
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Fall 2008

Virtual prototyping with surface reconstruction and freeform Virtual prototyping with surface reconstruction and freeform

geometric modeling using level-set method geometric modeling using level-set method

Weihan Zhang

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Mechanical Engineering Commons

Department: Mechanical and Aerospace Engineering Department: Mechanical and Aerospace Engineering

Recommended Citation Recommended Citation
Zhang, Weihan, "Virtual prototyping with surface reconstruction and freeform geometric modeling using
level-set method" (2008). Doctoral Dissertations. 1984.
https://scholarsmine.mst.edu/doctoral_dissertations/1984

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1984&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1984&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/1984?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1984&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

VIRTUAL PROTOTYPING WITH SURFACE RECONSTRUCTION AND

FREEFORM GEOMETRIC MODELING USING LEVEL-SET METHOD

by

WEIHAN ZHANG

A DISSERTATION

Presented to the Faculty ofthe Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

IN MECHANICAL ENGINEERING

2008

Approved by

Ming C. Leu, Advisor
Frank W. Liou

Michael G. Hilgers
Robert G. Landers

Robert B. Stone

111

PUBLICATION DISSERTATION

This dissertation includes the following four articles:

Pages 50-72 have been published in ASME JOURNAL OF COMPUTING AND

INFORMATION SCIENCE IN ENGINEERING, 2007, 7(3), pp. 203-210.

Pages 73-106 have been accepted for publication in ASME JOURNAL OF

COMPUTING AND INFORMATION SCIENCE IN ENGINEERING.

Pages 107-119 have been accepted for publication in CIRP ANNUALS­

MANUFACTURING TECHNOLOGY.

Pages 120-142 are prepared for submission to the INTERNATIONAL JOURNAL

OF COMPUTER AIDED-DESIGN.

IV

ABSTRACT

More and more products with complex geometries are being designed and

manufactured by computer aided design (CAD) and rapid prototyping (RP) technologies.

Freeform surface is a geometrical feature widely used in modern products like car bodies,

airfoils and turbine blades as well as in aesthetic artifacts. How to efficiently design and

generate digital prototypes with freeform surfaces is an important issue in CAD. This

paper presents the development of a Virtual Sculpting system and addresses the issues of

surface reconstruction from dexel data structures and freeform geometric modeling using

the level-set method from distance field structure. Our virtual sculpting method is based

on the metaphor of carving a solid block into a 3D freeform object using a 3D haptic

input device integrated with the computer visualization. This dissertation presents the

result of this study and consists primarily of four papers. The first paper presents the

development of a novel contour generation algorithm for the purpose of visualizing the

sculpted dexel models and interfacing with other CAD/CAM/CAE systems. To improve

the sampling quality of the dexel model used in the virtual sculpting system, the second

paper develops a triple-dexel structure and a novel surface reconstruction method from

triple-dexel data. The developed surface reconstruction method is faster than the voxel­

based method, and the reconstructed surface model is more accurate than surface

reconstructed from voxel representation using the marching cube algorithm. To enhance

the modeling capability of the virtual sculpting system, additional free form modeling

operations including deformation, smoothing and imprint are developed using the user's

gesture inputs based on the level-set method. The developed operations generate a water­

tight mesh model effective for freeform geometric modeling.

v

ACKNOWLEDGMENTS

I would like to express my sincere respect and gratitude to my research advisor,

Professor Ming C. Leu, for his guidance and support through my academic study and

research. During the research work for this dissertation, Dr. Leu shared his knowledge in

many areas, provided inspiration and was ready to help whenever I needed his advice. I

am fortunate to have such a kind, knowledgeable and passionate advisor in my academic

life.

My thanks also go to Professors Frank W. Liou, Michael G. Hilgers, Robert G.

Landers, Robert B. Stone and Shun Takai for their valuable suggestions as members of

my dissertation committee.

I am also grateful to all the people from the Virtual Reality and Rapid Prototyping

Laboratory, whom I had the pleasure to work with. I thank my colleagues, especially,

Xiaobo Peng, for his input to my work, for the collaborating in the Virtual Sculpting

Project.

I thank my parents for their understanding, confidence, and encouragement while

I am concentrating in my research work.

Finally, I would like to thank my girlfriend, Chengchun Tsai, for her endless love

and support, limitless patience, and for her efforts and endurance for my study.

VI

TABLE OF CONTENTS

Page

PUBLICATION DISSERTATION OPTION ... iii

ABSTRACT ... iv

ACKNOWLEDGMENTS ... v

LIST OF ILLUSTRATIONS .. xii

LIST OF TABLES ... xv

SECTION

1. INTRODUCTION .. 1

1.1. MOTIVATION .. 1

1.2. RESEARCH OBJECTIVE AND ISSUES .. 3

1.3. RELATED WORK .. 4

1.3 .1. Virtual Prototyping Techniques4

1.3.2. Geometric Representations ... 7

1.3.2.1 Single-dexel model ... 7

1.3.2.2 Triple-dexel model ... 9

1.3.2.3 Voxel model ... 11

1.3.2.4 Implicit model. .. 11

1.3.2.5 Distance field model ... 11

1.3.2.6 Implicit surface and volumetric modeling techniques 13

1.3.3. Surface Reconstruction for Virtual Prototyping 18

1.3.3.1 Surface reconstruction from dexel model.. 19

1.3.3.2 Surface reconstruction from planar contours 20

1.3.3.3 Surface reconstruction from volumetric models 22

2. RESEARCH TASKS AND MAIN RESULTS ... 23

2.1. SURF ACE RECONSTRUCTION FROM DEXEL DATA 23

2.1.1. Contour Reconstruction from Dexel Model.. .. 23

2.1.2. Surface Reconstruct from Planar Contours ... 26

2.1.3. Surface Reconstruction from Triple-Dexel Model 26

2.1.4. Contour Combination .. 28

Vll

2.1.5. Surface Reconstruction from Three Orthogonal Slices of Contours 29

2.1.6. Computational Complexity Analysis .. 30

2.1.7. Surface Error Analysis .. 30

2.1.8. System Integration .. 32

2.2. STUDY OF DISTANCE FIELD BASED FREEFORM MODELING 32

2.2.1. Generation ofDistance Field Model from Triple-Dexel Model 32

2.2.2. Hand Gesture Modeling .. 34

2.2.3. Shape Modeling Using Level-Set Method .. 35

2.2.4. Deformation Operation ... 37

2.2.5. Smoothing Operation .. 37

2.2.6. Performance Evaluation .. 38

3. MAJOR RESEARCH CONTRIBUTIONS .. 39

3.1. SURFACE RECONSTRUCTION FROM DEXEL MODELS 39

3.2. DISTANCE FIELD GENERATION FROM TRIPLE-DEXEL MODEL 40

3.3. LEVEL-SET METHOD BASED FREE FORM OPERATIONS40

BIBLIOGRAPHY ... 42

PAPER

I. A NOVEL CONTOUR GENERATION ALGORITHM FOR SURF ACE
RECONSTRUCTION FROM DEXEL DATA ... 50

ABSTRACT .. 50

1. INTRODUCTION .. 51

2. CONTOUR GENERATION FROM DEXEL DATA 53

2.1. Algorithm Design Methodology .. 53

2.2. Algorithm Details ... , 55

2.3. Contour Generation Example .. 58

2.4. Discussion of the Contour Generation Algorithm 58

3. ANALYSIS OF THE CONTOUR GENERATION ALGORITHM 60

3 .1. Computational Complexity Analysis ... 60

3.2. Memory Requirement Analysis ... 61

3.3. Numerical Experiments ... 62

4. IMPLEMENTATION AND EXAMPLES .. 65

4.1. Surface Reconstruction by Tiling Contours 65

Vlll

4.2. Virtual Sculpting .. 65

4.3. NC Machining Simulation ... 68

5. CONCLUSION ... 68

ACKNOWLEDGEMENTS .. 69

REFERENCES .. 69

II. SURFACE RECONSTRUCTION USING DEXEL DATA FROM THREE
SETS OF ORTHOGONAL RAYS .. 73

ABSTRACT .. 73

1. INTRODUCTION .. 73

2. RELATED WORK ... 77

2.1. Triple-Dexel Based Solid Modeling ... 77

2.2. Surface Reconstruction from Triple-Dexel Data 77

3. SURFACE RECONSTRUCTION FROM TRIPLE-DEXEL DATA 78

3.1. Contours Generation Algorithm .. 79

3.2. Contour Combination Algorithm ... 81

3.2.1. Algorithm Design Methodology ... 81

3.2.2. Contour Correspondence ... 82

3.2.3. Contour Combination .. 83

3.2.4. Discussion ... 88

3.3. Volume-Based Surface Tiling Algorithm 91

4. ANALYSIS ... 93

4.1. Computational Complexity Analysis .. 93

4.1.1. Contour Generation Algorithm ... 93

4.1.2. Contour Correspondence Algorithm 94

4.1.3. Contour Combination Algorithm .. 94

4.2. Space Complexity Analysis .. 95

4.3. Surface Error Analysis .. 95

5. IMPLEMENTATION EXAMPLES .. 96

6. COMPARISON WITH VOXEL REPRESENTATION 99

7. CONCLUSIONS .. 102

ACKNOWLEDGMENTS .. ! 03

REFERENCES .. I 03

lX

III. VIRTUAL SCULPTING WITH SURFACE SMOOTHING BASED ON
LEVEL-SET METHOD ... 1 07

ABSTRACT .. 1 07

1. INTRODUCTION .. 1 07

2. RELATED WORK ... 1 09

2.1. Distance Field Calculation ... 1 09

2.2. Surface Smoothing .. 109

3. GENERATING DISTANCE FIELD FROM TRIPLE-DEXEL DATA 110

3.1. Identify BV, BGP and AGP .. 111

3.2. Determine the Sign of Each BGP and AGP 111

3.3. Approximate !so-Surfaces Inside BVs .. 112

3.4. Calculate Distance Values of BGPs and AGPs 113

4. SURFACE SMOOTHING USING THE LEVEL-SET METHOD 113

4.1. Level-Set Method .. 113

4.2. Numerical Solutions for Leve]-Set Method 114

4.3. Mean Curvature Calculation .. 115

4.4. Surface Smoothing Using Mean Curvature Flow 115

5. APPLICATION TO VIRTUAL SCULPTING ... 116

6. SUMMARY .. 118

ACKNOWLEDGMENTS .. 118

REFERENCES .. 118

IV. A SPATIAL WARPING METHOD FOR FREE FORM MODELING
BASED ON LEVEL-SET METHOD .. 120

ABSTRACT .. 120

1. INTRODUCTION .. 120

2. RELATED WORK ... 122

2.1. Free form Geometric Modeling .. 122

2.2. Level-Set Method for Modeling of Freeform Geometry 124

3. THE SPATIAL WARPING METHOD .. 124

3.1. Input Data .. 125

3.2. The Influence Zone of a Tool .. 127

3.3. Shape Modeling Using the Level-Set Method 128

X

3.4. Grid-Based Velocity Field ... 129

4. FREEFORM MODELING OPERATIONS ... 130

4.1. Imprint Operation .. 130

4.2. Fold-Free Deformation Operation ... 131

4.3. Smoothing Operation ... 135

4.4. Advantage of the Modeling Method .. 136

5. IMPLEMENTATION .. 137

6. CONCLUSION ... 138

ACKNOWLEDGMENTS .. 140

REFERENCES .. 140

APPENDIX ... 143

VITA .. 148

XI

LIST OF ILLUSTRATIONS

Figure Page

1.1. Schematic ofthe System Configuration ... 3

1.2. The Generation of Dexel Data .. 7

1.3. Six Possible Relationships between Zmin and Zmax ... 8

1.4. Triple Dexel Model .. 10

1.5. A Circle in the Implicit Representation .. 12

1.6. Sampled Distance Field Data ... 12

1.7. The Blobs Model .. 14

1.8. Skeletal Elements for the Train and the Surface of the Train after Blending 15

1.9. A Model Defined by Sweeping Primitives ... 16

1.10. Examples ofCurve Skeletons ofDifferent 3D Objects .. 19

2.1. Example of the Contour Generation Algorithm .. 24

2.2. Contour Generation from Single-Dexel Data ... 25

2.3. Modeling Example of a Cat Model .. 27

2.4. Proposed Method of Surface Reconstruction from Triple-Dexel Data 27

2.5. Contour Combination Algorithm .. 28

2.6. Comparisons of Reconstructed Surfaces .. 31

2.7. A Cat Model Generated Using the Virtual Sculpting System 33

2.8. Boundary Pixels, BGP, AGP and Dexel Points ... 33

2.9. Distance Calculation for the Grid Points .. 34

2.10. Human Gesture Modeling Using Interpolation Method ... 35

PAPER I

1. Illustration of the Ray Casting Process and the Dexel Representation 51

2. Example of the Contour Generation Algorithm .. 54

3. Grouping Process ... 56

4. Contouring Algorithm ... 56

5. Special Cases of the Contouring Algorithm .. 51

6. Traversing the Connection Table to Separate Contours .. 59

7. Example of the Contour Generation Process ... 59

Xll

8. Discussion on the Validation of the Observations ... 60

9. Numerical Experiments ... 63

1 0. Contour Generation Time (T) vs. Average No. of Dexels Per Ray (a) 64

11. Contour Generation Time (T) vs. Number of Rays (/J) ... 64

12. The Virtual Sculpting System Configuration .. 67

13. Modeling Examples ... 67

14. A Mouse in the Midst ofNC Machining Simulation .. 68

PAPER II

1. Illustration of the Ray-Casting Process and the Single-Dexel Representation 74

2. Construction of a Triple-Dexel Model .. 75

3. Proposed Method of Surface Reconstruction from Triple-Dexel Data 79

4. Contour Generation from Single-Dexel Data .. 80

5. Contour Combination Algorithm ... 82

6. Locations of the First and the Last Associated Points of Contour B1 84

7. Illustration of the Solution to the Case CA4 .. 86

8. Contour Combination Process ... 87

9. Example of the Contour Combination Process .. 89

10. A Case Study of the Contour Combination Process .. 90

11. A Case Study of the Contour Combination Process .. 91

12. Volume Tiling Algorithm .. 92

13. Illustrative Example of the Contour Combination Algorithm 97

14. A Bunny Model and the Reconstructed Surface ofthe Bunny 98

15. Comparisons Between Single-Dexel Data and Triple-Dexel Data 99

16. A Cat Model Generated Using the Virtual Sculpting System 1 00

17. Two Test Cases: Impeller and Bunny .. 101

18. Surface Reconstruction Time vs. Number of Divisions from the Voxel Data and
the Triple-Dexel Data for the Impeller .. 1 02

19. Surface Reconstruction Time vs. Number of Divisions from the Voxel Data and
the Triple-Dexel Data for the Bunny ... 102

PAPER III

1. Illustration of the Ray-Casting Process and the Dexel Representation 11 0

2. Boundary Pixels, BGP, AGP and Dexel Points ... 112

Xlll

3. Distance Calculation for the Grid Points ... 112

4. Example ofthe Smoothing Operation on a Star Shape ... 116

5. A Cat Model Created Using the Virtual Sculpting System ... 117

6. Modeling Examples ... 117

PAPER IV

1. Schematic of the Freeform Modeling System ... 125

2. Hand Gesture Modeling by Interpolation .. 126

3. The Influence Zone of a Tool. ... 127

4. Generation of the Grid-Based Velocity Field .. 130

5. Example of the Imprint Operation ... 131

6. Example ofthe Shape Deformation ... 132

7. The Deformation Operation ... 133

8. The Freeform Deformation Operation ... 135

9. Example ofthe Smoothing Operation on the Top of a Cylindrical Shape 136

10. Comparison ofthe Deformed Shape with the Same Deformation Operation 137

11. The Virtual Shape Modeling System Setup .. 138

12. Modeling Example .. 139

XIV

LIST OF TABLES

Table Page

1.1. Meaning of Abbreviated Symbols .. 9

2.1. Test Results ofthe Level-Set Method .. 38

PAPER I

1. Computation Results of the Contour Generation Algorithm ... 63

2. Computation Time of the Contour Generation Algorithm .. 64

PAPER II

1. Combinations of the First and the Last Associated Points .. 85

2. Surface Errors of the Reconstructed Bunny Model from Triple-Dexel Data 97

3. Surface Errors ofthe Reconstructed Bunny Mode1. .. 97

4. The Surface Reconstruction Time and Surface Error .. 101

PAPER IV

1. Test Results of the Level-Set Method ... 139

1. INTRODUCTION

1.1. MOTIVATION

Choosing a product concept is a critical decision-making step in product

development. A firm earns a large profit and establishes a strong brand name if it

generates and chooses a superior product concept; however, if the situation is reversed, it

suffers a huge loss. SONY's Walkman and Betamax video tape are classic examples of

such opposite cases [Nathan, 1999]. Because marketplaces have become more

competitive and product lifecycles have continued to shorten, firms need to generate and

select optimal product concepts more accurately, more inexpensively, and much faster.

In the concept generation phase, once concept variants are computed, virtual

prototypes represent a promising alternative to physical prototypes for selecting a final

design concept to fabricate. Virtual prototyping can significantly reduce prototyping cost

and shorten time taken to evolve a product concept. Virtual prototypes are particularly

beneficial to the firms that have never developed similar products before, since the firms

can avoid expensive costs investing in tooling and in developing manufacturing processes

for physical prototypes.

Commercially available Computer Aided Design (CAD) systems have been

widely used for improving the efficiency of the present virtual prototype design process

and for better integration with manufacturing systems. However, these CAD systems may

not allow the users to implement their ideas on designing virtual prototypes in an intuitive

and user-friendly manner. Many traditional CAD systems such as Unigraphics NX, Ideas,

etc. have powerful features, but it is not easy to learn and use these tools. Their user

interface generally consists of many windows, menus, icons, etc. which tend to bog down

the user from concentrating on his/her design intent. Another restriction of the

conventional CAD system is in the input devices. The designers use a two-dimensional

(2D) input device such as a mouse for the construction of three-dimensional (3D) objects.

This restriction causes the use of the modeling system unfriendly and counter-intuitive.

Furthermore, in virtual prototyping, the exact dimensions of virtual prototypes are not of

main concern. The designer is more interested in creating different part shapes, design

configurations, etc. and choosing the most appropriate ones from them. Therefore,

traditional CAD systems, which require precise data for designing objects, are not the

best choice for conceptual design.

2

Virtual sculpting is a process in which the user creates a three-dimensional (30)

object on the computer screen by interactively carving a workpiece like a real sculptor

would do on a piece of clay, wax or wood. It is well suited to a free form design of virtual

prototypes as it allows the user to avoid cumbersome interface with the computer [Maiteh

et al., 2000; Leu et al., 2001]. Incorporating a haptic interface to the sculpting system also

provides the user with a realistic sculpting experience in the virtual prototyping process.

Previous researchers [Maiteh et al., 2000; Peng et al., 2006] in Dr. Ming Leu's research

labs have developed an experimental virtual sculpting system. The schematic of this

system, as shown in Fig. 1.1, is based on the metaphor of carving a solid block into a 3D

freeform object. A sculpting tool is controlled by a 3D input device, and the material

(workpiece) is represented geometrically by a single directional full-depth pixel data

called "single-ray dexel" during the sculpting process. This process starts with a virtual

block of material and removes it bit-by-bit by the sculpting tool. Sculpting is

implemented via a series of Boolean difference operations that subtract successive tool

geometry in a single-ray dexel model from the workpiece. The Boolean difference is

performed between the single-ray dexel representation of tool and the single-ray dexel

representation of workpiece by comparing the sorted depth data for each pixel. By

reducing the complex operations between the tool model and the workpiece model to

Boolean operations on one-dimensional segments, the sculpting system can achieve real­

time interaction with the human stylist/designer. The PHANToM™ manipulator is used

as an input device to provide position and orientation data of the sculpting tool and it is

also used as an input device to provide output haptic sensation during sculpting.

However, several limitations of this experimental system have been identified.

First, the single-ray dexel data has a low sampling resolution in directions perpendicular

to the ray direction such that the generated freeform models may have poor surface

representations in those directions. Second, because the single-ray dexel model can be

seen only from one direction, the model can only be sculpted from one direction, which

greatly limits the modeling capability of the virtual sculpting system. Third, the curren(

system has only limited geometric modeling operations such as material removal and

addition while other intuitive and interactive operations such as deformation, smoothing,

and shape copy/pastes have yet been included.

Surface
Reconstruction

Continuous
Update of

Geometric Model

Continous Force
Computation

Figure 1.1. Schematic of the System Configuration

1.2. RESEARCH OBJECTIVE AND ISSUES

Initial
Geometric

Model

Virtual Tool's
Geometric model

& Its Position
and Orientation

3

This dissertation is broadly aimed at improving and extending the freeform

geometric modeling capabilities of a virtual sculpting system. A triple-ray dexel based

geometric modeling system has been developed to replace the previous single-ray dexel

modeling system. A novel surface reconstruction process has been developed to create

the surface model from the triple-ray dexel data. The accuracy and computational cost of

the developed algorithms have been analyzed. The developed algorithms have been

implemented and integrated with the previously developed virtual prototyping system.

The interactive level-set method based freeform modeling techniques have been

developed and integrated with existing geometric modeling capabilities into a virtual

prototyping system that can be used to create 3D concept models of any geometry

including freeform surfaces. These techniques will enable intuitive and interactive

generation of any 30 models with haptic interface and subsequent editing of the created

models. Material removal, addition, shape deformation and smoothing can be performed

using established techniques with the help of the haptic device from SensAble TM

Technology [SensAble, 2006].

4

Developing such a virtual proto typing system is a major undertaking and needs to

address many technical challenges in order to meet the stringent requirements on

interactive freeform geometric modeling. The fundamental research issues that have been

addressed in this dissertation include:

• How to reconstruct triangular surface from the dexel model and triple-dexel model?

• What are the advantages of the developed methods over existing surface

reconstruction methods?

• What's the computational complexity and memory cost of the developed algorithms?

• How to formulate the level-set method based freeform modeling framework?

• How to develop fast and efficient freeform modeling operations under this

framework?

• How to model the human's gesture inputs and utilize it for free form modeling?

• How to develop compact data structures to store the geometry information for the

level-set method?

• How to develop efficient algorithms for the calculation in the level-set method?

1.3. RELATED WORK

1.3.1. Virtual Prototyping Techniques. Virtual prototyping allows greater

communication, productivity and efficiency through realistic modeling and graphic

display based on full color, natural texture and appearance. Virtual prototypes are

particularly beneficial to the firms that have never developed a similar product before

since the firms can avoid expensive costs investing in tooling and in developing

manufacturing processes for physical prototypes.

Numerous virtual prototyping techniques have been developed over the years.

Zorriassatine et al. [2003] identified five broad classes of virtual prototyping techniques

based on the modeling objectives and purposes.

• Visualization

•

•
•
•

Fit and interference of mechanical assemblies

Testing and verification of functions and performance

Evaluation of manufacturing and assembly operation

Human factor analysis

5

Virtual prototyping involves various techniques including geometric modeling,

graphics rendering, haptic rendering, etc. Sachs et al. [1991] introduced a system for

interactive 3D shape design called "3D draw." Its user interface is based on a pair of

Polhemus six-degree-of-freedom tracking devices and a graphic display is used to

visualize the scene from a virtual camera position. After drawing and editing 3D curves,

which form wire frame models, the next steps are fitting surfaces to groups of linked

curves and deforming the surfaces till the required shape is obtained. Deering [1996] at

Sun Microsystems created the HoloSketch system, in which the user wears a pair of

head-tracked field sequential stereo shutter glasses and manipulates the virtual world

through a hand-held 3D mouse/wand. In the design process, the fade-up menu is used to

select the required drawing primitives such as rectangular solids, spheres and cylinders or

to perform one-shot actions such as cut or paste. Built by researchers at the University of

North Carolina [Butterworth et al., 1992] this system uses an HMO to place the designer

in a virtual modeling environment. An input device such as a Polhemus 3-space Isotrak

held in one hand is used for all interactions including selecting commands from a floating

menu, selecting objects, scaling and rotating objects, or grabbing vertices to distort the

surface of an object. Researchers at the University of Alberta, Canada developed a

system called JDCAD [Liang et al., 1994]. It is a 3D modeling system which uses two

6DOF tracking devices, one to dynamically track the user's head and provide the kinetic

3D effect (e.g. correlation to the position and orientation of head) and the other used as a

hand-held "bat" [Ware et al., 1988] to track hand movements. A bat is a tracker that

reports 3D position and orientation data. It has three buttons mounted on it for signaling

events. By switching modes, the bat can be used to rotate and translate the model under

construction to select objects for subsequent operations, and to orient and align individual

pieces of the model. Dani and Gadh [1997] presented an approach for creating shape

designs in a virtual reality environment called COVIRDS (Conceptual VIRtual Design

System). This system uses VR technology to provide a 30 virtual environment in which

6

the designer can create and modify 3D shapes with an interface based on bimodal voice

and hand tracking. A large-screen, projection-based system called the Virtual Design

Studio (VDS) is used as an immersive VR-CAD environment. The designer creates three­

dimensional shapes by voice commands, hand motions, finger motions, and grasps and

shape edits features with his/her hands. Tests have been conducted to compare the

efficiency of the COVIRDS with the traditional CAD systems. It was claimed that the

COVIRDS system can achieve a productivity of 10-30 times over the conventional CAD

systems.

Virtual sculpting, a technique for intuitive virtual prototyping, is "an attempt at

the creation of a sculptor's studio-like environment, in which the 'sculptor' can create

complex 3-D objects in the computer, as if molding a piece of clay" [Parent, 1977]. This

technique is well suited for the development of virtual prototypes because virtual

sculpting allows designers to design virtual prototypes in an intuitive and easy manner.

Sederberg and Parry [1986] introduced the concept of freeform deformation. Since then,

several improvements and extensions have been prompted. The extended freeform

deformation method proposed by Coquillart [1990] utilized non-parallelopipedical

lattices. Hsu et al. [1992] developed a direct manipulation technique that makes

generation and placement of deformations easier. Lamousin and Waggenspack [1994]

described a system ofNURBS freeform deformations based on a mesh built from

rectangular parallelopipeds. Wang and Kaufman [1995] did pioneering research on

volume sculpting. Recently Frisken et al. [2000] developed a volumetric sculpting system

based on an adaptive distance field, allowing for representation of a volumetric model

with adaptive resolution.

Leu and his research team developed a virtual sculpting system to address issues

of interactive solid modeling with haptic interface [Maitech et al., 2000; Peng and Leu,

2004; Peng et al., 2005]. The virtual reality interface includes stereo viewing and force

feedback. The geometric modeling in this system is based on the Sweep Differential

Equation method [Blackmore and Leu, 1992] to compute the boundary of the tool swept

volume, and based on the ray-casting method to perform Boolean operations between the

tool swept volume and the virtual stock in a single-ray dexel data to simulate the

sculpting process. Force feedback is incorporated to enable the user to feel the sculpted

virtual model like actual sculpting with physical materials. Multithreading is used to

address the different update rates requirements in graphic and haptic displays.

7

1.3.2. Geometric Representations. The efficiency and the modeling ability of the

virtual prototyping system largely depend on the geometric representation used in the

system. Commonly used representations include single-dexel model, triple-dexel model,

voxel model, distance field model, and implicit surface model. A review of these

representations is given in this section.

1.3.2.1 Single-dexel model. In keeping with the convention on the names pixel

and voxel, Van Hook [1986] introduced the notion of single-ray dexel as an abbreviation

of "depth element". The single-ray dexel representation of a solid is constructed via

computing ray intersections with the solid. For a given solid, parallel and equidistant rays

are projected from the viewing direction and intersected with the object as shown in Fig.

1.2.

X

P.,~P•z p .. 042 p ..

p., 031
Psz

032 P:w Pn

P21 021 P22 Pn
022

Pz•

p, 011 P,z

(b) z
(a)

Figure 1.2. The Generation ofDexel Data. (a) The Ray Casting Process and (b) the
Single-Dexel Data

For each ray the intersected points with the solid are stored in the following

manner: two points defining a line segment that is fully inside the solid make up a dexel.

In Fig. 1.2 the two line segments PI1P12 and P 13P 14 indicate that the points between them

are inside the solid. All dexels for a ray are sorted and concatenated into a dexel list and

the dexel lists are organized into a dexel matrix. This is the single-ray dexel model.

8

Using the single-ray dexel data simplifies the implementation of Boolean

difference and addition, which compare one-dimensional dexel data between the

workpiece and the tool swept volume and manipulate them according to an algorithm for

these operations. Taking the single-ray dexel data in the z direction as an example,

because the operation is performed on dexellists at each pixel position, x and y are

invariants in the operation, the only variables that have to be considered are (zmax 'zmin) of

each dexel. Six relationships between the (zmax, zmin) of the workpiece and that of the

swept volume are summarized in Fig. 1.3. The meanings of the abbreviated symbols in

Fig. 1.3 are listed in Table. 1.1 Both Boolean addition and Boolean difference have been

implemented and integrated in the virtual sculpting system using single-direction rays.

Direction of View

ZVN ZVF ZVN ZVF ZVN ZVF
LJ I I I I LJ 4=J I

ZSN ZSF ZSN ZSF ZSN ZSF

(comeTo) (GoAway) (Cutin)

ZVN ZVF ZVN ZVF ZVN ZVF

I I I I I 4-J I I I I
ZSN ZSF ZSN ZSF ZSN ZSF

(CutAII) (CutOut) (Merge)

Figure 1.3. Six Possible Relationships between Zmin and Zmax

9

Some research has been done previously on the problem of surface reconstruction

from single-ray and triple-ray dexel data. Huang and Oliver [1995] briefly described a

contour tracking technique to reconstruct contours from a single-ray dexel model without

detailed development of an algorithm. The boundary of the object was visualized by

simply displaying sets of contours extracted from the single-ray dexel data. Zhu and Lee

[2005] presented a visibility sphere marching algorithm for constructing polyhedral

surface models from single-ray dexel models for their haptic virtual sculpting. When the

algorithm was applied to complex models, some cracks and holes occurred in the

generated mesh due to topology related issues [Zhu, 2003]. Benouamer and Michelucci

[1997] reconstructed the approximated surface from the triple-ray dexel data by using the

marching cube algorithm [Lorensen and Cline, 1987], which still suffers from vast

memory cost and ambiguous cases.

Symbol

ZVN

ZVF

ZSN

ZSF

Table 1.1. Meaning of Abbreviated Symbols

Abbreviation of Meaning

Z Volume Near The maximum z value oftool swept

volume

Z Volume Far

Z Stock Near

Z Stock Far

The minimum z value of tool swept

volume

The maximum z value ofworkpiece

The minimum z value of workpiece

1.3.2.2 Triple-dexel model. In the single-ray dexel model, low sampling quality

occurs at surface areas on which the surface normals are perpendicular or nearly

perpendicular to the ray direction. To address this problem, an orthogonal triple-ray dexel

model has been constructed in this dissertation study by shooting rays in x, y, and z

directions, to discretize the model.

10

The triple-ray dexel model can provide a better resolution than the single-ray

dexel model as shown in Fig. 1.4. In comparison with the popular voxel model [Wang

and Kaufman, 1995], the triple-ray dexel model requires less computer memory. The

memory of the triple-ray dexel model is proportional to the surface area of the geometry,

while in the voxel model it is proportion to the volume of the object geometry. If the

number of divisions on the x, y, and z axes are Nx, Ny, and N=, respectively, the memory

cost of the voxel model is roughly O(NxNyN=), while the memory cost of the triple-ray

dexel model is O(NxNy+NyN=+N=Nx). When higher resolutions and more intensive

calculations are needed, for example, in the case of adding a distance function onto the

voxel model to simulate the interface tracking, the memory-efficient property of the

triple-ray dexel becomes an important issue. The triple-ray dexel data is not only

memory-efficient but also time-efficient. The access time of the linked list structure used

to store the triple-ray dexel data is proportional to the number of elements in the list,

where a constant access time can be achieved if a compressed index storage scheme with

the knowledge of the connectivity property is used.

z

Figure 1.4. Triple Dexel Model

11

Due to the memory and time efficiency property of the triple-ray dexel data, the

triple-ray method has been used by many researchers for different applications.

Benouamer and Michelucci [1997] used triple-ray dexel data to convert CSG models into

Brep models. Muller et al. [2003] implemented an online sculpting and visualization

system by using the triple-ray dexel data. The marching cube algorithm was used to

generate the surface from this data. Ren et al. [2006] developed a triple-ray dexel-based

virtual prototyping and manufacturing planning system.

1.3.2.3 Voxel model. 3D Geometry can subdivided into small equal-sized cubes.

Each cube is called a voxel. A voxel is a volume element, representing a value on a

regular grid in three dimensional space. This is analogous to a pixel, which represents 2D

image data. Voxel-based representation becomes popular recently in computer graphics,

medical image visualization and computer games. The process of converting a geometric

representation of a 3D model into a set of voxels is called the voxelization process. There

are many freeform operations developed based on the voxel model, such as deformation,

smoothing, cutting, addition and etc. A more detailed survey is given by Chen et al.

[2001].

1.3.2.4 Implicit model. Implicit surfaces are two-dimensional, geometric shapes

that exist in three dimensional space where they are defined according to a particular

mathematical function. By definition, if./{p) = 0 thenp is the point on the surface./

inherently characterizes a volume: those points for which/< 0 are on one side (nominally

the 'inside') of the surface, those points for which/> 0 are on the other side of the same

surface.fdoes not explicitly describe the surface, but implies its existence. For many

functions,fis proportional to the distance between p and the surface. A circle in its

implicit form is shown in Fig. 1.5.

1.3.2.5 Distance field model. Distance field is a discretized volume

representation with distance function, which represents the scalar distances to a surface

geometry or shape defined on the vertex of each voxel. It has been used in the computer

vision community for image processing, in the physics community for wave-front,

Eikonal equation solving, and in the computer graphics community for object

representation and processing. Figure 1.6 gives an example of a distance field

representation of a 2D contour [Frisken et al., 2000].

A circle:

• Parametric representation:
f(x,y)= (Rcos(a) , Rsin(a)) , a E [0, 2Pl]

• Implicit representation:
f(x, y) = x2+y 2-R2

Figure 1.5. A Circle in the Implicit Representation

(a) (b)

Figure 1.6. Sampled Distance Field Data

12

The implicit surface models can be represented by the discretized distance field

data where the distance information is the shortest Euler distance from the grid point to

the implicit surface. The available algorithms for computing the distance field from

common surface representation includes hierarchical organization and characteristic

method [Jones et al., 2006]. Generally a brute force method is used to compute the

distances from a grid point in the space to every boundary triangle of M and select the

shortest one. To reduce the computation, the shortest distance can be calculated only to a

13

limited number of primitives according to spatial coherences. However, there has been

very little research on the calculation of the distance field directly from triple-dexe1 data,

which precedes the creation of a triangular mesh in virtual sculpting. Sealy and Novins

[1999] approximated the Euclidean distance of a grid point as the shortest distance

among its three axial distances. But this approximation is not accurate especially where

sharp features are present.

1.3.2.6 Implicit surface and volumetric modeling techniques. One of the

principal disadvantages of implicit modeling relative to parametric modeling is the

difficulty of controlling the shape of an implicit surface [Bloomenthal and Wyvill, 1990]

because of the non-intuitive parameters in the implicit function. In order to attack this

problem, different direct and indirect implicit surfaces and solid modeling techniques

have been developed such as the Blobby models and their extensions, control point-based

methods, level-set-based methods and skeleton-based methods.

There exists a large body of surface editing work based on implicit models

[Bloomenthal, 1997]. Blinn [1982] introduced the idea of modeling with skeletal implicit

surfaces as a side effect of a visualization of electron density fields. Such models have

various desirable properties including the ability to blend with their close neighbors.

These models have been given a variety of names: Blobby Molecules [Blinn, 1982], Soft

Objects [Wyvill et al., 1986] and MetaBalls [Nishimura et al., 1985]. Bloomenthal et al.

[1997] pointed out that these models could be grouped under the more general heading of

implicit surfaces, defined as the point set.f{r) = 0 which are called Blobby models. One of

the implicit model was given by Blinn [1982] as shown in Fig. 1. 7:

(1)

where R;(x,y,z) = (x-x) 2 +(y- y;)2 +(z-z;)2 ,J;(x,y, z) is the field value at any point

(x, y, z) created by a primitive P; at point (x;, y;, z;) and a;, b; are variables to adjust the

merging of two models. Soft object is another type of the implicit model [Wyvill et al.,

1986]. It is developed because the exp function is computationally too expensive, thus, it

can be approximated by polynomialf(r) as follows:

14

(2)

where / (0) = 1,/(R) = O, f'(O) = O,f'(R) = 0 .

Pi(xi, Yi, zi)

(x, y, z)

Figure 1.7. The Blobs Model

Given a point in 3D space, the implicit model has the benefit of finding the

relation between the point and the surface j(x, Y. z). And it is easy to describe the

topologically changed surface using, for example, merging, bifurcation, absorbing, etc.

Different operations, such as scaling, twisting and CSG operations, are also easy to be

defined on a given implicit surface model. Suppose given implicit functionsj(x, Y. z) = 0

and g(x, Y. z) = 0, according to the definition of the implicit function, different operations

on the implicit surfaces such as scale, shear, taper, twist, bend, etc. can be easily defined.

The Blobby models employ local basis functions , so they are often more intuitive

to work with than algebraic surfaces [Blinn, 1982]. However, dials or sliders have to be

used to adjust the position and radius of each blob by center which is an art work to arrive

at the desired surface [Beier, 1993]. Bloomenthal and Wyvill [1990] developed

techniques to define/manipulate the skeleton of several shapes, define/adjust the implicit

function defined for each skeletal element, and define a blending function to weight the

15

individual implicit functions. By manipulating the skeletal ellipsoids, the user can

produce complex models, and the blending and offsetting operations are controlled by a

procedural implicit function which permits a greater degree of localized control as

compared to a simple blend of implicit primitives in which each primitive potentially has

a global affect on the surface as shown in Fig. 1.8[Wyvill et al., 1999]. But this

procedural implicit function is awkward to the end users.

Figure 1.8. Skeletal Elements for the Train and the Surface of the Train after Blending

Wyvill et al. [1999] used tree structure to represent the set theoretical Boolean

expression between solid models having half spaces as the primitives. They described

techniques for performing blending, warping and Boolean operations on skeletal implicit

surfaces called "Blob Tree". Galin et al. [1999] addressed the metamorphosis of the Blob­

Tree by proposing an original technique that solves the correspondence process and

creates an intermediate generic Blob-Tree model whose instances interpolate the initial

and final shapes. Besides constructing the model by a larger number of elements arranged

in a tree structure, the model can also be defined as single source points with one or

several additional curves that control the shape of the field function. Several operations

are defined, such as freeform definition curves, rotational, translational or general sweep,

twist or interpolation of cross-section, etc. Users can use the splines to control the swept

trajectories to generate complex shapes as shown in Fig. 1.9 [Crespin et al., 1996].

16

Figure 1.9. A Model Defined by Sweeping Primitives

Besides the blob by model based methods, there is another type of implicit function

based modeling method called the Control point based methods. Physically based

particles provide an interactive means to sample implicit surface functions whereby

points on the surface are determined by heuristics, such as the use of the implicit function

gradient. Witkin and Heckbert [1994] used particles to sample the implicit surface and

applied simple constraint to lock the movement of particles onto a surface while the

particles and the surface move. Then, those particles are moved by the user to control the

implicit surface. However, it is found that the implicit surfaces are slippery when one

attempts to move them using control points. Several approaches [Crossno and Angel,

1997; Rosch et al. , 1996] have been proposed to enhance the original Witkin-Heckbert

technique by adapting the particle distribution to the local curvature of the surface. Turk

and Brien [2002] attacked this problem by using an interpolating implicit surface model

and let users directly create and move the boundary constraints to change the shape of the

interpolating implicit surface. This provides an intuitive control for interactive sculpting

of implicit surfaces which can only accommodate a limited amount of details since at

most a few thousand coefficients can be employed in real-time.

Level-set method is a set of numerical methods developed to model the implicit

distance field data. Applying level-set methods in interactive geometric modeling is

relative new. It started from the work of Museth et al. [2002]. The computational

complexity was reduced in their follow-on work [Museth et al. , 2005 ; Nielsen and

Museth, 2006]. Museth et al. [2002] developed surface editing techniques like copy,

remove and merge level-set models and automatically blend the intersection regions.

Their editing operators act on surfaces that happen to have an underlying volumetric

17

representation, but are based on the mathematics of deforming implicit surfaces.

Blending is automatic and is constrained to only occur within a user-specified distance to

an arbitrarily complex intersection curve. The user can specify if material should be

added and/or removed during editing operations. They also developed a point-attraction

operator where a regionally constrained portion of a level-set surface is attracted to a

single point. By defining line segments, curves, polygons, patches and 30 objects as

densely sampled point sets, the single point attraction operator is combined to produce a

more general surface embossing operator. Smoothing and embossing are constrained to

occur within a user-specified region, and they are implemented in a level-set framework.

They also implement opening and closing morphological operators for performing global

blending (closing) and smoothing (opening) on level-set models developed by Sapiro et

al., [1993] and Maragos [1996].

Although the same operations such as blending, merging, morphing, Boolean

operations, smoothing, embossing, etc. can be implemented by other methods, such as

the control point based methods, the level-set method, which uses a simple and physical­

based speed function to control the change of the surface, provide a more integrated and

intuitive way of modeling the implicit surface. Meanwhile, using level-set methods for

modeling guarantees no self-intersection in the generated surface, C 1 continuity in the

direction perpendicular to the contour plane, ease of changing topology in freeform shape

design, and no edge-connectivity and mesh quality problems associated with mesh

models. Given the volumetric representation, the amount of computation time and

memory needed to process level-set models is the biggest concern in interactive

operations. Additionally, a concern has been raised that volume-based models cannot

represent fine or sharp features. Recent advances [Frisken et al., 2000; Kobbelt et al.,

2001] have shown that it is possible to model these kinds of structures with volume

datasets, without excessively sampling the whole volume. These advances will also be

available for the operators once adaptive level-set methods are developed. Comparing

with other implicit surface modeling methods, such as the "blob tree" methods, level-set

models lack of the skeleton based modeling techniques such as curve skeleton based

deformation [Cornea et al., 2005].

18

In computer graphics, skeletons are widely used for animation [Bloomenthal,

2002; Maya, 2006]. These skeletons (also refer as IK-skeletons) control the polygonal

representation of the character being animated. Some shape manipulation techniques are

also based on the skeleton methods [Igarashi et al, 1999; Gagvani and Silver, 2001]. The

skeleton is defined as the locus of centers of maximal inscribed (open) balls included in

the geometry [Lieutier, 2004]. The process of obtaining a skeleton is called

skeletonization, which can generate results such as those shown in Fig. 1.1 O[Comea et

al., 2005]. The line-like skeleton representation of a 3D object is called the curve skeleton

[Svensson et al., 2002]. Different implicit geometric modeling techniques have been

developed by using the skeleton information of the model. Seder berg and Parry [1986]

developed a freeform deformation technique, where an object is enclosed in a

parallelepiped and its deformation is defined by using a vector transformation to deform

the parallelepiped.

Overall, implicit functions represented surface or volume model is hard to modify

due to the use of non-intuitive parameters in the implicit function. Although different

techniques have been developed to address this problem, such as the Blobby models, the

control point-based methods, etc., the results are not fully satisfied. Based on real

physics, level-set methods provide a uniformed framework to model the implicit models

and build up the connections between pure geometric modeling and physical laws.

However, how to build intuitive user interface and operations to control the speed

function in the level-set methods to modify the shape remains an open research question.

1.3.3. Surface Reconstruction for Virtual Prototyping. The conversion from

any geometric representation of a 3D model into triangular surface patches is an

important issue. It is because the reconstructed triangular facets can be used by

conventional CAD/CAM/CAE systems to perform geometric design, engineering

analysis, and automated manufacturing applications. Further, the triangulated 3D model

can be viewed in any directions as desired using standard routines of computer graphics

software. However, the surface reconstruction from discretized geometric representations

such as dexel, voxel structures is difficult because reconstruction methods have to

overcome topological ambiguity, which is usually being dealt through grid based

methods.

19

1.3.3.1 Surface reconstruction from dexel model. Dexel data is view-dependent

because it only records the geometric information of a 3D object from one viewing

direction. In the practice of dexel-based NC simulation, researchers were only able to

produce a limited number of views from certain directions for the simulation, without the

generation of a surface model that can be viewed from any directions. To solve the view­

dependent problem, Huang and Oliver [1995] briefly described a contour tracking

technique but without detailed development of an algorithm. They visualized the

boundary of the object by simply displaying sets of contours extracted from the dexel

data. Konig and GroBer [1998] described an algorithm to create a surface representation

from dexel data for 3-axis milling simulation. But the algorithm could fail easily in the

virtual sculpting process where dexel data are modified in arbitrary directions. Zhu and

Lee [2005] presented a visibility sphere marching algorithm for constructing polyhedral

models from dexel data for their virtual sculpting research. When the algorithm was

applied to complex 3D objects, there could be some cracks and holes in the generated

mesh due to topology related issues [2003]. The Marching Cube Algorithm [Lorensen

and Cline, 1987] has been used to generate an approximate triangular surface from tri­

dexel data [Benouamer and Michelucci, 1997] and from voxel data. But this algorithm

requires huge memory storage and suffers from some ambiguity, and it can not be applied

to dexel data generated in a single direction. Muller et al. [2003] implemented the point­

based rendering method developed by Pfister et al. [2000] for their online sculpting

system. However, it was difficult to interface the sculpted models with CAD/CAM/CAE

systems for further design and analysis.

20

Another line of related research is the curve reconstruction study in computational

geometry stated as follows: given a set of sample points from a curve, a reconstruction of

the curve is intended, i.e., points are to be joined by edges in the order they appear on the

curve. The dexel points can be seen as the points on the curves in relation to this study.

The developed methods included the a-shape [Edelsbrunner et al., 1983], J3-skeleton

[Kirkpatrick and Radke, 1985], andy-neighborhood graph [Veltkamp, 1992]. But all of

them require certain preconditions on the input points. The a-shape method works well

for the points which are evenly distributed in the interior of an object. The J3-skeleton

method requires the sampling density of points varied with the local feature size on the

curve. These curve reconstruction methods can not be directly applied to dexel data due

to the nature of their input data.

Another related research is the study of surface reconstruction from point clouds

since dexel data can be treated as point cloud data in 3D space. Literature in this research

comes mainly from the fields of image processing, computational geometry and computer

graphics [Azernikov et al., 2003]. Delaunay-based methods [Edelsbrunner and Mucke,

1994; Bernardini et al., 1999; Amenta et al., 2001; Dey et al., 2001] have been shown

successful to produce a triangular mesh from point cloud data. However, the ball-pivoting

algorithm [Bernardini et al., 1999] took 2.1 minutes to reconstruct 361 K samples on

450MHz Pentium II Xeon PC, and the power crust method [Amenta et al., 2001] took

about 6 minutes to reconstruct 30,000 samples on a 400 MHz Sun computer. Besides

Delaunay-based methods, surface fitting techniques [Carr et al., 2001; Alexa et al., 2001;

Ohtake et al., 2003, 2006] have become popular recently for surface reconstruction

because of their ability to account for noise in the input data. Nevertheless, one ofthe

fastest implicit surface fitting methods [Ohtake et al. 2006] still took 42 seconds to

reconstruct the surface from a 362K input data on a 1.6 GHz Pentium IV PC.

1.3.3.2 Surface reconstruction from planar contours. Surface reconstruction

from a set of planar sectional contours has been an intriguing problem in diverse research

areas. This problem arises primarily in the fields of medical imaging, digitization of

objects, and geographical information systems. Keppel [1975] described an algorithm for

obtaining an optimal approximation, using triangulation, of a three dimensional surface

defined by randomly distributed points along contour lines. Fuchs et al. [1977] presented

21

a general solution by determining an optimal surface between each pair of consecutive

contours. Wang and Aggarwal [1986] developed a versatile surface representation which

preserves the local object surface structure. Sloan and Painter [1987] described a test bed

for evaluating all the known reconstruction techniques and presented an improvement on

the simple divide-and-conquer method analyzed by Fuchs, Kedem, and Uselton earlier.

Boissonnat [1988] proposed a new solution by constructing a volume whose boundary is

a polyhedron with triangular faces intersecting the cutting planes along the given

contours. Meyers et al. [1992] developed a method which produces a triangulated mesh

from the data points of the contours. The method is then used in conjunction with a

piecewise parametric surface-fitting algorithm to produce a reconstructed surface. Oliva

[1996] proposed an algorithm which constructs the surface for any non-self-intersecting

contours by means of adding an appropriate number of intermediate cross-sections

between complicated contours and triangulation of every pair of contours in different

slices. Later Felkel and Obdrzalek [1999] proposed a modification of Oliva's method for

reconstruction of 3D surfaces from contours in parallel cross-sections. Bajaj et al. [1996]

developed a surface-based algorithm which achieves both faster rendering and lower

likelihood of reconstruction errors.

Cheng and Dey [1988] improved a Delaunay triangulations based method and it

seemed to be more promising and appropriate in handling correspondence and branching

problems. Felkel and Janacek [1999] implemented two approaches for reconstruction of

3D objects from contours in serial sections. The first method is based on thresholding and

3D volume reconstruction, the second on direct reconstruction from parallel contours.

Treece et al. [2000] proposed a Shape-based interpolation method which is a simple,

efficient and fast surface reconstruction technique for contour data-sets. Klein et al.

[1999] used the concept of distance field for a robust reconstruction algorithm, which is

based on the medial axes.

1.3.3.3 Surface reconstruction from volumetric models. There are many

surface rendering algorithms that reconstruct triangular surfaces from the voxel data

structure includes marching cube algorithm [Lorensen and Cline, 1987], marching

tetrahedrons [Doi and Koide, 1991], marching triangles [Hilton et al., 1996] and etc.

22

The marching cube algorithm is the most popular one because of its easy

implementation and fast computational speed. The algorithm takes eight neighbor

locations of an imaginable cube at a time, then determining the polygon(s) needed to

represent the part of the isosurface that passes through this cube. This is done by creating

an index to a precalculated array of 256 possible polygon configurations (28 = 256)

within the cube, by treating each of the 8 scalar values as a bit in an 8-bit integer. If the

scalar's value is higher than the iso-value (i.e., it is inside the surface) then the

appropriate bit is set to one, while if it is lower (outside), it is set to zero. The final

triangular surface is generated after going through this process for all the cubes.

If the input data is the distance field data, then the distance value on each node

can be utilized as the scalar value to determine if this grid is inside or outside the

boundary. After applying the same approximation algorithm to find the triangles inside

each cube, the triangular surface can be generated from the distance field data.

23

2. RESEARCH TASKS AND MAIN RESULTS

2.1. SURFACE RECONSTRUCTION FROM DEXEL DATA

The objective of studying the surface reconstruction from both single-dexel and

triple-dexel data is to develop a fast surface reconstruction method to reconstruct a

triangular surface from dexel structures for the purpose of visualization and interface with

other CAD/CAM/CAE systems. The following tasks have been accomplished in this

dissertation work.

2.1.1. Contour Reconstruction from Dexel Model. The difficulties of

reconstructing planar contours from dexel data arises when there exist inner contours on

slices taken from a 3D model with interior voids. Our approach to address the inner­

contour difficulty is to design an algorithm that dictates how to connect dexel points on

two adjacent rays for any considered planar slice by separating the dexels into groups.

This requires the development of a grouping criterion, which categories the dexels on two

adjacent rays into different groups. The main idea behind our design of the grouping

criterion is the observation that two overlapping dexel spaces on two adjacent rays may

form part of an inner contour. An illustration of this observation is given in Fig. 2.1. One

slice ofthe 3D model on XZ plane in Fig. 2.1(a) has dexel data shown in Fig. 2.1(b). The

overlapping dexel spaces between points 6 and 7 and between points 12 and 13 form an

inner contour because the top of these overlapped dexel spaces is covered by dexel B and

the bottom is covered by dexel A.

According to this observation, if a set of overlapping dexel spaces is covered by

both a dexel beneath the bottom and a dexel right above the top, these dexel spaces form

an inner contour and are called a closed set. For example, the set of dexel spaces between

points 6 and 7 and between points 12 and 13 in Fig. 2.1 (b) is a closed set. The

connections of a closed set of dexel spaces to form an inner contour are: filling the top

and the bottom dexel spaces, and connecting the boundary dexel points on the same side

of the dexel spaces accordingly (e.g. connecting point 6 and point 12, and connecting

point 7 and point 13 in Fig. 2.1 (b)). Meanwhile, if a set of overlapping dexel spaces is not

covered by both a dexel beneath the bottom and a dexel above the top, it is an open set of

dexel spaces. Their dexel points need to be connected differently to form part of an outer

24

contour. For example, the dexel spaces between points 4 and 5, between points 10 and

11 , and between points 16 and 17 in Fig. 2.1 (b) are an open set. The connections of an

open set of dexel spaces are: filling the top or the bottom dexel space, depending on

which is covered by a dexel above or beneath, and connecting the boundary dexel points

on the same side of the dexel spaces accordingly.

(a)
X

--- - ---------- - ----- - -~

z
(b)

Figure 2.1. Example of the Contour Generation Algorithm. (a) 3D Model (b) One Slice of
the 3D Model on XZ Plane

By using the grouping criterion, a four-step contour generation algorithm has been

developed. The algorithm first categorizes the dexels on two adjacent rays into different

groups by using a "grouping" criterion. The dexel points in the same group are connected

using a set of rules to form sub-boundaries. After checking the connections among all the

dexel points on one slice, a connection table is created and used to obtain the points of

connection in a counterclockwise sequence for every contour. Finally, the contours on all

the parallel slices are tiled to obtain triangular facets of the boundary surface of the 3D

25

object. To illustrate the contour generation process, Figure 2.2 is used as an example. On

Ray 4 and Ray 5, dexels d4,2, d4,3, and ds,I are in one group because they have overlaps,

and d4,1 is in another group. Thus, points 12 and 13, points 11 and 15, and points 14 and

16 are connected. Because dexel d4, 1 is a top dexel, points 9 and 1 0 are connected. Once

all the connections are made for every two adjacent rays, a connection table can be

created and all the connections are listed in the table as shown on the left side of Fig. 2.2,

where the middle column lists the dexel points in the same sequence as they are

generated and read. Their connecting points are stored in the left and right columns

separately. In order to generate contours in the counterclockwise direction, the left

column is always filled with the smaller index. Finally, the sequence of points for each

contour is generated by following the connection from one point to the next, until

eventually coming back to the first point.

Connected Dexel ~onnected X
Point Point Point

2 1 3

1 2 8 ~-----------------------------~
1 3 9

5 4 10

4 5 11

7 6 12

6 7 13

15 ~ """'16
._ __________ oiP' ·-- ~ --~

9 10 I '-:--.. '\. 14

;.~ ~ 1)--f-- ~ ... ,, ~~ ---\--·-~
'".:{ -, \ \. I \" I :

r-~-'- ~ .. ~ 1'";. .. ._. ,~ ., --f! ~-~
2 8 14

3 9 10

4 10 9

·~ ------- ,
~ ----- ·-----~-·~ 2 r----1- , --~

5 11 15 r------------------------------~ z ...
6 12 13 ...
7 13 12

8 14 16

11 15 16

14 16 15

• Dexel point
~' 1 Contour ,_, I I Dexel

Figure 2.2. Contour Generation from Single-Dexel Data

26

2.1.2. Surface Reconstruction from Planar Contours. The methods of contour

generation and surface reconstruction presented above have been coded into computer

software and incorporated in the development of an experimental virtual sculpting system

and an NC machining simulation system. In order to finally generate the triangular facets

of the object's boundary surface for viewing purpose, the algorithm developed by

Christiansen and Sederberg [1978] has been implemented to reconstruct the surface

model from planar contours. Figure 2.3 shows a freeform cat model created within the

virtual sculpting system. The original cat model (without eyes in Fig. 2.3(a)) is imported

into the system in the STL format. Eye cavities are first carved by sculpting the cat model

with cylinder shaped cutters. Two eyeballs are then added and placed in the cavities by

performing Boolean union with ball shaped cutters. The tail of the cat is also added. After

applying the contour generation algorithm and tiling the generated contour into a

triangular surface patch, the modified cat model can be viewed in any directions as

shown in Fig. 2.3(c) and (d).

2.1.3. Surface Reconstruction from Triple-Dexel Model. The main idea of the

proposed surface reconstruction method is to generate contours from triple-dexel data on

three sets of orthogonal slices, and utilize these contours to reconstruct the boundary

surface of the 3D model. Overall, the method has three main steps. First, the contour

generation algorithm takes the dexel data in each of x, y, and z directions as the input and

generates planar contours on two orthogonal sets of parallel slices. For example, the

dexel data in x direction is used to generate xy contours and xz contours. Next, on each set

of parallel slices, the two sets of contours generated from the first step are combined into

one set of contours. For example, an xy contour is combined with a yx contour on the

same slice to generate a contour parallel to xy plane. After these two steps, there are three

sets of contours (i.e., contours on planes parallel to xy, yz and zx planes). In the last step, a

volume-based tiling algorithm is utilized to generate triangular facets of the solid's

boundary surface from the three sets of contours. The schematic diagram of the proposed

method is shown in Fig. 2.4.

27

(a) (b)

(c) (d)

Figure 2.3. Modeling Example of a Cat Model. (a) The Imported Cat Model Created from
a CAD System (b) Eyes and Tails Created by Virtual Sculpting (c) and (d) Viewing the

Modified Cat Model in Different Directions

Dexel data in Dexel data

Figure 2.4. Proposed Method of Surface Reconstruction from Triple-Dexel Data

28

2.1.4. Contour Combination. After applying the contour generation algorithm to

triple-dexel data, two sets of contours are present on planes parallel to each of xy, yz and

zx planes. The objective of the contour combination algorithm is to correspond and

combine these two sets of contours into one set of contours to more accurately represent

the cross-sectional profiles of the 3D model. For example, in Fig. 2.5, contour A 1

generated from dexel data in x direction is corresponded with contour B 1 generated from

dexel data in y direction to create contour C 1• Likewise, contour A2 is corresponded and

combined with B2 to generate contour C2.

y

Al,:::;.'# .. .-- p3
r,.. __ P~

ty~~-----+----~----~~~~---P--~~~~
X

(a)

I" I" I" ~ I" j ...
Bt B2 J b2.

.J
y ... L L.....-

b,

(b)

I" ' ' ~ ~ ' ll q•

~ ~]' .
c. 11

,
~.8 a2.1 I~ ~ a2.2 .j !,.j

1 1/ c2 \..
b2.1

"""' ~ ~ I -
~

b2.6 b2.7 b2.8
a2.9

(c)

Figure 2.5. Contour Combination Algorithm. (a) xy Contours, (b) yx Contours and (c) the
Combined Contours

29

The contour correspondence problem involves finding which contour from

contour set A is to be combined with which contour from contour set B. The overlapping

area ratio [Wang and Aggarwal, 1 986] between two contours has been utilized as the

criterion to deal with this correspondence problem. The overlapping ratios between A; and

all the contours from contour set Bare firstly calculated. Then the contour which has the

maximum overlapping ratio with A; is chosen. Likewise, every other contour in contour

set A can be corresponded with a contour in contour set B. Here the numbers of input

contours from each set is assumed as equal. To speed up the calculation, the overlapping

area between contour A; and contour B1 is approximated by the overlapping area of their

bounding boxes.

The contour combination algorithm consists of two main steps to combine the

corresponded contours (say, A; and B1). The first step is to identify the starting pair of

points a;,k and a;,k+J of contour A;, to find their associated points (i.e., bu, ... , b1,~) and to

add them between a;,k and a;,k+J· The second step is to continuously search from a;,k+I and

a;,k+2 to find the next pair of points in contour A; which has at least one associated point

from contour B1. Then the associated points are identified starting from b1.t+ 1 and onwards

in B1 for insertion. The second step is repeated until all the points from contour B1 have

been added to contour A;.

2.1.5. Surface Reconstruction from Three Orthogonal Slices of Contours.

After the contour combination process, three sets of orthogonal slices of contours are

generated. The volume-based tiling algorithm of Svitak and Skala [2004] is utilized to

reconstruct the boundary surface of the 3D model from these contours. The main idea of

this volume-based tiling algorithm is to generate triangular facets within each rectangular

box associated with the rays in x, y and z directions. Because the three sets of orthogonal

contours contain the positions and connectivity of all triangle vertices, the problem of

generating triangular meshes within each box becomes the problem of searching the

locations and connection information of the vertices from the three sets of contours that

have been generated. Once this information is obtained, it is trivial to generate the

triangular facets within each box by using a triangular patching algorithm.

The volume-based tiling algorithm consists of three steps. Given a triple-dexel

data with M N and 0 numbers of divisions in the x, y and z axes, respectively, the 3D , '

30

space is divided into MxNxO equal-sized rectangular boxes. The algorithm first

identifies the Boundary Sub-Volumes (BSVs) that are the boxes having non-null

intersections between their edges and the solid's boundary surface. Second, the three

orthogonal sets of contours are searched to find a close loop of vertices within each BSV.

Finally, triangular facets are created within each BSV by patching these vertices.

2.1.6. Computational Complexity Analysis. The computational complexity and

storage requirement of the contour generation algorithm are analyzed. Two test cases

have been utilized to verify the computational complexity analysis. The computational

complexity of the contour generation algorithm is 0(a 2 f3) for each slice where a is the

average number of dexels along a ray and f3 is the number of rays intersecting with the

object for the considered slice. For the triple-dexel model, the total computation

complexity for the contour generation algorithm is O(a1) where Tis the number of dexel

points in the triple-dexel model. The complexity of the contour correspondence and

combination algorithms is 0(1), where Tis the total number of dexel points. The memory

costs of the contour generation and contour combination algorithms are linearly

proportional to the number of dexel points of the triple-dexel model.

2.1. 7. Surface Error Analysis. The reconstructed surface is watertight because in

the volume-based surface tiling algorithm, every dexel point inside the boundary sub­

volume is guaranteed to have connection points to form a close loop. However, the

reconstructed surface is still an approximation of the original shape. To estimate the

quality of the reconstructed surface, the reconstructed surface error is defined as the ratio

of the Hausdorff distance between the original surface and the reconstructed surface to

the diagonal length of the bounding cuboid. The surface errors of the reconstructed

Stanford bunny model from triple-dexel data are calculated using the Metro [Cignoni et

al., 1998] comparison tool under four different resolutions.

The surface reconstruction results between the triple-dexel model and single­

dexel model are also compared in this dissertation. Figure 2.6 illustrates the surface

improvement from the triple-dexel data over the single-dexel data. Figures 2.6(a) and (c)

show the results of surface reconstruction from single-dexel data, and Fig. 2.6(b) and (d)

show the corresponding results of surface reconstruction from triple-dexel data. These

figures clearly show that the generated surface from the triple-dexel data is more accurate

31

than the reconstructed surface from the single-dexel data when using the same ray

resolution. In addition, to benchmark the performance of the developed method,

numerical experiments are conducted to compare using triple-dexel data vs. voxel data in

terms of the surface reconstruction time and the associated surface error. The test result

shows that, under the same resolution, the surface reconstructed from the triple-dexel data

has a smaller surface error in comparison with the surface reconstructed from the voxel

data. This is because the triple-dexel based method utilizes actual positions of the

intersection points between rays and the object's boundary surface as the vertices of the

reconstructed surface model, while the voxel based method approximates the positions of

these vertices by voxel interpolation.

(b)

(c) (d)

Figure 2.6. Comparisons of Reconstructed Surfaces. (a) and (c) are from Single-Dexel
Data, (b) and (d) are from Triple-Dexel Data

The computation complexity of the contour generation, correspondence and

combination process using triple-dexel data is O(D or O(M2) , where M is the number of

divisions along each axis. Because the complexity of the volume-based tiling algorithm is

32

also O(M2)[Svitak and Skala, 2004], the developed surface reconstruction method is more

efficient than the voxel-based surface reconstruction method, whose computational

complexity is O(M). Thus, the triple-dexel model is more efficient than the voxel model.

2.1.8. System Integration. The developed surface reconstruction process based

on the triple-dexel model is incorporated into a virtual sculpting system [Peng and Leu,

2003, Leu et al., 2005, Peng et al., 2006]. The virtual sculpting system is developed on a

Microsoft Windows XP workstation. The software is written in C++, and the graphics­

rendering component is built on OpenGL and GLUT. The haptics interface is

implemented using the PHANToM™ device and the GHOST (General Haptics Open

Software Toolkit) SDK software available from SensAble Technologies. This virtual

sculpting system enables the user to create and modify 3D freeform objects through

interactive sculpting operations and gives the user real-time force feedback during the

sculpting process. The tool swept volume between two consecutive sampling times is

obtained by the Sweep Differential Equation method [Blackmore Leu, 1992] and

represented by boundary triangular meshes [Peng and Leu, 2003]. The workpiece and the

tool swept volumes are scan-converted to obtain their triple-dexel data. Boolean

operations on the triple dexels are performed by comparing and merging the dexel data in

each of x, y or z directions. The surface reconstruction software is executed during the

sculpting process to convert the triple-dexel model to a triangular mesh model. Figure 2. 7

shows the setup of the virtual sculpting system and a cat model created using the system

and viewed from two different directions.

2.2. STUDY OF DISTANCE FIELD BASED FREEFORM MODELING

The objective of this study is to develop more intuitive modeling operations for

the virtual sculpting system such as the shape deformation and smoothing. The following

tasks have been accomplished in this dissertation work.

2.2.1. Generation of Distance Field Model from Triple-Dexel Model. A four­

step process is developed for generating the distance field. First the voxels that have non­

null intersections with the solid's boundary surface are identified as the Boundary Voxels

(BVs). The grid point on any edge of a BV is a Boundary Grid Point (BGP) and a grid

33

point is an Adjacent Grid Point (AGP) if it is adjacent to any BGP. Next, the sign of the

distance value of each BGP and AGP is determined. Third, the surface within each BV is

approximated using triangular facets. Finally, the distance value of each BGP and AGP is

calculated. A 2D illustration is given in Fig. 2.8 , where the gray-colored pixels

surrounding the iso-surface are the boundary pixels (i.e., 2D BVs). Each squared point is

a BGP and each triangular point is an AGP.

Figure 2.7. A Cat Model Generated Using the Virtual Sculpting System

r•••••••••+ .•.··~::·t ... ·.·.t·.·J .·:· t •••• I
+········ '··········+·
t ······.. ~·· ··· ·····~·

t :·::·:· :::·:::·:t :::::::::T

t:.:::::Y : ... ~· ····· · ···+·· · ··· ·· ··~ f .:.:.:.t:::::::::T

Dexel point •

BGP D

AGP

Boundary pixel ..
Figure 2.8. Boundary Pixels, BGP, AGP and Dexel Points

34

If a grid point is between two adjacent dexels along a ray, the distance value of

this point is positive. Otherwise, the sign of the distance value is negative. The main idea

of this step is to use the Hermite data (i.e., exact intersection points and normals) on the

edges of a BV to calculate an additional point inside the BV by minimizing a quadratic

function. By connecting this point with other additional points in adjacent BV s, triangular

meshes can be generated with a simple patching algorithm to approximate the boundary

surface. The Euclidean distance of a BGP of a BV is the shortest distance from the BGP

to the local triangles formed by the additional point of this BV. The distances between

this BGP and every such triangle are calculated, and the smallest value is the Euclidean

distance. As illustrated in Fig. 2.9, the distance of the center grid point is d2 because d2 <

d1. Based on the same principle, to calculate the distance values of AGPs, such as point P3

in Fig. 2.9, only triangles formed by the additional points in the adjacent BVs are

considered for the distance test.

o Dexel point

• Additional
vertex

AGP

Figure 2.9. Distance Calculation for the Grid Points

2.2.2. Hand Gesture Modeling. A gesture is a form of non-verbal

communication made with a part of the body such as the hand. The input of our freeform

deformation framework is a series of gestures (i .e. , orientations and positions of user' s

hand), G ; (i=O, . .. ,n), captured from the mouse or 3D input devices such as the 6DOF

tracking device. To associate user's gesture inputs with shape changes, the human gesture

35

has been modeled by formalizing a spatial transformation matrix. Then, freeform

deformative operations are defined based on the human gesture model. Finally, a

mapping method is developed to build connections between the defined operations and

the boundary velocity of the surface which enables the level-set method to propagate the

shape as desired. The gesture G; at timet; is defined by a local coordinate system with

origin 0 ; and three orthogonal directions u;, v;, W; as seen in Fig. 2.10, where u; x v; = 0 ,

v ; x w; = 0 and w; xu;= 0. To produce a smooth space warp from input gestures, a B-

Spline interpolation has been utilized to calculate the position and orientation of the

gesture in between such as GJ in between G; and G;+l in Fig. 2.1 0. The gesture at GJ is

constructed by the linear combination of translations and rotations around the

interpolated origin OJ.

Figure 2.1 0. Human Gesture Modeling Using Interpolation Method

2.2.3. Shape Modeling Using Level-Set Method. Level-set models are

deformable implicit surfaces where the deformation of the surface in its normal direction

is controlled by a speed function in the level-set partial differential equation [Sethian,

1999]:

aF =-VF· v
at

where F(x,t) is the Euclidean distance function, xis the grid coordinates in Euclidean

space R3, v is the speed function of boundary points, V is the gradient and

(3)

V=i·~+j·~+k·~ ax cy az

where i,j and k are the unit vectors in R3.

An up-wind scheme [Sethian, 1999] can be applied to resolve the level-set

equation. The first-order space approximation of Equation (3) is:

where V;,J,k is the speed at a point indexed by i,j and k and

where ni:;k is a shorthand notation of the forward difference operator

F;,J,k (x + h, t)- F;,j,k (x, t) and n:-x is the backward difference operator
h l,j,k

F:.t.k(x,t)- F:.J.* (x- h,t) . The implementation of the level-set method can be speed up
h

36

(4)

(5)

(6)

(7)

using a narrow-band scheme [Sethian, 1999]. The idea of this method is to update only a

narrow-band of grid points which are close to the iso-surface rather than grid points in the

entire space. The advantage ofthis approach is that the number of points being computed

is so small that it is feasible to use a linked-list structure to keep track of them for real­

time applications. By updating the distance values of the boundary grid points according

to Eq. (5), the change of the iso-surface can be tracked.

2.2.4. Deformation Operation. Deformation operation imposes movements of

surface vertices inside the influence region of a brush. At each time, these surface

vertices pare adjusted by multiplying the weight w(p) with the transformation matrix

t(p), and adding the result to the current value as:

p'= p + w(p) · t(p)

To produce smooth transformation, the weight function can be defined as

w(x) = 1- d 2 (p)(3- 2d(p))

37

(8)

(9)

where d(p) is the distance value ofthe pointp to the center ofthe user's hand. To

prorogate the shape using level-set method, the velocities of boundary grid points are

defined according to the user's gesture inputs as follows: suppose a grid point pis on the

surface, its transformed point under user gesture inputs is p '.Then the velocities of the

grid points swept by pp' can be defined as v=cpp' in the direction of vector pp' where c is

a constant.

2.2.5. Smoothing Operation. If the speed (v) of a boundary point in Equation (3)

is proportional to the user's hand motion and the mean curvature of the local boundary,

then Equation (3) can be written as

BF(x,t) -b(x,t)H(x,t) II VF(x,t) II= 0
at

(10)

where b(x,t) is a transformation matrix defined by the user's gesture inputs and H(x,t) is

the mean curvature of point x. The mean curvature at a point p E S is the average of the

principal curvatures (K, and K2)

For a 3D surface defined as a function of three coordinates, e.g., F(x,y,z), the

mean curvature of a grid point is

(Fyy + Fzz)Fx 2 + (Fxx + Fzz)Fy 2 + (Fxx + Fyy)Fz 2 - 2(FxFyFxy + FxFzFxz + FyFzFvz)
H= 2(Fxz+F/+F/)312

(11)

(12)

where the differential terms are approximated using first-order, central finite difference,

I.e,

38

F 1 ·k -F 1 ·k F = I+,J, 1- ,},

X 2Lix (13)

F 1 k - 2F . k + F 1 . k ~X _ I+ ,}, I,J, 1- ,),

- &2 (14)

Fl.lk-F1.tk Fl.lk-FI.Ik F = I+ ,.f+ ' I+ ,}- ' + 1- ,.J- , 1- ,J+ '

xy 4Llxl\y 4Lixl\y (15)

According to Eq. (10), the part of the boundary with larger curvature moves faster

than the part of the boundary with smaller curvature in the surface normal direction. This

movement results a smoothing operation.

2.2.6. Performance Evaluation. To evaluate the performance of the level-set

method, a shrink operation is performed on a 2D circle shape. The number of grid points,

the calculation time of distance values, and the time of updating the lists are given in

Table 2.1. It can be seen form the table that a I OHz refresh rate can be maintained by

updating around 34,700 grid points for each iteration.

Table 2.1. Test Results of the Level-Set Method

No. of Time of Time of Total
grid calculating the updating time

points distance values the lists (s)
(s} (s)

202,592 0.4637 0.1631 0.6268
156,702 0.3675 0.0973 0.4648
149,942 0.3680 0.0902 0.4582
101,788 0.1754 0.0897 0.2651
28,260 0.0746 0.0108 0.0854
23,217 0.0638 0.0108 0.0746

39

3. MAJOR RESEARCH CONTRIBUTIONS

3.1. SURFACE RECONSTRUCTION FROM DEXEL MODELS

A novel method to convert dexel data into a series of planar contours on parallel

slices has been developed. Comparing with other existing methods such as voxel based

methods [Benouamer and Michelucci, 1997] and Delaunay based methods [Edelsbrunner

and Mucke, 1994; Bernardini et al., 1999; Amenta et al., 2001; Dey et al., 2001], this

method is faster and more efficient in terms of computational cost and memory usage. In

addition, to our best knowledge, there has been no previous work on generating contours

on three sets of orthogonal slices from triple-dexel data for the purpose of reconstructing

a surface model. Thus, the developed surface reconstruction method is the first to

reconstruct a triangular surface from triple-dexel data by using three orthogonal sets of

contours. The main contributions of this research include: (i) creation of a methodology

of surface reconstruction from triple-dexel data, (ii) development of a contour generation

algorithm to create planar contours from dexel data, (iii) development of a contour

combination algorithm to improve the accuracy of contours in representing the 3D

model's cross sections, (iv) incorporation of a volume-based surface tiling algorithm in

the surface reconstruction process, (v) complexity and accuracy analysis of the developed

method, and (vi) benchmark with the voxel-based surface reconstruction method to

demonstrate the efficiency of the developed method. The developed surface

reconstruction method provides a good solution to the view-dependent problem inherent

in dexel model. The method has been applied to different real-time applications such as

virtual sculpting [Zhang et al., 2007; Zhang and Leu, 2008b] and NC machining

simulation [Zhang and Leu, 2008a]. A formal analysis has been performed on the

computational complexities of the develop algorithms in order to evaluate their

performance [Zhang et al., 2005]. Details descriptions of the developed methods for

surface reconstruction from dexel data are presented in the first two papers included in

this dissertation.

40

3.2. DISTANCE FIELD GENERATION FROM TRIPLE-DEXEL MODEL

A brute force method is generally used to compute the distances from a grid point

in the Euclidean space to every boundary triangle of M and select the shortest one. To

reduce the computation, the shortest distance can be calculated only to a limited number

of primitives according to spatial coherences. There has been very little research on the

calculation of the distance field directly from triple-dexel data for the generation of a

triangular mesh in virtual sculpting. Sealy and Novins [1999] approximated the Euclidean

distance of a grid point as the shortest distance among its three axial distances. But this

approximation is not accurate especially where sharp features are present. In this

dissertation, the distance field data is firstly generated from triple-dexel data by

approximating the iso-surface inside the boundary voxels and calculating the Euclidean

distance values for a narrow-band of grid points. This method is capable of generating a

more accurate distance field since distance value is calculated as the shortest distance

from a grid point to the boundary surface inside of each cell [Zhang and Leu, 2008c].

Details of the distance field generation from triple-dexel data are presented in the third

paper included in this dissertation.

3.3. LEVEL-SET METHOD BASED FREEFORM OPERATIONS

The level-set method [Sethian, 1999] provides mathematical and numerical

mechanisms for computing surface deformations as time-varying iso-values of a function

by solving a partial differential equation on the 3D grid. A set of numerical techniques is

provided by the level-set formulation that describes how to manipulate the distance

values of each grid in a volume, so that the iso-surfaces of the function move in a

prescribed manner. Previous studies in the field of level-set method based freeform

geometric modeling focused on developing various surface editing operators such as

blending, smoothing, sharpening, opening/closings, and embossing [Museth et al., 2002,

2005; Brerentzen and Christensen, 2002; Lawrence and Funkhouser, 2004]. None of the

previous work modeled human gestures and developed gesture based freeform modeling

operations based on the level-set method. In this study, the modeling of human hand

41

gestures has been developed and utilized to define various freeform modeling operations

such as sculpting, imprint, deformation and smoothing.

Using gesture information for the free form modeling provides unique tools for

freeform modeling since it is more natural to the user's design intent. In addition, level­

set models offer several advantages in geometric modeling than the traditional mesh­

based modeling framework where the shape is represented by triangular meshes; they

include: 1) by construction, self-intersection cannot occur when using the level-set

method. This guarantees the generation of physically-realizable, simple, closed surfaces.

2) Level-set model can easily change topological genus, and 3) the generated models are

free of edge connectivity and mesh quality problems which are associated with mesh

models.

In this study, the gesture of the user is modelled by the B-Spline interpolation and

the linear combination of user's hand inputs. Deformation, imprint, and smoothing

operations have been developed. After mapping the velocities of boundary grid points for

each operation, the solution of the level-set method drives the propagation of the shape

towards the desired shape. Comparing with the traditional mesh based method, the

triangular meshes generated using the level-set methods developed this paper are free of

the self-intersection problem [Zhang and Leu, 2007, 2008d]. Details of the development

of generic freeform modeling operations based on the level-set framework are presented

in the fourth paper included in this dissertation.

42

BIBLIOGRAPHY

Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., and Silva, C. T., "Point Set
Surfaces," IEEE Visualization 2001, San Diego, California, October 21-26, pp. 21-28.

Amenta, N., Choi, S., and Kolluri, R., 2001, "The Power Crust," in 6th ACM Symposium
on Solid Modeling and Applications, Ann Arbor, MI, June 4-8, pp. 249- 266.

Azernikov, S., Miropolsky, A., and Fischer, A., 2003, "Surface Reconstruction of
Freeform Objects Based on Multi-resolution Volumetric Method," Proc. of ACM
Symposium on Solid and Physical Modeling, Seattle, Washington, June 16- 20 pp. 115-
126.

Bajaj, C., Lin, K. and Coyle, E., 1996, "Arbitrary Topology Shape Reconstruction from
Planar Cross-sections," Graphic Models and Image Processing, 58, pp.524-543.

Brerentzen, J. A., and Christensen, N.J., 2002, "Volume Sculpting Using The Level-Set
Method," Proc. of Shape Modeling International'02, pp. 175-182.

Beier, T., 1993, "Practical Uses for Implicit Surfaces in Animations," Modeling,
Visualizing and Animation Implicit Surfaces (SIGGRAPH'93 Course Notes), pp. 20.1-
20.10.

Benouamer, M. 0., and Michelucci, D., 1997, "Bridging the Gap between CSG and Brep
via a Triple Ray Representation," Solid Modeling'97 Atlanta, GA, pp. 68-79.

Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., and Taubin, G., 1999, "The Ball­
Pivoting Algorithm for Surface Reconstruction," IEEE Trans. Vis. Com put. Graph., 5(4),
pp. 349-359.

Blackmore, D., and Leu, M.C., 1992, "Analysis of Swept Volume via Lie Groups and
Differential Equations," International Journal ofRobotics Research, pp. 516-537.

Blinn, J. F., 1982, "A Generalization of Algebraic Surface Drawing," ACM Trans. on
Graphics, 1(3), pp. 235-256.

Bloomenthal J., and Wyvill, B., 1990, "Interactive Techniques for Implicit Modeling,"
Computer Graphics (1990 Symp. On Interactive 3D Graphics), 24(2), pp. 109-116.

Bloomenthal, J., editor, 1997, Introduction to Implicit Surfaces, Morgan Kaufmann
Publishers, Inc., San Francisco, California.

Boissonnat, J.D., 1988, "Surface Reconstruction from Planar Cross-sections," Computer
Vision Graphics and Image Processing, 44, pp.1-29.

Butterworth, J., Davidson, A., Hench, S., and Olano, M., 1992, "3DM: A Three
Dimensional Modeler Using a Head-Mounted Display," Proceedings of Symposium on
Interactive 3D Graphics, pp. 135-138.

43

Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., McCallum, B. C.,
and Evans, T. R., 2001, "Reconstruction and Representation of 3D Objects with Radial
Basis Functions," Proc. of the 28th Annual Conference on Computer Graphics and
interactive Techniques SIGGRAPH, Los Angeles, California, August 12-17, pp. 67-76.

Cheng, S.W. and Dey, T.K., 1988, "Improved Constructions ofDelaunay Based Contour
Surfaces," Proceedings of the fifth ACM Symposium on Solid modeling and
Applications, pp.322-323.

Chen, M., Kaufman, A., and Yagel, R., Eds. 2001, Volume Graphics, Springer-Verlag
New York, Inc.

Christiansen, H. N., and Sederberg, T. W., 1978, "Conversion of Complex Contour Line
Definitions into Polygonal Element Mosaics," Proc. of the 5th Annual Conference on
Computer Graphics and Interactive Techniques, ACM Press, pp. 187-1 92.

Cignoni, P., Montani, C., and Scopigno, R., 1998, "A Comparison of Mesh
Simplification Algorithms," Computer Graphics, 22(1), pp. 37-54.

Coquillart, S., 1990, "Extended Freeform Deformation: A Sculpturing Tool for 3D
Geometric Modeling," Computer Graphics, 24(4), pp. 187-196.

Cornea N.D., Silver D., and Min P., 2005, "Curve-Skeleton Applications," Proceedings
IEEE Visualization, pp. 95-102.

Crespin, B., Blanc, C., and Schlick, 1996, "Swept Implicit Surface," Computer Graphics
Forum, 15(3), pp. 165-174.

Crossno, P., and Angel, E., 1997, "!so-surface Extraction using Particle Systems,"
Proceedings ofthe 8th Conference on Visualization, pp. 495-505.

Dani, T.H. and Gadh, R., 1997, "Creation of Concept Shape Designs via a Virtual Reality
Interface," Computer-Aided Design, 29(8), pp.555-563.

Deering, M.F., 1996, "The Holosketch VR Sketching System," Communications ofthe
ACM, 39(5), pp. 54-61.

Dey, T., Giesen, J., and Hudson, J., 2001, "A Delaunay Based Shape Reconstruction
From Large Data," Proc. of the IEEE 2001 Symposium on Parallel and Large-data
Visualization and Graphics, San Diego, California, Oct 22-23, pp. 19-27.

Doi, A., and Koide, A., 1991, "An Efficient Method of Triangulating Equivalued
Surfaces by using Tetrahedral Cells," IEICE Transactions Communication, Elec. Info.
Syst, 74(1), pp. 214-224.

Edelsbrunner, H., and Mucke, E. P., 1994, "Three-dimensional Alpha Shapes," ACM
Transactions on Graphics, 13(1), pp. 43-72.

44

Felkel, P. and Obdrzalek, S., 1999, "Improvement of Oliva's Algorithm for Surface
Reconstruction from Contours," Proceedings ofthe 15th Spring Conference on Computer
Graphics, Budmerice, Slovakia, pp. 254-263.

Frisken, S. F., Perry, R.N., Rockwood, A. P., and Jones, T. R., 2000, "Adaptively
Sampled Distance Fields: A General Representation of Shape for Computer Graphics,"
Proceeding of SIGGRAPH 2000, pp. 249-254.

Fuchs, H., Kedem, Z.M. and Uselton, S.P., 1977, "Optimal Surface Reconstruction from
Planar Contours," Communications ofthe ACM, 20(10), pp.693-702.

Gagvani, N., and Silver, D., 2001, "Animating Volumetric Models," Academic Press
Professional, 63(6), pp. 443-458.

Galin, E., Leclercq A., and Akkouche, S., 1999, "Blob-Tree Metamorphosis," Implicit
Surfaces'99 Conference, Bordeaux, France.

Hilton, A., Stoddart, A.J., Illingworth, J., and Windeatt, T., 1996, "Marching Triangles:
Range Image Fusion for Complex Object Modeling," In International Conf. on Image
Processing, pp. 381-384.

Hsu, W. M., Hughes, J. F. and Kaufman, H., 1992, "Direct Manipulation ofFreeform
Deformation," Computer Graphics, 26(2), pp. 177-184.

Huang, Y., and Oliver, J. H., 1995, "Integrated Simulation, Error Assessment and Tool
Path Correction for Five-axis NC Milling," Journal of Manufacturing Systems, 14(5), pp.
331-344.

Igarashi, T., Matsuoka, and S., Tanaka, H., 1999, "Teddy: A Sketching Interface for 3D
Freeform Design," ACM SIGGRAPH 1999, pp. 409-417.

Keppel, E., 1975, "Approximating Complex Surfaces by Triangulation of Contour
Lines," IBM J oumal of Research and Development, 19(1), pp.2-11.

Kirkpatrick, D.G., and Radke J.D., 1985, "A Framework for Computational
Morphology," in Computational Geometry, Toussaint, G. T., eds., North-Holland, pp.
217-248.

45

Kobbelt, L. P., Betsch, M., Schwanecke, U., and Seidel, H. 2001, "Feature Sensitive
Surface Extraction from Volume Data," Proc. of the 28th Annual Conference on
Computer Graphics and interactive Techniques, SIGGRAPH '01, ACM, New York, NY,
pp. 57-66.

Konig, A. H., and Groller, E., 1998, "Real-Time Simulation and Visualization ofNC
Milling Processes for Inhomogeneous Materials on Low-End Graphics Hardware," Proc.
of the Computer Graphics International, Hannover, Germany, June 22-26, pp. 338.

Lamousin, H. J., and Waggenspack, W. N., 1994, "NURBS-Based Freeform
Deformations," IEEE Computer Graphics & Applications, pp 59-65.

Lawrence, J. and Funkhouser, T., 2004, "A Painting Interface for Interactive Surface
Deformations," Graph. Models 66(6), pp. 418-438.

Leu, M. C., Maiteh, B. Y., Blackmore, D., and Fu, L., 2001, "Creation ofFreeform Solid
Models in Virtual Reality," Annals ofthe CIRP, 50(1), pp. 73-76.

Liang, J., and Green, M., 1994, "JDCAD: A Highly Interactive 3D Modeling System,"
Computers and Graphics, 18(4), pp. 499-506.

Lieutier, A., 2004, "Any Open Bounded Subset of Rn Has the Same Homotopy Type
than Its Medial Axis," Computer-Aided Design, 36, pp. 1029-1046.

Lorensen, W.E., and Cline, H.E., 1987, "Marching Cubes: A High Resolution 3D Surface
Reconstruction Algorithm," Computer Graphics, 21(4), pp. 163-169.

Jones, M. W., Baerentzen, J. A., and Sramek, M., 2006, "3D Distance Fields: A Survey
of Techniques and Applications," IEEE Transactions on Visualization and Computer
Graphics, 12(4), pp. 581-599.

Klein, R., Schilling, A. and StraBer, W., 1999, "Reconstruction and Simplification of
Surfaces from Contours," In Proceedings of the Seventh Pacific Conference on Computer
Graphics and Applications, pp.198-207.

Maiteh, B. Y., Blackmore, D., Abdel-Malek, L., and Leu, M. C., 2000, "Swept-Volume
Computation for Machining Simulation and Virtual Reality Application," Journal of
Materials Processing and Manufacturing Science, 7, pp. 380-390.

Maragos, P., 1996, "Differential Morphology and Image Processing," IEEE Trans. on
Image Processing, 5(6), pp. 922-937.

Maya, Alias, 2006, http://www.alias.com.

Meyers, D., Skinner, S. and Sloan, K., 1992, "Surfaces from Contours," ACM
Transactions on Graphics, 11(3), pp.228-258.

46

Muller, H., Surmann, T., Stautner, M., Albersmann, F., and Weinert K., 2003, "Online
Sculpting and Visualization ofMulti-Dexel Volumes," SM'03, Seattle, Washington, June
16-20, pp. 258-261.

Museth, K., Breen, D. E., Whitaker, R. T., and Barr, A. H., 2002, "Level-Set Surface
Editing Operators", SIGRAPH'2002, pp. 330-338.

Museth, K., Breen, D. E., Whitaker, R. T., Mauch, S., and Johnson, H., 2005,
"Algorithms for Interactive Editing of Level-Set Models," Computer Graphics Forum,
24(4), pp. 821-841.

Nathan, J., 1999, SONY: The Private Life, Houghton Mifflin Company, New York, NY.

Nielsen, M. B., Museth, K., 2006, "Dynamic Tubular Grid: An Efficient Data Structure
and Algorithms for High Resolution Level-Sets," Journal of Scientific Computing, 26(3),
pp. 1573-7691.

Nishimura, H., Hirai, A., Kawai, T., Kawata, T., Shirakawa, 1., and Omura, K., 1985,
"Object Modeling by Distribution Function and a Method of Image Generation," Journal
of papers given at the Electronics Communication Conference '85.

Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., and Seidel, H. 2003, "Multi-Level Partition
ofUnity Implicits," ACM Trans. Graph., 22(3), pp. 463-470.

Ohtake, Y., Belyaev, A., and Seidel, H. 2006, "Sparse Surface Reconstruction with
Adaptive Partition ofUnity and Radial Basis Functions," Graph. Models, 68(1), pp. 15-
24.

Oliva, J.M., Perrin, M. and Coquillart, S., 1996, "3D Reconstruction of Complex
Polyhedral Shapes from Contours Using a Simplified Generalized Voronoi Diagram,"
Computer Graphics Forum, 15(3), pp.397-408.

Parent, R., 1977, "A System for Sculpting 3-D Data," Computer Graphics, 11(2), pp.
138-147.

Peng X. and Leu, M.C., 2005, "Engineering Applications of Virtual Reality," Mechanical
Engineer's Handbook, 3rd edition, John Wiley and Sons.

Peng, X., Zhang, W., Asam, S., and Leu, M.C., 2004, "Surface Reconstruction from
Dexel Data for Virtual Sculpting," Proceedings of ASME International Mechanical
Engineering Conference, Anaheim, CA, November 14-1 9.

Peng, X., Zhang, W., and Leu, M. C., 2006, "Freeform Modeling Using Sweep
Differential Equation with Haptic Interface," Journal of Virtual and Physical Prototyping.

47

Ren, Y., Lai-Yuen, K. S., and Lee, Y. S., 2006, "Virtual Prototyping and Manufacturing
Planning by Using Tri-dexel Models and Haptic Force Feedback," Virtual and Physical
Prototyping, 1 (1), pp. 3-18.

Rosch, A., Ruhl, M., and Saupe, D., 1996, "Interactive Visualization of Implicit Surfaces
with Singularities," Computer Graphics Forum, 16(5), pp. 295-306.

Sachs, E., Roberts, A. and Stoops, D., 1991, "3-Draw: A Tool for Designing 3D Shapes,"
In Proceedings of IEEE Computer Graphics and Applications, pp. 18-24.

Sapiro, G., Kimmel, R., Shaked, D., Kimia, B., and Bruckstein, A., 1993, "Implementing
Continuous-scale Morphology via Curve Evolution," Pattern Recognition, 9, pp. 1363-
1372.

Sealy, G. and Novins, K., 1999, Effective Volume Sampling of Solid Models using
Distance Measures, Proc. of the international Conference on Computer Graphics.

Sederberg, T. W., Parry, S. R., 1986, "Freeform Deformation of Solid Geometric
Models," Computer Graphics, 20(4), pp. 151-160.

SensAble Technologies, 2006, Freeform® Concept,
www.sensable.com/products/3ddesign.

Sethian, J. A., 1999, Level-Set Methods and Fast Marching Methods: Evolving Interfaces
in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
(2nd Ed.), Cambridge University Press, UK.

Sloan, K.R. and Painter, J., 1987, "From Contours to Surfaces: Test bed and Initial
Results," In Proceedings ofCHI+GI '87, pp.115-120.

Svensson, S., Nystrom. I., and Sanniti di Baja G., 2002, "Curve-skeletonization of
Surface-Like Objects in 3D Images Guided by Voxel Classification," Pattern Recognition
Letters, 23(12), pp. 1419-1426.

Svitak, R., and Skala, V ., 2004, "A Robust Technique for Surface Reconstruction from
Orthogonal Slices," Machine Graphics & Vision, 12(3), pp. 221-233.

Treece, G.M., Prager, R.W., Gee, A.H., and Berman, L., 2000, "Surface Interpolation
from Sparse Cross-Sections Using Region Correspondence," IEEE Transactions on
Medical Imaging, 19(11), pp.11 06-1114.

Turk, G., and Brien, J. F., 2002, "Modeling with implicit surfaces that interpolate," ACM
Transactions on Graphics, 21(4), pp. 855-873.

Wang, S., and Kaufman, A., 1995, "Volume Sculpting," Symposium on Interactive 3D
Graphics, ACM Press, pp.151-156.

48

Wang, Y. F., and Aggarwal, J. K., 1986, "Surface Reconstruction and Representation of
3D Scenes," Pattern Recognition, 19(3), pp. 197-207.

Ware, C., and Jessome, D.R., 1988, "Using the Bat: a Six Dimensional Mouse for Object
Placement," Proceedings of Graphics Interfaces, pp. 119-124.

Witkin A. P., and Heckbert, P. S., 1994, "Using Particles to Sample and Control Implicit
Surfaces," International Conference on Computer Graphics and Interactive Techniques,
pp. 269-277.

Wyvill, B., Galin, E., and Guy, A., 1999, "Extending the CSG Tree. Warping, Blending
and Boolean Operations in an Implicit Surface Modeling System," Computer Graphics
Forum, 18(2), pp. 149-158.

Wyvill, G., McPheeters, C., and Wyvill, B., 1986, "Data Structure for Soft Objects," The
Visual Computer, 2(4), pp. 227-234.

Van Hook, T., 1986, "Real Time Shaded NC Milling Display," Computer Graphics,
20(4), pp. 15-20.

Veltkamp, R.C., 1992, "They-neighborhood Graph," Computational Geometry: Theory
and Applications, 1(4), pp. 227-246.

Zhang, W., and Leu, M. C., 2007, Interactive Sketch-Based Digital Prototyping by Using
the Level-Set Method, Proc. of ASME International Mechanical Engineering Congress
and Exposition, November 11-15, Seattle, Washington.

Zhang, W., and Leu, M. C., 2008a, NC Machining Simulation Using Triple-Dexel
Representation, 2008 International Symposium on Flexible Automation (ISF A), June 23-
26, Atlanta, Georgia.

Zhang, W., and Leu, M. C., 2008b, Surface Reconstruction Using Dexel Data From
Three Sets of Orthogonal Rays, ASME Journal of Computing and Information Science in
Engineering, 8(3), September.

Zhang, W., and Leu, M.C., 2008c, Virtual Sculpting with Surface Smoothing Based on
the Level Set Method, Annuals of the CIRP, 57(1), pp. 167-170.

Zhang, W., and Leu, M.C., 2008d, Gesture Based Freeform Geometric Modeling Using
Level-Set Method, 2nd Annual ISC Research Symposium (ISCRS 2008), April 22, Rolla,
Missouri.

Zhang, W., Peng, X., Leu, M. C., and Blackmore, D., 2005, Accuracy and Computational
Complexity Analysis of Design Models Created by Virtual Sculpting, Proc. of ASME
International Mechanical Engineering Congress and Exposition, November 5-11,
Orlando, Florida.

Zhang, W., Peng, X., Leu, M. C., and Zhang, W., 2007, A Novel Contour Generation
Algorithm for Surface Reconstruction from Dexel Data, ASME Journal of Computing
and Information Science in Engineering, 7(3), pp. 203-210.

49

Zhu, W., and Lee, Y.S., 2005, "A Visibility Sphere Marching Algorithm of Constructing
Polyhedral Models for Haptics Sculpting and Product Prototyping," International Journal
of Robotics and Computer Integrated Manufacturing, 21(1), pp. 19-36.

Zhu, W., 2003, "Virtual Sculpting and Polyhedral Machining Planning System with
Haptic Interface," Ph.D. Thesis, North Carolina State University,
http://www.lib.ncsu.edu/theses/available/etd-08172003-194602/

Zorriassatine, F., Wykes, C., Parkin, R., and Gindy, N., 2003, "A Survey of Virtual
Prototyping Techniques for Mechanical Product Development," Journal of Engineering
Manufacture, 217(4), pp. 513-530.

PAPER

I: A NOVEL CONTOUR GENERATION ALGORITHM FOR SURFACE

RECONSTRUCTION FROM DEXEL DATA

ABSTRACT

Weihan Zhang 1, Xiaobo Peng2, Ming C. Leu1, Wei Zhang3

1 Department of Mechanical and Aerospace Engineering
University of Missouri-Rolla
Rolla, Missouri 65409, USA

Email: wzxq6@umr.edu

2Mechanical Engineering Department
Prairie View A&M University
Prairie View, TX 77446, USA

Email: xipeng@pvamu.edu

3Department of Industrial Engineering
Tsinghua University

Beijing, 100084, P.R. CHINA
Email: zhangwei@tsinghua.edu.cn

50

This paper presents a method of reconstructing a triangular surface patch from

dexel data generated by ray casting, to represent solid models for applications such as

virtual sculpting and NC machining simulation. A novel contour generation algorithm is

developed to convert dexel data into a series of planar contours on parallel slices. The

algorithm categorizes the dexels on two adjacent rays into different groups by using a

"grouping" criterion. The dexel points in the same group are connected using a set of

rules to form sub-boundaries. After checking the connections among all the dexel points

on one slice, a connection table is created and used to obtain the points of connection in a

counterclockwise sequence for every contour. Finally, the contours on all the parallel

slices are tiled to obtain triangular facets of the boundary surface of the 3D object.

Computational costs and memory requirements are analyzed, and the computational

complexity analysis is verified by numerical experiments. Example applications are given

to demonstrate the described method.

51

Keywords:
Dexel Representation, Contour Generation, Surface Reconstruction, Simulation

1. INTRODUCTION

The dexel representation of a solid consists of a set of line segments lying inside

the solid. These segments are obtained by classifying a grid of parallel rays, a process

often called ray casting or ray tracing [1, 2]. As illustrated in Fig. 1, for each ray the

intersection points with the solid are stored in the following manner: two points defining

a line segment that is fully inside the solid make up a dexel. Each dexel has two end

points (known as dexel points) and referred to as the head and the tail (the order of which

defines the direction). Dexels may also contain tags (i.e. attributes), which are symbolic

data associated with each line segment representing material or other properties of the

interior of a solid.

P13 041 P14
~-=~~~~~~--

P9 031 P10 PJ1 032 PJ2
P6 021 P6 P7 022 P8

p1 ~p2 P\ __ 0_12-•P4

(a) (b)

Figure 1. Illustration of the Ray Casting Process and the Dexel Representation

The dexel representation is an approximate representation method. In some

applications such as NC machining simulation, more accurate representations such as the

52

constructive solid geometry (CSG) and the boundary representation (B-rep) are not

suitable because Boolean operations involved in these representations are very time

consuming and would require the use of paralleled algorithms and associated multi­

processors hardware to speed up these processes for purpose of real-time implementation

[3]. Approximate representation methods also include vector clipping [4], Z-map [5], G­

buffer models [6], contour models [7] and voxel models [8]. A literature review about

approximate representations for NC machining simulation was given by Erik et al. [9].

The dexel representation and its variations are among the most notable approximate

representations used to support machining simulation because they allow fast Boolean

operation, need little memory, have simple data structures, and have robust algorithms for

development of real-time simulation applications. These advantages were evident when

Van Hook [10] developed a real-time shaded display of a solid model being milled by a

NC cutting tool. The dexel representation approach was also used by Konig and Groller

[11] in their NC simulation work, which achieved real-time simulation and visualization

for removal of inhomogeneous materials on low-end graphics hardware. Muller et al. [12]

presented the idea of using multi-dexel volumes (with dexels generated by rays in

multiple directions) to represent a solid in NC simulation. Ren et al. [13] developed a

multi-dexel based machining planning system. Leu and his associates [14-16] developed

a dexel-based system for design of parts with freeform geometry by virtual sculpting.

Challenging open problems still remain of the common dexel representation method

due to the fixed direction in the ray casting process. Dexel data is view-dependent

because it only records the geometric information of a 3D object from one viewing

direction, as seen in Fig. 1. In the practice of dexel-based NC simulation, researchers

were only able to produce a limited number of views from certain directions for the

simulation, without the generation of a surface model that can be viewed from any

directions. To solve the view-dependent problem, Huang and Oliver [17] briefly

described a contour tracking technique but without detailed development of an algorithm.

They visualized the boundary of the object by simply displaying sets of contours

extracted from the dexel data. Konig and Groller [11] described an algorithm to create a

surface representation from dexel data for 3-axis milling simulation. But the algorithm

could fail easily in the virtual sculpting process where dexel data are modified in arbitrary

53

directions. Zhu and Lee [18] presented a visibility sphere marching algorithm for

constructing polyhedral models from dexel data for their virtual sculpting research. When

the algorithm was applied to complex 3D objects, there could be some cracks and holes

in the generated mesh due to topology related issues [19]. The Marching Cube Algorithm

[20] has been used to generate an approximate triangular surface from tri-dexel data [21]

and from voxel data. But this algorithm requires huge memory storage and suffers from

some ambiguity, and it can not be applied to dexel data generated in a single direction.

Another line of related research is the curve reconstruction study in computational

geometry stated as follows: given a set of sample points from a curve, a reconstruction of

the curve is intended, i.e., points are to be joined by edges in the order they appear on the

curve. The dexel points can be seen as the points on the curves in relation to this study.

The developed methods included the a-shape [22], ~-skeleton [23], andy-neighborhood

graph [24]. But all of them require certain preconditions on the input points. The a-shape

method works well for the points which are evenly distributed in the interior of an object.

The ~-skeleton method requires the sampling density of points varied with the local

feature size on the curve. These curve reconstruction methods can not be directly applied

to dexel data due to the nature of their input data.

2. CONTOUR GENERATION FROM DEXEL DATA

2.1. Algorithm Design Methodology

If the dexel data are sampled from a slice with one single closed contour,

connecting the dexel points to form the contour is relative easy. Difficulties arise when

there exist inner contours on slices taken from a 3D model with interior voids. Our

approach to address the inner-contour difficulty is to design an algorithm that dictates

how to connect dexel points on two adjacent rays for any considered planar slice by

separating the dexels into groups. This requires the development of a grouping criterion,

which categories the dexels on two adjacent rays into different groups. The main idea

behind our design of the grouping criterion is the observation that two overlapping dexel

spaces on two adjacent rays may form part of an inner contour.

As an illustration ofthis observation, one slice of the 3D model on XZ plane in Fig.

2(a) has dexel data shown in Fig. 2(b). The overlapping dexel spaces between points 6

and 7 and between points 12 and 13 form an inner contour because the top of these

overlapped dexel spaces is covered by dexel B and the bottom is covered by dexel A.

54

According to this observation, if a set of overlapping dexel spaces is covered by

both a dexel beneath the bottom and a dexel right above the top, these dexel spaces form

an inner contour and are called a closed set. For example, the set of dexel spaces between

points 6 and 7 and between points 12 and 13 in Fig. 2(b) is a closed set. The connections

of a closed set of dexel spaces to form an inner contour are: filling the top and the bottom

dexel spaces, and connecting the boundary dexel points on the same side of the dexel

spaces accordingly (e.g. connecting point 6 and point 12, and connecting point 7 and

point 13 in Fig. 2(b)).

(a)
X

- - - -- --- - --- --- -- --- --~

z
(b)

Figure 2 . Example of the Contour Generation Algorithm. (a) 3D Model (b) One Slice of
the 3D Model on XZ Plane

55

Meanwhile, if a set of overlapping dexel spaces is not covered by both a dexel

beneath the bottom and a dexel above the top, it is an open set of dexel spaces. Their

dexel points need to be connected differently to form part of an outer contour. For

example, the dexel spaces between points 4 and 5, between points 10 and 11, and

between points 16 and 17 in Fig. 2(b) are an open set. The connections of an open set of

dexel spaces are: filling the top or the bottom dexel space, depending on which is covered

by a dexel above or beneath, and connecting the boundary dexel points on the same side

ofthe dexel spaces accordingly.

Based on the above discussion, the grouping criterion is defined as follows: two

dexels on two adjacent rays of a planar slice belong to the same "group" if they overlap

with each other. The grouping criterion represents a transitive relation (®) over the dexel

set X as follows: Vm,n,o EX, if (m® n)A(n®o), then m ®o; meaning that for three

dexel spaces m, n and o, if m and n belong to the same group and n and o belong to the

same group, then m and o belong to the same group. By using the grouping criterion, a

four-step contour generation algorithm has been developed. The details are presented in

the following.

2.2. Algorithm Details

For ease of discussion, the ray direction is assumed in the Z direction, which is also

the dexel direction. The contour generation algorithm starts from the left-most dexel on

the first ray (dexel A in Fig. 2(b)) intersected with the object. It continues to increase the

ray number by one in X direction, and ends at the right-most dexel on the last ray (dexel

B in Fig. 2(b)).

a) Step 1: Group dexels on two adjacent rays

The objective of the first step is to categorize the dexels on every two adjacent rays

into groups according to the grouping criterion. Two sets of dexels on Rays i and Ray i + 1

are taken as the input and separated into a number of dexel groups Ng;,p, i e [1, RR],

p e [1, Ni] , where p is the group index, RR is the total number of rays intersecting with

the object on the slice, and N; is the total number of groups between Ray i and Ray i+ 1.

For example, in Fig. 3, after the first step based on the defined grouping criterion, two

groups are identified: the first group consists of D;+ 1,1, D;+ 1 ,2, D;, t. D;.z and Do, and the

second group consists of D;+t,3 and D;,4. They are shown in different patterns and colors.

56

b) Step 2: Connect adjacent dexel points inside each group

The aim of step 2 is to generate connections between dexel points in the same group

along every two adjacent rays. Suppose a group of dexels consists of R; dexels (D;,1, D;,2, •

. . D;,R;) on Ray i and R;+J dexels (D;+J ,J, D;+1,2, ... D;+J ,R;+1) on Ray i+ 1, where R;-;::_ 1 and

R;+J -;::_1 , as illustrated in Fig. 4. D;r-+[h] and D;r~[t] are the head and the tail ofdexel

D;J, respectively. The first two dexel points D;, 1 ~[h] and D;+ J , J~[h] should be connected

because they are two adjacent points on the same outer boundary. Likewise, the last two

dexel points D;,R;~[t] and Di+ J , R;+ 1~[t] are also connected. The points in between should

be connected to the adjacent dexel points on the same ray. Thus, the rules of connections

within a dexel group are:

CD: Connect (D;+J ,J---+[t], D;+J ,2---+[h]), ... (D;+J , Ri+I-J---+[t], D;+J ,Ri+I- [h])

@: Connect (D;,1---+[t], D;,2---+[h]), . . . (D;, R;-t---+[t], D;,R;---+[h])

@: Connect (D;,1- [h], D;+J ,J---+[h])

@: Connect (D;,R;---+ [t], D;+J,Ri+t---+ [t])

X
Si+ I ,3

Si, I Si,3 Si,4

Figure 3. Grouping Process

Figure 4. Contouring Algorithm

Si,s

Ray i

z

Ray i+ l

Rayi

z

Special cases exist when one of the two adjacent rays does not intersect with the 3D

object, as shown in Fig. 5. The rules of connections for these cases are:

®: WhenRi = 0 , connect (Di+J,J-+[h], Di+J ,J-+[t])

®: WhenRi+I = 0 , connect (Di,J-+[h], Di,J-+[t])

X

Rayi+l

Di+t,I Rayi

-----~·
z

X

Di,t

Rayi+ l

~

z

Figure 5. Special Cases of the Contouring Algorithm. (Left) When Ri=O and (Right)
WhenRi+I=O

c) Step 3: Create a connection table to record the connections

57

After Step 2, each dexel point has exactly two connected dexel points, which are its

adjacent vertices on the contour. In order to separate the points into different contours, a

three-column connection table is created. The middle column lists the dexel points in the

same sequence as they are generated and read. Their connecting points are stored in the

left and right columns separately. In order to generate contours in the counterclockwise

sequence, the left column is always filled first. After filling in all the connecting points in

Step 2, as shown in Fig. 6, the table will be full without any empty spaces.

d) Step 4: Traverse the connection table to construct contours

The objective of the last step is to extract various contours from the connection

table. The basic idea is to traverse the connecting points of one contour at a time, until all

the contours have been extracted. The traversing sequence starts from the top to the

bottom of the connection table. The starting point of a contour is the first unsearched

58

point. The next point of the contour is chosen based on one of two cases: in the first case,

if none of its two connected points in the connection table has been searched, then the

algorithm picks the one on the left as the next point on the contour; in the second case if

the left point has been searched, then it takes the right point as the next point. This

process continues until reaching a point (in the middle column) whose connected

elements have been both searched. When this occurs, the contour is completed and the

algorithm starts to search for another contour from the first unsearched point, if it exists,

in the table. The search process continues until all the points have been traversed. The

pseudo code is given in the appendix.

For example, Figure 6 starts from point 1 (p1). None of its two connected elements

(p2 and p3) has been searched, so p2 is picked from the left column of p 1. After checking

p2, the unsearched point, p8, is picked from the right column of p2 because its left

column has been searched. The rest of the points can be extracted in the same manner as

listed in the sequence, pl~p2~ps~pi4~pi6~piS~p1I~ps~p4~ piO~p9, until

reaching p3. Both of the two connected points of p3 have been searched. Therefore, this

contour is completed. Another contour begins from the first unsearched point, which is

p6. The same procedure is repeated until all the points in the table have been searched. At

the end, two contours are formed in the counterclockwise sequence on the right side of

Fig. 6.

2.3. Contour Generation Example

A detailed example is given in Fig. 7 to illustrate the contour generation process

following the above steps. Figure 7(a) is a slice of a 3D solid on the X-Z plane. The dexel

data (b) are generated by the ray casting process. The bottom-right illustration shows the

resulting one outer contour and three inner contours after all the dexel points have been

connected.

2.4. Discussion of the Contour Generation Algorithm

The connection algorithm given in Section 2.2(b) requires the ray spacing to be

small enough. Otherwise, problems may occur as illustrated in Fig. 8. The shapes of the

slanted thin box and the slot in Fig. 8(a) can not be reconstructed, as shown in Fig. 8(b).

Also, when two separate objects or holes are very close to each other in X-direction, as

shown in (d), the reconstructed contour model in (e) has different topology from the

59

original shape in that the two neighboring objects (or holes) have been combined into

one. The above problems can be solved by decreasing the distance between adjacent rays,

thus, increasing the resolution of dexel data. For example, by decreasing the ray spacing,

the generated contours in Figs. 8(c) and 8(f) have captured the original topologies of the

models in (a) and (d), respectively.

Connected Dexel Jconnected X
Point Point Point

2 1 3

1 2 8 ---------------------------- - _.,..
1 3 9 15 _......16 __ .,.. ---------- ,
5 4 10

4 5 11 9 10 L--._ , ~ -.... ,.,
14

-~ ~;!J t-... 6 12 I ~ ..,, 7 .\ , .. \ _\. I .l.-4 : I :
6 7 13 -~-'- -+- ll ""~ i- ~ ,..!'-...

~
,.

2 8 14

"'
-!'---- , ---- ----- _... 2

3 9 10 _.,..
4 10 9 1

5 11 15
_____________________________ .,..

z
6 12 13

7 13 12

8 14 16 • Dexei point ,/Jtt,
11 15 16

CJ I Contour
Dexel .. _,

14 16 15

Figure 6. Traversing the Connection Table to Separate Contours

X :

--- --- ----- -z
(o)

~~~ 

X --~~ 
~~ +.,.-,-------... 
--- --z 

(b) 

17\ -- -- -------- - fi\ ------------- 0 -------------
\::.1 +---------..... \J · -------+-...... +----=----....... 
~~~ ~~~ ~~~ 

~ /L. -EE't~~ /L. ~~~ x =~ v-"x ::!{5!!J'rx==i¥55=
t == ~ - ----- ---- t ==~---------- Ci---------l::.:.:z.(!,. l::.:.:z

0 :;::::-==.=:;:; 0 -~-=-===-====-- 0 =-------------- -- -- -- --
¢ --"- - -

-- - - -,., -- --- -x xG_ --- - Gx -- --- -
t == ~-- -- ---~ -- ::::_z_________ ::::_i ________ _ L::... z

Figure 7. Example of the Contour Generation Process

X~==~~~~~~~ X§::::~~~§~
---~~.. ----.a.-~ ..
-----------;----~ -----------;----~

~) (~

--------------~ --------------~

------• xt ~Iffift
~-;--•

(d) (e)

:::::::~:::::::::~
::::::: ~---::: -~

xl ~-$- -.- ---.::: ----- -~ --------------
z

(c)

=·--====-======~ - -a : - -- =~ r ~af:!u----~ -- - ... _____ .,.

z
(f)

Figure 8. Discussion on the Validation of the Observations

3. ANALYSIS OF THE CONTOUR GENERATION ALGORITHM

In this section, the computational complexity and storage requirement of the

contour generation algorithm are analyzed. Two test cases are used to verify the

computational complexity analysis.

3.1. Computational Complexity Analysis

In Step 1 of the contour generation algorithm, the dexel spaces on Ray i are

compared to the spaces on Ray i+ 1 to separate the dexels into groups. Given n; dexel

spaces on Ray i and n i+I dexel spaces on Ray i + 1, the computation time of comparing

60

these dexel spaces is proportional to n ; x ni+I . Suppose N is the number of dexel spaces on

a slice, D is the number of dexels on the slice, d; is the number of dexels on Ray i, and

f3 is the number of rays intersecting with the object for the considered slice, representing

the model ' s discretization resolution.

Because n; = d 1 + 1 , thus,

f3 f3
N = _Ln; = _L(d; +1) = D+ f3 (1)

i= l i=l

61

where a designates the average number of dexels along a ray (a = ~), and thus, a

represents the complexity of an object model. When f3 >> di, it is reasonable to assume

that the average of d 1d1+1 (d 1dt+1) is equal to the average of d,d, (d,d1), where i andj

represent any two arbitrary rays. Then we have

(2)
1=l i=l J=l

D2
so didi+l = /32 (3)

The computation time, Tt, for Step 1 of the contour generation algorithm on one

slice is

{3-1 {3-1

~ rx L (nlni+l) = L (d;di+l + d; + di+l + 1)
1=1 i=l

= (/3 -1)(d,di+l + d, + di+l + 1)

D2 D
= (/3 -1)(- + 2-+ 1) p2 fJ
= (/3 -1)(a + 1)2 (4)

Thus, the computation time for Step 1 is c1 (/3 -1)(a + 1)2 , where c1 is a constant. In

Step 2 and Step 3 of the contour generation algorithm, the dexel points in each group are

connected and the connection table is generated. These computation times are each

proportional to a.f3. In Step 4, the elements in the connection table are searched to obtain

contours. The computation time is also proportional to a.fJ. Thus, the total computation

time of the contour generation algorithm for one slice is:

(5)

By adding the computation times for the four steps, the computational complexity of

the contour generation algorithm is O(a2 /3) for each slice.

3.2. Memory Requirement Analysis

In the four-step contour generation algorithm, three sets of data are created to save

(i) the initial dexel data, (ii) the connections between dexel points, and (iii) the final

contour data. An array is used to store the initial dexel data which has the storage cost in

62

proportional to af3. The connections between dexel points and the generated contours are

also each saved in an array with the memory cost proportional to af3. Overall, the

memory requirement of the contour generation algorithm is proportional to the number of

dexels on each slice.

3.3. Numerical Experiments

The implementation code for the contour generation and surface reconstruction is

written in C++. It runs on a Microsoft Windows XP workstation with a 2.8G Hz CPU,

512 MB RAM, and a GeForce4 MX 420 graphics card with 64MB memory. The graphic­

rendering component is developed with the OpenGL library.

Two numerical experiments were designed to verify the result of the above

analyses. In the first test, the value of f3 is set constant, and the value of a is varied in

the contour generation algorithm. As seen in Fig. 9, a series of skull models Bi are created

along Z-axis, where i is the number of skull models. The same number of rays in Z

direction is used in the ray casting process to generate dexel data so that the value of a ts

proportional to the number of skull models. The generated contour on every slice for B 1 is

the same and is shown in Fig. 9(d).

Table 1 lists the computation time of the contour generation algorithm, the number

of dexels on one slice for each of the skull models, and the value of a. f3 is the same

(f3 =13,924) for all the skull models in this test. There is a quadratic relation between a

and T as shown in Fig. 10. It is consistent with the results of analysis expressed by Eq.

(5).

In the second test, for the same model, the value of f3 is changed. The single skull

model (B 1) from the previous test is used. As shown in Fig. 11, a linear relation exists

between the number of rays (f3) and the computation time (1) of the contour generation

algorithm. Table 2 lists the number of rays, the number of dexels, and the value of a as

well as the computation time of the contour generation algorithm.

(a) (b)

(c) (d)

Figure 9. Numerical Experiments. (a)B1, (b)B3, (c)Bs, and the generated contour from
BI(d)

Table 1. Computation Results ofthe Contour Generation Algorithm

--- 8, 8 -, 83 84 8 s
No. of
dexels 45,666 91 ,332 136,998 182,664 228,330

(0)
Average

no. of
dexels per 3.280 6.559 9.839 13.119 16.398
ray (a)
Contour

generation 0.161 0.386 0.700 1.116 1.687
time
(sec)

63

64

1 .8 ,-~.,.,...,~.........,......,..,....,.,..........,.~~--....,

1.6 +---------,----~c..._--1

1 .4

1.2 +--------~--~

i 1 +-------~---~
;: 0 .8

0 .6 t---.::. ___ ~:......._ ___ ~::..._-l
0 .4 +----._£...------_::_-1
0.2

0 ~--------~---1
0.000 5.000 10.000 a 15.000 20.000

Figure 10. Contour Generation Time (T) vs. Average No. ofDexels Per Ray (a)

0.000 +------~--~-------'
O.OE+OO 5.0E+03 1.0E+04 1.5E+04 2.0E+04 2.5E+04

f3

Figure 11. Contour Generation Time (T) vs. Number of Rays (fJ)

Table 2. Computation Time of the Contour Generation Algorithm

Average no. Contour
No. of No. of of dexels/ray generation
rays (/3) dexel s (D)

(a =D/ f3) time (sec)

4,225 13,650 3.231 0.047

4,900 16,170 3.300 0.056

6,724 22,140 3.293 0.077

8,836 28,764 3 .255 0.100

11 ,236 36,358 3.236 0.127

13,924 45,666 3.280 0.161

16,900 54,600 3.231 0.195

19,881 65,283 3.284 0.235

65

4. IMPLEMENTATION AND EXAMPLES

4.1. Surface Reconstruction by Tiling Contours

In order to finally generate the triangular facets of the object's boundary surface for

viewing purpose, the algorithm developed by Christiansen and Sederberg [25] has been

implemented to reconstruct the surface model from planar contours. This involves first

solving the correspondence problem, i.e. determining which two contours on two

adjacent slices are corresponding to each other. The overlapping ratio between the areas

of two contours has been utilized, as described by Wang and Aggarwal [26], as the basis

to choose corresponding contours. The overlapped area must exceed a certain value for

two contours to be considered corresponding to each other. To speed up the computation,

which is needed for applications such as virtual sculpting and NC machining simulation,

the overlapping area of two contours is approximated by the overlapping area of their

rectangular bounding boxes. The tiling problem, i.e. how to connect the vertices of two

corresponded contours to form triangular facets, is tackled by connecting the points of

one contour to their nearest neighbors in the corresponding contour after mapping the

corresponding contour onto the same unit square, as described by Christiansen and

Sederberg [25]. If one contour on a slice has correspondence to two or more contours on

an adjacent slice, which is the so-called branching problem, a special step must be taken

in tiling the corresponding contours. The branching problem is handled by connecting the

closest points between two or more branched contours, so as to treat the multiple

contours as one composite contour in the tiling process.

The above method works well when the two corresponding contours have similar

shapes. However, if the shapes of two corresponding contours are very dissimilar,

ambiguity becomes inevitable and some difficulty may occur. In that situation, the

density of slices can be increased to reduce shape variations between corresponding

contours on adjacent slices. After completing the process of corresponding, branching,

and tiling, each tiled triangular facet consists of exactly one contour segment and two

connection edges between the two corresponding contours.

4.2. Virtual Sculpting

The methods of contour generation and surface reconstruction presented above

have been coded into computer software and incorporated in the development of an

66

experimental virtual sculpting system and an NC machining simulation system. Some of

the research efforts on developing these systems have been discussed in previous papers

[14-16, 27, 28].

A schematic of the virtual sculpting system is shown in Fig. 12. The goal of this

experimental system is to provide the designer with an intuitive and interactive modeling

environment including haptic interface capabilities such that the user can focus on the

modeling intent. During the sculpting process, both the tool and the stock (initial

workpiece) are modeled by boundary representation, where the object surface is a faceted

approximation composed of connected, non-overlapping triangles. The sculpting tool is

manipulated by the designer/stylist who holds and moves the stylus of the PHANToM™

device. The tool position and orientation are tracked by the joint sensors in the

PHANToM™. The swept volume formed by the movement of the tool between two

consecutive sampling times is calculated using the sweep differential equation approach

[29]. The workpiece and the tool swept volume are sent to the ray casting process to

obtain their dexel representations. Boolean operations on dexels are obtained by

comparing and merging the ranges of z-values of relevant dexels. The surface

reconstruction module can be executed to convert the dexel model into a triangular mesh

within seconds for displaying the sculpted model viewed from any directions. A

multithread computation environment is built in our virtual sculpting system, which

enables suitable update rates for the various components in the run time.

Figure 13 shows a freeform cat model created within the virtual sculpting system.

The original cat model (without eyes in Fig. 13(a)) is imported into the system in the STL

format. Eye cavities are first carved by sculpting the cat model with cylinder shaped

cutters. Two eyeballs are then added and placed in the cavities by performing Boolean

union with ball shaped cutters. The tail of the cat is also added. After applying the

contour generation algorithm and tiling the generated contour into a triangular surface

patch, the modified cat model can be viewed in any directions as shown in Fig. 13(c) and

(d).

Virtual Tool

Virtual Workpiece

Surface
Reconstruction

Haptic Continous Force
Computation

Initial
Geometric

Model

Virtual Tools
Geometric Model

& Its Position
and Orientation

Figure 12. The Virtual Sculpting System Configuration

(a) (b)

(c) (d)

67

Figure 13. Modeling Examples. (a) The Imported Cat Model Created from A CAD
System (b) Eyes and Tails Created by Virtual Sculpting (c) and (d) Viewing the Modified

Cat Model in Different Directions

68

4.3. NC Machining Simulation

The NC machining simulation system has the same geometric modeling engine as

the virtual sculpting system. The only difference is that in the NC machining simulation

system, the cutter location file is generated by a CAD/CAM system, instead of by the

designer/stylist in the case of virtual sculpting. Figure 14 shows a mouse model that is in

the midst ofNC machining simulation. It demonstrates that the triangular surface can be

reconstructed from the dexel data interactively during the animation of simulated

machining. The sculpted model can also be rotated in arbitrary angles to provide different

views of the model.

(b)

Figure 14. A Mouse in the Midst ofNC Machining Simulation. (a), (b) and (c)
Show the Generated Mouse Viewed from Two Different Directions after Performing

Surface Reconstruction during the Machining Simulation

5. CONCLUSION

This paper has presented the development of a novel method to extract 2D

contours from dexel data for the purpose of surface reconstruction for a 3D model. The

surface reconstruction process solves the view-dependent problem inherent in dexel­

based applications such as virtual sculpting and NC machining simulation. The dexel data

are first put into different groups using a grouping criterion. Then the dexel points in the

same group are connected using a set of connection rules. A connection table is created

69

which lists all the dexel points and their connected dexel points on one slice. Then the

dexel points in the table are connected to construct the contours with points on each

contour in a counterclockwise sequence. The generated contours are used to reconstruct

the triangular surface model by implementing existing techniques, which are incorporated

into our system. The computational complexity of the contour generation algorithm has

been analyzed and verified with numerical experiments.

ACKNOWLEDGEMENTS

This research is supported by a National Science Foundation award (CCR-

031 0619) and a Ford Foundation grant, as well as by the Intelligent Systems Center at the

Missouri University of Science and Technology.

REFERENCES

1. Ellis, J. L., Kedem, G., Lyerly, T. C., Thielman, D. G., Marisa, R. J., Menon, J.P.,

and Voelcker, H. B., 1991, "The RayCasting Engine and Ray Representations: A

Technical Summary," International Journal of Computational Geometry and

Applications, 1(4), pp. 347-380.

2. Menon, J., Marisa, R. J., and Zagajac, J., 1994, "More Powerful Solid Modeling

Through Ray Representations," IEEE Computer Graphics and Applications, 14(3),

pp. 22-35.

3. Fleisig, R. V., and Spence, A. D., 2005, "B-Rep Based Parallel Machining

Simulation," Proc. of the 19th International Symposium on High Performance

Computing Systems and Applications, IEEE Computer Society, pp. 83-89.

4. Chappel, I. T., 1983, "The Use of Vectors to Simulate Material Removed by

Numerically Controlled Milling," Computer Aided Design, 15(3), pp. 156-158.

5. Maeng, S. R., Baek, N., Shin, S. Y., and Choi, K. Y., 2004, "A Fast NC Simulation

Method for Circularly Moving Tools in the Z-Map Environment," Proc. of the

Geometric Modeling and Processing, IEEE Computer Society, pp. 319-330.

6. Takafumi, S., and Tokiichiro, T., 1991, "NC machining with G-buffer Method," Proc.

of the 18th Annual Conference on Computer Graphics and Interactive Techniques,

ACM Press, pp. 207-216.

7. Puig, A., Perez-Vidal, L., and Tost, D., 2003, "3D Simulation of Tool Machining,"

Computers and Graphics, 27(1), pp. 99-106.

70

8. Jang, D., Kim, K., and Jung, J., 2000, "Voxel-Based Virtual Multi-Axis Machining,"

The International Journal of Advanced Manufacturing Technology, 16(10), pp. 709-

713.

9. Erik, L.J.B., Nguyen, T.H.M., Ben, K., Peeraphan, N., Huang, R.Y., and Le, T. S.,

2003, "The Stencil Buffer Sweep Plane Algorithm from 5-axis CNC Tool Path

Verification," Computer Aided Design, 35(12), pp. 1129-1142.

10. Van Hook, T., 1986, "Real-Time Shaded NC Milling Display," Proc. of ACM

SIGGRAPH, ACM Press, pp. 15-20.

11. Konig, A. H., and GroBer, E., 1998, "Real-Time Simulation and Visualization ofNC

Milling Processes for Inhomogeneous Materials on Low-End Graphics Hardware,"

Proc. of the Computer Graphics International, IEEE Computer Society, pp. 338.

12. Muller, H., Surmann, T., Stautner, M., Albersmann, F., and Weinert, K., 2003,

"Online Sculpting and Visualization ofMulti-Dexel Volumes," Proc. ofthe 8th ACM

Symposium on Solid Modeling and Applications, Seattle, Wasbngton, ACM Press,

pp. 258-261.

13. Ren, Y., Lai-Yuen, S. K., and Lee, Y-S., 2006, "Virtual Prototyping and

Manufacturing Planning by Using Tri-Dexel Models and Haptic Force Feedback,"

Virtual and Physical Prototyping, 1 (1), pp. 3-18.

14. Leu, M. C., Maiteh, B. Y ., Blackmore, D., and Fu, L., 2001, "Creation of Freeform

Solid Models in Virtual Reality," Annals ofthe CIRP, 50(1), pp. 73-76.

15. Peng, X., and Leu, M. C., 2004, "Interactive Solid Modeling in a Virtual

Environment with Haptic Interface," in Virtual and Augmented Reality Applications

in Manufacturing, Springer-Verlag Limited, Ong, S.K., and Nee, A.Y.C., eds.,

Springer, pp. 41-60.

16. Leu, M. C., Peng, X., and Zhang, W., 2005, "Surface Reconstruction for Interactive

Modeling ofFreeform Solids by Virtual Sculpting," Annals of the CIRP, 54(1), 2005.

17. Huang, Y., and Oliver, J. H., 1995, "Integrated Simulation, Error Assessment and

Tool Path Correction for Five-Axis NC Milling," Journal of Manufacturing Systems,

14(5), pp. 331-344.

71

18. Zhu, W., and Lee, Y-S., 2005, "A Visibility Sphere Marching Algorithm of

Constructing Polyhedral Models for Haptics Sculpting and Product Prototyping,"

International Journal of Robotics and Computer Integrated Manufacturing, 21 (1), pp.

19-36.

19. Zhu, W., 2003, "Virtual Sculpting and Polyhedral Machining Planning System with

Haptic Interface," Ph.D. thesis, North Carolina State University, Raleigh, NC,

http:/ /www.lib.ncsu.edu/theses/available/etd-081 72003-194602/.

20. Lorensen, W. E., and Cline, H. E., 1987, "Marching Cubes: A High Resolution 3D

Surface Construction Algorithm," Computer Graphics, 21(4), pp. 163-169.

21. Benouamer, M. 0., and Michelucci, D., 1997, "Bridging the Gap between CSG and

Brep via a Triple Ray Representation," Proc. 4th ACM Symposium on Solid

Modeling and Applications, ACM Press, Atlanta, GA, pp. 68-79.

22. Edelsbrunner, H., Kirkpatrick, D.G., and Seidel, R., 1983, "On the Shape of a Set of

Points in the Plane," IEEE Transactions on Information Theory, 29(4), pp. 551-559.

23. Kirkpatrick, D.G., and Radke J.D., 1985, "A Framework for Computational

Morphology," in Computational Geometry, Toussaint, G. T., eds., North-Holland, pp.

217-248.

24. Veltkamp, R.C., 1992, "They-neighborhood Graph," Computational Geometry:

Theory and Applications, 1(4), pp. 227-246.

25. Christiansen, H. N., and Sederberg, T. W., 1978, "Conversion of Complex Contour

Line Definitions into Polygonal Element Mosaics," Proc. of the 5th Annual

Conference on Computer Graphics and Interactive Techniques, ACM Press, pp. 187-

192.

26. Wang, Y. F., and Aggarwal, J. K., 1986, "Surface Reconstruction and Representation

of 3D Scenes," Pattern Recognition, 19(3), pp. 197-207.

27. Blackmore, D., Leu, M. C., and Wang, L., 1997, "The Sweep-Envelope Differential

Equation Algorithm and Its Application to NC Machining Verification," Journal of

Computer Aided Design, 29(9), pp. 629-63 7.

28. Maiteh, B. Y., Blackmore, D., Abdel-Malek, L., and Leu, M.C., 2000, "Swept­

Volume Computation for Machining Simulation and Virtual Reality Application,"

Journal of Materials Processing and Manufacturing Science, 7, pp. 380-390.

29. Blackmore, D., and Leu, M. C., 1992, "Analysis of Swept Volume via Lie Groups

and Differential Equations," International Journal of Robotics Research, 11(6), pp.

516-537.

72

73

II: SURFACE RECONSTRUCTION USING DEXEL DATA FROM THREE SETS

OF ORTHOGONAL RAYS

ABSTRACT

Weihan Zhang and Ming C. Leu

Department of Mechanical and Aerospace Engineering

Missouri University of Science & Technology

Rolla, Missouri 65409, USA

Email: wzxq6@mst.edu, mleu@mst.edu

Triple-dexel modeling is a geometric representation method which depicts the

intersection of a solid with rays cast in three orthogonal directions. Due to its fast

Boolean operations, simple data structure and easy implementation, triple-dexel modeling

is highly suitable for real-time graphics-based simulation applications such as NC

machining verification and virtual sculpting. This paper presents a novel surface

reconstruction method from triple-dexel data by first converting the triple-dexel data into

contours on three sets of orthogonal slices and then generating the solid's boundary

surface in triangular facets from these contours. The developed method is faster than the

voxel-based method, and the reconstructed surface model is more accurate than the

surface reconstructed from voxel representation using the marching cube algorithm.

Examples are given to demonstrate the ability of surface reconstruction from the triple­

dexel model in virtual sculpting.

1. INTRODUCTION

Van Hook [1986] introduced the notion of dexel as an abbreviation for ""depth

element." Single-dexel representation of a solid, also called ray representation, is

constructed via a process of computing intersections between the solid and rays cast in

one direction. For a given solid, a set of parallel and equidistant rays are projected and

intersected with the solid. For each ray the intersected points are stored in the following

manner. First, a dexel is defined by two intersection points in a line segment that is

74

completely inside the solid. Then the dexels on a ray are sorted and concatenated into a

linked list structure. Finally, the dexel lists are organized into a dexel matrix, which

represents the single-dexel model as shown in Fig. 1. Single-dexel modeling is among the

most notable approximation methods used to support NC machining simulation [Huang

and Oliver, 1995~ Konig and Groller, 1998] and virtual sculpting [Peng and Leu, 2003~

Leu et al., 2005~ Peng et al., 2006] because it allows fast and robust Boolean operations,

needs little memory, and has simple data structures for real-time simulation. However, in

the single-dexel model, low sampling quality occurs in regions where the surface normals

are nearly perpendicular to the ray direction. To address this problem, a triple-dexel

model can be constructed by casting rays in three orthogonal directions (normally in x, y,

and z directions) to discretize the model, as shown in Fig. 2. This model is also used in

NC machining simulation [Muller et al., 2003] and virtual sculpting [Ren et al., 2006].

P13 041 P14
P9 031 P10 P11 032 P12

P5 021 P6 P7 022 PS

P1~P2 p~ 012 P4 •

(a) (b)

Figure 1. Illustration of the Ray-Casting Process and the Single-Dexel Representation

The conversion from the triple-dexel data of a 3D model into triangular surface

patches is an important issue. The reconstructed triangular facets can be used by

conventional CAD/CAM/CAE systems to perform geometric design, engineering

75

analysis, and automated manufacturing applications. Further, the triangulated 3D model

can be viewed in any directions as desired using standard routines of computer graphics

software. The surface reconstruction from triple-dexel is also difficult because

reconstruction methods have to overcome topological ambiguity, which is usually being

dealt through grid based methods.

z

Figure 2. Construction of a Triple-Dexel Model

Benouamer and Michelucci [1997] utilized the marching cube algorithm to

generate the triangular surface model from triple-dexel data by first generating voxel data

from the triple-dexel data. However, the reconstructed surface may suffer from topology

errors and poor approximation of sharp features. In addition, the computations are

expensive because the computation complexity is proportional to the number of voxels.

In a s~nse the triple-dexel data can be converted into point clouds and reconstructed using

Delaunay triangulation or surface fitting methods available from the existing literature.

However, the Delaunay triangulation and surface fitting processes are also

computationally expensive. Triple-dexel data can be also converted into parallel slices

where triangular surfaces can be reconstructed using surface tilling algorithms [Barequet

76

and Vaxman, 2007]. However, the topology issue is still a major problem for the surface

reconstruction. Svitak and Skala [2004] have shown that contours on three orthogonal

slices offer connectivity information among dexel points on each slice, thus, not only the

reconstructed surface model is topological correct and accurate, but also the reconstruct

process is fast. However, to our best knowledge, there has been no previous work on

generating contours on three sets of orthogonal slices from triple-dexel data for the

purpose of reconstructing a surface model.

The work described in the present paper is the first to reconstruct a triangular

surface from triple-dexel data by using three orthogonal sets of contours. Our main

contributions in this paper include: (i) creation of a methodology of surface

reconstruction from triple-dexel data, (ii) development of a contour combination

algorithm to improve the accuracy of contours in representing the 3D model's cross

sections, (iii) incorporation of a volume-based surface tiling algorithm in the surface

reconstruction process, (iv) complexity and accuracy analysis of the developed method,

and (v) comparison with the voxel-based surface reconstruction method.

Our surface reconstruction process first generates six sets of planar contours from

the triple-dexel data using a previously developed contour generation algorithm [Zhang et

al., 2007]. A contour combination algorithm developed in the present paper is then used

to combine two sets of corresponding contours on parallel slices into one set of contours

along each of x, y and z axes, forming a total of three sets of contours on slices parallel to

xy, yz, and zx planes. A volume-based surface tiling algorithm [Svitak and Skala, 2004] is

then utilized to generate triangular facets for the boundary surface of the concerned 3D

model from these three sets of contours. Then the developed method is analyzed in terms

of computational complexity, memory cost, and accuracy of the reconstructed surface.

Numerical experiments show that the developed method generates a more accurate

surface than that reconstructed from voxel data under the same grid resolution and the

level of the object's details, and that this method is more efficient than the voxel-based

method.

The paper is structured as follows. In Section 2, related work on triple-dexel

based modeling and surface reconstruction methods is reviewed. Section 3 details our

method of surface reconstruction including how to correspond and combine the generated

'

77

contours, and how to tile the three orthogonal sets of contours into triangular facets.

Computational complexity, storage requirement, and surface errors are analyzed in

Section 4. Section 5 describes implementation examples of the developed surface

reconstruction process and applications in virtual sculpting. The triple-dexel modeling is

compared with the voxel representation for surface reconstruction in Section 6.

Conclusions are drawn in Section 7.

2. RELATED WORK

2.1. Triple-Dexel Based Solid Modeling

Triple-dexel modeling is an extension of single-dexel modeling for the purpose of

improving data sampling quality. The memory cost of a triple-dexel model is

proportional to the surface area of the solid model and the ray density (no. of rays per unit

area), and the time of accessing the linked list structure that stores the dexel data is

proportional to the number of dexel elements in the list. Muller et al. [2003] developed a

triple-dexel based online milling simulation system and Ren et al. [2006] developed a

virtual sculpting system with haptic feedback by using the triple-dexel model. However,

both of these studies did not reconstruct triangularized surface models, which are very

useful for visualization and other purposes in CAD/CAM/CAE.

2.2. Surface Reconstruction from Triple-Dexel Data

Dexel modeling has a view-dependent problem because the ray directions are

fixed and the dexel data only records the geometric information of a 30 object in the ray

direction(s), as seen in Figs. 1 and 2. Thus, in the practice of dexel-based simulation

without surface reconstruction, only a limited number of views can be generated for the

simulation, unlike the generation of a surface model which can be viewed from any

desired direction. To solve the view-dependent problem for triple-dexel data, Benouamer

and Michelucci [1997] applied the marching cube algorithm [Lorensen and Cline, 1987]

to generate the 30 object's boundary surface. Although simple and powerful, this

technique suffers from poor approximation of sharp features and may encounter

ambiguous cases in the surface reconstruction process. Muller et al. [2003] implemented

the point-based rendering method developed by Pfister et al. [2000] for their online

sculpting system. However, it was difficult to interface the sculpted models with

CAD/CAM/CAE systems for further design and analysis.

78

Another related research is the study of surface reconstruction from point clouds

since dexel data can be treated as point cloud data in 3D space. Literature in this research

comes mainly from the fields of image processing, computational geometry and computer

graphics [Azernikov et al., 2003]. Delaunay-based methods [Edelsbrunner and Mucke,

1994; Bernardini et al., 1999; Amenta et al., 2001; Dey et al., 2001] have been shown

successful to produce a triangular mesh from point cloud data. However, the ball-pivoting

algorithm [Bernardini et al., 1999] took 2.1 minutes to reconstruct 361K samples on

450MHz Pentium II Xeon PC, and the power crust method [Amenta et al., 2001] took

about 6 minutes to reconstruct 30,000 samples on a 400 MHz Sun computer. Besides

Delaunay-based methods, surface fitting techniques [Carr et al., 2001; Alexa et al., 2001;

Ohtaka et al., 2003, 2006] have become popular recently for surface reconstruction

because of their ability to account for noise in the input data. Nevertheless, one of the

fastest implicit surface fitting methods [Ohtaka et al. 2006] still took 42 seconds to

reconstruct the surface from a 362K input data on a 1.6 GHz Pentium IV PC. Our contour

based method developed in this paper for surface reconstruction from triple-dexel data is

more than one order of magnitude faster than the Delaunay triangulation or surface fitting

based methods.

3. SURFACE RECONSTRUCTION FROM TRIPLE-DEXEL DATA

The main idea of the proposed surface reconstruction method is to generate

contours from triple-dexel data on three sets of orthogonal slices, and utilize these

contours to reconstruct the boundary surface of the 3D model. Overall, the method has

three main steps. First, the contour generation algorithm takes the dexel data in each of x,

y, and z directions as the input and generates planar contours on two orthogonal sets of

parallel slices. For example, the dexel data in x direction is used to generate xy contours

and xz contours. Next, on each set of parallel slices, the two sets of contours generated

from the first step are combined into one set of contours. For example, an xy contour is

combined with a yx contour on the same slice to generate a contour parallel to xy plane.

After these two steps, there are three sets of contours (i.e., contours on planes parallel to

79

xy, yz and zx planes). In the last step, a volume-based tiling algorithm is utilized to

generate triangular facets of the solid's boundary surface from the three sets of contours.

The schematic diagram of the proposed method is shown in Fig. 3.

xy xz yz yx zx zy

Figure 3. Proposed Method of Surface Reconstruction from Triple-Dexel Data

3.1. Contours Generation Algorithm

A contour generation algorithm has been developed to reconstruct contours from

single-dexel data [Zhang et al., 2007]. A main difficulty in developing such an algorithm

is to identify the dexel points which lie on inner contours, such as point 6 and point 12 in

Fig. 4, and to construct connections between the dexel points. Central to the developed

algorithm is a grouping criterion, which categorizes the dexels on two adjacent rays into

different groups. The main idea of the grouping criterion is realizing that two overlapping

dexel spaces, such as the space between points 12 and 13 and the space between points 6

80

and 7 in Fig. 4, on two adjacent rays may form part of an inner contour, such as the

connections between points 6, 7, 13 and 12. Thus, the end points of the two overlapped

dexel spaces are connected, e.g. point 6 is connected with point 12 and point 7 is

connected with point 13. Overlapped dexel spaces on adjacent rays· separate dexels into

different groups, and within each group the end points of the dexel spaces are connected.

Overall, this contour generation algorithm has four steps: first, dexels on every two

adjacent rays are categorized into groups according to the grouping criterion. Second,

inside each group, adjacent dexel points are connected. Third, a connection table is

created to record connections between dexel points. Finally, the connection table is

traversed to construct contours in a counterclockwise sequence.

Connected Dexel Connected X
Point Point Point

2 1 3 ~ ~

1 2 8 ~-----------------------------~R~6

1 3 9 15 ~
d5,1

....... 16
5 4 10 - - - - - - -- - - .-.. _ ,_. - - ~ Ray5

9 d4,1 10 7 A.C ~' .. ., .. ~~ ' 14 4 5 11
...... -1 -t; ~ ~ ' .!!t' - - i - - - - -, - ~ Ray4

7 6 12 , ,~ .. .-, '4Ift. •
] .. ,-, """\" 104,2 ~~ • 1 a4,3 •

6 7 13 1-~-~--+- ~ ~:- Q~ 1~' fl ~-~Ray3
2 8 14 ~ ... ______ a3,2 a3,3,

------~ ------- ~~ 2 R 2 3 9 10 ---- --~ ~
1 ~ d2,1

,
4 10 9

5 11 15 - - --- - -- - -- ---------- - --- --- - -~Ray1 -.. z 6 12 13

7 13 12

8 14 16 • Dexel point
~

11 15 16
D I Contour

Dexel ... _,
14 16 15

Figure 4. Contour Generation from Single-Dexel Data

81

To illustrate the contour generation process, Fig. 4 is used as an example. On Ray

4 and Ray 5, dexels d4,2, d4,3, and ds,l are in one group because they have overlaps, and

d4,1 is in another group. Thus, points 12 and 13, points 11 and 15, and point 14 and point

16 are connected. Because dexel d4,l is a top dexel, points 9 and 10 are connected. Once

all the connections are made for every two adjacent rays, a connection table can be

created and all the connections are listed in the table as shown on the left side of Fig. 4,

where the middle column lists the dexel points in the same sequence as they are

generated and read. Their connecting points are stored in the left and right columns

separately. In order to generate contours in the counterclockwise direction, the left

column is always filled with the smaller index. Finally, the sequence of points for each

contour is generated by following the connection from one point to the next, until

eventually coming back to the first point. The details of this algorithm are described in

[Zhang et al., 2007].

3.2. Contour Combination Algorithm

After applying the contour generation algorithm to triple-dexel data, two sets of

contours are present on planes parallel to each of xy, yz and zx planes. The objective of

the contour combination algorithm is to correspond and combine these two sets of

contours into one set of contours to more accurately represent the cross-sectional profiles

of the 3D model. For example, in Fig. 5, contour At generated from dexel data in x

direction is corresponded with contour Bt generated from dexel data in y direction to

create contour C 1• Likewise, contour A2 is corresponded and combined with B2 to

generate contour C2.

3.2.1. Algorithm Design Methodology

Since there may be multiple contours Ai (i=1 , .. . ,u) and B1 (j=1 , ... , u) on each slice,

the first step is to find correspondence between the input contours. Then, for each two

corresponded contours (i.e., Ai and B1), a starting pair of points from Ai and their

associated points from B1 are found. After inserting these associated points from B1 into

A;, we continuously search for the rest of point pairs from A;, which have at least one

associated point from B1 in between, and insert the associated points. Finally, the

combined contour is created when all the points from Bi have been inserted into A;.

82

• +

Figure 5. Contour Combination Algorithm. (a) xy Contours, (b) yx Contours and (c)
the Combined Contours

Here a local connection method is developed by realizing both input contours are

in the counterclockwise direction. If we scan the points of contour A; in the

counterclockwise sequence, the points of contoilr BJ should be continuously added to

contour A; in the same counterclockwise sequence. For example, a sequence of three

points b2,6 , b2,7, and b2,8 are added between points a2,s and a2,9 in Fig. 5(c). This implies

that if the first (bJJ) and the last (bJ,L) associated points between points a;,k and a;,k+ 1 are

correctly selected, it is trivial to find the rest of the associated points in between and

insert them into A;_. It also implies that point bJ.t+I is the next point to be considered for

inserting into contour A;. So it is only necessary to check the next pair of points of

contour A; to see if bJ.t+I is in between. If so, bj./+1 and its following points from contour BJ

can be added until the last associated point (bj,o) is identified according to the criteria

defined in Section 3.2.3. This process is repeated until all the points from contour BJ have

been added to contour A;. This contour combination method is efficient because of using

the point sequence information in the input contours.

3.2.2. Contour Correspondence

The contour correspondence problem involves finding which contour from

contour set A is to be combined with which contour from contour set B. The overlapping

83

area ratio [Wang and Aggarwal, 1986] between two contours has been utilized as the

criterion to deal with this correspondence problem. The overlapping ratios between A; and

all the contours from contour set B are firstly calculated. Then the contour which has the

maximum overlapping ratio with A; is chosen. Likewise, every other contour in contour

set A can be corresponded with a contour in contour set B. Here the numbers of input

contours from each set are assumed to be equal. To speed up the calculation, the

overlapping area between contour A; and contour B1 is approximated by the overlapping

area of their bounding boxes.

3.2.3. Contour Combination

The contour combination algorithm consists of two main steps to combine the

corresponded contours (say, A; and B1). The first step is to identify the starting pair of

points a;,k and a;,k+l of contour A;, to find their associated points (i.e., b1J, ... , b1,~) and to

add them between a;,k and a;,k+ 1· The second step is to continuously search from ai.k+ 1 and

a;,k+2 to find the next pair of points in contour A; which has at least one associated point

from contour B1. Then the associated points are identified starting from bJ.l+ 1 and onwards

in B1 for insertion. The second step is repeated until all the points from contour B1 have

been added to contour A;. The details of this two-step algorithm are described below.

Step 1 : Searching the starting pair of points from Ai and their associated points from Bj

Suppose contour A; is generated from rays in x direction. two adjacent points a;,k

and a;,k+ 1 are firstly identified in A; such that there is at least one y-directional ray in

between. Mathematically, this requires

INT[(al,k ~ [x])! Llx] * INT[(ai,k+J ~ [x])/ Llx] (1)

where INT is a function to remove the decimal part of a number and return the resulting

integer, L1x is the grid length in x direction, and al,k ~ [x] is the x value of point ai.k· The

pixels containing the first pair of points a;,k and a;,k+l are required to have at most one ray

intersecting point appearing on any edge of these pixels. If a;,k and a;,k+l are on the same

ray as shown in Fig. 6(a), pixelsp1,p2,p3 andp4 must satisfy this requirement. If a;,k and

a;,k+ 1 are on two adjacent rays as shown in Fig. 6(b), pixels Ps, P6, P7 and pg which are the

pixels containing a;,k and ai.k+l, must satisfy this requirement. Taking contour A2 in Fig.

5(a) as an example, points a 2,1 and a 2.2 can be the starting pair because there is ay ray

84

between them, and that the pixels PI ,P2, P3 and P4 have no more than one ray intersecting

point on any of their edges. Note that there could be many pairs of a;,k and a;,k+l that

satisfy the requirements. Any of these pairs can be used as the starting pair. However, it

is possible that the first pair of points is not found because of an insufficient number of

rays. In such case, we can always cast additional rays to increase the ray density as

discussed in Sec. 3.2.4.

Without loss of generality, in the starting pair of points, a;,k is assumed on the left

side of a;,k+l· Then the first associated point (b;J) and the last associated point (b;.t) from B1

for points a;,k and a;,k+l can be found as follows: b;J is on the line segment liJ, which is on

they ray immediately to the right of a;,k; and b;.l is on the line segment /;,1 , which is on

they ray immediately to the left of a;,k+ I· As shown in Fig. 6(a), if a;,k and a;,k+ 1 are on the

same ray, each of lifand l;,1 consists of two pixel edges. If a;,k and a;,k+ l are on two

adjacent rays, each of l;J and lu consists of one pixel edge as shown in Fig. 6(b). In this

case, the points on l if and lu in (b) are the first and the last associated points, respectively,

from contour B1.

y: :
I I
I I I I

;,k: PI~-: - ~-- t:-p; ;,t;:k+l

--~·- ~ ------ -:--•~- Yo
I I l,·r··· l,·t I p I I P2 I • • I 4 I

- _,- I---- 1-- :- Y2
I I

I I X

(a)

yl I
I I
I I I I _J ____ L __________ J ____ L __
I I I I

I I I P7 I 1 I • • •Qj,k+JI I -:- -l- ---]: -e ~ - YJ
ai k: Ps : 1; r · · · lu : Ps :
·-:·- I: --- 1-- ,_. Y4

1 I I I
I P6 I I I
I I I I X - - - - --- - - - - - - ... --- -

Xj X4
(b)

Figure 6. Locations of the First and the Last Associated Points of Contour B1. (a) Ai,K and

Ai,K+I on the Same Ray and (b) Ai,K and Ai,K+I on Adjacent Rays

To pinpoint the exact first and last associated points from contour B1 when a;,k and

a · k+ are on the same ray as shown in Fig. 6(a), Table 1 is created with four possible
I, I

85

combinations of their locations. For example, CAl in Table 1 represents the case of

having one point on liJ and one point on lu, and CA2 represents the case of having one

point on l;Jand two points on lu. Note that on each of l11 and lu, there is at least one point

from B1 because the contour is continuous.

Table 1. Combinations of the First and the Last Associated Points

No. of points on lu _No. of points on !11 1 2

1 CAl CA2

2 CA3 CA4

For each of the four cases, the first and last associated points from contour B1 are

determined based on the reasoning that the line segment connecting these two points has

no intersection with any rays parallel to x axis, otherwise points a;,k and au+t would not

have been two adjacent points of contour A;. Note that the first point and the last point

would be an identical point if there is only one y-directional ray passing between a;,k and

a;,k+l· The first and last associated points for the four cases are as follows:

CA 1 : The point on liJ is the first point and the point on lu is the last point.

CA2 and CA3: The two points that are on the same side ofy=yo in Fig. 6(a) are the first

and last associated points, where y=yo is the line passing through points a;.k and a;,k+ I·

CA4: The two points which have the same counterclockwise sequence as points a 1.k and

a;,k+I are the first and last associated points. For example, in Fig. 7, between the two

adjacent points a;.k and a;,k+t, there are two sets of points b;.g~b;.g+-2 and b;.r+r~b1,r as the

candidate associated points from B1. Because b;,g and bJ.g+-2 have the same directional

sequence as points a;,k and ai.k+ 1, they are the first and last associated points. The pseudo

code for Step 1 is given in the Appendix.

• Points in A;

0 Points in B1

Figure 7. Illustration of the Solution to the Case CA4

Step 2: Continuously searching for the next pair of points from Ai and their associated

points from Bj

86

From the result of Step 1, b1.t+I is the next candidate point to be added to contour

A;, so we only need to continuously search contour A; from a;,k+l and a;,k+2 to find the next

pair of points a;,r and a;,r+l to consider inserting bJ,/+1, and to find the last associated point

from contour B1 between points a;,r and a;,r+l·

According to Eq. (1), for two adjacent points a;,r and a;,r+l, if

INT[(a; r ~ [x])/ ~] =t: INT[(a; r+l ~ [x])/ ~]
' '

(2)

then a;,r and a;,r+l must have associated points from contour B1 in between. The first one is

bJ,l+l· To find the last associated point (b1,o) between a;,r and a;,r+l, we can search contour

B1 from bJ,l+l onward to find the point, b1,o, that satisfies the following criteria:

b1,o is on one of the edges of the pixels that contain a;,r+J

they value of a;,r+ 1 is between they values of b1,o and b1,o+ I·

Mathematically, this requires

ai,r+l ~ [y] E [min(bj,o ~ (y],bj,o+l ~ [y]), max(b;,o ~ [y],b;,o+l ~ [y])] (3)

where a; r+l ~ [y] represents they value of point a;,r+l· For example, Figure 8(a) shows

two points a;.r and a;.r+l from A; satisfying Eq. (2). Since we know b1.= is the first

associated point and because bJ.=+2 satisfies the above criteria, b1.=+z is the last associated

point between points a ;, r and a;,r+-1· After inserting the points, the combined contour of

contours A; and B1 is shown in Fig. 8(b).

~

bi.=:>-~.r+ l bj,z+2
"~

v
bJ,= bj,z+ l a;,r

X

(a) (b)

87

Figure 8. Contour Combination Process. (a) Two Generated Contours from the Contour

Generation Process and (b) the Combined Contour

If two adjacent points a;,r and a;,r+- l satisfy the following relationship

INT[(a;,r ~ [x])/ ~] = INT[(ai,r+t ~ [x])/ ~] (4)

there is still a possibility that a;,r and a;,r+-l have associated points from B1 in between. If

b1,1+1 satisfies the following criteria:

bJ,/+1 is on one of the edges of the pixel that contains both a;,r and a;,r+ l

they value of a;,r is between the y values of b1,1 and b1,t+l

then a;,r and a;,r+- l will have at least one associated point, and the first one is bJ,I+ 1• In this

case, the same criteria as those given above can be utilized to find the last associated

point (b1,o) in between. If a;,r and a;,r+-1 have no associated point from B1 in between, the

next pair of points inA;, i.e. , a;,r+ l and a;,r+-2 will be checked to see if they have any

associated point in between according to the above criteria. By repeating Step 2 for the

rest of points in A; until all the points in contour B1 have been added to contour A;, the

combined contour is finally obtained. The pseudo code for Step 2 is given in the

Appendix.

88

Figure 9 is taking as an example to illustrate the contour combination algorithm.

The original contour in Fig. 9(a) is sampled by dexel data in x direction andy direction.

The generated contours are shown in Fig. 9(b) as contour A; and B1. Contour A; is

searched to find a starting pair of points, a;, 1 and a;,2 , which satisfy the criterion of having

at most one ray intersecting point on any edge ofthe pixels (pa,Pb,pcandpd in Fig. 9(a))

containing au or ai,2.

The first associated point can be easily determined as point b1,1 by searching

contour B1. The next pair of points from A; are a;,2 and a;,3 because their y values satisfy

Eq. (2). Thus, b1.2 is the first associated point. b1.2 is also tested to see if it is the last

associated point according to the two given criteria. Because b1.2 is on one of the edges of

the pixel that contains a;, 3 , and they value of a;,3 is between they values of b1,2 and bJ. 3,

thus, b1.2 is the last and the only associated point between a;,2 and au. Similarly, the

associated points between a;,3 and a;,4 can be found to be points b1.3, b1,4. b1.s. and b1.6 . By

repeating the same procedure for the rest of points until every point in contour B1 has

been added into A;, the combined contour is generated as shown in Fig. 9(c).

3.2.4. Discussion

In the contour corresponding process, the numbers of input contours from the two

contour sets are assumed to be equal. However, if the distance between adjacent rays is

not small enough, the reconstructed contours from dexel data in two orthogonal

directions may have different topologies. For example, in Fig. 1 O(a), the input contour is

sampled with x directional andy directional rays. The generated contours are shown in

(b) and (c) of the same figure. Because the small edge between points PT1 and PT2 is

sampled by a ray in x direction, but not by any ray in y direction, one contour is generated

from the x-dexel data but two contours are generated from the y-dexel data. In this case,

the contour combination algorithm would fail. This problem can be solved by increasing

the ray resolution in the contour generation process until the generated contours from

dexel data in two orthogonal directions have the same topology. For example, the same

contour of Fig. 1 O(a) is taken as an input with a higher resolution of rays in y direction as

shown in (d). The generated contour from the y-dexel data is shown in (e). The generated

contour from the x-dexel data is the same as (b). Since the contours in (b) and (e) have

89

the same topology, our contour combination algorithm can combine the two contours to

reconstruct the correct shape as shown in (f).

y

X

(a)

y

l
I

X

l
!·

y

X

(b)

I t t
+

(c)

Figure 9. Example of the Contour Combination Process. (a) Original Contour, (b) Two
Generated Contours from the Contour Generation Process and (c) the Combined Contour

(Cont.)

90

D
(

(a) (b) (c)

(d) (e) (f)

Figure 10. A Case Study of the Contour Combination Process. (a) The Input Contour
with X-Dexel and Y-Dexel Data, (b) Contour Generated from the X-Dexel Data, (c)

Contours Generated from the Y -Dexel Data, (d) The Input Contour with an Increase of
Rays in Y Direction, (e) Contours Generated from Y-Dexel Data in (d), and (f) Combined

Contour from (b) and (e) (Cont.)

Another special case is illustrated in Fig. 11. The initial shape is shown in (a).

Because the space between adjacent rays is not small enough, the generated contours

have neither the same topology, nor any overlapping area as shown in (b). The contour

combination algorithm would again fail in this case. After increasing the number of rays

in x and y directions as shown in (c), the reconstructed contours are in (d) and (e). The

combined contour using our algorithm is in (f). This example again shows that the

contour combination problem can be solved by increasing the density of rays.

91

I
---t~ ' r--- t -

i I

I

,...., I

y

0:
I ~ t-

- t-\ ? -~
I

I I

-"--+-
""~ +-

T
l. ~ .l li

l.
>-- :>--< r--. >--

X I I

(a) (b) (c)

(d) (e) (f)

Figure 11. A Case Study of the Contour Combination Process. (a) the Input Contour with
X- and Y-Dexel Data, (b) Contours Generated from the X-Dexel Data and Y-Dexel Data

' (c) the Dexel Points after Increasing the Number of Rays in X and Y Directions, (d)
Contours Generated from X-Dexel Data in (c), (e) Contours Generated from Y Dexel

Data in (c), and (f) Combined Contour from (d) and (e)

3.3. Volume-Based Surface Tiling Algorithm

After the contour combination process, three sets of orthogonal slices of contours

are generated. The volume-based tiling algorithm of Svitak and Skala [2004] is utilized to

reconstruct the boundary surface of the 3D model from these contours. The main idea of

this volume-based tiling algorithm is to generate triangular facets within each rectangular

box associated with the rays in x, y and z directions. Because the three sets of orthogonal

contours contain the positions and connectivity of all triangle vertices, the problem of

generating triangular meshes within each box becomes the problem of searching the

locations and connection information of the vertices from the three sets of contours that

have been generated. Once this information is obtained, it is trivial to generate the

triangular facets within each box by using a triangular patching algorithm.

92

The volume-based tiling algorithm consists of three steps. Given a triple-dexel

data with M, N, and 0 numbers of divisions in the x, y and z axes, respectively, the 3D

space is divided into Mx N x 0 equal-sized rectangular boxes. The algorithm first

identifies the Boundary Sub-Volumes (BSVs) that are the boxes having non-null

intersections between their edges and the solid's boundary surface. Second, the three

orthogonal sets of contours are searched to find a close loop of vertices within each BSV.

Finally, triangular facets are created within each BSV by patching these vertices.

Some details of the algorithm are given in the follows. The algorithm identifies

the BSVs by searching the intersection points within the object's boundary surface along

the three orthogonal sets of rays. For example, in Fig. 12(a), the intersection point

between ray R1 and the object's boundary surface is point p and thus, boxes A, B, C and

Dare the BSVs. Within each BSV, the boundary surface of the object forms a close loop.

To find the close loop of vertices within a BSV, the algorithm starts from the point on the

bottom of the BSV and ends when coming back to the starting point.

/~ /: ~

~A
/

:/ B . ·~ ~.v.·· ..
: ~).D. 1/·c ~

p
T1

(a) BSV2

Figure 12. Volume Tiling Algorithm. (a)Identification ofBoundary Sub-Volumes and
(b) Generation of Surface Patches within Two Boundary Sub-Volumes

Taking Fig. 12(b) as an example, within BSV 1, the search starts from point a on

the bottom. After searching contour c2 on the xy plane, the next point found is point b.

Because point b is on both contour c2 and contour c4, thus, contour c4 is searched to find

93

the next point, which is point e. The search continues to find point d and then point a,

which is the sarting point. Thus, within BSVl, the close loop of points a---+h---+e---+d---+a is

generated and then patched into two triangular facets abe and aed. Likewise, the close

loop h---+c---+j---+e---+b is generated within BSV2.

4. ANALYSIS

In this section, the computation complexity and the memory requirement of the

contour generation algorithm and the contour combination algorithm are analyzed.

Further, the surface error is analyzed to estimate the quality of the reconstructed surface.

4.1. Computational Complexity Analysis

4.1.1. Contour Generation Algorithm

The contour generation algorithm using dexel data has four steps: (1) grouping the

dexels, (2) connecting the dexel points, (3) constructing the connection table, and (4)

traversing the dexel points in the table. According to the analysis described in a previous

paper [Zhang et al., 2007], the computation time for Step 1 is cifi(a+l)2 , where a is the

average number of dexel points along a ray, .B is the number of rays intersecting with the

object on a slice C.B >> 1), and c1 is a constant. In Step 2 and Step 3, the dexel points in

each group are connected and the connection table is generated. The computation time of

these two steps are each proportional to afi. In Step 4, the points in the connection table

are searched to obtain contours. The computation time of this step is also proportional to

afi. Thus, the total computation time of the contour generation algorithm for one slice is

c 1fi(a+ Ii+ c2afi, where c2 is a constant. In triple-dexel modeling, suppose M, Nand 0 are

the numbers of divisions in the x, y and z axes, respectively, then the x dexel data

generates 0 number ofxy slices and Nnumber ofxz slices in the contour generation. For

a xy slice, since there are N number of rays in x direction, the computation time of the

contour generation algorithm for the x dexel data on xy slices can be calculated by

replacing .B with Nand taking a as the average number of dexel points per ray in the

triple-dexel model, i.e., a = T I(MN +NO+ OM), where Tis the total number of dexel

points of the triple-dexel model. The resultant computation time is (c1 (a+ 1 iN+ c2aN)O.

For the x-dexel data on xz planes, the computation time is (c3(a+ 1)20+ c4aO)N. Thus, the

complexity of the contour generation algorithm for x-dexel is O(aTx) where Tx is the

94

number of dexel points in x-dexel data. Likewise, the computation time for y-dexel and z­

dexel data can be found. Thus, the total computation complexity for the contour

generation algorithm is:

(5)

where Ty and T= are the numbers of dexel points in x-dexel and y-dexel data, respectively.

4.1.2 Contour Correspondence Algorithm

The contour correspondence operation is done between two sets of input contours

A and B on each slice. In this operation, the bounding box of each contour is calculated

and the overlapping ratio between every contour from contour set A and every contour

from contour set B is computed. The computation time is c5(PA+P8)+ c6u2, where PA and

P8 are the numbers of points in contour sets A and B respectively, u is the number of

contours in each of contour sets A and B, and cs and c6 are constants. Since u2 is much

smaller in comparison with PA and P8 , this computation time is proportional to

cs(PA+Pa).

4.1.3. Contour Combination Algorithm

The contour combination operation has two steps. The first step requires

searching for the first pair of points from A; and their associated points from B1, and then

the second step continuously searches for the rest of point pairs from A; to identify each

pair that has at least one associated point from B1 in between. Meanwhile, the associated

points from contour B1 are also identified and inserted into A;. The first step is run once

for every two corresponded contours. Finding the starting pair of points in A; that satisfies

the criteria discussed in Section 3.2.3 takes c1Pa,;, and searching for their corresponding

points in contour B1 takes csPhJ time, where Pa.i and PhJ are the numbers of points in

contour A; and contour B1, respectively. The second step searches for the next pair of

points in A; which has associated points from B1 in between, identifies the associated

points, and inserts these points into A;. The time taken for this operation is c9Pa,;+ c 10PhJ·

This process is repeated until all the points in contour BJ are added to A;. Thus, the overall

computation time for the contour combination operation for contour A; and B1 is

(c7+c9)Pa,;+ (cs+c 10)PbJ·· By summing the computation times for all the contours on one

slice, i.e., for two sets of contours A; (i=I, ... , u) and BJ (j=I, .. . , u), the computation time

of the contour corresponding and combination operations per slice is

95

u u

Cs(PA +PB)+ L(c7 +c9)Pa.i + L(C8 +c10 }~./ =c11 PA +c12 P8 =c13 P (6)
i=l j=l

where Pis the total number of dexel points of contour sets A and B (P=P A+ P8) on a slice.

Thus, the computation time of the contour correspondence and combination operations is

proportional to the number of dexel points on the slice. In a triple-dexel model, the total

computation time of the contour corresponding and combination operation is proportion

to

(M)a(N + 0) + (N)a(O + M) + (O)a(M + N) = 2T = O(T) (7)

From the above analysis, it is concluded that the computation complexity of the

contour generation algorithm is O(an and the complexity of the contour correspondence

and combination algorithms is ocn, where a is the average number of dexel points along

a ray and T is the total number of dexel points.

4.2. Space Complexity Analysis

The contour generation algorithm stores in the computer memory (i) the initial

dexel data, (ii) the connections between dexel points, and (iii) the final contour data. As

mentioned before, the linked list structure is used to store the initial dexel data, which has

the storage cost proportional to the number of dexel points. The connections of the dexel

points and the generated contours are also each saved in a linked list structure. In the

contour combination algorithm, the same linked list structure stores the combined

contours on each slice. Overall, the memory costs of the contour generation and contour

combination algorithms are linearly proportional to the number of dexel points of the

triple-dexel model.

4.3. Surface Error Analysis

The reconstructed surface is watertight because in the volume-based surface tiling

algorithm, every dexel point inside the boundary sub-volume is guaranteed to have

connection points to form a close loop. Note that the connectivity information is

embedded in the three orthogonal slices of contours. However, the reconstructed surface

is still an approximation of the original shape. To estimate the quality of the

reconstructed surface, the reconstructed surface error is defined as the ratio of the

Hausdorff distance between the original surface and the reconstructed surface to the

diagonal length of the bounding cuboid. Hausdorff distance is the maximum distance

96

between two non-empty sets of data. To calculate the surface error, the reconstructed

surface model is sampled from three orthogonal directions and the Hausdorff distance

between the sampled points and the original surface model is calculated and normalized

by the diagonal length of the bounding cuboid. The normalized surface error e between

the sampled points P and the original surfaceS is:

dH(P,S) e = _.!.;:.__:___:__....::..

L
(8)

where Lis the diagonal length of the bounding cuboid. dH(P, S) is the Hausdorff distance

between the set of sampled points P = {p 1 .• ·Pn} of the reconstructed surface and the

original surface model S. It is evaluated as the maximum of the distances between point

set P; E P and the surfaceS, i.e.,

dH (P,S) = maxd(p;,S)
P;EP

where the distance between a point in P; E R3 and a surfaceS is given by:

d(p;,S) = mi!J-11 P;- q ll2
qeS

(9)

(10)

The surface errors of the reconstructed Stanford bunny model from triple-dexel

data are calculated using the Metro [Cignoni et al., 1998] comparison tool under four

different resolutions as shown in Table 2. The Metro takes the original surface model and

the reconstructed surface model as the input and outputs the surface error between them.

It can be seen in Table 2 that the error increases to 1.332% when the resolution of the

model decreases to 30 x 30. The surface errors of the models reconstructed from the

single-dexel data and the triple-dexel data are compared in Table 3, which clearly shows

that the reconstructed surface from the single-dexel data has larger errors than the surface

reconstructed from the triple-dexel data for the same ray resolution.

5. IMPLEMENTATION EXAMPLES

Implementation examples of the triple-dexel based surface reconstruction process

are given in this section. The plate model as shown in Fig. 13(a) is discretized into triple­

dexel data. The contour generation algorithm generates two sets of contours on xy planes,

as shown in Fig. 13(b) and Fig. 13(c), from the dexel data in x andy directions,

respectively. The combined contours on xy planes are shown in Fig. 13(d).

Table 2. Surface Errors ofthe Reconstructed Bunny Model from Triple-Dexel Data

Resolution Hausdorff distance (dH: mm) Normalized error (e)
30*30 0.003334 1.332%
50* 50 0.001989 0.7525%

100*100 0.001445 0.4390%

200*200 0.000789 0.2656%

Table 3. Surface Errors of the Reconstructed Bunny Model

Resolution Normalized error from Normalized error from
the triple-dexel model the single-dexel model

50* 50 0.7525% 1.365%
100*100 0.4390% 0.658%

I I

-1 l I

1: l
/

~

(a) (b) (c) (d)

97

Figure 13 . Illustrative Example of the Contour Combination Algorithm. (a) Input Object
Model, (b) Contour Generated from X-Dexel Data, (c) Contour Generated From Y-Dexel

Data, and (d) Combined Contour from (b) and (c)

98

After generating three orthogonal sets of contours in the contour combination

process as described, the volume-based surface tiling algorithm is utilized to generate the

boundary surface of the 3D model. Figure 14 shows the reconstructed surface of a bunny

from the obtained contours on 70 slices in each of xy, yz, and zx planes. Figure 15

illustrates the surface improvement from the triple-dexel data over the single-dexel data.

Figures 15(a) and (c) show the results of surface reconstruction from single-dexel data,

and Fig. 15(b) and (d) show the corresponding results of surface reconstruction from

triple-dexel data. These figures clearly show that the generated surface from the triple­

dexel data is more accurate than the reconstructed surface from the single-dexel data

when using the same ray resolution.

Figure 14. A Bunny Model and the Reconstructed Surface of the Bunny

The developed surface reconstruction process based on the triple-dexel model is

incorporated into a virtual sculpting system [Peng and Leu, 2003 ; Leu et al. , 2005 ; Peng

et al. , 2006]. The virtual sculpting system is developed on a Microsoft Windows XP

workstation. The software is written in C++, and the graphics-rendering component is

built on OpenGL and GLUT. The haptics interface is implemented using the

PHANToM™ device and the GHOST (General Haptics Open Software Toolkit) SDK

software available from SensAble Technologies. This virtual sculpting system enables

the user to create and modify 3D freeform objects through interactive sculpting

operations and gives the user real-time force feedback during the sculpting process. The

99

tool swept volume between two consecutive sampling times is obtained by the Sweep

Differential Equation method [Blackmore and Leu, 1992] and represented by boundary

triangular meshes [Peng and Leu, 2003]. The workpiece and the tool swept volumes are

scan-converted to obtain their triple-dexel data. Boolean operations on the triple dexels

are performed by comparing and merging the dexel data in each of x, y or z directions.

The surface reconstruction software is executed during the sculpting process to convert

the triple-dexel model to a triangular mesh model. Figure 16 shows the setup of the

virtual sculpting system and a cat model created using the system and viewed from two

different directions.

(c) (d)

Figure 15. Comparisons Between Single-Dexel Data and Triple-Dexel Data. (a) and (c)
Surfaces Reconstructed from Single-Dexel Data, (b) and (d) from Triple-Dexel Data

6. COMPARISON WITH VOXEL REPRESENTATION

Voxel modeling is a popular representation scheme [Kaufman et al. , 1995;

Hadwiger et al., 2006]. To benchmark the performance of the developed method,

numerical experiments are conducted to compare using triple-dexel data vs. voxel data in

terms of the surface reconstruction time and the associated surface error. An impeller and

100

a bunny model, as shown in Fig. 17, are discretized into voxel data in the resolution of

50* 50* 50, 1 00* 1 00* 100 and 150* 150* 150 by using a fast voxelization algorithm

[Karabassi et al. , 1999]. The voxel data is stored in the 3D array structure, with the

marching cube algorithm utilized to reconstruct the surface from the voxel data.

Meanwhile, the triple-dexel data is stored in the linked list structure and the object' s

surface is reconstructed using the method developed in this paper. The normalized

surface errors of the reconstructed surface are calculated using the Metro comparison tool

[Cignoni et al. , 1998] and shown in Table 4. The time of the contour generation,

correspondence and combination process is compared with the surface reconstruction

time from the voxel representation in different resolutions in this table.

Figure 16. A Cat Model Generated Using the Virtual Sculpting System

The test result shows that, under the same resolution, the surface reconstructed

from the triple-dexel data has a smaller surface error in comparison with the surface

reconstructed from the voxel data. This is because the triple-dexel based method utilizes

actual positions of the intersection points between rays and the object' s boundary surface

as the vertices of the reconstructed surface model, while the voxel based method

approximates the positions of these vertices by voxel interpolation.

The computation complexity of the contour generation, correspondence and

combination process using triple-dexel data is 0(7) or O(M2) , where M is the number of

divisions along each axis. Because the complexity of the volume-based tiling algorithm is

101

also O(M2)[Svitak, 2004], the developed surface reconstruction method is more efficient

than the voxel-based surface reconstruction method, whose computational complexity is

O(M). The total computation times for surface reconstruction from the voxel data and

from the triple-dexel data of the impeller and the bunny models are plotted vs. the

number of divisions along each axis in Figs. 18 and 19. The results in these figures verify

that the triple-dexel model is more efficient than the voxel model.

Figure 17. Two Test Cases: Impeller and Bunny

Table 4. The Surface Reconstruction Time and Surface Error

Test No. of Reconstruc Reconstruction Error of Error of
Model Dexel -tion Time Time Using Reconstructed Reconstruct

Resol Points Using Voxels (s) Surface from ed Surface

uti on Triple Triple-Dexel from Voxel
Dexels (s) Data(%) Data(%)

50*50 Impeller 19916 0.1333 0.12843 0.4263 0.9091

*50 Bunny 14402 0.0985 0.11755 0.7525 1.0272

100*1 Impeller 79632 0.4974 0.9836 0.1683 0.4012

00*10 Bunny 57852 0.3631 0.9436 0.4390 0.5063

0
150*1 Impeller 179727 1.1720 3.2290 0.1843 0.2653

50*15 Bunny 130650 0.8230 3.1300 0.2656 0.4299

0

-voxel

-- TripleDexel

0 50 100 150 200

Figure 18. Surface Reconstruction Time vs.
Number of Divisions from the Voxel Data
and the Triple-Dexel Data for the Impeller

7. CONCLUSIONS

102

3 .5

3

2 .5

2
-voxel

1.5 - TripleDexel

0 .5

0
0 50 100 150 200

Figure 19. Surface Reconstruction Time
vs. Number of Divisions from the Voxel
Data and the Triple-Dexel Data for the

Bunny

This paper has described a novel method of surface reconstruction from triple­

dexel data. Three sets of contours on orthogonal slices are generated from triple-dexel

data by a contour generation algorithm and a contour combination algorithm. A volume­

based tiling algorithm is then utilized to generate the boundary surface of the 3D object in

triangular patches from these contours. The computation complexity and the memory

requirements of the developed method are analyzed. Both computation time and memory

cost are found to be linearly proportional to the number of dexel points of the triple-dexel

model. Comparing with the surfaces reconstructed from single-dexel data and from voxel

data with the same resolution, our triple-dexel based method has a higher surface

accuracy. Also the described surface reconstruction method is more efficient than the

popular voxel-based method. The developed surface reconstruction process has been

incorporated into a virtual sculpting system to address the view-dependent problem

inherent in triple-dexel modeling. Examples are given to demonstrate the capability of the

developed method.

The developed contour combination method requires the same numbers of input

contours generated from rays in two orthogonal directions for each slice. In case the

numbers of contours are different, the density of rays to scan the object needs to be

103

increased until the numbers of input contours are the same for each slice. This is the main

disadvantage of the method because casting additional rays will require more memory

and computations. Future studies will explore adaptive methods that vary the ray density

with the local geometric complexity in order to capture fine features with minimal

increase in memory cost and computation time. Another planned improvement of our

contour generation and combination algorithms is to incorporate vector information at

each dexel point to reconstruct surfaces containing sharp features based on techniques

described in the extended marching cube method [Kobbelt et al., 2001] or the dual

contouring method [Ju et al., 2002].

ACKNOWLEDGMENTS

This research is supported by a National Science Foundation award (CCR-

031 0619) and by the Intelligent Systems Center at the Missouri University of Science &

Technology. The bunny model is courtesy of the Stanford 3D Scanning Repository.

REFERENCES

1. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., and Silva, C. T., 2001,

"Point Set Surfaces," IEEE Visualization 2001, October, IEEE, New York, pp. 21-

28.

2. Amenta, N., Choi, S., and Kolluri, R., 2001, "The Power Crust," in 6th ACM

Symposium on Solid Modeling and Applications, Ann Arbor, MI.

3. Azernikov, S., Miropolsky, A., and Fischer, A., 2003, "Surface Reconstruction of

Freeform Objects Based on Multi-resolution Volumetric Method," Proc. of ACM

Symposium on Solid and Physical Modeling, pp. 115-126.

4. Barequet, G., and Vaxman, A., 2007. "Nonlinear Interpolation between Slices," Proc.

of the ACM Symposium on Solid and Physical Modeling, Beijing, China, June 04-06,

pp. 97-107.

5. Benouamer, M.O., and Michelucci, D., 1997, "Bridging the Gap between CSG and

Brep via a Triple Ray Representation," Proc. of Solid Modeling'97, Atlanta, GA,

May 14-16, pp. 68-79.

I04

6. Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., and Taubin, G., I 999, "The

Ball-Pivoting Algorithm for Surface Reconstruction," IEEE Trans. Vis. Comput.

Graph., 5(4), pp. 349-359.

7. Blackmore, D., and Leu, M. C., 1992, "Analysis of Swept Volume via Lie Groups

and Differential Equations," International Journal ofRobotics Research, 11(6), pp.

5I6-537.

8. Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., McCallum, B.

C., and Evans, T. R., 2001, "Reconstruction and Representation Of 3D Objects With

Radial Basis Functions," Proc. of the 28th Annual Conference on Computer Graphics

and interactive Techniques SIGGRAPH '01. ACM, New York, NY, 67-76.

9. Cignoni, P., Montani, C., and Scopigno, R., I 998, "A Comparison of Mesh

Simplification Algorithms," Computer Graphics, 22(I), pp. 37-54.

10. Dey, T., Giesen, J., and Hudson, J., 2001, "A Delaunay Based Shape Reconstruction

From Large Data," Proc. of the IEEE 200I Symposium on Parallel and Large-data

Visualization and Graphics, pp. 19-27.

I 1. Edelsbrunner, H., and Mucke, E. P., 1994, "Three-dimensional Alpha Shapes," ACM

Transactions on Graphics, 13(I), pp. 43-72.

12. Hadwiger, M., Kniss, J. M., Rezk-salama, C., and Weiskopf, D., 2006, Real-time

Volume Graphics, A. K. Peters.

I 3. Huang, Y., and Oliver, J. H., I 995, "Integrated Simulation, Error Assessment and

Tool Path Correction for Five-Axis NC Milling," Journal of Manufacturing Systems,

14(5), pp. 331-344.

I4. Ju, T., Losasso, F., Schaefer, S., and Warren, J., 2002, "Dual Contouring of Hermite

Data," Proc. of SIGGRAPH'2002, pp. 339-346.

15. Leu, M. C., Peng, X., and Zhang, W., 2005, "Surface Reconstruction for Interactive

Modeling ofFreeform Solids by Virtual Sculpting," Annals ofthe CIRP, 54(I), pp.

I31-I34.

16. Lorensen, W.E., and Cline, H.E., 1987, "Marching Cubes: A High Resolution 3D

Surface Reconstruction Algorithm," Computer Graphics, 21(4), pp. I63-169.

17. Karabassi, E. A., Papaioannou, G., and Theoharis, T., 1999, "A Fast Depth-Buffer­

Based Voxelization Algorithm", Journal of Graphics Tools, 4(4), pp. 5-10.

105

18. Kaufman, A., Cohen, D., and Yagel, R., 1995, "Volume Graphics," IEEE Computer,

26(7), pp. 51-64.

19. Kobbelt, L. P., Botsch, M., Schwanecke, U., and Seidel, H. 2001, "Feature Sensitive

Surface Extraction From Volume Data," Proceedings of the 28th Annual Conference

on Computer Graphics and interactive Techniques SIGGRAPH '01. ACM, New

York, NY, pp. 57-66.

20. Konig, A. H., and Groller, E., 1998, "Real-Time Simulation and Visualization ofNC

Milling Processes for Inhomogeneous Materials on Low-End Graphics Hardware,"

Proc. of the Computer Graphics International, IEEE Computer Society, pp. 338.

21. Muller, H., Surmann, T., Stautner, M., Albersmann, F., and Weinert, K., 2003,

"Online Sculpting and Visualization of Multi-Dexel Volumes," Proc. of ACM

Symposium on Solid and Physical Modeling, Seattle, Washington, June 16-20, pp.

258-261.

22. Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., and Seidel, H. 2003, "Multi-level

Partition of Unity Implicits," ACM Trans. Graph. 22(3), pp. 463-470.

23. Ohtake, Y., Belyaev, A., and Seidel, H. 2006, "Sparse Surface Reconstruction with

Adaptive Partition of Unity and Radial Basis Functions," Graph. Models, 68(1), pp.

15-24.

24. Peng, X., and Leu, M.C., 2003, "Interactive Solid Modeling in a Virtual Environment

with Haptic Interface," Virtual and Augmented Reality Applications in

Manufacturing, Springer-Verlag London Limited, London, UK.

25. Peng, X., Zhang, W., and Leu, M.C., 2006, "Freeform Modeling Using Sweep

Differential Equation with Haptic Interface," Journal of Virtual and Physical

Prototyping, 1(3), pp. 183-196.

26. Pfister H., Zwicker, M., Van Baar, J., and Gross, M., 2000, "Surfels: Surface

Elements as Rendering Primitives," Proc. of SIGGRAPH 2000, pp. 335-342.

27. Ren, Y., Lai-Yuen, K.S., and Lee, Y.S., 2006, "Virtual Prototyping and

Manufacturing Planning by Using Tri-dexel Models and Haptic Force Feedback,"

Virtual and Physical Prototyping, I (1), pp. 3-18.

28. Svitak, R., and Skala, V., 2004, "A Robust Technique for Surface Reconstruction

from Orthogonal Slices," Machine Graphics & Vision, 12(3), pp. 221-233.

29. Van Hook, T., 1986, "Real-Time Shaded NC Milling Display," Proc. of ACM

SIGGRAPH, ACM Press, pp. 15-20.

106

30. Wang, Y. F., and Aggarwal, J. K., 1986, "Surface Reconstruction and Representation

of 3D Scenes," Pattern Recognition, 19(3), pp. 197-207.

31. Zhang, W., Peng, X., Leu, M.C., and Zhang, W., 2007, "A Novel Contour Generation

Algorithm for Surface Reconstruction from Dexel Data," Journal of Computing and

Information Science in Engineering, 7(3), pp. 203-210.

III: VIRTUAL SCULPTING WITH SURFACE SMOOTHING BASED ON

LEVEL-SET METHOD

ABSTRACT

Weihan Zhang and Ming C. Leu

Department of Mechanical and Aerospace Engineering

Missouri University of Science & Technology

Rolla, Missouri 65409, USA

Email: wzxq6@mst.edu, mleu@mst.edu

107

This paper presents a surface smoothing technique based on the level-set method.

The triple-dexel data used to represent the generated model in virtual sculpting is

converted into distance field data by identifying spatial grid points close to the model's

boundary surface and calculating their Euclidean distance values. The surface is

smoothed by solving the level-set differential equation with mean curvature flow using a

fast and robust numerical scheme. Examples are given to demonstrate the effectiveness of

the surface smoothing operation for virtual sculpting.

Keywords: Computer Aided Design, Surface Smoothing, Level-Set Method

1. INTRODUCTION

More and more products with complex geometries are being designed and

manufactured by computer aided design (CAD) and rapid prototyping (RP) technologies.

Freeform surface is one of the geometrical features widely used in modem products like

car bodies, airfoils and turbine blades as well as in aesthetic artifacts. How to efficiently

design and generate digital prototypes with freeform surfaces is an important issue in

CAD. None-Uniform Rational B-Splines (NURBS) is an industrial standard for freeform

surface design. However, generating a NURBS surface of complex geometry requires

creating and positioning a large number of control points using 2D input devices like

108

mouse and keyboard, which is a tedious work and is not highly intuitive. Virtual

sculpting is a process in which the user creates a three-dimensional (3D) object on the

computer screen by interactively carving a virtual workpiece like a real sculptor would do

on a piece of clay, wax or wood. It is well suited to free form design of virtual prototypes

as it allows the user to avoid cumbersome mouse and keyboard interface.

Various techniques [1, 2] have been developed for freeform shape design with a

haptic device. Our past research has contributed to this topic by developing a dexel based

virtual sculpting system capable of removing and adding materials for the creation of

freeform shapes in real time [3, 4]. The "view-dependence problem" of dexel

representation has been recently solved by developing contour generation, contour

combination, and surface tiling algorithms to reconstruct the boundary surface of the

sculpted solid from triple-dexel data [5]. However, that virtual sculpting system did not

have surface smoothing capability. It is very desirable to enable the user to smooth the

rough area created during the sculpting process. The level-set method with mean

curvature flow is a surface smoothing technique that has been researched. It always

produces none self-intersecting surfaces that represent physically realizable objects.

However, previous studies on the use of level-set methods for surface smoothing can only

calculate the underlying distance field data from a triangular mesh, not from triple-dexel

data.

In the present paper, we build upon our recent work of surface reconstruction

from triple dexels [5] to develop a method to calculate the distance field directly from

triple-dexel data for surface smoothing in virtual sculpting. With the 3D distance field

data, the virtual sculpting system is further developed to include surface smoothing

operations based on the level-set method. The level-set differential equation with mean

curvature flow is solved using a fast and robust numerical scheme to smooth the

boundary surface for any user selected area. The developed method seamlessly integrates

level-set based surface smoothing into the virtual sculpting system.

This paper is organized as follows. Section 2 provides an overview of related

research work. In Section 3, we present the method of distance field calculation from

triple-dexel data. Section 4 describes the surface smoothing operation based on the level-

109

set method. Modeling examples in virtual sculpting are shown in Sections 5. Conclusions

are drawn in Section 6.

2. RELATED WORK

2.1. Distance Field Calculation

The distance field is defined as a spatial function which returns the signed

Euclidean distance from a spatial point (x,y,z) to the boundary, aM, of a manifold object

M. The sign denotes whether the point is inside or outside aM . The calculation of

distance field from a triangular mesh has been extensively studied. A survey of research

on this topic is available from [6]. Generally a brute force method is used to compute the

distances from a grid point in the space to every boundary triangle of M and select the

shortest one. To reduce the computation, the shortest distance can be calculated only to a

limited number of primitives according to spatial coherences. However, there has been

very little research on the calculation of the distance field directly from triple-dexel data,

which precedes the creation of a triangular mesh in virtual sculpting. Sealy and Novins

[7] approximated the Euclidean distance of a grid point as the shortest distance among its

three axial distances. But this approximation is not accurate especially where sharp

features are present.

2.2. Surface Smoothing

The objective of surface smoothing is to modify a surface to make it more

functional or aesthetically pleasing. Smoothing techniques have been proposed in the

context of surface fairing, where a fairness or penalty function that favors a smooth

surface is minimized. The level-set method [8] with mean curvature flow provides a

numerical mechanism for surface smoothing, which modifies the surface area represented

as time varying iso-values of a function by solving a partial differential equation on the

3D grid. This method has several benefits in surface smoothing including the following:

no self-intersection, thus, guaranteeing the generation of a simple, reliable close surface;

easy change of topology for freeform shape design; free of edge connectivity and mesh

quality problems associated with mesh models. A set of surface editing operators like

smoothing, blending, sharpening, opening/closings, and embossing has been developed

110

using the level-set method [9]. We will apply the level-set method with mean curvature

flow to develop surface smoothing operation in Section 4.

3. GENERATING DISTANCE FIELD FROM TRIPLE-DEXEL DATA

In our triple-dexel based virtual sculpting system, the representation of a solid

during the sculpting process is by computing intersections between the solid and rays in

three orthogonal (e.g., x, y and z) directions. For each ray, the intersection points and the

surface normal sampled at each point are stored. Two intersection points in a line

segment that is completely inside the solid is defined as a dexel. An illustration is given

in Figure 1.

Direction
of view

P1-P2 P3 P4
(b)

Figure 1. Illustration of the Ray-Casting Process and the Dexel Representation

To simulate the material removal process, Boolean operations are performed

between the triple-dexel data of the workpiece and the tool. To visualize the sculpted

solid, we have developed a surface reconstruction method from triple-dexel data. The

method includes contour generation, contour combination and surface tiling algorithms

[5]. Meanwhile, the PHANToM™ manipulator (SensAble Technologies) is used to

1 1 1

provide the position and orientation data of the sculpting tool as well as haptic sensation

to the user's hand during the sculpting process.

To utilize the level-set method with mean curvature flow for surface smoothing,

the triple-dexel data is converted into distance field data where each grid point contains a

distance value to the iso-surface representing the boundary. Formally, the signed

Euclidean distance function of a grid point (x,y,z) E R3 is defined as:

f(x,y, z) = dis[(x,y, z),S] (1)

where Sis the iso-surface and 'dis' is the Euclidean distance to S. A positive sign

represents the point outside S and a negative sign represents the point inside S. The

initialization of the level-set method requires the distance values of a narrow-band of grid

points that are in the neighborhood of S.

We develop a four-step process for generating the distance field. First the voxels

that have non-null intersections with the solid's boundary surface are identified as the

·Boundary Voxels (BVs). The grid point on any edge of a BV is a Boundary Grid Point

(BGP) and a grid point is an Adjacent Grid Point (AGP) if it is adjacent to any BGP.

Next, the sign of the distance value of each BGP and AGP is determined. Third, the

surface within each BV is approximated using triangular facets. Finally, the distance

value of each BGP and AGP is calculated. The details of the algorithm are given below.

3.1. Identify BV, BGP and AGP

The 3D space is divided by rays cast in three orthogonal directions into many

equal sized voxels. According to the definition above, a BV must contain at least one

dexel point on its edges. By scanning the dexels points along rays in the x, y, and z

directions, we can find BV s. A 2D illustration is given in Figure 2, where the gray­

colored pixels surrounding the iso-surface are the boundary pixels (i.e., 20 BVs). Each

squared point is a BGP and each triangular point is an AGP.

3.2. Determine the Sign of Each BGP and AGP

If a grid point is between two adjacent dexels along a ray, the distance value of

this point is positive. Otherwise, the sign of the distance value is negative. Thus, we can

determine the sign of the distance value of each BGP and AGP by its relative position to

dexels along any directional rays. It is noted that if the distance of the grid point equals

zero, this grid point is on the surface. We use 0 to label this type of grid points.

112

Dexel point •

BGP 0

AGP A

Boundary -pixel

Figure 2. Boundary Pixels, BGP, AGP and Dexel Points

3.3. Approximate !so-Surfaces Inside BV s

The main idea of this step is to use the Hermite data (i.e. , exact intersection points

and normals) on the edges of a BV to calculate an additional point inside the BV by

minimizing a quadratic function. By connecting this point with other additional points in

adjacent BVs, triangular meshes can be generated with a simple patching algorithm to

approximate the boundary surface.

In the case of using triple-dexel data, the dexel points and the surface normals at

these points are available from the triple-dexel data. The additional point inside a BV is

the intersection point between the tangent elements of the dexel points on the edges of a

BV. A 2D example is shown in Figure 3, where the circle points are the dexel points and

the square points are the additional points.

o Dexel point

• Additional
vertex

.A AGP

Figure 3. Distance Calculation for the Grid Points

113

Inside BPI, the additional point Pis the intersection point between the tangent line

of dexel point PI under normal ni and the line of dexel point p2 under normal n2 . In the 3D

case, the additional point is the intersection point of three tangent planes of these dexel

points on three edges of a BV. In general, this method is over-determined since more than

three dexel points may exist on the edges of a BV in a 3D case. In such case, a quadratic

function is minimized to find the addition point [10], i.e.

E(x) =min L (n; · (x- p;)) 2 (2)

where Pi and ni represent dexel points and their associated unit surface normals. There

exist numerical schemes to solve the least square optimization problem [11]. Once the

additional vertex is generated within every BV, for each edge that contains a dexel point,

the additional points of the four BVs containing the edge can be connected and patched

into triangles.

3.4. Calculate Distance Values of BGPs and AGPs

The Euclidean distance of a BGP of a BV is the shortest distance from the BGP to

the local triangles formed by the additional point of this BV. We calculate the distance

between this BGP and every such triangle, and the smallest value is the Euclidean

distance. As illustrated in Figure 3, the distance of the center grid point is d2 because d2 <

d1. Based on the same principle, to calculate the distance values of AGPs, such as point P3

in Figure 3, only triangles formed by the additional points in the adjacent BVs are

considered for the distance test.

4. SURFACE SMOOTHING USING THE LEVEL-SET METHOD

4.1. Level-Set Method

Level-set models are deformable implicit surfaces where the deformation of the

surface in its normal direction is controlled by a speed function in the level-set partial

differential equation [9], i.e.

aF =-VF·v
at (3)

where F(x,t) is the Euclidean distance function, x is the grid coordinates in space R3, vis

the velocity function of boundary points, vis the gradient and

V'=i·j_+ j-~+k-~
Ox ay az

where i,j and k are the unit vectors in R3.

4.2. Numerical Solutions for Level-Set Method

An up-wind computation scheme [9] can be applied to solve the level-set

equation. The first-order space approximation of Equation (3) is written as:

F,~,~~ = F,~,.k -~t[max(v,~,.k,O)V+ +min(v;,,,k,O)V'-]

where v;,J.k is the speed at a point indexed by i,j and k and

r
(D x 0)2 · +x 2 J\/2

v+ = max(D,~f,k ,0) 2 + min(D;~fk ,0) 2 +
max i~J.k, + mm(D; .. J .. k ,0) +

max(D,~;.k ,0) 2 + min(Dt;.k ,0) 2

where D;~;,k is a shorthand notation of the forward difference operator

F..i.k (x + h, t)- F..i.k (x,t) and D;~;.k is the backward difference operator
h

F,_,_k (x,t)- F,_, k (x- h,t)

h

114

(4)

(5)

(6)

(7)

The calculation of the level-set method can be sped up with a narrow-band

scheme [9]. The idea of this method is to update only a narrow-band of grid points which

are close to the iso-surface, e.g. the BGP points and AGP points in Figure 2. Another

advantage of this approach is that the number of points being computed is small so that it

is feasible to use a linked-list structure to keep track of them for real-time applications.

For example, the BGP points can be saved into a list, and the AGP points inside the

boundary and outside the boundary can be saved into two different lists. By updating the

distance values of the grid points in these three lists, the change of the iso-surface is

tracked.

4.3. Mean Curvature Calculation

The mean curvature (H) at a point pEs is the average of the two principal

curvatures (~e, and ~e2)

H=(KJ+K2)/2

For a 3D surface defined as a function of three coordinates, F(x,y,z), the mean

curvature at a grid point is

H = (Fyy + F:z)F', 2 + (F',x + Fzz)F/ + (F:x + Fyy)Fz 2 - 2(FxFyF:y + F',F:F',z + FYF:FYJ
2(F2 +F2 +F2)3;2

X y Z

where the differential terms are approximated using the first-order, central finite

difference numerical scheme, i.e,

F,.k-FI'k F = I+,], 1- ,],

X 2Ax

F I . k - 2F . k + F I . k F = I+ ,.J, I,.J, 1- ,.J,

XX Ax2

Ft.tk-Ft.tk Ft.tk-Ft.Jk F = r+ ,.J+ , I+ • .1- , + 1- • .1- , 1- ,.J+ ,

xy 4Llx~y 4Llx"~y

4.4. Surface Smoothing Using Mean Curvature Flow

115

(8)

(9)

(10)

(11)

(12)

If the speed (v) of a boundary point in Equation (3) is proportional to the mean

curvature of the local boundary calculated by Equations (9)-(12), then Equation (3) can

be written as

BF(x,t) -b(x,t)H(x,t) II V F(x,t) II= 0
ar

(13)

where b(x,t) is a user defined function to control the speed. According to this equation,

the part of the boundary with larger curvature moves faster than the part of the boundary

with smaller curvature in the surface normal direction. This movement results a

smoothing operation as illustrated in Figure 4, where (b)-(c) show the global smoothing

of a 20 star shape in (a), and (d) shows the smoothing of the star shape locally by

defining an effective area through b(x,t).

116

5. APPLICATION TO VIRTUAL SCULPTING

Our virtual sculpting system runs on a Microsoft Windows XP workstation

equipped with a 1.6 GHz CPU and 1 GB RAM. The software is written in C++, and the

graphics-rendering component is built upon OpenGL and GLUT libraries. The haptics

interface is implemented using the PHANToM™ device and the GHOST (General

Haptics Open Software Toolkit) SDK software available from SensAble Technologies.

Figure 5 shows the setup of the virtual sculpting system and a cat model created with the

system. In the sculpting process, both the tool and the stock (initial workpiece) are

represented by polyhedral boundaries. The tool location is specified by a translation and a

rotation tracked by the PHANToM, and the tool swept volume between two consecutive

sampling times is calculated and represented by triangular meshes. The virtual sculpting

process continuously performs Boolean operations between the tool swept volume and

the workpiece and computes the triple-dexel data that represents the workpiece being

sculpted.

(a) (b) (c) (d)

Figure 4. Example ofthe Smoothing Operation on a Star Shape. (a), (b)-(c) Illustrate
Global Smoothing Operation and (d) Illustrates Local Smoothing Operation

Next we demonstrate the developed surface smoothing operation. In this

operation, a user-defined box or sphere can be used to select a certain area on the

sculpted model. Then the selected area is smoothed according to its curvature values. By

adjusting b(x,t) in Equation (13) using a scrollbar, the user is able to adjust the speed of

curvature flow. Also the surface propagation process can be stopped at any time once a

117

satisfied result has been obtained. Figures 6(a) and (d) show two spheres joined together

before and after the smoothing operation. A snowman model is created by adding and

removing materials w.r.t. the two spheres model. Figures 6(b) and (c) show the snowman

model and the smoothed model is shown in (e) and (f) for comparison.

Figure 5. A Cat Model Created Using the Virtual Sculpting System

(a) (c)

(d) (e) (f)

Figure 6. Modeling Examples. (a) and (d) Two Joined Spheres, (b) and (e) a Snowman
Model,(c) and (f) the Boundary with and without Smoothing

118

6. SUMMARY

This paper has presented a level-set based surface smoothing method with

application to virtual sculpting. The triple-dexel data representing a solid model is

converted to distance field data by approximating the iso-surface inside the boundary

voxels and calculating the Euclidean distance values for a narrow-band of grid points.

The mean curvatures of the grid points in the narrow-band are estimated using the first­

order finite difference numerical scheme. By using the up-wind computation scheme to

solve the level-set differential equation with mean curvature flow, the higher curvature

area of the boundary surface propagates faster in the surface normal direction, resulting a

smoothing operation. Examples are given to demonstrate the effectiveness of the

developed surface smoothing technique for virtual sculpting.

ACKNOWLEDGMENTS

This research is supported by a USA National Science Foundation award (CCR-

0310619) and by the Intelligent Systems Center at Missouri University of Science and

Technology.

REFERENCES

[1] Lu, S.C., Shpitalni, M., Bar-Or, R., and Gadh, R., 1999, Virtual and Augmented

Reality Technologies for Product Realization, Annals of the CIRP, 48/2: 471-495.

[2] Krause, F. L., and Biahmou-Tchebetchou, A. R., 2005, Advanced Methods for a

Realistic Styling, Annals ofCIRP, 54/1:143-146.

[3] Leu, M.C., Maiteh, B. Y., Blackmore, D., and Fu, L., 2001, Creation ofFreeform

Solid Models in Virtual Reality, Annals ofCIRP, 50/1:73-76.

[4] Leu, M.C., Peng, X., and Zhang, W., 2005, Surface Reconstruction for Interactive

Modeling ofFreeform Solids by Virtual Sculpting, Annals ofCIRP, 54/1: 131-134.

[5] Zhang W., and Leu, M. C., 2007, Surface Reconstruction from Triple Dexel Model

for Virtual Sculpting, Proc. of ASME International Design Engineering Technical

Conference & Computers and Information in Engineering Conference.

[6] Jones, M. W., Baerentzen, J. A., and Sramek, M., 2006, 3D Distance Fields: A

Survey of Techniques and Applications, IEEE Transactions on Visualization and

Computer Graphics, 12/4:581-599.

119

[7] Sealy, G. and Novins, K., 1999, Effective Volume Sampling of Solid Models using

Distance Measures, Proc. of the international Conference on Computer Graphics.

[8] Museth, K., Breen, D. E., Whitaker, T., and Barr, A. H., 2002, Level Set Surface

Editing Operators, ACM Transactions on Graphics (TOG), 21/3: 330-338.

[9] Sethian, J. A., 1999, Level Set Methods and Fast Marching Methods: Evolving

Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and

Materials Science (2nd Ed.), Cambridge University Press, UK.

[10] Ju, T., Losasso, F., Schaefer, S., and Warren, J., 2002, Dual Contouring of Hermite

Data, Proc. of SIGGRAPH.

[11] Golub, G., Loan, C. V., 1996, Matrix Computations, 3rd, Johns Hopkins Univ.

Press, USA.

120

IV: A SPATIAL WARPING METHOD FOR FREEFORM MODELING BASED ON
LEVEL-SET METHOD

ABSTRACT

Weihan Zhang and Ming C. Leu
Department of Mechanical and Aerospace Engineering

Missouri University of Science and Technology
Rolla, Missouri 65409, USA

Email: wzxg6@mst.edu

Providing an intuitive and effective tool for freeform geometric modeling is

important for product design. We introduce in this paper a level-set based spatial warping

method for freeform modeling, allowing shape deformation to be initialed by rigid body

transformations of volumetric tools. Intuitive user operations including the imprinting,

deformation and smoothing operations are developed to shield the user from the

underlying geometric complexity. Unlike mesh-based spatial warping methods, the

developed method represents a digital model by implicit distance field data and describes

its change of geometry by the level-set method. This guarantees the generation of

topologically correct triangular mesh models and circumvents the error-prone remeshing

and mesh-repairing processes, thus preventing topological errors such as self­

intersections. We present this method with algorithm details, numerical experiments and

modeling examples.

1. INTRODUCTION

More and more products with complex geometries are being developed by

computer aided design (CAD) and rapid prototyping (RP) technologies. Freeform surface

is a geometrical feature widely used in modem products like car bodies, airfoils and

turbine blades as well as in sculptures and other aesthetic artifacts. How to efficiently

design and generate digital prototypes with freeform surfaces is an important issue in

Computer Aided Geometric Design (CAGD).

121

None-Uniform Rational B-Splines (NURBS) is an industrial standard for freeform

surface design. However, generating a NURBS surface of complex geometry requires

creating and positioning a large number of control points using 2D input devices like the

mouse and the keyboard. This is a tedious task and is not highly intuitive. A more

effective method for freeform geometric modeling is via the Free-From Deformation

(FFD) technique [Sederberg and Parry, 1986], which involves warping a space that

contains the object to be modeled. However, the control lattice used for space

manipulation in the FFD technique is not directly related to the object. Another important

type of freeform modeling techniques is based on implicit geometric representations

[Bajaj et al., 1997]. However, providing local geometric modification capability is

difficult in these techniques because modifying implicit functions is not very intuitive.

Recently, spatial warping methods [Gain and Marais, 2005; Angelidis et al., 2006] have

become popular due to their intuitive user interface and effective modeling capabilities.

All of the previous studies on these modeling techniques rely on a mesh model as the

underlying geometric representation. Although mesh modeling is supported by computer

hardware for fast processing, it has the problem of generating self-intersected models,

which requires special care in the transformation process.

In this paper, we develop a spatial warping method based on the implicit shape

representation and the level-set method to describe the geometric change of a 3D shape.

We develop a grab-and-drag technique to allow the user to select different virtual tools

and modify the 3D shape using selected tools through a force reflecting device. Various

freeform modeling operations such as imprinting, deformation and smoothing have been

developed by using rigid transformations of virtual tools. Compared with previous spatial

warping techniques, the topology of the generated model from our technique is inherently

correct without any self-intersection problems. Furthermore, the modeling operations

developed using this technique are effective for designing freeform models and intuitive

for common users.

The rest of the paper is organized as follows. Section 2 provides a review of

related research work on freeform geometric modeling. The spatial warping method is

introduced in Section 3. In Section 4, we describe the development offreeform modeling

operations using the spatial warping method. Modeling examples based on the spatial

warping method are shown in Section 5. Conclusions are given in Section 6.

2. RELATED WORK

2.1. Freeform Geometric Modeling

122

Lattice based freeform deformation is an important class of deformation methods.

Seder berg and Parry [1986] introduced the concept of free form deformation. This

technique defines freeform deformation by specifying a trivariate Bezier solid. The

control points of the lattice can be displaced. Several improvements and extensions have

been made since then. The extended freeform deformation method proposed by

Coquillart [1990] utilized non-parallelepipedicallattices. Hsu et al. [1992] developed a

direct manipulation technique that makes generation and placement of deformations

easier. Lamousin and Waggenspack [1994] described a system ofNURBS-based

freeform deformation based on a mesh built from rectangular parallelepipeds. Polygon

mesh based free form deformation is another class of deformation methods. Parent [1977]

initialed the use of basic vertex movement and decay function techniques. Leblanc et al.

[1991] did some improvements on the decay function, interface and polygonal modeling.

Billet al. [1995] presented a polygonal modeling system using virtual sculpting tools and

mesh refinement operations. The user controls a virtual tool to sculpt a freeform

polygonal model starting from a mesh structure. The system allows the user to push, pull

and deform the mesh in a variety of ways. A main problem of lattice based freeform

modeling techniques is that the control lattice is not directly related to the object.

Another class of freeform geometric modeling techniques relies on implicit geometric

representations such as variational implicit surfaces [Cuno et al., 2005], spherical implicit

surfaces [Alexe et al., 2004] and convolution surfaces [Bloomenthal and Shoemake,

1991]. An effective way of creating new shapes with implicit representations is using

Boolean operations [Bajaj et al., 1997]. Another commonly used technique for implicit

shape modeling is to extract the skeleton of a model and manipulate it to change the

shape [Yoshizawa et al., 2003]. However, providing local modification capability is

difficult since changing implicit functions is not very intuitive.

123

The spatial warping method has recently become popular due to its intuitive user

interface and design operations. In this method, the user's gesture such as his/her hand's

position and orientation is obtained with a mouse or a hand tracking device, and is

utilized to define the space transformation matrix. Weights can be associated with the

transformation matrix to control the gesture's influence area. Angelidis et al. [2006]

developed a gesture based swept deformation method called the sweepers, where the

transformation is divided into a series of small steps to avoid foldover problems with a

lower bound of the required number of steps. Angelidis et al. [2004] also developed a

gesture based deformation method capable of preserving the volume and avoiding self­

intersections. Gain and Marais [2005] developed a warp sculpting method, which allows

deformation to be initialed by the rigid body transformation of uniform scaling of

volumetric tools. Joo et al. [2006] introduced a 3D warp brush method for interactive

shape modeling in an immersive virtual reality environment. The deformed model is

capable of adaptive refinement and efficient rendering with on-the-fly triangular strip

generation.

However, the spatial warping method may generate a foldover of the ambient

space and potential self-intersection of the embedded object, resulting a physically

unrealistic, non-manifold object. Previous methods tried to decompose the transformation

into a series of smaller transformations, and applied each of them to the result of the

previous transformation to remove the foldover [Gain and Dodgson, 2001]. Choosing the

right number of subdivisions is challenging because too few steps in the subdivisions will

not prevent the fold-over and two many steps will jeopardize the interactivity of the

system. Gain and Dodgson [2001] came up with a set of conditions for a self-intersection

test to prevent fold-over from happening. However, an accurate test is often costly and

unrealistic for real-time applications. Angelidis et al. [2006] derived a bound for the

number of steps required for a fold-free deformation, but it has not been fully validated.

Our method presented in this paper is the first to utlize the implicit shape representation

based on the level-set method for modeling of spatial warping. The developed method

guarantees the generation of a fold-free model.

124

2.2. Level-Set Method for Modeling of Freeform Geometry

The level-set method introduced by Osher and Sethian [1988] provides

mathematical and numerical mechanisms for computing surface deformations as the

time-varying iso-values of a function by solving a partial differential equation on the 3D

grid. A set of numerical techniques has been provided by the level-set formulation that

describes how to manipulate the distance values of each grid in a volume, so that the iso­

surfaces of the function move in a prescribed manner. Museth et al. [2002] defined a

collection of speed functions that produce a set of surface editing operators like blending,

smoothing, sharpening, opening/closing and embossing. Brerentzen and Christensen

[2002] developed a volume sculpting system by using the level-set method and

introduced a scaling-window technique to define a speed function for local

manipulations (e.g. smoothing, material addition/subtraction). Guo et al. [2004] applied

the level-set method to model complicated point-set surfaces of arbitrary topology,

allowing local surface editing and global scalar-field freeform deformation. They

developed a variety of editing toolkits to directly manipulate the point-set surface through

interactive sketching, smoothing, embossing, and global freeform deformations.

Lawrence and Funkhouser [2004] developed a painting interface which allows the user to

define the instantaneous surface velocity to deform the geometry using the level-set

method. However, none of the previous studies has developed a spatial warping

technique based on the level-set method.

3. THE SPATIAL WARPING METHOD

Spatial warping is a general freeform deformation approach that enables the use

of a variety ofvirtual tools to interact with a CAD model. Unlike the "direct" modeling

such as virtual sculpting [Leu et al., 2001, 2005], in spatial warping method, the user

controls the position and orientation of a tool to generate a warp field that "indirectly"

deforms the object that is inside the tool's influence zone. Once the new positions of all

the vertices have been calculated, the tool's position and orientation are updated and

ready for the user to continue shape modeling.

Our space-warping method works as follows: the user first selects a virtual tool

from a tool library. Each tool has a limited region of influence in the 3D space

125

represented by the distance field. As the user moves the virtual tool around in the 3D

space, a vector field is generated by the trajectory of the virtual tool. This vector filed

defines the velocities for the grid points inside the influence zone of the tool. Then by

solving the level-set differential equation that describes the shape deformation, the shape

is deformed accordingly. A schematic of the freeform modeling system is shown in Fig.

I.

3.1. Input Data

User gesture input
with a tool

Design model L
'-----------r------'1

Formalize the
transformation

matrix

Identify the affected
region on the design

model

Render the design
model for

visualization

Apply the
transformation

matrix to the affected
re ion

Generate the grid-based
velocity field

Apply the level-set
method to update the

design model

Figure 1. Schematic ofthe Freeform Modeling System

The input of the modeling framework is a series of hand gestures (i.e., positions

and orientations of user's hand), G; (i=O, ... ,n), which can be obtained from a motion

capture deivce. The gesture G; at time t; is defined by a local coordinate system with

126

origin Oi and three unit vectors ui, vi, wi as shown in Fig. 2, where u x v = o , v x w = o
I I I I

Figure 2. Hand Gesture Modeling by Interpolation

To produce a smooth space warpmg from the input gestures, a B-Spline

interpolation is constructed to calculate the position and orientation of the gesture in

between. The B-spline curve passing through (n+1) points, Oi(x,y,z) , i=O, ... n , is defined

as:
n

Or(x, y,z) = _LO;(x,y, z)N;,k(r) (1)
i=O

where n+ 1 is the total number of sampled points from the user' s hand input, r is the

parameter, k-1 is the degree ofthe B-Spline curve and N i.k is the B-spline basis function

where

and

if I; ::; r ::; t i+l

otherwise

For a B-spline function, the parameter fp is calculated as :

(2)

(3)

if p<k
ifk-:;;.p-:;;.n

if p>n

Similarly, the interpolated orientation (ur, Vr, wr) is calculated as

n

u, = L u ;N;,k (r)
i=O

n

v, = L v;N;,k (r)
i=O

n

w, = 2: w;N;,k (r)
i =O

The tangent vector of the B-spline curve at point Or(x, y, z) is calculated as
n

O',(x,y,z) = l:O;(x,y, z)N';,k(r)
i=O

3.2. The Influence Zone of a Tool

127

(4)

(5)

(6)

(7)

(8)

In the modeling method we propose, each virtual tool has a limited local region of

space around the tool, defined by the distance field and a user defined region of influence

(RI). The distance field ds(x) is a scalar field that is defined by the minimum distance

between every point x in space and a given surface S. Because the tool shape in the

modeling process is pre-defined, the tool's distance field can be preprocessed using the

closest point transformation algorithm [Mauch, 2003]. The user can change the parameter

R to adjust the tool 's RI as shown in Fig. 3.

Figure 3. The Influence Zone of a Tool

128

The vertex of the workpiece inside the tool's RI is affected by the tools'

movement. For example, in Fig. 3, the tool Tis a rectangular block, the dotted line

around the tool is the boundary of the tool's RI defined by distance R from the tool

boundary. The vertex X on the boundary of the workpiece shown in Fig. 3 is inside the

RI, thus it is transformed by the movement of the virtual tool T. Using the pre-calculated

distance field dT{X) for the tool, it is simple to evaluate whether a point X is inside,

outside or one the boundary of the tool's RI using the flowing relations:

{
> 0 => outside RI

dT (X)- R = 0 => on boundary

< 0 => inside RI

3.3. Shape Modeling Using the Level-Set Method

(9)

We utilize the level-set method to change the initial shape of the CAD model

under the grid -based velocity field generated by the movement of the user's hand. In the

level-set method, the geometry of an object is represented by an implicit distance field

data. In this data, every grid point has a 3D coordinates as well as a signed Euler distance

to the boundary of the object. The change of this distance field data is controlled by a

velocity function (v) in the level-set partial differential equation [Osher and Sethian,

1988]:

BF =-VF·v
at

where F(x,t) is the Euclidean distance function, xis the grid coordinates in Euclidean

space R3, v is the velocity of the boundary grid point, and v is the gradient function

(10)

V=i·~+J·~+k·~ (11)
Ox Oy oz

where i,j and k are the unit vectors in R3. To solve the level-set differential equation

given in Eq. (10), an up-wind scheme [Osher and Sethian, 1988] is used with the first­

order space approximation of the distance function given below:

F;7! = Fti.k - M[max(v;,,t ,O)V+ + min(v;,,k ,O)V-] (12)

where v· .k is the speed at a point indexed by i,j and k and
IJ,

129

(13)

l (+X 2 • 2]1/2 max D;,1,k ,0) + mm(D;~;.k ,0) +
v- = max(D+y ,0) 2 + min(D-y ,0) 2 +

l,j,k l,j,k

max(D,~;.k ,0) 2 + min(D;~;.k ,0) 2

(14)

where D;~;k is a shorthand notation of the forward difference operator

F k (x + h, t)- F k (x, t) d . h h d . f h b . '·'· '·'· an u-x IS as ort an notatiOn o t e ackward difference h l.},k

operator F,_,k(x,t)- F,,k(x-h,t). The implementation ofthe level-set method is sped up
h

using a narrow-band scheme developed by Osher and Sethian [1998]. The idea of this

method is to update only the narrow-band of grid points which are close to the iso­

surface, instead of the grid points in the entire region of concern. As a result, the number

of points being computed is much smaller so that it is feasible to use a linked-list

structure to keep track of them for real-time applications. By updating the distance values

ofthe boundary grid points according to Eq. (10), the change of the 3D model's iso­

surface can be tracked.

3.4. Grid-Based Velocity Field

The inputs of the level-set method are the model of the workpiece represented by

the distance field data and external velocities on the grid points, called the grid-based

velocity field (GVF). To generate the GVF from the trajectory of the user's hand, we first

search for the workpiece's boundary vertices inside the tool's influence zone and

calculate their trajectories caused by the tool movement. Then, for a grid point be on one

or more of the grids (called the swept grid), intersected by one of these trajectories, we

calculate the closest point on the trajectory and its tangent vector, which defines the

direction of the velocity of the swept grid point.

Let a workpiece's boundary vertex p;(x;, y;, z;) be inside the tool's RI as shown in

Fig. 4. Its transformed point Pi+l can be calculated as

Pi+l = p, +[~u · ~v· ~w·(p,- 0,)+ ~0] (15)

where ~u = ui+l - u;, ~v = vi+ I - v;, ~w = wi+l - w; and ~0 = Oi+l - 0, . The rest of points,

P;+2 , ..• , Pn, can also be calculated as above. Then, by utilizing Eqs. (1) - (7). a B-spline

130

function is formulated to interpolate the trajectory traversed through these points. This

interpolated B-spline curve intersects many grids as shown in Fig. 4. Let g1 be a grid

point on one or more of these grids. To calculate the velocity of f5;, we find its closest

point Pi on the B-spline curve and calculate its tangent vector by Eq. (8). This is seen as a

small dark arrow in Fig. 4. If the magnitude of the velocity is constant, it can be used to

define an imprinting operation. If it is associated with a weighting function which varies

with the distance from the grid point to the tool boundary, it can be used to define a

deformation operation. If it is associated with the curvature of local geometry, it can be

used to define a smoothing operation. These operations will be discussed in detail in

Section 4.

' ' I

Swept Trajectory
grid

•
Grid Velocity

points vector

Figure 4. Generation ofthe Grid-Based Velocity Field

4. FREEFORM MODELING OPERATIONS

In this section, three freeform modeling operations, i.e. the imprinting operation,

the deformation operation, and the smoothing operation, are developed. The modeling

results are compared with other virtual sculpting methods to demonstrate the usefulness

of the proposed method.

4.1. Imprint Operation

The imprinting operation works as follows: the user selects different types of tools

from a tool library, and defines parameters to customize the tool shape. Then, the user

131

grabs the virtual tool using a 3D digital manipulating device such as a space mouse or the

Phantom ™ haptic device, and applies the imprinting operation onto the initial workpiece

model which is updated in real-time. In the imprinting operation, the movement of the

virtual tool generates a grid-based velocity field along the path of the virtual tool and the

solution of the level-set method changes the boundary of the workpiece. Only the

velocity component in the normal direction of the workpiece boundary contributes to the

change of this boundary, thus Eq. (10) can be written as

BF~;,t) + k·ll V' F(x,t) II= 0 (16)

where k is a user-defined constant to control the speed of the propagation. The gradient

'VF(x,t) is approximated by the up-wind finite difference scheme described in Sec. 3.3.

Figure 5 is an example showing the imprinting operation by using a cross-shaped tool and

a spherical tool to modify a rectangular plate.

(a) (b)

Figure 5. Example of Imprinting Operation. a) Using a Cross-Shaped Tool and (b) Using
a Spherical Tool

4.2. Fold-Free Deformation Operation

As discussed in Sec. 3 .4, the movement of a virtual tool generates a grid-based

velocity field along the trajectory of the tool. To generate the effect of deformation, the

132

original grid-based velocity field is modified by a user-defined weight function as

follows:

(17)

where oi is the position ofthe tool at time i,pi is a vertex on the boundary ofthe

workpiece inside the tool's region of influence, w(pi) is a user defined weight function to

control the shape of the deformation, and t(Oi) is the transformation matrix. Figure 6 is a

2D illustration example, where the tool moves from point oi to oi+ I. The tool's influence

zone is within the dotted ellipse at time i. The point p i, which is a vertex of the workpiece

surface inside the influence zone, is transformed to point P i+ I according to Eq. (17).

Swept
grids

~
Adjacent

~ grids

Tool

,-' Influence ,_ I
zone

(a) (b)

Figure 6. Example of the Shape Deformation. (a) Linear Interpolation and (b) Cubic
Interpolation

The weight function can be defined as a linear interpolation or a cubic

interpolation as follows:

w(x) = I - d(p)

w(x) = 1- d 2(p)(3 - 2d(p))

(18)

(19)

By using the above weight function, the top boundary of the workpiece can be

deformed into different shapes as shown in Fig. 6. The grid-based velocity field is

generated using the same procedure as given in Sec. 3.4.

133

As mentioned before, mesh-based spatial deformation method may generate fold­

over of the ambient space and self-intersection of the object as shown in Fig. 7(a), where

the upper boundary of the workpiece is deformed by the movement of tool from p top'

and intersected with the lower boundary of the shape. The deformed upper boundary is

represented by the dotted lines.

. , :r Ii~~~: J rR~,r~iece
·.· .. · .. J .··_·_·_· ·.·.·.·.·.r.-.·.··.-,- · .. ·.··r·.· ·.1··.--.J ·.·.·.··.-J.·.··.J_··. 1.·.·.- ·J·.···.-.··

II tJ~: ;·tatiE-.
: : : : : : : : 1htersect10n

.•• ••• ; •.•.• j •. ••••• j •• .. •• j . •. ••• j •••••• ; ••. ···i·· ; ·i······ = · ···· ·~······
: : : : : : : ! : : :

(a) (b) (c)

Figure 7. The Deformation Operation. (a) Self-Intersection, (b) the Deformed Shape
Without Self-Intersection, and (c) Boundary Propagation by Defining the Velocity for the

Boundary Grids

To solve the self-intersection problem and generate the deformed shape as shown

in Fig. 7(b), we can calculate the grid-based velocity field not only according to the

movement of the tool and the user-defined weight function, but also to the grid point's

inside/outside information. We propose the following folder-free deformation algorithm

consisting four steps:

• Stepl: Identify the workpiece's boundary vertices inside the influence zone of the

tool and their transformed points according to the input vector and a user defined

•

134

weight function. In Fig. 7(c), a boundary vertex, point A, is transformed to point A'

under the input vector pp'.

Step2: Identify the boundary grid points whose grids are intersected by the vector

connecting a boundary vertex and its transformed point, and are adjacent to the iso­

boundary. In Fig. 7 (c), points a to fare the boundary grid points intersected by AA'.

• Step3: Calculate the velocities of the identified boundary grid points. For each

boundary grid point, it is easy to calculate the surface normal using the central

definite difference scheme. According to the level-set method, the boundary of the

workpiece moves inwards if the velocity of the boundary grid point is negative and

the boundary moves outwards if the velocity of the boundary grid point is positive. In

order to move the boundary as desired to the target position as shown in Fig. 7(b), let

the swept vector be T (=AA'), the surface normal of each boundary grid point beN,

and the angle between T and N be a. We define the sign of the boundary grid point's

speed (v) as a boundary as follows:

If (a E [90, 270])

v<O (moving inward)

Else v>O (moving outward)

• Step4: Solve the level-set equation to update the boundary. With the boundary

velocity calculated from the previous step, the numerical techniques given in Sec. 3.3

are utilized to update the boundary of the workpiece.

The above four steps are repeated until the boundary reaches the final location.

After each step, the updated workpiece surface is generated by the marching cube

algorithm. Because of using the level-set method for boundary propagation, the resultant

surface model is guaranteed to be watertight without any self-intersection. An illustrative

example is given in Fig. 8, where the user applies deformation operations onto a

rectangular block.

135

(a) (b)

(c)

Figure 8. The Freeform Deformation Operation. (a) A Plate Model before Deformation
(b) the Front Side of the Model after Deformation and (c) the Backside of the Model after

Deformation

4.3. Smoothing Operation

In the smoothing operation, we assign the magnitude of the velocity at each grid

point proportional to the curvature of the shape as follows:

oF(x,t) - bH(x,t) II \7 F(x,t) II= 0
at

where b is a user-defined constant and H(x,t) is the mean curvature of the boundary

surface at point x, which is the average of the principal curvatures (K 1 and K 2), i.e.

(20)

(2 1)

For a surface in 3D space defined as F(x,y,z), the mean curvature at a grid point is

(Fyy + FzJF: 2 + (Fxx + Fzz)Fy 2 + (Fxx + FYY)F. 2 - 2(FxFyFxy + FxF.Fxz + FyFzFyz)
H = 2(Fxz +F/+ Fzz)Jr2

(22)

where the differential terms can be approximated using the first-order, central finite

difference as follows:

F = F;+l.J.k - F: - l,J ,k

X 2&

F I . k - 2F . k + F I . k F = I+ ,}. 1 ,) , ,_ . } .

XX & 2

_F..:...:.i+~t , 1~· +.:.::..l · k..:...:.-_F..:...:.'..:...:.. + l~, J..:...:.- l ·::.:..k + F:- l,J- l,k - F:- t.J+l,k
Fxy =

4&~y 4&~y

136

(23)

(24)

(25)

According to Eq. (20), the part of the boundary with a larger curvature moves

faster along the surface normal direction than the part of the boundary with a smaller

curvature. This movement results a smoothing operation as illustrated in Fig. 9, where the

top of a cylindrical shape is smoothed by the developed smoothing operation.

(a) (b)
Figure 9. Example of a Smoothing Operation on the Top of a Cylindrical Shape. (a)

before Smoothing and (c) after Smoothing

4.4. Advantage of the Modeling Method

To demonstrate the advantage of our level-set based freeform modeling method

with the same operation available from an existing commercial package, which is the

FreeForm™ modeling system (v8.1) from SensAble Technology [2008], a thin

137

rectangular block is deformed to generate a dent area as shown in Fig. 10. In the

FreeForm system, the deformed top surface intersects with the unreformed bottom

surface and this self-intersection of the boundary of the rectangular block creates a non­

manifold object with two separate geometric entities as seen in Fig. 1 O(a). In contrast, by

using the level-set method, the entire shape is deformed without producing multiple parts,

thus remaining a manifold, as seen in Fig. 1 O(b).

(a) (b)

Figure 10. Comparison of the Deformed Shape with the Same Deformation Operation. (a)

by the FreeForm™ System and (b) by Our System

5. IMPLEMENTATION
Our freeform modeling system runs on a Microsoft Windows XP workstation

· d "th 1 6 GHz CPU and 1 GB RAM The software is written in C++, and the eqmppe WI a . ·

h . d ·ng component is built upon OpenGL and GLUT libraries. The setup of grap 1cs-ren en

the modeling system is shown in Fig. 11 .

138

Figure 11. The Virtual Shape Modeling System Setup

To apply deformation operations, a pre-defined tool is chosen by the user to select

a certain region of influence around the sculpted model. Then the workpiece within

selected region is deformed according to the user's hand gesture inputs. The surface

modification process can be stopped at any time once a satisfied result has been obtained.

Figures 12(a) and (b) show two spheres joined together before and after the smoothing

operation. A snowman model is created by smoothing and deformation on the two-sphere

model and the result is shown in Fig. 12 (c). Figures 12(d) and (e) show a part of the

snowman model before and after smoothing.

To evaluate the performance of the described method, a smoothing operation is

performed on a shape. The number of grid points, the time of calculating distance values,

and the time of updating the lists are given in Table 1. It can be seen from the table that

about a 11. 7Hz refresh rate can be achieved by updating 28,260 grid points in each

iteration.

6. CONCLUSION

This paper presents the development of a spatial warping method using the

implicit distance field data representation and the level-set method for shape modeling.

The trajectory of the user's hand is interpolated and utilized to define a grid-based

velocity field. The solution of the level-set method propagates the boundary of the

workpiece with the external velocity field, resulting different freeform modeling

139

operations such as imprinting, deformation, smoothing, etc. The developed modeling

operations are intuitive and easy to use for freeform modeling. Compared with the mesh­

based spatial warping methods, the triangular meshes generated using the described

spatial warping method are free of the self-intersection problem.

(b)

Figure 12. Modeling Example. (a) and (b) Two Joined Spheres and the Smoothed Shape,
(c) the Snowman Model after Deformation and Smoothing, (d) & (e) Part of the

Snowman Model before and after Smoothing

Table 1. Test Results of the Level-Set Method

No. of Time of Time of Total
grid calculating the updating time

points distance values the lists (s)
(s) (s)

202,592 0.4637 0.1631 0.6268
156,702 0.3675 0.0973 0.4648
149,942 0.3680 0.0902 0.4582
101 '788 0.1754 0.0897 0.2651
28,260 0.0746 0.0108 0.0854
23,217 0.0638 0.0108 0.0746

140

ACKNOWLEDGMENTS

This research is supported by a National Science Foundation award (CCR-

031 0619) and by the Intelligent Systems Center at the Missouri University of Science and

Technology.

REFERENCES

1. Angelidis, A., Wyvill, G., and Cani, M., 2006, "Sweepers: Swept Deformation

Defined by Gesture," Graph. Models, 68(1), pp. 2-14.

2. Angelidis, A., Cani, M., Wyvill, G., and King, S., 2004, "Swirling-Sweepers:

Constant-Volume Modeling," Proceedings of the Computer Graphics and

Applications, 12th Pacific Conference, IEEE Computer Society, Washington, DC,

pp. 10-15.

3. Alexe, A., Gail drat, V., and Barthe, L., 2004, "Interactive Modeling from

Sketches using Spherical Implicit Functions," Proceedings of the 3rd

international Conference on Computer Graphics, Virtual Reality, Visualization

and interaction in Africa, Stellenbosch, South Africa.

4. Brerentzen, J. A., and Christensen, N. J., 2002, "Volume Sculpting Using the

Level-Set Method," Proceedings of Shape Modeling International '02, pp. 175-

182.

5. Bajaj, C., Blinn, J., Bloomenthal, J., Cani-Gascuel, M.P., Rockwood, A., Wyvill,

B., and Wyvill, G., 1997, Introduction to Implicit Surfaces, Morgan-Kaufmann

Publisher.

6. Bill, J. R., and Lodha, S. K., 1995, "Sculpting Polygonal Models using Virtual

Tools," Proceedings of Graphics Interface, Quebec, Canada, pp. 272-279.

7. Bloomenthal, J., and Shoemake, K., 1991, "Convolution Surfaces," Computer

Graphics, 25(4), pp. 251--256.

8. Coquillart, S., 1990, "Extended Free-Form Deformation: A Sculpturing Tool for

3D Geometric Modeling," Computer Graphics, 24(4), pp. 187-196.

9. Cuno, A., Esperana, C., Roma, P., and Farias, R., 2005, "3D Free-Form Modeling

with Variational Surfaces," Journal of Winter School of Computer Graphics, 3(1-

3), pp. 111-122.

141

10. Free Form Modeling and Modeling Plus Systems, SensAble Technology, 2008,

http://www.sensable.com/products-freeform-systems.htm.

11. Gain, J. E. and Dodgson, N. A., 2001, "Preventing Self-Intersection under Free­

Form Deformation," IEEE Transactions on Visualization and Computer Graphics,

7(4), pp. 289-298.

12. Gain, J ., and Marais, P., 2005, "Warp Sculpting," IEEE Transactions on

Visualization and Computer Graphics, 11(2), pp. 217-227.

13. Guo, X., Hua, J., and Qin, H., 2004, "Point Set Surface Editing Techniques Based

On Level-Sets," Proceedings of the Computer Graphics International, Geneva,

Switzerland pp. 52-59.

14. Hsu, W. M., Hughes, J. F., and Kaufman, H., 1992, "Direct Manipulation of Free­

Form Deformation," Computer Graphics, 26(2), pp. 177-184.

15. Joo K. Y., Renzulli, P., Kreylos, 0., Hamann, B., Monno, G., and Staadt, 0. G.,

2006, "3D Warp Brush Modeling," Computers & Graphics, 30(4), pp. 610-618.

16. Lamousin, H. J., and Waggenspack, W. N., 1994, "NURBS-Based Free-Form

Deformations," IEEE Computer Graphics & Applications, pp 59-65.

17. Lawrence, J. and Funkhouser, T., 2004, "A Painting Interface for Interactive

Surface Deformations," Graphical Models, 66(6), pp. 418-438.

18.LeBlanc, A., Kalra, P., Magnenat-Thalmann, N., and Thalmann, D., 1991,

"Sculpting with the 'Ball and Mouse' Metaphor," Proceedings of graphics

Interface, Calgary, Alberta, Canada, pp. 152-159.

19. Leu, M.C., Maiteh, B. Y., Blackmore, D., and Fu, L., 2001, "Creation of Free form

Solid Models in Virtual Reality," Annals of CIRP, 50(1), pp. 73-76.

20. Leu, M.C., Peng, X., and Zhang, W., 2005, "Surface Reconstruction for

Interactive Modeling of Freeform Solids by Virtual Sculpting," Annals of CIRP,

54(1), pp. 131-134.

21. Mauch, S., 2003, "Efficient Algorithms for Solving Static Hamilton-Jacobi

Equations," PhD dissertation, California Institute of Technology, Pasadena, CA.

22. Museth, K., Breen, D. E., Whitaker, T., and Barr, A. H., 2002, '"Level-Set Surface

Editing Operators," ACM Transactions on Graphics, 21(3), pp. 330-338.

142

23. Osher, S., and Sethian, J., 1988, "Fronts Propagating with Curvature-Dependent

Speed: Algorithms based on Hamilton-Jacobi Formulations," Journal of

Computational Physics, 79, 12-49.

24. Parent, R., 1977, "A System for Sculpting 3-D Data," Computer Graphics, 11 (2),

pp. 138-147.

25. Seder berg, T. W., and Parry, S.R., 1986, "Freeform Deformation of Solid

Geometric Models," Computer Graphics, 20(4), pp. 151-160.

26. Yoshizawa, S., Belyaev, A. G., and Seidel, H. 2003. "Free-Form Skeleton-Driven

Mesh Deformations," Proceedings of the Eighth ACM Symposium on Solid

Modeling and Applications, Seattle, Washington, pp. 247-253.

APPENDIX

PSEUDO CODES OF THE CONTOUR GENERATION AND CONTOUR

COMBINATION ALGORITHMS

The pseudo code ofthe contour generation algorithm is given below:

Procedure: Search contour points from the three-column table

BEGIN

//variables

variable nContour I /the number of contours

//the array used to store the point indexes of each contour

143

variable ContourArray[]

variable MiddleColumn[] //the array used to store the point indexes in the middle column

variable LeftColumn[] //the array used to store the point indexes in the left column

variable RightColumn[] //the array used to store the point indexes in the right column

variable Point[] //the array used to store the coordinates of points and the traverse

information

variable Index

variable Leftlndex

variable Rightlndex

Index= 0

nContour = 0

REPEAT

REPEAT

//the index of the point in the MiddleColumn[] and Point[]

//the index ofthe point in the LeftColumn[]

//the index of the point in the RightColumn[]

Contour Array[nContour] .addPoint (Point[Index] .coordinates)

Leftlndex = LeftColumn[Index].getPointlndex

Rightlndex = RightColumn[Index] .getPointindex

IF Point[Leftlndex].traversed =false

Index = Leftlndex

ELSE

Index = Rightlndex

END

END IF

Point[Index].traversed =true

UNTIL

Point[Leftlndex].traversed =true && Point[Rightlndex].traversed =true

nContour++

Index= the index of next unsearched point in the middle column

UNTIL all the points in the middle column are traversed

144

The pseudo code for Step 1 of the contour combination algorithm is given below where A

and B represent contour Ai and Bj, and ai represents the point in contour A with index i.

Procedure: Search starting points from contour A and associated points from contour B

A: list of points in contour A

B:

C:

f:

f':

1:

I':

DexelY:

list of points in contour B

list of points in the combined contour

the first associated point in contour B

candidates for the first associated point in contour B

the last associated point in contour B

candidates for the last associated point in contour B

dexel data in y direction

FOR (i=A-begin(); i *A-end(); i++)

IF (INT[(a, ~ [x])/ ~] < INT[(a,+1 ~ [x])l ~]

THEN

templistl =Dexe!Y [INT[(ai-[x])/ Ax]+ ~] [ai-[z]];

templist2=Dexe!Y [INT[(~+J-[x])/ Ax]] [ai+J-[z]];

FOR every point pin templistl and every point q in templist2

IF (p ~ [y] E [a,~ [y]-~y,a, ~ [y] + ~y]

THEN save p to f'

END IF

IF(q~[y]E[al+l ~[y]-~y,ai+l ~[y]+~y]

THEN save q to I'

CA4;

END IF

END FOR

END IF

END FOR

IF (a;~[y] -:t:. a;+ 1 ~[y])

THEN

ELSE

END IF

IF (F~number() =1) AND (l'~number() =1)

THEN

f=F; 1=1';

return;

ELSE

break;

END IF

//(a;~[y] = ai+J~[y])

IF (F~number() >2) OR (l'~number() >2)

THEN

break;

ELSE

find f and I according to one of the cases CA 1, CA2, CA3 and

return;

END IF

Search contour B to find the index of point f

Renumber points in contour B by indexing point f as b1 without affecting the point sequence

Search the renumbered contour B to index point I as b1

Renumber points in contour A by indexing point a; as a1 without affecting the point sequence

Add points a~, b1, ... , b1, az to C

The pseudo code for Step 2 of the contour combination algorithm is given below.

Procedure: Search the rest of pairs from A and their associated points from B

I: index of the last associated point for the previous pair of points in contour A

145

r: point index in contour A

s: point index in contour B

o: index of the last associated point in contour B

r=2;

s=l+ 1;

REPEAT

IF (INT[(a, ~ [x])/ ~] :t:- INT[(a,+1 ~ [x])/ ~])

THEN I /search for b0

FOR (t=s; t:;t: B-end(); t++)

146

IF(a,+1 ~[y]E[min(b, ~[y],b,+1 ~[y]), max(b, ~[y],b,+ 1 ~[y])])AND

((b, ~ [x] = INT(a,+1 ~ [x]/ Lh)) OR

(b, ~ [x] = INT(a,+1 ~ [x]l ~) + L1x))

THEN

END IF

END FOR

ELSE

o=t; break;

IF (a, ~ [y] E [min(b .. _1 ~ [y],b, ~ [y]), max(b,_1 ~ [y],b, ~ [y])]) AND

((INT(b,. ~ [x]/ ~) = INT(a, ~ [x]l ~) OR

(INT(b_. ~ [x]l ~) = INT(a, ~ [x]l ~) + ~))

THEN

FOR (t=s; t:;t: B-+end(); t++)

IF(a,+1 ~[y]E[min(b, ~[y],b,+ 1 ~[y]), max(b, ~[y],b,+ 1 ~[y])])

THEN o=t;

END IF

END FOR

ELSE

Add point ar to the end of C;

r++;

break;

END IF

END IF

Add points an bs , ...• b0 , ar+I to the end ofC;

s=o+l; r++;

UNTIL o=B~end() AND r=A~end()

147

148

VITA

Weihan Zhang was born in Beijing, China on February 1, 1978. He received his

primary and secondary education in Beijing, China. He obtained his Bachelor of Science

degree and Master of Science degree both in Mechanical Engineering from Tsinghua

University, Beijing, China in June 2000 and June 2003, respectively. He went on to enroll

in the Ph.D. program at the Department of Mechanical and Aerospace Engineering at the

Missouri University of Science and Technology (formerly University of Missouri-Rolla)

in USA. His research interests are in the field of geometric modeling, virtual reality,

computer graphics and haptics, with special interests in freeform geometric modeling. He

graduated with Doctor of Philosophy degree in Mechanical Engineering in December

2008.

