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Mortality modeling has come a long way since the demographer Benjamin Gom-

pertz (1779-1865). We address populations where mortality is structured by the joint

effects of age and state and individuals can change state at each age. Dynamic states

are the most complex and interesting states to consider and we focus on three cate-

gories of states: being married or unmarried, being below or above a particular income

threshold, or being in one of four income states. We examine how the transience of

our particular states at each age drives the cohort dynamics such as the demographic

structure and lifespan inequalities within the cohort.

In each chapter we used two U.S. nationally representative data-sets (the Health

and Retirement Survey RAND data-set, and the National Longitudinal Survey of

Youth) to statistically estimate the probabilities of survival and transitions between

states at each age with regression analysis. These probabilities were incorporated

into discrete age and discrete state matrices. We examine age-specific state struc-

ture, the average remaining life expectancy, its variance, cohort simulations, dynamic

heterogeneity and individual trajectories.

In chapter 2 we find that the survival advantage of being married changed with age.

At young ages, it was negligible. At mid to late ages it was considerable, and at late

old ages, it was disadvantageous. The probability of staying and becoming married



decreases with age. Married people live longer than unmarried people, the benefit is

enhanced for males at mid-ages. At early ages more women entered marriage than

men, while at late ages more women exited marriage than men. In contrast to our

dynamic model, the results of a model in which state became fixed at some particular

age leads to conflicting results among interviews.

In chapter 3 we consider three threshold income levels. We find, consistent with

earlier literature, that for most ages the above threshold income state has the high-

est one-period survival probability at each age for mid-ages to about age 80. The

advantage is greatest between those above and below the 1× poverty threshold (1

× the annual official poverty line) when compared to those above and below 2×

or 3× poverty. Yet more state switching occurs across the threshold as the income

threshold is increased. The largest discrepancy in average remaining life expectancy

and its variance occurs at mid-ages. And fewer individuals are in the lower income

state between ages 40-60. Our results suggest that dynamic heterogeneity in poverty

and the transience of the poverty state is associated with income-related mortality

disparities (less transience, especially of the higher income states, more disparities).

This chapter extends the literature on individual poverty dynamics and stage-by-age

matrix models.

In chapter 4 we again used state-by-age modeling to capture individual entry and

exit in dynamic states, and the four income states considered here are: <1×, 1-2×,

2-3×, >3× the poverty threshold. These income states are very relevant since current

income inequality research examines the spread of income in various populations but

few studies consider how dynamic heterogeneity and probabilities of transitioning in

and out of income states at each age influence mortality disparities in cohorts.



We find that for most ages the higher income states have the highest probability of

surviving from one year to the next until about age 86 when the order of the income

states does not equate to the order of survival advantage. In general, each income

state has the highest annual probability of staying in the same state at each age,

with the next highest transition being to move to higher income states. The greatest

advantage in average remaining life expectancy between consecutive states is for those

in <1× poverty moving to 1-2× poverty at ages 32-49. The largest discrepancy in

average remaining life expectancy and its variance between all states and the <1×

poverty state occurs at mid-ages (40-60). And the fewest individuals are in the lower

income states between ages 40-60. Our findings are consistent with results based on

other data sets, but we also investigate the dynamic heterogeneity in income state

at each age. They reveal that annual stasis probabilities in income state at each age

influences the cohort state structure, the dynamic heterogeneity of the cohort, and

inequalities or income related mortality disparities at each age.

The dynamic models and analysis used here provide a link between distinct char-

acteristics of individuals in a cohort, such as various state variables and senescence,

with the dynamics of age-structured cohorts. This dissertation extends the literature

on modeling individuals in a cohort that are undergoing dynamic heterogeneity and

stage-by-age matrix models. And it serves as a bridge between stage by age matrix

models and other multistate methods.
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CHAPTER 1

Introduction

Populations are heterogeneous, individuals are dynamic and stochastic across their

lifetimes, and survival advantages can change with age. I account for these observa-

tions with simple age-by-stage matrix models of a cohort of individuals experiencing

dynamic heterogeneity over their lifetime (see Table 1.1 for some relevant definitions).

Each chapter in this dissertation uses a variation of this model with a different ap-

plication. In chapter 2, I consider the dynamic state of marital status and compare

gender and age-specific differences in marital entry and exit rates. In chapter 3, I

consider three distinct poverty thresholds and how the probabilities of crossing the

threshold and the resulting survival (of being above and below each threshold) shapes

the cohort dynamics. In chapter 4, I again investigate the three income thresholds,

but with a multi-stage by age model where individuals can be in one of four income

states that have survival, life expectancy and variance ramifications at each age. To

estimate probabilities of survival and transitioning across the lifespan I combine data

from two U.S. nationally representative data-sets, using the Health and Retirement

Survey (HRS) for ages above 50, and the National Longitudinal Survey of Youth 1979

(NLSY79) for ages below 50, for all three chapters.

1
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Both the fusion of the data and the application of the age-by-stage model are

unique. My goal is to understand the consequences of changing states on cohort

dynamics and individual variability, ultimately connecting individual stochasticity in

state to cohort dynamics and heterogeneity. In each chapter I begin by explaining

how marital status or income state is associated with mortality, and give a brief

intellectual history. I then specify the methods, which are similar across chapters.

Next I examine stage and age based patterns of survival and age patterns of state

stasis or transitioning. I observe: cohort projections and the change in a cohort’s stage

distribution with age, the remaining life expectancy at each age and the variance in

the remaining years of life for each age. With Markov chain analysis: I also observe

simulated cohorts and summary statistics such as first passage times into each state,

etc. This exploration leads me to a couple of general conclusions. First, the transience

of a state has consequences on mortality disparities between states; the more transient

(higher probability of exiting) the state the less disparity in life expectancy. And

second, mid-life seems to be the least transient age period for the states viewed here

with the greatest survival advantage. For example, those with a higher income will

tend to stay in that state and married individuals are most likely to stay married at

those ages. Around mid-ages is also the time most individuals are distributed in the

higher survival state.

This nuanced perspective of investigating cohort dynamics based on individual

stochasticity and dynamic heterogeneity is a new development in the ecological mor-

tality modeling world, but it has some crossover with classic human demography’s

multi-state life table analysis. My approach achieves the same results but from a

slightly different perspective. In the rest of the introduction I present a brief intellec-



3

tual history of mortality modeling to frame our model, noting that this is the first time

I am aware of that similarities between age-by-state matrix modeling and multi-state

life table analysis (or increment-decrement life tables) are explored in depth.

1.0.1 Mortality modeling

Mortality and survivorship modeling has come a long way since Gompertz first

modeled a homogeneous population experiencing exponential physiological decline

with age (Gompertz, 1825). Gompertz was the first to make a mathematical model

of age-specific hazard based on his observation that “It is possible that death may be

the consequence of two generally co-existing causes; the one, chance, without previ-

ous disposition to death or deterioration; the other, a deterioration, or an increased

inability to withstand destruction [with age]” (Gompertz, 1825). Since then models

of mortality have become more complex, including different functional forms, more

parameters and heterogeneity among individuals in populations.

For instance, one approach is to assign individuals in a population different levels

of ‘frailty’ that determine their mortality rate trajectory (Vaupel and Canudas-Romo,

2002; Yashin et al., 2001). The ‘frailty’ of an individual is thought to be an underlying

trait that individuals carry with them throughout their lifetimes, perhaps related to

specific genetic or biological characteristics. Other models have incorporated hetero-

geneity using a ‘vitality’ measure, that reflects an individual’s capacity to deal with

external and internal stressors (Anderson et al., 2008; Li and Anderson, 2009; Li et al.,

2013; Strehler and Mildvan, 1960; Wagner, 2011). It has also been pointed out that

the decline in vitality with age is non-linear, although perhaps starting out linear,



4

and fixed heterogeneity of vitality has been incorporated (Steinsaltz and Evans, 2004;

Vaupel and Canudas-Romo, 2002).

Fixed heterogeneity models assume that individuals are born into a certain (health)

state which stays with them throughout their lives; that it is an inherent character-

istic of the individual (Vaupel and Canudas-Romo, 2002; Wagner, 2011). Dynamic

heterogeneity models assume an individual can switch (health) states throughout his

or her life and are a relatively new addition to the bio-demography field (Steiner

et al., 2012; Tuljapurkar and Steiner, 2010). Having dynamic heterogeneity in the

model reflects that human individuals can and do switch between (health) states over

the course of their lives. As opposed to fixed heterogeneity where a population has a

specific, hard to identify, fixed ‘distribution of innate abilities’.

1.0.2 Structured population modeling

There are many ways that a population can be structured. Ecologists have found

that stages are important to mortality models since they are often a better indicator of

annual survival than age in many organisms (for instance, in sea turtles) (Crouse et al.,

1987; Lefkovitch, 1965). However, in humans and other organisms with determinate

growth, age is also known to be necessary to characterize rates of death and birth.

Ecologists are accustomed to dynamics of some populations (such as reproduction

and mortality dynamics) that depend on either stage or age or both, and have used

both stage structure and age structure. For instance, when studying Pinus sylvestris,

or other forest species, a modified Lefkovitch matrix (discrete-time deterministic ma-

trix model allowing any transition from one stage to another) was used. Then the

renewal equation was incorporated to obtain the distribution of the ages and stages
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of individuals at birth, as well as the stable age and stage distributions (Houllier and

Lebreton, 1986; Houllier et al., 1988). In this model individual survival and transition

parameters did not vary with age, and individuals could not return to a past stage.

There have been other models (for instance on plant populations) that explicitly

structured populations into age and size (as the stage) using matrices (Law, 1983), but

without including heterogeneity. New theoretical work focuses on life history analysis

for organisms in which rates of birth and death are determined by a combination of age

and stage, and stage transition rates vary with age (Steiner et al., 2012; Tuljapurkar

and Steiner, 2010). This age-by-stage approach incorporates the phenomenon of

‘dynamic heterogeneity’ (Tuljapurkar et al., 2009) and is a relatively new addition to

mortality modeling theory from an ecological perspective. I make use of this new work

and update the model by making the stage transition and survival rates themselves

functions of both age and stage.

Classic mathematical demography has always viewed populations from a (single-

state) life table perspective, which is age structured, and has developed its own tech-

niques to deal with “transitions between multiple states of existence” (Rogers, 1980).

In his work, Rogers (1980) united all the methods of “multiple decrement mortality

tables, tables of working life, nuptiality tables, tables of educational life, and multi-

regional life tables [as] members of a general class of increment-decrement life tables

called multistate life tables”. Multistate life table analysis has a history of using

matrix notation as well, which in this form is most similar to our age-by-stage matrix

models (Rogers, 1980; Schoen, 1988; Willekens et al., 1982). Over time multistate

life table analysis has evolved to deal with small panel data and multiple covariates

(Land et al., 1994) and a range of data complexities (Willekens and Putter, 2014).
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The model used here can address similar questions as those addressed by multi-

state (or increment-decrement) life table analysis (Schoen, 1988). However, my model

emphasizes the discrete time framework, and the stage by age structure throughout

the lifetime, facilitating cohort projections and Markov chain analysis, including the

fundamental matrix (Kemeny and Snell, 1976) (which multi-state demography does

not use), and the realizations of the process encapsulated by simulated individual

lifetime trajectories. In deference to work on multi-state life table analysis, I use the

human demography convention and use the term ‘state’ rather than the more general

ecology term ‘stage’.

Similiar to multi-state analysis, the model I use can have far-reaching applications,

besides poverty status and marital state, states could be defined as any dynamic con-

dition with survival or mortality ramifications, such as socioeconomic status, health

state etc. (Tuljapurkar and Boe, 1998), or even environment (Coulson and Tul-

japurkar, 2008). The state transition rates have important survival ramifications and

lead to interesting questions, for instance, how long can an individual maintain sta-

sis in his/her higher survival state? How does an individual’s ability to maintain

stasis change with age? If individuals enter the lower survival state how does their

ability to exit change with age? And of course, what are the consequences for state-

discrepancies in average remaining life expectancy, the variance in life expectancy,

the cohort stage structure, and total time spent in each state across the life course?

The questions above are overarching and I address each of them when I consider

a specific cohort’s dynamics in each chapter. The specific objectives of each chapter

are to answer the following: 1) How does the transience of marriage affect cohort

dynamics for males and females? 2) How do cohorts differ in dynamic heterogeneity
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and cohort dynamics (such as variance in average remaining life expectancy) when

the binary state (poor or not poor) is defined by different income thresholds: “official”

poverty, “near poverty”, and approximately at the median income? 3) When there

are four distinct income states individuals can transition into, what are the age and

state specific cohort dynamics? This dissertation research bridges the gap between

ecological stage by age modeling and mathematical human demography by estimating

survival and transition parameters as stage specific functions of age.
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Age-specific Describes a quantity that is a function of age, i.e.

changes with age.

Cohort A group of individuals in a population born at the

same time.

Dynamic heterogeneity When the (health) status of individuals in a pop-

ulation varies and individuals can switch status

throughout their lives.

Fixed heterogeneity When the (health) status of individuals in a popu-

lation vary and are fixed at birth.

Fundamental matrix A matrix whose entries inform about the expected

number of visits to a transient state. Denoted ‘N’,

it can be used to determine other properties about

the Markov chain. Mathematically it is a series of

the age-by-state matrix L, raised to the power of x,

where x ranges from 0 to infinity and denotes age.

In closed form, N converges to the inverse of the

identity matrix minus L

Hazard Also called instantaneous hazard. The instanta-

neous risk of dying.

Mortality Probability of death for one-period.

One-period Time between age x and x+ 1; one year.

Stasis The annual probability of staying in the same state.
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Stochastic When the outcome is drawn from a probability dis-

tribution.

Survival Probability of surviving for one-period. Mathemat-

ically, the number of individuals alive at age x+ 1/

number of individuals alive at age x

Survivorship Cumulative survival; the proportion of a birth co-

hort surviving at each age. Mathematically, the

number of individuals alive at age x/ number of

individuals in the birth cohort.

Remaining life expectancy The years an individual is expected to stay alive in

the future given that he or she has survived to a

particular age.

Renewal equation An equation that can be used to calculate the num-

ber of offspring entering a population at a certain

stage and time. It shows how present births were

generated by previous births, i.e. how the popula-

tion ‘renews’ itself. Mathematically, the number of

births at time t is a function of two components:

births to women alive previous to time t = 0, and

births to women born since t = 0.
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Transience Lasting only for a short time. Mathematically, an

individual in a ‘transient’ state has a high annual

probability of exiting, and low annual probability

of stasis.

Table 1.1: Some relevant definitions



CHAPTER 2

An age-by-stage model of mortality with
age-specific state transitions: effects of the
dynamic state of marital status

2.1 Summary

Mortality modeling has come a long way since Gompertz. We address populations

where mortality is structured by the joint effects of age and state and individuals can

change state at each age and where we focus on one such state, marital status.

Using empirical data, we estimated the probabilities of survival and transitions

between states (married vs unmarried) at each age. These probabilities were incorpo-

rated into age-state matrices, and survivorship and state structure at each age were

quantified. Utilizing Markov chain analysis, we analytically obtained remaining life

expectancy and simulated individual lifetime trajectories.

The survival advantage of being married changed with age. At young ages, it

was negligible. At mid to late ages it was considerable, and at late old ages, it was

disadvantageous. The probability of staying and becoming married decreases with

age. Married people live longer than unmarried people, the benefit is enhanced for

males at mid-ages. At early ages more women entered marriage than men, while at

11
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late ages more women exited marriage than men. In contrast to our dynamic model,

the results of a model in which state became fixed at some particular age leads to

conflicting results depending upon which ages are chosen.

The dynamic model and its analysis serves to provide a link between distinct char-

acteristics of individuals in a cohort, such as various state variables and senescence,

with the dynamics of age-structured cohorts. This paper extends the literature on

modeling individuals in a cohort undergoing dynamic heterogeneity, using stage-by-

age matrix models.

2.2 Background

Human demographers, sociologists, and epidemiologists have long observed that

marital status is correlated with mortality (Kaplan and Kronick, 2006; Manzoli et al.,

2007; Roelfs et al., 2011; Zheng and Thomas, 2013) often even surpassing gender dis-

crepancies in mortality (Trowbridge, 1994). The trend of married individuals having

a decreased rate of all-cause mortality, when compared to unmarried counterparts, is

consistent across a wide array of cultures and regions (Va et al., 2011). For instance,

in a meta-analysis and meta-regression Shor et al. (2012) analyzed 600 million people

from 24 different countries and found that married individuals had a decreased rela-

tive hazard as compared to divorcees, with men benefiting more from marital status

than women. Most studies also confirm that, when compared to married individuals,

all alternative statuses of ‘unmarried’ (such as never married, divorced, and widowed)

have a significantly higher risk of death (Manzoli et al., 2007; Trowbridge, 1994). This

trend in higher all-cause mortality for the unmarried (which seems to be increasing

over generations) coupled with the increased age of entry into marriage, and increas-
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ingly transient nature of marriage (Bureau, 2015; Iwashyna and Christakis, 2003; Lin

and Brown, 2012; Liu and Umberson, 2008; Roelfs et al., 2011; Schoen and Weinick,

1993; Trowbridge, 1994) emphasizes the need for modeling that takes into account

individual dynamics at each age to understand population trends. Others have noted

that the average duration of first marriages and beyond, average age of entry into

first marriage and beyond, and other trends in marital status over a lifetime are in

flux (Lin and Brown, 2012; Liu and Umberson, 2008; Lundberg, 2012; Robards et al.,

2012). Several papers have also noted that focusing on cross sectional data to un-

derstand differences in marital status and mortality is not sufficient (Goldman et al.,

1995; Johnson et al., 2000; Robards et al., 2012).

To capture marriage transitioning throughout the life course we use two nationally

representative data-sets, the National Longitudinal Survey of Youth 1979 (NLSY79)

and the Health and Retirement Survey (HRS), and fuse them together to obtain

marital status based probabilities of survival and transitioning as functions of age

for males and females (Bureau of Labor Statistics, 2012; Moldoff et al., 2014). We

then use a state-by-age matrix model to project a birth cohort through all ages,

noting the state distribution at each age, and use Markov chain theory to obtain the

marital state-specific average remaining life expectancies, and simulated individual

trajectories of individuals who may change marital status over their life course.

Our approach is a special case of recent models in ecological mortality modeling

and bio-demography that explicitly structure populations by both age and state,

including distinct survival and state transition probabilities at each age (see Steiner

et al. (2012); Tuljapurkar and Steiner (2010)). The principal distinction of our model

is that the probabilities of survival and transitioning at each age are themselves
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estimated as parametric functions of age. This new development directly intersects

with classical demography’s multi-state lifetable analysis, which also accounts for

individuals entering and exiting different marital statuses throughout their lifetime

(Schoen and Weinick, 1993; Willekens et al., 1982; Zeng et al., 2012). In theory our

approach overlaps most closely with Rogers (1980) presentation of multi-state life

table analysis (or increment-decrement life tables), as he used matrix notation. In

practice, there are many statistical tools and packages in existence that will calculate

the survival and transition probabilities (often the required input for multi-state life

table analysis as well) for many complicated data scenarios (Cai et al., 2010; Willekens

and Putter, 2014). Here we choose to directly obtain our probabilities with regression

analysis and then apply our age-by-state matrix model to understand the dynamic

heterogeneity of marital status. We ask how does the survival advantage of being

married change with age? How does the probability of becoming married or staying

married change with age? At which ages is marriage more advantageous for males

and females? How does the survival advantage appear when we consider marital state

as a fixed (rather than dynamic) state?

Our results addressing these questions are in agreement with current literature on

marital state and mortality (Clarke, 1995; Schoen and Standish, 2001). Our analysis

includes the following steps. (1a) First, we statistically analyze the empirical data

to create parametric functions that address the question: how do the probabilities

of survival and transitioning between states (married vs unmarried) quantitatively

depend upon age for each gender? (1b) We incorporate the age-specific probabilities

of survival and state transitions obtained from evaluating these functions at each age

into our age-state matrices for each gender. (2) Next, we use these matrices to project
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a given cohort of newborns forward through life to quantify survivorship to each age

and state structure at each age. (3) Then, we also use these matrices in Markov chain

analysis in two ways: (a) to analytically obtain the fundamental matrix from which we

readily calculated remaining life expectancy at each age and (b) to simulate individual

lifetime trajectories from which we calculated first passage times, transitioning, and

the total time individuals spend in each state. Lastly we addressed the question:

(4) If we had used a model in which state (marital status) became fixed at some

particular age rather than being dynamic, how would estimated survivorship to each

age differ from what we found in the dynamic model? The model and its analysis

serves to provide a link between distinct characteristics of individuals in a cohort, such

as various state variables and survival, with the dynamics of age-structured cohorts.

2.3 Methods: Theory

2.3.1 Model theory

We use a discrete time, discrete state, discrete age, Markov chain matrix with

two-states at each age. The matrix is similar in structure to a population projection

age-state matrix (Tuljapurkar and Steiner, 2010) but here there is no reproduction,

which is similar to Steiner et al. (2012). It is also similar to the discrete age-time model

of multistate demographic growth (Rogers, 1980) except again we only view a cohort

and do not include fecundity (fig.2.1 illustrates the matrix model inputs and outputs).

We use this age-by-state matrix, which we denote L, to calculate cohort dynamics

and individual trajectories, which are steps 2 and 3 above, respectively. Specifically,

the matrix is used: (2.1) to project a cohort from birth across the lifetime, which
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enables tracking of the state-distribution and survivorship of an initial cohort with

a particular state distribution from age 0 to a maximum age, as described by the

following equation:

n(x) = Lxn(0) (2.1)

(2.2) to analyze remaining life expectancy (mean and variance in age at death) and

generate individual stochastic trajectories across all ages, where each individual is a

realization or sample path of the Markov process. The Markov chain is described by

this transition matrix:

P =

 L 0

m 1

 (2.2)

Here we will define the age-and-state matrix L, and in the appendix (B.1) we show

how it can be used in (2.1) and (2.2). L is based on parameters of four functions at

each age, s1(x),s2(x),t21(x) and t22(x):

s1(x) = Probability of survival from age x to age x + 1 for an unmarried indi-

vidual. 1− s1(x) = Probability that an unmarried individual dies between ages

x and x+ 1 (one-period state-specific mortality).

s2(x) = Probability of survival from age x to age x+ 1 for a married individual.

1−s2(x) = Probability that a married individual dies between ages x and x+ 1

(one-period state-specific mortality).

t21(x) = Probability of becoming married at age x + 1 for an individual who

is unmarried at age x (transitioning from unmarried to married). 1− t21(x) =

t11(x) = Probability that an individual who is unmarried at age x will remain

unmarried at age x+ 1, conditional on survival.
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t22(x) = Probability of staying married at age x + 1 for a individual who is

married at age x (being married and staying married). 1 − t22(x) = t12(x) =

Probability that an individual who is married at age x will become unmarried

by age x+ 1, conditional on survival.

Here x is a 1-year age interval (so age x to x + 1 is a one year step), although,

depending on the model or data, other interval lengths can be used (Keyfitz, 1968).

State transition probabilities (transitioning to a new state or staying in a state at

the next age) are conditional on survival. When the conditional state transition

probabilities are multiplied by the probability of survival, the unconditional transition

probabilities results.

The unconditional state transition matrix at each age, x, takes the form:

State at age x

State at age x+1

Unmarried Married

Unmarried s1(x)t11(x) s2(x)t12(x)

Married s1(x)t21(x) s2(x)t22(x)

We denote each unconditional state transition matrix as Q(x), and each uncondi-

tional state transition matrix is inserted into the sub-diagonal of the age matrix at

the appropriate column. There are 100 unconditional state transition matrices, each

representing a 1-year increment from 0 to 100 years of age. The age-state block ma-

trix has dimensions 101× 101 blocks, each block is comprised of a 2× 2 Q(x) matrix,

and has the following form:
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L =



0 0 0 . . . 0 0 0 0

Q(1) 0 0 . . . 0 0 0 0

0 Q(2) 0 . . . 0 0 0 0

0 0 Q(3) . . . 0 0 0 0

...
...

...
. . .

...
...

...
...

0 0 0 . . . Q(98) 0 0 0

0 0 0 . . . 0 Q(99) 0 0

0 0 0 . . . 0 0 Q(100) 0


The age-by-state block matrix L has a structure reminiscent of a Leslie matrix

from which fecundity has been removed, in that an individual always transitions to

the next age at each time step (Kot, 2001; Leslie, 1945). Additionally, since each Q(x)

is a 2 × 2 unconditional state transition matrix, each ‘0’ in the L matrix is a 2 × 2

matrix of zeros. Since there are 2 state classes and 101 age classes, the dimensions of

the age-state matrix L is 202×202. The L matrix is the age-by-state matrix in fig. 2.1

that can be used to produce cohort projections (see B.1.1) and markov chain analysis.

With markov chain analysis we calculate the average remaining life expectancy (by

using the fundamental matrix, see B.1.2) and the simulated individual trajectories

(see B.1.3).

2.4 Methods: Empirical data

To calculate the age-and-state-specific survival and transition rates, we incorpo-

rate empirical data from two datasets, The Health and Retirement Study (HRS) and

the National Longitudinal Survey of Youth (NLSY79). The statistical models which
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are crucial for step 1 and running the matrix model in steps 2 and 3 are derived from

logistic regression analysis on both data sets as described in this section.

2.4.1 HRS RAND

The Health and Retirement Study (HRS) is a publicly accessible longitudinal

household survey data set for the study of retirement and health among the elderly

(individuals over age 50 and their spouses) in the United States. We use the RAND

HRS Data files Version O which “are a cleaned, processed, and streamlined collection

of variables derived from HRS” (Moldoff et al., 2014). The survey consists of 6

cohorts (A.1) and we use longitudinal data compiled from 11 interview waves that

fall approximately around these years: 1992, 1994, 1996, 1998, 2000, 2002, 2004, 2006,

2008, 2010, 2012. As a nationally represented data set of 37, 319 individuals, HRS

has over-sampled Hispanics, Blacks, and residents of Florida, and provides weighting

variables to make it representative of the community-based (non-institutionalized)

population. For our purposes we subset the data to only include individuals between

50 and 95 years old. We include weights in all analysis. Here we classify all individuals

who responded “married”, “married, spouse absent”, and “partnered” as a married

individual. Individuals who responded “separated”, “divorced”, “widowed”, or “never

married” are classified in the unmarried category. Individuals are pooled into repeated

observations for each of their interview responses as explained after the following

section.
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2.4.2 NLSY1979

The NLSY79 Cohort is a longitudinal project that follows the lives of a sample of

American youth born between 1957-64. The cohort originally included 12,686 respon-

dents ages 14-22 when first interviewed in 1979; after two subsamples were dropped,

9,964 respondents remain in the eligible samples (Bureau of Labor Statistics, 2012).

We use data available from interview wave 1 (1979 survey year) to interview wave 25

(2012 survey year), this includes one year intervals from 1979-1994, and two-year in-

tervals from 1994-2012. Since we are studying the state of marital status we subset the

data to include observations from age 18 (the US minimum age of marriage without

parental consent in most states) to age 50. A survey response of “married” comprised

the married state. Survey responses of “never married”, “separated”,“divorced”, and

“widowed” were included in the unmarried category. Retention rates for NLSY79

respondents from 1979 to 1993 exceeds 90 percent. Rates from 1994 until 2000 ex-

ceeded 80 percent. Rates from 2002 until 2012 have been in the 70s. (Retention

rate is calculated by dividing the number of respondents interviewed by the number

of respondents remaining eligible for interview) (Bureau of Labor Statistics, 2012).

More detailed information about retention rates can be found at NLSY79’s website

(www.nlsinfo.org/content/cohorts/nlsy79/intro-to-the-sample).

2.4.3 Quantifying the functional dependence of survival and

transition probabilities on age: logistic regression

There has been much discussion as to how to calculate transition probabilities for

Markov transition models (Islam et al., 2004; Islam and Chowdhury, 2006; Korn and

Whittemore, 1979; Lawless and Rad, 2015; Yu et al., 2010). (The latter two sources
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give a good background on the history of estimating transition probabilities from

data and propose methods for higher Markov models). One very practical proposal

for calculations of binary markov transition models has been to use logistic regression

probabilities (Muenz and Rubinstein, 1985). Since logistic regression is very straight-

forward and intuitive, especially when we have a time-dependent covariate (age), and

since the dependent variable is dichotomous (married or unmarried) we employ it

for our analysis. Researchers might look towards Yang et al. (2007) or Fujiwara and

Caswell (2002) which are two distinct ways to calculate Markov transition proba-

bilities that can incorporate a range of data complexities. Additionally Willekens

and Putter (2014) discusses many different statistical packages in R that are used to

estimate transition probabilities for multi-state models.

The NLSY pre-1994 data, NLSY post-1994 data, and HRS data are analyzed sep-

arately to obtain probabilities for ages 18 − 22, 23 − 50, and 51 − 95, respectively.

The results are later combined to give probabilities of survival and transitioning over

our complete age range of 18 − 95. Within each data set, we pooled all interview

waves except for the last wave, this represents the data at time t. For analysis the

pooled observations are weighted based on each data set’s weight at observation. All

the interview waves except for the first one are then pooled together to represent the

data at time t+ i (where i varies between 1 and 2 years depending on the data, at the

end we standardize our probabilities to be for a one-year period). Instead of tracking

individuals longitudinally over several ages, we perform a pooled logistic regression

analysis on all observations of all ages from time t to t + i, where individuals have

a particular age x at time t and age x + 1 at time t + 1. This method tracks how

marital status changes or stays the same from one interview to the next. If an indi-
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vidual did not respond at that specific point (either the interview at t or t+ i or both

interviews), that observation is omitted from the analysis. However if that specific

individual responded later in the study (a different observation), that observation is

included in the analysis. This technique has been called the pooled repeated obser-

vation method (PRO) and the analysis a pooled logistic regression (Dagostino et al.,

1990). The pooled logistic regression analysis was performed in R and the survey

package (Lumley, 2014) with svyglm was used to incorporate weights. For HRS we

have 362,997 observations between the ages of 50 and 95; 161, 522 observations for

males, 201, 475 observations for females. For NLSY79 after pooling we have 289,321

observations between the ages of 18 and 50; 145, 960 males, 143, 361 females. NLSY79

is further seperated into two groups, pre-1994 and post-1994 since in 1994 the survey

began interviewing every two years (as opposed to one). After regression coefficients

are calculated for all three groups (pre-1994 NLSY, post-1994 NLSY, and HRS) the

coefficients were logit transformed to obtain probabilities. Probabilities were then

adjusted to reflect a one year period for all three groups (see A.3 for more on this

adjustment). Thus we obtained parameter estimates for the functional dependence of

survival and transition probabilites on age for each gender. We then evaluated these

functions at each age for use in our matrix models.

To check for a correlation of a specific marital status at each age and response

rate or missing observation, weighted contingency tables for each age were used and

chi-squared tests (Pasek, 2016) were performed in R. Men and women were analyzed

separately, and for this analysis deceased individuals were removed from the popula-

tion (they were not counted as non-response).
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2.4.4 Failure time analysis

To address the research question in step 4 we used standard failure time analysis,

where age at death is the dependent variable to generate survivorship curves. For

HRS data, Kaplan-Meier failure time analysis was performed in R with the ‘survival’

package (Therneau, 2015). Age at death was used for the time until failure and a

censor variable was used to reflect if individuals had a recorded death, were alive, or

were missing from the study (Fox, 2001).

2.5 Results

2.5.1 How do the probabilities of survival and transitioning

between states (married vs unmarried) quantitatively

depend upon age for each gender?

The first research question is answered by evaluating the functions for the depen-

dence of state transition and survival probabilities on age. The data were weighted,

pooled, and combined (see appendix fig. B.1) and regression coefficients (found in

Tables 2.1, 2.2, 2.3, 2.4, 2.5, and 2.6) were obtained. These coefficients were logit

transformed and adjusted to represent a probability over a one-year period, our pa-

rameter values.

However, we note that if response rate is not independent of state, that phe-

nomenon could confound our ability to interpret the results. There clearly is an

increase in non-response with age (appendix figures B.2a and B.2b), which is ex-

pected since most longitudinal studies see an increase in non-response with study
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progression, but we ask, does response rate depend upon marital status as well? To

compare the proportion of response at x+1 based on marital status at age x, weighted

chi-square statistics were calculated at each age. The chi-square statistic for each age

looks very different for males and females, (appendix fig.B.2c and B.2d, respectively).

We can easily see that for females from NLSY79 there is no significant association

between response rate and marital status. Females from HRS have slightly higher

incidence of non-response associated with marital status between the ages of 65 and

75 but no overall pattern emerges. Thus we assume that the response rate for each

marital state, for women, should not bias the pooled logistic regression results in

any direction. Males on the other hand, seem to experience a pattern of increased

non-response for those unmarried at age x when compared to those married at age x,

peaking at middle ages. This is important to keep in mind in parameter estimation

as the logistic regression will exclude a higher proportion of males who are unmarried

due to non-response versus married. However the overall proportion of married to

unmarried male observations (in appendix fig.B.1c) will be in agreement with the

distribution of individuals in each state as calculated later in the Markov models.

Now focusing on our annual rates, which were used in matrices that project from

age x to age x + 1, we see different age-specific survival based on marital state (the

dashed vertical line in fig.2.2 shows the seam between NLSY pre-1994, NLSY post-

1994 and HRS; i.e., the age at which we concatenated the probability parameters

based on each data-set).

Comparing males and females and married vs unmarried survival probabilities

(fig.2.2), several patterns are apparent. At young ages, there is no significant dif-

ference in survival between married and unmarried states but there is a significant
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difference between genders. At older ages there is a significant difference between

survival of married and unmarried individuals. The difference is most pronounced for

males (Table 2.1) although there is a crossover late in life where married and unmar-

ried males have similar survival (fig. 2.2c). For males, unmarried and married states

have the largest discrepancy in one-period survival at age 77, with a 0.016 difference

in probability. At age 90 there is a crossover in survival advantage. For females, the

greatest advantage in one-period survival occurs for married females at age 79 of an

increases 0.009 survival probability. Females also experience a crossover, above which

unmarried females have a very slight advantage, at age 92.

Married males and females have pretty much equivalent probabilities of staying

married at younger ages (below mid-ages)(fig. 2.2). The other trend is that after mid-

ages, married males have a higher probability of staying married than married females

(fig. 2.2e). This can be explained easily, since married females at older ages are more

likely to become widowed (and thus transition into the ‘unmarried’ state) than males.

Furthermore, unmarried females begin with higher probabilities of becoming married

at age x, but then are surpassed by unmarried males’ probability of becoming married

at the age of 31. After mid-ages unmarried males at age x continue to have higher

probabilities than unmarried females, of transitioning into marriage at age x + 1 for

the rest of their lifespan. The probability of entering into marriage from unmarried at

age x is in agreement with Clarke (1995), who notes that in 1989 and 1990 the drop

in probability of entry into marriage with age was not as steep for men as women.

Slight discontinuities in the probability curves at the dashed vertical lines reflect

the joining of our parameters from different data-sets. We chose not to smooth our
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probability curves, but rather to focus on the general trend (as discussed above),

which in our view is readily apparent.

2.5.2 Projection of a cohort of newborns: survivorship to

each age and state structure at each age

The survivorship curves obtained from our model of dynamic heterogeneity, by

cohort projection of both the male and female cohorts (fig. 2.3), are consistent with

previously published human population survivorship curves for males and females

(Bureau, 2015). Thus it is at least possible that dynamic heterogeneity is a process

that underlies previously documented survivorship curves.

Before describing the age-pattern of state structure generated by our model, we

note the age-pattern of state structure in the empirical data. The percentage of

married males increases with age, then levels out and then decreases (see appendix

fig. B.1c). Females also have a dome-shaped increase and decrease in the percent

married with age, however, in contrast to males the decrease of married women with

age happens more quickly and there are more unmarried females at old ages (appendix

fig. B.1d). The age-pattern of state structure in the data-sets are similar to the

age-pattern of the proportion of married and unmarried individuals in the general

US population (for instance, see the United Census Bureau’s Marital Status and

Living Arrangements of Adults 18 Years and Over: March 1995 ). Thus, we think the

statistical models calculated from our data set are likely to be generalizable, as will

be our estimates of age-specific survival and transition probabilities for males and

females in the general U.S. population.
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To examine the age-pattern of state structure generated by our model, we started

a cohort of newborns entirely in the unmarried state, and we assumed no marriage

occurs until the age of 18. The mathematics of the model lead to an equilibrium

state structure for those who are still alive; technically, this is a quasi-stationary

distribution, since in the long run everyone will die (Aalen and Gjessing, 2001; Darroch

and Seneta, 2013). The quasi-stationary state structure is achieved for a cohort of

males, fig.2.3c, and of females, fig.2.3d. Here the equilibrium distribution for married

and unmarried males and females is dome-shaped (as the data dictated) with men

having a wider ‘dome’, ie. more married individuals into late old age.

The model projection of the proportion who are married at each age (fig.2.3c

and 2.3d) is similar to the age-pattern seen in the empirical data; specifically the

surplus of unmarried women in late ages when compared to males is similar to what

is observed. To partially explain this observation we can consider the transition

parameters for females. There is low probability of marriage entry after 80 and

a decreasing probability of staying married (the increasing probability of becoming

unmarried) with age. These individual dynamics (probability of transitioning) shape

the cohort’s demographic structure. In the following sections with the results from

the Markov chain analysis we will view average individual dynamics (remaining life

expectancy) and the lifetime trajectories that also affect the cohort demographic

structure.

2.5.3 Markov chain analysis: the fundamental matrix

2.5.3.0.1 Average individual life expectancy From the fundamental matrix

(B.1.2) we calculate the age-specific average remaining life expectancy for married
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and unmarried individuals. The calculation is conditional on surviving to that age,

and also incorporates the probability that an individual might transition t each age

from its current married or unmarried state, the dynamic heterogeneity. For married

(blue) and unmarried (red) males at age x, the life expectancy difference is more

pronounced midlife, and there is less difference in life expectancy at early and late

ages (fig. 2.4a). For males, the difference in life expectancy between the two states

is more than 1.5 years for the ages 31-68, and more than 1 year for the ages of 26-75

(fig. 2.4b). For females we see the same general trend, that marital status affects

average remaining life expectancy the most at middle ages and the least at younger

and older ages (fig. 2.4c). However married females age-specific life expectancy is

greater than unmarried females for a shorter range than males. The difference in

female life expectancy for the two states is greater than 1.5 years for the ages 34-

57, and greater than 1 year for the ages of 30-69 (fig. 2.4d). Married men enjoy a

maximum advantage in life expectancy of 2.53 years at the age of 45 over unmarried

men. Married women have a maximum advantage of life expectancy at age 43 of 2.19

years. We can relate these results back to our probability of transitioning (fig.2.2e

and 2.2f) by noting that those in the middle ages also have the highest probability of

staying married once married at age x, for both males and females, although more

pronounced for males.

2.5.4 Simulation: Individual lifetime trajectories

We simulated individual trajectories for a cohort of 10,000 individuals for males

and females (fig. 2.5a and 2.5b). Transitioning into marriage begins at age 18 and that

is where the most transitioning (the mode) into marriage occurs for both genders (fig.
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2.5c and 2.5d). At early ages more females enter marriage than males and generally

fewer individuals are becoming married (not just the first marriage) with age for both

genders (fig. 2.5g and 2.5h). The average age of first entry into marriage is 27.5 for

males, 25.0 for females with a standard deviation of 9.9 and 7.9, respectively.

The first transition out of marriage for most individuals peaks around age 25

(mode for men, age 24 is the mode for women) and than decreases for later ages

(fig.2.5e, 2.5f). The mean for exiting marriage for the first time is age 42.9 (standard

deviation of 19) and age 44.4 (standard deviation) of 20.3 for men and women, re-

spectively. We observe that there are two peaks of marriage exit, with a smaller peak

occuring about age 70 for both men and women. This old age peak in marriage exit is

higher for women than for men, perhaps due to becoming widows at these ages. This

observation explains why the females (fig. 2.5j) have a higher number of individuals

unmarried at later ages than the males (fig. 2.5i).

We also analyzed the distribution of the total years individuals spend in the mar-

ried state over their lifetime (fig. 2.6a and 2.6d). This model is stochastic, so on

consecutive runs we see slightly different outputs, yet men usually are spending more

years of their life married (mean 32.6 years, mode 0 years, n=10,000) than women

(mean 30.7 years, mode 0 years, n=10,000), and females have a lower standard devi-

ation of total years spent married (18.0 years) than males (19.3 years). Consequently

males in the cohort are spending less time unmarried, on average (38.9 years, mode

30 years), than females (45.8 years, mode 27 years) (fig. 2.6c, 2.6d), and women have

a higher standard deviation of total years spent unmarried (19.3 years vs. 16.1 years).

Keep in mind the entire cohort has spent a minimum of 18 years at the beginning of

life unmarried. Finally we see that the average age at death for males (age 75.4, mode
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85) is significantly less than for females (mean age 80.0, mode 87), also explaining

why females are spending less time married than males (fig. 2.6e, 2.6f). We can only

speculate as to which direction the causation occurs but the stochastic individual

trajectories and dynamic heterogeneity give us a unique insight into the backbone of

the cohort state structure at each age.

2.5.5 A model in which state (marital status) becomes fixed

rather than dynamic

To answer our last research question we look at Kaplan-Meier cumulative survival

curves of different waves of HRS interview data. The goal is to see how survivor-

ship (cumulative survival) calculated from age at death for two groups of individuals

differs, when marital status is defined at only a single, specific interview wave. The

failure time analyses are based on HRS interview waves and range from observations

at ages 50 to 100 (fig. 2.7 and 2.8). First, looking at the female failure time curves we

see that married women at interview wave 1 had better survivorship than unmarried

women after age 65. When marital status at wave 2 is considered, married females

have a survivorship advantage after age 62. Married females at wave 3 and 4 again

have an advantage after 65, before then there is some crossing over in the curves with

similar survivorship for married and unmarried individuals who are in earlier ages.

Being married at wave 5 shows a survivorship advantage throughout the lifetime when

compared to those unmarried females at that wave. Survivorship based on marital

status at waves 6, 7, 8, 9 and 10 are more erratic with more than one crossover. At

these waves individual females are older (mostly between 70 and 80). It is difficult

to explain the trends based on marital status at a specific wave alone without taking
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into account what we know about survival and marital state transitioning at each age.

For instance, from the one-period survival graph for married and unmarried females

(fig. 2.2d) we see that the largest difference in survival based on marital status for

females occurs approximately between the ages of 65-85. Ages 50-65 and 85-95 show

a similar survival for both states and can explain why mixed groups of different aged

individuals at each interview wave time point can yield slightly different survivorship

curves based on interview wave (fig. 2.7).

Our survival parameters for males show a greater difference than females in sur-

vival based on marital status at each age (fig. 2.2c). A crossover between the two

states occurs at age 90, with survival becoming close between the two states at about

86 years and also starting close at 50 years. This helps to explain the trend in failure

time curves for males from HRS (fig. 2.8). We see that survivorship is greater for

males who were married at interview wave 1, 2, 3, 4, 5 and 6. When survivorship for

individuals who are married at interview waves 7, 8, 9 and 10 are considered, we see

switching in the advantage of being married versus unmarried. We believe this to be

due to the smaller advantage in annual survival at later ages, and the fact that at

later interview waves, more HRS individuals are in later ages.

We conclude that failure time analysis based where individuals are classified by

their marital status at a single interview wave fails to capture the underlying trend

in the survivorship and annual survival based on the dynamic state of marital status.

2.6 Discussion

“Marital status research has emphasized an examination of the impact of change

in marital status in addition to an assessment of the effects of the marital status
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classification at baseline” (Johnson et al., 2000). Here we demonstrate a state-by-age

matrix model that takes into account the dynamic heterogeneity of marital status,

i.e. changing marital status over the life course. Models of this kind are increasingly

more common as age patterning of marriage entry and exit is changing over time, yet

close to 90% of women are still predicted to become married (Goldstein and Kenney,

2001) with about 40% of first marriages ending in divorce. Understanding the indi-

vidual heterogeneity in marital status is extremely crucial as, across generations and

countries, marital status is still one of the most important indicators of mortality risk

as compared to other well established health factors (Sbarra et al., 2012), not to men-

tion implications for the welfare of children (Su et al., 2015). Furthermore Goldstein

and Kenney (2001) describes a trend where marriage is more common for women

with college degrees than for those without. This phenomenon, of marriage being a

privilege of the better educated, also occurs in other countries but varies based on

a society’s concept of gender roles in marriage, and the degree of economic inequal-

ity (Kalmijn, 2013). Discrepancies in marital patterns based on education, economic

level, etc. are a source of increasing socioeconomic inequality. Bramlett and Mosher

(2002) displays differences in probability of marriage entry (first marriage and sec-

ond marriage) and exit (‘marriage disruption’) based on race and ethnicity, family

background, the presence of children, duration of marriage, duration of divorce, and

marriage cohort (from 4-year intervals from 1950-1984). It would be interesting to

apply our state-by-age matrix model to compare marital patterns and cohort dynam-

ics between populations with different education levels, socioeconomic statuses, and

race or ethnicity; especially since the above mentioned studies show that there are

differences in the probability of marriage entry and exit based on these covariates.
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Findings could elucidate the link between the age-structured patterning of transitions

and mortality, the cohort dynamics, and the covariates mentioned above.

Additionally, much research on marital status and mortality focuses on exploring

the causality of the relationship between marital status and health. Williams and

Umberson (2004) finds the short-terms strains of marital dissolution to be an indica-

tor of self-assessed health, Zheng and Thomas (2013) found that married individuals

are more likely to overestimate their health status, and Iwashyna and Christakis

(2003) found that married individuals consistently received better health care. Tra-

ditional reasons for the robust disparity between mortality of married and unmarried

individuals includes: a marriage protective effect explained by: marriage encouraging

healthy behaviors and reducing risky ones, reciprocal care-giving, improved economics

of pooling resources, increased social integration reducing stress (Lillard and Panis,

1996), or a marriage selective effect whereby healthier or more economically inde-

pendent individuals are more likely to get married (Goldman et al., 1995). Either

direction of causality being the case, patterns of individuals entry into and exit out

of different marital statuses varies with different covariates, and has important im-

plications on overall cohort demographic structure and survivorship. Comparisons

in individual trajectory patterns clarifies disparities between gender (as seen in our

study), ethnicity, cohort periods, and country mortality rates.

By first answering how marital status, gender and age affect annual survival and

the probability of changing marital status at each age, we explicitly observed the

dynamic nature of marital status and the ramifications of marital status on survival

at each age. The trends in survival that our model indicate are consistent with other

reported findings in marriage and mortality research that “married persons have
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significantly lower mortality than unmarried persons, [a]... result that is established

for both men and women, but is observed to be greater for men” (Lillard and Panis,

1996). The ‘crossover’, where in late life the trend of married individuals doing better

than unmarried individuals seems to reverse, can be explained in a few ways. First,

it could reflect the increased probability of being in the unmarried state (widowed)

at later ages. This also could explain why in late life the difference in female married

and unmarried survival probability is less than the male difference in probability (this

explanation is also reasonable when taking into account the decreased probability

of staying married and becoming married at late ages). Second, as explained in

Steinsaltz and Evans (2004), in many mortality models there is the phenomenon of the

weaker individuals dying off leaving the more robust individuals behind in any state.

Thus a high proportion of weaker unmarried individuals experienced their earlier

mortality (represented by the married survival curve outperforming the unmarried

survival curve), leaving unmarried survivors in the cohort whom are more robust

with higher survival on average than the married survivors at late ages.

The statistical models of the effect of age and state on annual survival and tran-

sitions generated a curve of survivorship at each age that is consistent with what is

commonly seen for human survivorship, suggesting that it is at least possible that

dynamic heterogeneity is a widespread phenomenon underlying human cohort dy-

namics.

Our simulations and probabilities of survival and transitioning showed that at

earlier ages, more women are entering marriage than men, yet more women are also

exiting marriage. Both men and women are entering marriage at a decreased rate

with age over their lifetimes. And both men and women are exiting marriages with
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a local maximum around 25 years and 70 years (average about age 43). On average,

men are spending more time in the state of being married than women, with women

having much greater variation in their greater time spent unmarried.

As seen in the simulations, generally, at earlier ages more women become married

than men. However between 1970 and 1984, the percent of 20-24 year old individuals

never married increased (Goldscheider and Waite, 1986). This would mean if we would

compare generations, the distributions would be shifting. Clarke (1995) actually

shows the peak in first marriages in 1970 occurs at 20-24 years but in 1990 occurs in

the age range of 25-29 years for both men and women. However, Clarke was looking at

4 year age intervals with 15-19 included, at 1-year age intervals they would have found

that 18 and 19 years give peaks in marital rates as we have found. Schoen and Weinick

(1993) and Schoen and Standish (2001) also show trends in first marriages by four-

year age intervals for different birth cohorts and the general pattern and approximate

values are in agreement with our distributions of first entry into marriage (they find

that the peak of the distribution goes down with birth cohort, but the general shape

of the curve stays the same). The same papers also examine trends in divorce up to

age 50 and find the same general pattern, divorce declining with age. Our findings

that fewer marriages occur with age for both genders also agrees with Clarke (1995)

finding that most remarriages occur in the 20-24 year interval as compared to other

4-year age intervals up to 64 for both 1989 and 1990 marital rates, for both males

and females (20-24 is the youngest age interval they view for this group).

Average remaining life expectancy for married and unmarried individuals also

varied by gender, with married men having a greater increase in life expectancy for

a longer period of lifetime than married women when compared to their unmarried
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counterparts. We expected that incorporating the dynamic nature of the married

state into life expectancy calculations would differ from published work that does

not incorporate the dynamic heterogeneity of marital status at each age. One study,

comparing life expectancy between married and unmarried individuals with different

educational attainments at the age of 55, Brown (2014), found differences of about

3.2 years for males and 1.7 years for females. Our analysis predicts less of a difference

in life expectancy of married and unmarried individuals at age 55 than that paper;

we found a 1.9 difference for males and 1.4 for females. We think this makes sense

because our estimate is based on the assumption that an individual in the married

state at age x, could have been in either state at any prior or future age. Work that

does not take into account transitioning in and out of marital status assumes a person

remains in the married or unmarried state from the time-point of the study for the

rest of their lives, and thus results in more drastic differences in life expectancy based

on current status. In their classic paper, Willekens et al. (1982) used multi-state life

tables to look at life expectancy based on marital state at age 20 for Belgian women

(with no assumption that they stay in that state for the rest of their life course). They

found the difference between married and never-married, widowed, and divorced to be

0.15, 1.98, and 0.41 years of life expectancy, respectively. Here we found that at age

20, married and unmarried women (consisting of a high proportion of never married,

few divorcees, and fewer widows) had about a 0.20 year difference in life expectancy.

These results seem to be in agreement.

Lastly we emphasize how analysis of age-specific survivorship that classifies indi-

viduals for a lifetime by their marital status at one particular point in time provides

a different result than our analysis, which incorporates the dynamic nature of marital
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status. The fixed marital status approach groups the individuals by their status at a

given interview and analyzes the age at death of each group; using classic failure time

analysis, a survivorship curve is created for each group. At each interview wave, the

grouping of individuals is based solely on the marital status at that particular time.

For example, grouping the individuals by their marital status at interview waves 1,

2, 3, 4, 5, and 6, indicated that married males have higher survivorship than unmar-

ried males throughout the lifetime, the details differing among the interview waves.

However, grouping the individuals by their marital status at interview waves 7, 8,

9, and 10, indicated that there are some ages where unmarried males have higher

survivorship than married males. Similar results with even more differences among

interview waves were found for females. Thus neglecting the transience of marital

status provides limited results; results are limited to making conclusions about indi-

viduals classified for the totality of their lives based on their marital status at only

a specific time point. For example classifying individuals by their martial status at

age 30 does not help us to understand how their marital status at age 70 influences

mortality. For that we need a dynamic model. Without knowing the transition and

survival probabilities at each age it would have been difficult to interpret the changing

survivorship advantage of the married state at each interview wave.

Extensions of our models include generalizing to a case with more than two states,

which can easily be accommodated in the age-state matrix. For instance, this can

be done by looking at the subtle different patterning between marriage, cohabita-

tion, divorce, and widowed marital states, as is often done with multi-state life table

techniques.
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We hope that future research on dynamic states will incorporate some of our tech-

niques to elucidate a nuanced perspective on cohort dynamics. As briefly discussed,

comparative studies might be especially useful to show how individual age-dependence

in transition probabilities and mortality influence cohort dynamics. Our model also

allows exploration of how individuals entering and exiting any of several transient

states throughout their lifetime affects the cohort dynamics. The state-by-age matrix

approach has far-reaching implications for any population or cohort where individuals

undergo dynamic heterogeneity with consequences on survival.
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Table 2.1: HRS logistic regression: Dependent Variable = Survival at time t+1

Predictor Estimate Std. Error t value Pr(> |t|)

Intercept (Male, Unmarried) 7.685 0.255 30.165 <2e-16 ***
Slope (Male, Unmarried) -0.075 0.003 -22.771 <2e-16 ***
∆ Intercept (Married) 2.011 0.310 6.484 8.98e-11***
∆ Intercept (Female) 1.240 0.319 3.890 1.00e-04 ***
∆ Slope (Married) -0.022 0.004 -5.477 4.33e-08***
∆ Slope (Female) -0.009 0.004 -2.233 0.026 **
∆ Intercept (Married, Female) -0.498 0.450 -1.105 0.269
∆ Slope (Married, Female) 0.006 0.006 0.980 0.327

***p < 0.01, **p < 0.05, *p < 0.1

Table 2.2: HRS logistic regression: Dependent Variable = Marital status at time t+1

Predictor Estimate Std. Error t value Pr(> |t|)

Intercept (Male, Unmarried) 0.440 0.309 1.426 0.154
Slope (Male, Unmarried) -0.048 0.005 -10.219 <2e-16***
∆ Intercept (Married) 5.782 0.386 14.991 <2e-16***
∆ Intercept (Female) 1.250 0.439 2.848 0.004 ***
∆ Slope (Married) 0.006 0.006 0.973 0.330
∆ Slope (Female) -0.038 0.007 -5.575 2.47e-08***
∆ Intercept (Married, Female) -0.360 0.525 -0.688 0.491
∆ Slope (Married, Female) 0.014 0.008 1.766 0.077 *

***p < 0.01, **p < 0.05, *p < 0.1
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Table 2.3: NLSY79-pre1994 logistic regression: Dependent Variable = Survival at time t+1

Predictor Estimate Std. Error t value Pr(> |t|)

Intercept (Male, Unmarried) 8.690 0.770 11.283 < 2e-16***
Slope (Male, Unmarried) -0.101 0.029 -3.439 0.000585***
∆ Intercept (Married) -2.911 2.324 -1.252 0.210
∆ Intercept (Female) 1.104 1.416 0.780 0.435
∆ Slope (Married) 0.158 0.086 1.826 0.0677*
∆ Slope (Female) -0.009 0.054 -0.175 0.861
∆ Intercept (Married, Female) -0.399 3.039 -0.131 0.895
∆ Slope (Married, Female) 0.006 0.113 0.055 0.956

***p < 0.01, **p < 0.05, *p < 0.1

Table 2.4: NLSY79-pre1994 logistic regression: Dependent Variable = Marital status at time t+1

Predictor Estimate Std. Error t value Pr(> |t|)

Intercept (Male, Unmarried) -2.974 0.103 -28.671 < 2e-16***
Slope (Male, Unmarried) 0.028 0.004 6.844 7.75e-12***
∆ Intercept (Married) 3.718 0.257 14.461 < 2e-16***
∆ Intercept (Female) 1.211 0.146 8.291 < 2e-16***
∆ Slope (Married) 0.049 0.009 5.099 3.43e-07***
∆ Slope (Female) -0.041 0.005 -6.927 4.31e-12***
∆ Intercept (Married, Female) -1.192 0.333 -3.579 0.000345***
∆ Slope (Married, Female) 0.040 0.012 3.188 0.001433***

***p < 0.01, **p < 0.05, *p < 0.1
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Table 2.5: NLSY79-post1994 logistic regression: Dependent Variable = Survival at time t+1

Predictor Estimate Std. Error t value Pr(> |t|)

Intercept (Male, Unmarried) 7.324 0.868 8.437 < 2e-16***
Slope (Male, Unmarried) -0.066 0.020 -3.168 0.001***
∆ Intercept (Married) 0.541 1.646 0.329 0.742
∆ Intercept (Female) 2.055 1.293 1.589 0.112
∆ Slope (Married) 0.016 0.039 0.428 0.668
∆ Slope (Female) -0.043 0.030 -1.426 0.153
∆ Intercept (Married, Female) 0.911 2.492 0.366 0.714
∆ Slope (Married, Female) -0.018 0.058 -0.310 0.756

***p < 0.01, **p < 0.05, *p < 0.1

Table 2.6: NLSY79-post1994 logistic regression: Dependent Variable = Marital status at time t+1

Predictor Estimate Std. Error t value Pr(> |t|)

Intercept (Male, Unmarried) 0.408 0.266 1.535 0.12469
Slope (Male, Unmarried) -0.068 0.006 -9.911 < 2e-16***
∆ Intercept (Married) 1.292 0.396 3.256 0.00113***
∆ Intercept (Female) 0.405 0.389 1.041 0.29787
∆ Slope (Married) 0.099 0.010 9.825 < 2e-16***
∆ Slope (Female) -0.010 0.010 -1.083 0.27868
∆ Intercept (Married, Female) -0.418 0.557 -0.750 0.45318
∆ Slope (Married, Female) 0.009 0.014 0.639 0.52310

***p < 0.01, **p < 0.05, *p < 0.1
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Figure 2.2: Annual survival (number of individuals alive at age x + 1/ number of individuals alive
at age x) and conditional transition probabilities (given survival). Annual survival probability for
(a, c) males and (b, d) females based on marital status at age x (blue = married, red = unmarried).
Conditional probability for (e) males and (f) females who are unmarried at age x to become married
(red lines) and for those who are married at age x to remain so (blue lines). Logit transformed
coefficients from NLSY79 pre-1994, NLSY post-1994 and HRS are combined. The dashed vertical
lines represents the ages that the data sets are joined and the x-axis spans from ages 18-95.
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Figure 2.3: Cohort dynamics. From cohort projection of 1,000,000 individuals in the unmarried state
until age 18. Survivorship (number of individuals alive at age x/ number of individuals in the birth
cohort) for males (2.3a) and females (2.3b). The area plots (2.3c and 2.3d) show the proportion of
individuals in the married (blue) and unmarried states (red) at age x (spanning from 18-95). The
green vertical lines in panels (c) and (d) are the seams between data-sets utilized: NLSY79 pre-1994,
NLSY post-1994, and HRS (at age 33 and 50).
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Figure 2.4: The average remaining life expectancy, conditional on having survived to a specific age,
for males (2.4a) and females (2.4c). This average remaining life expectancy calculation takes into
account the dynamic nature of marital state at all the subsequent ages. (2.4b) and (2.4d) show the
difference in average remaining life expectancy between those married and unmarried at age x, for
males and females, respectively. Every panel’s x-axis spans from age 18 to 95 and the green vertical
lines in each panel are the seams between data-sets utilized: NLSY79 pre-1994, NLSY post-1994,
and HRS (at age 33 and 50).
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Figure 2.5: Cohort simulations of 10,000 individuals lifetime trajectories for ages 18-95.
2.5a and 2.5b depict the state transitions for each of 10,000 simulated individuals arranged in order
of lifespan (which is equivalent to the survivorship curves). Individuals start unmarried (green),
enter and exit marriage (red) at different ages throughout their lifetime and then they die (blue).
First passage times: 2.5c and 2.5d depict the distribution of the age at which individuals transition
from unmarried to married for the first time, for males and females respectively. 2.5e and 2.5f depict
the distribution of the age at which individuals transition from married to unmarried for the first
time for males and females, respectively. Age of transitions: 2.5i and 2.5j depict the distribution
of the ages at which individuals transition into marriage (including not only the first marriage,
but all subsequent marriage as well) and similarly, 2.5g and 2.5h depict the distribution of the ages
individuals transition out of marriage (not only for the first time), for males and females respectively.
The green vertical lines in panels (c)-(j) are the seams between data-sets utilized: NLSY79 pre-1994,
NLSY post-1994, and HRS (at age 33 and 50).
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Figure 2.6: The distribution of the total years an individual spends in the married (2.6a,2.6b) and
unmarried states (2.6c,2.6d), for males and females respectively. Male individuals spent a mean of
32.58 years married (standard deviation of 19.31 years, mode 0 years) and 38.95 years unmarried
(standard deviation of 16.13 years, mode 30 years). Females spent a mean of 30.73 years married
(standard deviation 18.00 years, mode 0 years), and 45.82 years unmarried with a standard deviation
of 19.35 years and mode of 27 years. The means incorporate the model requirement that the first 18
years of life are spent unmarried, and means also incorporate individuals who were never married
over their life course. The lifespan, or age at death is seen for males (2.6e) and females (2.6f). The
mean age at death is 75.39 for males and 80.01 for females, mode of age at death is 85 and 87, and
the standard deviation is 15.38 and 14.00 for males and females, respectively. The green vertical
lines in (e) and (f) are the seams between data-sets utilized: NLSY79 pre-1994, NLSY post-1994,
and HRS (at age 33 and 50).
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Figure 2.7: How marital status (blue=married, red=unmarried) at specific HRS inter-
view waves affects FEMALE survivorship (no. alive at age x/no. in birth cohort). A
series of Kaplan Meier failure time analysis were used to obtain survivorship estimates of female
individuals in HRS. For each respective analysis, individuals were classified by their marital status
at a particular interview wave (a) first, (b) second, (c) third, (d) fourth, (e) fifth, (f) sixth, (g)
seventh, (h) eighth, (i) ninth, (j) tenth. Weighted failure time analysis was performed in R.
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Figure 2.8: How marital status (blue=married, red=unmarried) at specific HRS inter-
view waves affects MALE survivorship (no. alive at age x/no. in birth cohort). A series
of Kaplan Meier failure time analysis were used to obtain survivorship estimates of male individuals
in HRS. For each respective analysis, individuals were classified by their marital status at a partic-
ular interview wave (a) first, (b) second, (c) third, (d) fourth, (e) fifth, (f) sixth, (g) seventh, (h)
eighth, (i) ninth, (j) tenth. Weighted failure time analysis was performed in R.



CHAPTER 3

Poverty dynamics, poverty thresholds and
mortality: an age-stage Markovian model

3.1 Summary

Recent studies have examined the risk of poverty throughout the life course, but

few have considered how transitioning in and out of poverty, or other income states,

shapes the dynamic heterogeneity and mortality disparities of a cohort at each age.

Here we use state-by-age modeling to capture individual heterogeneity in crossing

one of three different poverty thresholds (defined as 1×, 2× or 3× the “official”

poverty threshold) at each age. We examine age-specific state structure, the remaining

life expectancy, its variance, and cohort simulations for those above and below each

threshold.

Survival and transitioning probabilities are statistically estimated by regression

analyses of data from the Health and Retirement Survey RAND data-set, and the

National Longitudinal Survey of Youth. Using the results of these regression analyses,

we parameterize discrete state, discrete age matrix models.

We found that individuals above all three thresholds have higher annual survival

than those in poverty, especially for mid-ages to about age 80. The advantage is

56
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greatest when we classify individuals based on 1× the “official” poverty threshold.

The greatest discrepancy in average remaining life expectancy and its variance be-

tween those above and in poverty occurs at mid-ages for all three thresholds. And

fewer individuals are in poverty between ages 40-60 for all three thresholds. Our

findings are consistent with results based on other data sets, but also suggest that

dynamic heterogeneity in poverty and the transience of the poverty state is associated

with income-related mortality disparities (less transience, especially of those above

poverty, more disparities).

This paper applies the approach of age by stage matrix models to human de-

mography and individual poverty dynamics. In so doing we extend the literature on

individual poverty dynamics across the life course.

3.2 Background

In 2014, 14.8% of the U.S. population lived below the poverty threshold (DeNavas-

Walt and Proctor, 2015). In that year, the official poverty threshold for a family of

four was an annual income of $24,008. If a family’s annual income falls below a

threshold, all the individuals in the family are considered below the threshold as

well. It is widely accepted that those in poverty have higher mortality risk then

those above poverty (Marmot, 2002). Yet how many of these people stay below the

official poverty threshold the next year? As the ‘official’ poverty threshold is set very

low, it is also known that negative effects of relatively low income are also seen for

individuals “near” poverty, variously defined as 1.25, 1.5, and 2× ‘official’ poverty,

all the way up to the median income level, which is approximately 3× the ‘official’

poverty threshold. For this reason we define 3 possible “poverty” thresholds, 1×, 2×,
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and 3× the ‘official’ poverty threshold set by the U.S. Census Bureau as the poverty

level. We compare annual survival, remaining life expectancy, and entry and exit of

individuals above and below each poverty threshold at each age. We also investigate

how three cohorts, each with one of the three specified poverty thresholds experience

dynamic heterogeneity, that is, how the demographic structure of the population

varies as individuals cross in and out of poverty at each age.

It is well documented that income levels are dynamic; thus being “in poverty”

is also dynamic Bane and Ellwood (1985). Of those classified as poor in 2009, for

example, 26.9% were classified as not being poor in 2010 and 35.4% were classified as

not being poor in 2011. Of those not poor in 2009, 4.1% were poor in 2010 and 5.4%

did become poor in 2011 (Edwards, 2014). Other income levels are dynamic as well,

such as 2×poverty threshold ($48,016 for a family of four in 2014) and 3×poverty

threshold ($72,024 for a family of four) and have important health (Hokayem and

Heggeness, 2014a), and policy ramifications as well (Cellini et al., 2008).

Our objective is to answer the following four questions: 1) How often in their

life course do individuals cross above and below each threshold? 2) How does being

above or below a threshold affect the probability of survival from one age to the

next? 3) How does being above and below a particular threshold income level change

the expected fate of a cohort, such as the remaining life expectancy and variance in

remaining life expectancy? 4) How many total years are spent above and below each

threshold during an individual’s life?

These questions are examined by using a state-by-age matrix model to analyze

empirical data from the National Longitudinal Survey of Youth 1979 (NLSY79) and

the Health and Retirement Survey (HRS)(Bureau of Labor Statistics, 2012; Moldoff
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et al., 2014). In this model demographic fates of individuals depend upon both stage

(income status) and age. From NLSY79 and HRS we are able to estimate one-year

survival probabilities and one-year transition probabilities across three different in-

come thresholds, for ages 22-95. Our results are consistent with current literature

on poverty entry and exit rates (such as Cellini et al. (2008); DeNavas-Walt and

Proctor (2015); Edwards (2014)) and near poverty entry and exit rates (Hokayem

and Heggeness, 2014b). Our method of using state-by-age models (with two states,

above poverty and in poverty for each of the three defined poverty thresholds) leads

us directly to the variance in average remaining life expectancy at each age and the

heterogeneity in income state. Matrix age-by stage models have been used in many

contexts (for instance to analyze plants, such as a perennial shrub (Caswell, 2012),

animals, for instance whales (Caswell, 2009), humans (Caswell, 2015), and in epidimi-

ological analysis, for instance to analyze rubella (Metcalf et al., 2012))and are useful

for connecting individual stochasticity in life path to overall cohort dynamics. Other

methods that use the combination of age and stage to predict demographic fates, in-

clude multistate life table approaches (as reviewed by Willekens and Putter (2014)) or

classic increment-decrement life table techniques (Schoen, 1988)) can address similar

questions. In deference to work on multi-state life table analysis, we use the human

demography convention and use the term ‘state’ rather than the more general ecology

term ‘stage’. Our approach serves as a bridge between age-by-stage matrix models

and poverty dynamics over the life-course.
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3.2.1 Dynamic heterogeneity in income level and mortality

risk

The association of poverty with poor health is well-documented, including differ-

ent theories of mechanisms and pathways of causation (Adler et al., 1994; Benzeval

and Judge, 2001; Cellini et al., 2008; McDonough et al., 2010). Cellini et al. (2008)

also summarizes different modeling approaches for poverty dynamics (for example the

tabulation or count method, life table method, bivariate hazard rate method, mul-

tivariate hazard rate (or spell based) method, components-of variance method, and

some less used multivariate methods). Regardless of technique used, the association

between mortality risk and poverty status is apparent, but what about an association

at higher income levels? Rehkopf et al. (2008) looked at different income levels and

their associated mortality risk for individuals in the United States between the ages of

18-77 and found that the greatest mortality risk is for the “population whose family

income is below the median (equal to $20,190 in 1991, 3.2 times the poverty level)”.

In other words mortality risk decreased as income increased until near the median

income level, while above this level there was no significant change in mortality risk

with income increase. Thus there are income related disparities in mortality risk up

to the median income.

The “near poverty” threshold, usually defined officially as 1.25× the poverty

threshold (although sometimes defined as 1.3×, 1.5×, or 2× the poverty thresh-

old) has also received attention (Hokayem and Heggeness, 2014a,b). Individuals with

incomes just above the poverty threshold have characteristics quite similar to those

“in poverty” in terms of assistance program participation rates. Furthermore transi-

tions into and out of “near poverty” are frequent (Hokayem and Heggeness, 2014b).
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Most studies have not looked at the full range of age-specific annual survival and

transition rates, despite general trends across the life cycle. For instance, we know

“[Health] Disparities are smallest during childhood, adolescence, and early adulthood

and greatest in middle age, becoming weaker again in older populations” (Adler and

Rehkopf, 2008). In order to better address health disparities it is useful to know the

age-specific dynamics and associated mortality risk of being below 1×, 2×, and 3×

the “official” poverty threshold; thus we investigate each of these poverty thresholds

separately. A better understanding of individual income dynamics enables a clearer

identification of those most at risk.

3.2.2 Age-by-stage matrix model

We construct three matrix models, one for each of three poverty thresholds (1×,

2× and 3× the “official” poverty threshold); each matrix is a discrete time, discrete

state, discrete age, Markov chain matrix with two-income states, above or below the

chosen threshold, at each age. The matrix is similar in structure to the Tuljapurkar

and Steiner (2010) population projection age-stage matrix, but here, as in Steiner

et al. (2012), there is no reproduction. It is also similar in concept, to the model of

multi-state mathematical demography presented in Rogers (1980). Matrix methods

have since become more widespread as the data necessary to construct the have

become more available and insights they can provide are expanding. Here we use our

age-by-stage models to trace dynamic heterogeneity in a cohort, that is, individual

state switching (above and below poverty) and cohort heterogeneity (variance in

state structure) at each age (also termed individual stochasticity since individual

life course trajectories are stochastic and differ even between identical individuals
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(Caswell, 2009)). As is conventional with matrix methods (Caswell, 2012), we also

use the age-by-stage matrices to construct fundamental matrices from Markov Chain

theory to determine remaining life expectancy for individuals in a given state at a

given age and to determine expected remaining years in each income state (for theory

see C.1.2).

We address the following research questions:

For each of the three threshold income levels (1×, 2×, and 3× the “official” poverty

level) we ask:

• How does annual survival probability change with age for those above and

below a particular poverty threshold? What are the age-specific entry and exit

probabilities for the two states (above and below a particular threshold)?

• How does state-structure (proportion above and below the threshold) change

with age?

• How does remaining life expectancy and the expectation of remaining life be-

low the specified income threshold change with age? What is the variance in

remaining life expectancy for those below and above the income threshold?

• How does the poverty status and survival of simulated individuals change across

their lifetimes, where the the age-specific probabilities of survival and state

transitions of the model are used to assign fates to individuals in a simulated

birth cohort. Specifically we ask, at what ages do individuals transition below

and above a particular threshold? And how long do simulated individuals spend

in poverty during their lifetime?
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Our state-by-age model answers our research questions by emphasizing age and

state structured cohort dynamics for the three different thresholds. We examine how

age-specific individual stochasticity affects overall cohort dynamics.

3.3 Methods: Theory

The age-by-state matrix, L, calculates cohort dynamics and individual trajecto-

ries. Specifically, L is a square matrix whose dimension equals the number of states

times the number of ages classes (note: a maximum age must be set). L is used

in the following two ways (equations): Equation (3.1) is used to project a vector n

that represents the number of individuals in each state at each age from birth across

the lifetime (Caswell, 2001), which enables tracking of the state-distribution and sur-

vivorship of an initial cohort (with its initial state distribution, n(0)) at each age

x:

n(x) = Lxn(0) (3.1)

where the matrix L is raised to the xth power at each age x. Equation (3.2) is used to

analyze remaining life expectancy (mean and variance in age at death) and generate

individual stochastic trajectories across all ages, where an individual is a realization

or sample path of a Markov process. The Markov chain is described by this matrix

(Keyfitz and Caswell, 2005):

P =

 L 0

m 1

 (3.2)

Here we will define the age-and-state matrix L, and in the appendix (C.1) we show

how it can be used in (3.1) and (3.2). L has dimensions of age-by-stage and each
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element is copmposed of the product of two of the following four functions at each

age, s1(x),s2(x),t12(x) and t22(x):

s1(x) = Probability that an individual whose income is below a threshold sur-

vives between ages x and x+ 1 (one-period state-specific survival).

s2(x) = Probability that an individual whose income is above a threshold sur-

vives between ages x and x+ 1 (one-period state-specific survival).

t21(x) = Conditional probability of exiting poverty before age x + 1 for an

individual who is in poverty at age x. (1 − t21(x)) = t11(x) = probability that

an individual whose income is in poverty (below the income threshold) at age

x will remain in poverty at age x+ 1, conditional on survival.

t22(x) = Conditional probability of staying above poverty at age x+1 for an in-

dividual who is above poverty (the particular threshold) at age x. (1−t22(x)) =

t12(x) = probability that an individual whose income is above poverty at age x

will enter by age x+ 1, conditional on survival.

Here x is a 1-year age interval (so age x to x + 1 is a one-year step), although

other interval lengths can be used (Keyfitz, 1968). State transition probabilities

(transitioning to a new state or staying in a state at the next age) are conditional on

survival; ‘state’ is being below or above a particular income level. Subscripts follow

standard convention of row, i, and then columns, j, and transitions are j to i (i.e. t12

is transitioning from state 2 to 1, richer to poorer). Also note that every probability

has a complement; the complement to the annual state specific survival is the annual

state specific mortality, i.e. the probability of dying in one year.
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Multiplying the survival probabilities by the conditional state transition proba-

bilities results in a matrix for each age, Q(x) which takes the following form:

State at age x

State at age x+1
< income threshold > income threshold

< income threshold s1(x)t11(x) s2(x)t12(x)
> income threshold s1(x)t21(x) s2(x)t22(x)

Table 3.1: Structure of unconditional state transition matrices, Q(x)

We denote each survival-weighted state transition matrix, also denoted the un-

conditional state transition matrix as Q(x), and each unconditional state transition

matrix is inserted into the sub-diagonal of the age matrix at the appropriate column.

In our implementation of the model, we set a maximum age of 100 and thus there

are 100 unconditional state transition matrices, each representing a 1-year increment

from 0 to 100 years of age. The age-state block matrix has dimensions 101 × 101

blocks, each block comprises a 2 × 2 matrix, and has the following form (where the

0’s represent 2× 2 matrices comprised entirely of zeros):

L =



0 0 0 . . . 0 0 0 0

Q(1) 0 0 . . . 0 0 0 0

0 Q(2) 0 . . . 0 0 0 0

0 0 Q(3) . . . 0 0 0 0

...
...

...
. . .

...
...

...
...

0 0 0 . . . Q(98) 0 0 0

0 0 0 . . . 0 Q(99) 0 0

0 0 0 . . . 0 0 Q(100) 0


The age-state block matrix L has a structure reminiscent of a Leslie matrix from

which fecundity has been removed, in that an individual always transitions to the next
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age at each time step (Keyfitz and Caswell, 2005; Kot, 2001; Leslie, 1945). Since there

are 2 state classes and 101 age classes, the dimensions of the age-state matrix L is

202×202. The L matrix can be used to produce cohort projections (C.1.1) and Markov

chain analysis. With Markov chain analysis we calculate the average remaining life

expectancy, average remaining life in poverty or below an income threshold, and the

variance (by using the fundamental matrix, as explained in C.1.2) and the simulated

individual trajectories (see C.1.3).

3.4 Methods: Empirical data

3.4.1 HRS RAND

The Health and Retirement Study (HRS) is a publicly accessible longitudinal

household survey data set for the study of retirement and health among individuals

over age 50 and their spouses in the United States. We use the RAND HRS Data files

Version O which “are a cleaned, processed, and streamlined collection of variables de-

rived from HRS” (Moldoff et al., 2014). The survey consists of 6 cohorts and we use

longitudinal data compiled from 6 of the 11 interview waves that fall approximately

around these years: 2002, 2004, 2006, 2008, 2010, 2012. As a nationally represen-

tative data set of 37, 319 individuals, HRS has over-sampled Hispanics, Blacks, and

residents of Florida, and provides weighting variables to make it representative of the

community-based (non-institutionalized) population. For our purposes we subset the

data to only include individuals between 50 and 95 years old. We use survey sample

weight in all analyses. And the income threshold that defines poverty is from the

United States Census Bureau (thresholds vary by year, size of family, and number of
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children). Individuals are pooled into repeated observations for each of their interview

responses as explained after the following section.

3.4.2 NLSY1979

The NLSY79 Cohort is a longitudinal project that follows the lives of a sample of

American youth born between 1957-64. The cohort originally included 12,686 respon-

dents aged 14-22 when first interviewed in 1979; after two sub-samples were dropped,

9,964 respondents remain in the eligible samples Bureau of Labor Statistics (2012).

We use data available from interview wave 1 (1979 survey year) to interview wave 25

(2012 survey year), which includes one-year intervals from 1979-1994, and two-year

intervals from 1994-2012. Since we are studying the state of poverty we subset the

data to include observations from age 22 (when individuals enter the work-force post

college) to age 50. Retention rates for NLSY79 respondents from 1979 to 1993 ex-

ceeded 90 percent. Rates from 1994 until 2000 exceeded 80 percent. Rates from 2002

until 2012 were in the 70s. (Retention rate is calculated by dividing the number of

respondents interviewed by the number of respondents remaining eligible for inter-

view) (Bureau of Labor Statistics, 2012). More detailed information about retention

rates can be found at NLSY79’s website. Poverty rates are based on annual poverty

income guidelines by the U.S. Department of Health and Family Services (which are

also based on family size). We recognize that the threshold varies minimally between

the U.S. Department of Health and Family Services and the U.S. Census Bureau, but

previous research comparing slight differences in poverty thresholds shows the effect

to be insignificant (Cellini et al., 2008).
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3.4.3 Quantifying the functional dependence of survival and

transition probabilities on age: logistic regression

There has been much discussion as to how to calculate transition probabilities for

Markov transition models (Islam et al., 2004; Islam and Chowdhury, 2006; Korn and

Whittemore, 1979; Lawless and Rad, 2015; Yu et al., 2010). (The latter two sources

give a good background on the history of estimating transition probabilities from

data and propose methods for higher Markov models). One very practical proposal

for calculations of binary Markov transition models has been to use logistic regression

probabilities (Muenz and Rubinstein, 1985). Since logistic regression is very straight-

forward and intuitive, especially when we have a time-dependent covariate (age), we

employ it for our analysis. Researchers might look towards Yang et al. (2007) or

Fujiwara and Caswell (2002) which are two distinct ways to calculate Markov tran-

sition probabilities that can incorporate a range of data complexities. The Willekens

and Putter (2014) review is also a good resource as to the vast array of statistical

packages in R that can be used to estimate transition probabilities for demographic

multi-state models. Logistic regression models are often used in the poverty context

to find determinants of poverty (Haughton and Khandker, 2009). With logistic re-

gression covariates can also be incorporated into the state-by-age model, although

here we only include age and current state as our independent variables.

The HRS data, NLSY79 pre-1994, and post-1994, are analyzed separately for

ages 22-33, 34-50, and 51-95, respectively, and the results are later combined to give

probabilities of survival and transitioning over our complete age range of 22 − 95.

Within each data-set, interviews are pooled together except for the last wave; this

represents the data at time t. All the interview waves except for the first one are then
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pooled together to represent the data at time t + i. (To find i for each data-set we

average the interval in months between each successive interview wave. For instance,

for HRS the interval between interview years is normally distributed about 24 months,

for NLSY79 pre-1994 the interval is normally distributed about 12 months, and for

NLSY post-1994 there is a normal distribution in interval length about 24 months.

After the regression we adjust our probabilities to be over a one year period, i.e. t

to t + 1, see appendix for more on this adjustment). Instead of tracking individuals

longitudinally over several ages, we perform a pooled logistic regression analysis on

all observations of all ages from time t to t+i, where individuals have a particular age

x at time t and age x+ i at time t+ i. If an individual did not respond at that specific

point (either the interview at t or t+1 or both interviews), that observation is omitted

from the analysis. However if that specific individual responded later in the study (a

different observation), that observation is included in the analysis. This technique has

been called the pooled repeated observation method (PRO) and the analysis called

a pooled logistic regression (Dagostino et al., 1990). The pooled logistic regression

analysis was performed in R and the survey package Lumley (2014) with svyglm was

used to incorporate weights. For HRS we have 186,585 observations between the ages

of 50 and 95. For NLSY79 after pooling we have 183,238 observations between the

ages of 22 and 50. For analysis the pooled observations are weighted based on each

data set’s weight at observation.

For each income threshold and data-set we ran regression analysis to obtain es-

timates for the functional dependence of survival and transition probabilities on age

and state. The regression coefficients were logit transformed into probability values.

Since the actual time between interview waves i varied (see A.2) and we needed to
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calculate annual rates from the probabilities, we developed a protocol for converting

the probabilities to annual (12 mo) rates (as explained in A.3). We then evaluated

these functions at each age for use in our matrix models.

To check for an association of income level and response rate at each age, the

difference in percent of non-response was calculated for each age. Three income level

thresholds (1×, 2× and 3× the income level that “officially” defines “poverty”) were

used to define binary states (above and below each threshold) and separate analyses

were run for each. For this analysis deceased individuals were removed from the

population (they were not counted as non-response).

In our main analysis we investigated three income levels to classify the individuals

into “states” in order to see if the impact of income level on mortality depended upon

where the line between rich and poor was drawn. Also we were interested in whether

the dynamics of changing state were similar if the line was drawn at a very low income

level versus a higher income level.

3.5 Results

3.5.1 How do the probabilities of survival and transitioning

between income states depend upon age and current

state?

We answered the first research question by performing pooled logistic regression

for individuals classified into two states at each age; below and above 1×, 2×, and

3× the poverty threshold (fig.C.1). Since the pooled logistic regression approach

omits missing data, we first addressed the issue of whether non-response was itself
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associated with poverty status. In C.2 we show the proportion of missing observations

at age x+ i based on state at age x, and the difference in non-response between each

state. There is slightly lower response by those in the lower income states for all three

thresholds. The difference does not seem to be dependent on age so we assume that

for our analysis the impact on the results are minimal.

For ages 50 and above (the HRS data) there is a significant difference between

survival of those above and below the 1×, 2× and 3× the “official” poverty thresholds

(fig. 3.1). The richer survived better than the poorer group no matter where the

threshold was set. The maximum observed difference in annual survival between the

two groups (at any age) was 2.3% for the 1×poverty threshold, and 1.9% for both

the 2× and 3× poverty threshold.

In terms of absolute difference, those above 1× poverty have their maximum

annual survival advantage between ages 75-79 of 0.022. Those above 2× poverty have

the maximum advantage also in the late 70s with a maximum difference of 0.018,

and those above 3× poverty have maximum advantage at age 76 of 0.018. For the

1× poverty threshold there is a crossover at age 91 where those below threshold have

a slight survival advantage. For the 2× and 3× poverty threshold the crossover is

at age 88. At younger ages (22-50 from NLSY79) there is less disparity in survival

probability between states (except at ages 45-50 for the 1× poverty threshold).

Individuals above 1× poverty income tend to stay there throughout their life

course. Those below 1× poverty income have the greatest probability of exiting their

low income state at younger ages (fig. 3.2). Those below 2× and 3× poverty income

threshold also have decreasing probability of exiting their income state, and the one-

period probability declines with age. Those above 2× poverty have a slight increasing
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probability of remaining above 2× poverty until mid-ages, where the probability of

remaining above 2× poverty declines with age. Those above 3× poverty have a more

dramatic increase in the probability of remaining above 3× poverty until midages as

well, and then a very sharp decrease of the probability of remaining above 3× poverty

with each age.

Discontinuity in the curve (at the dashed vertical lines) is a seam perhaps rep-

resenting period effects, i.e. the joining of NLSY79 (ages 22-50 between 1979-2012)

to HRS (ages 50-95 between 2002-2012). The age-structure of interviews in each

data-set are different, as can be seen in fig.A.1; NLSY79 mostly comprises a single

classic cohort where all the individuals are aging together across time, whereas HRS

comprises several cohorts, including a new cohort entering the data-set in 2004 and

another new cohort in 2010. Regardless, our adjustments to the probabilities, and the

data’s large sample size create a general age-specific trend consistent with previous

literature.

3.5.2 Cohort distributions

We want to know the state structure (the relative proportion of richer and poorer

individuals) at each age for any initial cohort. We note that each Q(x) represents the

joint demographic processes of survival to the next age and transitions among income

levels during that age interval. For example Q(1) takes any initial cohort from age 0

to age 1 and Q(2) takes the cohort from age 1 to age 2. The cumulative demographic

processes experienced by a cohort from age 0 through age 2 is given by the product

of the two, the matrix product Q(2)Q(1). We note that matrix multiplication is

written from right to left and that matrix multiplication is not commutative. Thus
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the cumulative demographic processes experienced by a cohort from age 0 to age x is

given by the matrix product

Qcum(x) = Q(x)Q(x− 1)Q(x− 2)...Q(3)Q(2)Q(1) (3.3)

We observed that the state structure at each age appears to converge to the

dominant eigenvector of the cumulative matrix product for any initial cohort, after a

certain age. We are not sure of the generality of this observed result. As expected, and

despite underlying state switching, throughout all ages there is an almost constant

percentage of individuals below 1× poverty (about 12%, fig. 3.3). The percentage

below 2× and 3× poverty is slightly U-shaped with increasing percentages in the

lower income states after age 55. (This correlates with the increased probability of

exiting the higher income state after mid-ages). The demographic structure defined

by the dominant eigenvectors of Qcum(x), the cumulative age-specific unconditional

state transition matrix, is similar to the demographic structure seen in the empirical

data (C.1).

We cannot refer to this as a ‘stable state’ distribution since as the cohort is being

projected across time it is also changing age, and the relative number of individuals

above and below the threshold changes at each age. However if the cohort would be

theoretically stuck at an age for a long period of time, the dominant eigenvector of the

cumulative matrices, Qcum(x), represents the stable state distribution that would be

approached. More precisely, if we picked an age ‘z’ and assumed that all Q(x) = Q(z),

then the quasi-stable (Seneta, 1981) distribution would be the dominant eigenvector

of Q(z). The subdominant eigenvalue of cumulative conditional transition matrix

(with survival not included) represents how quickly a cohort converges to the quasi-

stable distribution, and we find that convergence happens very quickly for all three
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thresholds. In other words, even if the initial state distribution varies, we observed

that a cohort will quickly (by age 30) converge into the quasi-stable distribution

represented by Qcum(x) the dominant eigenvector of the cumulative state matrices.

3.5.3 The fundamental matrix: life expectancy and variances

We want to know how many years individuals of a given age, in a given income

level, are expected to remain alive. We also want to know how many of their remaining

years will be spent in poverty. This information is encapsulated in the “fundamental

matrix”, which is a matrix that is essentially the summation of the powers of L

across all ages. Each element of the fundamental matrix is the mean number of

visits to either poverty or above poverty (depending on the index) conditional on

survival to a particular age and state. Analysis of the fundamental matrix provides

age-by-state-specific average remaining life expectancy, and expected remaining years

below an income threshold (fig.3.4). Those above ‘poverty’ at age x have less expected

remaining years in ‘poverty’ than those already in ‘poverty’ at age x, for every defined

threshold (fig.3.4 dashed lines). As age increases, for the higher than 1× poverty

income state, the average proportion of life that can be expected to be in the below

1× poverty state decreases (blue dotted lines). This is generally true for those above

2× poverty as well; however, from about ages 60 to 80 the expected proportion of

those living below 2× poverty increases slightly (and increases much more for those

above 3× poverty). Regardless of initial stage, there are fewer expected years of

remaining life for those below a 1× poverty threshold than below a 2× or 3×-poverty

threshold.
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The difference in average remaining life expectancy between the income states is

greatest (for all thresholds) at mid-ages. The peak difference is 1.44 years, 1.35 years,

and 1.01 years for those above and below 1×, 2× and 3× poverty, respectively. Those

above and below a 1× poverty threshold have an average life expectancy difference

of over 1/2 year from ages 34-81, for those above and below 2× poverty this occurs

between ages 34-78, and for 3× poverty ages 37-77.

Analysis of the fundamental matrix also facilitates quantifying the variance and

coefficient of variance in average remaining life expectancy at each age. Variance in a

population represents the range of possibilities individuals can experience in terms of

lifespan, and in terms of time in income states. We can see that for all ages (except

for a few in late old age), those in the lesser income state have the greatest variance

in their average remaining life expectancy (fig. 3.5). The difference in variance is

most pronounced in the mid-40s. There is a maximum difference in variance of 37.14

years for those above and below 1× poverty, 33.19 years for the 2× poverty states,

and 24.42 years for the 3×-poverty states. The difference between the variance for

both income states is above 15 years for those between the ages of 33-57, 33-58, and

37-55 for 1×, 2× and 3× poverty thresholds, respectively. Variance scales with the

mean in general. To look at variability independent of the mean, we also examined

the coefficient of variation. In general, the coefficient of variation increases with age,

especially more so for those in the lower income state.

3.5.4 Simulation: Individual lifetime trajectories

For our simulation of a cohort of 10,000 individuals, (fig. 3.6), we can clearly

observe the age patterning and dynamic heterogeneity over the life course. We see an
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abundance of individuals in the below income threshold state at the end of their life,

and more individuals in the above income state between the ages of 40 and 60 for all

three thresholds. Most individuals enter the lower income states at early ages (fig.

3.7), and there is a slight peak again at age 60 for those below 2× and 3× the poverty

threshold. Individuals also exit the lower income state at early ages, and the amount

of individuals exiting levels out until age 70. Note that “exiting” as it is counted here

can be the result of death as well.

Individuals spent a mean of 3.92 years (standard deviation of 4.50 years, mode 0

years) below 1× poverty (fig. 3.7). A mean of 11.64 years was spent below 2× the

poverty threshold (standard deviation of 8.70, mode of 0 years). And a mean of 20.42

years was spent below 3× the poverty threshold (standard deviation of 11.4841, mode

of 16 years).

3.5.5 Limitations

Our model is in a discrete age, binary discrete state, discrete time Markov chain

framework. The probability of remaining alive and of transitioning between richer

and poorer states by the next age is dependent only upon the current age and current

income level of an individual. The past history of an individual is not considered in

the model, even though mortality rates and poverty transition rates have been found

to be related not only to current state but also to past history in other studies (Bane

and Ellwood, 1985). Half of those who end poverty spells return to poverty in the next

four years (Stevens, 1999). It is this relationship that our analysis is based on. One

can consider this a theory of poverty entry and exit that has no duration dependence,

a ‘neutral theory’ where whether individuals enter or exit poverty at each age depends
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only upon their current state of income and not on any intrinsic traits. Poverty risk

is equally spread throughout a cohort such that at a given age for a given income

level the same probability rules apply to all individuals. Our simulations give insight

into the heterogeneity among individual life trajectories that results.

3.6 Discussion

The fundamental causes of poverty and the pathways through which higher mor-

tality results are under ongoing investigation (Osowole et al., 2012; Rehkopf et al.,

2010; Rogers, 1992; Sorlie et al., 1995; Tuljapurkar and Boe, 1998). Moreover, the

relationship between income and mortality is complicated by the transience of the

income state. Benzeval and Judge (2001) was able to control for initial health status

and found that there is indeed a causal relationship between low income and poor

health. In the same study they distinguished between persistent poverty and occa-

sional episodes. All studies that have done likewise found that long term poverty or

‘near poverty’ is a greater indicator for poor health than ‘episodic’ poverty (Edwards,

2014; Hokayem and Heggeness, 2014b). Neilson (2008) found that in Chile, at some

point between 1996-2001, 30 percent of the population had income under the poverty

line (Neilson et al., 2008). Under closer analysis only 9.2 percent were under the

poverty line for that entire period, the remainder had experienced transient/episodic

poverty. They further discovered that when the poverty line is increased, chronic

poverty increases systematically while transient poverty levels out (in their case at

2× the Chilean poverty threshold).Backlund et al. (1996) and Rehkopf et al. (2008)

also found that as income increases past a threshold, the health benefits associated

with increased income diminishes, perhaps at the median income level.
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All of these observations suggest that the transience of the poverty state has im-

portant ramifications for health outcomes, mortality risk and population dynamics.

And indeed, the transience of poverty has received much attention, especially due to

policy implications (Benzeval and Judge, 2001; Edwards, 2014; Hokayem and Hegge-

ness, 2014b; McDonough et al., 2010; Sacker et al., 2007).

Here, our state-by-age model captures individual heterogeneity in entering and

exiting either 1×, 2× or 3× the official poverty threshold at each age. Being above and

below 1× the poverty threshold has important ramification for families, such as which

government sponsored programs can be utilized, although ‘near poverty’, defined as

up to 2× the poverty threshold, is recognized as a state with health consequences as

well. 3× poverty is roughly similar to the U.S. median income, above which their

are minimal income-related disparities in health. Our approach adds to prior work

in that we observe the transience of these income thresholds at each age across the

life course, and then consider the resulting disparities in one-period survival, average

remaining life expectancy, and variance of remaining life expectancy.

We find that the higher income state has the highest annual survival probability

from mid-ages to about age 80, with a crossover in late old age. The advantage is

greatest between those above and below 1×-poverty when compared to those above

and below 2× or 3× poverty. However the age patterning for each threshold is

quite similar. Those above 1× poverty have a constant high probability of staying

above 1×-poverty at all ages. Those above 2× poverty have the highest probability

of staying above threshold at midages, and those above 3× poverty have a similiar

pattern but with a steeper decline after mid-ages. For those in the lower income

states, the annual probability of exiting those states declines with age. Those below
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1× poverty have the highest probability of exiting at each age, but the sharpest

decline with age. Although Willekens and Putter (2014) did not investigate age-

specific transition rates, the annual rates are roughly similar in magnitude for exiting

poverty and above poverty, and for exiting 2× poverty and above 2× poverty. Our

transition rates are also consistent with poverty entry and exit rates mentioned in

Edwards (2014) (although our rates are age-specific). Our poverty entry rates are

also consistent with Rank and Hirchl (2001) who used the Panel Study of Income

Dynamics (PSID) and found that “individuals within the sample face a significant

risk of poverty at some point during their adult lives, particularly during the early (20-

40) and later (60-80) stages of adulthood”. This is what we found in our simulations,

across the life-course, more individuals are in the higher income state between the

ages of 40 and 60. In another study using the PSID, Rank et al. (2014) also found,

like our simulations, that from age 60 to 90, entry into income poverty (and asset

poverty) decreases (they discuss policy implications).

Our results are also in approximate agreement with Cellini’s review of the dy-

namics of poverty in the U.S., “that those experiencing poverty had a roughly 1 in 3

chance of leaving poverty in any given year”(Cellini et al., 2008). In that review they

also discuss some of the demographics underlying poverty exit and entry rates such

as race, household size, sex of household head, and education.

Our cohort state distributions at each age shows that the number of individuals

in poverty, (below the 1× poverty threshold) is almost constant with age, perhaps

since an almost equal number of people exit and enter 1× poverty after age 33 (as

shown in our simulations). The 2× and 3× poverty threshold projected cohorts have

similar state-distributions at each age; a decrease in individuals in the lower income
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state until mid-ages and an increase thereafter, steeper for the cohort with the 3×

poverty threshold.

We found that the greatest difference in average remaining life expectancy based

on state at age x occurs near ages 40-60 (in agreement with Adler and Rehkopf

(2008)), regardless of which threshold is considered. Although the magnitude of the

difference is greater for those above and below the 1× poverty threshold, the age

pattern in life-expectancy is similar for the other thresholds as well. Other literature

points out that the inequality between life expectancies based on income quartile is

increasing over time (the years 2000-2010) (Chetty et al., 2016). This observation,

coupled with the higher rate of transitioning for those below 1× poverty might point to

focusing on those below the 2× poverty threshold to decrease income-related mortality

or health discrepancies.

For all three lower income states, the largest discrepancy in variance of average

remaining life expectancy occurs from the mid-30’s to late 50s. Individuals below

the income thresholds have the highest variance, meaning they have a greater range

of possibilities in life trajectory. Those above threshold have less variance, meaning

individuals will more consistently reach their higher average remaining life expectancy.

Our results point to a phenomenon at mid-ages, that an individual in the higher

(above 2× or 3× poverty) income state is less likely to enter the lower income state.

And the higher the probability of stasis in the higher income state, the fewer indi-

viduals there are in the lower income states. However, there is higher inequality in

life-expectancy, and variance at mid-ages (since at mid-ages the higher income state

is less transient).
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Our simulation findings are in agreement with “The most consistent finding in the

literature... that the probability of entering poverty is much higher in young adult-

hood than in other stages of life” (Cellini et al., 2008). Rank and Hirschl (2015) (with

PSID data) finds the occurrence of poverty is fairly widespread, between the ages of

25 and 60 they find 61.8 percent of the population will experience at least one year of

relative poverty. They found that “a predominate pattern is that individuals are often

likely to experience one or two years of poverty, and then rise out of poverty, with

perhaps an additional spell down the road.” When they looked at age groups they

also found that those between the ages of 45 and 54 experienced the least incidence

of poverty as opposed to the 25-34, 35-44 and 55-64 groups.

The dynamics of the poverty state is important; the less transient the higher

income state, the larger the discrepancy in age-specific average remaining life ex-

pectancy and the variance. At young ages, where there is the highest probability of

exiting the lower income state, there is a smaller difference in the average remaining

life expectancy. Although more people are in poverty at young ages, they have more

possibilities across their lifespan to change income state, thus there is less discrepancy

in remaining life expectancy between income states.

We agree with Gillespie et al. (2014), that focusing on mid-ages to decrease income-

related health disparities could help decrease lifespan inequality. Sandoval et al.

(2009) combined period effects with looking at age classes to find fewer individuals

enter poverty in their 40s and 50s as compared to other age classes, and found that

the risk of poverty has been increasing over time (from 1970, 1980 to 1990), even for

the low risk age-classes.
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Further expansions of our model include examining how much of the changing

poverty relationships with age are due to selection out of the cohort due to death.

Additionally, comparative studies of age-specific poverty dynamics would yield inter-

esting insight into different age-patterning across countries, regions and even data-sets

(Chetty et al., 2016; McDonough et al., 2010; Sacker et al., 2007). Examining period

effects in our simulations (for instance, as Sandoval et al. (2009) did between 1968

and 2000 and found that the life-course risk of poverty is increasing, especially in the

1990s) could allow the model to examine the effects of periods of economic turmoil.

Adding an inter-generational element would be interesting as well, since there is an

association between children’s and parent’s income (Chetty et al., 2014). this could

be done for instance by using a Markov chain with reqards framework as Caswell

(2015) has done. And we could infinitely extend out matrix model dimensions to

include additional states with hyperstate matrix models (Roth and Caswell, 2016),

for instance adding a state to reflect whether an individual has been in poverty in the

past decade.

Our state-by-age-structured modeling of individuals undergoing stochastic entry

and exit from 1×, 2× and 3× poverty yields a nuanced perspective of dynamic het-

erogeneity across the life course. We directly relate annual individual transience to

state-specific disparities in life expectancy and variance. In doing so we extend the

literature on individual poverty dynamics and stage-by-age matrix models. Our re-

sults suggest that dynamic heterogeneity in poverty and the transience of the poverty

state is associated with income-related mortality disparities.
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Figure 3.4: The average remaining life expectancies and remaining years in poverty. Aver-
age remaining life expectancies (solid lines) and expected years in poverty (dashed lines) conditional
on surviving to age x based on state at age x (red= below threshold, blue= above threshold). a, c,
and e, differ in the threshold income used to define poverty, 1×, 2×, and 3× the ‘official’ poverty
income level, respectively. The ratio of the average remaining life in poverty (or below 2× poverty
or 3× the ‘official’ poverty threshold) to total average remaining life are graphed in panels (b), (d)
and (f). In other words, this is the proportion of average remaining life below a specified threshold.
All values are calculated from the fundamental matrix (see C.1.2). The dashed green vertical lines
in each panel are the seams between data-sets utilized: NLSY79 pre-1994, NLSY79 post-1994 and
HRS (at age 33 and 50).
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Figure 3.5: The variance of remaining life expectancy, conditional on surviving to a
specific age. a, c, and e depict the variance of remaining life expectancy conditional on surviving
to age x based on state at age x (red= below threshold, blue= above threshold). The age-specific
coefficient of variation (the standard deviation divided by the mean) for state (red=below threshold,
blue=above threshold) at age x are graphed in panels (b), (d) and (f). The dashed green vertical
lines in each panels are the seams between data-sets utilized: NLSY79 pre-1994, NLSY79 post-1994
and HRS (at age 33 and 50).
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Figure 3.6: Cohort simulations of 10,000 individuals lifetime trajectories. The right column
is a ‘snapshot’ of 100 individuals between the ages of 50 and 60 with mortality around 60. Red is
the above income threshold state, green is below the income threshold, and blue is death. The first
column is the entire cohort and is in the shape of a survivorship curve for all three rows. The first
row of panels has a threshold at 1× poverty income threshold, second row is 2× and third row is
3× poverty income threshold.
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Figure 3.7: Cohort simulations of 10,000 individuals: Distributions of residence times
and ages of transitions The initial cohort is the same for each row but each row is a separate
simulation with a particular income threshold in place. Distributions of the years an individual
spends in the lower income state are depicted in panels a, d, and g. The panels in the second column
are distributions of ages of entry into the lower income state. The panels in the third column are
distributions of ages of exit from the lower income state. The first row of panels has a threshold
at 1× poverty income threshold, second row is 2× and third row is 3× poverty income threshold.
The dashed green vertical lines in panels in the last two columns are the seams between data-sets
utilized: NLSY79 pre-1994, NLSY79 post-1994 and HRS (at age 33 and 50).



CHAPTER 4

Four income states, stasis and
transitioning: the resulting dynamic
heterogeneity and income-mortality
inequality with an age-stage Markovian
model

4.1 Summary

Current income inequality research examines the spread of income in various pop-

ulations but few consider how dynamic heterogeneity and probabilities of transition-

ing in and out of poverty and other income states at each age influence mortality

disparities in cohorts.

Here we use state-by-age modeling to capture individual entry and exit in four

income categories: <1×, 1-2×, 2-3×, >3× the poverty threshold at each age. We

examine age-specific state structure, the remaining life expectancy, its variance, and

cohort simulations for each income category.

Survival and transition probabilities are statistically estimated by regression anal-

yses of two U.S. nationally representative data-sets: the Health and Retirement Sur-

vey RAND data-set, and the National Longitudinal Survey of Youth. Using the re-

90
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sults of these regression analyses, we parameterize discrete state, discrete age matrix

models.

We find that for most ages the higher income states have the highest probability

of surviving from one year to the next until about age 86 when the order of the

income states does not equate to the order of survival advantage. In general, each

income state has the highest annual probability of staying in the same state at each

age, with the next highest transition being to move to higher income states. The

greatest difference in average remaining life expectancy between consecutive states is

for those in 1-2× and 2-3× poverty at ages 32-49. The largest discrepancy in average

remaining life expectancy and its variance among all states and the <1× poverty

state occurs at mid-ages (40-60). And the fewest individuals are in the lowest income

category between ages 40-60. Our findings are consistent with results based on other

data sets, but our results include a novel analyis not previously explored: an across

the life-course investigation of the dynamic heterogeneity in income state at each age.

We found that annual stasis probabilities in income state at each age influences: the

cohort state-structure, the dynamic heterogeneity of the cohort, and inequalities or

income related mortality disparities at each age.

This paper extends the literature on individual income state dynamics and stage-

by-age matrix models.

4.2 Background

There is a significant relationship between income distributions and mortality

rates and life expectancy (Backlund et al., 1996). Investigating income distributions

in countries with ongoing economic development is of particular interest to research on
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health science and public policy (Preston, 1975). However, few comparison studies be-

tween or within countries also consider individual transience through various income

levels, rather they focus on summary statistics of income levels or income inequality

(Marmot, 2002) such as: country or regional poverty rates, Gini coefficients, or the

percentage of the national income received by a particular percentile of the population.

Here we present a state-by-age matrix model with four different income categories to

investigate a cohort’s dynamic heterogeneity in income status at ages 22-95. We ex-

amine the probabilities that individuals transition into and out of these four income

states: 0-1×poverty, 1-2×poverty, 2-3×poverty and above 3×poverty. We combine

analyses based on two U.S. nationally representative data-sets, the Health and Re-

tirement Survey (HRS) and the Nationally Longitudinal Survey of Youth (NLSY79)

to estimate annual state-specific survival and income-state entry and exit probabili-

ties (Bureau of Labor Statistics, 2012). These probabilities are utilized in the matrix

model for cohort projections and simulations to examine: cohort state structure, av-

erage remaining life expectancy, the variance of life expectancy at each age, average

remaining years in each income state for each age, average duration in each income

state, and ages where individuals are entering and exiting each income state.

Our lowest income state, poverty (below the ‘official’ poverty level), has the most

well-documented mortality consequences (Benzeval and Judge, 2001). The poverty

threshold is updated annually and consistently used across many research studies,

making it a very relevant income state to investigate. It is also a widespread phe-

nomenon: the ‘official’ poverty rate was 13.5 percent, based on the U.S. Census

Bureaus 2015 estimates (updated annually to account for inflation). That year, an

estimated 43.1 million Americans lived in poverty according to the official measure
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(Proctor et al., 2016). For one single person to be in poverty that year they had to

have an annual income under $12,082 (the poverty threshold is based on year and

family size). The next income state, 1-2×poverty, sometimes referred to as ‘near

poverty’ has characteristics quite similar to poverty. Transitions into and out of both

low income states, poverty and near poverty, are frequent (Hokayem and Heggeness,

2014b). The third income state, 2-3× poverty, is the last income state under the

median income level (about 3.2×the poverty threshold). As we move past the me-

dian income level mortality discrepancies decrease, in other words, above the median

income level there is “no significant change in mortality risk with income increase”

(Rehkopf et al., 2008). Thus the highest income state we consider are those above

3×poverty which is approximately the median income.

We construct a matrix model that is a discrete time, discrete state, discrete age,

Markov chain matrix with the four-income state categories at each age. The matrix

is similar in structure to Tuljapurkar and Steiner (2010)’s population projection age-

stage matrix, but here, as in Steiner et al. (2012), there is no reproduction. It is also

similar in concept to the model of multi-state mathematical demography presented

in Rogers (1980). Matrix methods provide distinct analytic formulas for estimating

similar entities as other multi-state methods, while providing additional insights.

We use regression analaysis of the empirical data and our matrix model to an-

swer the following four questions: 1) What is the probability of entering or exiting

an income state from one age to the next? 2) What is the effect of income category

on annual survival probability each age? 3) What is the average remaining life ex-

pectancy and variance in life expectancy at each age for each income category? 4) In
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our Markovian framework, what is the average duration and net years spent in each

income category?

The state-by-age model answers our research questions by emphasizing age and

state structured cohort dynamics for the four income categories. We compare and

contrast the rates and dynamics (answers to the research questions above) of each

income state, emphasizing age-specific inequalities among states. The objective is

to determine the role dynamic heterogeneity of four income states has on mortality

disparities and extend the literature on multi-state analysis.

4.3 Methods: Theory

The age-by-state matrix, L, can be used to project cohort dynamics and to sim-

ulate individual trajectories. The matrix dimensions equals the number of states (in

this case four) times the number of ages (note: a maximum age must be set). It is

used in equation (4.1) to project a vector N that represents the number of individuals

in each state at each age from birth across the lifetime, which enables tracking of the

state-distribution and survivorship of an initial cohort at each age x, as described by

the following equation:

N(x) = LxN(0) (4.1)

where the matrix L is raised to the xth power at each age x. Markov chain theory

utilizes L per equation (4.2) to analyze remaining life expectancy (mean and variance

in age at death) and generate individual stochastic trajectories across all ages, where

an individual is a realization or sample path of a Markov process. The Markov chain
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is described by this matrix:

P =

 L 0

m 1

 (4.2)

Here we will define the age-and-state matrix L, and in the appendix (C.1) we show

how it can be used in (4.1) and (4.2). L has dimensions of age-by-stage and uses

survival functions and transition functions for each income state that are functions of

age. There are four survival functions sj(x), one for each income state (j = 1, 2, 3, 4),

which provides the probability that an individual whose income is in one of the

four income categories survives from ages x to x + 1 (i.e. the annual state-specific

survival). There are 16 functions for the probability of transitioning state tij(x),

where i = 1, 2, 3, 4 and j = 1, 2, 3, 4 and tij(x) equals the probability for an individual

in income state j at age x to enter income state i before age x + 1 conditional on

survival. i can equal j, a special case where the ‘transition’ probability is the annual

probability of stasis.

State transition probabilities (T (x)) (transitioning to a new state or staying in

a state at the next age) are defined as conditional on survival (separating survival

from state transitions conditional on survival helps to elucidate different components

of the biological processes occurring from one age to the next). Here a ‘state’ is an

income category, 0-1× ‘official’ poverty, 1-2× ‘official’ poverty, 2-3× ‘official’ poverty

or above 3× ‘official’ poverty. Note that the complement to the annual state specific

survival is the annual state-specific mortality, i.e. the probability of dying in one year.

Multiplying the survival probabilities by the conditional state transition proba-

bilities results in a matrix for each age, Q(x) which takes the following form:
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State at age x

State at age x+1
<1×poverty 1-2×poverty 2-3×poverty >3×poverty

<1×poverty s1(x)t11(x) s2(x)t12(x) s3(x)t13(x) s4(x)t14(x)
1-2×poverty s1(x)t21(x) s2(x)t22(x) s3(x)t23(x) s4(x)t24(x)
2-3×poverty s1(x)t31(x) s2(x)t32(x) s3(x)t33(x) s4(x)t34(x)
>3×poverty s1(x)t41(x) s2(x)t42(x) s3(x)t43(x) s4(x)t44(x)

Table 4.1: Structure of four-state transition matrix, Q(x)

Each unconditional state transition matrix, Q(x), is inserted into the sub-diagonal

of the age matrix at the appropriate column. In our implementation of the model,

we set a maximum age of 100 and thus there are 100 state transition matrices, each

representing a 1-year increment from 0 to 100 years of age. The age-state block matrix

has dimensions 101× 101 blocks, each block is comprised of a 4× 4 matrix, and has

the following form (where the 0’s represent 4×4 matrices comprised entirely of zeros):

L =



0 0 0 . . . 0 0 0 0

Q(1) 0 0 . . . 0 0 0 0

0 Q(2) 0 . . . 0 0 0 0

0 0 Q(3) . . . 0 0 0 0

...
...

...
. . .

...
...

...
...

0 0 0 . . . Q(98) 0 0 0

0 0 0 . . . 0 Q(99) 0 0

0 0 0 . . . 0 0 Q(100) 0


The age-state block matrix L looks like a standard Leslie matrix from which

fecundity has been removed, in that an individual always transitions to the next age

at each time step (Keyfitz and Caswell, 2005; Kot, 2001; Leslie, 1945). Since there

are 4 state classes and 101 age classes, the dimensions of the age-state matrix L

is 404 × 404. The L matrix can be used to produce cohort projections (see C.1.1)
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and Markov chain analysis. With Markov chain analysis we calculate the average

remaining life expectancy, average remaining life in an income state, and the variance

(by using the fundamental matrix, see C.1.2) and the simulated individual trajectories

(see C.1.3).

4.4 Methods: Empirical data

4.4.1 HRS RAND

The Health and Retirement Study (HRS) is a publicly accessible longitudinal

household survey data set for the study of retirement and health among individuals

over age 50 and their spouses in the United States. We use the RAND HRS Data files

Version O which “are a cleaned, processed, and streamlined collection of variables de-

rived from HRS” (Moldoff et al., 2014). The survey consists of 6 cohorts and we use

longitudinal data compiled from 6 of the 11 interview waves that fall approximately

around these years: 2002, 2004, 2006, 2008, 2010, 2012. As a nationally represen-

tative data set of 37, 319 individuals, HRS has over-sampled Hispanics, Blacks, and

residents of Florida, and provides weighting variables to make it representative of the

community-based (non-institutionalized) population. For our purposes we subset the

data to only include individuals between 50 and 95 years old. We use survey sample

weight in all analyses. And the income threshold that defines poverty is from the

United States Census Bureau (thresholds vary by year, size of family, and number of

children). Individuals are pooled into repeated observations for each of their interview

responses as explained after the following section.
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4.4.2 NLSY1979

The NLSY79 Cohort is a longitudinal project that follows the lives of a sample

of American youth born between 1957-64. The cohort originally included 12, 686

respondents ages 14-22 when first interviewed in 1979; after two sub-samples were

dropped, 9,964 respondents remain in the eligible samples (Bureau of Labor Statistics,

2012). We use data available from interview wave 1 (1979 survey year) to interview

wave 25 (2012 survey year), which includes one-year intervals from 1979-1994, and

two-year intervals from 1994-2012. Since we are studying income state we subset the

data to include observations from age 22 (when individuals enter the work-force post

college) to age 50. Retention rates for NLSY79 respondents from 1979 to 1993 exceed

90 percent. Rates from 1994 until 2000 exceed 80 percent. Rates from 2002 until 2012

were in the 70s. (Retention rate is calculated by dividing the number of respondents

interviewed by the number of respondents remaining eligible for interview) (Bureau of

Labor Statistics, 2012). More detailed information about retention rates can be found

at NLSY79’s website. Poverty rates are based on annual poverty income guidelines by

the U.S. Department of Health and Family Services (which are also based on family

size). We recognize that the threshold varies minimally between the U.S. Department

of Health and Family Services and the U.S. Census Bureau, but previous research

comparing slight differences in poverty thresholds shows the effect to be insignificant

(Cellini et al., 2008).
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4.4.3 Quantifying the functional dependence of survival prob-

abilities on age: logistic regression

There has been much discussion as to how to calculate transition probabilities for

Markov transition models (Islam et al., 2004; Islam and Chowdhury, 2006; Korn and

Whittemore, 1979; Lawless and Rad, 2015; Yu et al., 2010). Willekens and Putter

(2014) review is a good resource as to the vast array of statistical packages in R that

can be used to estimate transition probabilities for demographic multi-state models.

One very practical proposal for calculations of binary Markov transition models has

been to use logistic regression probabilities (Muenz and Rubinstein, 1985). Since

logistic regression is very straightforward and intuitive, especially when we have a

time-dependent covariate (age), we employ it to calculate our survival probabilities.

4.4.4 Quantifying the functional dependence of transition

probabilities on age: multinomial logistic regression

For calculating the entry and exit probabilities for each income category we con-

sidered three options: multiple logistic regression, ordinal logistic regression, and

multinomial logistic regression. Multiple logistic regression and multinomial logistic

regression are very similar in output, except that multiple logistic regression proba-

bilities might not sum exactly to 1. Ordinal logistic regression or the proportional

odds model is usually used when the response is ordinal, for instance looking at sur-

vey responses of ‘strongly disagree’ to ‘strongly agree’, etc. One additional condition

for using ordinal logistic regression (and why it is sometimes called a proportional

odds model) is that the proportional odds assumption must be met; in short, this
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means the log of the proportion of individuals in each cumulative group should change

by the same amount for each group (Venables and Ripley, 2002). We check this by

taking the logarithm of the odds of each cumulative group (<1×poverty, of those

in both <1×poverty and 1-2×poverty, of those in <1×poverty, 1-2×poverty and 2-

3×poverty) and find that an arithmetic sequence is not formed, thus the proportional

odds assumption is not met. We therefore use the multinomial logistic regression to

calculate transition probabilities into and out of each income state. (We note that

for the HRS data we ran ordinal logistic, multiple logistic, and multinomial logistic

regression and find the results to be mostly consistent).

4.4.5 Pooling the data, regressions, and combining data-set

probabilities

The NLSY79 pre-1994, NLSY79 post-1994 and HRS data for ages 22-33, 34-50,

and 51-95, respectively, are analyzed separately and the results are later combined to

give probabilities of survival and transitioning over our complete age range of 22−95.

Within each data-set, interview waves are pooled together except for the last wave,

this represents the data at time t. All the interview waves except for the first one

are then pooled together to represent the data at time t + i. (To find i for each

data-set we average the interval in months between each successive interview wave.

For instance, for HRS the interval between interview years is normally distributed

about 24 months, for NLSY79 pre-1994 the interval is normally distributed about

12 months, and for NLSY post-1994 there is a normal distribution in interval length

about 24 months. After performing regressions we adjust our probabilities to be

over a one year period, i.e. t to t + 1, see appendix for more on this adjustment).
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Instead of tracking individuals longitudinally over several ages, we perform a pooled

logistic/multinomial regression analysis on all observations of all ages from time t to

t+ i, where individuals have a particular age x at time t and age x+ i at time t+ i.

If an individual did not respond at that specific point (either the interview at t or

t + i or both interviews), that observation was omitted from the analysis. However

if that specific individual responded later in the study (a different observation), that

observation was included in the analysis. This technique has been called the pooled

repeated observation method (PRO) (Dagostino et al., 1990). Logistic regression

analysis was performed in R and the survey package (Lumley, 2014) with svyglm

was used to incorporate weights. Multinomial logistic regression was also performed

in R but with the use of the multinom function and the maximum likelihood and

multinomial packages, (Henningsen and Toomet, 2011; Ripley and Venables, 2016)

respectively. For HRS we have 186, 585 observations between the ages of 50 and 95.

For NLSY79 after pooling we have 183, 238 observations between the ages of 22 and

50. For analysis the pooled observations are weighted based on each data sets weight

at observation.

To change regression outputs into probabilities we logit transform the coeffi-

cients from the logistic regression. To transform the coefficients from the multi-

nomial regression we first calculate probabilities of entering the lowest income cat-

egory (<1× ‘official’ poverty) from each of the four income states. We use the

fact that the probabilities of being in a certain state j, at time t and entering

each of the four income states at t + 1 must sum to one (since R output sets the

coefficients to 0 for the first class, in this case <1×poverty, conditional on sur-

vival). So for instance, the probability of starting in state ‘1’ and remaining in
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state ‘1’ would equal
1

(1 + exp(β21) + exp(β31) + exp(β41))
where βi1 are the regres-

sion coefficients for being in state 1 and entering state i (Ripley and Venables,

2016). Likewise, the probability of being in state ‘2’ and entering state ‘1’ would

be
1

(1 + exp(β22) + exp(β32) + exp(β42))
. Probabilities for entering states other than

<1×poverty are calculated with a normalized exponential function, for instance, the

probability of entering state ‘2’ from any state j can be calculated with
β2j

(1 +
∑4

j=2 exp(β2j))
.

We then adjusted each probability so that it represented a one-year probability, for

age x to x+1 and concatenated probabilities obtained from each data-set, see A.3 for

how this was done for the transition probabilities. For the survival probabilities our

calculation here differs from previous work where there were only 2 states (when we

mathematically considered how a death observed after two years from a given starting

state could have come about by different pathways in and out of both states during

the two year period, and then we estimated survival probabilities by taking the roots

of quadratic equations that reflected these different pathways as described in A.3).

The mathematics for 4 states implied the existence of many more roots so we were

constrained to follow a simpler procedure. For a given starting state we estimated

annual survival probabilities by taking the square root of the approximately two-year

survival probabilities from the regression analysis. We then evaluated these functions

at each age for use in our matrix models.

In our main analysis we investigate the impact of income level on mortality where

state switching may occur at each age and we investigate how the dynamics of chang-

ing state influences the cohort dynamics.
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4.5 Results

4.5.1 Annual probabilities of survival and transitioning for

each income state

Below mid-ages there is no significant difference in annual survival among the

four income states (tables 4.4 and 4.6); however, there is a significant difference

above mid-ages (table 4.2). In fig 4.1 the age-patterned survival advantage of each

income state is displayed, and, as expected, the lowest income state has the lowest

annual survival probability for all ages except for a slight crossover at age 94. The

above 3×poverty category has the greatest survival advantage over the other income

states at most ages with a maximum advantage at age 79. The 1-2×poverty category

has an increasing advantage in annual survival over the <1×poverty category for all

ages, whereas 2-3×poverty and >3×poverty categories have an increasing advantage

at mid-ages to ages 79, and then the advantage decreases for late old ages. The

2-3×poverty category has a crossover with 1-2×poverty category at age 86, whereas

>3×poverty has a crossover with 1-2×poverty at age 89, consequently, 1-2×poverty

has the greatest survival advantage over all the income states at late old ages (past

age 89).

Calculated transition probabilities for each income state reveal that the most

likely income state an individual will be in at age x + 1, is the income state they

were previously in at age x (fig.4.2); i.e., the probability of stasis is greater than the

probability of transitioning for all states. That being said, those above 3×poverty

have the greatest annual probability of stasis, followed by those below 1×poverty.

We realize that the >3×poverty state includes the most individuals as well (since it
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is about the median income level), so to consider how the proportion of the cohort

in each income state influences transitions we view the transition probabilities for

relative income status (we created quartiles based on income below 25%, 25-50%,

50-75%, and 75-100%) for ages greater than 50. Even though there is about the

same proportion of people in each income quartile, the annual stasis and transition

probabilities at each age still vary based on income quartile (D.3). Since there is not

as great a difference in annual survival among income quartiles (D.2) (thus switching

states has less effect on annual mortality, especially for the two highest quartiles), we

prefer considering individual dynamics in entering and exiting our particular absolute

income states.

We see from fig. 4.2 that both the 1-2×poverty state and 2-3×poverty state

have greater probabilities of transitioning to a higher income category than to a

lower income category for all ages, especially during early ages. Where individuals

<1×poverty are most likely to transition to a higher income category at early ages,

individuals >3×poverty are most likely to transition to a lower income category at

early and late ages.

Discontinuities at the dashed vertical lines represent the joining of probabilities

from NLSY pre-1994, NLSY post-1994, and HRS. The distribution of the pooled data

can be seen in fig. D.1 and one can keep in mind that the data-sets are structured

differently; with new cohorts being added to HRS in 2004 and 2010 while NLSY79

follows the same aging cohort through each interview year. The data-sets also cover

different time periods; NLSY79 covers 1979-2012, HRS 2002-2012. Thus there may be

a contribution of period effects (due to different time periods with different economic

environments for example) as well. The trend in probabilities are considered and in
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further sections when cohort projections and simulations are performed we see the

cohort dynamics are consistent with the dynamics of the empirical data.

4.5.2 Cohort income-state distribution at each age

To perform cohort projections the survival and transition probabilities are uti-

lized in the state-by-age matrix and the state structure of the cohort at each age is

considered. First we note that the state-distribution from the projection (fig. 4.3)

matches the state distribution from the empirical data (fig. D.1). This means it is

at least possible that individual income-state switching is an underlying process that

drives the dynamics of the empirical data. We also note that age range 40-60 has the

greatest proportion of individuals in higher income states (fig. 4.3). Although the

proportion of individuals in the <1×poverty category seems to stay the same with

age, the other income states fluctuate much more. From early ages to mid-ages the

proportion in each state is greatest for higher income states and least for lower income

states, respectively. However, at mid-ages to old ages there is an increasing proportion

of individuals in the 1-2×poverty state, surpassing those in the 2-3×poverty state at

age 52 and those in the >3×poverty state at age 86.

4.5.3 Outputs of the fundamental matrix

We are interested in how the average remaining life expectancy at each age varies

by income category at each age. From ages 40-70 all three of the higher income

states have their greatest advantage in life expectancy over the <1×poverty state

(fig. 4.4). This shows that even being one income state higher than <1×poverty, for

instance the 1-2×poverty state, confers a higher average remaining life expectancy of
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1/2 year for ages 37-50, with a maximum advantage of 0.8 years. 2-3×poverty has a

life expectancy advantage of over 1/2 year from ages 33-77, and >3×poverty has a

higher life expectancy by 1/2 year for ages 30-82, with a 2.0 year maximum difference

over those in <1×poverty. When looking at differences in consecutive income states,

the biggest consecutive change in life expectancy is moving from <1×poverty to 1-

2×poverty from ages 32-49 with a maximum at age 45. From ages 22-30 the greatest

consecutive difference in life expectancy is between the 1-2×poverty state and the

2-3×poverty state. For ages greater than 50 the greatest consecutive difference in life

expectancy is between the 2-3×poverty and >3×poverty income states.

The variance in life expectancy reflects the diversity in individual trajectories and

where they end. Being in the <1×poverty category at any age, is associated with the

highest variance. The income states have the greatest discrepancies in variance in

the middle of the life course (fig. 4.4). The largest consecutive difference in variance

is between <1×poverty to 1-2×poverty at ages 32-51 (with a maximum difference

in variance of 19.4 years) followed by the difference between 1-2×poverty and 2-

3×poverty at the same ages. After age 50 the consecutive difference in variance

follows the order of the income states with the difference decreasing with age; i.e.,

the difference in variance between >3×poverty and 2-3×poverty after age 50 is the

greatest, followed by the difference in variance between 2-3×poverty and 1-2×poverty,

and 1-2×poverty and <1×poverty, and all the discrepancies decrease with age.

If an individual is in a specific income state at age x, how much of their remain-

ing life can be expected to be spent in each income state? If someone is in the

<1×poverty state at age 22, 7.7 years is expected (on average) in the same state

and on average they can look forward to 29.7 years in the >3×poverty state (fig.
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4.5). Those >3×poverty at age 22 can expect to spend 32.8 years in the same state,

however they can expect to spend about 5.2 years <1×poverty as well. Since this

model is dynamic, the average remaining time in each state takes into account possi-

ble stage switching at every age. Someone switching into the >3×poverty state will

be raising their life expectancy and gaining an expected number of years in each state

that looks like fig. 4.5 (d). Someone switching into 1-2×poverty will have the most

expected years in the same state after age 60, although previous to that age most

expected years left would be in the >3×poverty state. Someone entering or remaining

in 2-3×poverty after age 74 has the greatest expected years in the same state. The

expected years in each state sums to the total average remaining life expectancy for

each state at age x. One can note that on average, until after age 60, regardless of

current state, individuals can expect most of their years in the >3×poverty state,

i.e., above the median income.

4.5.4 Simulations of individual trajectories

From the cohort dynamics, such as the state structure at each age, we viewed the

overall proportion of individuals in each state; however, that does not inform us about

individual trajectories and state switching. Therefore, we ran a simulation of 10,000

individuals with the annual survival and transition probabilities for each age and state

as defined above. Fig. 4.6 gives insight into the dynamic heterogeneity of individuals

in the cohort over their lifetimes. Individuals are arranged in order of death, with

black (‘0’) representing the absorbing state of death. First we notice, as expected, that

living individuals are in the shape of a standard human survivorship curve. Second,

most individuals are above 3×poverty from age 40 to 60 and most heterogeneity occurs
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at early and late ages. After age 60 there is much heterogeneity, with an increasing

abundance of individuals in the 1-2×poverty state (state ‘2’, yellow) especially among

those who decease around and past age 90 (see fig. 4.7). In fig. 4.7 we also compiled

simulated individuals with ages of death at age 50, 60, 70, 80, and 90 and looked at

each groups state structure at the last 5 years of their life. For those who died at age

50 we see a greater proportion of individuals in the <1×poverty state. However we

do not see a similar pattern of state structure for those who died at age 60. For the

individuals with deaths at the later ages (70, 80 and 90), they all have an increasing

proportion in the 1-2×poverty state at the end of life.

To investigate summaries of passage times we examine the distributions of ages

at which individuals first switch to higher and lower income states. Most switching

occurs at young ages with a leveling out after age 50 (fig 4.8). Viewing each income

state separately we notice a similar pattern, except for entering <1×poverty where

switching decreases more steeply past age 50 (perhaps because individuals in this

state are dying more quickly), while switching into the other states declines similarly

past age 70. The mean age at death is age 76, the mode is 87, and the standard

deviation is 13.9 years.

To investigate how long individuals are remaining in a given state during consec-

utive ages we examine distributions of individual duration’s or ‘spells’ in each state

(but only after age 22). The maximum duration in <1×poverty state, having at least

spent one year in this state, is 27 years, the mean duration time is 3.25 years, the

median is 2 years and the mode is 1 year (fig. 4.9). The maximum year duration

in 1-2×poverty state is also 27 (for this simulation), the mean duration time is 2.69

years, the median is 2 years and the mode is 1 year. The maximum year duration
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in 2-3×poverty state is 21 years, the mean duration time is 2.3 years, the median is

2 years and the mode is again 1 year. Lastly, the maximum years above 3×poverty

state is 68 years, the mean duration time is 8.22 years, the median is 5 years, and

the mode is 2 years. Note that in our Markovian framework, only present state is

considered when determining future state (individuals do not carry their history).

Thus probabilities of transitioning are equally spread to all individuals of the same

state yet heterogeneity in state still results.

Additionally we ask how long over their lifetimes (after the age of 22) are simulated

individuals spending in each income state? On average, the net years over a lifetime

that individuals are spending in the <1×poverty state is 3.85 years, mode of 0 years,

median of 2 years, and standard deviation of 4.62 years (fig. 4.10). For 1-2×poverty,

individuals spend a mean of 5.67 years, mode of 0 years, median of 5 years, and

standard deviation of 5.09 years in this income state. For 2-3×poverty individuals

spend a mean of 5.32 years, mode of 0 years, median of 4 years, and standard deviation

of 4.29 years in this income state. Lastly, the net average years spent above 3×poverty

is 29.96 years, mode of 31 years, median of 30 years, and standard deviation of 12.29

years.

For our discussion section we will generally refer to the <1×poverty state as sim-

ply ‘poverty’, the 1-2×poverty state as ‘near poverty’, 2-3×poverty as ‘near median

income state’, and above 3×poverty as the ‘highest income state’.

4.6 Discussion

“The influence of economic conditions on mortality has been recognized at least

since biblical times” (Preston, 1975). Much literature discusses the causality of the



110

relationship noting that “The fewer goods and services are provided publicly by the

community, the more important individual income is for health” (Marmot, 2002).

The same research article discusses that “Income is related to health in three ways:

through the gross national product of countries, the income of individuals, and the

income inequalities among rich nations and among geographic areas”(Marmot, 2002).

Our analysis considers how the income of individuals, and opportunities to move up

and down in income state affects the cohort state structure, life expectancy and

heterogeneity at each age. In our Markovian framework, every individual has equal

probability of transitioning and survival based on their state and age, independent of

any intrinsic differences among them. Thus ‘inequality’ presents itself in our model

as lower annual probabilities of moving up in income state, which occurs the most for

our poverty state at mid-ages. These ages with the greatest ‘inequality’ (i.e. disparity

due to income) are the ages where the higher income states have the highest survival

and life expectancy advantage. Yet, although inequality in this sense (of having

greater annual probability of stasis in the lowest income and highest income states)

is greatest at mid-ages, our simulations and analysis of state-structure at each age

shows that mid-ages (about ages 40-60) is also the time period the greatest number

of individuals are in the highest income state. When the entire cohort is experiencing

the most dynamic heterogeneity, at early and late ages, there is less disparity in

survival and life expectancy. Our finding that the fewest individuals are in the lower

income states at mid-ages is also in agreement with Rank and Hirschl (2015) that

those between the ages of 45 and 54 experienced the least incidence of poverty as

opposed to the 25-34, 35-44 and 55-64 groups.
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Our findings are also in agreement with Backlund et al. (1996), “The income-

mortality gradient was much smaller in the elderly than in the working age popula-

tion”, perhaps because the working age population in higher income states are able

to maintain stability of income. Our results also concur in our finding that stasis

in higher income states, has more of an effect on the demographic state structure

than exit probabilities of individuals in lower income states (perhaps since there are

also fewer individuals in lower income states). Greater annual stasis for individuals

in the higher income state effectively renders the demographic state structure to be

dominated by higher income state individuals.

Our simulation findings are also in agreement with “The most consistent finding

in the literature... that the probability of entering poverty is much higher in young

adulthood than in other stages of life” Cellini et al. (2008). We find this to be true

for every income state except poverty itself, where in young adulthood individuals in

poverty have the greatest probability of rising up in income state.

Our life course approach to looking at life expectancy advantages for each income

state showed that the advantage of moving up in consecutive states changes with

age. At young ages (22-30) those moving from the near poverty state to the near

median income state get the largest improvement in life expectancy from a consecutive

change in income state. However the greatest improvement over the life course occurs

from ages 32-49 when switching from poverty to near poverty. Though near poverty

and poverty have similar characteristics, at these ages there is maximal discrepancy

between these income states in life expectancy. For the rest of the life course (ages

50-95) improvements in life expectancy between consecutive state are increasingly

more modest with age.
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Our estimates of durations and net years spent in each income state are consistent

with Stevens (1999) who investigated the persistence of poverty (which he defines as

1.25× ‘official’ poverty) over multiple spells. In his model he accounts for those

with a history of poverty when predicting future poverty spells; he found the mean

poverty spell to be 2.7 years with total poverty throughout the 10-year cross section

he observes to be 4.0 years on average. Our calculated average duration or ‘spell’ in

(1×)poverty (across the life course) was 3.2 years, near poverty (1-2×poverty) had an

average spell of 2.7 years, near median income (2-3×poverty) and the highest income

state (>3×poverty) had average duration’s of 2.3 and 8.2 years, respectively. While

the average net time (from ages 22-95) in poverty was 3.8 years, in near poverty it

was 5.66 years, in the near median income state and the highest income state it was

5.3 and 29.9 years, respectively. In a sense, our model is quite optimistic, for most

ages, every income state has highest expected remaining life in the highest income

state till old ages.

One advantage of utilizing four income state is that we were able to investigate the

age-patterning in probability of transitioning for the two intermediate states, where

individuals can potentially move up or down in income state. We found that for both

the near poverty and near median income states, there is generally a greater proba-

bility of moving to a higher income category, and the probability of stasis increases

after age 50. The annual probability of stasis in the near poverty state increases more

drastically after age 50, perhaps explaining why there is the highest proportion of

individuals in this state at old ages (after age 80).

The ‘crossover’, where in late life the near poverty state has the greatest sur-

vival advantage can be explained in a few ways. First, it could reflect the increased
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probability of being in the near poverty state in later ages. Second, as explained in

Steinsaltz and Evans (2004), in many mortality models there is the phenomena of the

weaker individuals dying off leaving the more robust individuals behind in any state.

Thus a high proportion of weaker individuals in the near poverty state experienced

their earlier mortality, leaving survivors in the near poverty state whom are more

robust with higher survival on average than those in the other income states at late

ages.

A related and interesting expansion of our model is to examine how much of the

changing income state relationships with age are due to selection out of the cohort

due to death. Additionally, comparative studies of age-specific income state dynamics

across countries with different economic developments would yield interesting insight

into age-specific income inequalities and transitioning probabilities between countries

(Chetty et al., 2016; McDonough et al., 2010; Sacker et al., 2007).

Using regression analysis of the data-sets and our state-by-age-matrix model we

were able to investigate the relationship between individual entry and exit rates into

four income states, state and age based survival, cohort dynamic heterogeneity, cohort

state structure, and individual trajectories. In so doing we answered our above stated

research questions and found that individual annual income state transition probabil-

ities and survival rates could be the underlying driving force that determines cohort

dynamics such as income-related mortality disparities, and demographic structure.

Our results suggest that dynamic heterogeneity in income state and annual stasis

probabilities of income states is associated with income-related mortality inequality.
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Table 4.2: HRS logistic regression: Dependent Variable = Survival at time t + i

Predictor Estimate Std. Error t value Pr(> |t|)

Intercept (Below 1× poverty) 7.311 0.353 20.717 <2e-16 ***
Slope (Below 1× poverty) -0.068 0.004 -14.727 <2e-16 ***
∆ Intercept (1-2× poverty) 0.365 0.469 0.778 0.436
∆ Intercept (2-3× poverty) 1.517 0.519 2.923 0.003***
∆ Intercept (Above 3× poverty) 3.303 0.425 7.772 7.80e-15***
∆ Slope (1-2× poverty) -0.002 0.006 -0.411 0.681
∆ Slope (2-3× poverty) -0.015 0.006 -2.343 0.019**
∆ Slope (Above 3× poverty) -0.035 0.005 -6.361 2.01e-10***

***p < 0.01, **p < 0.05, *p < 0.1
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Table 4.3: HRS multinomial logistic regression: Dependent Variable = Income status at time t + i

Predictor Estimate Std. Error t value Pr(> |t|)

1-2× poverty at t+ 1
Intercept(Below 1× poverty time t) -0.741 0.131 -5.620 1.90e-08***
Slope(Below 1× poverty) 0.000 0.001 0.221 0.824
∆ Intercept (1-2× poverty) -0.480 0.182 -2.628 0.008***
∆ Intercept (2-3× poverty) -1.080 0.239 -4.518 6.21e-06***
∆ Intercept (Above 3× poverty) -1.557 0.213 -7.286 3.18e-13***
∆ Slope (1-2× poverty) 0.035 0.002 13.183 0.00***
∆ Slope (2-3× poverty) 0.045 0.003 12.573 0.000***
∆ Slope (Above 3× poverty) 0.047 0.003 14.615 0.000***

2-3× poverty at t+ 1
Intercept(Below 1× poverty time t) -1.050 0.211 -4.959 7.08e-07***
Slope(Below 1× poverty) -0.012 0.003 -3.836 0.000***
∆ Intercept (1-2× poverty) 0.319 0.259 1.230 0.218
∆ Intercept (2-3× poverty) -0.467 0.284 -1.639 .101
∆ Intercept (Above 3× poverty) -0.044 0.264 -0.168 .865
∆ Slope (1-2× poverty) 0.025 0.003 6.568 5.09e-11***
∆ Slope (2-3× poverty) 0.062 0.004 14.208 0.000***
∆ Slope (Above 3× poverty) 0.051 0.004 12.692 0.000***

Above 3× poverty at t+ 1
Intercept(Below 1× poverty time t) 0.099 0.193 0.514 6.07e-01***
Slope(Below 1× poverty) -0.025 0.003 -8.565 0.000***
∆ Intercept (1-2× poverty) -0.397 0.246 -1.614 0.106
∆ Intercept (2-3× poverty) -0.202 0.272 -0.743 .457
∆ Intercept (Above 3× poverty) 3.557 0.242 14.674 0.000***
∆ Slope (1-2× poverty) 0.031 0.003 8.436 0.000***
∆ Slope (2-3× poverty) 0.052 0.004 12.411 0.000***
∆ Slope (Above 3× poverty) 0.022 0.003 5.826 5.65e-09***

***p < 0.01, **p < 0.05, *p < 0.1
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Table 4.4: NLSY79 pre-1994 logistic regression: Dependent Variable = Survival at time t + i

Predictor Estimate Std. Error t value Pr(> |t|)

Intercept (Below 1× poverty) 7.433 1.400 5.307 1.12e-07 ***
Slope (Below 1× poverty) -0.045 0.051 -0.890 0.373 ***
∆ Intercept (1-2× poverty) -0.634 2.299 -0.276 0.782
∆ Intercept (2-3× poverty) 5.019 2.912 1.724 0.084*
∆ Intercept (Above 3× poverty) -1.328 2.335 -0.569 0.569
∆ Slope (1-2× poverty) 0.030 0.085 0.355 0.722
∆ Slope (2-3× poverty) -0.146 0.102 -1.432 0.152
∆ Slope (Above 3× poverty) 0.081 0.085 0.945 0.344

***p < 0.01, **p < 0.05, *p < 0.1
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Table 4.5: NLSY79 pre-1994 multinomial logistic regression: Dependent Variable = Income status
at time t + i

Predictor Estimate Std. Error t value Pr(> |t|)

1-2× poverty at t+ 1
Intercept(Below 1× poverty time t) -0.050 0.168 -0.299 0.764
Slope(Below 1× poverty) -0.026 0.006 -4.291 1.77e-05
∆ Intercept (1-2× poverty) 0.424 0.240 1.766 0.077*
∆ Intercept (2-3× poverty) 0.071 0.344 0.207 0.835
∆ Intercept (Above 3× poverty) 1.022 0.377 2.708 0.006***
∆ Slope (1-2× poverty) 0.057 0.008 6.472 9.61e-11***
∆ Slope (2-3× poverty) 0.079 0.012 6.190 6.01e-10***
∆ Slope (Above 3× poverty) 0.021 0.014 1.493 0.135

2-3× poverty at t+ 1
Intercept(Below 1× poverty time t) 0.950 0.281 3.380 0.000***
Slope(Below 1× poverty) -0.109 0.010 -10.226 0.000***
∆ Intercept (1-2× poverty) -0.622 0.339 -1.832 0.066*
∆ Intercept (2-3× poverty) -0.763 0.397 -1.919 0.054*
∆ Intercept (Above 3× poverty) -1.133 0.412 -2.747 0.005***
∆ Slope (1-2× poverty) 0.114 0.012 8.966 0.000***
∆ Slope (2-3× poverty) 0.195 0.014 13.025 0.000***
∆ Slope (Above 3× poverty) 0.186 0.015 11.923 0.000***

Above 3× poverty at t+ 1
Intercept(Below 1× poverty time t) 1.028 0.288 3.565 3.63e-04***
Slope(Below 1× poverty) -0.114 0.011 -10.395 0.000***
∆ Intercept (1-2× poverty) 1.174 0.366 3.202 0.001***
∆ Intercept (2-3× poverty) 0.091 0.406 0.224 0.822
∆ Intercept (Above 3× poverty) -0.801 0.405 -1.977 0.047**
∆ Slope (1-2× poverty) 0.025 0.013 1.839 0.065*
∆ Slope (2-3× poverty) 0.149 0.015 9.750 0.000***
∆ Slope (Above 3× poverty) 0.251 0.015 16.373 0.000***

***p < 0.01, **p < 0.05, *p < 0.1
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Table 4.6: NLSY79 post-1994 logistic regression: Dependent Variable = Survival at time t + i

Predictor Estimate Std. Error t value Pr(> |t|)

Intercept (Below 1× poverty) 8.527 0.998 8.540 <2e-16 ***
Slope (Below 1× poverty) -0.104 0.023 -4.490 7.13e-06 ***
∆ Intercept (1-2× poverty) 0.747 1.512 0.495 0.621
∆ Intercept (2-3× poverty) 0.510 2.248 0.227 0.821
∆ Intercept (Above 3× poverty) -0.041 1.502 -0.027 0.978
∆ Slope (1-2× poverty) -0.002 0.035 -0.085 0.933
∆ Slope (2-3× poverty) 0.024 0.053 0.454 0.650
∆ Slope (Above 3× poverty) 0.038 0.035 1.093 0.274

***p < 0.01, **p < 0.05, *p < 0.1
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Table 4.7: NLSY79 post-1994 multinomial logistic regression: Dependent Variable = Poverty status
at time t + i

Predictor Estimate Std. Error t value Pr(> |t|)

1-2× poverty at t+ 1
Intercept(Below 1× poverty time t) -0.157 0.214 -0.738 0.460
Slope(Below 1× poverty) -0.019 0.005 -3.666 2.45e-04***
∆ Intercept (1-2× poverty) 2.026 0.302 6.700 2.08e11***
∆ Intercept (2-3× poverty) 1.677 0.411 4.077 4.55e-05***
∆ Intercept (Above 3× poverty) 0.080 0.399 0.202 0.839
∆ Slope (1-2× poverty) -0.002 0.007 -0.340 0.733
∆ Slope (2-3× poverty) 0.007 0.010 0.735 0.461
∆ Slope (Above 3× poverty) 0.029 0.009 3.075 0.002***

2-3× poverty at t+ 1
Intercept(Below 1× poverty time t) -0.514 0.327 -1.573 0.115
Slope(Below 1× poverty) -0.037 0.008 -4.626 3.71e-06***
∆ Intercept (1-2× poverty) 1.520 0.404 3.763 1.67e-04***
∆ Intercept (2-3× poverty) 3.850 0.457 8.412 0.000***
∆ Intercept (Above 3× poverty) 2.375 0.435 5.451 5.00e-08***
∆ Slope (1-2× poverty) 0.021 0.009 2.179 0.029
∆ Slope (2-3× poverty) 0.007 0.011 0.656 0.511
∆ Slope (Above 3× poverty) 0.025 0.010 2.408 0.016**

Above 3× poverty at t+ 1
Intercept(Below 1× poverty time t) -0.602 0.288 -2.089 0.036
Slope(Below 1× poverty) -0.027 0.007 -3.881 1.03e-04***
∆ Intercept (1-2× poverty) 1.012 0.398 2.544 0.010
∆ Intercept (2-3× poverty) 3.647 0.433 8.419 0.000
∆ Intercept (Above 3× poverty) 3.723 0.388 9.577 0.000
∆ Slope (1-2× poverty) 0.011 0.009 1.158 0.246
∆ Slope (2-3× poverty) 0.000 0.010 -0.003 0.997
∆ Slope (Above 3× poverty) 0.045 0.009 4.765 1.88e-06***

***p < 0.01, **p < 0.05, *p < 0.1
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Figure 4.3: Proportion of individuals in each income category from cohort projection of 100,000
individuals. (a) is the proportion (number in each state/total number alive at each age x) in each
state. (b) is the total number of individuals alive in each state at each age. Colors correspond
to income categories at each age (red <1×poverty, green 1-2×poverty, blue 2-3×poverty, purple
>3×poverty)
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Figure 4.4: The average remaining life expectancy and its variance. (a) average remaining life
expectancy, conditional on surviving to age x, based on income state at each age x (red <1×poverty,
green 1-2×poverty, blue 2-3×poverty, purple >3×poverty, respectively). (b) difference in average
remaining life expectancy between each state and the <1×poverty state. (c) variance in average
remaining life expectancy. Variance in life expectancy corresponds to the spread of individual lifetime
trajectories. (d) Coefficient of Variation (ratio of the standard deviation to the mean).
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Figure 4.6: Cohort simulation of 10,000 individuals lifetime trajectories. (a) state transitions for each
of 10,000 simulated individuals, all starting in the >3×poverty state, arranged in order of lifespan.
The state at each age is color-coded: red <1×poverty, green 1-2×poverty, blue 2-3×poverty, purple
>3×poverty, and black is death. (b) snapshot of a random sample of individuals between the ages
of 22-95, not ordered by lifespan. (c), (d), (e), and (f) snapshots of 100 individuals 10 years prior to
their death at 60, 70, 80, and 90, respectively.
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Figure 4.7: State distribution of simulated individuals 5 years prior to their death. Simulated indi-
viduals grouped by those who experienced death at ages 50, 60, 70, 80, or 90. (Red is <1×poverty,
green is 1-2×poverty, blue is 2-3×poverty, and purple is >3×poverty). (a) The 43 simulated indi-
viduals (out of 10,000) who died between ages 49-50. (b) The 79 people who died before age 60. (c)
The 169 people who died before age 70. (d) The 264 people who died before age 80. (e) The 273
people who died before age 80.
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Figure 4.8: Distributions of income state switching from simulations. (a) Distribution of the ages
individuals switch into a lower income state. (b) Distribution of the ages individuals switch into
a higher income state. (c), (d), (e), and (f): Distributions of the ages individuals switch into the
<1×poverty, 1-2×poverty, 2-3×poverty, and >3×poverty state, respectively. (g) Distribution of the
age at death.
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Figure 4.9: Distributions of continuous duration or ‘spells’ in each income state. The distributions
of continuous years spent in (a) <1×poverty, (b) 1-2×poverty, (c) 2-3×poverty, and (d) >3×poverty
state, having at least spent 1 year in each respective state.
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Figure 4.10: Distributions of net years spent in each income state. The distribution of total years
over individuals life-courses spent in each income state: (a) <1×poverty, (b) 1-2×poverty, (c) 2-
3×poverty, and (d) >3×poverty state.



CHAPTER 5

An integrative measure of dynamic
heterogeneity

5.1 Entropy

Entropy describes the rate of diversification of trajectories conditional on survival

and as in Tuljapurkar and Steiner (2010), can be estimated as:

H = −
K∑
i=1

K∑
j=1

πiψij logψij (5.1)

We calculate entropy, H, for each age. K is the number of possible states (2 for

chapters two and three, 4 for chapter four). ψ is the cumulative stage transition

matrix conditional on survival (similar to cumulative Q matrices but without being

weighted by the probability of survival). And π is the stable stage distribution which

equals the dominant eigenvector of ψ. Since for each case the greatest value of entropy

is log(K), we can normalize H by dividing by log(K).

Tuljapurkar and Steiner (2010) investigated the entropy, the quantitative measures

of dynamic heterogeneity, across 21 different species and found that there was no

correlation between entropy and mean age at death for the species. If we consider

our results in the previous chapters, this finding is intuitive. In each chapter the
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same empirical data were used, and similar pooled cohorts were analyzed to create

simulated cohorts experiencing different types of dynamic heterogeneity. The extent

to which age-specific dynamic heterogeneity occurred depended upon which dynamic

state was under analysis. For instance in chapter 3 we considered exactly the same

cohort but did separate analysis for each of three different poverty thresholds, each

defining a binary state (poor vs not poor). All three analyses had the same average

age of death but cohorts exhibited different age-patterns of dynamic heterogeneity

(fig.5.2 (where we use the same measure of entropy , H, as Tuljapurkar and Steiner

(2010) and Tuljapurkar et al. (2009) except that our H is a function of age).

In the analysis of marital status (ch. 2) we considered the dynamic heterogeneity

of entering and exiting marriage (the dynamic state) throughout the life course and

compared males and females (fixed states), we found the well-documented gender

discrepancy in average age at death. Yet this is despite the fact that males on average

spend more of their lifetime in the state with the higher survival advantage, the

married state (although the survival advantage is not greater than annual survival

of married or unmarried females). The entropy value differs for men and women,

with women’s dynamic heterogeneity decreasing sharply at the end of the lifespan (as

many become unmarried)(fig.5.1). In all chapters we found a crossover in survival

advantage at the end of life where more robust individuals in the generally lower

survival (unmarried or lower income) states became more abundant. In the analysis

of multiple income states (ch. 4) our simulations and entropy at each age (fig. 5.3)

show the greatest dynamic heterogeneity in income state towards the end of life, for

those who successfully make it to age 90 for instance, and the near poverty state

(1-2× poverty) had the greatest survival advantage at these late ages.
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In all previous analysis we found that individuals were most abundant in the

states with the greatest one-period survival during periods of greatest discrepancy

among states. For instance, we found the greatest discrepancy in average remaining

life expectancy to occur during mid-ages, and the greatest proportion of individuals

were in the higher survival state at these ages as well.

All of these observations must be interpretted in light of the disclaimer that the

state-by-age models and analysis techniques create mechanistic models; models that

do not capture all of the complexity that determine lifespan or even variance in lifes-

pan. Although the models presented here closely consider age-patterns of entry and

exit rates for select states, they do not allow for determining causation, or environ-

mental reasons for specific transition patterns. Furthermore there are infinite internal

and external dynamic states with survival ramifications that individuals may be go-

ing through on time scales much smaller than a year, not to mention ‘quasi-dynamic’

states, such as education (where higher educational levels can be achieved at any age,

but one cannot return to previous lower education levels), with documented survival

ramifications (Kunst and Mackenbach, 1994). Then, of course, there are fixed states

such as region of birth that have documented survival ramifications as well (Krieger

et al., 2003).

However, the approach here proved to be a powerful tool in examining inequalities

or disparities of survival, life expectancy, and variance of life expectancy between par-

ticular dynamic states. One definition of health disparities is “[mortality] differences

that occur by gender, race or ethnicity, education or income, disability, geographic lo-

cation, or sexual orientation” and Adler and Rehkopf (2008) makes a point of further

differentiating social disparities and biological differences (they also mention there are
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over 11 different definitions of health disparities, as there is not yet consensus in the

literature). Either way, investigating mortality disparities between dynamic states

throughout the life course is a novel addition to literature that aims to understand

and limit disparities and inequalities in mortality.

For instance, perhaps mid-ages have the most income-state based mortality dis-

crepancies because there are fewer government programs available at those ages to

help those in lower income states, or great disparities exist because of government

programs already in place for younger and older aged lower income state individu-

als (such as Social Security and Medicare) simply because they are more abundant

at those ages (Sandoval et al., 2009), and many changes in age-specific discrepancies

across the life-course can be due to low income individuals already having experienced

mortality at young ages (also pointed out by Adler and Rehkopf (2008)).

Dynamic states are the most complex and interesting states to consider, and this

dissertation is in no sense exhaustive on the topic. We were able to qualitatively view

the dynamic heterogeneity at each age by visualizing the simulated cohort dynamics as

it entered and exited each state and quantitatively view the dynamic heterogeneity

with histograms of transitioning summaries and entropy calculations presented in

this chapter. We compared how the same cohorts experienced different dynamic

heterogeneity based on differently defined dynamic states. While we do not know the

underlying mechanisms causing specific transition probabilities at each age, we do

know that the transitioning and survival rates can drive the demographic structure

and inequalities within the cohort.
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5.2 Conclusion

Furthermore, we were able to answer our research questions and directly relate

individual annual survival and transitioning probabilities to cohort state structure,

life expectancy, dynamic heterogeneity, and summary switching ages for each chapter.

As discussed in previous chapters, combining analyses of data from two data sets,

NLSY79 and HRS to estimate our probabilities for the state-by-age model yielded

results consistent with earlier literature.

In our analysis of marital status (ch. 2) we asked how does the survival advantage

of being married change with age? How does the probability of becoming married or

staying married change with age? At which ages is marriage more advantageous for

males and females? How does the survival advantageous appear when we consider

marital state as a fixed (rather than dynamic) state?

We found that at young ages the survival advantage in married state was negligi-

ble. At mid to late ages it was considerable, and at late old ages, it was disadvanta-

geous. The probability of staying and becoming married decreases with age. Married

people live longer than unmarried people, and the benefit is enhanced for males at

mid-ages. At early ages more women entered marriage than men, while at late ages

more women exited marriage than men and women had higher variance in total years

unmarried. The results of a model in which state became fixed at some particular

age lead to conflicting results, in contrast to our dynamic model.

In our analyses of binary poverty states we considered three distinct income thresh-

olds as poverty thresholds (ch. 3) and we asked: How often in their life course do

individuals cross above and below each threshold? What are the ramifications of

being above or below a threshold in terms of probability of survival between one age



136

and the next? How does being above and below a particular threshold income level

change the expected fate of a cohort, such as the remaining life expectancy and vari-

ance in remaining life expectancy? Does dynamic heterogeneity and the transience

across income thresholds affect the cohort dynamics?

We found that the number of individuals in poverty, (below the 1× poverty thresh-

old) is almost constant with age, perhaps since an almost equal number of people exit

and enter poverty after age 33. We also found that for those below each threshold,

the one-period probability of exiting those states declines with age and those below

1× poverty had the highest annual probability of exiting at each age, but the sharpest

decline with age. In general, as threshold increased, so did the number of individuals

switching states. For most ages individuals in the higher income state had the greatest

probability of surviving from one year to the next for mid-ages to about age 80. The

advantage is greatest between those above and below the 1× poverty threshold when

compared to those above and below 2× or 3× poverty. The highest income-state

inequality in life-expectancy, and variance occurred at mid-ages (since at mid-ages

the income state is less transient) and fewer individuals are in the below threshold

income states between ages 40-60. Individuals below the income thresholds have the

highest variance, meaning they have a greater range of possibilities in life trajectory.

Those above threshold have less variance, meaning individuals will more consistently

reach their higher average remaining life expectancy. We found that dynamic het-

erogeneity in income state and the transience of income thresholds is associated with

income-related mortality disparities (less transience, especially of the higher income

states, more disparities). As noted above we can not establish the direction of causal-
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ity but we agree with Gillespie et al. (2014), that focusing on mid-ages to decrease

income-related health disparities could help decrease lifespan inequality.

In our analyses of muliple income states (ch. 4) we considered four distinct income

categories and asked the following research questions: What is the probability of

entering or exiting an income state from one age to the next? What are the annual

survival ramifications of being in one of four particular income states at each age?

What is the average remaining life expectancy and variance in life expectancy at each

age for each income state? In our Markovian framework, what is the average duration

and net years spent in each income state? And how do all these results differ between

income states?

In general we found that each income state had the highest annual probability

of staying in the same state at each age, with the next highest transition being to

move to higher income states. For most ages the highest income states had the

highest probability of surviving from one year to the next until about age 86 when

the order of the income states did not equate to the order of survival advantage.

The greatest advantage in average remaining life expectancy between consecutive

states is for those moving from <1× to 1-2× poverty at ages 32-49. The largest

discrepancy in average remaining life expectancy and its variance between all states

and the poverty state occurred at mid-ages (40-60). And the fewest individuals were

in the lower income states between these ages. Our calculated average duration or

‘spell’ in 1×poverty (across the life course) was 3.2 years, 1-2×poverty had an average

spell of 2.7 years, 2-3×poverty and >3×poverty had average durations of 2.3 and 8.2

years, respectively. While the average net time (from ages 22-95) in 1×poverty was
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3.8 years, in 1-2×poverty 5.66 years, in 2-3×poverty and >3×poverty 5.3 and 29.9

years, respectively.

In conclusion, we find that over the life course, dynamic heterogeneity is lowest

(in the particular dynamic states we investigated) at mid-ages. And the greatest dy-

namic state-based mortality inequalities and discrepancies in life expectancy occur at

these same ages. Perhaps because these are the ages of the ‘working age population’,

who, for various reasons outside the scope of our model (see Backlund et al. (1996)),

have greater rates of annual stasis in the more advantageous state. We also found

that despite out Markovian framework, which did not incorporate individual histo-

ries or fixed states (such as innate biological factors, race or ethnic group, etc.), we

found (dynamic) state based inequality, disparities and heterogeneity in our cohorts.

We were able to directly relate these inequalities to our annual survival and transi-

tion probabilities, suggesting that these probabilities are possible underlying forces of

inequality of lifespan.

Using regression analysis of NLSY and HRS and our state-by-age-matrix model

we were able to investigate the relationship between individual annual entry and exit

rates into particular dynamic states and age based annual survival, cohort dynamic

heterogeneity, cohort state structure, and individual trajectories. In so doing, we

answered our above stated research questions and extended the literature on multi-

state methods of analysis.
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Figure 5.1: Entropy for cohorts classified by marital status and gender: married and unmarried (a)
males and (b) females at each age. Entropy calculation is normalized and conditional on survival
(see equation 5.1).
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Figure 5.2: Entropy for cohorts classified by income thresholds of either (a) 1×, (b) 2×, or (c) 3×
the poverty threshold at each age. Entropy calculation is normalized (divided by log 2 for each age)
and conditional on survival (see equation 5.1).
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Figure 5.3: Entropy for cohorts classified by income category, <1×poverty, 1-2×poverty, 2-
3×poverty, and >3×poverty. Entropy calculations is normalized (divided by log(4) for each age)
and conditional on survival (see equation 5.1).



APPENDIX A

A.1 HRS cohorts and variables

The 6 cohorts include: Initial HRS cohort, born 1931 to 1941, first interviewed in

1992 and then for the rest of the survey. AHEAD cohort, born before 1924, and first

interviewed in 1993 and subsequently 1995, 1998, and then for the remainder of the

survey. Children of Depression (CODA) cohort, born 1924 to 1930, first interviewed

in 1998 and subsequently for the rest of the survey. War Baby (WB) cohort, born

1942 to 1947. This cohort was also first interviewed in 1998 and subsequently every

two years. Early Baby Boomer (EBB) cohort, born 1948 to 1953. This cohort was

first interviewed in 2004. Mid Baby Boomer (MBB) cohort, born 1954 to 1959. This

cohort was first interviewed in 2010. Individuals are classified as alive or dead based

on the RAND HRS rwiwstat variable. Individual age at each wave are calculated

from the age at the end of their interview, rwagey e.

A.2 NLSY79 variables

Interviews were performed every year from 1979 to 1994, and then every two years

from 1994-2012. At the first interview in 1979 respondents were between the ages of

142
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14 and 22. The variable rni at each interview year was used to establish whether

the respondent was deceased. The age at interview variable, ageatint, was used to

represent age at end of interview.

A.3 One-period probability adjustments

The time between interviews for HRS is normally distributed about 23.8 months

(fig.A.2). NLSY is bi-normally distributed about 12.4 and 24.1 months (A.2), since

after 1994 interviews were performed every 2 years as opposed to every one year.

For HRS, NLSY-pre-1994, and NLSY-post-1994 we calculate regression parameters

(specified in each chapters tables). The parameters are then logit transformed to

calculate probability of survival between t and t+ i, and probability of transitioning

between t and t+ i. We then adjust i to be 12 months, a one year period.

To calculate our one-period transition parameter values, t(x)21 and t(x)22, from

the logit transformed regression coefficients we use the following equation:t11 t12

t21 t22

 =

r11 r12

r21 r22


12/i

Where r21 and r22 are the logit transformed regression parameters and r11 = 1−r21

and r12 = 1 − r22. i is either 12.4, 24.1, or 23.8 depending on the data-set. Note,

every variable is a function of age, x, but we leave the x out here for clarity.

To calculate our one-year survival parameter values, s(x)1 and s(x)2, from the

logit transformed regression coefficients, c1 and c2, we estimate with the following

equations:
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c1 = s21t11 + s1s2t21

c2 = s22t22 + s2s1t12

In this case, we estimate that i = 2 and use this formula for NLSY-post-1994 and

HRS. We use the transition probabilities, t11 etc., calculated from above. Here c1, the

logit transformed regression coefficient, is the probability of survival between t and

t + i ≈ t + 2, for those below threshold. And c2 is the same for those above income

threshold. Every variable is a function of age x. We estimate that for NLSY-pre-1994

c1 = s1.
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Figure A.1: Age distribution/structure of each interview wave. For HRS (a) and NSLY79
(b).
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Figure A.2: Difference in months between interviews for HRS (a) and NSLY79 (b). HRS
is normally distributed about 23.8 months. NLSY is binormally distrbuted about 12.4 and 24.1
months (pre and post-1994 interviews).



APPENDIX B

Ch.2

B.1 Ch.2 Model Theory

B.1.1 Projecting a cohort of newborns from birth onward

To see what happens to a cohort over time we must pass a cohort through the

population projection matrix L. We start with a column vector for the population at

time 0, n(0), where lets say 1, 000, 000 individuals are born into the unmarried state

(the first row represents the married state).

n(0) =



0

1, 000, 000

0

...

0


At the first time step we pass our newborn cohort through the matrix by multiplying

Ln(0), and then we get a new population, n(1), which we then again pass through

the matrix in a loop for all 100 time steps. In other words:

n(x+ 1) = Ln(x)
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Which in a non-recursive form is synonymous to using L in equation (2.1). The

sum of the column vector n(x),
202∑
i=1

n(xi), represents the total number of individuals

of the cohort who are alive at age x. In each n(x) there are only two nonzero ele-

ments: the first value (always on the odd row index) represents the population at

age x that is unmarried, u(x) = n(x2k−1). The second value (always on the even

row index) represents the population at age x that is married, m(x) = n(x2k), here

kε[1, 2, 3..., 200, 101]. Note that the vector n(x) has dimensions 202x1 and that there

are 101 time steps. Survivorship to a particular age is defined as the total population

at age x divided by the total initial cohort (n(0), here set at 1,000,000 individuals)

(Fox, 2001).

Survivorship to age x = S(x) =

202∑
i=1

n(xi)

202∑
i=1

n(0i)

The sum of the column vector n(x) can also be implemented mathematically by simply

multiplying n(x) by a sum vector (a vector of 1s, sometimes denoted by j) of equal

size. Hazard at a particular age is the instantaneous risk of mortality, the negative

of the slope of the log(survivorship) (the rate of decrease in log(survivorship)), and

can also be thought of as the instantaneous risk of dying. It can be calculated in a

continuous time framework by (Venables and Ripley, 2002):

h = log(− log(S(x)))

Here we use the same equation even though we are working in a discrete time frame-

work. These survivorship and hazard values are age specific rates for the entire cohort,

comprised of both unmarried and married individuals of age x. We are also inter-

ested in the proportion of unmarried individuals to married at each age, (u(x)/m(x)),

and the difference in average remaining life expectancy for married and unmarried at
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each age. In the next subsections we will show how the model can be used to look at

remaining life expectancy for married and unmarried at each age and the variability

among individual trajectories of members of a cohort. All of these outputs are de-

pendent on the input survival and transition parameter values, s1(x), s2(x), t21(x),

t22(x).

B.1.2 Markov chain analysis and the fundamental matrix:

the average life expectancy

In the previous section the matrix L was used to project a cohort from age 0 to 100,

this allows us to examine how the probabilities from the statistical models determine

the demographic structure of the cohort. L can also be used in Markov chain analysis

to calculate the fundamental matrix and the average individual life expectancy, which

we will discuss here. Furthermore, stochastic individual life path trajectories where

individuals enter and exit transient states and ultimately an absorbing state (death)

can be calculated as well, and that will be discussed in the next section.

At age 0, remaining life expectancy is simply called life expectancy (the expected

age at death for newborns), at every other age remaining life expectancy is the life

expectancy conditional on having reached that age (the number of years an individual

is expected to stay alive in the future, given that he/she survived to a particular

age). For example, the remaining life expectancy at age 65 (which is conditional on

survival to 65) is of special interest to the social security administration and to groups

calculating health care spending for the elderly (Lubitz et al., 2003). We can use our

L matrix to calculate the fundamental matrix (N) and then calculate the average

individual remaining life expectancy values and related terms at each age (Caswell,
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2001).

The fundamental matrix = N = I + L + L2 + . . . =
∞∑
x=0

Lx

= (I− L)−1 (B.1)

Life expectancy = j′N (B.2)

Variance of life expectancy = j′(2N2 −N)− j′(N) ◦ j′(N) (B.3)

Standard deviation of life expectancy = (Variance of life expectancy)0.5 (B.4)

Where I is an identity matrix with the same dimensions as L. We see in eq. A.1

that the fundamental matrix is essentially a series that converges to the inverse of the

identity matrix minus L. j is a column vector of 1s that gives the sum of each column

when its transpose is multiplied by a matrix. (◦ represent the Hadamard Product

which is element-wise multiplication of j′N and j′N). The fundamental matrix informs

about the expected number of visits to a transient state; each element in the series

that defines N represents a cohort experiencing transitions at a specific age defined

by L to the x power. The sum of the series across all possible ages (till death) is the

fundamental matrix. Next we generate stochastic individual life path trajectories, as

opposed to looking at the average trajectory values.

B.1.3 Markov chain analysis: Generating stochastic individ-

ual life-paths, realizations

The matrix L with dimensions 202×202 describes part of an individual’s movement

through a Markov chain but an extra absorbing state, death, must be added to

complete the description (Caswell, 2001). Therefore, as in equation (2.2) one more

column and row is added on to L which creates P, which is column stochastic with
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dimensions 203× 203. Here we show P with 2× 2 state transition matrices Q(x) as

above so note that for L each 0 =

[
0 0

0 0

]
so the indexes of Q represent the number

of state matrices at each age (age blocks) and each m(x) is a 1 × 2 row vector with

m(101) =

[
1 1

]
.

P =



0 0 0 . . . 0 0 0 0

Q(1) 0 0 . . . 0 0 0 0

0 Q(2) 0 . . . 0 0 0 0

0 0 Q(3) . . . 0 0 0 0

...
...

...
. . .

...
...

...
...

0 0 0 . . . Q(98) 0 0 0

0 0 0 . . . 0 Q(99) 0 0

0 0 0 . . . 0 0 Q(100) 0

0

0

0

0

...

0

0

0

m(1) m(2) m(3) . . . m(98) m(99) m(100) m(101) 1


Column 102 is the death absorbing state. Each element in M, which is row 102,

is the probability of death for that age and state:

m(x) =

[
1− s1(x) 1− s2(x)

]
,

Where 1 − s1(x), as above, represents the probability of dying between x and

x + 1 if unmarried at x, and 1 − s2(x) is the same but if married at x. Since P is

an absorbing Markov chain it can be divided into two sets (Caswell, 2001), a set of

absorbing states, α, and a set of transient states, τ . The transient set is age-specific
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(for each x), since P is of state-by-age form:

τ = {2, 1}x, xε{1, 2, ...101}

α = {0}

There is a pathway from each of the states in τ to α, since an individual can die at

any state and age. The transient states are married, ‘2’ and unmarried, ‘1’. We give

quantitative values to the states to enable later calculations. Age itself can also be

viewed as a transient state and in that case there would be 202 transient states since

for 101 different ages ({0, 1, 2...100}) an individual transitions (or is born) into either

2, 1, or the absorbing state 0. Let y be a column vector of iε[1, 203] representing the

probability distribution of states where 0 ≤ yi ≤ 1 and
∑
i

yi = 1. So the column

vector y(0) represents an individual’s probability at age 0 of being in state 0, 1, or 2.

Then

y(x+ 1) = Py(x)

where

Px =

 Lx 0

m
x−1∑
n=0

Ln 1


Since it is possible to reach the state 0, death, from every state; τ guarantees that

the dominant eigenvalue of L is strictly less than one so limx→∞(Lx) = 0 (Caswell,

2001). This means that every individual will enter the absorbing state i.e. eventually

die. The Markov chain approach gives rise to the generation of individual life paths

based on the probabilities in the L matrix. The individual life paths are stochastic

and we can observe different types of variability among individual trajectories. For

instance, variability in age at death, age at first state transition, etc.
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B.2 Ch.2 Appendix Figures

See fig. B.1 for the age-specific demographic structure for both data sets. See fig.

B.2 for the the response rate based on marital status at time t for both data sets.
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Figure B.1: Distribution of married/unmarried observations across the ages, for males
and females.(a), (b) weighted repeated pooled observations for NLSY79 and HRS, combined at the
dashed grey line (between age 50 and 51). (c), (d) the weighted percent of married and unmarried
pooled observations at each age (the dashed line represents the joining of the NLSY79 and HRS
dataset). (a), (c) and (b), (d) depict the male and female observations, respectively.
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Figure B.2: The effect of age, marital status, and gender on response rate. (a), (b):
weighted no response (i.e. missing data) at age t+1, for a specific state (married: blue, or unmarried:
red) at age t. Confirmed deaths are excluded from observations. Panel B.2a are the males and panel
B.2b are the females. The vertical dashed grey line represents where NLSY79 and HRS datasets are
joined. (c), (d): respective weighted chi-square statistics for the test of significance between married
and unmarried (at time t) and response (at time t + 1). For both (B.2c) the males, and (B.2d) the
females, the grey horizontal line represents the chi-square statistic at 0.05 significance. (That is a
chi-square value of 3.841 for a test with 1 degree of freedom). Points below the line indicate no
significant difference of response rate between martial states at time t.



APPENDIX C

Ch. 3

C.1 Ch.3 Model Theory

C.1.1 Projecting a cohort of newborns from birth onward

To see what happens to a cohort with a specific poverty threshold (1×, 2× or 3×

‘official’ poverty) we must pass a cohort through the population projection matrix L.

For clarity we will refer to the two states as ‘below or in poverty’ and ‘above poverty’

although this technique is done three times for the 1×, 2× and 3× thresholds. We

start with a column vector for the population at time 0, n(0), where lets say 1, 000, 000

individuals are born into the above poverty state (the first row represents the below

poverty state).

n(0) =



0

1, 000, 000

0

...

0


At the first time step we pass our newborn cohort through the matrix by multiplying

Ln(0), and then we get a new population, n(1), which we then again pass through
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the matrix in a loop for all 100 time steps. In other words:

n(x+ 1) = Ln(x)

Which in a non-recursive form is synonymous to using L in equation (3.1). The sum

of the column vector n(x),
202∑
i=1

n(xi), represents the total number of individuals of the

cohort who are alive at age x. In each n(x) there are only two nonzero elements:

the first value (always on the odd row index) represents the population at age x

that is below poverty, a(x) = n(x2k−1). The second value (always on the even row

index) represents the population at age x that is above poverty, b(x) = n(x2k), here

kε[1, 2, 3..., 200, 101]. Note that the vector n(x) has dimensions 202x1 and that there

are 101 time steps. Survivorship to a particular age is defined as the total population

at age x divided by the total initial cohort (n(0), here set at 1,000,000 individuals)

(Fox, 2001).

Survivorship to age x = S(x) =

202∑
i=1

n(xi)

202∑
i=1

n(0i)

The sum of the column vector n(x) can also be implemented mathematically by simply

multiplying n(x) by a sum vector (a vector of 1s, sometimes denoted by j) of equal

size. Hazard at a particular age is the instantaneous risk of mortality, the negative

of the slope of the log(survivorship) (the rate of decrease in log(survivorship)), and

can also be thought of as the instantaneous risk of dying. It can be calculated in a

continuous time framework by (Venables and Ripley, 2002):

h = log(− log(S(x)))

Here we use the same equation even though we are working in a discrete time frame-

work. These survivorship and hazard values are age specific rates for the entire cohort,
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comprised of both below income threshold and above income threshold individuals

of age x. We are also interested in the proportion of individuals below the income

threshold at each age, and the difference in average remaining life expectancy, for

instance for above poverty and below poverty individuals at each age. In the next

subsections we will show how the model can be used to look at remaining life ex-

pectancy for each income state, and the variability among individual trajectories of

members of a cohort. All of these outputs are dependent on the input survival and

transition parameter values, s1(x), s2(x), t21(x), t22(x).

C.1.2 Markov chain analysis and the fundamental matrix:

the average life expectancy

In the previous section the matrix L was used to project a cohort from age 0

to 100, this allows us to examine how the probabilities from the statistical models

determine the demographic structure of the cohort. L can also be used in Markov

chain analysis to calculate the fundamental matrix (Kemeny and Snell, 1976) and

the average individual life expectancy in each state, which we will discuss here. Fur-

thermore, stochastic individual life path trajectories where individuals enter and exit

transient states and ultimately an absorbing state (death) can be calculated as well,

and that will be discussed in the next section.

At age 0, remaining life expectancy is simply called life expectancy (the expected

age at death for newborns), at every other age remaining life expectancy is the life

expectancy conditional on having reached that age (the number of years an individual

is expected to stay alive in the future, given that he/she survived to a particular

age). For example, the remaining life expectancy at age 65 (which is conditional on
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survival to 65) is of special interest to the social security administration and to groups

calculating health care spending for the elderly (Lubitz et al., 2003). We can use our

L matrix to calculate the fundamental matrix (N) and then calculate the average

individual remaining life expectancy values and related terms at each age (Caswell,

2001; Kemeny and Snell, 1976).

The fundamental matrix = N = I + L + L2 + . . . =
∞∑
x=0

Lx

= (I− L)−1 (C.1)

Life expectancy = j′N (C.2)

Variance of life expectancy = j′(2N2 −N)− j′(N) ◦ j′(N) (C.3)

Standard deviation of life expectancy = (Variance of life expectancy)0.5 (C.4)

Where I is an identity matrix with the same dimensions as L and j is a column

vector of 1s that gives the sum of each column when its transpose is multiplied by a

matrix. (◦ represent the Hadamard Product which is element-wise multiplication of

j′N and j′N). The fundamental matrix is essentially a series that converges to the

inverse of the identity matrix minus L (eq. C.1). The fundamental matrix informs

about the expected number of visits to a transient state. The sum of all of its columns

yields the average remaining life expectancy conditional on survival for each age. Next

we generate stochastic individual life path trajectories, as opposed to looking at the

average trajectory values.



160

C.1.3 Markov chain analysis: Generating stochastic individ-

ual life-paths, realizations

The matrix L with dimensions 202×202 describes part of an individual’s movement

through a Markov chain but an extra absorbing state, death, must be added to

complete the description (Caswell, 2001). Therefore, as in equation (3.2) one more

column and row is added on to L which creates P, which is column stochastic with

dimensions 203× 203. Here we show P with 2× 2 state transition matrices Q(x) as

above so note that for L each 0 =

[
0 0

0 0

]
so the indexes of Q represent the number

of state matrices at each age (age blocks) and each m(x) is a 1 × 2 row vector with

m(101) =

[
1 1

]
.

P =



0 0 0 . . . 0 0 0 0

Q(1) 0 0 . . . 0 0 0 0

0 Q(2) 0 . . . 0 0 0 0

0 0 Q(3) . . . 0 0 0 0

...
...

...
. . .

...
...

...
...

0 0 0 . . . Q(98) 0 0 0

0 0 0 . . . 0 Q(99) 0 0

0 0 0 . . . 0 0 Q(100) 0

0

0

0

0

...

0

0

0

m(1) m(2) m(3) . . . m(98) m(99) m(100) m(101) 1


Column 102 is the death absorbing state. Each element in M, which is row 102,

is the probability of death for that age and state:

m(x) =

[
1− s1(x) 1− s2(x)

]
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Where 1− s1(x) represents the below income threshold state, one year probability of

mortality at age x, and 1 − s2(x) represents the one period probability of mortality

for those in the higher income state at age x. Since P is an absorbing Markov chain

it can be divided into two sets (Caswell, 2001), a set of absorbing states, α, and a

set of transient states, τ . The transient set is age-specific (for each x), since P is of

state-by-age form:

τ = {2, 1}x, xε{1, 2, ...101}

α = {0}

There is a pathway from each of the states in τ to α, since an individual can die at any

state and age. The transient states are above poverty, ‘2’ and below poverty, ‘1’. We

give quantitative values to the states to enable later calculations. Age itself can also

be viewed as a transient state and in that case there would be 202 transient states

since for 101 different ages ({0, 1, 2...100}) an individual transitions (or is born) into

either 2, 1, or the absorbing state 0. Let y be a column vector of iε[1, 203] representing

the probability distribution of states where 0 ≤ yi ≤ 1 and
∑
i

yi = 1. So the column

vector y(0) represents an individual’s probability at age 0 of being in state 0, 1, or 2.

Then

y(x+ 1) = Py(x)

where

Px =

 Lx 0

m
x−1∑
n=0

Ln 1


Since it is possible to reach the state 0, death, from every state; τ guarantees that

the dominant eigenvalue of L is strictly less than one so limx→∞(Lx) = 0 (Caswell,

2001). This means that every individual will enter the absorbing state i.e. eventually
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die. The Markov chain approach gives rise to the generation of individual life paths

based on the probabilities in the L matrix. The individual life paths are stochastic

and we can observe different types of variability among individual trajectories. For

instance, variability in age at death, age at first state transition, duration in a state,

etc.
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C.2 Ch.3 appendix tables

Regression coefficients

Table C.1: HRS logistic regression for each poverty threshold: Dependent Variable = Survival at
time t+1

Predictor Estimate Std. Error t value Pr(> |t|)

Intercept (Below 1× poverty) 7.311 0.353 20.717 <2e-16 ***
Slope (Below 1× poverty) -0.068 0.004 -14.727 <2e-16 ***
∆ Intercept (Above 1× poverty) 2.470 0.389 6.349 2.17e-10***
∆ Slope (Above 1× poverty) -0.026 0.005 5.229 1.71e-07***

Intercept (Below 2× poverty) 7.460 0.233 32.017 <2e-16 ***
Slope (Below 2× poverty) -0.069 0.003 -22.920 <2e-16 ***
∆ Intercept (Above 2× poverty) 2.804 0.306 9.166 <2e-16 ***
∆ Slope (Above 2× poverty) -0.031 0.004 -7.986 1.41e-15***

Intercept (Below 3× poverty) 7.920 0.200 39.621 <2e-16 ***
Slope (Below 3× poverty) -0.074 0.002 -28.719 <2e-16 ***
∆ Intercept (Above 3× poverty) 2.695 0.310 8.694 <2e-16***
∆ Slope (Above 3× poverty) -0.030 0.004 -7.454 9.16e-14***

***p < 0.01, **p < 0.05, *p < 0.1
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Table C.2: HRS logistic regression: Dependent Variable = Income status at time t+1

Predictor Estimate Std. Error t value Pr(> |t|)

Intercept (Below 1× poverty) 0.354 0.187 1.893 0.058*
Slope (Below 1× poverty) -0.007 0.003 -2.879 0.004***
∆ Intercept (Above 1× poverty) 2.418 0.235 10.307 <2e-16***
∆ Slope (Above 1× poverty) 0.009 0.003 2.774 0.005***

Intercept (Below 2× poverty) -0.108 0.125 -0.861 0.389
Slope (Below 2× poverty) -0.012 0.002 -6.784 1.17e-11***
∆ Intercept (Above 2× poverty) 3.935 0.161 24.483 <2e-16***
∆ Slope (Above 2× poverty) -0.017 0.002 -7.567 3.86e-14***

Intercept (Below 3× poverty) -0.211 0.110 -1.913 0.056*
Slope (Below 3× poverty) -0.016 0.002 10.194 <2e-16***
∆ Intercept (Above 3× poverty) 4.257 0.147 29.003 <2e-16***
∆ Slope (Above 3× poverty) -0.025 0.002 -11.987 <2e-16***

***p < 0.01, **p < 0.05, *p < 0.1
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Table C.3: NLSY79-pre-1994 logistic regression for each poverty threshold: Dependent Variable =
Survival at time t+1

Predictor Estimate Std. Error t value Pr(> |t|)

Intercept (Below 1× poverty) 7.434 1.400 5.307 1.12e-07 ***
Slope (Below 1× poverty) -0.046 0.051 -0.890 0.373
∆ Intercept (Above 1× poverty) 0.107 1.840 0.058 0.954
∆ Slope (Above 1× poverty) 0.022 0.067 0.320 0.749

Intercept (Below 2× poverty) 7.084 1.181 5.997 2.01e-09 ***
Slope (Below 2× poverty) -0.028 0.044 -0.661 0.508
∆ Intercept (Above 2× poverty) 1.015 1.937 0.524 0.600
∆ Slope (Above 2× poverty) -0.009 0.070 -0.127 0.899

Intercept (Below 3× poverty) 8.389 1.120 7.484 7.25e-14 ***
Slope (Below 3× poverty) -0.067 0.040 -1.660 0.096*
∆ Intercept (Above 3× poverty) -2.284 2.179 -1.048 0.294
∆ Slope (Above 3× poverty) 0.103 0.080 1.290 0.197

***p < 0.01, **p < 0.05, *p < 0.1
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Table C.4: NLSY79-pre-1994 logistic regression for each poverty threshold: Dependent Variable =
Income status at time t+1

Predictor Estimate Std. Error t value Pr(> |t|)

Intercept (Below 1× poverty) 1.220 0.188 6.462 1.04e-10 ***
Slope (Below 1× poverty) -0.056 0.007 -8.027 1.01e-15 ***
∆ Intercept (Above 1× poverty) -0.032 0.255 -0.128 0.898
∆ Slope (Above 1× poverty) 0.124 0.009 12.982 < 2e-16 ***

Intercept (Below 2× poverty) 0.664 0.137 4.850 1.24e-06***
Slope (Below 2× poverty) -0.059 0.005 -11.515 < 2e-16***
∆ Intercept (Above 2× poverty) -0.606 0.199 -3.043 0.00234***
∆ Slope (Above 2× poverty) 0.139 0.007 18.640 <2e-16***

Intercept (Below 3× poverty) -0.107 0.122 -0.881 0.378
Slope (Below 3× poverty) -0.049 0.004 -10.720 <2e-16***
∆ Intercept (Above 3× poverty) -0.597 0.188 -3.180 0.001***
∆ Slope (Above 3× poverty) 0.135 0.006 19.457 <2e-16***

***p < 0.01, **p < 0.05, *p < 0.1
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Table C.5: NLSY79-post-1994 logistic regression for each poverty threshold: Dependent Variable =
Survival at time t+1

Predictor Estimate Std. Error t value Pr(> |t|)

Intercept (Below 1× poverty) 8.527 0.999 8.539 <2e-16 ***
Slope (Below 1× poverty) -0.105 0.023 -4.490 7.14e-06 ***
∆ Intercept (Above 1× poverty) 0.203 1.261 0.161 0.872
∆ Slope (Above 1× poverty) 0.028 0.029 0.941 0.347

Intercept (Below 2× poverty) 8.986 0.749 11.995 <2e-16 ***
Slope (Below 2× poverty) -0.108 0.017 -6.240 4.41e-10 ***
∆ Intercept (Above 2× poverty) -0.389 1.232 -0.316 0.752
∆ Slope (Above 2× poverty) 0.039 0.028 1.371 0.170

Intercept (Below 3× poverty) 9.265 0.717 12.911 <2e-16 ***
Slope (Below 3× poverty) -0.107 0.016 -6.414 1.43e-10***
∆ Intercept (Above 3× poverty) -0.779 1.332 -0.585 0.559
∆ Slope (Above 3× poverty) 0.041 0.031 1.315 0.188

***p < 0.01, **p < 0.05, *p < 0.1
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Table C.6: NLSY79-post-1994 logistic regression for each poverty threshold: Dependent Variable =
Income status at time t+1

Predictor Estimate Std. Error t value Pr(> |t|)

Intercept (Below 1× poverty) 0.650 0.236 2.751 0.00595 ***
Slope (Below 1× poverty) -0.024 0.005 -4.244 2.20e-05 ***
∆ Intercept (Above 1× poverty) 2.153 0.306 7.029 2.11e-12 ***
∆ Slope (Above 1× poverty) 0.030 0.007 4.037 5.42e-05 ***

Intercept (Below 2× poverty) -0.329 0.173 -1.903 0.057*
Slope (Below 2× poverty) -0.013 0.004 -3.229 0.001***
∆ Intercept (Above 2× poverty) 2.451 0.245 9.998 <2e-16***
∆ Slope (Above 2× poverty) 0.022 0.006 3.701 0.000215***

Intercept (Below 3× poverty) -0.876 0.147 -5.935 2.95e-09***
Slope (Below 3× poverty) -0.009 0.003 -2.588 0.009***
∆ Intercept (Above 3× poverty) 1.935 0.221 8.751 <2e-16***
∆ Slope (Above 3× poverty) 0.032 0.005 5.889 3.91e-09***

***p < 0.01, **p < 0.05, *p < 0.1
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C.3 Ch.3 appendix figures
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Figure C.1: Pooled data from HRS and NLSY79. The dashed vertical line in each figure
depicts where NLSY79 and HRS data are joined (at age 50). a, c, e: Weighted observations in each
state at each age. b, d, f: Proportion of individuals in each state at each age. Each row examines
the same population but differs in the threshold used to classify individuals into different states;
a and b: below and above the standard poverty threshold; c and d: below and above 2× poverty
threshold; e and f: below and above 3× poverty threshold which is close to national median income
levels.
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Figure C.2: The distribution of non-response based on state and age. All panels are derived
from HRS and NLSY79 data-sets. a, c, and e: The proportion of non response at age x + 1 based
on being below an income threshold (red) or above an income threshold (blue) at age x. Income
thresholds are defined as 1×, 2×, or 3× the ‘official’ poverty threshold, respectively. b, d, and
e: Difference in non-response between the income categories (separated by 1×, 2×, or 3× poverty
threshold, respectively) at each age.
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Figure D.1: Pooled data from HRS and NLSY79. The dashed vertical line in each figure donates
where NLSY79 and HRS data are joined (at age 50). (a) NLSY79 data for each interview year, (b)
HRS data at each interview year. (c) weighted observations in each income state at each age. (d)
proportion of individuals in each income state.
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Figure D.2: Annual survival by income quartile. Quartiles are based on relative income levels (0-25%
income, 25-50%, 50-75%, and 75-100%) for the pooled HRS population. Quartile 1 is 0-1.8×poverty,
Quartile 2 is 1.8-3.3×poverty, Quartile 3 is 3.3-5.82×poverty and Quartile 4 is 5.82-6035.2×poverty
(the maximum income level). Quartiles are represented by triangles, for comparison the background
colored lines are the income states used in our main analysis (red <1×poverty, yellow 1-2×poverty,
green 2-3×poverty, blue >3×poverty)
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Figure D.3: Annual transition probabilities when separated into quartiles for ages 50 to 95. Quartiles
are based on relative income levels (0-25% income, 25-50%, 50-75%, and 75-100%) for the pooled HRS
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