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ABSTRACT 

This research supports the evaluation of an impressed current cathodic protection 

(CP) system of a buried coated steel pipeline through alternative technology and 

methods, via an inline inspection device (ILI, CP ILI tool, or tool), in order to prevent 

and mitigate external corrosion.  This thesis investigates the ability to measure the current 

density of a pipeline’s CP system from inside of a pipeline rather than manually from 

outside, and then convert that CP ILI tool reading into a pipe-to-soil potential as required 

by regulations and standards.  This was demonstrated through a mathematical model that 

utilizes applications of Ohm’s Law, circuit concepts, and attenuation principles in order 

to match the results of the ILI sample data by varying parameters of the model (i.e., 

values for over potential and coating resistivity).  This research has not been conducted 

previously in order to determine if the protected potential range can be achieved with 

respect to the predicted current density from the CP ILI device.  Kirchhoff’s method was 

explored, but certain principals could not be used in the model as manual measurements 

were required.  This research was based on circuit concepts which indirectly affected 

electrochemical processes.  Through Ohm’s law, the results show that a constant current 

density is possible in the protected potential range; therefore, indicates polarization of the 

pipeline, which leads to calcareous deposit development with respect to electrochemistry.  

Calcareous deposit is desirable in industry since it increases the resistance of the pipeline 

coating and lowers current, thus slowing the oxygen diffusion process.  This research 

conveys that an alternative method for CP evaluation from inside of the pipeline is 

possible where the pipe-to-soil potential can be estimated (as required by regulations) 

from the ILI tool’s current density measurement.   



   iv 
 

 

ACKNOWLEDGMENTS 

I am grateful for my professors, Dr. O’Keefe, Dr. Birman, and Dr. Drewniak, for 

helping me move forward and make this interesting study possible.  These gentlemen are 

very serious, knowledgeable, positive, as well as approachable.  I liked my professors’ 

professionalism, leadership, and openness for ideas with respect real world engineering 

and collaborations with subject matter experts (SMEs).  I am fortunate for the education 

and opportunity Missouri S&T provided to do this study remotely through use of 

technology to facilitate collaborations.    

Thank you Dr. Birman for introducing me to Dr. O’Keefe!   I am especially 

thankful and value industry connections made through Dr. O’Keefe like Mr. Mark 

Mateer, Principle Asset Integrity Engineer from Shell, who became a key figure for this 

study and a great mentor.  Mark helped me establish important connections with other 

serious supporters (mentors) such as Mr. David Williams, CP Specialist (NACE CP4), 

from Baker Hughes.  Also thanks to resources and teachers like Mr. Joe Pikas, VP of 

Pipeline Integrity & Corrosion Engineering, from Technical Toolboxes.  Thank you all 

for the wonderful material, guidance, and assistance.   

Thank you to my dearest friend, Mr. Alex B. Fernandez, for encouraging me to 

keep pushing forward with my dreams and endeavors.   

 



   v 
 

 

TABLE OF CONTENTS 

Page 

ABSTRACT ....................................................................................................................... iii 

ACKNOWLEDGMENTS ................................................................................................. iv  

LIST OF ILLUSTRATIONS ........................................................................................... viii 

LIST OF TABLES ............................................................................................................. xi 

NOMENCLATURE ......................................................................................................... xii 

SECTION 
 

1. INTRODUCTION .............................................................................................. 1 

1.1. RESEARCH OBJECTIVE ..................................................................... 1 

1.2. BACKGROUND .................................................................................... 3 

1.2.1. External Corrosion Background. .................................................. 3 

1.2.1.1 Types of corrosion of steel pipelines ................................3 

1.2.1.2 Ferrous steel corrosion. .....................................................4 

1.2.1.3 Diffusion – Fick’s Law. ....................................................7 

1.2.2. Corrosion Cell Components. ...................................................... 10 

1.2.3. Cathodic Protection Background. ............................................... 12 

1.2.3.1 Brief history of CP. .........................................................12 

1.2.3.2 Cathodic protection -general design and use. .................13 

1.2.3.3 CP and attenuation ..........................................................15 

1.2.3.4 CP and calcareous deposit relationship...........................15 

1.2.4. Regulatory Requirements for CP. .............................................. 19 

1.2.5. Use of ILI Tool for CP Measurement. ....................................... 20 



   vi 
 

 

1.3. INTRODUCTION TO THE CP ILI TOOL.......................................... 22 

2. ENGINEERING ANALYSIS & METHODOLOGY ...................................... 27 

2.1. PROBLEM APPROACH ..................................................................... 27 

2.2. ASSUMPTIONS ................................................................................... 28 

2.3. CP ANALYSIS ..................................................................................... 30 

2.4. ATTENUATION of CURRENT & POTENTIAL ............................... 33 

2.5. ANALYTICAL VIEW PER CP ILI ..................................................... 36 

2.6. KIRCHHOFF’S & OHM’S LAW for CORROSION CELL ............... 38 

2.6.1. Circuit of General CP System. ................................................... 40 

2.6.2. Circuit of CP System with ILI Inside of Pipeline. ..................... 43 

3. CP ILI DATA & MODEL RESULTS .............................................................. 46 

3.1. DATA FROM CP ILI TOOL ............................................................... 46 

3.1.1. CP ILI Data Set #1. ...........................................................46 

3.1.2 CP ILI Data Set #2 .............................................................48 

3.1.3. CP ILI Data Set #3 ............................................................49 

3.2. MODEL RESULTS PER ENGINEERING ANALYSIS ON CP ILI 

DATA .................................................................................................... 51 

3.2.1. Constant Over Potential and Varied Coating Resistivity ........... 52 

3.2.2. Varied Over Potential And Constant Coating Resistivity. ......... 58 

4. DISCUSSIONS AND CONCLUSIONS .......................................................... 65 

4.1. DISCUSSION – RESULTS OF GRAPHS & CHARTS ...................... 65 

4.2. FINDINGS ............................................................................................ 70 

4.3. CONCLUSIONS................................................................................... 72 



vii 

4.4. FUTURE WORK .................................................................................. 73 

4.4.1. Calcareous Deposit. .................................................................... 74 

4.4.2. Kirchhoff’s Theory Applications. .............................................. 74 

4.4.3. Diffusion Rate Experiments. ...................................................... 74 

4.4.4. Noise and Vibration Filter. ......................................................... 75 

4.4.5. Sensor Types and Arrangements. ............................................... 75 

4.4.6. Non-Surface-Contact Sensors. ................................................... 75 

APPENDICES .................................................................................................................. 76 

A. MISCELLANEOUS TABLES & MATERIALS ................................... 76 

B. LITERATURE & PATENT REVIEW ...................................................  80 

C. OTHER REFERENCES & MATERIAL ................................................  83 

BIBLIOGRAPHY ............................................................................................................. 86 

VITA ................................................................................................................................. 89  



   viii 
 

 

LIST OF ILLUSTRATIONS 

               Page 

Figure 1.1 –Tafel Plot, Rotating Cylinder Test................................................................... 7 

Figure 1.2 – Concept of Protected Pipe, Potential vs. Natural Log of Current .................. 8 

Figure 1.3 – Lazzari and Pedeferri – Polarization Diagram of Iron ................................. 10 

Figure 1.4 – Diagram of CP with R = Rectifier, and Current Flow .................................. 11 

Figure 1.5 – Part 1, Calcareous Deposit Example –Shrink Sleeve & Coating Interface .. 16 

Figure 1.6 – Part 2, Calcareous Deposit Example –Shrink Sleeve & Coating Interface12 17 

Figure 1.7 – Image Redrawn from “Cathodic Protection” –Lazzari & Pediferri1 ............ 19 

Figure 1.8 – Baker Hughes Public Video www.BakerHughes.com14 .............................. 23 

Figure 1.9 – CP ILI Within the Pipe Conceptualization ................................................... 24 

Figure 2.1 – Pipeline Schematic for Analysis1 ................................................................. 31 

Figure 2.2 – Pipeline Schematic, Redrawn Relating to Figure 2.1 for Analysis1 ............. 32 

Figure 2.3 – Attenuation Trends for Current and Potential .............................................. 33 

Figure 2.4 – Tool Reading - Sensor Contact Points 1 & 2 (Parts a. & b.) ........................ 38 

Figure 2.5 – Circuit Diagram of Cathodically Protected Pipe (a.).................................... 42 

Figure 2.6 – Circuit Diagram of Cathodically Protected Pipe (b.) ................................... 42 

Figure 2.7 –Circuit Diagram of CP Pipe with ILI Measurement from Inside .................. 43 

Figure 3.1 – CP ILI Sample Data Set 1, Plot .................................................................... 47 

Figure 3.2 – CP ILI Sample Data Set 2, by Every 10cm .................................................. 49 

Figure 3.3 – CP ILI Sample Data Set 3, by Every 10cm .................................................. 50 

Figure 3.4 – Current Flow and E-field Conceptualization (Parts a. & b.) ........................ 51 

Figure 3.5 – Cathode ∆Ex Atten. @ Constant -100mV EL (Data Set#1) .......................... 52 



   ix 
 

 

Figure 3.6 – Predicted ∆Ix at Constant EL (Data Set#1) ................................................... 53 

Figure 3.7 – Cathode ∆Ex Atten. @ Constant -100mV EL (Data Set#2a) ........................ 53 

Figure 3.8  – Predicted ∆Ix at Constant EL (Data Set#2a) ................................................. 54 

Figure 3.9 – Cathode ∆Ex Atten. @ Constant -100mV EL (Data Set#2b) ........................ 54 

Figure 3.10 – Predicted Current Density at Constant EL (Data Set#2b) ........................... 55 

Figure 3.11 – Cathode ∆Ex Atten. @ Constant -100mV EL (Data Set#2c) ..................... 55 

Figure 3.12 – Predicted ∆Ix at Constant EL (Data Set#2c) ................................................ 56 

Figure 3.13 – Cathode ∆Ex Atten. @ Constant -100mV EL (Data Set#3a) ...................... 56 

Figure 3.14 – Predicted ∆Ix at Constant EL (Data Set#3a) ................................................ 57 

Figure 3.15 – Cathode ∆Ex Atten. @ Constant -100mV EL (Data Set#3b) ...................... 57 

Figure 3.16 – Predicted ∆Ix at Constant EL (Data Set#3b) ............................................... 58 

Figure 3.17 – Cathode ∆Ex Atten. at Varied EL (Data Set#1) .......................................... 59 

Figure 3.18 – Predicted ∆Ix @ Constant Coating Resistivity (Data Set#1) ...................... 59 

Figure 3.19  – Cathode ∆Ex Atten. at Varied EL (Data Set#2a) ....................................... 60 

Figure 3.20 – Predicted ∆Ix @ Constant Coating Resistivity (Data Set#2a) .................... 60 

Figure 3.21 – Cathode ∆Ex Atten. at Varied EL (Data Set#2b) ........................................ 61 

Figure 3.22 – Predicted ∆Ix @ Constant Coating Resistivity (Data Set#2b) .................... 61 

Figure 3.23 – Cathode ∆Ex Atten. at Varied EL (Data Set#2c) ........................................ 62 

Figure 3.24 – Predicted ∆Ix @ Constant Coating Resistivity (Data Set#2c) .................... 62 

Figure 3.25 – Cathode ∆Ex Atten. at Varied EL (Data Set#3a) ........................................ 63 

Figure 3.26 – Predicted ∆Ix @ Constant Coating Resistivity (Data Set#3a) .................... 63 

Figure 3.27 – Cathode ∆Ex Atten. at Varied EL (Data Set#3b) ........................................ 64 

Figure 3.28 – Predicted ∆Ix @ Constant Coating Resistivity (Data Set#3b) .................... 64 



   x 
 

 

Figure 4.1 – Conceptualization of Data Observations ...................................................... 66 

Figure 4.2 – Table 3.1 ∆Ix & ∆Ψx as Coating Resistivity Increases ................................ 68 

Figure 4.3 – Magnification of ∆ΨxmV (Fig. 4.2) as Coating Resistivity Increases ......... 68 

Figure 4.4 – From Table 3.2 Data: ∆Ix & ∆Ψx Driven by ∆ΨL ......................................... 69 

Figure 4.5 – Current Density at Drain Point and Normalized Current ............................. 72 

 

  



   xi 
 

 

LIST OF TABLES 

               Page 

Table 3.1 – List of CP ILI Data Sets with Sample Reading Size per Distance ................ 46 

Table 4.1 – Constant Over Potential (ΨL = ∆EL), “Midpoint” Voltage ............................ 67 

Table 4.2 – Constant Coating Resistivity Ωm .................................................................. 69 

 



   xii 
 

 

NOMENCLATURE 

Symbol Description        

am                         Reaction quotient 

aatt        Attenuation constant (R4/Rk)^0.5 

Amp or A  Ampere, unit of measure for current = C/sec 

C    Coulomb 

C   Chemical elemental name from nonmetal noble gases for carbon 

Ca   Chemical elemental name from main group metals for calcium 

CP   Cathodic Protection 

D   Diffusion coefficient (diffusivity) 

e   base of natural logarithm = 2.718 

E or Ψ or Φ      All symbols denote Potential 

Eeq                             Potential Equilibrium, chemical oxidation- reduction is in equilibrium  

Eo                     Standard cell potential 

∆E or Ψ           Change or Drop in Potential 

F                      Faraday constant 9.6485309x104 J/Volt*mol 

Fe                    Chemical elemental name from transition metals group for (ferrous) Iron  

ft                      English unit of "foot" representative for length 

H                     Chemical elemental name from noble gases group for Hydrogen  

HS&E  Health, Safety, and Environment (a.k.a. EH&S) 

I                       Current in general amp 

ID  Inner (inside) Diameter 

J  Current Density Amp/m2 
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JN  Rate of Diffusion m2/sec 

k  Conductivity coefficient Ω*m-1 (the inverse of resistivity) 

L   Length (distance) 

L&P   Lazzari & Pedeferri (Cathodic Protection -Attenuation Methods)  

m   Meter 

milli   Milli (10-3) 

Mg  Chemical elemental name from main group metals for Magnesium 

μ  Micro (10-6) 

O                     Chemical elemental name for Oxygen 

OD   Outer (outside) diameter 

Ω  Ohm, a unit of measure of resistance 

pH   the electrolytic acidity or basicity of an aqueous solution (corrosiveness)  

ρ  resistivity Ωm (the inverse of conductivity)  

r  radius of pipe, subscripts denote inner or outer radii of pipe 

Rk             Characteristic resistance of the steel pipe 

Ru                    Universal Gas constant 8.314 (J/mol*K) 

Ro                    Resistance of coating 

R1                    Resistance of leads from rectifier 

R2                    Resistance of leads to anode bed 

R3                    Resistance of anode bed electrolyte 

R4                    Resistance of pipeline (Lp*R/unit length)  

R5             Resistance of ILI (CP ILI tool) 

V  Voltage or volts, unit of measure for potential charge Amp-Ohm (AmpΩ)
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1. INTRODUCTION 

1.1. RESEARCH OBJECTIVE 

This study investigates the ability to convert current flow data collected via an 

inline inspection (ILI or smart pig) device of a cathodic protection (CP) system of a 

below ground pipeline into an estimate of pipe-to-soil interface potential (voltage).   The 

supporting physics will utilize Ohm’s law, attenuation, electrochemical principles, and 

Kirchhoff’s method.  This research and supporting analysis has not been conducted 

before and would be a benefit to the pipeline industry to help determine and evaluate the 

effectiveness and consistency of a CP system.  This study solely targets the idea to 

demonstrate the existence of adequate pipe-to-soil potential from the ILI data which 

results in the development of calcareous deposit on a pipe coating surface.  In industry 

calcareous deposit is an indication that a pipeline is cathodically protected and thus aids 

with mitigation and prevention of external corrosion as required by regulations.   

The research in this document utilizes available studies and knowledge from 

specialized industry areas and then applying those disciplined areas within the analysis 

enabling correlation with ILI tool data.  This is a multidisciplinary topic including 

chemistry, corrosion, metallurgy, material science (solid state physics), and 

electrodynamics, where their interrelationships are quite extensive and specialized, hence 

accessing knowledge and experience of subject matter experts (SMEs) and the developers 

of the ILI tool.  This research will not attempt to prove physical theories or derivations; 

but rather, it will summarize applications of the already available material.  With the 

aforementioned disciplines many parameters remain to be explored on this topic, with the 

intent to pave the way for future research.   
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This thesis is not about providing complete proofs or detailed derivations; rather it 

briefly summarizes and extends applications of already established methods1 that are 

used to evaluate the data from the CP ILI tool.  Evaluation of CP systems’ effectiveness 

is mandated by regulations.  CP is used to prevent corrosion in order to avoid possible 

failure and prolong the life of buried or submerged metallic structures.  While in general 

the problem of current density measurement on a steel surface is still unsolved, there is a 

new method to measure current density for the special case of pipelines.  A new ILI tool 

called the CPCM ToolTM was jointly developed by Baker Hughes Inc. and Shell Projects 

& Technology to measure current density.  There are other similar tools used in industry 

for vertical down-hole drilling, but this ILI is new to horizontal buried pipelines.     

The tool measures current flow from the CP system from inside the pipe as a 

moving ILI device.  This is different from the typical manual measurement of the pipe-to-

soil cathode potential from outside of the pipe.  The device presents internal automated 

high-speed current measurement versus external manual low speed potential 

measurement.  This study is intended to show how the two techniques can be related to 

each other, which has not yet been done in any other study, by showing that pipe 

potential can be determined from the current density data using basic electrochemistry, 

Ohm’s Law, attenuation, and Kirchhoff’s theory.    

Pipeline industry-specific audiences for this paper span several applied sciences, 

technical, and engineering disciplines.  Some of the specific disciplines are the following: 

metallurgy, materials science, structural, corrosion, electrochemical, mechanical, 

electrical circuitry, and general integrity.  Integrity engineering includes various 

                                                 
1 Lazzari, L.;  Pedeferri, P. (2006);  “Cathodic protection” (1st Edition).  Polipress, Politecnico di Milano 
Piazza Leonardo da Vinci, 32-20133 Milano. 
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disciplines for the pipeline system in its entirety, its design, maintenance, and safety, as 

well as regulatory code compliance.   

If sufficient pipe-to-soil potential can be determined from the current density data 

using basic electrochemistry and the aforementioned electrodynamics, it would expand 

the practice of CP and benefit the industry by providing a new way to validate regulatory 

compliance without manually gathering potential data.   

 

1.2. BACKGROUND 

To add clarity to the research objective above, the following topics need to be 

understood and defined in this background before providing a more detailed introduction 

about the CP ILI tool, discussing applications of related engineering methodologies or 

any modeled results, and the benefits that this technology brings to industry.   

 External Corrosion: Types of Corrosion, Ferrous steel Corrosion, & Diffusion;   

 Corrosion Cell Components;  

 CP: history, general design, relationships with attenuation & calcareous deposit;   

 Regulatory Requirements; and 

 Beneficial Use of the CP ILI tool for CP Measurement. 

1.2.1. External Corrosion Background.  This section describes the different 

kinds of external corrosion that are relevant to steel pipelines and the specific 

electrochemical background of ferrous steel corrosion.   

1.2.1.1 Types of corrosion of steel pipelines.  “Basically, there are four ways 

corrosion can occur.  Corrosion can occur through a chemical reaction or three general 

types of electrochemical reactions.  The three general types of electrochemical reactions 

that occur depend on the cause of the potential difference between the anode and the 
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cathode.  This potential difference can be caused by differences in the environment, 

differences in the metal, or by external electrical sources of DC (direct current) current.  

Understanding this principle leads to an understanding of the principles of operation of 

CP systems.  These three types of corrosion are: 

1) Concentration cell corrosion  

(electrochemical cell caused by differences in the electrolyte),  

2) Galvanic corrosion  

(electrochemical cell caused by differences in the metal), and  

3) Stray current corrosion  

(electrochemical cell caused by external electrical sources).  

Lastly there is general corrosion; this type of corrosion is either chemical or 

electrochemical in nature.  However, there are no discrete anode or cathode areas.  This 

form of corrosion is uniform over the surface of the metal exposed to the environment. 

The metal gradually becomes thinner and eventually fails.” 2   

1.2.1.2  Ferrous steel corrosion.  For more context, it is important to understand 

what general ferrous (iron based, Fe) steel corrosion is and later how CP is designed to 

mitigate this corrosion.  This section and this study will only discuss the simpler aspect 

for conceptualization of the ferrous steel compound’s oxidation-reduction reaction 

(corrosion) and ignore other alloy compounds’ electrochemical effects, Equation (1.1).   

This is demonstrated through standard application of the Gibbs free energy and 

Nernst methods, Equation  (1.4), of electrochemical transformation (reaction) in order to 

obtain the reduction potential.  Observe that the reduction potential is desired to be 

                                                 
2  Department of Defence (2003).  Operation and Maintenance: Cathodic Protection.   UFC-3-570-06, 
Chapter 2-1 (Corrosion Cell), CP Design. 
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controlled by use of CP as explained later in Section 1.2.3.   External corrosion of ferrous 

steel pipelines consists of the following chemical reactions: 

→ + 2    Anodic Reaction (oxidizing agent) 

(1.1)  

=                                        Reaction Quotient 

 “If the potential at the steel surface is at equilibrium, no corrosion occurs as the 

reaction rate is equal in both directions (Equation 1.2).  The corrosion occurs when the 

surface potential is more positive than Eeq. as shown below (Figure 1.2).”3    

 ( ⇌ + 2 )    Equilibrium  

(1.2) 

  =                                      Reaction Quotient 

  “Cathode current plateaus (see Figure 1.1 and Figure 1.2) when the oxygen (O2) 

transport to the surface is diffusion limited (Section 1.2.1.3 Diffusion and Figure 1.3).  

Hydrogen evolution (movement to the surface) occurs if the potential is low and current 

increases”3 (see Equations 1.3 and 1.6).    By the Nernst Equation and Gibbs Free Energy, 

Eeq for the reaction ( ⇌ + 2 ) is shown below in Equation 1.4.      

1
2 + + 2 → 2       Cathodic reaction (oxidation reduction) 

(1.3) 

  =                           Reaction Quotient 

 (1.4) 
=  −  ln             Nernst Equation; or 

                                                 
3 Mateer, M. (2017, April 10). Background on Corrosion and CP, CPCM Data Analysis Approach 
[Telephone interview #1].  Discussions  with Mark Mateer, Principal Asset Integrity Engineer. 
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   ,              =  −
0.0257 

∗ ln( ) 

ℎ ,   =
∗

;         =    

  1.2  1.3           =    

The standard cell potential of the reaction is denoted as Eo, where F is the Faraday 

constant (9.6485309x104 J/V*mol), Ru is the universal gas constant (8.314510 J/K*mol), 

n is redox number (from oxidation-reduction reaction balanced Equation), T is the 

absolute temperature (in this case assume ambient at 298 Kelvin for 25oC) and am is the 

ion concentration of the metal (also called the reaction quotient or reaction ratio).4   

“If electrons can be added, as in Equation (1.5), the reaction of Equation (1.1) can 

be driven to the left and reduce the reaction rate.  If the potential can be driven below Eeq 

then corrosion will stop (Figure 1.2), page 8.”3   

(1.5) 
← + 2 (+2 )   Inhibition of Corrosion 

(1.6) 
2 + + 4 → 4     Oxygen Reduction 

The desire is to stop external corrosion (see Figure 1.1 and Figure 1.2) or reduce 

the rate so much that it becomes insignificant or negligible.  This is done 

electrochemically via the manipulation of the corrosion cell defined in Section 1.2.2 

below and through the application of CP design (Section 1.2.3 below and further 

elaborated on in Section 2.3).  The Tafel plot (Figure 1.1) below accompanied by Figure 

1.2 shows the potential versus the logarithmic current as seen in the Nernst (1.4) and is 

                                                 
4 Kotz, J.;  Treichel,P.; (1999)  “Chemistry and Chemical Reactivity, Fourth Edition” (Gibbs Free Energy, 
Standard Potentials, and Electrochemical Cells – Nernst Equation), Chapters: 21 and 20.3;  Suanders 
College Publishing: Fort Worth, TX.   
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dependent upon the RPM (revolutions per minute) level examples (frequency) due to a 

rotating cylinder electrode test.  “The faster the cylinder spins, the higher the oxygen 

diffusion rate and the higher the cathode current.  The rotation cylinder test also causes 

the corrosion potential to shift to higher potential where corrosion current has increased, 

indicating the corrosion rate is higher than when it is at low RPM.”3   

 

 

Figure 1.1 –Tafel Plot, Rotating Cylinder Test 

 

1.2.1.3 Diffusion – Fick’s Law.  It is important to understand diffusion with 

respect to electrochemical corrosion of metal.  In solid state physics there is a flux of 

concentration gradient (impurity atoms or vacancies), throughout a solid’s atomic 

structure represented by Equation (1.7).  “In equilibrium the impurities or vacancies will 

be distributed uniformly.  The net flux of JN of atoms of one species in a solid is related to 

Tafel Plot 
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the gradient of the concentration N of this species by a phenomenological relation called 

Fick’s Law.  To diffuse, an atom must overcome the potential energy barrier presented by 

its nearest neighbors.”5  The “neighbors” are other atoms within the solid’s structure.  

This explanation is basically the lattice bond effects within the metal, where “the gradient 

of the chemical potential is the driving force for diffusion and not the concentration 

gradient alone.  The number of atoms crossing a unit area per unit time is called the rate 

of diffusion.” 5     

  

 

Figure 1.2 – Concept of Protected Pipe, Potential vs. Natural Log of Current  
    

  
(1.7) 

= ∇   m2
sec  = rate of diffusion  

-or 

                                                 
5 Kittel, C.; (2005), “Introduction to Solid State Physics, Eighth Edition” (Diffusion), Chapters: 20; John 
Wiley & Sons, Inc.: Hoboken, NJ.   

CP current drops 
over time 
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= ∇
∆c

∆
  m

2
sec  = rate of diffusion  

 (1.8) 

= ,     = diffusion constant or diffusivity  

Where E in this general case is the activation energy required for the process, kb is 

the Boltzmann constant, and T is the absolute temperature.  This study assumes constant 

ambient temperature (ideal, see Section 2.2 for complete list of assumptions), where in 

industry and experimentally, the temperature can impact the diffusion rate.   

 Figure 1.3 is the “Polarization diagram of corrosion of iron in aerated aqueous 

electrolyte.” 1   This model conveys the metal’s process from its original state up to a 

level of polarization, necessary for articulating electrochemical corrosion concepts and is 

a more elaborate diagram in relation to the previous Figure 1.2.  In this visual model of 

Figure 1.3 (Potential vs. Current), it helps illustrate that oxygen diffusion (recall Equation 

1.6) controls the cathodic reaction and the current will remain constant while the 

potential varies.   

Later in Sections 3, 4 and in Figure 4.1, the results from the CP ILI data and 

analyses will explain how this applies.   Regarding the horizontal Ecorr line, above it and 

to the right of the potential curve, is where diffusion takes place (Fick’s law).  The 

diagonal line is Eeq (equilibrium from the Nernst Equation) and the triangular space 

formed between and above the flat Ecorr and above Eeq represents the over potential where 

the pipe polarizes.  Below the Eappl and to the right end (tail) of the curve is the hydrogen 

evolution region.  This Figure 1.3 will become an important model to correlate actual 

physical electrochemical phenomena with the mathematical model per Section 2 and 

sample readings (data) from the ILI tool.   
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Figure 1.3 – Lazzari and Pedeferri – Polarization Diagram of Iron  

 

1.2.2. Corrosion Cell Components.  “The electrochemical process consists of 

four distinct parts: anode, cathode, electrolyte, and metallic path.  These four parts 

constitute what is called the corrosion cell.  Electrochemical corrosion occurs only when 

all four parts of the corrosion cell are present.  To understand the operation of a cathodic 

protection system, it is extremely important to understand these four parts of the 

electrochemical corrosion cell.      

a. Anode –The anode is the point in a corrosion cell where electricity is passed by 

chemical means from the surface of the metal to the electrolyte.  This chemical 

reaction is an oxidation reaction, which is characterized by the metal losing an 

electron and combining with another element, usually oxygen.  In the case of steel, 

the resulting material is iron oxide (rust).   

b. Cathode – This is the location where protection occurs.  The cathode is the point in a 

corrosion cell where electricity is passed by chemical means from the electrolyte to 
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the surface of the metal. This chemical reaction is a reduction reaction, which is 

characterized by the metal accepting electrons to the electrolyte.   

c. Electrolyte – The electrolyte is any material (soil or liquid) in contact with both the 

anode and the cathode that will allow ions to migrate.  The electrolyte is the part of a 

corrosion cell which allows oxidation and reduction reactions to occur.  The 

electrolyte includes the source of elements or atoms that are required for ion transfer 

to and from the metal electrodes (anode and cathode).    

d. Metallic path – The metallic path completes the circuit and allows the electrons to 

flow.  The metallic path is any metal that contacts both the anode and the cathode and 

allows electrons to flow.  This electron flow must be present for electrochemical 

corrosion to occur.  In the case of a tank or pipeline, this can be the tank or pipe itself, 

or it can be a metallic bond to different metallic structure.”2  CP is the manipulation 

of the corrosion cell components through the control or redirection of current flow as 

indicated by the arrows (Figure 1.4 below).   

 

 

Figure 1.4 – Diagram of CP with R = Rectifier, and Current Flow6 

                                                 
6 Janda, D.; Williams, D. (2014). “Developing a Standardized Process for Cathodic Protection Current 

Measurement on In-Service Pipelines – Process and Procedures for a New Technology.” NACE & Baker 

Hughes: Houston, TX.  
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The circuit behavior conceptualization is further illustrated in Figure 1.7 in the 

following section.  The Figures 1.1 through 1.6 will help to analyze what is happening in 

regards to Ohm’s Law and possibly with Kirchhoff’s theory for summing the contributing 

electric (or electrochemical) effects across the circuit (corrosion cell).  Since a pipeline 

can be very long, Kirchhoff’s methods must consider some integration aspects and 

boundary conditions.   These concepts will be expanded on with additional supporting 

schematics (see Figure 2.6 and Figure 2.7) as the methodology for solving the 

engineering problem is outlined in Section 2, since Kirchhoff’s alone is not sufficient for 

solving the problem and Laplacian physics combined with attenuation must be utilized.  

However, proofs and theories reach beyond this study’s objective, which will become 

clearer in Section 2.      

1.2.3. Cathodic Protection Background.  This section discusses aspects of CP 

with respect to its historical use, general design, its relationships to attenuation and 

calcareous deposits.   

1.2.3.1 Brief history of CP.  Cathodic protection has been employed as a 

corrosion control technique for metallic structures, mainly steel enforced masonry, since 

approximately the 1840’s by using zinc alloys as sacrificial anodes.  “Since at least the 

1930’s, CP has been employed as a tool to protect submerged pipelines (below ground or 

in water) from corrosion, in conjunction with coatings.  Over the years, industry has 

developed techniques to guide the use of CP in practice and design, including 

recommendations on the use and measurement of CP effectiveness per NACE document 

SP-0169 and later regulatory standard requirements.  One of the main developments was 

the recognition of the need to establish “criteria” by which the effectiveness of the 
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application of CP can be judged.  Because measuring potential of the steel pipe at a given 

point was relatively easy, but measuring the current density is much harder; all of the 

criteria were built around potential measurement.”3   

1.2.3.2 Cathodic protection -general design and use.  Impressed Current 

Cathodic Protection (CP), in this case, is used to force the electrons in the redox Equation 

to the left, recall Equation (1.1) resulting in Equation (1.5), thus slowing external 

corrosion to reduce to a negligible rate.  This is done by inducing low amperage of 

current flow to the pipeline as defined in the corrosion cell components (corrosion cell 

circuit) as seen in Figure 1.4 and Figure 1.7.         

The power source of the CP is from a rectifier located alongside of the pipeline 

that supplies amperage to maintain a constant potential across two electric terminals 

(anode –soil electrolyte and cathode -pipe).  Through years of empirical and lab research, 

it has been discovered that the required negative shift in cathode potential for effective 

prevention of corrosion is approximately -100mV (millivolts).7  Although this is not 

indicative of achieving Eeq; rather, the anodic reaction rate becomes so low that external 

corrosion becomes negligible.7  It is not necessary to achieve the value of Eeq, however, it 

is more important to get close enough to the value so corrosion is rendered trivial.  In 

industry the shift or potential drop has several commonly used terms: a) polarization, b) 

potential shift, or c) over potential, all of which have the same meaning.  On a pipeline 

with effective CP, the current density and the potential over time will be controlled by the 

calcareous deposit (Figure 1.2, and Figure 1.5 – Figure 1.7).   

                                                 
7 Mateer, M; Pikas, Joe, Williams, D.; (2017, April 03). General agreed concept, throughout industry.  
Discussions with industry SMEs from Shell, Technical Toolboxes, and BHI.   
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There are many sources that may lead to the failure of below ground steel 

pipelines that could result in consequential impacts to the environment, safety, and 

economics etc.  CP is specifically designed to inhibit external corrosion of these buried 

structures.  The first line of defense to external corrosion is the coating of metallic 

structures via epoxies (i.e. FBEs – fusion bonded epoxy), coal tar enamel (CTE), tape 

coat, or extruded polyethylene to name several examples.  Coatings can fail, disbond 

(coating detachment from metal), delaminate, form holidays (type of coating defect of 

disbondment), or shield (allow water and oxygen to contact the pipe, but prevent CP 

current from doing so).  “Native (bare) steel is defined to have an approximately -500mV 

rest potential.  The impressed current must have a polarization shift of -100mV from the 

native state (also known as the corrosion potential in soil) which puts the desired target 

range of -600mV to -850mV polarized potential versus a saturated copper to copper 

sulfate electrode Cu/CuSO4.  This potential target range is mandated to be maintained by 

standards and regulations.”8  This negative “potential shift from Ecorr (overvoltage or ∆EL 

= EL - Ecorr) was developed based on empirical testing and theoretical 

principles.  Because current density measurements were so difficult, no CP protection 

criterion was ever developed around current density.”7 

Corrosion is the deterioration and degradation of a material as described in 

Sections 1.2.1 through 1.2.1.2 above which eventually causes structural failure of the 

metal (metal loss). There are several types of corrosion for metal but it can only occur 

through a “corrosion cell” which is a complete circuit as conceptually re-depicted in 

Figure 1.7 (below).7  The electrochemical process can be controlled such that the ions are 

                                                 
8 Williams, D. (2017, March 31). Background on Corrosion, CP, CPCM Data Analysis Telephone 
interview.  Discussions with David Williams (CP Specialist & NACE CP4 Certified at BHI). 
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redirected to exposed areas where ion reduction occurs at the metal pipe surface. The 

concentration of current is the greatest at the supply (rectifier) as seen in the figure below.  

“When the entire pipeline surface is provided with sufficient current density to react with 

all the oxygen diffusing to the surface, corrosion rates will drop to an extremely low 

value and a calcareous deposit will form.”7   

1.2.3.3 CP and attenuation.  Potential attenuation with distance from the rectifier 

drain point is based on empirical behaviors of ohmic drop of the metal pipeline of which 

current propagates through over distance.  Attenuation will vary in real world 

applications as steel material alloys are not perfectly uniform, temperatures fluctuate, 

geometry can vary, and as the soil conditions change etc. over the distance that a pipeline 

traverses.  Attenuation is an important phenomenon in physics, “attenuation is the gradual 

loss of the intensity of any kind of flux, through a medium.”9  In this case the flux is the 

current density of a pipeline, where the medium is the complete circuit as defined in 

Section 1.2.2 per the length of the pipe.   

1.2.3.4 CP and calcareous deposit relationship.  “The cathodic reaction at the 

pipe metal/soil interface will often cause a gradual change in the pipe potential by 

polarization.  This occurs by the formation of resistive calcium salts which are plated out 

from the ground and can reduce the current demand on a poorly coated surface by 60 to 

80 percent.”10  On a real pipeline system with CP, calcareous deposit is typically 

comprised of mineral combinations of calcium carbonate (CaCO3) and magnesium 

hydroxide (Mg(OH)2) that become deposited (precipitated) as conveyed in (Figure 1.4,  

                                                 
9 Nicholson, J.P. (2011), “Pipeline Integrity, Pipeline Corrosion Control.” World of Pipelines, Cathodic 
Technology Ltd., CAN   
 
10 Morgan, J. (1987); “Cathodic Protection” (2nd Edition). NACE, Houston TX, Chapter 2 and 
APPENDIX D. 
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Figure 1.7, and Figure 2.2) onto a cathodically protected surface.7  “The result is an 

increase in the pH at the soil pipeline interface, and the formation of hydrogen on the 

surface of the pipeline; a situation commonly referred to as polarization.”9  Steel’s 

corrosion rate increases when the pH is below 4.  Steel dissolves at pH of 3.  The pH 

adjacent to the surface is dependent upon the soil condition (or electrolyte).11    

These calcareous minerals are insoluble in a high pH and build up deposits 

(collecting in masses) over time on the coating.   These mineral deposits eventually 

increase the coating resistance, but also slow the diffusion of O2 to the pipe surface.   

Since current depends on the potential shift and the coating resistivity through Ohm’s 

Law, as the coating resistance increases then current will decrease.   The following 

photographs (Figure 1.5 and Figure 1.6) are examples of an unearthed pipe that shows 

how the CP helped create a calcareous deposit over time at the shrink sleeve and coating 

interface on the exterior of a pipeline.   

 

 

Figure 1.5 – Part 1, Calcareous Deposit Example –Shrink Sleeve & Coating Interface  

                                                 
11  Mateer, M.; (2017, April 3rd- 4th ). Background on Corrosion and CP, CPCM  Data Analysis Approach 
[Telephone interview #2].  Discussions  with Mark Mateer, Principal Asset Integrity Engineer. 
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   “A large calcareous mass has been deposited by the pipeline’s cathodic 

protection system over a defect in the heat-shrink sleeve used to coat a field joint girth 

weld.”12  

 

 

Figure 1.6 – Part 2, Calcareous Deposit Example –Shrink Sleeve & Coating Interface12  

 

  “The rough appearing surface to the left of the corrosion product buildup is the 

heat shrink sleeve adhesive that remained on the pipe after the sleeve was removed.  Note 

that the pipe was not corroded beneath the calcareous deposit, but was corroded beneath 

the disbonded heat-shrink sleeve.”12 

The ultimate goal is to achieve effective, consistent CP and the sure sign of a 

protected line is resultant calcareous deposit.  The calcareous deposit mineral substance 

adhered to the surface of the coating and or the pipe, “where a protective calcareous 

deposit can only be formed if the over potential (polarization) is sufficient to prevent 

corrosion.”  When a pipeline becomes polarized (Figure 1.3 and Figure 1.7), the current 

                                                 
12 Bash, R. (2011), “Observations From 56 Years Of Pipeline Corrosion Damage Excavations” Pipeline & 
Gas Journal, Volume 238, No.3;  https://pgjonline.com 
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stabilizes and the OH–  generated by the current  raises the pH at the surface of the pipe 

and over time a calcareous deposit will build up.  The calcareous deposit limits oxygen 

diffusion per Equation (1.6) lowering the current needed for protection.      

“CP causes the surface to polarize and requires less current to achieve a lower 

potential.  This can be due to calcareous deposit, but can be caused by other effects as 

well.  For CP on pipelines, this is almost always due to calcareous deposit formation.”11 

The use of a coating will reduce the overall current density required for protection.”  7 & 8  

The resistances within the Figure 1.7 of R1, R2, R3, and Ro are fixed, but R4 varies with 

the length and geometry of the pipe in accordance to Equation  (2.16).   

Ro is the constant resistance of the coating.  Figure 1.7 assumes an infinitely long 

pipe, where the over-potential varies by ∆Ex= ∆Eoe
-ax, such that ∆Ex represents the 

polarization at point x and ∆Eo is over-potential at the drain point; however of greater 

concern with respect to the problem statement, the current expression is most important 

and varies as ∆Ix= ∆Ioe
-ax.  

These variables and Equations are introduced here, but are important as they will 

be discussed in more detail later in the Section 2.3 for CP ANALYSIS, regarding 

cathodic protection.  Currents and potentials must be as constant as possible within a CP 

system.  There are many factors that impact CP, changing the current or potentials 

through the interruption of the current causing increases in corrosion rates, or areas where 

certain features “leak” current, or other systems’ stray currents interfere with the CP 

system.   It is important to engineer or balance these circuits to reduce the interference 

effects on other CP systems, since many things can impact, alter or influence current.   
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Figure 1.7 – Image Redrawn from “Cathodic Protection” –Lazzari & Pediferri1 

 

This study will show how measuring CP’s effectiveness is possible through inline 

inspection devices through examination of the entire circuit and related potentials.    This 

study will address the capabilities of the tool to successfully measure current density and 

therefore voltage. 

1.2.4. Regulatory Requirements for CP.  CP of buried pipelines is important 

and is only one of many specific requirements by the regulations for oil and gas under 

Title 49 CFR (Code of Federal Regulations) Parts 192 and 195 and enforced by PHMSA 

(Pipeline Hazardous Materials and Safety Administration) to prevent and mitigate 

corrosion and help maintain integrity of the pipeline system.   

There are many standards that apply to fulfil these regulations such as NACE, 

API, ANSI/ASME etc. for designing CP to help prolong asset life, maintain safety, and 

protect surroundings against possible in-service releases (pipeline failure) caused by 

external corrosion and therefore the need for preventing and mitigating consequential 

damages.   The idea is to proactively mitigate possible failure from corrosion by 
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maintaining consistent and effective CP systems.  Close Interval Surveys (CIS) – also 

known as pipe-to-soil and potential gradient surveys – are one of several methods for 

assessing effectiveness of cathodic protection (CP) systems used on buried pipelines.13  

The CP ILI tool helps to satisfy the CIS requirement for assessing CP as well as many 

other benefits documented in the following Section 1.2.5.   

1.2.5. Use of ILI Tool for CP Measurement.  In industry the measurement or 

inspection and evaluation of CP and its effectiveness is not conducted with ILI tools for 

horizontal pipelines.  The CP ILI tool is one of a kind for buried pipelines’ to fulfill this 

measurement effort in place of CIS and other benefits, as explained previously as well as 

many other benefits summarized herein.   

Test stations are used to measure IR drop and are digital; however, the CIS 

methods are still very manual.  The CP ILI tool helps to automate the majority if not all 

of the CIS and some other related CP system monitoring potentials from inside of the 

pipe.  The CP ILI tool is designed to support integrity of a pipeline specifically with 

respect to external corrosion prevention and mitigation through a more proactive 

approach by being able to monitor CP systems remotely from inside of the pipeline 

instead of manually from outside of the pipeline.    The CP ILI tool is made to measure 

current density in the pipe by how much current is entering the pipe at every point to 

directly be able to read an IR drop of the pipe.  With applications of Ohm’s Law in 

combination with Kirchhoff’s circuit theory and attenuation, which is covered in 

Section 2, various potentials and or parameters can be determined and or considered.  In 

                                                 
13 Pipeline Hazardous Material and Safety Administration (PHMSA) “Fact Sheet: Close Interval Survey”, 
http://primis.phmsa.dot.gov/comm/FactSheets/FSCloseInternalSurvey.htm, 2017. 
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support of integrity management, the overall usefulness and benefits of the CP ILI tool to 

industry presented by BHI and SMEs are the following:   

 Locate and quantify ALL current sources  

 Define current source boundaries – Identify midpoints  

 Locate and quantify shorts/bonds  

 Define areas outside of any current influence   

 Define coating quality based on ACTUAL current densities  

 Access to 100% of a piggable pipeline regardless of the ROW (right-of-way, 

easement) location, terrain, or condition  

 Cost effective – people are scarce and expensive. Time to complete a full survey 

is reduced from weeks to days or hours.  

 Better utilization of resources - personnel have more time to focus on solving 

problems by spending less time gathering data 

 Reduced HS&E exposure to personnel in the field  

 Up to three data sets per inspection - CP Current Inertial mapping  Caliper 

 Seamless integration with other ILI data and GIS Systems 

 Recordable, accurate, and repeatable 

 No landowner or ROW access issues 

 CP System left on – no interrupters to set and keep synchronized 

 Measures most stable leg of CP circuit – outside influences are minimized  

 Locate areas prone to corrosion before damage occurs. 14     

                                                 
14 Janda, D.; Williams, D. (2010). “Inline Cathodic Protection Monitoring.” World of Pipelines & Baker 
Hughes: Houston, TX 
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1.3. INTRODUCTION TO THE CP ILI TOOL 

CP current measurement using an in-line inspection (ILI) tool is a proven 

technology.  The general principle of the tool is related to some design aspects of the 

vertical downhole exploration technology methods (i.e., The Atlas VertilogTM) for CP 

measurement then applied to horizontal submerged pipelines.  The difference in the 

design for horizontal pipelines using a “smart pig” is that the tool travels down (traverses) 

the pipeline which presents some complications compared to the vertical downhole tool.    

The CP ILI tool gathers current density data of horizontal pipelines and voltage 

data using the conductive contact to the surface of the interior pipe wall to find direction 

and magnitude of CP and other current changes or stray current on the pipe (Figure 1.8).  

The sensors of the tool are separated by a distance of approximately 1.38 meters (~6 feet) 

to give the IR at that distance on the pipe.  The orientations of the sensors are polar in 

design, with positive on the back and negative on the front of the tool.  The idea of the 

polar concept helps with determining the direction of current flow impressed on the pipe 

with respect to any distance from the rectifiers.   

Later in this paper some suggestions for future research for modification of the 

sensors and area of coverage will be presented among some other research ideas after 

navigating through the engineering methodologies and data findings with respect to the 

research objective of this thesis stated in Section 1.1.   
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Figure 1.8 – Baker Hughes Public Video www.BakerHughes.com14  

 

The CP ILI is designed to make IR drop readings, which are converted into a 

current density through Ohm’s law and upon dividing it by a distance to get (Amps/m2) 

or Amps/ft2).  This is an area density term and can be included in the following Ohm’s 

and Kirchhoff’s methods as in Section 2.  Regulations require that a voltage be measured 

to the shifted -100mV (recall desired range in Section 1.2.3).  Since regulators enforce 

measurement by voltage rather than by current, this paper will demonstrate the physics to 

show that it is possible to measure and convert the appropriate terms and variables via 

applications of Ohm’s Law, attenuation, and Kirchhoff’s theory.  More specifically, the 

use of electrochemistry combined with the aforementioned laws conveys that current 

density can be converted into a potential (voltage) for certain terms and variables.   These 

methods will be applied to the CP ILI device’s sample data of a pipeline (data from BHI).   

 The CP ILI experiences some noise and vibrations in liquids (i.e., gasoline) and 

fewer vibrations in crude oil pipelines.  There some are averaging techniques used in the 

Sensors 
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analysis of the data samples taken by the tool to help separate good data from noise.  

Reduced vibration helps to get better readings for determining the current density 

changes (losses or increase of current) of a CP system due to some expected features as 

well as other less desired issues.  Some of the undesirable irregularities are:  coating 

problems, holidays, actual corrosion, stray current, shorts, bonds, proximity to other 

pipelines etc.  Irregularities in the current can be detected and then corrected to prevent or 

mitigate corrosion or other issues that could impact the life, health, and safety of the 

pipeline.  When the ILI tool’s sensors make contact with the internal pipeline surface in 

Figure 1.9, then the circuit in the corrosion cell is complete, as illustrated previously in 

Figure 1.7.   

 

 

Figure 1.9 – CP ILI Within the Pipe Conceptualization 

 

  Noise becomes more stabilized in certain liquids pipelines because of the 

viscous fluid nature to help with dampening of vibrations etc.  This study touches on 

those issues that need to be fine-tuned, but is not part of the scope.  The present need is 

for identifying the appropriate physics to support the problem statement with respect to 

the ability of the tool to get a pertinent signal in general that is measureable for pipe-to-

soil potential.  Future suggestions shall be made based on the findings from Section 2 and 

LCPILI 
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then later discussed in Sections 3 and 4 concerning other potential inhibitions or 

troubleshooting methods as they become apparent, but again those concepts reach beyond 

the scope of this thesis.     

By CP design and close interval survey (CIS) requirements, operators typically 

use 4-wire IR drop (voltage drop) test points along a pipeline to measure the voltage and 

calculate the current vector per the following:  

a. Measuring current returning to rectifier on either side of the active rectifiers,   

b. Measuring current vector of random lengths along the pipeline,   

c. At points based on specific criteria (problem areas, regulated, and corrosion 

susceptible areas). 

Voltage (IR) drop test stations’ contact wires are tack welded along the pipeline 

separated by a distance of resistance per unit length, from 15.24m (50ft) to 30.48m 

(100ft), which is dependent upon the pipe geometry (OD, wall thickness),15 see also 

Section 2.  Pipe resistance is also referenced in industry standard pipe tables, which are 

included in the appendix.  The resistance can be calculated by applying specific current 

across a certain distance then using Ohm’s law to find the voltage drop, which is a similar 

process to test station calibration. This establishes the current’s known parameters per 

pipeline attributes and a starting point in order to build CP ILI “in-line runs” baseline 

comparison data.  Anywhere the coating is compromised or the pipeline is exposed, the 

current will increase.  Through Ohm’s law, the current will decrease as resistance 

increases; therefore, an object in the path of impressed current may reduce the current.  

Also, a lower over potential could cause a lower current.       

                                                 
15 Janda, D.; Williams, D. (2014). “Developing a Standardized Process for Cathodic Protection Current 
Measurement on In-Service Pipelines – Process and Procedures for a New Technology.” NACE & Baker 
Hughes: Houston, TX 
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Preventing corrosion is the first objective and to do this proactively though the 

use of CP and continuously monitoring its system by automated or robotic CIS via ILI 

may help alleviate some challenges, inefficiencies, and dangers of performing manual 

surveys and site tests in difficult terrain etc.  Although each pipeline is different, it could 

eventually lead to some standardization of processes and how data can be assessed.  

Surveys would take far less time and manpower.  The use of the tool itself may help 

prevent some field safety issues, which supports P&M (preventive and mitigation) 

measures, which additionally satisfy needs for monitoring of CP systems by regulations.   

These previous sections provide background, definitions, and lead to the technical 

supporting publications and then the engineering methods within Section 2 that explores 

the ability of the tool to gather pipe-to-soil IR drop (current and resistance) measurement 

data of a steel pipeline in order to apply some physical applications of Ohm’s law, 

Kirchhoff’s theory, combined with attenuation.     
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2. ENGINEERING ANALYSIS & METHODOLOGY 

This section outlines the methodologies for analysis on available physics for an 

impressed current CP system.1   The problem approach is outlined directly below which 

considers a closer look at CP assessment through CP ILI data analysis through a 

mathematical model built from Equations and methods in this section.   Collaborative 

assessments with industry experts (See Acknowledgements) to confirm the tool’s ability 

to gather current density readings per the methodologies of this section that can be 

converted to pipe-to-soil potential measurement will be discussed in Sections 3 and 4.     

   

2.1. PROBLEM APPROACH 

a. Identify and discuss assumptions; 

b. Identify and discuss application of CP on a pipeline (realistic scenario); 

c. Identify how the CP ILI finds current density via sample data; 

d. Show the applied physics for attenuation and relationship to part c. above;1 

e. Investigate applicable circuit behavior via a mathematical model; 

f. Visually convey and present data findings to support the above listed items. 

g. Methodology Goal - To be able match results from the CP ILI tool sample 

data through the mathematical model via the following parameters: 

1)  For the first group of plots the over potential (ΨL = EL - Ecorr) at the 

midpoint (drain point) will be held constant at a -100mV shift and then 

vary the coating resistivity.     
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2) For the next group of plots, the coating resistivity shall be held 

constant at the commonly found 450,000 Ωm and then the over 

potential ΨL will be varied.   

 

2.2. ASSUMPTIONS 

To establish physical relationships for this study, the following will be assumed.  

As noted by industry experts, “A pipeline’s linear resistance is essentially fixed. Unless a 

pipeline is modified or changed, the resistance across a given section of pipe does not 

change with time.”6 

a. One- dimensional steady state conditions (for energy transfer) 

b. Uniform metal:    

i. API 5L, Grade X42 (alloy content) , 

ii. uniform smooth surface, 12” OD (NPS) = 12.75”OD & standard 0.5” w.t.,  

iii. uniform thermal conductivity k (carbon steel1010 ~1.43*10-7Ωm-1), 

=  =     Ω , 

iv. Low carbon steel only as in Section 1.2.1.2. 16; 

c. 80% coating efficiency (η) for FBE (fusion bonded epoxy);  

d. distance between rectifiers is 7260 m = ~25,000 ft; 

e. constant ambient pressures and temperatures;  

f. isothermal (constant temperatures with no other transients or losses): 

i. Surfaces 

ii. Surroundings  

                                                 
16 Pioneer Pipe (2014). “Standards and Specifications”, 5th Edition 11. Houston, TX.  
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iii. Internal Medium (fluid flows)  

g. For Section 2.5 assume the CP ILI tool resistance R5 considers complete contact 

for the entire length of the tool at 1.83 m (~6ft) with no other losses (ideal);  

h. Neglect friction due to tool contact with internal pipe surface roughness;    

Numerous effects impact pipeline systems creating inconsistencies and transients 

in system analyses due to irregularities (anomalies), variations in terrain (soil pH 

conditions), fittings, and components.  No two pipeline systems are identical.  Current 

and voltage measurements must be established and tested to illustrate trends for a system 

of concern. The above listed assumptions are subject to real world variances per 

operating conditions, but this study will examine and address the phenomena in a 

simplified fashion (ideal) with constant variables to illustrate what is happening with the 

physics concerning the pipe-to-soil potential.  These other listed assumptions are not 

limited to the following:   

i. Soil conditions: uniform constant pH (electrolyte), moisture and temperature for 

the calculations.  Uniform/constant soil electrolyte composition range is from 1 to 

6 mA/ft2 (see APPENDIX for more values, but in general 10 to 60 mA/m2).    

j. Data is for a ~20-year old pipeline with FBE (fusion bonded epoxy) coating.     

k. Assume pipe and omission of appurtenances that impact bulk metal content, 

which change pipe IR such as: valves, equipment, meters, or sleeves (shorted 

dielectric filled sleeves or normal weld sleeves).   

l. Excludes stray current/interference from other systems or overhead wires.   

m. Pipeline has attenuation, derived from Lazzari and Pedeferri’s  (L&P) methods: 1 

i. Attenuation is gradual loss of intensity of energy flux through a medium. 
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ii. Boundary conditions are applied via Laplacian to get appropriate 

resistances per boundary conditions over designated pipe lengths.  

n.  Theoretical approach for analyzing the CP ILI data:  

i. Conductance leakage to earth is uniform for the total length of line 

ii. Current loss (drain) from pipeline is at a point and discharges to the 

ground a distance away so the anode cannot be detected at the pipeline 

(see Figure 1.4, Figure 1.7, and Figure 2.6). 

iii. Uniform shape, geometry of pipe implies uniform characteristic resistance.  

  

2.3.  CP ANALYSIS 

This section relates to the background of CP defined in Section 1.2.3.  This 

section applies analytical methods from Lazzari and Pedeferri1 with respect to 

attenuation.  Once the current is induced, the current density will be the highest at the 

“drain point” (as illustrated in Figure 2.1), and then the current density will gradually 

decline while the horizontal distance grows in either direction on the pipeline away from 

the drain.7  “This phenomenon is due to the constant pipe potential and again as the 

circuit resistance increases (pipe resistance increases with length) over a distance 

travelling away from the drain point.”11   Both potential and current density are largest at 

the drain point.  The following Figure 2.1 can be likened to the conceptual circuit 

conveyed previously in Figures 1.7 and 2.2, but without the current flow arrows, which is 

later clarified in Figure 2.6 and Figure 2.7 which includes the CP ILI tool’s resistance.   
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General Impressed Current CP Structure and Design 

                                                             

Figure 2.1 – Pipeline Schematic for Analysis1
  

 

The boundary conditions for applying the impressed current are based on four 

domains, which can be further related to attenuation later in Section 2.4 per the 

conceptual diagrams Figure 2.1 through Figure 2.3.   

 For Figure 2.2 and 2.3, “Consider a pipeline which is not in equipotential because 

of an ohmic drop in the metal. Current and potential distributions are obtained by solving 

the field Equation on the basis of the following boundary conditions in the pipeline:  

∇ E = 0    Laplace               (domain 1) 

Ec = Em –ηc; & ic = f(ηc)         (domain 2) 

Eelectrolyte = constant           (domain 3)  

Eanode & Ianode = constant         (domain 4) 

Em = potential of the metal ≠ constant; Ec = pipeline potential, which eventually 

includes both the polarization ηc and ohmic drop in the metal (∆Em); and ic is cathodic 

current density on pipeline surface.”1 
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Figure 2.2 – Pipeline Schematic, Redrawn Relating to Figure 2.1 for Analysis1 

 

  The potential and current attenuation concepts are drawn in the graphs of Figure 

2.3 and later described in Equation sets (2.1) through (2.9).  Notice by Ohm’s Law, that 

the relationships can be established in general for the current density and the potential, 

hence the similarity in the shape of the graphs, where both the current density ∆Io as and 

the over-potential ∆Eo (Figures 2.1 through 2.3) will be greatest at the drain point 

(rectifier source).   These concepts, in addition to the boundary conditions, lead to the 

attenuation methods of the next section.   
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CURRENT POTENTIAL 

Figure 2.3 – Attenuation Trends for Current and Potential 

 
 
2.4. ATTENUATION of CURRENT & POTENTIAL      

For the Equations of this section, all of the symbols for ‘E’, ‘Ψ’ and Φ, represent 

potential.  Any annotation ‘R’ is representative of resistance and the subscript denotes 

particular elements from the system’s resistance. The letter ‘I’ indicates current.  For the 

following physics, ∆  and  denote the potential shift and current shift by a change of 

(2L−x), which is the two drainage points of the pipeline length L (as in Figure 2.2 and 

Figure 2.3), of which L is the half distance between the rectifiers and finally x is a remote 

distance.10  The physics of the problem are as follows in relation primarily to attenuation 

derivations from the Lazzari and Pedeferri approach, Chapter 41 and historic Morgan 

chapter 2 and Appendix D (Attenuation Constants).1    The boundary condition, from 

Figure 2.1, helps establish the Ohm’s Law relationship with respect to the geometry of 

the CP system.  “The Laplace Equation (in Figure 2.1) refers to an ohmic conductor; 

therefore its solution is Ohm’s law at a distance x from the drainage point.”1  

The shift of ∆  and  propagation by hyperbolic cosine is defined mathematically in 

Equations (2.5) and (2.9) and  with respect to attenuation.10   

(2.1) 
∆ = Ψ =  Φ =  ∆ ∗  ,   through Ohm’s Law, where  
Equation (2.1) can be written as follows: 1 
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⇒ ∆ =  ∆ ∗  cosh ∗ ( − )  

⇒ ∆ = Δ  cosh ∗ ( − )  

Or as a final form, from Equation (2.1) above 
(2.2) 

⇒ ∆ =  Ψ =  Ψ cosh ∗ ( − )          

Where, 

    ΨL =EL = Eo is the over potential (drain point) and  

=  ( − ) =  −0.1 ,  ℎ  

The EL value is typically the Cu/CuSO4 potential and is approximately -0.65 to -

0.85V for the electrode to help get the appropriate over potential ΨL shift of -0.1V as 

required by regulations.     

 Within the model for the CP ILI data to get outputs for Section 3, the coating 

resistance is fashioned from Lazzari and Pedeferri1 in addition to various similar 

references, industry knowledge and experience to input relevant data such as for the 

coating efficiency η and coating Ro resistance.   

(2.3) 

=  ∗
∗

 

 

Where d = the coating thickness. 

Area includes the thickness of the pipe, Area = π*(r2
2-r1

2) and r = radius 

(outer denoted by subscript 2 and inner by subscript 1 respectively).   

 
For the coating efficiency the following Equation is used.21  This research 

assumes 80% efficiency in the model for conservative measure.  

(2.4) 
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=  1 − ∗ 100% 

 (2.5) 
∆ =  ∆ ( ) +  ∆      

⇒ cosh( ) = ,   from the identity, hence the   (2.6)  

  (2.6) 
⇒ ∆ =  ψ  =  ∆ cosh ( − ) , 

Where, 

∆EL = over potential at the drain point;  

L = the distance to the midpoint; 

x = distance from the drain point; and 

= =  .  

The first R4 immediately following was used in the model as per Lazzari 

and Pedferri.1             (2.7) 

=  ∗ =  
∗ ∗ ( − )

=    ; 

  =
1

=  Ωm, =  Ωm  

 ,   . ., =
2

=  
2

 

= = ℎ    ℎ   ; 

= =       .  

From Ohm’s Law the following relationship is established.   
   
 

(2.8) 
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∆ =  
∆

=  
Ψ

  

Where Ro = coating resistance, see also Equations (2.4) and (2.3), refer the 

Appendix for coating efficiency 21 and related potential.   

   (2.9) 
∆ =  ∆ +  ∆ ( )   

cosh( ) =
+
2

 

Therefore the current density Equation below will be used to model the 

results of the CP ILI data.                                                                     (2.10) 

⇒ ∆ =
∆

cosh  ( − ) =  
ψ

cosh  ( − )  

ψ = −    

Per Ohm’s Law, the following substitution is: 

∆
⇒

( − )

∗ ( − )

 

After substituting the above into Equation (2.7), then the current can be rewritten 

in terms of ∆Ex through Ohm’s law.  That is the desired final calculation, where ∆Im is 

provided from the CP ILI tool data from BHI per Figure 3.1 through Figure 3.3.  The 

model is matched the CP ILI data by ∆Ix (predicted) from which the ∆Ex (cathode 

potential) as seen in Figure 3.4 through Figure 3.28 from the results Section 3.  

 

2.5. ANALYTICAL VIEW PER CP ILI 

This section discusses the physics with how the CP ILI tool works from inside of 

the pipeline.  The CP ILI measures current at various places along the pipe by making 
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internal contact at both ends of the tool (see Figure 2.4).  There is some software unique 

to the tool, so the tool can upload its data and then be converted into a current density 

J = ∆I/Area, which is gathered from along the line and will look like Equation (2.11).  It 

is important to make note of the relationships of ∆Ix in Section 2.5 below per Equations 

(2.8), (2.10), and (2.11) since this is what the CP ILI tool is gathering and what the 

mathematical model is matching to.  The physics of the CP ILI tool will look like the 

following in addition to the attenuation applications:    

(2.11) 

=  =
Δ

⇒  Δ  

The tool measures the IR drop of the pipe by ∆E = IR from Ohm’s Law, where in 

this case from the tool’s view, R5 = resistance of the CP ILI tool.   This configuration will 

show up again per application of Kirchhoff’s theory in Section 2.6.2.   

 (2.12) 

=
∗

=  
∗ ( − )

  

 (2.13) 

= ( − ) = Δ ∗ 
∗

∗ ( − )
 

Therefore by Ohm’s Law the result written in the form of current is per the 

Equation below, where Im is the current measured at any point on the pipe: 

(2.14) 

⇒ =
( − )

∗
∗ ( − )

 ⇔ Δ =  
ΔΕ

 

To see the Kirchhoff’s method considering this element of R5, refer to Figure 2.7 

and the supporting analysis for details.  The CP ILI tool contact with the pipe will look 
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similar to Figure 2.4 (Parts a. & b), where the tool will sum the points over small 

distances and store the information and then later it will downloaded to BHI software and 

then be converted into a density ‘J’ from Equation 2.11.    In this example below of 

Figure 2.4 (Parts a. & b), ∆I = ∆Im as from Equation 2.14.  Ultimately, the steps in this 

analysis will lead to the overall potential calculation from the view of the tool yielding 

∆Ex which is the desired polarization of the cathode.    

 

(a.)  

⇔
 

 

(b.) 

Figure 2.4 – Tool Reading - Sensor Contact Points 1 & 2 (Parts a. & b.) 

 

2.6. KIRCHHOFF’S & OHM’S LAW for CORROSION CELL 

Ohm’s law combined with Kirchhoff’s theory is a common empirical method 

used to approximate voltage across circuits and current through materials.  Ohm’s law 

can help establish a relationship between current and voltage where they are proportional 

w.t. 

LCPILI 
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to each other.  The constant of proportionality is I/R, the current divided by the resistance 

of the material.  The arrows (triangles) around Figure 2.6 represent the direction of 

current.  Recall Figure 1.7 and Figure 2.1 and notice that the circuit diagram of Figure 2.6 

consists of those elements.  Current must be parallel and opposite in direction to the 

electric field in order to get the current moving via electromotive force.  The summation 

of voltages across the circuit must net to the total voltage drop or potential.  Using 

Kirchhoff’s circuit theory and Ohm’s Law, the voltage across the circuits in Sections 

2.5.1 and 2.5.2 can be theoretically determined among other potentials.  It may be 

possible that the overall potential drop can have the appropriate attenuation applied via 

Equation (2.10).   

Kirchhoff’s theory is not well developed for this application to pipelines due to 

the ambiguity of several parameters compared to the Laplacian aspects that allow some 

boundary conditions per the attenuation methodology from the previous Section 2.4.  To 

determine the summed resistance components shown in Equations (2.15) through  (2.19) 

and per Figure 2.6 and Figure 2.7, actual field measurements need to be performed on a 

buried CP coupon and test stations along a pipeline in addition to CP ILI tool 

measurements.   

Field test surveys (manual measurements) combined with the CP ILI tool data 

may help finding solutions in the analyses from Sections 2.6.1 and 2.6.2 below.   This 

topic holds merit to extend to experimental research objectives outside of this study; 

however, may further validate methods from Section 2.4, ATTENUATION (see also 

Section 4.2).     
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2.6.1. Circuit of General CP System.  This section uses Kirchhoff’s method to 

illustrate the idea of summing the resistances around the circuit.  This method has not 

been proven in industry experimentally.   

 (2.15) 

∆ =  ∆ = ( − ) =   ∗  ,         

Ro = resistance of coating 

R1 = resistance of wire leads of rectifier  

R2 = resistance of anode wire leads 

R  = ;   =   ( −  ) 17 
 (2.16) 

=  = ρ =     ,   

  ( & ,  4.41)   ,   =  ∗ ( ∗ . . ) 

     ,        = ρ =  ρ
ln

2
 

=  
1

=  Ω ∗ , &     =   Ω   

The R4 resistance is mainly a function of geometry through the arrangement of the 

conductivity of steel denoted by k and the inner and outer radii denoted by a lower case r 

for internal and external radii (diameter/2 = radius). 17   Regarding Figure 2.6 this would 

mean that R4, R3 and Ro are in parallel; therefore the inverse of the three is necessary to 

attempt utilizing Kirchhoff’s theory.     

                                                 
17 Griffiths, D.J. (1999). Introduction to Electrodynamics, Third Edition.  Patparganj, Delhi 110 092, India: 
Pearson Education, Inc.  Chapter 7. 
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The value of R3 is provided in a table of resistances for soil, see the Appendix, 

and table 2-1 from the Air Force. 18  Further the resistance Equation for a cylinder (tube) 

is critical to understand on the basis of Ohm’s law.  The resistance of the steel pipe above 

has some specific tabulated resistance values for various diameter pipes in μ-Ohm19 as 

seen in the Appendix; however, this study only utilizes 12-inch OD per the supplied BHI 

data from the tool run on the sample pipeline, see Figure 2.6.   

 (2.17) 

∆ = ∆ = ∆  ( + + + + ) 

⇒ ∆ = ∆ = ∆ +  + +
∗
+

 

       Units: V = AmpΩ 

Therefore the potential of the pipe-to-soil is the following expression per Ohm’s 

Law and Kirchhoff’s method.  There is ambiguity using Kirchhoff’s methods since the 

length and gauges of wires for leads out to the anode and from the pipe to the rectifier are 

unknown as well as the length of the pipe.   

Figure 2.5 and 2.6 demonstrate that Kirchhoff’s theory would constantly change 

as the designated length of the pipe changes.  To use this method, a specified length must 

be input to a model and boundary would conditions apply.  This requires Laplace 

methods for the electric field gradient; therefore integration over the pipe distance.  

Notice that the resistance in parallel will get larger over distance.  When R→∞ with 

length, then I→0, as per Ohm’s Law.   

                                                 
18 Headquarters, Department of the Army (1985). Electrical Design, Cathodic Protection. No. TM 5-811-7 
(Technical Manual Submerged Structures), Chapter 1, Washington D.C.  
 
19 Department of Defence (2003).  Operation and Maintenance: Cathodic Protection.   UFC-3-570-06, 
Chapter 2-1 (Corrosion Cell), CP Design. 
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Figure 2.5 – Circuit Diagram of Cathodically Protected Pipe (a.) 

 

 

 
Figure 2.6 – Circuit Diagram of Cathodically Protected Pipe (b.) 
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2.6.2.  Circuit of CP System with ILI Inside of Pipeline.  This is Ohm’s Law 

and Kirchhoff’s theory used in Figure 2.7.  The arrows above the variables indicate that 

these are vector terms, consisting of both magnitude and direction.    The tool is polar in 

nature thus impacting the vector direction at times with respect to the current flow and 

electrical field (potential).   

= = =  ∗                 

The only difference in this diagram is the addition of the ILI tool into the circuit; 

therefore, another resistance is included in Kirchhoff’s theory.  Recall R5 from the 

ANALYTICAL VIEW PER CP ILI in Section 2.5.  To determine the summation of the 

resistances around the circuit (corrosion cell) and to complete the circuit, the tool’s 

resistance R5 is required to be included as described in the introduction which expanded 

the diagram from Figure 2.6 to look like the new schematic of Figure 2.7.   

 

 

Figure 2.7 –Circuit Diagram of CP Pipe with ILI Measurement from Inside 

R5(CPILI

 

CP + CPILI 
Corrosion Cell Circuit + CP ILI Tool 
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While assuming attenuation still applies, notice that ∆Ex can be substituted into 

Equations (2.10) and (2.14).  To find the potential Eo at the drain point, field test 

measurements at CP coupons must be performed and, based on coating efficiency21, may 

allow a basis to establish Io and the rest can be found by the means of Kirchhoff’s law.    

(2.18) 

∆ = ∆ = ∆ +  + +
∗
+

+  

⇒ ∆ =
∆
∑

cosh(  ( − ))   

Since the desire is to find the total IR drop this Equation must be rewritten once 

more and then the natural log must be applied.   When the natural log is in place, then 

those identities can be utilized.  Recall Equation (2.14) as well for the resistance of the 

ILI tool and the substitution for ∆Ix.  

⇒ ∆ =
∗ ∆ ∑

+
 

⇒ (∆ ) =
∗ ∆ ∑

+
 

⇒ (∆ ) = ∗ ∆ − ( + ) 

⇒ (∆ ) = ∗ ∆  

 (2.19) 

 ∴ (∆ ) = ∗ ∆ ∗ +  + +
∗
+

+  

The Equation above denotes the total logarithmic potential across the circuit 

including all resistance aspects summed.   Theoretically all of the analyses for the 

attenuation and Ohm’s law produce results given applicable data; however, the ambiguity 
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of Kirchhoff’s methods may need further analysis that takes this research beyond its 

scope.  There are field measurements that can be taken from CP coupons (test stations) to 

help fill in the listed resistances to these Equations (2.18) and (2.19) to produce 

measureable results; however, this thesis did not include a longer duration for additional 

experimental field data.  Perhaps this method could help verify what the CP ILI tool is 

measuring and then being converted to potential.     

All of the applicable methods from this entire Section 2 were utilized to establish 

a mathematical model in order to match up with the CP ILI device’s data in the following 

Section 3. 
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3. CP ILI DATA & MODEL RESULTS 

3.1. DATA FROM CP ILI TOOL  

This section contains results from the engineering analysis in the previous section 

by using real world sample data from a CP ILI tool that performed a reading (called a 

tool run or smart pig run) gathered from a pipeline with respect to the conceptual diagram 

presented in Figure 2.7.  The following ILI tool plots listed in Table 3.1 are for current 

vs. distance.  The differences in the plots are due to the sample, the ILI reading sizes, 

over the listed distances.  The data was provided by BHI and analyzed in conjunction 

with a Shell SME (part patent holder).   The sample data for the three sets (Figure 3.1– 

Figure 3.3) is from different sections of a 12-inch nominal pipe diameter; 0.5-inch w.t.; 

3.14ft (or 0.957m) circumference, and the area is of 1-ft length of pipe, which is 0.957m 

by 0.3048m equals 0.292 m2. 20   Due to the limitation of data samples, per Table 3.1 

and plots, it is difficult to tell if trends are linear, logarithmic or exponential because the 

change is so small; therefore, an estimated linear approximation was assumed. 

 

Table 3.1 – List of CP ILI Data Sets with Sample Reading Size per Distance 

 

3.1.1. CP ILI Data Set #1.  The data sampling from the first data set in Figure 3.1 

was for every 0.5cm.   The plot shows a linear decline in current possibly indicating that 

CP ILI 

Data Set # 

CP ILI Sample 
Size (cm) 

CP ILI Avg. Current 
Density Amp/m2 

Segment Approx. 
Distance (m) 

Figure 

1 0.5 0.002 42.7 3.1 

2 10 0.001 to 0.0017 6,401 3.2 

3 10 0.00099 to 0.00169 6,797 3.3 
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the tool is moving away from the rectifier (drain point) at -0.006 Amps/ft or -6.0 

milliAmp/ft.20  The trend line data is in the top right of plot.  The random noise in the 

signal appears to be nearly one (1) Amp, which means the current drop, needs to occur 

over approximately 1,666ft to achieve a signal with as large of a magnitude as the noise 

seen in Figure 3.1.20   

A change of current of approximately 0.0006 Amps/ft is then 0.0006 

Amps/0.292m2 so 0.002 Amps/ m2 or 2.0 milliAmps/ m2 as observed from the 

plot.20  This is reasonable for a pipeline with an assumed conservative 80% effective 

coating, from Equation (2.4). 21   

 

 

Figure 3.1 – CP ILI Sample Data Set 1, Plot 

 

The range is acceptable upon consulting with SMEs in industry as to what is seen 

in the field and is representative of coating in good condition. As the CP ILI tool output 

                                                 
20 Mateer, M. (2017, May 02). CPCM Data Analysis Approach [Telephone interview #3].  
Discussions with Mark Mateer, Principal Asset Integrity Engineer 
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shows Figure 3.1, the specific current density value is ~2.0 milliAmps/m2 at a coating 

efficiency ‘η’ of 80% for conservative measure. 21     

3.1.2 CP ILI Data Set #2  The next set of data from the CP ILI tool (Figure 3.2) 

on a different segment of the pipeline shows the current trend and a rectifier drain 

point.  This data is sampled per each 10cm but it was not averaged over any distance with 

respect to noise.  That is why there are more data points and more noise.  There is a 

sudden change in current from one side of zero to the other at about 47,500ft.  This is 

what a drain point looks like where the rectifier is attached to the line and the current 

direction makes a sudden shift.  To the far left, the plot appears not to have a current 

reading, showing a value around zero; therefore, that region of pipeline is not receiving 

cathodic protection.  This indicates an issue with the pipeline in that area, which must be 

addressed, meaning the CP system is down or compromised, etc.  This research is not 

about assessing that particular pipeline; however, this is a positive result that the tool is 

able to detect variations in the readings.   

“The plot shows the recorded current densities are reasonable for industry values 

ranging from 1.0 to 1.7milliAmps/m2, keeping within expectations for well coated 

pipelines.  This data is essentially the same (within the margin of error) to the first data 

set, but they are not from the same section of pipeline.” 22  It is hard to tell from the plot 

alone and may require field verification as it seems there is some interference or a fitting 

at the ~37,000ft mark showing a drain-like effect and an increase.   

                                                 
21 Orazem, M.E.; Kennelley, J.K.; Bone, L. (1993). “Current and Potential Distribution of a 
Coated Pipeline with Holidays, Part II – Comparison of the Effect of Discrete and Distributed 
Holidays”, NACE Corrosion- Vol. 49, No.3.   

22 Mateer, M., & Williams, D. (2017, May 02). CPCM Tool Data Plots. [Unpublished raw data]. 
Data from BHI; honed analytical process and approach by Mark Mateer. 
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Figure 3.2 – CP ILI Sample Data Set 2, by Every 10cm 

 
 

3.1.3. CP ILI Data Set #3  The third set of data had larger sampling points per 

every 10cm, instead of every 0.5cm.  “There is noticeable noise, but the sampling still 

gives enough useful data.  To dampen the noise, data points are averaged over each 20m 

and then plotted (Figure 3.3).  Between two rectifiers there is always a mid-point or 

electric node point, where the current returns to one rectifier on one side of the mid-point 

and to the other rectifier on the other side of the mid-point.   

The mid-point is at approximately 57,100ft.  The exact mid-point is obscured by 

the noise, but to the left and right of the mid-point, current flows off the plot to other 

rectifiers and would jump from one side of zero to the other at the drain point.” 23  

Another way to conceptualize what is happening with the data is through Figure 3.4 with 

                                                 
23 Mateer, M. (2017, May 12). CPCM Data Analysis Approach on [Telephone interview #4].  
Discussions with Mark Mateer, Principal Asset Integrity Engineer 
 

CPCM Data Sample – Current versus Distance (ft) 
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some known electrodynamics.  “The gradual change through zero is how it is determined 

that the mid-point is at approximately 57,100ft (Figure 3.3).”   

 

 

Figure 3.3 – CP ILI Sample Data Set 3, by Every 10cm 

 

From the data in Figure 3.3, where the current changes direction it would appear 

to cancel out according to the physics as seen in Figure 3.4 (a) but that would not be 

correct; however, part (b.) of the figure is correct showing that the current is only 

entering on one side of the rectifier and then returning to the other side of the rectifier, 

appearing to have a more cyclic behavior.       
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Figure 3.4 – Current Flow and E-field Conceptualization (Parts a. & b.) 

 
 
3.2. MODEL RESULTS PER ENGINEERING ANALYSIS ON CP ILI DATA 

This sub section is categorized with parameters for two different scenarios for the 

purpose of matching the three CP ILI tool data sets’ current densities with the model.  All 

of the calculations are based on an assumed distance of 7,620m (~4.75 to 5mi) between 

the rectifiers.   

Incorrect 

Correct 

(a.) 

(b.) 

∆I returns on 
the left side. 

∆I entering on each 
right side of rectifiers. 

∆I returns 
   on left. 

∆I returns 
the on left. 
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a. First scenario (b) – The model parameters hold the over potential, ΨL, 

constant at -100mV and then vary the coating resistivity.  

b. Second scenario (0) – The model parameters vary for the over potential and 

then hold the coating resistivity constant at approximately 500,000Ωm. 

3.2.1. Constant Over Potential and Varied Coating Resistivity.  For the first 

scenario parameters, this section includes corresponding figures on the following pages 

47-53 for both the cathode potential and the current density attenuation curves.   In 

general the following charts (Figure 3.5 through Figure 3.16) indicate that when the over 

potential is held constant and as the resistivity increases, both the attenuating current 

density and the attenuating cathode potential decline.    

 

 

Figure 3.5 – Cathode ∆Ex Atten. @ Constant -100mV EL (Data Set#1) 
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Figure 3.6 – Predicted ∆Ix at Constant EL (Data Set#1) 

 

 

 

Figure 3.7 – Cathode ∆Ex Atten. @ Constant -100mV EL (Data Set#2a) 
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Figure 3.8  – Predicted ∆Ix at Constant EL (Data Set#2a) 

 

 

 

Figure 3.9 – Cathode ∆Ex Atten. @ Constant -100mV EL (Data Set#2b) 
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Figure 3.10 – Predicted Current Density at Constant EL (Data Set#2b) 

 

 

 

Figure 3.11 – Cathode ∆Ex Atten. @ Constant -100mV EL (Data Set#2c) 
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Figure 3.12 – Predicted ∆Ix at Constant EL (Data Set#2c) 

 

 

 

Figure 3.13 – Cathode ∆Ex Atten. @ Constant -100mV EL (Data Set#3a) 
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Figure 3.14 – Predicted ∆Ix at Constant EL (Data Set#3a) 

 

 

 

Figure 3.15 – Cathode ∆Ex Atten. @ Constant -100mV EL (Data Set#3b) 
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Figure 3.16 – Predicted ∆Ix at Constant EL (Data Set#3b) 

 

3.2.2. Varied Over Potential And Constant Coating Resistivity.  For the 

second scenario parameters, this section will have the corresponding Figures 3.17 

through 3.28 in the following pages 55-60 for both the cathode potential and the current 

density attenuation curves.  These plots show when the coating resistivity is held constant 

at 500,000Ωm in the model and as the over potential, ΨL varies (increases), both the 

attenuating current density and attenuating cathode potential increase.  The trends of the 

plots will be further evaluated and discussed in Section 4.  
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Figure 3.17 – Cathode ∆Ex Atten. at Varied EL (Data Set#1) 

 

 

Figure 3.18 – Predicted ∆Ix @ Constant Coating Resistivity (Data Set#1) 
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Figure 3.19  – Cathode ∆Ex Atten. at Varied EL (Data Set#2a) 

 

 

 

Figure 3.20 – Predicted ∆Ix @ Constant Coating Resistivity (Data Set#2a) 
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Figure 3.21 – Cathode ∆Ex Atten. at Varied EL (Data Set#2b) 

 

 

 

Figure 3.22 – Predicted ∆Ix @ Constant Coating Resistivity (Data Set#2b) 
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Figure 3.23 – Cathode ∆Ex Atten. at Varied EL (Data Set#2c) 

 

 

 

Figure 3.24 – Predicted ∆Ix @ Constant Coating Resistivity (Data Set#2c) 
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Figure 3.25 – Cathode ∆Ex Atten. at Varied EL (Data Set#3a) 

 

 

 

Figure 3.26 – Predicted ∆Ix @ Constant Coating Resistivity (Data Set#3a) 
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Figure 3.27 – Cathode ∆Ex Atten. at Varied EL (Data Set#3b) 

 

 

 

Figure 3.28 – Predicted ∆Ix @ Constant Coating Resistivity (Data Set#3b) 
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4. DISCUSSIONS AND CONCLUSIONS 

The results from the attenuation model from the analysis show two apparent 

outcomes: 1) potential and 2) current, where the two are interrelated on the basis that the 

current can be calculated from the potential through Ohm’s Law by simply adjusting the 

over potential or the transverse coating resistance values to achieve protected potential 

ranges.  The model was able to match the CP ILI data for current density by adjusting the 

aforementioned values as seen in Table 4.1 and Table 4.2.  From this perspective, it 

shows to be an electrical circuit calculation per Equation (2.14) with the attenuation 

methods and does not take chemistry and diffusion into account.  However, the potential 

outputs achieved in this study are indicative that polarization is possible, therefore 

impacting the electrochemistry.   

 

4.1. DISCUSSION – RESULTS OF GRAPHS & CHARTS 

 
“Due to polarization from the calcareous deposits the potential and current density 

are independent of each other since current depends on the diffusion rate of oxygen, per 

Figure 1.3 – Lazzari and Pedeferri (L&P), but the potential does not.”24  The L&P model 

seems to assume that only coating resistance determines the current once the potential is 

known; however, from the polarization curves, it shows that potential and current are 

independent of each other once the cathode polarizes (recall Figure 1.3). 

Figure 4.1 is a representation of how the model results (all plots) in the subsection 

for constant over potential behave.  This assumes that the matched current density to the 

                                                 
24 Mateer, M. (2017, May 23-30). CPCM Data Analysis Approach [Collaborations and Correspondence].  
Discussions  with Mark Mateer, Principal Asset Integrity Engineer 
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CP ILI tool is actually a maximum value and driven by the over potential; therefore, is 

the “impressed current” on the CP system.   

Figure 4.1 and Figure 1.3 (explained in Section 1.2.1.3, page 9) have similarities, 

where the red line designates the CP ILI tool measurement and how it is believed the 

current demand may look.  The diffusion limited area is the blue flat line where the pipe 

polarizes and then declines by hyperbolic cosine function where the CP system can no 

longer deliver sufficient current.24  (i.e. Set#1, per averaging methods)   

Figure 4.1 also shows theoretically the opposing curves for the supply of current 

density and the demand of current density.  The result indicates that they balance each 

other out to a constant current density, thus a flat line.  However, on the right end of the 

plot where the current density decays and the oxygen migrates to the surface because it is 

not consumed by the current, then calcareous deposit is inhibited.   

 

 

Figure 4.1 – Conceptualization of Data Observations 
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Table 4.1 summarizes the model results from the three data sets from BHI plotted 

in pages 47-53 for attenuating current density and the attenuating cathode potential.  To 

correlate model values with the tool, the over potential was held constant and the coating 

resistivity inputs were varied.  Regarding Table 4.1data, where the over potential was 

held constant, -100mV, Figure 4.2 depicts that as the coating resistance increases then 

both the current density and cathode potential linearly decreases.   A magnification of the 

scale of the potential is in Figure 4.3.   

The next Table 4.2 includes the model results from the three CP ILI tool data sets 

which vary the over potential instead and keep the resistivity constant.  The linear 

relationship from Table 4.2 point values conveys that as the over potential increased then 

both the attenuating current densities and cathode potentials increased.  Consequently, in 

Figure 4.4, this further illustrates that the over potential is driving ∆Ix & ∆Ψx.   

 

Table 4.1 – Constant Over Potential (ΨL = ∆EL), “Midpoint” Voltage 

CP ILI 
Data 
Set 

Model Outputs1 
CP ILI Data 

Current 
Density  

J = ∆Ix/m
2 

milliAmp/m2 
Figures 

pages 48-53 

Constant 
Over 

Potential   
ΨL = 

∆ELmV 

Varied 
Coating 

Resistivity 
ρo  (Ωm) 

Max. Cathode 
Potential 

Atten.   
∆Ψx = ∆Ex mV 

Set #1 

-100 

508,999 -398 2.0  3.5 & 3.6 
Set #2a 740,000 -285 1.0 3.7 & 3.8 
Set #2b 618,000 -331 1.4 3.9 & 3.10 

Set #2c 559,000 -363 1.7 3.11 & 3.12 

Set #3a 743,000 -284 0.99 3.13 & 3.14 

Set #3b 561,000 -362 1.69 3.15 & 3.16 
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Figure 4.2 – Table 3.1 ∆Ix & ∆Ψx as Coating Resistivity Increases 

 

 

 

Figure 4.3 – Magnification of ∆ΨxmV (Fig. 4.2) as Coating Resistivity Increases 
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Table 4.2 – Constant Coating Resistivity Ωm 

CP ILI 
Data 
Set  

Model Outputs  
Match to 

CP ILI Data 
Current 
Density 

J = ∆xI/m2 

milliAmp/m2 
Figures 

Pages 54-60  

Varied 
Over 

Potential 
ΨL = ∆EL  

mV 

Constant 
Coating 

Resistivity 
ρo in Ωm 

Max. Cathode 
Potential 

Atten.   
∆Ψx = ∆Ex  

mV 
Set #1 -94.5 

500,000 

-383 2.0  3.17 & 3.18 
Set #2a -47.5 -192 1.0 3.19 & 3.20 
Set #2b -66.1 -268 1.4 3.21 & 3.22 
Set #2c -80.3 -325 1.7 3.23 & 3.24 
Set #3a -46.8 -189 0.99 3.25 & 3.26 
Set #3b -79.8 -323 1.69 3.27 & 3.28 
 

 

 

 

Figure 4.4 – From Table 3.2 Data: ∆Ix & ∆Ψx Driven by ∆ΨL 
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4.2. FINDINGS   

Current attenuation does not seem to appear in the CP ILI data over a large 

distance with large potential attenuation as anticipated from the texts. 1   This method 

cannot work when current density is a function of the potential.  “Current does not appear 

to be a function of potential in the “protected potential” range.  The results demonstrate 

that due to polarization from calcareous deposit the potential and current density are 

independent of each other since current depends on the oxygen diffusion rate, where the 

potential does not.”24   

The CP ILI data and model results convey that oxygen diffusion controls the 

cathodic reaction and that the current will remain constant while the potential varies.  The 

potential starts out high at the drain point and attenuates down, but the current remains 

constant since it is limited by the oxygen diffusion rate (Figure 4.1).  The addition of 

calcareous deposits makes the effect larger as it limits the current even more and flattens 

out the polarization curve at lower potentials.  It seems apparent that the potential can 

attenuate, but the current cannot if it is diffusion limited.  From the results and 

discussions, the CP ILI data does not show current density to vary if the oxygen is 

diffusion limited.   

The potential will move up and down the curve in the plot depending on 

attenuation, but the current doesn’t change since the cathode line is vertical.  From Figure 

4.1and Figure 4.5 and by Table 4.1 and Table 4.2, the data shows current density 

prediction in the attenuation model is the maximum current density that the CP system 

can provide.  Where far enough from the drain point the current provided by the CP 

system can no longer meet the oxygen diffusion rate and current will drop (Figure 4.1 and 



   71 
 

 

Figure 1.3).  This is shown in the CP ILI chart with three different current densities as 

seen in Data Set #2.   

When current flows from the rectifier, the cathode reaction at the pipe surface will 

produce excess OH
-
 (hydroxyl) ions,25 which is the reduction of oxygen (Equation 1.6), 

which in turn will raise the soil’s pH.  This concept will be referenced as pipe-to-soil 

potential.  “As the current flows, the cathode reaction is driven to the right with excised 

OH
-
, thus increasing the pH in the soil causing precipitation of minerals over time called 

calcareous deposit.”20   

The growth of calcareous deposit depends on current to make the electrochemical 

process occur.  More deposit will accumulate in areas of high current versus low, namely 

the closer to the drain point. 10 & 24   Recall Equation (1.6), for oxygen diffusion, the 

calcareous deposit raises the Ro (coating resistance) to again slow the diffusion of O2 to 

the pipe’s surface (from Equation 1.3).  Current depends on potential shift as illustrated in 

the applied attenuation principles from Section 2.4 and through Ohm’s Law.   

The coating resistivity Ro is critical in Equation (2.2) and From Ohm’s Law the 

following relationship as established in Equation (2.8).  Note that as Ro increases over 

time, the current will begin to fall and normalize, making a flatter profile as shown with 

the dotted line in Figure 4.5, which is the final new current profile.  If Ro continues to 

increase closer to the drain point, then current will drop further, closer to zero, since the 

resistance is higher, and hence a flatter more stable current.  This is indicative of a 

protected and polarized pipe, which is desirable in industry.   From this analysis the CP 

                                                 
25 Allahar, Kerry N.; Orazem, Mark E. (2009) “On the Extension of CP Models to Address Cathodic 
Protection Under a Delaminated Surface.” Elsevier Ltd., University of Florida: Gainsville, FL. 
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ILI data will be attempted to be matched with to see if the current can achieve stability 

(constant) as shown Figure 4.5.        

 

 

Figure 4.5 – Current Density at Drain Point and Normalized Current 

 

4.3. CONCLUSIONS 

This research is mainly an electrical circuit evaluation per Equation 2.14 with the 

attenuation methods and it does not directly relate to the electrochemistry and rate of 

diffusion.  At the same time through using the model, the potential values as tabulated in 

Table 4.1 and Table 4.2 reveal that polarization is possible and in turn will impact the 

electrochemistry.  The CP ILI data and model results from Section 3 exhibit that oxygen 

diffusion Equation (1.7) controls the cathodic reaction and that the current will remain 

constant while the potential and coating resistivity varies (see Table 4.1 and Table 4.2).  

The CP ILI data can be matched via Equation (2.14) in the model.   

 

=
( − )

∗
∗ ( − )

 ⇔ Δ =  
ΔΕ
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⇒ =  
ΔΕ

cosh( ( − )) 

The idea of this study was to demonstrate the ability to monitor a CP system 

through the ILI tool.  In a real world example of an effective CP system, the current 

density will help to control calcareous deposit, which is developed over time and thus 

also controls the potential in the pipe-to-soil interface.  Calcareous deposit can reduce 

current by increasing the resistivity of the coating, which is what this research is 

showing.   

The other way to reduce current is by slowing the diffusion of oxygen through the 

coating to the steel surface.  Anywhere the pipeline is poorly protected and the current 

density becomes so low far away from the rectifier is also where calcareous deposit will 

be lacking.  “This would also work since calcareous deposit would change the diffusion 

Equation by decreasing the rate of diffusion constant over an increasing distance, 

Equation 1.7, causing the concentration gradient to decline by the denominator as the 

diffusion Equation increases.”24  

Finally, the current prediction from the attenuation model1 implies that it is the 

maximum that can be provided by the CP system and NOT the actual current.   The 

calcareous deposit effect remains the same, but it does not create the flat current effect, it 

just increases the range where potential and current are independent.    

 

4.4. FUTURE WORK 

There are many topics that this research immediately branches into with respect to 

the CP circuit potential, current, and the chemical interactions with the soil.  As geometry 

of pipes change, temperature, and metal alloys may differ etc., these are useful additional 
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parameters for input into the model to establish more trends and make analyses.  With 

additional samples more accurate trends could be established, especially with varying 

conditions (recall Section2.2 for industry specific variances).  Field tests would be useful 

to get potentials experimentally from CP coupons or test lead stations to further confirm 

specific aspects of Kirchhoff’s methods as well as the attenuation models since it 

assumes a maximum current density.   

4.4.1. Calcareous Deposit.  Kinetic studies would be interesting to explore to 

determine how long it takes for a pipeline to become fully protected (polarized) and gain 

calcareous deposit.  Mathematically, current density (flux) can be set up as a rate based 

on the unit relationships W/m2 = J/sec*m2, where Amps = Watts/Volts, so J/sec = 

Amps/Volt, then seconds (time) = Volts*Joules/Amps.   

A relationship between attenuation and wave propagation of the current may be 

established as well.  This can be tied to the CP ILI tool current density readings, such that 

a time can be calculated and then validated by some known pipeline ages and upon 

excavating the pipe to observe coating condition and evidence of calcareous deposit.  

4.4.2. Kirchhoff’s Theory Applications.  Field measurements are suggested to 

be gathered from CP coupons, test stations along a pipeline’s CP system, and from the 

CP ILI tool regarding experimenting with applications of Kirchhoff’s Method as outlined 

in Section 2.6.  This additional research may help further validate methods from Section 

2.4, ATTENUATION and provide new assessment techniques for evaluating CP systems 

relating to the CP ILI tool.   

4.4.3. Diffusion Rate Experiments.  This possible future research is in regards to 

Fick’s Law, Equations (1.7)  and (1.8), which is dependent upon the diffusion coefficient 
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D and the activation energy potential E for the diffusion process to occur in addition to 

the kinetic effects (rate of diffusion).  The diffusivity constant (D) is a function of 

temperature T as well, where in industry and experimentally, the temperature can impact 

the diffusion rate.  Experiments for diffusion based on temperature variation may further 

establish relationships with respect to the demand of current capacity for oxygen 

diffusion.  A study like this can be compared to CP ILI measurement data to support 

whether or not oxygen is migrating to the surface or is no longer consumed by current.  

This study could expand upon to Figures 1.2, 1.3 and 4.1.   

4.4.4. Noise and Vibration Filter.  Other research may direct experts to seek 

solutions to cool down sensors that experience greater heat due to friction inside of dry 

gas lines.  Dampening effects can be studied to reduce vibration by from more viscous 

fluids or alternative mechanics for the sensors.  Alternatively data analysis and noise 

filtration built into a software program may help to estimate an average density.   

4.4.5. Sensor Types and Arrangements.  Additional studies may lead to 

different sensor arrangements such that contact methods may not be necessary.  Sensor 

orientation for the tool considering ability to cover larger spans of area with smaller 

discrete areas to help normalize readings –like a blanket of sensors around the tool (i.e., 

the more samples the more accurate the reading).   

4.4.6. Non-Surface-Contact Sensors.  Fluid mechanics can be explored to help 

find the thermal circuitry via heat and mass transfer through the medium (fluid) in order 

to capture readings without making direct contact with the pipe by examining the heat 

flux which is basically current density as established through electromagnetism 

(Maxwell’s Equations and the permeability and permittivity of the medium).   
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A. MISCELLANEOUS TABLES & MATERIALS 

 
Table of Soil Resistivity 
Complimentary of Department of the Army; TM 5-811-7 
Electrical Deign, Cathodic Protection (1985) 
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Table of Steel Pipe Resistance – Some Standard Pipe Sizes 
Complimentary of UFC 3-570-06; (2003) 

 
 

 
Table of coating efficiencies from 21 
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This table is from Lazzari and Pedeferri1 
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APPENDIX B. 
 

LITERATURE & PATENT REVIEW         
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B. LITERATURE & PATENT REVIEW         

Research material for developing this thesis consisted of reviewing the patented 

CP ILI tool’s data provided by BHI and cooperative efforts for data analyses by industry 

subject matter experts, publications (articles), consultations with the owners and 

designers of the tool about ideas for conceptualizing tool results via mathematical 

models.  Articles, industry standards, and texts for CP design, its purpose and industry 

rules (regulations) for its maintenance and effectiveness were referenced and cited.  The 

applied physics necessary for the analysis in Section 2 required general foundational 

concepts from engineering and science text books with respect to electrochemistry, 

general circuitry, materials and metallurgy were also referenced as applicable to achieve 

a valid analysis.  The entire contents of this thesis was reviewed, collaborated, and vetted 

by industry SMEs, Professors, and mentors.           

The following listed patent information, general publications, and subject matter 

experts’ knowledge and experience was utilized:    

 CP ILI  Tool TM, Patent No. 7,104,147, Sept. 2006 

o Inventors: Pots; Bert (Houston, TX), Fagbayi; Kola (Houston, TX), Scott; 

P. Kevin (Harvey, LA), Mateer; Mark W. (Katy, TX)  

o Assignee: Shell Oil Company (Houston, TX) Family ID: 34807922  

o Appl. No.: 10/768,618  

o Filed: January 30, 2004 

o CP ILI tool–is designed by Baker Hughes and in their ownership 

 Baker Hughes Incorporated (CP ILI ToolTM owner) – Dennis Janda and David 

Williams provided SME knowledge of tool use, design, 12” OD & 0.5” std w.t. 
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data, CP ILI data, and performance, mentorship, guidance, interviews, 

collaborations, publications, concepts for research, and thesis review.    

 Military –Various Army and Navy article publications and standards for designs 

and for CP of submerged metallic structures, tanks, and pipelines and corrosion 

prevention.  

 Missouri University of Science & Technology – PhD. Engineering Professors:  

- Matt J. O’Keefe (co-advisor) –metallurgy, coatings and corrosion expert; 

- Victor  Birman (co-advisor) – materials and composites expert; and  

- James L. Drewniak (committee member) – electrical engineering expert; 

These engineering experts provided guidance, publications on material, 

mentorship, and directions for adhering to thesis criteria and 

authorizations for acceptance of real work thesis material in accordance to 

University processes, procedures, and in order to complete the thesis paper 

and presentation requirements.   

 Industry Expert from Shell Corporation –Principle Corrosion, CP, and System 

Integrity Mark Mateer, provided SME guidance, mentorship, interviews, 

publications, text books, and help with honing thesis approach as well as complete 

review for all of the thesis paper with respect to validity of CP, corrosion 

concepts, system integrity, and methodology for analyses.     

 Industry Expert from Technical Toolboxes – Corrosion, CP, and System Integrity 

Expert:  Joe Pikas, provided SME guidance, mentorship, publications, review of 

thesis material, and concepts for approach.   

 Text books, articles (publications); (see Section 5.2 and BIBLIOGRAPHY) 
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C. OTHER REFERENCES & MATERIAL 

 
Electronic Code of Federal Regulations (e-CFR) (2016), Title 49 (Transportation) 

“Pipeline and Hazardous Materials Safety Administration, Department of 

Transportation.” website http://www.ecfr.gov/cgi-bin/text-idx?tpl=%2Findex.tpl. 

a. Part 192 – Transportaion of Natural and Other Gas by Pipeline: Minimum Federal 

Safety Standard; Subpart I §192.463-.475 

b. Part 195 – Transportation of Hazardous Liquids by Pipeline; Subpart H §195.557, 

.563 & .565. 

 

Incroprera, F. P. & DeWitt, P.D. (2002). Heat and Mass Transfer, Fifth Edition. 

Hoboken, NJ: John Riley & Sons, Inc. 

 

Janda, D.; Williams, D. (2014). “Countering Sleepless Nights.” World of Pipelines & 

Baker Hughes: Houston, TX. 

 

Janda, D.; Williams, D. (2014). “Lessons Learned: Monitoring Cathodic Protection from 

Inside the Pipe,” Materials Performance, pages 42-45. 

 

NACE International SP0169-2007 Standard Practice (formerly RP0169, recommended 

practice), (2207). "Control of External Corrosion on Underground or Submerged Metallic 

Piping Systems." NACE: Houston, TX.  

 

NACE SP0502 Standard Practice3 – “Pipeline External Corrosion Direct Assessment”, 

(NACE ECDA (DA). 

 

O'Keefe, M. J.; Drewniak, J.L.; Maddela, S.; Claypook, J. & Fang, X. (2014). 

"Development of an Alternative Method to Potential Measurement to Assess the Level of 

Cathodic Protection  to a Buried or Submerged Pipeline" PRCI on behalf of Technical 

Toolboxes, Inc., Houston, TX.   
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Orazem, M. E.; Qiu, C. (2002). “Model for Interpretation of Pipeline Survey Data”, 

Univeristy of Florida, Technical Toolboxes, Inc., Houston, TX.  (Close Interval Survey 

related)    

 

Peabody, A.W. (2001).  “Control of Pipeline Corrosion”, 2nd Edition. p. 19. R. 

Bianchetti, NACE: Houston, TX. 
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