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As a daughter of a forest ecologist, I have always been fascinated by the beauty 

and mystery of our ecosystem. After finishing my B.S in forestry, I continued Ph.D. in 

University of Miami. In the beginning, I participated a wonderful work-shop: 

“Everything Disperses to Miami” and I realized pure mathematics is just as complex as 

ecosystem ecology, but it has a significant role on helping to understand ecosystem 

ecology.  In this dissertation work, I applied mathematical modeling to bridge pure 

mathematic theory with real ecology problems into two sections: (1) testing and 

understanding the impact of dispersal on total population size in a heterogeneous 

environment; (2) understanding and simulating the impact of biological control on an 

invasive plant and the long term dynamic change of the ecosystem in south Florida.  

Motivated by the work-shop, I started my first chapter as combining a greenhouse 

experiment and mathematical modelling to test an intriguing recent result from 

mathematics that a population diffusing at an intermediate rate in an environment in 

which resources vary spatially will reach a higher total equilibrium biomass than the 

population in an environment in which the same total resources are distributed 

homogeneously. With the guidance of my advisor, we extended the current mathematical 

theory to apply to logistic growth and also showed that the result applies to patchy 



 
 

systems with dispersal among patches, both for continuous and discrete time. This 

allowed us to make specific predictions, through simulations, concerning the biomass 

dynamics, which were verified by a laboratory experiment. The experiment was a study

of biomass growth of duckweed (Lemna minor Linn), where the resources (nutrients 

added to water) were distributed homogeneously among a discrete series of water-filled 

containers in one treatment, and distributed heterogeneously in another treatment. The

experimental results showed that total biomass peaked at an intermediate, relatively low, 

diffusion rate, higher than the total carrying capacity of the system in the absence of 

diffusion and agreeing with the simulation model.  

Later on, with the guidance of my advisor, we extended the previous theory to 

include exploitable resources, proving qualitatively novel results, which I tested 

experimentally using spatially diffusing laboratory populations of yeast. Consistent with 

previous theory, I predicted and experimentally observed that spatial diffusion increased 

total carrying capacity in heterogeneous environments, with the effect size depending on 

the relationship between r and K. However, consistent with newer theory, I discovered 

that homogeneously distributed resources support higher total carrying capacity than 

heterogeneously distributed resources, even with species diffusion. My results provide 

rigorous experimental tests of new and old theory, demonstrating how carrying capacity 

in spatially distributed species depends on the interplay between growth parameters, 

population diffusion and resource distribution. 

Collaborating with empirical ecologists on invasive plant management my 

dissertation to another direction, in which I projected likely future changes in plant 

communities using the individual based modeling platform, JABOWA-II, by simulating 



 
 

successional processes occurring in two types of southern Florida habitat, cypress swamp 

and bay swamp, occupied by native species and melaleuca, with the impact of insect 

herbivores. Computer simulations show melaleuca invasion leads to decreases in density 

and basal area of native species, but high levels of introduced insects would effectively 

control melaleuca to low levels, resulting in a recovery of native species. When herbivory 

was modeled on pure melaleuca stands, it was more effective in stands with initially 

larger-sized melaleuca. Although the simulated herbivory did not eliminate melaleuca, it 

decreased its presence dramatically in all cases, supporting the long-term effectiveness of 

herbivory in controlling melaleuca invasion.

Furthermore, I used a modeling approach to estimate the effect of different levels of 

herbivory on foliage by biocontrol agents on melaleuca in which the tree could change its 

carbon and nutrient allocation strategies in order to mitigate effects of increasing 

herbivory, to deeply understand how biological control works on control melaleuca’s 

growth and spread. The model predicted that melaleuca should reallocate more resources 

to production and maintenance of photosynthetic tissues, at the expense of roots, to 

compensate and tolerate a certain level of herbivory. This compensation buffered the 

severity of the defoliation effect, but there was a limit of the maximum herbivory level 

melaleuca could survive. The model also showed that the level of available soil nutrient 

plays an important role in a tree’s ability to compensate for herbivory. However, 

counterintuitively, under some circumstances in which nutrient is more limiting than 

carbon, it may be more favorable for the plant to increase the fraction of carbon going to 

roots if there is an increase in nutrient availability for a given level of herbivory.
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Chapter One

Introduction 

Why do we need mathematical modeling

Ecological modelling yields more general understanding and theory and provides 

testable and robust predictions. In particular, it is currently reaching the “next level” 

towards predictive and re-usable theory that can support environmental decision-making 

(Evans et al. 2013b). Therefore, in this dissertation work, I applied mathematical 

modeling to bridge pure mathematic theory with real ecology problems into two sections: 

(1) testing and understanding the impact of dispersal on total population size in a 

heterogeneous environment; (2) understanding and simulating the impact of biological 

control on an invasive plant and the long term dynamic change of the ecosystem in 

southern Florida.  

Could we have larger total population than total carrying capacity in a 

heterogeneous environment? 

Carrying capacity is a fundamental concept in ecology. An assumption in most 

non-spatial population models is that there is an upper limit on the size of the population, 

its carrying capacity, which is governed by the limiting resource. For example, for a plant 

population, this is typically space, light, or a nutrient. When the concept of carrying 

capacity is extended to an environment of spatially heterogeneous resources, the usual 

approach is to assume that the summation over the local carrying capacities yields the 

total carrying capacity of the whole domain. 

However, when the population disperses randomly in this domain, mathematical 

models predict that the upper limit on population size is no longer the summation over 
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local carrying capacities. In studying a population in a two-patch system with logistic 

growth on each patch, where the per capita growth rates when the population is close to 

zero, r, and carrying capacities, K, differ on the two patches. When the two patches are 

connected by rapid diffusion and there is a relationship r1/K1 > r2/K2 for K1 > K2 between 

K and r of the two patches,  the total population can reach a higher total steady state, or 

equilibrium, size than the sum of the subpopulations on the two patches without any 

connection. A mathematical derivation of a similar result was made, that considered a 

population of consumers in a continuous environment described by a reaction-diffusion 

equation with spatially varying carrying capacity (identical to the maximum growth rate), 

and showed that the total steady state size of a dispersed population exceeded the

summation over all local carrying capacities for all diffusion rates. Further studies

extended these results for both continuous spatial and multi-patch systems for 

populations with logistic growth in which parameters governing growth rate and carrying 

capacity could vary independently spatially, showing that the results held for small 

diffusion rates when a positive relationship existed between r and K, and for all diffusion 

rates when r is an accelerating convex function of K.

Still, rigorous empirical validation of this ‘paradox’ is generally lacking, so it is 

not known whether these results apply to real populations. Testing these results in the 

field or experimentally is further complicated by the fact that real populations are usually 

limited by exploitable resources, whereas the resources in previous models are assumed 

non-exploitable and not influenced by feedback from the consumer. Thus, it is not known 

how this more complex situation would change the results and other mathematical 

models.



3 
 

 
 

What is the long-term impact of biological control on an invasive species and our 

natural ecosystem?

Melaleuca quinquenervia (Cav.) Blake (common names: melaleuca, paper bark, 

punk tree; Family, Myrtaceae, referred to as melaleuca thereafter) is a large (25-30m tall) 

native Australian tree introduced into the Florida landscape during the late 19th century 

for pulp production and ornamental purposes. It has strong invasive attributes, such as 

ecological fire adaptation and high reproductive potential. A single 10-m tall open-grown 

tree can store over 20 million seeds in its capsules at any given time. By the end of the 

1900s melaleuca had spread over 200,000 ha of ecologically sensitive freshwater 

ecosystems of southern Florida  displacing native vegetation such as slash pine (Pinus 

elliottii Engelm.) and pond cypress (Taxodium ascendens Brong.), threatening native 

biodiversity. Melaleuca invasion has caused adverse economic and environmental 

impacts to southern Florida, with the loss valued, 16 years ago, at nearly $30 million per 

year.

Predicting the effects of invading species such as melaleuca is of current general 

interest because of the ecological and environmental damage of many invading species. 

The difficulty of making predictions of the establishment and spread has been pointed out.  

Modeling has been applied to make predictions of future spread in many cases, including 

both niche modeling and mechanistic models. Various control methods have been applied 

in many cases, including the use of biocontrol agents that are natural enemies of the pest 

species. Because use of both biocontrol and other methods of control is costly, prediction 

of the efficacy of control is equally urgent. The long-term success of biocontrol is still 
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uncertain, so modeling has been used in a number of cases of invasive species, including 

plant species.

Research objectives

The main objective of my dissertation research is to contribute to addressing these 

two questions as follows:

In Chapter 2, I first aimed to determine if the mathematical result and others has 

relevance to empirical systems. That is, will a diffusing population in an environment 

with spatially varying resources reach a higher total equilibrium biomass than the 

population in the same environment without diffusion?  The second objective is to test 

the mathematical result that a hump-shaped pattern appears when the equilibrium 

biomass is plotted as a function of the rate of diffusion.  

In Chapter 3, I tested three hypotheses suggested by the earlier mathematical 

results. Hypothesis 1: when a consumer exists in a domain with a heterogeneously 

distributed input of exploitable limiting resource, the steady state population can reach a 

greater size when it disperses than when it does not. Hypothesis 2: the higher population 

in a heterogeneous environment with diffusion is concomitant with a positive relationship 

of growth rate and carrying capacity. Hypothesis 3: a consumer population diffusing 

randomly in a domain with a heterogeneously distributed input of exploitable limiting 

resource can reach a greater steady state size than a population diffusing (or not) in a 

domain with the same total input of resources spread homogeneously in the domain. We 

utilized a budding yeast population to test these hypotheses experimentally, and,

thereafter, used mathematical analysis to extend previous mathematical models to this 

case of exploitable resources.



5 
 

 
 

In Chapter 4, the objective is to improve understanding of the possible effects of 

herbivory on the landscape dynamics of melaleuca in native southern Florida plant 

communities. To do that, I projected likely future changes in plant communities using the 

individual based modeling platform, JABOWA-II, by simulating successional processes 

occurring in two types of southern Florida habitat, cypress swamp and bay swamp, 

occupied by native species and melaleuca, with the impact of insect herbivores. 

In Chapter 5, my goal is to estimate the rate of defoliation needed to achieve a 

specified reduction in the growth rate under various conditions of nutrient availability to 

the tree and how it might change its allocations to foliage and roots in an optimal way.
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Chapter Two

Effects of dispersal on total biomass in a patchy, heterogeneous system: Analysis 
and experiment

Summary

An intriguing recent result from mathematics is that a population diffusing at an 

intermediate rate in an environment in which resources vary spatially will reach a higher 

total equilibrium biomass than the population in an environment in which the same total 

resources are distributed homogeneously. We extended the current mathematical theory 

to apply to logistic growth and also showed that the result applies to patchy systems with 

dispersal among patches, both for continuous and discrete time. This allowed us to make 

specific predictions, through simulations, concerning the biomass dynamics, which were 

verified by a laboratory experiment.  The experiment was a study of biomass growth of 

duckweed (Lemna minor Linn), where the resources (nutrients added to water) were 

distributed homogeneously among a discrete series of water-filled containers in one 

treatment, and distributed heterogeneously in another treatment.   The experimental 

results showed that total biomass peaked at an intermediate, relatively low, diffusion rate, 

higher than the total carrying capacity of the system and agreeing with the simulation 

model.  The implications of the experiment to dynamics of source, sink, and pseudo-sink 

dynamics are discussed.
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1. Background

The effects of spatial heterogeneity and dispersal on populations and on ecosystem 

properties such as productivity are key issues in ecology. An interesting recent result 

from mathematics is that a population in an environment in which resources vary 

spatially will reach a higher total equilibrium biomass with diffusion than without 

diffusion in heterogeneous environment (Lou 2006; He and Ni 2013), which they referred 

to as ‘a curious fact indeed’. The mathematical result depends on the population being 

able to diffuse in space.  This result from mathematical theory have implications for 

ecology. Ecologists attempt to understand the factors regulating populations in spatially 

structured habitats with regional factors such as spatially distributed environmental 

heterogeneity and dispersal (Matthiessen and Mielke 2010). A number of ecological 

investigations carried out in recent years have established that spatial heterogeneity in the 

availability of soil-based resources can strongly influence the growth and patterns of 

biomass allocation of single plants (Hutchings et al. 2003).  However, these studies did 

not involve spatial diffusion, so results for the two factors of spatial heterogeneity and 

diffusion together have, to our knowledge, rarely been tested empirically, despite the 

relevance of dispersal to key ecological issues. 

Lou considered a population in an inhomogeneous environment; i.e., where the 

population growth rate as a function of distance, s, along one dimension, and  g(s) 

constant, and where the population can diffuse at some constant rate (D). He used an 

equation of the form

XXsg
s
XD

t
X ])([2

2

, (1.1)
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with Neumann (no-flux) boundary conditions on X.  Here ‘resources’, g(s), represent 

both growth rate and carrying capacity, and the resource level is assumed fixed externally. 

Lou noted that, at equilibrium, when both sides are divided by X and integration is 

0)(
)(

1 2

2 s
sX

sX
D , (1.2)

which implies

0)]()([ dssgsX ; (1.3)

The diffusion of individuals away from the areas of high productivity keeps the 

population levels in those areas below carrying capacity, so that high production 

continues. The diffusion allows higher population levels to be attained in the lower 

resource areas than the carrying capacity would predict. The result is that the total 

population over all space exceeds that which would occur in a homogeneous space with 

the same total resource production. In order to apply the above results to typical 

ecological models, it is necessary to extend (1.1) to a logistic equation

X
sK

Xsr
s
XD

t
X ]

)(
1)[(2

2

, (1.4)

where the maximum growth rate, r(s), and carrying capacity, K(s), are standard 

parameters in ecological models. It is useful at first to switch from continuous to discrete 

space (patches or compartments) to demonstrate in a simple manner how to make the 

extension. The discrete space model can then be used to simulate planned empirical 

experiments. 



9 
 

 
 

The first objective of this research is to determine if the mathematical result of 

Lou has relevance to empirical systems. This is, will a diffusing population in an 

environment with spatially varying resources reach a higher total equilibrium biomass 

than the population in an environment with the same total resources distributed 

homogeneously with diffusion?  The second objective is to test the mathematical result 

that in a heterogeneous environment a hump-shaped pattern appears when the 

equilibrium biomass is plotted as a function of the rate of diffusion.  

2. Methods

2.1 Discrete patch model

The discrete patch model analogous to (1.4) uses logistic growth equations in which 

carrying capacities can be specified for a one-dimensional series of compartments linked 

through population diffusion. Consider n compartments, which have biomasses 

represented by the variables X1, X2,  …, Xn (for example, grams dry weight biomass). 

Relevant equations for continuous diffusion among compartments are the following, in 

which there are fluxes between the two patches on either end as well (i.e., wraparound 

conditions);

11 2
1

2
1)/1( iiiiiii

i DXDXDXXKXr
dt

dX
(i = 1, …, n) (2.1)

where it is understood that i-1 = n when i = 1 and i+1 = 1 when i = n.

The system is described by the parameters, ri, Ki, and D. Here, ri (for example, day-1) 

is the maximum growth rate in patch i, while Ki (for example, grams dry weight biomass) 

is the carrying capacity for patch i, with ri(1 – Xi/Ki) being the actual growth rate at any 

time. The parameter D (day-1) is the diffusion coefficient. 
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Because of  the use of two parameters, r and K, rather than the single parameter, g,

the model 2. 1 differs from the mathematical model (1.1), but is more flexible in 

describing population growth.  When ri andKi, take on independent values for each 

compartment i, it can be shown that there is no guarantee that diffusion in an 

heterogeneous environment leads to greater equilibrium biomass than in the absence of 

diffusion. Specifically, it can be shown that the inequality 

ni
ii

i

i KX
K
r

,1
0 (2.2)

holds for this system (see Appendix 1), but this does not necessarily imply that 

ni
ii KX

,1
0 (2.3)

i.e., that total biomass is greater in a heterogeneous system with diffusion than 

without diffusion (analogous to 1.3).  However, a criterion for (2.3) can be found (see 

Appendix 2); that is, the inequality

0))((
,1 1

11

ni ii

iiii

rr
KKrr (2.4)

guarantees that 

ni
itotal XX

,1

increases as D increases from zero for small values of D, so that (2.3) holds at least 

for small values of D. A sufficient condition for criterion (2.4) to be satisfied is that ri and

Ki both be increasing or both be decreasing together. We have used simulations to 

exhaustively test this result. A criterion parallel to (2.4) can be found for the spatially 

continuous form with r(s) and K(s); that is, for
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sX
sK
sXsr

s
XD

t
X . (2.5)

The criterion for )(sXXtotal to increase for small increases in D from zero is now,

01
rss

K
. (2.6)

The proof is outlined in Appendix 3. Both (2.4) and (2.6) are new mathematical 

results.

2.2 Discrete patch, discrete time model simulations

System (2.1), as written, represents a continuous-in-time but discrete-in-space 

diffusion.  It was impractical to design an experiment in which diffusion occurred 

continuously in time. Instead, an artificial experiment was designed, in which diffusion 

was simulated by manual transfer of floating aquatic plants between containers (patches) 

with different nutrient levels. To represent this in a model, equations (2.1) were 

discretized in time and the number of compartments was set to n = 5.  In the time-

discretized version designed to represent the experiment, growth was assumed to occur 

according to the logistic equation over equal time periods (equation 2.7a), and then 

amounts of biomass were transferred among compartments at regular time intervals:

iiii
i XKXr

dt
dX )/1( )( )(1)( jj ttt (2.7a)

)(
2
1)(

2
1)1)(()( )(1)(1)()( jijijiji tMXtMXMtXtX for jtt (2.7b)

where compartment number i + 1 = 1 when i = 5 and i - 1 = 5 when i = 1,  and 

where tj(-) means the value before biomass transfer (diffusion) and tj(+)  means the value 

after transfer. The new parameter M represents the fraction moved between 
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compartments at discrete time intervals (every four days in the experiment), rather than a 

continuous rate of diffusion. Because it was not possible to control ri andKi independently 

in the experiment through different nutrient concentrations, the mathematical results 

above imply that success of the experiment in showing higher biomass at non-zero 

diffusion rates depend on ri andKi being positively correlated.

Simulations were performed to help design and interpret an experiment. 

2.3 Experiment

The objective of the experiment was to determine whether there is a non-zero 

diffusion rate that maximizes total vegetation biomass in a region in which resources are 

distributed heterogeneously, and to estimate that diffusion rate and the maximum 

vegetation biomass. We used duckweed (Lemna minor Linn) in our experiment. 

Duckweed is an aquatic plant that floats on or just beneath the surface of still or slow-

moving bodies of fresh water and wetlands. These plants are simple, lacking an obvious 

stem or leaves. Duckweed was convenient to use, because it is easy to maintain in 

laboratory containers, as well as to manipulate to simulate a specific type of movement, 

namely density-independent diffusion in this case. This was done through transfers 

between a row of five compartments (containers in which duckweed was grown) with 

different nutrient levels (Figure 2.1 shows a schematic of the experimental arrangement). 

Biomass could also easily be measured through time.  

3. Results

3.1 Simulation model

A comparison of simulations of total biomass through time in the homogeneous and 

heterogeneous five-compartment systems, with diffusion in both cases, is shown in 
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Figure 2.2. Note that the solid wavy line in the heterogeneous system results from the 

biomass transfers every four days. The parameter values, ri and Ki, were chosen to best fit 

the experiment.  Higher overall biomass is clearly in the heterogeneous system with M =

0.20.  However, in the absence of diffusion, the final total biomasses in the homogeneous 

and heterogeneous treatments were precisely the same (dashed line in Figure 2.2).               

In order to compare the total biomasses resulting in a heterogeneous distribution of 

resources for different diffusion rates, a sequence of values of transfer from M = 0 to 0.25 

was used. Because we did not know a priori the growth rates, ri, and carrying capacities, 

Ki, of the individual containers, we examined results for a reasonable range of parameters. 

All simulations showed a peak in total biomass as a function of M, when the values of ri

and Ki obeyed criterion (2.4). The best fit to the total experimental population biomass 

(see below) as a function of diffusion rate, M, is shown in Figure 2.3 (values of ri and Ki

are in the caption), with a peak in total biomass at about M = Mmax = 0.07. In addition, 

the biomass of each of the containers is plotted as a function of M (Figure 2.4).  It is clear 

that the biomasses of the five compartments converge as a function of increasing M, as 

predicted from theory.

Sensitivity analysis of model simulation

The plots shown in Figures 3 and 4 represent parameter sets that best fit the 

experimental data below. These parameters showed a somewhat more non-linear gradient 

of values then we expected based on the nutrients added; i.e. the best set of values was r1

= 0.0068, r2 = 0.0204, r3 = 0.0476, r4 = 0.0680, r5 = 0.1700 day-1, K1= 0.2, K2 = 0.6, K3 =

1.4, K4= 2.0, K5= 5.0 g dW.  Note that we are assuming ri /Ki = constant.
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We explored the sensitivity of the simulation results to the mean values of the ris

(solid lines) and Kis (dotted lines), as well as to the mean gradients, S, of resources across 

the patches represented by the sets the ris and Kis.  Each of these was changed by +,- 10% 

and +,- 20% and the sensitivity to these of the peak biomass, the diffusion coefficient at 

which the peak in total biomass occurs, Mmax , and the sharpness of the peak (ratio of 

peak biomass to biomass in the absence of diffusion) was calculated. In the case of the 

gradient, S, sensitivity to a +/- 10% change was created by, respectively increasing or 

decreasing r1 and K1 by 10%, r2 and K2 by 5%, and respectively decreasing or increasing 

r5 and K5 by 10% and r4 and K4 by 5%.  It can be seen that all three, r, K, and S, have a 

positive effect on maximum total biomass (Figure 2.5a).  Parameters Ki and S have a 

positive effect on Mmax, but ri has a negative effect (Figure 2.5b). Parameters Ki and S

have a positive effect on sharpness of the peak, but ri has no effect (Figure 2.5c).  More 

generally, through exhaustive simulations, we confirmed that satisfaction of criterion (2.4) 

guarantees that (2.3) is true, at least for small values of diffusion.  The condition that 

whenever Ki > Ki-1, it is also true that ri > r i-1, and vice versa is sufficient to guarantee 

that (2.4) holds, but is not a necessary condition. 

3.2 Experiment

The central goal of the experiment was to determine which diffusion rate may lead to 

the peak biomass in the heterogeneous system. We found a significantly higher biomass 

in heterogeneous system than homogeneous system with 20% diffusion (Figure 2.6). We 

conducted further experiments to measure the total dry biomass with 0%, 6% and 10% 

diffusion rates. Although experiments 1 and 2 were carried out 20 days apart, biomass for 

the heterogeneous resource distribution and 0% diffusion did not differ between the two 
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experiments (p = 0.194). Thus we assumed that we could compare the total biomasses 

with four different diffusion rates, (M = 0%, 6%, 10% and 20%), under the heterogeneous 

conditions described in the Methods section. Therefore, we had a total of 4 treatments (0, 

6, 10 and 20% diffusion rates) with 0% diffusion rate having 6 replicates and other 

treatment having 3 replicates. The diffusion rate significantly affected biomass, with non-

zero values of the diffusion rate having significantly higher biomass than 0% diffusion.

The highest biomass occurred at M = 6% (Figure 2.7), which is close to the peak of the 

simulation results (Figure 2.4a) which are also plotted in Figure 2.7.

4. Discussion

We set out to experimentally test the mathematical result of Lou of how a single 

plant population responds to spatial heterogeneity and dispersal through diffusion. We 

first extended Lou’s results to a logistic growth model and to a discretized model. For the 

experimental test, we planted duckweed (Lemna minor Linn) in situations of both 

heterogeneously and homogeneously distributed resource. We manually controlled rates 

of diffusion; i.e., the percentage of duckweed transferred from each water container to 

adjacent ones. Based on this experimental design, a simulation model was developed to 

determine the range of results expected from the laboratory experiment.  

The experiment, in which the diffusion was applied artificially every four days at 

levels of 6% and 10%, in addition to a 0% control, confirmed that a moderate level of 

diffusion increased total biomass above the level of the non-diffusing population in a 

heterogeneous environment. In particular, 6% diffusion produced a total biomass that 

appears to be close to a peak value. In the heterogeneous system, without diffusion, the 

biomass growth will follow the resource distribution, the total biomass increases to total 
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carrying capacity. But with a moderate level of diffusion, the biomass exported from the 

higher productivity region results in larger increases in standing stock biomass in lower 

resource areas than the decreases in biomass in higher resource areas. This can increase 

the total biomass level of the whole system to be greater than total carrying capacity.  

However, as diffusion is increased to high levels, biomass becomes homogeneous over 

the whole region and the total biomass again becomes equal to the total carrying capacity. 

Modeling studies of this phenomenon are rare.  But a somewhat analogous result to 

biomass maximization at intermediate diffusion rates was obtained by Pulliam and 

Danielson (Pulliam and Danielson 1991). They simulated different relative amounts of 

high- and poor-quality habitat, in which population movement from high- to low-quality 

habitat was more likely the lower the ratio of the former to the latter.  However, in this 

study the trend of total population biomass was not monotonically decreasing with lower 

ratio of high-quality to low-quality habitat, and, in fact, there was a peak for an 

intermediate ratio. The reason seems to be related to our finding that intermediate 

diffusion levels maximize total biomass; that is, as long as the population levels in the 

high-quality sites are not too negatively affected by movement into low-quality sites, the 

enhancement of population at the low-quality sites causes the total population to be 

higher.

Our model simulation and experiment relate to an important concept of spatial 

ecology, the occurrence of sources and sinks on landscapes. Sources are areas in which 

surplus population is created (reproduction and growth exceed losses) and sinks are areas 

in which losses exceeds births and growth. This concept has implications for 

conservation ecology, because it is possible that individuals may be attracted to sink areas, 
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where they die or fail to reproduce, threatening the population (Pulliam 2004).  That 

influential paper has been followed by many others, expanding on the idea (Howe and 

Davis 1991; Watkinson and Sutherland 1995; Brawn and Robinson 1996; Diaz 1996; 

Holt 1997; Loreau and DeAngelis 1997; Ritchie 1997; Amezcua and Holyoak 2000; 

Wilson 2001; Amarasekare 2004).  The simple source and sink idea has been replaced by 

a more complex picture in which ‘pseudo-sinks’ are included (Watkinson and Sutherland 

1995). Pseudo-sinks are areas into which net population fluxes may be observed at times. 

However, these areas are actually self-sustaining and the net flux occurs only because 

there are more productive sources nearby from which individuals migrate. Habitat 

patches that vary in quality can cause population dynamics to differ between patches.  

Populations in better quality patches are more productive and should produce more 

emigrants (Donahue et al. 2003).  

Our experiment is relevant to the concept of pseudo-sinks, because none of the 

containers in the experiment was actually a sink. All the individual containers, in 

isolation, could maintain populations, though at different levels. Containers become 

pseudo-sinks in the context of receiving input from more productive containers. The 

model simulation and empirical experiments show how pseudo-sinks may provide a 

positive role in maintaining a population and also imply that, under certain conditions of 

resource heterogeneity, there is higher total vegetation biomass than under homogeneous 

conditions.

The experiments and model suggest that different rates of dispersal among sources 

and pseudo-sinks in nature can affect regional population size and there might be rates of 

diffusion that maximize the size of the total population in a heterogeneous region. 
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However, this would in general be difficult to test in the field, as dynamics of a 

population in nature are affected by a large number of factors that were eliminated in our 

experiment. This is especially true for animal populations, the individuals of which are 

unlikely to move by diffusion (i.e., randomly). They more often move within home 

ranges, with frequent returns to core areas, or show directed movements in response to 

environmental gradients. Nevertheless, dispersal of populations of both plants and

animals over long time scales can often be represented as diffusive (e.g., Kareiva (1983)), 

and, in that case, steady state patterns of biomass density on landscapes may be 

influenced by the interactions of heterogeneity and diffusion. A part of the population 

will diffuse from the most productive areas, and that surplus population can enhance the 

populations of the less productive areas and increase the total population level of the 

whole system.  

Manipulations of simple systems in nature that demonstrate such effects are possible. 

In an experiment described by Keddy (1981, 1982) and Watkinson (1995), densities of 

seeds of the plant Cakile edentula were manipulated along a sand dune gradient. The 

seaward or beach end of the gradient was a source, while the middle and landward sites 

were shown to be net sinks where mortality was higher than reproduction.  Interestingly, 

in a model by Watkinson (1995), the plants were most abundant in the sink sites because 

of the high seed migration from the source. Watkinson’s work suggests that in his system 

diffusion can cause the overall population in a heterogeneous environment to exceed that 

in a homogeneous environment. 

The experiments of Keddy (1981, 1982) and the model of Pulliam and Danielson 

(1991), as well as our experiment and model, simplify the importance of spatial 
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configuration. Our experiment used a very specific one-dimensional spatial configuration 

of containers with a linear gradient of resources, the relative levels of which were at least 

roughly known. In nature, the configurations of sources, sinks, and pseudo-sinks may 

take highly complex forms in two dimensions (Shriver and Vickery 1999; Breininger and 

Carter 2003). In addition, carrying capacities of different natural habitats are difficult to 

estimate, as they depend on many factors that are difficult to measure. It is still possible,

however, that more complex, but still quantifiable experiments in the field, could be 

carried out in the future.

Our experiment involved only biomass of a single population. Spatial 

heterogeneity and diffusion also have implications for species richness. The interaction of 

spatial movement and competition in shaping ecological communities has been the object 

of much study (Chesson 1985; Tilman 1994; Cantrell and Cosner 1998; Latore et al 1999; 

Muko and Iwasa 2000; Amarasekare and Nisbet 2001; Yu et al. 2001; Lutscher et al. 

2007), with spatial heterogeneity playing an important role in the interaction 

(Amarasekare and Nisbet 2001; Snyder and Chesson 2003, 2004). A trade-off between 

competition and dispersal can lead to regional coexistence of competing species 

(Haegeman and Loreau 2014). Also, given enough heterogeneity in the resources over the 

area occupied by the community, many species could, in principle, coexist (Chesson 

1985; Silvertown and Law 1987; Yu et al. 2001). Therefore, spatial heterogeneity is an 

important consideration of species coexistence (Hara 1993). The general relationship 

between richness and ecosystem functioning remains valid in open systems, but the 

maintenance of ecosystem processes significantly depends on the effects of dispersal on 

species richness and local interactions. Without dispersal, experimental systems lack a 
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key process counteracting competitive exclusion (Mattiessen and Hillebrand 2006).

Moderate to intermediate dispersal rates between local communities can weaken local 

competitive exclusion either by a colonization–competition trade-off and/or by source–

sink dynamics when resource availability is spatially distributed.

Our experiment had a number of limitations. Due to the uncertainties in the amount 

of light and nutrient level in each container during the course of the experiment, we can 

only estimate that light was approximately the same for all containers and the nutrient 

levels had a strong gradient across the containers. A larger amount of experimental 

replicates with different levels of heterogeneity and additional diffusion rates would have 

help to better confirm our results. But our experiments fit a model well and give 

reasonable support to our hypothesis that diffusion in a heterogeneous environment can 

increase biomass over an equivalent homogeneous environment or over a heterogeneous 

environment with no diffusion. The model simulation provides a perspective how 

population biomass is regulated by the interacting effects of spatial heterogeneity and 

diffusion in natural system. Our future plan is going to test our results in a natural system, 

and also possibly to test two-species competition for limited resource in heterogeneous 

conditions. 
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Figure 2.1. Model configuration, showing the five containers with gradient in nutrient supply
(in the proportions 0:0.5:1:1.5:2, from compartment 1 to compartment 5) with rates of 
diffusion (M). Half of the biomass removed from each container was transferred to the 
container on the right and half to the container on the left (this included moving plant 
biomass between containers 1 and 5).



22 
 

 
 

Figure 2.2: Simulations of total biomass as a function of time under heterogeneous 
conditions with 20% diffusion (solid curve). Homogeneous conditions with 20% 
diffusion and without diffusion, and heterogeneous condition without diffusion, all those 
three cases followed the same biomass growth (dashed curve). The diffusion, M, for each 
condition was 20% every four days. The result shows that there was a higher total 
biomass in the heterogeneous case. The parameter values for the heterogeneous case are 
r1 = 0.011, r2 = 0.033, r3 = 0.077, r4 = 0.11, r5 = 0.275 day-1, K1= 0.135, K2 = 0.405, K3 =
0.945, K4= 1.35, K5= 3.37 g dW.  The parameter values of the homogeneous case are ri =
0.10 and Ki = 1.242 for i =1, 2,.., 5.
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Figure 2.3. Total biomass versus diffusion rate in model simulations. Other parameters 
were chosen within reasonable ranges to fit the experimental data (see Figure 2.6).  These 
are r1 = 0.0068, r2 = 0.0204, r3 = 0.0476, r4 = 0.0680, r5 = 0.1700 day-1, K1= 0.2, K2 = 0.6, 
K3 = 1.4, K4= 2.0, K5= 5.0 g dW. 
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Figure 2.4. Biomasses of all five compartments and total biomass versus diffusion rate.
Other estimated parameter values are the same as in Figure 2.3.
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Figure 2.5. Sensitivity analysis for (a) maximum total biomass, (b) diffusion coefficient, 
Mmax , at which maximum total biomass occurs, and (c) sharpness of the peak (ratio of height 
at Mmax to height when M = 0). The values are simulated for (+, - 10% and +,- 20%) of all the 
ris (solid line), all the Kis (dotted line) and slope, S,  of the resource gradient across the 
containers, S.
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Figure 2.6. Experimental values of mean and standard deviation of total dry biomass. The 
left bar shows the dry weight of duckweed from the heterogeneous treatment group with 20% 
diffusion rate and the right bar shows the dry weight from homogeneous treatment group 
with 20% diffusion rate. In both treatments total nutrients were the same. Stars above the 
error bars indicate significant differences (P<0.05) between treatments. Each treatment was 
replicated 3 times.
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Figure 2.7. Mean and standard deviation of total dry biomass as functions of diffusion 
coefficient from experiment and model simulation. The dark dots show the total dry weight 
under heterogeneous condition with different diffusion rates (0%, 20%) from first experiment. 
The empty dots show the total dry weight under heterogeneous conditions with different 
diffusion rates (0%, 6%, 10%) from the second experiment. P<0.05 indicates significant 
differences between treatments. The solid line shows results for dry mass as a function of 
diffusion coefficient (from 0% to 25%) from the simulation model.
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Chapter Three

Carrying capacity in a heterogeneous environment with habitat connectivity

Summary

A large body of theory predicts that populations diffusing in heterogeneous environments 

reach higher total size than if non-diffusing, and, paradoxically, higher size than in a 

corresponding homogeneous environment. However, this theory and its assumptions have 

not been rigorously tested. Here we extended previous theory to include exploitable 

resources, proving qualitatively novel results, which we tested experimentally using 

spatially diffusing laboratory populations of yeast. Consistent with previous theory, we 

predicted and experimentally observed that spatial diffusion increased total carrying 

capacity in heterogeneous environments, with the effect size depending on the 

relationship between r and K. However, in a second experiment, in which resources were 

maintained in a dynamic equilibrium by input rather than fixed at a static level 

determined at the outset, we discovered that homogeneously distributed resources support 

higher total carrying capacity than heterogeneously distributed resources, even with 

species diffusion. Our results provide rigorous experimental tests of new and old theory, 

demonstrating how carrying capacity in spatially distributed species depends on the 

interplay between growth parameters, population diffusion and resource dynamics.
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Background 

Carrying capacity, the steady-state upper limit on a population’s size, is a 

fundamentally important quantity in both theoretical and applied ecology. Understanding 

the factors influencing carrying capacity is essential for the rational design of strategies 

for management of threatened or endangered species and control of invasives. In the 

simplest case, namely a species confined to a single point in space, carrying capacity is 

set by the local availability of limiting resource. For example, for a plant population, this 

is typically space, light, or a nutrient. However, most species in nature are spatially 

distributed over a diffuse geographic region with a heterogeneous (non-uniform) 

distribution of resources. This is true, for instance, of species whose habitat has been 

fragmented by human activity. For spatially distributed species, the determinants of 

carrying capacity are much more complex, as they depend on additional factors such as 

the rate of individual movement over space (dispersal or diffusion) and the spatial 

distribution of resources. 

Indeed, mathematical theory predicts that dispersal has a remarkable effect on a 

population’s total carrying capacity (see Supporting Information (SI), Appendix A for 

detailed overview of previous theory). If resources are heterogeneously distributed over 

space, then undirected spatial diffusion of individuals can increase the total size of the 

global population. That is, the upper limit on total equilibrium population size, which we 

will call ‘realized asymptotic population size’, of a spatially distributed population with 

dispersal is mathematically predicted to be greater than the sum of carrying capacities 

over each point in space. This effect was shown by Holt (1985) for a two-patch system 

with a logistic population model, NKNrdtdN )/1(/ . When the r’s and K’s differed 



30 
 

 
 

for the two patches and Kj > Ki and rj/K j > ri/Ki the total population at equilibrium could 

exceed the sum of the carrying capacities of the two patches; that is 21
*
2

*
1 KKNN

in the limit of a very high diffusion rate between the two patches. More general results 

for this two-patch model were derived by Arditi et al. (2016). Lou (2006) extended these 

results beyond a simple two-patch setting by using a reaction-diffusion model, and 

arrived at the same conclusion. DeAngelis et al. (2016) showed that this effect extends to 

weak diffusion, where increasing diffusion rate linearly increases realized asymptotic 

population size. In general, these results show that the realized asymptotic population size 

is not the same as the summed or integrated local carrying capacities, and that in certain 

cases, dispersal increases population size. 

Most puzzling, these mathematical results imply that if the local carrying 

capacities are distributed over space in a heterogeneous manner, the equilibrium 

population of a diffusing population can exceed that attained by the population in a 

homogeneous environment with the same total carrying capacity. This remarkable effect 

has been called a ‘paradox’ by Holt (1985). 

Importantly, these models either implicitly or explicitly assumed a positive 

correlation between the parameters r and K (DeAngelis et al. (2016)). DeAngelis et al. 

(2016) proved, using the Pearl-Verhulst reaction term, that these results require a positive 

relationship between r and K. With a negative r-K correlation, diffusion is 

mathematically predicted to decrease the realized asymptotic population size (DeAngelis 

et al 2016). Thus, realized asymptotic population size depends not only on dispersal rate 

and resource distribution, but also on the physiological capacities of a species linking 

reproductive rate and efficiency. 
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Despite the broad implications of these theoretical predictions, rigorous empirical 

validation is lacking. An experiment with duckweed, in which diffusion between adjacent 

patches of a linear five-patch system with different initial nutrient levels, provides some 

corroboration for the effect of diffusion on total carrying capacity (Zhang et al. 2015). 

However, the r-K relationship was not directly measured, nor was this relationship 

experimentally manipulated to test the theoretical prediction that a positive r-K

correlation is necessary for the predicted effect. Furthermore, precise control of nutrient 

levels, measurement of r and K, small patch number, and low throughput proved to be 

limitations in this work. More generally, testing these mathematical predictions in the 

field or laboratory is complicated by the fact that real populations are usually limited by 

resources that are exploitable and renewed. The classic logistic model used in previous 

theory is phenomenological rather than mechanistic, and its population parameters (e.g., 

K and r) are assumed fixed, such that they are not influenced by feedback from 

exploitation by consumers. In reality, these parameters emerge from the interaction of 

consumers with exploited renewable resources (Tilman 1982). 

Therefore, our objectives here are twofold. First, we analyze a mechanistic 

consumer-resource model to determine analytically whether it produces the same results 

as those described above for the phenomenological logistic model. Second, we test 

theoretical predictions using high throughput experimental methods in spatially diffusing 

laboratory populations of the heterotrophic budding yeast, Saccharomyces cerevesiae,

limited by a single essential nutrient. In these experiments, we manipulate diffusion rate, 

resource distribution, and the r-K correlation. We test three hypotheses suggested by the 

earlier mathematical results with the phenomenological logistic. Hypothesis 1: when a 



32 
 

 
 

consumer exists in a region with a heterogeneously distributed input of exploitable 

limiting resource, the steady state population can reach a greater size when it disperses 

than when it does not. Hypothesis 2: the higher population in a heterogeneous 

environment with diffusion is associated with a positive relationship of growth rate and 

carrying capacity. Hypothesis 3: a consumer population diffusing in a domain with a 

heterogeneously distributed input of exploitable limiting resource can reach a greater 

steady state size than a population diffusing (or not) in a domain with the same total input 

of resources spread homogeneously in the domain. 

Methods

Mathematical model

We first develop a mathematical model describing a diffusing population of 

consumers in an environment with heterogeneously distributed resources that are 

exploited by the consumer and externally renewed. A general pair of equations for a 

consumer-resource system (yeast-tryptophan in our experiments; see Experimental 

Methods) are:
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where u(x,t) is the consumer population size, n(x,t) is the nutrient concentration,,

D is the diffusion rate, rmax is the asymptotic growth rate under infinite resources, k is the 

half-saturation coefficient, defined as the nutrient concentration where r = rmax/2, m(x) is 
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the mortality rate, g(x) is the density-dependent loss rate, Ninput(x) 

For convenience, two special cases of this model were analyzed, which are 

intended to provide plausible quantitative representations of our experimental nutrient-

yeast dynamics:

mi = 0, gi > 0 for all i. mi > 0, gi = 0 for all i

Model 1 assumes that nearly all of the nutrients are taken up by the yeast and that dead 

yeast cells are assumed to accumulate at a rate 2* )( ii Ug . The yeast cells are not physically 

lost, but they stop reproducing, with no recycling of nutrients. Model 2 is a chemostat 

type model. 

We test these models mathematically in the limit that D

population is well mixed on the landscape, and through computer simulations (see below) 

of the model for smaller values of D.

Four situations are assumed: (1) Heterogeneous distribution of nutrient inputs with no 

dispersal of the population, (2) heterogeneous distribution of nutrient inputs with 

dispersal, (3) homogeneous distribution of the same total nutrient inputs with dispersal, 

and (4) homogeneous distribution of the same nutrient inputs with no dispersal. It is 

assumed that when dispersal occurs, it occurs at a fast enough rate that there is perfect 

mixing of the population across the patches. The analysis is performed assuming 

continuous-time dynamics, whereas in the experiment, diffusing events are performed at 

discrete time intervals. 
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Simulations and Discretized Model

We augment our analytical and experimental investigations with simulations. We 

simulate a one-dimensional discrete-space, or “patch”, version of equations (1a,b). These 

simulations are intended to mirror our experimental design (Experimental Methods), in 

which a yeast population is spatially distributed over 12 linearly arrayed subpopulations 

linked by periodic, nearest-neighbor dispersal (Fig. 1). The model, in general form for n

patches, is

11
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where no diffusion is assumed between the two end patches (1 and 12).

Experimental Methods

To test these hypotheses and to validate our spatial consumer-resource model, we 

conducted laboratory experiments in spatially distributed, single strain populations of 

budding yeast, where yeast serve as the consumer and the amino acid tryptophan as the 

renewable resource.
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Yeast Strains

We used an auxtrophic, haploid (mat-a) strain of the budding yeast, 

Saccharomyces cerevisiae (yMM039), provided as a generous gift from M. Mueller and 

A. Murray (Harvard University) (Mueller et al. 2014). Briefly, this strain was constructed 

in a prototrophic W303 background by replacement of the tryptophan biosynthesis 

pathway gene TRP2 with an antibiotic resistance cassette, KANMX. This strain can 

synthesize all amino acids except tryptophan (throughout denoted as “Trp”), and 

therefore it requires growth medium supplemented with Trp for population growth. In all 

experiments, cells were propagated vegetatively (i.e., no sexual reproduction).

Culture Medium

All growth media consisted of 0.74 g/L of Complete Synthetic Medium minus 

Trp (CSM -Trp) (Sunrise Science) and 20 g/L dextrose. This base medium was then 

supplemented with different concentrations of Trp in order to manipulate the supply of 

the limiting resource in the growth media (specific concentrations reported below). In 

order to manipulate growth parameters independently of the resource level, we applied 

varying sublethal doses of the macrolide eukaryotic antibiotic cycloheximide (throughout 

denoted as Cyh) to the growth media. Cyh is a translation inhibitor that interferes with 

translation elongation by binding to the ribosomes, thus retarding r. We reasoned that, for 

a given Trp level, Cyh would slow r but have a smaller relative effect on K, which is set 

by the resource supply. Thus, Cyh would provide a means to experimentally manipulate 

the relationship between r and K.
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Spatially Distributed Populations and Dispersal

A single “population” was composed of a single row of 12 wells 

(“subpopulations”) in a 96-well microtitre plate. Thus, populations were spatially 

distributed over a 1-dimensional domain of 12 subpopulations potentially linked by 

nearest-neighbor diffusion (see Figure.3.1). Importantly, our experiments were designed 

such that consumers (yeast cells) disperse between wells, but nutrients do not. Each 12-

well population had either a heterogeneous or homogeneous distribution of resources. A 

heterogeneous environment was designed by alternating Trp concentrations between 

1.468 mg/L (“low” nutrient level, white circles) and 44.04 mg/L (“high” nutrient level, 

dark blue circles). A homogeneous environment was designed as having a uniform 

amount of Trp of 22.2 mg/L in each of the 12 wells (shown as the bottom row in Fig.1). 

These values provided the same total amount of Trp for the heterogeneous and 

homogeneous conditions. In each of the heterogeneous and homogeneous environments, 

we further had four concentrations of Cyh: 0 nM, 50 nM (“low”), 200 nM (“medium”), 

and 400 nM (“high”). Each treatment was replicated 4 times.

Experiments were initiated from an overnight culture of the strain grown in YPD 

(plus tetracycline and ampicillin to prevent contamination). The saturated culture was 

washed three times with sterile water and resuspended in the appropriate growth medium. 

128 uL/well was transferred into each well of a 96-well plate, and then diluted by a factor 

of 210 using a Biomek FXP liquid handling robot, providing an initial population size of 

~105 cells in all wells. Each plate was incubated unshaken at 30 ºC for 24 hours.
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Every 24 hours the plates were removed from the incubator and subjected to either a 

diffusion or a sham- diffusion protocol. The 96-well plate was shaken on a plate shaker to 

disperse the cell pellet. Using a Biomek FXP liquid handling robot, 3% volume was 

aspirated from each well and then transferred to a new plate (“Plate 2” in Figure.3.1). For 

the diffusion treatment, this volume was dispensed into Plate 2 in the adjacent position to 

the left (e.g., from well A2 in Plate 1 into well A1 in Plate 2; green arrows in Figure.3.1), 

thus generating 3% diffusion to the left. For the non- diffusion treatment, the volume was 

dispensed into Plate 2 at the same position (e.g., from A2 in Plate 1 into A2 in Plate 2), 

such that no diffusion of cells occurred (Figure S4.2 in Supporting Information, 

Appendix 4). This was repeated again, but with the 3% volume dispensed into the 

adjacent position to the right (e.g., from A2 in Plate 1 to A3 in Plate 2; red arrows in 

Figure.3.1) to generate diffusion of cells to the right. Again, for the non- diffusion

treatment the volume was dispensed into Plate 2 in the same position as Plate 1. Then, the 

remaining volume in Plate 1 was dispensed into Plate 2 in the same position (e.g., A2 in 

Plate 1 into A2 in Plate 2; black arrows in Figure.3.1), constituting the non-diffusing 

fraction of the population. Thus, diffusion steps in our protocol did not dilute the 

populations. Note also that we did not implement a wrap-around boundary, such that the 

two perimeter columns of the 96-well plate (columns 1 and 12) only diffused in one 

direction. Wells from these two columns were thus excluded from all analyses to avoid 

edge effects. 

To renew the resource and to ensure that resources do not diffuse with consumer 

cells, we centrifuged Plate 2 at 2400 rpm for five minutes, and “old” medium was 

removed using the liquid handling robot. Fresh medium was then dispensed into each 
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well, and the plate was shaken on a plate shaker to resuspend cells before incubating at 

30 ºC for 24 hours. This procedure was repeated for 9 days, at which point the population 

densities for all treatments had approached an asymptote.

Population density was measured at each time point as the optical density (OD600) 

of the culture in each individual well using a plate reader (Tecan Infinite M200 Pro). At 

each time point, plates were removed from the incubator, shaken on a plate shaker to 

thoroughly disperse the culture in each well, and then the OD600 of each well was 

measured three times, with the average of these three technical replicates used as the 

measurement for each subpopulation (well). 

Statistical Methods

A Treatment effects were estimated using a Mann-Whitney U test in the Non-

parametric platform of JMP10 (SAS Institute, USA). In order to exclude the possibility of 

boundary effects biasing our results, since boundary wells 1 and 12 disperse in only a 

single direction, we further compared the diffusion effect on the total yeast population, in 

which two or three columns on each side were excluded respectively, at each condition, 

with same analysis. To estimate r and K, we used daily measurement of OD600 in each

individual well of our “non- diffusion” treatments from day 1 to day 9, for three Trp 

concentrations (1.468, 22.2 and 44.04 mg/L) at 4 concentrations of the growth inhibitor 

Cyh (0, 50, 200, 400 nM) in all combinations. These r and K values were estimated by 

fitting the data to both the standard logistic growth and Gompertz growth (Paine et al. 

2012) using custom fit in MATLAB R2015a. To describe the measured relationships 

between r and K, we used a linear function (r = a*K+b) to calculate the goodness-to-fit 
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for the r vs. K relationship. The overall goodness-of-fit is based on the coefficient of 

determination (R2).

RESULTS

Mathematical results

The mathematical analysis of equations (2a,b) is presented in Supporting 

Information Appendices 5 and 6, providing total population sizes in the four cases for the 

two models, which are shown in Box 1, Appendix 5.

When evaluated numerically, the Total population,heterogeneous, no diffusion

(TPophetero, no diff) and the Total population,heterogeneous with diffusion (TPophetero, diff), 

shown in Box 1, Appendix 5 mi = 0, 

gi>0), applied to the experimental system in which alternating wells contain nutrient (Trp) 

inputs of Ninput,i = Nlowenutrient = 0.02 (i = 1, 3, 5, 7, 9, 11) and Ninput,i = Nhighnutrient = 0.6 (i =

2, 4, 6, 8, 10, 12), the same proportions as in the experiment. Evaluation of equations 

(B19a) and (B19b) shows TPophetero, diff > TPophetero, no diff when all values of gi are the 

same (for all values of i, gi = 0.001 in Figure 3.5). Assuming next that the values of gi in 

low nutrient wells (glownutrient) can differ from those in high nutrient wells (ghighnutrient), we 

compare TPophetero, no diff and TPophetero, diff over a range of values of glownutrient , with 

ghighnutrient fixed, showing TPophetero, diff > TPophetero, no diff (compare solid and dashed 

curves in Figure 3.5).  This range corresponds to a positive relationship between growth 

rate and carrying capacity. Simulations of equations (2a,b) show these results hold over 

the whole range of values of D.  Similar results hold for Model 1; i.e., TPophetero, diff >

TPophetero, no diff over a range of parameter values (see Appendix 5). Thus the model results 

confirm Hypotheses 1 and 2 that, at steady state, a consumer population, when diffusing 
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in a spatial system with heterogeneously supplied exploitable resource, can exceed the 

total population of the population that is not diffusing when there is a positive 

relationship between growth rate and carrying capacity.  

Next we consider the system in which the same resource inputs are spread 

homogeneously, again using Model 2 as the example. Hypothesis 3 states that higher 

population rate is obtained for the diffusing population in a heterogeneous environment 

than the population resulting from the same total nutrient input being distributed 

homogeneously (that is, Total population, homogeneous, or TPophomo < TPophetero, diff ).  

Actually, there are two expressions for TPophomo, TPophomo, diff and TPophomo, no diff, for D

because these differ from each other. TPophomo, diff is given in equation (B19b), with 

n

i
iinputN

1
, Nmean where Nmean is the mean value averaged over wells. Thus 

TPophomo, diff = TPophetero, diff , so it is given by the solid line in Figure 2.5. However, when 

D is close to zero, it can be proved (Appendix 6) and shown (model simulations) that 

TPophomo, diff > TPophetero, diff for values glownutrient < ghighnutrient , but TPophomo, diff <

TPophetero, diff for glownutrient > ghighnutrient . The former case corresponds to a positive 

relationship between Ninput,i and gi. TPophomo, no diff is given by expression (B19c). For this 

case of a non-diffusing population in a homogeneous environment, it is always true that

TPophomo, no diff > TPophetero, diff (dotted line in Figure 3.5).  Therefore, Hypothesis 3 does 

not hold in for a population that in non-diffusing in the homogeneous environment and 

only holds for the diffusing case when Ninput,i and gi are negatively related.
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Experimental Results

Figure.3.3 shows the final (nine day) total yeast concentrations (OD600) for the 

diffusion experiments in the heterogeneous environment.  For the lowest concentrations 

of Cyh (0 nM and 50 nM) the final total population with diffusion (D) significantly 

exceeded that without diffusion (ND) (Figure.3.3a,b) (0 nM Cyh: P = 0.0209; 50 nM Cyh: 

P = 0.0209). For the highest two levels of Cyh (200 nM and 400 nM) no difference was 

observed. The daily amounts over the nine days are shown in Figure S4.3a, b, c, d in the 

Supporting Information, Appendix 4.

The insets in Figure.3.3 show the averages at day nine for the five lowest nutrient 

wells (filled triangles) and five highest nutrient wells (unfilled triangles) for both the 

diffusion and non- diffusion treatments. In the 0 nM and 50 nM cases there was no 

difference between the averages of the final subpopulation in high nutrient conditions 

(Trp level: 44.04 mg/L), but the averages of the final subpopulation in low nutrient 

conditions (Trp level: 1.468 mg/L) were higher with diffusion than without diffusion 

(filled triangle in Figure.3.3a). In contrast, in the high Cyh concentration treatments (200 

and 400 nM), there was a weakened impact of diffusion on achieving a larger total 

population in heterogeneous environment than in homogeneous environment, resulting in 

no difference in total yeast population between diffusion and non- diffusion 

(Figure.3.3c,d) (200 nM Cyh: P = 0.3865; 400 nM Cyh: P = 0.0833). We hypothesize that 

the decreased impact of diffusion is due to the fact that Cyh inhibits yeast growth, which 

weakens the positive relationship between growth rate and carrying capacity and 

theoretically should diminish the difference between total population for diffusion and 

non- diffusion (see Mathematical Results). However, we found a slightly higher average 
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final subpopulation size in the high nutrient condition without diffusion than with 

diffusion.

We found a significant positive relationship between r and K through fitting a 

logistic growth to the non-dispersal data, with three different levels of Trp and four 

different levels of cycloheximide (Cyh) (Figure.3.4). We suspect that this positive 

relationship is mediated by the joint effect of the limiting resource on these two growth 

parameters. Specifically, lower concentrations of limiting resource (Trp) lead to both 

lower yield (low K) due to the lower overall abundance of growth-supporting nutrient, 

and to lower encounter rates between nutrient molecules and cells, which will cause 

slower growth (low r). Given the same Trp concentration, when Cyh was added, the K

and r both decreased. This indicated that the addition of this toxic stressor not only 

reduced r, as expected from its mode of action (i.e., translation inhibition), but also 

reduced K, though to a lesser relative degree than it reduced r. The molecular and 

physiological mechanisms by which a translation-inhibitor can reduce yield are unclear, 

and suggest a deeper biological effect on the r and K relationship than resource-

mediation alone. We found that the r and K relationship was more positive with 0 and 50 

nM Cyh treatments than with 200 and 400 nM Cyh treatments (0 nM: r = 1.765 *K-

0.7568, R2 = 0.992; 50 nM: r = 1.634*K- 0.6875, R2 = 0.985; 200 nM: r = 0.9941*K-

0.3437, R2 = 0.955 and 400 nM: r = 0.5882*K +0.04734, R2 = 0.738) (Figure.3.4a, b, c, 

d). Similar results were found based on Gompertz growth fitting.

Compared to heterogeneous case, there was no statistically significant difference 

of the final total population size with diffusion and without diffusion in homogeneous 

condition. This was consistent among all four Cyh levels (Figure.3.5a, b, c, d) (0 nM Cyh:
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P = 0.0833; 50 nM Cyh: P = 0.0433; 200 nM Cyh:, P = 0.5637; 400 nM Cyh: P = 0.7728). 

Considering the average final subpopulation size in medium Trp level (22.2 mg/L), no 

difference was observed between diffusion and non-diffusion (filled triangles in 

Figure.3.5a, b, c, d). The average total yeast population (OD600) with (filled triangles) 

and without diffusion (unfilled triangles), under four Cyh concentrations at each day is 

shown in Figure S4.4 in the Supporting Information, Appendix 4. Also, we found that the 

total population size in all four levels of Cyh for no diffusion (Figure.3. 5a,b,c,d) 

exceeded the cases of heterogeneity with diffusion (Figure.3.3a,b,c,d).

Discussion

Both the experiments with yeast diffusing in a heterogeneous environment of 

exploitable resources (Figure 3.3) and the mathematical analysis (Appendices 5 and 6)

confirm our Hypotheses 1 and 2 that, at steady state, a consumer population, when 

diffusing in a spatial system with heterogeneously supplied nutrient, can exceed the total 

size of a population that is not diffusing, when growth rate and carrying capacity are 

positively related. Both of the experiments (compare Figure 3.4 and Figure 3.3) and the 

mathematical analysis (Appendix 5) reject our third hypothesis, that higher population 

size is obtained for the diffusing population in a heterogeneous environment than the 

population resulting when the same total nutrient input is distributed homogeneously. 

This result would seem to contrast with the results of Holt (1985), Lou (2006) and 

DeAngelis et al. (2016), who show that diffusion allows the population in a 

heterogeneous system to exceed that attained in the system with homogeneously 

distributed local carrying capacity. However, those earlier results were derived with 

models in which the carrying capacities varied with spatial location yet were fixed in that 
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the population did not have a feedback effect on those values. Sometimes that assumption 

is justified, as in some cases space alone may be the main limiting factor, as for some 

intertidal populations (Paine 1966). But in many cases, some exploitable resource is 

limiting, so the feedback of the population on that resource must be taken into account.

The mathematical results were entirely consistent with our microbial experimental 

study. The empirical results showed a consistent and significantly higher (up to 10%) 

total yeast population with diffusion than without diffusion in the heterogeneous case;

that is, the total population with diffusion exceeded the summation over the local 

observed carrying capacities. This suggests that if the resource inputs are heterogeneous 

by nature, creating heterogeneous carrying capacities, diffusion may be more 

advantageous for the population rather than not diffusion. As far as we aware, this is the 

first rigorous experimental support that the r vs. K relationships determined whether a 

diffusing population could exceed in size the sum of the local carrying capacities.

However, consistent with the mathematical models, when the same total resource 

inputs were distributed homogeneously, the total population size supported exceeded that 

of a diffusing population in an environment in which the same total resource was 

distributed heterogeneously. Therefore, spreading exploitable resource inputs 

homogeneously in space, if possible, is advantageous.

Our results also confirmed the hypothesis that there was a positive and convex 

relationship between carrying capacity and per capita growth rate, which was mediated 

by the joint effect of the limiting resource. Furthermore, the r vs. K relationship was 

manipulated by adding an external growth inhibitor, so that r vs. K relationship was 

transformed to be less convex with higher concentration of the stressor cycloheximide. 
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Importantly, we found that the difference in the total population size between diffusion

and non- diffusion in heterogeneous environments was larger when r vs. K relationship 

was more convex. The growth inhibitor, by reducing the convexity of the r vs. K

relationship, reduced the positive effects of diffusion on population size in the 

heterogeneous environment

The combination of mathematics and experiments reveal that some of the effects 

of diffusion in a heterogeneous environment differ when the heterogeneity is considered 

in terms of local resource inputs rather than in terms of local carrying capacities and 

growth rates. These two quantities are fundamental to ecological theory.  Therefore, this 

study provides a new perspective, both experimentally and theoretically, for re-thinking 

about carrying capacity in heterogeneous environment, which has a crucial role on 

assessing and managing wildlife (e.g., Vasconcellos and Gasalla 2001, Goss-Custard et al. 

2003, Hayward et al. 2007). Our findings demonstrate that the interaction of spatial 

heterogeneity and population dispersion complicates the notion of carrying capacity, 

which is especially important, as heterogeneous landscapes are becoming more common 

nowadays, due to landscape fragmentation and human activities (Pimm and Raven 2000; 

Pimm et al. 2006, Aviron et al. 2005; Clevenger and Waltho 2005, Denslow 1985). 

Therefore, such environmental heterogeneity could provide different qualities of habitats 

(Cosson et al. 1999; Dias 1996) and lead to different local population growth rates and 

carrying capacities (Basin and Thomas, 1999; Koivula and Vermeulen, 2005; Cutway 

and Ehrenfeld 2009; Herbener et al. 2012; Lemke and Salguero-Go´mez 2016). Our 

results also suggest that environmental stressor (as the function of cycloheximide in this 

study), such as drought, high salinity/temperature on plant (Bond-Lamberty et al. 2013; 
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Van Ha et al. 2013); high CO2 on most calcifying organisms (Dineshram et al. 2012); and 

higher copper levels on Daphnia  (Sommer et al. 2016), which usually adversely affect 

population growth, should also be considered as factors in the effective carrying capacity 

of a landscape. As a result, carrying capacity is a more complicated concept and many 

other factors should be involved in giving rise to an apparent carrying capacity in future 

studies, such as organism size (Brown et al. 2004), foraging costs (van Gils et al. 2004), 

and human management practices (Oesterheld et al. 2002). 
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Figure 3.1. Schematic of experimental diffusion protocol. Represented is a single 
spatially distributed “population” composed of one row of 12 wells in a 96-well 
microtitre plate. Each circle is a single well. Color of a well represents nutrient (Trp) 
concentration. Alternating white/blue wells represents the heterogeneous environment 
treatment, while the population on the bottom of figure with all light blue wells 
represents the homogenous nutrient treatment. The initial yeast population had 24 hours 
growth at 30 oC, followed by a diffusion event from the original plate (plate 1) to a new 
empty plate (plate 2), in which 3% volume in each well was transferred to the well on the 
left in plate 2 (green arrows) and another 3% to the right well of plate 2 (red arrows). The 
remaining volume was transferred to the same well in plate 2 (black arrows). After the 
diffusion and transfer, plate 2 was centrifuged to create a yeast pellet at the bottom in 
each well, old media was removed and fresh media was added. The yeast population 
underwent another 24 hours growth, and the previous processes were repeated, up until 
Day 9. Non-diffusion treatments underwent a sham- diffusion protocol identical to the 
above, but instead of a well diffusing into adjacent wells on the left and right, it “diffused” 
into a single well so that no spatial diffusion of cells occurred.
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Figure 3.2. Total population, heterogeneous, no diffusion (TPophetero, no diff , dashed curve), 
Total population, heterogeneous with diffusion (TPophetero, diff, solid curve), and Total 
population, homogeneous no diffusion (TPophomo no diff, dotted curve) as functions of the gi
value for the low nutrient input wells, glownutrient, (odd-numbered wells) for fixed value of 
the gi = 0.001 for the high nutrient input wells, ghighnutrient (even-numbered wells), for 
D TPophomo diff is the same as TPophetero,diff (solid curve) for D
small D (see text). For simplicity, the other parameters have been set to r = 0.1, k = 0.1, 
and = 0.01.  The heterogeneous distribution is; iinputN , = (0.02, 0.6, 0.02, 0.6, 0.02, 0.6, 
0.02, 0.6, 0.02, 0.6, 0.02, 0.6), and the homogeneous distribution is; iinputN , (0.31, 0.31, 
0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.31).
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Figure 3.3. The final total yeast population (OD600) with four replicates with diffusion 
(D) and without diffusion (ND), at four levels of Cyh in the heterogeneous scenario:  a. 0 
nM, b. 50 nM, c. 200 nM, d. 400 nM. The diffusion rate is 0.06. Insets a, b, c, d: show the 
average final subpopulation in the low nutrient condition; that is, averaged over the five 
wells with lowest nutrients (1.468 mg/L of Trp) (filled triangle) and in the high nutrient 
condition; that is, averaged over the five wells with highest nutrient levels (44.04 mg/L of 
Trp) (unfilled triangle), with diffusion (D) and without diffusion (ND), with four levels of 
Cyh in the heterogeneous scenario (0 nM, 50 nM, 200 nM and 400 nM). Asterisks above 
the dots in a and b represented there was significantly higher final total yeast population 
with diffusion than without diffusion (P < 0.05). Cyh: cycloheximide, Trp: tryptophan. 
OD 600: optical density.
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Figure 3.4. The relationship between per capita growth rates (r) and carrying capacity 
(K), estimated based on logistic growth. (a), (b), (c) and (d): The r and K were calculated 
from non-dispersal growth curve data at the three Trp concentrations used in the non-
dispersal experiment (1.468, 22.2 mg/L and 44.04 mg/L) with four Cyh concentrations 
(results of the latter two concentrations converged). The solid lines represent the fitted 
line of the data points, using linear function (r = a*K), to calculate the goodness-to-fit for 
the r and K relationship.
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Figure 3.5. The final total yeast population (OD600) with four replications with diffusion
(D) and without diffusion (ND), at four levels of Cyh in the homogeneous scenario:  a. 0 
nM, b. 50 nM, c. 200 nM, d. 400 nM. The diffusion rate is 0.06 per day. Insets a, b, c and 
d: the average final subpopulation in medium nutrient well (22.2 mg/L oft rp) (filled 
triangle), with diffusion (D) and without diffusion (ND), at four levels of Cyh in the 
heterogeneous scenario (0 nM, 50 nM, 200 nM and 400 nM). Cyh: cycloheximide, Trp: 
tryptophan. OD 600: optical density.
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Chapter Four

Modeling the long-term effects of introduced herbivores on the spread of an invasive
tree
Summary

Context: Melaleuca quinquenervia (Cav.) Blake (hereafter melaleuca) is an invasive tree 

from Australia that has spread over the freshwater ecosystems of southern Florida, 

displacing native vegetation, thus threatening native biodiversity. Suppression of 

melaleuca appears to be progressing through the introduction of insect species, the weevil, 

Oxiops vitiosa, and the psyllid, Boreioglycaspis melaleucae.

Objective: To improve understanding of the possible effects of herbivory on the 

landscape dynamics of melaleuca in native southern Florida plant communities. 

Methods: We projected likely future changes in plant communities using the individual 

based modeling platform, JABOWA-II, by simulating successional processes occurring 

in two types of southern Florida habitat, cypress swamp and bay swamp, occupied by 

native species and melaleuca, with the impact of insect herbivores. 

Results: Computer simulations show melaleuca invasion leads to decreases in density and 

basal area of native species, but herbivory would effectively control melaleuca to low 

levels, resulting in a recovery of native species. When herbivory was modeled on pure 

melaleuca stands, it was more effective in stands with initially larger-sized melaleuca. 

Although the simulated herbivory did not eliminate melaleuca, it decreased its presence 

dramatically in all cases, supporting the long-term effectiveness of herbivory in

controlling melaleuca invasion.
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Conclusions: The results provide three conclusions relevant to management: (1) The 

introduction of insect herbivory that has been applied to melaleuca appears sufficient to 

suppress melaleuca over the long term, (2) dominant native species may recover in about 

50 years, and (3) regrowth of native species will further suppress melaleuca through 

competition.

Background

Melaleuca quinquenervia (Cav.) Blake (common names: melaleuca, paper bark, punk 

tree; Family, Myrtaceae, referred to as melaleuca thereafter) is a large (25-30m tall) 

native Australian tree introduced into the Florida landscape during the late 19th century 

for pulp production and ornamental purposes (Dray 2003). It has strong invasive 

attributes, such as ecological fire adaptation and high reproductive potential. A single 10-

m tall open-grown tree can store over 20 million seeds in its capsules at any given time 

(Myers 1983). By the end of the 1900s melaleuca had spread over 200,000 ha of 

ecologically sensitive freshwater ecosystems of southern Florida (Dray et al. 2006) 

displacing native vegetation such as slash pine (Pinus elliottii Engelm.) and pond cypress 

(Taxodium ascendens Brong.), threatening native biodiversity (Serbesoff-King 2003; 

Martin et al. 2009, 2011). Melaleuca invasion has caused adverse economic and 

environmental impacts to southern Florida (Center et al. 2007), with the loss valued, 16 

years ago, at nearly $30 million per year (Center et al. 2000).

The difficult work of making predictions of the establishment and spread of invading 

species such as melaleuca has important ecological and economic implications (e.g., 

Williamson 1999; Rai 2015a,b; Elliott-Graves 2016).  Modeling has been applied to 

make predictions of future spread in many cases, including both niche modeling (e.g., 
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Bradley et al. 2010) and mechanistic models (e.g., Higgins and Richardson 1996). 

Various control methods have been applied, including the use of biocontrol agents that 

are natural enemies of the pest species. Because use of both biocontrol and other methods 

of control are costly, prediction of the efficacy of control is needed. The long-term 

success of biocontrol is still uncertain, so modeling has been used in a number of cases of 

invasive species, including plant species (e.g. Maines et al. 2013; Krug et al. 2015) 

Our objective is to apply modeling to melaleuca, for which biocontrol has been attempted.

A program to suppress melaleuca, begun in 1997 with insect herbivore agents, including 

the melaleuca weevil Oxyops vitiosa Pascoe and the psyllid Boreioglycaspis melaleucae 

Moore (Myers and Bazerly 2003; Tipping et al. 2008, 2009; Center et al. 2012), appears 

to be highly successful. The introduced biological control agent O. vitiosa feeds 

exclusively on the foliar biomass while the sap-sucking psyllid feeds on foliage and 

stems (Pratt et al. 2005). The combined effects of these herbivores cause losses of leaves, 

forcing melaleuca to switch resource allocation from seed production to production of 

new, often unseasonal growth (Tipping et al. 2008). Field studies (Tipping et al. 2009) 

show that melaleuca weevils attack new lead tissue preferentially and relentlessly, 

thereby contributing to continuous defoliation and re-foliation cycles. Because complete 

recovery of leaf tissue is rare, the usual temporary reallocation of plant assimilates to leaf 

production may become permanent under this sustained herbivory. As a result, formerly 

pure stands of melaleuca are being re-colonized by native species (Tipping et al. 2012).   

Through applications of insect herbivore agents, combined with mechanical removal and 

chemical treatments, melaleuca is now being removed from most public lands (Center et 

al. 2012). However, the extent to which melaleuca can be controlled to low levels 
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primarily through biocontrol is important to estimate, because of the costs of mechanical 

and chemical methods.  Also, what the long-term recovery of native plant communities 

will be as melaleuca is gradually suppressed remains unknown. To investigate such 

possibilities, we used a modeling approach, made possible because a substantial amount 

of information is available on the melaleuca and stand dynamics for the period prior to 

the release of insect herbivores (Meskimen 1962; Myers 1983; Greenway 1994; Kaufman 

and Smouse 2001; Rayachhetry et al. 1998, 2001; Van et al. 2000; 2002; Serbesoff-King 

2003). More recently, additional information has become available on the negative 

impact on melaleuca due to chronic damage inflicted by the insect agents (Pratt et al. 

2005; Rayamajhi et al. 2007; Tipping et al. 2008, 2009; Martin et al. 2010). Information 

from these published data is sufficient to parameterize a well-known individual-based 

forest modeling platform, JABOWA-II (Botkin et al. 1972; Botkin 1993; Ngugi and 

Botkin 2011). 

In JABOWA-II, establishment, growth and mortality of individual trees on small patches 

of land are simulated as functions of biotic factors (competition for available light) and 

abiotic factors (climate and soils) (Bugmann 2001). JABOWA-II and similar modeling 

platforms link environmental parameters to demographics and growth (Acevedo et al. 

1996), and have provided successful simulations of forest succession in hundreds of cases 

around the world (Pausas et al. 1997). Given the compatibility of the data needed for 

JABOWA-II with the information available on melaleuca, JABOWA-II is well 

positioned to provide both understanding and forecasts on the dynamics of melaleuca-

invaded forest stands in Florida. Below we describe the model and apply it to two types 
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of swamps that have been invaded by melaleuca, to project the long-term effects of 

continued control through herbivory.

Methods

Here we use the ODD (Overview, Design Concepts, and Details) approach of Grimm et 

al. (2006, 2010) to describe the individual-based JABOWA-II model (Botkin 1993).

After that, we describe the scenarios and data analysis.

Description of JABOWA-II model

1. Purpose of the model  

The purpose of using JABOWA-II in this study is to 1) simulate scenarios for two habitat 

types, Florida cypress swamp and bay swamp, including native species that are affected 

by melaleuca invasion, without and with the application of insect herbivory, 2) simulate 

scenarios of pure melaleuca stands (no native species are included) following the 

introduction of insect herbivory, and 3) project extended future changes that might occur 

over successional time scales in the scenarios of cypress and bay swamp. 

2. Entities, state variables and scales

The entities of the model are individual trees. Besides melaleuca, these are slash pine 

(Pinus elliotti), pond cypress (Taxodium ascendens), dahoon holly (Ilex cassine L.), 

sweet bay (Magnolia virginiana L.) and loblolly bay (Gordonia lasianthus L.). Insect 

herbivores were not simulated explicitly; a constant effect level of herbivory on each 

melaleuca tree was assumed, by decreasing the melaleuca reproduction rate by 49% and 
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the growth rate by 83% based on empirical measurement in Tipping et al. (2008), which 

represented the maximum levels. 

There are two types of variables. First there are the characteristics of the environment, 

which are the site variables.  In this case, the light environment at different heights above

ground is the main environmental state variable. Each tree is assumed to be able to affect 

the light environment of every other tree in the plot, through shading, depending on a 

combination of the relative heights of the trees and individual tree species’ leaf area index. 

Hence, the only resource for which there is competition in JABOWA-II is light. The 

belowground resources, such as water and nutrients, are specified for a site. These affect 

plant growth but are not assumed to be affected by feedback from the tree communities, 

and are summarized in the fi(environment) factor of the growth equation (see Growth 

submodel below).

The second set of variables, the state variables, consists of the characteristics of the trees; 

in JABOWA-II, the diameter at breast height (DBH) is the key state variable. All other 

variables, such as height, vertical leaf profile, etc., are deduced from stem diameter via 

allometric relationships.

3. Processes

JABOWA-II simulates plant succession on yearly time steps for up to 600 years in a 0.01 

hectare plot, using the life history characteristics (see Table 1 for the characteristics in the 

model) and environmental preferences of several woody plants and a set of 

environmental conditions. Each tree is simulated individually from the sapling stage. 

JABOWA-II includes the following basic features: establishment, growth, and mortality. 
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Establishment: A maximum limit on the possible number of new saplings that can be 

established is determined for each year. The actual number is modified by site conditions, 

including the light environment, and depends also on the degree of shade tolerance of the 

species. For less tolerant species the number of saplings would be limited, depending on

light available. Within those limits, a uniformly distributed random number is used to 

determine the actual number of saplings established in a given year. 

Growth: Diameter growth, D, is modeled as a deterministic process on an annual time 

step, based on a consideration of the maximum possible growth rate (G) at a given size 

under optimal conditions. D is reduced according to the canopy volume (leaf area index) 

and stand volume (as woody biomass) (Smith and Urban 1988), which affect available 

light, as well as by environmental factors. Growth is described further under Growth 

submodel. 

Mortality: Tree mortality is modeled as a stochastic process and is assumed to consist of 

two components: (1) a background mortality that allows on average only 2% of the trees 

to survive to maximum tree age (a model parameter) where annual mortality probability 

is constant across tree life, and (2) a stress-related mortality that acts when diameter 

increment is less than 0.01 cm for any given year and species. For stress-related mortality, 

a tree has a 1% chance of surviving 10 stress years; as soon as there is no stress, the 

stress-related mortality ceases to be effective.  Hence, it is assumed that there are no lags 

between the occurrence of stress and the associated mortality, and that stress tolerance is 

not species-specific. 
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Design Concepts 

Emergence:  The dynamics of tree species composition and size distribution are 

computed in each simulation scenario, and are emergent phenomena of the competition 

for light.

Adaptations:  The tree species  have different adaptations to shading (S), nitrogen 

availability (N) and ground water table depth (DT), quantified as indices of tolerance to 

each environmental factor. 

Fitness:  The fitness of a tree is defined in terms of its growth over its past several years. 

The greater the growth, the more fit the tree is, both in terms of competitive fitness 

(height advantage) and avoidance of stress-related mortality, the chance of which 

increases when growth decreases below 0.01 cm per year.

Interaction:  The interactions between trees occur through shading. Each tree is assumed 

able to affect every other tree in the plot, through shading, depending on the relative 

heights of the trees and their leaf area indices.

Stochasticity:  JABOWA-II is a Monte Carlo simulation model. Stochasticity is 

incorporated into establishment and mortality processes; that is, how many new saplings 

of each species will be added to the plot and both yearly natural mortality and stress-

related mortality.
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Details

1. Site description

We simulated two types of swamp habitat in Florida affected by melaleuca invasion, 

Florida cypress swamp and bay swamp, for which information on environment and plant 

demography are available from studies of two sites (Casey and Ewel 2006). Although the 

information used here is from cypress and bay swamps in northern Florida, we believe 

these are reasonable surrogates for the similar swamp types in southern Florida, which is 

the focal area for our simulations. These two habitats are similar to field sites used in 

Tipping et al. (2007, 2009).

In this region, the mean annual rainfall is about 1331 mm to 1364 mm (NOAA 1968-

1977), most of which occurs from June through September.  Mean monthly temperature 

ranges from 14.4 ºC to 28.3 ºC (NOAA 1968-1977).

Cypress swamps are relatively deep (standing water depth = 20cm), while bay swamps 

represent shallower (standing water depth = 8cm), peaty swamp (Penfound 1952; Ewel 

1990). Cypress swamp has standing water for at least part of the year and is dominated by 

pond cypress (Mitsch et al. 1979; Deghi et al. 1980). The vegetation communities in 

cypress habitats vary along a hydrologic gradient. Cypress swamp generally forms in 

poorly drained to permanently wet depressions in areas of pine flatwood. Cypress-

hardwood associations are defined as communities in which cypress grows in association 

with species such as red maple (Acer rubrum L.), ash (Fraxinus sp.), cottonwood 

(Populus heterophylla L.) and water oak (Quercus nigra L.). A cypress-pine association 

is indicative of severely drained conditions, which allow slash pine (Pinus elliottii) and 
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sweet bay (Magnolia virginiana L.) to invade cypress (Brown 1981). Cypress in pure 

stands generally indicates continuous high water (Mitsch and Ewel 1979). 

At least 50% of the tree species in bay swamp are broad-leaved evergreen trees growing 

on acid soils high in organic matter and subjected to seasonal flooding. Canopy species 

include red bay (Persea borbonia L. (Spreng.)) and swamp bay (M. virginiana), as well 

as dahoon holly (Ilex cassine) and pond apple (Annona glabra L.) (Monk 1966, 1968). 

In JABOWA-II, the main implemented differences in environmental conditions between 

cypress swamp and bay swamp are soil depth and standing water depth. Parameter values 

are listed in Supplementary Information (SI): Table S1. We selected five native species: 

slash pine, pond cypress, dahoon holly, sweet bay and loblolly bay, for which most 

information on key parameters for JABOWA-II is available (Table 1). Another reason for 

selecting those five native species is that pond cypress and slash pine are the dominant 

canopy trees, with 77% of total relative frequency in cypress swamp. Loblolly bay and 

sweet bay together dominate bay swamp with 76% relative frequency (Casey and Ewel 

2006). All five species are present in both cypress and bay swamp.

2.  Submodels

Only the Growth submodel is described here, as the other submodels are described in 

sufficient detail under 3. Processes.

Growth submodel

In JABOWA-II, diameter at breast height of the tree (D) is the key state variable. The 

growth equation is:



62 
 

 
 

2
32

2
32

43274
1371

DbDb
)tenvironmen(f*)]]}HD/()DbDb(D[[DG{

D
i,i,

ii.maxi.maxi.i.i ,   (1)

D is the annual growth increment and

Dmax,i = maximum diameter of tree of species i

Hmax,i = maximum height of tree of species i

Gi = maximum growth rate parameter

b2, b3= parameters in height vs. diameter relationship 

and where fi(environment) (< 1) incorporates the effects of environment, causing D to 

decrease from the value it would have under optimal environmental conditions. 

Specifically, 

fi(environment)   =  fi(AL)*Qi*s(BAR),                                                        (2)

where available light, fi(AL), is a function of leaf area index (AL) and Qi measures site 

quality, which depends on the effects of several factors;

Qi = TFi*WiFi*WeFi*NFi , (3)

where TFi is the effect of temperature on tree growth as a function of growing degree-

days during current year at site (DEGD), WiFi is the effect of soil moisture on tree growth, 

or the wilting factor for effect of drought, and WeFi is the wetness factor for the effect of 

soil wetness, including flooding. In particular, WiFi is related to water depth and WeFi is 

related to the height of the water table tolerable for the species. NFi is the nitrogen factor 

for the effect of soil nitrogen, which is based on the species-specific concentration of 
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nitrogen in leaves and the concentration of available nitrogen in the soil. The function 

s(BAR) represents the density-dependent limitation on the total basal area of the stand.

3. Parameterization of model

Key life cycle parameters used for each species in JABOWA-II are listed with definitions 

in Table 1, and values are in SI: Table S2. The values of all the parameters are from 

literature, based on field studies (see SI: Table S3); for example, the studies of  

Rayachhetry et al. (2001); Serbesoff-King  et al. (2003) and Tipping et al. (2013) were 

used for the melaleuca parameterization. All parameters in JABOWA-II can be adjusted 

to apply to a particular situation. We assigned all parameter values for which data could 

be found for the cases modeled here, but a few that were not known were left as default 

values of JABOWA-II.

4. Initialization 

The initialization for each type of simulation is noted in the scenario descriptions. 

Descriptions of scenarios 

The scenarios that are evaluated by model simulations are designed to both show the 

effects of melaleuca on the native forest, which can be compared with data, and project 

how the impact of herbivory may reverse these effects and allow the native forest to 

recover. We begin by simulating the cypress swamp and bay swamp forests without 

melaleuca to help calibrate the model. We then simulate the invasion of melaleuca in 

both forest types over 600 years, along with simulations in which biocontrol is added at 

year 300. We also simulate the effects of herbivory on pure melaleuca stands, as there are 
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short-term empirical data that can be used for comparison. Finally, we do a sensitivity 

analysis by assuming the herbivory is less efficient than the estimates we used based on 

empirical data.

Scenario 1. This scenario was used for calibration with densities and size 

distributions of native species in cypress and bay swamps without melaleuca, based on 

Casey and Ewel (2006). (More description, see SI, Appendix S1).

Scenario 2. These simulations started with a cypress swamp community with the 

size distributions of native species in cypress swamps after 300 years from scenario 1. 

We allowed melaleuca to invade this community at year 1 and simulated its invasion for 

600 years. The simulation provided a test of whether the model agrees with recently 

observed effects of melaleuca on the native community, and projected the effects of 

melaleuca with no herbivory on the native community 600 years into the future.  In an 

accompanying simulation, insect herbivory was added beginning at 300 years, via 

decreasing the melaleuca reproduction rate 49% and the growth rate 83%, based on 

empirical measurement in Tipping et al. (2008).

Scenario 3. These simulations were the same as scenario 2, but simulated bay 

swamp. 

Scenario 4. These simulations projected the long-term effects of herbivory (600 

years) on the pure melaleuca stands (i.e., no other species were included in the 

simulation), starting from saplings. There were four sub-scenarios; no herbivory impact; 

the addition of herbivory on melaleuca-dominated stands starting with small-sized (54

cm2/m2 in basal area); with medium-sized (76 cm2/m2 in basal area); and with large-sized 
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trees (134 cm2/m2 in basal area). We compared model simulation with empirical data 

(Rayamajhi et al. 2007). 

Sensitivity analysis. Sensitivity analysis was applied to two parameters regarding 

the effectiveness of herbivory; SAP (maximum number of saplings of species that can be 

added in any one year to the 0.01 hectare plot) and G (maximum growth rate of tree of 

species) in pure mature-grown melaleuca stands. In scenario 4, reductions in SAP and G 

were 49% and 83% respectively, here, we reduced these to 25% & 40% and 10% & 10%. 

Data analysis

All simulations were replicated 50 times. The relative proportion of each species 

in both cypress swamp and bay swamp was calculated directly as (the number of stems 

by species÷the total number of stems in all the species)*100.      

Results

Scenario 1. The results of scenario 1 simulations showed the model’s expected 

dynamics of native species without melaleuca’s invasion under the current climate, which 

agreed with field measurements (Figure. 4.1, note a log scale is used).  For more 

description, see Appendix 7.

Scenario 2. Simulations of melaleuca’s invasion in cypress swamp without and with 

herbivory were started with the densities of the mature cypress swamp community 

projected in scenario 1. We first describe the simulation without herbivory, shown for a 

typical simulation with solid data markers in Figure. 4.2a and b. External input of 

melaleuca, as saplings, started from year 1 and continued until the melaleuca in the site 
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were large enough to reproduce. The simulation demonstrated that melaleuca stem 

density grew from 100 to 350 trees/100m2, then dropped to 50 trees/100m2 due to 

intraspecific competition (self-thinning) and interspecific competition from native species, 

especially pond cypress (Figure. 4.2a; error bars shown in Figure. S7.1a). Melaleuca 

recovered, with oscillations, toward a steady state density of about 200 trees/100m2

(filled circles). Overall, melaleuca had greater stem density of individuals than the other 

species, including pond cypress. Slash pine lost half its original density due to melaleuca 

invasion in the simulations (Figure. 4.2a. filled trianglesup). Pond cypress was able to 

maintain dominance in basal area over melaleuca during most of the 600-year simulation 

without herbivory, though melaleuca slightly exceeded cypress in basal area for several 

decades (Figure. 4.2a), roughly years 120 to 200, when large numbers of melaleuca 

saplings were growing in size. After that period, melaleuca’s basal area decreased from 

40 to 25 due to interspecific competition with cypress and mortality of larger, older trees 

(Figure. 4.2b, filled circles). 

At year 300, insect herbivory was added in the simulation, by decreasing the melaleuca 

reproduction rate by 49% and growth rate by 83%.  In contrast with the simulated case 

without the herbivores (Figure. 4.2a, filled circles), melaleuca stem density declined from 

80 to 30 trees/100m2 within 50 years of herbivory application (Figure. 4.2a, unfilled 

circles), and thereafter melaleuca’s density remained below 100 trees/100m2. Pond 

cypress started to rapidly increase in basal area, due to decreased competition for light, so 

existing cypress individuals were able to grow larger in size and accumulate greater basal 

area, although stem density changed little. Melaleuca’s basal area decreased from its 

previous level of 30 to very low levels (2-3 cm2/m2) (Figure. 4.2b, unfilled circles). 
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Although there was some increase in melaleuca stem density from its low by 600 years, 

its basal area did not recover. In order to make it easier to see the values of slash pine, 

sweet bay and loblolly bay, which are at very low levels, their densities and basal areas 

are plotted separately at a finer scale in Figure. 4.2c, d. We found the three species all had 

higher basal area (unfilled line) after insect herbivory was applied, compared to without 

herbivory (filled line). 

Scenario 3. As in the cypress swamp scenarios, we first considered the 600-year 

simulations without herbivory impact, starting with the mature bay swamp community 

projected from scenario 1, which was dominated by understory trees or shrubs (sweet bay 

and loblolly bay) beneath the cypress canopy. Compared with cypress swamp, melaleuca 

rapidly invaded bay swamp, due to its stronger competitive capacity in bay swamp than 

cypress swamp, as shown in a typical simulation (Figure. 4.3a; and finer scale in Figure.

4.3c; error bars in Figure. S7.2a). Melaleuca reached a peak density (saplings plus trees) 

of about 2800 trees/100m2 (Figure. 4.3a. filled circle line) by year 50. Its density then 

dropped to 200 trees/100m2 by year 200, mainly due to intraspecific competition (self-

thinning), and then oscillated around 400 – 800 trees/100m2. Melaleuca basal area 

increased to a high of 90 cm2/m2 at year 100 (Figure. 4.3b; error bars in Figure. S7.2c), 

and then decreased to roughly 55 cm2/m2 at year 250 (Figure. 4.3b, filled circles). The 

native species survived at lower densities in the simulations (Figure. 4.3a, filled 

trianglesup, stars, diamonds and trianglesdown) and all decreased in basal area during the 

first 100 years, in response to melaleuca’s increase (Figure. 4.3b, filled trianglesup, stars, 

diamonds and trianglesdown). 
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The addition of herbivory on melaleuca at year 300 suppressed melaleuca’s reproductive 

rate by 49% and growth rate by 83%. Melaleuca declined in density from 700 to 100 

trees/100m2 at year 320, though it then recovered to about 200 trees/100m2 (Figure. 4.3a, 

unfilled circles) by year 400. This stem density was close to the simulated density 

without herbivory, but these were very small stems, as the results for basal area (below) 

show. Meanwhile, dominant native species in bay swamp, especially loblolly bay, started 

to grow back after melaleuca growth was restricted by herbivory. Compared to loblolly 

bay, the density of sweet bay was still low even when herbivory was applied, because it is 

less shade-tolerant than loblolly bay. Slash pine also dropped its density because of its 

low reproduction rate and perhaps shading. With herbivory the basal area of melaleuca 

declined rapidly from 45 to less than 5 cm2/m2 in 100 years, as the application of

herbivory killed larger trees through chronic damage to leaves (Figure. 4.3b, unfilled 

circle line) and melaleuca did not grow back as sizable trees. After melaleuca lost its 

dominant position, native species that had been suppressed started to grow back in 

numbers and basal areas, reaching their typical observed levels in stands without 

melaleuca in about 100 years (Figure. 4.3b, d, unfilled trianglesup, stars, diamonds and 

trianglesdown).

No empirical data are available to compare with these long-term effects of herbivory for 

either cypress or bay swamp, which suggests that it is important to continue long-term 

field observations of the impact of herbivory to further test and improve the model.

Scenario 4. This 600-year simulation was started from a plot with only melaleuca 

saplings. Starting with an external input of saplings during the first few decades, there 

was a continuous increase of melaleuca density until it reached a maximum of about 800 
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trees/100m2 at year 50, followed by a sharp decrease due to both self-thinning and 

mortality of old-aged trees (Figure. 4.4a, red dashed line; error bars in Figure. S7.3a), 

then an oscillating recovery towards a steady state of between 100 and 200 trees/100m2.

Concomitant with the increase in stem density, the melaleuca increased in basal area 

during the first 100 years, to the maximum amount of 135 cm2/m2 (Figure. 4.4b. red 

dashed line; error bars in Figure. S7.3b). Then basal area declined with stem density from 

130 to 45 cm2/m2 during the next 200 years, and began an oscillating trend towards a 

steady state. Empirical data from Rayamajhi et al. (2007) in three study sites in 

southeastern Florida were available for a melaleuca-dominated site without insect 

herbivory, shown as red dots in Figure. 4.3a and b. The model followed the increase in 

basal area very well over about 60 years (Figure. 4.4b), but did not fit the observed rapid 

decline in stem density, which declined faster than the simulated density.  

Empirical data from Rayamajhi et al. (2007) were also collected following herbivory in 

nearly pure melaleuca stands. We attempted to match these empirical data, with points in 

time along our simulation that corresponded to stands of approximately the same ages 

and basal areas as when those studied in the field were affected by herbivory. These 

empirical data points are shown as blue, purple, and green dots in Figure. 4.4a and b. 

Herbivory in the simulation was applied by decreasing the melaleuca reproduction rate by 

49% and the growth rate by 83%, in each of three different melaleuca stands, having 

basal areas of roughly 50, 80, and 130 cm2/m2 (black arrows in Figure. 4.4b). We 

concentrate here on Figure. 4.4b, as the model fits basal area better than stem density. 

Note that the rate at which the basal area declines following introduction of herbivory in 

the simulation depends on the initial basal area of the stand. In the model it is possible 
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that older, larger individuals are more strongly affected by the herbivory (perhaps 

because they are already stressed from competition), which slowed their rate of growth 

and increased their mortality rate, so that the stand with larger basal area (i.e., larger trees) 

experienced a greater rate of decline (Figure.4.4b blue and green solid lines). Simulated 

impact of herbivory caused slowest decline in stands with younger, smaller individuals 

(Figure. 4.4b, black solid line). During the course of the simulation, herbivory decreased 

melaleuca’s basal area from both the 135 cm2/m2 (Figure. 4.4b blue solid line) and 80 

cm2/m2 (Figure. 4.4b, green solid line) starting values down to 5 cm2/m2, when applied to 

stands with larger trees. However, during the same period, the simulated melaleuca stand 

starting from a basal area of 45 cm2/m2 declined only to 25 cm2/m2 (Figure. 4.4b, black 

solid line). We did not observe recovery of melaleuca from these low values in any of the 

three sub-scenarios simulations, and herbivory significantly decreased melaleuca’s basal 

area compared to stands without its application (Figure. 4.4b, red dashed line). All three 

sub-scenario simulation results fit field data from Rayamajhi et al. (2007) well (Figure.

4.4b blue, green and black dots), although these field data span too short a time interval 

to be a strong test of the model. Similar results were found in the changes of melaleuca 

stem density with application of herbivory on different size stages (Figure. 4.4a), though 

they are not as clear as in the case of basal area densities.

Scenario 5. The sensitivity analysis results showed that a mere 10% decrease of both 

reproduction rate (SAP) and growth rate (G) lead to lack of control melaleuca’s invasion 

(Figure. 4.5). In fact, density and basal area levels were found to be the same as the field 

observations of uncontrolled melaleuca now. A 25% reduction of reproduction rate (R) 

and a 40% decrease of the growth rate were shown to keep melaleuca somewhat lower 
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than the non application of herbivory case. But we found that only application of 

herbivory impacts much closer to a 49% reduction of reproduction rate (R) and a 83% 

decrease of the growth rate (G) were able to control melaleuca to a very low level.

Discussion

Effects of the biological control agent on recovery of native woody plant 

communities

The model projects substantial herbivory-mediated reduction in survival and reproductive 

potential of melaleuca. Introducing herbivory in our simulations led to large reductions of 

stem density and basal area of melaleuca. This agrees with Rayamajhi’s (2007) field 

measurements.  Native plants are projected to recover basal area and stem density 

comparable to the pre-melaleuca invasion state (although slash pine and sweet bay did 

not completely recover in bay swamp). The simulations also show that as native plants 

recolonize the habitat, melaleuca is further suppressed, since melaleuca trees are rendered 

less competitive due to chronic damage inflicted by insect herbivores. Because of the 

short time available for field observations following the introduction of specialized 

herbivores, no significant recolonization by natives has been recorded. However, 

Rayamajhi (unpublished data) found increases in native plant diversity and abundance 

following herbivore-mediated declines for melaleuca growing in wetter, higher organic 

soils.

This relates to the problem of specialist biocontrol agents in general. These require some 

persistent population of their host species to remain as effective control agents (Murdoch 

and Briggs 1996, Ewel et al. 1999, Fagan et al. 2002, Symondson et al. 2002, Stiling and 
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Cormelissen 2005). A general strategy in such cases has been the augmentation of the 

biocontrol agents through periodic mass rearing and reintroduction (DeBach 1974), 

Reduction of melaleuca to a relatively minor component of future tree communities could 

also facilitate application of other methods (e.g., mechanical removal and chemical 

treatment) to reduce it further. 

Effects of biological control agent on different size staged pure melaleuca stands; 

management implications

Simulation results (Figure. 4.4 a, b) showed good fits to empirical data, especially basal 

area, when no herbivory was applied to these stands. Projections show that without 

control melaleuca has higher stem density and basal area in pure stands than when it is 

mixed in cypress- and bay-swamps (figures 4.2, 3), due to the lack of interspecific 

competition with native species. Oddly, the introduction of herbivory to the early-age 

pure melaleuca stand (starting at 54 cm2/m2 in basal area) did not reduce basal area as 

much as its application to older stands (starting at larger than 76 cm2/m2 in basal area) 

(Figure. 4.4b). This greater reduction of the older stands may reflect that these are already 

under stress due to high basal area density.

The sensitivity analysis shows a large drop in effectiveness of control would occur if 

negative effects of herbivory on growth and reproduction (such as only 10% decrease of 

both reproduction rate and growth rate) were appreciably less than estimated from 

empirical data. This suggests that managers should attempt to maintain reductions on 

reproduction and growth as close to the levels of 49% and 83%, respectively, as possible, 

to have the level of effects shown in our simulations.



73 
 

 
 

Three conclusions relevant to management can be drawn from our model findings: (1) 

The introduction of insect herbivory applied to melaleuca is sufficient to suppress 

melaleuca to a low density and basal area level over the long term. (2) It takes about 50 

years for native species to recover in the system and gain higher basal area. Thereafter,

the density of melaleuca remains lower than if there are no native species in cypress 

swamp, suggesting that cypress will aid control by shading the melaleuca saplings. (3) 

Fostering native species reinvasion will help control melaleuca through competition.

Model limitations 

Parameters of both plants and environment are limited by the available field 

measurements and observations. We have not included all the species and environmental 

conditions in southern Florida. We have only been able to test the model’s usefulness on 

a small set of selected species, and the effect of herbivory on melaleuca-dominated stands. 

We could improve the model via recoding JABOWA-II to include more site variables, 

such as available phosphorus. One model conclusion that needs further consideration is 

that pond cypress maintained dominance over melaleuca in the cypress swamp simulation 

(Figure. 4.2a), as melaleuca has been found to take over in some cases (K. C. Ewel, 

personal communication). Absence of fire in the model is one possible explanation. 

Another limitation of the present simulations is that the climate is assumed constant, 

which is unlikely over the 600-year scenarios. Our future plan is to use 100-year climate 

projections to refine model output.
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Implications of using an individual based forest model on other invasive plant issues

Biological control offers long-term, economically viable management potential, by 

reducing the rate of spread, vitality and growth rate of plants, thus rendering them more 

vulnerable to other environmental stresses and other control methods (Turner et al. 1998). 

Models that can accurately predict the long-term impact of such control on performance 

of native species in melaleuca-invaded habitats will be especially useful for freshwater 

systems that were previously dominated by melaleuca. 
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Table 4.1: Definitions of key parameters in the model

Notation Definition
S Shade tolerance. This is input as categorical values; 1 (intolerant), 2 

(moderately tolerant), or 3 (tolerant)

N Tolerance to low nitrogen availability. This is input as categorical values; 

1 (intolerant), 2 (moderately tolerant), or 3 (tolerant)

SAP Maximum number of saplings of species that can be added in any one year 

to the 0.1 hectare plot

R Maximum possible relative growth rate of tree

C Relationship between total foliage weight, W, and diameter at breast 

height, D

DMAX Maximum possible diameter at breast height (dbh)

HMAX Maximum possible height of tree

AMAX Maximum age tree can reach

AINC Minimum diameter growth in a year that a tree can grow and still be 

considered healthy

DDMIN Minimum growing degree days for species

DDMAX Maximum growing degree days for species

DT Maximum depth of water table possible for species to persist

WLTMX Maximum wilt possible for species

LT_MIN Minimum light (as a fraction of full sunlight) under which a tree can grow
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Figure 4.1 a the stem densities and b the basal areas of the four woody plant species 
included in modeling in cypress swamp without melaleuca. c Projected densities and d:
Projected basal areas of the five woody plant species included in modeling in bay swamp 
without melaleuca. 



77 
 

 
 

Figure 4.2. Results of scenario 2 a. densities;  b. basal area of woody plant species in 
melaleuca-invaded cypress swamp of Florida with and without insect herbivory.  Arrows 
show when herbivory starts to be applied. Because slash pine, sweet bay, and loblolly bay 
are difficult to see in this plot, they are plotted separately in c. densities and d. basal areas 
at a finer scale. (This figure is shown with error bars for 50 simulations in the SI: Fig. 
S7.1a,b,c,d.)  
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Figure 4.3. Results of scenario 3 a. densities; b. basal area of woody plant species in 
melaleuca-invaded bay swamp of Florida with and without herbivory. Arrows show when 
herbivory starts to be applied.The density and basal area of slash pine, dahoon holly, 
sweet bay, and loblolly bay are plotted separately in c. and d. at a finer scale (This figure 
is shown with error bars for 50 simulations in SI: Fig.S7.2a, b,c,d.)  
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Figure 4.4.
Result of scenarios 4 a. densities; b. basal area of pure melaleuca stand with and without 
herbivory. Arrows show when herbivory began to be applied. (Figures are shown with 
error bars in the SI: Fig. S7.3.a,b.) 

F
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Figure 4.5. Results of sensitivity analysis a: the stem density; b: the basal area of pure 
melaleuca stands with different levels of biocontrol. 
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Chapter Five

Plant compensation and the effects of biocontrol herbivory an invasive plant 

Summary

The effect of herbivory on plant fitness can be highly variable, as plants are able to 

compensate for herbivory up to some level. This is an important component of the 

ecological fitness in many plants and is of interest to agricultural scientists from the point 

of view of plant yields. In addition, it is of interest of the management of weedy invasive 

plants through defoliation, including herbivorous arthropods introduced for biocontrol. 

This study used a model of tree growth and nutrient allocation to estimate the effect of 

different levels of herbivory on reducing the growth rate of an invasive tree species, 

Melaleuca quinquiveria in which the tree could change its carbon and nutrient allocation 

strategies in order to mitigate effects of increasing herbivory. The model predicted that 

melaleuca should reallocate more resources to production and maintenance of 

photosynthetic tissues (foliage), at the expense of roots, to compensate and tolerate a 

certain level of herbivory. This compensation buffered the severity of the defoliation 

effect, but there was a limit to the maximum herbivory level melaleuca could sustain and 

still survive. The model also showed that the level of available soil nutrient plays an 

important role in a tree’s ability to compensate for herbivory. However, 

counterintuitively, when nitrogen is more limiting than carbon, it is favorable for the 

plant to increase biomass allocation to roots.
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This study has management implications for the level of biological control, or other 

means of defoliation, that should be applied to obtain a desired level of growth reduction 

and thus control of an invasive species. 

Background

The effects of herbivory on plant fitness can be highly variable, as plants are able to 

respond in different ways to the effects of herbivory. McNaughton (1983) pointed out 

three alternative hypotheses: (1) plant fitness declines consistently as the intensity of 

herbivory increases; (2) plants are able to compensate for herbivory up to some levels, 

then fitness declines with increasing herbivory; (3) plant fitness is increased by moderate 

levels of herbivory, then declines and goes negative at higher level of herbivory 

(herbivory optimization hypothesis, e.g., Hilbert et al. 1981). The second of these 

responses of plants by compensatory regrowth following insect herbivory is widely 

reported in the literature (e.g., Kulman 1971, Trumble et al. 1993). This is an important 

component of the ecological fitness in many plants, and is of interest to agricultural 

scientists from the point of view of plant yields (Southwood et al. 1973). But it is also a 

matter of interest of the management of weedy invasive plants through defoliation, such 

as by herbivorous arthropods introduced for biocontrol. For instance, Sevillano (2010) 

reported empirical evidence of compensation for herbivory by biocontrol agents in 

melaleuca. The degree to which plants can compensate for herbivore damage is important 

to understand in planning control efforts, as it would indicate the intensity of control 

measures needed to reduce the plant to a desired level. 
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Plant compensation for arthropod herbivory can be highly complex, involving the way 

that internal resources are allocated, changes in canopy architecture, changes in leaf 

morphology, and changes in phenology. It is also affected by extrinsic factors such as 

resource availability (Zhao and Chen 2012). Our model attempts to take into account only 

a few of these mechanisms and factors. One mechanism of compensation arises naturally 

from defoliation. Consider a control measure, that can be a form of mechanical, chemical, 

or biological control that reduces a tree’s foliage by some amount. Although this reduces 

the surface area of the foliage, the actual rate at which light is captured might be only 

slightly affected, as the self-shading of leaves is reduced. This effect can be expressed 

mathematically in a simple model representing the relationship between leaf foliage and 

the growth rate, G;

G = R0 [1 – exp(-k F)],

where R0 is the maximum possible rate of growth based on photosynthesis, F is the 

amount of foliage, that is, the Leaf Area Index (LAI), the total area of leaf per area of 

ground, and k is the rate of extinction of light per leaf layer passing through the foliage 

(typically between 0.3 and 0.7 . The terms 1 – exp(-kF) represent the amount of light 

captured as a saturating response to light.  If F is initially large, say about 5 or 6 for many 

closed canopies, such that [1 – exp(-k F)] is very close to 1, even reducing F by one half 

might not appreciably reduce the light captured. This is a compensatory mechanism 

reflecting the fact that trees commonly have much foliage that is relatively shaded, which 

can compensate for the loss of foliage above it by being exposed to a higher level of 

radiation. The above expression could represent increased efficiency of the remaining 
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leaves in other ways as well, such as reduced transpiration surface that improves the 

water status of those leaves (Ericsson et al. 1980).

A second compensatory mechanism is that a tree can change the way it allocates its 

carbon and nutrient resources to capture not just light, but water and nutrients as well. 

Woody plants allocate their acquired resources, energy (or carbon) and nutrients, to meet 

their several essential functions. Ability to adjust carbon allocation in response to 

environmental conditions is widely documented (Friend et al 1994). In particular, the 

trade-off in investment between root and shoot (foliage) is well known and has been the 

subject of many studies and models (e.g., Wilson 1988, Ingestad and Agren 1991, 

Thornley 1995, Hermans et al. 2006). This allocation can be adjusted to optimize growth 

taking into account the added level of defoliation, as more resources can be allocated to 

foliage by reducing the amount going to roots and/or wood, due to leaves serve as the 

primary producers of photosynthetic products in most woods plants (Morath et al. 2006).  

An additional compensatory effect is that, as a tree reduces its uptake of nutrients from 

the soil, nutrient concentration in the plant’s rooting can increase, partly offsetting the 

reduction in intensity of exploitation. All these effects can be significant, so it is 

necessary to study the net effect of defoliation by considering the whole plant and soil as 

a system in which the plant can alter the way it allocates resources in an optimal way. 

Here, we will use modeling to study the specific case of use of biocontrol to decrease the 

growth rate of a weedy invader, Melaleuca quinquenervia (Cav.) Blake (common names: 

melaleuca, paper bark, punk tree; Family, Myrtaceae, referred to as melaleuca thereafter), 

which has strong invasive attributes and had spread over 200,000 ha of the ecologically 

sensitive freshwater ecosystems of southern Florida by the end of the 1900s (Dray 2003; 
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Dray et al. 2006). The melaleuca weevil (main biocontrol agent) has been effective in 

consuming leaves, furthermore, it attacks new lead tissue preferentially and relentlessly, 

thereby contributing to continuous defoliation and re-foliation cycles (Tipping et al. 2008; 

2009). Because complete recovery of leaf tissue is rare, the usual temporary reallocation 

of plant assimilates to leaf production may become virtually permanent under this 

sustained herbivory. As a strategy for success, melaleuca might be assumed to allocate 

more energy to foliage while it’s facing to a higher level of defoliation to maximize

growth rate.  

In this study, we will consider as model variables only the plant’s components (foliage, 

root and wood) and it allocation strategy among the three components, the dynamics of 

the herbivore that feeds on the plant’s foliage is not included, as we keep its effect as a

constant defoliation rate. This model has an advantage over simpler analytic models, as it 

is possible to study the effects of different levels of herbivore on allocation strategies of

trees’ energy to foliage, fine roots, and wood.  We tested three hypotheses with regard to 

the effects of herbivore on reducing melaleuca’s growth rate: (1) melaleuca has different 

growth rates, biomass and nitrogen contents when its energy allocation among the three 

components is different. (2) Melaleuca can tolerate higher level of herbivore because of

allocating more energy to foliage and less to root. (3) Melaleuca can tolerate higher level 

of herbivore when soil nutrient is richer. Therefore, our goal is to estimate the rate of 

defoliation needed to achieve a specified reduction in the growth rate under various 

conditions of nutrient availability to the tree and how it might change its allocations to 

foliage and roots in an optimal way.
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Methods:  Mathematical Model

We use a tree dynamics model to determine the allocation strategy that maximizes 

growth under given conditions of light, nutrient availability, and defoliation. A well 

known model of tree growth and nutrient cycling is the G’DAY model (Comins & 

McMurtrie 1993). This model simulates both carbon and nitrogen in tree and soil 

compartments. Ju and DeAngelis (2009, 2010) used a variation of this model that was 

enhanced by adding an explicit compartment for soil pore nutrient (Figure 5.1). To avoid 

soil process complexity the compartments for litter and soil in the original model were 

removed and mineralization of nutrient from litter was assumed to occur instantaneously, 

going straight to the soil pore water, where it is available for uptake. It was also assumed 

that some nutrient could be lost during recycling at a rate proportional to its flux through 

the plant biomass. Of course, if a biocontrol agent, such as an herbivorous insect, is used 

to consume foliage, the plant might also respond by allocating carbon and nutrient to 

chemical defenses to deter the herbivore, or it might reduce the nutrient: carbon ratio in 

its leaves to make the leaves less palatable to the agent. Here, only the compensatory 

effects, and not anti-herbivore defenses, will be taken into account in the model.

With the above assumptions the G’DAY model reduces to six equations for carbon and 

nutrient (e.g., nitrogen or phosphorus) in the three tree components, foliage (Cf and Nf), 

fine roots (Cr and Nr), and wood (Cw and Nw);

fffff
f CCG

dt
dC

(1a)

rrr
r CG

dt
dC

(1b)
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plus a seventh equation for the soil pore water nutrient concentration, Npore;

)()( wwwrrffffporeinput
pore CvNNNUNNQ

dt
dN

. (1g)

Npore is the equivalent of R of the simple model. Separate equations for carbon and a 

limiting nutrient allow the N:C ratio in foliage, fine roots, and wood to be variable.

In the above equations, the function G represents net carbon production, or growth rate. 

In particular,

G =  net carbon production, or growth per unit time  (kg  m-2 yr-1 )

= R0I(Cf f) (2)

I(Cf) =   light interception factor

= 1 – exp(-kf bf Cf) (3)

f) =  rate-limiting effect of low nutrient concentration on growth, where
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vf = N:C ratio in foliage  =  Nf /Cf

f) = f) = vf/(v0 + vf) (4)

The parameter R0 is the maximum possible primary production, bf is the foliage per unit 

carbon, and kf is the light extinction factor. The factor f) represents the assumption that 

the photosynthetic efficiency of foliage is dependent on the Nf:Cf ratio.  The three 

f r w are the loss rates, through litterfall, of foliage, fine roots, and 

f is the loss rate of foliage through herbivory. The three parameters, f , r

and w, govern the allocation of energy between foliage, fine root biomass, and wood, 

respectively, where f + r + w =  1. For convenience, we assume here that w is fixed; 

that is, whatever the relative allocations to foliage and roots, the fraction allocated to 

wood stays the same. The constants f, r, and w are senescence (i.e., litterfall) rates. The 

f represents additional loss rate of foliage due to herbivory. It is assumed that a 

fixed ratio, vw, of N to C, is first allocated to wood, and then the rest of the nutrient is 

allocated to foliage and fine roots in the proportions f /( f r) and r /( f r), 

respectively.

The function U represents nutrient uptake,

U = uptake rate of plant-available nutrient  (kg  m-2 yr-1),

where

rrr Ckb

poreN

poreN e
Nk

Ng
U 1 , (5)



89 
 

 

where we assume a saturated response of uptake to pore water concentration, and that 

there is a ‘resource extinction’ rate, kr, that multiplies fine root biomass, analogous to 

light extinction. The parameter kr multiplies a coefficient of fine root length per unit 

carbon, br, and the amount of carbon in fine roots, Cr (see Herbert et al. 2004), and where 

gN is the maximum possible nutrient uptake rate and kN is the half saturation constant.  In 

eqn 1g, 

Q = flow of water through the soil (kg m-2 yr-1)

Ninput = nutrient concentration in input water (kg nutrient kg-1water)

= fraction of nutrient recycled; the remainder is assumed tied up in recalcitrant forms or, 

if nitrogen, also lost to gaseous forms.

If some loss of available nutrient to recalcitrant forms or to the atmosphere potentially 

occurs during decomposition of l

carbon or nutrient storage within the plant.

The mathematical analysis of the model to find the equilibrium value of G, as a function 

of parameters, is presented in Ju and DeAngelis (2010) and also in our On-line 

Supplementary Material Appendix 8. The analysis produces an implicit equation for the 

plant production as a function of herbivory, nutrient availability and other factors, to ask 

question about the allocation of energy and nutrients to different tissues under different 

amounts of herbivory, to help us quantify plant production under different levels of 

herbivory.
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Application to Melaleuca 

This study focuses on understanding the optimal carbon allocation under a range of 

defoliation rates by herb f as 0.25, meaning that 25% of 

foliage was removed, as natural defoliation. Adding 25% more defoliation represented 

low intensity level and 75% more meant high intensity level (Erbilgin et al. 2014). All 

parameters are defined in Table 5-1 for the simulation. Most were determined for 

melaleuca, though a few that could not be estimated were left as in Comins and 

McMurtrie (1993).  

Results

We simulated the change of the equilibrium value of the growth rate (left as G here for 

simplicity), along a range of the carbon allocation fractions to foliage ( f), from 0.0 to 1.0, 

for four defoliation rates ( f), when nutrient input level is intermediate (baseline) (Ninput =

0.00001). Note we only plotted when f < 0.6, because though in all the cases considered 

f > 0.6 the tree has a negative growth rate and cannot survive. In 

general, we found that G was consistently changing with different f, indicated that G

was related to carbon allocation ratio. When no herbivore defoliation was included in the 

f = 0.0, so that there was only a natural foliage loss rate, f = 0.25), G

reached its maximum value (Max(G)) f = 0.15 (Figure 5.2A, blue dotted line), 

f f was increased to 0.25, to simulate moderate 

herbivory impact, Max(G f = 0.25, indicating that melaleuca allocated a

larger fraction of carbon to produce foliage to maximize growth rate (Figure 5.2A red 

dotted line). When herbivory became st f = 0.75 and 1.25, Max(G) occurred at 

f. Max(G) was then substantially lower compared with zero or 
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moderate herbivory (Figure 5.2A, yellow and purple dotted lines, respectively). The 

carbon biomasses in foliage, fine roots and wood are linear functions of G and, like G,

f f

than does Max(G), with the peak of Cf f (Figure 5.2B) and Cr

skewed toward smaller values (Figure 5.2C). Only the peak in wood was identical to that 

of Max(G) because the fraction allocated to wood does not vary (Figure 5.2D).

The trends for nutrient content in foliage and fine roots differed from that of carbon 

because the tree compensated for defoliation by allocating less carbon to roots, 

decreasing the amount of nutrient uptake (Figure 5.3). This resulted in lower ratios of 

N/C in both roots and foliage. For each of the four levels of herbivory the Nf /Cf ratio in 

f, reflecting the smaller uptake of nutrient. For a given 

f, the ratio Nf /Cf was higher for greater herbivory, reflecting the fact that leaf 

carbon was affected more than leaf nutrient by the herbivory (Figure 5.3D).

An important question is whether changed levels of available nutrient change the ability 

of the plant to compensate, so we considered an increased value of nutrient input Ninput.

Instead of plotting G f as showed in Figure 5.2, we used the maximum 

value of G (Max(G) ) varied with f (from 0.25 – 4) at each Ninput level (0.0000005, 

0.000001, 0.000004, and 0.000015). f,, were extended from 

0.0 up to a value of 4 to give a better visualization of the results. First, for each level of 

Ninput, Max(G) f f ,

eventually reaching a negative growth rate (G < 0), at which point the tree is assumed 

dying (Figure 5.4A). Second, with higher Ninput f, could be 

reached before melaleuca suffered negative growth rate and died (Figure 5.4A). For 
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instance, Figure 5.4A showed that the tree’s growth cannot be sustained when Ninput is 

f exceeds 0.75. This led to similar trends in carbon amount in foliage and 

root (Figure 5.4C and D). In conclusion, the same herbivory intensity had weaker impact 

on decreasing plant growth rate if nutrient was more available, suggesting that stronger 

herbivory was necessary for better limiting growth rate of melaleuca, especially at better 

nutrient condition.

f f value for Max(G) increased, as melaleuca 

f to achieve Max(G) (Figure 

5.4B), although at a saturating rate. Comparing the five nutrient levels, remarkably, at 

f f , the melaleuca actually allocated less to foliage, 

f , as opposed to fine root at higher nutrient inputs, Ninput. This maybe counterintuitive at 

first, as it would seem that greater nutrient availability would allow the melaleuca to 

divert more carbon from roots to foliage to compensate for foliage loss. However, at 

these relatively low levels of defoliation, nutrient was limiting the growth rate, through 

the function E(vf) (see eq. 4), so that it is advantageous to grow more fine roots to absorb 

nutrient when nutrient was limiting in this parameter range. When herbivory becomes 

f f greater than about 2), the defoliation is great enough that it is 

optimal for the melaleuca to increase allocation to foliage when Ninput increases. 

Discussion

Few theoretical studies have examined the influence of herbivory on the resource 

allocation and compensation in woody perennials with the explicit aim of estimating the 

possible way that plant compensation alters the effects of defoliation on an invasive plant, 
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although relevant empirical work has been done (Holland et al. 1996; Pratt et al. 2005; 

Tipping et al. 2008; Rayamajhi et al. 2010 and Sevillano 2010). This study provides 

results of a model of plant growth as a function of allocation when allocation is a function 

of herbivory. It reveals the possible compensatory response of a tree, melaleuca in this 

case, to increased defoliation. Compensatory mechanisms include the fact that there is 

substantial self-shading of leaves of trees, so that loss is somewhat compensated for by 

the greater light-capturing efficiency of the remaining foliage. A second compensatory 

mechanism that a plant has to increase its allocation to the component, in this case foliage, 

that suffers damage. Melaleuca’s optimization of growth resulted in a shift in allocation 

to foliage in the model. The net effect of compensation was to greatly buffer the effect of 

the of defoliation, as can be seen in Figure 5.4A.  For example, for a nutrient input of 

Ninput = 0.000004, an increase in defoliation rate from 0.25 to 3 results in only a halving 

of the Max(G). This finding has significant management implications, in particular that 

the degree of biocontrol herbivory to reduce the plants growth to a desirable level will 

depend on the environmental conditions in which the plant is growing, which means 

selecting the best control for the specific environment condition (Sevillano et al. 2010).  

Comparing the three herbivory levels (low, medium and high), we found that

growth rate consistently decreased with higher rate of defoliation (Rayamajhi et al. 2008),

and the maximum growth rate appeared at higher foliage allocation ratio when defoliation 

increased. Besides growth rate, foliage carbon and nitrogen contents all decreased with 

stronger herbivory, which agreed with Rayamajhi et al. 2010, that nitrogen and carbon 

are both removed from affected leaf tissues. In addition, by compacting foliage N/C ratio, 

we actually noticed that there was a relatively low difference between no and low 
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f. However, when herbivory became stronger, N/C 

ratio increased more apparently, indicated that leaf carbon was affected more than leaf 

nutrient by the herbivory. 

Additional, the optimal allocation strategy, defined as the allocation ratio that 

gave the maximum growth rate at certain level of herbivory, increased while defoliation 

rate increased, suggested that melaleuca reallocated more resources to production and 

maintenance of photosynthetic tissues to compensate and tolerate a certain level of 

herbivory (Pratt et al. 2005). The reason reallocation from roots to foliage might be 

effective in some cases is that the tree’s initial capacity for water and nutrient uptake 

through roots might be in excess of its needs. Just as we noted above that it can have 

more foliage than it needs, it may have enough initial fine root area, such that transferring 

a greater fraction of resources from roots to foliage does not come at a high a cost to 

nutrient uptake. However, there was a limit of the maximum ratio melaleuca can allocate 

to foliage, once defoliation exceeded certain level, melaleuca decreased its growth rate 

rapidly down to zero with the impact of sufficient herbivory (Pratt et al. 2004; Rayamajhi 

et al. 2010). Therefore, with sufficient levels of herbivory, melaleuca compensates for 

herbivory by predicting new stems and replacing foliage, but at a significant cost to 

reproduction. In conclusion, the resulting loss in reproductive capacity should ultimately 

lead to decline in melaleuca population (Pratt et al. 2005).

This study supported that nutrient condition plays an important role on how 

successful melaleuca defends to herbivory through compensation (Dickson 1989). In this 

study, we simulated five levels of nutrient inputs and we found that growth rate and 

carbon production were lower under lower nutrient condition, this was because 
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photosynthetic rate and biomass production were lower with less nutrient (Goolsby et al.

2004; Steven et al. 2008). Possible mechanisms by which this occurs are through 

herbivory enhancing nitrogen contents of root litter, through herbivory affecting 

production of secondary metabolites and concentrations of nutrients in foliage and thus in 

leaf litter and through selective foliar feeding causing shifts in plant community structure 

and thus the nature of litter input to the soil (Bardgett et al. 1998). In addition, we found 

that when herbivory was weaker, melaleuca had lower optimal carbon allocation ratio to 

foliage, but more to fine roots under higher nutrient level, suggested that it is more 

beneficial for melaleuca growing more roots for nutrient absorption; however, when 

herbivory became stronger, then melaleuca allocated more carbon to foliage under higher 

nutrient level. As a result, this study supported that adding high soil nutrient level 

ameliorated the impact of herbivory and increase tolerance. 

Our finding supported that herbivory impact can successfully reduce melaleuca 

growth rate, to further limit its invasion (Tipping et al. 2008). Moreover, the effect of 

defoliation on growth seems to follows McNaughton’s first alternative hypothesis, that 

plant growth (or fitness) declines consistently with the level of herbivory. The model 

does not show any sort of ‘herbivore optimization’, that is, increase in growth rate for 

low levels of herbivory. This may be due to some limitations of the way the model is 

constructed that we would like to modify in the future work. For instance: the model does 

not have a carbon storage component that can be utilized for short-term response to 

herbivory. Also, the model does not show a ‘threshold’ behavior in which increasing 

herbivory leads to a sudden drop in the growth rate. 
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Table 5.1. Variables and parameters used in the model.

Variables

Cf , Cr, Cw =   carbon pool  for foliage, root and wood (kg m-2)

Nf , Nr, Nw =   nitrogen pool for foliage, root and wood (kg m-2)

Npore = soil pore water nitrogen pool (kg nutrient kg-1 water)

f , r =  allocation fraction of carbon to foliage and root

Parameters                                                                           Value(s) or Range(s)

R0 =  maximum possible growth rate (kg m-2 yr-2 ) 7.03

w =  allocation fraction of carbon to wood                                                             0.40

=   ratio of root N:C to foliage N:C ratio (assumed constant)                              0.70           

w =  N:C ratio for wood, Nw /Cw 0.0001

f =  senescence rate for foliage   (yr-1) 0.25 (no 

herbivory; 0.5, 1 and 1.5, low, medium and high herbivory, respectively)

r =  senescence rate for root  (yr-1)                                                                         0.60

w =  senescence rate for wood  (yr-1)                                                                       0.005

=   recycling ratio                                                                                                 0.98

0 =  foliar N:C half-saturation constant      0.02

gN =  maximum possible steady nutrient uptake rate per ground area                      3.00
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kN = half-saturation coefficient for N plant uptake                                                   

0.00002

bf = foliage area per unit C                                                                                       10.0

br =  root length per unit C                                                                                       2.0

kr =  soil resource extinction                                                                                     0.1

kf =  radiation light extinction coefficient                                                                  0.50

Ninput =  input nutrient concentration (kg nutrient kg-1 water)

0.0000005, 0.000001, 0.000002 and 0.000004, four nutrient levels

Q = flow of water (kg m-2 yr-1) 100
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Figure 5.1. Schematic of model for allocation of carbon and for nutrient cycling. The 
solid lines represent the flow of the limiting nutrient, while the dashed lines represent the 
allocation of carbon that is produced through photosynthesis. Storage outflows are not 
explicitly represented.
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Figure 5.2. Simulated relationships betwe f (0-0.6) and 
(A) G, (B) carbon amount in foliage, (C) carbon amount in fine roots and (D) carbon 

f f f f
= 1.25). Nutrient input Ninput = 0.000001, the baseline nutrient level.
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Figure 5.3. f (0-0.6) and (A) 
nutrient content in foliage, (B) nutrient content in fine roots, (C) nutrient content in wood 

f f = 0.25; 
f f = 1.25). Nutrient input Ninput = 0.000001, the baseline nutrient level.
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Figure 5.4. Simulated relationship between defoliation ratio (0.1-4) and (A) max(G), (B) 
carbon amount in foliage, (C) carbon amount in root and (D) carbon amount in wood, at 
four soil nutrient inputs (Ninput = 0.0000005; Ninput = 0.000001; Ninput = 0.000002; Ninput =
0.000004, Ninput = 0.000015).
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Chapter 6

Overall Conclusions

The research in this dissertation utilized different types of mathematical 

modelling to answer two major and crucial ecological questions, which are (1) how to 

understand total carrying capacity in a heterogeneous environment; (2) how to manage 

invasive species in a better strategy.  Additionally, I tried my best to combine empirical 

data with model simulation, to have stronger results to support my hypothesis or give 

more convincible suggestions. First, I conducted a novel green-house experiment to test a 

very interesting mathematical theory on total carrying capacity in a heterogeneous system 

with diffusion connection. Second, showed clear evidence on why total population could 

be actually higher than total carrying capacity, with a rigorous laboratory microbial 

experiment and a new model/mathematical analysis. Third, I applied a famous and well-

applied individual based model to project the long-term impact of biological control on 

an invasive species, in different native communities, this work provided important 

suggestions on invasive species management. Finally, I used a nutrient-allocation model 

to simulate the optimal allocation strategy of invasive species when it is under multiple 

intensities of biological control, to imply if invasive species can compensate and tolerate 

certain level of biological control, so that it is crucial to be considered when field 

managers select best biological control agent at different habitats.

The effects of spatial heterogeneity and dispersal on populations and on 

ecosystem properties such as productivity are key issues in ecology.  An interesting 
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recent result from mathematics is that a population in an environment in which resources 

vary spatially will reach a higher total equilibrium biomass than the same population in 

an environment with the same total resources but where resources are distributed 

homogeneously. This result from mathematical theory have implications for ecology, 

however, to our knowledge, rarely been tested empirically. Therefore, in my chapter two, 

I conducted a green-house experiment to study the total biomass growth of duckweed 

(Lemna minor Linn), in where the resources (nutrients added to water) were distributed 

homogeneously or heterogeneously.  Both the experimental and simulation results 

showed that total biomass peaked at an intermediate, relatively low, diffusion rate, higher 

than the total carrying capacity of the system.  

While, the experiment was not rigorous due to difficulty of controlling nutrient levels and 

it did not show the basic reason that caused the previous results. So beyond that, in 

chapter three, I utilized a budding yeast population to test a clear hypothesis that the 

higher population in a heterogeneous environment with diffusion is determined by the 

positive relationship of growth rate and carrying capacity. And, thereafter, I used

mathematical analysis to extend previous mathematical models to the case of exploitable 

resources. Consistent with previous theory, both predicted and experimentally observed 

that spatial diffusion increased total carrying capacity in heterogeneous environments, 

with the effect size depending on the relationship between r and K. Surprisingly, however, 

we discovered that homogeneously distributed resources support higher total carrying 

capacity than heterogeneously distributed resources, even with species diffusion. The 

results provide rigorous experimental tests of new and old theory, demonstrating how 
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carrying capacity in spatially distributed species depends on the interplay between growth 

parameters, population diffusion and resource distribution. 

Later on, I finished another two chapters to understand the long term impact of 

biological control on an invasive species (melaleuca) and the mechanism of melaleuca 

tolerating biological control via compensation and nutrient re-allocation. In my fourth 

chapter, I projected likely future changes in plant communities using the individual based 

modeling platform, JABOWA-II, by simulating successional processes occurring in two 

types of southern Florida habitat, cypress swamp and bay swamp, occupied by native 

species and melaleuca, with the impact of insect herbivores. Computer simulations show 

melaleuca invasion leads to decreases in density and basal area of native species, but 

herbivory would effectively control melaleuca to low levels, resulting in a recovery of 

native species. When herbivory was modeled on pure melaleuca stands, it was more 

effective in stands with initially larger-sized melaleuca. Although the simulated herbivory 

did not eliminate melaleuca, it decreased its presence dramatically in all cases, supporting 

the long-term effectiveness of herbivory in controlling melaleuca invasion. The results 

provide three conclusions relevant to management: (1) The introduction of insect 

herbivory that has been applied to melaleuca appears sufficient to suppress melaleuca 

over the long term, (2) major native species may recover in about 50 years, and (3) strong 

regrowth of native species will help suppress melaleuca through competition.

Interestingly, the sensitivity analysis showed that changes in reductions of 

reproduction and growth from, respectively, 49% and 83%, to 25% and 40% and 10% 

and 10% reductions, greatly decreased the ability of the herbivory to control melaleuca. 

Therefore, I did chapter five, to understand why weak level of biological control is not 
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efficient enough on controlling melaleuca in a long-term. This study used a modeling 

approach to estimate the effect of different levels of herbivory on foliage by biocontrol 

agents on an invasive tree species, Melaleuca quinquiveria in which the tree could 

change its carbon and nutrient allocation strategies in order to mitigate effects of 

increasing herbivory. The model predicted that melaleuca should reallocate more 

resources to production and maintenance of photosynthetic tissues, at the expense of 

roots, to compensate and tolerate a certain level of herbivory. This compensation buffered 

the severity of the defoliation effect, but there was a limit of the maximum herbivory 

level melaleuca could survive. The model also showed that the level of available soil 

nutrient plays an important role in a tree’s ability to compensate for herbivory. However, 

counterintuitively, under some circumstances in which nutrient is more limiting than 

carbon, it may be more favorable for the plant to increase the fraction of carbon going to 

roots if there is an increase in nutrient availability for a given level of herbivory.



 
 

106 
 

Work Cited
Acevedo, M. F., D. L. Urban, H. H. Shugart. 1996. Models of forest dynamics based on 

roles of tree species. Ecological Modelling 87: 267-284.

and the local coexistence of competing species. The American Naturalist 158:
572-584.

Amarasekare, P. 2004. The role of density-dependent dispersal in source-sink dynamics. 
Journal of Theoretical Biology 226: 159-168.

Amezcua, A.B., and M. Holyoak. 2000. Empirical evidence for predator-prey source-sink 
dynamics. Ecology 81: 3087-3098.

Arditi, R., C.Lobry, T. Sari. 2015. Is dispersal always beneficial to carrying capacity? 
New insights from the multi-patch logistic equation. Theoretical Population 
Biology 106: 45-59.

Aviron, S., P. Kindlmann, F. Burel. 2005. Conservation of butterfly populations in 
dynamic landscapes: the role of farming practices and landscape mosaic. 
Ecological Modelling 205: 135-145.

Balentine, K. M., P. D. Pratt , F. A. Dray, M. B. Rayamajhi, T. D. Center. 2009. 
Geographic distribution and regional impacts of Oxyops vitiosa (Coleoptera: 
Curculionidae) and Boreioglycaspis melaleucae (Hemiptera: Psyllidae), 
biocontrol agents of the invasive tree Melaleuca quinquenervia. Environmental 
Entomology 38: 1145-1154.

Bardgett, R. D., D. A. Wardle, G. W. Yeates. 1998. Linking above-ground and below-
ground interactions: how plant responses to foliar herbivory influence soil 
organisms. Soil Biology and Biochemistry 30: 1867-1878.

Basin, L. and C. D. Thomas. 1999. The distribution of plant species in urban vegetation 
fragments. Landscape Ecology 14: 493-507.

Bond-Lamberty, B., A.V. Rocha, K. Calvin, B. Holmes, C. Wang, M.L. Goulden. 2013.
Disturbance legacies and climate jointly drive tree growth and mortality in an 
intensively studied boreal forest. Global Change Biology 20: 216-227.

Botkin, D. B., J. F. Janak, J. R. Wallis. 1972. Some ecological consequences of a 
computer model of growth. Journal of Ecology 60:849-872.

Botkin, D. B. 1993. Forest Dynamics: An Ecological Model. Oxford University Press. 
Oxford and New York. 309 pp.



107 
 

 
 

Brown, S. 1981. A comparison of the structure, primary productivity and transpiration of 
cypress ecosystems in Florida. Ecological Monographs 51: 403-427.

Brown, J.H., J.F. Gillooly, A. P. Allen, V.M. Savage, G.B. West. 2004. Toward a 
metabolic theory of ecology. Ecology 85: 1771-1789.

Brawn, J.D., and S.K. Robinson. 1996. Source-sink population dynamics may complicate 
the interpretation of long-term Census Data. Ecology 77: 3-12.

Bradley BA, Blumenthal DM, Wilcove DS, Ziska LH (2010) Predicting plant invasions 
in an era of global change. Trends of Ecology and Evolution 25:310-8.

Breininger, D.R. and G.M. Carter. 2003. Territory quality transitions and source-sink 
dynamics in a Florida scrub-Jay population. Ecological Applications 13: 516–529.

Bugmann, H. 2001. A review of forest gap models. Climatic Change 51: 259-305.

Cantrell, R. S., and Cosner, C. 1998. On the effects of spatial heterogeneity on the 
coexistence of competing species. Journal of Mathematical Biology 37: 103-145.

Casey, W. P., and Ewel, K. C. 2006. Patterns of succession in forested depressional 
wetlands in north Florida, USA. Wetlands 26: 147-160.

Center, T. D., T. K. Van, M. Rayachhetry, G. R. Buckingham, F. A. Dray, S. A. 
Wineriter, M. F. Purcell, P. D. Pratt. 2000. Field colonization of the melaleuca 
snout beetle (Oxyops vitiosa) in south Florida. Biological Control 19: 112-123.

Center, T. D., P. D. Pratt, P. W. Tipping, M. B. Rayamajhi, T. K. Van, S. A. Wineriter, F. 
A. Dray. 2007. Initial impacts and field validation of host range for 
Boreioglycaspis melaleucae Moore (Hemiptera: Psyllidae), a biocontrol agent of 
the invasive tree Melaleuca quinquenervia (Cav.) Blake. Environ. Entomol 36:
569-576.

Center, T. D., M. F. Purcell, P. D. Pratt, M. B. Rayamajhi, P. W. Tipping, S. A. Wright, F. 
A. Dray Jr.  2012. Biological control of Melaleuca quinquenervia: an everglades 
invader. BioControl 57:151-165.

Chesson, P.L. 1985. Coexistence of competitors in spatially and temporally varying 
environments: a Look at the combined effects of different sorts of variability. 
Theoretical Population Biology 28: 263-287.

Clevenger, A. P. and N. Waltho. 2005. Performance indics to identify attributes of 
highway crossing structures facilitating movement of large mammals. Biological 
Conservation 121: 453-64.



108 
 

 
 

Comins, H. N., and R. E. McMurtrie. 1993. Long-term response of nutrient-limited 
forests to CO2 enrichment; equilibrium behavior of plant-soil models. Ecology 
Applications 3: 666-681.

Cosson, J. F., J.M. Pons, D. Masson. 1999. Effects of forest fragmentation on frugivorous 
and nectarivorous bats in French Guiana. Journal of Tropical Ecology 15: 515-
534.

Cutway, H. B. and G. J. Ehrenfeld. 2009. Exotic plant invasions in forested wetlands: 
effects of adjacent urban land use type. Urban Ecosyst 12: 371-390.

DeAngelis, D., W. Ni, B. Zhang. 2016. Dispersal and spatial heterogeneity: single species. 
The Journal of Mathematical Biology 72: 239-254. 

DeAngelis, D. L., Wei-Ming Ni, and Bo Zhang. 2016. Effects of diffusion on total 
biomass in heterogeneous continuous and discrete-patch systems. Theoretical 
Ecology 9: 443-453.

Deghi, G. S., K. C. Ewel, and W. J. Mitsch. 1980. Effects of sewage effluent application 
on litter fall decomposition in cypress swamps. Journal of Applied Ecology 17:
397-408.

Denslow, J.S. 1985. Disturbance-mediated coexistence of species. In: Pickett, S.T.A., 
White, P.S. (Eds.), The Ecology of Natural Disturbance and Patch Dynamics. 
Academic Press, New York, pp. 307–323.

Dhondt, A. A. 1988. Carrying capacity: a confusing concept. Acta Ecologica (Ecol. 
Gener.) 9: 337-346.

Dias, P. C. 1995. Source and sinks in population biology. TREE 11: 326-330.

Dias, P.C. 1996. Sources and sinks in population biology. Trends in Ecology and 
Evolution 11: 326-330.

Dickson, R. E. 1989. Carbon and nitrogen allocation in trees. Annales des sciences 
forestières 46: 631s-647s.

Dineshram, R., K.K.W. Wong, S. Xiao, Z. Yu, P.Y. Qian, V. Thiyagarajan. 2012.
Analysis of pacific oyster larval proteome and its response to high-CO2. Marine 
Pollution Bulletin 64: 2160-2167.

Donahue, M.J., M. Holyoak, C. Feng. 2003. Patterns of dispersal and dynamics among 
habitat patches varying in quality. The American Naturalist 162: 302-317.



109 
 

 
 

Dray, F. A. Jr. 2003. Ecological genetics of Melaleuca quinquenervia (Myrtaceae): 
population variation in Florida and its influence on performance of the biocontrol 
Agent Oxyops vitiosa (Coleoptera: Curculionidae). Ph.D. dissertation, Florida 
International University, Miami, FL.

Dray, F. A. Jr., B. C. Bennett, T. D. Center. 2006. Invasion history of Melaleuca 
quinquenervia (Cav.) S. T. Blake in Florida. Southern Appalachian Botanical 
Society 71: 210-225.

Elliott-Graves A (2016) The problem of prediction in invasion biology. Biol Phil 31:373-
393.

Erbilgin, N., d. a. Galvez, B. Zhang, A. Najar. 2014. Resource availability and repeated 
defoliation mediate compensatory growth in trembling aspen (Populus 
tremuloides) seedlings. Peer J 2: e491.

Ericsson, A., J. Hellkvist, K. Hillerdal-Hagstromer, S. Larsson, E. Mattson-Djos, O. 
Tenow. 1980. Consumption and pine growth – hypotheses on effects on growth 
processes by needle-eating insects. Ecology Bulletin (Stockholm) 32:537-545.

Ewel, K. C. 1990. Multiple demands on Wetlands. Bioscience 40: 660-666.

Friend, A. L., M. D. Coleman, J. G. Isebrands. 1994. Carbon allocation to root and shoot 
systems of woody plants. Biology of Adventitious Root Formation 62: 245-273.

Goolsby, J. A., R. Zonneveld, A. Bourne. 2004. Prerelease assessment of impact on 
biomass production of an invasive Weed, Lygodium microphyllum (Lygodiaceae: 
Pteridophyta), by a potential biological control agent, Floracarus 
perrepae (Acariformes: Eriophyidae). Environmental Entomology 33: 997-1002.

Goss-Custard, J.D., R.A. Stillman, R.W.G. Caldow, A.D. West, M. Cuillemain. 2003.
Carrying capacity in overwintering birds: when are spatial models needed? 
Journal of Applied Ecology 40: 176-187.

Greenway, M. 1994. Litter accession and accumulation in a Melaleuca quinquenervia
(Cav.) S. T. Blake wetland in Southeastern Queensland.  Australian Journal of 
Marine and Freshwater Research 45:1509-1519.

Grimm, V., U. Berger, F. Bastiansen, S. Eliassen, V. Ginot, J. Giske, J. Goss-Custard, T. 
Grand, S. Heinz, G. Huse, A. Huth, J.U. Jepsen, C. Jørgensen, W.M. Mooij, B. 
Müller, G. Pe’er, C. Piou, S.F. Railsback, A.M. Robbins, M.M. Robbins, E. 
Rossmanith, N. Rüger, E. Strand, S. Souissi, R.A. Stillman, R. Vabø, U. Visser, 
and D.L. DeAngelis. 2006. A standard protocol for describing individual-based 
and agent-based models. Ecological Modelling 198: 115-126.



110 
 

 
 

Grimm, V., U. Berger, D. DeAngelis, J. G. Polhill, J. Giske, and S. F. Railsback. 2010. 
The ODD protocol: a review and first update. Ecological Modelling 221: 2760–
2768.

Haegeman, B., and M. Loreau. 2014. General relationship between consumer dispersal, 
resource dispersal, and metacommunity theory.  Ecology Letters 17: 175-184.

Hara, T. 1993. Effects of variation in individual growth on plant species coexistence. 
Journal of Vegetation Science 4: 409-416.

Hayward, M.W., J. O’Brien, G.I.H. Kerley. 2007. Carrying capacity of large African 
predators: Predictions and tests. Biological Conservation 139: 319-229.

Herbener, K. W., S.J. Tavener, N.T. Hobbs. 2012. The distinct effects of habitat 
fragmentation on population size. Theoretical Ecology 5: 73-82.

Hermans, Ch., J. P. Hammond, P. J. White, N. Verbruggen. How do plants respond to 
nutrient shortage by biomass allocation. Trends in Plant Science 11: 610-617,
2006.

He, X., and W. Ni. 2013. The effects of diffusion and spatial variation in Lotka-Volterra 
competition-diffusion system I: heterogeneity vs. homogeneity. Journal of 
Differential Equations 254: 528-546.

He, X., and W. Ni. 2013. The effects of diffusion and spatial variation in Lotka-Volterra 
competition-diffusion system II: heterogeneity vs. homogeneity. Journal of 
Differential Equations 254: 4088-4108.

Higgins SI,  Richardson DM (1996) A review of models of alien plant spread. Ecological 
Modelling 87:249-265.

Howe, R.W., and G.J. Davis. 1991. The demographic significance of “sink” populations. 
Biological Conservation 57: 239-255.

Holland, J. N., W. Cheng, J. D. A. Crossley. 1996. Herbivore-induced changes in plant 
carbon allocation: assessment of below-ground C fluxes using carbon-14.
Oecologia 107: 87-94.

Holt, R.D. 1985. Population dynamics in two-patch environments: Some anomalous 
consequences of an optimal habitat distribution. Theoretical Population Biology 
28: 181-207.

Holt, R.D. 1997. On the evolutionary stability of sink populations. Evolutionary Ecology 
11: 723-731.



111 
 

 
 

Hotl, R. D., T. H. Keitt, M. A. Lewis, B. A. Maurer, M. L. Taper. 2005. Theoretical 
models of species’ borders: single species approaches. OIKOS 108: 18-27.

Hutchings, M.J., E.A. John, D.K. Wijesinghe. 2003. Toward understanding the 
consequences of soil heterogeneity for plant populations and communities. 
Ecology 84: 2322-2334.

Ingestad, T. and I. A. Goran. 1991. The influence of plant nutrition on biomass 
allocation. Ecological Applications 1:168-174.

Ju, S, and D. L. DeAngelis. 2009. The R* rule and energy flux in a plant-nutrient 
ecosystem. Journal of Theoretical Biology 256: 326-332.

Ju, S, and D. L. DeAngelis. 2010.  Nutrient fluxes at the landscape level and the R* rule. 
Ecological Modelling 221: 141-146.

Kareiva, P. 1983. Local movements in herbivorous insects:  applying a passive diffusion 
model to mark-recapture field experiments. Oecologia 57: 322-327.

Kaufman, S. R., and P. E. Smouse.  2001.  Comparing indigenous and introduced 
populations of Melaleuca quinquenervia (Cav.) Blake:  response of seedlings to 
water and pH levels. Oecologia 127:487-494.

Keddy, P.A. 1981. Experimental demography of the sand-dune annual, Cakile Edentula, 
growing along an environmental gradient in Nova Scotia. Journal of Ecology 69:
615-630.

Keddy, P.A. 1982. Population ecology on an environmental Gradient: Cakile edentula on 
a sand dune. Oecologia 52: 348-355.

Koivula, M. J. and H.J.W.  Vermeulen. 2005. Highways and forest fragmentation –
effects on carabid beetles (Coleoptera, Carabidae). Landscape Ecology 20: 911-
926.

Krug, R. M., and D. M. Richardson. 2014. Modelling the effect of two biocontrol agents 
on the invasive alien tree Acacia cyclops—Flowering, seed production and agent 
survival. Ecological Modelling 278:100-113.

Kulman, H. M.  1971.  Effects of insect defoliation on growth and mortality of trees. 
Annual Review of Entomology 16: 289-324.

Kuno, E. 1991. Some strange properties of the logistic equation defined with r and K:
Inherent defects or artifacts? Researches on population ecology 33: 33-39.



112 
 

 
 

Latore, J., P. Gould, A.M. Mortimer. 1999. Effects of habitat heterogeneity and dispersal 
strategies on population persistence in annual plants. Ecological Modelling 123:
127–139.

Lemke, T. and R. Salguero-Go´mez. 2016. Land use heterogeneity causes variation in 
demographic viability of a bioindicator of species-richness in protected fen 
grasslands. Population Ecology 58: 165-178.

Loreau, M. and D.L. DeAngelis. 1997. Source-sink dynamics and the coexistence of 
species on a single resource. Theoretical Population Biology 51: 79-93.

Lou, Y. 2006. On the effects of migration and spatial heterogeneity on single and 
multiple species. Journal of Differential Equations 223: 400-426.

Lutscher, F., E. McCauley, M.A. Lewis. 2007. Spatial patterns and coexistence 
mechanisms in systems with unidirectional flow. Theoretical Population Biology 
71: 267-277. 

Maines, A., D. Knochel, T. Seastedt. 2013. Biological control and precipitation effects on 
spotted knapweed (Centaurea stoebe): empirical and modeling
results. Ecosphere 4:1-14.

Martin, M. R., P. W. Tipping, and J. O. Sickman. 2009. Invasion by an exotic tree alters 
above and belowground ecosystem components. Biological Invasions 11: 1883-
1894.

Martin, M. R., P. W. Tipping, K. R. Reddy, S. H. Daroub, and K. M. Roberts. 2010.  
Interactions of biological and herbicidal management of Melaleuca quinquenervia
with fire:  Consequences for ecosystem services.  Biological Control 54: 307-315.

Martin, M. R., P. W. Tipping, K. R. Reddy, P. T. Madiera, and D. Fitzgerald. 2011.  An 
evaluation of the impact of Melaleuca quinquenervia invasion and management 
on plant community structure after fire. Aquatic Botany 95:287-291.

Mallet, J. 2012. The struggle for existence: how the notion of carrying capacity, K, 
obscures the links between demography, Darwinian evolution, and 
speciation. Evolutionary Ecology Research 14: 627-665.

Matthiessen, B., E. Mielke, U. Sommer. 2010. Dispersal decreases diversity in 
heterogeneous matacommunities by enhancing regional competition. Ecology 91:
2022-2033.

Mattiessen, B., and H. Hillebrand. 2006. Dispersal frequency affects local biomass 
production by controlling local diversity. Ecology Letters 9: 652–662.



113 
 

 
 

McNaughton, S. J. 1983. Compensatory plant growth as a response to herbivory. OIKOS 
40: 329-336.

Meskimen, G. F. 1962. A silvicultural study of the melaleuca tree in south Florida. 
Master’s thesis, University of Florida, Gainesville, FL.

Mitsch, W. and K. C. Ewel. 1979. Comparative biomass and growth of cypress in Florida 
wetlands. The American Midland Naturalist 101: 417-426.

Mitsch, W. J., C. L. Dorage, and J. R. Wiemhoff. 1979. Ecosystem dynamics and a 
phosphorus budget of an alluvial cypress swamp in southern Illinois. Ecology 60:
1116-1124.

Monk, C. D. 1966. An ecological study of hardwood swamps in north-central Florida. 
Ecology 47:649-654.

Monk, C. D. 1968. Successional and environmental relationships pf the forest vegetation 
of north central Florida. American Midland Naturalist 79: 441-457.

Morath, S. U., P. D. Pratt, C. S. Silvers, T. D. Center. 2006. Herbivory by 
Boreioglycaspis melaleucae (Hemiptera: Psyllidae) Accelerates Foliar Senescence 
and Abscission in the Invasive Tree Melaleuca quinquenervia. Environmental 
Entomology 35: 1372-1378.

Müller, M. J. I., B. I. Neugeboren, D. R. Nelson, A. W. Murray. 2014. Genetic drift 
opposes mutualism during spatial population expansion. Proceedings of the 
National Academy of Sciences 111: 1037-1042.

Muko, S., and Y. Iwasa. 2000. Species Coexistence by permanent spatial heterogeneity in 
a Lottery Model. Theoretical Population Biology 57: 273-284.

Myers, R. L.  1983. Site susceptibility to invasion by the exotic tree Melaleuca 
quinquenervia in southern Florida.  Journal of Applied Ecology 20:645-658.

Myers, J. H., and D. R. Bazely. 2003. Ecology and Control of Introduced Plants. 
Cambridge University Press.

Ngugi, M. R. and D. B. Botkin. 2011. Validation of a multispecies forest dynamics model 
using 50-year growth from Eucalyptus forests in eastern Australia. Ecological 
Modelling 222: 3261- 3270.

Ngugi, M. R., D. B. Botkin, D. Doley, M. Cant, and J. Kelley. 2013. Restoration and 
management of callitris forest ecosystems in Eastern Australia: Simulation of 
attributes of growth dynamics, growth increment and biomass accumulation. 
Ecological Modelling 263: 152-161.



114 
 

 
 

Oesterheld, M., Sala, O.E. and S.J. McNaughton. 1992. Effect of animal husbandry on 
herbivore-carrying capacity at a regional scale. Nature 356: 234-236.

Paine, R. T. 1966. Food web complexity and species diversity. American Naturalist 100:
65-75.

Paine, C.E.T., Marthews, T.R., Vogt, D.R., Purves, D., Rees, M., Hector, A., and 
Turnbull, L.A. 2012. How to fit nonlinear plant growth models and calculate 
growth rates: an update for ecologists. Methods in Ecology and Evolution 3, 245–
256.

Pausas, J. G., M. P. Austin, and I. R. Noble. 1997. A forest simulation model for 
predicting eucalypt dynamics and habitat quality for arboreal marsupials. 
Ecological Applications 7: 921-933.

Penfound, W. T. 1952. Southern swamps and marshes. The Botanical Review 18: 413-
445.

Pimm, S. and P. Raven. 2000. Extinction by numbers. Nature 403: 843–845.

Pimm, S., P. Raven, A. Peterson, C. Sekercioglu, P. Ehrlich. 2006. Human impacts on the 
rates of recent, present, and future bird extinctions. Proceedings of the National 
Academy of Sciences 103: 10941–10946.

Pratt, P.D., M. B. Rayamajhi, T. K. Van, T. D. Center. 2004 Modeling the influence of 
resource availability on population densities of Oxyops vitiosa. Biocontrol 
Science and Technology 14: 51–61.

Pratt, P. D., M. B. Rayamajhi, T. K. Van, T. D. Center, P. W. Tipping. 2005. Herbivory 
alters resource allocation and compensation in the invasive tree Melaleuca 
quinquenervia. Ecological Entomology 20: 316-326.

Pulliam, H.R., B.J. Danielson. 1991. Sources, sinks, and habitat selection: a landscape 
perspective on population dynamics. The American Naturalist 137: 50-66.

Pulliam, H.R. 1988. Sources, sinks, and population regulation. The American Naturalist 
132: 652-661.

Rai, P. K. 2015a. Paradigm of plant invasion: multifaceted review on sustainable 
management. Environmental Monitoring and Assessment 187:1-30.

Rai, P. K. 2015b. What makes the plant invasion possible? Paradigm of mechanisms, 
theories and attributes. Environmental Skeptics and Critics 4.



115 
 

 
 

Rayachhetry, M. B., T. K. Van, and T. D. Center.  1998.  Regeneration potential of the 
canopy-held seeds of Melaleuca quinquenervia in south Florida. International 
Journal of Plant Science 159:648-654.

Rayachhetry, M. B., T. K. Van, T. D. Center, and F. Laroche. 2001. Dry weight 
estimation of the aboveground components of Melaleuca quinquenervia trees in 
southern Florida. Forest Ecology and Management 142:281-290.

Rayamajhi, M. B., T. K. Van, P. D. Pratt, T. D. Center, and P. W. Tipping. 2007. 
Melaleuca quinquenervia dominated forests in Florida: analyses of natural-enemy 
impacts on stand dynamics. Plant Ecology 192:119-132.

Rayamajhi, M. B., P. D. Pratt, T. D. Center, P. W. Tipping, T. K. Van. 2008. 
Aoverground biomass of an invasive tree Melaleuca (Melaleuca quinquenervia)
before and after herbivory by adventive and introduced natural enemies: A 
temporal case study in Florida. Weed Science 56: 451-456.

Rayamajhi, M. B., P. D. Pratt, T. D. Center, T. K. Van. 2010. Insects and a pathogen 
suppress melaleucaquinquenervia cut-stump regrowth in Florida. Biological 
Control 53: 1-8.

Ritchie, M.E. 1997. Populations in a landscape context:  sources, sinks, and 
metapopulations, Wildlife and Landscape Ecology, Springer, New York. 
Reference to a chapter in an edited book: 160-184.

Serbesoff-King, K. 2003.  Melaleuca in Florida:  A literature review on the taxonomy, 
distribution, biology, ecology, economic importance, and control measures. 
Journal of Aquatic Plant Management 41:98-112.

Sevillano, L., C. C. Horvitz, P. D. Pratt. 2010. Natural enemy density and soil type 
influence growth and survival of Melaleuca quinquenervia seedlings. Biological 
Control 53: 168-177.

Sevillano, L. 2010. The Effects of Biological Control Agents on Population Growth and 
Spread of Melaleuca quinquenervia. Ph.D. dissertation, Florida International 
University, Miami, FL.

Shriver, W.G., and P.D. Vickery. 1999. Aerial assessment of potential Florida 
grasshopper sparrow habitat: conservation in a fragmented landscape. Florida 
Ornithological Society 27: 1-36.

Smith, T. M., and D. L. Urban. 1988. Scale and resolution of forest structural pattern. 
Vegetation 74: 143-150.

Snyder, R.E., and P. Chesson. 2003. Local dispersal can facilitate coexistence in the 
presence of permanent spatial heterogeneity. Ecology Letters 6: 301-309.



116 
 

 
 

Snyder, R.E., and P. Chesson. 2004. How the spatial scales of dispersal, competition, and 
environmental heterogeneity interact to affect coexistence, The American 
Naturalist 164: 633-650.

Silvertown, J., and R. Law. 1987. Do plants need niches? Some recent developments in 
plant community ecology. Trends in Ecology and Evolution 1: 24-26.

Sommer, S., R. Piscia, M. M. Manca, D. Fontaneto, A. Ozgul. 2016. Demographic cost 
and mechanisms of adaptation to environmental stress in resurrected Daphnia. 
Journal of Limnology 75: 30-35.

Southwood, T. R. E., and G. A. Norton. 1973. Economic aspects of pest management 
strategies and decisions. In: Insects: Studies in Pest Management. Ecological 
Society of Australia, Canberra pages 168-184.

Stevens, M. T., E. L. Kruger, R. L. Lindroth. 2008. Variation in tolerance to herbivory is 
mediated by differences in biomass allocation in aspen. Functional Ecology 22:
40-47.

Thornley, J. H. M. 1995. Shoot: root allocation with respect to C, N, and P:  An 
investigation and comparison of resistance and teleonomic models. Annals of 
Botany (London) 75:391-405.

Tilman, D. 1994. Competition and biodiversity in spatially structures habitats. Ecology 
75: 2-16.

Tipping, P. W., M. R. Martin, P. D. Pratt, T. D. Center, M. B. Rayamajhi. 2008.  
Suppression of growth and reproduction of an exotic invasive tree by two 
introduced insects. Biological Control 44:235-241.

Tipping, P. W., M. R. Martin, K. R. Nimmo, R. M. Pierce, M. D. Smart, E. White, P. T. 
Madeira, T. D. Center.2009. Invasion of a West Everglades wetland by 
Melaleucaquinquenervia countered by classical biological control. Biological 
Control 48:73-78.

Tipping, P. W., M. R. Martin, R. Pierce, T. D. Center, P. R. Pratt, and M. B. Rayamajhi. 
2012.  Post-biocontrol invasion trajectory for Melaleuca quinquenervia in a 
seasonally inundated wetland. Biocontrol 60:163-168.

Tipping, P. W., M. R. Martin, P. D. Pratt, M. B. Rayamajhi, and T. D. Center.  2013. An 
abundant biocontrol agent does not provide a significant predator subsidy.  
Biocontrol 67:212-219.

Trumble, J. 1993. Plant compensation for arthropod herbivory. Annual Reviews 
entomology 38: 93-119.



117 
 

 
 

Turner, C. E., T. D. Center, D. W. Burrows, and G. R. Buckingham. 1998. Ecology and 
management of Melaleuca quinquenervia, an invader of wetlands in Florida, 
U.S.A. Wetlands Ecology and Management 5: 165-178.

Van Gils, J.A., P. Edelaar, G. Escudero, T. Piersma. 2004. Carrying capacity models 
should not use fixed prey density thresholds: a plea for using more tools of 
behavioural ecology. OIKOS 104: 197-204.

Van Ha, C., M. A. Leyva-Gonzalez, Y. Osakabe et al. 2013. Positive regulatory role of 
strigolactone in plant responses to drought and salt stress. Proceedings of the 
National Academy of Sciences 111: 851-856.

Van, T. K., M. B. Rayachhetry, and T. D. Center.  2000.  Estimating above-ground 
biomass of Melaleuca quinquenervia in Florida, USA.  Journal of Aquatic Plant 
Management 38:62-67.

Van, T. K., M. B. Rayachhetry, T. D. Center, and P. D. Pratt.  2002. Litter dynamics and 
phenology of Melaleuca quinquenervia in South Florida.  Journal of Aquatic 
Plant Management 40:22-27.

Vasconcellos, M. and M. A. Gasalla. 2001. Fisheries catches and the carrying capacity of 
marine ecosystems in southern Brazil. Fisheries Research 50: 279-295.

Watkinson, A. R., and W.J. Sutherland. 1995. Sources, sinks and pseudo-sinks, Journal of 
Animal Ecology 64: 126-130.

Williamson M. 1999. Invasions. Ecography 22:5-12.

Wilson, H.B. 2001. The evolution of dispersal from source to sink populations.
Evolutionary Ecology Research 3: 27-35.

Wilson., J. B. 1988. A review of evidence on the control of shoot:root ratio in relation to 
models.  Annals of Botany (London) 61:433-449.

Yu, D.W., H.B. Wilson, N.E. Pierce. 2001 An empirical model of species coexistence in 
a spatially structured environment. Ecology 82: 1761-1771.

Zhang, B. X. Liu, D.L. DeAngelis, W. Ni, G. Geoff Wang. 2015. Effects of dispersal on 
total biomass in a patchy, heterogeneous system: Analysis and experiment, 
Mathematical Biosciences 264: 54-62.

Zhao, J., and J. Chen. 2012. Interspecific variation in compensatory regrowth to 
herbivory associated with soil nutrients in three Ficus (Moracear) saplings. Plos 
One 7: 1-9.



 
 

118 
 

Appendices

Appendix 1. Spatially discrete environment with parameters ri and Ki for Chapter 2

Use of two parameters, r and K, rather than the single parameter, g, differs from the 

mathematical model (1), but can still produce the results found by Lou (2006) if ri and Ki

scale in proportion.  To show that, we can write the equilibrium equation for one 

compartment in a general n-compartment model with terms
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and with periodic boundary conditions; Xn+1 = X1 .

Dividing by Xi and summing over n, we obtain
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We can manipulate the left hand side of (A1.3) as follows
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From using (A1.4) in (A1.3) we find that
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from which it follows that 
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Our goal is to determine the conditions under which Xi increases from its equilibrium 

value of Ki as D increases.  Note that (A1.6) does not imply that  
n,i

ii KX
1

0 .

However, if ri and Ki scale in proportion (that is, if the growth rate is proportional to the 

carrying capacity at a fixed constant, say r/K), then it follows that
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In this case, ri/Ki is equivalent to a single parameter gi .We can further deduce that 

ni
itotal XX

,1
will always increase initially as D increases from zero, by taking the 

derivative of equation (A1.7) with respect to D:
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The right hand side of (A1.8) is positive for D = 0, which implies that Xtotal will initially 

increase.  It must also eventually decrease, because it can be shown that

Xi Xmean (for all i), where 
ni

imean X
n

X
,1

1 .

It is shown in Appendix 2 that more general criteria can be found for Xtotal increasing

with increasing values of D.
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Appendix 2:  Criterion for Xtotal to increase as D increases from zero for Chapter 2

The objective is to show that

0
1 1
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n,i ii
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(A2.1)

(Criterion 7 in text) is a sufficient condition for xtotal to increase as D increases from zero.  

It is straightforward to demonstrate that this holds for any n.

To show that, we again write the equilibrium equation for one compartment in a 

general n-compartment model with terms
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Multiplying both sides by Ki /riXi and summing over n, we obtain

02
2 ,1,1 ,1

11
ni

i
ni ni

iiii
ii

i XKXXX
Xr

KD
(A2.3)

or

)(2
2 ,1 ,1

11 i
ni ni

iiii
ii

i KXXXX
Xr

KD
(A2.4)

Our goal is to determine the conditions under which Xi increases from its equilibrium 

value of Ki as D increases. To determine this, we differentiate both sides of (A1.3) to 

obtain
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Setting  D = 0, and Xi = Ki (i = 1,n) , we obtain
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Now we use a general formula for integration by parts
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Because an+1 = a1 and b0 = bn , the first two terms in the last line cancel and we have
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Let ai = Ki – Ki-1, and bi = 1/ri, and use (A1.5) in (A1.4) to determine that
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Equation (A1.6) implies that if the relationship between the ri s and Ki s is such that the 

right hand side of (A1.6) is greater than zero, then Xtotal will increase with an increase in 

D, at least in the vicinity of the equilibrium point Xi = Ki (i=1,n).This suggests a general 

criterion for xtotal to increase with D for any value of n.



 
 

124 
 

Appendix 3. Outline of proof of Criterion 9 for Chapter 2

A criterion parallel to (7) can be found for the spatially continuous one-dimensional form 

with r(s) and K(s); that is, for

)s(X
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s
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2

, (A3.1)

where r(s) > 0  and K(s) > 0 and both are continuous and non-constant in a bounded 
Neumann (zero flux) boundary conditions are assumed.  Denoting the solution 

at equilibrium still by X(s), i.e;

01
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XX)s(rXd (A3.2)

in a paper in preparation, the criterion for Xtotal, )s(XX total , to increase for small 

increases in D from zero is now,
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or, more generally
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A full proof for this result will be given in the paper in preparation.  However, we note 

here that at equilibrium it is shown that the solution, X(s), approaches K(s) at all points in 

D r(s)X(s)/K(s), and integrating over 
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Appendix 4: for Chapter 3

We used a Monod curve to describe the relationship between Trp concentrations and 

corresponding growth rate (r) when there was no Cyh added in the growth curve 

measurement, using MATLAB R2015a. The Monod function is: r = rmax*[Trp]/(k+[Trp]), 

where rmax is the asymptotic growth rate under infinite resources, [Trp] is the initial Trp 

concentration, and k is the half-saturation coefficient, defined as the value of [Trp] where 

r = rmax/2. A Monod curve for the yeast growth rate as a function of Trp was fit, as shown 

in Fig.S1, indicating that Trp was the limiting amino acid nutrient for the strain, 

especially when Trp concentration, Trp, was lower than 73.4 mg/L. Therefore, we set 

73.4 mg/L as the optimal growth concentration. 
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Figures

Figure S4.1 The monod fit of the corresponding essential amino acid tryptophan 
(Trp) concentrations and corresponding growth rate (r). r = 0.02718*[Trp]/(10.3+[Trp]), 
R2 = 0.7860.
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Figure S4.2 Schematic of experimental non-diffusion protocol. Represented is a 
single spatially distributed “population” composed of one row of 12 wells in a 96-well 
microtitre plate. Each circle is a single well. Color of a well represents nutrient (Trp) 
concentration. Alternating white/blue wells represents the heterogeneous environment 
treatment, while the population on the bottom of figure with all light blue wells 
represents the homogenous nutrient treatment. The initial yeast population had 24 hours 
growth at 30 oC, followed a transfer event that all the yeast with media was moved to the 
same well from original plate (plate 1) to the new empty plate (plate 2). After the transfer, 
plate 2 was centrifuged to create a yeast pellet at the bottom in each well, old media was 
removed and fresh media was added. The yeast population underwent another 24 hours 
growth, then the previous processes was repeated, until Day 9. 
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Figure S4.3 The total yeast population measured every 24 hours (1 day) with (filled 
triangles) and without dispersal (unfilled triangles), with four levels of cycloheximide 
(Cyh) in the heterogeneous condition: (a) 0 nM; (b) 50 nM; (c) 200 nM and (d) 400 nM. 
The dispersal rate is 0.06. Insets (a), (b), (c) and (d): the averaged final yeast 
subpopulation in the low nutrient wells (1.468 mg/L of Trp) (filled dots) and in the high 
nutrient wells (44.04 mg/L of Trp) (unfilled dots), with dispersal (D) and without 
dispersal (ND), with four levels of cycloheximide (Cyh) in the heterogeneous scenario (0 
nM, 50 nM, 200 nM and 400 nM). Cyh: cycloheximide, Trp: tryptophan. OD 600: optical 
density.
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Figure S4.4 The total yeast population measured every 24 hours (1 day) with (filled 
triangles) and without dispersal (unfilled triangles), with four levels of cycloheximide 
(Cyh) in homogeneous condition: (a) 0 nM; (b) 50 nM; (c) 200 nM and (d) 400 nM. The 
dispersal rate is 0.06. Insets (a), (b), (c) and (d): the averaged final yeast subpopulation in 
medium nutrient well (22.2 mg/L of Trp) with dispersal (D) and without dispersal (ND) 
(unfilled dots), with four levels of cycloheximide (Cyh) in homogeneous scenario (0 nM, 
50 nM, 200 nM and 400 nM). Cyh: cycloheximide, Trp: tryptophan. OD 600: optical 
density.
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Appendix 5: Mathematical models and analysis for diffusion for Chapter 3

A general pair of equations for a consumer-resource system with external 

resource input is, for consumer, u(x,t), nutrient, n(x,t) ;

2
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input ,
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where u(x,t) is the consumer biomass, n(x,t) is the nutrient, Ninput(x) 

is the loss rate of nutrient from the system, r is the maximum growth rate, k is the half-

utrient per unit biomass, and D is the 

diffusion rate. 

We use a spatially discrete, or patch version of this model in the following, so the 

equations for each patch are;
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(B2b)

Wraparound conditions joining patches i=1 and i=n are not assumed in order to be 

consistent with the experment.

Two special cases of this model were analyzed:

mi > 0, gi = 0 for all i mi = 0, gi > 0 for all i.
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Model 1 is a chemostat type model. In Model 2 it is assumed that nearly all of the 

nutrients are taken up by the yeast and that dead yeast cells are assumed to accumulate at 

a rate 2* )( ii Ug . The yeast cells are not physically lost, but they stop reproducing, with no 

recycling of nutrients. These models are intended only to provide possible qualitative 

pictures of the nutrient-yeast dynamics. 

Our objective is to test mathematically Hypotheses 1, 2, and 3 of the main text. 

Using realistic models of a consumer and an exploitable resource in a spatial environment, 

we text whether a diffusing population in an environment with heterogeneously 

distributed resources can be greater than a non-diffusing population (Hypothesis 1), and 

whether this occurs when the consumer’s growth rate is positively related to the effective 

carrying capacity (Hypothesis 2). The we test whether the total population dispersing in 

the heterogeneous system can be greater than the total population when the nutrient 

inputs are spread homogeneously in space (Hypothesis 3).  To determine these, it is 

easiest to analyze this model mathematically for conditions in which the consumer is 

well-mixed across identical patches or spatial cells; that is, for D

from numerical evaluations to be a good approximation for the case of smaller diffusion 

rates, D (see under Model 2 below). 

Consider the patch model, equations (B2a, b), where patches have biomasses 

represented by the variables U1, U2,  … , Un (for example, number of yeast cells per patch) 

and the nutrients N1 , N2, … , Nn (for example, milligrams nutrient per liter in each patch).  

Let D approach very large values (D iiiii UgmNkrND )/( .

When the system is at equilibrium, in this limit, it holds that 0*
1

*
ii UU for all i.  This 

must be true, because iiiii UgmNkrN )/( is bounded to finite values for all values 
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of Ui when only non-negative values are considered. To determine the total biomass at 

equilibrium in this limit, we can write a set of equilibrium conditions as follows. 

ZUUU n
**

2
*
1 ... to obtain at steady state,

)()2/1()()2/1(])/([ *
1

***
1

**
iiiiiiii UUDUUDZZgmNkrN (i = 2, … , n-1),

(B3)

plus the two end patches, which connect by diffusion only to one adjacent patch.

When the n equations (B3a) are added together, all of the terms on the right-hand side 

cancel, and we obtain the equation 

n
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(B4)

which can be solved for the non-zero value of Z.  Then the total population of the n-patch 

system is equal to nZ.  However, unlike the case studied by DeAngelis et al. (2016), in 

which there was only one differential equation, in this case there is also the equation for 

the nutrients, equation (b3b). If (B4) is true, it must also be true that  

n
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i
iiinput Nk
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This means that the equilibrium values of Ni , or *
iN , will be affected by D

in such cases it is frequently possible to solve for Z and 
n

i i

i

Nk
rN

1
*

*

simultaneously, 

using (B4) and (B5) (see Model 2 below). We consider two possible models of the 

experimental system.
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Model 1.

Model analysis: Consider the mode mi > 0, gi ;
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(wraparound conditions not assumed). First, we solve for equilibria of this model for each 

patch when there is no dispersal; i.e., D = 0. There is one non-trivial equilibrium
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We refer to the calculated equilibrium size, or patch carrying capacity, for each patch, as 

*
iU , and thus the total summation, 

n

i
itotal UU

1

** .  The value *
totalU is the total population 

size in the absence of dispersal, which can be referred to as ‘total carrying capacity in the 

absence of dispersal’ (called TPophetero,no diff in the text);

n

i

n

i i

iiinput
itotal m

NN
UU

1 1

*
,** )(

where    
i

i
i mr

kmN * .

(B8a,b)

The total equilibrium population when dispersal is allowed is the number of patches, n,

multiplied by the population on each patch, which in the well-mixed case of D Z;

this is found from (B6b) when ZUUU n
**

2
*
1 ... ;
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The value nZ (called TPophetero,diff in the text) is the total population size in the presence 

of dispersal. (Note that it is important that in summing over (A6b) we sum over the 

*
, iiinput NN and 

)( *

*

i

i

Nk
rN

separately to solve for Z, because the individual consumers 

are assumed to move rapidly across all patches in the domain such that they are exposed 

to averages of *
, iiinput NN and 

)( *

*

i

i

Nk
ZrN

).

Model results:

Using expressions (A8a) and (A9a) we can plot the values of total carrying 

capacity in the absence of dispersal, *
totalU , and total population size with high dispersal, 

nZ , as functions of parameters.  Here we first examine the effects of the values of mi,

which we assume could be different for the low nutrient than from the high nutrient input 

wells, where Ninput,i = 0.6 in the high input wells (even-numbered in the yeast experiment), 

and Ninput,i = 0.02 in the low input wells (odd-numbered in the experiment). We refer to 

the mortality rate in the high nutrient wells as mhighnutrient  and set that to 0.006. The 

mortality rate in the low nutrient wells, mlownutrient , is allowed to vary. In Figure B1, *
totalU

TPophetero,no dif and nZ TPophetero,diff are plotted as functions of mlownutrient (odd-

numbered wells). 
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Figure S5.1. Total carrying capacity in the absence of dispersal, TPophetero,no diff (blue 
curve) and total population size with dispersal, TPophetero,diff (green curve) as functions of 
the mi value for the low nutrient input wells, mlownutrient (odd-numbered wells in 
experiment), for fixed value of mi = 0.006 for the high nutrient input wells, mhighnutrient 
(even-numbered wells). For simplicity, the other parameters have been set to r = 0.1, k =

iinputN , = (0.02, 0.6, 
0.02, 0.6, 0.02, 0.6, 0.02, 0.6, 0.02, 0.6, 0.02, 0.6).  

Figure S5.1 shows that the region where TPophetero,diff > TPophetero,no diff is bounded 

from the regions where TPophetero,diff < TPophetero,no diff by the lower value of about 

mlownutrient = 0.0002 and the upper value  mlownutrient = 0.006. We can ask whether this can 

be predicted from the expressions for total carrying capacity (population size in the 

heterogeneous environment without dispersal), TPophetero,no diff, and the total population 

size with dispersal, TPophetero,diff. This would be consistent with the local growth rate and 

carrying capacities being positively correlated with growth rate. These have the values                   

Carrying capacity = 
i

iiinput
i m

NN
U

*)
,* (

Growth rate = i
i

i m
Nk

rN
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It can be shown numerically that when mlownutrient crosses a threshold of about 0.0002, the 

sign of the slope of */ ii Um changes from negative to positive, and when mlownutrient crosses 

the threshold of 0.006, the sign of the slope of */ ii Um changes from positive to negative, 

so the sign of the slope of the ratio of local growth rate to local carrying capacity is 

related to whether total population is greater than total carrying capacity or not. 

It is clear then that under certain conditions, when local carrying capacities and 

growth rates are heterogeneous and positively correlated, it is advantageous to disperse to 

achieve a higher total population size than total carrying capacity; i.e., to achieve 

TPophetero,diff > TPophetero,no diff.  This answers the first question, related to Hypothesis 1, in 

the affirmative.  It is also consistent with Hypothesis 2, as the growth rate and carrying 

capacity are positively related over the region in which TPophetero,diff > TPophetero,no diff.

These can be proven formally in the same way as in the appendices in DeAngelis et al. 

(2016). However, our third question was whether, when the nutrient input rates, iinputN , ,

are heterogeneously distributed, the total population size, TPophomo can exceed the total 

population size when the inputs are homogeneously distributed (Hypothesis 3).  It is easy 

to show that the answer to that question is complex.  Consider (B8a) and (B9a) again and 

assume that the values of iinputN , are homogeneously distributed. The two forms of 

TPophomo, with diffusion (TPophomo, diff )  and without (TPophomo, no diff ) are different.  

TPophomo, diff, is the same as expression (B9a), because 

n

i
imeaninput

n

i
iiinput NNNN

1

*
,

1

*
, )()( , so TPophomo, diff coincides with TPophetero,diff

(green curve in Figure B1). But in the case of no diffusion,
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n

i i

imeaninput
diffnoo m

NN
TPop

1

*
,

,hom

)(
where  

i

i
i mr

kmN * .

It can be shown formally that TPophetero,diff < TPophomo,no diff for any parameter values mi

(see Appendix C for a formal proof of a similar statement for Model 2).  Here we show 

this numerically by evaluating this case of homogeneous nutrient input for the same case 

that was shown in Figure S5.1. For the homogeneous case we obtain the red curve shown 

in Figure B2, which is always above the curve for the population diffusing in the 

heterogeneous environment. 

Figure S5.2.  This is the same as Figure B1, but with the additional evaluation of total 
population for the case that the nutrient inputs are uniformly distributed, TPophomo,no diff,
with values of Ninput,I such that  iinputN , = (0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 
0.31, 0.31, 0.31, 0.31).   This is shown with the added red curve. The blue and green 
curves are the same as in Figure B1.  TPophomo, diff coincides with TPophetero,diff .  Note, 
however, that it is possible, if values of mlownutrient exceed 0.006, then TPophomo <
TPophetero,no diff. Whether this condition on mlownutrient can occur is not known. 
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Model 2

mi = 0, gi > 0.

)
2
1

2
1( 11

2
iiiii

i

iii UUUDUg
Nk
UrN

dt
dU (i=1,n)

(B10a)

)(,
i

ii
iinput

i

Nk
UrNN

dt
dN (i=1,n) .

(B10b)

First, we solve for equilibria of this model when there is no dispersal; i.e., D = 0. There is 

a single non-trivial equilibrium;

2/1
,

*

*
*

)( i

iinput

ii

i
i g

N
Nkg

rNU where    2/1

2
,

2/1

2
.

*

1
r
Ng
r
Ng

k
N

iinputi

iinputi

i .

(B11a,b)

Then the total population size at equilibrium without dispersal is     

n

i

n

i i

iinput
itotaldispnohetero g

N
UUTPop

1 1

2/1
,**

, .

(B12)

The total equilibrium population when diffusion is allowed is the number of patches, n,

multiplied by the population on each patch, which in the well-mixed case of D Z.

If we use (B10a) and use the same methods as in Model 1, we obtain



140 
 

 
 

n

i
i

n

i i

i

g

Nk
rN

Z

1

1
*

*

(B13)

However, we could also use (B10b) to obtain

n

i i

i

n

i
iinput

Nk
rN

N
Z

1
*

*
1

,

)(

(B14)

Therefore, we have to solve these for Z and 
n

i i

i

Nk
rN

1
*

*

simultaneously to obtain

2/1

1

1
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n

i
i

n

i
iinput

g

N
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2/1

1
,

11
*

* n

i
iinput

n

i
i

n

i i

i Ng
Nk

rN

(B15a,b)

Using expressions (B12) and (B15a) we can plot the values of total carrying capacity 

without dispersal, TPophetero,no diff , and total population size nZ TPophetero,diff as a 

function of parameters.  Here we first examine the effects of the values of gi, which may 

differ between high and low nutrient wells. In Figure 5 (main text) and Figure B3 below 

TPophetero,no diff and TPophetero, diff are plotted as functions of the gi (or glownutrient ), the value 

for the low nutrient input wells (odd wells), while the value of gi (or ghighnutrient) = 0.001 

for the high nutrient input wells (even wells).

In Figure S5.3 the region where TPophetero, diff > TPophetero,no diff can be seen to be 

bounded from the regions where TPophetero, diff < TPophetero,no diff by a value of roughly the 
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lower value  glownutrient = 0.000038 and the higher  value   glownutrient = 0.0023. We can ask 

the question of whether these regions can be predicted from the expressions for total 

carrying capacity (population size in heterogeneous environment without dispersal),

TPophetero,no disp , and total population size in heterogeneous environment with dispersal, 

TPophetero,disp ;

n

i

n

i i

iinput
inodiffhetero g

N
UTPop

1 1

2/1
,*

, and   

2/1

1

1
,

, n

i
i

n

i
iinput

diffhetero

g

N
nnZTPop .

(B16a,b)

As in Model 1, this shows that under certain conditions, when local carrying capacities 

and growth rates are heterogeneous and positively correlated, a larger population size can 

result when the population disperses than when it does not, confirming Hypotheses 1 and 

2.  These can be proven formally in the same way as in appendices of DeAngelis et al. 

(2017).

However, also as in Model 1, when the nutrient input rates, iinputN , , are 

heterogeneously distributed, the population, when dispersing, cannot exceed the total 

population size when the same inputs are homogeneously distributed.  There are two 

different expressions for  TPophomo ; with diffusion TPophomo, diff and without diffusion 

TPophomo,no  diff . TPophomo, diff = TPophetero, diff because 
n

i
meaninput

n

i
iinput NN

1
,

1
, . Therefore. 

TPophomo, diff coincides with TPophetero, diff . However, this is true only for D

D is close to zero, it can be shown (Appendix C) that TPophomo, diff > TPophetero, diff when 
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glownutrient < ghighnutrient , but TPophomo, diff < TPophetero, diff when glownutrient < ghighnutrient .

Equality holds only when glownutrient = ghighnutrient . The expression for TPophomo,no  diff is  

n

i

n

i i

meaninput
iogeneousdiffnoo g

N
UTPop

1 1

2/1
,*

,hom,hom .

(B17)

If (B16b) and (B17) are compared, it can be shown that in this case that it is always true 

that TPophetero, disp < TPophomo.  This is also demonstrated numerically Figure B3, with a 

curve (red) added corresponding to *
totalU calculated for the case that the inputs iinputN , are 

distributed uniformly among the patches, and there is no diffusion but adding up to the 

same total input as in the case in the heterogeneous case, , i.e., TPophomo,no  diff.

Figure S5.3. Total carrying capacity TPophetero,no diff (blue curve), total population size
TPophetero,diff (green curve), and total population for homogeneously distributed inputs 
(red curve), TPophomo, diff, as functions of the gi value for the low nutrient input wells, 
glownutrient , (odd wells) for fixed value of the gi = 0.001 for the high nutrient input wells,
ghighnutrient (even wells). TPophomo, diff coincides with TPophetero, diff for D
simplicity, the other parameters have been set to r = 0.1, k
nutrient inputs are distributed heterogeneously; iinputN , = (0.02, 0.6, 0.02, 0.6, 0.02, 0.6, 
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0.02, 0.6, 0.02, 0.6, 0.02, 0.6). For the red curve the nutrients are distributed 
homogeneously now; iinputN , = (0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 
0.31, 0.31)
Box 1

Model 1

Total population, heterogeneous diffusion =
n

i

n

i i

iiinput
idiffusionno m
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1 1
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(B18a)

Total population, heterogeneous with diffusion = n

i
i

n

i
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Total population, homogeneous no diffusion =
n
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where  
i

i
i mr

kmN * and  
n

i
iinputmeaninput nNN

1
,, /

(B18d,e)

Model 2

n
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Total population, homogeneous no diffusion =
n
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Appendix 6:  Mathematical models and analysis for diffusion D small. for Chapter 3

In Appendix 5 we found expressions for TPophetero,disp, TPophetero,no  disp and

TPophomo in the limit  that the diffusion rate, D, is very large, showing that there are 

parameter ranges where TPophetero,disp > TPophetero,no  disp in a heterogeneous environment, 

but where TPophetero,disp < TPophomo is always true. Here we consider the opposite limit, 

where D is very small and show that in this case TPophetero,disp < TPophomo is always true.

The continuous form of the equations is; 

2),()(),()(
),(

),(),(),(),( txuxgtxuxm
txnk

txutxnrtxuD
t

txu

(C1a)
)),((
),(),(),()(),(

txnk
txutxrntxnxN

dt
txdn

input ,

(C1b)

m(x) = 0, and g(x) > 0 and continuous. The steady 

state is 

)(
)(

)( *

*
max

xNk
xNr

xNinput (C2a)

0)()(
)(
)(

)()( *
*

*
max** xuxg

xNk
xNr

xuxuD 0uv on . (C2b)

Ninput(x) and g(x) are positively related, then TPophomo,diff > TPophetero, diff

for D small.

Substituting (C2a) into (C2b), and omitting the steady state symbols * henceforth, 

we have

0)()()( 2uxgxNxuD input (C3a)
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0)(xuv on . (C3b)

For simplicity, we denote R(x) Ninput(x); i.e, (C3.a.b) becomes

0)()()( 2uxgxRxuD [R(x), g(x) both > 0 on ] (C3a)

0)(xu on . (C3b)

It can be shown by standard arguments that (C3a,b) has a unique positive solution, 

denoted by uD. Now we are interested in the behavion of uD for D > 0 small.

Proposition 1. As 0, uD K uniformly, where )(/)()( xgxRxK : more precisely, 

0D small, such that 
)(LD Ku for all  0 < D < D .

K such that 0Kv on , and 

KKK
2

2
2

2
KgRKDKgRKD

0
4
1

4
2

2
2 gKgKDKKgRKD

if  D > 0 0 is fixed).  Thus K is an upper solution.

Similarly, choosing K̂ such that 0K̂v on and 

(0 < ) K – < K̂ <
2

K on

Then we have 
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ˆ gKgKDKKgRKD

0
4

ˆ KgKD

for D sufficiently small; i.e., K̂ is a lower solution.  By the uniqueness of uD we 

conclude 

KuK D
ˆ , and our assertion is established.

Next we compare uD to the solution of vD of the following model:

0))(()( 2vxgRxvD in (C4a)

0)(xv on , (C4b)

where dxxRR )(1 is the average of R.  Our main result is the following.

Proposition 2. For D small, DD vu provided that R and g are positively correlated.

To prove this, we first prove the corresponding result for D following:

Lemma.
g
R

g
R if R and g are positively correlated; furthermore, the strict 

inequality

holds if either R or g is not a constant.

(Pf.)  If R and g are positively correlated R and 
g
1

are negatively correlated 
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g
R

g
R

g
R 11 (inequality by Prop. A.3(ii), p. 451, DeAngelis et  

al. 2016a)

=
g
R

g
R 1 since R is a constant.

Now, Proposition 2 follows readily from the lemma above and Proposition 1.

Remarks. (1) Similarly, the discrete versions of Propositions 1 and 3, as well as the 

lelmma above, also hold for any number of “wells/compartments”.

(2) Comparing the above proof for Proposition1 to previous arguments (DeAngelis et al. 

2016b), the proof here allows a more general K(x), but produces less precise estimates. 

(In DeAngelis et al. 2016, it is actually required that 0K on , which was 

inadvertently omitted.)

(3) If R and g are negatively correlated, then the inequality in Proposition 2 is reversed.

References
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Appendix 7 Descriptions of scenarios, for chapter 4

Scenario 1. Simulations of both cypress swamp and bay swamp  natural communities, 

without melaleuca, were run over long periods of time (300 years) to reach its stable state 

(a stochastic equivalent of steady state, meaning that the forest variables vary over time, 

but within a finite and non-zero range). The purpose of these scenarios was to calibrate 

the simulated density ratio and size distributions of native species in the two swamps with 

Casey and Ewel (2006), to establish that JABOWA-II was accurately modeling the 

natural communities.

Results of scenario 1. In simulations of densities and basal areas of five woody plant 

species grown together without melaleuca in cypress swamp, pond cypress was the 

dominant species over the long term. Simulation results showed that pond cypress 

increased in stem density to a maximum range of 80 - 90 trees/100m2 (Figure S7.1a, 

density is log scale), and its basal area reached about 60 cm2/m2 (Figure S7.1b, basal area 

is log scale). The simulations also showed slash pine reaching the second highest density 

of about 40 trees/100m2. The other simulated species reached only low densities, with 

dahoon holly being nonexistent. The percentage stem numbers of pond cypress, slash 

pine, sweet bay and loblolly bay in cypress swamp were 54%, 43%, 1% and 1%, 

respectively, when the simulated community reached its stable state (Figure S7.1a). The 

simulated basal areas of pond cypress agreed with Ewel and Wickenheiser’s (1988) 

empirical measurements of  40-66 cm2/m2 in basal area, while the simulated maximum 

values of stem density were greater than their empirical values of 8.8 – 26.4 trees/100m2.
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It is likely that the pond cypress measured in the field included larger individuals than the 

simulated ones. The simulated density of slash pine coincided with what Jokela and 

Martin (2000) found, which was a maximum of 40 trees/100m2. The empirical stem

number percentages of pond cypress, slash pine, sweet bay and loblolly bay in cypress 

swamp based on Casey and Ewel (2006) were 33%, 15%, 6% and 3%.  

When the simulated community had reached stable status in bay swamp, loblolly bay had 

the highest density (110 trees/100m2 maximum), and sweet bay had the second highest 

density (55 trees/100m2 in maximum) (Figure S7.1c, density is log scale). However, 

sweet bay had a higher basal area (15 cm2/m2 maximum) than loblolly bay, which was 

about 10 cm2/m2 (maximum), as the individual loblolly bay were generally smaller 

(Figure S7.1d, basal area is log scale). Pond cypress, slash pine and dahoon holly 

occurred at lower stem and basal area densities in the simulations of this habitat. The 

simulated stem number percentages of pond cypress, slash pine, dahoon holly, sweet bay 

and loblolly bay in bay swamp were 2.5%, 2.5%, 5%, 40% and 50%, respectively (Figure 

S7.1c). An empirically measured basal area of sweet bay was close to 6 cm2/m2 (Clewell 

et al. 2000) and an empirical basal area of loblolly bay with close to 4.64 cm2/m2

(Gresham and Lipscomb 1985). The empirical stem number percentages of pond cypress, 

slash pine, dahoon holly, sweet bay and loblolly bay in bay swamp based on Casey and 

Ewel (2006) were 8%, 6%, 0%, 21% and 23%.
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Table S7. 1: differences in the initial conditions of cypress swamps and bay swamps 

in the model (only included are the environmental variables that were used in the 

model)

Cypress swamps Bay swamps

Site environmental condition(Casey and Ewel, 2006)

Soil depth (organic matter 

depth)

54 cm 232 cm

Standing water depth 20 cm 8 cm
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Table S7. 2. Estimates of key parameters for a list of selected species. These input 

parameters for the model were estimated using the methods described by Botkin 

(1993). 

Species 

name

S N dbhmax Htmax Amax G SAP

(cypress 

swamps)

SAP 

(bay 

swamps)

b2 b3

Melaleuca 
quinquenervi
a

1 1 90 2540 200 400 5000 10000 53.

4

0.3

00

Fagus 

grandifolia 

Ehrh

2 3 150 4000 100 240.7 50 5 38.

2

0.1

3

Taxodium 

distichum 

(L.) Rich.

2 2 365 4600 162 140.4 50 5 24.

5

0.0

3

I.cassine 3 2 62 1200 144 120.0 0 5 34.

29

0.2

8

M. 

virginiana

2 2 128 1066 100 100 2 50 14.

51

0.0

6

G. lasianthus 3 3 64 2000 100 100 2 94 58.

2

0.4

54

In Table S7. 2 the symbols are: S, shade tolerance; N, nitrogen tolerance; dbhmax,

maximum diameter at breast height (cm) and Htmax, maximum height (cm); Amax, 
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maximum age (years); G, growth rate scaling coefficient determining how rapidly a tree 

growing under optimum conditions reaches one-half its maximum size or inflection 

point(G= 5Htmax max/dbhmax); SAP, maximum number of saplings of species that can 

be added in any one year to the 0.1 hectare plot, which have different values in cypress 

and bay swamps; b2 and b3, are derived parameters relating height to dbh. 
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Table S7. 3: Table of all parameters values for each species needed in JABOWA-II

Common 
name Scientific name S N

SAP
(cypress 
swamps)

SAP
(bay 
swamps) R C

Paper-bark 
tree

Melaleucaquinquener
via 1 1 5000 10000 400 0.1

Slash pine Pinuselliottii 2 3 30 5 240 0.1
Pond 
Cypress Taxodiumdistichum 2 2 40 5 142 0.1
Dahoon 
holly Ilex cassine 3 2 0 5 120 0.1
Sweet bay Magnoliavirginiana 2 2 2 50 40 0.2

Loblolly bay Gordonialasianthus 3 3 2 94 100
0.0

1

Common 
name References
Paper-bark 
tree

Rayachhetry et al. 2001; Serbesoff-King et al, 2003; 
Tipping et al, 2013; Tipping, personal communication

Slash pine
Gower et al. 1994; Teskey et al. 1994; 
Jokela and Martin 2000; Cao et al. 2000; Plant Guide USDA; 

Pond 
Cypress

Kurz and Wagner 1953; Mitsch and Ewel, 1979; Ewel and Wickenhezsr, 1988; 
Casey and Ewel, 2006; USDA NRCS plant data

Dahoon 
holly Grelen 1990; Ernst and Brooks 2003

Sweet bay
Grelen 1990; Casey and Ewel 2006;
Missouri Vitanical Garden (http://www.missouribotanicalgarden.org/)

Loblolly 
bay

Landman et al, 1999; Grelen 1990; Casey and Ewel, 2006; 
http://www.nativetreesociety.org

Commo
n name DMAX HMAX AMAX AINC DDMIN DDMAX DT

WLTM

AX LTMIN
Paper-
bark 
tree 110 2540 200 0.01 2000 55300 0.2 0.5 0.1
Slash 
pine 150 3000 100 0.01 2000 55300 0.5 0.1 0.5
Pond 
Cypress 365 4600 162 0.01 2000 55300 0.4 0.9 0.5
Dahoon 
holly 62 1200 144 0.01 2000 55300 0.6 0.5 0.1
Sweet 
bay 128 1066 100 0.01 2000 55300 0.5 0.274 0.5
Lobloll
y bay 64 2000 100 0.01 2000 55300 0.5 0.247 0.1
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Figure. S7. 1. Results of scenario 2 with error bars for 50 replicate simulations. a.
Projected  densities  of woody plant species at different stages of stand development in 
melaleuca invaded cypress swamps of Florida with and without biocontrol. b. Projected  
basal area  of woody plant species at different stages of stand development in melaleuca-
invaded cypress swamps of Florida with and without biocontrol. c Projected woody plant 
species which had low basal area for better view. Red circles: melaleuca; green 
trianglesup: slash pine; blue squares: pond cypress; purple diamonds: sweet bay; black 
trianglesdown: loblolly bay; filled color: no biocontrol is applied for 600 years; unfilled 
color: biocontrol is applied at year 300. Arrows show when biocontrol starts to be applied.
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Figure. S7. 2. Results of scenario 4 with error bars for 50 replicate simulations. a.
Projected  densities  of woody plant species at different stages of stand development in 
melaleuca invaded bay swamps of Florida with and without biocontrol. b.Projected 
woody plant species which had low densities level than melaleuca for better view. c.
Projected  basal area  of woody plant species at different stages of stand development in 
melaleuca-invaded bay swamps of Florida with and without biocontrol. Red circles: 
melaleuca; pink trianglesdown: slash pine; blue squares: pond cypress; black diamonds: 
dahoon holly; green trianglesup: sweet bay; purple hexagons: loblolly bay; filled color: 
no biocontrol is applied for 600 years; unfilled color: biocontrol is applied at year 300. 
Arrows show when biocontrol starts to be applied.
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Figure. S7. 3. Result of scenarios 5-6 with error bars included for 50 replicate 
simulations. a. Projected  densities  of pure melaleuca  stand with and without biocontrol. 
b. Projected  basal area  of pure melaleuca stand with and without biocontrol. The red 
dashed represents simulation data without application of biocontrol and the solid lines 
represent simulation results with biocontrol, starting from different size stages. Black line 
shows biocontrol applied to a stand of high density but small trees; green line shows  
biocontrol applied to stand of medium-size trees, and blue line shows biocontrol applied 
to stand with low density but large trees. Circles represents field data published in 
Rayamajhi et al, (2007). Arrows show when biocontrol began to be applied.
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Appendix 8 deriving an Implicit Equation for the Calculation of equilibrium value of G,

for Chapter 5

We follow Ju and DeAngelis (2009) to find the equilibrium value G for a given 

maximum possible photosynthetic rate, R0, and nutrient input to the system, Ninput. Those 

authors also show that a maximum value of growth rate, Max(G), exists for some 

combination of the three allocation parameters f , r and w, where f + r + w =  1.

Because w is fixed, only f and r vary and  r is a function of f .

Assume that the system is at steady state, so that each of the eqns 1a-e, g is set to zero. It 

was not possible to find an explicit analytic expression for G, from which a maximum of 

G could be determined analytically, but it was possible to do so numerically from an 

implicit expression.  Our first objective was to find an expression for G.  We did this in 

the following steps. We used eqn 1a, set to zero, we expressed Cf in terms of G, and used 

eqn 1d to express Nf in terms of G in the right hand side of eqn 2.  These substitutions 

result in the implicit equation for G,
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where

r =  1 - r - w .
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This equation still contains Npore, which is a variable, so Npore must next be eliminated in 

terms of G in order to obtain an equation that contains only the variable G.  We did that 

by using the right hand sides of eqns 1d,e,g along with eqn 1c.  These allowed us to

eliminate Nf, Nr, and Cw, so that Npore is expressed simply in terms of G in the second 

order equation. 
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Solving this for Npore yields,
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It can be shown that the only relevant solution of eqn 8a is the one with the positive sign.  

Then Npore can be plugged into eqn (A2) and (A2) into (A1) to obtain the final implicit 

equation for G.  Equation (A1) is an implicit equation for the equilibrium value G, and 

can be evaluated numerically.

We calculate now find the way that a tree should allocate its energy (or carbon) resources 

in a way that maximizes its growth rate, G, in the absence of competition.  To do this, f

is varied until G is maximized as Max(G). There is a strategy f in the range (0, 1) that 

maximizes G.  Given Max(G), we can find the tree components, foliage, fine roots, and 

woody material that correspond to Max(G).
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Effect of defoliation on Max(G)and Opti f

We allowed the defoliation rate t f to increase from zero and computed the 

changes in Max(G), Optimal f), Min(Npore) , rG), fG) and the corresponding 

optimized values of Cr, Cf, Nr, Nf , and Nr:Cf.


	The Mathematical Modelling of Spatial Structure of Ecological System in Heterogeneous Environment
	Recommended Citation

	Dissertation_BoZhang.pdf

