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ABSTRACT

Diesel engines are facing significant challenges with upcoming changes in emissions

standards. In general, meeting the increased emission standards will require a larger fraction

of the engine heat rejection to occur in the vehicle cooling system. For certain applications,

the surface geometry must also be such that it resists particulate fouling, precluding common

interrupted surfaces such as louvered fins. Although acceptable continuous surface geome-

tries such as bumped fin geometries are in use, the impacts of changing the parameters of

this geometry are unknown. This study investigates the transport characteristics of bumped

fins in the transitional flow regime using unsteady multi-dimensional solutions of the in-

compressible Navier-Stokes equations. In the first of three parts, a two-dimensional model

is used to examine the impact of channel aspect ratio for fixed absolute bump height and cor-

rugation angle. Oscillatory behavior is observed and critical Reynolds numbers determined

for the onset of supercritical flow behavior. In the second part, two-dimensional simulations

are performed which consider the variation in corrugation angle for a fixed aspect ratio and

relative bump height. Corrugation angles ranging from 25 to 90◦ are examined and com-

pared with the wavy channel limit and the singly grooved channel. The results reveal that

even at a fixed aspect ratio, the shape of the bump cavity influences the stability of the flow

and its transport behavior. In the third and final part, a detailed three-dimensional numerical

investigation of a channel element with a width aspect ratio of 3.7 is presented. The criti-

cal Reynolds number and primary oscillation frequency is shown to be largely unchanged

from the two-dimensional predictions. However, detailed characteristics of the oscillatory

behavior are influenced by longitudinal vortices captured in the three-dimensional model.

The predicted transport characteristics both increase but do so in such a way that the surface

efficiency is nearly unchanged from that predicted by the two-dimensional model.
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1. INTRODUCTION

The development of surface geometries for the air side of compact heat exchangers

is an area of longstanding technical importance. In many applications, interrupted surfaces

such as offset strip fins or louvered fins provide the desired level of heat transfer enhancement

at an acceptable level of pressure drop. However, for applications in which the air stream

may contain a significant amount of particulate or chaff, continuous surfaces are strongly

preferred as they reduce the tendency of the heat exchanger passages to clog. The present

investigation is motivated by the desire to identify the range of geometric variables which

provide favorable thermal-hydraulic performance for bumped fins. These bumped fins are a

continuous surface geometry with a form midway between grooved and wavy channels. In

the literature, this geometry is novel. Since the desired operating points are in the transitional

Reynolds number range, the present investigation adopts a modeling approach based on the

unsteady Navier-Stokes equations in order to model the transport dynamics.

The investigation is divided into three parts. In the first part, the impact of space

ratio is considered for fixed absolute bump height and corrugatioin angle. In the second part,

the impact of corrugation angle is treated for fixed aspect ratio and relative bump height.

Finally, a three-dimensional model of a single geometry is analyzed and compared to the

predictions of the two-dimensional models utilized in the first two parts of this investigation.
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Impact of Periodicity Length on Convective Enhancement in
Bumped Channel

Li-Kwen Chen and K. O. Homan
Department of Mechanical & Aerospace Engineering

Missouri University of Science & Technology
Rolla, Missouri 65409–0050, USA

Abstract

In this study, an incompressible two-dimensional transitional bumped chan-

nel flow simulation is performed to deal with convective heat transfer. The

computational domain is spatially periodic, with a fully developed condition

and isothermal boundary wall prevailing at a periodic length. The numerical

schemes and procedures are described. The objective of the present work is

to identify the impact of the channel space ratio on heat transfer enhancement.

The underlying objective of this study is to identify the relevant fluid mecha-

nisms present in channels that enhance heat transfer performance. Three aspect

ratios (1.8, 3.0, and 3.9) at selective Reynolds numbers are compared to reveal

the shear layer (Kelvin-Helmholtz vortex), Taylor-Görtler vortex, flow separa-

tion, and reattachment as air flows through periodically corrugated channels.

The flow destabilization due to a self-sustained oscillatory flow induces heat

transfer enhancement. The oscillatory behavior is identified by the perturba-

tion velocity (u ′), and perturbation amplitude parameter (χ ) to distinguish the

subcritical and supercritical regimes, thereby enabling determination of critical

Reynolds numbers. The results of the computations are presented in terms of

Nusselt number, Colburn j factor, friction factor, and goodness factor. Space-

and time-averaged forms are also used to identify desirable space ratios for

high heat transport efficiency and low power consumption. At supercritical

conditions, increases in the space ratio increase the heat transfer and fricion
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loss simultaneously although the increment in the friction loss is larger. The

results show that the flow is more effectively destabilized for space ratios larger

than 3.0.

Nomenclature

Dimensional quantities are denoted by a hat, e.g. t̂ .

Roman

f local friction factor

H channel height

j local Colburn j factor

j/ f goodness factor

L channel length

s wall coordinate

n unit normal vector

Nu Nusselt number

p pressure

Pe Peclet number

Pr Prandtl number

Re Reynolds number

T temperature
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t time

u, v velocity components

Greek

α thermal diffusivity

β corrugation angle

0 time period

χ perturbation amplitude parameter

µ dynamic viscosity

ν kinematic viscosity

ρ density

σ perturbation amplitude growth rate

τ wall shear stress

� frequency

9 arbitrary scalar

ψ Dimensionless Streamline

Subscripts and Superscripts

b bulk

c center

cr critical
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H referenced to channel height

i inflow

∞ free stream

min maximum

min minimum

w wall

− Time-and-Space-Averaged

1. INTRODUCTION

Diesel engine designers are facing significant challenges with upcoming changes in

emissions standards. The radiator must not only meet greater heat rejection demands but

must do so in a compact volume. For certain applications, the surface geometry must be such

that it resists particulate fouling. Louvered fins are commonly used in automotive radiators

to increase the surface area and initiate new boundary layer growth. The louvered fin surface

is the standard geometry for an automotive radiator. However, the traditional interrupted fins

such as louvered fins are not applicable for many agriculture and off-highway radiators due

to core clogging concerns. In a typical Ag/off-highway radiator, the use of continuous fins

reduces this clogging problem. Although acceptable serpentine air fin geometries such as a

bumped fin are in use, the impacts of changing the parameters of this geometry are unknown.

This study seeks to investigate the characteristics of bumped fins for use in Ag/off-highway

radiators.

In order to enhance the heat transfer rate, engineers have developed enhanced ex-

tended heat transfer surfaces to replace traditional plain surfaces. The augmentation tech-

nique of enhancing extended surfaces is meant to improve surface geometries of radiators.
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These geometries can generate irregularities due to secondary flows or boundary layer sepa-

rations within fin channels, and lead to the destruction of boundary layers and regrowth [1].

Extended surfaces also increase pressure drops, thus increasing the power consumption and

operation costs. Therefore, it is important for the optimum geometrical combinations to

match both desirable increments of theheat transfer rate and pressure drop. Reducing the

air-side resistance is an efficient method for improving the heat transfer and reducing ther-

mal resistance because about 80% or more thermal resistance is caused by the air side of

a heat exchanger. Two approaches can reduce the thermal resistance: Either by additional

heat transfer area or by increasing the air-side heat transfer coefficient [2].

In general, for air-side applications, fin geometries are divided into two categories:

interrupted and continuous surfaces. Louvered fins are the typical interrupted fins and

effectively increase the convective heat transfer areas due to restarting of thermal boundary

layers, which derive the average heat transfer coefficients of interrupted surfaces to be much

higher than those of continuous surfaces. In addition, transverse vortices generated by

interrupted surfaces are drastically benefit to ehnance the heat transport under a supercritical

regime [3, 4]. Hatada and Senshu experimentally studied convex louver fins [5]. The stream-

flow visualization exibited that these fins broke the development of boundary layer flows to

intensify the heat transfer. Both wavy fin and triangular fin are typical continuous fins [1, 2],

which provide complete intermixing due to flow separations and reattachments within the

channels [1]. Hwang etal. presented detailed illustrations to explain the relevant fluid

mechanisms of continuous surfaces pertaining to a 3-D wavy duct with the corrugation

angles of 17.5◦ and 25◦ [6]. Two types of secondary flows generated by this periodic

corrugated duct are called Kelvin-Helmholtz vortex and Taylor-Görtler vortex. Kelvin-

Helmholtz vortices are so-called shear layers and Taylor-Görtler vortices are centrifugal

instabilities caused by these concave regions. In addition, the corner kinks on the wall

corners perpendicular to the streamwise can be observed.
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From the numerical results of Guzman and Amon [7], a rough estimate of the periodic

state for converging-diverging channel flows was studied with Re = 130 − 750 , which

revealed three successive bifurcation levels when Rewas increasing, namely: one-frequency

periodic flow, two-frequency quasiperiodic flow and three-frequency quasiperiodic flow

before an aperiodic chaotic flow pattern. Once the flow pattern is chaotic, the supplementary

random motions of fluid particles will intensify the heat transfer even more. O’Brien and

Sparrow investigated a corrugated duct and obtained 2.5 times of heat transfer as comparied

to a parallel-plate channel [8].

In early development of the flow destabilization theory, researchers used a single

cavity to study fluid mechanisms as a fluid flows over it. These cavities may be divided into

open and closed cavities according to their values of length-to-depth ratios [9, 10]. For open

cavities (short notches), the boundary layer separates at the separation wall due to a sudden

expansion and secondary vortices in the cavity deflect the external flow over the cavity.

Charwat etal. focused attention on the open cavity regime [9]. From the experi-

mental results of this study, the longitudinal heat transfer mechanisms in cavities are divided

into three vertivcal aspects: heat conduction occurs between the wall and the cavity, viz an

isothermal dead air sink; heat conduction to the free shear layer and mass convection of the

fluid exchange between the cavity and the external flow. The weak separation vortex destabi-

lizes the upstream corner and the strong recompression vortex produces a well-mixed region

which displays the high heat transfer rate. In the middle portion of the cavity, three distinct

layers improve heat transport, namely: the reverse flow layer, buffer layer, and shear layer

which occupy the cavity floor, central region, and upper zone, respectively. Taken together,

the vortices and layers produce bidirectional heat diffusion in the cavity.

Amon and Mikic found the large-scale mixing produced by spontaneous supercritical

flow destabilization is responsible for the heat transfer enhancement as it is in turbulent flows.

It is found that for the same power dissipation, the heat transfer in communicating channel
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flow is up to 300% higher than that in flat channel flow due to the effects of counter-rotating

vortices [11].

In the investigations of self-sustained oscillations, Ghaddar etal. used rectangu-

lar grooved channels to disclose the way to distinguish the subcritical and supercritical

flow regimes. Meanwile, various geometries possess various values of oscillatory frequen-

cies [12]. Roberts provided a clever method to obtain the precise values of critical Reynolds

numbers (Recr ) by using a pertubation parameter [13]. A simplified two-dimensional wavy

finned-tube exchanger was investigated by Comini et al. [14]. The results showed that Recr

will decrease and then increase with increasing space ratio under the same corrugation an-

gle. Both friction factor and Nusselt number increase with an increase of the corrugation

angle but first increase and then decrease alnog increasing space ratio.

The objective of this paper is to present results from several different geometries

of bumped channels by varying the space ratios and Reynolds numbers with the goal of

identifying favorable geometric combination. In addition, various fluid mechanisms caused

by periodically corrugated channel flow are studied, such as the boundary layer, shear

layer, transverse vortex, flow separation, and reattachment. The intention of using different

Reynolds numbers is to try to discover the critical Reynolds number for each pattern. Many

references disclosed that a critical Reynolds number is an important value to judge if the flow

has good characteristic of heat transfer and reduction of thermal resistance. The primary

purpose of this research is to investigate the dominant characteristics of both velocity and

temperature fields via various bumped channels with different geometries.

2. PROBLEM FORMULATION

2.1 Mathematical Model

The focus of the present investigation is a continuous channel with periodic bumps.

Considering a periodic element which is suitably separated from the channel entrance and
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exit, the flow may be presumed periodic. The transfer mechanisms then repeat periodically

across the inlet and exit of a single module. The flow is then fully developed, both hydrody-

namically and thermally, in a periodic sense. This approach has been adopted by numous

previous investigators [4, 7, 12, 15]. In this paper,attention is focused on a periodic element

of the channel with a dimensional length L̂ and a dimensional height Ĥs . The assumption

of periodicity implies extensions in both and horizontal directions, as shown in Figure 1.

The tensor forms of the dimensionless continuity, momentum, and energy equations can be

written as
∂ui

∂xi
= 0 in D (1)

∂ui

∂t
+

∂

∂x j
(ui u j ) = −

∂p

∂xi
+ ν

∂2ui

∂x j∂x j
in D (2)

∂T

∂t
+

∂

∂x j
(T ui ) = α

∂2T

∂x j∂x j
in D (3)

Where the length scale is taken as Ĥs , the velocity scale as û∞, and the time scale as Ĥs /û∞.

The definitions of the dimensions parameters are ReH ≡ û∞ Ĥs /ν and Pe ≡ û∞ Ĥs /α.

Periodic boundary conditions are applied for velocity, pressure, and temperature according

to the method originally proposed by Patankar et al. [16]. On the solid walls, the usual

no-slip condition, u = v = 0, and a constant temperature boundary condition are used,

T = 0. The inlet velocity is initially taken to be a uniform horizontal velocity, equal to that

of the area-averaged dimensional velocity, u = 1, v = 0, and the initial inlet temperature

as T = 1. The friction factor is defined in terms of the wall shear stress, τw, by

f =

2τw
ρu2

∞

(4)

where τw = µ∂u/∂n The heat transfer behavior is characterized by the Nusselt number,

defined as

Nu =

∂T
∂n |w

Tb
(5)
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where Tb is the dimensionless bulk mean temperature, defined as

Tb =

∫ Hs
0 |u(x, y, t)|T (x, y, t)dy∫ Hs

0 |u(x, y, t)|dy
(6)

The dimensionless heat transfer coefficient may be cast in the form of a Nusselt number or

the Colburn j factor, related according to

j =

Nu

RePr1/3 (7)

Space and time-averaged values of the j and f are defined as

9s(t) =

1
S

∫ S

0
9(x, y, t)ds (8)

9̄ =

1
0

∫ t+0

t
9s(t)dt (9)

where s is the coordinate along the wall and 0 is a period of at least two oscillation cycles

in length.

2.2 Numerical Method

The pre-processor GAMBIT 2.2.30 was used to generate grid points and cells. The

solver FLUENT 6.2.16 was used to solve the fluid-dynamically and thermally algebraic

equations cell by cell with various numerical schemes, and the post-processors C and TEC-

PLOT 360 were used to evaluate and visualize the computed results. Referring to the

algorithmic schemes of the solver, the finite-volume method and segregated scheme were

used to solve these governing equations, with a second-order implicit scheme for time inte-

gration, a second-order scheme for solving pressure, and the third-order MUSCL (Mono-

tone Upstream Scheme for Conservation Laws) scheme for solving the momentum and
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temperature. The PISO (Pressure-Implicit with Splitting of Operator) scheme was used for

solving pressure-velocity coupling.

Grid and time-step independence tests are crucial for the numerical study of any flow,

particularly transitional flows, before initiating a sequence of simulation patterns. These

preliminary calculations are established to verify the solutions are suitably independent of

the various numbers of grid points and time step sizes. Hence, it is necessary to increase

the grid points and decrease the time step sizes until a result is obtained which no longer

changes with the different grid points and time step sizes [17].

The L = 1.8 geometry was chosen to proceed with the initial verification. By

doubling the numbers of cells, the node numbers are 8,241 (8,000 cells), 16,281 (16,000

cells), and 32,481 (32,000 cells), respectively. Under the same Re = 1, 000, time step

sizes (4t) of 0.002, 0.0002, and 0.00005 were selected. The values of j̄s and f̄s present a

deviation smaller than 1% for cell numbers larger than 16,000 and 4t smaller than 0.002.

This result is regarded as grid and time-step independent. In this paper, the L = 1.8

geometry uses 16,000 cells (16,281 nodes) and the 4t is 0.002, as shown in Figure 2 .

Finer cell distributions are set near the boundary walls, the inlet and outlet, and the shear

layer areas. The cell numbers were proportionally modified along with the different pattern

sizes satisfy the CFL condition.

3. RESULTS AND DISCUSSION

The focus of the present investigation is the impact of channel aspect ratio, or space

ratio, defined as L = L̂/Ĥs . Three geometries have been selected for consideration and are

shown in Table 1. These geometries correspond to preserving a fixed dimensional element

length, L̂ , and bump height, Ĥ , while changing only the nominal channel width, Ĥ .



12

3.1 Critical Reynolds Number

An important characteristic of laminar flows in periodic geometries is that once a

critical Reynolds number has been exceeded, flow quantities display a regular oscillation

with a constant frequency. At Reynolds numbers in the subcritical regime, integration

from an arbitrary initial condition results in a time variation of dimensionless horizontal

velocity perturbation, u ′, which asymptotes to zero. For supercitical Reynolds numbers, the

oscillation amplitudes increase to a constant value. This difference enables straightforward

identification of subcritical and supercritical flow conditions, as illustrated in Figure 3, for

Reynolds numbers well above and below the critical Reynolds numbers. The perturbation

velocity is defined as

u′(x, y, t) = u(x, y, t)−
1
0

∫ 0

0
u(x, y, t)dt (10)

where 0, the averaging period is at least two oscillation cycles. For the specific geometry

shown in Figure 3, the critical Reynolds number, Recr , is clearly between 500 and 1,000.

Narrowing the range of the critical Reynolds number is made difficult with this

approach, however, since the oscillation amplitudes become small as the critical Reynolds

numbers approached from above. For this reason, Comini et al. [14] has indicated that the

estimated value of the critical Reynolds number is likely to be larger than the true one.

An alternative approach has been suggested by Roberts [13] in which the growth rate of a

perturbation parameter based on the vertical velocity is used to determine quantitatively the

critical Reynolds numbers. A change in the exponential growth rate of this quantity from

negative to positive values then corresponds to the passage from subcritical to supercritical

behavior for a given geometry. The Recr is recognized as the point for σ , which the growth
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rate, is zero. The perturbation parameter, χ , is defined as

χ =

1
S

∫ S

0
|v(x, yc, t)|ds (11)

where yc is the vertical center of the channel at every position x , and s is the coordinate

measured along the path.

The variation of this perturbation parameter is shown in Figure 4 for the geometry

L = 1.8. This perturbation parameter also indicates that the Recr lies between 500 and

1,000. Taking an exponential fit to these curves allows determination of an exponential

growth constant, which allows quantitative determination of Recr = 677, as shown in

Figure 5. By the same method, critical Reynolds numbers for the geometries L = 3.0 and

3.9 are determined to be 300 and 272, respectively. The Recr is central to determining how

effectively a given channel geometry can enhance heat transfer.

3.2 Supercritical Oscillation Cycle

The importance of supercritical flow behavior to transport properties has been doc-

umented in numerous geometries such as grooved and wavy channels [10, 11, 13, 18, 19].

In the present study, the interest is in how supercritical flow behavior impacts transport

properties for the bumped channel, specifically heat and momentum transfer.

Figure 6 shows the variation of fs and js for the geometry L = 1.8 at sub- and

supercritical Re. As expected, the space-averaged values, js and fs , are steady in time

under subcritical conditions. However, at a supercritical Re, the transport properties oscillate

in time, as do components of the flow velocity.

The sequence of steps executed by the flow field during one of these oscillatory

periods is shown in Figure 7. The bottom cavity contains both separation and recompression

vortices for almost the entire cycle. However, at one point in the cycle the two vortices merge

to produce a single vortex in the bottom cavity. Notably, this corresponds to the time in
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the oscillatory period for which the heat transport is at its lowest value under supercritical

conditions. In addition, this corresponds to the observed steady flow field under subcritical

conditions, which displays a steady trapped vortex. Careful examination of Figure 7 also

reveals that the vortices in the top cavities are varying in shape and intensity as time advances

through the oscillatory cycle. The net result is an effective flow passage for the primary

channel flow which is continuously varying, deflecting the main flow on a wavelength

scaling with the periodicity length of the geometry.

At higher Reynold numbers, the flow transitions from a periodic to a quasi-periodic

flow. For the geometry L = 1.8, multiple oscillatory frequencies are just perceptible in a

plot of u′ in time, as shown in Figure 8. Plots of the variation in time of js and fs are shown

in Figure 9. Interestingly, the secondary oscillation frequency is almost imperceptible in the

plot of js(t), but is much more evident in the plot of fs(t). Nevertheless, is quasi-periodic

flow regime leads to an even more powerful and vigorous heat transfer enhancement than

the periodic flow regime.

3.3 Space Ratio Effect

An effect immediately apparent upon variation of the space ratio is a change in the

oscillation frequency. As shown in Table 2, the primary oscillation frequency decreases

with an increase in the space ratio for subcritical Re condition. For a fixed space ratio,

the oscillation frequency generally decreases with increasing Re. Interestingly, the change

in the frequency of the least stable wave mode is lowest for the higher aspect ratio cases,

since for L = 1.8, the frequency of the least-stable mode drops from 1.02 to 0.50 whereas

for L = 3.9, the frequency drops from 0.41 to 0.35. As would be anticipated, a dramatic

increase in heat transfer rate occurs when the flow passes into the supercritical flow regime.

For example, with the geometry L = 1.8, the increase in time-and-space-averaged Nusselt

number, Nu, is over 80% when the flow becomes supercritical. The change in Nu for the

subcritical Re is only a few percent.
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As previously observed, the Recr decreased with increasing space ratio for the three

geometries being considered. This leads to the expectation that heat transport will improve

with increasing space ratio. The computed results indeed support this expectation as shown

in Table 2. For a fixed Re, the Nu increases with the space ratio, L , for the supercritical

flow regime. Also, for a fixed geometry, the increase in Nu is larger for the higher space

ratio.

The time variation of the js and fs are shown in Figure 10 for each of the space ratios

investigated. The larger space-ratio patterns indeed display larger amplitude oscillations

with evidence of quasi-periodic behavior. Interestingly, the js appears less sensitive to the

flow oscillations than does the fs .

The observation of significant oscillations in js and fs leads naturally to the question

of what flow structures correspond to the lows and highs in the transport behavior. The

variation of js and fs are shown in Figure 11 for the geometry L = 3.0, with the instants at

which minimums and maximums occur denoted. The quasi-periodic behavior is evident,

particularly in fs . In addition, the oscillations in js and fs are close to being out of phase.

The local variation of j and f at the instants of the minima and maxima in the

space-averaged quantities are shown in Figure 12 and Figure 13. The variation in the j -

factor is dominated by the temperature gradients at the lip of the cavity, x ' 2.7. The locally

high values in the neighborhood of the bottom cavity opening, x ' 0.3, are comparable at

the minima and maxima of js . These same observations hold true as well for the instants

of minimum and maximum fs , as shown in Figure 13.

The variation in f is also dominated by the flow dynamics in the neighborhood of

the cavity exit bend, x ' 2.7. At the instant of maximum fs , the f is concentrated near the

bend but exhibits appreciable levels just prior to the entrance of the bottom cavity.

The dynamics of the previously described supercritical cycle are further clarified

by consideration of the flow field at the instants of maxima and minima in the transport
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properties. Instantaneous horizontal velocity profiles and streamlines at the instants of

maximum and minimum js are shown in Figure 14 and Figure 15, respectively.

As denoted by Charwat et al. [9], the cavity walls may be referred to as a separation

wall, a recovery wall, and a recompression wall. At instants of both maximum and minimum

js , the flow separates at the start of the separation wall and reattaches at a point which

oscillates in time, part way down the separation wall. The weak vortex between is called

a separation vortex which varies in size and intensity. A second vortex, which may be

termed a recompression vortex, exhibits large variation in size and intensity. At the instant

of minimum js, its height is close to that of the cavity depth, 2H , and is nearly centered in

the cavity. However, at the instant of maxmimum js, this vortex has moved up along the

recompression wall and is noticeably flattened. The impact on both the horizontal velocity

and the temperature field along the recompression wall are noticeably high just prior to the

cavity lip. The temperature contours shown in Figure 16, reveal much larger temperature

gradients at the cavity exit at the instant of maximum js.

3.4 Literature Comparisons

Comparison of the present numerical values of j̄ and f̄ with published results for

several channel geometries is shown in Figure 17. To investigate the improvement provided

by different geometries, the wavy channel (L/Hs=2.2) of Comini et al. [14] exhibits the

highest j̄ and f̄ . It reveals the delimma in a modification of fin geometries to ehnance heat

transport, viz resistance penalty and power consumption increase with complex channnels.

Hatada and Senshu [5] and DeJong et al. [4] showed good heat transfer performance and

moderate friction factors with the louvered fin and strip fin; however, these interrupted

fins have clogging concerns. Comparisons of the present j̄ values with those of the wavy

channel, they all approach asymptotes of j̄ when Reynolds numbers exceed specific values.

That means the effect of Re increase has a limitation to enhace heat transfer for these

geometries. These behaviors described above are decided by senondary vortices generated
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with complex channels. The wavy channel can generate dominant secondary vortices at

low Re, it manifests high values of j̄ and f̄ at the corresponding Re. On the other hand,

the plain fin of Webb [1] hardly yields notable secondary vortices unless operated at high

Re; it shows the lowest values of j̄ and f̄ . Consequently, bumped channels are favorable

choices given the moderate j̄ , low f̄ and avoid the clogging concerns.

4. CONCLUSIONS

This paper has numerically investigated the hydrodynamic and thermal behavior of

bumped channels with three different space ratios L = 1.8, 3.0, and 3.9. The flow exhibits

high heat transport and relatively low friction loss once the Reynolds number exceeds a

critical Reynolds number. Results presented here have shown that, compared to different

space ratios, the larger space ratio patterns have smaller Recr and larger values of js, fs

at the same Re. The longer periodic lengths allow for more thorough mixing within the

channels leading to enhancement in the heat transfer performance. The results also reveal

that with increasing space ratios, friction factors increase but heat transfer effects are not

significantly enhanced as long as the flow is under the subcritical regime. Referring to

the comparison of transport properties, the subcritical Re is not anticipated as a desirable

operating condition.

A relatively precise Recr can be obtained by the calculation of the growth rates in

an amplitude factor based on the vertical velocity profile along the channel centerline. In

addition, when the Re value increases from 1,000 to 2,000 (L = 1.8), the flow transitions

from a periodic flow to a quasiperiodic flow, the value of � also develops from a single

value primary frequency to two frequencies superimposed. This quasiperiodic flow regime

provides even greater heat transfer enhancement than the periodic flow regime.
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nodes) with a minimum 4x = 0.0036. The time step used with this grid was 4t = 0.002
for a CFL number of 0.55.
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Figure 3 Perturbation velocity versus time, u ′(t), at the position x = 0.9, y = 0.36 for
geometry L = 1.8.
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Figure 6 Comparison of time variation for space-averaged transport quantities for the
geometry L = 1.8 at subcritical and supercritical Reynolds numbers.
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Figure 9 Time variation of transport quantities in the periodic and quasiperiodic flow
regimes for the geometry L = 1.8.
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Figure 10 Impact of the space ratio on the time variation of space-averaged transport
quantities for each geometry at Re = 1, 000.
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Figure 11 Time variation of space-averaged j and f factors for the geometry L = 3.0 at
Re = 500.
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Figure 12 Streamwise variation of j - and f -factors along the bottom wall of the geometry
L = 3.0 at Re = 500 for the instant of minimum and maximum js.
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Figure 13 Streamwise variation of j - and f -factors along the bottom wall of the geometry
L = 3.0 at Re = 500 for the instant of minimum and maximum fs .
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the instant of maximum js for the geometry L = 3.0 at Re = 500.
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(b)

Figure 16 Temperature contours at instants of maximum (t = 45.77) and minimum
(t = 47.00) space-averaged j -factor, js, for the geometry L = 3.0 at Re = 500.
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(b) f̄ versus Re

Figure 17 Present results of j̄ and f̄ compared with other literatures’ results.
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Table 1 Geometric parameters for each of the bumped channel patterns considered, β =

35◦.

Pattern A B C
L = L̂/Ĥs 1.8 3 3.9
H = Ĥ/Ĥs 0.17 0.28 0.36
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Table 2 Impact of space ratio, L , on time-and-space-averaged transport quantities.

Pattern L Re � Nu j̄ f̄ j̄/ f̄
200* 1.02 3.74 0.0211 0.2022 0.104

A 1.8 500* 0.48 3.98 0.0088 0.0700 0.126
1,000** 0.50 7.10 0.0080 0.0305 0.262

200* 0.59 3.75 0.0211 0.2410 0.088
B 3.0 500** 0.60 6.08 0.0137 0.0945 0.145

1,000** 0.56 13.01 0.0147 0.0603 0.243
200* 0.41 3.32 0.0187 0.2450 0.076

C 3.9 500** 0.35 6.34 0.0143 0.1010 0.141
1,000** 0.35 13.97 0.0157 0.0748 0.210

* Subcritical
** Supercritical



39

Impact of Corrugation Angle on Convective Enhancement in
Bumped Channel

Li-Kwen Chen and K. O. Homan
Department of Mechanical & Aerospace Engineering

Missouri University of Science & Technology
Rolla, Missouri 65409–0050, USA

Abstract

The previous study compared the thermal and hydrodynamic performance of

bumped channels with three different space ratios. The objective of this paper is

to numerically present the results from several different geometries by varying

only the corrugation angle. Relative bump height and space ratio are held fixed.

Seven different corrugation angles are studied parametrically, ranging from 25

to 90 degrees, and compared with the wavy channel and grooved channel limits

under the same space ratio and relative bump height at a supercritical Reynolds

number, Re = 500. Attention is focused on the influence of corrugation angles

on the heat transfer and friction loss of bumped channels. In addition, fluid

mechanism transitions caused by different corrugation angles are studied via

overall and local performance for investigating the critical characteristics to

enhance heat transfer. The wavy channel proves to be the highest efficiency,

albeit with the lowest heat transfer. For corrugation angles between 30 and 65◦,

the surface efficiency is essentially constant as the j -factor increases monotoni-

cally. The grooved geometry has a markedly lower surface efficiency and lower

amplitude oscillations, indicating a relatively higher critical Reynolds number.

Nomenclature

Dimensional quantities are denoted by a hat, e.g. t̂ .
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Roman

f local friction factor

H channel height

j local Colburn j factor

j/ f goodness factor

L channel length

s wall coordinate

n unit normal vector

Nu Nusselt number

p pressure

Pe Peclet number

Pr Prandtl number

Re Reynolds number

T temperature

t time

u, v velocity components

Greek

α thermal diffusivity

β corrugation angle
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0 time period

χ perturbation amplitude parameter

µ dynamic viscosity

ν kinematic viscosity

ρ density

σ perturbation amplitude growth rate

τ wall shear stress

� frequency

9 arbitrary scalar

ψ Dimensionless Streamline

Subscripts and Superscripts

b bulk

c center

cr critical

H referenced to channel height

i inflow

∞ free stream

min maximum

min minimum
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w wall

− Time-and-Space-Averaged

1. INTRODUCTION

The idea of changing corrugation angles to enhance heat transport is common way

in heat exchanger modification. Such transformations are based on the original space ratios

and geometries, which is efficient for research and development. A number of published

experimental and numerical results regarding changing corrugation angles such as louver

and wavy fins. However, only a few attempts have been made to study the influence between

a wide range of angle changes and fin performance.

An increase in the corrugation angle with constant space ratios will strengthen both

heat transfer and thermal resistance. This intensity of heat transport is generally accompa-

nied by much more increase in pressure drop, which causes the goodness factor to decrease.

Some evaluation criteria will be guides for selecting the most favorable angle. Zhang and

Lang performed experimental analysis of louvered fins with six different angles [1]. A

trade-off method was utilized to indicate that β = 20◦ is suitable for automobile radiators

and β = 25◦ is selected for locomotive radiator design. Suga and Aoki experimentally

and numerically investigated multilouvered fins with various space ratios and corrugation

angles under different Reynolds numbers [2]. Their study illustrated an easy way to utilize

the contour maps of air temperature distributions and flow patterns to state the relationships

of heat transfer between airflow and the number of louvers. In the range of 20◦
≤ β ≤ 30◦,

the optimum fin geometry with a smaller louver angle performed well in terms of both heat

transfer and pressure drop.

Hatada and Senshu experimentally studied on heat transfer characteristics of convex

louver fins for air conditioning heat exchangers [3]. For β = 20◦, the j factor and the f

factor of convex louver fins are 14% and 8% higher than those of flat louver fins. Meanwhile,
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the f factor severely increased β = 24.6◦. A specific heat quantity and a specific fan power

were introduced for evaluating heat exchanger fins in this study.

DeJong and Jacobi presented an investigation of flow, heat transfer, and pressure

drop of louvered fins with Reynolds numbers from 130 to 1,400 [4]. The results indicated

that the low transfer coefficients were related to low velocities between the louvers caused

by thick velocity boundary layers. To minimize the heat transfer penalty, the size of the

louver gap may increase by increasing the louver angle of the first row or two downstream

to minimize the recovery zone. Decreasing the length of the recovery zone is beneficial

to heat transport. For a small louver angle of 18◦, the average heat trasport decreases to a

maximum of 7% at a Reynolds number of 130 due to the long recovery zone.

Comini et al. [5] adopted a two-dimensional simulation to examine laminar air

flows through wavy finned-tube exchangers by neglecting the influence of tubes. Numerical

solutions were presented for space ratios H/L ranging from 0.1 to 0.45, and two corrugation

angles of 20◦ and 30◦. The solutions indicated that the critical Reynolds number differs

with different geometric combinations. Both the friction factor and Nusselt number increase

along the corrugation angle increases. Nevertheless, the friction factor and Nusselt number

increase but only up to a certain space ratio when the space ratio increases. This discovery

showed that the optimum value of the space ratio depends on both the corrugation angle and

the Reynolds number.

This paper presents numerical results comparing bumped channels in different cor-

rugation angles with wavy and grooved channels under Re = 500 to avoid subcritical or

unsteady flow. The objective is to analyze the newly developed complex heat exchangers.
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2. PROBLEM FORMULATION

2.1 Mathematical Model

When a numerical domain is assumed to be both hydrodynamically and thermally

fully developed, suitably separated from channel the inflow and outflow effects, computa-

tional domain can be limited to a single module. After a certain distance from the channel

inlet, transfer mechanisms will repeat periodically from the inlet to the outlet. In the fully

developed region, this repetition allows for analysis of a single module with one periodic

length only [6]. Mesh distributions and time step sizes (4t = 0.002) of each computa-

tional module are based on the previous study. Cell numbers were proportionally modified

along with the different pattern sizes shown in Table 1 (referring to the baseline geometry

as β = 35◦ shown in Figure 1).

The tensor forms of the dimensionless continuity, momentum, and energy equations

can be written as
∂ui

∂xi
= 0 in D (1)

∂ui

∂t
+

∂

∂x j
(ui u j ) = −

∂p

∂xi
+ ν

∂2ui

∂x j∂x j
in D (2)

∂T

∂t
+

∂

∂x j
(T ui ) = α

∂2T

∂x j∂x j
in D (3)

Where the length scale is taken as Ĥs , the velocity scale as û∞, and the time scale as Ĥs /û∞.

The definitions of the dimensions parameters are ReH ≡ û∞ Ĥs /ν and Pe ≡ û∞ Ĥs /α.

Periodic boundary conditions can applied for velocity, pressure, and temperature according

to the method originally proposed by Patankar et al. [7].

On the solid walls, the usual no-slip and a constant temperature boundary condition

are used, u = v = 0 and T = 0. In the entrance region, the inlet velocity is initially

taken to be a uniform horizontal velocity, equal to that of the area-averaged dimensional

velocity, u = 1, v = 0, and T = 1. In the fully developed region, the friction factor can be
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represented in terms of the wall shear stress, τw, by:

f =

2τw
ρu2

∞

(4)

The heat transfer behavior is characterized by the Nusselt number, defined as

Nu =

∂T
∂n |w

Tb
(5)

where Tb is the dimensionless bulk mean temperature, which can be defined as

Tb =

∫ Hs
0 |u(x, y, t)|T (x, y, t)dy∫ Hs

0 |u(x, y, t)|dy
(6)

The heat transfer properties are also represented by the Colburn j factor, which is

generally taken to be independent of the Prandtl numbers and a function of Re alone.

j =

Nu

RePr1/3 (7)

2.2 Numerical Method

The pre-processor GAMBIT 2.2.30 was used to generate grid points and cells. The

solver FLUENT 6.2.16 was used to solve the fluid-dynamically and thermally algebraic

equations cell by cell with various numerical schemes, and the post-processors C and TEC-

PLOT 360 were used to evaluate and visualize the computed results. Referring to the algo-

rithmic schemes of the solver, the finit-volume method and segregated scheme were used

to solve these governing equations, with a second-order implicit scheme for transitional

flow, a second-order scheme for solving pressure, and the third-order MUSCL (Monotone

Upstream Scheme for Conservation Laws) scheme for solving the momentum and tempera-

ture. The PISO (Pressure-Implicit with Splitting of Operator) scheme was used for solving

pressure-velocity coupling.
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3. RESULTS AND DISCUSSION

Preserving a fixed space ratio, L ≡ L̂/Ĥs , and relative bump height, H = Ĥ/Ĥs ,

the corrugation angle of a bumped channel can be varied independently to encompass the

limits of a wavy channel with βmin and a grooved channel with β = 90 ◦. The results and

discussion are organized in a similar progression, beginning with examination of the wavy

channel limit, proceeding to consideration of variations in β for the bumped channel and

finally, examination of the grooved channel limit.

3.1 Wavy Channel Limit

In a wavy or corrugated channel , only two independent parameters are necessary to

fully specify the geometry. With a fixed aspect ratio, L ≡ L̂/Ĥs , and relative bump height,

H = Ĥ/Ĥs , the corrugation angle is uniquely determined since

β = tan−1
(

4H

L

)
. (8)

With H = 0.28 and L = 3.0, the bump height and space ratio adopted in the present study,

the corrugation angle is 20.5◦. A further distinction of significance for the wavy channel is

whether the main channel is blocked or open. For 2Ĥ < Ĥs , a portion of the flow passage

is unblocked, viewed in a streamwise direction. Clearly this is the case for the present

geometry although this is often not so for many of the wavy channel investigations reported

in the literature.

The primary oscillation frequency and transport properties for the wavy channel

limit and a bumped channel with β = 25◦ are shown in the first two rows of Table 2.

The oscillation frequency increases for the slightly bumped channel as compared to the

wavy channel. And while the time- and space-averaged Colburn j factor also increases,
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the friction factor increases by a proportionally larger amount. The result is that while the

j factor increases with β, the surface efficiency as reflected in j̄/ f̄ , decreases.

The time variation of the space-averaged j factor, js , and the space-averaged dimen-

sionless wall shear stress, fs , is shown in Figure 2. While the increase in fs is readily

apparent, other more subtle changes are also evident. The variation of js for β = 25◦ is

much less symmetric about its minimums and maximums than is the wavy channel limit.

Apparently, the horizontal “bump” causes a change in the sequence of events composing an

oscillation cycle.

Further insight is provided by local variations of j and f along the bottom wall of

the domain, as shown in Figure 3, at the instants of their respective maximums in js . In

both geometries, the minimum j occurs at the lower end of the separation wall and climbs

rapidly along the recompression wall reaching a maximum prior to the exit lip of the bottom

cavity. The maximum in the local j is clearly higher for the β = 25◦ bumped channel than

the wavy channel. In both geometries, the peak in the local wall shear stress is highest at

the exit lip of the cavity. For the wavy channel geometry, this corresponds to the exit plane

of the computational domain.

The strong qualitative similarities of the local j and f distributions are reinforced

by consideration of the instantaneous streamlines shown in Figure 4, also at the instants

of maximum js for the two geometries. Both geometries exhibit a separation vortex and

a recompression vortex, the latter of which is repeatedly swept along the recompression

wall and out of the cavity. Notice in both cases that the point of maximum j is down-

stream of the recompression vortex although elevated values are observed along much of

the recompression wall due to this vortex.

3.2 Impact of Corrugation Angle

The effect of further increases in corrugation angle up to 65◦, as shown in Table 2,

are continued increases in the primary oscillation frequency and a near constant rate of
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increase in the Colburn j factor for β > 35◦. With the surface efficiency nearly constant

for β > 30◦, the higher heat transfer coefficients observed for higher β appear promising.

Additional insight into the impact of increasing corrugation angle is provided by

consideration of the oscillation amplitudes for js and fs . The data are shown in Figure 5

and in Table 3 for 30◦
≤ β ≤ 65◦. The amplitude of the oscillations in fs increase at a

near constant rate whereas the oscillation amplitude for js appears to have asymptoted by

β ' 55◦. The amplitude of the oscillations in js appear to saturate while the time- and

space-averaged values continue to climb. In contrast, there appears to be no such saturation

in the fs oscillation amplitude as its time- and space-averaged values climb with increasing

β.

The increase in oscillation amplitude is also significant from the perspective of

critical Reynolds numbers. Supercritical Hopf bifurcations exhibit an increase in oscillation

amplitude which scales with (Re − Rec)
1/2, where Rec is the critical Reynolds number [8].

This suggests that the higher β geometries have a lower critical Reynolds number and would

be expected to exhibit more favorable tradeoffs in transport behavior [9, 10].

Local variations of j and f are shown in Figure 6 for β = 30◦ and 65◦ at their

respective instants of maximum js . As observed for smaller values of β, the peak value

of j is found at the exit bend of the cavity, with appreciable levels one either side of the

corner. The maximum in f also coincides with this maximum in j . An additional peak in j

is located at the entrance bend for the cavity, although j falls away rapidly after the corner

separation. The minimum in j is located at the corner where the separation wall meets the

cavity floor.

The instantaneous streamlines corresponding to Figure 6 are shown in Figure 7.

The relatively weak vortices present along the separation wall limit the local j to relatively

low values. Interestingly, at β = 65◦, the bottom cavity has filled with three vortices. For

β = 35◦, the corresponding instant of maximum js reveals the presence of only two primary

vortices.
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3.3 Grooved Channel Limit

Increasing β to 90◦ produces a cavity with vertical walls, a geometry often termed

a grooved channel. A channel with grooves on one side only was initially examined by

Ghaddar et al. [11] in their investigation of stability and self-sustained oscillations. Their

study revealed that the least stable wave modes corresponded to the Tollmien-Schlichting

modes for the channel flow. In addition, the amplitude of the self-sustained oscillations

indicated this transition was a regular Hopf bifurcation.

A channel with grooves on both channel walls, for L = 3.0 and H = 0.28, produces

time- and space-averaged j and f values larger than for β = 65◦. However, the increase

in f is much larger than for j such that the goodness factor is significantly lower than

the approximately constant value observed for 30◦
≤ β ≤ 65◦. Interestingly, a one-sided

grooved channel, with H = 0.22, is still subcritical at Re = 500.

The time variation of js and fs for these two cases are shown in Figure 8. For the

singly-grooved channel, a steady asymptotic value of js is finally reached just over midway

through the time integration period shown. The fs is highly unsteady, with amplitudes much

larger than that observed for js. The amplitude of the oscillations in fs are slightly larger

than for β = 65◦, while the amplitude of the oscillations in js are nearly unchanged.

The distributions of local j and f for these two geometries are shown in Figure 9.

Based upon observations for smaller β, maxima in j and f are expected near the entrance

and exit corners of the bottom cavity. While this remains true for β = 90◦, the increase in

j and f is very steep on the cavity side of the exit lip, due to the 90◦ cavity wall. On the

horizontal wall following this corner, both f and j decay much less rapidly. In a similar

way, j and f increase as the separation corner is approached at the start of the bottom cavity.

However, both fall off very quickly after the corner.

Instantaneous streamline and temperature contours for these two geometries are

shown in Figure 10. The singly grooved channel reveals a core flow which is only
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minimally disturbed by the presence of the groove, reflective of the fact that it remains

subcritical at this Reynolds number. In contrast, the bumped channel with β = 90◦ shows

vigorous mixing of the main channel flow. Similar to the β = 65◦ streamlines at its instant

of maximum js , the β = 90◦ streamlines show the bottom cavity filled by three distinct

vortices.

3.4 Literature Comparisons

This paper examined a wide range of β = 25 − 90◦ with a constant Re = 500.

The prior studies focused on discussing the flow conditions with various Re under a small

range of the β change, which differs from the objectives referred to in present results. The

numerical results of j̄ and f̄ agree well with the experimental results of other fin geometries

shown in Table 4. The values of both j̄ and f̄ increase when the β value increases,

which indicates that heat transfer enhancement by corrugated angles modification has to

take into account the increase in the friction factor. In additions, comparing the bumped

fin of β = 25◦ with flat and convex louvered fins of β = 24.6◦ reveals that both the j̄ and

f̄ values of louvered fins are larger than those of bumped fins, and which causes the j̄/ f̄

value of bumped fins to be higher than the others because of the drastic flow destabilization

of interrupted fins.

4. CONCLUSIONS

Seven selected corrugation angles (β = 25 − 90◦) were compared to wavy (β =

20.5◦) and grooved channels with the same space ratios, L = 3, relative bump height,

H = 0.28, and Reynolds number. The bumped channels with large corrugation angles are

shown to most strongly destabilize the channel flow, increasing j̄ , f̄ , and the oscillation fre-

quency. The surface efficiency, j̄/ f̄ , is found to be essentially constant for 30◦
≤ β ≤ 65◦.

Backflows at the rear of the compression vortices produce the local minimums in the wall

shear stress, fmin . The maximum local Colburn j and friction factors are observed upstream
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of the compression vortex in each geometry. Comparing oscillatory amplitudes and frequen-

cies, the heat transfer increases along with increased oscillatory frequencies, although the

amplitudes of the oscillation saturate for 45◦
≤ β ≤ 65◦. Increasing corrugation angle

causes simultaneous increases in both the amplitudes and frequencies of the oscillations in

the wall shear stress, fs .

The wavy channel corresponds to the minimum corrugation angle for a given space

ratio and relative bump height. The pattern of small corrugation angles exhibits the smallest

values of j̄ , f̄ , and �. The surface efficiency is relatively large however, compared to the

bumped channels. A singly grooved channel provides insufficient destabilization to the

channel flow because this pattern possesses only one cavity and the flow regime is still

subcritical with Re = 500. Its performance shows constant values of js , fs , reflecting the

subcritical steadiness.
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and f along the bottom wall are denoted by the vertical lines.
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Figure 6 Local j and f distributions at instants of maximum js (t = 46.13 for β = 30◦,
t = 46.18 for β = 65◦).
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Figure 7 Instantaneous streamline contours at instants of maximum js (t = 46.13 for
β = 30◦, t = 46.18 for β = 65◦). The positions of local minimums and maximums in j
and f along the bottom wall are denoted by the vertical lines.
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Figure 8 Comparison of space-averaged transport properties for the β = 90◦ bumped
channel and the singly-grooved channel.
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Figure 9 Local j and f distributions at instants of maximum js for the bumped channel
(t = 45.95 for β = 90◦). The grooved channel is subcritical and the space-averaged js is
time invariant.
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(a) β = 90◦ (b) β = 90◦ (Grooved)

Figure 10 Instantaneous streamline and temperature contours at the instant of maximum js

for the bumped channel withβ = 90◦. The grooved channel is subcritical and the streamline
and temperature contours are therfore steady.
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Table 1 Geometric and numerical parameters of the cases investigated. For all cases,
L = 3, 4t = 0.002 and Re = 500.

β L1 Cells Nodes CFL
20.5◦ W 3.00 20.480 20,817 0.49

25◦ 2.70 20,800 21,141 0.49
30◦ 2.47 21,280 21,627 0.49
35◦ 2.30 21,600 21,915 0.94
45◦ 2.06 22,400 22,761 0.52
55◦ 1.89 23,200 23,571 0.73
65◦ 1.76 24,000 24,381 0.88
90◦ 1.50 13,464 13,815 0.35

90◦ G 1.50 17,292 17,585 0.35

W-Wavy channel
G-Grooved channel



65

Table 2 Oscillation frequency and transport quantities. In all cases, L = 3, Re = 500.

Pattern � j̄ f̄ j̄/ f̄
20.5◦ W 0.52 0.0130 0.075 0.173

25◦ 0.55 0.0134 0.089 0.151
30◦ 0.57 0.0135 0.093 0.145
35◦ 0.60 0.0137 0.094 0.146
45◦ 0.66 0.0141 0.099 0.142
55◦ 0.71 0.0146 0.102 0.143
65◦ 0.74 0.0150 0.104 0.144
90◦ 0.85 0.0171 0.129 0.132

90◦ G∗ 0.47 0.0084 0.030 0.280

* Subcritical



66

Table 3 Oscillatory characteristics of space-averaged transport quantities, js and fs , for
various β.

β Max. js Min. js Max. js-Min. js Max. fs Min. fs Max. fs-Min. fs

30◦ 0.0175 0.0112 0.0063 0.1038 0.0859 0.0179
35◦ 0.0172 0.0114 0.0058 0.1102 0.0794 0.0308
45◦ 0.0170 0.0124 0.0046 0.1232 0.0704 0.0528
55◦ 0.0173 0.0131 0.0042 0.1394 0.0664 0.0730
65◦ 0.0176 0.0133 0.0043 0.1521 0.0600 0.0921
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Table 4 Comparison of j̄ , f̄ and j̄/ f̄ with different β values at Re = 500.

Type β j̄ f̄ j̄/ f̄
25◦ 0.0134 0.089 0.151
30◦ 0.0135 0.093 0.145
35◦ 0.0137 0.094 0.146

Bumped fin 45◦ 0.0141 0.099 0.142
55◦ 0.0146 0.102 0.143
65◦ 0.0150 0.104 0.144
90◦ 0.0171 0.129 0.132
0◦ 0.0200 0.0660 0.303

Flat louvered fin[3] 12.8◦ 0.0250 0.0910 0.275
17.4◦ 0.0280 0.0960 0.292
24.6◦ 0.0310 0.1040 0.298
9.7◦ 0.0288 0.0970 0.297

Convex louvered fin [3] 17.4◦ 0.0331 0.1080 0.306
20.7◦ 0.0350 0.1220 0.287
24.6◦ 0.0388 0.1570 0.247

Wavy fin [5] 20◦ 0.0285 0.0484 0.589
Wavy fin and tube [12] 17.05◦ 0.0144 0.0567 0.254
Grooved channel [13] 45◦ 0.0048 0.0525 0.091
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Abstract

The previous study compared thermal and hydrodynamic performance of

two-dimensional bumped channels with different space ratios and corrugation

angles. A detailed three-dimensional numerical investigation of a bumped chan-

nel flow and heat transfer is presented (L = L̂/Ĥs = 3, β = 35◦ and Re = 200

and 500) in this study. This channel has an aspect ratio of 3.7 to correspond with

the reference fin height Hs . Continuous channels enhance heat transport due

to the secondary instability generated by the corrugated surfaces. Secondary

vortices, often termed longitudinal vortices. are revealed in the spanwise di-

rection for the three-dimensional predictions. These vortices interact with the

transverse vortices and lead to higher heat transfer and wall shear stress, as

compared to the corresponding two-dimensional predictions. Comparison of

local quantities at various cross sections illustrate the detailed influence of flow

destabilization, developing viscous layers, and wall effects.

Nomenclature

Dimensional quantities are denoted by a hat, e.g. t̂ .

Roman

f local friction factor

H channel height
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j local Colburn j factor

j/ f goodness factor

L channel length

s wall coordinate

n unit normal vector

Nu Nusselt number

p pressure

Pe Peclet number

Pr Prandtl number

Re Reynolds number

T temperature

t time

u, v, w velocity components

W Dimensional Width

Greek

α thermal diffusivity

β corrugation angle

0 time period

χ perturbation amplitude parameter
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µ dynamic viscosity

ν kinematic viscosity

ρ density

σ perturbation amplitude growth rate

τ wall shear stress

� frequency

9 arbitrary scalar

ψ Dimensionless Streamline

Subscripts and Superscripts

b bulk

c center

cr critical

H referenced to channel height

i inflow

∞ free stream

min maximum

min minimum

w wall

− Time-and-Space-Averaged
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1. INTRODUCTION

For certain applications in special fields, the surface geometry of an automotive

radiator fin has to resist the particulate fouling problem. Conventional interrupted surfaces

are excluded from utilization in these fields even though they considerably enhance heat

transfer. Continuous surfaces augment heat transfer via secondary flow characteristics in a

periodic corrugated channel. Various continuous channels provide complete intermixing due

to flow separations and reattachments within the surfaces. Their geometries also influence

the results of heat transfer and pressure drop under a given Reynolds number. The bumped

fin is a newly product which is appropriate for dusty fields and performs a lower pressure

drop than other continuous fins, such as wavy fins.

In the study of periodic bumped channels, numerical simulations are beneficial to in-

vestigate the detailed mechanisms with fully developed flow and theremal development.The

channel flow behavior will gradually become three-dimensional as the Reynolds number

increases. A two-dimensional model is gravely insufficient for depicting the longitudinal

flow mechanisms [1].

Greiner et al. carried out a series of experimental and numerical studies in periodic

grooved channels [2, 3, 4, 5]. These investigations disclosed that the Nusselt Numbers of

two-dimensional simulations are 20% lower than those of three-dimensional results when

the friction factors are lower by a factor of more than two at Re = 1, 000 based on time-

averaged velocity. Greiner et al. revealed that two-dimensional simulations underestimate

flow performance generally, especially the friction drag, due to ignorance of longitudinal

affects. Moreover, flow configurations will transit along with the Reynold numbers increase

from a steady two-dimensional flow, to two- and three-dimensional wave structures, and

then to three-dimensional mixing. In addition, the experimental passage is limited so that

the flow was not synchronized in each groove and the long flat sections connected the end

of the experimental apparatus. These two factors caused experimental flow unsteadiness
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to be smaller than the numerical simulation. Two-dimensional simulations were incapable

of accurately predicting f̄ for Rea > 400 or j̄ for Rea > 1, 000. Three-dimensional

simulations predicted j̄ and f̄ values within 20% of measured values as 800 < Rea <

1, 600 [4].

One of Greiner et al.′s experimental studies employed a channel with an aspect

ratio of 10:1, flat surfaces upstream and semi-grooved surfaces downstream for Re =

300 − 15, 000 [3]. Two-dimensional traveling waves initially existed and then became

three-dimensional wave configurations while the Reynolds number and distance from inlet

increased.

Hwang et al. provided detailed illustrations to explain the relevant fluid mechanisms

of continuous surfaces pertaining to a three-dimensional wavy duct with Re = 1, 000 −

5, 000, wavy angle=130 and 145◦, and an aspect ratio of 7.3 [6]. Flow visualization results

exhibit secondary vortices which are perpendicular to the streamwise direction. One is the

counter-rotating secondary vortex, the Taylor-Görtler vortex, which is located in the middle

region of a flow passage. The other is the corner kink generated on the wall corner. Flow

separations and reattachments near the wall regions and then the main stream turns slightly

away from the suction-side wall to the pressure-side wall because of the flow inertia force.

In the wavy channel, these secondary vortices on the pressure-side wall, flow separations

and reattachments on the suction-side wall, and corner vortices on the end walls periodically

affect one another to augment the flow unsteadiness.

Periodic three-dimensional turbulent flow in a wavy duct was numerically and ex-

perimentally performed by Ergin et al. [7]. The various combinations of space ratios

(0.45 − 2) and corrugations angles (β = 30 and 45◦) were carried out in the range of

Re = 2, 000 − 10, 000. Comparison results exhibit that a decrease of the recirculation size

with an increase in Re. As β = 30◦, the size and strength of the recirculation increase

with corrugation angles increase. In the region close to the side wall, the size and strength

of the circulation decrease, more interactions between the main flow and the concave re-
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circulation than the midregion. A seen in numerical comparisons of two-dimensional and

three-dimensional models, both have better agreement in the main flow velocities than in

the recirculation zone but two-dimensional models predict higher velocities than do three-

dimensional ones. Along with increasing space ratios, both numerical predictions present

agreeable friction factors with experimental results of β = 30◦, but underestimate 31% the

maximum value of the friction factor as β = 45◦.

DeJong et al. combined complementary experimental and two-dimensional transient

numerical analyses of the flow and heat transfer of various offset strip-fin geometries [8].

Numerical simulations afford detailed investigations of the fully-developed flow perfor-

mance with an infinite periodic channel as a complement of a finite experimental array

model. For Reynolds numbers above 1,300, the appearance of flow three-dimensionality

would be remarkable. For Reynolds numbers below 1,000, thermal boundary conditions

were important. Several fluid mechanisms were examined in this research, such as, bound-

ary layer, flow separation, reattachment, wake formation and vortex shedding, which were

all important for this complex geometry.

Fiebig investigated vortex generations of laminar channel flow via ribs, winglets,

corrugations, and “hutzen” [9]. The results presented three enhancement mechanisms to in-

crease convective heat transport: swirl, flow destabilization, and developing viscous layers.

The vortex generator (VG) surfaces develop new viscous layer and transverse vortices (such

as the Karman vortex) are typically generated in a periodic rib channel at Re = 350. Longi-

tudinal vortices are characterized by the complex three-dimensional flow such as in a delta

winglets channel. The flow in a two-dimensional corrugated channel generates counter-

rotating longitudinal vortices (Taylor-Görtler vortices) because of the flow irregularities in

concave regions. Both transverse vortices and longitudinal vortices can enhance with a low

Re, but longitudinal vortices perform a more significant role than transverse vortices do for

a given pressure drop.
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Amon and Patera utilized a periodic grooved channel to explore the wall-bounded

shear flow transition under different Reynolds number ranges by means of the spectral

element method [10]. The heat transfer phenomenon was not discussed in their study, but

showed the three-dimensional flow characteristic near criticality. The supercritical flow with

a low Reynolds number was induced by grooved shear layer destabilization due to finite-

amplitude Tollmien-Schlichting waves and three-dimensional secondary flow irregularities.

Robichaux et al. [11] investigated three-dimensional instabilities by using a two-

dimensional square cylinder numerical simulation. The notable result included three kinds of

three-dimensional disturbance modes: long-wavelength, short-wavelength, and intermediate-

wavelength existing for Reynolds numbers at around 161, 190, and 200, respectively.

O’Brien and Sparrow [12] conducted an experimental study to obtain the forced

convective heat transfer coefficients and the friction fictions for flows in a corrugated duct

with Re = 1, 500 − 25, 000, Pr = 4 − 8 (water), a corrugation angle of 30◦, and an aspect

ratio of 10.

Previous two-dimensional simulations illustrated the thermal and hydrodynamic

mechanisms within these channels. A two-dimensional model assumes that all perfor-

mances in one direction are consistent. Therefore, some fluid mechanisms will not show

in a two-dimensional configuration, especially for the supercritical regime. In reality, the

fluid characteristics are synthetically influenced from three-dimensional orientations. This

further study disclosed the impact of these mechanisms in three dimensions under the sub-

critical and supercritical regimes. Furthermore, the previous two-dimensional results will

be compared to the present three-dimensional ones in this paper.
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2. PROBLEM FORMULATION

2.1 Mathematical Model

When a numerical domain is assumed to be both hydrodynamically and thermally

fully developed, suitably separated from channel the inflow and outflow effects, computa-

tional domain can be limited to a single module as shown in Figure 1. After a certain

distance from the channel inlet, transfer mechanisms will repeat periodically from the inlet

to the outlet. In the fully developed region, this repetition allows for analysis of a single

module with one periodic length only [10]. In this numerical study, the whole fin array is

simplified as a three-dimensional two-fin domain contained in a computational domain with

a dimensionless length L = 3, a dimensionless height Hs = 1, and a dimensionless width

W = 3.7, respectively.

The tensor forms of the dimensionless continuity, momentum, and energy equations

can be written as
∂ui

∂xi
= 0 in D (1)

∂ui

∂t
+

∂

∂x j
(ui u j ) = −

∂p

∂xi
+ ν

∂2ui

∂x j∂x j
in D (2)

∂T

∂t
+

∂

∂x j
(T ui ) = α

∂2T

∂x j∂x j
in D (3)

Where the length scale is taken as Ĥs , the velocity scale as û∞, and the time scale as Ĥs /û∞.

The definitions of the dimensions parameters are ReH ≡ û∞ Ĥs /ν and Pe ≡ û∞ Ĥs /α.

Periodic boundary conditions can applied for velocity, pressure, and temperature according

to the method originally proposed by Patankar et al. [13].

On the solid walls, the usual no-slip, u = v = w = 0, and a constant temperature

boundary condition are used, T = 0. The inlet velocity is initially taken to be a uniform

horizontal velocity, equal to that of the area-averaged dimensional velocity, u = 1, v = 0,
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w = 0, and T = 1. The friction factor is defined in terms of the wall shear stress, τw, by

f =

2τw
ρu2

∞

(4)

The heat transfer behavior is characterized by the Nusselt number, defined as

Nu =

∂T
∂n |w

Tb
(5)

where Tb is the dimensionless bulk mean temperature, which can be defined as

Tb =

∫ Hs
0 |u(x, y, z, t)|T (x, y, z, t)dy∫ Hs

0 |u(x, y, z, t)|dy
(6)

The heat transfer properties are also represented by the Colburn j factor, which is indepen-

dent of the Reynolds and Prandtl numbers.

j =

Nu

RePr1/3 (7)

Space and time-averaged values of the j and f are defined as

9s(t) =

s

s

∫ l

0
9(x, y, t)dl (8)

9̄ =

1
0

∫ t+0

t
9s(t)dt (9)

where s is the coordinate along the wall and 0 is a period of at least two oscillation cycles

in length.

2.2 Numerical Method

The pre-processor GAMBIT 2.2.30 was used to generate grid points and cells. The

solver FLUENT 6.2.16 was used to solve the fluid-dynamically and thermally algebraic
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equations cell by cell with various numerical schemes, and the post-processors C and TEC-

PLOT 360 were used to evaluate and visualize the computed results. Referring to the

algorithmic schemes of the solver, the finit-volume method and segregated scheme were

used to solve these governing equations, with a second-order implicit scheme for time inte-

gration, a second-order scheme for solving pressure, and the third-order MUSCL (Monotone

Upstream Scheme for Conservation Laws) scheme for solving the momentum and tempera-

ture. The PISO (Pressure-Implicit with Splitting of Operator) scheme was used for solving

pressure-velocity coupling.

Mesh distributions and time step sizes (4t = 0.002) of each computational module

are based on the previous study. Cell numbers were modified by following the previous

two-dimensional model to correspond with the CFL condition. Finer grid distributions are

set near the boundary walls, the inlet and outlet, and the shear layer areas with 271×21×81

(460,971 nodes) representing X−, Y−, and Z−directions, respectively.

3. RESULTS AND DISCUSSION

3.1 Transport Properties

In previous work, a two-dimensional slice of the present geometry (L = 3, H =

0.28) was examined and computed results included the critical Reynolds number, Colburn j

factor, and friction factor. According to the literature, three-dimensional numerical predic-

tions exhibit higher values of friction factors and Colburn j factors than do two-dimensional

predictions [4, 8]. A comparison of the predicted j and f are shown in Table 1 at subcritical

(Re = 200) and supercritical (Re = 500) Reynolds numbers. In the subcritical regime,

the increases from the two-dimensional prediction to three-dimensional prediction in j̄ and

f̄ values, are 41% and 15%, respectively. In the supercritical regime, the increases in j̄

and f̄ values are 36% and 29%, respectively. The difference between the two predictions

is the impact of spanwise irregularities. In a two-dimensional model, all spanwise condi-
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tions are presumed consistent. The two-dimensional model is therefore capably only of

capturing transverse vortices as the fluid mechanisms to increase heat transport. While

the two-dimensional results provide a basis for understanding the overall flow behavior,

the flow physics not captured by the model limit its ability to predict the practical chan-

nel flow performance. In a three-dimensional simulation, however, longitudinal vortices

can be observed and provide a mechanism to influence cross-sectional flow patterns in the

spanwise direction. The effect of these flow structures is greater for the heat transfer than

that for the wall shear stress. The increases in the predicted j and f are proportational at

Re = 500, such that the goodness factor, j̄/ f̄ , is close for the 3-D prediction as for the 2-D

prediction. As Re = 200, the change in the predicted goodness factor between the two-

and three-dimensional models is larger.

Differences between the two-dimensional and three-dimensional predictions are also

evident in the spaced-averaged values of j and f shown in Figure 2. The three-dimensional

results exhibit a slightly higher oscillation frequency (� = 0.66) than the two-dimensional

results (� = 0.6). Although the change in the primary oscillation frequency is moderate,

the amplitude of the oscillations changes significantly, especially for the fs . For both js and

fs , the amplitudes of the predicted oscillations are lower in the three-dimensional model. In

the two-dimensional model, only the growth, translation and detachment of the transverse

vortices cause the periodic behavior. In the three-dimensional model, this same sequence

remains important but is tempered by the more complex spanwise variations.

An effect not immediately apparent in Figure 2 is the relatively long time to steady

periodic behavior. As previously metioned, the steady periodic (or quasi-periodic) behavior

is obtained from the long time integration of the Navier-Stokes equations from an arbitrary

initial condition. Interestingly, the time necessary for the simulation to settle into a steady

periodic behavior was noticeably less for the three-dimensional simulations as was the case

for the two-dimensional simulations. The difference is evident in the time histroy of the

js for a two-dimensional simulation. At t ' 32.5, the js variation predicted by the two-
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dimensional prediction moves significantly closer to the three-dimensional prediction. As

this “transition” occurs, the oscillation amplitude decreases and js(t) draws much closer to

that of the 3-D prediction.

Two other aspects of the results shown in Figure 2 are worth noting. The first is the

relative smoothness of the js variation for the 3-D model as compared to the 2-D model.

Presumably, the additional degrees of freedom available in the 3-D model allow for smoother

transitions between the stages of the periodic oscillation.

3.2 Subcritical Behavior

In our earlier two-dimensional investigation, the critical Reynolds number for the

bumped geometry with L = 3 was determined to be 300. The critical Reynolds number is a

crucial indicator since when the flow regime is subcritical, secondary vortices show steady

behaviors with constant sizes and shapes, doing little to improve heat transfer. In fact, these

fixed vortices further compress the main flow region and generally serve to increase the

thermal resistance. The anticipated steady behavior of js and fs is indeed observed in the

three-dimensional results, as shown in Figure 3 . The space-averaged transport quantities

are indeed constant at the subcritical Reynolds number of 200 in the three-dimensional

results, as they were in the two-dimensional results. The cause for the difference in the

predicted steady value is clear upon examination of the streamline and temperature contours.

The transverse vortices anticipated from the two-dimensional results are evident in only

three of the selected cross sections for instantaneous streamlines, Y =1.85, 2.46, and 3.08,

respectively, as shown in Figure 4.

3.3 Supercritical Behavior

As already observed, in the supercritical regime, the transport quantities exhibit a

steady periodic behavior. The previous two-dimensional results have demonstrated that

a single oscillation cycle corresponds to the growth, translation and finally ejection of a
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transverse vortex from the bottom cavity. Although this basic cycle is present in the three-

dimensional results, the detailed characteristics are altered by spanwise variations. To

investigate this further, is focused on two instants in the oscillation cycle, instants at which

the js reaches its maximum and minimum. The corresponding simulation time is indicated

in Figure 2.

The instantaneous streamline and temperature contours at an instant of maximum js

is shown in Figure 5. One aspect, immediately evident, is that transverse vortices extends

across the entire spanwise width of the channel. This is in marked contrast to that observed

in the subcritical regime. The intensity appears to diminish, however the Y = 0 sidewall.

This transverse vortex in the bottom cavity is the transverse vortex in the concave half cavity

along the top wall. This vortex is most intense on the pressure side of the channel. The

vortices are also smaller in size than that at the subcritical Re of 200. The strong transverse

vortex leads to high temperature gradients, particularly in the vicinity of Y = 2.46.

The instantaneous streamlines at an instant of minimum js (t = 41.40) are notably

different, as shown in Figure 6. One obvious difference is that the bottom cavity is

largely filled by a transverse vortex which spans essentially the entire channel width. This

is precisely the flow field predicted by the two-dimensional simulations at the instant of

minimum js as well.

The additional flow dynamics captured by the three-dimensional model are revealed

by streamline contours in a streamline contours in a spanwise plane, as shown in Figure 7.

The contours reveal the presence of longitudinal vortices, the cores of which move back

and forth across the width of the channel. At the instant of maximum js , the axis of the

longitudinal vortex is closest to the suction side wall, in the region where the transverse

vortices are smallest.

The distributions of local j and f are shown in Figure 8 at an instant of maximum

js . The locally highest values of j are observed immediately preceding the exit lip of the

bottom cavity and just prior to the entrance lip of the bottom cavity. The heighest values
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are also clustered toward the pressure side of the channel, where the transverse vortices

have their greatest intensity. Near the sidewalls, the heat transfer rate is relatively low and

exhibits only minimal variation in the flow direction.

As evident in Figure 8 (b), the locally highest values of f coincide with that of

j values and therefore temperature gradients. The region near the exit lip of the bottom

cavity is a source of locally high f across the width of the channel and does not diminish

on approaching the Y = 0 sidewall near as rapidly as j does.

3.4 Literature Comparisons

The further three-dimensional study employed in this paper had a constant Re = 500.

The difficulty of comparative evaluations is that the prior studies employed high Reynolds

numbers to compare two-dimensional and three-dimensional predictions. The numerical

results of j̄ and f̄ agree well with the experimental results of other fin geometries shown

in Table 2. Values of both j̄ and f̄ increase when the β value increases, which illustrates

that heat transfer enhancement by a modification of corrugated angles needs to take into

account the increase in thermal resistance. In additions, the bumped fin of three-dimensional

predictions perform larger results than the two-dimensional predictions because the three-

dimensional simulation demonstrates the longitudinal swirls in the spanwise direction.

4. CONCLUSIONS

Numerical investigation of a three-dimensional bumped channel has been conducted

at two Reynolds numbers, Re = 200 and 500. The predicted heat transfer and friction loss

exhibit different levels of change between the subcritical and supercritical flow regimes,

as compared to prior two-dimensional results. The j̄ and f̄ values increase 41% and 15%

for the subcritical regime and increase 36% and 29% for the supercritical regime. The

two-dimensional predictions of space-averaged j factor, js, do not draw close to the three-

dimensional predictions until the time integration has proceeded for a relatively long time.
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Comparing the predictions, the three-dimensional flow displays relatively smaller oscilla-

tory amplitudes with a slightly higher oscillation frequency. Study results presented have

shown that the three-dimensional prediction effects are more prominent in the subcritical

regime than in the supercritical regime. The subcritical flow exhibits steady streamline and

temperature contours while the supercritical behavior reveals a periodic behavior much like

previous two-dimensional predictions. In the three-dimensional simulations, longitudinal

vortices develop and disturb the spanwise flow distribution. Heat transfer enhancement by

longitudinal vortices is more prominent in the supercritical flow regime. The longitudinal

vortices move back and forth between the two sidewalls, alternately deflecting the main

flow and increasing the local heat transfer rate. The heat transfer and wall shear stress are

markedly higher near one of the two side walls. Since both the boundary conditions and

grid are symmetric in the spanwise direction, this preference for one side wall may be due

to a flow bifurcation although this possibility has not been investigated in detail. As with

the two-dimensional predictions, the highest levels of heat transfer and wall shear stress are

observed at the edges of the bumped cavity.
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Figure 1 Schematic of the bumped channel arrangement. (L = 3, W = 3.7, H = 0.28,
β = 35◦) (The dashed line indicateds the computational domain in the fuly developed
region.)
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Figure 5 Instantaneous streamline and temperature contours for the steady periodic be-
havior at the instant of maximum js (t = 40.52) for Re = 500 in the supercritical regime.
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Figure 6 Instantaneous streamline and temperature contours for the steady periodic be-
havior at the instant of minimum js (t = 41.40) for Re = 500 in the supercritical regime.
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Figure 7 Spanwise flow characteristics at the concave region, Re = 500.
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Table 1 Time-and-space-averaged scalars comparisons of three-dimensional and two-
dimensional simulations at select Reynolds numbers.

Re Simulation j̄ f̄ j̄/ f̄
200∗ 3-D 0.0297 0.278 0.107

2-D 0.0211 0.241 0.088
500∗∗ 3-D 0.0187 0.123 0.152

2-D 0.0137 0.094 0.146

* Subcritical
** Supercritical
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Table 2 Comparison of j̄ , f̄ and j̄/ f̄ with different β values at Re = 500.

Type β j̄ f̄ j̄/ f̄
Bumped fin (Three-dimensional) 35◦ 0.0187 0.123 0.152
Bumped fin (Two-dimensional) 35◦ 0.0137 0.094 0.146

Wavy fin [1] 20◦ 0.0285 0.0484 0.589
Grooved channel [5] 45◦ 0.0048 0.0525 0.091

0◦ 0.0200 0.0660 0.303
Flat louvered fin [14] 12.8◦ 0.0250 0.0910 0.275

17.4◦ 0.0280 0.0960 0.292
24.6◦ 0.0310 0.1040 0.298
9.7◦ 0.0288 0.0970 0.297

Convex louvered fin [14] 17.4◦ 0.0331 0.1080 0.306
20.7◦ 0.0350 0.1220 0.287
24.6◦ 0.0388 0.1570 0.247

Wavy fin and tube [15] 17.05◦ 0.0144 0.0567 0.254
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