Akin E. and Karci A. 2007. Modenar: Multiobjective differential

evolution algorithm for mining numeric association rules. Applied Soft

Computing, 8(1): 646–656. Available: DOI: 10.1016/j.asoc.2007.05.003

(Accessed 23 May 2017).

Alatas, G. and Akin, E. 2008. Chaos rough particle swarm optimization and its

applications. Information Sciences, 163: 194–203. Available:

https://pdfs.semanticscholar.org/0c56/34c1242871cda43c66adda614d625de6c8fa

.pdf?_ga=2.114524743.1505521392.1536153887-1317843931.1533388075

(Accessed 5 September 2018).

https://pdfs.semanticscholar.org/bb34/e4ba7cc9a90bb937c13daff76cdfc5b01ee4.pdf
https://pdfs.semanticscholar.org/bb34/e4ba7cc9a90bb937c13daff76cdfc5b01ee4.pdf
http://dx.doi.org/10.1016/j.swevo.2012.09.003
https://pdfs.semanticscholar.org/0c56/34c1242871cda43c66adda614d625de6c8fa.pdf?_ga=2.114524743.1505521392.1536153887-1317843931.1533388075
https://pdfs.semanticscholar.org/0c56/34c1242871cda43c66adda614d625de6c8fa.pdf?_ga=2.114524743.1505521392.1536153887-1317843931.1533388075

242

Allison, P. D. 2012. Handling missing data by maximum likelihood. Haverford,

PA. Available: https://statisticalhorizons.com/wp-

content/uploads/MissingDataByML.pdf (Accessed 23 May 2017).

Almuallim, H. and Dietterich, T. G. 1994. Learning boolean concepts in the

presence of many irrelevant features. Artificial Intelligence. 69(1–2): 279–305.

Available:

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=1D673AA2C834BDB1

8469741C45A3E2AC?doi=10.1.1.47.5088&rep=rep1&type=pdf (Accessed 23

May 2017).

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. 1990. Basic

local alignment search tool. Journal of Molecular Biology, 215(3): 403–410.

Available: https://publications.mpi-cbg.de/Altschul_1990_5424.pdf (Accessed

10 July 2017).

Andel, D. and Wehner, R. 2004. Path integration in desert ants, cataglyphis: How

to make a homing ant run away from home. Proceeding Biological Science. 271

(1547): 1485–1489. Available: DOI: 10.1098/rspb.2004.2749 (Accessed 10

August 2018).

Attaway, S. 2009. Matlab: A practical introduction to programming and problem

solving. Boston: Elsevier. Available:

http://www.dm.unibo.it/~piccolom/didattica/num_met/SAmatlab_09.pdf

(Accessed 2 February 2018).

Ayres, J., Gehrke, J., Yiu, T. and Flannick, J. 2002. Sequential pattern mining

using a bitmap representation. In: Proceedings of ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (SIGKDD’ 02). 429–435.

Available: http://delivery.acm.org/10.1145/780000/775109/p429-

ayres.pdf?ip=196.21.61.167&id=775109&acc=ACTIVE%20SERVICE&key=64

https://statisticalhorizons.com/wp-content/uploads/MissingDataByML.pdf
https://statisticalhorizons.com/wp-content/uploads/MissingDataByML.pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=1D673AA2C834BDB18469741C45A3E2AC?doi=10.1.1.47.5088&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=1D673AA2C834BDB18469741C45A3E2AC?doi=10.1.1.47.5088&rep=rep1&type=pdf
https://publications.mpi-cbg.de/Altschul_1990_5424.pdf
https://dx.doi.org/10.1098%2Frspb.2004.2749

243

6D7B17E601A2A5%2E20146AEDC3D229CC%2E4D4702B0C3E38B35%2E4

D4702B0C3E38B35&__acm__=1535526039_c428a19ef9cbd643e4eb175b7afc4

1a2 (Accessed 2 February 2018).

Bai, Q. 2010. Analysis of particle swarm optimization algorithm. Computer and

Information Science, 3(1): 1–5. Available:

https://pdfs.semanticscholar.org/6d00/7fd5f734cb4c6c9457e22f46a58be5edb662.

pdf (Accessed 20 May 2018).

Bandura, A. 1971. Social learning theory. New York: General Learning Press.

Available: www.asecib.ase.ro/mps/Bandura_SocialLearningTheory.pd (Accessed

10 June 2018).

Banupriya, S. and Vijayadeepa, V. 2015. Data flow of motivated data using

heterogeneous method for complexity reduction. International Journal of

Innovative Research in Computer and Communication Engineering, 3(9): 1–7.

Available: http://www.ijircce.com/upload/2015/september/110_DATA.pdf

(Accessed 10 June 2018).

Bard, G. V. 2007. Spelling-error tolerant, order-independent pass-phrases via the

Damerau–Levenshtein string-edit distance metric. In: Proceedings of the Fifth

Australasian Symposium on ACSW Frontiers. Ballarat, Australia, 30 January – 2

February 2007, Conferences in Research and Practice in Information Technology,

68. Darlinghurst, Australia: Australian Computer Society, 117–124. Available:

https://dl.acm.org/citation.cfm?id=1274545 (Accessed 10 June 2018).

Barto, A. G. and Sutton, R. 1997. Introduction to reinforcement learning.

Cambridge, Massachusetts: The MIT Press. Available:

http://incompleteideas.net/book/bookdraft2017nov5.pdf (Accessed: 5 September

2018).

Batres-Estrada, G. 2015. Deep learning for multivariate financial time series.

http://www.asecib.ase.ro/mps/Bandura_SocialLearningTheory.pd
https://dl.acm.org/citation.cfm?id=1274545
http://incompleteideas.net/book/bookdraft2017nov5.pdf

244

Online Master of Science Thesis in Engineering. Stockholm: KTH, School of

Engineering Sciences, Mathematics Department, Mathematical Statistics.

Available: https://www.math.kth.se/matstat/seminarier/reports/M-

exjobb15/150612a.pdf (Accessed 20 May 2018).

Bellman, R. 1957. Dynamic programming. Princeton: Princeton University

Press. Available: https://data.epo.org/gpi/409729456.pdf?download=true

(Accessed 10 August 2018).

Ben-Bassat, M. 1982. Pattern recognition and reduction of dimensionality. In:

Krishnaiah, P. R. and Kanal, L.N. eds. Handbook of statistics II. North Holland,

773–791. Available:

http://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPaper

s.aspx?ReferenceID=1337614 (Accessed 10 August 2018).

Bertsekas, D. P. 2005. Dynamic programming and optimal control. Belmont.

Massachusetts: Athena Scientific.

Bikakis, N. 2018. Big data visualization tools: Encyclopedia of big data

technologies. Springer.

Bilenko, M., Mooney, R. J., Cohen, W. W., Ravikumar, P. and Fienberg, S. E.

2003. Adaptive name matching in information integration. IEEE Intelligent

Systems, 18(5): 16–23. Available: https://ieeexplore.ieee.org/document/1234765/

(Accessed 10 August 2018).

Bishop, C. M. 1995. Neural networks for pattern recognition. New York: Oxford

University Press.

Bishop, C. M. 2006. Pattern recognition and machine learning. New York:

Springer. Available:

http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Reco

https://www.math.kth.se/matstat/seminarier/reports/M-exjobb15/150612a.pdf
https://www.math.kth.se/matstat/seminarier/reports/M-exjobb15/150612a.pdf

245

gnition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf

(Accessed 10 May 2017).

Blum, C. and Roli, A. 2003. Metaheuristics in combinatorial optimization:

Overview and conceptual comparison. ACM Computing Surveys, 35(3): 268–

308. Available:

https://www.iiia.csic.es/~christian.blum/downloads/blum_roli_2003.pdf

(Accessed 20 May 2018).

Bonabeau, E., Dorigo, M. and Theraulaz, G. 2000. Inspiration for optimisation

from social insect behaviour. Nature, 406(6791): 39–42. Available:

http://cognition.ups-tlse.fr/IMG/pdf/35.pdf (Accessed 20 May 2018).

Borschev, V. and Partee, B. 2001. Lecture 3: Properties of relations.

Mathematical Linguistics. 1–4. Available:

http://people.umass.edu/partee/726_01/lectures/lecture3.pdf (Accessed

20/05/2018).

Boser, B. E., Guyon, I. M., Vapnik, V. N. A. 1992. Training algorithm for optimal

margin classifiers. http://w.svms.org/training/BOGV92.pdf (Accessed 10 May

2017).

Breiman, L. 1999. Using adaptive bagging to debias regressions: Technical

report 547. Berkeley: Statistics Department, University of California at Berkeley.

Available:

https://pdfs.semanticscholar.org/636c/243ae176bcfa9766f8d4fca7eb441819e21d.

pdf (Accessed 20 May 2018).

Breiman, L. 2001. Random forests. Available:

https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf (Accessed 10

May 2017).

https://pdfs.semanticscholar.org/636c/243ae176bcfa9766f8d4fca

246

Bryson, S., Kenwright, D. N., Cox, M., Ellsworth, D. and Haimes, R. 1999.

Visually exploring gigabyte datasets in realtime. Communication of the ACM,

42(8): 82–90. Available:

http://www.dcs.ed.ac.uk/teaching/cs4/www/visualisation/SIGGRAPH/gigabyte_

datasets2.pdf (Accessed 10 August 2018).

Bu, Y., Borkar, V. R., Carey, M. J., Rosen, J., Polyzotis, N., Condie, T., Weimer,

M. and Ramakrishnan, R. 2012. Scaling datalog for machine learning on big

data. Available: http://dblp.uni-trier.de/db/journals/corr/corr1203.html#abs-1203-

0160 (Accessed 10/9/2017).

Card, S. K., Mackinlay, J. D. and Shneiderman, B. 1999. Readings in

information visualization: Using vision to think. Academic Press. Available:

https://www.researchgate.net/publication/220691172_Readings_in_Information_

Visualization_Using_Vision_To_Think (Accessed: 05-September-2018).

Carter, R. L. 2006. Solutions for missing data in structural equation modeling.

Research and Practice in Assessment, 1(1): 1–6. Available:

https://pdfs.semanticscholar.org/1217/c3e4d02dc40ee941b92473df4077458d557

1.pdf (Accessed 10 April 2018).

Cavnar, W. B. and Trenkle, J. M. 1994. N-gram-based text categorization. In:

Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis and

Information Retrieval. pp. 1–14. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.9367 (Accessed 10

September 2017).

CLC bio. 2007. Bioinformatics explained: BLAST. Available:

http://www.ccg.unam.mx/~vinuesa/tlem/pdfs/Bioinformatics_explained_BLAST.

pdf

Cohen, W. W., Ravikumar, P. and Fienberg, S. E. 2003. A comparison of string

247

distance metrics for name-matching tasks. In: Proceedings of the IJCAI-2003

Workshop on Information Integration on the Web (IIWeb-03). pp. 1–6. Available:

http://www.cs.cmu.edu/~wcohen/postscript/ijcai-ws-2003.pdf

Cong, S., Han, J. and Padua, D. 2005. Parallel mining of closed sequential

patterns. Available: http://hanj.cs.illinois.edu/pdf/kdd05_parseq.pdf (Accessed 4

June 2017).

Cormen, T. H., Leiserson, C. E. and Rivest, R. L. 1990. Introduction to

algorithms. 3rd ed. Cambridge: MIT Press. Available:

http://labs.xjtudlc.com/labs/wldmt/reading%20list/books/Algorithms%20and%2

0optimization/Introduction%20to%20Algorithms.pdf (Accessed 3 May 2018).

Creswell, J. W. 2013. Research design: Qualitative, quantitative, and mixed

method approaches I. 2nd ed. Thousand Oaks, London and New Delhi: SAGE

Publications. Available:

https://www.ucalgary.ca/paed/files/paed/2003_creswell_a-framework-for-

design.pdf (Accessed 9 June 2018).

Crone, S. F., Lessmann, S, and Stahlbock, R. 2006. The impact of preprocessing

on data mining: An evaluation of classifier sensitivity in direct marketing.

European Jornal of Operational Research, 173: 781–800. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.302.48&rep=rep1&typ

e=pdf (Accessed 9 June 2018).

Cui, X. and Potok, T. E. 2006. A distributed agent implementation of multiple

species flocking model for document partitioning clustering. In: International

Workshop on Cooperative Information Agents, Springer, Berliin, Heidelberg:

Cooperative information agents. 124–137. Available:

https://pdfs.semanticscholar.org/96f7/71c0d09c8283b8d9aa6a4c297e31eaca07f9.

pdf (Accessed 9 June 2018).

http://labs.xjtudlc.com/labs/wldmt/reading%20list/books/Algorithms%20and%20optimization/Introduction%20to%20Algorithms.pdf
http://labs.xjtudlc.com/labs/wldmt/reading%20list/books/Algorithms%20and%20optimization/Introduction%20to%20Algorithms.pdf
https://www.ucalgary.ca/paed/files/paed/2003_creswell_a-framework-for-design.pdf
https://www.ucalgary.ca/paed/files/paed/2003_creswell_a-framework-for-design.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.302.48&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.302.48&rep=rep1&type=pdf
https://pdfs.semanticscholar.org/96f7/71c0d09c8283b8d9aa6a4c297e31eaca07f9.pdf
https://pdfs.semanticscholar.org/96f7/71c0d09c8283b8d9aa6a4c297e31eaca07f9.pdf

248

Curtin, R. R., Cline, J. R., Slagle, N. P., March, W. B., Ram, P., Mehta, N. A. and

Gray, A. G. 2013. MLPACK: A scalable C++ machine learning library. J Mach

Learn Res. 14: 801–805. Available:

http://www.jmlr.org/papers/volume14/curtin13a/curtin13a.pdf (Accessed 2

August 2018).

Dacke, M., Byrne, M. J., Baird, E., Scholtz, C. H. and Warrant, E. J. 2011. How

dim is dim? Precision of the celestial compass in moonlight and sunlight. Philos.

Trans. R. Soc. Lond. B Biol. Sci., 366: 697–702. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3049003/ (Accessed 2 August

2018).

Damerau, F. J. 1964. A technique for computer detection and correction of

spelling errors. Communications of the ACM, 7(3): 171–176. Available:

doi.10.1145/363958.363994 (Accessed 2 August 2018).

Dănăilă, I., Dinu, L. P., Niculae, V. and Sulea, O.-M. 2012. String distances for

near-duplicate detection. Available: http://nlp.unibuc.ro/papers/danaila12.pdf

(Accessed 2 August 2018).

Darwin, C. 1868. The variation of animals and plants under domestication.

London: John Murray.

Dash, M. and Liu, H. 1997. Feature selection for classification. Intelligent Data

Analysis, 1(1–4): 131–156. Available:

https://www.sciencedirect.com/science/article/pii/S1088467X97000085

(Accessed 2 August 2018).

Dell’Amore, C. 2013. Dung beetles navigate via the milky way, first known in

animal kingdom. News Watch. National Geographic Society (blog). Available:

https://blog.nationalgeographic.org/2013/01/24/dung-beetles-navigate-via-the-

milky-way-first-known-in-animal-kingdom/ (Accessed 2 August 2018).

http://www.jmlr.org/papers/volume14/curtin13a/curtin13a.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3049003/
http://nlp.unibuc.ro/papers/danaila12.pdf
https://www.sciencedirect.com/science/article/pii/S1088467X97000085
https://blog.nationalgeographic.org/2013/01/24/dung-beetles-navigate-via-the-milky-way-first-known-in-animal-kingdom/
https://blog.nationalgeographic.org/2013/01/24/dung-beetles-navigate-via-the-milky-way-first-known-in-animal-kingdom/

249

Demirkan, H. and Delen, D. 2013. Leveraging the capabilities of service-oriented

decision support systems: Putting analytics and big data in cloud. Decis Support

Syst., 55(1): 412–421. Available: DOI: 10.1016/j.dss.2012.05.048 (Accessed 3

May 2018).

Deng, L. and Chen, J. 2014. Sequence classification using the high-level features

extracted from deep neural networks. In: Proceedings of International

Conference on Acoustics Speech and Signal Processing (ICASSP). pp. 1–5.

Available: DOI: 10.1109/ICASSP.2014.6854926 (Accessed 3 May 2018).

Deng, L. and Yu, D. 2013. Deep learning: Methods and applications.

Foundations and Trends in Signal Processing, 7(3–4): 197–387. Available:

http://dx.doi.org/10.1561/2000000039 (Accessed 9 June 2018).

Deng, L. and Yu, D. 2013. Deep learning: Methods and applications.

Foundations and Trends in Signal Processing, 7(3–4): 197–387. Available:

https://scholar.google.co.za/scholar?q=Deng,+LI.+and+Yu,+D.+2013.+Deep+lea

rning:+Methods+and+applications&hl=en&as_sdt=0&as_vis=1&oi=scholart

(Accessed 9 June 2018).

Devakunchari, R. 2014. Analysis on big data over the years. International

Journal of Scientific and Research Publications, 4(1). Available:

http://www.ijsrp.org/research-paper-0114/ijsrp-p2573.pdf (Accessed 3 May

2017).

Dietterich, T. 1998. An experimental comparison of three methods for

constructing ensembles of decision trees: Bagging, boosting and randomization.

Machine Learning, 40(2): 1–22. Available: DOI: 10.1023/A:1007607513941

(Accessed 3 May 2018).

Ding, X., Zhang, Y., Liu, T. and Duan, J. 2015. Deep learning for event-driven

stock prediction. In: Proceedings of the 24th International Joint Conference on

http://doi.org/10.1016/j.dss.2012.05.048
http://dx.doi.org/10.1561/2000000039
https://scholar.google.co.za/scholar?q=Deng,+LI.+and+Yu,+D.+2013.+Deep+learning:+Methods+and+applications&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.co.za/scholar?q=Deng,+LI.+and+Yu,+D.+2013.+Deep+learning:+Methods+and+applications&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://doi.org/10.1023/A:1007607513941

250

Artificial Intelligence (IJCAI 2015). Available:

https://www.ijcai.org/Proceedings/15/Papers/329.pdf (Accessed 6 September

2018).

Dorigo M. and Cambardella, L. M. 1997. Ant colony system: A cooperative

learning approach to traveling salesman problem. IEEE Transactions on

Evolutionary Computation, 1(1): 53–66. Available:

http://people.idsia.ch/~luca/acs-ec97.pdf (Accessed 3 May 2018).

Dull, R. B. and Tegarden, D. P. 1999. A comparison of three visual

representations of complex multidimensional accounting information. Journal of

Information Systems, 13(2): 117–131. Available:

https://pdfs.semanticscholar.org/cfcc/ab4e9daff7edddfbffb85a6680ce970966ee.p

df (Accessed 3 May 2018).

Eberhart, R. C., Shi, Y. and Kennedy, J. 2001. Swarm intelligence: The Morgan

Kaufmann series in artificial intelligence. Elsevier. Available:

https://www.elsevier.com/books/swarm-intelligence/eberhart/978-1-55860-595-4

(Accessed 3 May 2018).

Elisseeff, A. and Guyon, I. 2003. An introduction to variable and feature

selection. Journal of Machine Learning Research, 3: 1157–1182. Available:

http://delivery.acm.org/10.1145/950000/944968/3-1157-

guyon.pdf?ip=196.21.61.167&id=944968&acc=OPEN&key=646D7B17E601A2

A5%2E20146AEDC3D229CC%2E4D4702B0C3E38B35%2E6D218144511F34

37&__acm__=1535534581_0ddaee2daaf021a98d15105675f80a03 (Accessed 3

October 2017).

Elmagarmid, A. K., Ipeirotis, P. G. and Verykios, S. V. 2007. Duplicate record

detection: A survey. IEEE Transactions on Knowledge and Data Engineering,

19(1): 1–16. Available: https://www.cs.purdue.edu/homes/ake/pub/TKDE-0240-

https://www.ijcai.org/Proceedings/15/Papers/329.pdf
http://people.idsia.ch/~luca/acs-ec97.pdf
https://pdfs.semanticscholar.org/cfcc/ab4e9daff7edddfbffb85a6680ce970966ee.pdf
https://pdfs.semanticscholar.org/cfcc/ab4e9daff7edddfbffb85a6680ce970966ee.pdf
https://www.elsevier.com/books/swarm-intelligence/eberhart/978-1-55860-595-4
http://delivery.acm.org/10.1145/950000/944968/3-1157-guyon.pdf?ip=196.21.61.167&id=944968&acc=OPEN&key=646D7B17E601A2A5%2E20146AEDC3D229CC%2E4D4702B0C3E38B35%2E6D218144511F3437&__acm__=1535534581_0ddaee2daaf021a98d15105675f80a03
http://delivery.acm.org/10.1145/950000/944968/3-1157-guyon.pdf?ip=196.21.61.167&id=944968&acc=OPEN&key=646D7B17E601A2A5%2E20146AEDC3D229CC%2E4D4702B0C3E38B35%2E6D218144511F3437&__acm__=1535534581_0ddaee2daaf021a98d15105675f80a03
http://delivery.acm.org/10.1145/950000/944968/3-1157-guyon.pdf?ip=196.21.61.167&id=944968&acc=OPEN&key=646D7B17E601A2A5%2E20146AEDC3D229CC%2E4D4702B0C3E38B35%2E6D218144511F3437&__acm__=1535534581_0ddaee2daaf021a98d15105675f80a03
http://delivery.acm.org/10.1145/950000/944968/3-1157-guyon.pdf?ip=196.21.61.167&id=944968&acc=OPEN&key=646D7B17E601A2A5%2E20146AEDC3D229CC%2E4D4702B0C3E38B35%2E6D218144511F3437&__acm__=1535534581_0ddaee2daaf021a98d15105675f80a03
https://www.cs.purdue.edu/homes/ake/pub/TKDE-0240-0605-1.pdf

251

0605-1.pdf (Accessed 3 October 2017).

Englert, P., Paraschos, A., Peters, J. and Deisenroth, M. P. 2013. Probabilistic

model-based imitation learning. 1-18. Available: http://www.ias.tu-

darmstadt.de/uploads/Publications/Englert_ABJ_2013.pdf (Accessed 3 May

2017).

Essa, Y. M., Attiya, G. and El-Sayed, A. 2013. New framework for improving big

data analysis using mobile agent based. International Journal of Advanced

Computer Science and Applications (IJACSA), 5(3): 1–8. Available:

http://thesai.org/Downloads/Volume5No3/Paper_3-

New_Framework_for_Improving_Big_Data_Analysis_Using_Mobile_Agent.pdf

(Accessed 3 April 2018).

Etienne, A. S. and Jeffery, K. J. 2004. Path integration in mammals.

Hippocampus, 14: 180–192. Available:

https://onlinelibrary.wiley.com/doi/epdf/10.1002/hipo.10173 (Accessed 3 April

2018).

Etienne, A. S., Maurer, R. and Saucy, F. 1988. Limitations in the assessment of

path dependent information. Behavior, 106: 81–111. DOI:

10.1163/156853988X00106 (Accessed 22 April 2017).

Ferchichi, S. E., Laabidi, K. and Zidi, S. 2009. Feature selection using an SVM

learning machine. In: 3rd International Conference on Signals, Circuits and

Systems (SCS). IEEE Xplore. DOI: 10.1109/ICSCS.2009.5412341 (Accessed 5

September 2018).

Fister, I. Jr., Fong, S., Bresta, J. and Fister, I. 2014. Towards the self-adaptation of

the bat algorithm. In: Proceedings of the IASTED International Conference,

Innsbruck, Austria: Artificial Intelligence and Applications. pp. 1–7. Available:

http://www.iztok-jr-fister.eu/static/publications/36.pdf (Accessed 10 April 2017).

https://www.cs.purdue.edu/homes/ake/pub/TKDE-0240-0605-1.pdf
http://www.ias.tu-darmstadt.de/uploads/Publications/Englert_ABJ_2013.pdf
http://www.ias.tu-darmstadt.de/uploads/Publications/Englert_ABJ_2013.pdf
http://thesai.org/Downloads/Volume5No3/Paper_3-New_Framework_for_Improving_Big_Data_Analysis_Using_Mobile_Agent.pdf
http://thesai.org/Downloads/Volume5No3/Paper_3-New_Framework_for_Improving_Big_Data_Analysis_Using_Mobile_Agent.pdf
https://onlinelibrary.wiley.com/doi/epdf/10.1002/hipo.10173
https://doi.org/10.1163/156853988X00106
https://doi.org/10.1109/ICSCS.2009.5412341
http://www.iztok-jr-fister.eu/static/publications/36.pdf

252

Fong, S., Yang, X.-S. and Deb, S. 2013. How meta-heuristic algorithms

contribute to deep learning in the hype of big data analytics. Progress in

Intelligent Computing Techniques: Theory, Practice, and Applications, 3–25.

DOI:10.1007/978-981-10-3373-5_1 (Accessed 6 January 2018).

Friedman, M. 1937. The use of ranks to avoid the assumption of normality

implicit in the analysis of variance. Journal of the American Statistical

Association, 32(200): 675–701. Available:

http://sci2s.ugr.es/keel/pdf/algorithm/articulo/1937-JSTOR-Friedman.pdf.

(Accessed 10 April 2017).

Friedman, M. A. 1940. A comparison of alternative tests of significance for the

problem of m rankings. Annals of Mathematical Statistics, 11(1): 86–92.

Available: https://projecteuclid.org/download/pdf_1/euclid.aoms/1177731944

(Accessed 20 May 2017).

Fung, B. C. M., Wang, K. and Liu, J. 2012. Direct discovery of high utility

itemsets without candidate generation. In: IEEE 12th International Conference

on Data Mining. pp. 1–6. Available: DOI: 10.1109/ICDM.2012.20 (Accessed 20

May 2017).

Gali, N., Mariescu-Istodor, R. and Fränti, P. 2016. Similarity measures for title

matching. In: 23rd International Conference on Pattern Recognition (ICPR),

Cancún Center, Cancún, Mexico. Available:

http://cs.uef.fi/sipu/pub/TitleSimilarity-ICPR.pdf (Accessed 3 September 2017).

García, S., Fernández, A., Benítez, A. D. and Herrera, F. 2007. Statistical

comparisons by means of non-parametric tests: A case study on genetic based

machine learning. In: II Congreso Español de Informática. pp. 1–10 Available:

http://www.lsi.us.es/redmidas/CEDI07/%5B9%5D.pdf (Accessed 3 May 2017).

Garcia, S., Luengo, J. and Herrera, F. 2015. Data preprocessing in data mining.

https://projecteuclid.org/download/pdf_1/euclid.aoms/1177731944
http://doi.org/10.1109/ICDM.2012.20
http://cs.uef.fi/sipu/pub/TitleSimilarity-ICPR.pdf
http://www.lsi.us.es/redmidas/CEDI07/%5B9%5D.pdf

253

Switzerland: Springer. Available: DOI: 10.1007/978-3-319-10247-4_3 (Accessed

3 May 2017).

García, S., Molina, D. Lozano, M. and Herrera, F. 2008. A study on the use of

non-parametric tests for analyzing the evolutionary algorithms’ behaviour: A case

study on the CEC’2005 Special Session on Real Parameter Optimization.

Heuristics. 15: 617–644. Available:

https://link.springer.com/content/pdf/10.1007%2Fs10732-008-9080-4.pdf

(Accessed 3 July 2018).

Ghosh, A. and Nath, B. 2004. Muti-objective rule mining using genetic

algorithms. Information Sciences, 163: 123–133. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.98.6291&rep=rep1&ty

pe=pdf (Accessed 3 July 2018).

Golani, I., Benjamini, Y. and Eilam, D. 1993. Stopping behavior: Constraints on

exploration in rats (Rattus norvegicus). Behav Brain Res, 53: 21–33. Available:

https://www.sciencedirect.com/science/article/pii/S0166432805802633?via%3Di

hub (Accessed 3 July 2018).

Goldberg, D. 1986. Genetic algorithms in search, optimization and machine

learning. Boston: Addison-Wesley Longman. Available:

https://pdfs.semanticscholar.org/899d/b253ce11bcfa29cacb9363d60a1639fd1fe8.

pdf (Accessed 5 September 2018).

Goldberg, D. E. and Holland, J. H. 1988. Genetic algorithms and machine

learning. Machine learning, 3(2): 95–99. Available:

https://link.springer.com/content/pdf/10.1007%2FBF00113892.pdf (Accessed 3

July 2018).

Gordon, S. P. and Gordon, F. S. 1994. Contemporary statistics: A computer

approach. USA: McGraw-Hill.

https://link.springer.com/content/pdf/10.1007%2Fs10732-008-9080-4.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.98.6291&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.98.6291&rep=rep1&type=pdf
https://www.sciencedirect.com/science/article/pii/S0166432805802633?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0166432805802633?via%3Dihub
https://pdfs.semanticscholar.org/899d/b253ce11bcfa29cacb9363d60a1639fd1fe8.pdf
https://pdfs.semanticscholar.org/899d/b253ce11bcfa29cacb9363d60a1639fd1fe8.pdf
https://link.springer.com/content/pdf/10.1007%2FBF00113892.pdf

254

Grzymala-Busse, J. W., Goodwing, L. K., Grzymala-Busse, W. J. and Zheng, X.

2005. Handling missing attribute values in preterm birth data sets. Available:

https://pdfs.semanticscholar.org/29e5/317f5eb70eff4a6b9bde64fcded211c48bdb.

pdf (Accessed 3 July 2018).

Guntsch, M. and Middendorf, M. 2002. Applying population based ACO to

dynamic optimization problems. Ant Algorithms, Proceedings of Third

International Workshop ANTS, 2463: 111–122. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.6580&rep=rep1&ty

pe=pdf (Accessed 3 July 2018).

Guo, X., Wang, H. and Devabhaktuni, V. 2011. Design of a FPGA-based parallel

architecture for blast algorithm with multi-hits detection. In: Eighth International

Conference on Information Technology: New Generations. Available:

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5945320 (Accessed 3 July

2017).

Gupta, M. K. and Sikka, G. 2013. Association rules extraction using multi-

objective feature of genetic algorithm. In: Proceedings of the World Congress on

Engineering and Computer Science. San Francisco. pp. 1–6. Available:

https://pdfs.semanticscholar.org/57fa/7fbace0d5ce249a721795095945fb09e2ebb.

pdf (Accessed 3 July 2018).

Hall, M. A. 2000. Correlation-based feature selection for discrete and numeric

class machine learning. In: Proc. 17th Int’l Conf. Machine Learning. pp. 359–

366. Available:

https://researchcommons.waikato.ac.nz/bitstream/handle/10289/1024/uow-cs-

wp-2000-08.pdf?sequence=1&isAllowed=y (Accessed 3 July 2018).

https://pdfs.semanticscholar.org/29e5/317f5eb70eff4a6b9bde64fcded211c48bdb.pdf
https://pdfs.semanticscholar.org/29e5/317f5eb70eff4a6b9bde64fcded211c48bdb.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.6580&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.6580&rep=rep1&type=pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5945320
https://pdfs.semanticscholar.org/57fa/7fbace0d5ce249a721795095945fb09e2ebb.pdf
https://pdfs.semanticscholar.org/57fa/7fbace0d5ce249a721795095945fb09e2ebb.pdf
https://researchcommons.waikato.ac.nz/bitstream/handle/10289/1024/uow-cs-wp-2000-08.pdf?sequence=1&isAllowed=y
https://researchcommons.waikato.ac.nz/bitstream/handle/10289/1024/uow-cs-wp-2000-08.pdf?sequence=1&isAllowed=y

255

Hamming, R. W. 1950. Error detecting and error correcting codes (PDF). Bell

System Technical Journal, 29(2): 147–160. Available: DOI: 10.1002/j.1538-

7305.1950.tb00463.x. MR 0035935. (Accessed 3 July 2017).

Han, J. and Kamber, M. 2006. Data mining concepts and techniques. 3rd ed.

USA: Morgan Kaufmann. Available:

http://myweb.sabanciuniv.edu/rdehkharghani/files/2016/02/The-Morgan-

Kaufmann-Series-in-Data-Management-Systems-Jiawei-Han-Micheline-

Kamber-Jian-Pei-Data-Mining.-Concepts-and-Techniques-3rd-Edition-Morgan-

Kaufmann-2011.pdf (Accessed 3 July 2018).

Han, J., Cheng, H., Xin, D. and Yan, X. 2007. Frequent pattern mining: Current

status and future directions. Data Min Knowl Disc, 15: 55–86. Available:

https://link.springer.com/content/pdf/10.1007%2Fs10618-006-0059-1.pdf

(Accessed 3 July 2018).

Han, J., Pei, J. and Yu. Y. 2000. Mining frequent patterns without candidate

generation. In: Proceedings of the 2000 ACM SIGMOD international conference

on Management of data, 29(2): 1–12. DOI: 10.1145/335191.335372 (Accessed 5

September 2018).

Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U. and Hsu, M. C. 2000.

FreeSpan: Frequent pattern projected sequential pattern mining. In: Proc. ACM

SIGKDD International Conference: Knowledge Discovery and Data Mining

(SIGKDD’00). Boston. pp. 355–359. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.7211&rep=rep1&ty

pe=pdf (Accessed 3 July 2018).

Han, J., Wang, J., Lu Y. and Tzvetkov, P. 2002. Mining top-K frequent closed

patterns without minimum support. In: Proceedings: 2002 IEEE International

Conference on Data Mining. pp. 211–218. Available:

http://myweb.sabanciuniv.edu/rdehkharghani/files/2016/02/The-Morgan-Kaufmann-Series-in-Data-Management-Systems-Jiawei-Han-Micheline-Kamber-Jian-Pei-Data-Mining.-Concepts-and-Techniques-3rd-Edition-Morgan-Kaufmann-2011.pdf
http://myweb.sabanciuniv.edu/rdehkharghani/files/2016/02/The-Morgan-Kaufmann-Series-in-Data-Management-Systems-Jiawei-Han-Micheline-Kamber-Jian-Pei-Data-Mining.-Concepts-and-Techniques-3rd-Edition-Morgan-Kaufmann-2011.pdf
http://myweb.sabanciuniv.edu/rdehkharghani/files/2016/02/The-Morgan-Kaufmann-Series-in-Data-Management-Systems-Jiawei-Han-Micheline-Kamber-Jian-Pei-Data-Mining.-Concepts-and-Techniques-3rd-Edition-Morgan-Kaufmann-2011.pdf
http://myweb.sabanciuniv.edu/rdehkharghani/files/2016/02/The-Morgan-Kaufmann-Series-in-Data-Management-Systems-Jiawei-Han-Micheline-Kamber-Jian-Pei-Data-Mining.-Concepts-and-Techniques-3rd-Edition-Morgan-Kaufmann-2011.pdf
https://link.springer.com/content/pdf/10.1007%2Fs10618-006-0059-1.pdf
https://doi.org/10.1145/335191.335372
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.7211&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.7211&rep=rep1&type=pdf

256

https://experts.illinois.edu/en/publications/mining-top-k-frequent-closed-

patterns-without-minimum-support (Accessed 6 May 2016).

Hand, D., Mannila, H. and Smyth, P. 2001. Principles of data mining. London:

The MIT Press. Available:

https://doc.lagout.org/Others/Data%20Mining/Principles%20of%20Data%20Min

ing%20%5BHand%2C%20Mannila%20%26%20Smyth%202001-08-

01%5D.pdf (Accessed 9 May 2017).

Hansen, N. and Ostermeier, A. 2001. Completely derandomized self-adaptation

in evolution strategies. Evolutionary Computation, 9(2): 159–195. Available:

http://www.cmap.polytechnique.fr/~nikolaus.hansen/cmaartic.pdf (Accessed 3

July 2018).

Hartigan, J. A. and Wong M. A. 1979. A k-means clustering algorithm. Available:

Https://www.labri.fr/perso/bpinaud/userfiles/downloads/hartigan_1979_kmeans.

pdf (Accessed 10 April 2017).

Hasan, S., Shamsuddin, S. and Lopes, N. 2013. Soft computing methods for big

data problems. In: Cai, Y. and See, S. (eds.), Proceedings of the symposium on

GPU computing and applications. Singapore: Springer. pp. 235–247. Available:

DOI: 10.1007/978-981-287-134-3_15 (Accessed 3 July 2018).

Hernandez, M. A. and Stolfo, S. J. 1995. The merge/purge problem for large

databases. In: Proc. ACM SIGMOD International Conference on Management of

Data, San Jose, California, 24(2): 127–138. Available: DOI:

10.1145/223784.223807 (Accessed 13 August 2018).

Hernandez, M. A. and Stolfo, S. J. 1998. Real-world data is dirty: Data cleansing

and the merge/purge problem. Data Mining and Knowledge Discovery, 2(1): 9–

37. Available:

https://link.springer.com/content/pdf/10.1023%2FA%3A1009761603038.pdf

https://experts.illinois.edu/en/publications/mining-top-k-frequent-closed-patterns-without-minimum-support
https://experts.illinois.edu/en/publications/mining-top-k-frequent-closed-patterns-without-minimum-support
https://doc.lagout.org/Others/Data%20Mining/Principles%20of%20Data%20Mining%20%5BHand%2C%20Mannila%20%26%20Smyth%202001-08-01%5D.pdf
https://doc.lagout.org/Others/Data%20Mining/Principles%20of%20Data%20Mining%20%5BHand%2C%20Mannila%20%26%20Smyth%202001-08-01%5D.pdf
https://doc.lagout.org/Others/Data%20Mining/Principles%20of%20Data%20Mining%20%5BHand%2C%20Mannila%20%26%20Smyth%202001-08-01%5D.pdf
http://www.cmap.polytechnique.fr/~nikolaus.hansen/cmaartic.pdf
https://www.labri.fr/perso/bpinaud/userfiles/downloads/hartigan_1979_kmeans.pdf
https://www.labri.fr/perso/bpinaud/userfiles/downloads/hartigan_1979_kmeans.pdf
https://doi.org/10.1145/223784.223807
https://link.springer.com/content/pdf/10.1023%2FA%3A1009761603038.pdf

257

(Accessed 13 August 2018).

Hinton, P. R. 1995. Statistics explained: A guide for social science students.

Padstow, Cornwall: T. J. Press.

Hirate, Y., Iwahashi, E. and Yamana, H. 2004. TF^2P-growth: An efficient

algorithm for mining frequent patterns without any threshold. In: Proceedings of

IEEE ICDM’04: Workshop on alternative techniques for data mining and

knowledge discovery. Available:

https://pdfs.semanticscholar.org/22d5/b3362a9d0923687e1d88defb9f5b334e539

c.pdf (Accessed 5 September 2018).

Holland, J. 1975. Adaptation in natural and artificial systems: An Introductory

Analysis with Applications to Biology, Control and Artificial Intelligence. Ann

Arbor, MI: University of Michigan Press.

Hong, T.-P. and Lee, Y.-C. 2008. An overview of mining fuzzy association rules,

fuzzy sets and their extensions: Representation, aggregation and models.

Springer. Available:

https://pdfs.semanticscholar.org/a7a5/1bc8cc9cf76e03e9a7a66aa80bda84384c56.

pdf (Accessed 13 August 2018).

Hopcroft, J. E. and Ullman, J. D. 1973. Set merging algorithms. SIAM Journal

on Computing, 2: 294–303. Available: https://doi.org/10.1137/0202024

(Accessed 13 August 2018).

Hornik, K. 1991. Approximation capabilities of multilayer feedforward

networks. Neural Networks, 4: 251–257. Available:

https://www.sciencedirect.com/science/article/pii/089360809190009T (Accessed

13 August 2018).

https://pdfs.semanticscholar.org/22d5/b3362a9d0923687e1d88defb9f5b334e539c.pdf
https://pdfs.semanticscholar.org/22d5/b3362a9d0923687e1d88defb9f5b334e539c.pdf
https://pdfs.semanticscholar.org/a7a5/1bc8cc9cf76e03e9a7a66aa80bda84384c56.pdf
https://pdfs.semanticscholar.org/a7a5/1bc8cc9cf76e03e9a7a66aa80bda84384c56.pdf
https://doi.org/10.1137/0202024
https://www.sciencedirect.com/science/article/pii/089360809190009T

258

Huai, Y., Lee, R., Zhang, S., Xia, C. H. and Zhang X. 2011. DOT: A matrix

model for analyzing, optimizing and deploying software for big data analytics in

distributed systems. Proceedings of the ACM symposium on cloud computing, 4:

1–14. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.228.8651&rep=rep1&t

ype=pdf (Accessed 13 August 2018).

Huang, J. W., Lin, S. C. and Chen, M. S. 2010. DPSP: Distributed sequential

pattern mining on the cloud. Advances in Knowledge Discovery and Data

Mining, 6119: 27–34. Available: DOI: 10.5120/16461-6187 (Accessed 13 August

2018).

Huang, K., Chang, C., Tung, J. and Ho, C. 2006. COBRA: Closed sequential

pattern mining using bi-phase reduction approach. Available:

https://staff.csie.ncu.edu.tw/chia/pub/cobralncs.pdf (Accessed 13 August 2018).

Huynh, X.-H. 2010. Interestingness measures for association rules in a KDD

Process: Post Processing of Rules with ARQAT Tool. Available:

https://tel.archives-ouvertes.fr/tel-00482649/document (Accessed 13 August

2018).

Iglesia, B. and Reynolds. A. 2005. The use of meta-heuristic algorithms for data

mining. Available: DOI: 10.1109/ICICT.2005.1598541 (Accessed 13 August

2018).

Ilyankou, I. 2014. Comparison of jaro-winkler and ratcliff/obershelp algorithms

in spell check. Available: https://ilyankou.files.wordpress.com/2015/06/ib-

extended-essay.pdf (Accessed 3 May 2017).

Jaitly, N. 2014. Exploring deep learning methods for discovering features in

speech signals. Ph.D. Thesis in Computer Science. Department of Computer

Science, University of Toronto. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.228.8651&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.228.8651&rep=rep1&type=pdf
https://staff.csie.ncu.edu.tw/chia/pub/cobralncs.pdf
https://tel.archives-ouvertes.fr/tel-00482649/document
https://doi.org/10.1109/ICICT.2005.1598541

259

http://www.cs.toronto.edu/~ndjaitly/Jaitly_Navdeep_201411_PhD_thesis.pdf

(Accessed 6 January 2018).

Janecek, A. G. K. and Gansterer, W. N. 2008. On the relationship between

feature selection and classification accuracy. JMLR: Workshop and Conference

Proceedings, 4: 90–105. Available:

http://proceedings.mlr.press/v4/janecek08a/janecek08a.pdf (Accessed 3 May

2017).

Jaro, M. A. 1989. Advances in record-linkage methodology as applied to

matching the 1985 census of tampa, Florida. J. Am. Statistical Assoc., 84(406):

414–420. Available: DOI: 10.1080/01621459.1989.10478785 (Accessed 13

August 2018).

Jaro, M. A. 1995. Probabilistic linkage of large public health data files (disc:

P687-689). Statistics in Medicine, 14: 491–498. Available:

https://doi.org/10.1002/sim.4780140510 (Accessed 13 August 2018).

Kannan, V. and Gurusamy, S. 2014. Preprocessing techniques for text mining.

Available:

https://www.researchgate.net/publication/273127322_Preprocessing_Techniques

_for_Text_Mining (Accessed 13 August 2018).

Kantardzic, M. 2003. Data mining: Concepts, models, methods and algorithm.

IEEE, 165–176. Available:

https://search.proquest.com/docview/213699988/fulltextPDF/DBBF81E4E33548

E7PQ/1?accountid=10612 (Accessed 13 August 2018).

Karaboga, D. 2005. An ideal based on honey bee swarm for numerical

optimization technical report. Available:

https://pdfs.semanticscholar.org/015d/f4d97ed1f541752842c49d12e429a785460

b.pdf (Accessed 13 August 2018).

http://www.cs.toronto.edu/~ndjaitly/Jaitly_Navdeep_201411_PhD_thesis.pdf
http://proceedings.mlr.press/v4/janecek08a/janecek08a.pdf
https://doi.org/10.1002/sim.4780140510
https://www.researchgate.net/publication/273127322_Preprocessing_Techniques_for_Text_Mining
https://www.researchgate.net/publication/273127322_Preprocessing_Techniques_for_Text_Mining
https://search.proquest.com/docview/213699988/fulltextPDF/DBBF81E4E33548E7PQ/1?accountid=10612
https://search.proquest.com/docview/213699988/fulltextPDF/DBBF81E4E33548E7PQ/1?accountid=10612
https://pdfs.semanticscholar.org/015d/f4d97ed1f541752842c49d12e429a785460b.pdf
https://pdfs.semanticscholar.org/015d/f4d97ed1f541752842c49d12e429a785460b.pdf

260

Kaytoue, M., Kuznetsov, S. O. and Napoli, A. 2011. Revisiting numerical pattern

mining with formal concept analysis. Higher school of economics, State

University. Russia. 1–10. DOI:10.5591/978-1-57735-516-8/IJCAI11-227

(Accessed 5 September 2018).

Ke, K., Cheng J. and Ng W. 2008. An information theoretic approach to

quantitative association rule mining. Journal Knowledge and Information

Systems, 16(2): 112–114. Available:

http://www.cs.ust.hk/faculty/wilfred/paper/kais07.pdf (Accessed 13 August

2018).

Keim, D. 2000. Designing pixel-oriented visualization techniques: Theory and

applications. IEEE Transaction on Visualization and Computer Graphics, 6(1):

59–78. Available: http://kops.uni-

konstanz.de/bitstream/handle/123456789/5890/TVCG00.pdf (Accessed 23 June

2018).

Keim, D. A. 2002. Information visualization and visual data mining. IEEE

Transactions on Visualization and Computer Graphics, 8(1). Available: DOI:

10.1109/2945.981847 (Accessed 23 June 2018).

Keim, D. A., Bergeron, R. D. and Pickett, R. M. 1994. Test data sets for

evaluating data visualization techniques. Available:

https://pdfs.semanticscholar.org/7959/fd04a4f0717426ce8a6512596a0de1b99d18

.pdf (Accessed 3 February 2017).

Kennedy, J. 2011. Particle swarm optimisation. In: Encyclopedia of machine

learning. Springer. pp. 760–766. Available:

https://pdfs.semanticscholar.org/9655/b25a85ea2fd1b50cd9eb3c4e298aa15bb012

.pdf (Accessed 23 June 2018).

http://www.cs.ust.hk/faculty/wilfred/paper/kais07.pdf
http://kops.uni-konstanz.de/bitstream/handle/123456789/5890/TVCG00.pdf
http://kops.uni-konstanz.de/bitstream/handle/123456789/5890/TVCG00.pdf
https://doi.org/10.1109/2945.981847
https://pdfs.semanticscholar.org/7959/fd04a4f0717426ce8a6512596a0de1b99d18.pdf
https://pdfs.semanticscholar.org/7959/fd04a4f0717426ce8a6512596a0de1b99d18.pdf
https://pdfs.semanticscholar.org/9655/b25a85ea2fd1b50cd9eb3c4e298aa15bb012.pdf
https://pdfs.semanticscholar.org/9655/b25a85ea2fd1b50cd9eb3c4e298aa15bb012.pdf

261

Kennedy, J. and Eberhart, R. C. 1995. Particle swarm optimization. In:

Proceedings of IEEE International Conference on Neural Networks, Piscataway,

NJ. pp. 1942–1948. Available:

https://www.cs.tufts.edu/comp/150GA/homeworks/hw3/_reading6%201995%20p

article%20swarming.pdf (Accessed 23 June 2018).

Kim, J. W. 2013. Classification with deep belief networks. Available:

https://www.ki.tu-

berlin.de/fileadmin/fg135/publikationen/Hebbo_2013_CDB.pdf (Accessed 3

May 2017).

Kline, R. B. 1998. Principles and practices of structural equation modeling. New

York: Guilford. Available: ftp://158.208.129.61/suzuki/PP_SEM_3e.pdf

(Accessed 23 June 2018).

Kohavi, R. and John, G. H. 1996. Wrappers for feature subset selection. AIJ

Special Issue on Relevance. Available: http://www-ai.cs.uni-

dortmund.de/LEHRE/PG/PG445/literatur/kohavi_john_97a.pdf (Accessed 23

June 2018).

Kołcz, A. and Chowdhury, A. 2008. Lexicon randomization for near-duplicate

detection with I-Match. Journal of Supercomputing, 45: 255–276. Available:

https://link.springer.com/content/pdf/10.1007%2Fs11227-007-0171-z.pdf

(Accessed 23 June 2018).

Kondrak, G. N. 2005. Gram similarity and distance. Department of Computing

Science, University of Alberta, Canada. Available:

https://pdfs.semanticscholar.org/5cfb/028595fff3e550c9a5fd2a51e4f23b4b58b6.p

df (Accessed 3 September 2017).

Khana, D. M., Mohamudally, N. and Babajee, D. K. R. 2013. A Unified

Theoretical Framework for Data Mining. Information Technology and

https://www.cs.tufts.edu/comp/150GA/homeworks/hw3/_reading6%201995%20particle%20swarming.pdf
https://www.cs.tufts.edu/comp/150GA/homeworks/hw3/_reading6%201995%20particle%20swarming.pdf
https://www.ki.tu-berlin.de/fileadmin/fg135/publikationen/Hebbo_2013_CDB.pdf
https://www.ki.tu-berlin.de/fileadmin/fg135/publikationen/Hebbo_2013_CDB.pdf
ftp://158.208.129.61/suzuki/PP_SEM_3e.pdf
http://www-ai.cs.uni-dortmund.de/LEHRE/PG/PG445/literatur/kohavi_john_97a.pdf
http://www-ai.cs.uni-dortmund.de/LEHRE/PG/PG445/literatur/kohavi_john_97a.pdf
https://link.springer.com/content/pdf/10.1007%2Fs11227-007-0171-z.pdf
https://pdfs.semanticscholar.org/5cfb/028595fff3e550c9a5fd2a51e4f23b4b58b6.pdf
https://pdfs.semanticscholar.org/5cfb/028595fff3e550c9a5fd2a51e4f23b4b58b6.pdf

262

Quantitative Management. Procedia Computer Science, 17(2013): 104 – 113.

Available: doi:10.1016/j.procs.2013.05.015 (Accessed 14 November 2018).

Kotsiantis, S. B. 2007. Supervised machine learning: A review of classification

techniques. Informatica, (31): 249–268. Available: https://datajobs.com/data-

science-repo/Supervised-Learning-[SB-Kotsiantis].pdf (Accessed 5 September

2018).

Krause, J., Cordeiro, J., Parpinelli, R. S. and Lopes, H. S. 2013. A survey of

swarm algorithms applied to discrete optimization problems. Available: DOI:

10.1016/B978-0-12-405163-8.00007-7 (Accessed 23 June 2018).

Krizhevsky, A., Sutskever, I. and Hinton, G. E. 2012. ImageNet classification

with deep convolutional neural networks. Available:

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-

convolutional-neural-networks.pdf (Accessed 5 September 2018).

Kumar, R. 2015. Grey wolf optimizer (GWO). Electrical Engineering MNIT

Jaipur. Available: https://drrajeshkumar.files.wordpress.com/2015/05/wolf-

algorithm.pdf. (Accessed 3 September 2017).

Kumar, V. and Minz, S. 2014. Feature selection: A literature review. Smart

Computing Review, 4(3): 211–229. Available:

https://www.cc.gatech.edu/~hic/CS7616/Papers/Kumar-Minz-2014.pdf

(Accessed 23 June 2018).

Kumar, V., Xindong, W., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H.,

McLachlan, G. J., Ng, A., Liu, B., Yu, P. S., Zhou, Z. H., Steinbach, H., Hand,

D. J., Steinberg, D. 2007. Top 10 algorithms in data mining. Knowledge

Information System, 14: 1–37. Available:

https://link.springer.com/content/pdf/10.1007%2Fs10115-007-0114-2.pdf

(Accessed 23 June 2018).

https://datajobs.com/data-science-repo/Supervised-Learning-%5bSB-Kotsiantis%5d.pdf
https://datajobs.com/data-science-repo/Supervised-Learning-%5bSB-Kotsiantis%5d.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://drrajeshkumar.files.wordpress.com/2015/05/wolf-algorithm.pdf
https://drrajeshkumar.files.wordpress.com/2015/05/wolf-algorithm.pdf
https://www.cc.gatech.edu/~hic/CS7616/Papers/Kumar-Minz-2014.pdf
https://link.springer.com/content/pdf/10.1007%2Fs10115-007-0114-2.pdf

263

Kuo, R. J. and Shih, C. W. 2007. Association rule mining through the ant colony

system for national health insurance research database in Taiwan. Computers and

Mathematics with Applications, 54: 1303–1318. Available:

https://www.sciencedirect.com/science/article/pii/S0898122107000910

(Accessed 3 September 2017).

Kuo, R. J., Chao, C. M. and Chiu, Y. T. 2011. Application of particle swarm

optimization to association rule mining. Applied Soft Computing, 11: 326–336.

Available: DOI: 10.1016/j.asoc.2009.11.023 (Accessed 23 June 2018).

Lakshminarayan, K., Harp, S. A. and Samad, T. 1999. Imputation of missing

data in industrial databases. Applied Intelligence, 11: 259–275. Available:

https://link.springer.com/content/pdf/10.1023%2FA%3A1008334909089.pdf

(Accessed 10 April 2017).

Laney, D. 2001. 3D data management: Controlling data volume, velocity and

variety. Available: http://smbresearch.net/big-data-and-volume-velocity-and-

variety/ (Accessed 10 April 2017).

Laurila, J. K., Gatica-Perez, D., Aad, I., Blom, J., Bornet, O., Do, T., Dousse, O.,

Eberle, J. and Miettinen, M. 2012. The mobile data challenge: Big data for

mobile computing research. In: Proceedings of the mobile data challenge by

Nokia workshop. Infoscience EPFL scientific publication. pp. 1–8. Available:

https://pdfs.semanticscholar.org/8dae/ecc84fcaf42172cba7ef58e5068fae7bbcbc.p

df (Accessed 10 April 2017).

Le, Q. V. 2015. A tutorial on deep learning. Part 1: Nonlinear classifiers and the

backpropagation algorithm. Available:

https://cs.stanford.edu/~quocle/tutorial1.pdf

LeCun, Y., Bengio, Y. and Hinton, G. 2015. Review: Deep learning. Nature, 521:

436–444. Available:

https://www.sciencedirect.com/science/article/pii/S0898122107000910
https://doi.org/10.1016/j.asoc.2009.11.023
https://link.springer.com/content/pdf/10.1023%2FA%3A1008334909089.pdf
http://smbresearch.net/big-data-and-volume-velocity-and-variety/
http://smbresearch.net/big-data-and-volume-velocity-and-variety/
https://pdfs.semanticscholar.org/8dae/ecc84fcaf42172cba7ef58e5068fae7bbcbc.pdf
https://pdfs.semanticscholar.org/8dae/ecc84fcaf42172cba7ef58e5068fae7bbcbc.pdf
https://cs.stanford.edu/~quocle/tutorial1.pdf

264

https://www.evl.uic.edu/creativecoding/courses/cs523/slides/week3/DeepLearnin

g_LeCun.pdf

LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. 1998. Gradient-based learning

applied to document recognition. In: Proceedings of the IEEE. pp. 1–46.

Available: http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf

Lee, H., Grosse, R., Ranganath, R. and Ng, A. Y. 2009. Convolutional deep belief

networks for scalable unsupervised learning of hierarchical representations. In:

Proceedings of the 26th International Conference on Machine Learning,

Montreal, Canada. pp. 1–8. Available:

https://web.eecs.umich.edu/~honglak/icml09-

ConvolutionalDeepBeliefNetworks.pdf (Accessed: 05-September-2018).

Lee, H., Largman, Y., Pham, P. and Ng. A. Y. 2009. Unsupervised feature

learning for audio classification using convolutional deep belief networks.

Computer Science Department, Stanford University, Stanford. Available:

https://ai.stanford.edu/~ang/papers/nips09-AudioConvolutionalDBN.pdf

(Accessed 5 September 2018).

Lee, J., Hong, S. and Lee, J. H. 2014. An efficient prediction for heavy rain from

big weather data using genetic algorithm. Proceedings of the international

conference on ubiquitous information management and communication. 25: 1–7.

Available: http://delivery.acm.org/10.1145/2560000/2558048/a25-

lee.pdf?ip=196.21.61.167&id=2558048&acc=ACTIVE%20SERVICE&key=646

D7B17E601A2A5%2E20146AEDC3D229CC%2E4D4702B0C3E38B35%2E4D

4702B0C3E38B35&__acm__=1535539638_39e14e83d0d97ed78bad3cae6c53ca

89 (Accessed 10 April 2017).

Lee, K. Y. and Park, J.-B. 2006. Application of particle swarm optimization to

economic dispatch problem: Advantages and disadvantages. Available: DOI:

10.1109/PSCE.2006.296295 (Accessed 10 April 2016).

https://www.evl.uic.edu/creativecoding/courses/cs523/slides/week3/DeepLearning_LeCun.pdf
https://www.evl.uic.edu/creativecoding/courses/cs523/slides/week3/DeepLearning_LeCun.pdf
http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf
https://web.eecs.umich.edu/~honglak/icml09-ConvolutionalDeepBeliefNetworks.pdf
https://web.eecs.umich.edu/~honglak/icml09-ConvolutionalDeepBeliefNetworks.pdf
https://ai.stanford.edu/~ang/papers/nips09-AudioConvolutionalDBN.pdf
http://delivery.acm.org/10.1145/2560000/2558048/a25-lee.pdf?ip=196.21.61.167&id=2558048&acc=ACTIVE%20SERVICE&key=646D7B17E601A2A5%2E20146AEDC3D229CC%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1535539638_39e14e83d0d97ed78bad3cae6c53ca89
http://delivery.acm.org/10.1145/2560000/2558048/a25-lee.pdf?ip=196.21.61.167&id=2558048&acc=ACTIVE%20SERVICE&key=646D7B17E601A2A5%2E20146AEDC3D229CC%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1535539638_39e14e83d0d97ed78bad3cae6c53ca89
http://delivery.acm.org/10.1145/2560000/2558048/a25-lee.pdf?ip=196.21.61.167&id=2558048&acc=ACTIVE%20SERVICE&key=646D7B17E601A2A5%2E20146AEDC3D229CC%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1535539638_39e14e83d0d97ed78bad3cae6c53ca89
http://delivery.acm.org/10.1145/2560000/2558048/a25-lee.pdf?ip=196.21.61.167&id=2558048&acc=ACTIVE%20SERVICE&key=646D7B17E601A2A5%2E20146AEDC3D229CC%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1535539638_39e14e83d0d97ed78bad3cae6c53ca89
http://delivery.acm.org/10.1145/2560000/2558048/a25-lee.pdf?ip=196.21.61.167&id=2558048&acc=ACTIVE%20SERVICE&key=646D7B17E601A2A5%2E20146AEDC3D229CC%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1535539638_39e14e83d0d97ed78bad3cae6c53ca89
https://doi.org/10.1109/PSCE.2006.296295

265

Leke, C. and Marwala, T. 2016. Missing data estimation in high-dimensional

datasets: A swarm intelligence-deep neural network approach. Available:

https://arxiv.org/pdf/1607.00136.pdf (Accessed 3 May 2017).

Leke, C. and Marwala, T. 2016. Missing data estimation in high-dimensional

datasets: A swarm intelligence-deep neural network approach. University of

Johannesburg, Johannesburg, South Africa. Available:

https://link.springer.com/chapter/10.1007/978-3-319-41000-5_26 (Accessed 10

April 2016).

Leung, C. K., Kononov, V. V., Pazdor, A. G. M. and Jiang, F. 2016. PyramidViz:

Visual analytics and big data visualization of frequent patterns. In: IEEE 14th

International Conference on Dependable, Autonomic and Secure Computing,

14th International Conference on Pervasive Intelligence and Computing, 2nd

International Conference on Big Data Intelligence and Computing and Cyber

Science and Technology Congress. Auckland. pp. 913–916. Available: DOI:

10.1109/DASC-PICom-DataCom-CyberSciTec.2016.158 (Accessed 10 April

2016).

Leung, C. S., MacKinnon, R. and Jiang, F. 2014. Reducing the search space for

big data mining for interesting patterns from uncertain data. In: Proceedings of

the international congress on big data. pp. 315–322. Available: DOI:

10.1109/BigData.Congress.2014.53 (Accessed 10 April 2016).

Levenshtein, V. 1966. Binary codes capable of correcting deletions, insertions,

and reversals. Soviet Physics – Doklady10. 10: 707–710. Available:

https://nymity.ch/sybilhunting/pdf/Levenshtein1966a.pdf (Accessed 3 April

2018).

Li, J., Fong, S., Wong, R. K., Millham, R. and Wong, K. K. L. 2017. Elitist

binary wolf search algorithm for heuristic feature selection in high-dimensional

https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.158
https://doi.org/10.1109/BigData.Congress.2014.53
https://nymity.ch/sybilhunting/pdf/Levenshtein1966a.pdf

266

bioinformatics datasets. Available: DOI: 10.1038/s41598-017-04037-5 (Accessed

20 April 2018).

Lichman, M. 2013. UCI machine learning repository. Irvine, CA: University of

California, School of Information and Computer Science. Available:

http://archive.ics.uci.edu/ml (Accessed 10 May 2017).

Lin, C.-J. 2006. Support vector machines: Status and challenges. Available:

https://www.csie.ntu.edu.tw/~cjlin/talks/caltech.pdf (Accessed 3 May 2017).

Lin, J. C.-W, Yang, L., Fournier-Viger, P., Hong, T.-P. and Voznak, M. 2016. A

binary PSO approach to mine high-utility itemsets. Soft Computing, 1–19.

Available: http://www.philippe-fournier-viger.com/spmf/HUIMGATree.pdf

(Accessed 3 August 2017)

Lin, M. Y., Lee, P. Y. and Hsueh, S. C. 2012. Apriori-based frequent itemset

mining algorithms on mapreduce. Proceedings of the International Conference

on Ubiquitous Information Management and Communication, 76: 1–76:8.

Available: http://delivery.acm.org/10.1145/2190000/2184842/a76-

lin.pdf?ip=196.21.61.167&id=2184842&acc=ACTIVE%20SERVICE&key=646

D7B17E601A2A5%2E20146AEDC3D229CC%2E4D4702B0C3E38B35%2E4D

4702B0C3E38B35&__acm__=1535543138_1f233e1e8363128bdb908f5d9e68e9

bb (Accessed 3 May 2016).

Lin, M., Hsueh, S. and Chang, C. 2008. Mining closed sequential patterns with

time constraints. Journal of Information Science and Engineering, 24: 33–46.

Available: https://www.iis.sinica.edu.tw/page/jise/2008/200801_03.pdf

(Accessed 3 May 2016).

Lipman, D. J and Pearson, W. R. 1985. Rapid and sensitive protein similarity

searches. Science Signaling, 227(4693): 1435–1441. DOI:

10.1126/science.2983426

https://doi.org/10.1038/s41598-017-04037-5
http://archive.ics.uci.edu/ml
https://www.csie.ntu.edu.tw/~cjlin/talks/caltech.pdf
http://www.philippe-fournier-viger.com/spmf/HUIMGATree.pdf
http://delivery.acm.org/10.1145/2190000/2184842/a76-lin.pdf?ip=196.21.61.167&id=2184842&acc=ACTIVE%20SERVICE&key=646D7B17E601A2A5%2E20146AEDC3D229CC%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1535543138_1f233e1e8363128bdb908f5d9e68e9bb
http://delivery.acm.org/10.1145/2190000/2184842/a76-lin.pdf?ip=196.21.61.167&id=2184842&acc=ACTIVE%20SERVICE&key=646D7B17E601A2A5%2E20146AEDC3D229CC%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1535543138_1f233e1e8363128bdb908f5d9e68e9bb
http://delivery.acm.org/10.1145/2190000/2184842/a76-lin.pdf?ip=196.21.61.167&id=2184842&acc=ACTIVE%20SERVICE&key=646D7B17E601A2A5%2E20146AEDC3D229CC%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1535543138_1f233e1e8363128bdb908f5d9e68e9bb
http://delivery.acm.org/10.1145/2190000/2184842/a76-lin.pdf?ip=196.21.61.167&id=2184842&acc=ACTIVE%20SERVICE&key=646D7B17E601A2A5%2E20146AEDC3D229CC%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1535543138_1f233e1e8363128bdb908f5d9e68e9bb
http://delivery.acm.org/10.1145/2190000/2184842/a76-lin.pdf?ip=196.21.61.167&id=2184842&acc=ACTIVE%20SERVICE&key=646D7B17E601A2A5%2E20146AEDC3D229CC%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1535543138_1f233e1e8363128bdb908f5d9e68e9bb
https://www.iis.sinica.edu.tw/page/jise/2008/200801_03.pdf

267

Little, R. J. A and Rubin, D. B. 1989. The analysis of social science data with

missing values. Sociol Methods Res, 18: 292–326.

Little, R. J. A. and Rubin, D. B. 1987. Statistical analysis with missing data. New

York: Wiley.

Liu, C., Wang, W., Zhao, Q., Shen, X. and Konan, X. 2017. A new feature

selection method based on a validity index of feature subset. Pattern Recognition

Letters, 92: 1–8. Available: DOI: 10.1016/j.patrec.2017.03.018 (Accessed 3 May

2017).

Longbottom, C. and Bamforth, R. 2013. “Optimising the data warehouse”:

Dealing with large volumes of mixed data to give better business insights.

Quocirca. Available: https://www.hindawi.com/journals/mpe/2018/9457821/

(Accessed 3 May 2018).

Luke, S. 2015. Essentials of metaheuristics. Department of Computer Science,

George Mason University. Available:

https://cs.gmu.edu/~sean/book/metaheuristics/Essentials.pdf (Accessed 3 May

2017).

Mafarja, M. and Mirjalili, S. 2018. Whale optimization approaches for wrapper

feature selection. Applied Soft Computing. Available:

https://doi.org/10.1016/j.asoc.2017.11.006 (Accessed 20/04/2018).

Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I., Leiser, N. and

Czajkowski, G. 2010. Pregel: A system for large-scale graph processing. In:

Proceedings of the ACM SIGMOD international conference on management of

data, 2010: 135–146. Available:

https://kowshik.github.io/JPregel/pregel_paper.pdf (Accessed 20 April 2018).

Mamduh, S. M., Kamarudin, K., Shakaff, A. Y. M., Zakaria, A. and Abdullah,

http://dx.doi.org/10.1016%2Fj.patrec.2017.03.018
https://www.hindawi.com/journals/mpe/2018/9457821/
https://cs.gmu.edu/~sean/book/metaheuristics/Essentials.pdf
https://doi.org/10.1016/j.asoc.2017.11.006
https://kowshik.github.io/JPregel/pregel_paper.pdf

268

A. H., 2014. Comparison of Braitenberg vehicles with bio-inspired algorithms

for odor tracking in laminar flow. NSI Journals: Australian Journal of Basic and

Applied Sciences, 8(4): 6–15. Available:

https://pdfs.semanticscholar.org/afc5/471733de0feef22a18564b85c13449ce5553.

pdf (Accessed 20 April 2018).

Mangat, V. 2010. Swarm intelligence based technique for rule mining in the

medical domain. International Journal of Computer Applications, 4(1): 19–24.

Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.206.3011&rep=rep1&t

ype=pdf (Accessed 20 April 2018).

Marcus, G. 2018. Deep learning: A critical appraisal. Artificial Intelligence, 1–

27. Available: https://arxiv.org/abs/1801.00631 (Accessed 3 May 2017).

Marghescu, D. 2008. Evaluating multidimensional visualization techniques in

data mining tasks. Department of Information Technologies, Åbo Akademi

University, Turku Centre for computer science. Turku, Finland. Available on:

http://www.doria.fi/bitstream/handle/10024/69974/MarghescuDorina.pdf?sequen

ce=3&isAllowed=y (Accessed 2 April 2018).

Marill, D. G. T. 1963. On the effectiveness of receptors in recognition systems.

IEEE Transactions on Information Theory, 9(1): 11–17. Available: DOI:

10.1109/TIT.1963.1057810 (Accessed 2 April 2018).

Marwala, T. 2006. Computational intelligence for missing data imputation,

estimation, and management: Knowledge optimization techniques. University of

Witwatersrand, South Africa. Available:

https://scholar.google.co.za/scholar?q=Marwala,+T.+2006.+Computational+intel

ligence+for+missing+data+imputation,+estimation,+and+management:+Knowle

dge+optimization+Techniques.&hl=en&as_sdt=0&as_vis=1&oi=scholart

https://pdfs.semanticscholar.org/afc5/471733de0feef22a18564b85c13449ce5553.pdf
https://pdfs.semanticscholar.org/afc5/471733de0feef22a18564b85c13449ce5553.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.206.3011&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.206.3011&rep=rep1&type=pdf
https://arxiv.org/abs/1801.00631
http://www.doria.fi/bitstream/handle/10024/69974/MarghescuDorina.pdf?sequence=3&isAllowed=y
http://www.doria.fi/bitstream/handle/10024/69974/MarghescuDorina.pdf?sequence=3&isAllowed=y
https://doi.org/10.1109/TIT.1963.1057810
https://scholar.google.co.za/scholar?q=Marwala,+T.+2006.+Computational+intelligence+for+missing+data+imputation,+estimation,+and+management:+Knowledge+optimization+Techniques.&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.co.za/scholar?q=Marwala,+T.+2006.+Computational+intelligence+for+missing+data+imputation,+estimation,+and+management:+Knowledge+optimization+Techniques.&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.co.za/scholar?q=Marwala,+T.+2006.+Computational+intelligence+for+missing+data+imputation,+estimation,+and+management:+Knowledge+optimization+Techniques.&hl=en&as_sdt=0&as_vis=1&oi=scholart

269

(Accessed 2 April 2018).

Marwala, T. 2006. Probabilistic fault identification using vibration data and

neural networks. Mechanical systems and signal processing, 15(6): 1109–1128.

Available: http://www.tshilidzimarwala.com/imac3.pdf

Marwala, T. 2007. Bayesian training of neural networks using genetic

programming. Available: DOI: 10.1016/j.patrec.2007.03.004 (Accessed 3 May

2017).

MathWorks. 2017. Documentation: The language of technical computing.

Available: https://www.mathworks.com/tagteam/73554_91199v02_overview.pdf

Matsakis, N. E. 2010. Active duplicate detection with bayesian nonparametric

models. PhD Thesis. Massachusetts Institute of Technology. Available on:

https://pdfs.semanticscholar.org/b8b2/e325a2f25d9f0603c59be3c81558a0475ba4

.pdf (Accessed 3 May 2017).

Mirjalili, S., Mirjalili, M. S. and Lewis, A. 2014. Grey wolf optimizer. Advances

in Engineering Software, 69: 46–61. Available: Mittelstaedt, H. and Mittelstaedt,

M.-L. 1982. Homing by path integration. In: Papi, F., Wallraff, H. G. eds. Avian

navigation. New York: Springer, 290–297. Available:

https://link.springer.com/chapter/10.1007/978-3-642-68616-0_29 (Accessed 20

May 2018).

Moere, A. V. 2004. Time-varying data visualization using information flocking

boids. In: IEEE Symposium on Information Visualization. Austin, USA. pp. 1–8.

Available: DOI: 10.1109/INFVIS.2004.65 (Accessed 20 May 2018).

Moere, A. V., Clayden, J. J. and Dong, A. 2006. Data clustering and

visualization using cellular automata ants. Berlin and Heidelberg: Springer-

Verlag. Available: https://link.springer.com/chapter/10.1007/11941439_87

http://www.tshilidzimarwala.com/imac3.pdf
https://doi.org/10.1016/j.patrec.2007.03.004
https://www.mathworks.com/tagteam/73554_91199v02_overview.pdf
https://pdfs.semanticscholar.org/b8b2/e325a2f25d9f0603c59be3c81558a0475ba4.pdf
https://pdfs.semanticscholar.org/b8b2/e325a2f25d9f0603c59be3c81558a0475ba4.pdf
https://link.springer.com/chapter/10.1007/978-3-642-68616-0_29
https://doi.org/10.1109/INFVIS.2004.65
https://link.springer.com/chapter/10.1007/11941439_87

270

(Accessed 20 May 2018).

Mong, L. L., Hongjun, L., Ling, T. W. and Ko, Y. T. 2002. Cleansing data for

mining and warehousing. In: Database and Expert Systems Applications:

International Conference on Database and Expert Systems Applications. pp.

751–760. Available:

https://pdfs.semanticscholar.org/7a81/f7151b83b54b09ad2861aee52e5baa16fd33

.pdf (Accessed 20 May 2018).

Monge, A. 2000. An adaptive and efficient algorithm for detecting approximately

database records: Bulletin of the Technical Committee. IEEE Computer Society

Letters, 23. Available:

https://www.researchgate.net/profile/Alvaro_Monge/publication/2409102_An_A

daptive_and_Efficient_Algorithm_for_Detecting_Approximately_Duplicate_Dat

abase_Records/links/00b7d521d421658ea2000000/An-Adaptive-and-Efficient-

Algorithm-for-Detecting-Approximately-Duplicate-Database-Records.pdf

(Accessed 20 May 2018).

Monge, A. and Elkan, C. 1997. An efficient domain-independent algorithm for

detecting approximately duplicate database records. In: Proceedings of the ACM

SIGMOD Workshop on Research Issues on Data Mining and Knowledge

Discovery. pp. 23–29. Available:

https://pdfs.semanticscholar.org/405c/1614a009431a4d3eaa5b6b023055403aafe1

.pdf (Accessed 20/05/2018).

Monge, A. E. 1997. Adaptive detection of approximately duplicate database

records and the database integration approach to information discovery. Ph.D.

Thesis in Computer Science and Engineering, Department of Computer Science

and Engineering. University of California, San Diego. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.3368&rep=rep1&ty

pe=pdf (Accessed 20 May 2018).

https://pdfs.semanticscholar.org/7a81/f7151b83b54b09ad2861aee52e5baa16fd33.pdf
https://pdfs.semanticscholar.org/7a81/f7151b83b54b09ad2861aee52e5baa16fd33.pdf
https://www.researchgate.net/profile/Alvaro_Monge/publication/2409102_An_Adaptive_and_Efficient_Algorithm_for_Detecting_Approximately_Duplicate_Database_Records/links/00b7d521d421658ea2000000/An-Adaptive-and-Efficient-Algorithm-for-Detecting-Approximately-Duplicate-Database-Records.pdf
https://www.researchgate.net/profile/Alvaro_Monge/publication/2409102_An_Adaptive_and_Efficient_Algorithm_for_Detecting_Approximately_Duplicate_Database_Records/links/00b7d521d421658ea2000000/An-Adaptive-and-Efficient-Algorithm-for-Detecting-Approximately-Duplicate-Database-Records.pdf
https://www.researchgate.net/profile/Alvaro_Monge/publication/2409102_An_Adaptive_and_Efficient_Algorithm_for_Detecting_Approximately_Duplicate_Database_Records/links/00b7d521d421658ea2000000/An-Adaptive-and-Efficient-Algorithm-for-Detecting-Approximately-Duplicate-Database-Records.pdf
https://www.researchgate.net/profile/Alvaro_Monge/publication/2409102_An_Adaptive_and_Efficient_Algorithm_for_Detecting_Approximately_Duplicate_Database_Records/links/00b7d521d421658ea2000000/An-Adaptive-and-Efficient-Algorithm-for-Detecting-Approximately-Duplicate-Database-Records.pdf
https://pdfs.semanticscholar.org/405c/1614a009431a4d3eaa5b6b023055403aafe1.pdf
https://pdfs.semanticscholar.org/405c/1614a009431a4d3eaa5b6b023055403aafe1.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.3368&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.3368&rep=rep1&type=pdf

271

Morris, G., Farnum, G., Afzal, S., Robinson, C., Greene, J. and Coughlin. C.

2014. Patient identification and matching final report. 1-93. Available:

http://journal.ahima.org/wp-content/uploads/ONC-Patient-Identification-

Matching-Final-Report-February-2014.pdf (Accessed 3 May 2016).

Moslehi, P., Bidgoli, B. M., Nasiri, M. and Salajegheh, A. 2011. Multi-objective

numeric association rules mining via ant colony optimization for continuous

domains without specifying minimum support and minimum confidence. IJCSI

International Journal of Computer Science, 8(5): 34–41. Available:

https://pdfs.semanticscholar.org/1dd2/59bdeffaaa0b343b9518845f4a90effe9b46.

pdf (Accessed 20 May 2018).

Muro, C., Escobedo, R., Spector, L., Coppinger, R. 2011. Wolf-pack (Canis

lupus) hunting strategies emerge from simple rules in computational simulations.

Behav Process, 201(88): 192–197. Available: DOI:

10.1016/j.beproc.2011.09.006 (Accessed 20 May 2018).

Narang, R. K. 2013. Inside the black box: A simple guide to quantitative and

high frequency trading. 2nd ed. USA: John Wiley and Sons. Available:

https://leseprobe.buch.de/images-adb/78/04/78041046-b4fd-4cae-b31d-

3cb2a2e67301.pdf (Accessed 20 May 2018).

Naumann, F. 2013. Duplicate detection. Information Systems Group. Hasso

Plattner Institut, Universitat Potsdam. 1-52. Available:

https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/folien/SS13/DPDC/D

PDC_11_Duplicate_Detection.pdf (Accessed 3 May 2017).

Naumann, F. and Herschel, M. 2010. An introduction to duplicate detection:

synthesis lectures on data management. Synthesis Lectures on Data

Management, 2(1): 1–87. Available:

https://doi.org/10.2200/S00262ED1V01Y201003DTM003 (Accessed 3 May

https://pdfs.semanticscholar.org/1dd2/59bdeffaaa0b343b9518845f4a90effe9b46.pdf
https://pdfs.semanticscholar.org/1dd2/59bdeffaaa0b343b9518845f4a90effe9b46.pdf
https://doi.org/10.1016/j.beproc.2011.09.006
https://leseprobe.buch.de/images-adb/78/04/78041046-b4fd-4cae-b31d-3cb2a2e67301.pdf
https://leseprobe.buch.de/images-adb/78/04/78041046-b4fd-4cae-b31d-3cb2a2e67301.pdf
https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/folien/SS13/DPDC/DPDC_11_Duplicate_Detection.pdf
https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/folien/SS13/DPDC/DPDC_11_Duplicate_Detection.pdf
https://doi.org/10.2200/S00262ED1V01Y201003DTM003

272

2017).

Nelwamondo, F. V., Mohamed, S. and Marwala, T. 2007. Missing data: A

comparison of neural network and expectation maximisation techniques. School

of Electrical and Information Engineering, University of the Witwatersrand,

South Africa. 1-24. Available:

https://arxiv.org/ftp/arxiv/papers/0704/0704.3474.pdf (Accessed 10 August

2017).

Nolan, R. L. 1979. Managing the crises in data processing. Harvard Business

Review, 57(1): 115–126. Available:

https://journalofbigdata.springeropen.com/articles/10.1186/s40537-015-0030-3

(Accessed 25 August 2018).

Osman, I. H. and Laporte, G. 1996. Metaheuristics: A bibliography. Annals of

Operational Research, 63: 513–623. Available:

https://s3.amazonaws.com/academia.edu.documents/46309065/Metaheuristics_A

_Bibliography20160607-17999-

wc81c1.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1535

615211&Signature=Ew2Jz0mbjSq2G1A8VjSAQUIi1WE%3D&response-

content-

disposition=inline%3B%20filename%3DMetaheuristics_A_bibliography.pdf

(Accessed 25 August 2018).

Oweis, N. E., Fouad, M. M, Oweis, S. R., Owais, S. S. and Snasel, V. 2016. A

novel mapreduce lift association rule mining algorithm (mrlar) for big data.

International Journal of Advanced Computer Science and Applications

(IJACSA), 7(3): 151–157. Available: DOI: 10.14569/IJACSA.2016.070321

(Accessed 25 August 2018).

Panda, S. K., Nag, S. and Jana, P. K. 2014. A smoothing based task scheduling

https://arxiv.org/ftp/arxiv/papers/0704/0704.3474.pdf
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-015-0030-3
https://s3.amazonaws.com/academia.edu.documents/46309065/Metaheuristics_A_Bibliography20160607-17999-wc81c1.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1535615211&Signature=Ew2Jz0mbjSq2G1A8VjSAQUIi1WE%3D&response-content-disposition=inline%3B%20filename%3DMetaheuristics_A_bibliography.pdf
https://s3.amazonaws.com/academia.edu.documents/46309065/Metaheuristics_A_Bibliography20160607-17999-wc81c1.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1535615211&Signature=Ew2Jz0mbjSq2G1A8VjSAQUIi1WE%3D&response-content-disposition=inline%3B%20filename%3DMetaheuristics_A_bibliography.pdf
https://s3.amazonaws.com/academia.edu.documents/46309065/Metaheuristics_A_Bibliography20160607-17999-wc81c1.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1535615211&Signature=Ew2Jz0mbjSq2G1A8VjSAQUIi1WE%3D&response-content-disposition=inline%3B%20filename%3DMetaheuristics_A_bibliography.pdf
https://s3.amazonaws.com/academia.edu.documents/46309065/Metaheuristics_A_Bibliography20160607-17999-wc81c1.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1535615211&Signature=Ew2Jz0mbjSq2G1A8VjSAQUIi1WE%3D&response-content-disposition=inline%3B%20filename%3DMetaheuristics_A_bibliography.pdf
https://s3.amazonaws.com/academia.edu.documents/46309065/Metaheuristics_A_Bibliography20160607-17999-wc81c1.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1535615211&Signature=Ew2Jz0mbjSq2G1A8VjSAQUIi1WE%3D&response-content-disposition=inline%3B%20filename%3DMetaheuristics_A_bibliography.pdf
https://s3.amazonaws.com/academia.edu.documents/46309065/Metaheuristics_A_Bibliography20160607-17999-wc81c1.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1535615211&Signature=Ew2Jz0mbjSq2G1A8VjSAQUIi1WE%3D&response-content-disposition=inline%3B%20filename%3DMetaheuristics_A_bibliography.pdf

273

algorithm for heterogeneous multi-cloud environment. In: 3rd IEEE International

Conference on Parallel, Distributed and Grid Computing (PDGC). Waknaghat:

IEEE. pp. 62–67. Available: DOI: 10.1109/PDGC.2014.7030716 (Accessed 20

April 2018).

Patel, A. B., Nguyen, T. and Baraniuk, R. G. 2015. A probabilistic theory of deep

learning. Department of Electrical and Computer Engineering, Rice University.

1-56. Available: https://arxiv.org/pdf/1504.00641v1.pdf (Accessed 5 September

2018).

Pearson, W. 1991. Searching protein sequence libraries: Comparison of the

sensitivity and selectivity of the Smith-Waterman and FASTA algorithms.

Genomics, 11(3): 635–650. Available:

https://www.sciencedirect.com/science/article/pii/088875439190071L?via%3Dih

ub (Accessed 25 August 2018).

Pearson, W. 1995. Comparison of methods for searching protein sequence

databases. Protein Science, 4(6): 1145. Available:

http://compbio.berkeley.edu/class/c246/Reading/pearson-1995-proteins.pdf

(Accessed 25 August 2018).

Pearson, W. R. 2014. BLAST and FASTA similarity searching for multiple

sequence alignment. Multiple Sequence Alignment Methods, 1079: 75–101.

Available: https://link.springer.com/protocol/10.1007%2F978-1-62703-646-7_5

(Accessed 5 September 2018).

Pei, J., Han, J., Mortazavi-Asl. B., Wang, J., Pinto, H., Chen, Q., Dayal, U. and

Hsu, M. C. 2001. PrefixSpan: Mining sequential patterns efficiently by prefix-

projected pattern growth. In: Proc. of the Int’l Conf on data engineering (ICDE).

215–224. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.12.7211&rep=rep1&type=pdf (Accessed 3 July 2018).

https://doi.org/10.1109/PDGC.2014.7030716
https://arxiv.org/pdf/1504.00641v1.pdf
https://www.sciencedirect.com/science/article/pii/088875439190071L?via%3Dihub
https://www.sciencedirect.com/science/article/pii/088875439190071L?via%3Dihub
http://compbio.berkeley.edu/class/c246/Reading/pearson-1995-proteins.pdf
https://link.springer.com/protocol/10.1007%2F978-1-62703-646-7_5
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.7211&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.7211&rep=rep1&type=pdf

274

Penaloza, C. I., Mae, Y., Ohara, K. and Arai, T. 2012. Social human behavior

modeling for robot imitation learning. In: Proceedings of 2012 IEEE

International Conference on Mechatronics and Automation. Chengdu, China. pp.

457–462. Available: https://zapdf.com/social-human-behavior-modeling-for-

robot-imitation-learning.html (Accessed 25 July 2018).

Piatetsky-Shapiro, G. 1991. Discovery, analysis, and presentation of strong rules.

Knowledge discovery in databases. Cambridge: AAAI/MIT Press. Available:

https://pdfs.semanticscholar.org/a8cd/b6dd622e1f0d61abaef345a3ddbf9795c02f.

pdf (Accessed 3 February 2017).

Priya, R. D. and Kuppuswami, S. 2012. A genetic algorithm based approach for

inputing missing discrete attribute values in databases. WSEAS Transactions on

Information Science and Applications, 9(6): 169–178. Available:

https://pdfs.semanticscholar.org/167c/c1cbb5c0a587c95c8444e0a80d961c40a5cb

.pdf (Accessed 3 February 2017).

Qodmanan H. R., Nasiri, M., and Minaei-Bidgoli, B. 2010. Multi objective

association rule mining with genetic algorithm without specifying minimum

support and minimum confidence. Expert Systems with Applications. 38(1): 288–

298. Available: DOI: 10.1016/j.eswa.2010.06.060 (Accessed 3 February 2017).

Quinlan, J. R. 1989. Unknown attribute values in induction. In: Proceedings of

the Sixth International Workshop on Machine Learning, Ithaca. NY: Morgan

Kaufmann. pp. 164–168. Available:

https://pdfs.semanticscholar.org/d1d8/ff72a970d03c37e776f1222051f3fd6c617c.

pdf (Accessed 3 February 2017).

Radoop. 2015. Radoop. Available: https://rapidminer.com/products/radoop/.

(Accessed 2 February 2015).

https://zapdf.com/social-human-behavior-modeling-for-robot-imitation-learning.html
https://zapdf.com/social-human-behavior-modeling-for-robot-imitation-learning.html
https://pdfs.semanticscholar.org/a8cd/b6dd622e1f0d61abaef345a3ddbf9795c02f.pdf
https://pdfs.semanticscholar.org/a8cd/b6dd622e1f0d61abaef345a3ddbf9795c02f.pdf
https://pdfs.semanticscholar.org/167c/c1cbb5c0a587c95c8444e0a80d961c40a5cb.pdf
https://pdfs.semanticscholar.org/167c/c1cbb5c0a587c95c8444e0a80d961c40a5cb.pdf
https://pdfs.semanticscholar.org/d1d8/ff72a970d03c37e776f1222051f3fd6c617c.pdf
https://pdfs.semanticscholar.org/d1d8/ff72a970d03c37e776f1222051f3fd6c617c.pdf

275

Rahm, E. and Do, H. H. 2000. Data cleaning: Problems and current approaches.

1-11. Available:

https://www.betterevaluation.org/sites/default/files/data_cleaning.pdf (Accessed

3 February 2017).

Railean, I., Lenca, P., Moga, S. and Borda, M. 2013. Closeness preference a new

interestingness measure for sequential rules mining. Knowledge-Based-Systems.

44: 48–56. Available: DOI: 10.1016/j.knosys.2013.01.025 (Accessed 2 February

2017).

Rajasekaran, S., Nick, H., Pardalos, P. M., Sahni, S. and Shaw, G. 2001. Efficient

algorithms for local alignment search. Journal of Combinatorial Optimization, 5:

117–124. Available:

https://link.springer.com/content/pdf/10.1023/A:1009893719470.pdf (Accessed 2

February 2017).

Raju, V. P. and Varma, G. P. S. 2015. Mining closed sequential patterns in large

sequence databases. International Journal of Database Management Systems

(IJDMS), 7(1): 29–39. Available:

https://pdfs.semanticscholar.org/e8b7/783db07a89917e8fb1a06227e3a9d64b424

2.pdf (Accessed 3 July 2017).

Ramya, K. A. and Pushpa, M. 2016. A survey on lossless and lossy data

compression methods. International Journal of Computer Science and

Engineering Communications, 4(1): 1277–1280. Available:

https://pdfs.semanticscholar.org/c129/889a27486322f5c9cc27adae78e04f8a0b1b

.pdf (Accessed 3 July 2017).

Rebentrost, P., Mohseni, M. and Lloyd, S. 2014. Quantum support vector

machine for big feature and big data classification. American Physical Society.

Available: http://dblp.uni-

https://www.betterevaluation.org/sites/default/files/data_cleaning.pdf
https://doi.org/10.1016/j.knosys.2013.01.025
https://link.springer.com/content/pdf/10.1023/A:1009893719470.pdf
https://pdfs.semanticscholar.org/e8b7/783db07a89917e8fb1a06227e3a9d64b4242.pdf
https://pdfs.semanticscholar.org/e8b7/783db07a89917e8fb1a06227e3a9d64b4242.pdf
https://pdfs.semanticscholar.org/c129/889a27486322f5c9cc27adae78e04f8a0b1b.pdf
https://pdfs.semanticscholar.org/c129/889a27486322f5c9cc27adae78e04f8a0b1b.pdf

276

trier.de/db/journals/corr/corr1307.html#RebentrostML13 (Accessed 3 May

2017).

Rehman, M. H. U. 2016. Big data reduction methods: A survey. Data Science

and Engineering, 1(4): 265–284. Available:

https://link.springer.com/article/10.1007/s41019-016-0022-0 (Accessed 3 May

2017).

Rehmana, M. H. U., Chang, V., Batool, A. and Waha, T. Y. 2016. Big data

reduction framework for value creation in sustainable enterprises. International

Journal of Information Management, 1–23. Available:

https://core.ac.uk/download/pdf/46574748.pdf (Accessed 3 January 2017).

Risden, K. and Czerwinski, M. P. 2000. An initial examination of ease of use for

2d and 3d information visualizations of web content. Int. J. Human-Computer

Studies, 53: 695–714. Available: DOI:10.1006/ijhc.2000.0413 (Accessed 3

January 2017).

Rouse, M. 2018. Big data analytics. Search Business Analytics. Available:

whatIs.com (Accessed 9 April 2018).

Rubin D. B. 1977. Formalizing subjective notion about the effect of

nonrespondents in sample surveys. Journal of the American Statistical

Association, 72(359): 538–543.

Rubin, L. H., Witkiewitz, K., Andre, J. St. and Reilly, S. 2007. Methods for

handling missing data in the behavioral neurosciences: Don’t throw the baby rat

out with the bath water. Journal of Undergraduate Neuroscience, 5(2): 1–7.

Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3592650/ (Accessed

9 April 2018).

Rusu, F. and Dobra, A. 2011. GLADE: A scalable framework for efficient

https://link.springer.com/article/10.1007/s41019-016-0022-0
https://core.ac.uk/download/pdf/46574748.pdf
https://doi.org/10.1006/ijhc.2000.0413
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3592650/

277

analytics. In: Proceedings of LADIS workshop held in conjunction with VLDB.

pp. 1–6. Available:

https://pdfs.semanticscholar.org/0347/6dd609ad7749a8fe7a9699800842c560e33

3.pdf (Accessed 9 April 2018).

Sakato, T., Ozeki, M. and Oka, N. 2012. A computational model of imitation and

autonomous behavior. In: 13th ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking and Parallel/Distributed

Computing. Japam: IEEE. pp. 13–18. Available:

https://link.springer.com/chapter/10.1007/978-3-319-00738-0_4 (Accessed 9

April 2018).

Sakato, T., Ozeki, M. and Oka, N. 2013. Learning which features to imitate in a

painting task. In: Second IIAI International Conference on Advanced Applied

Informatics. USA: IEEE. pp. 379–384. Available: DOI: 10.1109/IIAI-

AAI.2013.74 (Accessed 9 April 2018).

Santos, B. S. 2008. Evaluating visualization techniques and tools: What are the

main issues? Universidade de Aveiro, Aveiro, Portugal. Available:

http://www.dis.uniroma1.it/beliv08/pospap/santos.pdf (Accessed 3 May 2017).

Sarath, K. N. V. D. and Ravi, V. 2013. Association rule mining using binary

particle swarm optimization. Engineering Applications of Artificial Intelligence.

Available: www.elsevier.com/locate/engappai (Accessed 3 May 2017).

Sauleau, E. A., Paumier, J.-P. and Buemi, A. 2005. Medical record linkage in

health information systems by approximate string matching and clustering. BMC

Medical Informatics and Decision Making, 5(32): 1–13. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1274322/ (Accessed 3 March

2017).

Schatz, B., Chameron, S., Beugnon, G. and Collett, T. S. 1999. The use of path

https://pdfs.semanticscholar.org/0347/6dd609ad7749a8fe7a9699800842c560e333.pdf
https://pdfs.semanticscholar.org/0347/6dd609ad7749a8fe7a9699800842c560e333.pdf
https://link.springer.com/chapter/10.1007/978-3-319-00738-0_4
http://doi.org/10.1109/IIAI-AAI.2013.74
http://doi.org/10.1109/IIAI-AAI.2013.74
http://www.dis.uniroma1.it/beliv08/pospap/santos.pdf
http://www.elsevier.com/locate/engappai
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1274322/

278

integration to guide route learning in ants. Nature, 399: 769–772. Available:

www.nature.com/articles/21625 (Accessed 10 September 2017).

Schmidhuber, J. 2014. Draft: Deep learning in neural networks: An overview.

Neural Networks, 61: 85–117. Available:

http://www.idsia.ch/∼juergen/DeepLearning30April2014.pdf (Accessed 10

February 2018).

Shekhawat, A., Poddar. P. and Boswal. D. 2009. Ant colony optimization

algorithms: Introduction and beyond. Artificial Intelligence Seminar, Indian

Institute of Technology, Bombay. Available:

http://mat.uab.cat/~alseda/MasterOpt/ACO_Intro.pdf (Accessed 10 September

2018).

Shi, Y. and Eberhart, R. 1998. A modified particle swarm optimizer. In: IEEE

International Conference on Evolutionary Computation, Anchorage. pp. 69–73.

Available: http://dx.doi.org/10.1109/icec.1998.699146 (Accessed 5 September

2018).

Shneiderman, B. 2008. Extreme visualization: Squeezing a billion records into a

million pixels. In: ACM Conference on Management of Data (SIGMOD).

Vancouver: ACM. Available:

https://www.cs.umd.edu/~ben/papers/Shneiderman2008Extreme.pdf (Accessed 3

September 2017).

Shpaer, E. G., Robinson, M., Yee, D., Candlin, J. D., Mines, R. and Hunkapiller,

T. 1996. Sensitivity and selectivity in protein similarity searches: A comparison

of Smith-Waterman in hardware to blast and fasta. Genomics, 38(2): 179–191.

Available:

https://pdfs.semanticscholar.org/8889/2cf73e9ce788158572cb0ecf00742d8e67d1

.pdf (Accessed 3 September 2017).

http://www.nature.com/articles/21625
http://mat.uab.cat/~alseda/MasterOpt/ACO_Intro.pdf
http://dx.doi.org/10.1109/icec.1998.699146
https://www.cs.umd.edu/~ben/papers/Shneiderman2008Extreme.pdf
https://pdfs.semanticscholar.org/8889/2cf73e9ce788158572cb0ecf00742d8e67d1.pdf
https://pdfs.semanticscholar.org/8889/2cf73e9ce788158572cb0ecf00742d8e67d1.pdf

279

Shrubb, M. 1982. The hunting behaviour of some farmland Kestrels. Bird Study,

29: 121–128. Available:

https://www.tandfonline.com/doi/pdf/10.1080/00063658209476746 (Accessed 3

September 2016).

Silberschatz, A. and Tuzhilin, A. 1995. On subjective measures of interestingness

in knowledge discovery. In: Proceedings of the First International Conference on

Knowledge Discovery and Data Mining (KDD’95). Montreal: AAAI Press. pp.

275–281. Available:

http://pages.stern.nyu.edu/~aumyarov/study/books/nyu/alex/silberschatz95subjec

tive.pdf (Accessed 3 September 2016).

Sim, J., Lee, J. S. and Kwon, O. 2015. Missing values and optimal selection of

an imputation method and classification algorithm to improve the accuracy of

ubiquitous computing application. Hindawi Publishing Corporation

Mathematical Problems in Engineering. Available:

https://www.hindawi.com/journals/mpe/2015/538613/abs/ (Accessed 10

September 2017).

Sinkovits, D. 2006. Flocking behavior. Semabtic Scholar, 1–10. Available:

http://guava.physics.uiuc.edu/~nigel/courses/569/Essays_Spring2006/files/Sinko

vits.pdf (Accessed 10 September 2016).

Siripurapu, A. 2015. Convolutional networks for stock trading. Available:

http://cs231n.stanford.edu/reports/2015/pdfs/ashwin_final_paper.pdf (Accessed 5

September 2018).

Smith, T. F. and Waterman, M. S. 1981. Identification of common molecular

subsequences. Journal of Mol. Biology, 147(1): 195–197. Available:

https://pdfs.semanticscholar.org/40c5/441aad96b366996e6af163ca9473a19bb9ad

.pdf (Accessed 10 October 2017).

https://www.tandfonline.com/doi/pdf/10.1080/00063658209476746
http://pages.stern.nyu.edu/~aumyarov/study/books/nyu/alex/silberschatz95subjective.pdf
http://pages.stern.nyu.edu/~aumyarov/study/books/nyu/alex/silberschatz95subjective.pdf
https://www.hindawi.com/journals/mpe/2015/538613/abs/
http://guava.physics.uiuc.edu/~nigel/courses/569/Essays_Spring2006/files/Sinkovits.pdf
http://guava.physics.uiuc.edu/~nigel/courses/569/Essays_Spring2006/files/Sinkovits.pdf
http://cs231n.stanford.edu/reports/2015/pdfs/ashwin_final_paper.pdf
https://pdfs.semanticscholar.org/40c5/441aad96b366996e6af163ca9473a19bb9ad.pdf
https://pdfs.semanticscholar.org/40c5/441aad96b366996e6af163ca9473a19bb9ad.pdf

280

Smolka, J. and Dacke, M. 2017. The pure path-intergation system of homing

dung beetles. Available: www.biology.lu.se/research/research-groups/lund-

vision-group/research-projects/the-pure-path-integration-system-of-homing-

dung-beetles (Accessed 10 September 2017).

Sohangir, S., Wang, D., Pomeranets, A. and Khoshgoftaar, T. M. 2018. Big data:

Deep learning for financial sentiment analysis. Journal of Big Data. Available:

https://journalofbigdata.springeropen.com/articles/10.1186/s40537-017-0111-6

(Accessed 10 September 2017).

Song, M. and Rajasekaran, S. 2006. A transaction mapping algorithm for

frequent itemsets mining. IEEE Transactions on Knowledge and Data

Engineering. 18(4): 472–481. Available:

http://doi.ieeecomputersociety.org/10.1109/TKDE.2006.52

Song, Q., Fong, S. and Tang, R. 2016. Self-adaptive Wolf Search algorithm. In:

5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI).

Kumamoto, Japan: IEEE. pp. 576–582. Available: DOI: 10.1109/IIAI-

AAI.2016.102 (Accessed 10 September 2017).

Sorensen, D. C., Lehoucq, R. B., Yang, C. and Maschhoff, K. 2012. Profiling for

improving performance. Rice University. Available:

www.https://www.mathworks.com/help/matlab/matlab_prog/profiling-for-

improving-performance.html (Accessed 10 May 2018).

Spencer, R. L. 2002. Introduction to Matlab. Available:

https://www.physics.byu.edu/courses/computational/phys330/matlab.pdf

(Accessed 10 September /2017).

Srikant, R. and Agrawal, R. 1996. Mining quantitative association rules in large

relational tables. In: Proceedings of the 1996 ACM SIGMOD International

Conference on Management of Data, Monreal, Canada. New York. pp. 1–12.

http://www.biology.lu.se/research/research-groups/lund-vision-group/research-projects/the-pure-path-integration-system-of-homing-dung-beetles
http://www.biology.lu.se/research/research-groups/lund-vision-group/research-projects/the-pure-path-integration-system-of-homing-dung-beetles
http://www.biology.lu.se/research/research-groups/lund-vision-group/research-projects/the-pure-path-integration-system-of-homing-dung-beetles
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-017-0111-6
http://doi.ieeecomputersociety.org/10.1109/TKDE.2006.52
https://www.mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html
https://www.mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html
https://www.physics.byu.edu/courses/computational/phys330/matlab.pdf

281

Available: http://sci2s.ugr.es/keel/pdf/algorithm/congreso/1996%20-

%20SrikantAgrawal-

%20Mining%20Quantitative%20association%20rules%20in%20large%20relatio

nal%20tables.pdf (Accessed 10 September 2017).

Srivastava, S. 2014. Weka: A tool for data preprocessing, classification,

ensemble, clustering and association rule mining. International Journal of

Computer Applications, 88(10): 26–29. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.429.1463&rep=rep1&t

ype=pdf (Accessed 9 June 2017).

Storn, R. and Price, K. 1997. Differential evolution: A simple and efficient

heuristic for global optimisation over continuous spaces. Journal of Global

Optimisation, 11(4): 341–359. Available:

http://www1.icsi.berkeley.edu/~storn/TR-95-012.pdf (Accessed 9 June 2017).

Stützle, T. and Dorigo, M. 2002. Ant colony optimization. Cambridge, MA and

London: MIT Press. Available:

https://pdfs.semanticscholar.org/7c72/393febe25ef5ce2f5614a75a69e1ed0d9857.

pdf (Accessed 9 June 2017).

Sumathi, S. and Sivanandam, S. N. 2006. Introduction to data mining principles.

Studies in Computational Intelligence (SCI), 29: 1–20. Available:

www.springer.com/cda/content/.../cda.../9783540343509-c1.pdf (Accessed 3

May 2017).

Tang, R., Fong, S., Yang, X.-S. and Deb, S. 2012. Wolf search algorithm with

ephemeral memory. In: Seventh International Conference on Digital Information

Management (ICDIM), Macau. China: IEEE. pp. 1–8. Available: DOI:

10.1109/ICDIM.2012.6360147 (Accessed 3 May 2017).

Thakker, D., Osman, T. and Lakin, P. 2009. GATE JAPE grammar tutorial

http://sci2s.ugr.es/keel/pdf/algorithm/congreso/1996%20-%20SrikantAgrawal-%20Mining%20Quantitative%20association%20rules%20in%20large%20relational%20tables.pdf
http://sci2s.ugr.es/keel/pdf/algorithm/congreso/1996%20-%20SrikantAgrawal-%20Mining%20Quantitative%20association%20rules%20in%20large%20relational%20tables.pdf
http://sci2s.ugr.es/keel/pdf/algorithm/congreso/1996%20-%20SrikantAgrawal-%20Mining%20Quantitative%20association%20rules%20in%20large%20relational%20tables.pdf
http://sci2s.ugr.es/keel/pdf/algorithm/congreso/1996%20-%20SrikantAgrawal-%20Mining%20Quantitative%20association%20rules%20in%20large%20relational%20tables.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.429.1463&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.429.1463&rep=rep1&type=pdf
http://www1.icsi.berkeley.edu/~storn/TR-95-012.pdf
https://pdfs.semanticscholar.org/7c72/393febe25ef5ce2f5614a75a69e1ed0d9857.pdf
https://pdfs.semanticscholar.org/7c72/393febe25ef5ce2f5614a75a69e1ed0d9857.pdf
http://www.springer.com/cda/content/.../cda.../9783540343509-c1.pdf

282

version 1.0. Available: https://gate.ac.uk/sale/thakker-jape-

tutorial/GATE%20JAPE%20manual.pdf (Accessed: 19 February 2017).

Thirumuruganathan, S. 2010. A detailed introduction to k-nearest neighbor

(KNN) algorithm. Available:

https://saravananthirumuruganathan.wordpress.com/2010/05/17/a-detailed-

introduction-to-k-nearest-neighbor-knn-algorithm/ (Accessed 3 May 2017).

Tian, Z., Lu, H., Ji, W., Zhou, A. and Tian, Z. 2002. An n-gram-based approach

for detecting approximately duplicate database records. Available:

https://link.springer.com/content/pdf/10.1007/s007990100044.pdf (Accessed 3

May 2017).

Trawiński, B., Smętek, B., Telec, Z. and Lasota, T. 2012. Nonparametric

statistical analysis for multiple comparison of machine learning regression

algorithms. International Journal of Applied Mathematics and Computer

Science, 22(4): 867–881. Available: DOI: 10.2478/v10006-012-0064 (Accessed:

1 December 2017).

Tsai, C.-W. Lai, C.-F., Chao, H.-C. and Vasilakos, A. V. 2015. Big data analytics.

Journal of Big Data, 2(21): 1–32. Available: https://doi.org/10.1186/s40537-015-

0030-3 (Accessed: 19 February 2017).

Tseng, V. S., Liang, T. and Chu, C. 2006. Efficient mining of temporal high

utility itemsets from data streams. In: UBDM’06, Philadelphia, Pennsylvania.

Available: http://www2.ic.uff.br/~bianca/ubdm-camera-ready/tseng-ubdm06.pdf

(Accessed: 19 February 2017).

Tu, V. and Koh, I. 2010. A tree-based approach for efficiently mining

approximate frequent itemset. In: 2010 Fourth International Conference on

Research Challenges in Information Science (RCIS). Nice, France: IEEE. pp. 1–

12. Available:

https://gate.ac.uk/sale/thakker-jape-tutorial/GATE%20JAPE%20manual.pdf
https://gate.ac.uk/sale/thakker-jape-tutorial/GATE%20JAPE%20manual.pdf
https://saravananthirumuruganathan.wordpress.com/2010/05/17/a-detailed-introduction-to-k-nearest-neighbor-knn-algorithm/
https://saravananthirumuruganathan.wordpress.com/2010/05/17/a-detailed-introduction-to-k-nearest-neighbor-knn-algorithm/
https://link.springer.com/content/pdf/10.1007/s007990100044.pdf
https://doi.org/10.1186/s40537-015-0030-3
https://doi.org/10.1186/s40537-015-0030-3
http://www2.ic.uff.br/~bianca/ubdm-camera-ready/tseng-ubdm06.pdf

283

https://pdfs.semanticscholar.org/b28d/4efa8c6976df350ba2996161479789225f85

.pdf (Accessed: 19 February 2017).

Ullman, S., Poggio, T., Harari, D., Zysman, D. and Seibert, D. 2014.

Unsupervised learning clustering. Center for Brains, Minds and Machines.

Available: www.mit.edu/~9.54/fall14/slides/Class13.pdf (Accessed 25 August

2018).

Uncu, O. and Turksen, I. B. 2007. A novel feature selection approach:

Combining feature wrappers and filters. Inf. Sci., 177: 449–466. Available: DOI:

10.1016/j.ins.2006.03.022 (Accessed: 19 February 2018).

Unler, A. and Murat, A. 2010. A discrete particle swarm optimization method for

feature selection in binary classification problems. European Journal of

Operational Research, 206(1): 528–539. Available:

https://doi.org/10.1016/j.ejor.2010.02.032 (Accessed 5 September 2018).

Unler, A., Murat, A. and Chinnam, R. B. 2011. mr2PSO: A maximum relevance

minimum redundancy feature selection method based on swarm intelligence for

support vector machine classification. Information sciences, 20(181): 4625–

4641. DOI:10.1016/j.ins.2010.05.037 (Accessed 5 September 2018).

Varland, D. E. 1991. Behavior and ecology of post-fledging American Kestrels:

Retrospective Theses and Dissertations Paper 9784. Iowa State University

Digital Repository. Available:

https://lib.dr.iastate.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&h

ttpsredir=1&article=10783&context=rtd (Accessed 25 August 2018).

Viitala, J. E. Korplmäki, I., Palokangas, P. and Koivula, M. 1995. Attraction of

kestrels to vole scent marks visible in ultraviolet light. Nature, 373: 425–427.

Available: http://dx.doi.org/10.1038/373425a0 (Accessed 25 May 2018).

https://pdfs.semanticscholar.org/b28d/4efa8c6976df350ba2996161479789225f85.pdf
https://pdfs.semanticscholar.org/b28d/4efa8c6976df350ba2996161479789225f85.pdf
http://www.mit.edu/~9.54/fall14/slides/Class13.pdf
http://dx.doi.org/10.1016%2Fj.ins.2006.03.022
https://doi.org/10.1016/j.ejor.2010.02.032
https://lib.dr.iastate.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=10783&context=rtd
https://lib.dr.iastate.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=10783&context=rtd
http://psycnet.apa.org/doi/10.1038/373425a0

284

Vijayarani, S. and Janani, R. 2016. Text mining: Open source tokenization tools

– An analysis. Advanced Computational Intelligence: An International Journal

(ACII). 3(1): 37–47. Available: doi: 10.5121/acii.2016.3104 37 (Accessed 10

September 2017).

Village, A. 1990. The Kestrel. London: T. and. A.D. Poyser. Available:

https://doi.org/10.1080/00306525.1992.9634182 (Accessed 10 September 2016).

Village, A. 2010. The Kestrel. Journal of African Ornithology, 63(1): 45.

Available: https://books.google.co.za/books?isbn=1408138190 (Accessed 25

August 2018).

Vingron, M. and Waterman, M. S. 1994. Sequence alignment and penalty choice

review of concepts, case studies and implications. Journal of Mol. Biol., 235: 1–

12. Available:

https://www.sciencedirect.com/science/article/pii/S0022283605800063?via%3Di

hub (Accessed 10 September 2016).

Vlachos, C., Bakaloudis, D., Chatzinikos, E., Papadopoulos, T. and Tsalagas, D.

2003. Aerial hunting behaviour of the lesser kestrel falco naumanni during the

breeding season in thessaly (Greece). Acta Ornithologica, 38(2):129–134.

Available: http://www.bioone.org/doi/pdf/10.3161/068.038.0210 (Accessed 10

September 2016).

Vreeken, J. and Tatti, N. 2014. Interesting patterns. Switzerland: Springer.

Available: https://eda.mmci.uni-saarland.de/pubs/2014/fpmbook_int-

vreeken,tatti.pdf (Accessed 10 September 2016).

Waad, B., Ghazi, B. M. and Mohamed, L. 2013. On the effect of search strategies

on wrapper feature selection in credit scoring. In: 2013 International Conference

on Control, Decision and Information Technologies (CoDIT). Hammamet,

Tunisia: IEEE. pp. 218–223. Available: DOI: 10.1109/CoDIT.2013.6689547

https://doi.org/10.1080/00306525.1992.9634182
https://books.google.co.za/books?isbn=1408138190
https://www.sciencedirect.com/science/article/pii/S0022283605800063?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0022283605800063?via%3Dihub
http://www.bioone.org/doi/pdf/10.3161/068.038.0210
https://eda.mmci.uni-saarland.de/pubs/2014/fpmbook_int-vreeken,tatti.pdf
https://eda.mmci.uni-saarland.de/pubs/2014/fpmbook_int-vreeken,tatti.pdf

285

(Accessed 10 September 2016).

Wang, J., Han, J. and Li, C. 2007. Frequent closed sequence mining without

candidate maintenance. IEEE Transaction Knowledge and Data Engineering,

19(8): 1042–1056. Available: http://hanj.cs.illinois.edu/pdf/tkde07_wangj.pdf

(Accessed 10 September 2016).

Wang, J., Hedar, A-R., Wang, S. and Ma, J. 2012. Rough set and scatter search

metaheuristic based feature selection for credit scoring. Expert Systems with

Applications, 39(6): 6123–6128. DOI: 10.1016/j.eswa.2011.11.011 (Accessed 5

September 2018).

Wang, J., Zhang, L., Liu, G., Liu, Q. and Chen, E. 2014. On top-k closed

sequential patterns mining. In: 11th International Conference on Fuzzy Systems

and Knowledge Discovery. Xiamen, China: IEEE. pp. 295–300. Available: DOI:

10.1109/FSKD.2014.6980849 (Accessed 10 September 2016).

Wang, L., Wang, G. and Alexander, C. A. 2015. Big data and visualization:

Methods, challenges and technology progress. Digital Technologies, 1(1): 33–38.

Available: http://pubs.sciepub.com/dt/1/1/7 (Accessed: 19 February 2017).

Ward, M., Grinstein, G. and Keim, D. 2010. Interactive data visualization:

Foundations, techniques, and application. London, New York: A. K. Peters/CRC

Press.

Wei–yong, Y, Huang J., Zhang, Z., Kong, J. 2015. SIBA: A fast frequent item

sets mining algorithm based on sampling and improved bat algorithm. In: IEEE:

Chinese Automation Congress (CAC). Available: DOI:

10.1109/CAC.2015.7382471 (Accessed 5 September 2018).

Weston, J., Chopra, S. and Adams, K. 2014. #TAGSPACE: Semantic embeddings

from hashtags. In: Proceedings of the 2014 Conference on Empirical Methods in

http://hanj.cs.illinois.edu/pdf/tkde07_wangj.pdf
https://doi.org/10.1109/FSKD.2014.6980849
http://pubs.sciepub.com/dt/1/1/7
https://doi.org/10.1109/CAC.2015.7382471

286

Natural Language Processing (EMNLP). Association for Computational

Linguistics. 1822–1827. Available:

http://emnlp2014.org/papers/pdf/EMNLP2014194.pdf (Accessed: 05-September-

2018).

Winkler, W. E. 1999. The state of record linkage and current research problems:

Statistics of income division, internal revenue service publication R99/04.

Bureau of the Census, Washington, DC, USA. Available:

http://www.census.gov/srd/www/byname.html (Accessed: 19 February 2017).

Wits University. 2013. Dung beetles follow the milky way: Insects found to use

stars for orientation. ScienceDaily. Available:

https://www.sciencedaily.com/releases/2013/01/130124123203.htm (Accessed

20 March 2017).

Wonner, J., Grosjean, J., Capobianco, A. and Bechmann, D. 2012. Starfish: A

selection technique for dense virtual environments. In: Proceedings of the ACM

symposium on virtual reality software and technology. New York: ACM. 101–

104. Available: https://dl.acm.org/citation.cfm?id=2407356 (Accessed 20 March

2017).

Wu, C., Buyya, R. and Ramamohanarao, K. 2016. Big data analytics = machine

learning + cloud computing. Available:

https://arxiv.org/ftp/arxiv/papers/1601/1601.03115.pdf (Accessed 19 February

2017).

Wu, X., Zhu, X., Wu, G.-Q. and Ding, W. 2014. Data mining with big data. IEEE

Transactions on Knowledge and Data Engineering. 26(1): 97–107. Available:

DOI: 10.1109/TKDE.2013.109 (Accessed 5 September 2018).

Wur, S. Y. and Leu, Y. 1998. An effective boolean algorithm for mining

association rules in large databases. In: Proceedings of the 6th International

http://emnlp2014.org/papers/pdf/EMNLP2014194.pdf
http://www.census.gov/srd/www/byname.html
https://www.sciencedaily.com/releases/2013/01/130124123203.htm
https://dl.acm.org/citation.cfm?id=2407356
https://arxiv.org/ftp/arxiv/papers/1601/1601.03115.pdf
https://doi.org/10.1109/TKDE.2013.109

287

Conference on Database Systems for Advanced Applications. Hsinchu, Taiwan:

IEEE. pp. 179–186.

Xue, B., Bing, W. N. and Zhang, M. 2014. Particle swarm optimisation for

feature selection in classification: Novel initialisation and updating mechanisms.

Applied Soft Computing, 18: 261–276. Available: DOI:

10.1016/j.asoc.2013.09.018 (Accessed: 19 February 2017).

Yamany, W., Emary, E. and Hassanien, A. E. 2014. Wolf search algorithm for

attribute reduction in classification. In: Computational Intelligence and Data

mining (CIDM): 2014 IEEE Symposium on Computational Intelligence and Data

Mining. pp. 351–358. DOI: 10.1109/CIDM.2014.7008689 (Accessed 5

September 2018).

Yan, G. and Li, C. 2011. An effective refinement artificial bee colony

optimization algorithm based on chaotic search and application for PID control

tuning. Journal of Computational Information Systems, 7(9): 3309–3316.

Available:

https://pdfs.semanticscholar.org/5266/804e780141929df71af4f75774c10c4c60ad

.pdf (Accessed 19 February 2017).

Yan, X., Han, J. and Afshar, R. 2003. CloSpan: Mining closed sequential patterns

in large databases. In: Proc. SIAM Int’l Conf. Data Mining (SDM ’03). SIAM.

166–177. Available:

https://pdfs.semanticscholar.org/e8b7/783db07a89917e8fb1a06227e3a9d64b424

2.pdf (Accessed 19 February 2017).

Yang, L., Shi, Z., Xu, L., Liang, F. and Kirsh, I. D. H. 2011. Frequent pattern

mining on hadoop using JPA. In: Proceedings of The International Conference

On Granular Computing. IEEE. pp. 875–878. Available:

https://doi.org/10.1016/j.asoc.2013.09.018
https://doi.org/10.1109/CIDM.2014.7008689
https://pdfs.semanticscholar.org/5266/804e780141929df71af4f75774c10c4c60ad.pdf
https://pdfs.semanticscholar.org/5266/804e780141929df71af4f75774c10c4c60ad.pdf
https://pdfs.semanticscholar.org/e8b7/783db07a89917e8fb1a06227e3a9d64b4242.pdf
https://pdfs.semanticscholar.org/e8b7/783db07a89917e8fb1a06227e3a9d64b4242.pdf

288

http://doi.ieeecomputersociety.org/10.1109/GRC.2011.6122552 (Accessed 19

February 2017).

Yang, T., Lin, Q. and Jin, R. 2015. Big data analytics: Optimization and

randomization. Sydney, Australia: SIGKDD. Available:

https://homepage.cs.uiowa.edu/~tyng/kdd15-tutorial.pdf (Accessed 19 February

2017).

Yang, X. S. 2009. Firefly algorithm, levy flights and global optimization. In:

XXVI Research and Development in Intelligent Systems. London: Springer. 209–

218. Available: DOI: 10.1007/978-1-84882-983-1_15 (Accessed 19 February

2017).

Yang, X.-S. 2008. Nature-inspired metaheuristic algorithms. 2nd ed. Cambridge,

UK: Luniver Press. Available:

https://www.researchgate.net/publication/235979455_Nature-

Inspired_Metaheuristic_Algorithms (Accessed 19 February 2017).

Yang, X.-S. 2010. Firefly algorithm, levy flights and global optimization. In:

Research and Development in Intelligent Systems XXVI. London: Springer. pp.

209–218. Available: DOI: 10.1007/978-1-84882-983-1_15 (Accessed 19

February 2017).

Yang, X.-S. 2013. Bat algorithm: Literature review and applications. Int. J. Bio-

Inspired Computation, 5(3): 141–149. Available: DOI:

10.1504/IJBIC.2013.055093 (Accessed 9 March 2018).

Ye, F., Wang, Z. J, Zhou, F. C, Wang Y. P. and Zhou, Y. C. 2013. Cloud-based big

data mining and analyzing services platform integrating. In: Proceedings of the

international conference on advanced cloud and big data. Nanjing, China. pp.

147–151. Available:

http://doi.ieeecomputersociety.org/10.1109/GRC.2011.6122552
https://homepage.cs.uiowa.edu/~tyng/kdd15-tutorial.pdf
https://www.researchgate.net/publication/235979455_Nature-Inspired_Metaheuristic_Algorithms
https://www.researchgate.net/publication/235979455_Nature-Inspired_Metaheuristic_Algorithms

289

https://pdfs.semanticscholar.org/a92c/d40e32f48878fa544b2ede0afc8f33368961.

pdf (Accessed 19 February 2017).

Yin, J., Zheng, Z., Cao, L., Song, Y. and Wei, W. 2013. Efficiently mining top-k

high utility sequential patterns. In: Proceedings of 2013 IEEE 13th International

Conference on Data Mining. Dallas: IEEE. pp. 1259–1264. Available: DOI:

10.1109/ICDM.2013.148 (Accessed 19 February 2017).

Yongmei, L. and Yong, G. 2008. FP-growth algorithm for application in research

of market basket analysis. In: IEEE 6th International Conference on

Computational Cybernetics. Stara Lesna, Slovakia: IEEE. pp. 269–272.

Available:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4721419&tag=1

(Accessed 19 February 2017).

Zaki, M. J. 2001. Parallel sequence mining on shared-memory machines. Journal

of Parallel and Distribution Computing, 61(3): 401–426. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.8178&rep=rep1&t

ype=pdf (Accessed 19 February 2017).

Zar, J. H. 1999. Biostatistical analysis. 4th ed. Upper Saddle River: Prentice Hall.

Zhang, L., Liu, L., Yang, X.-S. and Dai, Y. 2016. A novel hybrid firefly algorithm

for global optimization. PLoS ONE, 11(9): e0163230. Available:

https://doi.org/10.1371/journal.pone.0163230 (Accessed 19 February 2017).

Zhao, Y., MacKinnon, D. J. and Gallup, S. P. 2005. Big data and deep learning

for understanding DOD data. Data mining and measurements, 1–10. Available:

https://pdfs.semanticscholar.org/a8d2/9b405aa928a3c0b399f387aa77a04569b67a

.pdf (Accessed 19 February 2018).

Zhenxin, Z. and Jiaguo, L. 2009. Closed sequential pattern mining algorithm

https://pdfs.semanticscholar.org/a92c/d40e32f48878fa544b2ede0afc8f33368961.pdf
https://pdfs.semanticscholar.org/a92c/d40e32f48878fa544b2ede0afc8f33368961.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4721419&tag=1
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.8178&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.8178&rep=rep1&type=pdf
https://pdfs.semanticscholar.org/a8d2/9b405aa928a3c0b399f387aa77a04569b67a.pdf
https://pdfs.semanticscholar.org/a8d2/9b405aa928a3c0b399f387aa77a04569b67a.pdf

290

based positional data. In: Advanced Technology in Teaching - Proceedings of

the 3rd International Conference on Teaching and Computational Science

(WTCS). Berlin, Heidelberg: Springer. pp. 45–53.

Zyl, A. V. 2013. Kestrels in the Karoo. African Birdlife, 36–42. Available:

http://www.uct.ac.za/sites/default/files/image_tool/images/275/Publications/semi

-popular/2013/AB01%285%2936-42.pdf (Accessed 19 September 2016).

Web references

Apache Hadoop. 2015. Available: http://hadoop.apache.org/ (Accessed 2

February 2015).

Apache Mahout. 2015. Available: http://mahout.apache.org/ (Accessed 2

February 2015).

Apache Storm. 2015. Available: http://storm.apache.org/ (Accessed 2 February

2015).

http://www.uct.ac.za/sites/default/files/image_tool/images/275/Publications/semi-popular/2013/AB01%285%2936-42.pdf
http://www.uct.ac.za/sites/default/files/image_tool/images/275/Publications/semi-popular/2013/AB01%285%2936-42.pdf
http://hadoop.apache.org/
http://mahout.apache.org/
http://storm.apache.org/

291

Appendix 1: Summary of data mining algorithms, advantages and limitations

Author Algorithm Mining approach Approach used Advantages Limitations

Aggarwal

and Han

(2014)

 Apriori-based

methods

 A candidate-

generation-and-test

strategy produces a

large number of

candidate sequences

and also requires more

database scans (Tu and

Koh 2010) when there

are long patterns

Han, Pei,

Mortazavi-

Asl, Chen,

Dayal and

Hsu (2000)

 Pattern-growth

methods

 Compressed

database

structure that

is smaller

than original

dataset

Han, Pei,

Mortazavi-

Asl, Chen,

Dayal and

Hsu (2000)

FreeSpan Pattern-growth

methods

Sequential

patterns by

partitioning

Pei, Han,

Mortazavi-

Asl, Pinto,

Chen, Dayal

and Hsu

(2001)

PrefixSpan Pattern-growth

methods

Pseudo-

projection

technique for

constructing

projected

databases

Generates

and tests

candidate

sequences

that exist in a

projected

database

Projected database

requires more storage

space, and extra time

is required to scan the

projected database

 Sequential

Pattern Mining

Vertical format

based methods

Fast

computation

of support

counting

Zaki (2001) SPADE Sequential

Pattern Mining

Vertical format

based methods;

either breadth-

first or depth-

first manner

 Consumes more

memory space

Ayres et al.
(2002)

SPAM Sequential

Pattern Mining

Vertical format

based methods;

traverses the

sequence tree in

a depth-first

manner.

A vertical

bitmap of the

database

Consumes more

memory space

292

Agrawal and

Srikant

(1995)

AprioriAll Sequential

Pattern Mining

Horizontal

format based

method

 Consumes more

memory space

 Closed sequential

pattern mining

 Efficient use

of search

space

pruning,

reduced

number of

patterns,

finds more

interesting

patterns

Yan et al.

(2003)

CloSpan Closed sequential

pattern mining

Prefix sequence

lattice, post

pruning

 Huge search space for

checking the closure

of new patterns

Wang, Han

and Li

(2007)

BIDE Closed sequential

pattern mining

Depth-first

search order;

performs

closure

checking

(BIDE)

 Multiple database

scans, more

computational time

Without candidate

maintenance it does

not keep track of

historical closed

sequential patterns

Huang et al.
(2006)

COBRA Closed sequential

pattern mining

Bi-phase

Reduction

Approach, item

encoding,

pruning

methods

(LayerPruning

and

ExtPruning),

vertical and

horizontal

database

formats

Reduces

searching

space

Requires large

memory space

Raju and

Varma

(2015)

ClaSP Closed sequential

pattern mining

Vertical

database format,

Frequent Closed

Candidates,

recursive post-

pruning

(CheckAvoid-

able for pruning

the search)

 Requires more main

memory

293

Han, Wang,

Lu and

Tzvetkov

(2002)

 Top-k Closed

Sequential

Pattern Mining

Descending

order of support

Minimum

support not

specified

User must decide the

value of k; prior

knowledge of database

required

Hirate et al.
(2004)

TF2P-

growth

Top-k Closed

Sequential

Pattern Mining

Descending

order of support

Does not

require the

user to set

any threshold

value k;

output of

frequent

patterns to

user

sequentially

and in

chunks

Time consuming to

check all chunk sizes

Wang,

Zhang, Liu,

Liu and

Chen (2014)

BI-TSP Top-k Closed

Sequential

Pattern Mining

BI-Directional

checking

scheme,

minimum length

constraint,

dynamically

increase support

of k

Raju and

Verma

(2015)

CSpan Top-k Closed

Sequential

Pattern Mining

Depth-first

search,

occurrence

checking

method for early

detection of

closed

sequential

patterns,

constructs the

projected

database

 Projected database

requires more storage

space, and extra time

is required to scan the

projected database

294

Appendix 2: Summary of the advantages and disadvantages of meta-heuristic

search methods

Algorithm Advantages Disadvantages

WSA

Can remember previously visited

position.
The performance depends

heavily on the manually chosen

parameter values (Song, Fong

and Tang 2016).

PSO 1. The search can be carried out by the

speed of the particle. During the

development of several generations,

only the most optimist particle can

transmit information onto the other

particles, and the speed of the

researching is very fast (Bai 2010).
2. It has a very simple computation

process (Bai 2010)
3. There is a limited number of

parameters, including only the

inertia weight factor and two

acceleration coefficients in

comparison with other competing

heuristic optimization methods (Lee

and Park 2006).

The method easily suffers from

partial optimism, which causes

it to be less exact in the

regulation of its speed and

direction (Bai 2010).

ACO Can be used in dynamic applications

(adapts to changes such as new

distances) (Shekhawat et al. Boswal

2009).

1. Time to convergence is

uncertain (but convergence

is guaranteed) (Shekhawat
et al. 2009).

2. Probability distribution

changes by iteration

(Shekhawat et al. 2009).
3. Sequences of random

decisions (not independent)

(Shekhawat et al. 2009).
Bat 1. Uses echolocation and frequency

tuning to solve problems (Yang

2013).

2. Uses parameter control, which can

vary the values of parameters as the

iterations proceed. This provides a

way to automatically switch from

exploration to exploitation when the

optimal solution approaches (Yang

2013).

1. How to speed up the

convergence of an

algorithm (Yang 2013).

2. Lacks best control strategy

so as to switch from

exploration to exploitation

within a right or specified

time (Yang 2013).

Bee Robustness, fast convergence, high

flexibility and fewer setting parameters

(Yan and Li 2011).

Premature convergence in the

later search period, and the

accuracy of the optimal value

295

sometimes cannot meet the

requirements (Yan and Li

2011).

Firefly Signaling mechanism to communicate

with other fireflies. The signaling

system consists of rhythmic flash,

frequency of flashing light and time

period of flashing (Yang 2010).

There is the high probability of

being trapped in local optima

because they are local search

algorithms (Zhang et al. 2016).

