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ABSTRACT 

More and more products with complex geometries are being designed and 

manufactured by computer aided design (CAD) and rapid prototyping (RP) technologies. 

Freeform surface is a geometrical feature widely used in modern products like car bodies, 

airfoils and turbine blades as well as in aesthetic artifacts. How to efficiently design and 

generate digital prototypes with freeform surfaces is an important issue in CAD. This 

paper presents the development of a Virtual Sculpting system and addresses the issues of 

surface reconstruction from dexel data structures and freeform geometric modeling using 

the level-set method from distance field structure. Our virtual sculpting method is based 

on the metaphor of carving a solid block into a 3D freeform object using a 3D haptic 

input device integrated with the computer visualization. This dissertation presents the 

result of this study and consists primarily of four papers. The first paper presents the 

development of a novel contour generation algorithm for the purpose of visualizing the 

sculpted dexel models and interfacing with other CAD/CAM/CAE systems. To improve 

the sampling quality of the dexel model used in the virtual sculpting system, the second 

paper develops a triple-dexel structure and a novel surface reconstruction method from 

triple-dexel data. The developed surface reconstruction method is faster than the voxel­

based method, and the reconstructed surface model is more accurate than surface 

reconstructed from voxel representation using the marching cube algorithm. To enhance 

the modeling capability of the virtual sculpting system, additional free form modeling 

operations including deformation, smoothing and imprint are developed using the user's 

gesture inputs based on the level-set method. The developed operations generate a water­

tight mesh model effective for freeform geometric modeling. 
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1. INTRODUCTION 

1.1. MOTIVATION 

Choosing a product concept is a critical decision-making step in product 

development. A firm earns a large profit and establishes a strong brand name if it 

generates and chooses a superior product concept; however, if the situation is reversed, it 

suffers a huge loss. SONY's Walkman and Betamax video tape are classic examples of 

such opposite cases [Nathan, 1999]. Because marketplaces have become more 

competitive and product lifecycles have continued to shorten, firms need to generate and 

select optimal product concepts more accurately, more inexpensively, and much faster. 

In the concept generation phase, once concept variants are computed, virtual 

prototypes represent a promising alternative to physical prototypes for selecting a final 

design concept to fabricate. Virtual prototyping can significantly reduce prototyping cost 

and shorten time taken to evolve a product concept. Virtual prototypes are particularly 

beneficial to the firms that have never developed similar products before, since the firms 

can avoid expensive costs investing in tooling and in developing manufacturing processes 

for physical prototypes. 

Commercially available Computer Aided Design (CAD) systems have been 

widely used for improving the efficiency of the present virtual prototype design process 

and for better integration with manufacturing systems. However, these CAD systems may 

not allow the users to implement their ideas on designing virtual prototypes in an intuitive 

and user-friendly manner. Many traditional CAD systems such as Unigraphics NX, Ideas, 

etc. have powerful features, but it is not easy to learn and use these tools. Their user 

interface generally consists of many windows, menus, icons, etc. which tend to bog down 

the user from concentrating on his/her design intent. Another restriction of the 

conventional CAD system is in the input devices. The designers use a two-dimensional 

(2D) input device such as a mouse for the construction of three-dimensional (3D) objects. 

This restriction causes the use of the modeling system unfriendly and counter-intuitive. 

Furthermore, in virtual prototyping, the exact dimensions of virtual prototypes are not of 

main concern. The designer is more interested in creating different part shapes, design 

configurations, etc. and choosing the most appropriate ones from them. Therefore, 



traditional CAD systems, which require precise data for designing objects, are not the 

best choice for conceptual design. 

2 

Virtual sculpting is a process in which the user creates a three-dimensional (30) 

object on the computer screen by interactively carving a workpiece like a real sculptor 

would do on a piece of clay, wax or wood. It is well suited to a free form design of virtual 

prototypes as it allows the user to avoid cumbersome interface with the computer [Maiteh 

et al., 2000; Leu et al., 2001]. Incorporating a haptic interface to the sculpting system also 

provides the user with a realistic sculpting experience in the virtual prototyping process. 

Previous researchers [Maiteh et al., 2000; Peng et al., 2006] in Dr. Ming Leu's research 

labs have developed an experimental virtual sculpting system. The schematic of this 

system, as shown in Fig. 1.1, is based on the metaphor of carving a solid block into a 3D 

freeform object. A sculpting tool is controlled by a 3D input device, and the material 

(workpiece) is represented geometrically by a single directional full-depth pixel data 

called "single-ray dexel" during the sculpting process. This process starts with a virtual 

block of material and removes it bit-by-bit by the sculpting tool. Sculpting is 

implemented via a series of Boolean difference operations that subtract successive tool 

geometry in a single-ray dexel model from the workpiece. The Boolean difference is 

performed between the single-ray dexel representation of tool and the single-ray dexel 

representation of workpiece by comparing the sorted depth data for each pixel. By 

reducing the complex operations between the tool model and the workpiece model to 

Boolean operations on one-dimensional segments, the sculpting system can achieve real­

time interaction with the human stylist/designer. The PHANToM™ manipulator is used 

as an input device to provide position and orientation data of the sculpting tool and it is 

also used as an input device to provide output haptic sensation during sculpting. 

However, several limitations of this experimental system have been identified. 

First, the single-ray dexel data has a low sampling resolution in directions perpendicular 

to the ray direction such that the generated freeform models may have poor surface 

representations in those directions. Second, because the single-ray dexel model can be 

seen only from one direction, the model can only be sculpted from one direction, which 

greatly limits the modeling capability of the virtual sculpting system. Third, the curren( 

system has only limited geometric modeling operations such as material removal and 



addition while other intuitive and interactive operations such as deformation, smoothing, 

and shape copy/pastes have yet been included. 

Surface 
Reconstruction 

Continuous 
Update of 

Geometric Model 

Continous Force 
Computation 

Figure 1.1. Schematic of the System Configuration 

1.2. RESEARCH OBJECTIVE AND ISSUES 

Initial 
Geometric 

Model 

Virtual Tool's 
Geometric model 

& Its Position 
and Orientation 
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This dissertation is broadly aimed at improving and extending the freeform 

geometric modeling capabilities of a virtual sculpting system. A triple-ray dexel based 

geometric modeling system has been developed to replace the previous single-ray dexel 

modeling system. A novel surface reconstruction process has been developed to create 

the surface model from the triple-ray dexel data. The accuracy and computational cost of 

the developed algorithms have been analyzed. The developed algorithms have been 

implemented and integrated with the previously developed virtual prototyping system. 

The interactive level-set method based freeform modeling techniques have been 

developed and integrated with existing geometric modeling capabilities into a virtual 

prototyping system that can be used to create 3D concept models of any geometry 

including freeform surfaces. These techniques will enable intuitive and interactive 



generation of any 30 models with haptic interface and subsequent editing of the created 

models. Material removal, addition, shape deformation and smoothing can be performed 

using established techniques with the help of the haptic device from SensAble TM 

Technology [SensAble, 2006]. 

4 

Developing such a virtual proto typing system is a major undertaking and needs to 

address many technical challenges in order to meet the stringent requirements on 

interactive freeform geometric modeling. The fundamental research issues that have been 

addressed in this dissertation include: 

• How to reconstruct triangular surface from the dexel model and triple-dexel model? 

• What are the advantages of the developed methods over existing surface 

reconstruction methods? 

• What's the computational complexity and memory cost of the developed algorithms? 

• How to formulate the level-set method based freeform modeling framework? 

• How to develop fast and efficient freeform modeling operations under this 

framework? 

• How to model the human's gesture inputs and utilize it for free form modeling? 

• How to develop compact data structures to store the geometry information for the 

level-set method? 

• How to develop efficient algorithms for the calculation in the level-set method? 

1.3. RELATED WORK 

1.3.1. Virtual Prototyping Techniques. Virtual prototyping allows greater 

communication, productivity and efficiency through realistic modeling and graphic 

display based on full color, natural texture and appearance. Virtual prototypes are 

particularly beneficial to the firms that have never developed a similar product before 

since the firms can avoid expensive costs investing in tooling and in developing 

manufacturing processes for physical prototypes. 

Numerous virtual prototyping techniques have been developed over the years. 

Zorriassatine et al. [2003] identified five broad classes of virtual prototyping techniques 

based on the modeling objectives and purposes. 

• Visualization 



• 

• 
• 
• 

Fit and interference of mechanical assemblies 

Testing and verification of functions and performance 

Evaluation of manufacturing and assembly operation 

Human factor analysis 

5 

Virtual prototyping involves various techniques including geometric modeling, 

graphics rendering, haptic rendering, etc. Sachs et al. [ 1991] introduced a system for 

interactive 3D shape design called "3D draw." Its user interface is based on a pair of 

Polhemus six-degree-of-freedom tracking devices and a graphic display is used to 

visualize the scene from a virtual camera position. After drawing and editing 3D curves, 

which form wire frame models, the next steps are fitting surfaces to groups of linked 

curves and deforming the surfaces till the required shape is obtained. Deering [1996] at 

Sun Microsystems created the HoloSketch system, in which the user wears a pair of 

head-tracked field sequential stereo shutter glasses and manipulates the virtual world 

through a hand-held 3D mouse/wand. In the design process, the fade-up menu is used to 

select the required drawing primitives such as rectangular solids, spheres and cylinders or 

to perform one-shot actions such as cut or paste. Built by researchers at the University of 

North Carolina [Butterworth et al., 1992] this system uses an HMO to place the designer 

in a virtual modeling environment. An input device such as a Polhemus 3-space Isotrak 

held in one hand is used for all interactions including selecting commands from a floating 

menu, selecting objects, scaling and rotating objects, or grabbing vertices to distort the 

surface of an object. Researchers at the University of Alberta, Canada developed a 

system called JDCAD [Liang et al., 1994]. It is a 3D modeling system which uses two 

6DOF tracking devices, one to dynamically track the user's head and provide the kinetic 

3D effect (e.g. correlation to the position and orientation of head) and the other used as a 

hand-held "bat" [Ware et al., 1988] to track hand movements. A bat is a tracker that 

reports 3D position and orientation data. It has three buttons mounted on it for signaling 

events. By switching modes, the bat can be used to rotate and translate the model under 

construction to select objects for subsequent operations, and to orient and align individual 

pieces of the model. Dani and Gadh [ 1997] presented an approach for creating shape 

designs in a virtual reality environment called COVIRDS (Conceptual VIRtual Design 

System). This system uses VR technology to provide a 30 virtual environment in which 
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the designer can create and modify 3D shapes with an interface based on bimodal voice 

and hand tracking. A large-screen, projection-based system called the Virtual Design 

Studio (VDS) is used as an immersive VR-CAD environment. The designer creates three­

dimensional shapes by voice commands, hand motions, finger motions, and grasps and 

shape edits features with his/her hands. Tests have been conducted to compare the 

efficiency of the COVIRDS with the traditional CAD systems. It was claimed that the 

COVIRDS system can achieve a productivity of 10-30 times over the conventional CAD 

systems. 

Virtual sculpting, a technique for intuitive virtual prototyping, is "an attempt at 

the creation of a sculptor's studio-like environment, in which the 'sculptor' can create 

complex 3-D objects in the computer, as if molding a piece of clay" [Parent, 1977]. This 

technique is well suited for the development of virtual prototypes because virtual 

sculpting allows designers to design virtual prototypes in an intuitive and easy manner. 

Sederberg and Parry [ 1986] introduced the concept of freeform deformation. Since then, 

several improvements and extensions have been prompted. The extended freeform 

deformation method proposed by Coquillart [1990] utilized non-parallelopipedical 

lattices. Hsu et al. [1992] developed a direct manipulation technique that makes 

generation and placement of deformations easier. Lamousin and Waggenspack [1994] 

described a system ofNURBS freeform deformations based on a mesh built from 

rectangular parallelopipeds. Wang and Kaufman [1995] did pioneering research on 

volume sculpting. Recently Frisken et al. [2000] developed a volumetric sculpting system 

based on an adaptive distance field, allowing for representation of a volumetric model 

with adaptive resolution. 

Leu and his research team developed a virtual sculpting system to address issues 

of interactive solid modeling with haptic interface [Maitech et al., 2000; Peng and Leu, 

2004; Peng et al., 2005]. The virtual reality interface includes stereo viewing and force 

feedback. The geometric modeling in this system is based on the Sweep Differential 

Equation method [Blackmore and Leu, 1992] to compute the boundary of the tool swept 

volume, and based on the ray-casting method to perform Boolean operations between the 

tool swept volume and the virtual stock in a single-ray dexel data to simulate the 

sculpting process. Force feedback is incorporated to enable the user to feel the sculpted 



virtual model like actual sculpting with physical materials. Multithreading is used to 

address the different update rates requirements in graphic and haptic displays. 
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1.3.2. Geometric Representations. The efficiency and the modeling ability of the 

virtual prototyping system largely depend on the geometric representation used in the 

system. Commonly used representations include single-dexel model, triple-dexel model, 

voxel model, distance field model, and implicit surface model. A review of these 

representations is given in this section. 

1.3.2.1 Single-dexel model. In keeping with the convention on the names pixel 

and voxel, Van Hook [ 1986] introduced the notion of single-ray dexel as an abbreviation 

of "depth element". The single-ray dexel representation of a solid is constructed via 

computing ray intersections with the solid. For a given solid, parallel and equidistant rays 

are projected from the viewing direction and intersected with the object as shown in Fig. 

1.2. 
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Figure 1.2. The Generation ofDexel Data. (a) The Ray Casting Process and (b) the 
Single-Dexel Data 



For each ray the intersected points with the solid are stored in the following 

manner: two points defining a line segment that is fully inside the solid make up a dexel. 

In Fig. 1.2 the two line segments PI1P12 and P 13P 14 indicate that the points between them 

are inside the solid. All dexels for a ray are sorted and concatenated into a dexel list and 

the dexel lists are organized into a dexel matrix. This is the single-ray dexel model. 
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Using the single-ray dexel data simplifies the implementation of Boolean 

difference and addition, which compare one-dimensional dexel data between the 

workpiece and the tool swept volume and manipulate them according to an algorithm for 

these operations. Taking the single-ray dexel data in the z direction as an example, 

because the operation is performed on dexellists at each pixel position, x and y are 

invariants in the operation, the only variables that have to be considered are ( zmax 'zmin) of 

each dexel. Six relationships between the ( zmax, zmin) of the workpiece and that of the 

swept volume are summarized in Fig. 1.3. The meanings of the abbreviated symbols in 

Fig. 1.3 are listed in Table. 1.1 Both Boolean addition and Boolean difference have been 

implemented and integrated in the virtual sculpting system using single-direction rays. 

Direction of View 

ZVN ZVF ZVN ZVF ZVN ZVF 
LJ I I I I LJ 4=J I 

ZSN ZSF ZSN ZSF ZSN ZSF 

(comeTo) (GoAway) ( Cutin) 

ZVN ZVF ZVN ZVF ZVN ZVF 

I I I I I 4-J I I I I 
ZSN ZSF ZSN ZSF ZSN ZSF 

( CutAII ) (CutOut) ( Merge ) 

Figure 1.3. Six Possible Relationships between Zmin and Zmax 
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Some research has been done previously on the problem of surface reconstruction 

from single-ray and triple-ray dexel data. Huang and Oliver [1995] briefly described a 

contour tracking technique to reconstruct contours from a single-ray dexel model without 

detailed development of an algorithm. The boundary of the object was visualized by 

simply displaying sets of contours extracted from the single-ray dexel data. Zhu and Lee 

[2005] presented a visibility sphere marching algorithm for constructing polyhedral 

surface models from single-ray dexel models for their haptic virtual sculpting. When the 

algorithm was applied to complex models, some cracks and holes occurred in the 

generated mesh due to topology related issues [Zhu, 2003]. Benouamer and Michelucci 

[ 1997] reconstructed the approximated surface from the triple-ray dexel data by using the 

marching cube algorithm [Lorensen and Cline, 1987], which still suffers from vast 

memory cost and ambiguous cases. 

Symbol 

ZVN 

ZVF 

ZSN 

ZSF 

Table 1.1. Meaning of Abbreviated Symbols 

Abbreviation of Meaning 

Z Volume Near The maximum z value oftool swept 

volume 

Z Volume Far 

Z Stock Near 

Z Stock Far 

The minimum z value of tool swept 

volume 

The maximum z value ofworkpiece 

The minimum z value of workpiece 

1.3.2.2 Triple-dexel model. In the single-ray dexel model, low sampling quality 

occurs at surface areas on which the surface normals are perpendicular or nearly 

perpendicular to the ray direction. To address this problem, an orthogonal triple-ray dexel 

model has been constructed in this dissertation study by shooting rays in x, y, and z 

directions, to discretize the model. 
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The triple-ray dexel model can provide a better resolution than the single-ray 

dexel model as shown in Fig. 1.4. In comparison with the popular voxel model [Wang 

and Kaufman, 1995], the triple-ray dexel model requires less computer memory. The 

memory of the triple-ray dexel model is proportional to the surface area of the geometry, 

while in the voxel model it is proportion to the volume of the object geometry. If the 

number of divisions on the x, y, and z axes are Nx, Ny, and N=, respectively, the memory 

cost of the voxel model is roughly O(NxNyN=), while the memory cost of the triple-ray 

dexel model is O(NxNy+NyN=+N=Nx). When higher resolutions and more intensive 

calculations are needed, for example, in the case of adding a distance function onto the 

voxel model to simulate the interface tracking, the memory-efficient property of the 

triple-ray dexel becomes an important issue. The triple-ray dexel data is not only 

memory-efficient but also time-efficient. The access time of the linked list structure used 

to store the triple-ray dexel data is proportional to the number of elements in the list, 

where a constant access time can be achieved if a compressed index storage scheme with 

the knowledge of the connectivity property is used. 

z 

Figure 1.4. Triple Dexel Model 
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Due to the memory and time efficiency property of the triple-ray dexel data, the 

triple-ray method has been used by many researchers for different applications. 

Benouamer and Michelucci [ 1997] used triple-ray dexel data to convert CSG models into 

Brep models. Muller et al. [2003] implemented an online sculpting and visualization 

system by using the triple-ray dexel data. The marching cube algorithm was used to 

generate the surface from this data. Ren et al. [2006] developed a triple-ray dexel-based 

virtual prototyping and manufacturing planning system. 

1.3.2.3 Voxel model. 3D Geometry can subdivided into small equal-sized cubes. 

Each cube is called a voxel. A voxel is a volume element, representing a value on a 

regular grid in three dimensional space. This is analogous to a pixel, which represents 2D 

image data. Voxel-based representation becomes popular recently in computer graphics, 

medical image visualization and computer games. The process of converting a geometric 

representation of a 3D model into a set of voxels is called the voxelization process. There 

are many freeform operations developed based on the voxel model, such as deformation, 

smoothing, cutting, addition and etc. A more detailed survey is given by Chen et al. 

[2001]. 

1.3.2.4 Implicit model. Implicit surfaces are two-dimensional, geometric shapes 

that exist in three dimensional space where they are defined according to a particular 

mathematical function. By definition, if./{p) = 0 thenp is the point on the surface./ 

inherently characterizes a volume: those points for which/< 0 are on one side (nominally 

the 'inside') of the surface, those points for which/> 0 are on the other side of the same 

surface.fdoes not explicitly describe the surface, but implies its existence. For many 

functions,fis proportional to the distance between p and the surface. A circle in its 

implicit form is shown in Fig. 1.5. 

1.3.2.5 Distance field model. Distance field is a discretized volume 

representation with distance function, which represents the scalar distances to a surface 

geometry or shape defined on the vertex of each voxel. It has been used in the computer 

vision community for image processing, in the physics community for wave-front, 

Eikonal equation solving, and in the computer graphics community for object 

representation and processing. Figure 1.6 gives an example of a distance field 

representation of a 2D contour [Frisken et al., 2000]. 



A circle: 

• Parametric representation: 
f(x,y)= (Rcos(a) , Rsin(a)) , a E [0, 2Pl] 

• Implicit representation: 
f(x, y) = x2+y 2-R2 

Figure 1.5. A Circle in the Implicit Representation 

(a) (b) 

Figure 1.6. Sampled Distance Field Data 
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The implicit surface models can be represented by the discretized distance field 

data where the distance information is the shortest Euler distance from the grid point to 

the implicit surface. The available algorithms for computing the distance field from 

common surface representation includes hierarchical organization and characteristic 

method [Jones et al., 2006]. Generally a brute force method is used to compute the 

distances from a grid point in the space to every boundary triangle of M and select the 

shortest one. To reduce the computation, the shortest distance can be calculated only to a 
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limited number of primitives according to spatial coherences. However, there has been 

very little research on the calculation of the distance field directly from triple-dexe1 data, 

which precedes the creation of a triangular mesh in virtual sculpting. Sealy and Novins 

[ 1999] approximated the Euclidean distance of a grid point as the shortest distance 

among its three axial distances. But this approximation is not accurate especially where 

sharp features are present. 

1.3.2.6 Implicit surface and volumetric modeling techniques. One of the 

principal disadvantages of implicit modeling relative to parametric modeling is the 

difficulty of controlling the shape of an implicit surface [Bloomenthal and Wyvill, 1990] 

because of the non-intuitive parameters in the implicit function. In order to attack this 

problem, different direct and indirect implicit surfaces and solid modeling techniques 

have been developed such as the Blobby models and their extensions, control point-based 

methods, level-set-based methods and skeleton-based methods. 

There exists a large body of surface editing work based on implicit models 

[Bloomenthal, 1997]. Blinn [ 1982] introduced the idea of modeling with skeletal implicit 

surfaces as a side effect of a visualization of electron density fields. Such models have 

various desirable properties including the ability to blend with their close neighbors. 

These models have been given a variety of names: Blobby Molecules [Blinn, 1982], Soft 

Objects [Wyvill et al., 1986] and MetaBalls [Nishimura et al., 1985]. Bloomenthal et al. 

[ 1997] pointed out that these models could be grouped under the more general heading of 

implicit surfaces, defined as the point set.f{r) = 0 which are called Blobby models. One of 

the implicit model was given by Blinn [1982] as shown in Fig. 1. 7: 

(1) 

where R;(x,y,z) = (x-x) 2 +(y- y;)2 +(z-z;)2 ,J;(x,y, z) is the field value at any point 

(x, y, z) created by a primitive P; at point (x;, y;, z;) and a;, b; are variables to adjust the 

merging of two models. Soft object is another type of the implicit model [Wyvill et al., 

1986]. It is developed because the exp function is computationally too expensive, thus, it 

can be approximated by polynomialf(r) as follows: 
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(2) 

where / (0) = 1,/(R) = O, f'(O) = O,f'(R) = 0 . 

Pi( xi, Yi, zi) 

(x, y, z) 

Figure 1.7. The Blobs Model 

Given a point in 3D space, the implicit model has the benefit of finding the 

relation between the point and the surface j(x, Y. z). And it is easy to describe the 

topologically changed surface using, for example, merging, bifurcation, absorbing, etc. 

Different operations, such as scaling, twisting and CSG operations, are also easy to be 

defined on a given implicit surface model. Suppose given implicit functionsj(x, Y. z) = 0 

and g(x, Y. z) = 0, according to the definition of the implicit function, different operations 

on the implicit surfaces such as scale, shear, taper, twist, bend, etc. can be easily defined. 

The Blobby models employ local basis functions , so they are often more intuitive 

to work with than algebraic surfaces [Blinn, 1982]. However, dials or sliders have to be 

used to adjust the position and radius of each blob by center which is an art work to arrive 

at the desired surface [Beier, 1993]. Bloomenthal and Wyvill [ 1990] developed 

techniques to define/manipulate the skeleton of several shapes, define/adjust the implicit 

function defined for each skeletal element, and define a blending function to weight the 
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individual implicit functions. By manipulating the skeletal ellipsoids, the user can 

produce complex models, and the blending and offsetting operations are controlled by a 

procedural implicit function which permits a greater degree of localized control as 

compared to a simple blend of implicit primitives in which each primitive potentially has 

a global affect on the surface as shown in Fig. 1.8[Wyvill et al., 1999]. But this 

procedural implicit function is awkward to the end users. 

Figure 1.8. Skeletal Elements for the Train and the Surface of the Train after Blending 

Wyvill et al. [ 1999] used tree structure to represent the set theoretical Boolean 

expression between solid models having half spaces as the primitives. They described 

techniques for performing blending, warping and Boolean operations on skeletal implicit 

surfaces called "Blob Tree". Galin et al. [1999] addressed the metamorphosis of the Blob­

Tree by proposing an original technique that solves the correspondence process and 

creates an intermediate generic Blob-Tree model whose instances interpolate the initial 

and final shapes. Besides constructing the model by a larger number of elements arranged 

in a tree structure, the model can also be defined as single source points with one or 

several additional curves that control the shape of the field function. Several operations 

are defined, such as freeform definition curves, rotational, translational or general sweep, 

twist or interpolation of cross-section, etc. Users can use the splines to control the swept 

trajectories to generate complex shapes as shown in Fig. 1.9 [Crespin et al., 1996]. 
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Figure 1.9. A Model Defined by Sweeping Primitives 

Besides the blob by model based methods, there is another type of implicit function 

based modeling method called the Control point based methods. Physically based 

particles provide an interactive means to sample implicit surface functions whereby 

points on the surface are determined by heuristics, such as the use of the implicit function 

gradient. Witkin and Heckbert [1994] used particles to sample the implicit surface and 

applied simple constraint to lock the movement of particles onto a surface while the 

particles and the surface move. Then, those particles are moved by the user to control the 

implicit surface. However, it is found that the implicit surfaces are slippery when one 

attempts to move them using control points. Several approaches [Crossno and Angel, 

1997; Rosch et al. , 1996] have been proposed to enhance the original Witkin-Heckbert 

technique by adapting the particle distribution to the local curvature of the surface. Turk 

and Brien [2002] attacked this problem by using an interpolating implicit surface model 

and let users directly create and move the boundary constraints to change the shape of the 

interpolating implicit surface. This provides an intuitive control for interactive sculpting 

of implicit surfaces which can only accommodate a limited amount of details since at 

most a few thousand coefficients can be employed in real-time. 

Level-set method is a set of numerical methods developed to model the implicit 

distance field data. Applying level-set methods in interactive geometric modeling is 

relative new. It started from the work of Museth et al. [2002]. The computational 

complexity was reduced in their follow-on work [Museth et al. , 2005 ; Nielsen and 

Museth, 2006]. Museth et al. [2002] developed surface editing techniques like copy, 

remove and merge level-set models and automatically blend the intersection regions. 

Their editing operators act on surfaces that happen to have an underlying volumetric 
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representation, but are based on the mathematics of deforming implicit surfaces. 

Blending is automatic and is constrained to only occur within a user-specified distance to 

an arbitrarily complex intersection curve. The user can specify if material should be 

added and/or removed during editing operations. They also developed a point-attraction 

operator where a regionally constrained portion of a level-set surface is attracted to a 

single point. By defining line segments, curves, polygons, patches and 30 objects as 

densely sampled point sets, the single point attraction operator is combined to produce a 

more general surface embossing operator. Smoothing and embossing are constrained to 

occur within a user-specified region, and they are implemented in a level-set framework. 

They also implement opening and closing morphological operators for performing global 

blending (closing) and smoothing (opening) on level-set models developed by Sapiro et 

al., [1993] and Maragos [1996]. 

Although the same operations such as blending, merging, morphing, Boolean 

operations, smoothing, embossing, etc. can be implemented by other methods, such as 

the control point based methods, the level-set method, which uses a simple and physical­

based speed function to control the change of the surface, provide a more integrated and 

intuitive way of modeling the implicit surface. Meanwhile, using level-set methods for 

modeling guarantees no self-intersection in the generated surface, C 1 continuity in the 

direction perpendicular to the contour plane, ease of changing topology in freeform shape 

design, and no edge-connectivity and mesh quality problems associated with mesh 

models. Given the volumetric representation, the amount of computation time and 

memory needed to process level-set models is the biggest concern in interactive 

operations. Additionally, a concern has been raised that volume-based models cannot 

represent fine or sharp features. Recent advances [Frisken et al., 2000; Kobbelt et al., 

2001] have shown that it is possible to model these kinds of structures with volume 

datasets, without excessively sampling the whole volume. These advances will also be 

available for the operators once adaptive level-set methods are developed. Comparing 

with other implicit surface modeling methods, such as the "blob tree" methods, level-set 

models lack of the skeleton based modeling techniques such as curve skeleton based 

deformation [Cornea et al., 2005]. 
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In computer graphics, skeletons are widely used for animation [Bloomenthal, 

2002; Maya, 2006]. These skeletons (also refer as IK-skeletons) control the polygonal 

representation of the character being animated. Some shape manipulation techniques are 

also based on the skeleton methods [Igarashi et al, 1999; Gagvani and Silver, 2001]. The 

skeleton is defined as the locus of centers of maximal inscribed (open) balls included in 

the geometry [Lieutier, 2004]. The process of obtaining a skeleton is called 

skeletonization, which can generate results such as those shown in Fig. 1.1 O[Comea et 

al., 2005]. The line-like skeleton representation of a 3D object is called the curve skeleton 

[Svensson et al., 2002]. Different implicit geometric modeling techniques have been 

developed by using the skeleton information of the model. Seder berg and Parry [ 1986] 

developed a freeform deformation technique, where an object is enclosed in a 

parallelepiped and its deformation is defined by using a vector transformation to deform 

the parallelepiped. 

Overall, implicit functions represented surface or volume model is hard to modify 

due to the use of non-intuitive parameters in the implicit function. Although different 

techniques have been developed to address this problem, such as the Blobby models, the 

control point-based methods, etc., the results are not fully satisfied. Based on real 

physics, level-set methods provide a uniformed framework to model the implicit models 

and build up the connections between pure geometric modeling and physical laws. 

However, how to build intuitive user interface and operations to control the speed 

function in the level-set methods to modify the shape remains an open research question. 

1.3.3. Surface Reconstruction for Virtual Prototyping. The conversion from 

any geometric representation of a 3D model into triangular surface patches is an 

important issue. It is because the reconstructed triangular facets can be used by 

conventional CAD/CAM/CAE systems to perform geometric design, engineering 

analysis, and automated manufacturing applications. Further, the triangulated 3D model 

can be viewed in any directions as desired using standard routines of computer graphics 

software. However, the surface reconstruction from discretized geometric representations 

such as dexel, voxel structures is difficult because reconstruction methods have to 

overcome topological ambiguity, which is usually being dealt through grid based 

methods. 
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1.3.3.1 Surface reconstruction from dexel model. Dexel data is view-dependent 

because it only records the geometric information of a 3D object from one viewing 

direction. In the practice of dexel-based NC simulation, researchers were only able to 

produce a limited number of views from certain directions for the simulation, without the 

generation of a surface model that can be viewed from any directions. To solve the view­

dependent problem, Huang and Oliver [1995] briefly described a contour tracking 

technique but without detailed development of an algorithm. They visualized the 

boundary of the object by simply displaying sets of contours extracted from the dexel 

data. Konig and GroBer [1998] described an algorithm to create a surface representation 

from dexel data for 3-axis milling simulation. But the algorithm could fail easily in the 

virtual sculpting process where dexel data are modified in arbitrary directions. Zhu and 

Lee [2005] presented a visibility sphere marching algorithm for constructing polyhedral 

models from dexel data for their virtual sculpting research. When the algorithm was 

applied to complex 3D objects, there could be some cracks and holes in the generated 

mesh due to topology related issues [2003]. The Marching Cube Algorithm [Lorensen 

and Cline, 1987] has been used to generate an approximate triangular surface from tri­

dexel data [Benouamer and Michelucci, 1997] and from voxel data. But this algorithm 

requires huge memory storage and suffers from some ambiguity, and it can not be applied 

to dexel data generated in a single direction. Muller et al. [2003] implemented the point­

based rendering method developed by Pfister et al. [2000] for their online sculpting 

system. However, it was difficult to interface the sculpted models with CAD/CAM/CAE 

systems for further design and analysis. 
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Another line of related research is the curve reconstruction study in computational 

geometry stated as follows: given a set of sample points from a curve, a reconstruction of 

the curve is intended, i.e., points are to be joined by edges in the order they appear on the 

curve. The dexel points can be seen as the points on the curves in relation to this study. 

The developed methods included the a-shape [Edelsbrunner et al., 1983], J3-skeleton 

[Kirkpatrick and Radke, 1985], andy-neighborhood graph [Veltkamp, 1992]. But all of 

them require certain preconditions on the input points. The a-shape method works well 

for the points which are evenly distributed in the interior of an object. The J3-skeleton 

method requires the sampling density of points varied with the local feature size on the 

curve. These curve reconstruction methods can not be directly applied to dexel data due 

to the nature of their input data. 

Another related research is the study of surface reconstruction from point clouds 

since dexel data can be treated as point cloud data in 3D space. Literature in this research 

comes mainly from the fields of image processing, computational geometry and computer 

graphics [Azernikov et al., 2003]. Delaunay-based methods [Edelsbrunner and Mucke, 

1994; Bernardini et al., 1999; Amenta et al., 2001; Dey et al., 2001] have been shown 

successful to produce a triangular mesh from point cloud data. However, the ball-pivoting 

algorithm [Bernardini et al., 1999] took 2.1 minutes to reconstruct 361 K samples on 

450MHz Pentium II Xeon PC, and the power crust method [Amenta et al., 2001] took 

about 6 minutes to reconstruct 30,000 samples on a 400 MHz Sun computer. Besides 

Delaunay-based methods, surface fitting techniques [Carr et al., 2001; Alexa et al., 2001; 

Ohtake et al., 2003, 2006] have become popular recently for surface reconstruction 

because of their ability to account for noise in the input data. Nevertheless, one ofthe 

fastest implicit surface fitting methods [Ohtake et al. 2006] still took 42 seconds to 

reconstruct the surface from a 362K input data on a 1.6 GHz Pentium IV PC. 

1.3.3.2 Surface reconstruction from planar contours. Surface reconstruction 

from a set of planar sectional contours has been an intriguing problem in diverse research 

areas. This problem arises primarily in the fields of medical imaging, digitization of 

objects, and geographical information systems. Keppel [ 1975] described an algorithm for 

obtaining an optimal approximation, using triangulation, of a three dimensional surface 

defined by randomly distributed points along contour lines. Fuchs et al. [1977] presented 
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a general solution by determining an optimal surface between each pair of consecutive 

contours. Wang and Aggarwal [ 1986] developed a versatile surface representation which 

preserves the local object surface structure. Sloan and Painter [1987] described a test bed 

for evaluating all the known reconstruction techniques and presented an improvement on 

the simple divide-and-conquer method analyzed by Fuchs, Kedem, and Uselton earlier. 

Boissonnat [1988] proposed a new solution by constructing a volume whose boundary is 

a polyhedron with triangular faces intersecting the cutting planes along the given 

contours. Meyers et al. [ 1992] developed a method which produces a triangulated mesh 

from the data points of the contours. The method is then used in conjunction with a 

piecewise parametric surface-fitting algorithm to produce a reconstructed surface. Oliva 

[ 1996] proposed an algorithm which constructs the surface for any non-self-intersecting 

contours by means of adding an appropriate number of intermediate cross-sections 

between complicated contours and triangulation of every pair of contours in different 

slices. Later Felkel and Obdrzalek [1999] proposed a modification of Oliva's method for 

reconstruction of 3D surfaces from contours in parallel cross-sections. Bajaj et al. [1996] 

developed a surface-based algorithm which achieves both faster rendering and lower 

likelihood of reconstruction errors. 

Cheng and Dey [ 1988] improved a Delaunay triangulations based method and it 

seemed to be more promising and appropriate in handling correspondence and branching 

problems. Felkel and Janacek [1999] implemented two approaches for reconstruction of 

3D objects from contours in serial sections. The first method is based on thresholding and 

3D volume reconstruction, the second on direct reconstruction from parallel contours. 

Treece et al. [2000] proposed a Shape-based interpolation method which is a simple, 

efficient and fast surface reconstruction technique for contour data-sets. Klein et al. 

[ 1999] used the concept of distance field for a robust reconstruction algorithm, which is 

based on the medial axes. 



1.3.3.3 Surface reconstruction from volumetric models. There are many 

surface rendering algorithms that reconstruct triangular surfaces from the voxel data 

structure includes marching cube algorithm [Lorensen and Cline, 1987], marching 

tetrahedrons [Doi and Koide, 1991], marching triangles [Hilton et al., 1996] and etc. 
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The marching cube algorithm is the most popular one because of its easy 

implementation and fast computational speed. The algorithm takes eight neighbor 

locations of an imaginable cube at a time, then determining the polygon(s) needed to 

represent the part of the isosurface that passes through this cube. This is done by creating 

an index to a precalculated array of 256 possible polygon configurations (28 = 256) 

within the cube, by treating each of the 8 scalar values as a bit in an 8-bit integer. If the 

scalar's value is higher than the iso-value (i.e., it is inside the surface) then the 

appropriate bit is set to one, while if it is lower (outside), it is set to zero. The final 

triangular surface is generated after going through this process for all the cubes. 

If the input data is the distance field data, then the distance value on each node 

can be utilized as the scalar value to determine if this grid is inside or outside the 

boundary. After applying the same approximation algorithm to find the triangles inside 

each cube, the triangular surface can be generated from the distance field data. 
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2. RESEARCH TASKS AND MAIN RESULTS 

2.1. SURFACE RECONSTRUCTION FROM DEXEL DATA 

The objective of studying the surface reconstruction from both single-dexel and 

triple-dexel data is to develop a fast surface reconstruction method to reconstruct a 

triangular surface from dexel structures for the purpose of visualization and interface with 

other CAD/CAM/CAE systems. The following tasks have been accomplished in this 

dissertation work. 

2.1.1. Contour Reconstruction from Dexel Model. The difficulties of 

reconstructing planar contours from dexel data arises when there exist inner contours on 

slices taken from a 3D model with interior voids. Our approach to address the inner­

contour difficulty is to design an algorithm that dictates how to connect dexel points on 

two adjacent rays for any considered planar slice by separating the dexels into groups. 

This requires the development of a grouping criterion, which categories the dexels on two 

adjacent rays into different groups. The main idea behind our design of the grouping 

criterion is the observation that two overlapping dexel spaces on two adjacent rays may 

form part of an inner contour. An illustration of this observation is given in Fig. 2.1. One 

slice ofthe 3D model on XZ plane in Fig. 2.1(a) has dexel data shown in Fig. 2.1(b). The 

overlapping dexel spaces between points 6 and 7 and between points 12 and 13 form an 

inner contour because the top of these overlapped dexel spaces is covered by dexel B and 

the bottom is covered by dexel A. 

According to this observation, if a set of overlapping dexel spaces is covered by 

both a dexel beneath the bottom and a dexel right above the top, these dexel spaces form 

an inner contour and are called a closed set. For example, the set of dexel spaces between 

points 6 and 7 and between points 12 and 13 in Fig. 2.1 (b) is a closed set. The 

connections of a closed set of dexel spaces to form an inner contour are: filling the top 

and the bottom dexel spaces, and connecting the boundary dexel points on the same side 

of the dexel spaces accordingly (e.g. connecting point 6 and point 12, and connecting 

point 7 and point 13 in Fig. 2.1 (b)). Meanwhile, if a set of overlapping dexel spaces is not 

covered by both a dexel beneath the bottom and a dexel above the top, it is an open set of 

dexel spaces. Their dexel points need to be connected differently to form part of an outer 
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contour. For example, the dexel spaces between points 4 and 5, between points 10 and 

11 , and between points 16 and 17 in Fig. 2.1 (b) are an open set. The connections of an 

open set of dexel spaces are: filling the top or the bottom dexel space, depending on 

which is covered by a dexel above or beneath, and connecting the boundary dexel points 

on the same side of the dexel spaces accordingly. 

(a) 
X 

--- - ---------- - ----- - -~ 

z 
(b) 

Figure 2.1. Example of the Contour Generation Algorithm. (a) 3D Model (b) One Slice of 
the 3D Model on XZ Plane 

By using the grouping criterion, a four-step contour generation algorithm has been 

developed. The algorithm first categorizes the dexels on two adjacent rays into different 

groups by using a "grouping" criterion. The dexel points in the same group are connected 

using a set of rules to form sub-boundaries. After checking the connections among all the 

dexel points on one slice, a connection table is created and used to obtain the points of 

connection in a counterclockwise sequence for every contour. Finally, the contours on all 

the parallel slices are tiled to obtain triangular facets of the boundary surface of the 3D 
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object. To illustrate the contour generation process, Figure 2.2 is used as an example. On 

Ray 4 and Ray 5, dexels d4,2, d4,3, and ds,I are in one group because they have overlaps, 

and d4,1 is in another group. Thus, points 12 and 13, points 11 and 15, and points 14 and 

16 are connected. Because dexel d4, 1 is a top dexel, points 9 and 1 0 are connected. Once 

all the connections are made for every two adjacent rays, a connection table can be 

created and all the connections are listed in the table as shown on the left side of Fig. 2.2, 

where the middle column lists the dexel points in the same sequence as they are 

generated and read. Their connecting points are stored in the left and right columns 

separately. In order to generate contours in the counterclockwise direction, the left 

column is always filled with the smaller index. Finally, the sequence of points for each 

contour is generated by following the connection from one point to the next, until 

eventually coming back to the first point. 

Connected Dexel ~onnected X 
Point Point Point 

2 1 3 

1 2 8 ~-----------------------------~ 
1 3 9 

5 4 10 

4 5 11 

7 6 12 

6 7 13 

15 ~ """'16 
._ __________ oiP' ·-- ~ --~ 

9 10 I ...... ' .... ..-:--.. '\. 14 

;.~ ~ 1)--f-- ~ ... ,, ~~ ---\--·-~ 
'".:{ ..... -, \ \. I \" I : 

r-~-'- ~ .. ~ 1'";. .. ._. ,~ ., --f! ~-~ 
2 8 14 

3 9 10 

4 10 9 

·~ ------- , 
~ ----- ·-----~-·~ 2 r----1- , --~ 

5 11 15 r------------------------------~ z ... 
6 12 13 ... 
7 13 12 

8 14 16 

11 15 16 

14 16 15 

• Dexel point 
~' 1 Contour ,_, I I Dexel 

Figure 2.2. Contour Generation from Single-Dexel Data 
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2.1.2. Surface Reconstruction from Planar Contours. The methods of contour 

generation and surface reconstruction presented above have been coded into computer 

software and incorporated in the development of an experimental virtual sculpting system 

and an NC machining simulation system. In order to finally generate the triangular facets 

of the object's boundary surface for viewing purpose, the algorithm developed by 

Christiansen and Sederberg [1978] has been implemented to reconstruct the surface 

model from planar contours. Figure 2.3 shows a freeform cat model created within the 

virtual sculpting system. The original cat model (without eyes in Fig. 2.3(a)) is imported 

into the system in the STL format. Eye cavities are first carved by sculpting the cat model 

with cylinder shaped cutters. Two eyeballs are then added and placed in the cavities by 

performing Boolean union with ball shaped cutters. The tail of the cat is also added. After 

applying the contour generation algorithm and tiling the generated contour into a 

triangular surface patch, the modified cat model can be viewed in any directions as 

shown in Fig. 2.3(c) and (d). 

2.1.3. Surface Reconstruction from Triple-Dexel Model. The main idea of the 

proposed surface reconstruction method is to generate contours from triple-dexel data on 

three sets of orthogonal slices, and utilize these contours to reconstruct the boundary 

surface of the 3D model. Overall, the method has three main steps. First, the contour 

generation algorithm takes the dexel data in each of x, y, and z directions as the input and 

generates planar contours on two orthogonal sets of parallel slices. For example, the 

dexel data in x direction is used to generate xy contours and xz contours. Next, on each set 

of parallel slices, the two sets of contours generated from the first step are combined into 

one set of contours. For example, an xy contour is combined with a yx contour on the 

same slice to generate a contour parallel to xy plane. After these two steps, there are three 

sets of contours (i.e., contours on planes parallel to xy, yz and zx planes). In the last step, a 

volume-based tiling algorithm is utilized to generate triangular facets of the solid's 

boundary surface from the three sets of contours. The schematic diagram of the proposed 

method is shown in Fig. 2.4. 
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(a) (b) 

(c) (d) 

Figure 2.3. Modeling Example of a Cat Model. (a) The Imported Cat Model Created from 
a CAD System (b) Eyes and Tails Created by Virtual Sculpting (c) and (d) Viewing the 

Modified Cat Model in Different Directions 

Dexel data in Dexel data 

Figure 2.4. Proposed Method of Surface Reconstruction from Triple-Dexel Data 
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2.1.4. Contour Combination. After applying the contour generation algorithm to 

triple-dexel data, two sets of contours are present on planes parallel to each of xy, yz and 

zx planes. The objective of the contour combination algorithm is to correspond and 

combine these two sets of contours into one set of contours to more accurately represent 

the cross-sectional profiles of the 3D model. For example, in Fig. 2.5, contour A 1 

generated from dexel data in x direction is corresponded with contour B 1 generated from 

dexel data in y direction to create contour C 1• Likewise, contour A2 is corresponded and 

combined with B2 to generate contour C2. 

y 

Al,:::;.'# .. .-- p3 
r,.. __ P~ 

ty~~-----+----~----~~~~---P--~~~~ 
X 

(a) 

I" I" I" ~ I" j ... 
Bt B2 J b2. 

.J 
y ... L L.....-

b, 

(b) 

I" ' ' ~ ~ ' ll q• 

~ ~ ]' . 
c. 11 

, 
~.8 a2.1 I~ ~ a2.2 .j !,.j 

1 1/ c2 \.. ...... 
b2.1 

"""' ~ ~ I -
~ 

b2.6 b2.7 b2.8 
a2.9 

(c) 

Figure 2.5. Contour Combination Algorithm. (a) xy Contours, (b) yx Contours and (c) the 
Combined Contours 
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The contour correspondence problem involves finding which contour from 

contour set A is to be combined with which contour from contour set B. The overlapping 

area ratio [Wang and Aggarwal, 1 986] between two contours has been utilized as the 

criterion to deal with this correspondence problem. The overlapping ratios between A; and 

all the contours from contour set Bare firstly calculated. Then the contour which has the 

maximum overlapping ratio with A; is chosen. Likewise, every other contour in contour 

set A can be corresponded with a contour in contour set B. Here the numbers of input 

contours from each set is assumed as equal. To speed up the calculation, the overlapping 

area between contour A; and contour B1 is approximated by the overlapping area of their 

bounding boxes. 

The contour combination algorithm consists of two main steps to combine the 

corresponded contours (say, A; and B1). The first step is to identify the starting pair of 

points a;,k and a;,k+J of contour A;, to find their associated points (i.e., bu, ... , b1,~) and to 

add them between a;,k and a;,k+J· The second step is to continuously search from a;,k+I and 

a;,k+2 to find the next pair of points in contour A; which has at least one associated point 

from contour B1. Then the associated points are identified starting from b1.t+ 1 and onwards 

in B1 for insertion. The second step is repeated until all the points from contour B1 have 

been added to contour A;. 

2.1.5. Surface Reconstruction from Three Orthogonal Slices of Contours. 

After the contour combination process, three sets of orthogonal slices of contours are 

generated. The volume-based tiling algorithm of Svitak and Skala [2004] is utilized to 

reconstruct the boundary surface of the 3D model from these contours. The main idea of 

this volume-based tiling algorithm is to generate triangular facets within each rectangular 

box associated with the rays in x, y and z directions. Because the three sets of orthogonal 

contours contain the positions and connectivity of all triangle vertices, the problem of 

generating triangular meshes within each box becomes the problem of searching the 

locations and connection information of the vertices from the three sets of contours that 

have been generated. Once this information is obtained, it is trivial to generate the 

triangular facets within each box by using a triangular patching algorithm. 

The volume-based tiling algorithm consists of three steps. Given a triple-dexel 

data with M N and 0 numbers of divisions in the x, y and z axes, respectively, the 3D , ' 
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space is divided into MxNxO equal-sized rectangular boxes. The algorithm first 

identifies the Boundary Sub-Volumes (BSVs) that are the boxes having non-null 

intersections between their edges and the solid's boundary surface. Second, the three 

orthogonal sets of contours are searched to find a close loop of vertices within each BSV. 

Finally, triangular facets are created within each BSV by patching these vertices. 

2.1.6. Computational Complexity Analysis. The computational complexity and 

storage requirement of the contour generation algorithm are analyzed. Two test cases 

have been utilized to verify the computational complexity analysis. The computational 

complexity of the contour generation algorithm is 0( a 2 f3) for each slice where a is the 

average number of dexels along a ray and f3 is the number of rays intersecting with the 

object for the considered slice. For the triple-dexel model, the total computation 

complexity for the contour generation algorithm is O(a1) where Tis the number of dexel 

points in the triple-dexel model. The complexity of the contour correspondence and 

combination algorithms is 0(1), where Tis the total number of dexel points. The memory 

costs of the contour generation and contour combination algorithms are linearly 

proportional to the number of dexel points of the triple-dexel model. 

2.1. 7. Surface Error Analysis. The reconstructed surface is watertight because in 

the volume-based surface tiling algorithm, every dexel point inside the boundary sub­

volume is guaranteed to have connection points to form a close loop. However, the 

reconstructed surface is still an approximation of the original shape. To estimate the 

quality of the reconstructed surface, the reconstructed surface error is defined as the ratio 

of the Hausdorff distance between the original surface and the reconstructed surface to 

the diagonal length of the bounding cuboid. The surface errors of the reconstructed 

Stanford bunny model from triple-dexel data are calculated using the Metro [Cignoni et 

al., 1998] comparison tool under four different resolutions. 

The surface reconstruction results between the triple-dexel model and single­

dexel model are also compared in this dissertation. Figure 2.6 illustrates the surface 

improvement from the triple-dexel data over the single-dexel data. Figures 2.6(a) and (c) 

show the results of surface reconstruction from single-dexel data, and Fig. 2.6(b) and (d) 

show the corresponding results of surface reconstruction from triple-dexel data. These 

figures clearly show that the generated surface from the triple-dexel data is more accurate 
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than the reconstructed surface from the single-dexel data when using the same ray 

resolution. In addition, to benchmark the performance of the developed method, 

numerical experiments are conducted to compare using triple-dexel data vs. voxel data in 

terms of the surface reconstruction time and the associated surface error. The test result 

shows that, under the same resolution, the surface reconstructed from the triple-dexel data 

has a smaller surface error in comparison with the surface reconstructed from the voxel 

data. This is because the triple-dexel based method utilizes actual positions of the 

intersection points between rays and the object's boundary surface as the vertices of the 

reconstructed surface model, while the voxel based method approximates the positions of 

these vertices by voxel interpolation. 

(b) 

(c) (d) 

Figure 2.6. Comparisons of Reconstructed Surfaces. (a) and (c) are from Single-Dexel 
Data, (b) and (d) are from Triple-Dexel Data 

The computation complexity of the contour generation, correspondence and 

combination process using triple-dexel data is O(D or O(M2) , where M is the number of 

divisions along each axis. Because the complexity of the volume-based tiling algorithm is 
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also O(M2)[Svitak and Skala, 2004], the developed surface reconstruction method is more 

efficient than the voxel-based surface reconstruction method, whose computational 

complexity is O(M). Thus, the triple-dexel model is more efficient than the voxel model. 

2.1.8. System Integration. The developed surface reconstruction process based 

on the triple-dexel model is incorporated into a virtual sculpting system [Peng and Leu, 

2003, Leu et al., 2005, Peng et al., 2006]. The virtual sculpting system is developed on a 

Microsoft Windows XP workstation. The software is written in C++, and the graphics­

rendering component is built on OpenGL and GLUT. The haptics interface is 

implemented using the PHANToM™ device and the GHOST (General Haptics Open 

Software Toolkit) SDK software available from SensAble Technologies. This virtual 

sculpting system enables the user to create and modify 3D freeform objects through 

interactive sculpting operations and gives the user real-time force feedback during the 

sculpting process. The tool swept volume between two consecutive sampling times is 

obtained by the Sweep Differential Equation method [Blackmore Leu, 1992] and 

represented by boundary triangular meshes [Peng and Leu, 2003]. The workpiece and the 

tool swept volumes are scan-converted to obtain their triple-dexel data. Boolean 

operations on the triple dexels are performed by comparing and merging the dexel data in 

each of x, y or z directions. The surface reconstruction software is executed during the 

sculpting process to convert the triple-dexel model to a triangular mesh model. Figure 2. 7 

shows the setup of the virtual sculpting system and a cat model created using the system 

and viewed from two different directions. 

2.2. STUDY OF DISTANCE FIELD BASED FREEFORM MODELING 

The objective of this study is to develop more intuitive modeling operations for 

the virtual sculpting system such as the shape deformation and smoothing. The following 

tasks have been accomplished in this dissertation work. 

2.2.1. Generation of Distance Field Model from Triple-Dexel Model. A four­

step process is developed for generating the distance field. First the voxels that have non­

null intersections with the solid's boundary surface are identified as the Boundary Voxels 

(BVs). The grid point on any edge of a BV is a Boundary Grid Point (BGP) and a grid 
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point is an Adjacent Grid Point (AGP) if it is adjacent to any BGP. Next, the sign of the 

distance value of each BGP and AGP is determined. Third, the surface within each BV is 

approximated using triangular facets. Finally, the distance value of each BGP and AGP is 

calculated. A 2D illustration is given in Fig. 2.8 , where the gray-colored pixels 

surrounding the iso-surface are the boundary pixels (i.e., 2D BVs). Each squared point is 

a BGP and each triangular point is an AGP. 

Figure 2.7. A Cat Model Generated Using the Virtual Sculpting System 

r•••••••••+ .•.··~::·t ... ·.·.t·.·J .·:· t •••• I 
+········ ..... '··········+· 
t ······.. ~·· ··· ·····~· 

t :·::·:· :::·:::·:t :::::::::T 

t:.:::::Y .... : ... ~· ····· · ···+·· · ··· ·· ··~ .......... f .:.:.:.t:::::::::T 

Dexel point • 

BGP D 

AGP 

Boundary pixel .. 
Figure 2.8. Boundary Pixels, BGP, AGP and Dexel Points 
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If a grid point is between two adjacent dexels along a ray, the distance value of 

this point is positive. Otherwise, the sign of the distance value is negative. The main idea 

of this step is to use the Hermite data (i.e., exact intersection points and normals) on the 

edges of a BV to calculate an additional point inside the BV by minimizing a quadratic 

function. By connecting this point with other additional points in adjacent BV s, triangular 

meshes can be generated with a simple patching algorithm to approximate the boundary 

surface. The Euclidean distance of a BGP of a BV is the shortest distance from the BGP 

to the local triangles formed by the additional point of this BV. The distances between 

this BGP and every such triangle are calculated, and the smallest value is the Euclidean 

distance. As illustrated in Fig. 2.9, the distance of the center grid point is d2 because d2 < 

d1. Based on the same principle, to calculate the distance values of AGPs, such as point P3 

in Fig. 2.9, only triangles formed by the additional points in the adjacent BVs are 

considered for the distance test. 

o Dexel point 

• Additional 
vertex 

AGP 

Figure 2.9. Distance Calculation for the Grid Points 

2.2.2. Hand Gesture Modeling. A gesture is a form of non-verbal 

communication made with a part of the body such as the hand. The input of our freeform 

deformation framework is a series of gestures (i .e. , orientations and positions of user' s 

hand), G ; (i=O, . .. ,n), captured from the mouse or 3D input devices such as the 6DOF 

tracking device. To associate user's gesture inputs with shape changes, the human gesture 
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has been modeled by formalizing a spatial transformation matrix. Then, freeform 

deformative operations are defined based on the human gesture model. Finally, a 

mapping method is developed to build connections between the defined operations and 

the boundary velocity of the surface which enables the level-set method to propagate the 

shape as desired. The gesture G; at timet; is defined by a local coordinate system with 

origin 0 ; and three orthogonal directions u;, v;, W; as seen in Fig. 2.10, where u; x v; = 0 , 

v ; x w; = 0 and w; xu;= 0. To produce a smooth space warp from input gestures, a B-

Spline interpolation has been utilized to calculate the position and orientation of the 

gesture in between such as GJ in between G; and G;+l in Fig. 2.1 0. The gesture at GJ is 

constructed by the linear combination of translations and rotations around the 

interpolated origin OJ. 

Figure 2.1 0. Human Gesture Modeling Using Interpolation Method 

2.2.3. Shape Modeling Using Level-Set Method. Level-set models are 

deformable implicit surfaces where the deformation of the surface in its normal direction 

is controlled by a speed function in the level-set partial differential equation [Sethian, 

1999]: 

aF =-VF· v 
at 

where F(x,t) is the Euclidean distance function, xis the grid coordinates in Euclidean 

space R3, v is the speed function of boundary points, V is the gradient and 

(3) 



V=i·~+j·~+k·~ ax cy az 

where i,j and k are the unit vectors in R3. 

An up-wind scheme [Sethian, 1999] can be applied to resolve the level-set 

equation. The first-order space approximation of Equation (3) is: 

where V;,J,k is the speed at a point indexed by i,j and k and 

where ni:;k is a shorthand notation of the forward difference operator 

F;,J,k (x + h, t)- F;,j,k (x, t) and n:-x is the backward difference operator 
h l,j,k 

F:.t.k(x,t)- F:.J.* (x- h,t) . The implementation of the level-set method can be speed up 
h 
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(4) 

(5) 

(6) 

(7) 

using a narrow-band scheme [Sethian, 1999]. The idea of this method is to update only a 

narrow-band of grid points which are close to the iso-surface rather than grid points in the 

entire space. The advantage ofthis approach is that the number of points being computed 

is so small that it is feasible to use a linked-list structure to keep track of them for real­

time applications. By updating the distance values of the boundary grid points according 

to Eq. (5), the change of the iso-surface can be tracked. 



2.2.4. Deformation Operation. Deformation operation imposes movements of 

surface vertices inside the influence region of a brush. At each time, these surface 

vertices pare adjusted by multiplying the weight w(p) with the transformation matrix 

t(p ), and adding the result to the current value as: 

p'= p + w(p) · t(p) 

To produce smooth transformation, the weight function can be defined as 

w(x) = 1- d 2 (p)(3- 2d(p)) 
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(8) 

(9) 

where d(p) is the distance value ofthe pointp to the center ofthe user's hand. To 

prorogate the shape using level-set method, the velocities of boundary grid points are 

defined according to the user's gesture inputs as follows: suppose a grid point pis on the 

surface, its transformed point under user gesture inputs is p '.Then the velocities of the 

grid points swept by pp' can be defined as v=cpp' in the direction of vector pp' where c is 

a constant. 

2.2.5. Smoothing Operation. If the speed (v) of a boundary point in Equation (3) 

is proportional to the user's hand motion and the mean curvature of the local boundary, 

then Equation (3) can be written as 

BF(x,t) -b(x,t)H(x,t) II VF(x,t) II= 0 
at 

(10) 

where b(x,t) is a transformation matrix defined by the user's gesture inputs and H(x,t) is 

the mean curvature of point x. The mean curvature at a point p E S is the average of the 

principal curvatures ( K, and K2 ) 

For a 3D surface defined as a function of three coordinates, e.g., F(x,y,z), the 

mean curvature of a grid point is 

(Fyy + Fzz)Fx 2 + (Fxx + Fzz)Fy 2 + (Fxx + Fyy)Fz 2 - 2(FxFyFxy + FxFzFxz + FyFzFvz) 
H= 2(Fxz+F/+F/)312 

( 11) 

(12) 

where the differential terms are approximated using first-order, central finite difference, 

I.e, 
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F 1 ·k -F 1 ·k F = I+,J, 1- ,}, 

X 2Lix (13) 

F 1 k - 2F . k + F 1 . k ~X _ I+ ,}, I,J, 1- ,), 

- &2 (14) 

Fl.lk-F1.tk Fl.lk-FI.Ik F = I+ ,.f+ ' I+ ,}- ' + 1- ,.J- , 1- ,J+ ' 

xy 4Llxl\y 4Lixl\y (15) 

According to Eq. (10), the part of the boundary with larger curvature moves faster 

than the part of the boundary with smaller curvature in the surface normal direction. This 

movement results a smoothing operation. 

2.2.6. Performance Evaluation. To evaluate the performance of the level-set 

method, a shrink operation is performed on a 2D circle shape. The number of grid points, 

the calculation time of distance values, and the time of updating the lists are given in 

Table 2.1. It can be seen form the table that a I OHz refresh rate can be maintained by 

updating around 34,700 grid points for each iteration. 

Table 2.1. Test Results of the Level-Set Method 

No. of Time of Time of Total 
grid calculating the updating time 

points distance values the lists (s) 
(s} (s) 

202,592 0.4637 0.1631 0.6268 
156,702 0.3675 0.0973 0.4648 
149,942 0.3680 0.0902 0.4582 
101,788 0.1754 0.0897 0.2651 
28,260 0.0746 0.0108 0.0854 
23,217 0.0638 0.0108 0.0746 
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3. MAJOR RESEARCH CONTRIBUTIONS 

3.1. SURFACE RECONSTRUCTION FROM DEXEL MODELS 

A novel method to convert dexel data into a series of planar contours on parallel 

slices has been developed. Comparing with other existing methods such as voxel based 

methods [Benouamer and Michelucci, 1997] and Delaunay based methods [Edelsbrunner 

and Mucke, 1994; Bernardini et al., 1999; Amenta et al., 2001; Dey et al., 2001 ], this 

method is faster and more efficient in terms of computational cost and memory usage. In 

addition, to our best knowledge, there has been no previous work on generating contours 

on three sets of orthogonal slices from triple-dexel data for the purpose of reconstructing 

a surface model. Thus, the developed surface reconstruction method is the first to 

reconstruct a triangular surface from triple-dexel data by using three orthogonal sets of 

contours. The main contributions of this research include: (i) creation of a methodology 

of surface reconstruction from triple-dexel data, (ii) development of a contour generation 

algorithm to create planar contours from dexel data, (iii) development of a contour 

combination algorithm to improve the accuracy of contours in representing the 3D 

model's cross sections, (iv) incorporation of a volume-based surface tiling algorithm in 

the surface reconstruction process, (v) complexity and accuracy analysis of the developed 

method, and (vi) benchmark with the voxel-based surface reconstruction method to 

demonstrate the efficiency of the developed method. The developed surface 

reconstruction method provides a good solution to the view-dependent problem inherent 

in dexel model. The method has been applied to different real-time applications such as 

virtual sculpting [Zhang et al., 2007; Zhang and Leu, 2008b] and NC machining 

simulation [Zhang and Leu, 2008a]. A formal analysis has been performed on the 

computational complexities of the develop algorithms in order to evaluate their 

performance [Zhang et al., 2005]. Details descriptions of the developed methods for 

surface reconstruction from dexel data are presented in the first two papers included in 

this dissertation. 
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3.2. DISTANCE FIELD GENERATION FROM TRIPLE-DEXEL MODEL 

A brute force method is generally used to compute the distances from a grid point 

in the Euclidean space to every boundary triangle of M and select the shortest one. To 

reduce the computation, the shortest distance can be calculated only to a limited number 

of primitives according to spatial coherences. There has been very little research on the 

calculation of the distance field directly from triple-dexel data for the generation of a 

triangular mesh in virtual sculpting. Sealy and Novins [1999] approximated the Euclidean 

distance of a grid point as the shortest distance among its three axial distances. But this 

approximation is not accurate especially where sharp features are present. In this 

dissertation, the distance field data is firstly generated from triple-dexel data by 

approximating the iso-surface inside the boundary voxels and calculating the Euclidean 

distance values for a narrow-band of grid points. This method is capable of generating a 

more accurate distance field since distance value is calculated as the shortest distance 

from a grid point to the boundary surface inside of each cell [Zhang and Leu, 2008c]. 

Details of the distance field generation from triple-dexel data are presented in the third 

paper included in this dissertation. 

3.3. LEVEL-SET METHOD BASED FREEFORM OPERATIONS 

The level-set method [Sethian, 1999] provides mathematical and numerical 

mechanisms for computing surface deformations as time-varying iso-values of a function 

by solving a partial differential equation on the 3D grid. A set of numerical techniques is 

provided by the level-set formulation that describes how to manipulate the distance 

values of each grid in a volume, so that the iso-surfaces of the function move in a 

prescribed manner. Previous studies in the field of level-set method based freeform 

geometric modeling focused on developing various surface editing operators such as 

blending, smoothing, sharpening, opening/closings, and embossing [Museth et al., 2002, 

2005; Brerentzen and Christensen, 2002; Lawrence and Funkhouser, 2004]. None of the 

previous work modeled human gestures and developed gesture based freeform modeling 

operations based on the level-set method. In this study, the modeling of human hand 
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gestures has been developed and utilized to define various freeform modeling operations 

such as sculpting, imprint, deformation and smoothing. 

Using gesture information for the free form modeling provides unique tools for 

freeform modeling since it is more natural to the user's design intent. In addition, level­

set models offer several advantages in geometric modeling than the traditional mesh­

based modeling framework where the shape is represented by triangular meshes; they 

include: 1) by construction, self-intersection cannot occur when using the level-set 

method. This guarantees the generation of physically-realizable, simple, closed surfaces. 

2) Level-set model can easily change topological genus, and 3) the generated models are 

free of edge connectivity and mesh quality problems which are associated with mesh 

models. 

In this study, the gesture of the user is modelled by the B-Spline interpolation and 

the linear combination of user's hand inputs. Deformation, imprint, and smoothing 

operations have been developed. After mapping the velocities of boundary grid points for 

each operation, the solution of the level-set method drives the propagation of the shape 

towards the desired shape. Comparing with the traditional mesh based method, the 

triangular meshes generated using the level-set methods developed this paper are free of 

the self-intersection problem [Zhang and Leu, 2007, 2008d]. Details of the development 

of generic freeform modeling operations based on the level-set framework are presented 

in the fourth paper included in this dissertation. 
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This paper presents a method of reconstructing a triangular surface patch from 

dexel data generated by ray casting, to represent solid models for applications such as 

virtual sculpting and NC machining simulation. A novel contour generation algorithm is 

developed to convert dexel data into a series of planar contours on parallel slices. The 

algorithm categorizes the dexels on two adjacent rays into different groups by using a 

"grouping" criterion. The dexel points in the same group are connected using a set of 

rules to form sub-boundaries. After checking the connections among all the dexel points 

on one slice, a connection table is created and used to obtain the points of connection in a 

counterclockwise sequence for every contour. Finally, the contours on all the parallel 

slices are tiled to obtain triangular facets of the boundary surface of the 3D object. 

Computational costs and memory requirements are analyzed, and the computational 

complexity analysis is verified by numerical experiments. Example applications are given 

to demonstrate the described method. 
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1. INTRODUCTION 

The dexel representation of a solid consists of a set of line segments lying inside 

the solid. These segments are obtained by classifying a grid of parallel rays, a process 

often called ray casting or ray tracing [ 1, 2]. As illustrated in Fig. 1, for each ray the 

intersection points with the solid are stored in the following manner: two points defining 

a line segment that is fully inside the solid make up a dexel. Each dexel has two end 

points (known as dexel points) and referred to as the head and the tail (the order of which 

defines the direction). Dexels may also contain tags (i.e. attributes), which are symbolic 

data associated with each line segment representing material or other properties of the 

interior of a solid. 

P13 041 P14 
~-=~~~~~~--

P9 031 P10 PJ1 032 PJ2 
P6 021 P6 P7 022 P8 

p1 ~p2 P\ __ 0_12-•P4 

(a) (b) 

Figure 1. Illustration of the Ray Casting Process and the Dexel Representation 

The dexel representation is an approximate representation method. In some 

applications such as NC machining simulation, more accurate representations such as the 
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constructive solid geometry (CSG) and the boundary representation (B-rep) are not 

suitable because Boolean operations involved in these representations are very time 

consuming and would require the use of paralleled algorithms and associated multi­

processors hardware to speed up these processes for purpose of real-time implementation 

[3]. Approximate representation methods also include vector clipping [4], Z-map [5], G­

buffer models [6], contour models [7] and voxel models [8]. A literature review about 

approximate representations for NC machining simulation was given by Erik et al. [9]. 

The dexel representation and its variations are among the most notable approximate 

representations used to support machining simulation because they allow fast Boolean 

operation, need little memory, have simple data structures, and have robust algorithms for 

development of real-time simulation applications. These advantages were evident when 

Van Hook [10] developed a real-time shaded display of a solid model being milled by a 

NC cutting tool. The dexel representation approach was also used by Konig and Groller 

[11] in their NC simulation work, which achieved real-time simulation and visualization 

for removal of inhomogeneous materials on low-end graphics hardware. Muller et al. [12] 

presented the idea of using multi-dexel volumes (with dexels generated by rays in 

multiple directions) to represent a solid in NC simulation. Ren et al. [13] developed a 

multi-dexel based machining planning system. Leu and his associates [14-16] developed 

a dexel-based system for design of parts with freeform geometry by virtual sculpting. 

Challenging open problems still remain of the common dexel representation method 

due to the fixed direction in the ray casting process. Dexel data is view-dependent 

because it only records the geometric information of a 3D object from one viewing 

direction, as seen in Fig. 1. In the practice of dexel-based NC simulation, researchers 

were only able to produce a limited number of views from certain directions for the 

simulation, without the generation of a surface model that can be viewed from any 

directions. To solve the view-dependent problem, Huang and Oliver [17] briefly 

described a contour tracking technique but without detailed development of an algorithm. 

They visualized the boundary of the object by simply displaying sets of contours 

extracted from the dexel data. Konig and Groller [ 11] described an algorithm to create a 

surface representation from dexel data for 3-axis milling simulation. But the algorithm 

could fail easily in the virtual sculpting process where dexel data are modified in arbitrary 
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directions. Zhu and Lee [18] presented a visibility sphere marching algorithm for 

constructing polyhedral models from dexel data for their virtual sculpting research. When 

the algorithm was applied to complex 3D objects, there could be some cracks and holes 

in the generated mesh due to topology related issues [ 19]. The Marching Cube Algorithm 

[20] has been used to generate an approximate triangular surface from tri-dexel data [21] 

and from voxel data. But this algorithm requires huge memory storage and suffers from 

some ambiguity, and it can not be applied to dexel data generated in a single direction. 

Another line of related research is the curve reconstruction study in computational 

geometry stated as follows: given a set of sample points from a curve, a reconstruction of 

the curve is intended, i.e., points are to be joined by edges in the order they appear on the 

curve. The dexel points can be seen as the points on the curves in relation to this study. 

The developed methods included the a-shape [22], ~-skeleton [23], andy-neighborhood 

graph [24]. But all of them require certain preconditions on the input points. The a-shape 

method works well for the points which are evenly distributed in the interior of an object. 

The ~-skeleton method requires the sampling density of points varied with the local 

feature size on the curve. These curve reconstruction methods can not be directly applied 

to dexel data due to the nature of their input data. 

2. CONTOUR GENERATION FROM DEXEL DATA 

2.1. Algorithm Design Methodology 

If the dexel data are sampled from a slice with one single closed contour, 

connecting the dexel points to form the contour is relative easy. Difficulties arise when 

there exist inner contours on slices taken from a 3D model with interior voids. Our 

approach to address the inner-contour difficulty is to design an algorithm that dictates 

how to connect dexel points on two adjacent rays for any considered planar slice by 

separating the dexels into groups. This requires the development of a grouping criterion, 

which categories the dexels on two adjacent rays into different groups. The main idea 

behind our design of the grouping criterion is the observation that two overlapping dexel 

spaces on two adjacent rays may form part of an inner contour. 

As an illustration ofthis observation, one slice of the 3D model on XZ plane in Fig. 

2(a) has dexel data shown in Fig. 2(b). The overlapping dexel spaces between points 6 



and 7 and between points 12 and 13 form an inner contour because the top of these 

overlapped dexel spaces is covered by dexel B and the bottom is covered by dexel A. 
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According to this observation, if a set of overlapping dexel spaces is covered by 

both a dexel beneath the bottom and a dexel right above the top, these dexel spaces form 

an inner contour and are called a closed set. For example, the set of dexel spaces between 

points 6 and 7 and between points 12 and 13 in Fig. 2(b) is a closed set. The connections 

of a closed set of dexel spaces to form an inner contour are: filling the top and the bottom 

dexel spaces, and connecting the boundary dexel points on the same side of the dexel 

spaces accordingly (e.g. connecting point 6 and point 12, and connecting point 7 and 

point 13 in Fig. 2(b)). 

(a) 
X 

- - - -- --- - --- --- -- --- --~ 

z 
(b) 

Figure 2 . Example of the Contour Generation Algorithm. (a) 3D Model (b) One Slice of 
the 3D Model on XZ Plane 



55 

Meanwhile, if a set of overlapping dexel spaces is not covered by both a dexel 

beneath the bottom and a dexel above the top, it is an open set of dexel spaces. Their 

dexel points need to be connected differently to form part of an outer contour. For 

example, the dexel spaces between points 4 and 5, between points 10 and 11, and 

between points 16 and 17 in Fig. 2(b) are an open set. The connections of an open set of 

dexel spaces are: filling the top or the bottom dexel space, depending on which is covered 

by a dexel above or beneath, and connecting the boundary dexel points on the same side 

ofthe dexel spaces accordingly. 

Based on the above discussion, the grouping criterion is defined as follows: two 

dexels on two adjacent rays of a planar slice belong to the same "group" if they overlap 

with each other. The grouping criterion represents a transitive relation ( ® ) over the dexel 

set X as follows: Vm,n,o EX, if (m® n)A(n®o), then m ®o; meaning that for three 

dexel spaces m, n and o, if m and n belong to the same group and n and o belong to the 

same group, then m and o belong to the same group. By using the grouping criterion, a 

four-step contour generation algorithm has been developed. The details are presented in 

the following. 

2.2. Algorithm Details 

For ease of discussion, the ray direction is assumed in the Z direction, which is also 

the dexel direction. The contour generation algorithm starts from the left-most dexel on 

the first ray (dexel A in Fig. 2(b)) intersected with the object. It continues to increase the 

ray number by one in X direction, and ends at the right-most dexel on the last ray ( dexel 

B in Fig. 2(b )). 

a) Step 1: Group dexels on two adjacent rays 

The objective of the first step is to categorize the dexels on every two adjacent rays 

into groups according to the grouping criterion. Two sets of dexels on Rays i and Ray i + 1 

are taken as the input and separated into a number of dexel groups Ng;,p, i e [1, RR], 

p e [1, Ni] , where p is the group index, RR is the total number of rays intersecting with 

the object on the slice, and N; is the total number of groups between Ray i and Ray i+ 1. 

For example, in Fig. 3, after the first step based on the defined grouping criterion, two 

groups are identified: the first group consists of D;+ 1,1, D;+ 1 ,2, D;, t. D;.z and Do, and the 

second group consists of D;+t,3 and D;,4. They are shown in different patterns and colors. 



56 

b) Step 2: Connect adjacent dexel points inside each group 

The aim of step 2 is to generate connections between dexel points in the same group 

along every two adjacent rays. Suppose a group of dexels consists of R; dexels (D;,1, D;,2, • 

. . D;,R;) on Ray i and R;+J dexels (D;+J ,J, D;+1,2, ... D;+J ,R;+1) on Ray i+ 1, where R;-;::_ 1 and 

R;+J -;::_1 , as illustrated in Fig. 4. D;r-+[h] and D;r~[t] are the head and the tail ofdexel 

D;J, respectively. The first two dexel points D;, 1 ~[h] and D;+ J , J~[h] should be connected 

because they are two adjacent points on the same outer boundary. Likewise, the last two 

dexel points D;,R;~[t] and Di+ J , R;+ 1~[t] are also connected. The points in between should 

be connected to the adjacent dexel points on the same ray. Thus, the rules of connections 

within a dexel group are: 

CD: Connect (D;+J ,J---+[t], D;+J ,2---+[h]), ... (D;+J , Ri+I-J---+[t], D;+J ,Ri+I- [h]) 

@: Connect (D;,1---+[t], D;,2---+[h]), . . . (D;, R;-t---+[t], D;,R;---+[h]) 

@: Connect (D;,1- [h], D;+J ,J---+[h]) 

@: Connect (D;,R;---+ [t], D;+J,Ri+t---+ [t]) 

X 
Si+ I ,3 

Si, I Si,3 Si,4 

Figure 3. Grouping Process 

Figure 4. Contouring Algorithm 

Si,s 

Ray i 

z 

Ray i+ l 

Rayi 

z 



Special cases exist when one of the two adjacent rays does not intersect with the 3D 

object, as shown in Fig. 5. The rules of connections for these cases are: 

®: WhenRi = 0 , connect (Di+J,J-+[h], Di+J ,J-+[t]) 

®: WhenRi+I = 0 , connect (Di,J-+[h], Di,J-+[t]) 

X 

Rayi+l 

Di+t,I Rayi 

-----~· 
z 

X 

Di,t 

Rayi+ l 

~ 

z 

Figure 5. Special Cases of the Contouring Algorithm. (Left) When Ri=O and (Right) 
WhenRi+I=O 

c) Step 3: Create a connection table to record the connections 
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After Step 2, each dexel point has exactly two connected dexel points, which are its 

adjacent vertices on the contour. In order to separate the points into different contours, a 

three-column connection table is created. The middle column lists the dexel points in the 

same sequence as they are generated and read. Their connecting points are stored in the 

left and right columns separately. In order to generate contours in the counterclockwise 

sequence, the left column is always filled first. After filling in all the connecting points in 

Step 2, as shown in Fig. 6, the table will be full without any empty spaces. 

d) Step 4: Traverse the connection table to construct contours 

The objective of the last step is to extract various contours from the connection 

table. The basic idea is to traverse the connecting points of one contour at a time, until all 

the contours have been extracted. The traversing sequence starts from the top to the 

bottom of the connection table. The starting point of a contour is the first unsearched 
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point. The next point of the contour is chosen based on one of two cases: in the first case, 

if none of its two connected points in the connection table has been searched, then the 

algorithm picks the one on the left as the next point on the contour; in the second case if 

the left point has been searched, then it takes the right point as the next point. This 

process continues until reaching a point (in the middle column) whose connected 

elements have been both searched. When this occurs, the contour is completed and the 

algorithm starts to search for another contour from the first unsearched point, if it exists, 

in the table. The search process continues until all the points have been traversed. The 

pseudo code is given in the appendix. 

For example, Figure 6 starts from point 1 (p1). None of its two connected elements 

(p2 and p3) has been searched, so p2 is picked from the left column of p 1. After checking 

p2, the unsearched point, p8, is picked from the right column of p2 because its left 

column has been searched. The rest of the points can be extracted in the same manner as 

listed in the sequence, pl~p2~ps~pi4~pi6~piS~p1I~ps~p4~ piO~p9, until 

reaching p3. Both of the two connected points of p3 have been searched. Therefore, this 

contour is completed. Another contour begins from the first unsearched point, which is 

p6. The same procedure is repeated until all the points in the table have been searched. At 

the end, two contours are formed in the counterclockwise sequence on the right side of 

Fig. 6. 

2.3. Contour Generation Example 

A detailed example is given in Fig. 7 to illustrate the contour generation process 

following the above steps. Figure 7(a) is a slice of a 3D solid on the X-Z plane. The dexel 

data (b) are generated by the ray casting process. The bottom-right illustration shows the 

resulting one outer contour and three inner contours after all the dexel points have been 

connected. 

2.4. Discussion of the Contour Generation Algorithm 

The connection algorithm given in Section 2.2(b) requires the ray spacing to be 

small enough. Otherwise, problems may occur as illustrated in Fig. 8. The shapes of the 

slanted thin box and the slot in Fig. 8(a) can not be reconstructed, as shown in Fig. 8(b). 

Also, when two separate objects or holes are very close to each other in X-direction, as 

shown in (d), the reconstructed contour model in (e) has different topology from the 
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original shape in that the two neighboring objects (or holes) have been combined into 

one. The above problems can be solved by decreasing the distance between adjacent rays, 

thus, increasing the resolution of dexel data. For example, by decreasing the ray spacing, 

the generated contours in Figs. 8( c) and 8(f) have captured the original topologies of the 

models in (a) and (d), respectively. 

Connected Dexel Jconnected X 
Point Point Point 

2 1 3 

1 2 8 ---------------------------- - _.,.. 
1 3 9 15 _......16 __ .,.. ---------- , 
5 4 10 

4 5 11 9 10 L--._ , ~ -.... ,., 
14 

-~ ~ .... .;!J t-... 6 12 I ~ ..,, 7 .\ , .. \ _\. I .l.-4 : I : 
6 7 13 -~-'- -+- ll ""~ i- ~ ,..!'-... 

~ 
,. 

2 8 14 

"' 
-!'---- , ---- ----- _... 2 

3 9 10 _.,.. 
4 10 9 1 

5 11 15 
_____________________________ .,.. 

z 
6 12 13 

7 13 12 

8 14 16 • Dexei point ,/Jtt, 
11 15 16 

CJ I Contour 
Dexel .. _, 

14 16 15 

Figure 6. Traversing the Connection Table to Separate Contours 
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Figure 7. Example of the Contour Generation Process 
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Figure 8. Discussion on the Validation of the Observations 

3. ANALYSIS OF THE CONTOUR GENERATION ALGORITHM 

In this section, the computational complexity and storage requirement of the 

contour generation algorithm are analyzed. Two test cases are used to verify the 

computational complexity analysis. 

3.1. Computational Complexity Analysis 

In Step 1 of the contour generation algorithm, the dexel spaces on Ray i are 

compared to the spaces on Ray i+ 1 to separate the dexels into groups. Given n; dexel 

spaces on Ray i and n i+I dexel spaces on Ray i + 1, the computation time of comparing 
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these dexel spaces is proportional to n ; x ni+I . Suppose N is the number of dexel spaces on 

a slice, D is the number of dexels on the slice, d; is the number of dexels on Ray i, and 

f3 is the number of rays intersecting with the object for the considered slice, representing 

the model ' s discretization resolution. 

Because n; = d 1 + 1 , thus, 

f3 f3 
N = _Ln; = _L(d; +1) = D+ f3 (1) 

i= l i=l 
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where a designates the average number of dexels along a ray (a = ~ ), and thus, a 

represents the complexity of an object model. When f3 >> di, it is reasonable to assume 

that the average of d 1d1+1 ( d 1dt+1 ) is equal to the average of d,d, ( d,d1 ), where i andj 

represent any two arbitrary rays. Then we have 

(2) 
1=l i=l J=l 

D2 
so didi+l = /32 (3) 

The computation time, Tt, for Step 1 of the contour generation algorithm on one 

slice is 

{3-1 {3-1 

~ rx L (nlni+l) = L (d;di+l + d; + di+l + 1) 
1=1 i=l 

= (/3 -1)(d,di+l + d, + di+l + 1) 

D2 D 
= (/3 -1)(- + 2-+ 1) p2 fJ 
= (/3 -1)(a + 1)2 (4) 

Thus, the computation time for Step 1 is c1 (/3 -1)(a + 1)2 , where c1 is a constant. In 

Step 2 and Step 3 of the contour generation algorithm, the dexel points in each group are 

connected and the connection table is generated. These computation times are each 

proportional to a.f3. In Step 4, the elements in the connection table are searched to obtain 

contours. The computation time is also proportional to a.fJ. Thus, the total computation 

time of the contour generation algorithm for one slice is: 

(5) 

By adding the computation times for the four steps, the computational complexity of 

the contour generation algorithm is O(a2 /3) for each slice. 

3.2. Memory Requirement Analysis 

In the four-step contour generation algorithm, three sets of data are created to save 

(i) the initial dexel data, (ii) the connections between dexel points, and (iii) the final 

contour data. An array is used to store the initial dexel data which has the storage cost in 
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proportional to af3. The connections between dexel points and the generated contours are 

also each saved in an array with the memory cost proportional to af3. Overall, the 

memory requirement of the contour generation algorithm is proportional to the number of 

dexels on each slice. 

3.3. Numerical Experiments 

The implementation code for the contour generation and surface reconstruction is 

written in C++. It runs on a Microsoft Windows XP workstation with a 2.8G Hz CPU, 

512 MB RAM, and a GeForce4 MX 420 graphics card with 64MB memory. The graphic­

rendering component is developed with the OpenGL library. 

Two numerical experiments were designed to verify the result of the above 

analyses. In the first test, the value of f3 is set constant, and the value of a is varied in 

the contour generation algorithm. As seen in Fig. 9, a series of skull models Bi are created 

along Z-axis, where i is the number of skull models. The same number of rays in Z 

direction is used in the ray casting process to generate dexel data so that the value of a ts 

proportional to the number of skull models. The generated contour on every slice for B 1 is 

the same and is shown in Fig. 9( d). 

Table 1 lists the computation time of the contour generation algorithm, the number 

of dexels on one slice for each of the skull models, and the value of a. f3 is the same 

( f3 =13,924) for all the skull models in this test. There is a quadratic relation between a 

and T as shown in Fig. 10. It is consistent with the results of analysis expressed by Eq. 

(5). 

In the second test, for the same model, the value of f3 is changed. The single skull 

model (B 1) from the previous test is used. As shown in Fig. 11, a linear relation exists 

between the number of rays ( f3) and the computation time ( 1) of the contour generation 

algorithm. Table 2 lists the number of rays, the number of dexels, and the value of a as 

well as the computation time of the contour generation algorithm. 



(a) (b) 

(c) (d) 

Figure 9. Numerical Experiments. (a)B1, (b)B3, (c)Bs, and the generated contour from 
BI(d) 

Table 1. Computation Results ofthe Contour Generation Algorithm 

--- 8, 8 -, 83 84 8 s 
No. of 
dexels 45,666 91 ,332 136,998 182,664 228,330 

(0) 
Average 

no. of 
dexels per 3.280 6.559 9.839 13.119 16.398 
ray (a) 
Contour 

generation 0.161 0.386 0.700 1.116 1.687 
time 
(sec) 
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Figure 10. Contour Generation Time (T) vs. Average No. ofDexels Per Ray (a) 
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Figure 11. Contour Generation Time (T) vs. Number of Rays ( fJ ) 

Table 2. Computation Time of the Contour Generation Algorithm 

Average no. Contour 
No. of No. of of dexels/ray generation 
rays (/3) dexel s (D) 

(a =D/ f3) time ( sec) 

4,225 13,650 3.231 0.047 

4,900 16,170 3.300 0.056 

6,724 22,140 3.293 0.077 

8,836 28,764 3 .255 0.100 

11 ,236 36,358 3.236 0.127 

13,924 45,666 3.280 0.161 

16,900 54,600 3.231 0.195 

19,881 65,283 3.284 0.235 
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4. IMPLEMENTATION AND EXAMPLES 

4.1. Surface Reconstruction by Tiling Contours 

In order to finally generate the triangular facets of the object's boundary surface for 

viewing purpose, the algorithm developed by Christiansen and Sederberg [25] has been 

implemented to reconstruct the surface model from planar contours. This involves first 

solving the correspondence problem, i.e. determining which two contours on two 

adjacent slices are corresponding to each other. The overlapping ratio between the areas 

of two contours has been utilized, as described by Wang and Aggarwal [26], as the basis 

to choose corresponding contours. The overlapped area must exceed a certain value for 

two contours to be considered corresponding to each other. To speed up the computation, 

which is needed for applications such as virtual sculpting and NC machining simulation, 

the overlapping area of two contours is approximated by the overlapping area of their 

rectangular bounding boxes. The tiling problem, i.e. how to connect the vertices of two 

corresponded contours to form triangular facets, is tackled by connecting the points of 

one contour to their nearest neighbors in the corresponding contour after mapping the 

corresponding contour onto the same unit square, as described by Christiansen and 

Sederberg [25]. If one contour on a slice has correspondence to two or more contours on 

an adjacent slice, which is the so-called branching problem, a special step must be taken 

in tiling the corresponding contours. The branching problem is handled by connecting the 

closest points between two or more branched contours, so as to treat the multiple 

contours as one composite contour in the tiling process. 

The above method works well when the two corresponding contours have similar 

shapes. However, if the shapes of two corresponding contours are very dissimilar, 

ambiguity becomes inevitable and some difficulty may occur. In that situation, the 

density of slices can be increased to reduce shape variations between corresponding 

contours on adjacent slices. After completing the process of corresponding, branching, 

and tiling, each tiled triangular facet consists of exactly one contour segment and two 

connection edges between the two corresponding contours. 

4.2. Virtual Sculpting 

The methods of contour generation and surface reconstruction presented above 

have been coded into computer software and incorporated in the development of an 
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experimental virtual sculpting system and an NC machining simulation system. Some of 

the research efforts on developing these systems have been discussed in previous papers 

[14-16, 27, 28]. 

A schematic of the virtual sculpting system is shown in Fig. 12. The goal of this 

experimental system is to provide the designer with an intuitive and interactive modeling 

environment including haptic interface capabilities such that the user can focus on the 

modeling intent. During the sculpting process, both the tool and the stock (initial 

workpiece) are modeled by boundary representation, where the object surface is a faceted 

approximation composed of connected, non-overlapping triangles. The sculpting tool is 

manipulated by the designer/stylist who holds and moves the stylus of the PHANToM™ 

device. The tool position and orientation are tracked by the joint sensors in the 

PHANToM™. The swept volume formed by the movement of the tool between two 

consecutive sampling times is calculated using the sweep differential equation approach 

[29]. The workpiece and the tool swept volume are sent to the ray casting process to 

obtain their dexel representations. Boolean operations on dexels are obtained by 

comparing and merging the ranges of z-values of relevant dexels. The surface 

reconstruction module can be executed to convert the dexel model into a triangular mesh 

within seconds for displaying the sculpted model viewed from any directions. A 

multithread computation environment is built in our virtual sculpting system, which 

enables suitable update rates for the various components in the run time. 

Figure 13 shows a freeform cat model created within the virtual sculpting system. 

The original cat model (without eyes in Fig. 13(a)) is imported into the system in the STL 

format. Eye cavities are first carved by sculpting the cat model with cylinder shaped 

cutters. Two eyeballs are then added and placed in the cavities by performing Boolean 

union with ball shaped cutters. The tail of the cat is also added. After applying the 

contour generation algorithm and tiling the generated contour into a triangular surface 

patch, the modified cat model can be viewed in any directions as shown in Fig. 13( c) and 

(d). 



Virtual Tool 
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Figure 12. The Virtual Sculpting System Configuration 

(a) (b) 

(c) (d) 
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Figure 13. Modeling Examples. (a) The Imported Cat Model Created from A CAD 
System (b) Eyes and Tails Created by Virtual Sculpting (c) and (d) Viewing the Modified 

Cat Model in Different Directions 
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4.3. NC Machining Simulation 

The NC machining simulation system has the same geometric modeling engine as 

the virtual sculpting system. The only difference is that in the NC machining simulation 

system, the cutter location file is generated by a CAD/CAM system, instead of by the 

designer/stylist in the case of virtual sculpting. Figure 14 shows a mouse model that is in 

the midst ofNC machining simulation. It demonstrates that the triangular surface can be 

reconstructed from the dexel data interactively during the animation of simulated 

machining. The sculpted model can also be rotated in arbitrary angles to provide different 

views of the model. 

(b) 

Figure 14. A Mouse in the Midst ofNC Machining Simulation. (a), (b) and (c) 
Show the Generated Mouse Viewed from Two Different Directions after Performing 

Surface Reconstruction during the Machining Simulation 

5. CONCLUSION 

This paper has presented the development of a novel method to extract 2D 

contours from dexel data for the purpose of surface reconstruction for a 3D model. The 

surface reconstruction process solves the view-dependent problem inherent in dexel­

based applications such as virtual sculpting and NC machining simulation. The dexel data 

are first put into different groups using a grouping criterion. Then the dexel points in the 

same group are connected using a set of connection rules. A connection table is created 
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which lists all the dexel points and their connected dexel points on one slice. Then the 

dexel points in the table are connected to construct the contours with points on each 

contour in a counterclockwise sequence. The generated contours are used to reconstruct 

the triangular surface model by implementing existing techniques, which are incorporated 

into our system. The computational complexity of the contour generation algorithm has 

been analyzed and verified with numerical experiments. 
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Triple-dexel modeling is a geometric representation method which depicts the 

intersection of a solid with rays cast in three orthogonal directions. Due to its fast 

Boolean operations, simple data structure and easy implementation, triple-dexel modeling 

is highly suitable for real-time graphics-based simulation applications such as NC 

machining verification and virtual sculpting. This paper presents a novel surface 

reconstruction method from triple-dexel data by first converting the triple-dexel data into 

contours on three sets of orthogonal slices and then generating the solid's boundary 

surface in triangular facets from these contours. The developed method is faster than the 

voxel-based method, and the reconstructed surface model is more accurate than the 

surface reconstructed from voxel representation using the marching cube algorithm. 

Examples are given to demonstrate the ability of surface reconstruction from the triple­

dexel model in virtual sculpting. 

1. INTRODUCTION 

Van Hook [1986] introduced the notion of dexel as an abbreviation for ""depth 

element." Single-dexel representation of a solid, also called ray representation, is 

constructed via a process of computing intersections between the solid and rays cast in 

one direction. For a given solid, a set of parallel and equidistant rays are projected and 

intersected with the solid. For each ray the intersected points are stored in the following 

manner. First, a dexel is defined by two intersection points in a line segment that is 
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completely inside the solid. Then the dexels on a ray are sorted and concatenated into a 

linked list structure. Finally, the dexel lists are organized into a dexel matrix, which 

represents the single-dexel model as shown in Fig. 1. Single-dexel modeling is among the 

most notable approximation methods used to support NC machining simulation [Huang 

and Oliver, 1995~ Konig and Groller, 1998] and virtual sculpting [Peng and Leu, 2003~ 

Leu et al., 2005~ Peng et al., 2006] because it allows fast and robust Boolean operations, 

needs little memory, and has simple data structures for real-time simulation. However, in 

the single-dexel model, low sampling quality occurs in regions where the surface normals 

are nearly perpendicular to the ray direction. To address this problem, a triple-dexel 

model can be constructed by casting rays in three orthogonal directions (normally in x, y, 

and z directions) to discretize the model, as shown in Fig. 2. This model is also used in 

NC machining simulation [Muller et al., 2003] and virtual sculpting [Ren et al., 2006]. 

P13 041 P14 
P9 031 P10 P11 032 P12 

P5 021 P6 P7 022 PS 

P1~P2 p~ 012 P4 • 

(a) (b) 

Figure 1. Illustration of the Ray-Casting Process and the Single-Dexel Representation 

The conversion from the triple-dexel data of a 3D model into triangular surface 

patches is an important issue. The reconstructed triangular facets can be used by 

conventional CAD/CAM/CAE systems to perform geometric design, engineering 
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analysis, and automated manufacturing applications. Further, the triangulated 3D model 

can be viewed in any directions as desired using standard routines of computer graphics 

software. The surface reconstruction from triple-dexel is also difficult because 

reconstruction methods have to overcome topological ambiguity, which is usually being 

dealt through grid based methods. 

z 

Figure 2. Construction of a Triple-Dexel Model 

Benouamer and Michelucci [1997] utilized the marching cube algorithm to 

generate the triangular surface model from triple-dexel data by first generating voxel data 

from the triple-dexel data. However, the reconstructed surface may suffer from topology 

errors and poor approximation of sharp features. In addition, the computations are 

expensive because the computation complexity is proportional to the number of voxels. 

In a s~nse the triple-dexel data can be converted into point clouds and reconstructed using 

Delaunay triangulation or surface fitting methods available from the existing literature. 

However, the Delaunay triangulation and surface fitting processes are also 

computationally expensive. Triple-dexel data can be also converted into parallel slices 

where triangular surfaces can be reconstructed using surface tilling algorithms [Barequet 
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and Vaxman, 2007]. However, the topology issue is still a major problem for the surface 

reconstruction. Svitak and Skala [2004] have shown that contours on three orthogonal 

slices offer connectivity information among dexel points on each slice, thus, not only the 

reconstructed surface model is topological correct and accurate, but also the reconstruct 

process is fast. However, to our best knowledge, there has been no previous work on 

generating contours on three sets of orthogonal slices from triple-dexel data for the 

purpose of reconstructing a surface model. 

The work described in the present paper is the first to reconstruct a triangular 

surface from triple-dexel data by using three orthogonal sets of contours. Our main 

contributions in this paper include: (i) creation of a methodology of surface 

reconstruction from triple-dexel data, (ii) development of a contour combination 

algorithm to improve the accuracy of contours in representing the 3D model's cross 

sections, (iii) incorporation of a volume-based surface tiling algorithm in the surface 

reconstruction process, (iv) complexity and accuracy analysis of the developed method, 

and (v) comparison with the voxel-based surface reconstruction method. 

Our surface reconstruction process first generates six sets of planar contours from 

the triple-dexel data using a previously developed contour generation algorithm [Zhang et 

al., 2007]. A contour combination algorithm developed in the present paper is then used 

to combine two sets of corresponding contours on parallel slices into one set of contours 

along each of x, y and z axes, forming a total of three sets of contours on slices parallel to 

xy, yz, and zx planes. A volume-based surface tiling algorithm [Svitak and Skala, 2004] is 

then utilized to generate triangular facets for the boundary surface of the concerned 3D 

model from these three sets of contours. Then the developed method is analyzed in terms 

of computational complexity, memory cost, and accuracy of the reconstructed surface. 

Numerical experiments show that the developed method generates a more accurate 

surface than that reconstructed from voxel data under the same grid resolution and the 

level of the object's details, and that this method is more efficient than the voxel-based 

method. 

The paper is structured as follows. In Section 2, related work on triple-dexel 

based modeling and surface reconstruction methods is reviewed. Section 3 details our 

method of surface reconstruction including how to correspond and combine the generated 
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contours, and how to tile the three orthogonal sets of contours into triangular facets. 

Computational complexity, storage requirement, and surface errors are analyzed in 

Section 4. Section 5 describes implementation examples of the developed surface 

reconstruction process and applications in virtual sculpting. The triple-dexel modeling is 

compared with the voxel representation for surface reconstruction in Section 6. 

Conclusions are drawn in Section 7. 

2. RELATED WORK 

2.1. Triple-Dexel Based Solid Modeling 

Triple-dexel modeling is an extension of single-dexel modeling for the purpose of 

improving data sampling quality. The memory cost of a triple-dexel model is 

proportional to the surface area of the solid model and the ray density (no. of rays per unit 

area), and the time of accessing the linked list structure that stores the dexel data is 

proportional to the number of dexel elements in the list. Muller et al. [2003] developed a 

triple-dexel based online milling simulation system and Ren et al. [2006] developed a 

virtual sculpting system with haptic feedback by using the triple-dexel model. However, 

both of these studies did not reconstruct triangularized surface models, which are very 

useful for visualization and other purposes in CAD/CAM/CAE. 

2.2. Surface Reconstruction from Triple-Dexel Data 

Dexel modeling has a view-dependent problem because the ray directions are 

fixed and the dexel data only records the geometric information of a 30 object in the ray 

direction(s), as seen in Figs. 1 and 2. Thus, in the practice of dexel-based simulation 

without surface reconstruction, only a limited number of views can be generated for the 

simulation, unlike the generation of a surface model which can be viewed from any 

desired direction. To solve the view-dependent problem for triple-dexel data, Benouamer 

and Michelucci [ 1997] applied the marching cube algorithm [Lorensen and Cline, 1987] 

to generate the 30 object's boundary surface. Although simple and powerful, this 

technique suffers from poor approximation of sharp features and may encounter 

ambiguous cases in the surface reconstruction process. Muller et al. [2003] implemented 

the point-based rendering method developed by Pfister et al. [2000] for their online 



sculpting system. However, it was difficult to interface the sculpted models with 

CAD/CAM/CAE systems for further design and analysis. 
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Another related research is the study of surface reconstruction from point clouds 

since dexel data can be treated as point cloud data in 3D space. Literature in this research 

comes mainly from the fields of image processing, computational geometry and computer 

graphics [Azernikov et al., 2003]. Delaunay-based methods [Edelsbrunner and Mucke, 

1994; Bernardini et al., 1999; Amenta et al., 2001; Dey et al., 2001] have been shown 

successful to produce a triangular mesh from point cloud data. However, the ball-pivoting 

algorithm [Bernardini et al., 1999] took 2.1 minutes to reconstruct 361K samples on 

450MHz Pentium II Xeon PC, and the power crust method [Amenta et al., 2001] took 

about 6 minutes to reconstruct 30,000 samples on a 400 MHz Sun computer. Besides 

Delaunay-based methods, surface fitting techniques [Carr et al., 2001; Alexa et al., 2001; 

Ohtaka et al., 2003, 2006] have become popular recently for surface reconstruction 

because of their ability to account for noise in the input data. Nevertheless, one of the 

fastest implicit surface fitting methods [Ohtaka et al. 2006] still took 42 seconds to 

reconstruct the surface from a 362K input data on a 1.6 GHz Pentium IV PC. Our contour 

based method developed in this paper for surface reconstruction from triple-dexel data is 

more than one order of magnitude faster than the Delaunay triangulation or surface fitting 

based methods. 

3. SURFACE RECONSTRUCTION FROM TRIPLE-DEXEL DATA 

The main idea of the proposed surface reconstruction method is to generate 

contours from triple-dexel data on three sets of orthogonal slices, and utilize these 

contours to reconstruct the boundary surface of the 3D model. Overall, the method has 

three main steps. First, the contour generation algorithm takes the dexel data in each of x, 

y, and z directions as the input and generates planar contours on two orthogonal sets of 

parallel slices. For example, the dexel data in x direction is used to generate xy contours 

and xz contours. Next, on each set of parallel slices, the two sets of contours generated 

from the first step are combined into one set of contours. For example, an xy contour is 

combined with a yx contour on the same slice to generate a contour parallel to xy plane. 

After these two steps, there are three sets of contours (i.e., contours on planes parallel to 
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xy, yz and zx planes). In the last step, a volume-based tiling algorithm is utilized to 

generate triangular facets of the solid's boundary surface from the three sets of contours. 

The schematic diagram of the proposed method is shown in Fig. 3. 

xy xz yz yx zx zy 

Figure 3. Proposed Method of Surface Reconstruction from Triple-Dexel Data 

3.1. Contours Generation Algorithm 

A contour generation algorithm has been developed to reconstruct contours from 

single-dexel data [Zhang et al., 2007]. A main difficulty in developing such an algorithm 

is to identify the dexel points which lie on inner contours, such as point 6 and point 12 in 

Fig. 4, and to construct connections between the dexel points. Central to the developed 

algorithm is a grouping criterion, which categorizes the dexels on two adjacent rays into 

different groups. The main idea of the grouping criterion is realizing that two overlapping 

dexel spaces, such as the space between points 12 and 13 and the space between points 6 
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and 7 in Fig. 4, on two adjacent rays may form part of an inner contour, such as the 

connections between points 6, 7, 13 and 12. Thus, the end points of the two overlapped 

dexel spaces are connected, e.g. point 6 is connected with point 12 and point 7 is 

connected with point 13. Overlapped dexel spaces on adjacent rays· separate dexels into 

different groups, and within each group the end points of the dexel spaces are connected. 

Overall, this contour generation algorithm has four steps: first, dexels on every two 

adjacent rays are categorized into groups according to the grouping criterion. Second, 

inside each group, adjacent dexel points are connected. Third, a connection table is 

created to record connections between dexel points. Finally, the connection table is 

traversed to construct contours in a counterclockwise sequence. 

Connected Dexel Connected X 
Point Point Point 

2 1 3 ~ ~ 

1 2 8 ~-----------------------------~R~6 

1 3 9 15 ~ 
d5,1 

....... 16 
5 4 10 - - - - - - -- - - .-.. _ ,_. - - ~ Ray5 

9 d4,1 10 7 A.C ~' .. ., .. ~~ .... ' 14 4 5 11 
...... -1 ........... . -t; ~ ~ ........ ' .!!t' - - i - - - - -, - ~ Ray4 

7 6 12 ..... , ,~ .. .-, '4Ift. • 
] .. ,-, """\" 104,2 ~~ • 1 a4,3 • 

6 7 13 1-~-~--+- ~ ~:- Q~ 1~' fl ~-~Ray3 
2 8 14 ~ ... ______ a3,2 a3,3, 

------~ ------- ~~ 2 R 2 3 9 10 ---- --~ ~ 
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, 
4 10 9 

5 11 15 - - --- - -- - -- ---------- - --- --- - -~Ray1 -.. z 6 12 13 

7 13 12 

8 14 16 • Dexel point 
~ .... 

11 15 16 
D I Contour 

Dexel ... _, 
14 16 15 

Figure 4. Contour Generation from Single-Dexel Data 
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To illustrate the contour generation process, Fig. 4 is used as an example. On Ray 

4 and Ray 5, dexels d4,2, d4,3, and ds,l are in one group because they have overlaps, and 

d4,1 is in another group. Thus, points 12 and 13, points 11 and 15, and point 14 and point 

16 are connected. Because dexel d4,l is a top dexel, points 9 and 10 are connected. Once 

all the connections are made for every two adjacent rays, a connection table can be 

created and all the connections are listed in the table as shown on the left side of Fig. 4, 

where the middle column lists the dexel points in the same sequence as they are 

generated and read. Their connecting points are stored in the left and right columns 

separately. In order to generate contours in the counterclockwise direction, the left 

column is always filled with the smaller index. Finally, the sequence of points for each 

contour is generated by following the connection from one point to the next, until 

eventually coming back to the first point. The details of this algorithm are described in 

[Zhang et al., 2007]. 

3.2. Contour Combination Algorithm 

After applying the contour generation algorithm to triple-dexel data, two sets of 

contours are present on planes parallel to each of xy, yz and zx planes. The objective of 

the contour combination algorithm is to correspond and combine these two sets of 

contours into one set of contours to more accurately represent the cross-sectional profiles 

of the 3D model. For example, in Fig. 5, contour At generated from dexel data in x 

direction is corresponded with contour Bt generated from dexel data in y direction to 

create contour C 1• Likewise, contour A2 is corresponded and combined with B2 to 

generate contour C2. 

3.2.1. Algorithm Design Methodology 

Since there may be multiple contours Ai (i=1 , .. . ,u) and B1 (j=1 , ... , u) on each slice, 

the first step is to find correspondence between the input contours. Then, for each two 

corresponded contours (i.e., Ai and B1), a starting pair of points from Ai and their 

associated points from B1 are found. After inserting these associated points from B1 into 

A;, we continuously search for the rest of point pairs from A;, which have at least one 

associated point from B1 in between, and insert the associated points. Finally, the 

combined contour is created when all the points from Bi have been inserted into A;. 
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• + 

Figure 5. Contour Combination Algorithm. (a) xy Contours, (b) yx Contours and (c) 
the Combined Contours 

Here a local connection method is developed by realizing both input contours are 

in the counterclockwise direction. If we scan the points of contour A; in the 

counterclockwise sequence, the points of contoilr BJ should be continuously added to 

contour A; in the same counterclockwise sequence. For example, a sequence of three 

points b2,6 , b2,7, and b2,8 are added between points a2,s and a2,9 in Fig. 5(c). This implies 

that if the first ( bJJ) and the last ( bJ,L) associated points between points a;,k and a;,k+ 1 are 

correctly selected, it is trivial to find the rest of the associated points in between and 

insert them into A;_. It also implies that point bJ.t+I is the next point to be considered for 

inserting into contour A;. So it is only necessary to check the next pair of points of 

contour A; to see if bJ.t+I is in between. If so, bj./+1 and its following points from contour BJ 

can be added until the last associated point (bj,o) is identified according to the criteria 

defined in Section 3.2.3. This process is repeated until all the points from contour BJ have 

been added to contour A;. This contour combination method is efficient because of using 

the point sequence information in the input contours. 

3.2.2. Contour Correspondence 

The contour correspondence problem involves finding which contour from 

contour set A is to be combined with which contour from contour set B. The overlapping 
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area ratio [Wang and Aggarwal, 1986] between two contours has been utilized as the 

criterion to deal with this correspondence problem. The overlapping ratios between A; and 

all the contours from contour set B are firstly calculated. Then the contour which has the 

maximum overlapping ratio with A; is chosen. Likewise, every other contour in contour 

set A can be corresponded with a contour in contour set B. Here the numbers of input 

contours from each set are assumed to be equal. To speed up the calculation, the 

overlapping area between contour A; and contour B1 is approximated by the overlapping 

area of their bounding boxes. 

3.2.3. Contour Combination 

The contour combination algorithm consists of two main steps to combine the 

corresponded contours (say, A; and B1). The first step is to identify the starting pair of 

points a;,k and a;,k+l of contour A;, to find their associated points (i.e., b1J, ... , b1,~) and to 

add them between a;,k and a;,k+ 1· The second step is to continuously search from ai.k+ 1 and 

a;,k+2 to find the next pair of points in contour A; which has at least one associated point 

from contour B1. Then the associated points are identified starting from bJ.l+ 1 and onwards 

in B1 for insertion. The second step is repeated until all the points from contour B1 have 

been added to contour A;. The details of this two-step algorithm are described below. 

Step 1 : Searching the starting pair of points from Ai and their associated points from Bj 

Suppose contour A; is generated from rays in x direction. two adjacent points a;,k 

and a;,k+ 1 are firstly identified in A; such that there is at least one y-directional ray in 

between. Mathematically, this requires 

INT[(al,k ~ [x])! Llx] * INT[(ai,k+J ~ [x])/ Llx] (1) 

where INT is a function to remove the decimal part of a number and return the resulting 

integer, L1x is the grid length in x direction, and al,k ~ [x] is the x value of point ai.k· The 

pixels containing the first pair of points a;,k and a;,k+l are required to have at most one ray 

intersecting point appearing on any edge of these pixels. If a;,k and a;,k+l are on the same 

ray as shown in Fig. 6(a), pixelsp1,p2,p3 andp4 must satisfy this requirement. If a;,k and 

a;,k+ 1 are on two adjacent rays as shown in Fig. 6(b ), pixels Ps, P6, P7 and pg which are the 

pixels containing a;,k and ai.k+l, must satisfy this requirement. Taking contour A2 in Fig. 

5(a) as an example, points a 2,1 and a 2.2 can be the starting pair because there is ay ray 
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between them, and that the pixels PI ,P2, P3 and P4 have no more than one ray intersecting 

point on any of their edges. Note that there could be many pairs of a;,k and a;,k+l that 

satisfy the requirements. Any of these pairs can be used as the starting pair. However, it 

is possible that the first pair of points is not found because of an insufficient number of 

rays. In such case, we can always cast additional rays to increase the ray density as 

discussed in Sec. 3.2.4. 

Without loss of generality, in the starting pair of points, a;,k is assumed on the left 

side of a;,k+l· Then the first associated point (b;J) and the last associated point (b;.t) from B1 

for points a;,k and a;,k+l can be found as follows: b;J is on the line segment liJ, which is on 

they ray immediately to the right of a;,k; and b;.l is on the line segment /;,1 , which is on 

they ray immediately to the left of a;,k+ I· As shown in Fig. 6( a), if a;,k and a;,k+ 1 are on the 

same ray, each of lifand l;,1 consists of two pixel edges. If a;,k and a;,k+ l are on two 

adjacent rays, each of l;J and lu consists of one pixel edge as shown in Fig. 6(b). In this 

case, the points on l if and lu in (b) are the first and the last associated points, respectively, 

from contour B1. 

y: : 
I I 
I I I I 

;,k: PI~-: - ~-- t:-p; ;,t;:k+l 

--~·- ~ ------ -:--•~- Yo 
I I l,·r··· l,·t I p I I P2 I • • I 4 I 

- _,- I---- 1-- :- Y2 
I I 

I I X 

(a) 

yl I 
I I 
I I I I _J ____ L __________ J ____ L __ 
I I I I 

I I I P7 I 1 I • • •Qj,k+JI I -:- -l- ---]: -e ~ - YJ 
ai k: Ps : 1; r · · · lu : Ps : 
·-:·- I ....: --- 1-- ,_. Y4 

1 I I I 
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I I I I X - - - - --- - - - - - - ... --- .... -

Xj X4 
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Figure 6. Locations of the First and the Last Associated Points of Contour B1. (a) Ai,K and 

Ai,K+I on the Same Ray and (b) Ai,K and Ai,K+I on Adjacent Rays 

To pinpoint the exact first and last associated points from contour B1 when a;,k and 

a · k+ are on the same ray as shown in Fig. 6(a), Table 1 is created with four possible 
I, I 
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combinations of their locations. For example, CAl in Table 1 represents the case of 

having one point on liJ and one point on lu, and CA2 represents the case of having one 

point on l;Jand two points on lu. Note that on each of l11 and lu, there is at least one point 

from B1 because the contour is continuous. 

Table 1. Combinations of the First and the Last Associated Points 

No. of points on lu _No. of points on !11 1 2 

1 CAl CA2 

2 CA3 CA4 

For each of the four cases, the first and last associated points from contour B1 are 

determined based on the reasoning that the line segment connecting these two points has 

no intersection with any rays parallel to x axis, otherwise points a;,k and au+t would not 

have been two adjacent points of contour A;. Note that the first point and the last point 

would be an identical point if there is only one y-directional ray passing between a;,k and 

a;,k+l· The first and last associated points for the four cases are as follows: 

CA 1 : The point on liJ is the first point and the point on lu is the last point. 

CA2 and CA3: The two points that are on the same side ofy=yo in Fig. 6(a) are the first 

and last associated points, where y=yo is the line passing through points a;.k and a;,k+ I· 

CA4: The two points which have the same counterclockwise sequence as points a 1.k and 

a;,k+I are the first and last associated points. For example, in Fig. 7, between the two 

adjacent points a;.k and a;,k+t, there are two sets of points b;.g~b;.g+-2 and b;.r+r~b1,r as the 

candidate associated points from B1. Because b;,g and bJ.g+-2 have the same directional 

sequence as points a;,k and ai.k+ 1, they are the first and last associated points. The pseudo 

code for Step 1 is given in the Appendix. 



• Points in A; 

0 Points in B1 

Figure 7. Illustration of the Solution to the Case CA4 

Step 2: Continuously searching for the next pair of points from Ai and their associated 

points from Bj 
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From the result of Step 1, b1.t+I is the next candidate point to be added to contour 

A;, so we only need to continuously search contour A; from a;,k+l and a;,k+2 to find the next 

pair of points a;,r and a;,r+l to consider inserting bJ,/+1, and to find the last associated point 

from contour B1 between points a;,r and a;,r+l· 

According to Eq. (1 ), for two adjacent points a;,r and a;,r+l, if 

INT[(a; r ~ [x])/ ~] =t: INT[(a; r+l ~ [x])/ ~] 
' ' 

(2) 

then a;,r and a;,r+l must have associated points from contour B1 in between. The first one is 

bJ,l+l· To find the last associated point (b1,o) between a;,r and a;,r+l, we can search contour 

B1 from bJ,l+l onward to find the point, b1,o, that satisfies the following criteria: 

b1,o is on one of the edges of the pixels that contain a;,r+J 

they value of a;,r+ 1 is between they values of b1,o and b1,o+ I· 

Mathematically, this requires 

ai,r+l ~ [y] E [min(bj,o ~ (y],bj,o+l ~ [y]), max(b;,o ~ [y],b;,o+l ~ [y])] (3) 

where a; r+l ~ [y] represents they value of point a;,r+l· For example, Figure 8(a) shows 

two points a;.r and a;.r+l from A; satisfying Eq. (2). Since we know b1.= is the first 

associated point and because bJ.=+2 satisfies the above criteria, b1.=+z is the last associated 



point between points a ;, r and a;,r+-1· After inserting the points, the combined contour of 

contours A; and B1 is shown in Fig. 8(b). 

~ 

bi.=:>-~.r+ l bj,z+2 
"~ 
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bJ,= bj,z+ l a;,r 

X 

(a) (b) 
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Figure 8. Contour Combination Process. (a) Two Generated Contours from the Contour 

Generation Process and (b) the Combined Contour 

If two adjacent points a;,r and a;,r+- l satisfy the following relationship 

INT[(a;,r ~ [x])/ ~] = INT[(ai,r+t ~ [x])/ ~] (4) 

there is still a possibility that a;,r and a;,r+-l have associated points from B1 in between. If 

b1,1+1 satisfies the following criteria: 

bJ,/+1 is on one of the edges of the pixel that contains both a;,r and a;,r+ l 

they value of a;,r is between the y values of b1,1 and b1,t+l 

then a;,r and a;,r+- l will have at least one associated point, and the first one is bJ,I+ 1• In this 

case, the same criteria as those given above can be utilized to find the last associated 

point (b1,o) in between. If a;,r and a;,r+-1 have no associated point from B1 in between, the 

next pair of points inA;, i.e. , a;,r+ l and a;,r+-2 will be checked to see if they have any 

associated point in between according to the above criteria. By repeating Step 2 for the 

rest of points in A; until all the points in contour B1 have been added to contour A;, the 

combined contour is finally obtained. The pseudo code for Step 2 is given in the 

Appendix. 
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Figure 9 is taking as an example to illustrate the contour combination algorithm. 

The original contour in Fig. 9(a) is sampled by dexel data in x direction andy direction. 

The generated contours are shown in Fig. 9(b) as contour A; and B1. Contour A; is 

searched to find a starting pair of points, a;, 1 and a;,2 , which satisfy the criterion of having 

at most one ray intersecting point on any edge ofthe pixels (pa,Pb,pcandpd in Fig. 9(a)) 

containing au or ai,2. 

The first associated point can be easily determined as point b1,1 by searching 

contour B1. The next pair of points from A; are a;,2 and a;,3 because their y values satisfy 

Eq. (2). Thus, b1.2 is the first associated point. b1.2 is also tested to see if it is the last 

associated point according to the two given criteria. Because b1.2 is on one of the edges of 

the pixel that contains a;, 3 , and they value of a;,3 is between they values of b1,2 and bJ. 3, 

thus, b1.2 is the last and the only associated point between a;,2 and au. Similarly, the 

associated points between a;,3 and a;,4 can be found to be points b1.3, b1,4. b1.s. and b1.6 . By 

repeating the same procedure for the rest of points until every point in contour B1 has 

been added into A;, the combined contour is generated as shown in Fig. 9( c). 

3.2.4. Discussion 

In the contour corresponding process, the numbers of input contours from the two 

contour sets are assumed to be equal. However, if the distance between adjacent rays is 

not small enough, the reconstructed contours from dexel data in two orthogonal 

directions may have different topologies. For example, in Fig. 1 O(a), the input contour is 

sampled with x directional andy directional rays. The generated contours are shown in 

(b) and (c) of the same figure. Because the small edge between points PT1 and PT2 is 

sampled by a ray in x direction, but not by any ray in y direction, one contour is generated 

from the x-dexel data but two contours are generated from the y-dexel data. In this case, 

the contour combination algorithm would fail. This problem can be solved by increasing 

the ray resolution in the contour generation process until the generated contours from 

dexel data in two orthogonal directions have the same topology. For example, the same 

contour of Fig. 1 O(a) is taken as an input with a higher resolution of rays in y direction as 

shown in (d). The generated contour from the y-dexel data is shown in (e). The generated 

contour from the x-dexel data is the same as (b). Since the contours in (b) and (e) have 
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the same topology, our contour combination algorithm can combine the two contours to 

reconstruct the correct shape as shown in (f). 
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Figure 9. Example of the Contour Combination Process. (a) Original Contour, (b) Two 
Generated Contours from the Contour Generation Process and (c) the Combined Contour 

(Cont.) 
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Figure 10. A Case Study of the Contour Combination Process. (a) The Input Contour 
with X-Dexel and Y-Dexel Data, (b) Contour Generated from the X-Dexel Data, (c) 

Contours Generated from the Y -Dexel Data, (d) The Input Contour with an Increase of 
Rays in Y Direction, (e) Contours Generated from Y-Dexel Data in (d), and (f) Combined 

Contour from (b) and (e) (Cont.) 

Another special case is illustrated in Fig. 11. The initial shape is shown in (a). 

Because the space between adjacent rays is not small enough, the generated contours 

have neither the same topology, nor any overlapping area as shown in (b). The contour 

combination algorithm would again fail in this case. After increasing the number of rays 

in x and y directions as shown in (c), the reconstructed contours are in (d) and (e). The 

combined contour using our algorithm is in (f). This example again shows that the 

contour combination problem can be solved by increasing the density of rays. 
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Figure 11. A Case Study of the Contour Combination Process. (a) the Input Contour with 
X- and Y-Dexel Data, (b) Contours Generated from the X-Dexel Data and Y-Dexel Data 

' (c) the Dexel Points after Increasing the Number of Rays in X and Y Directions, (d) 
Contours Generated from X-Dexel Data in (c), (e) Contours Generated from Y Dexel 

Data in (c), and (f) Combined Contour from (d) and (e) 

3.3. Volume-Based Surface Tiling Algorithm 

After the contour combination process, three sets of orthogonal slices of contours 

are generated. The volume-based tiling algorithm of Svitak and Skala [2004] is utilized to 

reconstruct the boundary surface of the 3D model from these contours. The main idea of 

this volume-based tiling algorithm is to generate triangular facets within each rectangular 

box associated with the rays in x, y and z directions. Because the three sets of orthogonal 

contours contain the positions and connectivity of all triangle vertices, the problem of 

generating triangular meshes within each box becomes the problem of searching the 

locations and connection information of the vertices from the three sets of contours that 

have been generated. Once this information is obtained, it is trivial to generate the 

triangular facets within each box by using a triangular patching algorithm. 
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The volume-based tiling algorithm consists of three steps. Given a triple-dexel 

data with M, N, and 0 numbers of divisions in the x, y and z axes, respectively, the 3D 

space is divided into Mx N x 0 equal-sized rectangular boxes. The algorithm first 

identifies the Boundary Sub-Volumes (BSVs) that are the boxes having non-null 

intersections between their edges and the solid's boundary surface. Second, the three 

orthogonal sets of contours are searched to find a close loop of vertices within each BSV. 

Finally, triangular facets are created within each BSV by patching these vertices. 

Some details of the algorithm are given in the follows. The algorithm identifies 

the BSVs by searching the intersection points within the object's boundary surface along 

the three orthogonal sets of rays. For example, in Fig. 12(a), the intersection point 

between ray R1 and the object's boundary surface is point p and thus, boxes A, B, C and 

Dare the BSVs. Within each BSV, the boundary surface of the object forms a close loop. 

To find the close loop of vertices within a BSV, the algorithm starts from the point on the 

bottom of the BSV and ends when coming back to the starting point. 

/~ /: ~ 

~A 
/ 

:/ B . ·~ ..... ~.v.·· .. 
: ~ ).D. 1/·c ~ 

p 
T1 

(a) BSV2 

Figure 12. Volume Tiling Algorithm. (a)Identification ofBoundary Sub-Volumes and 
(b) Generation of Surface Patches within Two Boundary Sub-Volumes 

Taking Fig. 12(b) as an example, within BSV 1, the search starts from point a on 

the bottom. After searching contour c2 on the xy plane, the next point found is point b. 

Because point b is on both contour c2 and contour c4, thus, contour c4 is searched to find 
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the next point, which is point e. The search continues to find point d and then point a, 

which is the sarting point. Thus, within BSVl, the close loop of points a---+h---+e---+d---+a is 

generated and then patched into two triangular facets abe and aed. Likewise, the close 

loop h---+c---+j---+e---+b is generated within BSV2. 

4. ANALYSIS 

In this section, the computation complexity and the memory requirement of the 

contour generation algorithm and the contour combination algorithm are analyzed. 

Further, the surface error is analyzed to estimate the quality of the reconstructed surface. 

4.1. Computational Complexity Analysis 

4.1.1. Contour Generation Algorithm 

The contour generation algorithm using dexel data has four steps: (1) grouping the 

dexels, (2) connecting the dexel points, (3) constructing the connection table, and (4) 

traversing the dexel points in the table. According to the analysis described in a previous 

paper [Zhang et al., 2007], the computation time for Step 1 is cifi(a+l)2 , where a is the 

average number of dexel points along a ray, .B is the number of rays intersecting with the 

object on a slice C.B >> 1 ), and c1 is a constant. In Step 2 and Step 3, the dexel points in 

each group are connected and the connection table is generated. The computation time of 

these two steps are each proportional to afi. In Step 4, the points in the connection table 

are searched to obtain contours. The computation time of this step is also proportional to 

afi. Thus, the total computation time of the contour generation algorithm for one slice is 

c 1fi(a+ Ii+ c2afi, where c2 is a constant. In triple-dexel modeling, suppose M, Nand 0 are 

the numbers of divisions in the x, y and z axes, respectively, then the x dexel data 

generates 0 number ofxy slices and Nnumber ofxz slices in the contour generation. For 

a xy slice, since there are N number of rays in x direction, the computation time of the 

contour generation algorithm for the x dexel data on xy slices can be calculated by 

replacing .B with Nand taking a as the average number of dexel points per ray in the 

triple-dexel model, i.e., a = T I(MN +NO+ OM), where Tis the total number of dexel 

points of the triple-dexel model. The resultant computation time is ( c1 (a+ 1 iN+ c2aN)O. 

For the x-dexel data on xz planes, the computation time is ( c3( a+ 1 )20+ c4aO)N. Thus, the 

complexity of the contour generation algorithm for x-dexel is O(aTx) where Tx is the 
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number of dexel points in x-dexel data. Likewise, the computation time for y-dexel and z­

dexel data can be found. Thus, the total computation complexity for the contour 

generation algorithm is: 

(5) 

where Ty and T= are the numbers of dexel points in x-dexel and y-dexel data, respectively. 

4.1.2 Contour Correspondence Algorithm 

The contour correspondence operation is done between two sets of input contours 

A and B on each slice. In this operation, the bounding box of each contour is calculated 

and the overlapping ratio between every contour from contour set A and every contour 

from contour set B is computed. The computation time is c5(PA+P8 )+ c6u2, where PA and 

P8 are the numbers of points in contour sets A and B respectively, u is the number of 

contours in each of contour sets A and B, and cs and c6 are constants. Since u2 is much 

smaller in comparison with PA and P8 , this computation time is proportional to 

cs(PA+Pa). 

4.1.3. Contour Combination Algorithm 

The contour combination operation has two steps. The first step requires 

searching for the first pair of points from A; and their associated points from B1, and then 

the second step continuously searches for the rest of point pairs from A; to identify each 

pair that has at least one associated point from B1 in between. Meanwhile, the associated 

points from contour B1 are also identified and inserted into A;. The first step is run once 

for every two corresponded contours. Finding the starting pair of points in A; that satisfies 

the criteria discussed in Section 3.2.3 takes c1Pa,;, and searching for their corresponding 

points in contour B1 takes csPhJ time, where Pa.i and PhJ are the numbers of points in 

contour A; and contour B1, respectively. The second step searches for the next pair of 

points in A; which has associated points from B1 in between, identifies the associated 

points, and inserts these points into A;. The time taken for this operation is c9Pa,;+ c 10PhJ· 

This process is repeated until all the points in contour BJ are added to A;. Thus, the overall 

computation time for the contour combination operation for contour A; and B1 is 

(c7+c9)Pa,;+ (cs+c 10)PbJ·· By summing the computation times for all the contours on one 

slice, i.e., for two sets of contours A; (i=I, ... , u) and BJ (j=I, .. . , u), the computation time 

of the contour corresponding and combination operations per slice is 
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u u 

Cs(PA +PB)+ L(c7 +c9)Pa.i + L(C8 +c10 }~./ =c11 PA +c12 P8 =c13 P (6) 
i=l j=l 

where Pis the total number of dexel points of contour sets A and B (P=P A+ P8 ) on a slice. 

Thus, the computation time of the contour correspondence and combination operations is 

proportional to the number of dexel points on the slice. In a triple-dexel model, the total 

computation time of the contour corresponding and combination operation is proportion 

to 

(M)a(N + 0) + (N)a(O + M) + (O)a(M + N) = 2T = O(T) (7) 

From the above analysis, it is concluded that the computation complexity of the 

contour generation algorithm is O(an and the complexity of the contour correspondence 

and combination algorithms is ocn, where a is the average number of dexel points along 

a ray and T is the total number of dexel points. 

4.2. Space Complexity Analysis 

The contour generation algorithm stores in the computer memory (i) the initial 

dexel data, (ii) the connections between dexel points, and (iii) the final contour data. As 

mentioned before, the linked list structure is used to store the initial dexel data, which has 

the storage cost proportional to the number of dexel points. The connections of the dexel 

points and the generated contours are also each saved in a linked list structure. In the 

contour combination algorithm, the same linked list structure stores the combined 

contours on each slice. Overall, the memory costs of the contour generation and contour 

combination algorithms are linearly proportional to the number of dexel points of the 

triple-dexel model. 

4.3. Surface Error Analysis 

The reconstructed surface is watertight because in the volume-based surface tiling 

algorithm, every dexel point inside the boundary sub-volume is guaranteed to have 

connection points to form a close loop. Note that the connectivity information is 

embedded in the three orthogonal slices of contours. However, the reconstructed surface 

is still an approximation of the original shape. To estimate the quality of the 

reconstructed surface, the reconstructed surface error is defined as the ratio of the 

Hausdorff distance between the original surface and the reconstructed surface to the 

diagonal length of the bounding cuboid. Hausdorff distance is the maximum distance 
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between two non-empty sets of data. To calculate the surface error, the reconstructed 

surface model is sampled from three orthogonal directions and the Hausdorff distance 

between the sampled points and the original surface model is calculated and normalized 

by the diagonal length of the bounding cuboid. The normalized surface error e between 

the sampled points P and the original surfaceS is: 

dH(P,S) e = _.!.;:.__:___:__....::.. 

L 
(8) 

where Lis the diagonal length of the bounding cuboid. dH(P, S) is the Hausdorff distance 

between the set of sampled points P = {p 1 .• ·Pn} of the reconstructed surface and the 

original surface model S. It is evaluated as the maximum of the distances between point 

set P; E P and the surfaceS, i.e., 

dH (P,S) = maxd(p;,S) 
P;EP 

where the distance between a point in P; E R3 and a surfaceS is given by: 

d(p;,S) = mi!J-11 P;- q ll2 
qeS 

(9) 

(10) 

The surface errors of the reconstructed Stanford bunny model from triple-dexel 

data are calculated using the Metro [Cignoni et al., 1998] comparison tool under four 

different resolutions as shown in Table 2. The Metro takes the original surface model and 

the reconstructed surface model as the input and outputs the surface error between them. 

It can be seen in Table 2 that the error increases to 1.332% when the resolution of the 

model decreases to 30 x 30. The surface errors of the models reconstructed from the 

single-dexel data and the triple-dexel data are compared in Table 3, which clearly shows 

that the reconstructed surface from the single-dexel data has larger errors than the surface 

reconstructed from the triple-dexel data for the same ray resolution. 

5. IMPLEMENTATION EXAMPLES 

Implementation examples of the triple-dexel based surface reconstruction process 

are given in this section. The plate model as shown in Fig. 13(a) is discretized into triple­

dexel data. The contour generation algorithm generates two sets of contours on xy planes, 



as shown in Fig. 13(b) and Fig. 13(c), from the dexel data in x andy directions, 

respectively. The combined contours on xy planes are shown in Fig. 13(d). 

Table 2. Surface Errors ofthe Reconstructed Bunny Model from Triple-Dexel Data 

Resolution Hausdorff distance (dH: mm) Normalized error (e) 
30*30 0.003334 1.332% 
50* 50 0.001989 0.7525% 

100*100 0.001445 0.4390% 

200*200 0.000789 0.2656% 

Table 3. Surface Errors of the Reconstructed Bunny Model 

Resolution Normalized error from Normalized error from 
the triple-dexel model the single-dexel model 

50* 50 0.7525% 1.365% 
100*100 0.4390% 0.658% 

I I 
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Figure 13 . Illustrative Example of the Contour Combination Algorithm. (a) Input Object 
Model, (b) Contour Generated from X-Dexel Data, (c) Contour Generated From Y-Dexel 

Data, and (d) Combined Contour from (b) and (c) 
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After generating three orthogonal sets of contours in the contour combination 

process as described, the volume-based surface tiling algorithm is utilized to generate the 

boundary surface of the 3D model. Figure 14 shows the reconstructed surface of a bunny 

from the obtained contours on 70 slices in each of xy, yz, and zx planes. Figure 15 

illustrates the surface improvement from the triple-dexel data over the single-dexel data. 

Figures 15( a) and (c) show the results of surface reconstruction from single-dexel data, 

and Fig. 15(b) and (d) show the corresponding results of surface reconstruction from 

triple-dexel data. These figures clearly show that the generated surface from the triple­

dexel data is more accurate than the reconstructed surface from the single-dexel data 

when using the same ray resolution. 

Figure 14. A Bunny Model and the Reconstructed Surface of the Bunny 

The developed surface reconstruction process based on the triple-dexel model is 

incorporated into a virtual sculpting system [Peng and Leu, 2003 ; Leu et al. , 2005 ; Peng 

et al. , 2006]. The virtual sculpting system is developed on a Microsoft Windows XP 

workstation. The software is written in C++, and the graphics-rendering component is 

built on OpenGL and GLUT. The haptics interface is implemented using the 

PHANToM™ device and the GHOST (General Haptics Open Software Toolkit) SDK 

software available from SensAble Technologies. This virtual sculpting system enables 

the user to create and modify 3D freeform objects through interactive sculpting 

operations and gives the user real-time force feedback during the sculpting process. The 
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tool swept volume between two consecutive sampling times is obtained by the Sweep 

Differential Equation method [Blackmore and Leu, 1992] and represented by boundary 

triangular meshes [Peng and Leu, 2003]. The workpiece and the tool swept volumes are 

scan-converted to obtain their triple-dexel data. Boolean operations on the triple dexels 

are performed by comparing and merging the dexel data in each of x, y or z directions. 

The surface reconstruction software is executed during the sculpting process to convert 

the triple-dexel model to a triangular mesh model. Figure 16 shows the setup of the 

virtual sculpting system and a cat model created using the system and viewed from two 

different directions. 

(c) (d) 

Figure 15. Comparisons Between Single-Dexel Data and Triple-Dexel Data. (a) and (c) 
Surfaces Reconstructed from Single-Dexel Data, (b) and (d) from Triple-Dexel Data 

6. COMPARISON WITH VOXEL REPRESENTATION 

Voxel modeling is a popular representation scheme [Kaufman et al. , 1995; 

Hadwiger et al., 2006]. To benchmark the performance of the developed method, 

numerical experiments are conducted to compare using triple-dexel data vs. voxel data in 

terms of the surface reconstruction time and the associated surface error. An impeller and 
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a bunny model, as shown in Fig. 17, are discretized into voxel data in the resolution of 

50* 50* 50, 1 00* 1 00* 100 and 150* 150* 150 by using a fast voxelization algorithm 

[Karabassi et al. , 1999]. The voxel data is stored in the 3D array structure, with the 

marching cube algorithm utilized to reconstruct the surface from the voxel data. 

Meanwhile, the triple-dexel data is stored in the linked list structure and the object' s 

surface is reconstructed using the method developed in this paper. The normalized 

surface errors of the reconstructed surface are calculated using the Metro comparison tool 

[Cignoni et al. , 1998] and shown in Table 4. The time of the contour generation, 

correspondence and combination process is compared with the surface reconstruction 

time from the voxel representation in different resolutions in this table. 

Figure 16. A Cat Model Generated Using the Virtual Sculpting System 

The test result shows that, under the same resolution, the surface reconstructed 

from the triple-dexel data has a smaller surface error in comparison with the surface 

reconstructed from the voxel data. This is because the triple-dexel based method utilizes 

actual positions of the intersection points between rays and the object' s boundary surface 

as the vertices of the reconstructed surface model, while the voxel based method 

approximates the positions of these vertices by voxel interpolation. 

The computation complexity of the contour generation, correspondence and 

combination process using triple-dexel data is 0(7) or O(M2) , where M is the number of 

divisions along each axis. Because the complexity of the volume-based tiling algorithm is 
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also O(M2)[Svitak, 2004], the developed surface reconstruction method is more efficient 

than the voxel-based surface reconstruction method, whose computational complexity is 

O(M). The total computation times for surface reconstruction from the voxel data and 

from the triple-dexel data of the impeller and the bunny models are plotted vs. the 

number of divisions along each axis in Figs. 18 and 19. The results in these figures verify 

that the triple-dexel model is more efficient than the voxel model. 

Figure 17. Two Test Cases: Impeller and Bunny 

Table 4. The Surface Reconstruction Time and Surface Error 

Test No. of Reconstruc Reconstruction Error of Error of 
Model Dexel -tion Time Time Using Reconstructed Reconstruct 

Resol Points Using Voxels (s) Surface from ed Surface 

uti on Triple Triple-Dexel from Voxel 
Dexels (s) Data(%) Data(%) 

50*50 Impeller 19916 0.1333 0.12843 0.4263 0.9091 

*50 Bunny 14402 0.0985 0.11755 0.7525 1.0272 

100*1 Impeller 79632 0.4974 0.9836 0.1683 0.4012 

00*10 Bunny 57852 0.3631 0.9436 0.4390 0.5063 

0 
150*1 Impeller 179727 1.1720 3.2290 0.1843 0.2653 

50*15 Bunny 130650 0.8230 3.1300 0.2656 0.4299 

0 
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Figure 18. Surface Reconstruction Time vs. 
Number of Divisions from the Voxel Data 
and the Triple-Dexel Data for the Impeller 

7. CONCLUSIONS 
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Figure 19. Surface Reconstruction Time 
vs. Number of Divisions from the Voxel 
Data and the Triple-Dexel Data for the 

Bunny 

This paper has described a novel method of surface reconstruction from triple­

dexel data. Three sets of contours on orthogonal slices are generated from triple-dexel 

data by a contour generation algorithm and a contour combination algorithm. A volume­

based tiling algorithm is then utilized to generate the boundary surface of the 3D object in 

triangular patches from these contours. The computation complexity and the memory 

requirements of the developed method are analyzed. Both computation time and memory 

cost are found to be linearly proportional to the number of dexel points of the triple-dexel 

model. Comparing with the surfaces reconstructed from single-dexel data and from voxel 

data with the same resolution, our triple-dexel based method has a higher surface 

accuracy. Also the described surface reconstruction method is more efficient than the 

popular voxel-based method. The developed surface reconstruction process has been 

incorporated into a virtual sculpting system to address the view-dependent problem 

inherent in triple-dexel modeling. Examples are given to demonstrate the capability of the 

developed method. 

The developed contour combination method requires the same numbers of input 

contours generated from rays in two orthogonal directions for each slice. In case the 

numbers of contours are different, the density of rays to scan the object needs to be 
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increased until the numbers of input contours are the same for each slice. This is the main 

disadvantage of the method because casting additional rays will require more memory 

and computations. Future studies will explore adaptive methods that vary the ray density 

with the local geometric complexity in order to capture fine features with minimal 

increase in memory cost and computation time. Another planned improvement of our 

contour generation and combination algorithms is to incorporate vector information at 

each dexel point to reconstruct surfaces containing sharp features based on techniques 

described in the extended marching cube method [Kobbelt et al., 2001] or the dual 

contouring method [Ju et al., 2002]. 
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This paper presents a surface smoothing technique based on the level-set method. 

The triple-dexel data used to represent the generated model in virtual sculpting is 

converted into distance field data by identifying spatial grid points close to the model's 

boundary surface and calculating their Euclidean distance values. The surface is 

smoothed by solving the level-set differential equation with mean curvature flow using a 

fast and robust numerical scheme. Examples are given to demonstrate the effectiveness of 

the surface smoothing operation for virtual sculpting. 

Keywords: Computer Aided Design, Surface Smoothing, Level-Set Method 

1. INTRODUCTION 

More and more products with complex geometries are being designed and 

manufactured by computer aided design (CAD) and rapid prototyping (RP) technologies. 

Freeform surface is one of the geometrical features widely used in modem products like 

car bodies, airfoils and turbine blades as well as in aesthetic artifacts. How to efficiently 

design and generate digital prototypes with freeform surfaces is an important issue in 

CAD. None-Uniform Rational B-Splines (NURBS) is an industrial standard for freeform 

surface design. However, generating a NURBS surface of complex geometry requires 

creating and positioning a large number of control points using 2D input devices like 
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mouse and keyboard, which is a tedious work and is not highly intuitive. Virtual 

sculpting is a process in which the user creates a three-dimensional (3D) object on the 

computer screen by interactively carving a virtual workpiece like a real sculptor would do 

on a piece of clay, wax or wood. It is well suited to free form design of virtual prototypes 

as it allows the user to avoid cumbersome mouse and keyboard interface. 

Various techniques [1, 2] have been developed for freeform shape design with a 

haptic device. Our past research has contributed to this topic by developing a dexel based 

virtual sculpting system capable of removing and adding materials for the creation of 

freeform shapes in real time [3, 4]. The "view-dependence problem" of dexel 

representation has been recently solved by developing contour generation, contour 

combination, and surface tiling algorithms to reconstruct the boundary surface of the 

sculpted solid from triple-dexel data [5]. However, that virtual sculpting system did not 

have surface smoothing capability. It is very desirable to enable the user to smooth the 

rough area created during the sculpting process. The level-set method with mean 

curvature flow is a surface smoothing technique that has been researched. It always 

produces none self-intersecting surfaces that represent physically realizable objects. 

However, previous studies on the use of level-set methods for surface smoothing can only 

calculate the underlying distance field data from a triangular mesh, not from triple-dexel 

data. 

In the present paper, we build upon our recent work of surface reconstruction 

from triple dexels [5] to develop a method to calculate the distance field directly from 

triple-dexel data for surface smoothing in virtual sculpting. With the 3D distance field 

data, the virtual sculpting system is further developed to include surface smoothing 

operations based on the level-set method. The level-set differential equation with mean 

curvature flow is solved using a fast and robust numerical scheme to smooth the 

boundary surface for any user selected area. The developed method seamlessly integrates 

level-set based surface smoothing into the virtual sculpting system. 

This paper is organized as follows. Section 2 provides an overview of related 

research work. In Section 3, we present the method of distance field calculation from 

triple-dexel data. Section 4 describes the surface smoothing operation based on the level-
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set method. Modeling examples in virtual sculpting are shown in Sections 5. Conclusions 

are drawn in Section 6. 

2. RELATED WORK 

2.1. Distance Field Calculation 

The distance field is defined as a spatial function which returns the signed 

Euclidean distance from a spatial point (x,y,z) to the boundary, aM, of a manifold object 

M. The sign denotes whether the point is inside or outside aM . The calculation of 

distance field from a triangular mesh has been extensively studied. A survey of research 

on this topic is available from [6]. Generally a brute force method is used to compute the 

distances from a grid point in the space to every boundary triangle of M and select the 

shortest one. To reduce the computation, the shortest distance can be calculated only to a 

limited number of primitives according to spatial coherences. However, there has been 

very little research on the calculation of the distance field directly from triple-dexel data, 

which precedes the creation of a triangular mesh in virtual sculpting. Sealy and Novins 

[7] approximated the Euclidean distance of a grid point as the shortest distance among its 

three axial distances. But this approximation is not accurate especially where sharp 

features are present. 

2.2. Surface Smoothing 

The objective of surface smoothing is to modify a surface to make it more 

functional or aesthetically pleasing. Smoothing techniques have been proposed in the 

context of surface fairing, where a fairness or penalty function that favors a smooth 

surface is minimized. The level-set method [8] with mean curvature flow provides a 

numerical mechanism for surface smoothing, which modifies the surface area represented 

as time varying iso-values of a function by solving a partial differential equation on the 

3D grid. This method has several benefits in surface smoothing including the following: 

no self-intersection, thus, guaranteeing the generation of a simple, reliable close surface; 

easy change of topology for freeform shape design; free of edge connectivity and mesh 

quality problems associated with mesh models. A set of surface editing operators like 

smoothing, blending, sharpening, opening/closings, and embossing has been developed 
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using the level-set method [9]. We will apply the level-set method with mean curvature 

flow to develop surface smoothing operation in Section 4. 

3. GENERATING DISTANCE FIELD FROM TRIPLE-DEXEL DATA 

In our triple-dexel based virtual sculpting system, the representation of a solid 

during the sculpting process is by computing intersections between the solid and rays in 

three orthogonal (e.g., x, y and z) directions. For each ray, the intersection points and the 

surface normal sampled at each point are stored. Two intersection points in a line 

segment that is completely inside the solid is defined as a dexel. An illustration is given 

in Figure 1. 

Direction 
of view 

P1-P2 P3 P4 
(b) 

Figure 1. Illustration of the Ray-Casting Process and the Dexel Representation 

To simulate the material removal process, Boolean operations are performed 

between the triple-dexel data of the workpiece and the tool. To visualize the sculpted 

solid, we have developed a surface reconstruction method from triple-dexel data. The 

method includes contour generation, contour combination and surface tiling algorithms 

[5]. Meanwhile, the PHANToM™ manipulator (SensAble Technologies) is used to 
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provide the position and orientation data of the sculpting tool as well as haptic sensation 

to the user's hand during the sculpting process. 

To utilize the level-set method with mean curvature flow for surface smoothing, 

the triple-dexel data is converted into distance field data where each grid point contains a 

distance value to the iso-surface representing the boundary. Formally, the signed 

Euclidean distance function of a grid point (x,y,z) E R3 is defined as: 

f(x,y, z) = dis[(x,y, z),S] (1) 

where Sis the iso-surface and 'dis' is the Euclidean distance to S. A positive sign 

represents the point outside S and a negative sign represents the point inside S. The 

initialization of the level-set method requires the distance values of a narrow-band of grid 

points that are in the neighborhood of S. 

We develop a four-step process for generating the distance field. First the voxels 

that have non-null intersections with the solid's boundary surface are identified as the 

·Boundary Voxels (BVs). The grid point on any edge of a BV is a Boundary Grid Point 

(BGP) and a grid point is an Adjacent Grid Point (AGP) if it is adjacent to any BGP. 

Next, the sign of the distance value of each BGP and AGP is determined. Third, the 

surface within each BV is approximated using triangular facets. Finally, the distance 

value of each BGP and AGP is calculated. The details of the algorithm are given below. 

3.1. Identify BV, BGP and AGP 

The 3D space is divided by rays cast in three orthogonal directions into many 

equal sized voxels. According to the definition above, a BV must contain at least one 

dexel point on its edges. By scanning the dexels points along rays in the x, y, and z 

directions, we can find BV s. A 2D illustration is given in Figure 2, where the gray­

colored pixels surrounding the iso-surface are the boundary pixels (i.e., 20 BVs). Each 

squared point is a BGP and each triangular point is an AGP. 

3.2. Determine the Sign of Each BGP and AGP 

If a grid point is between two adjacent dexels along a ray, the distance value of 

this point is positive. Otherwise, the sign of the distance value is negative. Thus, we can 

determine the sign of the distance value of each BGP and AGP by its relative position to 

dexels along any directional rays. It is noted that if the distance of the grid point equals 

zero, this grid point is on the surface. We use 0 to label this type of grid points. 
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Dexel point • 

BGP 0 

AGP A 

Boundary -pixel 

Figure 2. Boundary Pixels, BGP, AGP and Dexel Points 

3.3. Approximate !so-Surfaces Inside BV s 

The main idea of this step is to use the Hermite data (i.e. , exact intersection points 

and normals) on the edges of a BV to calculate an additional point inside the BV by 

minimizing a quadratic function. By connecting this point with other additional points in 

adjacent BVs, triangular meshes can be generated with a simple patching algorithm to 

approximate the boundary surface. 

In the case of using triple-dexel data, the dexel points and the surface normals at 

these points are available from the triple-dexel data. The additional point inside a BV is 

the intersection point between the tangent elements of the dexel points on the edges of a 

BV. A 2D example is shown in Figure 3, where the circle points are the dexel points and 

the square points are the additional points. 

o Dexel point 

• Additional 
vertex 

.A AGP 

Figure 3. Distance Calculation for the Grid Points 



113 

Inside BPI, the additional point Pis the intersection point between the tangent line 

of dexel point PI under normal ni and the line of dexel point p2 under normal n2 . In the 3D 

case, the additional point is the intersection point of three tangent planes of these dexel 

points on three edges of a BV. In general, this method is over-determined since more than 

three dexel points may exist on the edges of a BV in a 3D case. In such case, a quadratic 

function is minimized to find the addition point [10], i.e. 

E(x) =min L (n; · (x- p;)) 2 (2) 

where Pi and ni represent dexel points and their associated unit surface normals. There 

exist numerical schemes to solve the least square optimization problem [ 11]. Once the 

additional vertex is generated within every BV, for each edge that contains a dexel point, 

the additional points of the four BVs containing the edge can be connected and patched 

into triangles. 

3.4. Calculate Distance Values of BGPs and AGPs 

The Euclidean distance of a BGP of a BV is the shortest distance from the BGP to 

the local triangles formed by the additional point of this BV. We calculate the distance 

between this BGP and every such triangle, and the smallest value is the Euclidean 

distance. As illustrated in Figure 3, the distance of the center grid point is d2 because d2 < 

d1. Based on the same principle, to calculate the distance values of AGPs, such as point P3 

in Figure 3, only triangles formed by the additional points in the adjacent BVs are 

considered for the distance test. 

4. SURFACE SMOOTHING USING THE LEVEL-SET METHOD 

4.1. Level-Set Method 

Level-set models are deformable implicit surfaces where the deformation of the 

surface in its normal direction is controlled by a speed function in the level-set partial 

differential equation [9], i.e. 

aF =-VF·v 
at (3) 

where F(x,t) is the Euclidean distance function, x is the grid coordinates in space R3, vis 

the velocity function of boundary points, vis the gradient and 



V'=i·j_+ j-~+k-~ 
Ox ay az 

where i,j and k are the unit vectors in R3. 

4.2. Numerical Solutions for Level-Set Method 

An up-wind computation scheme [9] can be applied to solve the level-set 

equation. The first-order space approximation of Equation (3) is written as: 

F,~,~~ = F,~,.k -~t[max(v,~,.k,O)V+ +min(v;,,,k,O)V'-] 

where v;,J.k is the speed at a point indexed by i,j and k and 

r 
(D x 0)2 · +x 2 J\/2 

v+ = max(D,~f,k ,0) 2 + min(D;~fk ,0) 2 + 
max i~J.k, + mm(D; .. J .. k ,0) + 

max(D,~;.k ,0) 2 + min(Dt;.k ,0) 2 

where D;~;,k is a shorthand notation of the forward difference operator 

F..i.k (x + h, t)- F..i.k (x,t) and D;~;.k is the backward difference operator 
h 

F,_,_k (x,t)- F,_, k (x- h,t) 

h 
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(4) 

(5) 

(6) 

(7) 

The calculation of the level-set method can be sped up with a narrow-band 

scheme [9]. The idea of this method is to update only a narrow-band of grid points which 

are close to the iso-surface, e.g. the BGP points and AGP points in Figure 2. Another 

advantage of this approach is that the number of points being computed is small so that it 

is feasible to use a linked-list structure to keep track of them for real-time applications. 

For example, the BGP points can be saved into a list, and the AGP points inside the 

boundary and outside the boundary can be saved into two different lists. By updating the 

distance values of the grid points in these three lists, the change of the iso-surface is 

tracked. 



4.3. Mean Curvature Calculation 

The mean curvature (H) at a point pEs is the average of the two principal 

curvatures ( ~e, and ~e2 ) 

H=(KJ+K2)/2 

For a 3D surface defined as a function of three coordinates, F(x,y,z), the mean 

curvature at a grid point is 

H = (Fyy + F:z)F', 2 + (F',x + Fzz)F/ + (F:x + Fyy)Fz 2 - 2(FxFyF:y + F',F:F',z + FYF:FYJ 
2(F2 +F2 +F2)3;2 

X y Z 

where the differential terms are approximated using the first-order, central finite 

difference numerical scheme, i.e, 

F,.k-FI'k F = I+,], 1- ,], 

X 2Ax 

F I . k - 2F . k + F I . k F = I+ ,.J, I,.J, 1- ,.J, 

XX Ax2 

Ft.tk-Ft.tk Ft.tk-Ft.Jk F = r+ ,.J+ , I+ • .1- , + 1- • .1- , 1- ,.J+ , 

xy 4Llx~y 4Llx"~y 

4.4. Surface Smoothing Using Mean Curvature Flow 
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(8) 

(9) 

(10) 

(11) 

(12) 

If the speed ( v) of a boundary point in Equation (3) is proportional to the mean 

curvature of the local boundary calculated by Equations (9)-(12), then Equation (3) can 

be written as 

BF(x,t) -b(x,t)H(x,t) II V F(x,t) II= 0 
ar 

(13) 

where b(x,t) is a user defined function to control the speed. According to this equation, 

the part of the boundary with larger curvature moves faster than the part of the boundary 

with smaller curvature in the surface normal direction. This movement results a 

smoothing operation as illustrated in Figure 4, where (b)-( c) show the global smoothing 

of a 20 star shape in (a), and (d) shows the smoothing of the star shape locally by 

defining an effective area through b(x,t). 
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5. APPLICATION TO VIRTUAL SCULPTING 

Our virtual sculpting system runs on a Microsoft Windows XP workstation 

equipped with a 1.6 GHz CPU and 1 GB RAM. The software is written in C++, and the 

graphics-rendering component is built upon OpenGL and GLUT libraries. The haptics 

interface is implemented using the PHANToM™ device and the GHOST (General 

Haptics Open Software Toolkit) SDK software available from SensAble Technologies. 

Figure 5 shows the setup of the virtual sculpting system and a cat model created with the 

system. In the sculpting process, both the tool and the stock (initial workpiece) are 

represented by polyhedral boundaries. The tool location is specified by a translation and a 

rotation tracked by the PHANToM, and the tool swept volume between two consecutive 

sampling times is calculated and represented by triangular meshes. The virtual sculpting 

process continuously performs Boolean operations between the tool swept volume and 

the workpiece and computes the triple-dexel data that represents the workpiece being 

sculpted. 

(a) (b) (c) (d) 

Figure 4. Example ofthe Smoothing Operation on a Star Shape. (a), (b)-(c) Illustrate 
Global Smoothing Operation and (d) Illustrates Local Smoothing Operation 

Next we demonstrate the developed surface smoothing operation. In this 

operation, a user-defined box or sphere can be used to select a certain area on the 

sculpted model. Then the selected area is smoothed according to its curvature values. By 

adjusting b(x,t) in Equation (13) using a scrollbar, the user is able to adjust the speed of 

curvature flow. Also the surface propagation process can be stopped at any time once a 
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satisfied result has been obtained. Figures 6(a) and (d) show two spheres joined together 

before and after the smoothing operation. A snowman model is created by adding and 

removing materials w.r.t. the two spheres model. Figures 6(b) and (c) show the snowman 

model and the smoothed model is shown in (e) and (f) for comparison. 

Figure 5. A Cat Model Created Using the Virtual Sculpting System 

(a) (c) 

(d) (e) (f) 

Figure 6. Modeling Examples. (a) and (d) Two Joined Spheres, (b) and (e) a Snowman 
Model,( c) and (f) the Boundary with and without Smoothing 
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6. SUMMARY 

This paper has presented a level-set based surface smoothing method with 

application to virtual sculpting. The triple-dexel data representing a solid model is 

converted to distance field data by approximating the iso-surface inside the boundary 

voxels and calculating the Euclidean distance values for a narrow-band of grid points. 

The mean curvatures of the grid points in the narrow-band are estimated using the first­

order finite difference numerical scheme. By using the up-wind computation scheme to 

solve the level-set differential equation with mean curvature flow, the higher curvature 

area of the boundary surface propagates faster in the surface normal direction, resulting a 

smoothing operation. Examples are given to demonstrate the effectiveness of the 

developed surface smoothing technique for virtual sculpting. 
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Providing an intuitive and effective tool for freeform geometric modeling is 

important for product design. We introduce in this paper a level-set based spatial warping 

method for freeform modeling, allowing shape deformation to be initialed by rigid body 

transformations of volumetric tools. Intuitive user operations including the imprinting, 

deformation and smoothing operations are developed to shield the user from the 

underlying geometric complexity. Unlike mesh-based spatial warping methods, the 

developed method represents a digital model by implicit distance field data and describes 

its change of geometry by the level-set method. This guarantees the generation of 

topologically correct triangular mesh models and circumvents the error-prone remeshing 

and mesh-repairing processes, thus preventing topological errors such as self­

intersections. We present this method with algorithm details, numerical experiments and 

modeling examples. 

1. INTRODUCTION 

More and more products with complex geometries are being developed by 

computer aided design (CAD) and rapid prototyping (RP) technologies. Freeform surface 

is a geometrical feature widely used in modem products like car bodies, airfoils and 

turbine blades as well as in sculptures and other aesthetic artifacts. How to efficiently 

design and generate digital prototypes with freeform surfaces is an important issue in 

Computer Aided Geometric Design (CAGD). 
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None-Uniform Rational B-Splines (NURBS) is an industrial standard for freeform 

surface design. However, generating a NURBS surface of complex geometry requires 

creating and positioning a large number of control points using 2D input devices like the 

mouse and the keyboard. This is a tedious task and is not highly intuitive. A more 

effective method for freeform geometric modeling is via the Free-From Deformation 

(FFD) technique [Sederberg and Parry, 1986], which involves warping a space that 

contains the object to be modeled. However, the control lattice used for space 

manipulation in the FFD technique is not directly related to the object. Another important 

type of freeform modeling techniques is based on implicit geometric representations 

[Bajaj et al., 1997]. However, providing local geometric modification capability is 

difficult in these techniques because modifying implicit functions is not very intuitive. 

Recently, spatial warping methods [Gain and Marais, 2005; Angelidis et al., 2006] have 

become popular due to their intuitive user interface and effective modeling capabilities. 

All of the previous studies on these modeling techniques rely on a mesh model as the 

underlying geometric representation. Although mesh modeling is supported by computer 

hardware for fast processing, it has the problem of generating self-intersected models, 

which requires special care in the transformation process. 

In this paper, we develop a spatial warping method based on the implicit shape 

representation and the level-set method to describe the geometric change of a 3D shape. 

We develop a grab-and-drag technique to allow the user to select different virtual tools 

and modify the 3D shape using selected tools through a force reflecting device. Various 

freeform modeling operations such as imprinting, deformation and smoothing have been 

developed by using rigid transformations of virtual tools. Compared with previous spatial 

warping techniques, the topology of the generated model from our technique is inherently 

correct without any self-intersection problems. Furthermore, the modeling operations 

developed using this technique are effective for designing freeform models and intuitive 

for common users. 

The rest of the paper is organized as follows. Section 2 provides a review of 

related research work on freeform geometric modeling. The spatial warping method is 

introduced in Section 3. In Section 4, we describe the development offreeform modeling 



operations using the spatial warping method. Modeling examples based on the spatial 

warping method are shown in Section 5. Conclusions are given in Section 6. 

2. RELATED WORK 

2.1. Freeform Geometric Modeling 
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Lattice based freeform deformation is an important class of deformation methods. 

Seder berg and Parry [ 1986] introduced the concept of free form deformation. This 

technique defines freeform deformation by specifying a trivariate Bezier solid. The 

control points of the lattice can be displaced. Several improvements and extensions have 

been made since then. The extended freeform deformation method proposed by 

Coquillart [1990] utilized non-parallelepipedicallattices. Hsu et al. [1992] developed a 

direct manipulation technique that makes generation and placement of deformations 

easier. Lamousin and Waggenspack [1994] described a system ofNURBS-based 

freeform deformation based on a mesh built from rectangular parallelepipeds. Polygon 

mesh based free form deformation is another class of deformation methods. Parent [ 1977] 

initialed the use of basic vertex movement and decay function techniques. Leblanc et al. 

[ 1991] did some improvements on the decay function, interface and polygonal modeling. 

Billet al. [1995] presented a polygonal modeling system using virtual sculpting tools and 

mesh refinement operations. The user controls a virtual tool to sculpt a freeform 

polygonal model starting from a mesh structure. The system allows the user to push, pull 

and deform the mesh in a variety of ways. A main problem of lattice based freeform 

modeling techniques is that the control lattice is not directly related to the object. 

Another class of freeform geometric modeling techniques relies on implicit geometric 

representations such as variational implicit surfaces [Cuno et al., 2005], spherical implicit 

surfaces [Alexe et al., 2004] and convolution surfaces [Bloomenthal and Shoemake, 

1991]. An effective way of creating new shapes with implicit representations is using 

Boolean operations [Bajaj et al., 1997]. Another commonly used technique for implicit 

shape modeling is to extract the skeleton of a model and manipulate it to change the 

shape [Yoshizawa et al., 2003]. However, providing local modification capability is 

difficult since changing implicit functions is not very intuitive. 
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The spatial warping method has recently become popular due to its intuitive user 

interface and design operations. In this method, the user's gesture such as his/her hand's 

position and orientation is obtained with a mouse or a hand tracking device, and is 

utilized to define the space transformation matrix. Weights can be associated with the 

transformation matrix to control the gesture's influence area. Angelidis et al. [2006] 

developed a gesture based swept deformation method called the sweepers, where the 

transformation is divided into a series of small steps to avoid foldover problems with a 

lower bound of the required number of steps. Angelidis et al. [2004] also developed a 

gesture based deformation method capable of preserving the volume and avoiding self­

intersections. Gain and Marais [2005] developed a warp sculpting method, which allows 

deformation to be initialed by the rigid body transformation of uniform scaling of 

volumetric tools. Joo et al. [2006] introduced a 3D warp brush method for interactive 

shape modeling in an immersive virtual reality environment. The deformed model is 

capable of adaptive refinement and efficient rendering with on-the-fly triangular strip 

generation. 

However, the spatial warping method may generate a foldover of the ambient 

space and potential self-intersection of the embedded object, resulting a physically 

unrealistic, non-manifold object. Previous methods tried to decompose the transformation 

into a series of smaller transformations, and applied each of them to the result of the 

previous transformation to remove the foldover [Gain and Dodgson, 2001]. Choosing the 

right number of subdivisions is challenging because too few steps in the subdivisions will 

not prevent the fold-over and two many steps will jeopardize the interactivity of the 

system. Gain and Dodgson [2001] came up with a set of conditions for a self-intersection 

test to prevent fold-over from happening. However, an accurate test is often costly and 

unrealistic for real-time applications. Angelidis et al. [2006] derived a bound for the 

number of steps required for a fold-free deformation, but it has not been fully validated. 

Our method presented in this paper is the first to utlize the implicit shape representation 

based on the level-set method for modeling of spatial warping. The developed method 

guarantees the generation of a fold-free model. 
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2.2. Level-Set Method for Modeling of Freeform Geometry 

The level-set method introduced by Osher and Sethian [1988] provides 

mathematical and numerical mechanisms for computing surface deformations as the 

time-varying iso-values of a function by solving a partial differential equation on the 3D 

grid. A set of numerical techniques has been provided by the level-set formulation that 

describes how to manipulate the distance values of each grid in a volume, so that the iso­

surfaces of the function move in a prescribed manner. Museth et al. [2002] defined a 

collection of speed functions that produce a set of surface editing operators like blending, 

smoothing, sharpening, opening/closing and embossing. Brerentzen and Christensen 

[2002] developed a volume sculpting system by using the level-set method and 

introduced a scaling-window technique to define a speed function for local 

manipulations (e.g. smoothing, material addition/subtraction). Guo et al. [2004] applied 

the level-set method to model complicated point-set surfaces of arbitrary topology, 

allowing local surface editing and global scalar-field freeform deformation. They 

developed a variety of editing toolkits to directly manipulate the point-set surface through 

interactive sketching, smoothing, embossing, and global freeform deformations. 

Lawrence and Funkhouser [2004] developed a painting interface which allows the user to 

define the instantaneous surface velocity to deform the geometry using the level-set 

method. However, none of the previous studies has developed a spatial warping 

technique based on the level-set method. 

3. THE SPATIAL WARPING METHOD 

Spatial warping is a general freeform deformation approach that enables the use 

of a variety ofvirtual tools to interact with a CAD model. Unlike the "direct" modeling 

such as virtual sculpting [Leu et al., 2001, 2005], in spatial warping method, the user 

controls the position and orientation of a tool to generate a warp field that "indirectly" 

deforms the object that is inside the tool's influence zone. Once the new positions of all 

the vertices have been calculated, the tool's position and orientation are updated and 

ready for the user to continue shape modeling. 

Our space-warping method works as follows: the user first selects a virtual tool 

from a tool library. Each tool has a limited region of influence in the 3D space 
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represented by the distance field. As the user moves the virtual tool around in the 3D 

space, a vector field is generated by the trajectory of the virtual tool. This vector filed 

defines the velocities for the grid points inside the influence zone of the tool. Then by 

solving the level-set differential equation that describes the shape deformation, the shape 

is deformed accordingly. A schematic of the freeform modeling system is shown in Fig. 

I. 

3.1. Input Data 

User gesture input 
with a tool 

Design model L 
'-----------r------'1 

Formalize the 
transformation 

matrix 

Identify the affected 
region on the design 

model 

Render the design 
model for 

visualization 

Apply the 
transformation 

matrix to the affected 
re ion 

Generate the grid-based 
velocity field 

Apply the level-set 
method to update the 

design model 

Figure 1. Schematic ofthe Freeform Modeling System 

The input of the modeling framework is a series of hand gestures (i.e., positions 

and orientations of user's hand), G; (i=O, ... ,n), which can be obtained from a motion 

capture deivce. The gesture G; at time t; is defined by a local coordinate system with 
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origin Oi and three unit vectors ui, vi, wi as shown in Fig. 2, where u x v = o , v x w = o 
I I I I 

Figure 2. Hand Gesture Modeling by Interpolation 

To produce a smooth space warpmg from the input gestures, a B-Spline 

interpolation is constructed to calculate the position and orientation of the gesture in 

between. The B-spline curve passing through (n+1) points, Oi(x,y,z) , i=O, ... n , is defined 

as: 
n 

Or(x, y,z) = _LO;(x,y, z)N;,k(r) (1) 
i=O 

where n+ 1 is the total number of sampled points from the user' s hand input, r is the 

parameter, k-1 is the degree ofthe B-Spline curve and N i.k is the B-spline basis function 

where 

and 

if I; ::; r ::; t i+l 

otherwise 

For a B-spline function, the parameter fp is calculated as : 

(2) 

(3) 



if p<k 
ifk-:;;.p-:;;.n 

if p>n 

Similarly, the interpolated orientation (ur, Vr, wr) is calculated as 

n 

u, = L u ;N;,k (r) 
i=O 

n 

v, = L v;N;,k (r) 
i=O 

n 

w, = 2: w;N;,k (r) 
i =O 

The tangent vector of the B-spline curve at point Or(x, y, z) is calculated as 
n 

O',(x,y,z) = l:O;(x,y, z)N';,k(r) 
i=O 

3.2. The Influence Zone of a Tool 
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(4) 

(5) 

(6) 

(7) 

(8) 

In the modeling method we propose, each virtual tool has a limited local region of 

space around the tool, defined by the distance field and a user defined region of influence 

(RI). The distance field ds(x) is a scalar field that is defined by the minimum distance 

between every point x in space and a given surface S. Because the tool shape in the 

modeling process is pre-defined, the tool's distance field can be preprocessed using the 

closest point transformation algorithm [Mauch, 2003]. The user can change the parameter 

R to adjust the tool 's RI as shown in Fig. 3. 

Figure 3. The Influence Zone of a Tool 
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The vertex of the workpiece inside the tool's RI is affected by the tools' 

movement. For example, in Fig. 3, the tool Tis a rectangular block, the dotted line 

around the tool is the boundary of the tool's RI defined by distance R from the tool 

boundary. The vertex X on the boundary of the workpiece shown in Fig. 3 is inside the 

RI, thus it is transformed by the movement of the virtual tool T. Using the pre-calculated 

distance field dT{X) for the tool, it is simple to evaluate whether a point X is inside, 

outside or one the boundary of the tool's RI using the flowing relations: 

{ 
> 0 => outside RI 

dT (X)- R = 0 => on boundary 

< 0 => inside RI 

3.3. Shape Modeling Using the Level-Set Method 

(9) 

We utilize the level-set method to change the initial shape of the CAD model 

under the grid -based velocity field generated by the movement of the user's hand. In the 

level-set method, the geometry of an object is represented by an implicit distance field 

data. In this data, every grid point has a 3D coordinates as well as a signed Euler distance 

to the boundary of the object. The change of this distance field data is controlled by a 

velocity function ( v) in the level-set partial differential equation [Osher and Sethian, 

1988]: 

BF =-VF·v 
at 

where F(x,t) is the Euclidean distance function, xis the grid coordinates in Euclidean 

space R3, v is the velocity of the boundary grid point, and v is the gradient function 

(10) 

V=i·~+J·~+k·~ (11) 
Ox Oy oz 

where i,j and k are the unit vectors in R3. To solve the level-set differential equation 

given in Eq. (10), an up-wind scheme [Osher and Sethian, 1988] is used with the first­

order space approximation of the distance function given below: 

F;7! = Fti.k - M[max(v;,,t ,O)V+ + min(v;,,k ,O)V-] (12) 

where v· .k is the speed at a point indexed by i,j and k and 
IJ, 
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(13) 

l ( +X 2 • 2 ]1/2 max D;,1,k ,0) + mm(D;~;.k ,0) + 
v- = max(D+y ,0) 2 + min(D-y ,0) 2 + 

l,j,k l,j,k 

max(D,~;.k ,0) 2 + min(D;~;.k ,0) 2 

(14) 

where D;~;k is a shorthand notation of the forward difference operator 

F k (x + h, t)- F k (x, t) d . h h d . f h b . '·'· '·'· an u-x IS as ort an notatiOn o t e ackward difference h l.},k 

operator F,_,k(x,t)- F,,k(x-h,t). The implementation ofthe level-set method is sped up 
h 

using a narrow-band scheme developed by Osher and Sethian [1998]. The idea of this 

method is to update only the narrow-band of grid points which are close to the iso­

surface, instead of the grid points in the entire region of concern. As a result, the number 

of points being computed is much smaller so that it is feasible to use a linked-list 

structure to keep track of them for real-time applications. By updating the distance values 

ofthe boundary grid points according to Eq. (10), the change of the 3D model's iso­

surface can be tracked. 

3.4. Grid-Based Velocity Field 

The inputs of the level-set method are the model of the workpiece represented by 

the distance field data and external velocities on the grid points, called the grid-based 

velocity field (GVF). To generate the GVF from the trajectory of the user's hand, we first 

search for the workpiece's boundary vertices inside the tool's influence zone and 

calculate their trajectories caused by the tool movement. Then, for a grid point be on one 

or more of the grids (called the swept grid), intersected by one of these trajectories, we 

calculate the closest point on the trajectory and its tangent vector, which defines the 

direction of the velocity of the swept grid point. 

Let a workpiece's boundary vertex p;(x;, y;, z;) be inside the tool's RI as shown in 

Fig. 4. Its transformed point Pi+l can be calculated as 

Pi+l = p, +[~u · ~v· ~w·(p,- 0,)+ ~0] (15) 

where ~u = ui+l - u;, ~v = vi+ I - v;, ~w = wi+l - w; and ~0 = Oi+l - 0, . The rest of points, 

P;+2 , ..• , Pn, can also be calculated as above. Then, by utilizing Eqs. (1) - (7). a B-spline 
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function is formulated to interpolate the trajectory traversed through these points. This 

interpolated B-spline curve intersects many grids as shown in Fig. 4. Let g1 be a grid 

point on one or more of these grids. To calculate the velocity of f5;, we find its closest 

point Pi on the B-spline curve and calculate its tangent vector by Eq. (8). This is seen as a 

small dark arrow in Fig. 4. If the magnitude of the velocity is constant, it can be used to 

define an imprinting operation. If it is associated with a weighting function which varies 

with the distance from the grid point to the tool boundary, it can be used to define a 

deformation operation. If it is associated with the curvature of local geometry, it can be 

used to define a smoothing operation. These operations will be discussed in detail in 

Section 4. 

' ' I 

Swept Trajectory 
grid 

• .... 
Grid Velocity 

points vector 

Figure 4. Generation ofthe Grid-Based Velocity Field 

4. FREEFORM MODELING OPERATIONS 

In this section, three freeform modeling operations, i.e. the imprinting operation, 

the deformation operation, and the smoothing operation, are developed. The modeling 

results are compared with other virtual sculpting methods to demonstrate the usefulness 

of the proposed method. 

4.1. Imprint Operation 

The imprinting operation works as follows: the user selects different types of tools 

from a tool library, and defines parameters to customize the tool shape. Then, the user 



131 

grabs the virtual tool using a 3D digital manipulating device such as a space mouse or the 

Phantom ™ haptic device, and applies the imprinting operation onto the initial workpiece 

model which is updated in real-time. In the imprinting operation, the movement of the 

virtual tool generates a grid-based velocity field along the path of the virtual tool and the 

solution of the level-set method changes the boundary of the workpiece. Only the 

velocity component in the normal direction of the workpiece boundary contributes to the 

change of this boundary, thus Eq. (10) can be written as 

BF~;,t) + k·ll V' F(x,t) II= 0 (16) 

where k is a user-defined constant to control the speed of the propagation. The gradient 

'VF(x,t) is approximated by the up-wind finite difference scheme described in Sec. 3.3. 

Figure 5 is an example showing the imprinting operation by using a cross-shaped tool and 

a spherical tool to modify a rectangular plate. 

(a) (b) 

Figure 5. Example of Imprinting Operation. a) Using a Cross-Shaped Tool and (b) Using 
a Spherical Tool 

4.2. Fold-Free Deformation Operation 

As discussed in Sec. 3 .4, the movement of a virtual tool generates a grid-based 

velocity field along the trajectory of the tool. To generate the effect of deformation, the 
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original grid-based velocity field is modified by a user-defined weight function as 

follows: 

(17) 

where oi is the position ofthe tool at time i,pi is a vertex on the boundary ofthe 

workpiece inside the tool's region of influence, w(pi) is a user defined weight function to 

control the shape of the deformation, and t( Oi) is the transformation matrix. Figure 6 is a 

2D illustration example, where the tool moves from point oi to oi+ I. The tool's influence 

zone is within the dotted ellipse at time i. The point p i, which is a vertex of the workpiece 

surface inside the influence zone, is transformed to point P i+ I according to Eq. (17). 

Swept 
grids 

~ 
Adjacent 

~ grids 

Tool 

,-' Influence ,_ I 
zone 

(a) (b) 

Figure 6. Example of the Shape Deformation. (a) Linear Interpolation and (b) Cubic 
Interpolation 

The weight function can be defined as a linear interpolation or a cubic 

interpolation as follows: 

w(x) = I - d(p) 

w(x) = 1- d 2(p)(3 - 2d(p)) 

(18) 

(19) 



By using the above weight function, the top boundary of the workpiece can be 

deformed into different shapes as shown in Fig. 6. The grid-based velocity field is 

generated using the same procedure as given in Sec. 3.4. 
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As mentioned before, mesh-based spatial deformation method may generate fold­

over of the ambient space and self-intersection of the object as shown in Fig. 7(a), where 

the upper boundary of the workpiece is deformed by the movement of tool from p top' 

and intersected with the lower boundary of the shape. The deformed upper boundary is 

represented by the dotted lines. 

. , :r Ii~~~: J rR~,r~iece 
·.· .. · .. J .··_·_·_· ·.·.·.·.·.r.-.·.··.-,- · .. ·.··r·.· ·.1··.--.J ·.·.·.··.-J.·.··.J_··. 1.·.·.- ·J·.···.-.·· 

II tJ~: ;·tatiE-. 
: : : : : : : : 1htersect10n 

.•• ••• ; •.•.• j •. ••••• j •• .. •• j . •. ••• j •••••• ; ••. ···i·· .. ... ; .... ·i······ = · ···· ·~······ 
: : : : : : : ! : : : 

(a) (b) (c) 

Figure 7. The Deformation Operation. (a) Self-Intersection, (b) the Deformed Shape 
Without Self-Intersection, and (c) Boundary Propagation by Defining the Velocity for the 

Boundary Grids 

To solve the self-intersection problem and generate the deformed shape as shown 

in Fig. 7(b), we can calculate the grid-based velocity field not only according to the 

movement of the tool and the user-defined weight function, but also to the grid point's 

inside/outside information. We propose the following folder-free deformation algorithm 

consisting four steps: 

• Stepl: Identify the workpiece's boundary vertices inside the influence zone of the 

tool and their transformed points according to the input vector and a user defined 
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weight function. In Fig. 7( c), a boundary vertex, point A, is transformed to point A' 

under the input vector pp'. 

Step2: Identify the boundary grid points whose grids are intersected by the vector 

connecting a boundary vertex and its transformed point, and are adjacent to the iso­

boundary. In Fig. 7 (c), points a to fare the boundary grid points intersected by AA'. 

• Step3: Calculate the velocities of the identified boundary grid points. For each 

boundary grid point, it is easy to calculate the surface normal using the central 

definite difference scheme. According to the level-set method, the boundary of the 

workpiece moves inwards if the velocity of the boundary grid point is negative and 

the boundary moves outwards if the velocity of the boundary grid point is positive. In 

order to move the boundary as desired to the target position as shown in Fig. 7(b), let 

the swept vector be T (=AA'), the surface normal of each boundary grid point beN, 

and the angle between T and N be a. We define the sign of the boundary grid point's 

speed (v) as a boundary as follows: 

If (a E [90, 270]) 

v<O (moving inward) 

Else v>O (moving outward) 

• Step4: Solve the level-set equation to update the boundary. With the boundary 

velocity calculated from the previous step, the numerical techniques given in Sec. 3.3 

are utilized to update the boundary of the workpiece. 

The above four steps are repeated until the boundary reaches the final location. 

After each step, the updated workpiece surface is generated by the marching cube 

algorithm. Because of using the level-set method for boundary propagation, the resultant 

surface model is guaranteed to be watertight without any self-intersection. An illustrative 

example is given in Fig. 8, where the user applies deformation operations onto a 

rectangular block. 
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(a) (b) 

(c) 

Figure 8. The Freeform Deformation Operation. (a) A Plate Model before Deformation 
(b) the Front Side of the Model after Deformation and (c) the Backside of the Model after 

Deformation 

4.3. Smoothing Operation 

In the smoothing operation, we assign the magnitude of the velocity at each grid 

point proportional to the curvature of the shape as follows: 

oF(x,t) - bH(x,t) II \7 F(x,t) II= 0 
at 

where b is a user-defined constant and H(x,t) is the mean curvature of the boundary 

surface at point x, which is the average of the principal curvatures ( K 1 and K 2 ), i.e. 

(20) 

(2 1) 

For a surface in 3D space defined as F(x,y,z), the mean curvature at a grid point is 

(Fyy + FzJF: 2 + (Fxx + Fzz )Fy 2 + (Fxx + FYY )F. 2 - 2(FxFyFxy + FxF.Fxz + FyFzFyz ) 
H = 2(Fxz +F/+ Fzz )Jr2 

(22) 



where the differential terms can be approximated using the first-order, central finite 

difference as follows: 

F = F;+l.J.k - F: - l,J ,k 

X 2& 

F I . k - 2F . k + F I . k F = I+ ,}. 1 , ) , ,_ . } . 

XX & 2 

_F..:...:.i+~t , 1~· +.:.::..l · k..:...:.-_F..:...:.'..:...:.. + l~, J..:...:.- l ·::.:..k + F:- l,J- l,k - F:- t.J+l,k 
Fxy = 

4&~y 4&~y 
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(23) 

(24) 

(25) 

According to Eq. (20), the part of the boundary with a larger curvature moves 

faster along the surface normal direction than the part of the boundary with a smaller 

curvature. This movement results a smoothing operation as illustrated in Fig. 9, where the 

top of a cylindrical shape is smoothed by the developed smoothing operation. 

(a) (b) 
Figure 9. Example of a Smoothing Operation on the Top of a Cylindrical Shape. (a) 

before Smoothing and (c) after Smoothing 

4.4. Advantage of the Modeling Method 

To demonstrate the advantage of our level-set based freeform modeling method 

with the same operation available from an existing commercial package, which is the 

FreeForm™ modeling system (v8.1) from SensAble Technology [2008], a thin 
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rectangular block is deformed to generate a dent area as shown in Fig. 10. In the 

FreeForm system, the deformed top surface intersects with the unreformed bottom 

surface and this self-intersection of the boundary of the rectangular block creates a non­

manifold object with two separate geometric entities as seen in Fig. 1 O(a). In contrast, by 

using the level-set method, the entire shape is deformed without producing multiple parts, 

thus remaining a manifold, as seen in Fig. 1 O(b ). 

(a) (b) 

Figure 10. Comparison of the Deformed Shape with the Same Deformation Operation. (a) 

by the FreeForm™ System and (b) by Our System 

5. IMPLEMENTATION 
Our freeform modeling system runs on a Microsoft Windows XP workstation 

· d "th 1 6 GHz CPU and 1 GB RAM The software is written in C++, and the eqmppe WI a . · 

h . d ·ng component is built upon OpenGL and GLUT libraries. The setup of grap 1cs-ren en 

the modeling system is shown in Fig. 11 . 
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Figure 11. The Virtual Shape Modeling System Setup 

To apply deformation operations, a pre-defined tool is chosen by the user to select 

a certain region of influence around the sculpted model. Then the workpiece within 

selected region is deformed according to the user's hand gesture inputs. The surface 

modification process can be stopped at any time once a satisfied result has been obtained. 

Figures 12(a) and (b) show two spheres joined together before and after the smoothing 

operation. A snowman model is created by smoothing and deformation on the two-sphere 

model and the result is shown in Fig. 12 (c). Figures 12( d) and (e) show a part of the 

snowman model before and after smoothing. 

To evaluate the performance of the described method, a smoothing operation is 

performed on a shape. The number of grid points, the time of calculating distance values, 

and the time of updating the lists are given in Table 1. It can be seen from the table that 

about a 11. 7Hz refresh rate can be achieved by updating 28,260 grid points in each 

iteration. 

6. CONCLUSION 

This paper presents the development of a spatial warping method using the 

implicit distance field data representation and the level-set method for shape modeling. 

The trajectory of the user's hand is interpolated and utilized to define a grid-based 

velocity field. The solution of the level-set method propagates the boundary of the 

workpiece with the external velocity field, resulting different freeform modeling 
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operations such as imprinting, deformation, smoothing, etc. The developed modeling 

operations are intuitive and easy to use for freeform modeling. Compared with the mesh­

based spatial warping methods, the triangular meshes generated using the described 

spatial warping method are free of the self-intersection problem. 

(b) 

Figure 12. Modeling Example. (a) and (b) Two Joined Spheres and the Smoothed Shape, 
(c) the Snowman Model after Deformation and Smoothing, (d) & (e) Part of the 

Snowman Model before and after Smoothing 

Table 1. Test Results of the Level-Set Method 

No. of Time of Time of Total 
grid calculating the updating time 

points distance values the lists (s) 
(s) (s) 

202,592 0.4637 0.1631 0.6268 
156,702 0.3675 0.0973 0.4648 
149,942 0.3680 0.0902 0.4582 
101 '788 0.1754 0.0897 0.2651 
28,260 0.0746 0.0108 0.0854 
23,217 0.0638 0.0108 0.0746 



140 

ACKNOWLEDGMENTS 

This research is supported by a National Science Foundation award (CCR-

031 0619) and by the Intelligent Systems Center at the Missouri University of Science and 

Technology. 

REFERENCES 

1. Angelidis, A., Wyvill, G., and Cani, M., 2006, "Sweepers: Swept Deformation 

Defined by Gesture," Graph. Models, 68(1 ), pp. 2-14. 

2. Angelidis, A., Cani, M., Wyvill, G., and King, S., 2004, "Swirling-Sweepers: 

Constant-Volume Modeling," Proceedings of the Computer Graphics and 

Applications, 12th Pacific Conference, IEEE Computer Society, Washington, DC, 

pp. 10-15. 

3. Alexe, A., Gail drat, V., and Barthe, L., 2004, "Interactive Modeling from 

Sketches using Spherical Implicit Functions," Proceedings of the 3rd 

international Conference on Computer Graphics, Virtual Reality, Visualization 

and interaction in Africa, Stellenbosch, South Africa. 

4. Brerentzen, J. A., and Christensen, N. J., 2002, "Volume Sculpting Using the 

Level-Set Method," Proceedings of Shape Modeling International '02, pp. 175-

182. 

5. Bajaj, C., Blinn, J., Bloomenthal, J., Cani-Gascuel, M.P., Rockwood, A., Wyvill, 

B., and Wyvill, G., 1997, Introduction to Implicit Surfaces, Morgan-Kaufmann 

Publisher. 

6. Bill, J. R., and Lodha, S. K., 1995, "Sculpting Polygonal Models using Virtual 

Tools," Proceedings of Graphics Interface, Quebec, Canada, pp. 272-279. 

7. Bloomenthal, J., and Shoemake, K., 1991, "Convolution Surfaces," Computer 

Graphics, 25( 4 ), pp. 251--256. 

8. Coquillart, S., 1990, "Extended Free-Form Deformation: A Sculpturing Tool for 

3D Geometric Modeling," Computer Graphics, 24( 4), pp. 187-196. 

9. Cuno, A., Esperana, C., Roma, P., and Farias, R., 2005, "3D Free-Form Modeling 

with Variational Surfaces," Journal of Winter School of Computer Graphics, 3( 1-

3), pp. 111-122. 



141 

10. Free Form Modeling and Modeling Plus Systems, SensAble Technology, 2008, 

http://www.sensable.com/products-freeform-systems.htm. 

11. Gain, J. E. and Dodgson, N. A., 2001, "Preventing Self-Intersection under Free­

Form Deformation," IEEE Transactions on Visualization and Computer Graphics, 

7(4), pp. 289-298. 

12. Gain, J ., and Marais, P., 2005, "Warp Sculpting," IEEE Transactions on 

Visualization and Computer Graphics, 11(2), pp. 217-227. 

13. Guo, X., Hua, J., and Qin, H., 2004, "Point Set Surface Editing Techniques Based 

On Level-Sets," Proceedings of the Computer Graphics International, Geneva, 

Switzerland pp. 52-59. 

14. Hsu, W. M., Hughes, J. F., and Kaufman, H., 1992, "Direct Manipulation of Free­

Form Deformation," Computer Graphics, 26(2), pp. 177-184. 

15. Joo K. Y., Renzulli, P., Kreylos, 0., Hamann, B., Monno, G., and Staadt, 0. G., 

2006, "3D Warp Brush Modeling," Computers & Graphics, 30( 4 ), pp. 610-618. 

16. Lamousin, H. J., and Waggenspack, W. N., 1994, "NURBS-Based Free-Form 

Deformations," IEEE Computer Graphics & Applications, pp 59-65. 

17. Lawrence, J. and Funkhouser, T., 2004, "A Painting Interface for Interactive 

Surface Deformations," Graphical Models, 66(6), pp. 418-438. 

18.LeBlanc, A., Kalra, P., Magnenat-Thalmann, N., and Thalmann, D., 1991, 

"Sculpting with the 'Ball and Mouse' Metaphor," Proceedings of graphics 

Interface, Calgary, Alberta, Canada, pp. 152-159. 

19. Leu, M.C., Maiteh, B. Y., Blackmore, D., and Fu, L., 2001, "Creation of Free form 

Solid Models in Virtual Reality," Annals of CIRP, 50( 1 ), pp. 73-76. 

20. Leu, M.C., Peng, X., and Zhang, W., 2005, "Surface Reconstruction for 

Interactive Modeling of Freeform Solids by Virtual Sculpting," Annals of CIRP, 

54(1), pp. 131-134. 

21. Mauch, S., 2003, "Efficient Algorithms for Solving Static Hamilton-Jacobi 

Equations," PhD dissertation, California Institute of Technology, Pasadena, CA. 

22. Museth, K., Breen, D. E., Whitaker, T., and Barr, A. H., 2002, '"Level-Set Surface 

Editing Operators," ACM Transactions on Graphics, 21(3), pp. 330-338. 



142 

23. Osher, S., and Sethian, J., 1988, "Fronts Propagating with Curvature-Dependent 

Speed: Algorithms based on Hamilton-Jacobi Formulations," Journal of 

Computational Physics, 79, 12-49. 

24. Parent, R., 1977, "A System for Sculpting 3-D Data," Computer Graphics, 11 (2), 

pp. 138-147. 

25. Seder berg, T. W., and Parry, S.R., 1986, "Freeform Deformation of Solid 

Geometric Models," Computer Graphics, 20( 4 ), pp. 151-160. 

26. Yoshizawa, S., Belyaev, A. G., and Seidel, H. 2003. "Free-Form Skeleton-Driven 

Mesh Deformations," Proceedings of the Eighth ACM Symposium on Solid 

Modeling and Applications, Seattle, Washington, pp. 247-253. 



APPENDIX 

PSEUDO CODES OF THE CONTOUR GENERATION AND CONTOUR 

COMBINATION ALGORITHMS 

The pseudo code ofthe contour generation algorithm is given below: 

Procedure: Search contour points from the three-column table 

BEGIN 

//variables 

variable nContour I /the number of contours 

//the array used to store the point indexes of each contour 
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variable ContourArray[] 

variable MiddleColumn[ ] //the array used to store the point indexes in the middle column 

variable LeftColumn[ ] //the array used to store the point indexes in the left column 

variable RightColumn[] //the array used to store the point indexes in the right column 

variable Point[ ] //the array used to store the coordinates of points and the traverse 

information 

variable Index 

variable Leftlndex 

variable Rightlndex 

Index= 0 

nContour = 0 

REPEAT 

REPEAT 

//the index of the point in the MiddleColumn[] and Point[] 

//the index ofthe point in the LeftColumn[ ] 

//the index of the point in the RightColumn[ ] 

Contour Array[ nContour] .addPoint (Point[ Index] .coordinates) 

Leftlndex = LeftColumn[Index].getPointlndex 

Rightlndex = RightColumn[Index] .getPointindex 

IF Point[Leftlndex].traversed =false 

Index = Leftlndex 

ELSE 

Index = Rightlndex 



END 

END IF 

Point[Index].traversed =true 

UNTIL 

Point[Leftlndex].traversed =true && Point[Rightlndex].traversed =true 

nContour++ 

Index= the index of next unsearched point in the middle column 

UNTIL all the points in the middle column are traversed 
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The pseudo code for Step 1 of the contour combination algorithm is given below where A 

and B represent contour Ai and Bj, and ai represents the point in contour A with index i. 

Procedure: Search starting points from contour A and associated points from contour B 

A: list of points in contour A 

B: 

C: 

f: 

f': 

1: 

I': 

DexelY: 

list of points in contour B 

list of points in the combined contour 

the first associated point in contour B 

candidates for the first associated point in contour B 

the last associated point in contour B 

candidates for the last associated point in contour B 

dexel data in y direction 

FOR (i=A-begin(); i *A-end(); i++) 

IF (INT[(a, ~ [x])/ ~] < INT[(a,+1 ~ [x])l ~] 

THEN 

templistl =Dexe!Y [ INT[(ai-[x])/ Ax]+ ~] [ ai-[z] ]; 

templist2=Dexe!Y [ INT[(~+J-[x])/ Ax]] [ ai+J-[z] ]; 

FOR every point pin templistl and every point q in templist2 

IF (p ~ [y] E [a,~ [y]-~y,a, ~ [y] + ~y] 

THEN save p to f' 

END IF 

IF(q~[y]E[al+l ~[y]-~y,ai+l ~[y]+~y] 

THEN save q to I' 



CA4; 

END IF 

END FOR 

END IF 

END FOR 

IF (a;~[y] -:t:. a;+ 1 ~[y]) 

THEN 

ELSE 

END IF 

IF (F~number() =1) AND (l'~number() =1) 

THEN 

f=F; 1=1'; 

return; 

ELSE 

break; 

END IF 

//(a;~[y] = ai+J~[y]) 

IF (F~number() >2) OR (l'~number() >2) 

THEN 

break; 

ELSE 

find f and I according to one of the cases CA 1, CA2, CA3 and 

return; 

END IF 

Search contour B to find the index of point f 

Renumber points in contour B by indexing point f as b1 without affecting the point sequence 

Search the renumbered contour B to index point I as b1 

Renumber points in contour A by indexing point a; as a1 without affecting the point sequence 

Add points a~, b1, ... , b1, az to C 

The pseudo code for Step 2 of the contour combination algorithm is given below. 

Procedure: Search the rest of pairs from A and their associated points from B 

I: index of the last associated point for the previous pair of points in contour A 
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r: point index in contour A 

s: point index in contour B 

o: index of the last associated point in contour B 

r=2; 

s=l+ 1; 

REPEAT 

IF (INT[(a, ~ [x])/ ~] :t:- INT[(a,+1 ~ [x])/ ~]) 

THEN I /search for b0 

FOR (t=s; t:;t: B-end(); t++) 
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IF(a,+1 ~[y]E[min(b, ~[y],b,+1 ~[y]), max(b, ~[y],b,+ 1 ~[y])])AND 

((b, ~ [x] = INT(a,+1 ~ [x]/ Lh)) OR 

( b, ~ [x] = INT(a,+1 ~ [x]l ~) + L1x )) 

THEN 

END IF 

END FOR 

ELSE 

o=t; break; 

IF (a, ~ [y] E [min(b .. _1 ~ [y],b, ~ [y]), max(b,_1 ~ [y],b, ~ [y])]) AND 

(( INT(b,. ~ [x]/ ~) = INT(a, ~ [x]l ~) OR 

(INT(b_. ~ [x]l ~) = INT(a, ~ [x]l ~) + ~ )) 

THEN 

FOR (t=s; t:;t: B-+end(); t++) 

IF(a,+1 ~[y]E[min(b, ~[y],b,+ 1 ~[y]), max(b, ~[y],b,+ 1 ~[y])]) 

THEN o=t; 

END IF 

END FOR 

ELSE 

Add point ar to the end of C; 

r++; 

break; 

END IF 



END IF 

Add points an bs , ...• b0 , ar+I to the end ofC; 

s=o+l; r++; 

UNTIL o=B~end() AND r=A~end() 
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